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Abstract

The class of Low-Density Parity-Check (LDPC) codes includes some of the 

most powerful capacity-approaching codes reported to date. As a result, LDPC 

codes have been considered for many new communication standards. However, 

a better understanding of the effects of the signal impairments that exist in 

such applications is required. In this thesis, the performance of various LDPC 

codes, including recent candidate LDPC codes for 10GBASE-T Ethernet, in 

the presence of channel impairments is evaluated and compared with the effects 

of conventional Additive White Gaussian Noise (AWGN). The channel impair

ments in this study include Inter-Symbol Interference (ISI), high-frequency and 

low-frequency Additive Colored Gaussian Noise (ACGN), and 1 / f  noise. The 

results show that LDPC codes appear to be more sensitive to AWGN than to 

ISI, but for the case of colored noise, they are more vulnerable to ACGN and 

1 / f  noise than to AWGN.
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Chapter 1 

Introduction

1.1 T he E volution  o f E thernet

The ideas underlying Ethernet Local Area Network (LAN) technology were 

originally presented by Bob Metcalfe at the Xerox Palo Alto Research Center 

(PARC) in the early 1970’s. Figure 1.1 shows an early drawing of an Ethernet 

network by Metcalfe [1], He chose the word “Ether” to describe the physical 

medium that carries the information bits to all nodes in the network. In fact, 

the “Ether” prefix of Ethernet suggests that networks are not meant to be 

restricted for use on only one connection type, and that Ethernet could be 

used on many different systems and function the same way on all. Copper 

cables, fiber optic cables, and even wireless technologies have now all been 

used to implement Ethernet. This flexibility, combined with simple expand

ability, makes Ethernet an attractive networking solution in today’s mixture 

of different physical layer technologies.

Industry standards based on Ethernet LAN were adopted in 1980 under the 

IEEE 802.3 series of specifications for data networks [6], These specifications 

define low-level data transmission protocols and the technical details that are 

needed to build interoperable Ethernet LAN products like cards and cables. 

Under the Open System Interconnection (OSI) model, Ethernet technology 

operates at the physical and data link layers (see Figure 1.2).

The IEEE naming convention for Ethernet can be categorized as “XBASEY”, 

where the prefix X indicates the data rate in Mbps, the second term stands

1
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Figure 1.1: An early drawing of an Ethernet network by Metcalfe [1].

\  IEEE f  802.3

Figure 1.2: Ethernet in the OSI model.

for the “baseband” transmission type, and the suffix Y indicates the segment 

length (e.g. 500 m for 10BASE-5). In more recent standards, the suffix Y has 

been replaced by a letter indicating the type of medium, for instance, T for 

Unshielded Twisted Pair (UTP) copper cable (e.g. 1000BASE-T) and T4 for 

four such pairs.
Ethernet technology has evolved and matured over a relatively long pe

riod of time. The original Ethernet standard supports data transfers at a 

maximum rate of 10 Mbps. 10BASE5, often referred to as Thicknet, was the 

first incarnation of Ethernet technology. The industry used Thicknet in the
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early 1980’s until 10BASE2, so-called Thinnet, appeared in 1986 [6]. Com

pared to Thicknet, Thinnet offered the advantage of thinner and more flexible 

cabling, making it easier to wire office buildings for Ethernet. In 1991, the 

IEEE 802.3 10BASE-T standard was approved. 10BASE-T soon became the 

most common form of Ethernet. It was even more convenient than Thicknet 

or Thinnet because 10BASE-T cables utilize cheap and flexible UTP cabling 

rather than bulky coaxial cabling. Over time, to meet the increasing perfor

mance needs of LANs, the industry created additional Ethernet specifications 

for Fast Ethernet, which extends Ethernet performance up to 100 Mbps [6]. 

By the mid-1990’s, Fast Ethernet technology had matured and met its design 

goals of (i) increasing the performance of traditional Ethernet while (ii) avoid

ing the need to completely re-cable existing Ethernet networks. Fast Ethernet 

comes in the 100BASE-T (1995) and 100BASE-FX varieties, which operate 

on UTP and fiber optic cable, respectively. By far the most popular of these 

alternatives is 100BASE-T, a standard that includes 100BASE-TX over Cate

gory 5 (CAT-5) UTP, 100BASE-T2 (CAT-3 or better UTP), and 100BASE-T4 

(a modified variation of 100BASE-T2 that includes two additional wire pairs).

Whereas Fast Ethernet sped up traditional Ethernet from 10 Mbps to 

100 Mbps, Gigabit Ethernet boasts the same order-of-magnitude improvement 

over Fast Ethernet by offering speeds of 1000 Mbps. Gigabit Ethernet was 

first made to travel over optical and copper cabling, but the 1000BASE-T 

standard (1999) successfully supports UTP as well [7]. 1000BASE-T employs 

baseband transmission over four pairs of CAT-5 cabling. A throughput of 

1 Gbps is achieved while transmitting 250 Mbps over each wire pair with a 

Bit Error Rate (BER) of less than 10~10. Standard transceiver architectures 

for 1000BASE-T are commercially available, and can accommodate the target 

BER at the 1 Gbps data rate.

At present, the next generation of Gigabit Ethernet (10 Gigabit Ethernet 

or 10GBASE-T) is an active area of investigation in both companies and uni

versities. In order to standardize 10GBASE-T, an IEEE Study Group was 

formed in November 2003. The Study Group became the 10GBASE-T Task

3
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Force in January 2004 [8].

1.2 10G B A SE -T  E thernet

10GBASE-T is aimed to provide a throughput of 10 Gbps over CAT-5 or CAT- 

6 cabling with a BER of less than 10“12 [8]. 10GBASE-T is an upgrade for 

the existing 1000BASE-T standard and a competitor to 10 Gigabit Ethernet 

over fiber [9]. Similar to 1000BASE-T, 10GBASE-T uses four wire pairs and 

supports full-duplex operation, however, with an extremely short clock period 

(1-2 ns).

There are several major engineering challenges and performance issues in 

the design of 10GBASE-T systems. As will be addressed in the following 

chapters, a 10GBASE-T transceiver must operate under the following severe 

conditions [2,10,11]:

• Significant levels of Inter-Symbol-Interference (ISI) caused by the 

band-limited UTP channel.

• Echo from the local transmitter on the same wire pair.

• Near-End CrossTalk (NEXT) from the local transmitters correspond

ing to other adjacent wire pairs.

• Far-End CrossTalk (FEXT) from the remote transmitters of the ad

jacent wire pairs.

• Alien Near-End CrossTalk (Alien NEXT) from transmitters in a sep

arate multidimensional transmission.

• Insertion loss going onto the UTP Cable.

• Colored noise due to the use of equalization or a precoding scheme.

• Residual ISI due to imperfect equalization or a precoding scheme.

• Noise from sources other than those listed above (e.g. 1 / f  noise 

caused by the loop filter in a phase locked loop).

4
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It should be noted that by increasing the bit rate and hence the signal edge 

speeds, the amount of interference introduced by channel properties will tend 

to increase. Therefore, a higher amount of interference will be present in a 

10GBASE-T channel in comparison with a 1000BASE-T channel. In addition, 

a shorter clock period (1-2 ns) and a lower BER is required for 10GBASE-T.

1.3 T hesis O rganization

Based on the experience from 1000BASE-T receiver design, this project re

views and investigates various equalization and coding alternatives for Gigabit 

Ethernet and the corresponding issues for band-limited channels in order to 

achieve sufficiently low BER. It then addresses the performance evaluation of 

LDPC codes, including the candidate LDPC codes for 10GBASE-T, in the 

presence of channel impairments such as ISI, residual ISI, Additive Gaussian 

Colored Noise (ACGN), and 1 / f  noise.

Following this introduction chapter, the rest of this thesis is organized as 

follows. In Chapter 2 background material and concepts are presented. Chap

ter 3 describes the coding scheme used in 1000BASE-T as well as the alter

native coding schemes for 10GBASE-T Ethernet systems. Chapter 4 presents 

the results of performance evaluation experiments for LDPC codes in the pres

ence of ISI. Chapter 5 presents and discusses the effects of low-frequency and 

high-frequency ACGN on the performance of LDPC codes. Chapter 6 presents 

the results of performance evaluation of LDPC codes in the presence of 1 / /  

noise. Finally, conclusions and future work are given in Chapter 7 .

5
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Chapter 2 

Background Material and 
Concepts

This chapter is dedicated to background material and concepts related to Gi

gabit Ethernet. Section 2.1 introduces the multidimensional constellation used 

in Gigabit Ethernet. Section 2.2 discusses channel and impairments models. 

Finally, Section 2.3 reviews various equalization methods and provides some 

simulation results.

2.1 Sym bol C onstella tion s in E thernet

Gigabit Ethernet uses a Pulse Amplitude Modulation (PAM) constellation for 

signal modulation during data transmission. PAM (also known as Amplitude 

Shift Keying or ASK) is a type of AM constellation in which the signal is 

sampled at regular intervals to obtain a pulse whose amplitude is proportional 

to the amplitude of the signal at the instant of sampling. A PAM-M signal 

(with M  levels of signal amplitude) can be defined as:

Am = {2m — 1 — M}d,  m  = l ,2 , . . . ,M  (2.1)

where A m is the amplitude of the m-th symbol and 2d is the distance between 

adjacent symbol amplitudes.

PAM has the advantage of simplicity and controlled bandwidth but, like 

other AM constellations, PAM has relatively high susceptibility to noise and 

interference. The reason for this susceptibility to noise is that any interference

6
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in the transmission path will either add to or subtract from signal voltage. 

As well, channel impairments that cause signal distortion and/or echos can 

also change the signal voltage. Since the amplitude of the voltage encodes 

the transmitted information, any unwanted change to the signal contributes 

directly to bit errors at the receiver. This property makes equalization and, 

possibly, error control methods critical parts in Gigabit Ethernet receivers.

2.1.1 The 1000BASE-T C onstellation

As introduced in the previous chapter, 1000BASE-T employs full duplex base

band transmission over four pairs of CAT-5 UTP cabling. The throughput of 

1 Gbps is achieved by transmitting at 250 Mbps over each wire pair. Each 

transmitted symbol on each wire pair is modulated using 5-level PAM (PAM-5) 

having 2 information bits per symbol [10]. The total number of levels required 

is 22 =  4. The extra level provided in PAM-5 is used for coding and control 

purposes. The amplitude levels in PAM-5 are labeled -2, -1, 0, +1, +2 (±2 

actually maps to ±1 Volt, and ±1 maps to ±0.5 Volt). Figure 2.1 illustrates 

the transmission scheme used in 1000BASE-T.

Hybrid { -2 , - 1 ,0 , 1 ,2 } Hybrid

Hybrid { -2 , - 1 ,0 , 1,2 } Hybrid

Hybrid
{ -2 , - 1 ,0 , 1,2} 

4- — --------— > Hybrid

Hybrid
{ -2 , - 1 ,0 , 1,2}

^  CAT-5 UTP
Hybrid

Figure 2.1: Transmission scheme in 1000BASE-T.

The combined output of all four transmitters on each wire pair forms a 

four-dimensional (4-D) symbol which carries eight information bits (i.e. 2 

information bits per 1-D symbol on each wire pair). Therefore, the symbol 

rate is 125 MBaud/s. The 4-D constellation can be thought of as taking the

7
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possible outputs of each transmitter as an axis orthogonal (at right angles) to 

the other three axes. For every symbol period, one point in the constellation 

is sent. This joint constellation is referred to as 4-dimensional PAM-5 or 4-D 

PAM-5. By using 4-D PAM-5, 54 =  625 distinct symbols can be generated, 

which provides enough symbol space to allow redundancy as well as special 

symbols for control purposes (in 1000BASE-T, 512 symbols are used for data 

and 113 is used for control signals) [12].

As mentioned before, PAM has a relatively high susceptibility to noise 

and interference. One way to alleviate this is to increase the distance be

tween transmitted symbols, which makes them more distinguishable in the 

presence of noise and interference. For this reason, the PAM-5 constellation in 

1000BASE-T is divided into two 1-D subsets A = {—1,1} and B =  {—2,0, 2}, 

leading to a minimum squared Euclidean distance, A 2, of 4 between any two 

points in these subsets1. In addition, in order to form the 4-D PAM-5 symbols, 

different combinations of the A  and B  subsets are grouped in a way that forms 

eight 4-D subsets SO,..., S 7. Each 4-D subset is sent over four wire pair and 

consists of both A-type and B-type 4-D symbols (see Table 2.1). 4-D subset 

partitioning guarantees the following properties [2]:

• The minimum square Euclidean distance of A2 =  4 between any 

two 4-D symbols in a same subset. For example, in the 54 subset, 

the squared distance between A-type symbol (1,-2,2,-1) and B-type 

symbol (0,-1,1,0) is (1 -  0)2 +  ( -2  -  ( -1 ))2 +  (2 -  l ) 2 +  ( -1  -  0)2 =  4.

• The minimum squared Euclidean distance of A2 =  2 between any two 

4-D symbols in either the even subsets (BO, 52, 54,56) or the odd 

subsets (51,53, 55, 57). For instance, the square distance between 

4-D symbol (0,0,0,1) from 51 and 4-D symbol (0,0,1,0) from 53 is 2.

As will be shown in the next chapter, this 4-D subset partitioning in combi

nation with Trellis coding produces a significant Signal-to-Noise-Ratio (SNR)

:As an example, the minimum squared Euclidean distance for any two points in the 
subset A  can be calculated as A 2 =  (1 — (—l))2 =  4.

8
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improvement in 1000BASE-T.

Table 2.1: 4-D subsets in 1000BASE-T, A = {—1,1} and B  =  {—2, 0, 2}.

4-D Subset A- Type B-Type
SO AA A A B B B B
51 A A A B B B B A
52 A A B B B B A A
53 A A B A B B A B
54 A B B A B A A B
55 A B B B B A A A
56 A B A B B A B A
57 A B A A B A B B

2.1.2 The 10G BASE-T Constellation

10GBASE-T uses full duplex baseband transmission over four pairs of CAT-5 

or CAT-6 UTP cabling. The data rate of 10 Gbps is achieved by transmit

ting at 2.5 Gbps over each wire pair. However, to achieve this target data 

rate, several dramatic improvements are required compared to the existing 

1000BASE-T solutions. A straightforward extension of the techniques in the 1 

Gbps specification to 10 Gbps is not realistic. For example, the use of a baud 

rate of at least 1.25 GBaud/s would be extremely difficult. As a result the 

constellation size has to increase beyond the PAM-5 used in 1000BASE-T [11].

At present, there are three proposals for the 10GBASE-T constellation, 

PAM-16, PAM-12 and PAM-8 [8]. The PAM-16 and PAM-12 proposals operate 

at 800 MBaud/s and 825 MBaud/s, respectively. In the PAM-12 proposal, 

eight signaling levels are used for data transmission and the extra four levels 

are used for coding and control purposes. PAM-16 and PAM-12 have the 

advantage of using lower baud rates than PAM-8, which operates at 1000 

MBaud/s. However, PAM-8 might be able to tolerate more noise than them. 

Because PAM-8 maps sampled signal values into only eight distinct voltage 

levels, the difference between each level is greater than it would be for PAM-16

9
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and PAM-12, which makes it easier for the receiver to determine the level of 

each sample.

2.2 O verview  o f C hannel and Im pairm ent M od 
els

In general, a communications channel models the medium through which in

formation is transmitted from a transmitter to a receiver. In many communi

cations systems, the channel is often modeled by possibly frequency dependant 

attenuation of the transmitted signal, followed by additive noise. The atten

uation captures the loss in signal power over the course of transmission. The 

noise in the model captures external interference and/or electronic noise in 

the transmission medium and in the receiver circuit. Electronic noise sources 

within the circuit can also be classified into two groups, namely, device noise 

and interference [13]. Thermal, shot, and flicker noise are examples of the 

former, while substrate and supply noise are in the latter group. Hence, de

pending on the application, the mathematical model for the communication 

system includes a model for the distortion introduced by the transmission 

medium (and the receiver circuit).

Figure 2.2 shows a typical communication channel model. The input se

quence of the channel can be expressed as a power series in the delay operator 

D (assuming a D-transform) [14]:

x(D) = x0D + x 1D 1 + x 2D 2 + ... (2.2)

Following the theory of Linear Time Invariant (LTI) systems, the received 

signal y(D)  can be expressed as:

y(D) = s(D) +  n{D) = x(D)h(D)  +  n{D)  (2.3)

where h(D) and n(D)  are the H-transforms of the channel impulse response 

and the channel noise signal, respectively, and S ( D ) is the output signal from 

the channel before noise addition.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Noise
n(D)

Input   Received
sequence i  sequence

x(D)-------------* h(D)  <+)--------------- +y(D)

Figure 2.2: Channel model in the discrete-time domain.

2.2.1 A dditive W hite Gaussian N oise

The Additive White Gaussian Noise (AWGN) channel is one of the simplest 

mathematical models for various physical communication channels, including 

wireline channels and some radio channels. An AWGN model is usually char

acterized by the mean and variance of the distribution. In this model the

transmitted signal is assumed to corrupt by the addition of white noise with

a Gaussian (normal) probability distribution of

P(x) = (2.4)
&nV 2TT

where pi is the mean and a \  is the variance of the noise. Figure 2.3 shows the 

histogram of a typical AWGN sequence with pi =  0 and =  1 for 106 noise 

samples generated in Matlab. There are two major characteristics associated 

with AWGN:

• Statistical independence of any two noise samples.

• Constant power spectral density (i.e. the same distribution of power 

for all equal-sized frequency intervals).

Figure 2.4 illustrates the power spectrum of the same sequence. The spectrum 

gets flatter as the number of noise samples is increased.

Even if the AWGN channel is often used as a reference channel model in 

digital communication systems, it is not sufficient to describe real channels 

that, for example, suffer from Inter-Symbol Interference (ISI).

11
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Figure 2.4: Power spectrum density of a typical AWGN sequence.
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2.2.2 Inter-Sym bol Interference

The process of transmitting an input sequence x(D)  through the channel h(D)  

and obtaining a distorted signal s(D)  can be thought of as filtering the input 

signal. In practice, channels are band-limited. This is basically due to the 

frequency response characteristics of the communication medium. As an ex

ample, parasitic series and parallel capacitance in twisted pairs results in a 

limited frequency response channel model. A band-limited channel is usually 

modeled as a low-pass filter. In practical channels the inevitable filtering ef

fects and channel distortion tends to cause a spreading or smearing out of 

individual data symbols passing through a channel (Figure 2.5). For consecu

tive symbols, this spreading causes part of the symbol energy to overlap with 

neighboring symbols causing a noise at the sampling time that is called ISI 

(Figure 2.6). In addition to band-limited channels, transmitter filtering (when 

channel spacing is crucial) and multi-path reflection in wireless channels can be 

additional sources of ISI. Figure 2.7 illustrates the postcursor ISI of a CAT-5 

UTP channel referred to in the 1000BASE-T standard [2]. Figure 2.8 illus

trates the discrete time impulse response of a typical CAT-6 UTP channel [3], 

which is an alternative medium for the 10GBASE-T standard. This channel 

has severe delay spread over many symbol intervals, resulting in severe ISI.

