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Abstract 
 

 

Rail breaks, resulting from increasing heavy axle-load operations and harsh 

environmental conditions, remain a major cause of catastrophic derailment of 

vehicles in North America. The objective of this research project is to develop 

convenient testing methods to identify the optimum high-strength rail steels for 

Canadian weather, which can contribute to reducing derailment risks for the 

Canadian railway industry. In this research project, both destructive and non-

destructive testing methods are developed to quantify the fracture toughness of 

high-strength rail steels. The project can be broadly divided into two phases. 

Phase I, which is reported in Chapters 2 and 3, involves establishing an 

extended strain energy density (SED) model for estimating the fracture toughness 

of high-strength rail steels at 23, -10, and -40
o
C. First, the mechanical properties, 

including the mode I critical stress intensity factor (KIc), constitutive equation, and 

Vickers hardness, of three types of high-strength rail steels are tested and 

compared at 23, -10, and -40
o
C. According to the experimental results, their KIc 

values and tensile properties are not correlated with each other. Further study in 

phase I involves investigating the influence of stress triaxiality (defined as the 

ratio of hydrostatic stress to von Mises stress) on the plastic deformation and 

fracture behaviour of rail steels. An extended SED model that considers the effect 
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of stress triaxiality on both distortional and dilatational SEDs is proposed for 

assessing the fracture toughness of high-strength rail steels. The critical SED 

factor, determined by calculating the product of the critical SED and a 

characteristic distance ahead of the crack tip, is found to well correlate with the 

KIc values among the three types of rail steels at 23, -10, and -40
o
C. The results 

also confirm that the dilatational energy dissipation (also known as damage 

energy dissipation) at the crack tip is the primary component to correlate the 

critical SED factor with the KIc of rail steels. 

In Phase II, which is reported in Chapters 4 and 5, a more convenient non-

destructive indentation technique is developed for estimating the fracture 

toughness of high-strength rail steels. First, a new constitutive model with 

coupled stress-triaxiality-dependent plasticity and damage is postulated to 

describe the mechanisms involved in the plastic deformation and ductile damage 

to rail steels under different levels of stress triaxiality. Based on the new 

constitutive model, not only is the independence of the constitutive equation from 

stress triaxiality explained, but a stress-triaxiality-dependent ductile damage 

model is also developed to estimate the critical damage parameter (Dcr) at the 

crack tip. With this ductile damage model, the indentation fracture toughness (KInd) 

of rail steels is estimated based on the Dcr at the crack tip. In addition, the study in 

Phase II uses a parameter κ to accommodate the potential difference of the Dcr 

value in the two loading modes (tensile fracture and indentation compression). 



iv 

 

The study shows that Dcr is indeed stress-triaxiality dependent and increases with 

the increase of stress triaxiality. The results also show that the change in KInd 

based on Dcr either at the crack tip or for the smooth specimen is generally 

consistent with the difference in the measured fracture toughness (KIc) among the 

three rail steels. However, for materials that show small difference in KIc, i.e., 

within the scattering of the measured data, KInd based on the Dcr at the crack tip 

may show a different trend from that based on the Dcr for the smooth specimen, 

which depends on the selected κ values. Such an issue needs further investigation 

using materials that cover a wide range of fracture toughness.  

Compared to the destructive testing method, the non-destructive indentation 

technique is more convenient, and has the potential to serve as a tool for the in-

field health monitoring of rail steels and for the material evaluation, at an early 

stage, of the new rail steel under development. 
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Chapter 1 Introduction 

 

 

1.1 Background and motivation 

 

The continuously increasing service demands on rails, such as heavy axel 

loads and high speed operations, are approaching the limits of rails’ ability to act 

as an effective part of the track structure [1]. Also, at low temperatures, the 

increase of axial tensile stress and reduction of fracture toughness that occur in 

continuously welded rails (CWR) [2], make such an issue even worse. As a 

consequence of these, the frequency of rail breakage elevates [3], which is the 

most common cause of derailments [4, 5]. Figure 1.1 shows a case of catastrophic 

derailments which happened at Gainford in Alberta in 2013. The derailment was 

caused by broken rails, as reported by the Transportation Safety Board of Canada 

[6]. A recent study has suggested that the broken rails are almost the most 

significant cause of derailments in all types of railroad track classes in Canada 

from 2001 to 2014 [4], as shown in Figure 1.2. Thus, installing rail tracks using 

steels with both high material strength and fracture toughness is of considerable 

importance. Because the higher is the material strength of rail steels, the greater 

their wear resistance. Similarly, the tougher are the rail steels, the longer the 

critical crack size required for rail breakage—and thus, the greater the possibility 

for the cracks to be detected before the rail breaks. Clearly, this can reduce the 

risks of derailments. 

During the past four decades, the quality of rail steels has been improved 

tremendously by refining their microstructures through heat-treatment [7-10] and 

controlling the chemical compositions [11-13]. In the context of such 

improvement, high-carbon, carbide-free bainitic steels have been found to possess 

higher wear and crack resistance than the conventional pearlitic steels [14, 15]. At 

present, however, rail tracks are commonly made out of pearlitic steels, as they 
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are the cheapest to produce and maintain excellent wear resistance. As well, the 

appropriate heat treatment has improved both the material strength and fracture 

toughness of pearlitic rail steels [8]. 

 

 

Figure 1.1 A case of derailment that happened at Gainford, Alberta in 2013. Source: the 

Transportation Safety Board of Canada [6] 

 

 

Figure 1.2 Distribution of derailments by incident cause and speed on main track rail, 2001-2014: 

(a) 0 to 16 km/h; (b) 16 to 40 km/h; (c) 40 to 64 km/h; and, (d) > 64 km/h. Source: Leishman, Eric 

M [4]. 



3 

 

 

 

 

 

Figure 1.3 Comparison of number of derailments between winter and summer caused by rail 

breaks in the period from 2001 to 2014. Source: Leishman, Eric M [4]. 

 

As shown in Figure 1.3, because of the cold climate in Canada, Canadian train 

derailments due to rail failure are more prevalent during the winter period, when 

temperatures commonly fall to the range of -20 to -40
o
C [16]. Due to this, 

Canadian railways have raised concerns that the premium high-strength rail steels 

produced for the North American market may not be optimum for resisting rail 

breaks in Canada. In view of the various types of high-quality pearlitic rail steels 

produced worldwide, the Canadian railway industry is looking for several specific 

types of high-strength pearlitic rail steels that possess good wear resistance and 

more importantly, have stronger crack resistance than the currently installed ones. 

In order to fulfil the Canadian railway industry’s requirement, the mechanical 

properties of different types of rail steels, such as their material hardness, 

strength, and fracture toughness, must be evaluated in detail. Although standard 

testing procedures following the American Society for Testing and Materials 

(ASTM) standards have been established for characterizing these material 

properties, these methods generally require specific specimen geometries and 

dimensions [17-19]. For example, in order to obtain material strength without 

considering the boundary effect, tests should employ a tensile specimen that 

satisfies a certain ratio of the cross-sectional dimension to the length of the 
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reduced gauge section. Especially for the fracture toughness testing, manufacture 

of either the single-edge-notched bend (SENB) specimens for the three-point 

bending test or the compact-tension (CT) specimens under tensile loading requires 

a series of facilities, such as electric-discharge machining (EDM) and abrasive 

waterjet to machine the special notch tip. In addition, the fatigue pre-cracking 

requires special high-frequency loading-unloading equipment that is not available 

in all research institutes. They thus make fracture toughness evaluation using the 

standard testing method not an easy task. Also, in view of the various types of rail 

steels, carrying out standardized tests for each of the potential candidates would 

be costly and time-consuming.  

In this study, alternative testing methods of both a destructive and a non-

destructive nature are proposed to predict the fracture toughness of rail steels. 

Both of the proposed methods are more convenient than the standard testing 

method. The non-destructive testing method in particular can be used for the in-

field health monitoring of railway systems and for material evaluation at an early 

stage of the development of new rail steels. 

 

1.2 Transverse rail breaks  

 

Rails, as one of the most important components of the track structure, are 

made of high-carbon steel. Their profile, as shown in Figure 1.4, can be divided 

into three regions: rail head, web and foot. Rails are longitudinal steel members 

designed to support the heavy axle loads of rapidly moving trains by distributing 

concentrated wheel loads over the sleepers or supports. Although rails are 

expected to be serviceable long enough to provide return on investment costs, rail 

failure is becoming more frequent due to heavy axle loads, increasing traffic 

density, high train speeds, and axial tensile stress at low temperatures due to 

CWR. A brief description of the transverse, fissure-type rail breaks—the most 
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important crack type, and the fracture scenario most likely to cause catastrophic 

derailment [3, 20]—is provided in the next paragraph. 

Transverse-fissure-type rail breaks are caused by either surface-induced 

cracks or internal defects in the rail head, both of which are generated by wheel-

rail rolling contact fatigue (RCF) [3]. Typical surface-induced cracks include so-

called “head checks” and “squats”. The first of these occurs preferentially at the 

corner of the gauge side of a rail, as shown in Figure 1.5(a). After the head checks 

have grown by several millimeters, the transverse fracture occurs once the crack 

size is extended to a critical length, as shown in Figure 1.5(b). Squats occur on the 

top of running surface and grow at a sharp angle with respect to the running 

surface until they turn in the transverse direction, as shown in Figure 1.6. Figure 

1.7 shows the resulting transverse rail break, which is caused by the growth of 

some pre-existing internal flaws in the rail head, e.g., hydrogen shatter cracks, 

until a critical crack size is reached.  

With the advantage of improved heat-treatment technology, pearlitic rail steels 

now have high stiffness, and excellent wear- and crack-resistance [21, 22]. The 

aim of the Canadian railway industry is to select several types of such pearlitic 

rail steels with optimum wear- and crack-resistance for operation in harsh 

environmental conditions. Since the wear resistance of pearlitic rail steels has 

been found to be closely correlated to their hardness [23-25], an indentation-based 

testing method is likely to be feasible in assessing the fracture toughness of rail 

steels. 
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Figure 1.4  Profile of produced rail steels 

 

 

 

 

Figure 1.5  Rail defects resulting from head checks: (a) spalling originating at head checks, and (b) 

a rail fracture originating from a head check [3].  Copyright 2009. Reproduced with permission 

from Elsevier. 
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Figure 1.6  Rail defects resulting from squat: (a) top view showing damage to the running surface, 

and (b) side view showing the early propagation of a squat [3]. Copyright 2009. Reproduced with 

permission from Elsevier. 

 

 

 

Figure 1.7  Transverse rail breaks due to internal defects [3]. Copyright 2009. Reproduced with 

permission from Elsevier. 
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1.3 Literature review on the characterization of fracture toughness 

 

Mode I critical stress intensity factor, KIc, is a material property used to 

characterize the fracture toughness of rail steels. As stated in the previous two 

sections, the fracture toughness value for rail steel plays an important role in 

assessing railway integrity. Although a standard testing method for measuring the 

KIc of rail steels is available in the ASTM E399 [18], this method is not easy to 

use because of the complex process required for specimen preparation. In this 

section, in addition to the standard fracture toughness testing method, four 

existing methodologies for fracture toughness characterization are discussed in 

order to assess their applicability to rail steels.  

 

1.3.1 Standard fracture toughness tests 

 

In the ASTM E399 [18], the standardized testing procedures for KIc 

measurement consist of preparing specimen configurations, fatigue pre-cracking, 

conducting mechanical testing, and measuring the pre-cracked length from post-

test specimens. The five types of standard specimen configurations are compact-

tension (CT), single-edge-notched bend (SENB), arc-shaped, disk-shaped, and 

middle-tension (MT) specimens, shown in Figure 1.8. Among these five types of 

specimens, CT and SENB are the configurations most commonly used for fracture 

toughness tests. Fatigue pre-cracking is performed to generate a sharp crack for 

the proper application of fracture mechanics theory [26-30]. In order for fracture 

toughness to reflect the true properties of the material, the growth of the fatigue 

cracks during the pre-cracking process must be sufficiently slow to prevent 

development of a large plastic zone size. During mechanical testing, the applied 

load and the crack mouth opening displacement (CMOD) must be measured 

simultaneously. Although the mechanical testing is relatively straightforward, 

attention should be paid to the alignment of test set-ups. Data analysis is another 
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challenging process. Not only should the pre-cracked length be measured in the 

post-test specimens, but also, due to the strict size requirement in ASTM E399, 

the validity of the KIc values must be checked.  

Due to the complexity of the testing procedure, completing such tests on one 

type of rail steels, based on our experience, takes approximately 6 months. 

Therefore, using the ASTM standard to examine the various types of rail steels is 

toilsome. In the following section, the existing methods for fracture toughness 

prediction are reviewed in order to establish new testing methods allowing for the 

quick estimation of the fracture toughness of rail steels. 

 

 

Figure 1.8 Standardized fracture mechanics test specimens: (a) compact tension (CT) specimen, (b) 

disk-shaped compact tension specimen, (c) single-edge-notched bend (SENB) specimen, (d) 

middle tension (MT) specimen, and (e) arc-shaped tension specimen. Source: T.L. Anderson [31] 
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1.3.2 Fracture toughness prediction 

 

This section reviews four typical models for predicting fracture toughness. 

These approaches are (i) the critical fracture stress and fracture strain models, (ii) 

the notch stress intensity factor (NSIF) model, (iii) the strain energy density 

(SED) theory, and (iv) the non-destructive indentation technique. 

 

1.3.2.1 Critical fracture stress and fracture strain models 

 

Ritchie et al. [32] proposed the critical fracture stress criterion, known as the 

RKR model, to estimate the fracture toughness of high-nitrogen mild steels. The 

RKR model was postulated based on the development of fracture mechanics [26, 

27, 29], through which the stress distribution at the crack tip was successfully 

derived for both linear-elastic [30, 33-35] and elastic-plastic materials [36-38]. By 

inferring the critical fracture stress based on the studies of stress distribution at the 

crack tip [36, 38], Ritchie et al. [32] successfully predicted the KIC value of high-

nitrogen mild steel at cryogenic temperatures by postulating that cleavage fracture 

occurred when the tensile stress at a characteristic distance ahead of the crack tip 

exceeded the critical fracture stress. In the RKR model, the characteristic distance 

was assumed to be equivalent to the order of two grain diameters. However, 

subsequent investigations [39, 40] revealed that no consistent relationship existed 

between the characteristic distance and the grain sizes. Recently, Neimitz et al. 

[41] reported a modified formula of the RKR model, demonstrating that the 

characteristic distance ahead of the crack tip should be defined as the order of the 

critical CTOD, or the distance of the maximum opening stress located in front of 

the crack tip for elastic–plastic material. Shlyannikov et al. [42] validated this 

definition in their study. 

The critical fracture strain criterion was originally proposed by McClintock 

[43] and adapted by Mackenzie et al. [44] and Pandey and Banerjee [45] for 
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estimating the fracture toughness of ductile materials under stable crack growth 

where significant plastic deformation was dominant at the crack tip. Ritchie et al. 

[46] further developed this approach by postulating that fracture initiation 

occurred when the fracture strain at a characteristic distance ahead of the crack tip 

exceeded a critical value. The characteristic distance was still assumed to be at 

several grain diameters ahead of the crack tip. 

In view of the above studies, although the concepts of critical fracture stress 

and fracture strain provide relatively simple means of estimating fracture 

toughness for ductile materials, determination of the characteristic distance has 

been reported to depend on the stress states and microstructures at the crack tip 

[39, 47, 48]. Because of this, the convenience of the above two models 

disappears. In order to apply the critical fracture stress or fracture strain model to 

rail steels, effects of the microstructure and the stress states on the characteristic 

distance, fracture stress, and fracture strain at the crack tip, must be investigated, 

which makes the critical fracture stress and strain models too complex for 

engineering applications. 

 

1.3.2.2 Notch stress intensity factor (NSIF) model 

 

Discussion of the NSIF model is limited to the special case of the NSIF for the 

sharp V-notched tip because the stress intensity factor (SIF) at the crack tip can be 

extrapolated from several NSIF values determined based on this particular NSIF 

model. The formulation of the NSIF model is extended from Williams’ basic 

contribution for describing the stress field at the crack tip [30]. Therefore, the 

NSIF of the sharp V-notch tip has an expression similar to that of the SIF, but less 

marked singularities of stress and displacement distributions due to the finite 

notch angles of the sharp V-notches [49-52].  

The NSIF model has been commonly used to assess the fracture strength of 

both brittle [53-56] and ductile materials [57, 58] for specimens with various 

notch geometries. This NSIF model can also be applied to estimate the fracture 
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toughness of materials based on an extrapolation of NSIF values determined from 

different sharp V-notched specimens [54]. However, in order to predict the 

fracture toughness at the crack tip, several sharp V-notched specimens with 

different notch angles are required. Moreover, stress distribution around the notch 

tip must be accurately determined in order to use this approach. Due to the 

complexity of these procedures, the NISF model is rarely recommended for KIc 

prediction. Instead, engineers use this model mainly to evaluate the fracture 

strength of structures with various types of notches [59]. 

 

1.3.2.3 Stress energy density (SED) theory 

 

Sih and his co-workers [60-65] first proposed a special SED theory to study 

the mechanics and physics of crack propagation at the crack tip of brittle 

materials. In Sih’s SED theory, the strain energy density factor (s) was defined as 

the product of the SED and a characteristic distance from the point of the crack 

tip. Crack initiation was controlled by the critical value of the SED factor (sc), 

whereas the direction of the crack propagation was determined by imposing a 

minimum condition on s [60]. Thus, Sih’s SED theory is more advanced than 

Griffith’s energy balance theory [26], because the former takes into account both 

crack initiation and the direction of crack propagation.  

Sih’s SED theory was originally proposed only as a fracture criterion for 

brittle materials under mixed-mode loading. Later, this theory has also been 

adapted to predict the fracture toughness of ductile materials. Shlyannikov [66] 

extended Sih’s SED theory by including the plastic portion of the SED based on 

the J-integral and accurately calculated the fracture toughness (KIc) values for 

both high-nitrogen mild steel and 30Cr steel. Taking a similar approach, Gillemot 

and his co-workers [67, 68] developed the concept of the absorbed specific 

fracture energy (ASFE). By extrapolating the SED and the elongation of the 

plastic zone from the plain and notched specimens to those the crack tip, the 
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product of the above two parameters was used to estimate the fracture toughness 

of low- and medium-strength structural materials.  

Later, Lazzarin and his co-workers [59, 69-71] proposed a modified volume-

based SED approach to assess the fatigue and static fracture of brittle and quasi-

brittle engineering materials using notched specimen geometries. Unlike Sih’s 

SED theory, which defines the point-wise critical SED factor as a fracture 

initiation criterion, the volume-based SED approach uses a line-wise criterion. 

That is, the determined SED is averaged over a controlled volume (which 

becomes an area in plane stress or plane strain condition), and failure occurs once 

the averaged SED value is equal to a critical value. The volume-based SED has 

been extended for the fracture assessment of ductile materials that are weakened 

by the presence of notches [72, 73]. The advantage of the volume-based SED 

approach over Sih’s SED theory is that the former needs only a coarse mesh to 

determine the mean value of SED, while the latter requires a very refined mesh to 

calculate the SED value. This is because according to Sih’s theory, the SED is 

calculated based on the product of local stresses and strains. Therefore, mesh 

density at a sharp notch tip should be dense enough to capture the stress 

singularity [62]. While for the volume-based SED method, the SED at the crack 

tip is directly determined from the nodal displacement without any calculation 

involving stresses and strains [74]; thus, only a coarse mesh is required. For 

instance, for a sharp V-notched tip, in order to obtain the accurate stress 

singularity more than 3,000 finite elements are required using Sih’s SED theory; 

however, in the same region, the same accuracy can be obtained by only 64 

elements using the volume-based SED method [59].  

The above SED approach has been used mainly as a powerful fracture 

criterion for both linear-elastic and elastic-plastic materials that include notches or 

cracks. The SED approach can also be adapted as a simple method for predicting 

the fracture toughness of both brittle and ductile materials, similar to those 

proposed by Gillemot et al. [67], Shlyannikov [66], and Chaouadi et al. [75]. 
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Therefore, the SED approach can be considered a promising candidate for 

estimating the fracture toughness of rail steels. 

 

1.3.2.4 Indentation technique 

 

In view of its non-destructiveness and convenience, the indentation technique 

is an ideal alternative to the standard testing method. In fact, the indentation test 

has been proposed as a promising technique to predict fracture toughness for both 

brittle and ductile materials [76-86]. In brittle material, such as ceramics, cracks 

are generated around the indent. Thus, fracture toughness can be characterized 

based on the crack dimensions and indentation load generated by an indenter [77-

79]. In the case of ductile material, though cracks are unlikely to be generated 

during indentation, researchers have proposed the use of the indentation test to 

quantify fracture toughness; this involves indenting the material to a critical 

contact depth at which the specific indentation energy corresponds to the specific 

work of fracture for crack initiation at the crack tip [80, 82, 87]. This concept is 

based on the assumption that both the crack tip and indenter tip generate a highly 

concentrated stress field at similar levels of stress triaxiality. The existing 

approaches to determine the critical contact depth can be categorized based on the 

following three criteria: (i) the critical fracture stress [81, 87], (ii) the critical 

fracture strain [88, 89], and (iii) the critical damage parameter [82-86]. 

Byun et al. [87] adapted the critical fracture stress criterion [32] to predict the 

fracture toughness of reactor pressure vessel steels in the ductile-to-brittle 

transition temperature (DBTT) regime by using the ball indentation technique. 

This critical fracture stress criterion is difficult to apply because the 

characterization of the fracture stress at about two grain diameters ahead of the 

crack tip is obscure [47]. For example, the fracture stresses for either the 

nucleation of the fracture in the grain boundary or the fracture propagation across 

the adjacent grains are unlikely to be equal. Thus, the choice regarding which of 

these to apply as the critical value to determine the critical contact depth is 



15 

 

 

 

 

unclear. Moreover, previous investigations [39, 40] could not find a consistent 

relationship between characteristic distance and grain size. Therefore, determining 

the critical contact depth for rail steels based on the critical fracture stress 

criterion is difficult. 

The critical fracture strain criterion was modified from the above critical 

fracture stress criterion [46] and adapted by Haggag et al. [88], who developed an 

automatic ball indentation (ABI) technique to estimate the fracture toughness for 

reactor pressure vessel and pipe steels. For the sake of convenience, instead of 

determining the exact value of the fracture strain at the crack tip for crack 

initiation, their approach identified the critical fracture strain with the strain-

hardening exponent. Recently, Jeon et al. [89] improved the ABI technique by 

applying the fracture strain at the crack tip to determine the critical contact depth. 

However, the critical fracture strain criterion [45, 46] is applicable only to very 

tough materials in which significant plastic deformation occurs at the crack tip 

before crack initiation. Therefore, this special ABI technique can be applied only 

to estimate the indentation fracture toughness of very ductile materials. Since 

cleavage-like fractures, rather than ductile fractures, are observed at the crack tip 

of high-strength rail steels, the ABI technique is not appropriate for the current 

study.  

Recently, Lee et al. [82] developed a new indentation model for predicting the 

fracture toughness of ductile materials based on the principles of continuum 

damage mechanics (CDM) [90]. The key concept involved in their study was 

obtaining the critical damage parameter for crack initiation and then using the 

indentation test to approach that critical damage parameter value until the specific 

indentation energy could be closely correlated to the specific work of fracture at 

the crack tip. This indentation model has been applied to predict fracture 

toughness of materials exhibiting both ductile and cleavage-like fracture 

behaviour [83-85]. However, previous researchers all assumed that the critical 

damage parameter is a material constant, independent of stress triaxiality [82-85].  
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Researchers have long argued about whether the critical damage parameter is 

indeed independent of stress triaxiality. On the one hand, some researchers, such 

as Tai [91] and Bonora et al. [92], have claimed that under different loading 

conditions, the critical damage parameter could be considered a material constant. 

On the other hand, experimental evidence has shown that with the increase of 

stress triaxiality, obvious ductile-to-brittle fracture transition was observed [93], 

indicating a change in the critical damage parameter under different loading 

conditions. More recently, based on the micro-mechanical studies of the stress 

triaxiality effect on damage evolution, researchers have found that the critical 

damage parameter for a representative volume element (RVE) increased with an 

increase in stress triaxiality [94-96].  

As the above literature review demonstrates, both the SED theory and the 

CDM-based indentation technique are appropriate for estimating the fracture 

toughness of high-strength rail steels. Due to its convenience and non-destructive 

features, the indentation testing technique is deemed to be an ideal candidate to 

estimate the fracture toughness of rail steels. However, the stress triaxiality effect 

on the critical damage parameter should be further investigated for the application 

of this non-destructive indentation testing method to rail steels. 

 

1.4 Objectives and outline of this study 

 

The overall objectives of this research project are to investigate influence of 

temperature (23, -10, and -40
o
C) on mechanical properties of high-strength rail 

steels, including the mode I stress intensity factor (KIc), constitutive equation, and 

Vickers hardness; and develop new testing methods for predicting fracture 

toughness of high-strength rail steels.  

In this research project, three types of high-strength rail steels, JAPAN NSC 

FHH (JP), EVRAZ RMSM FHH (EV), and CZECH TZ IH (CZ), are selected as 

sample materials, which are provided by the Canadian National Railway 
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Company (CN). These three high-strength rail steels are all high-quality steels 

that will be installed in the mainline tracks in Canada. Therefore, it is necessary to 

characterize their material properties before the application. 

The specific objectives of this thesis are to: 

1. Test and compare mechanical properties of the above three types of high-

strength rail steels at 23, -10, and -40
o
C, including KIc, constitutive 

equation, and Vickers hardness, to establish a material database following 

the ASTM standards. 

2. Develop a convenient testing method to quantify fracture toughness for the 

three high-strength rail steels by studying stress triaxiality effect on plastic 

deformation and fracture behaviour. 

3. Establish a new constitutive model for high-strength rail steels by 

considering stress triaxiality-dependent plasticity and damage. 

4. Develop a new non-destructive testing method for estimating fracture 

toughness of high-strength rail steels based on a stress triaxiality-

dependent ductile damage model. 

The remainder of this thesis is divided into five chapters corresponding with 

the steps in this project. 

Chapter 2 explains the detailed experimental procedures on mechanical testing 

to determine material properties of the three high-strength rail steels, CZ, EV, and 

JP, at rail head, web, and foot at 23, -10, and -40
o
C; here the CZ rail steel is used 

as an example to illustrate the procedures. Three types of mechanical tests, i.e., 

the standard monotonic tensile, Vickers hardness, and three-point bending tests, 

are carried out according to the ASTM standards E8/E8M, E384, and E399, 

respectively [17-19]. The effect of temperature on mechanical properties, 

including the constitutive equation, Vickers hardness, and mode I critical stress 

intensity factor (KIc), is investigated. In order to provide a full inspection of 

mechanical properties over a cross-section of rail track, the difference in the 

mechanical properties between the rail head and foot is also studied.  
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The study presented in Chapter 3 has two purposes. The first is to compare the 

mechanical properties of the three types of high-strength rail steels, including 

their tensile strength, ductility, and mode I critical stress intensity factor (KIc), at 

23, -10, and -40
o
C. Unexpectedly, neither the tensile strengths of the three types 

of rail steels nor their ductility corresponds to their KIc measures. That is, although 

the JP rail steel has the greatest material strength and ductility, its fracture 

toughness is less than that of the EV rail steel. In light of this result, the second 

part of Chapter 3 sets out to investigate the fracture behaviour at the crack tip of 

the three rail steels, and to examine the feasibility of applying the concept of 

strain energy density (SED) to correlate with KIc among the three types of rail 

steels at all three temperatures. To this end, mechanical properties are 

characterized for not only the smooth specimens but also specially designed short-

gauge specimens. In addition, locus of the plastic fracture strain versus the stress 

triaxiality is established based on results from the smooth and short-gauge 

specimens using a theoretical model. The equivalent plastic fracture strain of the 

pre-cracked SENB specimen is then determined by extrapolating the fracture 

locus to the stress triaxiality level at the crack tip. Based on all of the above 

information and a determined characteristic distance ahead of the crack tip, the 

extended SED approach that considers the stress triaxiality effect on both 

distortional and dilatational SEDs under small-scale yielding, is proposed to 

predict KIc of the three rail steels at 23, -10, and -40
o
C. Because of its simplicity, 

the extended SED approach can be considered as a destructive testing method for 

estimating the fracture toughness of rail steels. 

In Chapter 4, a new constitutive model of stress triaxiality-dependent 

plasticity and damage is proposed for rail steels. This model characterizes the 

mechanisms of plastic deformation and ductile damage of high-strength rail steels 

and explains the independence of the constitutive equation from the stress 

triaxiality. In this study, smooth and short-gauge specimens are used to vary the 

stress triaxiality under tensile loading. Both monotonic and cyclic loading modes 

are used, with the assistance of numerical simulation, to determine the 
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constitutive equation and damage evolution, respectively. What motivates this 

study is the finding that even though stress triaxiality does not affect the 

conventionally-determined constitutive equation, it has a significant effect on 

damage evolution. In view of the well-accepted knowledge that the 

conventionally calibrated constitutive equation contains a coupled phenomenon of 

strain hardening and damage evolution, the new constitutive model, which takes 

into account the stress triaxiality effect on both plasticity and damage, is 

established. After calibrating the new constitutive model, the stress triaxiality 

effect on both the damage-free stress response to deformation and damage 

evolution is determined. 

Chapter 5 describes the development of an improved non-destructive 

indentation technique for assessing the fracture toughness of high-strength rail 

steels. In this study, in view of the possible effect of stress triaxiality on the 

damage development, indentation fracture toughness (KInd) is calculated based on 

the Dcr at the crack tip. In addition, the study uses a parameter κ to accommodate 

the potential difference in Dcr values between the two loading modes (tensile 

fracture and indentation compression). The above approach is applied to three 

types of high-strength rail steels to determine their KInd. Two types of notch-free 

specimens (smooth and short-gauge) are used to calibrate a ductile damage model 

for predicting damage evolution in the three rail steels, and two additional types 

of round-notch specimens to establish loci of plastic fracture strain versus stress 

triaxiality for the three rail steels. After the calibration, damage evolution and Dcr 

value are predicted at the crack tip based on an extrapolation of the calibrated 

ductile damage model and fracture loci to the stress triaxiality level at the crack 

tip. These results are then applied to the indentation test, with κ as the adjusting 

parameter, to determine the critical contact depth for calculating KInd. On the other 

hand, KInd is also determined based on the Dcr from the smooth specimen, denoted 

as the conventional indentation fracture toughness (KInd,con). Validity of both KInd 

and KInd,con are compared with the experimentally measured KIc values for the 

three rail steels. 
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Chapter 6 summarizes the main contributions of this work and recommends 

future work that has the potential to improve both destructive and non-destructive 

testing methods for fracture toughness characterization. 
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Chapter 2 Effect of temperature on deformation and fracture 

behaviour of high-strength rail steels
1
 

 

 

2.1 Introduction 

 

The frequency of cleavage fracture in continuously welded rails (CWR) 

elevates with the increase of heavy axle load (HAL) and high speed operations. 

