
Applications of Computer Vision and Machine Learning
to Three Engineering Problems

by

Bowen Xie

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

University of Alberta

© Bowen Xie, 2021

Abstract

This thesis applies computer vision and machine learning techniques to three

engineering projects: a self-driving vehicle, a predictive display system, and a

vision-based robot manipulator joint detector. In the first project, we build

a remote-controlled car and implement three core self-driving features: lane-

keeping control, traffic signs/signals detection and distance estimation, and

obstacle avoidance. The first two features are benchmarked in a lab environ-

ment. We employ a novel end-to-end learning method which directly controls

the vehicle based on the image perceived, instead of a traditional model-based

control design. The YOLO object detector is used to identify different traf-

fic signs and its bounding boxes are utilized to estimate their distance to the

vehicle. The proposed system demonstrates satisfactory results in both quali-

tative and quantitative evaluations, and it outperforms human drivers in terms

of control consistency and smoothness. For the predictive display project, we

propose a new generative model-based predictive display for robotic teleoper-

ation over high-latency communication links. Our method is capable of ren-

dering photo-realistic images of the scene to the human operator in real-time

from RGB-D images acquired by the remote robot. A preliminary exploration

stage is used to build a coarse 3D map of the remote environment and to train

a generative model, both of which are then used to generate photo-realistic

images for the human operator based on the commanded pose of the robot.

Data captured by the remote robot is used to dynamically update the 3D map,

enabling teleoperation in the presence of new and relocated objects. Various

ii

experiments validate our proposed method’s performance and benefits over

alternative methods. The third project considers vision-based estimation of

robot arm joint locations. Automatic robot arm manipulation is well devel-

oped for small robot arms with precise joint feedback, but still underdeveloped

for inexpensive robots or human-operated equipment due to lacking precise

joint feedback. Manual training data labelling for neural networks for robotic

objects is not economic, so the simulator is now a popular tool to generate

training data. The problem is the gap between real-world images and simula-

tion images. Hence we propose a vision-based system with domain adaption for

joint state estimation. The resulting system is implemented and benchmarked

against a state-of-the-art approach with favourable results.

iii

Preface

Some of the research conducted for this thesis forms parts of three collabora-

tive research projects. The software packages referred to in Chapter 3 were

designed and programmed by myself, with the assistance of Mingjie Han and

Linjian Xiang. The software pipeline, literature review, and data analysis in

Chapter 4 are my original work. Additionally, part of the software modules,

data collection and data analysis in Chapter 5 are collaborative work with

Mingjie Han.

Chapter 4 of this thesis has been submitted to IEEE RA-L with ICRA 2021

option as “A Generative Model-Based Predictive Display for Robotic Teleop-

eration” by Bowen Xie, Mingjie Han, Jun Jin, Martin Barczyk and Martin

Jagersänd. I was responsible for software design, data analysis and manuscript

composition. Mingjie Han assisted with data collection and data analysis. Jun

Jin provided high-level suggestions and contributed to manuscript edits. Mar-

tin Barczyk and Martin Jagersänd were the supervisors and were involved with

concept formation and manuscript edits.

Chapter 5 of this thesis will be submitted to IEEE RA-L with IROS

2021 option as “Image-Based Joint State Estimation Pipeline for Low-cost

or Feedback-less Robotic Manipulators” by Mingjie Han, Bowen Xie, Martin

Barczyk and Alireza Bayat. I was responsible for training and testing the

generative adverserial network (GAN), and composing the software pipeline.

Mingjie Han was responsible for data collection and testing the performance

of the full system, as well as composing the manuscript. Martin Barczyk and

Alireza Bayat were the supervisors and were involved with concept formation

and manuscript edits.

iv

Acknowledgements

I would like to thank Dr. Martin Barczyk and Dr. Martin Jagersänd for all the

guidance, enlightenment and supervision through the course of my graduate

study; Mingjie Han for the collaboration on the research projects; Jun Jin for

inspiring me and giving me information about the predictive display. Finally,

I would like to thank my parents for their support and love.

v

Contents

1 Introduction 1
1.1 The motivation of research . 1

1.1.1 Statement of contributions 3
1.2 Literature review . 3

1.2.1 Sub-domains of computer vision 3
1.2.2 Applications of machine learning to engineering problems 4

1.3 Outline of the thesis . 5

2 Hardware Background 7
2.1 Baxter robot . 7
2.2 Computer vision preliminaries 9

2.2.1 Monocular camera model 9
2.2.2 Camera calibration . 13

2.3 Imaging sensors . 15
2.3.1 RGB camera . 15
2.3.2 RGB-D camera . 16
2.3.3 Vicon tracking system 16

2.4 On-board processor . 17
2.5 Off-board processing unit . 18

3 Learned Self-Driving Vehicle 19
3.1 Introduction . 19
3.2 Related works . 20

3.2.1 Vehicle automation level standard 20
3.2.2 Image-based driving automation 20
3.2.3 Traffic sign recognition 22
3.2.4 Decision tree . 23

3.3 DIY remote control (RC) car under lab settings 24
3.3.1 Dynamic model of the differentially-steered vehicle . . 24
3.3.2 Hardware setup . 25
3.3.3 Software setup . 27

3.4 Experimental results . 39
3.4.1 Qualitative evaluation 41
3.4.2 Quantitative evaluation 42

3.5 Conclusion . 47

4 Predictive Display 49
4.1 Introduction . 49
4.2 Related works . 51

4.2.1 Predictive display . 51
4.2.2 3D reconstruction . 51
4.2.3 Deep learning based images synthesis 52

4.3 Methodology . 53

vi

4.3.1 Overview of the system 53
4.3.2 Preprocessing . 54
4.3.3 Generative model learning 55
4.3.4 Online model updating 56
4.3.5 Robot pose correction 56

4.4 Experimental results . 57
4.4.1 Experiment setup . 57
4.4.2 Qualitative evaluation 58
4.4.3 Quantitative evaluation 61

4.5 Conclusion . 63

5 External Vision-based Joint Detection System 64
5.1 Introduction . 64
5.2 Related works . 66

5.2.1 Robot joint angle measurements 66
5.2.2 Marker-based robot joint tracking 67
5.2.3 Articulated human body pose estimation 67

5.3 Methodology . 68
5.3.1 System overview . 68
5.3.2 Instance segmentation 69
5.3.3 Domain adaptation . 70
5.3.4 Joint detection . 70
5.3.5 Training dataset generation 71

5.4 Experimental results . 74
5.4.1 Experimental datasets 74
5.4.2 Groundtruth data generation 75
5.4.3 Quantitative evaluation metrics 76
5.4.4 Baseline methods comparison 76

5.5 Conclusion . 80

6 Conclusion and Future Work 82
6.1 Conclusion . 82
6.2 Limitations of work . 83
6.3 Future work . 84

References 86

Appendix A Carla simulator setup 96
A.1 Self-driving car simulator . 96

A.1.1 An overview of Carla simulator 96
A.1.2 Self-driving features to be tested in Carla 97
A.1.3 Simulated sensors setup 98

vii

List of Tables

3.1 End-to-end learning datasets 42
3.2 Average errors and standard deviations in distance estimations 47

4.1 PD datasets details . 57
4.2 Quantitative evaluation of different 3D reconstruction methods 62

5.1 Testing datasets for External vision-based joint detection system 75
5.2 PCK@0.2 scores for joint detection 76
5.3 Confident detection rate for DREAM 79
5.4 RMS scores for joint detection in two background settings . . 79

viii

List of Figures

2.1 Overview of Baxter robot . 8
2.2 Switch for Baxter . 8
2.3 Camera module on the cuff of the Baxter 9
2.4 Camera thin lens model . 10
2.5 Pinhole camera model . 10
2.6 Inverted Pinhole camera model 11
2.7 The chessboard for camera calibration 14
2.8 Corners extracted from the chessboard for camera calibration . 14
2.9 Logitech C920 webcam . 15
2.10 Raspberry Pi Camera Module V2 16
2.11 Vicon Vero capture camera . 17
2.12 Vicon tracking markers . 17

3.1 The schematic diagram of the kinematic model of the RC car . 25
3.2 System overview of the self-driving RC car 27
3.3 An overview of the system of the self-driving RC car 28
3.4 Lane markings on the floor of the lab 29
3.5 Lane markings in HSV space 30
3.6 Binary image masking for lane markings 30
3.7 Output image of the lane markings 31
3.8 Sliding window search of the lane markings 33
3.9 The structure of the CNN used in self-driving RC project . . . 34
3.10 The stop sign detection test scene 37
3.11 The traffic light detector . 38
3.12 The flowchart of the logical tree for the self-driving DIY RC car 40
3.13 A screenshot of the demonstration video for self-driving RC

car’s performance . 41
3.14 An overview of the track used for testing lane-keep functionality 42
3.15 Subsmapled trajectory of the car in different datasets 43
3.16 Driving states along the trajectory of the car in different datasets 44
3.17 Inconsistent bounding box heights 45
3.18 The sensitivity of distance estimation to pixel errors 46
3.19 The probability density function (PDF) of the errors in distance

estimations . 47

4.1 An overview of the core blocks of our predictive display 50
4.2 Flowchart of our proposed PD system 53
4.3 Experimental setup for our proposed PD system 58
4.4 Comparisons between other 3D reconstruction methods and our

PD system . 59
4.5 Qualitative comparison between NeRF and our PD method . . 61
4.6 LPIPS scores of our PD system on different datasets 63

5.1 Workflow overview of the proposed system 69

ix

5.2 Training flow for the external vision-based joint detection system 71
5.3 PCK scores for robot joint detection over natural lab background 77
5.4 PCK result of white background datasets 78
5.5 Examples of some common failure cases 80

A.1 A bird’s eye view of the Carla world 97
A.2 An example of Carla client manual control interface 98
A.3 An image captured by the front-facing camera mounted on the

vehicle in Carla simulator . 99
A.4 Radar measured points drawn in front of the vehicle 100

x

Chapter 1

Introduction

1.1 The motivation of research

Since the start of computer vision research in the 1960s, computer vision has

been employed in many domains of engineering, with the goal of extracting

information from images (or videos) [72]. Thanks to progress in machine learn-

ing (e.g. Convolutional Neural Networks [40], Generative Adversarial Net-

work [24]), learning-based computer vision techniques have vastly extended

the range of its applications. Machine learning and its integration with com-

puter vision has solved a lot of engineering problems that were previously

intractable. For example, [74] proposed “Stanley”, a self-driving vehicle that

utilizes computer vision and machine learning techniques to drive in desert

at high speed without any human interventions. Therefore, the objective of

this thesis is to implement machine learning and computer vision techniques

to three engineering problems which would be very difficult or impossible to

solve by other approaches. In particular, the three projects are:

1. A Self-driving System for a DIY Raspberry Pi-controlled Car

2. A Generative Model-Based Predictive Display for Robotic Teleoperation

3. An Image-Based Joint State Estimation Pipeline for Low-cost or Feedback-

less Robotic Manipulators

The first project, developing a self-driving vehicle, serves as a foundation

for the next two, since it involves many techniques from classic (stand-alone)

1

computer vision, such as color thresholding and homography transformations.

Due to time constraints, it was not practical to develop a complete self-driving

system capable of performing in any real-world scenario. Instead, we focused

on a few core features (i.e. lane-keep, traffic signs/signals detection) needed

in self-driving applications, and tested them in a lab environment. Unlike

conventional methodologies which rely on model-based nonlinear control [47],

[81], we implemented a novel end-to-end learning-based approach to control

the car and meet its goals.

The experience and skills in computer vision gained from the first project

were carried over and led to the next projects described in this thesis. The

second project was to develop a generative model-based predictive display for

robotic teleoperation. Teleoperation tasks are often faced with high latency

and low bandwidth issues, and much research has been conducted to solve

these issues by optimizing the communication network [1] or using more ad-

vanced data communication technologies (e.g. 5G [66]). On the other hand,

the Predictive Display approach uses image priors to construct scene models

(e.g. [60], [85]), and provide instant visual feedback to the operator. However,

it also faces challenges with updating the models on-line to reflect changes in

the remote environment, and providing photo-realistic images to the human

operator. To address these issues, we implemented a generative model-based

predictive display system which outputs photo-realistic images while simulta-

neously being able to update the remote scene model.

The third project reported in this thesis was to design an image-based

joint detector, aimed at low-cost or feedback-less robotic manipulators. High-

end robotic manipulators (e.g. Franka Emika Panda, Barrett WAM Arm) are

equipped with highly precise sensors which can accurately measure joint states.

However, low-cost or feedback-less manipulators (e.g. loading crane) are not

equipped with such feedback sensors. Hence we developed a joint state esti-

mator which uses external cameras to capture images of the manipulator and

uses learning-based masking (Mask-RCNN), generative modeling, and object

detection (ResNet) to estimate joint locations. This method enables low-cost

and feedback-less manipulators the capability to achieve autonomous opera-

2

tion.

1.1.1 Statement of contributions

This thesis claims the following research contributions:

• An end-to-end learning lane-keeping driving control algorithm, which

outperforms human drivers in terms of consistency and smoothness, as

shown by extensive lab experiments.

• A novel approach to predictive displays which combines a coarse 3D map

with a generative model to output photo-realistic images of the scene,

and the system shows the ability to fill in missing features and upgrade

texture details of images rendered from the 3D map. The system also

features the continuous updates of the 3D map of the remote environment

to handle dynamic events such as object relocation and new objects

entering the scene while maintaining real-time performance regardless of

communication delays.

• A joint state estimation pipeline built from a combination of image seg-

mentation and domain transfer methods which were found to provide

the best performance in experiments. We also provide extensive vali-

dation of the joint estimation system’s experimental performance in a

variety of settings including different background types and illumination

conditions, and assessing the resulting performance qualitatively against

a ground truth. The proposed system, upon demonstration, performs

as well or better than the very recent state-of-the-art work [43] which

includes a trained network for the Baxter robot.

1.2 Literature review

1.2.1 Sub-domains of computer vision

The high-level goal of computer vision is to mimic the human brain’s ability

to understand the scene in order to take appropriate actions [6]. Many sub-

domains of computer vision have been developed in order to fulfill parts of this

3

high-level goal. For instance, 3D reconstruction (e.g. Kinect Fusion [55]) is

used to reconstruct a 3D scene model from depth imaging sensor data.

Thanks to ongoing progress in hardware (GPU) and its ability to han-

dle massively parallel calculations, machine learning has greatly expanded the

domain of computer vision, such that high-dimensional information can be

extracted from images. For instance, object detection (e.g. YOLO [62]) per-

forms localization and classification of different objects appearing in an image.

Machine learning has also been used for image processing. Generative adver-

sarial neural networks (GANs) [24] have the ability to learn the representation

of images and apply these learned models to new images. Image style transfer

[33] is an example of the application of GAN. It learns characteristics from a

set of images (e.g. paintings from artists) and given new images from a digi-

tal camera, these painting styles can be applied to the photos taken. In this

thesis, we adopt many computer vision techniques to complete various tasks

such as image preprocessing, object detection, domain adaptation, etc.

1.2.2 Applications of machine learning to engineering
problems

Early applications of machine learning are almost as old as the modern per-

sonal computer. MADALINE (Many ADALINE) [80] is an early example

of machine learning in signal processing. MADALINE is a multi-layer feed-

forward neural network, and each neuron is an ADALINE (Adaptive Linear

Neuron) with multiple input nodes and one output node. MADALINE was

used for echo elimination in phone lines [79]. Rumelhart et al. [65] first

proposed back-propagation (BP) for training of feed-forward neural networks,

which computes the gradient of the loss function of weights of the network.

BP enables the efficient training of multi-layer neural networks and thus made

larger and deeper neural networks feasible. As machine learning and its inte-

gration with computer vision continued to grow, more and more engineers and

researchers began to adopt these techniques and solve problems in their fields.

For example, [15] demonstrates a learning-based controller for an autonomous

helicopter which can learn from human expert pilots.

4

Machine learning is now heavily involved with the automation of machines

(e.g. passenger vehicles, heavy-duty construction equipment), where many

key features are now handled using machine learning. For example, prior to

learning-based methods, objects were usually recognized by their shapes or

colors [61], which can be ambiguous in some cases. By contrast, YOLO [62]

can detect up to 49 objects, or even 9000 objects in YOLO-9000 [63] precisely

in real-time. For driving control, conventional control algorithms rely on a

dynamic model of the vehicle. However, end-to-end learning (e.g. [8], [9])

enables creating a model-free controller, which inputs perceived images and

directly outputs the control commands. For manipulator automation, machine

learning has been employed to estimate joint states [43], which is otherwise

impossible without high-precision sensors.

These applications have inspired us to solve other engineering problems

using machine learning.

1.3 Outline of the thesis

This chapter discussed the motivations of this thesis, its contributions as three

specific projects, and a brief review of related literature.

Chapter 2 provides a background about the hardware used throughout

this thesis, including the imaging sensors and the Baxter two-armed indus-

trial robot. We cover the mathematical details of camera models and camera

calibration procedures, and use these in subsequent chapters.

Chapter 3 covers the details of the learned self-driving vehicle project, in-

cluding a survey of related works in self-driving vehicles, the hardware and

software setup of the vehicle, and experimental results.We focus on evaluat-

ing the lane-keep and traffic sign detection modules of the proposed system

and show that it outperforms human drivers through both qualitative and

quantitative experiments.

Chapter 4 describes the background of robot teleoperation and early adop-

tions of predictive display techniques. We then cover the details of our pro-

posed software pipeline, including data preprocessing, generative model learn-

5

ing, online model updating and robot pose correction. Finally, we evaluate

the performance and repeatability of the proposed predictive display system

in different scenes.