When ISI exists in a channel, the channel behaves as if it has memory

with previous symbols (postcursor symbols) and following symbols (precur

sor symbols). ISI can significantly degrade the ability of the data detector to 

differentiate the present symbol from the diffused energy of the adjacent inter-

Low-pass filter

Figure 2.5: Channel as a low-pass filter.

because each symbol value passed through the channel becomes correlated

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sampling points

Input data

ISI

Filtered 
data "

Figure 2.6: ISI in a non-ideal channel.

1)

‘ >

<1 ..................

< > . . . . . . . . . . . . . . .
i  j

. . .  ,4I. . . . . ! > . . . . . . . . . . . . . . . . . .

I I f 1
6

i-0 . 4 11-------------------------1-------------------------1------------------------1 ------------------------1-------------------------1-------------------------
0 2 4 6 8 10 12

Symbol Time

Figure 2.7: Postcursor ISI for CAT-5 UTP [2].

fering symbols. Even with no noise present in the channel, ISI alone leads to 

the occurrence of errors produced at the so-called irreducible error rate. These 

errors will degrade the bit and symbol error rate performance. To compen

sate for the effects of ISI, communication systems use fixed and/or adaptive 

channel equalizers. Equalization techniques will be discussed in Section 2.3.
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Figure 2.8: Channel impulse response for CAT-6 UTP [3].

2.2.3 Residual ISI

Residual ISI is mainly due to mismatch between the transmission channel and 

the equalizer or precoder [15,16]. Such a mismatch can be a result of:

• Equalizers whose finite length limits their possible impulse response 

behaviour.

• Quantized (as opposed to infinitely precise) equalizer coefficients.

• Channel estimation error.

Residual ISI is among the important impairments for any high-speed wire- 

line standard like 10GBASE-T Ethernet [17]. In practice, this phenomenon is 

unavoidable and there will always exist some level of residual ISI in any real 

wireline system.

2.2.4 Colored Noise

Most of the communication system models are usually analyzed under the 

assumption that the noise in the system is independent of the transmitted 

signals and that the noise components of any two samples are independent 

{e.g. AWGN). However, in many communication systems, the dominant noise 

sources are actually colored [17,18], making colored noise an important im

pairment that exists in practical communication channels.

15
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Colored noise is also a major impairment in the 10GBASE-T Ethernet. 

10GBASE-T needs to implement an equalization scheme at the receiver to 

overcome the ISI caused by severe delay spreads in the CAT-6 UTP channel 

(see Figure 2.8). But such an equalization scheme results in correlated noise. 

Even when an equalizer is provided at the transmitter [e.g. in Tomlinson- 

Harashima precoding [19,20]), 10GBASE-T still needs to use various filtering 

schemes at the receiver to overcome the effects of residual ISI and other im

pairments, such as intra-cable crosstalk. In addition, the coding scheme in 

10GBASE-T spans across four copper wire pairs which are in the same phys

ical bundle and pass through the same connectors. All four wire pairs are 

latched into the same transceiver chip. Also transmitters on all four wire pairs 

are clocked by the same clock, which slightly correlates the noise sources in 

both directions.

Another important source of colored noise for 10GBASE-T is a new type of 

crosstalk that has been called Alien Near-End CrossTalk (ANEXT). ANEXT 

refers to signal energy that couples from one 4-pair UTP cable to another 

4-pair UTP cable. This type of crosstalk is due to the fact that at high oper

ating frequencies, a UTP cable starts to behave like an antenna, radiating and 

picking up energy from the surroundings [11]. This was not a problem in the 

earlier, lower data rate versions of Ethernet such as 1000BASE-T. However, 

ANEXT is predicted to be one of the major impairments for 10GBASE-T 

systems. According to [11], issues associated with ANEXT include the lack 

of synchronization between the symbol generator and the receiver, which im

plies a cyclo-stationary relationship. In addition, ANEXT characteristics may 

change abruptly and dramatically as cables at a switch box are plugged in and 

unplugged. These features make ANEXT cancelation impractical at present. 

Figure 2.9 illustrates ANEXT coupling in a multi-cable bundle and Figure 2.10 

shows the measured spectrum of ANEXT for 10GBASE-T systems [4].

16
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Figure 2.10: Spectrum of ANEXT in a 10GBASE-T system [4].
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2.2.5 1 / f  N oise

1 / f  noise (also known as flicker or pink noise) is a type of low-frequency colored 

noise [21]. 1 / f  noise is ubiquitous in nature. It is observed in solid-sate circuits, 

fractals and music, etc. For analog solid-state circuits, in particular, 1 / f  noise 

becomes increasingly important because it can limit the channel minimum 

spacing in communication systems when it is upconverted to phase noise in 

oscillators and in mixers [13]. Even in the digital world, phase noise in the 

guise of timing jitter is important. Clock jitter directly affects the timing 

margins and hence limits system performance [13]. In addition, low frequency 

noise is very sensitive to the technological processes and parameters which are 

used in IC fabrication [22-25].

1 / f  noise is characterized by a power spectrum that falls like 1/f:

S ( f )  = j  (2.5)

where a is a gain factor and S( f )  is the power spectrum of the 1 / f  noise. This 

spectrum is characterized by a 3 dB per octave drop (i.e.. 10 dB per decade), 

which means that whenever the frequency doubles, the amplitude drops by a 

factor of 1/2:

S ( 2 / )  =  ^  =  ^ ( / )  ^  10I° Ei°

This also implies that the amount of power contained in any octave interval

[fi, / 2], where f 2 = 2 /x, is the same:

S( f ) d f  = a ln ( ^ )  = a l n ( ^ )  =  oln(2) (2.7)
h  hji

Figure 2.11 shows the power spectrum of a typical 1 / f  noise sequence with 

a variance of 1, and mean of 0. The power spectrum data was calculated 

in Matlab by using 107 samples. Figure 2.12 shows the same spectrum in 

log-sc&le. The 10 dB per decade drop is apparent in this figure.

There exist various methods for generating 1 / f  noise. The method used 

in this thesis is discussed in Chapter 6. Discussion about other methods can 

be found in [26-28].
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2.2.6 Insertion Loss, Echo and Crosstalk

In addition to the previously discussed impairments, there are some other 

important impairments in Gigabit Ethernet systems, which are due to the 

multi-dimensional transmission scheme. Figure 2.13 illustrates the following 

impairments in a typical Gigabit Ethernet architecture.

Insertion Loss: This refers to the loss of signal power between two points 

along a cable. Insertion Loss is usually expressed as the reciprocal 

of the ratio of the signal power delivered to one point to the signal 

power delivered to the other point.

Echo: Echo is caused by an impedance mismatch between two points of 

medium. It is dominated in 10GBASE-T due to the mismatch in

troduced by the hybrids.

Crosstalk: This impairment is due by signal coupling from one pair of UTP 

cable to another pair. It can occur at the near end of the transmitter 

(NEXT), the farther end of the transmitter (FEXT), or as described 

in Section 2.2.4, from a remote transmitter (ANEXT).

The above mentioned impairments do not have the same effects in all 

XBASE-T Ethernet standards. However, the effect of all of them tends to be 

more significant in 10GBASE-T systems [11]. Figure 2.14 shows the frequency 

response of these impairments over CAT-5 UTP in a 10GBASE-T Ethernet 

system [5].

2.3 E qualization  M eth od s

The process of compensating for the ISI and other channel impairments is 

called equalization. Equalization is usually performed by a filter, known as 

channel equalizer, which effectively flattens the channel transfer function and 

hence improves the recovery of the transmitted symbols. There are various 

types of equalizers which are different in structure, complexity, performance
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Figure 2.13: Insertion Loss, NEXT, Echo and FEXT in Gigabit Ethernet.

and the situations in which they can operate (e.g. channel conditions). In ad

dition, equalizers can be categorized as being either preset (fixed) or adaptive 

equalizer. In preset equalizers, all the parameters are set and don’t change 

during equalizer operation. Therefore, this type of equalizer is suitable for 

situations where the channel behavior is known a priori. Adaptive equalizers, 

on the other hand, are suitable in situations where the channel characteristics 

may vary over time since adaptive equalizers are capable of updating their 

parameters according to channel variations. This section gives an overview of 

classical equalization methods, their benefits and their drawbacks.
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2.3.1 Linear Equalization

In the linear equalization method, the output of the equalizer is a linear combi

nation of the present and post equalizer inputs. The equalizer is implemented 

using a Finite Impulse Response (FIR) filter. The coefficients of such a fil

ter can be constant (preset scheme) or updated during equalization (adaptive 

scheme). Figure 2.15 shows the structure of a preset linear equalizer, where D 

is a delay element, N  is the order of the filter, cq is the i-th coefficient of the 

filter, y(n) is the received signal and z{n) is the equalized signal.

In the preset scheme the equalizer coefficients are calculated to estimate 

the inverse transfer function of the channel {i.e. l /h(D)).  This method is also 

known as zero-forcing linear equalization as it can completely eliminate the 

ISI leaving only an AWGN component, n'{D) :

z{D) = y{D)/ h{D) =  (x{D)h(D) +  n{D))/h{D) = x{D)  +  n{D)/h{D) (2.8)
n'(D)
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Figure 2.15: Linear equalizer.

However, despite this advantage and its simple structure, this method has the 

following drawbacks:

• The noise energy experiences a gain of | |l /h ||2.

• Filtering the AWGN, n(D),  makes it colored (n' (D)).

• Not all channel transfer functions have a well-defined inverse l /h(D).

Due to these problems, another type of equalizer, known as a Decision Feed

back Equalizer, is used in many high data rate communication systems.

2.3.2 D ecision Feedback Equalization

The equalization scheme used in 1000BASE-T Ethernet is based on decision 

feedback equalization. A Decision Feedback Equalizer (DFE) is a nonlinear 

equalizer that employs previous decisions to eliminate the ISI caused by pre

viously detected symbols on the current symbol to be detected [29]. A block 

diagram for a typical DFE is shown in Figure 2.16. The DFE structure can 

be thought of as a special type of Infinite Impulse Response (HR) filter. The 

first filter in a DFE is called the feedforward filter. This filter is generally a Fi

nite Impulse Response (FIR) filter with adjustable coefficients. The input for
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this filter is the received signal y(D).  The second filter is called the feedback 

filter and it is also an FIR filter with adjustable coefficients. Its input is the 

sequence of previously detected symbols. The output of the feedback filter is 

subtracted from the output of the feedforward filter to form the input to the 

detector. The detector determines which of the possible transmitted symbols 

is closest to the input signal (i.e. received symbol). Thus, it makes a deci

sion and outputs the corresponding decision. What makes the DFE nonlinear 

is the nonlinear characteristic of the detector that provides the input to the 

feedback filter.

D etected
se q u e n ce
-*z (n)

Input
seq u en ce

y ( n ) ~
w(n)

D etector

F eedback
Filter

Feedforw ard
Filter

Figure 2.16: Decision feedback equalizer.

Let the N  be the order of the feedforward filter, M  the order of the feedback 

filter, and {a,} and {b,} the coefficients of the feedforward and feedback filters. 

The input of the detector can then be expressed as:

N  M
w(n) = J 2 ak V ( n - k ) - Y . k z i n - l )  (2.9)

k=1 /=1

2.3.2.1 Adaptive DFE

In Gigabit Ethernet the adaptive version of DFE is used. In the adaptive 

DFE scheme, the tap coefficients of the feedforward and feedback filters are 

selected to optimize some desired performance measure. For the sake of sim

plicity as well as lower hardware cost, the Least Mean Square (LMS) algorithm 

(also known as the stochastic gradient algorithm) [29,30] is usually applied for 

adaptation (see Figure 2.17). In each iteration of this adaptive scheme the
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following steps are applied:

i) The new input sequences for both the feedback and feedforward 

filters are updated.

ii) The difference between detector input and output is calculated as 

an error value.

iii) Based on the error, the filters’ inputs and the step size parameter, 

the filter coefficients are updated.

To ensure convergence of this iterative procedure, the step size p, is chosen 

as a small positive number to scale down the error signal. The following matrix 

equations formulate the above steps [30]:

where p  is the step size and U(n) and C(n) are two matrixes containing the 

filters’ input sequences and coefficients, respectively, as follows:

When the DFE starts to operate, its coefficients are given initial values that 

are not the optimal coefficients. Hence, the DFE cannot initially make reli

able decisions and the filter coefficients are updated by a nonzero error value. 

Therefore it is possible that the incorrect decisions will propagate through the 

DFE and hence the DFE will continue to make its next iterations based on pre

vious wrong decisions. This phenomena known as error propagation [16,31]. 

Error propagation phenomena can also happen during the normal mode op

eration of a DFE by making large number of consequent errors decisions. To 

prevent this practical problem at the beginning of the equalization, it is com

mon to use a training sequence, which is a sequence of data symbols known 

in advance by both the receiver and transmitter. Thus, the equalizer has two 

operating modes. In training mode, the error e(n) is calculated as the dif

ference between the actual transmitted data [i.e. the predetermined training

i) V{n) =U{n)  + Y . i L i h * { n - l )
ii) e(n) =  z{n) — w(n)
iii) C(n + 1) = C(n) + p x e(n)T(n)

(2 .10)

U(n) = [ { y ( n - k ) }  {w(n -  I)} }
C(n) = [ {ak} {&,} ] k = l , . . . ,N  Z =  1,..., M (2 .11)
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Figure 2.17: Adaptive decision feedback equalizer.

sequence) and the detector input. Training mode occurs when the detector is 

out of service. After an adequate number of iterations, the filters’ coefficients 

converge to the optimum values. Then, the equalizer can switch to the normal 

(also called decision-directed) mode and use its detector to make decisions. 

The length of the training sequence (i.e. the number of iterations needed for 

convergence) as well as the maximum amount error after adaptation depends 

on the step size and channel characteristics. The smaller the step size the 

less the error but the more iterations that are required to converge. A rule of 

thumb for selecting the step size parameter to ensure convergence and good 

tracking capabilities in slowly-varying channels is [32]:

M =  5 (M +  N ) E V (2’12)
where Ey is the received signal-plus-noise power estimated from the received 

signal, y.

In general, the advantages of using an adaptive scheme, such as the LMS 

algorithm, for DFE can be summarized as follows:

• Simplicity of implementation.
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• Accounts for noise, unlike the zero forcing equalizer.

• Avoids the need to calculate the inverse channel, 1 /h(D).

From the optimization point of view, the LMS criterion in DFE tries to mini

mize the Mean Square Error (MSE). However, there is no guarantee that the 

DFE will indeed converge to the global minimum of the MSE function. It 

may happen that it converges to only a local minimum and gets stuck there 

because the step size is too small. In such cases, choosing a proper value for 

the step size is essential. Adding noise to the received input may help DFE to 

escape a local minimum and then converge to the global minimum, but this is 

not necessarily the case.

In comparison with linear equalizers, which are either adaptive or preset 

FIR filters, the DFE can achieve a better performance [14]. However, it is 

not the optimum equalizer from viewpoint of minimizing the probability of 

error in the detection of the information from the received signal samples [29]. 

From digital communications theory, optimum detection is done by using a 

Maximum Likelihood Sequence Estimator (MLSE). An MLSE outputs the 

most probable symbol sequence for the given received sampled sequence. This 

method will be discussed in the next chapter.

Due to its superior performance over linear equalizers [33], especially when 

the channel introduces severe signal attenuation within specific frequency re

gions, the DFE is preferred in many digital communication applications. How

ever, there are some drawbacks for DFE. It suffers from error propagation ef

fects. Error propagation generally does not severely affect DFE performance 

if the channel delay spread is on the order of a symbol duration or less [33,34], 

However, to accommodate high data rates, the associated increase in relative 

delay spread may result in error propagation for a given channel [31]. There

fore, error propagation might result that causes bursts of decision errors and 

a corresponding increase in the average probability of bit and symbol errors 

in systems like 10GBASE-T. In addition to the error propagation problem, 

coding schemes such as LDPC coding cannot be applied in a straightforward
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manner in a DFE [33,35]. The difficulty arises because the DFE requires zero- 

delay decisions, which is incompatible with the idea of channel coding. These 

problems can be avoided by exploiting the feedback filter in the DFE at the 

transmitter and by introducing a nonlinearity for power limitation. This ap

proach is in fact the basis for Tomlinson-Harashima Precoding (THP) [19,20]. 

THP is discussed in Section 2.3.3

2.3.2.2 Performance Evaluation of DFE in 1000BASE-T Ethernet

Figure 2.18 plots the simulation results that show the convergence of PAM-5 

DFE for CAT-5 UTP channel in 1000BASE-T (see Figure 2.7). In the sim

ulation study, the training sequence consists of 100K symbols and the step 

size, p, was 0.0001. As shown in Figure 2.18(A), at the beginning the MSE is 

high but after about 50000 iterations, the DFE coefficients have largely con

verged to stable values and the MSE becomes much less. At the same time the 

PAM-5 equalized symbol becomes distinct. Figure 2.18(B) shows this behav

ior clearly. After transmission of the training sequence, the equalizer switches 

to its normal mode operation. At this time it is either possible to continue 

the adaptive scheme (decision directed) or turn off the adaptive scheme and 

work with constant filter coefficients. The former form is suitable for channels 

which might vary with time.

Figure 2.19 shows the result of a BER performance evaluation for a con

ventional DFE scheme using the 1000BASE-T 4-D PAM-5 constellation. It 

was assumed that the DFE cancels ISI due to 14 postcursor channel taps, i.e., 

the channel memory is 14 (CAT-5 UTP channel in Figure 2.7). The sym

bol detector in the simulation study was a PAM-5 slicer which makes hard 

decisions on the equalized symbol. The SNR in this simulation is defined as 

lQloglQ(Es/En ), where Es  is the average symbol energy for a 4-D PAM-5 

symbol and E n  is the AWGN variance. As illustrated, the DFE can achieve 

BER in order of 10~7 at SNR =  23 dB. Such performance is considerable, but 

it is actually far from the 10-10 target BER for 1000BASE-T. Therefore, as 

will be discussed in the next chapter, to satisfy the target BER, a more pow-
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Figure 2.18: Convergence of PAM-5 DFE: A) MSE, B) Equalized PAM-5 
symbols.

erfull joint equalization and coding scheme has been used in the 1000BASE-T 

standard.

2.3.3 Tomlinson-Harashima Precoding

The THP structure [19,20] is illustrated in Figure 2.20. Unlike other equal

ization techniques in which equalization takes place in the receiver, THP is 

performed as a form of equalizing predistortion at the transmitter. In THP, it 

is assumed that the channel response h(D) is known at the transmitter. The 

transmitter generates a data symbol, d(n), using PAM-M.  The transmitted 

symbol x(n)  is then formed by subtracting the ISI introduced by previously 

transmitted signal (i.e., decision feedback in the transmitter) and then per

forming a modulo-2M operation. The modulo-2M operation limits x(n) to
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the interval (—M, M] and can be expressed as:

;(n) 2= d(n) — '^2 h(i)x{n — i) —> <
i= 1

N
N

x(n) — d(n) +  2Mv(n) — h(i)x(n — i)
i= 1

x(n) G (—M , M]
(2.13)

where u(n) is the unique integer that satisfies the above relationships. Equiv

alently, in D-transform notation the transmitted sequence, x(D),  can be ex

pressed as:

x{D) =  d{D) + 2Mv(D) -  x{D)[h(D) -  1] x{D) = [d(D) + 2Mv(D)}/h(D)

(2.14)

Consequently, the received signal is an ISI-free signal:

y(D) = x(D)h(D) +  n(D) = d(D) +  2 Mv{D)  +  n(D)  (2.15)
ISI—free

The original data symbols can be retrieved by reducing y(n) to the interval 

(—M, M] with a modulo-2M operation.
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Figure 2.20: Tomlinson-Harashima precoding.