The cleavage fracture of rails causes train derail, thus a severe safety concern. For 

this reason, lots of efforts have been made in the last 40 years to improve the rail 

steel, through approaches such as refining metallurgy and thermo-mechanical 

processes [97]. Although the improvement has been significant, cleavage fracture 

is still the major problem for the rail track due to the inherent poor toughness of 

the pearlite microstructure [14]. The problem is worsened in the cold regions due 

to a combined effect of HAL and contraction and fracture toughness reduction of 

rail at low temperature [98]. This has driven renewed interests in characterizing 

mechanical properties for the newly developed high-strength rail steels. In the 

previous studies, Szablewski et al. [99] evaluated mechanical properties for 10 

premium and 8 intermediate hardness rail steels in both head and foot regions at 

room temperature, to investigate the potential variation in mechanical properties 

over the cross section. Wang et al. [100] measured fracture toughness for rail 

steels at low temperature, but only in the head region. Bandula-Heva and 

Dhanasekar [101] focused on establishing a true stress-strain relationship for the 

head region of the rail steels at room temperature, but did not consider the 

possibility of neck formation before the fracture. In fact, to our knowledge, a 

comprehensive study on all of the above material properties over the entire cross 

section of high-strength rail steel is scarce in the literature. In view of the 

extremely harsh winter condition in Canada, with the temperature dropping 

                                                 
1
 This chapter has been published in the following publication: 

Yu, F., Jar, P.-Y.B., Hendry, M., 2015. Effect of temperature on deformation and fracture 

behaviour of high-strength rail steel. Engineering Fracture Mechanics 146, 41-55. 
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possibly down to -40
o
C, it is desirable to evaluate all of those mechanical 

properties for the newly developed high-strength rail steels at the rail head, web, 

and foot at low temperature.  

Due to the complex procedures involved in the rail steels production [1], 

material properties may vary over the rail cross section [99]. In this study, true 

stress-strain relationship, mode I critical stress intensity factor (KIc), and Vickers 

hardness on rail head and foot are investigated at 23, -10, and -40
o
C. KIc is also 

determined in the web region. In view that the new generation of high-strength 

rail steel may involve necking before the onset of tensile fracture, the 

conventional test-based approach to determine the true stress-strain curve is no 

longer valid, especially in the strain range after the peak load [102]. Bridgman 

[103] proposed a revised formula to convert the results from the mechanical 

testing to the material true stress-strain curve, while others through the 

combination of mechanical testing and FE analysis [104-107]. In the present 

work, the latter approach is used to establish the entire true stress-strain curve for 

tensile loading of a high-strength rail steel (CZECH TZ IH) under large plastic 

deformation including necking. The true stress-strain curve is then applied to an 

FE model of Vickers indentation test to mimic the experimentally determined 

load-depth curve. The chapter also discusses the relevance of the results with 

those reported in the literature. 

 

2.2 Mechanical testing and simulation 

 

All the mechanical testing was conducted on specimens sampled from the 

high-strength rail steel CZECH TZ IH with intermediate hardness, supplied by the 

Canadian National Railway Company (CN). An Instron hydraulic universal 

testing machine, equipped with an Instron environmental chamber, was used for 

the uniaxial tensile and three-point bending tests at temperatures controlled by the 

environmental chamber. A LEITZ MINILOAD hardness tester was used to 
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measure the Vickers hardness. Specimen temperature for the Vickers hardness 

measurement was controlled using a custom-made cooling chamber, 

manufactured following the design described by Oku et al. [108]. Additional 

thermocouples were welded on each specimen for all three types of tests to ensure 

that temperature of the specimen reached the specified value before the tests were 

conducted.  

In addition to the above mechanical testing, FE modelling using ABAQUS 

Standard (version 6.11) was performed to establish the constitutive equation for 

tensile deformation at 23, -10, and -40
o
C. The FE modelling was also used to 

mimic the Vickers indentation test at those temperatures. 

 

2.2.1 Mechanical testing 

 

2.2.1.1 Uniaxial tensile test 

 

Figure 2.1 presents geometry and dimensions for the tensile specimens, and 

location on the rail cross section where the specimens were sampled. The 

specimens were machined from the head and foot sections of the rail steel with 

the longitudinal direction parallel to the rolling direction. Thus, the gross fracture 

plane was perpendicular to the rolling direction in each test. Due to high-strength 

of the rail steel, diameter in the gauge section was chosen to be 6.0 mm so that the 

maximum load did not exceed the load cell capacity of the test machine. The 

length of the central section conformed to the ASTM E8/E8M [17], that is, more 

than 5 times of the diameter. During the tensile tests, no imperfection was 

introduced to control the location of necking and fracture.   

The uniaxial tensile tests were performed at temperatures -40, -10 and 23
o
C, 

using the environmental chamber to control the temperature to be within ±1
o
C 

from the targeted value. In addition, a thermocouple was welded at the bottom 

nose of the reduced gauge section to ensure that the targeted temperature was 

reached before commencing the test. Three repeated tests were conducted at a 
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crosshead speed of 8.5x10
-3

 mm/s, equivalent to an initial strain rate of 2.36x10
-4

 

/s. Figure 2.2(a) shows the specimen after fracture during the test, which depicts 

the fracture location to be outside the section covered by the axial extensometer. 

Figure 2.2(b) presents one set of the post-test tensile specimens, none of which 

had fracture occurred in the middle of the reduced gauge section. In addition to 

the axial extensometer, a diametric extensometer, also shown in Figure 2.2(a), 

was used to measure the diameter change in the middle of the gauge section. 

Since neither of the extensometers recorded the dimensional change during the 

necking process, the equivalent stress-strain relationship for the entire 

deformation process, including necking, was established using the FE modelling, 

as to be described in section 2.2.2. 

  

Figure 2.1  Sampling location for tensile specimens on the rail cross section (a) and dimensions 

and geometry of the uniaxial tensile specimens (b) 

 

Figure 2.2  Uniaxial tensile test set-up (a) and one set of fractured tensile specimens (b) 

(b) 
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2.2.1.2 Three-point bending test 

 

The single-edge-notched bend (SENB) specimens were machined from the 

head, web, and foot of the high-strength rail steel CZECH TZ IH, at locations 

shown in Figure 2.3(a). Longitudinal direction of the specimens was along the 

rolling direction of the rail. Geometry and dimensions of the SENB specimens 

followed the specifications provided in the ASTM E399 [18], with thickness (�̅�), 

width (W) and span length (𝑆̅) being 12.5, 25 and 108 mm, respectively, as shown 

in Figure 2.3(b). The edge notch was first water-jetted and then the notch length 

was increased using electric-discharge machining (EDM). Pre-cracking was 

introduced at the notch tip through cyclic loading. The total crack length was 

controlled to be in the range of 0.5 to 0.53 of the specimen width (W).  

In order to ensure the reliability of the measured fracture toughness at each 

temperature, a minimum of six SENB specimens were tested for each of the rail 

head, web, and foot regions. As shown in Figure 2.4, a clip-on extensometer was 

mounted to the mouth of the notch before each test and an additional 

thermocouple welded nearby the crack tip to monitor the specimen temperature. 

Crosshead speed for the SENB tests was set at 2x10
-3

 mm/s. 

Figure 2.5 presents a sample curve of load, P, versus crack mouth opening 

displacement (CMOD), δ, to demonstrate the characteristics of cleavage fracture 

for the high-strength rail steel. The provisional load, PQ, is determined by 

following the procedures specified in the ASTM E399 [18]. The value for KQ was 

calculated using the following equations:  

 

𝐾𝑄 =
𝑃𝑄�̅�

�̅�𝑊3 2⁄ . 𝑓 (
𝑎0

𝑊
)                                                                                       (2.1) 

 

𝑓 (
𝑎0

𝑊
) = 3√

𝑎0

𝑊
.
1.99−(

𝑎0
𝑊
)(1−

𝑎0
𝑊
)[2.15−3.93

𝑎0
𝑊
+2.7(

𝑎0
𝑊
)
2
]

2(1+2
𝑎0
𝑊
)(1−

𝑎0
𝑊
)

3
2

                                      (2.2) 



26 

 

 

 

 

 

where, KQ is the conditional stress intensify factor and a0 the average initial pre-

crack length measured along the crack front after the specimen was fractured. 

 

 

 

Figure 2.3  Sampling location over the cross section of the rail (a) and dimensions of the SENB 

specimen (b)  

 

 

Figure 2.4  Set-up of the SENB test 
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(b) 

Welded thermocouple  



27 

 

 

 

 

 

Figure 2.5  A typical load-displacement (P-δ) curve for the SENB specimens of rail steel, and 

auxiliary lines, marked 1 and 2, to determine PQ  

 

 

 Figure 2.6  Test set-up, including the cooling chamber, for Vickers hardness test 

 

2.2.1.3 Vickers hardness test 

 

Specimens for the Vickers hardness test were cut from the post-tested SENB 

specimens on rail head and foot. Surface for the Vickers hardness test was 

gradually polished to a mirror-like finish using an alpha alumina polishing 

powder of 0.05μm at the final polishing step.  
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Figure 2.6 shows the apparatus for the Vickers hardness test, including the 

custom-made cooling chamber, a brass extension rod and an indenter with a 136° 

pyramidal diamond tip. The Vickers hardness tests at room temperature 

conformed to the ASTM E384 [19], while for the low-temperature tests, the 

polished specimens were welded with a thermocouple and bathed in the custom-

made cooling chamber that had been filled with anhydrous ethanol to prevent the 

frost from building up and to keep the temperature uniform on the specimen 

surface. Two thermocouples were used to monitor the temperatures, one in the 

fluid and the other on the specimen. Before the test, the cavity inside the chamber 

wall was vacuumed and liquid nitrogen circulated in the copper coil placed in the 

chamber until the desired temperature was reached. A needle valve was used to 

control the flow rate of the liquid nitrogen and thereby to maintain the 

temperature to be within ± 0.5
o
C from the aimed temperature.  

The hardness test was conducted by first placing the indenter tip about 0.5mm 

above the specimen surface, and then applying one of the six pre-selected loading 

levels (100, 200, 300, 500, 1000, and 2000 gf) for a period of 30 seconds. After 

the load was removed, the specimen surface was quickly dried with a hot air gun 

and the diagonal length of the indent, generated by the pyramid indenter, was 

measured at room temperature using an optical microscope at a magnification of 

400. The Vickers hardness value was then calculated using the following 

expression: 

 

𝐻𝑉 = (1854.4 × 𝐹)/𝑙2                                                                                (2.3) 

 

where, F is the load in gram force, and  𝑙 the mean diagonal length of the indent in 

μm. 
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2.2.2 FE modelling 

 

The average true stress-strain curve determined directly from the experimental 

testing is often used to represent the constitutive equation for metallic materials 

under uniform deformation. Such a curve, however, is insufficient for large 

deformation when necking is involved in the deformation process. For CZECH 

TZ IH, since neck was formed before fracture, Eq. (2.4) that consists of four 

expressions had to be used to represent the constitutive equation in order to mimic 

the deformation behaviour for the entire strain range, including the necking, while 

minimizing the number of parameters in each expression. Caution was taken to 

ensure that continuity in the 0
th

 and 1
st
 order was met between the expressions at 

the coincident points among the four expressions. 

 

𝜎𝑒𝑞(𝜀𝑒𝑞) =

{
 
 

 
 

3

2(1+𝑣)
𝐸0𝜀𝑒𝑞                                                                           𝜀𝑒𝑞 ≤ 𝜀𝑙 (𝑎)

𝑒 + 𝑑 {[𝑎(𝜀𝑒𝑞 + 𝑏)]
(𝑐−1)

− [𝑎(𝜀𝑒𝑞 + 𝑏)]
(−𝑐)

}  𝜀𝑙 ≤ 𝜀𝑒𝑞 ≤ 𝜀𝑦 (𝑏)

�̅� − (�̅� − 𝛼)𝑒𝑥𝑝(−𝛾𝜀𝑒𝑞)                                        𝜀𝑦 ≤ 𝜀𝑒𝑞 ≤ 𝜀𝑛 (𝑐)

     𝑀(𝜀𝑒𝑞)
𝑛
                                                                             𝜀𝑒𝑞 ≥ 𝜀𝑛 (𝑑)

          (2.4) 

 

where, 𝜎𝑒𝑞 is the equivalent stress in MPa, 𝜀𝑒𝑞 the equivalent strain, 𝜀𝑙 the linear 

elastic strain, 𝜀𝑦  the yield strain, 𝜀𝑛  the strain for the on-set of necking, ν the 

Poisson’s ratio and the rest of the parameters (a, b, c, d, e, α, �̅�, γ, M, and n) the 

user-defined parameters for which values are determined through iteration. 

The first two expressions in Eq. (2.4) are for the elastic deformation. Hooke’s 

law is adopted for the linear elastic part and the Ogden’s equation [109] to 

represent the nonlinear elastic part before the yielding point. The third expression 

known as the Voce equation [110], covers the deformation behaviour from the 

yield point to the end of uniform deformation in the gauge section. The fourth 

expression is a power law function, also known as Hollomon equation [111], and 

is to represent the deformation behaviour from the neck formation to fracture. 
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Since deformation in the necking region was not recorded by the two 

extensometers, the criteria used to evaluate the suitability of the constitutive 

equation were based on following information obtained from the mechanical 

testing. 

a) On the load-elongation curve: (i) the Young’s Modulus and variation of 

load vs. elongation up to the peak point, and (ii) the curve profile during the load 

drop phase (i.e. after the necking starts). 

b) On the cross-section reduction: (i) the variation of diameter at the middle of 

the reduced gauge section up to fracture, and (ii) the diameter at the minimum 

cross section (after fracture) 

A two-dimensional (2-D) axisymmetric FE model, with dimensions following 

those given in Figure1, was generated to calibrate parameters in Eq. (2.4) so that 

deformation generated by the FE model meets the above criteria. The FE model 

had 6,392 axisymmetric 8-node elements and 20,173 nodes. The boundary 

condition was set to be the same as the experimental condition, i.e., with one end 

fixed in direction 2 and the other end moving at a constant crosshead speed of 

8.5x10
-3

 mm/s. Figure 2.7(a) shows the mesh pattern and Figure 2.7(b) an 

example of the typical necking behaviour generated by the FE model. The 

necking was introduced at the location where the fracture occurred in the 

experiments by reducing its diameter by 0.1%.  

 

Figure 2.7  The FE model of tensile testing: (a) the mesh pattern and (b) an example of the neck 

formation 
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2.3 Results 

 

2.3.1 True stress-strain relationship in tension 

 

2.3.1.1 Mechanical testing results 

 

Engineering stress-strain curves at all three temperatures are shown in Figure 

2.8(a) and 2.8(b) for rail head and foot, respectively. Due to the good repeatability 

of the test results, each of the curves in Figure 2.8 is representative of results from 

the three tests in the same condition. Note that because the two extensometers did 

not cover the region where necking occurred, each engineering stress-strain curve 

in Figure 2.8 shows a sudden drop after the maximum load, which is different 

from the conventional engineering stress-strain curve that shows a gradual 

decrease of load after the maximum loading point [102]. The sudden load drop in 

Figure 2.8 is due to the localized deformation in the necked region, which causes 

the load drop but not the increase in elongation outside the necked region. 

Curves of the corresponding average true stress versus logarithmic strain are 

shown in Figure 2.9(a) and 2.9(b) for rail head and foot, respectively, in which the 

continuous section corresponds to the loading section of Figure 2.8 up to the peak 

load, and the single points represent the final fracture points at each temperature. 

Note that values for the fracture stress (𝜎𝑓) and fracture strain (𝜀𝑡
𝑓
) for those single 

points were determined using the following two expressions, with the assumption 

of volume conservation and uniform stress across the minimum cross section 

during the deformation. 

 

𝜎𝑓 = 𝐿𝑓 𝐴𝑡
𝑓⁄                                                                                                    (2.5) 

 

𝜀𝑡
𝑓
= ln(𝐴0 𝐴𝑡

𝑓⁄ ) = 𝜀𝑒
𝑓
+ 𝜀𝑝

𝑓
                                                                        (2.6) 
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where, 𝐿𝑓  is the load recorded at the onset of fracture, 𝐴𝑡
𝑓

 the minimum cross 

sectional area including the elastic and plastic parts measured right before the 

onset of fracture, 𝐴0 the original cross sectional area in the reduced gauge section, 

𝜀𝑒
𝑓

 the recovered elastic strain, and 𝜀𝑝
𝑓

 the plastic strain measured from the 

fractured tensile specimen. 

From Eq. (2.6), 𝐴𝑡
𝑓
 can be expressed as: 

𝐴𝑡
𝑓
= 𝐴𝑜exp [−(𝜀𝑒

𝑓
+ 𝜀𝑝

𝑓
)]                                                                           (2.7) 

With an additional assumption of uniaxial loading at the fracture point, i.e., 

𝜎𝑓=𝐸0𝜀𝑒
𝑓
, substituting 𝐴𝑡

𝑓
 from Eq. (2.7) into Eq. (2.5) yields 

(𝐹𝑓 𝐴0⁄ )exp (𝜀𝑒
𝑓
+ 𝜀𝑝

𝑓
) = 𝐸0𝜀𝑒

𝑓
                                                                    (2.8) 

 

Figure 2.8  Engineering stress-strain curves at temperatures 23, -10, and -40
o
C for the rail head (a) 

and rail foot (b) 
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Figure 2.9  Curves of average true stress vs. logarithmic strain for rail head (a) and rail foot (b) at 

23, -10 and -40°C 

 

Table 2.1  Mechanical properties of rail head and foot from tensile tests at 23, -10 and -40°C 
 

(°C) Rail Head  Rail Foot 

 E0(GPa) σy(MPa) σuts(MPa) 𝜀𝑝
𝑓

 φ(%)  E0(GPa) σy(MPa) σuts(MPa) 𝜀𝑝
𝑓

 φ(%) 

23 193 632 1130 18.3 16.2  205 635 1135 20.1 17.7 

-10 193 638 1185 17.2 15.2  205 647 1197 17.9 15.9 

-40 193 679 1230 16.5 14.6  205 692 1232 17.0 15.1 

 

Eq. (2.8) can be used to determine value of 𝜀𝑒
𝑓
 at the fracture point, with Ao 

and 𝜀𝑝
𝑓
 measured from the original and post-tested tensile specimens, respectively. 

Then, Af can be calculated from Eq. (2.7), based on which the fracture stress, 𝜎𝑓, 

and logarithmic strain 𝜀𝑡
𝑓
 of those single points can be determined from Eqs. (2.5) 

and (2.6), and are given in Figure 2.9. As to be presented in section 2.3.1.2, an 

inverse, iterative method was applied to the FE modelling of tensile tests to 
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establish the missing section between the continuous curves and the single 

fracture points at all temperatures considered in this study. 

Table 2.1 summarizes fundamental mechanical properties for rail head and 

foot at each temperature, determined directly from the experimental 

measurements, including Young’s modulus 𝐸0 , yield stress σy, ultimate tensile 

stress σuts, plastic fracture strain 𝜀𝑝
𝑓
, and percentage of maximum area reduction φ. 

Values in Table 2.1 indicate that at each temperature, mechanical properties for 

the rail head are quite similar to those for the rail foot except that at room 

temperature, ductility of the rail foot is about 10% higher than that of the rail head 

while at low temperatures the difference becomes negligible. Further, the 

difference in the Young’s modulus between the rail head and the rail foot is 

approximate 5%, consistent with the range of variation reported in the literature 

[112, 113], caused by the hot rolling process during the rail steels production. 

 

2.3.1.2 Simulation results 

 

The equivalent stress-strain relationship, based on the four constitutive 

functions in Eq. (2.4) to include both uniform and non-uniform deformation, was 

established using FE modelling. Three typical simulation attempts (SAs) using 

different strain-hardening functions were considered to represent the stress-strain 

relationship of the missing section. The equivalent stress-strain curves of the three 

SAs are shown in Figure 2.10(a) in which SA1, SA2, and SA3 represent a single 

Hollomon function, a single Voce function and a combination of Hollomon and 

Voce functions, respectively. Values for the coefficients in these three types of 

constitutive functions were selected so that the FE model can regenerate the 

experimental load-elongation curve for the uniform deformation. Figure 2.10(b) 

compares the load-elongation curves from the three SAs with the curve obtained 

from the experiment. As shown in both figures of Figure 2.10, the single 

Hollomon function (SA1) overestimates the work hardening behaviour, with the 

tensile load deviating from the experimental value before the maximum load is 
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reached. Furthermore, necking could not be generated in the FE model based on 

SA1. The Voce function (SA2), on the other hand, underestimates the work 

hardening behaviour, leading to an early load drop, as shown in Figure 2.10(b). 

The FE model based on SA2 also generated the minimum diameter in the necked 

section that was approximately 30% smaller than that from the experimental 

measurement. By combining Hollomon and Voce functions (SA3), however, the 

FE model can generate the load-elongation curve that best fits the experimental 

measurement, even for the final load drop, as shown in Figure 2.10(b). Therefore, 

the combination of Voce and Hollomon functions was selected for the FE model 

to mimic the deformation behaviour during the plastic deformation of the tensile 

test. 

 

 

 

 

Figure 2.10  Three simulation attempts: (a) three equivalent stress-strain curves including the 

missing section in Figure 2.9, and (b) comparison of load-elongation curves between the three SAs 

and the experiment  
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Figure 2.11  Rail foot at 23
o
C: (a) regeneration of the experimental results from the FE simulation, 

and (b) the corresponding equivalent stress-strain curve and values for the parameters in Eq. (2.4) 

 

Values for parameters in Eq. (2.4) were finalized by confirming that the FE 

model could regenerate the load-elongation curve and cross-section reduction 

obtained from the experiments. Figure 2.11 presents an example for the rail foot 

at 23
o
C, in which Figure 2.11(a) illustrates the verification of the FE model by 

comparing the simulation results with the experimental measurements, and Figure 

2.11(b) shows the corresponding parameter values for the four constitutive 

functions. Values for parameters in the first three constitutive functions were 

determined simply by the piecewise curve fitting technique based on the average 

true stress and strain values measured during the uniform deformation, but after 

the commencement of necking an iterative process was performed for the FE 
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first three constitutive functions need to be adjusted slightly to ensure of the 

continuity in the 0
th

 and 1
st
 order between the functions at the coincident points, as 

mentioned earlier.  

The procedure to determine the parameter values for the Hollomon function is 

described as follows. Firstly, the missing section of the curves in Figure 2.9 was 

generated using the stress-strain relationship represented by Eq. (2.4d) with M and 

n values adjusted so that the transition from the curve generated by the Voce 

equation to that by the Hollomon equation satisfies both the 0
th

 and 1
st
 order 

continuity. Secondly, the entire equivalent stress-strain curve generated by the 

four expressions of Eq. (2.4) was input into the FE model shown in Figure 2.7 to 

generate the load-elongation curve and the cross-section reduction, which were 

then compared with the experimental measurements. This process was iterated 

until results from the FE model met the two experimental phenomena given in 

section 2.2.2. The same procedure was performed to obtain the true stress-strain 

curves at all three temperatures for both rail head and rail foot. The final 

equivalent stress-strain curves are shown in Figure 2.12 and the corresponding 

values for the parameters in Eq. (2.4) are summarized in Table 2.2.  

As shown in Figure 2.12, the Young’s modulus of both rail head and foot was 

little affected by the temperature change from 23 to -40
o
C. However, the 

mechanical strength increases and ductility decreases notably with the decrease of 

temperature. Values for parameters in Table 2.2 suggest that the difference in 

mechanical strength among the curves in Figure 2.12 is mainly a result of the 

difference of α and β in the Voce function and stress coefficient M in the 

Hollomon function. While values for the exponent γ and strain hardening index n 

for rail head and foot remain almost constant. 
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Figure 2.12  The equivalent true stress-strain curves of (a) the rail head, and (b) the rail foot, at 

temperatures 23, -10 and -40
o
C 

 

Table 2.2  Parameters in Eq. (2.4) for rail head and foot at all three temperatures 
 

Sections   Head   Foot  

oC   23 -10 -40  23 -10 -40 

Parameter Hooke’s law (a) 𝐸0 (GPa) 193 193 193  205 205 206 

  ν 0.3 0.3 0.3  0.3 0.3 0.3 

 Ogden equation (b) a (MPa) 30 30 30  29 29 29 

  b 0.01 0.01 0.01 0.0049 0.0049 0.0049 

  c -2 -2 -2  -2 -2 -2 

  d -26 -26 -26  -3 -3 -3 

  e (MPa) 889 895 937  744 775 821 

 Voce equation (c) α (MPa) 452 478 504  477 495 530 

  �̅� (MPa) 1240 1305 1356 1260 1327 1367 

  γ 45.0 45.0 43.5 41.5 41.5 41.5 

 Hollomon  equation (d) M (MPa) 1502 1583 1608 1489 1568 1616 

  n 0.082 0.083 0.084 0.075 0.075 0.075 
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2.3.2 Mode I critical stress intensity factor (KIc) 

 

The fracture toughness, KIc, for the pre-cracked SENB specimens of rail head, 

web, and foot at all three temperatures are summarized in Table 2.3. The table 

also includes pre-crack length a0 and loads PQ and Pmax that are needed to validate 

KQ for KIc.  As stated in the ASTM E399 [18], the validity of KIc from KQ can be 

confirmed only when the two criteria are satisfied; these are, the ratio of Pmax/PQ 

is smaller than 1.10 and also 2.5(KQ/σy)
2
 is less than the specimen ligament 

length, W-a0. In Table 2.3, the requirement of 2.5(KQ/σy)
2
 <W-a0 is satisfied for all 

of the tested SENB specimens. However, for most specimens listed in Table 2.3, 

their values of Pmax/PQ are slightly larger than 1.10, suggesting that limited plastic 

deformation is generated at the crack tip before the crack growth. Nevertheless, 

these values are within the range acceptable for evaluating the temperature effect 

on the plane strain fracture toughness of the CZ rail steel.  

As shown in Table 2.3, the KIc values in each region of rail head, web, and 

foot show some scattering at all three temperatures. The maximum scattering of 

the KIc values for the rail head is 14% of the averaged value (at -40
o
C), 21% for 

the rail web (at 23
o
C), and 18% for the rail foot (also at 23

o
C). In spite of the 

scattering, the average KIc values for the head, web and foot regions, as presented 

in the right column of Table 2.3, show a clear trend of decrease with the decrease 

of temperature. The average KIc values for rail head, web, and foot as well as the 

standard deviation at each test temperature are listed in Table 2.3. It is clearly 

shown that for the rail steel studied, the average KIc values are the highest in the 

web and lowest in the head, and that KIc drops continuously with the decrease of 

temperature from 23 to -40°C. Overall, the decrease of temperature from 23 to -

40°C reduces KIc by approximately 20%. 

 

Table 2.3  KIc for rail head, web, and foot at temperature 23, -10, and -40
o
C 

 

Rail 

section 

T 

°C 

Label a0 

mm 

PQ 

kN 

Pmax 

kN 

KQ 

MPa.m1/2 

2.5(KQ/σy)
2 

mm 

Pmax/PQ KIc 

MPa.m1/2 

KIc MPa.m1/2
 

(STD) 

  B 12.29 6.51 8.97 33.96 7.22 1.38 33.96 34.26 
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Head 

 

23 

C 12.56 6.22 8.03 33.21 6.90 1.29 33.21 (0.84) 

C 13.27 5.63 7.30 33.73 7.12 1.30 33.73 

D 12.86 6.22 7.64 34.97 7.65 1.23 34.97 

E 13.50 5.71 7.34 35.50 7.89 1.29 35.50 

E 12.55 6.34 8.10 34.20 7.32 1.28 34.20 

 

 

-10 

B 12.62 5.61 6.95 30.58 5.74 1.24 30.58 30.06 

 (0.66) C 13.13 5.25 7.01 30.20 5.60 1.33 30.20 

C 12.80 5.33 6.68 30.05 5.55 1.25 30.05 

D 13.42 4.74 6.20 28.77 5.08 1.31 28.77 

E 13.04 5.28 7.01 30.53 5.72 1.33 30.53 

E 12.68 5.50 6.97 30.21 5.61 1.27 30.21 

 

 

-40 

B 12.53 4.99 6.42 26.92 3.93 1.29 26.92 27.96 

(1.37) C 13.20 4.92 5.68 28.62 4.44 1.16 28.62 

C 12.66 5.43 5.92 29.94 4.86 1.09 29.94 

D 13.52 4.30 5.79 26.07 3.69 1.35 26.07 

E 12.49 5.19 6.57 27.67 4.15 1.27 27.67 

E 12.56 5.28 6.10 28.53 4.41 1.16 28.53 

  

23 

F 12.70 6.34 7.96 34.88 7.61 1.26 34.88 36.03 

(2.87)  G 12.60 6.08 7.82 33.02 6.82 1.29 33.02 

 H 12.94 6.25 7.45 35.69 7.97 1.19 35.69 

 H 12.85 6.44 7.93 35.82 8.038 1.23 35.82 

 I 13.59 6.64 7.21 40.76 10.40 1.09 40.76 

  

 

-10 

F 13.05 5.85 6.75 33.45 6.89 1.15 33.45 31.95 

(1.29)  F 12.78 5.73 6.89 31.91 6.27 1.20 31.91 

 G 12.94 6.12 6.48 32.20 6.39 1.06 32.20 

Web G 12.64 5.56 6.79 30.65 5.79 1.22 30.65 

 H 13.26 5.16 6.93 30.28 5.65 1.34 30.28 

 H 12.82 5.94 6.89 33.20 6.79 1.16 33.20 

  

 

 

-40 

F 13.28 4.80 5.56 28.21 4.32 1.16 28.21 29.19 

(2.14)  F 12.76 5.23 5.92 29.00 4.56 1.13 29.00 

 G 14.10 4.98 5.50 32.95 5.89 1.10 32.95 

 G 12.98 5.50 6.09 31.19 5.28 1.11 31.19 

 G 12.65 5.08 6.00 27.93 4.23 1.18 27.93 

 H 12.46 5.31 6.44 28.30 4.34 1.21 28.30 

 I 13.28 4.53 5.75 26.75 3.88 1.27 26.75 

  

 

23 

J 13.02 5.98 8.02 34.07 7.20 1.34 34.07 35.20 

(2.37)  J 12.80 6.48 8.27 36.03 8.05 1.28 36.03 

 K 13.14 6.43 7.24 37.08 8.52 1.13 37.08 

 K 12.64 5.99 7.99 32.58 6.58 1.33 32.58 

 L 12.87 5.67 7.16 32.08 6.38 1.26 32.08 

 M 12.91 6.87 7.60 38.50 9.19 1.11 38.50 

 M 12.57 6.60 7.82 36.05 8.06 1.19 36.05 

  J 12.97 4.97 6.84 28.25 4.77 1.38 28.25 30.74 
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-10 

J 12.64 6.12 7.21 32.97 6.49 1.18 32.97 (1.71) 

Foot K 13.27 5.44 6.52 31.89 6.07 1.20 31.89 

 K 12.78 5.43 6.96 30.08 5.40 1.28 30.08 

 L 12.52 5.42 6.80 29.14 5.07 1.25 29.14 

 M 12.88 5.50 6.77 30.65 5.61 1.23 30.65 

 M 12.64 5.91 7.44 32.18 6.18 1.26 32.18 

  

 

-40 

J 12.76 5.63 6.35 27.63 3.99 1.13 27.63 28.46 

(0.73)  J 12.55 5.26 6.64 28.30 4.18 1.26 28.30 

 K 12.78 5.21 6.11 29.24 4.46 1.17 29.24 

 L 12.55 4.99 5.92 28.34 4.19 1.19 28.34 

 L 12.96 5.16 6.30 27.48 3.94 1.22 27.48 

 M 12.95 5.18 6.11 29.19 4.45 1.18 29.19 

 M 12.69 5.30 6.12 29.06 4.41 1.15 29.06 

 

2.3.3 Vickers hardness 

 

2.3.3.1 Test results 

 

Vickers hardness tests were conducted in two stages. The first stage was to 

apply a specified load of 2000 gf on rail head and foot to identify the hardness 

distribution on the rail cross section at room temperature. As shown in Figures 

2.13(a) and 2.13(b), the test area was where SENB specimens were sampled for 

the fracture toughness measurement. Figure 2.13 suggests that the rail foot is 

slightly harder than the rail head, which is consistent with the tensile strength 

shown in Table 2.1. Figure 2.13 further suggests that the hardness distribution is 

relatively uniform in the rail head and foot, with insignificant change from the 

core to the edge.  