Chapter 5 details the implementation of a vision-based joint state estima-

tion pipeline, which uses external imaging sensors. The composition and setup

of the system are discussed, including instance segmentation, domain adap-

tation and joint detection. The procedures to generate training and ground-

truth datasets is covered. Finally, the performance of the proposed toolchain

is assessed through experiments.

Chapter 6 summarizes all the results of this thesis. Limitations identified

in the three projects and potential future research directions are described.

6

Chapter 2

Hardware Background

This section focuses on the hardware used in the three projects, including the

overview of the hardware, the specification, etc. The detailed setup, however,

is covered in each project section respectively.

2.1 Baxter robot

Baxter is a robot built by Rethink Robotics (shown in Figure 2.1), which is

mainly used for educational purposes. The Baxter robot has two arms, each

has 7-DOF (degrees of freedom). There is one RGB camera and one infrared

camera (IR) at each cuff as demonstrated in Figure 2.3. However, in both

projects that utilized the Baxter robot (External vision-based joint detection

and predictive display projects), we do not use the onboard cameras from the

OEM. Instead, we use third-party RGB cameras and RGB-D cameras which

are covered in the next two sections.

Baxter robot is packaged with a customized Linux operating system in-

stalled on the onboard PC. The data is transmitted/exchanged via a dedicated

switch (Figure 2.2). Baxter has ROS running by default, and it publishes all

the topics for camera feeds, IMU data, joint poses and other sensor readings.

External PC can get access to all these data when plugged into the switch.

Another noteworthy feature that we find useful during the experiment is

the recording/playback function. This feature allows the user to record the

arm’s trajectory by manually move the arms. Compared to predefined arm

trajectory from coding, this feature enables the user to move the arm freely,

7

Figure 2.1: Baxter robot

Figure 2.2: The switch used for communication between the Baxter robot and
external device

and then replicate the motions recorded, which drastically increase the testing

efficiency. We use this feature to record all the datasets used in the external

vision-based joint detection and predictive display projects.

8

Figure 2.3: Monocular camera and IR camera mounted on the cuff

2.2 Computer vision preliminaries

This section describes the computer vision concepts and algorithms used in

the projects, which include fundamental concepts and the calibration process

of the camera.

2.2.1 Monocular camera model

A range of monocular cameras was used throughout the projects, each with

different characteristics (e.g. field-of-view, resolution, focal length). Modelling

these characteristics is essential in almost all computer vision applications.

One way to numerically describe these characteristics is through a camera

model.

We start by assuming the monocular camera can be defined as a thin lens

model, in which all rays entering the lens parallel to the optical axis will

intersect at a single focal point. The distance between the focal point and the

optical center of the lens is called the focal length.

As shown in Figure 2.4, C is the optical center of the lens, F is the focal

point, and there is a point p located at a distance Z from the thin lens. Point

p is projected onto the image plane at p′, located at a distance z from the lens.

By similar triangles the following equation is obtained:

1

f
=

1

Z
+

1

z
(2.1)

9

Figure 2.4: Camera thin lens model

Pinhole camera model

The thin lens model can be further simplified to a Pinhole camera model, in

which the aperture size tends to zero. In this model, all rays must pass through

the optical center C to get projected onto the image plane. In this simplified

model, the distance between the image plane I and the optical center reduces

to the focal length or z = f , as illustrated in Figure 2.5.

Figure 2.5: Pinhole camera model

Now we define the optical center C to be the origin of the camera lens fixed

reference frame, and we denote the coordinates of the point in space p with

respect to C as (X, Y, Z). Additionally, the point projected onto the image

plane p′ has coordinates (x, y) with respect to the image frame, a 2D space.

By similarity of triangles, we can obtain the following equations:

10

x = −f X
Z

y = −f Y
Z

(2.2)

The negative signs in Equation (2.2) mean the image projected onto the

image plane is symmetric about the origin of the optical center (upside-down

and mirror-flipped). This is usually compensated by inverting the image plane,

which is equivalent to the model illustrated in Figure 2.6.

Figure 2.6: Inverted Pinhole camera model

Following this inversion, Equation (2.2) can be rewritten as:

x = f
X

Z
y = f

Y

Z
(2.3)

Projection matrix

Equation (2.3) can be rewritten in homogeneous coordinates form:

 x
y
1

 =

 fX/Z
fY/Z

1

 =
1

Z

 f 0 0 0
0 f 0 0
0 0 1 0

︸ ︷︷ ︸

P ′

X
Y
Z
1

 (2.4)

We can decompose the 3× 4 matrix P ′ in Equation (2.4) as the product of

Kf and Π0:

11

 f 0 0 0
0 f 0 0
0 0 1 0

 =

 f 0 0
0 f 0
0 0 1

︸ ︷︷ ︸

Kf

 1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

(2.5)

where Π0 is the extrinsic matrix (assuming (X, Y, Z) is in camera coordinates),

and the 3×3 matrix Kf contains the intrinsic parameters of the camera. Note

that f , (X, Y, Z) and (x, y) appearing in the above two equations are in metric

units ([m]). However, digital cameras represent the image in pixel units ([px]).

Hence image scaling factors [sx, sy], in units of [px/m], are introduced:

xs = sxx
ys = syy

(2.6)

Following scaling, the coordinates of the point in the image plane are:

x′ = xs + cx
y′ = ys + cy

(2.7)

where (cx, cy) is the coordinate of the principal point (intersection of optical

axis with image plane) with respect to the image frame’s origin. Now we can

get the pixel coordinates corresponding to 3D points projected onto the image

frame: x′

y′

1

 =
1

Z

 sxf 0 cx
0 syf cy
0 0 1

︸ ︷︷ ︸

K

 1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

X
Y
Z
1

 (2.8)

where K is the intrinsic matrix, determined by the optical parameters of the

camera. Hence, K is a constant matrix. We can now define a projection matrix

P which projects any point (X, Y, Z) in coordinates of the camera-fixed frame

to the point (x, y) is coordinates of the image plane:

P =

 fx 0 cx
0 fy cy
0 0 1

︸ ︷︷ ︸

K

 1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

=

 fx 0 cx 0
0 fy cy 0
0 0 1 0

 (2.9)

where fx = sxf and fy = syf . Note that this expression is valid only when

the coordinates of the point p are expressed in the camera-fixed frame. Now

consider a world-fixed frame O and assume the coordinates (X, Y, Z) of point

12

p are expressed in the world-fixed frame. In this case, the projection matrix

has the more general form

P = K Π =

Intrisinc Matrix︷ ︸︸ ︷fx 0 cx
0 fy cy
0 0 1

Extrinsic Matrix︷ ︸︸ ︷(

I t
)

3×4︸ ︷︷ ︸
3D Translation

(
R 0
0 1

)
4×4︸ ︷︷ ︸

3D Rotation

(2.10)

where (R, t) ∈ SO(3) × R3 is the pose of the world-fixed frame w.r.t. the

camera-fixed frame.

2.2.2 Camera calibration

In Section 2.2.1, we discussed the intrinsic and extrinsic matrices in a pinhole

camera model and defined the projection matrix. In some computer vision

applications, wide-angle camera lenses are used, which introduce the effect of

barrel distortions to images. In order to compensate for this effect, we need to

determine the distortion coefficients. Remark the camera model and projection

matrix discussed in Section 2.2.1 do not take into account distortion effects.

Camera calibration is a process that identifies a camera’s intrinsic matrix as

well as these distortion parameters. We will use the camera calibration module

from OpenCV which determines:

1. Distortion coefficients

2. The 3× 3 intrinsic matrix of the camera

The image distortion effect is modelled by five parameters (k1, k2, k3, p1, p2),

the first three modelling radial distortion, the second two modelling tangential

distortion. The distorted image point coordinates (xd, yd) in the image plane

I are mapped to the corresponding undistorted image point coordinates (x, y)

as
r2 = x2

d + y2
d

x = xd
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1xdyd + p2

(
r2 + 2x2

d

)
y = yd

(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p2xdyd + p1

(
r2 + 2y2

d

) (2.11)

where both (xd, yd) and (x, y) are expressed in metric units ([m]).

13

A typical process to calibrate the camera is to use a printed chessboard with

known dimensions (Fig. 2.7). Users specify the dimensions of the chessboard

Figure 2.7: The chessboard for camera calibration

in terms of the number of rows and columns and the physical length of each

square. The calibration algorithm identifies corners within the chessboard (as

shown in Figure 2.8) and uses the given information about the chessboard to

calculate the distortion coefficients and the intrinsic parameters of the camera.

Figure 2.8: Corners extracted from the chessboard for camera calibration

As a numerical example, the distortion coefficients and the camera intrinsic

parameters of a Raspberry Camera V2 (in 640 × 480 resolution mode) were

14

found to be

k1 = 0.176911, k2 = −0.297734, k3 = −0.004644, p1 = 0.002276, p2 = 0.000000

K =

511.4165 0 325.6115
0 511.9490 241.2863
0 0 1

(2.12)

2.3 Imaging sensors

2.3.1 RGB camera

RGB cameras used in our projects are referred to as monocular RGB cameras

or the RGB sensor from a depth camera (e.g. RGB-D camera). Stereo cameras

(e.g. ZED camera) may also have RGB sensors, but they provide depth in-

formation from a dual-camera setup. All three projects have the uses of RGB

cameras, and they only record RGB channels of the scene. The most com-

monly used RGB camera in our projects is Logitech C920. Figure 2.9 shows

the appearance and mounting mechanism of the C920 camera. The webcam

has an auto-focus feature, which may be preferable for average consumers,

but this feature brings uncertainty to the experiment, as the camera intrin-

sic parameters are changed when the focus changes. As covered in Section

2.2.1, the camera model is essential in almost all computer vision applications.

Therefore, the auto-focus feature is turned off in all the projects which use

this webcam.

Figure 2.9: Logitech C920 webcam

Another RGB sensor which is solely used in the self-driving project is a

Raspberry Pi camera module v2 (see Figure 2.10). The camera has a ribbon

15

cable connection which enables faster data transmission speed than the USB

port on the Raspberry Pi board V4.

Figure 2.10: Raspberry Pi Camera Module V2

2.3.2 RGB-D camera

RGB-D cameras provide both RGB image and 2D depth images. Depth in-

formation is very useful in 3D reconstruction, scene segmentation, SLAM, etc.

There are two RGB-D models in our lab: Intel RealSense D435i and D415.

The main RGB-D sensor used in our project is D415. Compared to D435i,

D415 has a smaller Field-of-view (FOV), with a roller shutter, which provides

higher depth accuracy.

2.3.3 Vicon tracking system

As an image-based motion tracking system, the Vicon tracking system is widely

used in video game design, film-making, etc. The system, Vicon Vero (see

Figure 2.11), is used in the external vision-based joint detection project, and

the object poses provided by the system are considered ground-truth.

Vicon uses infrared cameras to capture infrared rays from reflective surfaces

[76]. Despite various noises from the ambient infrared rays reflected from all

kinds of surfaces, the tracking system is optimized for picking up the rays

specifically from the tracking markers(shown in Figuer 2.12), which are coated

with retroreflective surfaces.

The system has multiple Vero capture cameras, which observe the captur-

ing volume from different perspectives, and use point triangulation to calculate

16

Figure 2.11: Vicon Vero capture camera

the 3D coordinates of markers in the predefined coordinate. By grouping dif-

ferent markers, the user can define and track individual objects. In addition,

the geometric centre of each object can be customized. This feature allows the

alignment of the geometric centre of the defined objects to the mathematical

centre of the object represented in URDF files.

Figure 2.12: Vicon Vero capture camera

2.4 On-board processor

Raspberry Pi V4 and Arduino Mini are used in the self-driving RC project.

Due to battery limitation, the on-board processors have less processing power

17

than desktop PC. Therefore, Arduino Mini is in charge of command executions,

whereas Raspberry Pi serves as a data exchange centre, in which it parses all

data coming from Arduino Mini, and send the commands to the Arduino Mini.

2.5 Off-board processing unit

With more processing power, the off-board processing unit used in the projects

is a desktop PC. The desktop PC is equipped with 6-core Intel Core i7-8700K

and a graphics processing unit (GPU), which enables parallel computation in

deep learning applications and other matrices operations.

18

Chapter 3

Learned Self-Driving Vehicle

3.1 Introduction

Thanks to the extensive work being carried out in computer vision and machine

learning, as well as the progress in computer hardware, self-driving vehicles are

becoming more realistic and practical. Transportation plays a significant role

in modern society, and the self-driving system could drastically improve trans-

portation efficiency, and avoid many traffic injuries or even fatalities. Although

many systems have been developed already a few decades ago to assist human

drivers (e.g. vehicle adaptive cruise control system [51]), fully autonomous

vehicles are still very rare on the road due to inadequate capabilities of the

current systems and the legal gap for autonomous vehicles. Inevitably, fully

autonomous vehicles will become more common in the near future, and reshape

the transport industry forever.

As a very sophisticated system, a fully autonomous driving system has

many components, including SLAM (simultaneous localization and mapping),

motion planning, traffic sign detection, obstacle avoidance, etc. In this chapter,

we aim to design and build a simplified self-driving platform (a RC car with 3D

printed elements), implement some of the core functionality of a self-driving

vehicle system, and finally test the resulting design in real-world scenarios.

We also utilize Carla [20], a sophisticated simulator for autonomous driving

research to test our method under more realistic scenarios.

Another noteworthy observation is that deep neural network have demon-

strated the ability to control a non-linear dynamic system without a priori

19

knowledge of its model. For example, in order to control a wheeled ground

vehicle (e.g. our RC car) to follow the lane, a nonlinear closed-loop control

law would need to be designed and tuned. As an alternative, a CNN (convolu-

tional neural network) that learns the connection between input images from

the onboard camera and outputs the resulting controls could entirely replace

the conventional control system design, as will be proven by our experiment.

In this chapter we focus on the hardware and software setup of a DIY

remote control (RC) car which learns to autonomously operate itself for both

lane keeping and obeying traffic stop signs.

3.2 Related works

3.2.1 Vehicle automation level standard

As more and more automotive manufacturers are introducing driving automa-

tion systems into their products, and with many of their commercials being

misleading to the general public, the Society of Automotive Engineers (SAE)

has set up a standard [73] to describe the level of automation of these vehi-

cles, ranging from no-automation (level 0) to fully-automation (level 5) for a

total of six levels. Although many vehicles are already equipped with multi-

ple sensors which are capable of providing driving automation, SAE standard

J3016 focuses on the engagement of the autonomous features under driving

conditions. For example, Elon Musk, the CEO of Tesla, has claimed that his

company’s cars achieve the same functionality and accuracy as LiDAR using

only camera sensors and vision technologies [22]. This allows achieving the

same level of autonomy as competing vehicles from e.g. Waymo, despite the

latter using much more expensive LiDAR sensors.

3.2.2 Image-based driving automation

Lane detection and curvature estimation

One of the essential features of an autonomous driving system is controlling

steering and throttle inputs according to the road conditions. To achieve this,

a classic approach is to decompose the problem into smaller intermediate steps.

20

For example, the first step can be lane detection. Because lane markings are

painted using high-contrast colours, they can be easily masked out using color

filters. In addition, since lane marks or curbs typically form continuous lines,

one can further optimize the filtered image using the Hough line transform

[21].

Once the center lane or the roadside curbs are filtered out from the images,

one approach to calculate steering angle outputs is to estimate the curvature

of the detected lane. For instance, [30] uses images captured from RGB cam-

eras, and then tries to fit a simple parabolic model to the detected curb. To

overcome the issue where lanes are not perfect low-order polynomial functions,

much research has been conducted to represent the lanes using more sophis-

ticated models. [77] proposes B-snake, a higher-order fitting function which

also accounts for camera intrinsic parameters. This method uses B-splines to

fit the lane boundaries, which can take any shape. Additionally, [77] utilizes

CHEVP and Minimum Mean Square Error (MMSE) to find respectively the

initial position and control points for the B-snake. This method was shown to

achieve good robustness under different road conditions.

Vehicle control based on lane curvature

Many lane-following features on modern cars control the steering inputs based

on the lane curvature [10], [41]. [41] uses onboard cameras to estimate road in-

formation, such as lateral offset and lane curvature, using a parabolic equation

model. Then the method uses the dynamic model of the vehicle, along with a

pre-defined lane change completion time, to estimate the lateral position and

yaw angle of the vehicle on the road. The dynamic model inputs the lateral

position on the road, vehicle speed, and yaw angle to calculate a steering angle

command. The vehicle steering system executes this command to complete the

lane-keeping feature. This systems performs well provided road conditions are

clear because it relies on a good lane representation model. When road condi-

tions are bad (e.g. snow-covered or muddy roads, where lane markings are not

visible), the system is unable to provide reliable steering control commands.

21

Deep learning-based vehicle control

While earlier methods required a lane model to describe road curvature and

position of the vehicle, the rise of deep neural networks has inspired new

research directions in self-driving vehicles. Many deep learning-based self-

driving methods (e.g. end-to-end learning [8] and PilotNet [9]) are reported

to provide robust performance even in poor visual conditions. [8] proposes

end-to-end learning, which trains a convolutional neural network which inputs

raw images directly from the front-facing cameras and then outputs resulting

steering commands. Unlike other methods which consist of many intermediate

steps (e.g. lane detection followed by vehicle control), [8] argues that end-to-

end learning methods will eventually achieve better results because of their

internal self-optimization process. This claim is based on the fact that human

decisions are made by decomposition of the problem, which may provide the

most optimal solution. Also, [8] points out that a smaller network can still

provide good performance, which translates to faster processing times. The

training data is collected from a camera mounted on the car, as well as the

steering angle at each frame. To overcome the issue where the network has a

bias to go straight, [8] increases the proportion of frames that represent the

road curvatures. Overall, [8] and [9] demonstrate the potential and robustness

of end-to-end learning-based self-driving designs.