THP is a practical solution to overcome the DFE error propagation problem 

in a receiver equalizer. It has been widely used as an alternative to the DFE, 

e.g., in digital subscriber loop (xDSL) systems, and it has been selected as an 

alternative equalization scheme for 10GBASE-T. The benefits of THP can be 

summarized as follows:

• Since channel equalization is performed at the transmitter, error 

propagation is circumvented.

• Coding techniques can be exploited in the same way as for channels 

without ISI.

• THP reduces the complexity of the receiver by bringing the equaliza

tion back to the transmitter. This is advantageous for applications 

like 10GBASE-T, in which many other computationally-expensive 

tasks are performed at the receiver.

There are also some drawbacks with THP. The precoded signal exhibits a 

huge dynamic range for a satisfactory degree of noise whitening, especially if 

the discrete time channel includes spectral nulls [35]. These dynamics cause 

increased sensitivity to equalization and symbol clock jitter. In addition, a 

transmitter with perfect THP requires knowledge of the actual channel char

acteristics for satisfactory precoder design [16,35]. However, since a perfect 

match between the channel and precoder is not possible in practice, there will 

be always be some residual ISI.
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2.3.4 Delayed D ecision Feedback Sequence Estim ation

Figure 2.21 shows the structure of a Delayed Decision Feedback Sequence Esti

mator (DDFSE). As shown in this figure, DDFSE [36] combines the structure 

of MLSE {i.e. the Viterbi algorithm) and DFE. Such a structure tends to have 

a superior performance than a DFE and trades off the exponentially increas

ing complexity of the Viterbi algorithm and MLSE performance. DDFSE has 

been used in 1000BASE-T Ethernet. The Viterbi algorithm and DDFSE are 

discussed in greater detail in the next chapter.

Input 
se q u e n ce  

y {n )  -

D etected  
se q u e n ce  
— *z {n )

w (n ) Viterbi
Algorithm

F eedback
Filter

Feedforw ard
Filter

Figure 2.21: DDFSE structure.
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Chapter 3 

Coding Schemes in Gigabit 
Ethernet

The main purpose of coding is to add redundant structure to the transmit

ted data to allow the receiver to detect and correct errors introduced during 

passage through a noisy and distorting channel. In general, in order to de

crease the effect of errors and achieve reliable communication, it is necessary 

to transmit sequences that are as different as possible, in a Hamming distance 

sense, so that the channel noise will be less likely to change one valid sequence 

into another. However, the introduction of redundancy results in the transmis

sion of extra bits and thus a reduction of the information transmission rate. 

Thus there is a tradeoff between the transmission rate and the reliability of 

communication. Such a tradeoff is very important for communication systems 

such as 10GBASE-T, in which reliable high data rate transmission needs to 

be guaranteed over the band-limited UTP channel.

Channel coding schemes can be divided into two classes, convolutional 

codes and block codes [29]. These two schemes are reviewed in this chap

ter through the discussion of 1000BASE-T and 10GBASE-T Ethernet coding 

schemes, respectively.
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3.1 T he 1000B A SE -T  E thernet C oding Schem e

As briefly mentioned in the previous chapter, 1000BASE-T uses a joint cod

ing and equalization scheme known as DDFSE. In general DDFSE structure 

in 1000BASE-T can be considered as a combination of the Viterbi Algorithm 

(VA) and DFE. The VA is a famous algorithm for the optimal decoding of con

volutional codes [37,38] as well as optimal detection of data sequences distorted 

by ISI [39—42]. This section firstly introduces convolutional codes, their encod

ing methods and the VA. It then discusses the usage of the VA in 1000BASE-T 

as an optimal detection algorithm for ISI-distorted data sequences.

3.1.1 Convolutional Coding

In convolutional coding, each block of k information bits is mapped into a 

block of n bits, which are not only determined by the present k information 

bits, but also by the previous information bits. The term “convolutional” is 

used because the encoded output sequence is generated by the convolution 

of the input sequence and a generator sequence. As will be discussed in the 

following sections, the dependence on the previous information bits introduces 

memory into the encoding scheme and indeed causes the encoder to behave as 

a Finite State Machine (FSM).

3.1.1.1 Encoding of Convolutional Codes

The encoder in a convolutional coding scheme is usually a sequence generator 

based on a Linear Feedback Shift Register (LFSR). Convolutional encoding is 

accomplished by multiplexing two or more different convolutions of the same 

source data onto a channel. This process is done in a continuous manner with 

the use of shift registers and modulo-2 adders. These modulo-2 adders are 

XOR gates whose inputs are various combinations of the shift register state 

bits and whose outputs are multiplexed together to form the output stream.

Figure 3.1 shows the block diagram of a typical convolutional encoder with 

Lk  stages, where L is called the constraint length of the code and “+ ” implies
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the XOR operation. To input the next block of information, k information bits 

enter the LFSR and the contents of the last k stages of the LFSR are dropped. 

Then n linear combination of the content of the LFSR are calculated and used 

to generate the encoded sequence. From this coding scheme it is obvious that 

the n output bits outputs depends on the most recently recent k bits as well 

as the last (L — 1 )k bits. The rate of this code is given by

R = -  (3.1)
n

-Lk  s ta g es

Information
bits

Encoded
seq u en ce

Figure 3.1: An example of a convolutional encoder.

The 1000BASE-T Ethernet coding scheme is based on Trellis Codes Modu

lation (TCM). TCM adds redundancy by combining convolutional coding and 

modulation into a single operation. As described previously, the more redun

dancy that is added to the data, the more error correction can usually be done 

at the receiver, thus the lower the BER. However in 1000BASE-T Ethernet, 

where the available bandwidth is limited and has to be used efficiently, the 

added redundancy can reduce the actual bit rate. Therefore, in this standard 

just one bit of redundancy is added to each word (8 bits) to preserve the bit 

rate at 1 Gbps. Figure 3.2 depicts the structure of the encoder for 1000BASE- 

T, where Sdn[0,...,7] denotes 8 bits of data for transmission. It can be seen in 

this figure that the rate of the TCM is | .  In the encoder structure, the last 

two MSBs (Sdn[6] and Sdn[7]) of the transmitted word are used to generate 

one bit redundant information (i.e. Sdn[8]). After encoding, the 3-bit output
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of the TCM encoder (Sdn[6], Sdn[7] and Sdn[8]) is used to select among 8 pos

sible 4-D symbol subsets (labeled 50 to S 7 in Table 2.1) and the first 6-bit of 

Sdn (Sdn[0] to Sdn[5]) is used to select the symbol combination in the selected 

subset [7]. This is done by a mapper (Figure 3.3).

Sdn[6]
Sdn[7]

Sdn[8]

Figure 3.2: Convolutional encoder in the 1000BASE-T TCM.

Selects the symbol 
combination

Sdn[0] PAM5 sym bol for 
UTP pair 1 „

Sdn[1]

Sdn[2] PAM5 sym bol for 
UTP pair 2 „

Sdn[3]

Sdn[4] PAM5 sym bol for 
UTP pair 3 t

Sdn[5]

—  Sdn[6] -f4 > PAM5 sym bol for 
UTP pair 4  ^Sdn[6]

—  Sdn[7] t - >
Sdn[7]

—  Sdn[8]

TCM

Mapper

Selects the 4-D 
symbol subset

Figure 3.3: The TCM encoder and mapper in the 1000BASE-T.

The preceding encoder can be considered as a FSM with 8 states (since it 

has 3 bits of memory) in which each state has two inputs (Sdn[6] and Sdn[7]) 

and 3 outputs (Sdn[6j, Sdn[7] and Sdn[8]). A widely used method to represent
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such an FSM is to use a trellis diagram. A trellis diagram is basically a state 

transition diagram plotted versus time. In the 1000BASE-T literature, the 

trellis diagram for the encoder usually shows the combined function of the 

encoder and the mapper. Figure 3.4 shows the 1000BASE-T trellis diagram. 

In this diagram, each branch value (i.e. output of each state) represents a 

4-D symbol. For example, when the encoder state is even (e.g. 000), only 

a 4-D symbol from the four even constellation subsets (i.e. SO, S 2, S 4 and 

S 6) can be output by the TCM. Thus, the next state must be selected from 

{000, 001,010, 011), as determined by the input bits Sdn[6] and Sdn[7].

Figure 3.4: Trellis diagram of the 1000BASE-T TCM encoder.

The 1000BASE-T code trellis takes advantage of the subset partitioning,

transitions in this code trellis, only branches corresponding to even or odd

Encoder state 
at time n

Encoder state 
at time n+1

as discussed in Section 2.1.1. Due to subset partitioning and labeling of the
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4-D subsets leave or enter each state. Therefore, the minimum square Euclid

ian distance between allowed sequence is A2 =  4, which corresponds to an 

asymptotic maximum coding gain of 101og(4) =  6 dB in SNR [2]. However, 

achieving this coding gain also depends on both decoding and equalization 

schemes, which are described in the following sections.

3.1.1.2 D ecoding of Convolutional Codes

In general, the various decoding schemes can be classified as either soft deci

sion decoding or hard decision decoding. In soft decision TCM decoding, the 

decoder input sequence is compared with all the possible signal points in the 

constellation of the coded modulation systems and the one with the closest 

Euclidian distance is chosen as the decoder output. In hard decision TCM 

decoding, on the other hand, the input sequence is first mapped to a binary 

sequence by making binary decisions on its individual components and then 

the codeword with the closest Hamming distance1 is chosen [29].

There exist many algorithms for decoding convolutionally encoded data. 

The Viterbi algorithm (VA) [42] is probably the most widely used decoding 

method for convolutional codes. VA can be viewed as an efficient way of form

ing an optimal trellis searching algorithm. VA is an ML decoding algorithm 

which, upon receiving the channel output, searches through the trellis to find 

the path that is most likely to have generated the received sequence output. 

This path is called a “survivor path” and has the minimum distance from the 

received sequence. As previously mentioned, the distance can be computed as 

a Euclidian distance in soft decision decoding or as a Hamming distance in 

hard decision decoding. To do so, VA stores a metric for each state in the trel

lis. Each state metric represents the minimum distance of the paths leading 

to that state. VA steps can be described briefly as follows:

• Initialization: Set the metric of the leftmost state of the trellis to 0.
lrrh e  Hamming distance is defined as the number of positions in two equal-length se

quences for which the corresponding elements are different. In another words, it measures 
the number of bit inversions required to change one into the other. For example, the Ham
ming distance between 1011101 and 1001001 is 2.
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• Computation step n +  1: Assume that at the previous step (time 

n ) all survivor paths to each state are identified and each state’s 

survivor path is stored. For each state at level n + 1, the metric of 

all of the incoming paths is computed as the addition of the metric 

of the incoming branch and the metric of the survivor path at the 

time n. Then the path with the smallest metric for each state is 

chosen as a survivor path for that state. For the trellis in Figure 3.4, 

four incoming paths for each of the eight possible next encoder states 

would need to be considered. Only one of these paths would survive 

for each state going to the next iteration.

• Final step: The computation is iterated until the algorithm reaches 

the termination node {i.e. the last node in the trellis), at which the 

VA makes a decision on the maximum-likelihood path which is the 

final survivor path. The decoded sequence is the sequence of bits 

corresponding to this path’s branches.

Figure 3.5(B) illustrates the VA steps on the 4-state trellis of the simple 

one input TCM encoder shown in Figure 3.5(A). In the trellis diagram, a solid 

line indicates that the received data is 0 and a dashed line indicates that the 

received data is 1. It is assumed that the encoded sequence “00 00 00 00 00” 

is sent over the channel and received as “01 00 01 00 00” {i.e. 2 bit errors). As 

shown in Figure 3.5, the VA is able to properly decode the received sequence 

as the best survivor path indicates the “00 00 00 00 00” sequence. In general, 

a Viterbi decoder provides both error detection and error correction. Thus, 

the overall system performance, expressed in terms of the SNR, is effectively 

increased by several dB when a TCM and Viterbi decoder is employed in 

transceivers [10].

In the context of convolutional decoding, the VA has been shown to be 

the optimal detection scheme for detection data signals distorted by ISI. In 

1000BASE-T, VA is an optimal trellis searching algorithm, that simultane

ously provides equalization and detection. The major drawback of the VA is
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Figure 3.5: A) A simple TCM encoder, B) VA steps on the trellis of the TCM 
encoder.

its exponential behavior in computational complexity. An optimal implemen

tation of the VA for this purpose would require a large number of states. The 

total number of states in a trellis for joint optimal decoding and equalization 

of 4-D PAM-5 is given by

S  x 2mL (3.2)

where S  is number of coding states, m  is the number of information bits 

contained in a 4-D code symbol and L is the length of trellis. In 1000BASE- 

T, S  =  8, m  =  8 and L is 14, which is equal to the expected 1000BASE-T 

channel length (see Figure 2.7). Therefore, the total number of states for an 

optimal detection scheme would be 1034 [2], which would make the MLSE
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scheme a prohibitively computationally expensive solution for 1000BASE-T. 

This problem motivated the search for alternative near-optimal solutions with 

reduced complexity for 1000BASE-T.

3.1.2 Separate Equalization and D ecoding

One possible near-optimal way to reduce the MLSE complexity for 1000BASE- 

T systems is to use an 8 -state Viterbi decoder (Figure 3.4). Here it is assumed 

that the ISI was separately canceled by a DFE equalizer. Figure 3.6 shows 

this structure. This scheme is based on pre-equalization performed by four 

parallel DFE (one for each wire pair) to remove ISI and a Viterbi decoder that 

runs the VA on the code trellis to decode convolutional coded symbols.

Received sequence 
from UTP pair 1

Received sequence 
from UTP pair 2

Decoded
sequence

Receiver sequence 
from UTP pair 3

Received sequence 
from UTP pair 4

DFE

DFE

DFE

DFE

Viterbi
Decoder

Figure 3.6: Separate equalization and decoding for 1000BASE-T.

The advantage of this structure is that it is simple, however, the SNR 

improvement by exploiting this scheme in 1000BASE-T is not sufficient to 

meet the target BER of 10~10. According to [12], the SNR improvement is 

only about 1 dB in comparison with uncoded DFE detection (Figure 2.19).

3.1.3 Delayed D ecision Feedback Sequence Estim ation

DDFSE [36] is another method to reduce the number of states in VA. The 

DDFSE algorithm recursively finds an approximation to the MLSE problem. 

In fact, DDFSE is a detection algorithm that trades complexity off against 

performance. The complexity of the algorithm is controlled by a parameter,
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I, which can be varied from zero up to the length of channel (i.e. 0 < I < L). 

When I =  0, the DDFSE structure is the same as a DFE and when I = L, 

the complexity of DDFSE is the same as VA. For intermediate values of I, the 

structure of DDFSE can be described as the combination of a reduced state 

VA and DFE. In this case, the VA cancels the ISI for the most recent I received 

samples and DFE cancels ISI from the past inputs greater than I samples (i.e. 

samples I +  1 to L) [36].

The steps of the DDFSE algorithm are similar to the steps in the VA 

described in Section 3.1.1.2. DDFSE is also based on a symbol-to-symbol 

trellis but with a reduced number of states. As in the VA, it recursively 

estimates the survivor path in the trellis. However, since each state in the 

DDFSE trellis provides only partial information about the full state of the 

channel (i.e. when I < L), the algorithm also stores the best path leading to 

each state and extracts the feedback information, provided by DFE, from each 

of these paths to compute the state metric. This implies that the state metric 

calculation, hence the survivor path selection, also depends on the feedback 

information provided by DFE.

Figure 3.7 depicts the DDFSE structure in 1000BASE-T system. In the 

DDFSE approach for 1000BASE-T, an independent feedback signal is com

puted for each path in the Viterbi decoder as the convolution of the sequence 

of symbols associated with that path and the coefficients of the feedback filter 

of the DFE. For an 8 -state trellis decoder (see Figure 3.4), there are 8  paths 

associated with each state (one path per state). This requires the computation 

of 8  independent feedback signals (the feedforward filter is common). Since 

the feedback filter coefficients are the same for all states, the only difference is 

in symbols associated with the 8  different paths. The use of DDFSE implies 

that instead of one decision in the VA, there are 8  of them (one per path) that 

must be tracked independently. As it will be shown in the simulation results, 

by using DDFSE, it is possible to take advantage of coding gain up to 6  dB 

without using a full-blown Viterbi decoder.
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Figure 3.7: DDFSE structure in 1000BASE-T.

3.1.4 B E R  Performance of D D FSE in 1000BASE-T Sys
tem s

Figure 3.8 shows a block diagram of the 1000BASE-T encoding/decoding 

scheme. This scheme performs the following tasks:

• Generates a random byte stream.

• Performs TCM on each byte, which adds 1 bit of redundancy to each 

byte of data (a total of 9 bits).

• Maps each 9-bit data word to one of the 4-D PAM-5 symbols.

• The output stream of the transmitter is distorted by channel ISI and 

then corrupted by AWGN.

• The received sequence is decoded by the DDFSE.

Figure 3.9 shows the results of a BER performance evaluation for a conven

tional DDFSE scheme using the 1000BASE-T 4-D PAM-5 constellation. For 

comparison, simulation results of uncoded PAM-5 transmission and detection 

with DFEs (from Figure 2.19) is also included in this figure. In the simulation 

study, it was assumed that the channel memory was 14 (CAT-5 UTP chan

nel in Figure 2.7). The SNR in the figure is 10 \ogw (E s/E n ), where Es  is
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Figure 3.8: Block diagram of the 1000BASE-T encoding/decoding scheme used 
in the simulation study.

the average symbol energy for a 4-D PAM-5 symbol and E n  is the AWGN 

variance (noise power). As illustrated, in comparison with the DFE scheme, 

the DDFSE scheme can achieve a coding gain of about 5.3 dB. Such a coding 

gain enables the 1000BASE-T system to satisfy the target BER of 10~ 10 at a 

reasonable SNR2.

3.2 A ltern ative  C oding Schem es for 10G B A SE - 
T E thernet

The choice of coding scheme is crucial for 10GBASE-T, in a sense that such a 

scheme should guarantee a BER performance of 10-1 2  with a reasonable decod

ing complexity to achieve the required 10 Gbps data transmission rate. Com

pared to the 1000BASE-T coding scheme, the coding scheme in 10GBASE-T 

should also have an improved noise performance as well as coding gain in order 

to be able to operate despite severe impairments that exist in the 10GBASE-T 

channel. In addition, the coding scheme also needs to be compatible with Eth

ernet practice. For example, it has to have a reasonable encoding and decoding 

latency to accommodate the maximum allowable latency of an Ethernet sys

tem. Also the coding scheme needs to be compatible with the variable-length 

frame formats in Ethernet.

A pproxim ately, a t 22 dB SNR.
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Figure 3.9: BER performance of DDFSE versus DFE.

There have been several coding proposals for 10GBASE-T, including con

ventional coding schemes such as TCM as well as novel coding schemes such as 

Low-Density Parity-Check (LDPC) codes. This section reviews and describes 

the alternative coding schemes for 10GBASE-T.