The second stage of the hardness tests was to investigate the relationship 

between indentation load and depth by applying six loading levels (100, 200, 300, 

500, 1000, and 2000 gf) using the Vickers hardness tester. Figure 2.14 shows the 

typical indentation shape under the six loading levels, of which the mean diagonal 

length and the corresponding loading level were used to determine the Vickers 

hardness value, HV, through Eq. (2.3). In view of the relatively uniform 

distribution of hardness in the rail head and foot regions for CZECH TZ IH, the 
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hardness values in each region were deemed to be insensitive to the location 

selected for the test. As a result, all hardness values at the same indentation load 

in each of the head and foot regions were grouped together to determine the 

average values. In this study, 16 tests were conducted at a given load and 

temperature in the head or foot regions. That is, totally 96 tests were performed to 

construct the curve of indentation load versus depth in the head or foot region at a 

given temperature, which are summarized in Figure 2.15. The indentation depth is 

ideally 1/7 of the mean diagonal length of the pyramid indenter used in this study 

[114]. As shown in Figure 2.15, decrease of the test temperature results in 

decrease of the indentation depth at each loading level, but only slightly. 

Furthermore, the amount of decrease in the indentation depth is smaller at a lower 

loading level. 

 

 

 

Figure 2.13  Vickers hardness distribution on rail head (a) and rail foot (b) at 23
o
C  
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Figure 2.14  The indentation shape under six loading levels from 100 to 2000 gf 

 

 

 

Figure 2.15  The relationship between indentation load and depth for (a) the rail head, and (b) the 

rail foot 
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Figure 2.16 summarizes the effect of temperature on the Vickers hardness for 

the rail head (solid symbols) and the rail foot (open symbols), measured at the six 

loading levels. The figure suggests that Vickers hardness increases with the drop 

of temperature from 23 to -40
o
C, for both rail head and rail foot, but difference in 

the Vickers hardness between the two regions is quite small, of which the 

maximum is 5% at the small loading levels. Figure 2.16 also shows clearly that at 

each temperature the Vickers hardness decreases with the increase of load from 

100 to 1000 gf, and then the Vickers hardness becomes relatively constant with 

further load increase from 1000 to 2000 gf. A similar phenomenon has been 

previously reported [115].  

 

 

 

Figure 2.16  Effect of temperature on the Vickers hardness for both the rail head and foot  

 

2.3.3.2 FE simulation of Vickers indentation 

 

The constitutive equation established for the tensile test was applied to the FE 

model for the Vickers indentation test, to explore the possibility of regenerating 

the indentation load-depth curve shown in Figure 2.15. 

The FE model for Vickers indentation is shown in Figure 2.17(a). Due to 

symmetry, only a quarter of the specimen and the indenter are considered. The 
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Vickers indenter is modelled as a rigid body of a pyramid shape with an angle of 

136°. The specimen consists of 45,957 eight-node brick elements and 49,738 

nodes. In the contact region, size of the elements is reduced to 2μm and the 

contact is regarded as frictionless [116]. Bottom surface of the specimen is 

constrained in the indentation direction (y-axis). Symmetric constraints are 

applied on surfaces 1 and 2, in x and z directions, respectively. Figure 2.17(b) 

shows a contour plot of von Mises stress generated by the indentation, suggesting 

that deformation introduced by the indentation is highly localized around the 

indenter. Therefore, size of the FE model is sufficient to act as a semi-infinite 

body without any influence of the boundary condition at the bottom surface on the 

simulation results. 

 

 

 

 

Figure 2.17  The FE model of Vickers indentation test: (a) the model, and (b) the contour plot of 

von Mises stress showing the localized deformation. 
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Figure 2.18  The experimental and computational indentation load-depth curves of rail head (a) 

and rail foot (b) at temperatures 23, -10, and -40
o
C   

 

Figure 2.18 compares the indentation load-depth curves from the FE model 

(lines) with those from the experiments (symbols) at the three temperatures, for 

the rail head in Figure 2.18(a) and the rail foot in Figure 2.18(b). The figure 

suggests that at each temperature, the experimentally-determined load is slightly 

higher than the FEM counterpart at the same indentation depth. Otherwise, the 

trend with the temperature change from the FE simulation is the same as that from 

the experiments. That is, the indentation depth decreases with the decrease of the 

temperature from 23 to -40
o
C.  

 

2.4 Discussion 

 

Results indicate that mechanical properties for CZECH TZ IH are relatively 
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the rail foot, unlike other high-strength rail steels [99]. The noticeable difference 

in mechanical properties between the rail head and foot is Young’s modulus and 

𝜀𝑝
𝑓
 at room temperature, about 5% and 10%, respectively, as shown in Table 2.1. 

The difference in Young’s modulus is probably caused by the difference in the 

hot rolling process [112, 113], and 𝜀𝑝
𝑓
 by the cooling rate. Study by Alexander and 

Bernstein [117] has suggested that the relatively slow cooling rate in the core 

region of the rail head increases the interlamellar spacing of the pearlite, which 

results in the ductility reduction at fracture. 

Although KIc in Table 2.3 shows some scattering, the averaged KIc values 

clearly suggest that the fracture toughness decreases with the decrease of 

temperature. In view that the theoretical prediction of the measured KIc scattering 

from the SENB test in cleavage fracture should be around 20% of its mean value 

[118], the scattering of KIc in Table 2.3 is believed to be due to the intrinsic nature 

of the experimental measurement, not reflecting any significant variation of 

fracture toughness on the cross section of the rail steel studied here. 

It is worth mentioning that although the load-depth curves in Figure 2.18 

show only a small difference between the experimental results and the FE 

simulation, it has long been questioned about the suitability of applying the true 

stress-strain curve from the uniaxial tensile test to modelling the material 

deformation in the indentation test. In general, indentation generates a multi-axial, 

compressive stress state, in contrast to the uniaxial, tensile stress state generated 

in the tensile test. Therefore, the difference between experimental and simulation 

results in Figure 2.18 may have been caused by the strength differential effect 

between tension and compression [119]. Although uniaxial compressive test has 

been suggested in some work to establish the proper stress-strain relationship for 

FE modelling of the indentation test [120, 121], the tensile stress-strain 

relationship has actually been satisfactorily used for this purpose in the literature 

[122, 123]. Since the FE simulation conducted in our study was performed using 

commercial software based on classical von Mises yield function and isotropic 
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hardening, no difference is expected between the tensile and compressive yield 

behaviours. Therefore, it is reasonable to apply the true stress-strain curve 

established from the uniaxial tensile test to the FE modelling of Vickers 

indentation test.  

In spite of the small difference between the experimental measurement and 

the FE simulation in Figure 2.18, which is less than 8% for the indentation depth, 

the difference may not be negligible. Further study is being conducted to examine 

how the indentation load-depth curve can be changed if the constitutive equation 

is based on the compressive test results. Nevertheless, we do not expect any 

significant change from that shown in Figure 2.18 in view that the constitutive 

equations with very different work hardening behaviour have been reported to 

generate similar indentation loading-unloading curves from the FE modelling 

[124].  

 

 

2.5 Conclusions 

 

The effect of temperature on the mechanical properties at head and foot 

regions of high-strength rail steel, CZECH TZ IH, has been investigated. The 

results suggested similar equivalent stress-strain relationship for rail head and rail 

foot at all three temperatures of 23, -10, and -40
o
C. FE modelling was used to 

establish the true stress-strain relationship for large deformation including 

necking, which was verified by both experimental load-elongation curve and 

cross-section reduction. The work found that a combined Voce and Hollomon 

function can provide an accurate expression for the true stress-strain curve under 

large plastic deformation of the rail steel. 

Fracture toughness, in terms of KIc, was determined over the cross section of 

the rail steel. Due to the nature of cleavage fracture at the crack tip, the resulted 

KIc values show some scattering but the scattering is still within the expected 

range. The results show a clear effect of temperature on the KIc values, with an 
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approximate 20% reduction of KIc for rail head, web, and foot with the decrease 

of temperature from 23 to -40
o
C.  

Vickers hardness tests were performed both experimentally and in FE 

simulation. The former was to study the influence of temperature on the hardness 

variation. The test results suggest that both rail head and foot show relatively 

uniform hardness distribution and the Vickers hardness value increases by about 

9% with the decrease of temperature from 23 to -40
o
C. The Vickers hardness 

values were also found to decrease with the increase of the indentation load at 

micro loading range, which is consistent with that reported in the literature. The 

FE modelling was used to explore the possibility of applying the true stress-strain 

curves established from the tensile test to the indentation tests. The results suggest 

that the stress-strain relationship provides a reasonable, but slightly different 

indentation load-depth curve from that obtained experimentally. This is probably 

because of the complex multi-axial compressive loading that is not considered in 

the true stress-strain curve for the FE simulation. Further study will be conducted 

to clarify this issue.  
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Chapter 3 Fracture behaviour at the sharp notch tip of high-

strength rail steels - Influence of stress triaxiality
2 

 

 

3.1 Introduction 

 

For metallic materials, results from both theoretical and experimental studies 

have demonstrated the strong dependence of fracture strain on stress triaxiality 

[125-128]. Influence of stress triaxiality on fracture strain has often been 

evaluated using circumferentially-notched tensile specimens, with stress 

triaxiality value determined from the Bridgman’s formula [103]. These studies led 

to the establishment of a failure envelope [129] that depicts the reduction of 

fracture strain with the increase of stress triaxiality. However, the Bridgman's 

formula does not take into account material properties or change in specimen 

geometry during the test. In view of these problems, recent studies have relied on 

finite element (FE) modelling to determine the stress triaxiality, using the realistic 

material properties as the input to the FE model. The FE modelling can also 

determine the variation of stress triaxiality during the deformation process, which 

has been successfully applied to butterfly specimens under pure shear deformation 

[130] and sharp-notched specimens under tension [131]. In the current study, the 

FE modelling is used to determine variation of stress triaxiality during the 

mechanical testing. Average of the stress triaxiality value for the entire 

deformation process, as to be detailed later, is then used to represent the stress 

triaxiality for a given specimen geometry.  

Although it is well recognized that stress triaxiality affects fracture strain, 

limited information is available on the stress triaxiality at the crack tip and its 

influence on critical strain and fracture toughness for the onset of crack growth. 

Among the work available in the literature, Mackenzie et al. [44] established the 

                                                 
2
 This chapter has been published in the following publication: 

Yu, F., Jar, P.-Y.B., Hendry, M., 2017. Fracture behaviour at the sharp notch tip of high-strength 

rail steels - Influence of stress triaxiality. Engineering Fracture Mechanics 178, 184-200. 
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relationship between stress triaxiality and fracture strain for round-notched tensile 

specimens, based on which fracture toughness (KIc) for high-strength-low-alloy 

steels was estimated. Ritchie et al. [46], in view that crack tip opening 

displacement (CTOD) could be related to plastic fracture strain at the crack tip, 

developed a stress-modified critical fracture strain model to investigate the 

dependence of fracture toughness on test temperature and strain rate for two steels 

used to construct nuclear pressure vessels. In their study, plastic fracture strain at 

the crack tip was also determined based on an extrapolation of the fracture strains 

from notched specimens. Gillemot and his co-workers [67, 68] developed the 

concept of absorbed specific fracture energy (ASFE) by extrapolating both strain 

energy density (SED) and elongation of plastic zone from notched specimens to 

those at the crack tip to estimate fracture toughness of low and medium strength 

structural materials. However, it should be noted that all of the above studies are 

only suitable for prediction of fracture toughness for ductile materials that involve 

significant plastic deformation at the crack tip before the onset of crack growth. 

For fracture initiation with small-scale yielding, Ritchie et al. [32] defined a 

parameter based on critical fracture stress at a location about two grain diameters 

ahead of the crack tip as a criterion to estimate fracture toughness. Although the 

critical fracture stress could be derived using Hill’s slip-line field theory, study 

has shown that microstructural features such as carbide thickness and nucleation 

mechanism could affect the critical fracture stress [132]. Alternatively, the SED 

approach has been developed as a powerful tool for fracture toughness prediction. 

A special SED theory, first proposed by Sih and his co-workers [61, 64, 133], was 

used to estimate fracture toughness for linear elastic materials under a mixed 

mode loading based on the strain-energy-density factor, S. This theory employs 

the concept of total SED at the crack tip and suggests that both distortional and 

dilatational energy dissipation should be considered for crack initiation. Mode I 

fracture was deemed primarily due to dilatation and secondarily due to distortion 

[62, 65]. The total SED theory was later extended to prediction of fracture 

toughness under small and large scale yielding [66, 134]. A volume-based total 
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SED approach was developed by Lazzarin et al. [59, 69-71, 135-138] for 

assessment of static and fatigue strength when the mean value of the total SED 

over a control volume reaches a critical level. Although the volume-based SED 

approach was originally developed for failure assessment of engineering materials 

with brittle and quasi-brittle fracture [59], it is now extended to small and large 

scale yielding [72]. Its latest application is for creep fracture and nanoscaled 

singular stress field [139, 140]. Recently, the SED theory led to development of a 

new equivalent material concept (EMC) [141, 142], for assessment of ductile 

fracture in notched components. In spite of the wide range of applications, as 

described above, it should be pointed out that in the existing SED approaches; the 

total SED concept is only applicable to elastic deformation. For plastic 

deformation, because of the assumption of J2 flow theory only the distortional 

SED, rather than the total SED, has been considered for the fracture assessment 

under both small and large scale yielding. 

In this chapter, KIc for three high-strength rail steels was predicted based on 

the concept of total SED that considers contribution from both distortion and 

dilatation to fracture initiation of a sharp-notch tip under small-scale yielding. The 

equivalent plastic fracture strain for the pre-cracked SENB specimen was 

estimated through extrapolation to the stress triaxiality level which is equivalent 

to that for the sharp-notch tip, using test results from two types of notch-free 

specimens (to be named smooth and short-gauge specimens). Experimental 

testing and FE modelling were carried out to establish the fracture locus of stress 

triaxiality and plastic fracture strain for smooth and short-gauge specimens. The 

FE modelling of SENB specimen was also used to determine stress triaxiality and 

a characteristic distance ahead of the sharp notch tip of SENB specimen. The 

above information (including stress triaxiality, equivalent plastic fracture strain 

and the characteristic distance for the sharp notch tip) was then used with 

constitutive equation to calculate the critical strain energy density factor and the 

corresponding equivalent critical stress intensity factor (KSc) for the three high-

strength rail steels at three temperatures (i.e., at 23, -10, and -40
o
C). The 
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estimated KSc values were compared with those for KIc, to explore the feasibility 

of using mechanical properties of notch-free specimens to predict KIc.  

 

 

 

Figure 3.1 The overall approach of correlating tensile properties to KIc based on an extended SED 

model 

 

3.2 Theoretical model 

 

Figure 3.1 shows the overall approach for correlating the tensile properties to 

KIc based on the application of an extended strain energy density (SED) model. 

Due to the large stress triaxiality at the crack tip, the assumption of 

incompressibility in the von Mises criterion is no longer valid [60, 64, 71, 75]. 

Therefore, in addition to the existing SED approach which only considered elastic 

SED and distortional plastic SED (𝑤𝑝
𝑑) for the elastic-plastic deformation, the 

dilatational plastic SED (𝑤𝑝
𝐷), which represents damage energy dissipation, is also 

considered in the present study. The expression of void growth rate proposed by 

Rice and Tracey [126] is used to represent the change of volume plastic strain. 

Based on this, the amount of energy dissipation, including elastic, plastic and 

damage, can be modelled as a function of equivalent stress, stress triaxiality, and 
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equivalent plastic fracture strain. The above information can be used to calculate 

the magnitude of SED for the mode I fracture at the crack tip under small-scale 

yielding. Details of this approach are described as follows. 

 

3.2.1 Critical strain energy density factor 

 

The SED, 𝑤, as defined in the classical elastic-plastic theory, is expressed as 

 

𝑤 = 𝑤𝑒 +𝑤𝑝 = ∫𝜎𝑖𝑗 𝑑𝜀𝑖𝑗                                                                           (3.1) 

 

where 𝑤𝑒 and 𝑤𝑝 are the elastic and plastic parts of SED, and 𝜎𝑖𝑗 and 𝜀𝑖𝑗 the total 

stress and strain, respectively. Both the 𝑤𝑒 and 𝑤𝑝 can be expressed in terms of 

deviatoric and hydrostatic parts, where the deviotoric component is for the 

distortional energy and the hydrostatic part for the dilatational energy [60, 64, 71, 

75]. That is,  

 

𝑤 =
1

2𝐸0
[(1 + 𝑣)𝑆𝑖𝑗

𝑒 𝑆𝑖𝑗
𝑒 + 3(1 − 2𝑣)(𝜎𝑚

𝑒 )2] + ∫𝑆𝑖𝑗
𝑝𝑑𝜖𝑖𝑗

𝑝 + ∫𝜎𝑚
𝑝𝑑𝜀𝑖𝑖

𝑝
          (3.2) 

 

where, 𝐸0 and 𝑣 are the Young’s modulus and Poisson’s ratio, respectively, 𝑆𝑖𝑗
𝑒  

and 𝜎𝑚
𝑒  the deviatoric and hydrostattic stresses in the elastic region, respectively, 

𝑆𝑖𝑗
𝑝

, 𝜖𝑖𝑗
𝑝

, 𝜎𝑚
𝑝

, and 𝜀𝑖𝑖
𝑝

 the deviatoric stress, deviatoric strain, hydrostatic stress, and 

volume strain in the plastic region, respectively. 

Based on the concept of von Mises equivalent stress and equivalent strain, the 

𝑤 can be expressed as 

 

𝑤 =
(𝜎𝑒𝑞

𝑒 )
2

2𝐸
𝑓(𝜂) + ∫𝜎𝑒𝑞

𝑝 𝑑𝜀𝑒𝑞
𝑝 + ∫𝜎𝑚

𝑝𝑑𝜀𝑖𝑖
𝑝
                                                    (3.3) 
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where, 𝜎𝑒𝑞
𝑒 = (

3

2
𝑆𝑖𝑗
𝑒 𝑆𝑖𝑗

𝑒 )0.5 , 𝜎𝑒𝑞
𝑝 = (

3

2
𝑆𝑖𝑗
𝑝𝑆𝑖𝑗

𝑝)0.5 , and 𝜀𝑒𝑞
𝑝 = (

2

3
𝜖𝑖𝑗
𝑝 𝜖𝑖𝑗

𝑝 )0.5  are the 

elastic equivalent deviatoric stress, plastic equivalent deviatoric stress, and plastic 

equivalent deviatoric strain, respectively, and 𝑓(𝜂)  the triaxiality factor, as 

proposed by Lemaitre [127], is given in the expression below: 

 

𝑓(𝜂) =
2

3
(1 + 𝑣) + 3(1 − 2𝑣)(𝜂)2                                                             (3.4) 

 

where 𝜂 is the stress triaxiality defined as ratio of the hydrostatic stress to the von 

Mises stress. 

For the classical plasticity theory that assumes incompressibility during the 

plastic deformation, i.e., 𝑑𝜀𝑖𝑖
𝑝 = 0, the third term for w in Eq. (3.3) should always 

be zero, thus having no contribution to 𝑤𝑝 . However, previous studies have 

shown that a ductile fracture process in metals involves both dislocation 

movement and cavity development [143, 144]. By taking into account the latter, 

the 𝑑𝜀𝑖𝑖
𝑝
 can be related to the cavity growth rate, expressed as follows [75, 126], 

 

𝑑𝜀𝑖𝑖
𝑝
=

3𝑑𝑅

𝑅
= 3𝜓 𝑒𝑥𝑝(3

2
𝜂) 𝑑𝜀𝑒𝑞

𝑝
                                                                    (3.5) 

 

where R is the cavity radius, and 𝑑𝑅 𝑅⁄  the cavity growth rate. The factor 𝜓 was 

originally assumed to be constant for materials that follow the von Mises criterion 

[126]. Later, the assumption was modified [145] to have a constant 𝜓 value of 

0.427 for 𝜂>1 and 𝜓 = 0.427𝜂0.25  for 0.33< 𝜂<1. In the current study, this 𝜂-

dependent 𝜓 expression is adopted for calculating 𝑤. 

Thus, by substituting Eq. (3.5) into Eq. (3.3), and after rearranging, Eq. (3.3) 

leads to, 

 

𝑤𝑐 =
(𝜎𝑒𝑞

𝑒 )
2

2𝐸
𝑓(𝜂) + ∫ [1 + 3𝜓 𝜂 𝑒𝑥𝑝(3

2
𝜂)]𝜎𝑒𝑞

𝑝 d𝜀𝑒𝑞
𝑝𝜀𝑒𝑞,𝑓

𝑝

0
                                (3.6) 
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where, 𝑤𝑐 is the critical strain energy density, which includes energy dissipation 

for both distortion and dilatation under elastic-plastic deformation until fracture 

occurs, and 𝜀𝑒𝑞,𝑓
𝑝

 the equivalent plastic fracture strain for a given type of 

specimen. 

According to the SED theory [60], in order to estimate crack growth 

resistance at the crack tip, the above 𝑤𝑐 should be converted to the critical strain 

energy density factor at a characteristic distance ahead of the crack tip, as follows: 

 

𝑠𝑐 = 𝑟0𝑤𝑐                                                                                                     (3.7) 

 

where, 𝑆𝑐  is the critical strain energy density factor, and 𝑟0  the characteristic 

distance along the crack growth path which is from the crack tip to the location 

where the maximum stress triaxiality occurs, as suggested in refs. [41, 42]. 

Consequently, the equivalent critical stress intensity factor, 𝐾𝑆𝑐, is estimated using 

the following expression [34]: 

 

𝐾𝑆𝑐 = √2𝐸𝑠𝑐                                                                                                (3.8) 

 

In view of Eqs. (3.6), (3.7) and (3.8), in order to determine the 𝐾𝑆𝑐 for the 

three rail steels at 23, -10, and -40
o
C, values of 𝜂 , 𝑟0 , 𝜀𝑒𝑞,𝑓

𝑝
, and 𝜎𝑒𝑞

𝑝
 must be 

determined for the pre-cracked SENB specimen. To this end, the values of 𝜂 and 

𝑟0 are determined using FE modelling of the pre-cracked SENB specimen, the 

constitutive equation, contanintg information of E, v, 𝜎𝑒𝑞
𝑒  and 𝜎𝑒𝑞

𝑝
, is calibrated 

from the smooth tensile specimen, and the 𝜀𝑒𝑞,𝑓
𝑝

 of the pre-cracked SENB 

specimen is determined by extrapolation, as to be elaborated in the following 

section.  
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3.2.2 Equivalent plastic fracture strain 

 

Since the equivalent plastic fracture strain (𝜀𝑒𝑞,𝑓
𝑝

) for the pre-cracked SENB 

specimen cannot be measured directly from the mechanical testing, its value is 

estimated through extrapolation of the measured fracture strain values for the 

smooth and short-gauge tensile specimens to the stress triaxiality level that 

corresponds to the crack tip.  

Studies of stress state effect on material ductility [93, 146-148] have shown 

that the fracture strain value depends more significantly on the stress triaxiality 

than on either the strain rate or Lode angle parameter. Therefore, fracture strain is 

assumed here to be solely a function of the stress triaxiality.  

The extrapolation of fracture strain to the stress triaxiality level at the crack tip 

is based on a locus of plastic fracture strain versus stress triaxiality which was 

originally proposed by Bonora [128], and modified in this study to consider the 

variation of stress triaxiality due to the neck formation. The original relationship 

between plastic fracture strain and stress triaxiality is 

 

𝜀𝑒𝑞,𝑓
𝑝 = 𝑝𝑡ℎ (

𝜀𝑝
𝑓

𝜀𝑡ℎ
)

1 𝑓(𝜂)⁄

                                                                                 (3.9) 

 

where 𝜀𝑝
𝑓
 is the plastic fracture strain measured from the smooth tensile specimen, 

𝜀𝑡ℎ and 𝑝𝑡ℎ the damage threshold strains for the uniaxial and triaxial stress states, 

respectively. In this study, damage is assumed to start from the yield point and the 

two threshold strains are both set to be 0.002 for all the cases studied using the 

three rail steels.  

Note that in order to consider the loading history effect [130], 𝜂 value in the 

above expressions is replaced by the average stress triaxiality ( 𝜂𝑎𝑣), hereafter, as 

defined in Eq. (3.10) below. 
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𝜂𝑎𝑣 =
1

𝜀𝑒𝑞,𝑚𝑎𝑥
𝑝 ∫ 𝜂(𝜀𝑒𝑞

𝑝
)𝑑𝜀𝑒q

𝑝𝜀𝑒𝑞,𝑚𝑎𝑥
𝑝

0
                                                              (3.10) 

 

where 𝜂(𝜀𝑒𝑞
𝑝 ) and 𝜀𝑒𝑞,𝑚𝑎𝑥

𝑝
 are the stress triaxiality as a function of 𝜀𝑒𝑞

𝑝
 and the 

maximum value of 𝜀𝑒𝑞
𝑝

, respectively, both being determined from an element of a 

FE model which has the maximum 𝜂  value when the simulation reaches the 

critical deformation level for fracture initiation in the testing. That is, 𝜂𝑎𝑣 for the 

two types of tensile specimens is evaluated at the central element on the cross-

section of their FEM models, and 𝜂𝑎𝑣  for the pre-cracked SENB specimen 

determined at a characteristic distance ahead of the crack tip along the crack 

growth path of its FE model (simply referred to as ‘𝜂𝑎𝑣 at the crack tip’ in the rest 

of the text). 

In addition to the use of  𝜂𝑎𝑣 to represent the stress triaxiality, Eq. (3.9) has 

also been modified to accommodate the shape change in the smooth tensile 

specimen due to the neck formation. Therefore, the final expression used in the 

extrapolation procedure to determine the 𝜀𝑒𝑞,𝑓
𝑝

 for the pre-cracked SENB 

specimen is 

 

𝜀𝑒𝑞,𝑓
𝑝 = 0.002 (

𝜀𝑝
𝑓

0.002
)

𝑓(𝜂0) 𝑓(𝜂𝑎𝑣)⁄

                                                             (3.11) 

 

where 𝜂0 is the average stress triaxiality for the smooth tensile specimen, and 𝜂𝑎𝑣 

the average stress triaxiality for the smooth, short-gauged or pre-cracked SENB 

specimen. When 𝜂𝑎𝑣  is equal to 𝜂0 , 𝜀𝑒𝑞,𝑓
𝑝

 value represents 𝜀𝑝
𝑓

 for the smooth 

tensile specimen. Since 𝜀𝑝
𝑓

 is measured from the smooth tensile specimen and 

both 𝜂0 and 𝜂𝑎𝑣  from FE simulation, Eq. (3.11) does not contain any adjusting 

parameter.  
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 3.3 Experimental investigation 

 

3.3.1 Materials and test specimens 

 

A test program was conducted at 23, -10, and -40
o
C, which included the use 

of smooth, short-gauge, and pre-cracked SENB specimens, as shown in Figure 

3.2. Three high-strength rail steels, JAPAN NSC FHH (JP), EVRAZ RMSM FHH 

(EV), and CZECH TZ IH (CZ), supplied by the Canadian National Railway 

Company (CN), were used in the test program. All three types of mechanical 

testing were conducted on specimens prepared from the railhead region. An 

Instron hydraulic universal testing machine was used, with temperature control 

using an Instron environmental chamber. For tests at low temperatures, additional 

thermocouples were welded on each specimen to ensure that temperature of the 

specimens had reached the targeted value before the tests were conducted. 

The smooth and short-gauge specimens were used to establish the fracture loci 

of stress triaxiality and plastic fracture strain, from which the results were then 

applied to Eq. (3.11) for predicting the equivalent plastic fracture strain for the 

pre-cracked SENB specimens. Effect of temperature on fracture toughness for the 

three rail steels was characterized directly using experimental data from the 

SENB specimens. The KIc values were also used to evaluate validity of 𝐾𝑆𝑐 

defined in Eq. (3.8) for estimating fracture toughness of the three rail steels.  