3.2.3 Traffic sign recognition

Traffic signs (e.g. stop signs, yield signs, speed limit signs) play a crucial role

in driving because they impose rules and requirements which vehicles need to

follow. Therefore, traffic sign recognition is one of the essential components

of a self-driving car system. In general, there are two ways of solving traffic

sign recognition problems: 1) classic computer vision (e.g. color thresholds,

shape detection) 2) Neural networks [19]. The first approach is able to iden-

tify the shape and the color of the traffic signs (e.g. round and triangle), but

these methods usually fail to understand the context of the signs, because

traffic signs may have identical shapes or colors. Conversely, using conven-

22

tional computer vision techniques results in very fast processing times, which

is crucial for self-driving projects. Therefore, this method is good for traffic

sign detection but not ideal for classification. [19] lists two means to detect

traffic signs:

1. Color thresholding: Generating a mask with only pixel intensity in a

color channel within a certain range.

2. Corner detection and extraction: Using optimal corner detector [61] to

locate and identify the shape of the traffic signs.

With the vast progress in deep neural networks (DNNs) and improvements in

hardware, many researchers have studied the traffic sign detection and classifi-

cation problem using neural networks (e.g. Multi-column deep neural networks

[14], or generic object classifiers such as YOLO [62]). Neural networks usu-

ally require a large amount of training data to perform accurately. Therefore

there are some big collections of labelled traffic sign data (e.g. German traffic

sign detection benchmark, or GTSDB [31]). These learning-based methods

have shown to overcome many limitations of non-learning based methods (e.g.

image background interference, traffic sign context interpretation). Notably,

some of the DNN-based solutions have achieved better recognition performance

than humans [14].

3.2.4 Decision tree

Driving a vehicle on the road is a complex task. The top-level goal can be

summarized as travelling from point A to point B, but computers need to break

this abstract task into multiple sub-tasks (e.g. lane keeping, lane changing,

traffic signs detection, obstacle avoidance). Although each individual task may

be accomplished by a simple closed-loop control system, the overall system

needs a sophisticated design to interface the different modules and make the

final decision on vehicle inputs. One way to construct this system is to use a

decision tree approach. Li et al. [44] propose POMDP, an explicit decision tree

structure for the self-driving system. [44] uses a discrete-time Markov chain

23

to model the vehicle, with each node in the decision tree corresponding to an

action. The driving objectives are represented by reward functions. Therefore,

the problem is to find the optimal series of actions (or policy) that achieves

the highest cumulative reward.

3.3 DIY remote control (RC) car under lab

settings

In this section, we describe the hardware and software setup of our developed

RC car. Due to time and cost constraints, this experiment is mainly a proof-

of-concept and is tested in a simplified environment within the lab.

3.3.1 Dynamic model of the differentially-steered vehi-
cle

In contrast to most real-world passenger vehicles that have steerable wheels,

the DIY vehicle built in this project is steered by different speed of the wheels

on the each side of the vehicle. As shown in Figure 3.1, the schematic kinematic

model of the vehicle, the front wheel of the vehicle is a non-driving wheel

and it is solely for stability. The derivations and the kinematic model of the

differentially-steered vehicles are based on [17].

We denote the vehicle frame as {B} and the world frame as {O}, the

instantaneous center of rotation as ICR, the width between the wheels is W ,

and the rotation angle of frame {B} relative to frame {O} is θ. Assuming

there is no sideways slip, the velocity of the vehicle (in frame {B}) is:

Bv = (ν, 0) (3.1)

We let RL and RR denote the radius of curvature for left wheel and right

wheel respectively, as shown in Figure 3.1. The angular velocity of {B} is

obtained:

θ̇ =
vL
RL

=
vR
RR

(3.2)

Note that RR = RL +W , so we can rewrite Equation (3.2) as:

θ̇ =
vR − vL
W

(3.3)

24

Figure 3.1: The schematic diagram of the kinematic model of the RC car

Let v = vR+vL
2

and v∆ = vR − vL denote the average and differential

velocities of the vehicle respectively, we can obtain the following equations of

motion:
ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v∆

W

(3.4)

With this dynamic model (3.4), we can theoretically build a closed-loop

controller. However, while the above model uses continuous states and inputs,

the actual system is driven by discrete-valued (discontinuous) inputs, meaning

classical nonlinear feedback design methods do not directly apply. This is a

strong motivation for implementing a DNN-based end-to-end learning design

to control the vehicle.

3.3.2 Hardware setup

The system consists of three major components:

1. Mechanical parts and motors: We designed the chassis of the RC car in

SolidWorks, outputted the assembly as an STL file, and then 3D printed

25

the parts. We measured the dimensions of the logic boards and sensors

to assure the designed assembly can hold all the parts. The vehicle is a

three-wheel system. We used two direct-current (DC) motors to actuate

the RC car. The front wheel is a non-driven wheel used to support the

chassis. The complete system is shown in Figure 3.2.

2. Logic boards or on-board processors: There are two logic boards installed

on the vehicle: an Arduino Mini and a Raspberry Pi v4. The Arduino

Mini controls the two DC motors, and it receives its commands from the

Raspberry Pi. The Raspberry Pi receives images from the Raspberry

Camera as well as ultrasonic distance-measuring sensors, and commu-

nicates with a remote PC. Due to the computational limitations of the

Raspberry Pi, and the self-driving features relying on neural networks

(which require a GPU for real-time operation), all decisions are com-

puted and sent out from the remote PC. In future revisions, we can get

rid of Arduino Mini since the Raspberry Pi board has GPIO ports which

enable direct control of the DC motors.

3. Sensors: We installed three different types of sensors on the self-driving

RC vehicle: an RGB camera (Raspberry Pi Cam), an ultrasonic distance

sensor (HC-SR04), and a scanning Lidar (RPLidar). The RGB camera is

the primary sensor and provides RGB images of the front of the vehicle.

This information is used to detect the road, calculate road curvature,

recognize traffic signs, and identify the target. The ultrasonic sensor

is used for obstacle avoidance. The sensor has one ultrasonic sound

wave emitter and one receiver. It measures the distance between the

reflected surface (e.g. obstacles) and the receiver. The final sensor is

the Lidar, which measures distances in a complete circle around the

vehicle to return a scan. The resulting laser scans provide 2D mapping

information, which is useful for navigation and path planning.

26

Figure 3.2: System overview of the self-driving RC car with notations

3.3.3 Software setup

In this section, we discuss the methodology and configuration of the software

packages in the self-driving RC car.

System overview

We implement three core features for the self-driving RC vehicle:

1. Road detection and lane following: Controlling the steering of the vehicle

such that it stays within the center of the lane

2. Traffic signs and signals recognition: Detecting traffic signs and signals

along the road, and following their prescribed rules (e.g. stop at the stop

signs and wait for three seconds)

3. Obstacle avoidance: Using ultrasonic sensors to detect and avoid hitting

obstacles

As shown in Figure 3.3, due to the inadequate computational resources

in the Raspberry Pi and Arduino, we use a powerful offboard PC to run the

heavy-duty neural network and decision tree pipeline and make the decision for

the RC car. The Raspberry Pi board is in charge of collecting sensor data from

the camera and ultrasonic sensor and transmitting this data to the remote PC

via a WiFi connection. The Ardunio board serves as the command execution

center and drives the two DC motors according to commands received.

27

Figure 3.3: An overview of the system of the self-driving RC car

Road detection

To simulate a road, we use yellow tape to represent lane markings (as shown

in Figure 3.4). The road forms a closed loop so the vehicle can drive contin-

uously without human intervention. As discussed in Sec. 3.2.2, there are two

main ways to detect the road curvature and follow the lane. We tested both

approaches: lane model estimation and end-to-end learning.

The first step is to use color thresholds to filter the lane markings from

the noisy background. The lane markings are yellow to match the actual color

on the road. Because the color is very distinct from its surroundings, color

thresholding is the natural solution to filter these lane markings. The default

color channels are RGB channels, representing red (R), green (G), and blue

(B) information. However, this color representation is too sensitive, and a

small change in color may have a large impact on one or more channel. This

means RGB images make it difficult to find the correct color ranges for the lane

markings. On the other hand, HSV (Hue, saturation, and value) representation

is a better alternative to color representation, because unlike RGB channels,

the single hue channel is most sensitive to color type. S and V channels control

the saturation and brightness of the color. Hence, we converted the camera

image from RGB to HSV space (see Figure 3.5), and performed thresholding

28

Figure 3.4: An image of the lane markings in the lab captured from the Rasp-
berry Camera mounted in front of the vehicle

based on the values of the three channels.

if Hlow ≤ thH ≤ HHigh

if Slow ≤ thS ≤ SHigh

if Vlow ≤ thV ≤ VHigh

⇒

thH = 1 else 0
thS = 1 else 0
thV = 1 else 0

(3.5)

As listed in Equation (3.5), we find the upper and lower bounds (Equa-

tion (3.6)) for each channel, and then threshold the image to form a binary

mask as shown in Figure 3.6.
Hlow = 20 and Hhigh = 35
Slow = 50 and Shigh = 255
Vlow = 100 and Vhigh = 255

(3.6)

Lane curvature estimation

Once the lane markings are identified, the next step is to estimate the lane

curvature and control the vehicle based on the lane model. The Raspberry

PI camera is calibrated offline to obtain its intrinsic parameters. OpenCV

provides a built-in function (cv2.undistort) to undistort the image given the

camera intrinsic matrix. In order to estimate the curvature of the lane, we

29

Figure 3.5: The image of the lane markings after the conversion from RGB
space to HSV space

Figure 3.6: The binary image of lane masking after the HSV thresholds have
been applied

30

also need to apply perspective transform to the undistorted image to get a

birds-eye view of the lane. The perspective transformation process uses four

image correspondences to calculate the homography matrix which is applied

to the original image. We use the junction lines between tiles on the floor as a

reference line to find the destination points. A sample output image is shown

in Figure 3.7.

Figure 3.7: The output image of lane markings after the perspective transfor-
mation

We use a parabolic model x = ay2 + by + c to fit the curvature of the

lane from the unwarped binary image, where x and y are the horizontal and

vertical coordinates of the pixels respectively.

The first step is to locate the pixel locations of the lane within the image.

Searching the entire image would be tedious and inefficient. Therefore, we

use sliding windows to find the lane pixels(Figure 3.8). Once we locate the

locations of the pixels of the lane markings, we can use a polynomial fitting

function to find the coefficients a, b and c of the parabolic equation. Since each

non-zero pixel has a unique coordinate (x, y), polynomial fitting is applied to

these pixel coordinates. However, having a parabolic equation to describe the

lane is not our end goal for vehicle control. Rather it is an intermediate step

31

to get the following core values for the steering: 1) Radius of curvature and 2)

Lateral offset of the vehicle relative to the lane center.

Rcurve =

[
1 +

(
dx
dy

)2
]3/2

∣∣∣d2xdy2

∣∣∣ (3.7)

dx

dy
= 2ay + b (3.8)

d2x

dy2
= 2a (3.9)

Equation (3.7) shows the formula for the radius of curvature. The first

and second-order derivatives of the parabolic model are given in Equation

(3.8) and (3.9), respectively. Therefore, the radius of curvature is given by

Equation (3.11). The lateral offset of the vehicle relies on the world metric

distance to pixel ratio rmeter per pixel. Assuming the camera is mounted at the

center of the vehicle, the lateral offset can be calculated as:

xoffset = (Image Width/2) ∗ rmeter per pixel (3.10)

Rcurve =
(1 + (2ay + b)2)

3/2

|2a|
(3.11)

Once the radius of the curvature and the lateral offset of the vehicle relative

the center of road have been determined, the next step is to control the vehicle

based on theses two pieces of information.

End-to-end learning approach to vehicle control

Another approach we tried on the self-driving RC car is the end-to-end learning

method for steering and speed control. The most natural way to solve this

problem is to design a neural network that inputs an image and outputs the

steering angle and the throttle input to control the vehicle. However, our

DIY RC car does not have pivoting wheels for turning like conventional cars.

Therefore, we design a novel system to control the vehicle based on the image

perceived.

32

Figure 3.8: Sliding window search of the lane markings. Green blocks are each
individual search window

We first implement a simple keyboard input algorithm to control the ve-

hicle. There are four possible states of the system, and their corresponding

keyboard mappings are listed below:

1. W: Initiate Forward state, where both motors (i.e. left and right) have

the same direction and amplitude of speed.

2. S: Initiate Stop state, where all commands are zero and the vehicle is

stationary.

3. A: Initiate Left turn state, in which the left motor has around 70% of

the right motor’s speed. In this case, the vehicle slowly turns to the left,

while still maintaining forward driving.

4. D: Initiate Right turn state, in which the right motor has around 70% of

the left motor’s speed. In this case, the vehicle slowly turns to the right,

while still maintaining forward driving.

Unlike a steering angle prediction network, which is a single-output regres-

sion network, our network needs to produce only three outputs: the probabil-

33

ities for each state. We thus build a lightweight convolutional neural network

(CNN) for this purpose.

Figure 3.9: The structure of the CNN used in self-driving RC project

As shown in Figure 3.9, our network has 5 convolutional layers. The first

three convolutional layers have a (5 × 5) kernel size and a (2 × 2) stride.

This way the network will have fewer parameters to learn while still retaining

most of the information from the images. For the dense layers, the first three

have no activation function and the last output layer has a softmax activation

function. This is important because dense layer #3 outputs a vector with 10

real values (which can be negative, zero or positive) and the softmax function

(Equation (3.12)) converts this vector to a new vector ~K whose elements sum

to 1. Therefore, after this step, each component within the vector ~K can be

interpreted as probabilities. The output dimension is (1 × 3), meaning for

each input image, the network outputs a vector ~K with three elements, each

element corresponding to the probability of one command. Although there

are four states (as discussed above), we ignore the Stop state such that the

network handles only the steering for the vehicle. For each perceived RGB

frame fed into the CNN, the control action is chosen as the element within ~K

which has the largest probability.

fi(x) =
exp (xi)∑
j exp (xj)

(3.12)

To train this CNN, we first manually drive the RC car along the track using

the keyboard. Simultaneously, we record the RGB image perceived together

with the keyboard command given by the operator at the instant the image is

34

recorded. The keyboard command data is one-hot encoded to match the data

type of the output from the CNN. The order of the output command vector is

[”W”, ”A”, ”D”]. For example, for a pair Pa with image Ia and corresponding

keyboard input command ”A”, the training data is

Pa : (Ia, [0, 1, 0]) (3.13)

Likewise, if some image In is fed into the CNN and the output is [0.1, 0.9, 0],

this means the probability to execute ”W” is 0.1, and the probability of ”A”

is 0.9. Since we choose the command with the highest probability, in this case

we send the command “A” to the Arduino.

In addition, since the track forms a closed loop and at each data collection

session we drive the vehicle in one direction, this means that for each training

set, the vehicle is driving either clockwise or counter-clockwise. This obser-

vation implies the CNN will be biased to make predictions of ”A” (turning

left, for counter-clockwise training data) or ”D” (turning right, for clockwise

training data). To overcome this issue, we applied data augmentation to our

training set, in which we horizontally flipped the image and corresponding

keyboard command (e.g. ”A” to ”D” or vice versa).

Traffic sign detection

Another important feature in self-driving RC cars is traffic sign detection and

recognition. Since there are more than 500 types of road signs, the traffic sign

detection pipeline needs to have the ability to detect multiple objects simul-

taneously. YOLO (You only look once) [62] is one such object classifier which

can detect and classify multiple objects at the same time. As listed in Equa-

tion (3.14), YOLO has five terms in the loss function. The first two terms

correspond to localization loss, the third and fourth terms correspond to con-

fidence loss, and the last term is for classification loss. With this sophisticated

loss function, YOLO achieves the best score in many benchmarks compared

to other state-of-the-art object classifiers [62]. However, the original YOLO

can only detect 49 types of objects, while there are over 500 different types of

road signs. To overcome this limitation, Redmon et al. proposed YOLO9000

35

[63], which can detect over 9000 objects.

λcoord

∑S2

i=0

∑B
j=0 1

obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2]

+λcoord

∑S2

i=0

∑B
j=0 1

obj
ij

[(√
wi −

√
ŵi

)2
+
(√

hi −
√
ĥi

)2
]

+
∑S2

i=0

∑B
j=0 1

obj
ij

(
Ci − Ĉi

)2

+λnoobj

∑S2

i=0

∑B
j=0 1

noobj
ij

(
Ci − Ĉi

)2

+
∑S2

i=0 1
obj
i

∑
c∈ classes (pi(c)− p̂i(c))2

(3.14)

To test traffic sign detection performance, we color printed a stop sign

and used glue to stick it to a cardboard backing (see Figure 3.10). Although

there are many traffic signs, we chose the stop sign since the DIY RC car can

respond to the sign and make a full stop. On the other hand, other traffic signs

(e.g. yield sign) would need interaction with other vehicles hence the scenario

would be much more complex. Therefore, the stop sign is a good choice for a

proof-of-concept purpose.

YOLO needs both the location and the class of the objects in the image

for training, and more training sets will result in better performance in theory.