3.2.1 LDPC Codes

LDPC codes were discovered by Gallager in the early 1960s [43]. This class of 

codes was recently shown to be capable of error correcting performance close 

to the Shannon limit [44-47]. For example, it has been shown for a rate 0.5 

LDPC code that reliable communication is possible within 0.0045 dB of the 

Shannon limit for the binary input AWGN channel at BER of 10- 6  [48]. LDPC 

codes are decoded with iterative decoding algorithms, such as the sum-product 

algorithm, with linear decoding complexity. These essential features, along
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with recent improvements in LDPC code design, have produced coding systems 

that match or outperform many conventional and modern coding schemes, and, 

hence, have made LDPC codes as a candidate coding scheme for 10GBASE-T.

LDPC codes are a special class of linear block codes. In block codes, each 

block of k information bits is mapped into a length n block of output bits 

by a rule defined by the code. The coding rule ignores all input bits prior 

to the k most recent information bits. An (n, k) block code is a collection of 

2k binary sequences, each of length n, called codewords. Such a block code is 

called linear, if the modulo- 2  sum of any two codewords is also a codeword.

A rate |  binary LDPC code can be defined as an (n, k) linear code with an 

(n — k) x n parity-check matrix H. Let dv and dc be the maximum number of 

l ’s in each row and column of H , respectively. Then, the parity-check matrix 

H  usually has the following properties [32]:

i) No two columns have more than two rows with l ’s in those two 

row locations.

ii) Both dc and dv are small compared to the dimensions of H.

An example of the parity-check matrix for a (12,3) LDPC code with dv — 4 

and dc = 3 is as follows [32]:

■ 0 0 1 0 0 1 1 1 0 0 0 0  '
1 1 0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 1 1 1 0

0 1 0 0 0 1 1 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0 1 0

0 0 0 1 1 0 0 0 1 0 0 1

1 0 0 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 1 1

1--- o 1 1 0 0 0 0 0 1 1 0 0

Let x = (xi,X 2 , ..., xn) be a codeword associated with an (n, k) LDPC code 

with parity-check matrix H. Then for all codewords x it is true that

x H T = 0 (3.4)
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where the operator T  denotes the matrix transposition operation. This re

lationship introduces n — k linear equations, each containing dv of Xj’s. For 

example, for the parity-check matrix in Equation 3.3, we have the following 

set of parity-check equations (E\ to Eg):

r X 3 © x6 © x 7 ©  X 8 = 0

i?2 £ l © X 2 © X 5 ©  £'12 == 0

X 4 © Xg © x i o  f f i £ n =  0

e 4 X 2 © X q © x 7 ©  £ 1 0  == 0

e 5 X l © X 3 © X 8  ©  X \ 1 = 0

E q X 4 © X5 © Xg  © X i 2 == 0

e 7 X l © X 4 © x 5 © x 7 = 0

E8 X 6 © x8 © X u  © £ 1 2 =  0

{ Eg X 2 © x3 © Xg  ©  X io  == 0

where © denotes the XOR operation.

LDPC codes can be represented effectively by a bipartite graph called a 

Tanner graph [49]. Tanner graphs are an effective graphical representation for 

LDPC codes. They not only provide a complete representation of the code, 

but they also help to describe the decoding algorithm as explained later on in 

this chapter. As with all bipartite graphs, the nodes of a Tanner graph are 

separated into two distinctive sets and each edge connects nodes from the two 

sets. The two types of nodes in a Tanner graph are called variable nodes and 

check nodes. Figure 3.10 shows the Tanner graph of the party check matrix in 

Equation 3.3. It consists of to =  n — k check nodes (the number of parity bits) 

and n variable nodes (the number of bits in a codeword). Check node c* is 

connected to variable node Vj if and only if element hvj of H is one. In another 

words, check node c* performs the party check equation Ei in Equation 3.5.

A LDPC code is called regular if dc is constant for every column and 

dv = dc(n/m)  is also constant for every row. For example, the LDPC code of 

Equation 3.3 is a regular code with dc = 3 and dv = 4 for all columns and rows. 

The regularity of this code can also be seen in its graphical representation in 

Figure 3.10. Note that the variable nodes all have the same degree, that is, 

the same number of connecting edges. In addition the check nodes all have the 

same degree. If H  is low density but the number of l ’s in each row or column
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n variable nodes

v i v2 v3 v4 vs v6 v7 v8 v9 v10 vn  v12

m check nodes

Figure 3.10: Tanner graph of the parity-check matrix in Equation 3.3 .

is not constant, then the code is called an irregular LDPC code. Another 

category for LDPC codes is full rank LDPC codes. In a full rank LDPC code,

m  = n — k. When an LDPC code is not full rank, it has redundant rows in its

H  matrix, thus m  ^  n — k.

3.2.1.1 LDPC Encoding

Given a parity-check matrix H, we can define a corresponding k x n generator 

matrix, G, such that

GHt =  0 (3.6)

The generator matrix can be used as an encoder according to

x T =  u t G  (3.7)

where u is the input sequence of the encoder and x is the encoded sequence.

Equation 3.6 implies a quadric complexity for LDPC encoding with re

spect to the code length [50], i.e. 0 (n 2). It is worth mentioning that there 

exist encoding algorithms for LDPC codes with less complexity. Some of these 

techniques exploit the sparseness of the parity-check matrix for efficient en

coding or that impose some structure on the Tanner graph so that encoding 

is simpler. Repeat-Accumulate [50] codes are an example of codes based on
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structured graphs. It has been shown that transforming the generator matrix 

to upper triangular form leads to reduced complexity encoding [50].

3.2.1.2 LDPC Decoding

As mentioned before, a principal advantages of LDPC codes is that they can 

be decoded by an iterative algorithm with complexity that is linear in the 

code length, i.e. 0(n). This important property, in addition to the promising 

performance of LDPC codes, make them a strong candidate coding scheme 

for 10GBASE-T. This section briefly reviews two main algorithms for LDPC 

decoding.

3.2.1.3 Sum Product Algorithm

The Sum Product Algorithm (SPA), also known as Message Passing Algorithm 

(MPA), is an iterative algorithm for LDPC decoding. SPA can be done using 

either hard decision or soft decision decoding. In hard decision decoding, each 

received symbol is thresholded to yield a single received bit as input to the 

decoding algorithm, and the messages passed between the variable and check 

nodes each consist of single bits only. In soft decision decoding, multiple bits 

are used to represent each received symbol and the messages passed between 

the variable and check nodes. Soft decision decoding can achieve substantially 

better coding performance because the confidence with which each decoder 

decision is encoded and is forwarded to subsequent decoder iterations [51].

The soft decision form of SPA is called the Belief Propagation Algorithm 

(BPA). It has been shown that BPA can closely approximate the optimal 

decoder algorithm for AWGN channels, i.e. the Maximum Aposteriori Proba

bility (MAP) algorithm [50]. The MAP algorithm computes the log-likelihood 

ratio (LLR) of the received sequence and makes a decision by comparing this 
LLR to the threshold value. In a PAM-2 modulation3, the LLR value of the

3PAM-2 is equivalent to the Binary Phase Shift Keying (BPSK) modulation.
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i-th received signal defined as:

(3.8)

where x(i) and y(i) denote the i-th sample of the transmitted and received

sequence, respectively. A positive LLR value (i.e. A(x(i)) > 0) implies that 

P(x(i) =  1|y(i)) > P(x(i) =  0|y(i)) and therefore, it is more likely that 

x(i) — 1 would have been transmitted. On the other hand, when the LLR 

value is negative, P(x(i) =  l|y(*)) < P(x(i) =  0|y(i)) and it is more likely 

that x(i) = 0  would have been transmitted. A zero LLR value means that

Let PAM-2 be the modulation scheme, yi G R  the received symbol at 

variable node i, and A; G A the decision at variable node i. A message from 

variable node i to check node j  is represented by a ^ j  G R, and a message from 

check node j  to variable node i is represented by G R. Let Vj\i denote the 

set of variable nodes which connect to check node j ,  excluding variable node 

i. Similarly, let Ci\j denote the set of check nodes which connect to variable 

node i, excluding check node j .  The decoding algorithm is then as follows [50]:

• Step 1 : Initialize A* =  2yi/a2 for each variable node.

• Step 2: Variable nodes send a ^ j  = A* to each check nodes j  G C*.

• Step 3: Check nodes connected to variable node i compute and send

• Step 4: Variable nodes connected to check nodes j  compute and send 

(see Figure 3.11(B))

• Step 5: Stop decoding process once a fixed number of iterations has 

been completed or the estimated codeword, x, satisfies the H x  =  0 

criterion. Otherwise return to Step 3.

P(x(i) = 1| y(i)) = P(x(i) = (%(*)).

(see Figure 3.11(A))

/3j^i = 2 tanh 1( tan h (y ))
lev^

(3.9)

(3.10)
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Figure 3.11: A) extrinsic and B) intrinsic messages in SPA.

The above mentioned SPA algorithm process log-likelihood ratios in the 

probability domain. As Equation 3.9 involves transcendental functions, a hard

ware implementation of the SPA will often use look-up tables to more rapidly 

calculate tanh(.) and tanh_1(.) functions. The SPA can also be done in log

arithmic domain. In the this approach, the computation and the subsequent 

calculation of the extrinsic check message is greatly simplified by operating 

logarithms of probabilities because multiplications become then additions and 

divisions become subtractions. For example, this approach has been used for 

implementation of LDPC decoder in [51].

3.2.1.4 M in-Sum Algorithm

The Min-Sum Algorithm (MSA) is a simple approximation to the SPA [52,53]. 

In MSA, the extrinsic message in Equation 3.9 is approximated as:

A I -̂ min | ( n  sign(A /)) (3.11)

where Amiri is the minimum magnitude input LLR.

The main advantage of min-sum approximation is that it is simple to im

plement, which makes it more suitable for high data rate applications like 

10GBASE-T. However, MSA causes a loss of about 0.5 to 1 dB [54,55] in per

formance compared to SPA. If all input LLR messages except one are large, the
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min-sum output is quite accurate as the tanh product would then be dominated 

by the smallest LLR. However, if all of the input LLRs are relatively small 

in magnitude, the min-sum approximation overestimates the output LLR, as 

compared to exact sum-product decoding [56]. This problem has motivated 

the development of the modified min-sum approximations [57, 58] to recoup 

some of the performance loss of min-sum approximation.

3.2.2 LDPC Convolutional Codes

Low-Density Parity-Check Convolutional Codes (LDPC-CCs) were first pro

posed in [59]. LDPC-CCs can be considered as convolutional codes defined 

by low-density parity-check matrices and decoded in an iterative way [59,60]. 

LDPC-CCs have been shown to have a comparable performance in comparison 

with LDPC block codes [61]. They are similar to LDPC block codes in the 

way that they generate code words based on parity-check operations. However, 

LDPC-CCs are similar to convolutional codes since any codeword is generated 

using both previous information bits and previously generated code-bits.

In comparison with LDPC block codes, there are some advantages asso

ciated with LDPC-CCs which make them suited for certain applications like 

10GBASE-T. One advantage is that LDPC-CCs are able to encode and decode 

arbitrary lengths of data without the need to fragment them into fixed-sized 

blocks [62]. This feature is advantageous for streaming applications, such as 

streaming video, and also for packet switching applications such as Ethernet. 

The frame length in Ethernet systems can vary and this makes the integration 

of LDPC block codes awkward and difficult. However, by using LDPC-CCs, 

there is no need to fragment randomly-sized packets into fixed-sized packets. 

Another important advantage of LDPC-CCs is that the parity-check matrix 

for LDPC-CCs is lower diagonal and this simplifies the encoding process and 

reduces the encoding latency [62]. Therefore, the encoder structure is sim

pler for LDPC-CCs than for LDPC block codes. More details about hardware 

implementation of LDPC-CCs can be found in [62,63].
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3.2.3 Other Coding Schemes

In addition to the above mentioned schemes, there have been other coding 

proposals for 10GBASE-T. Some of these proposals are based on using con

volutional codes for 10GBASE-T. As an example, in [64] two TCM schemes 

are proposed, that can relax the decoding speed requirement. Also in [3] a 

joint multiple-input, multiple-output equalization and decoding based on a 

4-D TCM and DFE is proposed. Some other proposals are based on other 

coding system such as Turbo equalization (such as [65]). A discussion about 

these coding schemes can be found in [50].
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Chapter 4

Performance Evaluation of 
LDPC Codes in the Presence of 
ISI

As discussed in Chapter 2, ISI and residual ISI are among the most impor

tant impairments in 10GBASE-T systems. Although the effect of ISI on the 

performance of conventional coding systems such as TCM has been well stud

ied [66-69], for LDPC codes, the effects require more investigation.

This chapter presents and discusses the simulation result of BER per

formance evaluation of LDPC codes in the presence of ISI. The simulation 

study considers various LDPC codes, including two recent candidate codes for 

10GBASE-T Ethernet.

4.1 C odes U sed

Table 4.1 lists the six LDPC codes that were considered in the study. In this 

table, n is the block length of the code, k is the number of information bits, 

dv is the maximum variable node degree and dc is the maximum check node 

degree. The reason for selecting these particular codes was to isolate, and 

hopefully more clearly, observe the effects of ISI on BER performance. Also, 

to study different classes of LDPC codes as well as 10GBASE-T candidate 

codes. Code A  and Code B  in the table are two recent candidate codes for 

10GBASE-T Ethernet [8 ]. These codes are not full rank. They have 129 and
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59 redundant check nodes, respectively. The special structure of these codes 

are a result of the methods in [70]. Code C and Code D are two regular codes 

with the same variable degrees and the same check node degrees. They both 

have relatively high error-floors. The major difference between these two codes 

is their shortest cycle. The reason for choosing these codes was to see if there 

is any similarity between the effects of correlation between received symbols 

caused by ISI, and the effects of cycles on the performance and error-floor of 

LDPC codes. Code E  is a relatively low rate regular code and, finally, Code 

F  is an irregular code with a relatively high error-floor.

Table 4.1: LDPC codes used in the simulation study.

Code n k R dy dc Structure Characteristics
A 1024 833 0.81 1 0 32 Regular 4-cycle-free, not full rank
B 2048 1723 0.84 6 32 Regular 4-cycle-free, not full rank
C 1024 512 0.50 3 6 Regular 6 -cycle-free
D 1024 512 0.50 3 6 Regular 2 -cycle-free
E 816 544 0.33 4 6 Regular 4-cycle-free
F 4000 2 0 0 0 0.50 7 7 Irregular 4-cycle-free

4.2 S ystem  M odel

Figure 4.1 illustrates the system model used in the studies. This model is based 

on an AWGN channel with ISI. It is assumed that the encoded sequence, x(D), 

is transmitted using PAM-M. The transmitted sequence x(D ) is then passed 

through the channel and corrupted by AWGN to form the received sequence 

V ( D ):

y(D) = x(D)h(D) + n(D) (4.1)

The Channel Impulse Response (CIR) h(D) is assumed to have the following 

D-transform:

h(D) = h0 +  h D  +  h2D2 +  ... +  h i ^ D 1- 1 (4.2)
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where hi is the i-th tap of the CIR and L is the channel length. For the sake 

of simplicity, we refer to the CIR by its ordered sequence of taps, h, as follows:

h = {h0,h i ,h 2,.. . ,hL- 1} (4.3)

The CIR is used to model post-cursor ISI in the system. Therefore, h0 was 

first set to 1 and the remaining taps were considered to be much less than ho. 

Then h was also normalized to have a unity gain as follows:

h ->■ h/\\h\\ (4.4)

IZ-i
where 11/ill =  W hj is the Euclidean norm of h. The LDPC decoder in this

V i=0
model performs standard soft-decision message-passing decoding and uses full 

tanh processing in the parity-check nodes.

AWGN

n{D)
Received
sequence

y(D)

Decoded
sequence

-+x(D)

Transmitted
sequence

x(D) —
s(D)

h(D) LDPC
Decoder

Figure 4.1: System model used for the performance evaluation in the presence 
of ISI.

4.3 S N IR  Scenarios

The standard approach in the literature for evaluating the performance of 

error correcting codes is through BER measurements for data transmission 

over AWGN channels. A common way to do this is to measure the code BER 

performance at different SNRs. Hence, the performance of the systems consid

ered in this paper was also compared to the memoryless (i.e. no ISI) AWGN 

channel. However, as the model in Figure 4.1 shows, the simulated system 

includes both noise and interference. Therefore, in the study both noise and
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ISI power were taken into account, and instead of SNR, the Signal-to-Noise- 

and-Interference Ratio (SNIR) is used. Equation (4.5) gives the definition of 

the SNIR for the received sequence y(D ):

where and are the average power of the transmitted and received signals, 

respectively. &ntotal Is total variance of the AWGN (per dimension) and 

interference, while is the variance of AWGN noise component alone.

In order to have a fair comparison between a memoryless AWGN channel 

and the channel model in Figure 4.1, the SNIR of the received sequence y(D ) 

was kept the same for both cases:

where a\  is the variance of the AWGN (per dimension) in a memoryless 

AWGN channel and a^2 Is the variance of the AWGN in our system model. 

The right hand side of Equation 4.6 is equivalent to the SNIR for the AWGN 

channel with ISI, and the left hand side is the equivalent to the SNIR for the

the average bit energy in the transmitted sequence and the operating SNR in 

the AWGN memoryless channel (£), and SNR in Equation 4.7 and Equation 

5.4, respectively):

where E s is the average energy per symbol (E s = cr%), B  is the number of bits 

per symbol, R  is the code rate and N 0 represents the AWGN variance for two 

dimensions. Therefore, based on Equation 4.6, the a\  can be computed as:

1 Since there is no interference in the AWGN memoryless channel, the SNIR for an AWGN 
channel is the same as its SNR.

a vSNIR = (4.5)

1 = 1

2

SNIR =
<*L

(4.6)

AWGN memoryless channel1. The in this equation is known according to

(4.7)

(4.8)SNR =  101og10( f ) ^  <  =  f  =  1(10(-SNRR°)Eb)
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<  = < h l - a l Lf h j  (4.9)
i —1

It is important to mention here that since er̂  is a positive number, Equa

tion 4.9 imposes a constraint on the maximum amount of ISI. This constraint 

varies according to the SNR and can be calculated by setting a22 equal to zero 

in this equation. For instance, given the values of E s — 1, R  =  0.5, B  =  1 

(i.e., PAM-2 Modulation) and SNR =  3 dB in Equation 5.4, the er^ would be 

equal to 0.5012. By assuming h =  { l,h i}  as the CIR model, the maximum 

value for hi would be 0.7079.

4.3.1 Error Probability of the R eceived Signal

In order to have a fair comparison between the proposed ISI model and an 

AWGN channel, it is useful to consider the error probability of the received 

sequence y(D) for both cases. The error probability of an AWGN channel can 

be obtained by using Q-function, which expresses the right-tail cummulative 

probability for a Gaussian random variable, r, with zero mean and unit vari

ance [14], The Q-function is defined as the probability that r exceeds a given 

To value:

I  roc 9

Q(r0) =  P(r  > r 0) =  -7 = / e"* dt, r ~  N (0,1) (4.10)
V7̂

When r has a mean value of /i and a variance of a2, this cummulative proba

bility can be calculated by translating and scaling the normalized Q-function 

as follows:

P(r  > r0) =  Q(—— - ) ,  r ~  N ( y ,a 2) (4.11)
<7

Figure 4.2 shows the Probability Density Function (PDF) of the received 

sequence in an AWGN memoryless channel with PAM-2 modulation. As illus

trated, the received sequence in this figure has Gaussian distributions centered 

over the two nominal symbol values of 1 and —1. Therefore, by assuming the 

parameters in Equation 4.6, the error probability of the received sequence in
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the AWGN channel, EPi, can be expressed as:

BP, =  Pfe >  0|x =  -1 )  + P(» < 0\x =  1) =  +  l (i  - Q ( 1 W )
L  (J n i  £  & n i

(4.12)

where x and y are the transmitted and received sequences, respectively.