 

 

Figure 3.2  Geometry and dimensions of (a) smooth specimen, (b) short-gauge specimen, and (c) 

SENB specimen 

(a) 

(c) 

(b) 
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3.3.2 Smooth specimens 

 

Tests on smooth specimens were carried out according to the procedure 

specified in ASTM E8/E8M [17], to establish a reference on the material ductility 

and tensile strength for all three rail steels. At each temperature, three specimens 

were tested at a crosshead speed of 8.5×10
-3

 mm/s, equivalent to an initial strain 

rate of 2.36×10
-4

 /s. Each smooth specimen had two extensometers placed in the 

gauge section, to be able to measure simultaneously elongation and diameter 

changes. Based on the assumption of uniform stress-strain distribution along the 

minimum cross section, the plastic fracture strain 𝜀𝑝
𝑓

 was calculated using the 

equation below [103]: 

 

𝜀𝑝
𝑓
= 𝑙𝑛(𝐴0 𝐴𝑓⁄ )                                                                                         (3.12) 

 

where 𝐴0 is the original cross-sectional area in the reduced gauge section and 𝐴𝑓 

the corresponding area measured at the minimum cross section after fracture. 

As shown in Figure 3.3, all three rail steels show excellent ductility at all three 

temperatures, with some neck development before fracture is initiated. Figure 3.3 

also suggests that JP rail steel possesses the largest ductility and the highest 

tensile strength among the three, while CZ the lowest. 

The fundamental mechanical properties for the three rail steels at temperature 

23, -10, and -40
o
C are summarized in Table 3.1 which suggests that with the 

decrease in test temperature from 23 to -40
o
C, the three rail steels show a 

consistent increase in strength by approximately 10%. However, the 

corresponding reduction in ductility varies slightly among the three rail steels. 

That is, by decreasing the temperature from 23 to -40
o
C the plastic fracture strain 

is reduced from 0.5 to 0.4 for JP rail steel, from 0.30 to 0.24 for EV, and from 
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0.183 to 0.165 for CZ. For details of the test procedures, please refer to the 

information in Chapter 2. 

 

 

 

Figure 3.3  Temperature effect on the mean true stress-logarithmic strain curves of smooth 

specimens for (a) CZ, (b) EV, and (c) JP high-strength rail steels 

 

Table 3.1  Mechanical properties for the three rail steels at 23, -10 and -40°C. 

 Smooth tensile   Short-gauge tensile 

Rails °C Eo(GPa) σy(MPa) σuts (MPa) σf(MPa) 𝜀𝑝
𝑓
 (%)   σf (MPa) 𝜀𝑝

𝑓
 (%)  

 23 193 632 1130 1307 18.3   1587 3.4  

CZ -10 193 638 1185 1367 17.2   1543 2.4  

 -40 193 679 1230 1405 16.5   1544 2.0  

 23 195 714 1207 1422 30.1   1750 4.0  

EV -10 195 782 1291 1524 26.7   1725 3.1  

 -40 195 823 1345 1585 24.4   1754 2.2  

 23 200 820 1280 1634 50.4   1862 4.7  

JP -10 200 837 1338 1692 45.4   1862 3.9  

 -40 200 901 1400 1774 40.1   1809 2.8  
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3.3.3 Short-gauge specimens 

 

Tests on short-gauge specimens were also carried out to investigate the 

change in fracture strain with the increase of stress triaxiality from that for the 

smooth specimens. Again, at least three tests were conducted for each of the rail 

steels at each temperature and at the initial strain rate same as that used for the 

smooth specimens. Since length of the gauge section for this type of specimens is 

1.8 mm, strain is characterized only by a diametric extensometer, placed in the 

middle of the gauge section. The measured diametric change is used to calculate 

the logarithmic strain to represent the deformation generated during the test. 

Diameter of the post-test specimens was used to determine the equivalent plastic 

fracture strain using Eq. (3.12). 

Figure 3.4 presents typical true stress-logarithmic strain curves for the short-

gauge specimens at temperature 23, -10, and -40
o
C, with values for fracture stress 

and strain also summarized in Table 3.1. Figure 3.4 shows clearly that with the 

decrease of temperature from 23 to -40
o
C, the plastic fracture strain is reduced 

from 0.047 to 0.028 for JP rail steel, from 0.04 to 0.022 for EV, and from 0.034 to 

0.020 for CZ. The fracture stress, on the other hand, is not much affected by the 

temperature changes. 

Results in Table 3.1 indicate that for all three rail steels, reduction of the 

specimen gauge length from 38 mm to less than 2 mm has caused a significant 

reduction in the fracture strain, but only a slight increase in the fracture stress, 

though their ranking among the three rail steels remains unchanged. For instance, 

at 23
o
C, the equivalent fracture strains for the short-gauge specimens of CZ, EV, 

and JP rail steels are about 10 times smaller than that for their smooth specimens, 

but the corresponding increase in fracture stress is less than 20%. This, as to be 

discussed later, is an indication of the stress triaxiality having a stronger influence 

on fracture strain than on fracture stress. 
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Figure 3.4  Temperature effect on the mean true stress-logarithmic strain curves of short-gauge 

specimens for (a) CZ, (b) EV, and (c) JP high-strength rail steels 

 

3.3.4 Single-edge-notched bend (SENB) specimens 

 

The SENB tests were performed for two purposes. One is to investigate the 

effect of temperature on fracture toughness (KIc) and the other to identify the 

crack mouth opening displacement (CMOD) for the first apparent pop-in which is 

assumed to be the moment when the fracture initiation occurs in the SENB 

specimens. In this study, pre-crack length of all the SENB specimens were 

controlled to reach approximately 3.5 mm using fatigue testing by keeping the 

maximum stress intensity factor (Kmax) and the minimum stress intensity factor 

(Kmin) to be 14 and 5 MPa.m
0.5

, respectively. The SENB tests were then conducted 

at the crosshead speed of 2×10
-3

 mm/s. CMOD was measured using a clip-on 

extensometer, mounted to the mouth of the notch before each test. The KIc values 

were determined from eight specimens for CZ rail steel and twelve for each of EV 

and JP rail steels at each temperature. Use of the additional four specimens for EV 
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and JP rail steels is because these two rail steels have very similar KIc values, thus 

requiring additional specimens to distinguish their difference if any. Figure 3.5 

summarizes the typical curves of mode I stress intensity factor (KI) versus CMOD 

(δ). Following ASTM E399 [18], the KI value was calculated using the equations 

below. 

 

𝐾𝐼 =
𝑃�̅�

�̅�𝑊3 2⁄ . 𝑓 (
𝑎0

𝑊
)                                                                                     (3.13) 
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𝑊
)
2
]

2(1+2
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𝑎0
𝑊
)

3
2

                                        (3.14) 

  

where 𝑃 is the load, 𝑎0 the average initial pre-crack length, measured along the 

crack front after the specimen was fractured, and �̅�, 𝑊, and 𝑆̅ specimen thickness, 

height, and span length, respectively. Dimensions of the SENB specimens used in 

this study are given in Figure 3.2(c).  

After ensuring that both 𝑎0  and 𝐵  had satisfied the criteria for small scale 

yielding, values for the critical stress intensity factor, KIc, were determined using 

the procedures described in ASTM E399, that is, using a secant line with the slope 

of 95% of the tangent line to identify the intersection point with the experimental 

P-δ curve. In most cases, fracture initiation was deemed to occur at the first pop-

in. But when a negligible pop-in occurred, such as the one circled in Figure 3.5(c) 

for -40
o
C, the KIc value was determined at the next pop-in, following the 

recommendation given in the ASTM standard. 

Figure 3.5 suggests that all of the three rail steels show the decrease in KIc 

with the decrease of temperature, but as to be discussed later, difference in KIc 

among the three rail steels varies with the test temperature. That is, at 23 and -

10
o
C, KIc values for JP and EV are clearly higher than CZ, but at -40

o
C difference 

of KIc among the three rail steels is significantly reduced. 
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Figure 3.5  Temperature effect on stress intensity factor versus CMOD (KI - δ) curves of SENB 

specimens: (a) CZ, (b) EV, and (c) JP rail steels 

 

3.4 Numerical simulations 

 

𝜀𝑒𝑞,𝑓
𝑝

 value for the pre-cracked SENB specimen is estimated using Eq. (3.11), 

based on plastic fracture strain (𝜀𝑝
𝑓
), average stress triaxiality (𝜂0) for the smooth 

specimen and average stress triaxiality at the sharp notch tip of the SENB 

specimen (𝜂𝑎𝑣 ). Value for 𝜂𝑎𝑣  was determined using Eq. (3.10) based on the 

stress triaxiality evolution established from the FE modelling. In this section, 

details for the FE models for smooth, short-gauge and SENB specimens are 

described. The FE modelling was performed using ABAQUS standard 6.13, with 

the consideration of change in the gauge section profile during the deformation. It 

should be pointed out that for a given type of specimen the increase of strain 

hardening in the constitutive equation can reduce the rate of stress triaxiality 

evolution. 
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3.4.1 FE modelling of smooth specimens 

 

Numerical simulation was carried out to mimic the deformation behaviour of 

smooth specimens at temperature 23, -10, and -40
o
C, in order to establish the 

constitutive equations for the three rail steels at each temperature. Each of the 

constitutive equations was then used to determine the evolution of the stress 

triaxiality until the critical point for fracture initiation was reached, which 

occurred at the minimum cross section of the gauge section.  

An axisymmetric FE model of 6,392 quadrilateral 8-node elements and 20,173 

nodes was used for the simulation, with dimensions following those given in 

Figure 3.2(a). Boundary conditions were set to be the same as those for the 

testing, i.e., with one end fixed and the other end moving at a specified 

displacement rate. Figure 3.6 shows an example of the typical necking behaviour 

generated by the FE model, overlaid on a fractured smooth specimen of JP rail 

steel which was tested at 23
o
C. As the smooth specimens were prepared without 

any tapering, location for the neck formation and fracture occurred 

asymmetrically. Thus, in the FE modelling, necking was generated by introducing 

a slightly tapered gauge section with the diameter of the minimum cross section 

reduced by 0.1%, at the location where fracture was initiated in the experimental 

testing. 

The same phenomenological model that consists of four functions of 

equivalent stress versus strain in Eq. (2.4), was used to establish the constitutive 

equations for the three rail steels, based on test data from smooth specimens. 

Values for the constants in the four functions of Eq. (2.4) were tuned in an 

iterative process so that the FE model could regenerate the load-elongation and 

diameter reduction curves from the experimental testing, of which an example is 

illustrated in Figure 3.6 for the JP rail steel at all three temperatures.  

Details of this iterative process to establish those expressions were given in 

Chapter 2. The resulted constants for the three rail steels are listed in Table 3.2. 

Note that values for constants 𝐸, 𝑣, a, c, d, and 𝛾 are intentionally kept constant 
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for each of the three rail steels, while the other constants adjusted based on 

variation of the experimental data with temperature. It is shown that as 

temperature drops from 23 to -40
o
C the decrease of parameter b is related to the 

increase of initial strain-rate before the yielding point, while the increase of 

parameters e, α, �̅� , M, and n is related to the increase of the work-hardening 

behaviour. 

In view of the good agreement between the experimental testing and the FE 

modelling, as shown in Figure 3.7, stress variation with deformation given by the 

FE models is used to determine the evolution of stress triaxiality of smooth 

specimens for the three rail steels, at all temperatures considered in this study. As 

an example, Figure 3.8 shows the distribution of stress triaxiality and equivalent 

plastic strain for the smooth specimen of JP rail steel at the onset of fracture 

initiation, as a function of distance from the centre in the radial direction on the 

minimum cross section of the FE model. The figure shows that maximum values 

for both the stress triaxiality and the equivalent plastic strain occur at the centre of 

the cross section. 

Figure 3.9 depicts evolution of stress triaxiality at the centre of smooth 

specimens, for the three rail steels at temperature 23, -10, and -40
o
C. As 

mentioned earlier, values for the average stress triaxiality were determined using 

Eq. (3.10). Since JP rail steel showed the most significant necking behaviour, this 

rail steel has also been expected to have the largest average stress triaxiality value. 

The CZ rail steel, on the other hand, has the smallest value. Figure 3.9 suggests 

that evolution of the stress triaxiality is not much affected by the test temperature, 

but value for the average stress triaxiality decreases with the decrease of the test 

temperature. 
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Figure 3.6  Deformed shape and FE discretization of the smooth specimen of JP rail steel at 23

o
C 

 

 

 

Figure 3.7  Comparison of load-elongation and cross-section reduction between experimental 

testing and FE modelling of JP rail steel at temperature of (a) 23
o
C, (b) -10

o
C, and (c) -40

o
C  
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Table 3.2  Parameters in Eq. (2.4) for three rail steels at temperature 23, -10, and -40
o
C 

Rails 

Parameters 

 CZ    EV    JP  

23 oC -10 oC -40 oC  23 oC -10 oC -40 oC  23 oC -10 oC -40 oC 

 E (GPa) 193 193 193  195 195 195  200 200 200 

 ν 0.3 0.3 0.3  0.3 0.3 0.3  0.3 0.3 0.3 

 a (MPa) 30.0 30.0 30.0  29.6 29.6 29.6  30 30 30 

 b 0.0101 0.0101 0.0099  0.0096 0.0094 0.0092  0.0092 0.0088 0.0085 

 c -2 -2 -2  -2 -2 -2  -2 -2 -2 

 d -26 -26 -26  -26 -26 -26  -24 -24 -24 

 e (MPa) 889 895 937  994 1037 1082  1080 1100 1150 

 α (MPa) 452 478 504  564 581 611  645 651 700 

 �̅� (MPa) 1240 1305 1320  1350 1415 1470  1400 1450 1530 

 γ 45.0 45.0 45.0  45.0 45.0 45.0  45.0 45.0 45.0 

 M (MPa) 1502 1583 1608  1640 1752 1838  1710 1802 1910 

 n 0.082 0.083 0.084  0.085 0.090 0.093  0.086 0.090 0.092 

 

 

 

Figure 3.8  Distribution of stress triaxiality and equivalent plastic strain along the minimum cross 

section at the onset of fracture initiation in the smooth specimen for JP rail steel at 23
o
C 
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Figure 3.9  Evolution of stress triaxiality with the increase of the equivalent plastic strain of 

smooth specimens, and its average value at temperature 23, -10, and -40
o
C for (a) CZ, (b) EV, and 

(c) JP rail steels 

 

3.4.2 Application of constitutive equations 

 

3.4.2.1 FE modelling of short-gauge specimens 

 

The constitutive equations established for smooth specimens were applied to a 

quarter, axisymmetric FE model of short-gauge specimens to determine the 

average stress triaxiality. The model consists of 4,930 quadrilateral 8-node 

elements and 15,119 nodes, with dimensions same as those given in Figure 3.2(b). 

One end of the model that represents the central cross section in the gauge section 

has a symmetric displacement boundary condition, while the other end is 

subjected to the displacement-controlled boundary condition. Figure 3.10 shows 

the mesh pattern of the FE model, overlaid on a fractured specimen of JP rail 

steel, tested at 23
o
C. As shown in the figure, necking does not occur in the 

specimen, possibly because of its short gauge length that has introduced some 

constraints for the localized cross sectional contraction. As a result, ductility at 
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fracture for the short-gauge specimens is much lower than that for the smooth 

specimens. 

Figure 3.11 presents both the experimentally determined curves (represented 

by lines) of mean axial true stress versus logarithmic area strain for the short-

gauge specimens, and the corresponding curves generated from the FE models 

(represented by symbols), for all three rail steels at all temperatures considered in 

the study. In view of good agreement between simulation and experimental 

results, we believe that the high-strength rail steels can be categorized as pressure-

insensitive metals of which the constitutive equations are independent of stress 

triaxiality, similar to that for the 1045 steel [146].  

Distribution of the stress triaxiality and equivalent plastic strain along a radial 

direction on the central cross section of the gauge section, at the onset of fracture, 

is presented in Figure 3.12 for JP rail steel at 23
o
C. The figure suggests that the 

maximum stress triaxiality occurs at the centre of cross section (r/r0=0), but the 

maximum equivalent plastic strain occurs along a circular band that is close to the 

circumference of the cross section. According to the study on the fracture 

initiation in the notched tensile specimens [75, 149], fracture of the short-gauge 

specimens is expected to start from the centre of the cross section. 

 

 

 

Figure 3.10  Mesh pattern of the FE model for the short-gauge specimens, overlaid on a fractured 

JP specimen tested at 23
o
C 
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Figure 3.11  Comparison of experimental and simulation results of short-gauge specimens for (a) 

CZ, (b) EV, and (c) JP rail steels  

 

 

 

Figure 3.12  Distribution of stress triaxiality and equivalent plastic strain on the minimum cross 

section of short-gauge specimen at the onset of fracture initiation for JP rail steel at 23
o
C  
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Figure 3.13  Stress triaxiality evolution with the increase of the equivalent plastic strain of short-

gauge specimens, and its average value at temperature 23, -10, and -40
o
C for (a) CZ, (b) EV, and 

(c) JP rail steels  

 

The average stress triaxiality for the short-gauge specimens was determined 

using Eq. (3.10), based on the evolution of stress triaxiality of the central element 

on the minimum cross section. Figure 3.13 summarizes evolution of the stress 

triaxiality for the three rail steels, at all temperatures considered in the study. 

Similar to that shown in Figure 3.9, Figure 3.13 also suggests that for each of the 

three rail steels, evolution of the stress triaxiality does not show much dependence 

on the test temperature. But, as indicated by three horizontal lines in each plot of 

Figure 3.13, the average stress triaxiality decreases with the decrease of the test 

temperature, which is believed mainly due to the decrease of fracture strain. 

 

3.4.2.2 FE modelling of SENB specimens 

 

The constitutive equations established for the smooth specimens were also 

applied to the FE modelling of SENB specimens, to determine the average stress 
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triaxiality at the sharp notch tip for the three rail steels at 23, -10, and -40
o
C. 

Figure 3.14 presents the FE model overlaid on a SENB specimen of JP rail steel. 

The model is 2-dimensional (2D), with dimensions following those specified in 

Figure 3.2(c), and contains 29,155 quadrilateral 8-node elements and 88,200 

nodes. The sharp notch tip has a quarter-circular profile, with an initial radius of 

0.1 µm, which is determined based on the strip yield model [150] and falls within 

the range of practical fatigue crack size [151]. In order to capture the large stress 

and strain gradients around the sharp notch tip, the quarter circular arc along the 

sharp notch tip was divided into 18 sections. Such division is repeated in the 

radial direction around the sharp notch tip, to generate one hundred layers of fan 

elements in the radial direction. 

It should be noted that because the crack tip region is divided into a very high 

density of standard solid elements, it would be too expensive to use a 3-

dimensional (3D) FE modelling to simulate the deformation behaviour. Rather, 

the more conservative 2D modelling with a plane-strain condition was used. 

Because of the use of 2D FE simulation, the change of the constraint condition on 

the fracture toughness variation, especially in the thickness direction, was not 

considered. A 3D FE analysis of such an effect has been investigated [152, 153]. 

In view that dimensions of the SENB specimens used in our study follow those 

specified in the standard test for the plane-strain condition, we believe that such 

an effect should not be significant for our specimens. 

Boundary conditions for the FE model are set to be the same as those 

introduced in the experiment. The central loading pin was constrained to allow 

only the displacement-controlled, downward movement, while the support pin 

was fixed in space. A finite-sliding, surface-to-surface contact algorithm was 

introduced to simulate the interaction between the specimen surface and the pin. 

The contact friction was based on the classical Coulomb’s law. 
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Figure 3.14  The SENB test of JP rail steel at 23
o
C: (a) the global mesh pattern and (b) the mesh 

pattern at the sharp notch tip, within the region enclosed in (a)  

 

 

 

Figure 3.15  Plots of KI versus CMOD from the FE modelling, superimposed on the curves in 

Figure 3.4 from the SENB tests, at temperature 23, -10, and -40
o
C for (a) CZ, (b) EV, and (c) JP 

high-strength rail steels 

 

The FE model for SENB specimen is also based on the J2 plasticity theory. As 

shown in Figure 3.15, the FE model was calibrated by regenerating the linear 

portion of the experimental data before the first obvious pop-in occurred. Friction 

coefficient between the pins and the specimen surface was adjusted so that the 

(b) (a) 
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FEM-generated curve fits the experimental data. It was found that for all three rail 

steels, the friction coefficient value should be 0.35, 0.2, and 0.1 for temperature 

23, -10, and -40
o
C, respectively. Reduction of the friction coefficient with the 

decrease of temperature was probably due to the presence of a thin layer of ice in 

the contact region at low temperatures. 

Figure 3.16 illustrates the simulation results in the region ahead of the sharp 

notch tip for JP rail steels at 23
o
C. In Figure 3.16(a), variations of stress triaxiality 

and equivalent plastic strain at the critical loading level (the first pop-in) have 

been plotted as functions of distance from the sharp notch tip (X) in the crack 

growth direction. Note that abscissa of Figure 3.16(a) is X normalized by the 

critical value of crack tip opening displacement (CTOD) at the onset of crack 

growth. The figure suggests that the equivalent plastic strain shows singularity at 

the sharp notch tip, and its value decreases very rapidly to almost zero at a 

distance about 5 times of the critical CTOD. On the other hand, the stress 

triaxiality increases from zero at the sharp notch tip to about 3.0 at a distance of 

approximately twice of the critical CTOD. Such variation of stress and strain 

ahead of the crack tip is similar to those reported before [38, 154]. In order to 

further ensure of the accuracy of the current FE model for simulating the stress 

and strain distribution in front of the sharp notch tip, linear portion of the 

experimental data was also generated by a classical FE model of SENB specimen 

for elastic-plastic materials, with 1/r singularity for stress distribution at the crack 

tip [155]. Figure 3.16(b) compares distributions of stress triaxiality and von Mises 

stress in front of the crack tip from the classical model (presented by open 

squares) with the results from the model of Figure 3.14 (solid lines). The 

comparison suggests that results from the two models agree well with each other. 

Therefore, the FE model in Figure 3.14 that uses a very dense mesh of standard 

solid elements has captured the high-gradient stress-strain distribution in front of 

the crack tip. 

In addition to distribution of stress triaxiality ahead of the sharp notch tip, the 

FE model in Figure 3.14 was also used to determine the characteristic distance 
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ahead of the sharp notch tip. As suggested in most recent studies [41, 42], the 

characteristic distance is the distance from the sharp notch tip to an element along 

the crack growth path which has the maximum stress triaxiality at the onset of 

fracture, as illustrated in Figure 3.17 which is for the JP rail steel.  

 

 

 

Figure 3.16  FE simulation results ahead of the sharp notch tip of SENB specimen for JP rail: (a) 

distributions of stress triaxiality and equivalent plastic strain along the crack path, and (b) 

comparison of FE models with standard and 1/r singularity, plane-strain elements 

 

 

 

Figure 3.17  Stress triaxiality distribution ahead of the sharp notch tip of SENB specimen at the 

onset of fracture, for JP rail steel at 23
o
C 
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Figure 3.18 Determination of the characteristic distances with the maximum stress triaxiality for 

three rail steels at 23, -10, and -40
o
C 

 

 

 

Figure 3.19  Stress triaxiality evolution with the increase of the equivalent plastic strain of SENB 

specimens, and its average value at temperature 23, -10, and -40
o
C for (a) CZ, (b) EV, and (c) JP 

rail steel  

 

Figure 3.18 summaries values for the characteristic distance for all three rail 

steels at 23, -10, and -40
o
C, showing that the characteristic distance has relatively 
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constant values among the three rail steels at each temperature. The figure also 

shows that the characteristic distance decreases with the decrease of temperature. 

Figure 3.19 presents evolution of stress triaxiality for the element that is 

located at the characteristic distance ahead of the sharp notch tip, as a function of 

equivalent plastic strain till fracture is initiated, and its corresponding average 

stress triaxiality level. Each of the three plots in Figure 3.19 summarizes results 

for a given rail steel at all three temperatures of 23, -10, and -40
o
C, showing that 

the average stress triaxiality decreases with the decrease of temperature. Figure 

3.19 suggested that at a given temperature, ranking of the three rail steels for their 

average stress triaxiality at the characteristic distance ahead of the sharp notch tip 

is opposite to that shown in Figure 3.9 for smooth specimen. The opposite ranking 

is believed to be caused by the influence of fracture strain on the calculated value 

for the average stress triaxiality. In Figure 3.9, the very different fracture strains 

among the three rail steels has resulted in higher average stress triaxiality for the 

rail with a larger fracture strain. In Figure 3.19, because of the similar fracture 

strains among the three rail steels, difference of the average stress triaxiality is 

believed to be mainly caused by the different rate of increase of the stress 

triaxiality with the increase of the equivalent plastic strain. 

Results from the above FE simulations suggest that the average stress 

triaxiality is affected not only by the difference in specimen geometry, but also by 

the difference in mechanical properties such as fracture strain and constitutive 

equation, though the former is believed to play a primary role and the latter 

secondary. This speculation is supported by the previous works [92, 156] in which 

materials with greater work hardening generate smaller stress triaxiality. 

Therefore, evolution of stress triaxiality in a given type of rail steel specimen can 

be affected by the change in either steel type or test temperature both of which 

change mechanical properties that govern the evolution of stress triaxiality with 

deformation. 
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3.5 Results 

 

3.5.1 Equivalent plastic fracture strain of pre-cracked SENB specimen 

 

The equivalent plastic fracture strain ( 𝜀𝑒𝑞,𝑓
𝑝

) for the pre-cracked SENB 

specimens was estimated using Eq. (3.11) based on the relationship between 𝜀𝑒𝑞,𝑓
𝑝

 

and the average stress triaxiality for the smooth and short-gauge specimens. 

Figure 3.20 summarizes curves of 𝜀𝑒𝑞,𝑓
𝑝

 generated from Eq. (3.11) for all three rail 

steels at all temperatures considered in this study, compared with the data 

obtained from the experimental testing on the two notch-free specimens (i.e., 

smooth and short-gauge specimens). The figure shows good agreement between 

the curves and the test data. By extrapolating the curves in Figure 3.20 to the 𝜂𝑎𝑣 

values at the sharp notch tip, as shown in Figure 3.19, the corresponding 𝜀𝑒𝑞,𝑓
𝑝

 

values of SENB specimen for the three rail steels, at temperature 23, -10, and -

40
o
C, are estimated and listed in Table 3.3. It is shown that all of the 𝜀𝑒𝑞,𝑓

𝑝
 values 

of the pre-cracked SENB specimens are in the vicinity of the yield strain and 

show little sensitivity to the temperature change. Furthermore, those values are 

significantly smaller than the fracture strain for smooth specimens, due to the 

increase of the stress triaxiality. Although ranking of the three rail steels based on 

the 𝜀𝑒𝑞,𝑓
𝑝

 value for SENB specimen is similar to that for the notched-free 

specimens, the trend of variation of 𝜀𝑒𝑞,𝑓
𝑝

 with temperature between the SENB 

specimens and the notched-free specimens is different for each of the three rail 

steels. This is further discussed as follows. 

It has long been known and clearly shown in Table 3.1 that material ductility 

(represented by fracture strain here) is expected to decrease with the decrease of 

temperature. However, such a trend is not obvious for the pre-cracked SENB 

specimens of the three rail steels, as shown in Table 3.3. For CZ and EV rail 

steels, values for 𝜀𝑒𝑞,𝑓
𝑝

 in Table 3.3 actually show a very small increase with the 
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decrease of temperature from 23 to -40
o
C. This is believed to be caused by the 

counter effect of the drop of 𝜂𝑎𝑣  value at the sharp notch tip with the decrease of 

temperature. As shown in Figure 3.19, 𝜂𝑎𝑣  value decreases with the decrease of 

temperature. And based on the trend line shown in Figure 3.20, decrease of the 

𝜂𝑎𝑣  value should cause increase of 𝜀𝑒𝑞,𝑓
𝑝

, which may offset the decrease of 𝜀𝑒𝑞,𝑓
𝑝

 

due to the decrease of temperature. Therefore, the trend of change for 𝜀𝑒𝑞,𝑓
𝑝

 with 

temperature change, as shown in Table 3.3, is probably caused by the combined 

effect of temperature and stress triaxiality. That is, fracture strain of SENB 

specimen decreases with the decrease of temperature, but increases with the 

decrease of 𝜂𝑎𝑣 . As a result of the combined effect of temperature and stress 

triaxiality, 𝜀𝑒𝑞,𝑓
𝑝

 values in Table 3.3 show very little change with the decrease of 

the test temperature. 

 

 

 

 

Figure 3.20  Dependence of equivalent plastic fracture strain  on stress triaxiality of three rail 

steels at (a) 23, (b) -10, and (c) -40
o
C  
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Table 3.3  Fracture strain of pre-cracked SENB specimen 

          Rail steels 

o
C 

CZ EV JP 

  23 0.00309 0.00343 0.00406 

-10 0.00317 0.00341 0.00406 

-40 0.00316 0.00353 0.00403 

 

3.5.2 KIc from SENB tests 

 

Figure 3.21 summarizes the measured KIc values for the three rail steels at 

temperature 23, -10 and -40
o
C. Each of the rail steels shows decrease in the 

average KIc value by approximately 20% with the decrease of temperature from 

23 to -40
o
C. Also, at all three temperatures the EV and JP rail steels seem to have 

similar KIc values, while both of them clearly have higher KIc values than that for 

the CZ rail steel. The difference of KIc among the three rail steels, however, is 

reduced at -40
o
C, suggesting that all three rail steels are almost equally 

susceptible to break in service at -40
o
C.  

In order to examine any difference in the KIc values between the EV and JP 

rail steels at 23, -10, and -40
o
C, Welch’s t-test is applied in this study [157]. As 

the experimental data of the two rail steels are with unequal sample sizes and 

unequal variances, the following equations are adopted: 

 

𝑑. 𝑓. =
(𝑠1
2 𝑁1⁄ +𝑠2

2 𝑁2⁄ )
2

(𝑠1
2 𝑁1)⁄

2
(𝑁1−1)+(𝑠2

2 𝑁2)⁄
2
(𝑁2−1)⁄⁄

                                                        (3.15) 

 

𝑡 =
𝑋1̅̅̅̅ −𝑋2̅̅̅̅

√𝑠1
2 𝑁1⁄ +𝑠2

2 𝑁2⁄
                                                                                         (3.16) 

 

where 𝑑. 𝑓. is the degree of freedom according to sample sizes; t is the statistic to 

test whether the means of two samples are different; 𝑋1̅̅ ̅, 𝑠1
2, and 𝑁1 are mean, 
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population variance, and sample size, respectively, for the 1
st
 sample; while 𝑋2̅̅ ̅, 

𝑠2
2, and 𝑁2 for the 2

nd
 sample. 

Figure 3.22(a) plots the two-tails t-distribution with the d.f. of 23 which is 

calculated using Eq. (3.15) according to the sample sizes of EV and JP rail steels 

[158]. Based on the number of d.f., the t critical value with the confidence level of 

95% is read as 2.07 from the t table [159]. This states the criterion that when the 

calculated t values are bigger than 2.07 or smaller than -2.07, the null hypothesis 

for the KIc values between the EV and JP rail steels can be rejected.  