Hence, we augmented our training sets by randomly placed stop sign patches

in various images we collected from the Raspberry Pi camera mounted on the

RC car. Each resulting image then has the track and one stop sign in sight.

Traffic lights detection

Besides road signs, another important piece of road information are traffic

lights. One approach is to use YOLO to detect and classify these traffic lights.

The training and implementation process remain identical as discussed pre-

viously. Another approach which is simple yet robust is to use color thresh-

oldings, contour detection and shape fitting. This approach is based on the

fact that traffic lights are circular and have very distinguishable colours. The

pipeline for this approach is listed below:

1. Get two binary masks (IG and IR): red color thresholding and green

color thresholding.

36

Figure 3.10: The stop sign detection test scene

2. Finds sets of contours {CG} and {CR} (using cv2.findContours) in both

binary masks IG and IR.

3. Find the center and radius of the circular contour (as shown in Algorithm

1) using a Hough circle transform.

Algorithm 1 Traffic light detection

1: for C in {C} do
2: a = Area(C)
3: if (a < thlower)||(a > thuppper) then
4: Continue
5: else
6: if C ∈ {Circles} then . Check if the contour is a circle
7: return c,r . Return the center and radius of the circle
8: end if
9: end if
10: end for

Once this pipeline is implemented, traffic lights can be identified and de-

tected in real time (as illustrated in Figure 3.11).

37

Figure 3.11: The traffic light detector

Distance estimation from the bounding box and circular contour

Another problem is sign distance estimation based on the bounding box gen-

erated by YOLO. YOLO is designed to detect objects at different scales, yet

we do not want the vehicle to stop too early when the stop sign is still at a

distance. Hence, we need to estimate the distance between the vehicle and the

stop sign based on the pixel width and/or height of the bounding box.

Assuming the actual width of the stop sign is W (which can be measured

by a ruler), the pixel width of the bounding box is w′, and the depth (the

distance between the image plane and the actual stop sign plane) is Zw, the

following expression can be found:

Zw = fx
W

w′
(3.15)

A similar expression is established for height:

Zh = fy
H

h′
(3.16)

Both Zh and Zw represent the distance to the sign. If the width and height

resolutions of the image are similar (i.e. the aspect ratio is close to 1), then

38

we can use the geometric mean x̄ =
√
x1x2 to get a more accurate estimation:

Z̄ =
√
ZhZw (3.17)

However, if the image has an aspect ratio of 4 : 3 or 16 : 9, Zh is more

favorable because Zw will be too sensitive.

Similarly, we need to estimate the depth to the traffic lights. In this case,

the pixel center c′ and the radius r′ are known. Denoting the actual radius

of the red light as R, the following expression can be found for the circular

contour:

Z̄r =
√
fxfy

R

r′
(3.18)

Logical tree control

We design a logical tree that combines each module introduced in above sec-

tions into a self-driving system. Since each module has different outputs, a

logical tree stitches the outputs from different modules to make a high-level

decision and directly control the vehicle. As shown in Figure 3.12, the final

outputs of the logical tree are states. Besides the four states (discussed in

Section 3.3.3), we add a new “stop sign” state, in which the vehicle stops for

three seconds and then reinstates the ”forward” state. Therefore, the logical

tree can be interpreted as the switch between different driving states.

3.4 Experimental results

To illustrate the performance of the proposed self-driving system and the in-

dividual sub-modules, we set up three experiments:

1. A non-circular, open-ended track, with traffic lights/signs and obstacles,

to test the overall performance of the system and perform qualitative

evaluations

2. An enclosed track to test the lane-keeping performance

3. Stop sign detection and distance estimations

39

Figure 3.12: The flowchart of the logical tree for the self-driving DIY RC car

40

The detailed setup procedure for the self-driving simulation can be found

in Appendix A.

3.4.1 Qualitative evaluation

We employ the logical tree (Section 3.3.3) to process information and make

the final decision for the car. To demonstrate the result, we record the screen

with all the modules running and added footage of the DIY RC car during

the experiment (a screenshot of the video is shown in Figure 3.13). The video

was edited so each individual module was demonstrated and is available on

YouTube (https://youtu.be/jP_zEGXf_p0).

Figure 3.13: A screenshot of the demonstration video for self-driving RC car’s
performance

The vehicle successfully met the desired objectives:

1. Driving along the track (lane marked by yellow tape) without its wheels

brushing the lane

2. Stopping the car when any obstacle is detected within a certain range,

and reinstating the car when the obstacle is removed

3. Obeying traffic lights (advancing on a green light and stopping on a red

light)

4. Fully stopping at the stop sign and resuming motion after 3 seconds

41

https://youtu.be/jP_zEGXf_p0

3.4.2 Quantitative evaluation

End-to-end learning for lane keeping

We set up an enclosed track (as seen in Figure 3.14) to test the performance

of the end-to-end learning approach to lane-keeping functionality. The closed

loop ensures data can be collected continuously. To measure the spatial lo-

cations of the car, we used 5 Vicon tracker balls to track the coordinates of

the car during the experiment. At the same time, we also recorded all the

keyboard actions (i.e. ”W”, ”A”, ”D”, as defined in Section 3.3.3) sent from

the algorithm or by a human user.

Table 3.1: End-to-end learning datasets
Dataset Number Operator Direction

#1 Human Operator #1 Counter-clockwise (CCW)
#2 Human Operator #2 CCW
#3 End-to-end model CCW
#4 End-to-end model Clockwise (CW)

Figure 3.14: An overview of the track used for testing lane-keep functionality

The image dataset used for end-to-end model learning was collected from

an entirely different track to avoid potential overfitting problem, but both

42

the training and testing datasets used identical yellow tape. Four datasets

were collected (as listed in Table 3.1), each containing two types of data: 1)

Trajectory of the car represented by measurements from the Vicon tracking

system and 2) The driving state of the car. These two types of data are then

paired and synchronized based on timestamps recorded.

Since there are over 6000 discrete locations recorded in each dataset, we

subsampled the data (10% of the original data, evenly distributed). Figure

3.15 demonstrates the subsampled trajectories of the car in different datasets.

Each lap is plotted in a different color, but the trajectories for lap #1 and #2

are barely visible in Dataset #3 and Dataset #4, which implies that compared

to human drivers, the end-to-end learning approach achieves higher levels of

consistency in both CW and CCW directions.

Figure 3.15: Subsmapled trajectory of the car in different datasets

Another important data we collected during the experiment is keyboard

actions (or driving states). As seen in Figure 3.16, the trajectory for each

dataset is color-coded based on instantaneous driving state. In theory, the car

only needs to go forward or steer to the right in a CW track, and go forward or

43

steer to the left in a CCW track. This assumption is validated in the plot for

Dataset #3 and #4 in Figure 3.16. However, due to human errors (or human’s

reaction time), human operators tend to overcorrect the orientation of the car,

causing inconsistencies in the trajectory. Overall, although both the algorithm

Figure 3.16: Driving states along the trajectory of the car in different datasets

and human drivers complete the track without leaving the lane markings,

the end-to-end learning lane-keep approach outperforms human drivers in the

following measures:

1. Highly consistent and repeatable trajectory

2. Smoother control of the car, especially along straight lanes

44

Stop sign detection and distance measurements

As described in Section 3.3.3, we use the YOLO object detector and its re-

sulting bounding box to detect traffic signs and estimate the distance from

the car to the detected signs. We collected 394 images of a stop sign from

the on-board camera from the RC car, and used the YOLO object detector to

extract the bounding box locations. In each image, the stop sign has different

orientation and/or distance to the camera. Among the 394 images, YOLO

object detector failed to detect the stop sign on 7 images, thus achieving a

98.223% detection rate.

We use the method described in Section 3.3.3 to estimate the depth of a

stop sign. Although in Section 3.3.3, we found Zh is preferred to estimate the

distance when the aspect ratio of the image is not 1 : 1, the heights of the

bounding boxes are not consistent (as shown in Figure 3.17), especially when

the stop sign is at a distance to the camera (images were captured in low res-

olution for real-time performance). Hence, the heights of the bounding boxes

are not considered for depth estimation. In order to calculate the distance to

the stop sign Zw using Equation (3.15), the true width of the stop sign W and

the focal length fx are required. The value of the focal length is determined

using camera calibration (see Section 2.2.2) and the actual width of the stop

sign is measured by a ruler.

Figure 3.17: Inconsistent bounding box heights

To investigate how the estimation model is sensitive to the pixel errors, we

45

define the sensitivity in estimation [m/px]:

sensitivity = |Zw(w′+1)−Zw(w′)
1 pixel

|

= |fx(= 511.42) ∗W (= 0.136)(1
w′+1
− 1

w′)|

= 69.55 ∗ 1
w′(w′+1)

[m/px]

(3.19)

which is inversely proportional to the width of the bounding box. In other

words, when the bounding box is wider, the distance estimation function is

less sensitive to the bounding box pixel errors (as illustrated in Figure 3.18).

When the pixel width of the bounding box is larger than 7.80, each pixel error

will result in 1-meter error in distance estimations. Hence, when the bounding

box is too small or the object is too far (depending on the desired accuracy, 7.8

pixels for 1 meter accuracy), the distance estimated is less precise and should

be discarded.

Figure 3.18: The sensitivity of distance estimation to pixel errors

To validate the performance of the distance estimation in the experiment,

we used Vicon tracking system to obtain the relative pose of the stop sign

to the camera as the ground truth data, and recorded the estimated distance

from the bounding box extracted in each image. The stop sign was placed in

front of the camera, at distances ranging from 0.6712 meters to 1.7803 meters.

We then divided all the data into 5 bins, and calculated their average errors

46

and standard deviations based on the ground truth data. Results are listed in

Table 3.2.

Table 3.2: Average errors and standard deviations in distance estimations
Distance range [m] No. of samples Avg. errors [m] Std. deviation [m]

0.3940 ∼ 0.6712 102 0.04143 0.03038
0.6712 ∼ 0.9485 78 0.06933 0.06548
0.9485 ∼ 1.226 87 0.05026 0.04008
1.226 ∼ 1.503 88 0.05550 0.04625
1.503 ∼ 1.780 33 0.1031 0.06749

As shown in Table 3.2, the estimation function delivers consistent results

(around 0.05 meters in error) when the object is not too far away. This con-

clusion is validated in Figure 3.19, the probability density function (PDF)

values versus distance errors, where distance estimation errors have a mean

value close to zero and exhibit a small variance from it. This result proves the

Figure 3.19: The probability density function (PDF) of the errors in distance
estimations

feasibility of the proposed traffic sign detection/distance estimation system.

3.5 Conclusion

In this chapter we developed a self-driving system on a 3D-printed DIY car,

which includes:

47

• End-to-end learning lane-keeping function

• Traffic light/sign detection

• Bounding box-based traffic sign distance estimation

• Obstacle avoidance using the ultrasonic sensor

A logical tree handles all the outputs from individual modules and makes

the final decision on the car’s behaviour. Upon testing, the proposed system

completes the desired track, while complying with all the traffic lights/signs.

Additionally, the system outperforms human operators in lane keeping ex-

periments, delivering a smooth and consistent trajectory. With a 98.233%

detection rate, the system detects the stop sign in almost all cases, and the

distance estimations have an average error of approximately0.05 meters in the

distance range of 0.3940 to 1.503 meters.

More importantly, the process of developing the self-driving system and the

integration of different modules revealed the beauty of computer vision to the

writer, and familiarized him with techniques of programming and computer

vision. Therefore, the self-driving RC car project is the foundation of this

thesis, and it led to the work in the upcoming two chapters.

48

Chapter 4

Predictive Display

4.1 Introduction

Tele-operation tasks often face high latency in the communication link. While

a lot of progress has been made in optimizing communication over traditional

networks [1] or new technologies such as 5G [66], time delays remain a limiting

factor in applications such as operating unmanned rovers on Mars [56] and

underwater manipulator systems [71]. Predictive display (PD) [7] [35] was

introduced to address this issue by rendering a visualization of the scene model

to the human operator based on their commanded inputs. This provides direct

and instant visual feedback for the operator controlling the remote robot in

the face of communication delays.

Existing PD methods use offline [16], [85] or online-based 3D reconstruction

[32], [36], [60] to render the scene. Offline methods use known image priors

of the remote environment to build their model (e.g. [35] uses structure-

from-motion to build a texture model), and do not update it during opera-

tion. Therefore, this approach is limited to static environments. Online-based

methods update their model using data transmitted from the remote site to

the local operating centre. This approach is more flexible and can work in

dynamic environments.

Our aim is to develop an online PD system which is more robust to low-

textured scenes, while providing photo-realistic images corresponding to the

operator’s inputs. To do this, we integrate a generative model with an on-

line 3D reconstruction predictive display pipeline based on RGB-D images

49

Figure 4.1: An overview of the core blocks in our system. The remote robot
moves through an environment while collecting RGB-D images. This data is
sent to the operator’s workstation to build a coarse 3D map, whose corre-
sponding 2D images are generated by a camera projection. These images are
then refined by a generative model which outputs photo-realistic images of the
remote environment to the operator.

captured by the remote robot.

The key contributions of our proposed method are:

• A novel approach to predictive display which uses a coarse 3D map with

a generative model to output photo-realistic images of the scene.

• The ability to fill in missing features and upgrade texture details of

images rendered from the 3D map.

• Continuous updating of the 3D map of the remote environment to deal

with dynamic effects such as object relocation and new objects entering

the scene.

• Real-time operation enabling immediate visual feedback to the human

operator in the face of communication delays.

50

4.2 Related works

4.2.1 Predictive display

Various approaches have been proposed to construct an image-based predic-

tive display system in both offline and online variants. Cobzas and Jäger-

sand [16], [35] proposed an offline predictive display method, which gener-

ates a geometric and dynamic texture model using structure-from-motion

(SfM). The method integrates the geometric model obtained from SfM with

an appearance-based dynamic texture. The remote robot extracts the current

pose using a registration-based SSD tracker. The calculated pose is then trans-

mitted back to the operator, and is composed with the operator’s commanded

motion to render a visualization. However, this method is reliant on the ge-

ometric model provided by SfM, which may fail to achieve feature extraction

and matching in low-textured scenes, leading to an incorrect or incomplete

geometry model.

Hu et al. [32] proposed an online predictive display based on PTAM [38]

and incremental free space volume carving (CARV) [49]. The remote robot

estimates its pose and extracts sparse key points using PTAM, then incremen-

tally reconstructs the scene mesh using CARV. Similarly to the issue in [16],

PTAM may fail to detect feature points in low-textured areas (for instance

the sky), resulting in missing portions of the geometry or background. Hu

et al. proposed to address this issue by back-projecting the captured image

at the mean depth of the current scene to the proxy image as the synthetic

background. However, the results may not be satisfactory, since real images

at desired depths are not always available, and the distorted background com-

bined with the projected CARV model is not photo-realistic.

4.2.2 3D reconstruction

Schönberger et al. proposed COLMAP [68], [69], a SfM and Multi-View Stereo

(MVS) toolchain. COLMAP first extracts image features and then matches

them to obtain camera poses. SfM is then used to construct a sparse scene

model, followed by MVS to generate a dense model with more details.

51

Another approach to 3D reconstruction is based on visual SLAM, a real-

time method which incrementally upgrades the scene geometric model. For

example, ORB-SLAM [54] extracts and tracks ORB features to calculate the

camera odometry, and produces sparse point-cloud as the scene model.

Many 3D reconstruction works are based on the Signed Distance Func-

tion (SDF). Curless et al. [18] use a cumulative weighted Truncated Signed

Distance Function (TSDF) to represent the 3D map and iteratively update

the volume with new depth images. Newcombe et al. [55] proposed Kinect

Fusion, which stitches successive RGB-D images to create a preliminary map,

and continuously updates the global scene model from the estimated camera

poses. Kinect Fusion provides smooth surfaces, but its performance is limited

when the scene is out of the depth sensor’s working range (i.e. too near or too

far). This behaviour often leads to missing and noisy geometries in the recon-

structed scenes, especially in an open space. Newer works include Intrinsic3D

[50], which utilises Shape-from-Shading (SfS) and spatially-varying spherical

harmonics (SVSH) to upgrade the SDF volumes, achieving higher levels of

detail.

4.2.3 Deep learning based images synthesis

Generative models have shown great potential for image manipulations. While

most of the applications focus on 2D image generation and refinement, only

a few works have applied generative models to 3D geometric model. Yu and

Wang [86] proposed the 3D-Scene-GAN method, which inputs a 3D model and

renders synthetic images from it. The generative model iteratively updates the

3D model until the discriminator can no longer distinguish between synthetic

images rendered from the (updated) model and the corresponding real images.

Although this method works well for fixing defects such as holes and distortions

in the input 3D model, since it does not preserve the background (for instance

the sky) in the scene model, the rendered images are not photo-realistic. Thus,

to build a predictive display, instead of updating the 3D model itself, we use

a generative model to refine the images projected from the coarse 3D model.

Other learning-based approaches do not rely on convolutional networks.

52

Figure 4.2: Flowchart of the proposed system. After the self-exploration stage
is completed, a set of RGB-D images is transmitted to the operator’s worksta-
tion and used for reconstructing the 3D scene model. This stage is executed
only once, and the remaining steps are run iteratively. A 2D image is projected
from the 3D model based on the commanded robot pose. This image is refined
by the generative model, and the result is displayed on the operator’s inter-
face. Newly acquired RGB-D images are transmitted and used to dynamically
update the 3D geometry model and estimated pose of the remote robot.