Equation 4.12 can be extended for ISI channels. Figure 4.3 shows the 

resulting PDF of the received sequence for an ISI channel with a CIR model 

of {ho, h\} using PAM-2 modulation and at the same fixed SNIR as in Figure 

4.2. The ISI in this CIR model causes the received sequence to form Gaussian 

distributions over four possible values:

Pi =  —ho — hi, p2 =  —hQ + hi, P3 =  ho — hi, p4 =  h0 +  hi (4-13)

The error probability of the received sequence for this case, E P 2 , is2:

EPi  =  ! « <  —  ) +  « — ) + ( l - Q ( P ^ ) )  +  ( l -Q (^ -= -^ )) )  (4.14)
4  Cfn 2  (J n 2  (J n 2  & ri2

Equations 4.12 and 4.14 can be easily extended for other PAM and ISI schemes 

using similar criteria. As an example, for PAM-4 modulation the received 

sequence forms Gaussian distributions over four values in AWGN memoryless 

channel and over 16 values in the CIR model with {h0, hi}.

Tables 4.2, 4.3 and 4.4 give the EPX and EP2 error probabilities for R  =  

0.33, R  =  0.5 and R  =  0.81, respectively3, for PAM-2 modulation and h = 

{I, hi}. The minus sign,"-” , in the tables indicates that hi has reached its 

maximum possible value in association with Equation 4.9. From these tables, 

it can be seen that at higher SNRs and at high values of hi, EP2 < EPi. This 

means that at these values, the ISI model will introduce fewer errors in the 

receiver than a purely AWGN channel. Therefore, to have a fair judgement 

about the BER performance of LDPC codes in the proposed ISI model, the 

BER evaluation should be made at the SNRs and hi values in which E P 2 > 

EPi.

2cr„2 in this equation is calculated according to Equation 4.9.
3See Equations 4.7 to 4.9.
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PDF of the received symbols y for no ISI and a^=0.7 with PAM2 modulation

0.5
N (-1,a.
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Figure 4.2: PDF for an AWGN in a memoryless channel.

PDF of the received symbols y for CIR={1, 0.6} and (7^=0.12017 with PAM2 modulation
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Figure 4.3: PDF for an ISI channel with h =  {1, 0.6}.
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Table 4.2: Error probability for AWGN and ISI channels, R  =  0.33.

SNIR
(dB)

E P i  
hi  =  0 0.1 0.2 0.3

E P i  
0.4 0.5 0.6 0.7 0.8

1 0.1798 0.1798 0.1799 0.1801 0.1807 0.1821 0.1851 0.1906 0.2008
2 0.1520 0.1520 0.1521 0.1524 0.1533 0.1553 0.1595 0.1672 0.1798
3 0.1244 0.1244 0.1245 0.1249 0.1260 0.1286 0.1333 0.1396 0.1374
4 0.0978 0.0978 0.0979 0.0984 0.0996 0.1018 0.1031 0.0899 -

5 0.0733 0.0733 0.0734 0.0737 0.0743 0.0732 0.0592 - -

6 0.0516 0.0516 0.0517 0.0516 0.0500 0.0401 0.0005 - -

7 0.0338 0.0338 0.0337 0.0326 0.0270 0.0061 - - -

Table 4.3: Error probability for AWGN and ISI channels, R  =  0.5.

SNIR
(dB)

E P i  
hi =  Q 0.1 0.2 0.3

e p 2
0.4 0.5 0.6 0.7 0.8

1 0.1309 0.1309 0.1310 0.1314 0.1325 0.1350 0.1398 0.1472 0.1527
2 0.1040 0.1040 0.1041 0.1046 0.1058 0.1082 0.1111 0.1061 -

3 0.0789 0.0789 0.0790 0.0794 0.0802 0.0803 0.0718 0.0011 -

4 0.0565 0.0565 0.0566 0.0566 0.0557 0.0485 0.0101 - -
5 0.0377 0.0377 0.0376 0.0368 0.0324 0.0130 - - -

6 0.0230 0.0230 0.0227 0.0206 0.0117 - - - -

7 0.0126 0.0126 0.0120 0.0086 0.0006 - - - -

Table 4.4: Error probability for AWGN and ISI channels, R  =  0.81.

SNIR
(dB)

E P i
h i = Q 0.1 0.2 0.3

e p 2
0.4 0.5 0.6 0.7

1 0.0766 0.0766 0.0767 0.0771 0.0778 0.0775 0.0670 -
2 0.0545 0.0545 0.0546 0.0546 0.0535 0.0452 0.0050 -
3 0.0361 0.0361 0.0360 0.0351 0.0302 0.0100 -
4 0.0218 0.0218 0.0215 0.0193 0.0101 - -
5 0.0118 0.0118 0.0112 0.0077 0.0003 - -
6 0.0055 0.0055 0.0047 0.0015 - - -
7 0.0022 0.0021 0.0014 0.0000 - - -
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4.4 S im ulation  R esu lts

Figures 4.4, 4.5 and 4.6 show the effects of ISI on the BER of Code A  and Code 

C. Figure 4.4 shows the performance of Code A  at an SNIR of 3 dB and Figures 

4.5 and 4.6 show the performance of Code C for PAM-2 and PAM-4 at SNIRs 

of 2 dB and 5.75 dB, respectively. The BER in each simulation was calculated 

based on at least 100 frame errors by the 50-th decoding iteration. The dashed 

line in each figure refers to the BER for the AWGN memoryless channel with 

the same SNIR. The CIR model in this experiment was {1, hi} and the x-axis 

in these figures represents the amount of h\ before gain normalization.

The simulation results indicate improved performance for LDPC codes in 

the presence of ISI and AWGN, compared to purely AWGN in a memoryless 

channel at the same fixed SNIR. In another words, by decreasing the amount 

of AWGN and introducing ISI to the system to preserve the same fixed SNIR, 

the LDPC decoder will perform better. Therefore, in this scheme the LDPC 

decoder appears to be more sensitive to AWGN than to the modeled ISI. As 

shown in the figures, for a small amount of ISI the BER performance is very 

close to the performance of an AWGN channel. However, by introducing more 

ISI (and decreasing the AWGN in the system) the performance gap becomes 

more significant. As h\ reaches its maximum possible value, the performance 

gap between these two cases becomes very significant. This arises because it 

is at this point that o \  becomes very small and E P 2 becomes a lot smaller 

than EP i.  This can be seen in Table 4.2 to 4.4 for large values of h\.

Figures 4.7 to 4.12 show the effects of ISI for Code A  to Code F, respec

tively, in a so-called waterfall plot over a wide range of SNIRs for h = (1, hi}. 

As shown in these figures, the BER performance of all codes for an ISI chan

nel is upper-bounded by their BER performance in the AWGN memoryless 

channel. As mentioned in Section 4.3.1, a fair comparison between the given 

ISI model and AWGN channel should be made in the SNIRs and hi values 

in which E P 2 > E P y. As an example, in Table 4.2 at SNIR=3 dB, EPy is 

0.1244 for AWGN channel and E P 2 is 0.1249 for a {1, hi =  0.3} ISI channel
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—  Channel with ISI 
■ ■ ■ AWGN memoryless channel

10“ ’

CC -3
w  10 -

0.2 0.35 0.4 0.450 0.05 0.1 0.15 0.25 0.3
h1 (second tap of CIR)

Figure 4.4: Effect of ISI on Code A, PAM-2 and SNIR =  3 dB.

model. However, Figure 4.11 shows that the BER of Code E  at this SNIR is 

less (about a factor of 9) for the ISI channel than AWGN channel. Therefore, 

it can be concluded that the BER performance of Code E  is better for this ISI 

model compared to that of the purely AWGN channel. Similar comparisons 

and conclusions can be made for the other LDPC codes used in this study.
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Channel with ISI 
1 ■ ■ AWGN memoryless channel

hi 10'

0.70.2 0.3
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Figure 4.5: Effect of ISI on Code C, PAM-2 and SNIR =  2 dB .

—  Channel with ISI 
■ ■  ' AWGN memoryless channel

aLLDco

0.25 0.3 0.350.15
h1 (second tap of CIR)

0.20.05

Figure 4.6: Effect of ISI on Code C , PAM-4 and SNIR =  5.75 dB.
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Figure 4.7: Effect of ISI on Code A.

10 '

-2
10 '

-4
10 '

-510'

3.5 41.5 2 2.5 31
SNIR (dB)

Figure 4.8: Effect of ISI on Code B. 
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Figure 4.10: Effect of ISI on Code D .
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Figure 4.12: Effect of ISI on Code F.
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4.4.1 Increasing the ISI Taps

The CIR model in the previous section had two coefficients. As mentioned 

previously, Equation 4.9 imposes a constraint on the maximum amount of ISI. 

This implies that in the proposed SNIR scenario, increasing the response length 

of CIR results in smaller CIR coefficients. As an instance, by assuming L = 5, 

equal CIR coefficients and the parameters of the example given in Section 4.3, 

the maximum CIR tap is lowered from 0.7079 to 0.3762. However, it is worth 

mentioning that as the CIR length L, increases, the BER performance gap 

between an ISI channel and an AWGN memoryless channel becomes smaller. 

When L becomes very large (e.g. more than 200), the gap is almost zero. This 

phenomenon is due to the fact that in the proposed SNIR scenario, a very 

long CIR, which must have very small coefficients, acts increasingly like an 

AWGN channel. This is in accordance with the Central Limit Theorem, since 

by assuming ho =  1 the amount of ISI added to the transmitted symbol at 

time t is obtained by:

Y ^ x ( t - i ) h i  (4-15)
i =  1

Therefore, when L  is large, the ISI value can be considered as a random vari

able with Gaussian distribution. This effect is shown in Figure 4.13. In this 

figure, the BER performance of Code D for h =  {1,0.3} is compared to its 

performance in CIR with L =  100 and exponentially decreasing coefficients. 

Both CIRs introduce the same amount of ISI energy to the transmitted se

quence. As shown in the figure, the code performance in long CIR is much 

closer to its performance in AWGN.

4.4.2 Effect of ISI Pattern and Code Structure

It should be mentioned that in addition to the results presented in this chapter, 

I completed other simulation studies to study the effects of various ISI patterns 

and code structures on the performance of LDPC codes in the presence of ISI. 

However, the preliminary results did not show any change in the BER perfor

mance of the codes. For example, the performance of Code A  was compared
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Figure 4.13: Effect of long ISI on Code D.

to other versions of this code with randomly permuted variable nodes4 to see 

if the correlation introduced by ISI would have different effects on these codes. 

In another study, due to the special structure of the 10GBASE-T candidate 

codes, the position of the strongest ISI taps were changed in the CIR to in

troduce correlation between the inputs of variable nodes which are connected 

to the same check node. Neither of these studies showed a difference in the 

performance of the codes in the presence of ISI.

4.5 C onclusion

In this chapter, we reviewed performance evaluation results for the recent 

LDPC code candidates for 10GBASE-T Ethernet and for standard benchmark 

LDPC codes over AWGN and ISI channels. It was shown that at the same 

level of SNIR, LDPC codes are more sensitive to the AWGN than to ISI and 

the performance of LDPC codes is upper-bounded by their performance in the

4This was done by randomly exchanging the columns in its H  matrix.
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an AWGN channel.

An important application for the proposed results is the interpretation of 

the performance of LDPC codes in the channels in which the levels of AWGN 

and residual ISI are known or can be approximated. In another words, since 

the LDPC code is more sensitive to AWGN than to ISI, it is possible to 

characterize the AWGN equivalent for given amounts of residual ISI5 in a 

channel and then estimate the worst case BER performance of the LDPC 

codes. This application can be used for systems, like 10GBASE-T, Ethernet 

in which a target BER must be guaranteed.

5 As mentioned in Chapter 2, the amount of residual ISI depends on such parameters 
as the equalizer length and the finite precision of the equalizer coefficients and channel 
estimation error.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Performance Evaluation of 
LDPC Codes in the Presence of 
Colored Noise

The previous chapter compared the performance of LDPC codes over AWGN 

and ISI channels. In an ISI channel, the received symbols are correlated but 

it is usually assumed that the noise model is AWGN. This chapter evaluates 

the effects of correlation between noise samples (i.e. colored noise) on the 

performance of LDPC codes while the channel does not introduce ISI. Two 

colored noise models are considered in this chapter: high-frequency Additive 

Colored Gaussian Noise (ACGN) and low-frequency ACGN. The effects of 

these noise models are discussed in Sections 5.1 and 5.2, respectively.

5.1 Perform ance E valuation in th e  P resen ce  
o f H igh-Frequency A C G N

This section compares the performance of LDPC codes over AWGN and high- 

frequency ACGN channels. The ACGN model used in this section is generated 

based on an Infinite Impulse Response (HR) coloration filter that emphasizes 

high-frequencies. This filter model is described in Section 5.1.2. The LDPC 

codes used for this study are the same as the codes presented in Section 4.1.
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5.1.1 System  M odel

Figure 5.1 illustrates the system model. In this model, the transmitted signal, 

x(D), is transmitted using PAM-2 modulation. The transmitted signal is then 

corrupted by noise to form the received signal. In the case of ACGN, the noise 

is generated by passing an AWGN sequence through a coloration filter. The 

received signal in this model can be expressed by its G-transform as:

y(D) = x(D) +  nw (D)fc (D) =  x{D) + nc (D) (5.1)

where fc (D)  is the G-transform of the impulse response of the coloration filter, 

nw(D ) is the AWGN sequence, nc(G ) is the corresponding ACGN sequence 

and y(D) is the received signal. The LDPC decoder in this model performs 

standard soft-decision message-passing decoding and uses full tank  processing 

in the parity-check nodes.

PAM-2 
input sequence 

x(D)------

Decoded 
sequence 
-  x(D)

Received
sequence

Coloration
Filter
f c(D)

LDPC
Decoder

Figure 5.1: System model used for the performance evaluation in the presence 
of ACGN.

5.1.2 Colored N oise Generation

To generate the high-frequency colored noise, AWGN is filtered by a lst-order 

high-pass Infinite Impulse Response (HR) filter with a ^-transform of:

Fc{z) =  n i F i  0  - h <  1 (5-2)

where a is a gain factor and b is a correlation coefficient. This filter corre

lates each AWGN sample with the preceding noise samples. When 6  =  0 the
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filter does not introduce any correlation and the noise is strictly AWGN. By 

increasing b, the correlation between noise samples increases. This correlation 

noise can be expressed for the fc-th ACGN sample as:

nc(k) = a Z) {—b)%riw{k — i) k = 1,2,... (5.3)
i= 0

To fairly compare the performance of LDPC codes with respect to high- 

frequency ACGN and AWGN, the ACGN should have the same noise power 

as the AWGN. Hence the variance of the noise should be same for both cases. 

Consequently, a and b in Equation 5.2 must be determined so as not to intro

duce any gain in the channel model. The noise variance in the system can be 

obtained according to the SNR as:

alw  = ' t = y  =  ^ (10 (* SNR/lo,B t ) (5.4)

where Eb is the average energy per bit, No represents the AWGN variance for 

two dimensions, and a \w and a\r are the variances of the AWGN and ACGN, 

respectively. According to Parsaval’s relation for the Fourier transform [71], 

the gain of Fc(z) ,  G,  can be computed as:

G =  2b f  Fc ^ ) F c ( ^ ~ ldv (5-5)
s

where S' is a closed contour in the region of convergence of Fc{z) .  To have a 

unity gain filter, G  in Equation 5.5 was set to 1 and the filter coefficients were 

calculated as follows:

G = =  1 - >  a =  -  Fc (z) = (5-6)

Figure 5.2 shows the frequency response of F c { z ) for different values of b. 

As illustrated, by increasing the b coefficient, the filter becomes increasingly 

high-pass. Thus as b is increased, the colored noise resulting from filtering 

AWGN becomes increasingly “blue” .

5.1.3 Sim ulation Results

Figures 5.3 to 5.10 show the BER performance of the codes used in the presence 

of high-frequency ACGN. The BER was calculated based on at least 100 frame
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Figure 5.2: Frequency response of high-pass Fc(z ) for different values of coef
ficient 6 .

errors immediately after the 50-th decoding iteration. The dashed line in 

each figure shows the BER for an AWGN memoryless channel (i.e., 6 =  0 

and a = 1). Figures 5.3 and 5.4 compare the BER performance for Code 

A  and Code C  with respect to colored noise versus AWGN at fixed SNRs 

of 3.5 dB and 2 dB, respectively. The x-axis in these figures corresponds to 

the 6 coefficient in Fc (z). These figures show that in comparison with the 

BER performance over an AWGN channel, more highly blue ACGN more 

severely degrades the performance of the LDPC decoder. As 6 increases and 

the correlation in the ACGN samples increases, the relative performance loss 

increases. It should also be noted here that the BER degradation for small 

values of 6  is approximately log-linear in 6 . However, for higher values of 6 the 

degradation is more rapid than linear. This can be easily seen by comparing

1
| ----- b=0.9 |

.......... .... n
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the BERs at points b =  0.5 and b =  0.9 in Figure 5.4.

Figures 5.5 to 5.10 show the same effect for Code A to F,  respectively, 

in their BER “waterfall” plots over a wide range of SNRs. As these figures 

show, the SNR performance loss1, for a certain value of b, for all of the codes 

is comparable. For example, the performance loss at b = 0.4 is about 0.25 dB 

for all of the codes. Figure 5.5 and 5.6 confirm the above mentioned effects 

for the 10GBASE-T candidate codes, Code A  and B.

5.1.3.1 Effect of Colored N oise on Error Floor

One of the important properties of LDPC codes is their error floor. An error 

floor is an undesirable lower limit on the BER that dominates at high SNRs. 

It is known that the existence of cycles in the structure of an LDPC code 

can affect its error floor. A cycle correlates the messages in the code Tanner 

graph and LDPC codes with cycles tend to have a higher error floor. As an 

example, Code C  has an error floor that shows up approximately at BER 

=  10- 7  and Code D has an error floor approximately at BER =  10~ 5 in an 

AWGN channel. The only difference between these two codes is the length 

of their shortest cycle2. The reason for investigating these two codes for this 

simulation study was to see if there is any similarity between the effect of 

correlation introduced by cycles and the effect of colored noise on the BER 

performance and error floor of short LDPC codes.

Figure 5.7 shows the effect of high-frequency ACGN on the error floor of 

Code C. This figure indicates that, with respect to BER, the high-frequency 

ACGN raises the error floor. This rise for the worst case coloration is about 

a factor of 10. The same effect can be seen in Figure 5.8 for Code D. By 

comparing the performance of Code C  and Code D. it can be seen that the 

short-cycle difference (6 -cycle-free to 2 -cycle-free) results in superior perfor

mance as well as a lower error floor for Code C in the presence of ACGN. This 

is similar to the result for the case of AWGN. Therefore, it can be concluded

1The SNR performance loss refers to the amount of SNR loss a t a certain BER, whereas 
the BER performance loss refers to  the amount of BER loss at a certain SNR

2As mentioned in Section 4.1, Code C is a 6-cycle-free code and Code D  is 2-cycle-free.
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that this characteristic of LDPC codes remains the same even in the presence 

of high-frequency ACGN. Finally, Figure 5.10 shows the effect of ACGN for 

Code F, which is an irregular code with a relatively high error floor. The 

rise in BER in the error floor region of this code is comparable to the rise 

observed for the the regular codes that were considered. These results show 

that the BER curve for high-frequency ACGN channel can be considered as 

a shifted version of the BER curve for AWGN channel. This means that the 

LDPC codes have worse BER performance in the presence of high-frequency 

ACGN, but the overall BER trend (in both the waterfall and error floor re

gions) over high-frequency ACGN and AWGN channels is qualitatively similar.