Figure 3.22(b) shows the t-test results for the KIc values between the EV and 

JP rail steels at each temperature; as well, the mean and standard deviation of KIc 

values for the three rail steels are plotted at the three temperatures. Both the t and 

P (probability) values are shown in Figure 3.22(b), the former are calculated using 

Eq. (3.16), and the latter the ratio of the 'area', integrated under the t-distribution 

curve from the point greater than the calculated t-value, to the whole area under 

the t-distribution curve. Based on the t-test results, difference of KIc values 

between the EV and JP rail steels is identified at the three temperatures. Here we 

found that at 23 and -10
o
C the difference in KIc value exists between the EV and 

JP rail steels as the t values are bigger than 2.07. While at -40
o
C their difference 

in KIc value is negligible because the t value is smaller than 2.07.  

 

 

 

Figure 3.21  Experimental data of KIc values among the three high-strength rail steels at 

temperature 23, -10, and -40
o
C 
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Figure 3.22 Welch’s t-test analysis: (a) t-distribution with 95% confidential level at degree of 

freedom 23, and (b) t-test results between the EV and JP rail steels at 23, -10, and -40
o
C 

 

3.5.3 KIc prediction 

 

As mentioned earlier, the main objective for the current study is to explore the 

feasibility of using results from smooth and short-gauge specimens to predict the 

trend of change for KIc values among the three rail steels at 23, -10, and -40
o
C. In 

this section, information from the constitutive equation, the characteristic 

distance, 𝑟𝑜, the average stress triaxiality at the characteristic distance ahead of the 

sharp notch tip, and  the equivalent plastic fracture strain of SENB specimen are 

used to calculate KSc based on the critical strain energy density factor (𝑠𝑐) using 

Eq. (3.7). The predicted KSc values are also compared with the experimentally 

measured KIc values. 

As suggested by Eq. (3.6), both distortional and dilatational SEDs for elastic-

plastic deformation are included in the critical strain energy density, 𝑤𝑐 . As 

shown in Figure 3.22, with the determined information of average stress 

triaxiality, constitutive equation and equivalent plastic fracture strain, 𝑤𝑐 values 

are determined for smooth, short-gauge, and SENB specimens of the three rail 

steels, at each of the three temperatures considered in this study. Figures 3.22(a) 

and 3.22(b) show that JP rail steel has the largest 𝑤𝑐  values at all three 

temperatures and CZ the smallest for both types of notch-free specimens. And the 
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difference of 𝑤𝑐 values among the three rail steels becomes smaller for the short-

gauge specimens. These trends are consistent with the results for the two notch-

free specimens which are shown in Figures 3.3 and 3.4. However, Figure 3.22(c) 

suggests that at the sharp notch tip of SENB specimen difference between JP and 

EV is reversed, though 𝑤𝑐  for CZ remains to be the lowest at all three 

temperatures. Therefore, the trend of change for 𝑤𝑐 from the tensile tests does not 

reflect that at the sharp notch tip.  

As shown in Figure 3.23, the calculated KSc using Eq. (3.8) shows a linear 

relationship with KIc for all three rail steels at temperature 23, -10, and -40
o
C. The 

good agreement between KIc and KSc is probably because the total SED concept 

are implemented in the present study where both distortional and dilatational 

SEDs have been taken into account to calculate 𝑠𝑐. For ductile fracture, such as 

that for a notch-free specimen in tension, variation of distortional SED is expected 

to have a strong influence on the 𝑠c value. While at the sharp notch tip of SENB 

specimen, on the other hand, because of the very limited plastic deformation that 

is involved in the fracture process, as suggested in Table 3.3, the contribution of 

distortional SED to 𝑠𝑐 should be small, which according to our calculation for the 

three rail steels, is about two orders of magnitude smaller than the dilatational 

counterpart. Therefore, the 𝑠𝑐  value for a sharp notch tip is expected to be 

dominated by the dilatational SED. Correctness of using total SED, instead of 

distortional SED only, has also been examined by Radaj et al. [71] for failure 

assessment of mode I brittle fracture where the dilatation SED should also be 

dominant. Thus, it is suggested that assessment on mode I fracture resistance in 

small-scale yielding should consider both distortional and dilatational SEDs. 
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Figure 3.23  Differences in the critical SED values of (a) smooth specimen, (b) short-gauge 

specimen, and (c) sharp notch tip of SENB specimen, among the three rail steels at temperature 

23, -10, and -40
o
C  

 

 

Figure 3.24  Comparison of the predicted KSc values with the measured KIc for the three rail steels 

at temperature 23, -10, and -40
o
C 
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3.6 Conclusions  

 

The study investigated mechanical properties of three types of high-strength 

rail steels at 23, -10, and -40
o
C using notched (SENB) and notch-free (i.e., smooth 

and short-gauge) specimens. By establishing the fracture loci of stress triaxiality 

versus fracture strain from notch-free specimens, a modified Bonora’s model is 

used to predict the equivalent plastic fracture strains (𝜀𝑒𝑞,𝑓
𝑝

) of pre-cracked SENB 

specimen. The study shows that the 𝜀𝑒𝑞,𝑓
𝑝

 values can be reduced significantly, to 

the vicinity of yield strain, by the increase of stress triaxiality to the level at a 

sharp notch tip. The study also shows that the value for 𝜀𝑒𝑞,𝑓
𝑝

 at the sharp notch tip 

of SENB specimen does not change much with the change of temperature, and 

suggests that this is because the 𝜀𝑒𝑞,𝑓
𝑝

 value also depends on the stress triaxiality. 

By combining FE simulation and experimental testing, average stress 

triaxiality (𝜂𝑎𝑣) has been determined for all three types of specimens used in the 

study. The study found that ranking of 𝜂𝑎𝑣 among the three rail steels is opposite 

between SENB and notch-free specimens. This phenomenon has been 

successfully explained using the influence of fracture strain and constitutive 

equation on the 𝜂𝑎𝑣 value. That is, for the smooth specimens, difference of the 

𝜂𝑎𝑣 values is dominated by the large difference of the fracture strains among the 

three rail steels (Figure 3.9). For the SENB specimens, however, the fracture 

strains for the three rail steels at all three temperatures have similar values. 

Therefore, the change of 𝜂𝑎𝑣 at the sharp notch tip of SENB specimen is mainly 

due to the variation of the constitutive equations (Figure 3.19). Furthermore, the 

study found that since both temperature and 𝜂𝑎𝑣 affect fracture strain, the fracture 

strain at the sharp notch tip shows little change with the change of temperature, 

which is different from the dependence of fracture strain for the notch-free 

specimens on the temperature change. 

The study also shows the possibility of predicting the trend of KIc for all three 

rail steels at 23, -10, and -40
o
C using KSc that is based on the critical strain energy 
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density factor (𝑠𝑐), a product of 𝑤𝑐 and 𝑟𝑜. The study found that this is possible 

because 𝑤𝑐 considers both distortional and dilatational SEDs for fracture initiation 

under small-scale yielding. For the notch-free specimens, 𝑤𝑐 value is dominated 

by the distortional SED while at the sharp-notch tip of SENB specimen, its value 

is dominated by the dilatational SED. It is therefore concluded that both distortion 

and dilatation are indispensable parts that need to be considered for the energy 

consumption in the elastic-plastic deformation process that leads to fracture.  
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Chapter 4 A new constitutive model for high-strength rail steels 

by considering stress-triaxiality-dependent plasticity and damage
3
 

 

 

4.1 Introduction 

 

J2 flow theory for plastic deformation [103, 160, 161] has a profound 

influence on engineering practice, in which two fundamental tenets, i.e., 

independence of yielding on stress triaxiality and incompressibility of plastic 

deformation, have been extensively examined by generations of material scientists 

and engineers. Some studies obtained results that challenge these two tenets. For 

example, Spitzig and Richmond [162] and Spitzig et al. [163, 164] conducted 

extensive tensile and compressive tests with the superimposed hydrostatic 

pressure, on quenched and tempered AISI 4310 and 4330, maraging, and HY-80 

steels, and found that the experimentally characterized constitutive equations for 

those metals are actually pressure-dependent, which is consistent with the 

prediction based on the Drucker-Prager yield function [165]. It should be pointed 

out that work from the same group also showed that for 1045 steel, the 

constitutive equation is insensitive to the increase of the superimposed hydrostatic 

pressure, though the ductility is [166]. Wilson [167] reexamined the classical 

metal plasticity theory for aluminum alloy 2024-T351, and found that prediction 

based on the Drucker-Prager yield criterion agrees better with the experimentally 

established constitutive equation than the J2 flow theory does. Since Lode angle 

parameter (or the third deviatoric stress invariant) is also known to play an 

important role on the applied stress for the yielding [168-175], a new metal 

plasticity model has been developed by Bai and Wierzbicki [176] for engineering 

                                                 
3
 Part of this chapter has been published in the following publications: 

1. Yu, F., Jar, B. and Hendry, M., Stress triaxiality effect on damage evolution of high-strength 

steels. 24th International Congress of Theoretical and Applied Mechanics (ICTAM2016), 

Montreal, Quebec, 21-26 August. 

2. Yu, F., Jar, B. and Hendry, M., A constitutive model for metals with the consideration of stress-

triaxiality-dependent plasticity and damage. (under review at International Journal of Solids and 

Structures) 
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materials, to consider the influence of both stress triaxiality and Lode angle 

parameter on the deformation behaviour. 

In spite of the above development, the constitutive equation based on the J2 

flow theory is still very popular, considered to be well suited for many 

engineering materials. For example, Bai et al. [146] found no dependence of the 

constitutive equation for 1045 steel on the stress triaxiality, and Mirone and 

Corallo [177] reported a negligible influence of stress triaxiality on the stress level 

for yielding, though the stress triaxiality poses a noticeable influence on the 

fracture strain. Such difference in the material characteristics has been generally 

attributed to the inconsistency of the influence of stress triaxiality on the 

constitutive equations [176], denoted as the conventional constitutive equations in 

this chapter. However, it is now widely accepted that materials in the above 

studies have deformation and fracture behaviour governed by two coupled 

attributors of plastic deformation and damage evolution. If each of these two 

attributors could be analyzed for their dependency on the stress triaxiality, the 

inconsistence about the sensitivity of the conventional constitutive equations on 

the stress triaxiality might be resolved.  

The development of damage theories has enabled the incorporation of various 

damage accumulation concepts in the deformation process. This has successfully 

captured the transition from plastic deformation to ductile fracture, but yet to be 

able to reconcile the inconsistency about the different levels of sensitivity of the 

conventional constitutive equation on the stress triaxiality. The existing works 

that consider the damage criteria in the constitutive equations can be summarized 

into two groups, one based on micromechanics models and the other 

phenomenological models. The former was first proposed by McClintock [125] 

and Rice and Tracey [126], and further developed to become the well-known 

Gurson-Tvergaard-Needleman (GTN) model [143, 144]. The latter, on the other 

hand, was based on continuum damage mechanics (CDM) in the framework of 

thermodynamics [90, 178]. Both groups adopted the concept that development of 

the ductile damage depends on stress triaxiality and Lode angle parameter [96, 



91 

 

 

 

 

179-187]. However, even with the consideration of effects of both stress 

triaxiality and Lode angle parameter on the damage development [96, 185], the 

relationship between stress and strain is still based on the original concept that 

uses the classical J2 plasticity theory. That is, stress triaxiality and Lode angle 

parameter are deemed to affect the development of ductile damage only, not the 

damage-free stress-strain relationship. Recently, Chaboche et al. [188] proposed 

the use of two state variables to include damage evolution and plastic 

compressibility in the conventional constitutive equation for the ductile 

deformation. Brünig et al. [189, 190] who interpreted the conventional 

constitutive equation as the result of the combined effect of damage development 

and plastic deformation also proposed to reexamine the independence of flow 

stress on the stress triaxiality, but in their works the ductile damage was imbedded 

in expressions that use three stress invariants as the variables, not explicitly in 

terms of the actual damage parameter. Therefore, to our knowledge, no 

conventional constitutive equation has been interpreted explicitly using the 

separate expressions for the influence of stress triaxiality on the damage evolution 

and on the damage-free stress response to deformation. The damage-free stress 

response to deformation is referred to as the damage-free constitutive equation in 

the rest of the text.  

This study uses experimental testing under monotonic and cyclic loading, with 

the assistance of numerical simulation, to establish the conventional constitutive 

equation and damage evolution for a high-strength rail steel. Two types of notch-

free specimens, named smooth and short-gauge specimens, are used to generate 

different stress triaxiality levels. The results depict the insensitivity of the 

conventional constitutive equation to the change of stress triaxiality. The change 

of stress triaxiality, on the other hand, shows a strong influence on the damage 

evolution. A constitutive model is then postulated for the dependence of damage 

evolution and damage-free constitutive equation on the stress triaxiality, in search 

for explanations for the inconsistent influence of stress triaxiality on the 

conventional constitutive equation among metallic materials. Note that since 
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geometry for specimens used in the study was axisymmetric, the Lode angle 

parameter remained constant during the deformation [176], thus not considered 

here. 

 

 

Figure 4.1 The overall approach of constructing a new constitutive model for rail steels to explain 

the independence of the conventional constitutive equation from the stress triaxiality 

 

4.2 New constitutive model 

 

This study is based on the concept that two factors, i.e., damage evolution and 

plastic deformation, affect the change of mechanical properties for metals. Figure 

4.1 shows the development of a new constitutive model to explain why the 

conventional constitutive equation of rail steels is insensitive to stress 

triaxiality.On one hand, the experimentally calibrated conventional equivalent 

stress-strain curve (denoted as the conventional constitutive equation) is following 

the von Mises stress criterion, however, the conventional constitutive equation of 

some other materials are reported to follow the Drucker-Prager’s yield function. 

On the other hand, based on CDM, the conventional constitutive equation can be 

interpreted as a combination of damage parameter and damage-free constitutive 

equation, where the former has been found as a function of stress triaxiality 

during deformation and the latter is still assumed to follow the von Mises 

criterion. In this study, the damage-free constitutive equation is proposed to 

follow the Drucker-Prager’s yield function. In addition, a triaxiality factor is 
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added in the new constitutive model. Development of the postulated constitutive 

equation is detailed as follows. 

Damage evolution is based on CDM, using damage parameter 𝐷  to 

characterize the damage state. Here, 𝐷 is assumed to be isotropic and related to 

the surface density of microdefects [191], that is, 

 

𝐷 =
𝑆𝐷

𝑆0
                                                                                                          (4.1) 

 

where 𝑆𝐷  is the total area of microcracks and cavities generated during the 

deformation and 𝑆0 the overall cross sectional area of the loaded region. 𝐷 can 

also be expressed in terms of the change of elastic modulus, as shown below, 

based on the concept of effective stress and with the hypothesis of strain 

equivalence [127]. 

 

𝐷 = 1 −
𝐸

𝐸0
                                                                                                   (4.2) 

 

where 𝐸 is the effective elastic modulus which deceases as the total area covered 

by the microdefects increases, and 𝐸0 the Young’s modulus of the virgin material. 

Due to the presence of microdefects, the equivalent stress decreases and can 

be expressed using the following expression [127, 191]: 

 

𝜎𝑒𝑞 = (1 − 𝐷)σ
∗                                                                                         (4.3) 

 

where 𝜎𝑒𝑞 is the equivalent stress used in the conventional constitutive equation 

for a continuum medium, and 𝜎∗ the corresponding stress used in the damage-free 

constitutive equation for a continuum medium without the presence of damage. In 

general, 𝜎𝑒𝑞 should depend on equivalent strain (𝜀𝑒𝑞), stress triaxiality (𝜂), Lode 

angle parameter (𝜉 ) and D [176, 185, 189]. In the conventional constitutive 
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equation, 𝜎𝑒𝑞 is often expressed solely in terms of 𝜀𝑒𝑞, showing little dependence 

on the other variables, including 𝜂 [146, 177], which is the foundation for the 

classical metal plasticity. 

 

4.2.1 Damage-free constitutive equation and its dependence on stress 

triaxiality 

 

In the previous studies [96, 127, 143, 144, 187], damage-free stress, 𝜎∗, which 

represents the mechanical response of materials without the presence of damage, 

is often assumed to follow J2 flow theory or von Mises criterion. In the current 

work, 𝜎∗ is treated as a function of 𝜀𝑒𝑞 and 𝜂, as shown below, with 𝜉 value being 

constant because of the axial symmetry of the specimen geometry in this study: 

 

𝜎∗(𝜀𝑒𝑞, 𝜂) = 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) 𝑔(𝜂)                                                                         (4.4) 

 

where 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) is the damage-free stress response to the equivalent strain (𝜀𝑒𝑞) 

for a smooth specimen, and 𝑔(𝜂) a function of stress triaxiality which consists of 

both Drucker-Prager yield condition [165] and Lemaitre’s triaxiality factor, 

𝑓(𝜂)0.5 [127]. Eq. (4.4) can be explicitly expressed as:  

 

𝜎∗(𝜀𝑒𝑞, 𝜂) = 𝜎𝑒𝑞
0 (𝜀𝑒𝑞)[1 − 3Υ(𝜂 − 𝜂0)]𝑓(𝜂)

0.5                                         (4.5) 

 

where Υ is a proportional, material-dependent constant, 𝜂0 the stress triaxiality for 

smooth specimen under uniaxial tension, and 𝑓(𝜂) expressed also as a function of 

the Poisson’s ratio, 𝑣[127]: 

 

𝑓(𝜂) = [
2

3
(1 + 𝑣) + 3(1 − 2𝑣)(𝜂)2]                                                          (4.6) 
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Following the approach proposed by Bao and Wierzbicki [130], 𝜂0  and 𝜂 

values are calculated based on the concept of average stress triaxiality (𝜂𝑎𝑣), as 

defined below, to take into account the loading history involved in the 

deformation process. 

 

𝜂𝑎𝑣 =
1

𝜀𝑒𝑞,𝑚𝑎𝑥
𝑝 ∫ 𝜂(𝜀𝑒𝑞

𝑝 )𝑑𝜀𝑒𝑞
𝑝𝜀𝑒𝑞,𝑚𝑎𝑥

𝑝

0
                                                                (4.7) 

 

where 𝜀𝑒𝑞
𝑝 , 𝜀𝑒𝑞,𝑚𝑎𝑥

𝑝  and 𝜂(𝜀𝑒𝑞
𝑝 )  are the equivalent plastic strain, maximum 

equivalent plastic strain (i.e., at onset of fracture), and evolution of stress 

triaxiality as a function of 𝜀𝑒𝑞
𝑝

, respectively, obtained from an element chosen 

from a finite element (FE) model based on the conventional constitutive equation, 

as to be detailed later. Note that in this work, 𝜂𝑎𝑣 value will be used to represent 𝜂 

in Eq. (4.5). 

 

4.2.2 Dependence of damage evolution on stress triaxiality 

 

Damage parameter 𝐷 defined in CDM is a variable of thermodynamic state 

and is used to characterize material degradation during the plastic deformation. 

Lemaitre [127] and Bonora [128] both proposed ductile damage models that use 

stress triaxiality and plastic strain as variables. Damage parameter in both models 

is quantified using repeated loading-unloading tensile tests, but the former 

assumes a linear relationship between damage accumulation and plastic 

deformation and the latter a nonlinear relationship. In our study, as to be shown in 

section 4.4.1, the damage accumulation in the smooth specimen turns out to be a 

nonlinear function of plastic strain. Thus, Bonora’s nonlinear damage model is 

adopted and modified to fit the experimentally measured data obtained from the 

study. The original form of the Bonora’s damage model is  

 



96 

 

 

 

 

𝐷 = 𝐷0 + (�̅� − 𝐷0) {1 − [1 −
𝑙𝑛 𝜀𝑒𝑞

𝑝
−𝑙𝑛 𝜀𝑡ℎ

𝑙𝑛 𝜀𝑒𝑞,𝑓
𝑝

−𝑙𝑛 𝜀𝑡ℎ
𝑓(𝜂)]𝜆}                                    (4.8) 

 

where 𝐷0 is the initial amount of damage in the specimen before the test, �̅� the 

amount of damage in a smooth specimen at the onset of fracture if the fracture 

occurs during the homogeneous deformation, 𝜀𝑒𝑞,𝑓
𝑝

 the equivalent plastic fracture 

strain for the smooth specimen under uniaxial tension (defined as 𝜀𝑝
𝑓

 in the 

previous two chapters), 𝜀𝑡ℎ the threshold plastic strain for damage initiation for 

which the value is assumed to be the same in both uniaxial and multiaxial stress 

states, and 𝜆 the damage exponent which serves as an adjusting parameter for the 

calculated deterioration of elastic modulus to fit those measured experimentally.  

In the current study, 𝐷0 is chosen to be 0 (i.e., assuming no damage before the 

test) and  𝜆 to be 1. Using the relationship between 𝐷 and E shown in Eq. (4.2), 

Eq. (4.8) can be converted to an expression that depicts deterioration of elastic 

modulus in a deformation process, that is, 

 

𝐸 = 𝐸0 [1 − �̅�𝑓(𝜂𝑎𝑣)
𝑙𝑛𝜀𝑒𝑞

𝑝
−𝑙𝑛𝜀𝑡ℎ

𝑙𝑛 𝜀𝑒𝑞,𝑓
𝑝

−𝑙𝑛 𝜀𝑡ℎ
]                                                            (4.9) 

 

Note that value for 𝜆 in Eq. (4.8) cannot be a fraction, as a fraction value for  

with  larger than 1/3 (the smallest  value for smooth specimen under uniaxial 

tension) can result in an imaginary number for 𝐷 once 𝜀𝑒𝑞
𝑝

 approaches the critical 

value for fracture initiation. Among the possible whole numbers for the 𝜆 value, 1 

is chosen to fit the experimental data from the loading-unloading tests of smooth 

specimens, to establish deterioration of elastic modulus with increase of strain, as 

to be illustrated in section 4.4.1.  
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4.2.3 The explicit form of the new constitutive model 

 

A constitutive model, as shown below, is proposed here to take into account 

both damage-free constitutive equation and damage evolution, with the explicit 

separate expressions for their dependence on stress triaxiality.  

 

𝜎𝑒𝑞(𝜀𝑒𝑞 , 𝜂𝑎𝑣) = (1 − �̅�𝑓(𝜂𝑎𝑣)
〈𝑙𝑛𝜀𝑒𝑞

𝑝
−𝑙𝑛𝜀𝑡ℎ〉

𝑙𝑛 𝜀𝑒𝑞,𝑓
𝑝

−𝑙𝑛𝜀𝑡ℎ
)𝜎𝑒𝑞

0 (𝜀𝑒𝑞)[1 − 3Υ(𝜂𝑎𝑣 − 𝜂0)]𝑓(𝜂𝑎𝑣)
0.5 

(4.10a) 

 

where 𝜎𝑒𝑞(𝜀𝑒𝑞 , 𝜂𝑎𝑣)  represents the equivalent stress in the conventional 

constitutive equation with damage involvement, while 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) is the equivalent 

stress in the damage-free constitutive equation of the smooth specimen without involving 

any damage, 𝜀𝑒𝑞
𝑝

 the equivalent plastic strain, and 〈𝑙𝑛𝜀𝑒𝑞
𝑝 − 𝑙𝑛 𝜀𝑡ℎ〉 a step function, 

defined as 

 

〈𝑙𝑛𝜀𝑒𝑞
𝑝 − 𝑙𝑛 𝜀𝑡ℎ〉={

0                           𝑖𝑓 𝜀𝑒𝑞
𝑝 ≤ 𝜀𝑡ℎ

𝑙𝑛𝜀𝑒𝑞
𝑝 − 𝑙𝑛 𝜀𝑡ℎ    𝑖𝑓 𝜀𝑒𝑞

𝑝 > 𝜀𝑡ℎ
                                      (4.10b) 

 

The above step function is imbedded in the damage component of Eq. (4.10a), 

and is used to trigger the damage evolution once 𝜀𝑒𝑞
𝑝

 is larger than 𝜀𝑡ℎ. 

For a smooth specimen fractures during the uniform deformation, both 𝜂𝑎𝑣 

and 𝜂0  are equal to 1/3, and thus 𝑓(𝜂𝑎𝑣) = 1 , [1 − 3Υ(𝜂𝑎𝑣 − 𝜂0)] = 1 , and 

𝜀𝑒𝑞
𝑝 = 𝜀𝑝 (logarithmic plastic strain for the smooth specimen). These conditions 

reduce Eq. (10a) to a nonlinear CDM model that is based on von Mises yield 

criterion. On the other hand, if 𝜂𝑎𝑣  > 𝜂0 and Υ ≠ 0, Eq. (4.10a) can be used to 

represent a general stress-strain relationship that contains ductile damage 

development and damage-free constitutive equation, both expressed as functions 

of stress triaxiality.  
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4.3 Characterization of conventional constitutive equation 

 

4.3.1 Materials and test specimens 

 

High-strength rail steel, CZECH TZ IH (CZ) supplied by the Canadian 

National Railway Company (CN), was used as the sample material to examine the 

dependence of conventional constitutive equation on the stress triaxiality. Both 

monotonic and cyclic loading-unloading tensile tests were conducted at room 

temperature using an Instron hydraulic universal testing machine with load 

capacity of 222 KN.  

Two types of notch-free specimens were used which as shown in Figure 4.2, 

are named smooth and short-gauge specimens. Gauge section dimensions of the 

smooth specimens follow those specified in ASTM E8/E8M-11 [17], but gauge 

length for short-gauge specimens is shortened to increase transverse stress so that 

this type of specimens provides deformation and fracture behaviour at a stress 

triaxiality level much higher than that in the smooth specimens. Note that no taper 

was introduced to the smooth specimens for the monotonic tensile tests, but a 

taper to the smooth specimens for the cyclic loading-unloading tensile tests by 

reducing diameter by 2% in the middle of the gauge section where an 

extensometer was placed, in order to encourage neck initiation and fracture there. 

 

 

 

Figure 4.2  Geometry and dimensions of (a) smooth and (b) short-gauge specimens 

 

(a) (b) 
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4.3.2 Fundamental mechanical properties 

 

Monotonic tensile tests were carried out on smooth specimens to obtain basic 

mechanical properties for the CZ rail steel. Three specimens were tested at a 

crosshead speed of 8.5×10
-3

 mm/s, equivalent to an initial strain rate of 2.36×10
-4

 

/s. Each smooth specimen had two extensometers placed in the middle of the 

gauge section, to measure simultaneously elongation and diameter changes. Based 

on the assumption of uniform stress and strain distributions along the gauge 

section and negligible volume change during the deformation, the true stress (𝜎) 

and logarithmic strain (𝜀) were calculated using the equations below [103] 

 

𝜎 = 𝐿/𝐴                                                                                                     (4.11) 

 

𝜀 = 𝑙𝑛(𝐴0 𝐴⁄ )                                                                                             (4.12) 

 

where L is tensile load, 𝐴0  the original cross-sectional area, and A the 

corresponding cross-sectional area measured during the test.  

Monotonic tensile tests were also carried out on short-gauge specimens using 

the same conditions as those for the smooth specimens. However, because of the 

straight gauge length of 0.6 mm for the short-gauge specimens, as shown in 

Figure 4.2(b), only the diametric extensometer was used to quantify deformation 

in the gauge section. The axial extensometer was clipped outside of the gauge 

section with the initial length of 4 mm. Note that the true stress and logarithmic 

strain for the short-gauge specimens were also calculated using Eqs. (4.11) and 

(4.12), based on the assumption of uniform stress and strain distributions on the 

cross section. However, this assumption was relaxed in section 4.4.3, to consider 

variation of stress and strain distributions on the cross section in the study of the 

influence of stress triaxiality on the damage-free constitutive equation. 
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Figure 4.3 presents axial true stress-logarithmic strain curves for the smooth 

and short-gauge specimens, and Table 4.1 the corresponding mechanical 

properties including Young’s modulus (E0), yield stress (σy), ultimate tensile 

strength (UTS), fracture stress (σf) and plastic fracture strain (𝜀𝑝
𝑓
). The test results 

indicate that with the gauge length reduced from 38 to 0.6 mm, fracture stress for 

the rail steel is increased by about 20% while the fracture strain reduced over 

80%. 

 

 

Figure 4.3  Typical experimentally-determined stress-strain curves for smooth and short-gauge 

specimens of the CZ rail steel 

 

Table 4.1  Fundamental mechanical properties for the CZ rail steel 

Type Smooth specimen  Short-gauge specimen 

Properties 

Values 

E0(GPa) σy(MPa) UTS(MPa) σf(MPa) 𝜀𝑝
𝑓
(%)   σf(MPa) 𝜀𝑝

𝑓
(%) 

 

193 632 1130 1307 18.3   1587 3.4  

 

4.3.3 Conventional constitutive equation 

 

The conventional constitutive equation for the railhead of the CZ rail steel, 

determined in Chapter 2, was applied to a 3D FE model of smooth specimen 

using ABAQUS standard 6.13. In view of the axi-symmetry of the specimen 

geometry, the FE model has only quarter of the cross section, consisting of 94,200 

standard linear hexahedral 8-node elements with reduced integration and 104,265 

nodes, for which dimensions followed those given in Figure 4.2(a) except that a 
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small taper was introduced in the gauge section to reduce the cross-sectional 

diameter by 0.1% at the location where necking and fracture were observed from 

the experimental testing. The FE model was evenly discretized in the gauge 

section, with element size of 0.167 mm longitudinally and aspect ratio of 1. The 

classical J2 plasticity with isotropic strain hardening was selected for the 

simulation. Boundary conditions were set to be the same as those used in the 

experimental testing, i.e., with one end fixed and the other end moving at a 

specified displacement rate.  

The same conventional constitutive equation of the CZ rail steel was also 

applied to a 3D FE model of short-gauge specimen with quarter of the cross 

section. The model consists of 178,800 standard linear hexahedral 8-node 

elements with reduced integration and 189,103 nodes of which the dimensions 

follow those given in Figure 4.2(b). The FE model was evenly discretized with 

element size of 0.078 mm and aspect ratio of 1 in the 0.6 mm-long gauge section. 

One end of the model was fixed while the other end subjected to the 

displacement-controlled boundary condition. Figure 4.4(b) presents the 

experimentally determined load-elongation and diameter reduction curves 

(represented by dashed lines) for the short-gauge specimens, compared with the 

curves generated from the FE models (represented by open squares).  