NeRF [52], for example, uses the camera’s pose and field of view (FOV) as

the network’s inputs, and outputs the volume density and radiance at these

locations. A synthetic image is then generated using this information. NeRF

can produce photo-realistic images, but it was found to perform poorly in

reconstructing large scenes, which are quite common in PD scenarios. Also,

the inference time usually takes a few seconds, which makes it unsuitable for

real-time predictive display.

4.3 Methodology

4.3.1 Overview of the system

The proposed system consists of a remote robot and the local operator’s work-

station. The remote robot first explores the environment and transmits a set

of key frames {Irgb} (RGB images), {Id} (depth images) and corresponding

camera poses {Tkey} to the operation centre. A coarse 3D geometric model

M0 is reconstructed using {Irgb}, {Id} and {Tkey}. We render an image set

{Ir} at camera keyframe poses {Tkey} and train the generative model G. Once

53

the generative model is trained, given a desired pose T commanded by the op-

erator, a coarse 2D image Ir is rendered, and the generative model G is used

to refine the image. The refined image I ′r is displayed on the operator’s in-

terface. The operator thus gets an instantaneous visualization of the scene at

the commanded pose and can continue to send inputs to the remote robot. To

deal with changes in the environment, each new RGB-D image transmitted

from the robot is used to update the coarse 3D scene model M0.

4.3.2 Preprocessing

Data collection: The robot first explores its working environment, and trans-

mits RGB images {Irgb} and corresponding Depth images {Id} and camera

poses {Tkey} relative to the initial pose. Camera poses can be estimated from

two sources:

1. Computed from a kinematics model of the robot driven by sensors such as

joint encoders (arm manipulators), encoders (wheeled robots) or visual

odometry plus IMU data (aerial vehicles).

2. Obtained from a SLAM system onboard the robot.

Coarse geometry reconstruction: Any 3D reconstruction method can

be employed with our method, provided it is capable of incrementally updating

the model when new RGB-D images arrive, and can run in real-time. In our

case, we use TSDF volumetric integration [18] due to its ability to fill in missing

data and fast performance relative to newer methods such as Intrinsic3D [50].

TSDF consists of two steps: volumetric integration followed by hole filling.

The first step iteratively integrates triangulated depth images onto the existing

mesh, using weighted signed distance functions on sample points:

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) + wi+1(x)
(4.1)

Wi+1(x) = Wi(x) + wi+1(x) (4.2)

where Di(x) and Di+1(x) are summed signed distance functions, Wi(x) and

Wi+1(x) are summed weights in the ith and (i+1)th depth image, respectively,

54

di+1(x) are the signed distance functions in the i+1th depth image, and wi+1(x)

are weights in the i+ 1th depth image. The resulting mesh typically contains

many holes. Thus the second step extracts the isosurfaces close to missing

data regions in the mesh, and holes are connected using the process described

in [18]. The reconstructed coarse 3D model is denoted as M0.

4.3.3 Generative model learning

Camera projection is used for both training data preparation and the tele-

operation interface. Once the coarse geometric model M0 is built, we ap-

ply OpenGL’s perspective projection [70] at recorded key frame camera poses

{Tkey}, which projects the points within the viewing frustum of the camera

to a resolution matching the RGB images from the remote robot {Irgb}. An-

other tuning parameter is the field of view (FOV), which affects the projected

images. To replicate the real camera used to capture {Irgb}, the FOV is set

to match the robot camera’s view frustum, including right, left, top, bottom

limits (r,l,t,b) and user-specified (n, f) which determine the closest and fur-

thest range of visible space. The perspective projection matrix Tperspective is

built with these six parameters. Multiplying this matrix by the homogeneous

coordinates (x, y, z, w = 1) of points in the 3D model produces the clipped

coordinates (x′, y′, z′, w′) of the point. Dividing the transformed coordinates

by w′ produces Normalized Device Coordinates (NDC) with values between

-1.0 and 1.0. Now the projected coordinates can be cast onto the image plane

with a desired image resolution by means of linear interpolation.

Training data augmentation: The generative model used in our sys-

tem is CycleGAN [88], which introduces both conventional adversarial losses

[24] LGAN and cycle consistency losses Lcyc to improve the forward and back-

ward consistency. Another advantage of CycleGAN is that it does not require

dataset alignments (i.e. the number of images within the two image domains

X and Y can be different and images can be unpaired). Therefore, in addition

to the coarse images {Iproj} projected from M0 at key frame camera poses

{Tkey}, we also apply random transforms to {Tkey} and generate additional

images {Iaug} to augment the training image set. The resulting set of images

55

is denoted as {Iproj+aug}.

Once two training image sets X and Y are set up, CycleGAN optimizes two

mapping functions G : X → Y and F : Y → X and two discriminators DX

and DY . We thus train the generative model to map from generated images

X = {Iproj+aug} to real images Y = {Irgb}. The overall objective is to solve

(G∗, F ∗) = arg min
G,F

max
Dx,DY

L (G,F,DX , DY) (4.3)

After the generative model is trained, the generator function G∗ is able to

output a refined image I ′ given any image Ir rendered from the coarse model

M0:

G∗ : Ir → I ′ (4.4)

4.3.4 Online model updating

Since there can be changes in the environment during the course of remote

operation (e.g. existing objects moved or new objects added), it is also impor-

tant to transmit newly acquired RGB-D images to the local operator’s station

whenever possible in order to update the 3D model online. When new RGB-D

images are received, they are integrated into the existing 3D model by lever-

aging the weight values in Equations (4.1) and (4.2). Newer observations have

more weight, so incoming RGB-D images update the existing 3D model.

4.3.5 Robot pose correction

In the PD interface, the operator drives the remote robot through physical

inputs. These commands are sent in parallel to the remote robot and a local

simulator. This simulator, for instance Gazebo [39] or iGibson [83], simulates

the robot dynamics and calculates its pose Tsim.

Meanwhile, the remote robot executes the sent inputs and moves to Treal.

However, if the remote robot encounters disturbances such as new obstacles

or unmodeled dynamics, the commanded motions are not fully executed. In

this case, errors in the simulated pose of the remote robot will accumulate. To

address this issue, we let the remote robot periodically report its current pose

56

Treal with an associated timestamp. Therefore, whenever this pose is received,

it is propagated through the simulator using a history of inputs to correct Tsim.

4.4 Experimental results

4.4.1 Experiment setup

Remote robot: We use an Intel RealSense D415 as the RGB-D sensor and

attach it to the end-effector mounting plate of the well-known Baxter robot

from Rethink Robotics (Fig. 4.3).

Local operator’s workstation: The local operator’s workstation is equipped

with an Intel i7-8700K CPU and an NVidia GTX 1080 Ti GPU. We use this

setup to evaluate the real-time capabilities of the system.

Dataset capture: To evaluate the performance of our method, we cap-

tured 8 datasets and tested them with TSDF and NeRF. Camera poses are

calculated using the robot’s forward kinematics for each dataset. Four datasets

focus on small objects at distances between 0.6 meters and 2.1 meters (Near

#1-4), while the other four datasets are captured at distances between 3 me-

ters and 6.5 meters to represent a larger scene (Far #1-4). The dataset details

are listed in Table 4.1.

Table 4.1: Dataset details. Two generative models were trained for “Near”
and “Far” sets respectively. 2916 and 1854 images were used to train the
“Far” and “Near” generative models, respectively. Each dataset was captured
independently and thus has a different camera trajectory.

Dataset Notation Description
Far #1 Trajectory used for training
Far #2 Static scene
Far #3 Relocated objects
Far #4 Novel(unseen) objects

Near #1 Trajectory used for training
Near #2 Static scene
Near #3 Relocated objects
Near #4 360-degree trajectory

57

Figure 4.3: Experimental setup. The end-effector mounting plate holds a 3D-
printed camera holder. An Intel RealSense D415 is mounted on the camera
holder. The pose of the camera relative to the world frame is calculated using
forward kinematics.

4.4.2 Qualitative evaluation

Texture upgrades: To evaluate the quality and realism of processed images,

both qualitative and quantitative evaluations were used. For comparison, we

provide visual results produced by the TSDF volumetric integration method,

the backbone of many online 3D reconstruction methods, as well as COLMAP,

an offline method. As seen in Figure 4.4, the improvement obtained by using

the generative model in our system is significant, especially in cases where the

scene is static. TSDF reconstructs scenes poorly, mainly due to the hardware

limitations of the RGB-D camera (low resolution and noisy readings), resulting

in missing sections in the rendered images. Our method fills in these missing

sections with photo-realistic textures, with only small misalignment created

by errors in the generative model and 3D reconstruction.

When the scene changes, or new objects enter the scene, the performance of

our method drops. This behaviour is expected since the generative model lacks

knowledge about new textures and geometries. Although the level of detail

decreases, the new objects do not vanish from the output images. Dataset Far

58

Near #2 Near #3

TSDF

Ground
Truth

Dataset
No. Far #2 Far #3 Far #4

COLMAP

Ours

Figure 4.4: Comparison of results from 3D reconstructed proxies processed by
different methods: TSDF, COLMAP and our system, together with ground-
truth images from the dataset.

59

#4 (shown in Figure 4.4) is a good example to illustrate the behaviour. Both

the chessboard and the green chair are new objects, but they are preserved

by the generative model. In general, our method yields best results when the

scene is static, providing high-quality and photo-realistic images, but when

new objects are present in the scene, the image displayed to the operator still

renders the new object, albeit with worse visual quality than previously-seen

objects.

Baseline methods comparison: As an offline method, COLMAP fails

to update the 3D model from new RGB-D images. By default, COLMAP

uses feature extraction and feature matching techniques to calculate camera

poses. For fairness of comparison, we forced it to use our camera poses esti-

mated from the robot dynamics model, same as in our method. The bundle

adjustment and other optimizations used by COLMAP remained unaffected.

COLMAP has limitations in reconstructing surfaces in texture-less areas, and

some geometries have texturing errors. COLMAP is more stable in large scene

reconstruction (as seen in the Far datasets in Figure 4.4) compared to close-

range object reconstruction. In texture-rich area (e.g. the chessboard in Far

#4), COLMAP provides better texture deatails than our method. Overall, our

method provides more consistent and complete scene images than COLMAP.

We also compare our method with NeRF. As NeRF works best with inward-

facing scenes, we use Near #4 to compare the performance of our method

versus NeRF. Since NeRF does not export its mesh, we manually select two

images which have similar camera perspectives, as shown in Figure 4.5. Al-

though NeRF is seen to provide good-quality images, it is not suitable for PD

applications for the following reasons:

1. Inference time is too long. The original NeRF implemented on Tensor-

Flow architecture takes 2 to 3 seconds to process one image query on a

GTX 1080Ti GPU, compared to an inference time of around 0.2 seconds

in our method.

2. NeRF is not designed and optimized for large scenes, which are common

in PD applications. On our Far datasets, training failed to complete.

60

3. NeRF does not work in dynamic environments. Unlike the generative

model used in our method, NeRF does not update its model during

runtime.

Figure 4.5: Qualitative comparison between NeRF and our method. NeRF
has slightly more textural details about the objects at the center, but corners
around the image are noisy and lack details (e.g. the bottom of the chairs).
Also, some objects have geometry reconstruction errors (the edge of cap of the
barrel, the black package etc.)

4.4.3 Quantitative evaluation

Several quantitative image similarity and quality evaluation metrics were used

to compare between ground truth and synthetic images: 1. Mean-squared error

(MSE); 2. Peak signal-to-noise ratio (PSNR); 3. Structural Similarity Index

(SSIM) [78]; 4. Dubbed blind/referenceless image spatial quality evaluator

(BRISQUE) [53]; 5. Learned Perceptual Image Patch Similarity (LPIPS) [87].

BRISQUE is unique in that it does not rely on a ground truth image.

The MSE metric computes the mean squared pixel-wise differences between

synthetic images and ground truth images, without considering structural in-

61

Table 4.2: Mean values of evaluation scores. We take average values of all
datasets (excluding two training sets Far #1 and Near #1). ↑ means higher
values represent better performance, and ↓ indicates smaller values represent
better performance.

Scores MSE↓ PSNR↑ SSIM↑ BRISQUE↓ LPIPS↓
TSDF 1486.3 17.253 0.4852 28.008 0.5951

COLMAP 4608.0 12.425 0.4290 31.279 0.6633
Ours 1405.4 17.631 0.5168 25.127 0.3486

Ground Truth N/A N/A N/A 18.111 N/A

formation. An image pair with a smaller MSE value has better pixel-wise

similarity. The smallest mean MSE values are achieved by our system. The

PSNR metric measures the ratio of pixel intensities between images, meaning

a larger mean value represents better similarity. SSIM is a metric consid-

ering local features including structure, luminance, and contrast in images.

BRISQUE, as a non-referenced method, uses locally normalized luminance co-

efficients to evaluate the naturalness of the image. LPIPS uses a deep neural

network to compare perceptual similarity, and is reported to better align with

a human’s choices when it comes to similarity as compared to PSNR and SSIM

[87].

Overall performance: To evaluate the overall performance of our pro-

posed method versus TSDF and COLMAP, we evaluate all images in the

datasets (excluding Far #1 and Near #1 which are used for training) against

5 metrics, and take the average of all the scores, as listed in Table 4.2. Our

proposed method achieves the best scores in every metric. The improvements

in image quality metrics are significant, especially in LPIPS where the score

is almost doubled, which indicates our proposed method delivers more natural

and realistic images than the TSDF method.

Performance in different scenarios: As demonstrated in Figure 4.4, the

image quality decreases when objects are relocated or previously unseen ob-

jects are present in the scene. In Figure 4.6 we illustrate the LPIPS evaluation

scores on different datasets. Our method outperforms TSDF in all scenarios

in terms of similarity scores; however, image quality is still negatively affected

by both relocated and new objects in the scene.

62

Figure 4.6: LPIPS scores on different datasets. Lower values mean higher
perceptual similarity to the ground-truth images.

4.5 Conclusion

We presented a novel predictive display pipeline for teleoperation over high

latency communication links, which uses a locally stored 3D map of the envi-

ronment to generate 2D images from the predicted pose of the remote robot,

thus providing delay-free visual feedback to the human operator. Our system

reconstructs a coarse 3D scene model and uses it as prior knowledge to train a

generative model to generate photo-realistic synthetic images for the operator.

Experimental results demonstrate that the proposed method has the ability

to fill in missing geometries and is able to reconstruct and refine relocated and

novel objects, which are common for tele-operation in dynamic environments.

Our method outperforms other approaches to online reconstruction in both

qualitative and quantitative testing.

63

Chapter 5

External Vision-based Joint
Detection System

5.1 Introduction

As autonomous robotics arm manipulators are becoming more popular and

widely used, such as assembly operations in automotive manufacturing [57],

food preparation [13] and logistics management (e.g. Amazon picking chal-

lenge [29]). One of the key components in precise robotics tasks like these

is motion planning, which includes forward and inverse kinematics. However,

forward and inverse kinematics rely on robot geometry and joint position mea-

surements. Although many customer-grade robot arms, such as Barret WAM

Arm or Kinova JACO, can provide precise joint measurements from onboard

transducers, inexpensive robot arms or human-operated hydraulic system fail

to measure the joint states due to:

1. Poor encoders, which lacks precise transducer readings for joint states

2. No joint feedback, which is fairly common in human-operated manipu-

lators (e.g. knuckle-boom cranes)

In order to address these issues, one direct and obvious solution is to add

precise encoders (or any joint feedback sensors) to these systems. However,

this solution requires throughout customization, which results in high cost,

low versatility and maintainability. An alternative solution is to use computer

vision to detect the joint angles and end-effector poses, as demonstrated in

64

[42], [43], [89]. This solution is more appealing thanks to high versatility and

easier deployment.

As discussed in Section 2.3, there are many types of imaging sensors, in-

cluding conventional RGB cameras, RGB-D cameras, infrared cameras (e.g.

Vicon motion tracking system). Among all the imaging sensors, RGB cameras

is the least costly one, yet providing the most versatility, which makes RGB

cameras the most viable choice. Therefore, in this chapter, we focus on joint

detection using a monocular RGB camera. 3D coordinates of the joints can be

obtained, thereafter, via triangulation. As our problem is technically related

to human skeleton tracking, we seek inspiration and adaptation from human

skeleton tracking publications. Extensive works on robot manipulator (e.g.

[58]) and/or human skeleton tracking (e.g. [2]) have been done using RGB-D

cameras. Recently, thanks to the aid of deep neural networks, these problems

now can be solved using only monocular RGB cameras (e.g. [4], [75]). One of

the key components of deep neural network methods is a large set of data used

for training. In this matter, human skeleton tracking is easier because human

joint datasets are publicly accessible (e.g. Human3.6M [34]). However, this

is hard to apply to robot manipulator joint tracking, because each robot has

drastically different appearances. Therefore, in order to train a joint detector,

thousands of images are required to train the model, which is time-consuming

and each robot model requires a new dataset.

Apart from manually capture a large set of images and label the joint lo-

cations individually, a robot simulator (e.g. Gazebo [39] and iGibson [83])

can generate an unlimited number of synthetic images of the robot manipula-

tor along with the corresponding joint labels given any camera perspectives,

illumination conditions and background images. However, since the images

generated by the simulator remain distinguishable from the real-world scenes,

the learning-based joint detector performs badly using these synthetic images.

Luckily, thanks to the development of generative neural network (GAN) [25],

which enables image domain transfer, can refine the synthetic images to im-

prove the realism of the images.