—  Colored Noise 
1 ■ 1 AWGN memoryless channel

10"2

DC
LUCO

10"3

10“4
0.7 0.80.60.50.3 0.40.2

b

Figure 5.3: Effect of high-frequency ACGN on Code A  at SNR =  3.5 dB.
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5.4: Effect of high-frequency ACGN on Code C  at SNR =  2 dB.
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Figure 5.5: Effect of high-frequency ACGN on Code A.
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Figure 5.6: Effect of high-frequency ACGN on Code B.
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Figure 5.7: Effect of high-frequency ACGN on Code C.
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Figure 5.8: Effect of high-frequency ACGN on Code D.
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Figure 5.9: Effect of high-frequency ACGN on Code E.
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Figure 5.10: Effect of high-frequency ACGN on Code F.

5.1.3.2 Effects of ACG N on PAM  Signal Constellations w ith More 
Signal Levels

The constellation used in the previous section was PAM-2. However, as men

tioned in Chapter 2, the candidate constellations for 10GBASE-T are actually 

PAM-8 , PAM-12 and PAM-16. Therefore, a brief study of the effects of ACGN 

on PAM constellations with more signal levels was also carried out. The pur

pose of this study was to see if code performance in the presence of ACGN, 

while using a PAM constellation with more signal levels, is comparable to their 

behavior with PAM-2.

Figure 5.11 shows the effects of high-frequency ACGN on Code C at fixed 

SNR =  6  dB using a PAM-4 constellation. By comparing the BER perfor

mance shown in this figure with that shown in Figure 5.4, it can be seen that 

the high-frequency ACGN causes comparable BER loss for both constellations.
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Figure 5.11: Effect of high-frequency ACGN on Code C at SNR =  6  dB, 
PAM-4.

5.2 Perform ance E valuation  in th e  P resen ce  
of L ow -Frequency A C G N

The results in the previous section showed the effect of high-frequency ACGN 

on the BER performance of LDPC codes. In this section, the effects of low- 

frequency ACGN are investigated. The system model used in the study is 

same as the system model in Section 5.1.1 except for the coloration filter. 

The coloration filter in this study is an HR filter that emphasizes the low- 

frequencies. Thus this filter produces “reddish” as opposed to the “blueish” 

noise studied earlier.

In order to generate a low-frequency ACGN, it is sufficient to negate the 

value of b coefficient in Equation 5.2 and make the coloration filter low-pass. 

Therefore, the low-pass coloration filter model can be expressed as follows

ffcM  =  r - i < ‘ < »  ( s r )

The gain factor, a, can be also calculated according to Equation 5.6.
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Figure 5.12 shows the frequency response of the low-pass Fc(z ) for different 

values of b. As illustrated, by increasing the b coefficient, the filter becomes 

increasingly low-pass, i.e. increasingly red.

1
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Figure 5.12: Frequency response of low-pass Fc(z ) for different values of co
efficient b.

5.2.1 Sim ulation R esults

Figures 5.13 to 5.18 show the BER. performance of Code A  to Code F, respec

tively, in the presence of low-frequency ACGN. These figures show that as |6 | 

increases and the ACGN becomes more colored, the relative performance loss 

increases. This behavior is similar to the effect of high-frequency the ACGN on 

LDPC codes. However, in comparison with high-frequency ACGN, the BER 

performance loss is more severe for low-frequency ACGN. This is more appar

ent for more colored low-frequency ACGN models (i.e., |6 | =  0.6 or \b\ =  0.8).
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As an instance, the BER loss for 10GBASE-T candidate codes, Figures 5.13 

and 5.14, for |fe| =  0.6 at SNR = 4 dB is about a factor of 20. This is almost 

twice the BER loss observed for the high-frequency ACGN scheme in Figures 

5.5 and 5.6 with b = 0.8.

The SNR performance loss is also more degraded in the presence of low- 

frequency ACGN. The results show that the SNR performance loss for |6 | =  0.4 

can be up to 0.4 dB. This was about 0.25 dB for high-frequency ACGN with 

b = 0.4. As |fc| increases, the performance gap between low-frequency ACGN 

and high-frequency ACGN becomes more dominant. This is shown in Figures 

5.19 and 5.20, where BER performance of Code C and Code F  in the presence 

of low-frequency ACGN are compared to their performance in the presence of 

corresponding high-frequency ACGN.

o
o
UJ
CO
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-B -  b=-0.4 
-© -  b=-0.2 
-  -  b=Q (AWGN)

10"7
3.52.50.5

SNR (dB)

Figure 5.13: Effect of low-frequency ACGN on Code A.
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Figure 5.14: Effect of low-frequency ACGN on Code B.
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Figure 5.15: Effect of low-frequency ACGN on Code C.
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Figure 5.16: Effect of low-frequency ACGN on Code D.
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Figure 5.17: Effect of low-frequency ACGN on Code E.
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Figure 5.18: Effect of low-frequency ACGN on Code F.
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Figure 5.19: Comparison between BER performance under low-frequency and 
high-frequency ACGN, Code C.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
L U

m

10'5

Low freq. ACGN, b=-0.8 
-A - Low freq. ACGN, b=-0.6 
-G - High freq. ACGN, b= 0.8 
-© - High freq. ACGN, b= 0.6 
-  -  AWGN

10"6

3.52.50.5
SNR(dB)

Figure 5.20: Comparison between BER performance under low-frequency and 
high-frequency ACGN, Code F.

5.3 C onclusion

In this chapter, the BER performance of LDPC codes in the presence of ACGN 

were investigated. Two filter models were used to generate low-frequency 

and high-frequency ACGN. The results for both the low-pass and high-pass 

schemes showed that the BER performance of LDPC codes degrades in the 

presence of ACGN, and that as the coloration increases, the performance 

degradation becomes worse. Such degradation is more severe for low-frequency 

ACGN. However, regardless of the performance degradation in the presence 

of ACGN, the overall performance behavior (in both the waterfall and error 

floor regions) is qualitatively similar to the behavior in AWGN.

The filter models used in this chapter generated correlations between noise 

samples. This enabled us to investigate the effects of this simple coloration 

model on the BER performance. In the next chapter, the effects of 1 / /  noise 

are studied.
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Chapter 6

Performance Evaluation of 
LDPC Codes in the Presence of

As mentioned in Section 2.2.5, 1 / /  noise is associated with clock noise in 

digital systems and considered as an important impairment that is observed 

in solid-state circuits [13,22-25,28]. This chapter investigates the effects of 

1 / /  noise on the performance of LDPC codes. The system model used in this 

chapter is different from the system model used in the previous chapter. In 

Chapter 5, only ACGN noise exists in the channel. However, in the system 

model used in this chapter, both AWGN and 1 / /  noise exist in the channel 

model.

Figure 6.1 illustrates the system model used in the simulation study. In this 

model, the transmitted signal, x(D),  is transmitted using PAM-2 modulation. 

The transmitted signal is then corrupted by AWGN and 1 / /  noise to form the 

received signal. The received signal, y(D), in this model can be expressed by 

its D-transform as:

where n w {D) is the AWGN sequence and ni / f (D ) is the 1 / /  noise sequence. 

Similar to the previous chapters, the LDPC decoder in this model performs

Noise

6.1 S ystem  M odel

y{D) = x(D)  +  nw {D) + n 1/f(D) (6 .1)
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standard soft-decision message-passing decoding and uses full tanh processing 

in the parity-check nodes.

AWGN 1/f noise 

nw n\ /f C^)

Decoded 
sequence 

— * x ( D )

Figure 6.1: System model used for the performance evaluation in the presence 
of 1 / f  noise.

In the simulation study, the performance of the LDPC codes in the 1 / f  

noise model is compared to the performance of the equivalent pure AWGN 

channel. To do so, the total power of the noise (i.e., the sum of the AWGN 

variance and the 1 / f  noise variance) is kept equal to the power of AWGN in 

a pure AWGN channel:

"?// +  <  =  <  (6 -2 )

where a \ ^  is the variance of the 1 / f  noise, a^2 is the variance of the AWGN in 

the 1 / f  noise model, and o\  is the variance of the AWGN in a pure AWGN 

channel of the same total noise power. It should be noted that cr^ can be 

computed according to the average bit energy of the transmitted sequence 

and the operating SNR using Equation 5.4.

6.1.1 1 / f  N oise Generation

There are various methods in the literature for generating 1 / f  noise. The 

method used in this study is based on HR filtering of an AWGN noise sequence 

[28] (see Figure 6.2). The output of the filter is a 1 / /  noise sequence that has 

a spectrum with -10 dB drop per decade1. The transfer function of the 1 / f

^ e e  Figure 2.12 in Chapter 2.
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coloration filter, F\/f{z), is [28]:

Fi / f ( z )  = (1 - z - 1) 1/ 2

where a is a gain factor. F1/f(z) can be expanded as 

FVf{z) =

(6.3)

(6.4)
b0 +  b ^ - 1 +  b2z~2 +  ... +  bkz~k + ....

where {&o,6 i , ...} are the coefficients of the denominator, which can be com

puted in a recursive way as follows:

bo — 1

bk = (k 1 \ bk-l 
2> k

(6.5)

In the simulation study, the denominator was expanded to 30 coefficients. 

Figure 6.3 shows the resulting frequency response of F\/f{z) for a = 1 and 30 

coefficients in the denominator. Note how the filter strongly emphasizes the 

low-frequencies, more strongly even than the reddened white noise considered 

in the previous chapter.

Input AWGN 
sequence

h / / ( z ) C
1/f noise

coloration filter
sequence

Figure 6.2: 1 / f  noise generator.

In comparison with the ACGN coloration filter, Fc(z), in Chapter 5, the 

1 / f  coloration filter, F\/f(z),  produces a stronger correlation between noise 

samples. This can be seen in Figure 6.4, where the impulse responses of Fc(z) 

and Fi/f(z) are depicted. Figure 6.4(A) shows the impulse response for Fc(z) 

with b = —0.8 and a = 0.6. Figure 6.4(B) shows the impulse response for 

Fi/f{z) with a = 0.6580. Both filters have a unity gain.
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Figure 6.3: Frequency response of Fi/f(z), a = 1.
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Figure 6.4: Impulse response of A) Fc(z ) with b = —0.8 and unity gain and, 
B) Fi/f(z) with unity gain.
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6.2 S im ulation  R esu lts

Figures 6.5 to 6.10 show the BER performance of Code A  to Code F, respec

tively, for the channel model of Figure 6.1. Each figure also shows the BER 

performance for pure AWGN as well as for pure 1 / f  noise channel. In the 

simulation study, the BER performance was measured for various levels of 

1 / f  noise as a percentage of the total noise power in the channel. The total 

noise power was kept constant, at each SNR, in association with Equation 6.2. 

This means that by increasing the power of the 1 / f  noise in the channel, the 

power of the AWGN is decreased to keep the total noise power constant. As 

an example, according to Equation 5.4, the total variance of the noise, cr^, at 

SNR =  2 dB for Code C with the rate of 0.5 is 0.6310. For the case that 10% 

of the noise in the channel is 1 / f  noise, the variance of the 1 / f  noise, is 

0.0631 and the variance of the AWGN in the channel, a 22, is 0.5679.

These figures show that as the percentage of 1 / /  noise increases, the BER 

loss becomes more severe. The BER loss for 10% 1 / f  noise in the channel is 

more than a factor of 10 in the waterfall region {e.g. see Figures 6.7 and 6.10). 

The BER performance loss increases when a higher level of 1 / /  noise exists in 

the channel. As an example, when 50% of the total noise in the channel is 1 / /  

noise, the BER loss of Code A  at SNR =  4 dB and Code C at SNR =  3 dB is 

about a factor of 30. This trend can be also seen in the SNR performance loss2 

of these codes. The SNR performance loss for 25% 1 / f  noise is more than 1 

dB while for 50% 1 / f  noise, the SNR performance loss is more than 2.5 dB 

{e.g. Figure 6.10).

Interestingly, the results show that the BER loss in the error floor region 

is less than in the waterfall region. This effect can be easily seen in Figures 

6.7 and 6 .8 . This is different from the behavior of LDPC codes in the presence 

of ACGN. However, it should be noted that for the highly colored ACGN

2It should be noted tha t the SNR performance comparison is more common in the wa
terfall region, since at the error floor the BER performance is almost constant and a small 
gap between BERs of the codes, at a same SNR, in the error floor region can be interpreted 
as a huge SNR performance loss.
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with \b\ =  0.8, a similar effect (but less severe), was also seen (see Figure 

5.16). It appears that the effects of highly colored noise, such as 1 / /  noise or 

ACGN with |6 | =  0.8, is more detrimental in the waterfall region, and that at 

higher SNRs, in which the power of the colored noise is decreased, the BER 

performance is less degraded.

In general, when compared with the effects of ACGN, 1 / f  noise causes 

more degradation. However, such an increased degradation is in accordance 

with the results of Chapter 5. The reason is that 1 / f  noise is more strongly 

colored than the ACGN model that we assumed and, as observed in Chapter 

5, the more the coloration of noise, the worse the performance. In addition, 

the comparison between low-pass (i.e. reddish) ACGN and high-pass ACGN 

(i.e. blueish) in Chapter 5 showed that low-pass ACGN is more detrimental 

to performance. The 1 / f  noise model is a very low-pass model.

10 n-
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100% 1/f 
-A -  50% 1/f, 50% AWGN 
-B -  25% 1/f, 75% AWGN 
- f r -  10% 1/f, 90% AWGN 
-© - 5% 1/f, 95% AWGN 
-  -  100% AWGN

4.52.5 3.50.5
SNR (dB)

Figure 6.5: Effect of 1 / /  noise on Code A.
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Figure 6 .6 : Effect of 1 / /  noise on Code B.
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Figure 6.7: Effect of 1 / /  noise on Code C.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bi
t 

Er
ro

r 
Ra

te 
Bi

t 
Er

ro
r 

R
at

e

-4r- 100% 1/f 
-A- 50% 1/f, 50% AWGN 
- 0 -  25% 1/f, 75% AWGN 

10% 1/f, 90% AWGN 
-© - 5% 1/f, 95% AWGN 
-  -  100% AWGN

5.53.5 4.52.5 3
SNR (dB)

0.5

Figure 6 .8 : Effect of 1 / /  noise on Code D.
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Figure 6.9: Effect of 1 / /  noise on Code E.
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Figure 6.10: Effect of 1 / /  noise on Code F.

6.3 C onclusion

In this chapter, the BER performance of LDPC codes in the presence of 1 / /  

noise was investigated. In comparison with the ACGN model used in Chapter 

6 , the 1 / f  noise model considered in this chapter was a more strongly colored 

model. The BER performance was measured for various percentages of 1 / f  

noise in the channel. The simulation results showed that as the percentage 

of 1 / /  noise increases in the channel, the performance loss increases. The 

observed BER loss was more in the waterfall region than in the error floor 

region. It was concluded that highly colored noise, such as 1 / /  noise or ACGN 

with |6 | > 0 .8 , is more detrimental on the performance in the waterfall region. 

Also, at higher SNRs, in which the power of colored noise is decreased, the 

BER performance of the LDPC codes is less degraded. The simulation results 

suggest that, in general, compared to the effects of ACGN, 1 / f  noise causes 

more performance degradation.
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Chapter 7 

Conclusions and Future Work

7.1 M ain C ontributions

Low-Density Parity-Check codes are among the most powerful error control 

codes known. They can produce error-correcting performance close to the 

Shannon limit and can be decoded using iterative decoding algorithms with 

only linear complexity. These key advantages have made LDPC codes a can

didate coding scheme for various novel applications and upcoming standards. 

The next generation of Ethernet, 10GBASE-T, is among such standards. This 

standard aims to provide a data rate of 10 Gbps over four-pair UTP cabling 

with a minimum bit error rate of 10-12. This data rate is 10 times faster 

than the data rate of the existing wireline Ethernet standard, 1000BASE-T. 

Despite its numerous advantages, 10GBASE-T transmission suffers from nu

merous impairments that must be tackled.

This thesis first reviewed the organization of 1000BASE-T and 10GBASE- 

T systems and explained the major impairments that arise in their commu

nication media. Some of these impairments are common between these two 

standards, and some of them, such as ANEXT, are either unique to or more 

severe in 10GBASE-T. The thesis has also reviewed the alternative coding and 

equalization schemes for 1000BASE-T and 10GBASE-T systems. It provided 

simulation results for the performance of alternative coding and equalization 

schemes, such as decision-feedback equalization and delayed-decision-feedback- 

sequence estimation, that are being considered for 1000BASE-T. The advan-
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tages of LDPC codes over these schemes, with respect to the performance 

and complexity in high-speed applications such as 10GBASE-T, were then 

explained.

In Chapter 4, performance evaluation results were presented for recent can

didate LDPC codes for 10GBASE-T Ethernet and some standard LDPC codes 

over AWGN and ISI channels. It was shown that at the same level of signal- 

to-noise-and-interference ratio, LDPC codes appear to be more vulnerable to 

AWGN than to ISI. It was also shown in the simulations that, given this sce

nario, the performance of LDPC codes over an ISI channel is upper-bounded 

by its performance in the AWGN channel. An important application for the 

proposed results is the interpretation of the performance of LDPC codes in the 

channels in which the levels of AWGN and residual ISI are known or can be 

approximated. In another words, since LDPC codes appear to be more sensi

tive to AWGN than to ISI, it is possible to characterize the AWGN equivalent 

for given amounts of residual ISI in a channel and then estimate the worst-case 

BER performance of the LDPC codes.

Chapter 5 presented the BER performance evaluation of LDPC codes in 

the presence of ACGN. Two simple filter models were used in this chapter to 

generate low-frequency and high-frequency ACGN. The results for both low- 

pass and high-pass schemes showed that the BER performance of LDPC codes 

degrades in the presence of ACGN, and as the degree of coloration increases, 

the performance degradation becomes worse. Such degradation is more severe 

for low-frequency ACGN. It was also observed that the overall performance 

loss, in both the waterfall and error floor regions, is comparable in both ACGN 

scenarios.

The filter models used in Chapter 5 introduce a simple correlation between 

noise samples. In Chapter 6 , the effects of 1 / /  noise, which is a more strongly 

colored noise, were studied. It was shown that as the percentage of 1 / f  noise 

in the channel increases, the BER loss increases. The BER performance loss 

can be very severe when a high level of 1 / /  noise exists. This trend was 

also observed in the SNR performance loss of LDPC codes. In general, the
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observed performance loss was greater in the waterfall region than in the error 

floor region. It was concluded that highly colored noise types, such as 1 / /  noise 

or ACGN with |6 | > 0.8, are more detrimental to performance in the waterfall 

region. Also by decreasing the power of the colored noise at higher SNRs, the 

BER performance of the LDPC codes is less degraded. In comparison with 

the effects of ACGN, 1 / f  noise causes more degradation. However, such an 

increased degradation is in accordance with the results of Chapter 5. The 

reason is that 1 / f  noise is more colored than the ACGN considered, and as 

observed in Chapter 5, the more the coloration of the noise, the worse the 

performance. In addition, the comparison between low-pass ACGN and high- 

pass ACGN in Chapter 5 showed that low-pass ACGN is more detrimental to 

the performance. The 1 / f  noise model is also a very low-pass model.