The curves in Figure 4.4 suggest that results from the FE models of smooth 

and short-gauge specimens, based on the same conventional constitutive equation, 

agree reasonably well with the experimental testing results, having only slight 

deviation for the curves of diameter reduction. Therefore, the conventional 

constitutive equation for the CZ rail steel used in the study shows little sensitivity 

to the change of stress triaxiality. This is consistent with one of the tenets of 

classical metal plasticity theory, as stated in Introduction 4.1.  
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Figure 4.4  Comparison of load and diameter reduction as functions of elongation between 

experiment and FE simulation for (a) smooth and (b) short-gauge specimens 

 

4.4 Calibration of new constitutive model 

 

The constitutive model expressed by Eq. (4.10a) contains three parameters 

(�̅�, 𝜎𝑒𝑞
0 (𝜀𝑒𝑞), and Υ) that need to be calibrated so that Eq. (4.10a) can be applied 

to the CZ rail steel. As to be described in this section, three steps were used in the 

study to determine values for the three parameters. The first step was to use 

results from loading-unloading tensile tests on smooth specimens to determine 

variation of unloading elastic modulus as a function of plastic strain, based on 

which �̅� could be determined by fitting the curve generated from Eq. (4.9) to the 

experimentally measured elastic modulus values. The second step was to 

determine value for 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) by conducting FE modelling of smooth specimen 

using separate inputs of damage evolution, defined in Eq. (4.2), and 𝜎𝑒𝑞
0 (𝜀𝑒𝑞), 

where the former was determined using the measured elastic modulus from the 

loading-unloading tensile tests, and the latter through the iterative FE modelling 

till the experimentally measured variation of load and cross sectional diameter, as 

functions of elongation, matched those from the FE modelling. With �̅�  and 

𝜎𝑒𝑞
0 (𝜀𝑒𝑞) determined, the last step was to determine the Υ value in Eq. (4.10a), 

through an iterative FE modelling process of short-gauge specimen so that the FE 

model can regenerate the data from the experimental testing. Results from the 

above three steps are summarized below. Note that value for 𝜂𝑎𝑣in Eq. (4.10a) 
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was determined using Eq. (4.7), based on stress triaxiality in the FE models of 

smooth and short-gauge specimens using the conventional constitutive equation. 

 

4.4.1 Damage parameter  

 

Results from the loading-unloading tensile tests on smooth specimens are used 

to determine the value for �̅�. As mentioned earlier, gauge section of the smooth 

specimens for the loading-unloading tests is tapered to reduce diameter in the 

middle by 2%, to ensure that neck formation and specimen fracture occur there so 

that the diametric extensometer mounted in the middle of the gauge section can 

record the diameter change till fracture is initiated. Crosshead speed used for the 

loading-unloading tests on smooth specimens is same as that used for the 

monotonic tensile tests. Condition for triggering the unloading before the UTS is 

based on the load increment of 2 kN, but after UTS based on the displacement 

increment of 0.25 mm which corresponds to a loading period of 30 seconds. 

Effective elastic modulus (E) was determined using the linear portion of the 

unloading part of the stress-strain curves from the loading-unloading tests of 

smooth specimens, following the approach described by Lemaitre and Dufailly 

[192]. Due to the increase of stress triaxiality after the necking starts, the 

measured unloading slope from the smooth specimens is also affected by the 

change in the gauge section geometry. Such an influence was removed using the 

approach described by Celentano and Chaboche [193]. After this correction, 

variation of E can then be established as a function of plastic strain, which is then 

used to calibrate �̅� value in Eq. (4.9) so that the curve generated from Eq. (4.9) 

can fit the trend of change for the measured E values. 

Figure 4.5 depicts the above procedure for the CZ rail steel. Figure 4.5(a) 

compares curves of true stress versus logarithmic strain for a smooth specimen 

under the loading-unloading tensile test and from the FE modelling based on the 

conventional constitutive equation. The loading-unloading test is to determine the 

unloading slope and the FE modelling to correct the effect of gauge section 
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geometry on the unloading slope. The FE model for the loading-unloading tensile 

test is same as that used for the monotonic tensile tests, except that the former has 

a taper in the gauge section to reduce diameter in the middle by 2%, which 

reflects the physical taper introduced to the specimens. The FE model has one end 

completely constrained from any movement, while the other end is subjected to a 

displacement-controlled cyclic loading. As shown in Figure 4.5(a), the monotonic 

part of the curve from the FE modelling agrees well with that from the 

experimental testing.  

Figure 4.5(b) shows variation of the geometric correction factor 𝛽, defined in 

Eq. (4.14a) and determined from the FE model, as a function of logarithmic 

plastic strain (𝜀𝑝 ) for smooth specimen, following the approach proposed by 

Celentano and Chaboche [193]. 

 

(𝜀𝑝) =
𝐸0

𝑆𝐹𝐸𝑀
                                                                          (4.14a) 

 

where E0 is the original elastic modulus and SFEM the unloading slope in the 

loading-unloading true stress-logarithmic strain curves, established from the FE 

model based on the conventional constitutive equation. 

As shown in Figure 4.5(b), 𝛽  value for the smooth specimen remains 

relatively constant when deformation in the gauge section is uniform, but starts 

decreasing at the onset of necking. This phenomenon is consistent with that 

reported before [193]. Since the FE model mimics closely the deformation 

behaviour observed from the experimental testing, variation of  value shown in 

Figure 4.5(b) should also be reflected by results from the experimental testing. 

That is,  

 

(𝜀𝑝) =
𝐸

𝑆𝑒𝑥𝑝
                                                                          (4.14b) 
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where E is the experimentally measured elastic modulus and 𝑆𝑒𝑥𝑝 the unloading 

slope from the true stress-logarithmic strain curve from the loading-unloading 

tests. Therefore, variation of E with 𝜀𝑝 for the smooth specimens of the CZ rail 

steel used in the study can be determined by multiplying 𝛽 with 𝑆𝑒𝑥𝑝, which is 

shown in Figure 4.5(c).  

Figure 4.5(c) also includes a curve generated from Eq. (4.9), with 𝜀𝑡ℎ chosen 

to be the yield strain of 0.002, Young’s modulus (𝐸0) and plastic strain at final 

fracture (𝜀𝑒𝑞,𝑓
𝑝

) determined from the experimental testing, and average stress 

triaxiality (𝜂𝑎𝑣 ) obtained from the FE modelling of smooth specimen under 

monotonic tension. Therefore, Eq. (4.9) has only �̅� as the adjusting parameter for 

the curve in Figure 4.5(c) to fit the experimental data based on the least square 

fitting procedure. With the �̅�  value determined, damage evolution in smooth 

specimen of the CZ rail steel up to the fracture initiation can then be expressed as 

a function of 𝜀𝑝 using Eqs. (4.2) and (4.9), as presented in Figure 4.5(d).  

  

 

Figure 4.5  Summary of results from the experimental testing and the FE simulation for loading-

unloading tests of smooth specimens: (a) numerical and experimental loading-unloading tensile 

tests, (b) correction factor , (c) effective elastic modulus E, and (d) damage parameter D  
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Table 4.2  Summary of values for parameters in Eq. (4.9) for the CZ rail steel 

Parameters of smooth specimen 

𝐸0 (GPa) �̅� 𝜂𝑎𝑣 𝜀𝑡ℎ 𝜀𝑒𝑞,𝑓
𝑝

 𝐷𝑐𝑟 

193 0.33 0.37 0.002 0.183 0.34 

  

Table 4.2 summarizes values for the parameters in Eq. (4.9) for the CZ rail 

steel, in which Dcr is the critical damage parameter for smooth specimens, 

determined using the curve in Figure 4.5(d) at the onset of fracture, as indicated 

by the cross symbol in Figure 4.5(d). As mentioned earlier, �̅� was the only fitting 

parameter used for the curve generated by Eq. (4.9) to fit the experimental data in 

Figure 4.5(c). Value for �̅�  represents the critical damage value for smooth 

specimens if fracture were initiated before the onset of necking. For the CZ rail 

steel, since 𝜀𝑒𝑞,𝑓
𝑝

 is 18.3% which is not far from the strain for the onset of necking 

(7.1%), with the calculated 𝜂𝑎𝑣to be only 0.37 (compared to 0.33 for during the 

uniform deformation), it is not surprising that values for Dcr and �̅� in Table 4.2 

are very close to each other.  

 

4.4.2 Damage-free constitutive equation 

 

The damage-free constitutive equation was established using ABAQUS 

explicit 6.13. FE model for this part of study has the same mesh pattern as that 

used in the previous section but the element type has been changed to explicit 

linear brick elements with reduced integration. Material property input to the FE 

model contains two parts. The first part is damage evolution that includes both 

damage initiation and evolution, established from loading-unloading tensile tests 

with the assumption that damage starts at the yield point with the stress triaxiality 

of 1/3 and damage evolution follows that depicted in Figure 4.5(d). The second 

part is the damage-free constitutive equation with the isotropic strain hardening, 

established by adjusting values for parameters in Eq. (2.4) so that the FE model 

can regenerate the loading part of the results from the loading-unloading tests, 
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including load-elongation and cross section reduction curves. In addition, the final 

unloading curve from the FE model was compared with that from the 

experimental testing to examine their consistency. Same as before, caution was 

taken to make sure that the 0
th

 and 1
st
 orders of continuity were met for the 

damage-free constitutive equation at the coincident points between the adjacent 

sections of the curve. It is worth mentioning that ratio of kinetic energy to internal 

energy for this model was less than 1%, thus satisfying the condition for the 

quasi-static analysis.  

In order to alleviate the mesh dependency of the results from the FE 

simulation, due to the involvement of damage development, input of damage 

evolution based on that depicted in Figure 4.5(d) was expressed as a function of 

equivalent plastic displacement, as shown in Figure 4.6(a), following the 

suggestion given by Hillerborg et al. [194]. The equivalent plastic displacement is 

the product of the increment of plastic strain from 0.002 and characteristic length 

of the linear brick element (0.167 mm for the FE model of smooth specimen). 

Boundary conditions for the FE model are same as those used before, that is, with 

one end of the specimen fixed and the other end under the displacement control. 

Figures. 4.6(b) and 4.6(c) compare results from the above FE model for 

smooth specimen with those from the experimental testing of the CZ rail steel. 

The figures suggest that good agreement exists between the FE simulation and the 

experimental testing, with less than 2% difference in both the loading path and the 

final unloading slope. Although the unloading slope is compared only for the final 

unloading stage, slopes from the other unloading stages are also expected to show 

good agreement. This is because ABAQUS explicit assumes that the progressive 

accumulation of ductile damage depends solely on the amount of plastic 

deformation, not the unloading path. Therefore, once the FE model can regenerate 

the unloading slope for the final stage, it is also expected to regenerate unloading 

slopes for the other unloading stages. 
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Figure 4.6  Comparison of data from the experimental testing with those from the FE simulation 

for smooth specimen, using separate material input for damage evolution and damage-free 

constitutive equation: (a) damage evolution as a function of equivalent plastic displacement, (b) 

load-elongation curve, and (c) diameter reduction as a function of elongation 

 

 

Figure 4.7  Results from FE simulation of loading-unloading of smooth specimen at three points 

on the minimum cross section: (a) equivalent plastic strain, (b) damage evolution, and (c) 

equivalent stress-strain curves  
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Figure 4.7 presents results from the elements located at the centre, quarter of 

diameter from the centre, and along the circumference on the minimum cross 

section of the FE model for smooth specimen, using separate inputs for damage-

free constitutive equation and damage evolution. Figure 4.7(a) describes variation 

of the equivalent plastic strain (𝜀𝑒𝑞
𝑝

) as a function of logarithmic strain (ε) of the 

cross section, suggesting that 𝜀𝑒𝑞
𝑝

 at the three locations has very similar values 

during the uniform deformation. However, the 𝜀𝑒𝑞
𝑝  values start deviating from 

each other after the necking starts. At the maximum elongation, i.e., before the 

unloading stage in the FE simulation, the element at the centre of the minimum 

cross section has the biggest 𝜀𝑒𝑞
𝑝

value and the element along the circumference 

the smallest. Figure 4.7(b) depicts the damage evolution as a function of in the 

three elements, showing little difference among the three locations for the damage 

development. This suggests that smooth specimen generates a relatively uniform 

damage distribution on the cross section. Note that as shown in Figure 4.7(b), for 

value smaller than 0.07, i.e., before the onset of necking, rate of damage 

development in the element along the circumference of the cross section is 

slightly faster than that in the centre. This is probably because of the 2% taper in 

the gauge section of the FE model, which has increased the local deformation 

along the circumference of the minimum cross section.  

The most interesting phenomenon observed from this FE simulation is the 

equivalent stress-equivalent strain curves during the loading path, as shown in 

Figure 4.7(c), which are constructed based on the output from the three elements 

of the FE model. Evolution of the three curves in Figure 4.7(c) is in excellent 

agreement, not only with each other but also with the conventional constitutive 

equation (presented using open circles in Figure 4.7(c) which was used as the 

material input to generate FE simulation data for Figure 4.4. Although this 

agreement suggests the possibility of using FE simulation based on the 

conventional constitutive equation to regenerate deformation behaviour of the 
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smooth specimen under the monotonic loading, the use of conventional 

constitutive equation fails to regenerate the change of the unloading slope 

observed from the experimental testing, as depicted in Figure 4.7(c). Note that the 

unloading curves generated from a FE model based on the conventional 

constitutive equation are represented by three solid lines in Figure 4.7(c), 

compared with three dashed lines that represent the unloading curves generated 

from the FE model with separate inputs of damage-free constitutive equation and 

damage evolution. Figure 4.7(c) indicates clearly that slope for each of the three 

dashed lines is smaller than that for the solid lines. 

Contour plots from the FE models of smooth specimen, right before the 

fracture initiation, are presented in Figure 4.8. The contour plots in Figure 4.8(a) 

are from the FE model in the ABAQUS standard based on the conventional 

constitutive equation as the material input, thus showing distribution of equivalent 

plastic strain (PEEQ), von Mises stress (Mises) and hydrostatic stress (Pressure). 

The contour plots in Figure 4.8(b), on the other hand, are from the FE model in 

the ABAQUS explicit using separate inputs of damage evolution and damage-free 

constitutive equation. As a result, Figure 4.8(b) also includes a contour plot of the 

damage parameter (SDEG). Overall, the two approaches give similar results for 

PEEQ, Mises and Pressure. For SEDG, Figure 4.8(b) shows that its maximum 

value occurs on the minimum cross section, suggesting that fracture is expected to 

start from there. Note that the label “Avg: 75%” shown on each of the contour 

plots in Figure 4.8 is the nodal averaging threshold. This “75%” means that when 

the element-based variables, i.e., PEEQ, Mises, Pressure, and SDEG, are 

extrapolated to the nodes from the integration points, those nodal results will be 

averaged and displayed continuously if they are within 75%. In other words, if the 

difference is more than 25% from each other, a discontinuity will be displayed. 

This threshold value of 75% is a default setting in ABAQUS and can be changed 

in ABAQUS/Viewer-Results-Options-Computation tab-Averaging. 

 

 



111 

 

 

 

 

 

 

Figure 4.8  Contour plots for equivalent plastic stain (PEEQ), von Mises stress (Mises in MPa), 

hydrostatic stress (Pressure in MPa), and damage parameter (SDEG) from the FE modelling: (a) 

using the conventional constitutive equation and (b) using separate inputs for damage evolution 

and damage-free constitutive equation  

 

 

 

Figure 4.9  Comparison of conventional constitutive equation and damage-free constitutive 

equation for smooth specimens of the CZ rail steel  

 

 

 

 

 

(b) 
(a) 
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Table 4.3  Parameters in Eq. (2.4) for conventional and damage-free constitutive equations of 

smooth specimen 

 

Parameters 
Constitutive equation 

Conventional 
 

Damage-free 

Eq. 2.4(a) E (GPa) 193  193 

 ν 0.3  0.3 

Eq. 2.4(b) a (MPa) 30  30 

 b 0.0101  0.0101 

 c -2  -2 

 d -26  -26 

 e (MPa) 894  894 

Eq. 2.4(c) α (MPa) 452  420 

 �̅� (MPa) 1240  1650 

 γ 45.0  37.0 

Eq. 2.4(d) M (MPa) 1502  2261 

 n 0.082  0.140 

 

Figure 4.9 compares damage-free and conventional constitutive equations for 

the smooth specimen of the CZ rail steel. As expected, the former shows a higher 

strain-hardening effect than the latter. The less significance in strain hardening for 

the conventional constitutive equation comes from the inclusion of the damage 

effect on the stress response to deformation. Table 4.3 summarizes values for all 

parameters in Eq. 2.4 for the two types of constitutive equations, in which the 

difference is mainly for parameters in Eqs. 2.4 (c) and 2.4(d).   

 

4.4.3 Material constant 

 

With �̅� and 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) determined, even without knowing the value for Υ, Eq. 

(4.10a) can be used to represent the stress-strain relationship for smooth 

specimens. This is because in this case both 𝜂𝑎𝑣 and 𝜂0 are equal, thus eliminating 

the term in Eq. (4.10a) which contains Υ. In general, however, value for Υ needs 

to be determined in order to express the stress response to strain at different stress 

triaxiality levels. This was achieved in this study by conducting FE modelling of 

short-gauge specimens, to generate results that match the experimental data from 

monotonic tensile tests. The FE model for short-gauge specimen used here is 
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identical to that used in section 3.3 except that material property input for the 

former is based on Eq. (4.10a) with Υ as an adjustable material constant which is 

independent of stress triaxiality. In view that stress triaxiality is not uniform in the 

short-gauge specimen, constitutive equation for the FE model based on Eq. 

(4.10a) should vary with the change of stress triaxiality. Ideally, a user-defined 

subroutine should be used to consider dependence of the constitutive equation on 

the stress triaxiality. Here, however, an approximation approach is adopted, by 

dividing the cross section into five annular regions. Stress triaxiality is expected 

to vary among the five annular regions, but remains constant in each annular 

region. As to be shown in this section, such an approximation is acceptable for the 

purpose of determining the Υ value. Note that Υ is a material constant that is 

treated as being independent of the stress triaxiality variation.  

Figure 4.10 presents the FE model for short-gauge specimen used to 

determine the Υ value. Figure 4.10(a) depicts an overall, sectional view of the FE 

model that has the same dimensions and mesh pattern as the model used to obtain 

data for Figure 4.4(b), but gauge section in the former is divided into five zones of 

equal length in the radial direction, corresponding to the five annular regions on 

the cross section. Material property input for each zone is dependent on stress 

triaxiality. Figure 4.10(b) presents an example of the variation of equivalent 

plastic strain (𝜀𝑒𝑞
𝑝

) and stress triaxiality (η) in the radial direction of the minimum 

cross section at the onset of fracture, determined from the FE model based on the 

conventional constitutive equation. Note that Figure 4.10(b) presents three curves 

for each of 𝜀𝑒𝑞
𝑝

 and , determined from the FE model with different mesh sizes in 

the gauge section, with elements of 0.157, 0.078, and 0.039 mm in length, 

respectively. These curves in Figure 4.10(b) suggest that little difference is 

detectable by varying the element size. Therefore, the FE model with element size 

of 0.078 mm was used for the study, to save computational time but still provide 

satisfactory resolution. In addition to those curves, Figure 4.10(b) also includes 

four solid vertical lines that divide the radial length into five zones. Equivalent 
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plastic strain (𝜀𝑒𝑞
𝑝̅̅ ̅̅ ) for each zone, marked by a horizontal dash line on the curve 

with its value given in the figure, is taken as the mean 𝜀𝑒𝑞
𝑝

 value for all elements 

in that zone. Similarly, stress triaxiality for each zone (𝜂𝑎𝑣̅̅ ̅̅ ) is taken as the mean 

value of 𝜂𝑎𝑣 for all elements in that zone, also given in Figure 4.10(b). These five 

𝜂𝑎𝑣̅̅ ̅̅  values, together with �̅� and 𝜎𝑒𝑞
0 (𝜀𝑒𝑞) determined from the previous sections, 

were substituted into Eq. (4.10a) to establish the constitutive equation for the FE 

model that was used to determine Υ value for the CZ rail steel.  

Figure 4.11 summarizes variation of load as a function of logarithmic strain 

() from the above FE model of short-gauge specimen with Υ equal to 0 or 0.1, 

compared with the curve generated from the FE model based on the conventional 

constitutive equation (i.e., without considering the dependence of constitutive 

equation on the stress triaxiality) and two curves from the experimental testing. 

The figure suggests that by increasing Υ value from 0 to 0.1, the curve generated 

by the FE model based on Eq. (4.10a) matches well with those from the 

experimental testing. The small Υ value required to have a good match with the 

experimental data suggests that the above approximation approach is acceptable 

for the purpose of determining the Υ value. Figure 4.11 also suggests that even 

though both conventional constitutive equation and Eq. (4.10a) with Υ =0.1 can 

enable the FE model to generate the load-logarithmic strain curve that is close to 

those from the experimental testing, the curve based on the latter shows a better 

fit than that based on the former. 
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Figure 4.10  FE model of short-gauge specimen: (a) showing five zones in the gauge section with 

different material property inputs and (b) variation of equivalent plastic strain and stress triaxiality 

in the radial direction of the cross section and the corresponding average values for each of the 

five zones at the onset of fracture 

 

Figure 4.11  Comparison of load-logarithmic strain curves for short-gauge specimen, from 

experimental testing and FE simulations (based on Eq. (4.10a) or the conventional constitutive 

equation) 

Zones  

 1   2    3   4   5 

(a) 
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4.5 Discussion  

 

With �̅� , 𝜎𝑒𝑞
0 (𝜀𝑒𝑞)  and Υ  identified, Eq. (4.10a) can be regarded as a 

constitutive model for the CZ rail steel. The first part of the constitutive model 

depicts the damage evolution and the second part represents the damage-free 

constitutive equation. The constitutive model suggests that stress triaxiality has 

influence on both damage evolution and damage-free constitutive equation. 

Explanation is explored here for this constitutive model to yield the conventional 

constitutive equation that is independent of the variation of stress triaxiality.  

 

 

Figure 4.12  Damage evolution in smooth and five zones of short-gauge specimens  

 

 

Figure 4.13  Damage-free constitutive equations for smooth and five zones of short-gauge 

specimens 
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Figure 4.12 shows the variation of D with the increase of 𝜀𝑒𝑞
𝑝

 for both smooth 

and short-gauge specimens. Note that since stress triaxiality is uniformly 

distributed on the minimum cross section of the smooth specimen, its damage 

evolution can be expressed by one curve in which a single critical D value is 

needed to define the initiation of final fracture. For the short-gauge specimen, on 

the other hand, non-uniform distribution of stress triaxiality on the cross section 

has yielded dependence of damage evolution on both 𝜀𝑒𝑞
𝑝

 and stress triaxiality. In 

Figure 4.12, influence of stress triaxiality on D is presented using five curves, 

each for one of the five zones in Figure 4.10(a). Figure 4.12 suggests that damage 

evolution in any of the five zones in the short-gauge specimen has a higher rate 

than that in the smooth specimen. Among the five zones in the short-gauge 

specimen, damage evolution rate is higher in the zone that has a higher 𝜂𝑎𝑣̅̅ ̅̅  value. 

In view of the dependence of damage evolution rate on the stress triaxiality, 

critical D value for fracture initiation may also depend on the stress triaxiality. 

This requires further study for clarification. 

Figure 4.13 shows damage-free constitutive equations for both smooth and 

short-gauge specimens. For the short-gauge specimen, due to non-uniform 

distribution of stress triaxiality, five curves are used to represent the damage-free 

constitutive equation, one for each zone of Figure 4.10(a). As indicated by Figure 

4.13, at a given 𝜀𝑒𝑞
𝑝

 level, damage-free stress response to strain increases with the 

increase of stress triaxiality. Although the concept of damage-free stress-strain 

curves has been reported previously [183, 186, 195, 196], only Malcher et al. 

[195] established the damage-free stress-strain curves for smooth tensile and 

butterfly specimens which cover the stress triaxiality in the range from 0 to 0.33. 

Results from their study suggest that higher the stress triaxiality generated in the 

specimen lower the strain-hardening of the damage-free stress-strain curve. This 

is inconsistent with the results from our study, as shown in Figure 4.13, that is, the 

damage-free stress-strain curves increase with the increase of stress triaxiality. 

However, the results from our study cover the range of stress triaxiality from 0.33 
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to 1.2, which is quite different stress state. Thus, further study is deserved for 

clarification.  

In view of Figures 4.12 and 4.13, we believe the explanation for the 

independence of conventional constitutive equation on the change of stress 

triaxiality is that the increase of damage-free stress response to deformation 

caused by the increase of stress triaxiality is offset by the stress decrease due to 

the increase of damage. That is, with the increase of stress triaxiality, both 

damage evolution rate and damage-free constitutive equation increase, causing 

strain-softening and strain-hardening of the material, respectively. For the CZ rail 

steel, these two effects counter-balance each other, resulting in the insensitivity of 

the conventional constitutive equation to the change of stress triaxiality. 

The proposed constitutive model also suggests that it is possible for the 

conventional constitutive equation to show dependence on the change of stress 

triaxiality. For example, for 2024-T351 aluminum [167], the dependence of the 

conventional constitutive equation on the change of stress triaxiality is possibly 

because of the different levels of dependence of damage evolution and damage-

free constitutive equation on the change of stress triaxiality. That is, with the 

increase of stress triaxiality, the decrease in stress caused by the increase of 

damage evolution cannot be fully offset by the increase in stress caused by the 

increase of damage-free constitutive equation. We believe that different levels of 

sensitivity of the damage evolution and the damage-free constitutive equation to 

the change of stress triaxiality are governed by the magnitude of Υ value. By 

increasing Υ  value in Eq. (4.10a), sensitivity of the damage-free constitutive 

equation to the increase of stress triaxiality is reduced and may not be sufficient to 

offset the stress decrease caused by the increase of damage evolution. This may 

result in the conventional stress-strain curve at a notch tip being lower than for 

smooth specimen. However, further study using materials for which the 

conventional constitutive equation is sensitive to the stress triaxiality is needed to 

verify this concept. 
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4.6 Conclusion  

 

In this study, a constitutive model that considers the influence of stress 

triaxiality on both damage evolution and damage-free constitutive equation is 

postulated. By decoupling the damage evolution from the damage-free 

constitutive equation, the study found that they both are sensitive to the change of 

stress triaxiality. Using this constitutive model, independence of the conventional 

constitutive equation on the stress triaxiality for a high-strength rail steel is 

explained. That is, the apparent independence of the conventional constitutive 

equation from the increase of stress triaxiality results from the decrease of stress 

caused by the increase of damage evolution being offset by the increase of 

damage-free constitutive equation. 

  



120 

 

 

 

 

Chapter 5 Indentation fracture toughness of high-strength rail 

steels based on a stress-triaxiality-dependent ductile damage 

model
4
 

 

 

5.1 Introduction 

 

Indentation test is an attractive alternative technique to the conventional 

destructive test methods, especially for monitoring property change in structural 

components for which functions may be interrupted by the destructive tests. The 

indentation test was originally developed for measuring material hardness (H) that 

was related to flow stress [197-199]. An advanced version of the hardness test 

was later developed [200], from which the curve of load-contact depth can be 

used to determine Young’s modulus (E0), based on the Hertzian contact theory 

[201] and the Sneddon’s elastic punch theory [202]. With the development of 

high-resolution, depth-sensing instruments, Doerner and Nix [114] used the 

indentation load-depth curve to determine both H and E0 for thin films. Their 

work demonstrated the possibility of using data directly from the indentation test 

to determine mechanical properties, without relying on any image analysis. 

Further improvement was made by Oliver and Pharr [203] from the discovery of 

the dependence of the measurement accuracy on the presence of pile-up that 

varies with the levels of strain hardening [204-207] and contact depth [208, 209]. 

Consequently, the influence of pile-up on the measurement accuracy was 

extensively studied. Some researchers [210-212] multiplied the measured contact 

depth (i.e., without the consideration of pile-up) by a coefficient to represent the 

actual contact depth due to the presence of pile-up, while others applied the work 

                                                 
4
 Part of this chapter has been published in the following publication: 

1. Yu, F., Jar, B. and Hendry, M., 2016, July. Critical Strain and Damage Evolution for Crack 

Growth From a Sharp Notch Tip of High-Strength Steel. In ASME 2016 Pressure Vessels and 

Piping Conference (pp. V06AT06A029-V06AT06A029). American Society of Mechanical 

Engineers. 

2. Yu, F., Jar, B. and Hendry, M., Indentation fracture toughness of high-strength rail steels based 

on a stress-triaxiality-dependent ductile damage model. (under review at Journal of Theoretical 

and Applied Fracture Mechanics) 
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of energy introduced by the indentation to determine the actual contact depth 

[213-216]. In addition to the pile-up, the accuracy of E0 was also known to be 

affected by the loading frame compliance, which was initially assumed to remain 

constant during the test [203, 217]. However, recent studies have suggested that 

the loading frame compliance can vary with the contact depth and the variation 

should be considered to calculate E0 [218, 219]. With the above advancement, 

indentation test is now used not only as a non-destructive technique to measure 

mechanical strength and E0, but also as a tool to establish the stress-strain 

relationship for metals [220-223]. 

For brittle materials such as ceramics, cracks are generated under indentation. 

Thus, the indentation loading is also deemed to be feasible for determining 

fracture resistance [76-79, 224], even though some researchers have argued that 

any agreement between the estimated fracture toughness using the indentation test 

and that measured using the standard destructive test is fortuitous or by force-

fitting the calibration constants [225-228]. For materials that involve plastic 

deformation before crack formation, however, indentation test is yet to be 

accepted for estimating the fracture toughness. This is because cracks are not 

likely to be generated in ductile materials by the indentation loading. Therefore, 

fracture toughness estimated by indentation test (KInd) has to be based on a critical 

contact depth at which the specific indentation energy is deemed to correspond to 

the specific work of fracture for crack initiation from the crack tip under tensile 

deformation [80, 82, 87]. This approach requires the assumption that both the 

crack tip and the indenter tip generate a highly concentrated stress field at a 

similar level of stress triaxiality (defined as a ratio of hydrostatic stress to von 

Mises stress). Under this assumption, existing approaches for determining the 

critical contact depth can be categorized based on the following three criteria: (i) 

critical fracture stress [81, 87], (ii) critical fracture strain [88, 89], and (iii) critical 

damage parameter [82-86].  

The first and second criteria above are based on the critical fracture stress and 

strain at the crack tip, respectively [81, 89]. For the third criterion, however, the 
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existing works are still based on the critical damage parameter (Dcr) from the 

smooth specimen, with the assumption that the Dcr value is independent of the 

stress triaxiality [82-86]. Validity of this assumption is investigated in this study, 

through examining the influence of stress triaxiality and loading mode (tensile 

fracture versus indentation compression) on the damage evolution [94, 96, 181, 

229] and the Dcr value [179, 230-232], respectively. Figure 5.1 shows the overall 

approach used in this investigation. In view of the stress-triaxiality-dependent 

ductile damage model described in Chapter 4, the damage parameters for the 

smooth, short-gauge, and at the crack tip of SENB specimens can be determined. 