We design a pipeline which detects the multiple joint positions on the

65

robot manipulator simultaneously in a real-world environment with monocular

RGB cameras. We set up the experiment on the Baxter robot (see Section

2.1, and compare it with the high-precision Vicon motion tracking system

(see Section 2.3.3) and on-board joint measurements. This work has three

contributions:

• Implementing a combination of image segmentation and domain trans-

fer methods which was found to provide the best-performing processing

pipeline

• Extensive validation of the experimental performance in a variety of

experimental settings including background types and illumination con-

ditions, and assessing the resulting performance qualitatively against the

ground truth

• Demonstrating that our system can perform as well or better than the

recent state-of-the-art work [43] which includes a trained network for the

Baxter robot

5.2 Related works

5.2.1 Robot joint angle measurements

Conventional methods use encoders to obtain the joint measurements (e.g.

rotary encoders for rotating joints and linear encoders for linear actuators).

Robot joint poses or end-effector poses can be determined by forward and

inverse kinematics. For those robots which do not have proper joint feedback

sensors, forward/inverse kinematics fail to work. DART (Dense Articulated

Real-Time Tracking) [67] uses known 3D CAD model and depth images to

estimate the pose for each link or joint on the robot arm. The utilizes the

optimized signed distance function (SDF) to align the CAD model with the

perceived depth images until the difference is minimized. The system is very

computationally efficient and is capable of processing in real-time. However, as

it relies on depth sensors, which have a very limited working range (normally

up to 10 meters), DART fails to produce robust measurements when the object

66

exceeds the working range of the depth sensors. Another direction, however,

utilizes domain randomization (DR) to extract joints/feature points from RGB

images. Zuo et al. proposes CRAVES [89], which extracts 17 feature points

from a low-cost robot arm and uses a regression network to calculate the joint

angles of the robot arm based on the extracted feature points that appeared

in the images. DREAM [43], on the other hand, focuses on 10 rotary joints on

the Baxter robot and tries to extract these joints from 2D images. DR plays a

significant role in both works, as it improves the stability and the robustness

of the detector under different environments. When illumination conditions

or camera pose changes, the texture/perspective/color of the object change as

well, but DR tries to create as many variations as possible during the training,

so the detection network has more generality.

5.2.2 Marker-based robot joint tracking

Apart from the Vicon motion tracking system as discussed in Section 2.3.3,

which utilizes infrared sensors to track markers and only viable in an indoor

environment, there are other marker-based tracking methods which work well

with only RGB imaging sensors. For instance, fiducial markers [23], which

are encoded markers with special patterns, can be used to mark individual

joints. These markers are encoded to contain number, and provide pose infor-

mation. He et al. [26] use paper-printed markers to estimate the state of the

object (including velocities and poses). However, fiducial markers have many

limitations and hence become less robust due to:

1. Failed to keep tracking the marker when the joints move to certain angles

where cameras are unable to capture the markers

2. Bad illumination conditions may interfere with the tracking algorithm,

resulting in tracking lost

5.2.3 Articulated human body pose estimation

Human body pose estimation is very similar to robot joint pose estimation

from a technical perspective. Extensive researches have been studied on hu-

67

man pose estimation based on the human joint annotations datasets, which

are either manually labelled [34], or generated by Vicon motion tracking sys-

tem. As human bodies have fewer variations than robots, and thanks to the

widely-available datasets, there are many methods targeting at human posed

estimations are published. Yang et al. propose a method [84] which utilizes a

neural network to locate each segment of the robot and mark them in bound-

ing boxes. Later works use keypoint detection (e.g. [11], [12]), providing

higher resolution than the bounding boxes. These methods output a stack of

heatmaps, where each heatmap represents the probability distribution of each

keypoint. Therefore, the peak value in each 2D heatmap corresponds to a

keypoint.

5.3 Methodology

5.3.1 System overview

The development of the proposed pipeline is a product of many trials and

errors. At first, we built the pipeline which directly outputs the numerical

values of the joint angles from perceived 2D images, but the results were not

robust. Also, this approach brings uncertainties to the system, because the

input of the system is the entire 2D image. Therefore, the output joint angles

drastically fluctuate while the object only moves slightly. This type of neural

network is hard to converge. Thus we focused on keypoint detectors instead,

including:

1. A CNN directly takes original RGB images as inputs and outputs mul-

tiple heatmaps for joints

2. Utilizing a generative model to convert synthetic images generated by

the simulator to train the detection network

However, both approaches did not produce satisfying results. Hence, we pro-

posed this final pipeline which demonstrates the best results.

As shown in Figure 5.1, the system takes each RGB image I1 from the

camera, and processes it with the following steps:

68

Figure 5.1: Workflow overview of the proposed system

1. Instance segmentation: Masking the robot from the background, which

produces an image I2 with a clean background

2. Domain adaptation: Using a generative neural network (GAN) to trans-

fer real images to simulation-style of images I3

3. Joint detection: Feeding the simulation-style images I3 into a joint de-

tector network, which outputs the 2D pixel coordinates of each joint of

the Baxter robot arms with an associated label for each joint

4. (Optional) Triangulation: With multiple cameras deployed, and each

joint being observed from multiple perspectives (equal or greater than

2), triangulation upgrades the 2D pixel locations of each joint to 3D

spatial location

The following sections describe details for each procedure and how the

neural networks are trained.

5.3.2 Instance segmentation

Instance segmentation is the first step to apply to the RGB image. When

the image arrives, instance segmentation extracts the Baxter robot from the

background. This step, upon testing, drastically improves the stability and

robustness of the detection neural network.

69

Many works have been established for instance segmentation (e.g. Instant-

Cut [37], DIN [5], SGN [46] and Mask R-CNN [27]). Mask R-CNN is our choice

for instance segmentation as it provides the most accurate results among the

four [27]. Mask R-CNN utilizes Faster R-CNN [64] to classify the objects of

interest and crop them with bounding boxes. Then it uses FCN [48] to perform

pixel-wise segmentation masking on the focused region. A masked object with

clean background ensures domain adaptation to work properly.

5.3.3 Domain adaptation

CycleGAN [88] is used to perform domain adaptation, which transfers real

images to simulation-style images. Because we train our joint detector based

on simulation-style images, domain adaptation modifies the images so the joint

detector works. Although there are many GAN available, two core strengths

of CycleGAN make it suitable for our pipeline:

• Unparalleled datasets for training, which does not require equal sizes of

image domains

• Introducing both conventional adversarial losses LGAN and cycle consis-

tency losses Lcyc to improve the forward and backward consistency

Information about CycleGAN has been covered in Section 4.3.3.

5.3.4 Joint detection

Once the image is transferred to simulation-style I3, the joint detector takes

I3 as input and detects 10 joints on the Baxter robot arms (as shown in

Figure 5.1). Inspired by human skeleton tracking (see Section 5.2.3), we choose

ResNet [28] for joint detection. The original ResNet has fully connected layers,

but we want heatmaps output to plot the probability distribution. Hence, we

use ResNet-50 and keep all its convolutional, pooling and activation layers,

but replace the fully connected output layers with 3 transposed convolutional

layers (3× 3) up-scaling to 64 by 64 heatmaps. Ideally, the output heatmaps

should have at least 256 by 256 pixels, which matches the input RGB image

70

size. Higher resolution means higher detection accuracy. However, as the real-

time performance of the system is one of the core requirements, and increased

output size significantly prolongs the training and processing time, we use 64

by 64 heatmaps as the output size for the system. In addition, upon testing, 64

by 64 output heatmaps demonstrate satisfactory results (as shown in Section

5.4).

5.3.5 Training dataset generation

In this section we introduce how we train the instance segmentation (Mask R-

CNN), domain adaptation (CycleGAN) and the joint detector. An overview

of the training flow is shown in Figure 5.2.

Figure 5.2: Preparation steps for training data

Instance segmentation

Mask R-CNN takes RGB images and description files, which contain different

object ids and their corresponding polygon masks (represented by vertices of

the polygon). Mask R-CNN is capable of multiple objects tracking at the same

71

time, but in our case, we only have one object (i.e. Baxter robot) to segment.

In terms training set labelling, one can label the polygon outline of the target

object either automatically or manually.

BasNet [59] is a boundary-aware salient object detection tool, which does

not pay attention to any specific objects, but uses saliency maps to predict the

salient objects in the images. This method works well with a clean background

(e.g. white curtain), but cutouts become less accurate in complex backgrounds

(e.g. labs). However, we can use image augmentation to swap the clean back-

ground (where BasNet performs well) with complex backgrounds. BasNet

produces a binary mask map, in which the object of interest has a pixel in-

tensity of 1 whereas the rest of the images have 0-pixel intensities. We can

then use OpenCV to find the contours within the binary image and extract

the vertices of the salient object. On the other hand, manual labelling is more

accurate and stable (especially at certain camera perspectives, where only the

side of the object is revealed), but it is a tedious job.

Therefore, for the training set, we use the combination of both automatic

and manual labels. Instead of training a brand new Mask R-CNN model

from scratch, we use transfer learning from a pre-trained model. Inside the

training set, 80 images are manually labelled, and 60 images are automatically

labelled, with randomly augmented backgrounds. However, the current Mask

R-CNN still has limitations in producing a sub-pixel level of fine segmentation,

resulting in ambiguity around the grippers. Recent works (e.g. Detectron2

[82]) have developed finer masking, which can be employed in our system in

future.

Domain adaptation

As discussed earlier, CycleGAN does not require paired image training sets.

This feature is favorable for our system, because one can generate an unlimited

number of synthetic images from the simulator with different camera poses

and robot arm configurations effortlessly, but it is relatively hard to obtain

real images with corresponding arm configurations. Hence, our training sets

consist of two image domains:

72

1. Image set A {Ir} (Real images): We captured 2000 images of the Bax-

ter robot using the RealSense D415 RGB-D camera, with only the RGB

sensor enabled. The Baxter robot’s base was fixed, while the arms were

pre-programmed to execute random manipulations. The camera was

held moving in front of the Baxter robot, and yawing up to 70 degrees in

either direction. The images were then processed by instance segmenta-

tion using Mask R-CNN model we trained previously. This step output

images with a clean background.

2. Image set B {Is} (Synthetic images): We used Gazebo to generate 1500

synthetic images, in which the Baxter robot moves under a random mo-

tion sequence. The virtual camera was set to have the same intrinsic

parameters as the camera used to capture {Ir}. While the Baxter robot

was moving in the simulator, the virtual camera was moving as well (but

keep the Baxter robot at the centre of the frame). Besides the lighting

source appeared in the virtual scene by default, we added another virtual

spotlight to illuminate the background. The background of the virtual

scene was set to white to match the set A {Ir}.

At this point, we have two image datasets set up ({Ir} and {Is}). The

image size for both sets was set to 256 by 256.

Joint detection

Baxter robot has 7 joints on each arm, but we only use 5 joints on each arm

due to low visibility for the two joints located at the wrist and the elbow. That

translates to 10 heatmaps as output for each execution (5 heatmaps per arm).

For training of the joint detector, the goal is to minimize the L2 loss function,

which measures the difference between the heatmap and the ground-truth joint

locations. This requires the projection from ground-truth 3D locations to 2D

image space. Thanks to the domain adaptation we employ, the training step is

completed relatively effortlessly with a large set of simulation images. There-

fore, we generated 8000 images of Baxter from the Gazebo simulator, each has

different arm configurations and camera poses. In order to generate images

73

that are closer to the simulation-style images obtained from domain adap-

tation, we import the camera model (Intel RealSense D415) and the URDF

files of the Baxter robot. Gazebo simulator has a physics engine to simulate

real-world physics. Hence, given any camera pose Pcam and a unique robot

arm configuration, a 2D pixel coordinates of each joint Pj is calculated. These

2D coordinates of the joint locations are then converted to a Gaussian distri-

bution heatmap (64 by 64 pixels). In addition, to improve the robustness of

the detector, we apply image augmentation to the training images, including

random brightness adjustment, random color saturation, cropping and various

backgrounds from COCO datasets [45].

Therefore, we collected 10000 synthetic images of the Baxter robot from the

simulator with random backgrounds as discussed above, with each attached to

a set of labels of each joint. This dataset was used for joint detector training.

5.4 Experimental results

5.4.1 Experimental datasets

Ten datasets were collected with three different variables (camera poses, arm

actions and image background as listed in Table 5.1). The camera was hand-

held and moved in a circular arc in front of the Baxter robot.

There are two types of camera poses: dynamic and static. For dynamic

camera poses, camera poses span over 120 degrees while keeping the Baxter

robot at the centre of the frame. Due to the relatively low resolution of the

images (256 by 256), we intentionally position the camera around 2.5 to 3.5

meters away from the Baxter robot so that the Baxter robot took major space

in each frame. On the other hand, in static camera poses, the camera was

fixed heading towards the Baxter robot.

Additionally, for arm actions, pick-and-place motion is a pre-programmed

sequence in which the Baxter robot uses its gripper to pick black boxes and

place them on a tray. Waving actions are random arm motion sequences, but

the Baxter robot tries to move all joints to their maximum reachable volumes.

With respect to background selection, the natural background represents

74

Table 5.1: Testing datasets

Features
Dataset # of images Camera Arm action Background

T1 10967 Dynamic Waving White, Static
T2 2312 Static Pick-and-Place White, Static
T3 6856 Static Waving White, Static
T4 9810 Dynamic Waving White, Static
T5 2503 Static Pick-and-Place White, Static

T6 16355 Dynamic Waving Dynamic
T7 3330 Dynamic Pick-and-Place Dynamic
T8 3190 Static Pick-and-Place Static
T9 7145 Static Waving Static
T10 13233 Dynamic Waving Static
T11 11938 Static Waving Static
T12 8544 Static Waving Dynamic
T13 4483 Static Waving Dynamic
T14 5199 Static Waving Dynamic
T15 4202 Static Waving Dynamic
T16 2104 Static Pick-and-Place Static
T17 2180 Static Pick-and-Place Dynamic
T18 2287 Static Pick-and-Place Dynamic

the normal lab scene with all random objects appearing in the background.

The white background, in contrast, is the scene where we hung a white curtain

behind the Baxter robot, so that no other object distractions. All datasets were

captured from the same imaging sensor (RGB sensor from the Intel RealSense

D415 camera), with the output resolution of 640× 480 and a framerate of 30

fps.

5.4.2 Groundtruth data generation

Baxter robot is packaged with precise joint feedback sensors, which can pro-

duce reliable poses of each joint relative to the robot center using forward/inverse

kinematics. Vicon motion capture system is then used to construct robot-to-

world poses. Along with the relative poses from each joint to the robot centre,

we then obtain the absolute poses of each joint. Additionally, the camera

75

Table 5.2: PCK@0.2 scores

PCK@0.2 Joints Overall
Methods Base Shoulder Elbow Wrist Hand mAP

White Background
DREAM 0.9994 0.9826 0.8892 0.9763 0.9574 0.9610

Ours 0.9816 0.9824 0.9919 0.9283 0.8924 0.9554

Natural Background
DREAM 0.9986 0.9936 0.9927 0.8387 0.7900 0.9181

Ours 0.9967 0.9958 0.9953 0.9559 0.8989 0.9685

poses are tracked by the same Vicon system. Hence, we can calculate the

ground-truth coordinates of each joint projected to the image.

5.4.3 Quantitative evaluation metrics

We use 2D PCK@0.2 [3] and root mean square error (RMS) to evaluate the

overall performance of our system. PCK@0.2 translates to the percentage

of correct joint detection within a dataset where the distance between the

prediction and the groundtruth is smaller than 0.2*torso diameter [3]. All the

bounding boxes of Baxter in the testing set are generated from the instance

segmentation step. Besides PCK@0.2, we also evaluated other PCK scores

against differetn tolerances ranging from 1 to 30 pixels (as shown in Figure 5.3

and Figure 5.4.3). RMS measures the 2D euclidean pixel distance between

the ground truths and joint coordinates produced by our system. Also, as the

Baxter robot has two symmetric arms, per-joint evaluation scores presented

in the following tables and figures are the average values of the left and right

joints.

5.4.4 Baseline methods comparison

Deep Robot-to-camera Extrinsic for Articulated Manipulators (DREAM) [43]

is a robot joint detection pipeline published recently. DREAM also uses a

simulator to generate training images for the detector. However, there are two

significant distinctions between our proposed method and DREAM:

76

Figure 5.3: PCK scores for robot joint detection over natural lab background:
our method versus DREAM [43]

1. DREAM applies random color, texture and illuminations to the robot in

the simulator to generate augmented synthetic images for joint detector

training. DREAM relies on this step to improve the generality of the joint

detector. Therefore, during the execution, DREAM does not modify the

input images from the camera. However, in our proposed system, we

have an additional process of instance segmentation applied to the image

feeds.

2. DREAM only returns joint detections with a sufficiently high confidence

level and omits others. Our proposed method, however, always returns

the joint detections with the highest probability (within the predicted

77

Figure 5.4: PCK result of white background datasets

heatmap) regardless of their absolute values. The confident detection

rate returned by DREAM is listed in Table 5.3. Also, for a fair compar-

ison, we only report the evaluation scores of our method on the dataset

where DREAM has high confidence (and hence return joint detections).

One of the motivations for using DREAM as the baseline model, besides

it is one of the recently published methods which is claimed to have great

detection performance [43], it has a pre-trained detection model for the Bax-

ter robot. Therefore, we used this pre-trained model for all the testing and

comparisons.