7.2 P ossib le  Future W ork

Possible future work, which the author would like to undertake shortly, is the 

investigation of the effects of ANEXT in 10GBASE-T systems, specifically, 

the effects on the BER performance of LDPC codes. Such an investigation 

would be useful for understanding the actual performance of 10GBASE-T 

candidate LDPC codes in more realistic situations. This study can be done by 

using a similar method used in Chapter 6 . In [4], ANEXT spectrum has been 

measured in a 10GBASE-T system and modeled as a Finite Impulse Response 

(FIR) filter. However, the length of the FIR filter is long (i.e. more than 2500 

taps). But it is possible to approximate this filter with an HR filter with less 

taps, and model an ANEXT sequence by passing an AWGN sequence, which 

has a flat spectrum, through this HR filter. The output ANEXT sequence 

can be then treated as colored noise in the system for the sake of the BER 

performance evaluation.

The results provided in this thesis give insight into the performance of 

LDPC codes in real practical applications. Theoretical analysis of the effects 

studied in this thesis should be undertaken as a follow-up project. For exam-
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pie, the possible relationships between vulnerability to colored noise and the 

Tanner graph structure of the LDPC codes should be investigated.

The modulation scheme used in the majority of simulations of the thesis 

was PAM-2. PAM-2 is a modulation scheme that is used in most of the LDPC 

code literature and in related simulation studies. Although the preliminary 

results of this thesis showed that the same error-correcting behavior should be 

expected for PAM modulations with more signaling levels, it would be worth 

carrying out a more in-depth study of the effects of these impairments when 

the PAM modulation has more signalling levels. Such a study might be useful 

for the 10GBASE-T standard, in which PAM-8 , PAM-12 and PAM-16 are 

candidate modulation schemes. In addition to this, it would be also interesting 

to study the effects of impairments for the case when, instead of using the Sum- 

Product algorithm, the LDPC decoder uses more implementable approximate 

methods, such as the Min-Sum algorithm.

Another interesting possible research direction would be the investigation of 

the effects of SNR mismatch at the receiver on the performance of LDPC codes 

in the presence of AWGN as well as colored noise. Similar studies have been 

recently done for some special LDPC codes used in magnetic recording [72]; 

however, the effects of SNR mismatch, to the best of our knowledge, have 

not yet been studied for colored channel models such as the ones used in this 

thesis.
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Appendix A 

Programs

A .l  D ecision  Feedback Equalizer for 1000BA SE- 
T E thernet

A. 1.1 Header Files
A .1.1.1 simulation.h

# i f ! defined (SIMULATION-H)
# d e f ln e  SIMULATION

c o n st  in t  NumChanneis=4;
c o n st  in t  CIR-Length=14;

c o n s t  d o u b le  CIR[CIR_Length]=:{
1,00000000000000,
0.90909090909091,
0.36363636363636,
0.18181818181818,

-0.18181818181818,
-0.22727272727273,
-0.36363636363636,
- 0.20000000000000,
-0.18181818181818,
-0.10909090909091,
-0.09090909090909,
-0.07272727272727,
-0.05454545454545,
-0.03636363636364

};

c o n s t  d o u b le  LearningConst =  l e —4; / /  Learning Constant
c o n s t  d o u b le  ForgettingC onst= 1.0; / /  Forgetting Constant
c o n s t  i n t  F F E _ L e n g th  =  14;
c o n s t  in t  FBE_Length =  13;
c o n s t  in t  DFE_Length= FFE_Length4-FBE_Length;

t̂endif
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A. 1.1.2 TrellislOOOBaseT.h

# i f  Idefined (TRELLISIOOOBASET-H)
# d e f in e  TRELLISIOOOBASET

c o n st  sh o r t  Num CodeStates=8; 
c o n st  sh o r t  Num 4DSubsets =8; 
c o n s t  sh o r t  TrellisDepth =15;
c o n s t  sh o r t  TrellisJnFrameLength=TVellisDepth—1;
c o n s t  sh o r t  NumlnBranches =4;
c o n s t  sh o r t  N um Paths=Num C odeStates;
c o n s t  sh o r t  CodeDimention =4;
c o n s t  sh o r t  Num SubsetTypes=2;

t y p e d e f  s tr u c t  TrellisState 
{

d o u b le  StateMetric; 
sh o r t SurvivorBranch;
sh o r t  Survivor4DSymbol [NumlnBranches][CodeDimention]; 
d o u b le  InBranchMetric [NumlnBranches];

};
s ta t ic  TrellisState Trellis [T rellisD epth][N um C odeStates]={0,0,{0},{0}};

c o n st  sh o r t  InBranchState [NumCodeStates][NumInBranches]={
{0,2,4 ,6},{0,2,4 ,6},{0,2,4 ,6},{0,2,4,6},
{1 ,3 ,5 ,7}, {1 ,3,5,7}, {1 ,3 ,5 ,7), {1,3,5,7}};

c o n s t  sh o r t  InBranch4DSubset[NumCodeStates] [NumInBranches]={
{0 ,2 ,4 ,6},{2 ,0 ,6 ,4} ,{4 ,6 ,0 ,2},{6 ,4 ,2 ,0},
{1 ,3,5,7}, {3 ,1,7,5}, {5,7,1,3}, {7,5,3,1}};

c o n s t  sh o r t  Subset4DPattern[Num4DSubsets][NumSubsetTypes] [CodeDimention]= {  
{ {0,0,0,0}, {1,1,1,1} },
{ {0,0,0,1}, {1,1,1,0} }, 
{ {0,0,1,1}, {1,1,0,0} }, 
{ {0,0,1,0}, {1,1,0,1} }, 
{ {0,1,1,0}, {1,0,0,1} }, 
{ {0,1,1,1}, {1,0,0,0} }, 
{ {0,1,0,1}, {1,0,1,0} }, 
{ {0,1,0,0}, {1,0,1,1} },

};

/*  DO: X X X X  +  Y Y Y Y  * /  
c o n st  sh o r t  constell-DO [64] [4] =  {

{ 0, 0, 0, 0}, { - 2 , 0, 0, 0}, o,--2, 0, 0}, { - 2 , - 2 , 0, 0},
{ 0, o,--2 , 0}, { - 2 , 0, - 2 , 0}, o,--2, - 2 ,  0}, { - 2 , - 2 , - 2 ,  0},
{ 0, 0, o, - 2 } ,  { - 2 , 0, o,--2}, o,--2, 0 , - 2 } ,  { - 2 , - 2 0 , - 2 } ,
{ °. 0,--2 , - 2 } ,  { - 2 0 - 2 - 2 } { 0 - 2 , - 2 , - 2 } ,  { - 2 - 2 - 2 - 2 } ,
{ 1. 1, 1, 1}, ( - 1 , 1, 1, 1}. 1,--1, 1, 1}, { - 1 , - 1 , 1, 1},
{ 1. 1,--1, 1}, { - 1 , 1, - 1 , 1}. 1,--1, - 1 ,  1 } , { - 1 , - 1 , - 1 ,  1},
{ 1. 1, 1, 1, 1,--1}. 1,--1, 1 , - 1 } ,  { - 1 , - 1 1 , - 1 } ,
{ 1, 1,--1 , 1 - 1 ” 1} ( 1 - 1 , - 1 , - 1 } ,  { - 1 , - 1 , - 1  - 1 } ,
{ 2, o, 0, 0}. { 2 ,--2, 0, 0}, 2, 0,- -2, 0}, { 2,--2,--2, 0},
{ 2, o, o, - 2 } ,  { 2 ,--2, o,--2}, 2, o,- - 2 , - 2 } ,  { 2, -2 , - 2 , - 2 } ,
{ o, o, 2, 0}, { - 2 , 0, 2, 0}, 0,*-2, 2, 0}, { - 2 , - 2 2, 0},
{ °> o, 2, - 2 } ,  { - 2 , 0, 2,--2}, o,--2, 2 , - 2 } ,  { - 2 - 2 2 , - 2 } ,
{ o, 2, 0, 0}. { - 2 , 2, 0, 0}, 0, 2,--2, 0}, { - 2 , 2,--2, 0},
{ °> 2, o, - 2 } ,  { - 2 , 2, o,--2}, 0, 2,-- 2 , - 2 } ,  { - 2 2, - 2 , - 2 } ,
{ °> 0, o, 2}, { - 2 , 0, 0, 2}, o,--2, 0, 2}, { - 2 , - 2 0, 2},
{ o,--2 , 2}, { - 2 , 0, - 2 , 2}, o,--2, - 2 ,  2}, { - 2 - 2 - 2 ,  2} };

/*  D l:  X X X Y  +  Y Y Y X  * /  
co n st  sh o r t  constell_Dl[64][4] =  {

{ 0 , 0, 0, 1}, { - 2, 0, 0 , 1}, { 0, - 2, 0, 1}, { - 2, - 2, 0 , 1},
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{ 0, 0 , - 2 ,  1}, { - 2 ,  0 , - 2 ,  1}, { 0 , - 2 , - 2 ,  1}, { - 2 , - 2 , - 2 ,  1},
{ 0, 0, 0 , - 1 } ,  { - 2 ,  0, 0 , - 1 } ,  { 0 ,- 2 ,  0 , - 1 } ,  { - 2 , - 2 ,  0 , - 1 } ,
{ 0, 0 ,—2,—1}, { - 2 ,  0 , - 2 , - l } ,  { 0 , - 2 , - 2 , - 1 } ,  { - 2 , - 2 , - 2 , - 1 } ,  
{ 1, 1, 1, 0}, { - 1 ,  1, 1, 0}, { 1 ,- 1 ,  1, 0}, { - 1 , - 1 ,  1, 0},
{ 1, 1 ,- 1 ,  0}, { - 1 ,  1 ,- 1 ,  0}, { 1 , - 1 , - 1 ,  0}, { - 1 , - 1 , - 1 ,  0},
{ 1, 1, 1, - 2}, { - 1, 1, 1, - 2}, { 1, - 1, 1, - 2}, { - 1, - 1, 1, - 2},
{ 1, 1, - 1, - 2}, { - 1, 1, - 1, - 2}, { 1, - 1, - 1, - 2}, { - 1, - 1, - 1, - 2}, 
{ 2 , 0 , 0 , 1}, { 2 , - 2 , 0 , 1}, { 2 , 0 , - 2 , 1}, { 2 , - 2 , - 2 , 1},
{ 2 , 0 , 0 , - 1}, { 2 , - 2 , 0 , - 1}, { 2 , 0 ,—2 ,—1}, { 2 , - 2 , - 2 , - 1},
{ 0, 0, 2, 1}, { - 2, 0, 2, 1}, { 0, - 2, 2, 1}, { - 2, - 2, 2, 1},
{ 0 , 0 , 2 , - 1}, { - 2 , 0 , 2 , - 1}, { 0 , - 2 , 2 , - 1}, { - 2 , - 2 , 2 , - 1},
{ 0, 2, 0, 1}, { - 2 ,  2, 0, 1}, { 0, 2 , - 2 ,  1}, { - 2 ,  2 , - 2 ,  1},
{ 0 , 2 , 0 , - 1}, { - 2 , 2 , 0 , - 1}, { 0 , 2 , - 2 , - 1}, { - 2 , 2 , - 2 , - 1},
{ 1, 1, 1, 2}, { - 1 ,  1, 1, 2}, { 1 ,- 1 ,  1, 2}, { - 1 , - 1 ,  1, 2},
{ 1, 1, - 1, 2}, { - 1, 1, - 1, 2}, { 1, - 1, - 1, 2}, { - 1 - 1 - 1, 2} };

/*  DS: X X Y Y  +  Y Y X X  * /  
c o n s t  sh o r t  constelLD2 [64] [4] =  {

{ 0, 0, 1, 1}, { - 2 ,  0, 1, 1}, { 0 ,- 2 ,  1, 1}, { - 2 , - 2 ,  1, 1},
{ 0, 0, - 1, 1}, { - 2, 0, - 1, 1}, { 0,—2,—1, 1}, { - 2, - 2, - 1, 1},
{ 0, 0, 1 ,- 1 } ,  { - 2 ,  0, 1 ,- 1 } ,  { 0 , - 2 ,  1 , - 1 } ,  { - 2 , - 2 ,  1 ,- 1 } ,
{ 0 , 0 ,—1, —1}, { - 2 , 0 - 1 - 1}, { 0 , - 2, - 1, - 1}, { - 2 , - 2 , - 1, - 1}, 
{ 1, 1, 0, 0}, { - 1 ,  1, 0, 0}, { 1 ,- 1 ,  0, 0}, { - 1 , - 1 ,  0, 0},
{ 1, 1, - 2, 0}, { - 1, 1, - 2, 0}, { 1, - 1, - 2, 0}, { - 1, - 1, - 2 , 0},
{ 1, 1, 0 , - 2 } ,  { - 1 ,  1, 0 , - 2 } ,  { 1 ,-1 ,  0 , - 2 } ,  { - 1 , - 1 ,  0 , - 2 } ,
{ 1, 1, - 2, - 2}, { - 1, 1, - 2, - 2}, { 1, - 1, - 2 , - 2}, { - 1, - 1, - 2, - 2}, 
{ 2, 0, 1, 1}, { 2, - 2, 1, 1}, { 2, 0, - 1, 1}, { 2, - 2 , - 1, 1},
{ 2, 0, 1 ,- 1 } ,  { 2 , - 2 ,  1 ,- 1 } ,  { 2, 0 ,—1,—1>, { 2 , - 2 , - 1 , - 1 } ,
{ 1, 1, 2, 0}, { - 1 ,  1, 2, 0}, { 1 ,- 1 ,  2, 0}, { - 1 , - 1 ,  2, 0},
{ 1, 1, 2 , - 2 } ,  { - 1 ,  1, 2 , - 2 } ,  { 1 ,- 1 ,  2 , - 2 } ,  { - 1 , - 1 ,  2 , - 2 } ,
{ 0, 2, 1, 1}, { - 2, 2 , 1, 1}, { 0, 2, - 1, 1}, { - 2, 2 , - 1, 1},
{ 0, 2, 1 ,- 1 } ,  { - 2 ,  2, 1 ,- 1 } ,  { 0, 2 , - 1 , - 1 } ,  { - 2 ,  2 , - 1 , - 1 } ,
{ 1, 1, 0, 2}, { - 1 ,  1, 0, 2}, { 1 ,- 1 ,  0, 2}, { - 1 , - 1 ,  0, 2},
{ 1, 1, - 2, 2}, { - 1, 1, - 2, 2}, { 1, - 1, - 2, 2}, { - 1, - 1, - 2 , 2} };

/*  D3: X X Y X  +  Y Y X Y  * /  
c o n s t  sh o r t  constell_D3 [64] [4] =  {

{ 0 , 0, 1, 0}, { - 2, 0, 1, 0}, { 0 , - 2, 1, 0}, { - 2, - 2, 1, 0},
{ 0, 0, - 1, 0}, { - 2 ,  0 , - 1, 0}, { 0 ,—2, —1, 0}, { - 2 , - 2 , - 1 ,  0},
{ 0 , 0, 1, - 2}, { - 2 , 0, 1, - 2}, { 0, - 2, 1, - 2}, { - 2, - 2, 1, - 2},
{ 0, 0 , - 1 , - 2 } ,  { - 2 ,  0 , - 1 , - 2 } ,  {  0 , - 2 , - 1 , - 2 } ,  { - 2 , - 2 , - 1 , - 2 } ,  
{ 1, 1, 0, 1}, { - 1 ,  1, 0, 1}, { 1 ,-1 ,  0, 1}, { - 1 , - 1 ,  0, 1},
{ 1, 1, - 2 , 1}, { - 1, 1, - 2 , 1}, { 1, - 1, - 2 , 1}, { - 1, - 1, - 2 , 1},
{ 1, 1, 0 , - 1}, { - 1, 1, 0 , - 1}, { 1, - 1, 0 , - 1}, { - 1, - 1, 0 , - 1},
{ 1, 1,—2,—1}, { - 1, 1,—2,—1}, { 1, - 1, - 2, - 1}, { - 1, - 1, - 2, - 1}, 
{ 2, 0, 1, 0}, { 2, - 2, 1, 0}, { 2, 0, - 1, 0}, { 2, - 2, - 1, 0},
{ 2 , 0, 1, - 2}, { 2, - 2, 1, - 2}, { 2, 0 , - 1, - 2}, { 2, - 2, - 1, - 2},
{ 1, 1, 2, 1}, { - 1, 1, 2, 1}, { 1, - 1, 2, 1}, { - 1, - 1, 2, 1},
{ 1, 1, 2,- 1}, {-1, 1, 2,- 1}, { 1,-1, 2,- 1}, {-1,- 1, 2,- 1},
{ 0, 2, 1, 0}, { - 2 ,  2, 1, 0}, { 0, 2 , - 1 ,  0}, { - 2 ,  2 , - 1 ,  0},
{ 0, 2, 1,-2}, {-2, 2, 1,-2}, { 0, 2,- 1,-2}, {-2, 2,- 1,-2},
{ 0, 0, 1, 2}, { - 2 ,  0, 1, 2}, { 0 ,- 2 ,  1, 2}, { - 2 , - 2 ,  1, 2},
{ 0, 0 , - 1 ,  2}, { - 2 ,  0 , - 1 ,  2}, { 0 ,—2,—1, 2}, { - 2 , - 2 , - 1 ,  2} };

/*  D4: X Y Y X  +  Y X X Y  * /  
co n st  sh o r t  constell_D4[64][4] =  {

o, 1, 1, 0}, { - 2 , 1, 1, 0}, { o,--1, 1, 0}, {--2 , —1, 1, o},
o, 1,--1 , 0}, { - 2 , 1,-- 1 , 0}, { 0,-- i , - i , o } ,  {--2 , - 1 , - 1 , 0 } ,
o, 1, 1,-- 2 } ,  { - 2 , 1, 1,--2} ,  { 0,--1, 1 , - 2 } ,  {--2 , - 1 , 1 , - 2 } ,
o, 1,--1 , - 2 } ,  { - 2 , , 1, - 1 , - 2 } ,  { 0, - 1 , - 1 , - 2 } , { - 2 , - 1 , - 1 , - 2 } ,
1, 0, 0, 1). ( “ I, 0, o, 1}, { 1,--2, 0, 1}, {--1 , - 2 , 0, 1},
1, o,--2 , 1}, { - 1 , 0, - 2 , 1}, { 1,-- 2 , - 2 ,  1}, {--1 , - 2 , - 2 ,  1},
1, 0, o,-- 1 } . { - 1 . o, o,-- 1 } , {  1,--2, 0 , - 1 } ,  {--1 , - 2 , o . - i } ,
1, o,--2 , , 0, - 2 . - 1 } .  (  1. - 2 , - 2 , - 1 } , {" • 1 - 2 , - 2 , - 1 } ,
2, 1, 1, 0}, { 2 ,--1, 1, 0}, { 2, 1 , - 1 ,  o}, { 2,--1 ,- - i ,  o},
2, 1, 1,-- 2 } ,  { 2 , - -1, 1,--2} ,  { 2, 1 , - 1 , - 2 } ,  { 2,--1 ,- - 1 , - 2 } ,
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{ 1, 0 , 2, 1}, {-1, 0, 2, 1}, { 1,-2, 2, 1}, {-1,-2, 2, 1},
{ 1, 0 , 2,- 1}, {-1, 0, 2,- 1}, { 1,-2, 2,- 1}, {-1,-2, 2,- 1},
{ 1, 2 , 0 , 1}, { - 1, 2 , 0 , 1}, { 1, 2 , - 2 , 1}, { - 1, 2 , - 2 , 1},
{ 1, 2, 0,-1}, {-1, 2, 0,-1}, { 1, 2,-2,-1}, {-1, 2,-2,-1},
{ 0, 1, 1, 2}, {-2, 1, 1, 2}, { 0,- 1, 1, 2}, {-2,- 1, 1, 2},
{ 0, 1,- 1, 2}, {-2, 1,- 1, 2}, { 0, —1, —1, 2}, {-2,- 1,- 1, 2} };