Meanwhile, indentation test is also performed to characterize the damage 

evolution under indentation. The critical contact depth, ℎ𝑐
∗, is determined from the 

product of the Dcr value at the crack tip and an adjusting parameter κ. The latter is 

considered to differentiate the potential difference of the Dcr value between tensile 

fracture and indentation compression. Once the ℎ𝑐
∗  value is determined, the 

specific indentation energy, 𝑤𝐼𝑛𝑑 , and the corresponding KInd are determined. 

Based on the above approach, this chapter is divided into three parts. 

 

 

 
Figure 5.1 The overall approach to determine the critical contact depth, ℎ𝑐

∗ , based on the critical 

damage parameter at the crack tip for calculating the indentation fracture toughness, 𝐾𝐼𝑛𝑑 
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The first part of this chapter is to establish locus of plastic fracture strain 

versus stress triaxiality. In addition to the two types of notch-free (named smooth 

and short-gauge) specimens, this part of study also includes two types of round-

notched specimens with different notch radii, to ensure the accuracy of the 

established fracture locus.  

The second part of the chapter is concerned about the effect of stress 

triaxiality on damage evolution, specifically, to evaluate applicability of a stress-

triaxiality-dependent ductile damage model for predicting damage evolution in 

rail steels. This part of study is based on results from the two types of notch-free 

specimens, using cyclic loading-unloading tensile tests to determine their damage 

evolution. By extrapolating results from the above two parts of the study to the 

stress triaxiality level at the crack tip of the pre-cracked single-edge-notched bend 

(SENB) specimen, the equivalent plastic fracture strain and damage evolution at 

the crack tip are determined. This leads to the determination of the Dcr at the crack 

tip.  

The last part of this chapter presents results from the cyclic loading-unloading 

ball indentation test, based on which damage evolution under indentation is 

established, but as a function of the contact depth rather than the equivalent 

plastic strain that is used for the tensile loading. The critical contact depth for 

calculating the KInd value is based on the critical damage parameter for 

indentation compression (𝐷𝑐𝑟
∗ ). This 𝐷𝑐𝑟

∗  value is equivalent to the product of Dcr 

at the crack tip and an adjusting parameter  which is used to reconcile the 

potentially different critical damage parameters between the tensile fracture and 

the indentation compression. In addition, KInd is also determined based on the Dcr 

value for smooth specimens, denoted as the conventional indentation fracture 

toughness (KInd,con). In this study, both KInd and KInd,con are compared with the 

experimentally measured KIc values for the three rail steels. 
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5.2 Theoretical background 

 

5.2.1 Indentation fracture toughness  

 

In fracture mechanics, the mode I critical stress intensity factor (KIc) can be 

expressed in terms of the specific fracture energy (𝑤𝑓) [26, 28, 233, 234], as 

depicted in the following expressions:  

 

𝐾Ic = √2𝐸0𝑤𝑓                                                                                        (5.1) 

 

where 𝐸0 is the Young’s modulus.  

In view that the magnitude of stress triaxiality under the indenter tip is similar 

to that at the crack tip, specific indentation energy to a critical contact depth, 

2𝑤𝐼𝑛𝑑, is postulated to be correlated to 2𝑤𝑓 [80, 82], as expressed below. 

 

2𝑤𝑓  2𝑤Ind = ∫ 𝐹(ℎ𝑐) 𝐴𝑐(ℎ𝑐)⁄
ℎ𝑐
∗

0
dℎ𝑐                                                 (5.2) 

 

where, ℎ𝑐
∗  is the critical value of contact depth ℎ𝑐 , representing the fictitious 

fracture initiation point under indentation for the ductile material. 𝐹(ℎ𝑐) is the 

applied indentation load as a function of ℎ𝑐, and the projective area of indentation, 

𝐴𝑐(ℎ𝑐), with ball indenter expressed as [82] 

 

𝐴𝑐(ℎ𝑐) = 𝜋(2𝑅ℎ𝑐 − ℎ𝑐
2)                                                                        (5.3) 

 

Note that the ℎ𝑐 value is evaluated by analyzing the indentation unloading curve, 

with the consideration of the indenter geometry and elastic deflection. As well, for 

the ductile material, the pile-up effect needs to be included to determine the ℎ𝑐 

value accurately [203, 205, 211, 212]. That is, 
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ℎ𝑐 = ℎ𝑝𝑖𝑙𝑒 + ℎ𝑚𝑎𝑥 − 𝜖
𝐹𝑚𝑎𝑥

𝑆(ℎ𝑚𝑎𝑥)
                                                               (5.4) 

 

where ℎ𝑝𝑖𝑙𝑒  is the height of the pile-up, ℎ𝑚𝑎𝑥  and 𝐹𝑚𝑎𝑥  the maximum values of 

the contact depth (without the consideration of the pile-up) and indentation load, 

respectively, 𝜖 a constant which is set to be 0.75 for a ball indenter tip [203], and 

𝑆(ℎ𝑚𝑎𝑥) the contact stiffness at ℎ𝑚𝑎𝑥, defined using the slope of the unloading 

curve [203]. 

After using the 𝑤𝐼𝑛𝑑 value for 𝑤𝑓 in Eq. (5.1), KIc from Eq. (5.1) represents 

KInd which is considered as an alternative factor for estimating the fracture 

toughness of ductile material [80-88]. That is,  

 

𝐾𝐼𝑛𝑑 = √2𝐸0𝑤𝐼𝑛𝑑                                                                                   (5.5) 

 

5.2.2 Determination of critical contact depth 

 

The critical contact depth, ℎ𝑐
∗ , is essential for calculating KInd, which is 

determined based on the basic concept of CDM [127],  

 

𝐷 = 1 − 𝐸/𝐸0                                                                                       (5.6) 

 

where 𝐷 is the damage parameter, defined based on the concept of effective stress 

and hypothesis of strain equivalence [127], and 𝐸 elastic modulus of damaged 

material.  

Lee et al. [82] proposed to use the measured elastic modulus, E∗, from the 

unloading curve of the indentation test to replace the E in Eq. (5.6), and thus 

establish variation of damage parameter with increase of ℎ𝑐. According to Lee et 

al.’s work, the elastic modulus under indentation was calculated based on 

Hertzian contact law [201] and Sneddon’s elastic punch theory [202], as shown in 

Eq. (5.7) [82-86].  
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𝐸∗ =
1−𝑣2

( 1
𝐸eff

−
1−𝑣𝑖

2

𝐸𝑖
)

=
1−𝑣2

(2𝐶𝑠√2𝑅ℎ𝑐−ℎ𝑐
2−

1−𝑣𝑖
2

𝐸𝑖
)

                                                   (5.7) 

 

where 𝑣 and 𝑣𝑖  are Poisson’s ratios of specimen and indenter, respectively, 𝐸eff 

the effective modulus between specimen and indenter, 𝐸𝑖 the Young’s modulus of 

indenter, R the radius of ball indenter, and 𝐶𝑠 the specimen compliance which is 

the difference between the total compliance (C) and the load frame compliance 

(𝐶𝑓):  

 

𝐶𝑠 = 𝐶 − 𝐶𝑓                                                                                            (5.8) 

 

The detailed procedure to calibrate 𝐶𝑓 for our indentation system is illustrated in 

the Appendix. Therefore, by substituting 𝐸∗  from Eq. (5.7) to Eq. (5.6), the 

relationship between damage parameter and ℎ𝑐 is given below. 

 

𝐷∗ = 1 −
1−𝑣2

(2𝐶𝑠√2𝑅ℎ𝑐−ℎ𝑐
2−

1−𝑣𝑖
2

𝐸𝑖
)𝐸0

                                                              (5.9) 

 

where 𝐷∗ is damage parameter under indentation. 

For a critical D
*
 value, 𝐷𝑐𝑟

∗ , the corresponding critical ℎ𝑐  value, ℎ𝑐
∗ , can be 

determined from Eq. (5.9). In the past, 𝐷𝑐𝑟
∗  value was assumed to be independent 

of stress triaxiality and equal to Dcr measured from the cyclic loading-unloading 

tensile test of the smooth specimens [82-86]. In the present study, however, 𝐷𝑐𝑟
∗  

value is determined using the following approach, with the consideration of the 

influences of stress triaxiality [94, 96, 181, 229] and loading mode [179, 230, 

231] (specifically, between tensile fracture at the crack tip and indentation 

compression) on the damage development. 

 



127 

 

 

 

 

First of all, damage development in two types of notch-free (smooth and 

short-gauge) specimens is established using cyclic loading-unloading tensile tests, 

based on which a stress-triaxiality-dependent ductile damage model, proposed by 

Bonora [181], is calibrated for the three high-strength rail steels used in this study. 

Original form of the Bonora’s ductile damage model that expresses 𝐷  as a 

function of stress triaxiality (𝜂) and equivalent plastic strain (𝜀𝑒𝑞
𝑝

) [181] is 

 

𝐷 = 𝐷0 + (�̅� − 𝐷0) {1 − [1 −
ln 𝜀𝑒𝑞

𝑝
−ln 𝜀𝑡ℎ

ln 𝜀𝑝
𝑓
−ln 𝜀𝑡ℎ

𝑓(𝜂)]𝜆}                            (5.10) 

 

where 𝐷0  is the initial damage in the material before the test, �̅�  a material 

constant that represents the critical amount of damage in the smooth specimen if 

fracture occurs under uniform deformation, 𝜀𝑝
𝑓
 the plastic fracture strain measured 

experimentally for the smooth specimen, 𝜀𝑡ℎ  the threshold plastic strain for 

damage initiation assumed to be independent of 𝜂 , 𝜆  is the damage exponent 

characteristic of the material, and 𝑓(𝜂) defined as [127]: 

 

𝑓(𝜂) =
2

3
(1 + 𝑣) + 3(1 − 2𝑣)(𝜂)2                                                     (5.11) 

 

In order to take into account the loading history, 𝜂 value is calculated based 

on the concept of average stress triaxiality ( 𝜂𝑎𝑣) as [130]: 

 

𝜂𝑎𝑣 =
1

𝜀𝑒𝑞,𝑚𝑎𝑥
𝑝 ∫ 𝜂(𝜀𝑒𝑞

𝑝 )𝑑𝜀𝑒𝑞
𝑝𝜀𝑒𝑞,𝑚𝑎𝑥

𝑝

0
                                                        (5.12) 

 

where 𝜂(𝜀𝑒𝑞
𝑝
) and 𝜀𝑒𝑞,𝑚𝑎𝑥

𝑝
 are the stress triaxiality, as a function of 𝜀𝑒𝑞

𝑝
, and the 

maximum value of 𝜀𝑒𝑞
𝑝

, respectively, both determined from an element of a FE 

model which has the maximum  value when the simulation reaches the critical 

deformation level for fracture initiation in the testing. In the rest of this chapter, 
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𝜂𝑎𝑣 is used to replace 𝜂 in Eq. (5.10) so that the expression considers the possible 

influence of loading history on the damage development.  

Since all rail steels used in the current study are in the pristine condition 𝐷0 is 

chosen to be 0 (i.e., no damage before the test). Using Eq. (5.6) for the 

relationship between D and E, Eq. (5.10) can be converted to an expression that 

depicts the deterioration of E in a deformation process. That is, 

 

𝐸 = [1 − �̅� {1 − [1 −
ln 𝜀𝑒𝑞

𝑝
−ln 𝜀𝑡ℎ

ln 𝜀𝑝
𝑓
− ln𝜀𝑡ℎ

𝑓(𝜂𝑎𝑣)]
𝜆}]𝐸0                                 (5.13) 

 

In the above expression, value of 𝜀𝑡ℎ  is assumed to be the yield strain of 

0.002, 𝐸0  and 𝜀𝑝
𝑓

 determined from the experimental testing of the smooth 

specimen, 𝜂𝑎𝑣 calculated using Eq. (5.12) based on the  value determined from 

FE modelling, and �̅� and 𝜆 are the two variables that need to be identified for the 

three rail steels based on the deterioration of E determined for the cyclic loading-

unloading tensile tests of the smooth and short-gauge specimens.  

Once values of �̅�  and 𝜆  are determined, Eq. (5.13) is used to predict 

deterioration of E at the crack tip and the corresponding critical value of E at the 

crack initiation, which can be further converted to damage evolution and Dcr, 

respectively. To this end, both the equivalent plastic fracture strain (𝜀𝑒𝑞,𝑓
𝑝

) and 

 𝜂𝑎𝑣 at the crack tip are required. In this study, the latter is determined from a FE 

model of the pre-cracked SENB specimen, and the former based on an 

extrapolation of the 𝜀𝑒𝑞,𝑓
𝑝

 values from tensile tests for various 𝜂𝑎𝑣  values to the 

𝜂𝑎𝑣 value at the crack tip.  

In view that the stress triaxiality under the indenter tip is similar to that at the 

crack tip [82, 87], the Dcr value at the crack tip should be used to determine the 

critical ℎ𝑐 value (i.e., ℎ𝑐
∗) in Eq. (5.9), rather than using the Dcr value from smooth 

specimens. In addition, since different loading modes are introduced by tension 
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and indentation, parameter  is introduced to adjust Dcr value used in indentation, 

to take into account the possible effect of loading mode on the Dcr value. That is, 

 

𝐷𝑐𝑟
∗ = 𝜅𝐷𝑐𝑟                                                                                           (5.14) 

 

where 𝐷𝑐𝑟
∗  is the critical damage parameter under indentation loading, which is 

determined by adjusting Dcr at the crack tip using κ. Using the above 𝐷𝑐𝑟
∗  value, ℎ𝑐

∗ 

value for the indentation loading can be determined from Eq. (5.9), and applied to 

Eq. (5.2) to calculate 𝑤𝐼𝑛𝑑 and then Eq. (5.5) for 𝐾Ind. Note that this study uses 

strain-equivalent damage concept between tension and indentation. Since damage 

evolution in compression is expected to be slower than that in tension [179, 231, 

232], value should between 0 and 1. Six different values, from 0.01 to 0.6, are 

used to calculate 𝐷𝑐𝑟
∗  in the study to examine the possible influence of  on the 

relationship between 𝐾Ind and 𝐾Ic. In addition,  𝐾Ind,con  based on the Dcr value 

from smooth specimens is also calculated for comparison. 

 

5.3 Experimental and numerical methodologies 

 

5.3.1 Materials  

 

Three types of high-strength rail steels, JAPAN NSC FHH (JP), EVRAZ 

RMSM FHH (EV), and CZECH TZ IH (CZ), supplied by the Canadian National 

Railway Company (CN), were used in the test program. Detailed characterization 

of mechanical properties and constitutive equations for the three rail steels can be 

found in Tables 3.1 and 3.2, respectively. Note that all tests in this chapter were 

performed at room temperature only. 
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5.3.2 Experimental details 

 

A test program, including tensile, SENB and indentation tests, was conducted 

for the three types of high-strength rail steels at room temperature. All specimens 

were prepared from the railhead region. An Instron 222 kN hydraulic universal 

testing machine was used to conduct the monotonic tensile, loading-unloading 

tensile, and SENB tests. A MTS 44 kN hydraulic testing system was used for the 

indentation test.  

As shown in Figure 5.2, four types of axisymmetric tensile (two notch-free 

and two round-notched) specimens are designed for the monotonic tensile test to 

establish locus of equivalent plastic fracture strain versus average stress 

triaxiality. Three identical tests were conducted for each type of tensile specimens 

at an initial strain rate of 2.36×10
-4

 /s. For the smooth specimen, Figure 5.2(a), 

both axial and diametric extensometers were placed in the middle of the gauge 

section to measure simultaneously the elongation and diameter changes. For the 

other types of specimens in Figure 5.2, i.e., short-gauge, notch type I (NTI) and 

notch type II (NTII), due to the short gauge section, strain was calculated based 

on measurement from a diametric extensometer, placed in the middle of the gauge 

section. Based on the assumption of uniform stress and strain distributions in the 

gauge section and negligible volume change during the deformation, the true 

stress (σ) and logarithmic strain (ε) are calculated using the equations below:  

 

𝜎 = 𝐿/𝐴                                                                                               (5.15) 

 

𝜀 = ln(𝐴0 𝐴⁄ )                                                                                       (5.16) 

 

where L is the tensile load, 𝐴0  the original cross-sectional area, and A the 

corresponding cross-sectional area measured during the test.  

Loading-unloading tensile tests were conducted on the two notch-free (smooth 

and short-gauge) specimens for the three rail steels to characterize their damage 
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parameters. Note that the smooth specimen used in the loading-unloading tensile 

test had a 2% taper introduced in the middle of the reduced gauge section, to 

ensure the occurrence of neck formation and specimen fracture at the middle of 

gauge section. Because of the 2% tapering in the gauge section, strain was 

determined purely based on measurement from the diametric extensometer. The 

initial strain rate introduced to specimens in the loading-unloading tensile test was 

the same as that used in the monotonic tensile test. Condition to trigger the 

unloading phase was based on the load increment of 2 kN before reaching the 

UTS, but after UTS based on the increment of displacement by 0.25 mm which 

corresponded to a loading period of 30 seconds. For the short-gauge specimen, 

since fracture occurred before UTS, only load control was performed in the cyclic 

loading-unloading tensile tests, with the same load increment of 2 kN. 

The KInd for the three rail steels is determined from the indentation test using a 

home-made indentation system for which the schematic drawing is illustrated in 

Figure 5.3(a). The indentation load was recorded using a MTS load cell with a 

resolution of 0.0001 N, and the depth measured by a clip-on extensometer with a 

resolution of 3 μm. The indenter shown in Figure 5.3(a) is made of O1 tool steel 

with proper heat treatment and a tungsten carbide ball (1.19 mm in diameter, Ei of 

480GPa, vi of 0.28), compression fit into the pre-machined semi-spherical cavity 

at the bottom of the indenter. The indentation system was first calibrated using a 

standard testing block to regenerate its hardness and Young’s modulus values, 

based on which the load frame compliance (𝐶𝑓) was determined. Details of the 

procedure are given in the Appendix. Note that in addition to 𝐶𝑓, the amount of 

pile-up ( ℎ𝑝𝑖𝑙𝑒 ) around the indenter was also quantified to characterize the 

deterioration of E* under indentation.  

Specimens for the indentation tests were 10 mm thick and polished gradually 

to a mirror-like finish using an alpha alumina polishing powder of 0.05μm at final 

polishing step. Values for ℎ𝑝𝑖𝑙𝑒were directly measured using a digital optical 
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microscope with magnification of 320X and a digital dial indicator with a 

resolution of 2.54 μm. Details of the procedure are depicted as follows. 

Firstly, the original, flat specimen surface near the indent was focused under 

the microscope and its vertical position, recorded by the digital dial indicator, 

used as the reference. Then, the pile-up region located at the edge of indent was 

focused and change of the reading from the indicator represented the ℎ𝑝𝑖𝑙𝑒 value. 

Around each indent, five measurements were taken and the average value used as 

the height of the pile-up.  

Figure 5.3(b) illustrates one cycle of the loading-unloading indentation test for 

the JP rail steel. The unloading curve is best fitted using a power law function, 

𝐹 = 𝐵(ℎ − ℎ𝑓)
𝑚

, where B and m are two adjusting parameters for which the 

values are determined using the least square fitting method. After that, the contact 

stiffness, 𝑆 = 𝑑𝐹 𝑑ℎ⁄ , is determined at ℎ𝑚𝑎𝑥  [203]. The indentation tests were 

performed at ten different depths (0.04, 0.06, 0.09, 0.12, 0.18, 0.24, 0.3, 0.36, 

0.42, and 0.48 mm) with a constant indentation speed of 0.1 mm/min in each 

loading-unloading cycle and five tests were conducted at each specified depth.  

 

 

 

Figure 5.2  Dimensions and geometries of four types of axisymmetric tensile specimens: (a) 

smooth specimen, (b) notch type I (NTI) specimen, (c) short-gauge specimen, and (d) notch type II 

(NTII) specimen 

(a) 

(c) 

(b) 

(d) 
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Figure 5.3  Indentation test: (a) schematic presentation of the test set-ups and ball indenter and (b) 

a typical indentation loading-unloading curve (for JP rail steel) 

 

  
 

Figure 5.4  Dimensions of the SENB specimen for the standard fracture toughness test  

 

For the purpose of validating KInd, the SENB test was conducted according to 

ASTM E399 [18] to measure KIc for the three rail steels. Dimensions of the SENB 

specimens are shown in Figure 5.4. The SENB specimen was first pre-cracked 

using fatigue testing by setting initial values of the maximum stress intensity 

factor (Kmax) and the minimum stress intensity factor (Kmin) to be 14 and 5 

MPa.m
0.5

, respectively, until crack grew for a length in the range of 3 to 3.5 mm, 

and then the specimens were tested at a crosshead speed of 2×10
-3

 mm/s. The 

crack mouth opening displacement (CMOD) was measured using the same clip-

on extensometer, mounted to the mouth of the notch before each test. Details of 

the SENB test for the fracture toughness measurement are given in the chapters 2 

and 3. 

 

Indenter 
Extensometer 

Specimen 

(a) 
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5.3.3 Finite element modelling 

 

Finite element (FE) modelling of monotonic tensile, loading-unloading 

tensile, and SENB tests was carried out using ABAQUS standard 6.13. The 

constitutive model is based on the J2 plasticity theory, with material constants in 

Table 5.1, was used as material input data. The quadrilateral 8-node element with 

reduced Gauss integration was used in discretization for all types of specimens. 

The FE models were shown for the JP rail steel only. The same procedure was 

also applied to the other two rail steels (EV and CZ). 

As shown in Figure 5.5, axisymmetric FE models are built for the four types 

of tensile specimens, following the dimensions given in Figure 5.2. Figure 5.5(a) 

depicts the FE model of the smooth specimen, with 6,392 axisymmetric stress 

elements and 20,173 nodes, Figure 5.5(b) the NTI specimen with 5,509 

axisymmetric stress elements and 16,878 nodes, Figure 5.5(c) the short-gauge 

specimen with 4,930 axisymmetric stress elements and 15,119 nodes, and Figure 

5.5(d) the NTII specimen with 3,757 axisymmetric stress elements and 11,556 

nodes. The boundary conditions for the four types of tensile specimens were set to 

be the same as that applied in the testing, i.e., with one end fixed and the other 

end moving at a specified displacement rate.  

FE modelling of the two notch-free (smooth and short-gauge) specimens 

subjected to the loading-unloading tensile test was also performed. It should be 

noted that the FE model of the smooth specimen in the loading-unloading tensile 

test had a 2% taper in the middle of reduced gauge section to reflect the physical 

taper introduced to the smooth specimen. Both FE models had one end 

completely constrained from any movement, while the other end subjected to a 

displacement-controlled cyclic loading. 

As shown in Figure 5.6, a symmetric 2-dimensional (2D) FE model is 

established for the SENB specimen, which has dimensions same as those 

specified in Figure 5.4. The contact pins were modelled as analytical rigid bodies 

and the SENB specimen a deformable body meshed with 29,155 plane-strain 
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elements and 88,200 nodes. The contact surface was placed between the contact 

pins and the SENB specimen in the conditions of small sliding, “hard” normal 

contact and tangential friction. The boundary conditions were set to be the same 

as those for the testing, i.e., with the bottom pin fixed and the top pin moving 

down at a specified displacement rate. The notch tip was mimicked using a 

circular profile with an initial radius of 0.1 µm, which is determined based on the 

strip yield model [150]. In order to capture the large stress and strain gradients 

around the notch tip, the quarter circular arc in the right figure of Figure 5.6 was 

divided into 18 sections. Such division was repeated in the radial direction around 

the notch tip, to generate 100 layers of fan elements in the radial direction.  

 

 

 

Figure 5.5  FE models of (a) smooth, (b) NTI, (c) short-gauge, and (d) NTII specimens  

 

(a) (b) (d) (c) 
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Figure 5.6  FE model for the SENB specimen (left) and details of the mesh pattern at the notch tip 

(right) 

 

5.4 Results 

 

5.4.1 Locus of fracture strain versus stress triaxiality  

 

In this section, locus of equivalent plastic fracture strain versus average stress 

triaxiality for each of the three rail steels is established using the four types of 

tensile specimens. Diameter of the minimum cross-section of the post-test tensile 

specimen is measured to calculate the equivalent plastic fracture strain using Eq. 

(5.16). The FE modelling is used to determine the variation of the stress triaxiality 

during deformation. The average stress triaxiality value, calculated using Eq. 

(5.12) based on the output from a selected element in the corresponding FE 

model, as to be specified later, is used to represent the stress triaxiality for a given 

specimen geometry.  

Figure 5.7 presents both the experimentally determined monotonic true stress-

logarithmic strain curves (in solid lines) and the corresponding curves generated 

from the FE models (in dash lines) for the four types of tensile specimens of the 

three rail steels. The experimental results indicate that by reducing the gauge 

length from 38 to 1 mm, i.e., from smooth to NTII specimen, the fracture strains 

for all of the three rail steels are reduced dramatically. This is due to the well-

known stress triaxiality effect on the fracture strain [44]. It should be noted that 
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although the four types of tensile specimens give the same order of fracture strain 

among the three rail steels, difference of the fracture strain values among the three 

rail steels is reduced by increasing the stress triaxiality. That is, fracture strain for 

the JP rail steel is reduced from 0.5 to 0.022, for the EV rail steel from 0.3 to 

0.016, and for the CZ rail steel from 0.18 to 0.012. On the other hand, in view of 

good agreement between simulation and experimental results, shown in Figure 

5.7, distributions of stress triaxiality for the four types of tensile specimens are 

obtained from the FE modelling of tensile specimens.  

 

  

 
 

Figure 5.7  Comparison of experimental and numerical true stress-logarithmic strain curves of four 

types of tensile specimens for (a) JP, (b) EV, and (c) CZ rail steels 
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Figure 5.8  Contour plots of stress triaxiality at the onset of fracture for (a) smooth, (b) NTI, (c) 

short-gauge, and (d) NTII specimens of JP rail steel 

 

 

 
 

Figure 5.9  Evolution of stress triaxiality and its average value in an element of FE modelling of 

four types of tensile specimens that has the maximum stress triaxiality at fracture initiation for: (a) 

JP, (b) EV, and (c) CZ rail steels  

 

Figure 5.8 presents contours of stress triaxiality for the four types of tensile 

specimens of the JP rail steel, right before the onset of fracture. As shown in 

Figures 5.8(a), 5.8(b), and 5.8(c) for smooth, NTI, and short-gauge specimens, 

respectively, the maximum stress triaxiality occurs at the centre of the minimum 

(a) (b) (c) (d) 



139 

 

 

 

 

cross-section. While for the NTII specimen, as shown in Figure 5.8(d), its 

maximum stress triaxiality occurs along a ring band that is closer to the 

circumference than to the centre of the cross-section. Note that the same 

phenomena as those shown in Figure 5.8 also occur for the other two rail steels. 

Figure 5.9 presents variations of stress triaxiality as a function of equivalent 

plastic strain among the four types of tensile specimens for the three rail steels. 

Each of the curves is determined from an element in the FE model which yields 

the maximum stress triaxiality at the onset of fracture. As expected, magnitude of 

stress triaxiality increases with the decrease of gauge length. Their average values 

are also calculated for all the cases considered in the study using Eq. (5.12), as 

indicated using the horizontal dash lines in Figure 5.9. 

As shown in Figure 5.10, fracture loci of equivalent plastic fracture strain 

( 𝜀𝑒𝑞,𝑓
𝑝

) versus average stress triaxiality ( 𝜂𝑎𝑣 ) for the three rail steels are 

established using the four types of tensile specimens. The experimental data of 

𝜀𝑒𝑞,𝑓
𝑝

 versus 𝜂𝑎𝑣 are best fitted using two power-law functions, one suggested by 

Bao and Wierzbicki [130] and the other a modified version of Bonora’s model 

[181]. The fitting suggests that the former gives a better agreement with the 

experimental data than the latter. Consequently, 𝜀𝑒𝑞,𝑓
𝑝

 of the pre-cracked SENB 

specimen for the three rail steels are extrapolated from the fracture loci shown by 

the solid lines in Figure 5.10 to the 𝜂𝑎𝑣 value at the crack tip. 
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Figure 5.10  Dependence of equivalent plastic fracture strain (𝜀𝑒𝑞,𝑓
𝑝

) on average stress triaxiality 

(𝜂𝑎𝑣) for (a) JP, (b) EV, and (c) CZ rail steels 

 

The 𝜂𝑎𝑣 value at the crack tip is determined using the FE model of the pre-

cracked SENB specimen. Firstly, as illustrated in Figure 5.11 for the JP rail steel, 

the linear portion of the experimental data, up to the first apparent pop-in, is 

mimicked by the simulation, where the tangential friction coefficient at the 

contact with the pin is set to be 0.35. Figure 5.12 presents the distribution of stress 

triaxiality at the moment when the simulation reaches the first apparent pop-in of 

the JP rail steel. It is shown that the maximum stress triaxiality is located ahead of 

the crack tip along the crack growth path. Note that the same phenomenon exists 

for the other two rail steels. 

Figure 5.13 presents evolution of the stress triaxiality as a function of the 

equivalent plastic strain until crack initiation occurs (at the first apparent pop-in) 

for the three rail steels, based on output from an element ahead of the crack tip 

that has the maximum stress triaxiality. Value for 𝜂𝑎𝑣 at the crack tip is calculated 
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using Eq. (5.12) for each of the three rail steels, and labelled as dash horizontal 

lines in Figure 5.13. Note that difference of the 𝜂𝑎𝑣 values at the crack tip of the 

SENB specimens of the three rail steels is attributed to the difference of the strain-

hardening in the three rail steels, for which the details have been discussed in the 

chapter 3. 

Table 5.2 lists the estimated 𝜀𝑒𝑞,𝑓
𝑝

 values for the pre-cracked SENB specimen 

of the three rail steels. It is shown that due to the increase of the stress triaxiality, 

the 𝜀𝑒𝑞,𝑓
𝑝

 value of the pre-cracked SENB specimen is significantly reduced from 

that of the smooth specimen, but still in the same order of magnitude as that for 

the yield strain of the smooth specimen. The table also suggests that ranking of 

the fracture strain of the pre-cracked SENB specimen is the same as that of the 

four types of tensile specimens. That is, the JP rail steel always has the highest 

fracture strain and the CZ rail steel the lowest. 