Figure 5.3 and 5.4.3 demonstrate the PCK scores against different pixel

78

Table 5.3: DREAM Detection Rate

Percentage Joints Overall
Dataset Base Shoulder Elbow Wrist Hand Mean

White 93.49 87.09 66.94 67.61 72.16 78.95
Natural 74.03 69.37 64.64 54.30 53.06 64.37

Table 5.4: RMS scores for joint detection in two background settings

RMS Joints Overall
Methods Base Shoulder Elbow Wrist Hand Mean

White Background
DREAM 9.62 11.44 16.13 13.68 17.38 13.63

Ours 13.94 14.14 13.00 16.61 20.78 15.69

Natural Background
DREAM 9.67 10.44 11.04 26.66 34.02 19.37

Ours 13.26 12.42 13.45 15.22 22.02 15.28

errors in natural backgrounds and white backgrounds respectively. Detection

performance is reported on all 5 joints, and the black line within the two figures

represents the average performance over all of the joints. Both methods (ours

and DREAM) perform relatively worse in detecting the wrist, which is the dis-

tal joint. In our case, this behaviour is caused by instance segmentation imper-

fection, where the distal joint is often chopped off by the algorithm mistakenly.

In addition, compared to our method, DREAM provides very inconsistent de-

tection results in different background settings, as demonstrated in Table 5.2

and 5.4. DREAM slightly outperforms our method in white background, but

the detection performance drops significantly in natural background. This is

due to the instance segmentation and domain adaptation steps in our pipeline,

which drastically reduce the interference from the background. This depen-

dence on instance segmentation and domain adaptation, on the other hand,

also causes failure cases, as illustrated in Figure 5.5.

79

Figure 5.5: Examples of some common failure cases. Each row is one case.
In the top one, the left-arm wrist portion is cutoff in segmentation resulting
in the incorrect detection for the left wrist joint (the joint labelled as yellow
circle marker), and the right wrist is in an occluded pose where CycleGAN
failed to reconstruct the proper texture. In the second row, a person was
holding a checkerboard moving in the back, and segmentation produced a
mask consisting of some noise from the checkerboard, and the left wrist is cutoff
again. In the third row, masking managed to filter out the checkerboard but
still affected by it. Overall, the wrist and elbow joints detections are affected
most.

5.5 Conclusion

In this chapter we presented a novel pipeline for robot arm joint detection

using only RGB images. Our proposed method is capable of estimating the

joint poses without joint feedback (e.g. encoders). The system consists of in-

stance segmentation, domain adaptation and joint detection based on modified

ResNet. Thanks to the publicly accessible pre-trained instance segmentation

model and domain adaptation, the system shows good performance with min-

imal manually labelled datasets and substantial synthetic images generated

by the robot simulator. Extensive quantitative evaluations show our proposed

80

method outperforms other state-of-the-art methods (DREAM) in terms of de-

tection consistency and accuracy in different backgrounds.

81

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has demonstrated the development and implementation of three

engineering projects employing computer vision and machine learning. All

three proposed systems demonstrated good results in hardware testing, and

revealed the ability of computer vision and machine learning to yield designs

which would not be possible without them.

In the learned self-driving vehicle project, we built a low-cost hardware

platform and developed software for the vehicle enabling the following func-

tionalities based on end-to-end learning:

• Lane-keeping control

• Traffic light/sign detection

• Bounding box-based traffic sign distance estimation

• Obstacle avoidance using an ultrasonic sensor

The lane-keeping control, which employs a trained multi-layer convolutional

neural network (CNN), outperforms human drivers in terms of consistency

and smoothness when driving on a closed-loop track. Traffic sign detection,

which is based on the YOLO V4 classifier, achieves a 98.233% detection rate

and estimates the distance of the sign within ±0.05 meters.

In the second project, we successfully demonstrated a predictive display

pipeline for robotic teleoperation tasks over high latency communication links,

82

which generates 2D images from a local 3D scene model given the predicted

pose of the remote robot, providing instant visual feedback for the human

operator. To address any scene changes to the remote site, the pipeline updates

the local 3D map according to the new images received. The system uses the

3D scene model and the images captured during the pre-processing stage as

the prior knowledge to train a generative model to produce photo-realistic

synthetic images for the human operator. Our proposed pipeline outperforms

other state-of-the-art methods in terms of quality and completeness of the

images in both qualitative and quantitative experiments.

The third project presented a pipeline for vision-based estimation of robot

manipulators’ joint positions. In contrast to high-end robot arms which em-

ploy high-resolution onboard encoders to measure joint angles, our method

employs only RGB images from a monocular camera. Our pipeline implements

instance segmentation, domain adaptation and joint detector. The system re-

moves the need for manual labelling of training data by employing a generative

model plus a simulation environment to produce a large amount of labelled

training data. Comparing our method against other state-of-the-art joint de-

tection methods in both qualitative and quantitative tests demonstrates that

our design performs as well or better than existing work.

6.2 Limitations of work

While all three projects described in this thesis showed good performance,

limitations of the current work were identified in all three cases:

• Learned self-driving vehicle project:

1. The end-to-end learning-based driving control outputs only discrete

commands, which works well for the simple hardware car we built

for this project, but would not be feasible for controlling a steered-

wheel vehicle or real-world passenger car.

2. The traffic sign distance estimation module relies solely on 2D

bounding box information. This approach is valid when the car

83

approaches traffic signs head-on. However, this assumption may be

violated in real life if the car approaches the signs at an angle.

3. The experimental arena is an idealized environment which lacks the

presence of static obstacles and dynamic actors such as pedestrians

or other vehicles.

• Predictive display project:

1. While the proposed system has the ability to handle previously

unobserved scenes, performance is significantly reduced compared

to the previously-seen case.

2. The 3D scene reconstruction, which is based on TSDF volume in-

tegration, fails to update dynamic elements in the scene such as

moving people.

3. The pre-processing stage (data collection and generative model train-

ing) takes a lot of time, which is not suitable for rapid exploration

of unknown environments.

• Vision-based joint detection system:

1. The system requires a CAD model of the robot arm (or other manip-

ulator) in order to generate synthetic images for training. Without

such a model, manual data labeling is required.

2. Since the system is dependent on both instance segmentation and

domain adaptation, the pipeline may fail to estimate joint states at

frames when the background has a similar appearance to the robot

arm.

6.3 Future work

In order to address the limitations listed in Section 6.2, the following future

work should be performed:

1. Implement an end-to-end learning controller using a steered-wheel vehi-

cle, and test the resulting design in a realistic car simulator (e.g. Carla).

84

2. Develop a more sophisticated self-driving perception system which fuses

radar and LiDAR sensors with the camera feed.

3. Modify the generative model to better support novel (previously unob-

served) objects in the scene.

4. Integrate scene semantic understanding and other geometric representa-

tion methods with our pipeline to achieve better visual rendering per-

formance within dynamically changing environments.

5. Improve the output resolution of the heatmaps used in the joint detector

to improve the accuracy of joint states.

6. Implement a layer of outlier removal based on optical flow or statistical

prediction methods to increase robustness and accuracy of the joint state

estimator.

85

References

[1] M. L. Aarizou and N.-E. Berrached, “ROS-based telerobotic application
for transmitting high-bandwidth kinematic data over a limited network,”
International Journal of Control, Automation and Systems, vol. 17, no. 2,
pp. 445–453, 2018. doi: 10.1007/s12555-018-0047-4.

[2] D. S. Alexiadis, P. Kelly, P. Daras, N. E. O’Connor, T. Boubekeur,
and M. B. Moussa, “Evaluating a dancer’s performance using kinect-
based skeleton tracking,” in Proceedings of the 19th ACM international
conference on Multimedia, 2011, pp. 659–662.

[3] M. Andriluka, L. Pishchulin, P. V. Gehler, and B. Schiele, “2d human
pose estimation: New benchmark and state of the art analysis,” in 2014
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, IEEE Computer Society,
2014, pp. 3686–3693. doi: 10.1109/CVPR.2014.471. [Online]. Available:
https://doi.org/10.1109/CVPR.2014.471.

[4] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estimation
and tracking by detection,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, IEEE, 2010, pp. 623–630.

[5] A. Arnab and P. H. S. Torr, “Pixelwise instance segmentation with a
dynamically instantiated network,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, IEEE Computer Society, 2017, pp. 879–888. doi: 10.
1109/CVPR.2017.100. [Online]. Available: https://doi.org/10.1109/
CVPR.2017.100.

[6] D. H. Ballard and C. M. Brown, Computer vision. Prentice-Hall, 1982.

[7] A. K. Bejczy, W. S. Kim, and S. C. Venema, “The phantom robot:
Predictive displays for teleoperation with time delay,” in Proceedings of
the 1990 IEEE International Conference on Robotics and Automation,
Cincinnati, Ohio, USA, May 13-18, 1990, IEEE, 1990, pp. 546–551. doi:
10.1109/ROBOT.1990.126037. [Online]. Available: https://doi.org/
10.1109/ROBOT.1990.126037.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end
learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

86

https://doi.org/10.1007/s12555-018-0047-4
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/CVPR.2017.100
https://doi.org/10.1109/CVPR.2017.100
https://doi.org/10.1109/CVPR.2017.100
https://doi.org/10.1109/CVPR.2017.100
https://doi.org/10.1109/ROBOT.1990.126037
https://doi.org/10.1109/ROBOT.1990.126037
https://doi.org/10.1109/ROBOT.1990.126037

[9] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L.
Jackel, and U. Muller, “Explaining how a deep neural network trained
with end-to-end learning steers a car,” arXiv preprint arXiv:1704.07911,
2017.

[10] R. H. Borcherts, J. L. Jurzak, S.-P. Liou, and T.-L. A. Yeh, System and
method for automatically steering a vehicle within a lane in a road, US
Patent 5,245,422, Sep. 1993.

[11] Z. Cao, G. H. Martinez, T. Simon, S.-E. Wei, and Y. A. Sheikh, “Open-
pose: Realtime multi-person 2d pose estimation using part affinity fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–
1, 2019. doi: 10.1109/tpami.2019.2929257.

[12] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang, “Adversarial posenet:
A structure-aware convolutional network for human pose estimation,”
CoRR, vol. abs/1705.00389, 2017. arXiv: 1705.00389. [Online]. Avail-
able: http://arxiv.org/abs/1705.00389.

[13] P. Y. Chua, T. Ilschner, and D. G. Caldwell, “Robotic manipulation
of food products–a review,” Industrial Robot: An International Journal,
2003.

[14] D. CireşAn, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep
neural network for traffic sign classification,” Neural networks, vol. 32,
pp. 333–338, 2012.

[15] A. Coates, P. Abbeel, and A. Y. Ng, “Apprenticeship learning for heli-
copter control,” Communications of the ACM, vol. 52, no. 7, pp. 97–105,
2009.

[16] D. Cobzas and M. Jägersand, “Tracking and predictive display for a
remote operated robot using uncalibrated video,” in Proceedings of the
2005 IEEE International Conference on Robotics and Automation, ICRA
2005, April 18-22, 2005, Barcelona, Spain, IEEE, 2005, pp. 1847–1852.
doi: 10.1109/ROBOT.2005.1570382. [Online]. Available: https://doi.
org/10.1109/ROBOT.2005.1570382.

[17] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In
MATLAB® Second, Completely Revised, Extended And Updated Edi-
tion. Springer International Publishing, 2017.

[18] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques - SIGGRAPH 96, 1996.
doi: 10.1145/237170.237269.

[19] A. de la Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol,
“Road traffic sign detection and classification,” IEEE Transactions on
Industrial Electronics, vol. 44, no. 6, pp. 848–859, 1997. doi: 10.1109/
41.649946.

87

https://doi.org/10.1109/tpami.2019.2929257
https://arxiv.org/abs/1705.00389
http://arxiv.org/abs/1705.00389
https://doi.org/10.1109/ROBOT.2005.1570382
https://doi.org/10.1109/ROBOT.2005.1570382
https://doi.org/10.1109/ROBOT.2005.1570382
https://doi.org/10.1145/237170.237269
https://doi.org/10.1109/41.649946
https://doi.org/10.1109/41.649946

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual Con-
ference on Robot Learning, 2017, pp. 1–16.

[21] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1,
pp. 11–15, 1972.

[22] Elon musk on cameras vs lidar for self driving and autonomous cars,
Apr. 2019. [Online]. Available: https://www.youtube.com/watch?v=
HM23sjhtk4Q.

[23] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Maŕın-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognit., vol. 47, no. 6, pp. 2280–
2292, 2014. doi: 10.1016/j.patcog.2014.01.005. [Online]. Available:
https://doi.org/10.1016/j.patcog.2014.01.005.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.,
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available: http:
//papers.nips.cc/paper/5423-generative-adversarial-nets.

pdf.

[25] ——, “Generative adversarial nets,” in Advances in neural information
processing systems, 2014, pp. 2672–2680.

[26] G. He, S. Zhong, and J. Guo, “A lightweight and scalable visual-inertial
motion capture system using fiducial markers,” Autonomous Robots,
vol. 43, no. 7, pp. 1895–1915, 2019.

[27] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386–397,
2020. doi: 10.1109/TPAMI.2018.2844175. [Online]. Available: https:
//doi.org/10.1109/TPAMI.2018.2844175.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385.
[Online]. Available: http://arxiv.org/abs/1512.03385.

[29] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger, et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,” in
Robot World Cup, Springer, 2016, pp. 613–624.

[30] T. H. Hong, C. Rasmussen, T. Chang, and M. Shneier, “Road detec-
tion and tracking for autonomous mobile robots,” in Unmanned Ground
Vehicle Technology IV, International Society for Optics and Photonics,
vol. 4715, 2002, pp. 311–319.

88

https://www.youtube.com/watch?v=HM23sjhtk4Q
https://www.youtube.com/watch?v=HM23sjhtk4Q
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2018.2844175
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

[31] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, “Detec-
tion of traffic signs in real-world images: The german traffic sign detec-
tion benchmark,” in The 2013 international joint conference on neural
networks (IJCNN), IEEE, 2013, pp. 1–8.

[32] H. Hu, C. P. Quintero, H. Sun, and M. Jägersand, “On-line reconstruc-
tion based predictive display in unknown environment,” in IEEE Inter-
national Conference on Robotics and Automation, ICRA 2015, Seattle,
WA, USA, 26-30 May, 2015, IEEE, 2015, pp. 4446–4451. doi: 10.1109/
ICRA.2015.7139814. [Online]. Available: https://doi.org/10.1109/
ICRA.2015.7139814.

[33] X. Huang and S. J. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, IEEE
Computer Society, 2017, pp. 1510–1519. doi: 10.1109/ICCV.2017.167.
[Online]. Available: https://doi.org/10.1109/ICCV.2017.167.

[34] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing in nat-
ural environments,” IEEE transactions on pattern analysis and machine
intelligence, vol. 36, no. 7, pp. 1325–1339, 2013.

[35] M. Jägersand, “Image based predictive display for tele-manipulation,”
in 1999 IEEE International Conference on Robotics and Automation,
Marriott Hotel, Renaissance Center, Detroit, Michigan, USA, May 10-
15, 1999, Proceedings, IEEE Robotics and Automation Society, 1999,
pp. 550–556. doi: 10.1109/ROBOT.1999.770034. [Online]. Available:
https://doi.org/10.1109/ROBOT.1999.770034.

[36] J. Jin, L. Petrich, S. He, M. Dehghan, and M. Jägersand, “Long range
teleoperation for fine manipulation tasks under time-delay network con-
ditions,” CoRR, vol. abs/1903.09189, 2019. arXiv: 1903.09189. [Online].
Available: http://arxiv.org/abs/1903.09189.

[37] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother,
“Instancecut: From edges to instances with multicut,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society, 2017,
pp. 7322–7331. doi: 10 . 1109 / CVPR . 2017 . 774. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.774.

[38] G. Klein and D. W. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Sixth IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR 2007, 13-16 November 2007, Nara, Japan,
IEEE Computer Society, 2007, pp. 225–234. doi: 10.1109/ISMAR.2007.
4538852. [Online]. Available: https://doi.org/10.1109/ISMAR.2007.
4538852.

89

https://doi.org/10.1109/ICRA.2015.7139814
https://doi.org/10.1109/ICRA.2015.7139814
https://doi.org/10.1109/ICRA.2015.7139814
https://doi.org/10.1109/ICRA.2015.7139814
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ROBOT.1999.770034
https://doi.org/10.1109/ROBOT.1999.770034
https://arxiv.org/abs/1903.09189
http://arxiv.org/abs/1903.09189
https://doi.org/10.1109/CVPR.2017.774
https://doi.org/10.1109/CVPR.2017.774
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/ISMAR.2007.4538852

[39] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 3, 2004, 2149–2154 vol.3.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[41] J.-w. Lee, Model based predictive control for automated lane centering/changing
control systems, US Patent 8,190,330, May 2012.

[42] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox,
and S. Birchfield, “Camera-to-robot pose estimation from a single im-
age,” in 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2020, pp. 9426–9432. doi: 10.1109/ICRA40945.2020.
9196596.

[43] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox,
and S. Birchfield, “Camera-to-robot pose estimation from a single im-
age,” in International Conference on Robotics and Automation (ICRA),
2020. [Online]. Available: https://arxiv.org/abs/1911.09231.

[44] N. Li, H. Chen, I. Kolmanovsky, and A. Girard, “An explicit decision
tree approach for automated driving,” in Dynamic Systems and Control
Conference, American Society of Mechanical Engineers, vol. 58271, 2017,
V001T45A003.

[45] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V,
D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., ser. Lec-
ture Notes in Computer Science, vol. 8693, Springer, 2014, pp. 740–755.
doi: 10.1007/978-3-319-10602-1_48. [Online]. Available: https:
//doi.org/10.1007/978-3-319-10602-1%5C_48.

[46] S. Liu, J. Jia, S. Fidler, and R. Urtasun, “SGN: sequential grouping
networks for instance segmentation,” in IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
IEEE Computer Society, 2017, pp. 3516–3524. doi: 10.1109/ICCV.

2017.378. [Online]. Available: https://doi.org/10.1109/ICCV.2017.
378.

[47] Z. Liu, K. Hu, and K.-w. Chung, “Nonlinear analysis of a closed-loop
tractor-semitrailer vehicle system with time delay,” Mechanical Systems
and Signal Processing, vol. 76, pp. 696–711, 2016.

90

https://doi.org/10.1109/ICRA40945.2020.9196596
https://doi.org/10.1109/ICRA40945.2020.9196596
https://arxiv.org/abs/1911.09231
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1%5C_48
https://doi.org/10.1007/978-3-319-10602-1%5C_48
https://doi.org/10.1109/ICCV.2017.378
https://doi.org/10.1109/ICCV.2017.378
https://doi.org/10.1109/ICCV.2017.378
https://doi.org/10.1109/ICCV.2017.378

[48] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
IEEE Computer Society, 2015, pp. 3431–3440. doi: 10.1109/CVPR.

2015.7298965. [Online]. Available: https://doi.org/10.1109/CVPR.
2015.7298965.

[49] D. Lovi, “Incremental free-space carving for real-time 3D reconstruc-
tion,” M.S. thesis, University of Alberta, 2011.

[50] R. Maier, K. Kim, D. Cremers, J. Kautz, and M. Nießner, “Intrinsic3D:
High-quality 3D reconstruction by joint appearance and geometry op-
timization with spatially-varying lighting,” in International Conference
on Computer Vision (ICCV), 2017.

[51] I. Masaki, Adaptive motor vehicle cruise control, US Patent 4,987,357,
Jan. 1991.

[52] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for
view synthesis,” CoRR, vol. abs/2003.08934, 2020. arXiv: 2003.08934.
[Online]. Available: https://arxiv.org/abs/2003.08934.

[53] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 12, pp. 4695–4708, 2012.

[54] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017. doi: 10.1109/TRO.
2017.2705103.

[55] R. A. Newcombe, A. Fitzgibbon, S. Izadi, O. Hilliges, D. Molyneaux, D.
Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and et al., “Kinect-
Fusion: Real-time dense surface mapping and tracking,” 2011 10th IEEE
International Symposium on Mixed and Augmented Reality, 2011. doi:
10.1109/ismar.2011.6092378.

[56] S. Oleson, G. Landis, M. McGuire, and G. Schmidt, “HERRO mission
to mars using telerobotic surface exploration from orbit,” Journal of the
British Interplanetary Society, vol. 64, pp. 304–313, Sep. 2011.

[57] C. Park and K. Park, “Design and kinematics analysis of dual arm robot
manipulator for precision assembly,” in 2008 6th IEEE International
Conference on Industrial Informatics, IEEE, 2008, pp. 430–435.

[58] K. Pauwels, L. Rubio, V. Ivan, S. Vijayakumar, and E. Ros, “Real-time
rgb-d-based object and manipulator pose estimation,” in Proc. Workshop
on RGB-D Advanced Reasoning with Depth Cameras, Robotics: Science
and Systems (R: SS2014), Citeseer, 2014.

91

https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ismar.2011.6092378

[59] X. Qin, Z. V. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jägersand,
“Basnet: Boundary-aware salient object detection,” in IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, Computer Vision Foundation / IEEE, 2019,
pp. 7479–7489. doi: 10.1109/CVPR.2019.00766. [Online]. Available:
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/

Qin%5C_BASNet%5C_Boundary-Aware%5C_Salient%5C_Object%5C_

Detection%5C_CVPR%5C_2019%5C_paper.html.

[60] A. Rachmielowski, N. Birkbeck, M. Jägersand, and D. Cobzas, “Re-
altime visualization of monocular data for 3d reconstruction,” in Fifth
Canadian Conference on Computer and Robot Vision, CRV 2008, Wind-
sor, Ontario, Canada, May 28-30, 2008, IEEE Computer Society, 2008,
pp. 196–202. doi: 10.1109/CRV.2008.48. [Online]. Available: https:
//doi.org/10.1109/CRV.2008.48.

[61] K. Rangarajan, M. Shah, and D. Van Brackle, “Optimal corner detec-
tor,” Computer Vision, Graphics, and Image Processing, vol. 48, no. 2,
pp. 230–245, 1989.

[62] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640,
2015. arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/
1506.02640.

[63] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 7263–7271.

[64] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds., 2015, pp. 91–99. [Online]. Available: http://

papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-

object-detection-with-region-proposal-networks.

[65] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–
536, 1986.

[66] J. Sachs, L. A. A. Andersson, J. Araújo, C. Curescu, J. Lundsjö, G. Rune,
E. Steinbach, and G. Wikström, “Adaptive 5G low-latency communica-
tion for tactile internet services,” Proceedings of the IEEE, vol. 107, no. 2,
pp. 325–349, 2019.

92

https://doi.org/10.1109/CVPR.2019.00766
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Qin%5C_BASNet%5C_Boundary-Aware%5C_Salient%5C_Object%5C_Detection%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Qin%5C_BASNet%5C_Boundary-Aware%5C_Salient%5C_Object%5C_Detection%5C_CVPR%5C_2019%5C_paper.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Qin%5C_BASNet%5C_Boundary-Aware%5C_Salient%5C_Object%5C_Detection%5C_CVPR%5C_2019%5C_paper.html
https://doi.org/10.1109/CRV.2008.48
https://doi.org/10.1109/CRV.2008.48
https://doi.org/10.1109/CRV.2008.48
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks

[67] T. Schmidt, R. A. Newcombe, and D. Fox, “DART: dense articulated
real-time tracking with consumer depth cameras,” Auton. Robots, vol. 39,
no. 3, pp. 239–258, 2015. doi: 10.1007/s10514-015-9462-z. [Online].
Available: https://doi.org/10.1007/s10514-015-9462-z.

[68] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[69] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise
view selection for unstructured multi-view stereo,” in European Confer-
ence on Computer Vision (ECCV), 2016.

[70] D. Shreiner, OpenGL reference manual: the official reference document to
OpenGL, version 1.4: OpenGl architecture review board. Addison Wesley,
2004.

[71] S. Soylu, F. Firmani, B. J. Buckham, and R. P. Podhorodeski, “Compre-
hensive underwater vehicle-manipulator system teleoperation,” in OCEANS
2010 MTS/IEEE SEATTLE, IEEE, 2010, pp. 1–8.

[72] R. Szeliski, Computer vision: algorithms and applications. Springer, 2011,
pp. 10–16.

[73] Taxonomy and definitions for terms related to driving automation sys-
tems for on-road motor vehicles. doi: 10.4271/j3016_201806. [Online].
Available: https://doi.org/10.4271/j3016_201806.

[74] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot
that won the darpa grand challenge,” Journal of field Robotics, vol. 23,
no. 9, pp. 661–692, 2006.

[75] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, IEEE Computer Society, 2014, pp. 1653–1660. doi: 10.1109/

CVPR.2014.214. [Online]. Available: https://doi.org/10.1109/CVPR.
2014.214.

[76] Vero: Compact super wide camera by vicon, Jun. 2020. [Online]. Avail-
able: http://www.vicon.com/hardware/cameras/vero/.

[77] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using
b-snake,” Image and Vision computing, vol. 22, no. 4, pp. 269–280, 2004.

[78] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality as-
sessment: From error visibility to structural similarity,” IEEE Trans-
actions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. doi:
10.1109/tip.2003.819861.

93

https://doi.org/10.1007/s10514-015-9462-z
https://doi.org/10.1007/s10514-015-9462-z
https://doi.org/10.4271/j3016_201806
https://doi.org/10.4271/j3016_201806
https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1109/CVPR.2014.214
https://doi.org/10.1109/CVPR.2014.214
http://www.vicon.com/hardware/cameras/vero/
https://doi.org/10.1109/tip.2003.819861

[79] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks:
Perceptron, madaline, and backpropagation,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1415–1442, 1990.

[80] C. R. Winter and B. Widrow, “Madaline rule ii: A training algorithm for
neural networks,” in Secondf Annual International Conference on Neural
Networks, 1988, pp. 1–401.

[81] J. Wu, Q. Wang, X. Wei, and H. Tang, “Studies on improving vehi-
cle handling and lane keeping performance of closed-loop driver–vehicle
system with integrated chassis control,” Mathematics and Computers in
Simulation, vol. 80, no. 12, pp. 2297–2308, 2010.

[82] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2,
https://github.com/facebookresearch/detectron2, 2019.

[83] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. Tchapmi, A. Toshev, R.
Mart́ın-Mart́ın, and S. Savarese, “Interactive gibson benchmark: A bench-
mark for interactive navigation in cluttered environments,” IEEE Robotics
Autom. Lett., vol. 5, no. 2, pp. 713–720, 2020. doi: 10.1109/LRA.2020.
2965078. [Online]. Available: https://doi.org/10.1109/LRA.2020.
2965078.

[84] Y. Yang and D. Ramanan, “Articulated human detection with flexible
mixtures of parts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 12, pp. 2878–2890, 2013. doi: 10.1109/TPAMI.2012.261. [Online].
Available: https://doi.org/10.1109/TPAMI.2012.261.

[85] K. Yerex, D. Cobzas, and M. Jägersand, “Predictive display models for
tele-manipulation from uncalibrated camera-capture of scene geometry
and appearance,” in Proceedings of the 2003 IEEE International Confer-
ence on Robotics and Automation, ICRA 2003, September 14-19, 2003,
Taipei, Taiwan, IEEE, 2003, pp. 2812–2817. doi: 10.1109/ROBOT.2003.
1242018. [Online]. Available: https://doi.org/10.1109/ROBOT.2003.
1242018.

[86] C. Yu and Y. Wang, “3d-scene-gan: Three-dimensional scene recon-
struction with generative adversarial networks,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Workshop Track Proceedings, OpenRe-
view.net, 2018. [Online]. Available: https://openreview.net/forum?
id=SkNEsmJwf.

[87] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
CVPR, 2018.

[88] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networkss,” in Computer
Vision (ICCV), 2017 IEEE International Conference on, 2017.

94

https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/LRA.2020.2965078
https://doi.org/10.1109/LRA.2020.2965078
https://doi.org/10.1109/LRA.2020.2965078
https://doi.org/10.1109/LRA.2020.2965078
https://doi.org/10.1109/TPAMI.2012.261
https://doi.org/10.1109/TPAMI.2012.261
https://doi.org/10.1109/ROBOT.2003.1242018
https://doi.org/10.1109/ROBOT.2003.1242018
https://doi.org/10.1109/ROBOT.2003.1242018
https://doi.org/10.1109/ROBOT.2003.1242018
https://openreview.net/forum?id=SkNEsmJwf
https://openreview.net/forum?id=SkNEsmJwf

[89] Y. Zuo, W. Qiu, L. Xie, F. Zhong, Y. Wang, and A. L. Yuille, “CRAVES:
controlling robotic arm with a vision-based economic system,” CoRR,
vol. abs/1812.00725, 2018. arXiv: 1812.00725. [Online]. Available: http:
//arxiv.org/abs/1812.00725.

95

https://arxiv.org/abs/1812.00725
http://arxiv.org/abs/1812.00725
http://arxiv.org/abs/1812.00725

Appendix A

Carla simulator setup

A.1 Self-driving car simulator

Although we can evaluate the individual performance of each software compo-

nent listed in Section 3.3.3, it is relatively difficult to evaluate the self-driving

system as a whole. For instance, it is hard to quantitatively test the perfor-

mance of the lane keeping control, as there is no ground-truth information

regarding the distance of the vehicle to the lane markings. We could manu-

ally count the number of lane crossing in a certain session, but this would be

tedious and inaccurate to do.

A self-driving car simulator (e.g. Carla [20]), on the other hand, provides a

number of useful features to evaluate the performance of a self-driving control

system. In this section, we describe the concept and the testing of our design

within the Carla environment.

A.1.1 An overview of Carla simulator

Carla is an open-source platform designed for self-driving research which runs

on the Unreal Engine 4 (UE4) [20]. There are two core elements of the Carla

simulator:

• World: The core of the simulator. This contains the map, weather,

lighting and other simulation settings. The world is a library which

contains all the assets, while the Unreal Engine runs the simulation.

Figure A.1 is an example of a Carla world. Users can view the world

96

from the screen but cannot directly interact with it or any actors (e.g.

vehicles, pedestrians, sensors).

• Client: The Carla client connects to the world and retrieves information

from it. The Client is the gateway for users to interact with the world

and its actors. For example, once we set up the Carla world, we need

to initialize a client instance to spawn and control all actors. Figure

A.2 provides a screenshot of the manual control interface running on

a client instance. In this mode, the user can control the throttle and

steering angle of the spawned vehicle and thus interact with the world

(e.g. crossing lanes, hitting a wall).

Figure A.1: A bird’s eye view of the Carla world

In addition, Carla supports fully customized assets, which includes build-

ings, vehicles, roads, traffic signs, etc. This feature allows researchers from

different parts of the world to employ this simulator, since road conditions

(e.g. buildings, road signs, lane markings) may vary greatly from country to

country.

A.1.2 Self-driving features to be tested in Carla

As discussed before, a self-driving system is a sophisticated design which con-

sists of multiple modules. It was not practical to build a full self-driving system

97

Figure A.2: An example of Carla client manual control interface

and test it in Carla. Hence, our goal is to test features developed for the DIY

self-driving RC car which could not be quantitatively evaluated in lab settings.

In addition to sensors which can be mounted on vehicles (e.g RGB cam-

eras, LIDAR, radar), Carla also has a collision detector and a lane invasion

detector. These detectors enable quantitative evaluation of road detection and

lane keeping as well as the obstacle avoidance function.

We will thus employ two functions of the Carla simulator: 1) Lane detection

and keeping and 2) Obstacle avoidance.

A.1.3 Simulated sensors setup

RGB camera

In Section 3.3.3 we discuss two approaches for lane keeping:

1. Road marking detection from perceived RGB images, followed by fitting

the lane curvature to a polynomial function. We then control the vehicle

based on the lateral offset and the dynamics model of the vehicle

2. End-to-end learning using a CNN which inputs RGB images and directly

outputs the corresponding driving command.

Since the DIY RC car does not steered wheels, the first approach is dif-

ficult or impossible to use due to a lack of precise steering control available.

98

However, most automotive manufactures use the first approach (e.g. [10], [41])

for their lane departure warning systems. Therefore, in the Carla simulator

environment, we test the model-based approach to lane keeping. An RGB

camera is attached to the center of the vehicle and is facing forward. The

FOV of the camera is set to 90 degrees to reduce distortion effects (as shown

in Figure A.3).

Figure A.3: An image captured by the front-facing camera mounted on the
vehicle in Carla simulator

Radar sensor

In the DIY RC car, we use an ultrasonic sensor to measure distance to objects

in front of the vehicle. However, Carla does not include ultrasonic sensors,

but rather radar. A radar sensor emits Frequency Modulated Continuous

Wave (FMCW), which is more reliable than an ultrasonic sound wave. Radar

measurements provided by Carla are an array of points containing polar coor-

dinates, distance and velocity as demonstrated in Figure A.4.

99

Figure A.4: Radar measured points drawn in front of the vehicle

Events detector

The key functionality of the Carla simulator is the ability to detect collision

and lane invasion. These features are achieved by two detectors:

1. Collision detector: We attach this detector to our vehicle (parent), and

it registers an event every time the car collides against anything in the

world. Hence we can log these events for evaluation.

2. Lane invasion detector: the world is created by OpenDRIVE files which

contain road information such as lane markings. This detector deter-

mines if any lane marking is invaded based on the space between the

marking and each wheel.

These two detectors enable us to collect information for quantitative evalua-

tions.

100

	Introduction
	The motivation of research
	Statement of contributions

	Literature review
	Sub-domains of computer vision
	Applications of machine learning to engineering problems

	Outline of the thesis

	Hardware Background
	Baxter robot
	Computer vision preliminaries
	Monocular camera model
	Camera calibration

	Imaging sensors
	RGB camera
	RGB-D camera
	Vicon tracking system

	On-board processor
	Off-board processing unit

	Learned Self-Driving Vehicle
	Introduction
	Related works
	Vehicle automation level standard
	Image-based driving automation
	Traffic sign recognition
	Decision tree

	DIY remote control (RC) car under lab settings
	Dynamic model of the differentially-steered vehicle
	Hardware setup
	Software setup

	Experimental results
	Qualitative evaluation
	Quantitative evaluation

	Conclusion

	Predictive Display
	Introduction
	Related works
	Predictive display
	3D reconstruction
	Deep learning based images synthesis

	Methodology
	Overview of the system
	Preprocessing
	Generative model learning
	Online model updating
	Robot pose correction

	Experimental results
	Experiment setup
	Qualitative evaluation
	Quantitative evaluation

	Conclusion

	External Vision-based Joint Detection System
	Introduction
	Related works
	Robot joint angle measurements
	Marker-based robot joint tracking
	Articulated human body pose estimation

	Methodology
	System overview
	Instance segmentation
	Domain adaptation
	Joint detection
	Training dataset generation

	Experimental results
	Experimental datasets
	Groundtruth data generation
	Quantitative evaluation metrics
	Baseline methods comparison

	Conclusion

	Conclusion and Future Work
	Conclusion
	Limitations of work
	Future work

	References
	Appendix Carla simulator setup
	Self-driving car simulator
	An overview of Carla simulator
	Self-driving features to be tested in Carla
	Simulated sensors setup