 

 

 

Figure 5.11  Comparison of linear portion of P-δ curves between experiment and simulation for 

the JP rail steel 
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Figure 5.12  Distribution of stress triaxiality at the onset of fracture for the pre-cracked SENB 

specimen of the JP rail steel 

 

 

 

Figure 5.13  Evolution of stress triaxiality and the corresponding average stress triaxiality values 

for the three rail steels, based on stress triaxiality evolution in an element that is located ahead of 

the crack tip with the maximum stress triaxiality  

 

Table 5.1  Plastic fracture strain of the pre-cracked SENB specimen for the three rail steels 

 

Parameters 

Rails   

JP EV CZ 

𝜂𝑎𝑣 2.60 2.80 2.84 

𝜀𝑒𝑞,𝑓
𝑝

 0.0078 0.0057 0.0048 

 

5.4.2 Stress triaxiality effect on critical damage parameter  

 

In this section, damage measurement using the two types of notch-free 

(smooth and short-gauge) specimens is carried out to verify the validity of a 

ductile damage model for predicting damage evolution in the three rail steels.  
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Figure 5.14 compares experimental and numerical loading-unloading true 

stress-logarithmic strain curves of the two notch-free specimens for the JP rail 

steel. The experimental cyclic loading-unloading tensile test is conducted to 

determine damage evolution for the two notch-free specimens, based on the 

assumption that damage is uniformly distributed on the cross section. Following 

the classical approach [192], the unloading slope from the linear portion of the 

unloading part of the true stress-logarithmic strain curves is measured up to the 

fracture initiation. However, due to the triaxial stress state introduced, for the 

smooth specimen after the neck formation and for the short-gauge specimen from 

the beginning, the experimentally measured unloading slope is also influenced by 

the change in gauge section geometry. In view of this, numerical simulation of the 

loading-unloading tensile test is performed to correct the effect of gauge section 

geometry on the unloading slope for the smooth specimen, following the approach 

suggested by Celentano and Chaboche [193], and its slightly modified version, as 

described below, for the short-gauge specimen. With this correction, variation of 

the elastic modulus with plastic strain can then be determined to establish the 

damage evolution during the plastic deformation process.  

 

  
 

Figure 5.14  Experimental and numerical true stress-logarithmic strain curves from the loading-

unloading smooth and short-tensile tests for JP rail steel 
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Figure 5.15  Depiction of the ductile damage model in Eq. (5.13) for smooth and short-gauge 

specimens of JP rail steel: (a) experimental unloading slope, 𝑆𝑒𝑥𝑝, (b) correction factor, , (c) 

change of elastic modulus, E, and (d) extrapolation of the measured E values to the stress 

triaxiality level at the crack tip of SENB specimen 

 

Figure 5.15 illustrates the identification procedure for predicting damage 

evolution in the JP rail steel. Figure 5.15(a) shows variation of the unloading 

slope measured for the cyclic loading-unloading tensile tests of the smooth and 

short-gauge specimens for the JP rail steel. It can be seen that both types of the 

notch-free specimens show decrease in the unloading slope with the increase of 

logarithmic plastic strain (𝜀𝑝). However, due to the effect of triaxial stress state 

and Poisson’s ratio, the unloading slope in Figure 5.15(a) does not represent the 

elastic modulus. Therefore, an additional procedure that uses a geometric 

correction factor (), as described in ref. [193], is used to convert the unloading 

slope to the elastic modulus. 

Figure 5.15(b) shows the variation of the geometric correction factor 𝛽 , 

defined in Eq. (5.17a), as a function of logarithmic plastic strain (𝜀𝑝) for both 

types of notch-free specimens, following the approach proposed by Celentano and 

Chaboche [193]. 
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(𝜀𝑝) =
𝐸0

𝑆𝐹𝐸𝑀
                                                                                            (5.17a) 

 

where E0 is the input Young’s modulus, and S𝐹𝐸𝑀  the unloading slope in the 

loading-unloading true stress-logarithmic strain curves from the FE modelling of 

both smooth and short-gauge specimens. As expected, 𝛽  value for the smooth 

specimen remains relatively constant when deformation in the gauge section is 

uniform, but after necking  value decreases with the increase of 𝜀𝑝, which is 

consistent with that reported before [193]. While for the short-gauge specimen, it 

is found that 𝛽 value increases monotonically from the beginning of deformation 

till fracture occurs.  

Since FE models for both smooth and short-gauge specimens mimic closely 

the deformation behaviour observed from the experimental testing, as shown in 

Figure 5.14, variation of  versus 𝜀𝑝 should also be applicable to results from the 

experimental testing. That is,  

 

(𝜀𝑝) =
𝐸

𝑆𝑒𝑥𝑝
                                                                                             (5.17b) 

 

where E is the elastic modulus of damaged material, and S𝑒𝑥𝑝  the measured 

unloading slope from the experimental testing. Therefore, variation of E with 𝜀𝑝 

for the two types of notch-free specimens of the JP rail steel can be determined by 

multiplying β with S𝑒𝑥𝑝 , as shown in Figure 5.15(c), in which solid and open 

squares represent data for the smooth and short-gauge specimens, respectively. 

Figure 5.15(c) shows clearly that E for the short-gauge specimen degraded faster 

than that for the smooth specimen. 

According to the data shown in Figure 5.15(c), validity of Eq. (5.13) for 

predicting damage evolution is demonstrated for the JP rail steel. The least-

square-fitting method is first applied to the experimental data of the smooth 
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specimens. By setting 𝜀𝑒𝑞
𝑝 = 𝜀𝑝

𝑓
 and 𝜂𝑎𝑣 =1/3, Eq. (5.13) is reduced to Eq. (5.6), 

where �̅� becomes the only unknown and thus can be uniquely determined using 

the linear least-square-fitting method. As �̅� is a material constant, its value is kept 

unchanged once it is determined and is applied to the short-gauge specimen for 

which the 𝜂𝑎𝑣 value in Eq. (5.13) for the JP rail steel is 1.29. In this case, 𝜆 is the 

only unknown in Eq. (5.13), and can be determined again using the linear least-

square-fitting method to best fit the change of the elastic modulus with the 

increase of 𝜀𝑝 for the short-gauge specimen.  

The above procedure is also applied to the other two rail steels, and the so-

determined values for �̅� and 𝜆 for the three rail steels are listed in Table 5.3. As 

shown in Table 5.3, 𝜆 is same for all of the three rail steels, but �̅� is slightly 

different. 

As Eq. (5.13) can well fit the experimental data of E versus 𝜀𝑝 for the two 

types of notch-free specimens by only changing the average stress triaxiality, Eq. 

(5.13) is to be a suitable ductile damage model to predict damage evolution of 

high-strength rail steels. As shown in Figure 5.15(d) for the JP rail steel, change 

of E at the crack tip of the pre-cracked SENB specimen, along with that for the 

smooth and short-gauge specimens, is plotted as a function of 𝜀𝑝 . The 

deterioration of E at the crack tip of the JP rail steel is predicted using Eq. (5.13), 

based on the corresponding values of 𝜂𝑎𝑣  and 𝜀𝑒𝑞,𝑓
𝑝

 in Table 5.2 and �̅� and 𝜆 in 

Table 5.3. As shown in Figure 5.15(d), the deterioration rate of E increases with 

the increase of 𝜂𝑎𝑣, and the critical E value before the onset of fracture, i.e., at 

𝜀𝑒𝑞,𝑓
𝑝

, decreases with the increase of 𝜂𝑎𝑣 . It should be pointed out that the 

phenomena presented in Figure 5.15 for the JP rail steel were also observed for 

the other two rail steels (EV and CZ). 
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Table 5.2  Parameters of D̅ and λ in Eq. (5.13) for three rail steels 

 

Parameters 

 Rails  

JP EV CZ 

�̅� 0.408 0.414 0.330 

λ 1 1 1 

 

According to Eq. (5.6), change of E can be converted to damage parameter, 

which is presented in Figure 5.16 for the smooth, short-gauge, and pre-cracked 

SENB specimens of the three rail steels. Figure 5.16(a) compares damage 

parameters for the smooth specimen of the three rail steels, which shows that the 

CZ rail steel is lowest in the damage evolution rate and has the smallest value for 

Dcr. On the other hand, the JP and EV rail steels show similar damage evolution 

rates, but due to the larger 𝜀𝑝the former has about 10% higher Dcr value than the 

latter.  

Figure 5.16(b) shows damage parameters in the short-gauge specimen of the 

three rail steels. Obviously, the increase of stress triaxiality from that generated in 

the smooth specimen to the short-gauge specimen has increased both the damage 

evolution rate and Dcr. Such phenomenon has been reported before, between 

smooth and circumferentially notched tensile specimens of aluminium 7449 

[229]. Furthermore, for the short-gauge specimen, EV rail steel shows a faster 

damage evolution rate than the JP rail steel. Although 𝜀𝑒𝑞,𝑓
𝑝

 of the EV rail steel is 

still slightly smaller than that of the JP rail steel, their Dcr values are similar. The 

CZ rail steel, on the other hand, still has the smallest damage evolution rate and 

critical damage parameter among the three rail steels.  

Figure 5.16(c) presents damage parameters at the crack tip of the pre-cracked 

SENB specimen for the three rail steels. The figure suggests that with the further 

increase of stress triaxiality to that at the crack tip, the damage evolution rate is 

further increased for the three rail steels. The figure also suggests that Dcr values 

at the crack tip of the pre-cracked SENB specimen are almost twice as big as 

those for the smooth specimen.  
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Because of the difference in the damage evolution rates and 𝜀𝑒𝑞,𝑓
𝑝

 values at the 

crack tip of the pre-cracked SENB specimen for the three rail steels, the latter 

shown in Table 5.2, Dcr values at the crack tip of the pre-cracked SENB 

specimens are similar between the EV and JP rail steels, and larger than that of 

the CZ rail steel. 

 

  

 
 

Figure 5.16  Damage parameter and Dcr values for (a) smooth, (b) short-gauge, and (c) at the crack 

tip of pre-cracked SENB specimens of the three rail steels 

 

5.4.3 Indentation fracture toughness 

 

In view of the above effect of stress triaxiality on the damage development, 

question is raised about the appropriateness of using KInd,con, determined from 

indentation tests based on Dcr for the smooth specimens, to characterize fracture 

toughness that is traditionally based on KIc from the pre-cracked SENB 

specimens. Furthermore, Dcr value for the indentation compression might be 

different from that for tensile fracture. Therefore, in this section, Dcr values at the 

crack tip of pre-cracked SENB specimens are used to calculate KInd, with an 
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adjusting parameter κ introduced to reconcile the potential difference of Dcr 

between the different loading modes (tensile fracture and indentation 

compression). In addition, KInd,con is also considered for the comparison. Validity 

of KInd,con and KInd is examined by comparing their values with the experimentally 

measured KIc values.  

 

5.4.3.1 Critical contact depth 

 

Two variables are essential for determining the deterioration of E* under 

indentation, i.e., ℎ𝑐 and 𝐶𝑠. Value for the ℎ𝑐 can be calculated using Eq. (5.4), and 

the corresponding 𝐶𝑠 using Eq. (5.8). In order for the accuracy of ℎ𝑐, the ℎ𝑝𝑖𝑙𝑒is 

measured and Figure 5.17 summarizes the ℎ𝑝𝑖𝑙𝑒 values for the three rail steels as a 

function of ℎ𝑚𝑎𝑥. The figure shows that ℎ𝑝𝑖𝑙𝑒 has a small value at a small ℎ𝑚𝑎𝑥 

and increases gradually with the increase of ℎ𝑚𝑎𝑥 . The figure also shows that 

ℎ𝑝𝑖𝑙𝑒 is evolved in a slightly different way among the three rail steels. That is, the 

JP rail steel starts the earliest for developing ℎ𝑝𝑖𝑙𝑒, and its value is the largest at 

the given ℎ𝑚𝑎𝑥. On the other hand, development of ℎ𝑝𝑖𝑙𝑒 in the CZ rail steel is the 

latest, and its magnitude the smallest. Value for 𝐶𝑠 is determined, as expressed in 

Eq. (5.8), by subtracting the load frame compliance, 𝐶𝑓, from the experimentally 

measured total compliance, C. The former has been calibrated using a standard 

Brinell hardness testing block, using a procedure described in the Appendix, and 

the latter is the inverse of contact stiffness determined using the Oliver-Pharr 

method [203]. 
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Figure 5.17  Variation of ℎ𝑝𝑖𝑙𝑒  as a function of ℎ𝑚𝑎𝑥  for the three rail steels 

 

 

 
 

Figure 5.18  Variation of elastic modulus E* in the ball indentation test for (a) JP, (b) EV, and (c) 

CZ rail steels 
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Figure 5.19  Damage development for the three rail steels under the ball indentation test 

 

Table 5.3 Critical contact depth hc
∗ for the given Dcr

∗  values 

 

κ 

JP rail steel  EV rail steel  CZ rail steel 

𝐷𝑐𝑟
∗  

ℎ𝑐
∗ (mm)  

𝐷𝑐𝑟
∗  

ℎ𝑐
∗ (mm)  

𝐷𝑐𝑟
∗  

ℎ𝑐
∗ (mm) 

mean STD  mean STD  mean STD 

0.01 0.0090 0.0563 0.0139  0.0089 0.0563 0.0242  0.0068 0.0632 0.0242 

0.05 0.0450 0.0867 0.0143  0.0445 0.0892 0.0235  0.0339 0.0844 0.0231 

0.1 0.0899 0.1248 0.0146  0.0889 0.1304 0.0226  0.0678 0.1110 0.0216 

0.2 0.1798 0.2004 0.0161  0.1778 0.2128 0.0209  0.1356 0.1641 0.0190 

0.5 0.4495 0.4292 0.0179  0.4445 0.4599 0.0156  0.3390 0.3235 0.0106 

0.6 0.5394 0.5053 0.0186  0.5334 0.5423 0.0139  0.4068 0.3767 0.0078 

 

Based on values for ℎ𝑐  and 𝐶𝑠 , E
*
 under indentation loading can be 

determined and are presented in Fig. 5.18 for the three rail steels. Data points in 

Fig. 5.18 are fitted using a linear function. By converting the so-determined E
*
 

values to D
*
 using Eq. (5.6), damage evolution under ball indentation is presented 

as a function of ℎ𝑐 for the three rail steels, as depicted in Fig. 5.19. The figure 

suggests that under indentation, the EV rail steel has the lowest damage evolution 

rate and the CZ rail steel the fastest. Error bars on each curve represent the 

standard deviation of the experimental data at a given hc value. 

Critical indentation depth (ℎ𝑐
∗) for each of the three rail steels, which is needed 

for calculating KInd, can be determined using Fig. 5.19 based on 𝐷𝑐𝑟
∗  values in 

Table 5.4. As mentioned earlier, a parameter κ is introduced to adjust 𝐷𝑐𝑟
∗  values 

using Dcr values in Fig. 5.16(c), so that the possible difference of the critical 
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damage parameter between tensile loading and indentation compression is 

considered.  

Table 5.4 summarizes six different 𝐷𝑐𝑟
∗  values for each of the three rail steels 

by varying  from 0.01 to 0.6, and the corresponding mean values and standard 

deviation of ℎ𝑐
∗. The table suggests that ℎ𝑐

∗ for the EV rail steel is larger higher 

than that for the JP rail steel, and that ℎ𝑐
∗  for the CZ rail steel is the smallest 

among the three rail steels (except at of 0.01). It should be noted that  of 0.6 

yields the maximum ℎ𝑐
∗ values that can possibly be generated in the EV and JP 

rail steels using the ball indenter of 1.19mm in diameter.  

 

5.4.3.2 Correlation of KInd and KIc 

 

Using the above information, i.e. ℎ𝑐
∗ listed in Table 5.4 and 𝐴𝑐 expressed in 

Eq. (5.3), the specific indentation energy (2𝑤𝐼𝑛𝑑) can be calculated from Eq. (5.2) 

using the curve of 𝐹  versus hc from the experimental testing. Thus, the 

corresponding KInd can be determined from Eq. (5.5). Fig. 5.20 depicts F as a 

function of hc from the indentation tests for the three rail steels used in the study, 

fitted using the quadratic polynomial function. The corresponding KInd values are 

presented in Fig. 5.21. In addition, 2𝑤𝐼𝑛𝑑 was also calculated using ℎ𝑐
∗ determined 

from Fig. 5.19 based on the Dcr values given in Fig. 5.16(a). The corresponding 

KInd values are denoted as KInd,con, representing the KInd values from the 

conventional approach that is based on the Dcr values from the smooth specimens.  

As shown in Fig. 5.21, KInd values are estimated for each of the six  values, 

all of which have larger magnitude than that for KIc. Note that the figure contains 

scattering bars for both KInd and KIc, but scattering of KInd for 0.2 is so small 

that it is actually buried by the markers for the average value. All of the six KInd 

values in the figure suggest that the CZ rail steel should have the smallest fracture 

toughness among the three rail steels. Although there seems to be a transition in 

the ranking of KInd between the EV and JP rail steels when κ increases from 0.2 to 
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0.6, the difference of KInd values is within the scattering of data. A similar 

phenomenon exists for KIc for the two rail steels. That is, difference of KIc 

between the EV and JP rail steels has a size similar to that of the scattering bar for 

their data points.  

 
 

Figure 5.20  Curve fitting between the indentation load (F) and the contact depth (hc) of three rail 

steels using quadratic polynomial functions 

 

 
 

Figure 5.21  The indentation fracture toughness (KInd) estimated by adjusting the Dcr at the crack 

tip using κ in the range from 0.01 to 0.6, and compared with the KIc for the three rail steels 
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Figure 5.22  The conventional indentation fracture toughness (KInd,con) estimated by the Dcr from 

the smooth specimen, and compared with the KIc for the three rail steels  

 

Fig. 5.22 presents KInd,con for the three rail steels, calculated using ℎ𝑐
∗ based on 

the Dcr value from the smooth specimens. The figure suggests that similar to that 

shown in Fig. 5.21, the KInd,con has a value bigger than that of KIc. In addition, the 

KInd,con values for the three rail steels is generally in an order that is consistent 

with that of the KIc values.  

In view of the results shown in Figs. 5.21 and 5.22, it is suggested that when 

there is a clear difference in the fracture toughness for the rail steels, such as 

between the CZ and JP rail steels, both KInd and KInd,con can be used to establish 

their ranking of KIc. However, when the difference in fracture toughness is small, 

such as between the EV and JP rail steels, further study is needed, first to reduce 

scattering of the measured KIc values, and then to determine whether KInd or 

KInd,con can reflect the difference of KIc. 

 

5.5 Conclusions 

 

In this chapter, an investigation was carried out to elucidate effects of stress 

triaxiality on fracture strain and damage parameter for three types of high-strength 

rail steels. The study shows that with the increase of stress triaxiality fracture 

strain decreases, while the critical damage parameter increases. The results also 
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suggest that fracture strain at the crack tip is close to the yield strain for smooth 

specimens, and that the rate of damage evolution increases with the increase of 

stress triaxiality. Value for the critical damage parameter at the crack tip, 

estimated based on results from notch-free specimens, was found to be nearly 

twice as big as that for the smooth specimen. Furthermore, at a high stress 

triaxiality level, difference of the critical damage parameter between the EV and 

JP rail steels become negligible. 

The study also determined both KInd and KInd,con for the three types of high-

strength rail steels. The former is based on Dcr at the crack tip of the pre-cracked 

SENB specimen, and the latter the smooth specimen. The study found that both 

KInd and KInd,con can be used to identify the ranking of KIc for materials that show 

an obvious difference in the fracture toughness. However, for materials that have 

similar fracture toughness, scattering of the measured values becomes an issue to 

distinguish the difference in the fracture toughness. Another issue that needs to be 

resolved in the future study is the potential difference of critical damage 

parameter values in different loading modes. 

 

5.6 Appendix A 

 

The load frame compliance, 𝐶𝑓, of the current indentation testing system was 

calibrated using a standard hardness testing block of Brinell hardness 203 (HBW 

10/3000) and Young’s modulus 210 GPa. The indentation test was conducted at 

ten different displacements of 0.03, 0.05, 0.08, 0.1, 0.12, 0.14, 0.15, 0.17, 0.19, 

and 0.21 mm. Figure 5.A1(a) presents a set of results from an indentation loading-

unloading test, where the unloading curves are best fitted using a power-law 

function, 𝐹 = 𝐵(ℎ − ℎ𝑓)
𝑚

 in which the two fitting parameters, B and m, are 

determined using the least square fitting method.  

Validity of the indentation test set-up was firstly evaluated by examining the 

ability to regenerate hardness of a standard testing block. Following the previous 
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works on the hardness measurement using indentation load-contact depth curve 

[114, 203], Brinell hardness at each contact depth were calculated and presented 

in Figure 5.A1(b). It should be noted that no obvious pile-up was observed for the 

standard hardness testing block when subjected to the selected indentation depths. 

Therefore, ℎ𝑝𝑖𝑙𝑒 was not considered when calculating ℎ𝑐. Figure 5.A1(b) indicates 

clearly that the measured hardness values agree well with the reference Brinell 

hardness of the standard testing block, with a slight increase in the hardness 

values at small ℎ𝑐 , due to deformation-induced strain-hardening on the testing 

block [197]. 

The second validation process of the hardness test setup was to regenerate 

Young’s modulus of the standard hardness testing block. The elastic modulus is 

determined from the indentation test based on the Hertzian contact law [5] and 

Sneddon’s elastic punch theory [6], as shown in Eq. (5.7). However, separating 

the specimen compliance (𝐶𝑠) from the directly measured unloading compliance 

(𝐶) is required, as the latter contains both frame and specimen compliances. The 

frame compliance, 𝐶𝑓, can be determined using the following equation based on 

the procedure given in ref. [203]: 

 

𝐶𝑓 = 𝐶 −
√𝜋

2𝐸eff

1

√𝐴𝑐
                                                                                 (A.1) 

 

where the effective elastic modulus, 𝐸eff, is defined as 

 

1

𝐸eff
=

1−𝑣𝑖
2

𝐸𝑖
+
1−𝑣2

𝐸0
                                                                                 (A.2) 

 

As shown in Figure 5.A2(a), variation of 𝐶𝑓  measured for the current 

indentation test set-up can be described reasonably well using the following 

logarithmic function, consistent with that reported before [219].  
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𝐶𝑓 = 𝐶0 +
1

�̃�

1

2𝜋𝑅
ln (

2𝑅−ℎ𝑐

ℎ𝑐
)                                                                  (A.3) 

 

where 𝐶0 and �̃� are the two variables for which the values are determined using 

the least-square-fitting method, representing constant frame compliance and 

effective modulus of the entire indentation system, respectively. 

By substituting Eq. (A.3) into Eq. (5.8), 𝐶𝑠 is determined. Thus, E* for the 

testing block can be calculated using Eq. (5.7). Figure 5.A2(b) presents the 

calculated E* values as a function of ℎ𝑐. In view of the small ℎ𝑐 values in Figure 

5.A2(b), not much damage has been accumulated, thus the measured elastic 

moduli in Figure 5.A2(b) showing good agreement with the Young’s modulus of 

standard hardness testing block. 

 

 

 

Figure 5.A1  Plots of (a) indentation load-unload curves and (b) Brinell hardness values for the 

standard testing block 

 

  
 

Figure 5.A2  Determination of (a) frame compliance and (b) indentation elastic modulus for the 

standard hardness testing block  
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Chapter 6 Conclusions and Future Work 

 

 

6.1 Conclusions 
 

The ultimate goal of this research project is to develop convenient testing 

methods to estimate the fracture toughness of high-strength rail steels. In this 

study, determining the fundamental mechanical properties of such steels through 

the use of ASTM standards, and interpreting their deformation and fracture 

behaviour through the use of a new constitutive model involving stress-triaxiality-

dependent plasticity and damage, have improved our understanding and 

knowledge of their material properties. Both destructive and non-destructive 

testing methods were developed to estimate the fracture toughness of high-

strength rail steels. The main contributions of this thesis can be summarized as 

follows. 

Mechanical properties of three types of high-strength rail steels, including the 

constitutive equation, Vickers hardness and KIc, were characterized over the entire 

cross-section of the rail track at 23, -10, and -40
o
C. The purpose of this 

characterization was to use the change occurring in KIc with decreasing 

temperature to assess the potential impact of low temperature on the rail breaks. 

The KIc for all three rail steels was found to be temperature-dependent and 

decreased by approximately 20% as the temperature decreased from 23 to -40
o
C. 

However, at -40
o
C, all three rail steels showed similar fracture toughness. The test 

results suggest that all three rail steels tested are more susceptible to impact 

damage and rail breaks in the Canadian winter months. In addition, the Vickers 

hardness and constitutive equation were also evaluated over the cross-section of 

the rail head and foot at all three temperatures. The experimental results, as the 

key finding of our investigation, showed that KIc values for the three high-strength 

rail steels do not follow the trend of difference based on their tensile properties.  



159 

 

 

 

 

To understand the above inconsistency between KIc values and the tensile 

properties, an extended strain energy density (SED) approach, considering the 

stress triaxiality effect on both distortional and dilatational SEDs under small-

scale yielding, was used to predict fracture toughness for the three rail steels at 23, 

-10, and -40
o
C. First, the equivalent plastic fracture strain of the pre-cracked 

SENB specimen was extrapolated from the locus of equivalent plastic fracture 

strain versus average stress triaxiality to the stress triaxiality level at the crack tip. 

It was found that the predicted fracture strain for the pre-cracked SENB specimen 

was reduced significantly in the vicinity of the yield strain, and the conventionally 

calibrated constitutive equation of the rail steels was insensitive to the change in 

stress triaxiality. Based on the information about the fracture strain, stress 

triaxiality, and constitutive equation for the two notch-free and the pre-cracked 

SENB specimens, it was found that the distortional SED decreased, while the 

dilatational SED increased, with an increase in stress triaxiality. Therefore, by 

summing up the values of the two types of SEDs at the crack tip of the pre-

cracked SENB specimen, the magnitude of the total SED of the EV rail steel was 

found to be larger than that of the JP rail steel. As well, the critical SED factor, 

calculated by using the product of the total SED and the characteristic distance 

ahead of the crack tip, agreed well with the experimental KIc values for the three 

rail steels at 23, -10, and -40
o
C. Therefore, it was concluded that both distortional 

and dilatational SEDs were indispensable factors that need to be considered for 

calculating the energy consumed in the elastic-plastic deformation process that 

leads to fracture. Moreover, the dilatational component of the total SED (or 

damage energy dissipation) dominates the energy consumption in the fracture 

process at the crack tip. 

In view of the importance of damage when characterizing fracture behaviour 

at the crack tip, in Chapter 4, a new constitutive model of stress-triaxiality-

dependent plasticity and damage was proposed for rail steels. Based on this model, 

it was found that even though the conventionally determined constitutive 

equations of rail steels were insensitive to a change in stress triaxiality, both the 
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damage-free stress response to deformation and damage evolution increased with 

an increase in stress triaxiality. Therefore, the increase of the damage-free stress 

response to deformation, caused by the increase in stress triaxiality, can be offset 

by the stress decrease caused by the increase of damage development, resulting in 

a conventionally determined stress-strain curve that was insensitive to the change 

in stress triaxiality. On the other hand, the proposed constitutive model can also 

be applied to explain the possibility that the conventional stress-strain curves of 

some materials are dependent on changes in stress triaxiality. Thus, this 

constitutive model can be further extended to reconcile the inconsistency in the 

extent to which conventional stress-strain curves depend on stress triaxiality. 

In Chapter 5, the principles of a non-destructive ball indentation testing 

method, designed to determine the indentation fracture toughness (KInd) of three 

types of high-strength rail steels, were described. Both the conventional 

indentation fracture toughness (KInd,con) and KInd were calculated for three types of 

high-strength rail steels. The former is based on the Dcr from the smooth 

specimen; the latter is based on the Dcr at the crack tip including the adjusting 

parameter κ to accommodate the potential difference of Dcr between tensile 

fracture and indentation compression. Both approaches can identify ranking order 

of KIc in materials with obvious difference in fracture toughness. However, for 

materials that show small difference in fracture toughness, i.e., within the 

scattering of the measured data, the KInd may show different trend with the KInd,con, 

depending on the κ value to reconcile the difference caused by the change in 

loading mode from tensile fracture to indentation compression. Such an issue 

needs further investigation using materials that cover a wide range of fracture 

toughness.  

This study also found that although material damage is not traditionally 

considered to be a factor that affects mechanical properties, its existence actually 

plays an important role in understanding the inconsistency between the fracture 

toughness (KIc) and tensile properties, both explaining the independence of 

conventionally calibrated stress-strain curves from the stress triaxiality, and 
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permitting us to develop the non-destructive indentation fracture toughness testing 

method for rail steels.  

 

6.2 Future work 

 

Overall, two new testing methods for predicting fracture toughness in high-

strength rail steels were established in this research project. However, neither of 

them is ready to be applied to engineering practices. For the first destructive 

testing method, in addition to the two notch-free specimens, the accurate stress 

state ahead of the crack tip must be determined in order to predict KIc accurately. 

In the current study, finite element modelling was used to mimic the linear portion 

of the SENB tests and thus to determine the stress-strain distribution ahead of the 

crack tip. In order to use test data only from two types of notch-free specimens to 

predict the fracture toughness, the stress state at the crack tip should be 

determined without relying on data from the SENB tests.  

As concerns the non-destructive indentation technique, the current method can 

only be used to identify the ranking of the mode I critical stress intensity factor 

(KIc) for the three high-strength rail steels, not directly to measure the KIc values. 

This is probably because of the size effect of the damage zone generated under 

different diameters of the ball indenter.  

In order to improve the above two testing methods, the following problems 

are recommended for future investigation: 

 Characterization of the stress-strain field at the crack tip: In view of 

many existing approaches to analyze the stress-strain distribution 

around notches and cracks, such as the SIF, NSIF and energy density 

approaches [30, 59, 235], the stress-strain distribution ahead of the 

crack tip can probably be determined without performing the SENB 

tests. This future research has the potential to enable the destructive 

testing method to be used in engineering applications. 
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 Effect of the diameter of the ball indenter on damage evolution (size 

effect): It is reasonable to speculate that by using different diameters of 

ball indenter, the damage evolution of rail steels under indentation will 

be similar, while the specific indentation energy to fracture will be 

proportional to the size of the ball tip. Therefore, through extrapolation, 

the accurate size of the ball indenter tip to a size comparable to the 

crack tip, KIc can be determined; and thus, this non-destructive 

indentation technique can be applied to engineering applications. 

Further work should be carried out in order to verify this hypothesis. 

On the other hand, it was found that although the JP rail steel is both stronger 

and more ductile than the EV rail steel, KIc of the former is smaller than that of 

the latter at 23 and -10
o
C. While at -40

o
C, their KIc values are reduced to the same 

level. It has been wondered what makes the EV rail steel tougher than the JP rail 

steel, though the latter is stronger and more ductile. Resolving mechanisms that 

are responsible for such a complex phenomenon requires further investigation by 

looking into the influence of different microstructures on fracture toughness 

between these two rail steels. It will definitely be beneficial if the future study 

investigates mechanisms and microstructures that are responsible for maximizing 

fracture toughness for rail steels in cold climate condition.  
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