/*  D5: X Y Y Y  +  Y X X X  * /  
c o n st  sh o r t  constelLD5[64j[4] =  {

{ 0 , 1, 1, 1}, { - 2 , 1, 1, 1},
{ 0 , 1, - 1, 1}, { - 2 , 1, - 1, 1},
{ 0 , 1, 1, - 1}, { - 2 , 1, 1, - 1},
{ 0 , 1, - 1, - 1}, { - 2 , 1, - 1, - 1}
{ 1, 0 , 0 , 0}, { - 1, 0 , 0 , 0},
{ 1, 0 , - 2 , 0}, { - 1, 0 , - 2 , 0},
{ 1, 0 , 0 , - 2 }, { - 1, 0 , 0 , - 2},
{ 1, 0 , - 2 , - 2}, { - 1, 0 , - 2 , - 2}
{ 2 , 1, 1, 1}, { 2 , - 1, 1, 1},
{ 2 , 1, 1, - 1}, { 2 , - 1, 1, - 1},
{ 1, 0, 2, 0}, {-1, 0, 2, 0},
{ 1, 0 , 2 , - 2}, { - 1, 0 , 2 , - 2},
{ 1, 2, 0 , 0}, {-1, 2 , 0, 0},
{ 1, 2 , 0 , - 2}, { - 1, 2, 0 , - 2},
{ 1, 0 , 0 , 2}, { - 1, 0 , 0 , 2},
{ 1, 0 , - 2 , 2}, { - 1, 0 , - 2 , 2},

/*  D6: X Y X Y  +  Y X Y X  * /  
c o n s t  sh o r t  constell.D 6 [64] [4] =  {

{ 0, 1, 0, 1}, {-2, 1, 0, 1}, { 0 ,- 1, 0, 1}, {-2,- 1, 0, 1},
{ 0 , 1,-2, 1}, {-2, 1,-2, 1}, { 0 ,- 1,-2, 1}, {-2,- 1,-2, 1},
{ 0 , 1, 0,- 1}, {-2, 1, 0,- 1}, { 0,- 1, 0 ,- 1}, {-2,- 1, 0,- 1},
{ 0 , 1,—2 ,—1}, { - 2 , 1,—2,—1}, { 0 , - 1, - 2 , - 1}, { - 2 , - 1, - 2 , - 1}, 
{ 1, 0 , 1, 0},  { - 1, 0 , 1, 0}, { 1, - 2 , 1, 0}, { - 1, - 2 , 1, 0},
{ 1, 0,- 1, 0}, {-1, 0,- 1, 0}, { 1,—2,—1, 0}, { —1,—2,—1, 0},
{ 1, 0 , 1,-2}, {-1, 0, 1,-2}, { 1,-2, 1,-2}, {-1,-2, 1,-2},
{ 1, 0 , - 1, - 2}, { - 1, 0 , - 1, - 2}, { 1, - 2 , - 1, - 2}, { - 1, - 2 , - 1, - 2}, 
{ 2 , 1, 0 , 1}, { 2 , - 1, 0 , 1}, { 2 , 1, - 2 , 1}, { 2, - 1, - 2 , 1},
{ 2, 1, 0 ,- 1}, { 2,- 1, 0,- 1}, { 2, l ,- 2,-l}, { 2,- 1,-2,- 1},
{ 0, 1, 2, 1}, {-2, 1, 2, 1}, { 0 ,-1, 2, 1}, {-2,- 1, 2, 1},
{ 0, 1, 2,- 1}, {-2, 1, 2,- 1}, { 0,- 1, 2,- 1}, {-2,- 1, 2,- 1},
{ 1, 2 , 1, 0}, { - 1, 2 , 1, 0}, { 1, 2 , - 1, 0}, { - 1, 2 , - 1, 0},
{ 1, 2 , 1, - 2 }, { - 1, 2 , 1, - 2 }, { 1, 2 , - 1, - 2}, { - 1, 2 , - 1, - 2},
{ 1, 0 , 1, 2}, {-1, 0, 1, 2}, { 1,-2, 1, 2}, {-1,-2, 1, 2},
{ 1, 0 , - 1, 2}, { - 1, 0 , - 1, 2}, { 1,—2,—1, 2}, { —1,—2,—1, 2} };

/*  D7: X Y X X  +  Y X Y Y  * /  
co n st  sh o r t  constelLD7[64][4] =  {

o, 1, 0, 0}, {--2 , 1, o, 0}, { 0 , - 1 , 0, 0}, {--2 , - 1 , 0, 0},
o, 1,--2, 0}, {--2 , 1,--2 , 0}, { 0 , -1 , - -2 ,  0}, {--2 , - 1 , - 2 ,  0},
o, 1, 0, - 2 } ,  {--2 , 1, o,-- 2 } , { 0 , - 1 , 0 , - 2 } ,  {--2 , - 1 , 0 , - 2 } ,
o, 1,--2, - 2 } ,  { - 2 , 1, -2 . - 2 } , { 0 , - 1 , - 2 , - 2 } , { - 2 , - 1 , - 2 , - 2 } ,
1, 0, 1, 1}, {'-1 , 0, 1, 1}, { 1 , -2 , 1, 1}, {'-1 , - 2 , 1, 1},
1, o,--1, 1) , {'-1 , 0, - 1 , 1}, { 1 ,-2 ,- -1 ,  1 } , { - -1, - 2 , - 1 ,  1},
1, o, 1, -1 , o, 1,~ 1 , - 2 , ! , - ! } , { - -1 , - 2 , 1 , - 1 } ,
1, 0,--1, - 1 , 0, -1 . - 1 } . { 1 , - 2 , - 1 , - 1 } , { - 1 , -■ 2 , -1 , -1 } ,
2, 1, 0, 0}, { 2 , - -1, 0, 0}, { 2, 1,--2, 0}, { 2,--1,--2, 0},
2, 1, o, - 2 } ,  { 2 , - -1, o,-- 2 } , { 2, 1,-- 2 , - 2 } ,  { 2,--1,-- 2 , - 2 } ,
0, 1, 2, o}, {--2 , 1, 2, 0}, { 0 , - 1 , 2, 0}, {--2 , - 1 , 2, 0},
0, 1, 2, - 2 } ,  {--2 , 1, 2,-- 2 } , { 0 , - 1 , 2 , - 2 } ,  {--2 , - 1 , 2 , - 2 } ,
1, 2, 1, 1}, {--1 , 2, 1, 1}, { 1, 2,--1, 1}, {'-1 , 2,--1, 1},
1, 2, 1, - 1 } ,  {--1 , 2, 1,--1},  { 1, 2,-- 1 , - 1 } ,  { - 1 , 2,-- 1 , - 1 } ,
0, 1, 0, 2}, {--2 , 1, 0, 2}, { 0 , - 1 , 0, 2}, {--2 , - 1 , 0, 2},
0, 1,--2, 2}, {--2 , 1,-- 2 , 2), { 0 , -1 , - -2 ,  2}, {--2 , - 1 , - 2 ,  2} };

# e n d i f

1 1 1

0,- 1, 1, 1}, {-2,-1, 1, 1},
0,—1,—1, 1}, {-2 - 1 - 1, 1}, 
0 ,-1, 1,- 1}, {-2,- 1, 1,- 1},
{ 0 , - 1, - 1, - 1}, { - 2 , - 1, - 1, - 1}, 
1, - 2 , 0 , 0}, { - 1, - 2 , 0 , 0},
1, - 2 , - 2 , 0}, { - 1, - 2 , - 2 , 0}, 
1, - 2 , 0 , - 2}, { - 1, - 2 , 0 , - 2},
{ 1,-2,-2,-2}, {-1,-2,-2,-2}, 
2, 1,- 1, 1}, { 2,- 1,- 1, 1},
2 , 1,—1, —1>, { 2 , - 1, - 1, - 1},
1, - 2 , 2 , 0}, { - 1, - 2 , 2 , 0},
1, - 2 , 2 , - 2}, { - 1 , - 2 , 2 , - 2 },
1, 2,-2, 0}, {-1, 2,-2, 0},
1, 2,-2,-2}, {-1, 2 ,-2,-2}, 
1,-2, 0, 2}, {-1,-2, 0, 2},
1,-2,-2, 2}, {-1,-2,-2, 2} };
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A. 1.2 D FE Program

PURPOSE: This program evaluates the BER performance of DFE in a 
1000BASE—T  system.

INPUTS:
RunLength: Number o f 4 0  symbols to be generated.
SNR: Signal—to—noise ration in dB.

NOTES: Program reads DFE coefficients from  ’’DFECoeffs.txt”
/*************************************************************************************/ 
^ in c lu d e  <fstream .h>
# in c lu d e  < iostream .h>
^ in c lu d e  < m ath .h>
^ in c lu d e  <cstd lib >
# in c lu d e  <iom anip.h>
^ in c lu d e  < tim e.h >
^ in c lu d e  ” sim ulation.h”
^ in c lu d e  ’’trellislOOOBaseT.h”

/*  Function Definition * /
/*************************************/
v o id  IA rrayShift(int A[][NumChannels] ,in t A-Length, in t * NewCell); 
v o id  FA rrayShift(double A[][NumChannels] ,in t A_Length, d o u b le  * NewCell); 
d o u b le  noise( d o u b le  variance, d o u b le  u l, d o u b le  u2 ); 
d o u b le  PA M 5_D etector(doubIe x);

m ain(int argc,char* argvQ)
{
/*************************************
/*  Parameters and Variables * /
y/*************************************/

lo n g  RunLength =  (in t) (atof(argv[l])); 
d o u b le  SNR =  (d o u b le )  atof(argv[2]);
/ /  double LeamingConst = (double) atof( argv[3] );
/ /  double ForgettingConst= (double) atof( argv[4] );

d o u b le  Symb [NumChannels]=={0}; 
c o n s t  sh o r t  bits_per_word=8; 
sh o r t  buf[bits_per_word+l]; 
sh o r t  Sdn6, Sdn7, Sdn8;
sh o r t  D elay0=0, D e la y l= 0 , Delay2=0,Delay0_Temp=0; /*  initialize encoder state * /  
sh o r t  point,subset;

d o u b le  ChannelBuf[CIR_Length] [NumChannels]= {0 };  
d o u b le  SumVar[NumChannels]={0};

d o u b le  u l, u2; 
d o u b le  noise.power;
d o u b le  avg«point_power =  4*1.8125; / /  Average Power fo r 4D—PAM 5 Symbols
/ /N o i s e  variance to be added to 4D—PAM 5 Symbols
d o u b le  variance =  avg_point_power /  exp((SN R /10.0)*log(10.0));
/ /  Noise variance to be added to 1D—PAM 5 Symbols 
variance=variance/4;
c o n s t  d o u b le  N =  (double)(R A N D _M A X )+1.0; 

tim e.t seed,Start.Tim e,End_Tim e;

co n st  in t D e la y s  (in t) ceil((FFE_Length+FBE_Length —1)/2); 
d o u b le  SymbOut [NumChannels]= {0}; 
d o u b le  Error[NumChannels]={0};

d o u b le  FFE.CoefFs [FFE_Length][NumChannels]={0}; 
d o u b le  FBE.Coeffs [FBE_Length][NumChannels]={0};

1 1 2
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d o u b le  DFE.Coeffs [DFE_Length][NumChannels]={0}; 
d o u b le  FFEJnV ector [FFE_Length][NumChannels]={0}; 
d o u b le  FBEJnV ector [FBEXength][Num Channels]={0}; 
d o u b le  D FEJnV ector [DFEXength][N um Channels]={0}; 
d o u b le  Psi [DFE_Length] [FBE_Length][NumChannels]= {0}; 
d o u b le  NPsi [DFEXength] [NumChannels] =  {0};

d o u b le  OrgSym bBuffer[FFEXength][Num Channels]={0}; 
in t i , j ,k ,r ,c ;  
in t Error_Num=0; 
d o u b le  SER,BER;

/*  Initialization * /

srand( u n s ig n e d  (time(&;seed)));

/ /  Reading DFE coefficients from  DFECoeffs.txt 
ifstream DFECoeffsFile;
DFECoeffsFile.open(” D FECoeffs.txt”);

for (k = 0;k < D F E X en gth ;k + + ) {

D F E C oeffsF ile»D F E _C oeffs[k ][0 ]»D F E _C oeffs[k ][l]»D F E _C oeffs[k ][2 ]»D F E _C oeffs[k ][3];

i f  (k<FFE _Length){
FFE_Coeffs[k] [0]=DFE_Coeffs[k] [0];
FFE.Coeffsjk] [l]=DFE_Coeffs[k] [1];
FFE_Coeffs[k] [2]=DFE_Coeffs[k] [2];
FFE_Coeffs[k] [3]=DFE_Coeffs[k] [3];

}
e ls e {

FBE.Coeffsjk—FFE-Length] [0]=DFE-Coeffs[k][0];
FBE_Coeffs[k—FFE-Length] [l]=DFE_Coeffs[k][lj; 
FBE-Coeffs[k-FFE-Length][2]=DFE-Coeffs[k][2];
FBE-Coeffs [k -  FFE-Length] [3] =D FE .C oeffs [k] [3];

}
}
DFEC oeffsFile.close();

/****************************** SIM U LATIO N  M A IN  LO OP  ****************************/ 
time(&;Start_Time);

fo r(k = l;k < R u n L en gth + D elay ;k + + ){

/ /R a n d o m  B it Sequence Generation and word forming

f o r  (i=0;i<bits_per_w ord;i++) 
buf[i]=rand() & 01;

//1 0 0 0 B A S E —T  Convolutional Encoding

Sdn6 =  buf[ bits_per_word — 2 ];
Sdn7 =  buf[ bits_per_word — 1 ];
Sdn8 =  DelayO;

/*  append the new bit (Sdn8) to the right end o f the vector * /  
buf[ bits-per_word ] =  Sdn8;

/*  update the encoder state * /
DelayO-Temp=DelayO;

if  (S d n 7= = D elay l)
{D elay0=0; } 
e lse
{D ela y 0 = l;}
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i f  (Sdn6==D elay2)
{D elay l= 0; } 
e ls e
{ D e la y l= l;}
D elay2=  DelayO.Temp;

//lO O O BASET 4D Symbol Mapping
point =  32*buf[5] +  16*buf[4] +  8*buf[3] +  4*buf[2] +  2*buf[l] +  buf[0]; 
subset =  4*buf[6] +  2*buf[7] +  buf[8];

sw itc h  (subset) {
c a se  0: Symb[0] =  constell_D0[point][0];

Symb[l] =  constelLDO[point][l];
Symb[2] =  constelLDO [point ] [2];
Symb[3] =  constelLDO [point ] [3]; 

break;

c a se  1: Symb[0] =  constelL D l [point ] [0];
Symb[l] =  constelL D l[point][l];
Symb[2] — constell_Dl[point][2];
Symb[3j =  constelL D l [point] [3]; 

break;

c a se  2: Symb[0] =  constell_D2[point ][0];
Symb[l] =  constell_D2[point][l];
Symb[2] =  constell_D2 [point ][2];
Symb[3] =  constell_D2 [point ] [3]; 

break;

c a se  3: Symb[0] =  constell_D3[point][0];
Symb[l] =  constell_D3[point][l];
Symb[2] =  constell_D3[point ] [2];
Symb[3] =  constell_D3[point ] [3]; 

break;

c a se  4: Symb[0] — constelLD4 [point ] [0];
Symb[l] =  constelLD4[point][l];
Symb[2] =  constell_D4[point][2];
Symb[3] =  constell_D4[point][3]; 

break;

c a se  5: Symb[0] =  constell_D5[point ][0];
Symb[l] =  constell_D5[point][l];
Symb[2] =  constelLD5 [point ] [2];
Symb[3] =  constelLD5[point][3]; 

break;

c a se  6: Symb[0] =  constell_D6 [point ] [0];
Symb[l] =  constell_D6 [point ] [1];
Symb[2] =  constell_D6 [point ] [2];
Symb[3] =  constell_D6 [point ][3]; 

break;

c a se  7: Symb[0] — constell_D7[point ] [0];
Symb[l] =  constell_D7[point ][!];
Symb[2] =  constell_D7[point ] [2];
Symb[3] =  constell_D7[point][3]; 

break;

} /*  end switch * /

FArrayShi ft (OrgSymbBuffer,FFEXength,Symb);

//P a ss in g  symbols through A W G N  channel with IS I
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FA rrayShift(C hannelB uf,C IR _L ength,Sym b);

for(c=0;c< N u m C han n els;c+ + ){
SumVar[c]=0;
for ( i —0;i<C IR _Length;i++)
{

SumVar [c]=ChannelBuf[i] [c] *CIR[i]+SumVar[c];
}
Sy mb [c]=S umVar [c];

/ /A W G N
for(c=0;c< N u m C han n els;c+ + ){  

u l =  d o u b le (r a n d ()+ l)  /N ; 
u2 =  d ou b le (ra n d Q -fl)  /N ;
Symb[c] =  Symb[c] 4- noise(variance, u l, u2 );

}

/ /D F E

FArrayShift(FFE_InVector, FFE_Length,Symb);

if(k > D ela y ){
for  (i= 0 ;i< N u m C h an n els;i+ + ){  

for  (j =0;j <DFE_Length ;j+ + ) { 
i f  (j<FFE _L ength){

DFE JnVector [j] [i] — FFE_InVector [j] [i ];
}
e ls e {

DFE JnVector [j] [i] = F B E  JnVector [j —FFE Jjength] [i];
}

}
} / / / o r  i

for  (i= 0 ;i< N u m C h an n els;i+ + ){
SymbOut[i]=0;
for  (j= 0 ;j< D F E J jen g th ;j+ + ){

SymbOut [i]=DFE JnVector [j] [i] *DFE_CoefFs [j] [i]+SymbOut [i];
}
Error [ i]=PA M 5 JDetector (SymbOut [i]) —SymbOut [i];
SymbOut [i] =PA M 5 JDetector (SymbOut [i]);

}
for  (i= 0 ;i< N u m C h an n els;i+ + ){  

for  (j= 0 ;j< D F E X en g th ;j+ + ){
N P si[j][i]=  DFEJnVector[j][i];

}
}

for (i= 0 ;i< N u m C h an n els;i+ + ){  
for  (r=0;r<DFE_Length;r-F+){

for  (c—0;c<F B E -L ength;c++){
N P si[r][i]=  N Psi[r][i] +  FBE_CoefFs[c][i] * P s i[r ][c ] [ i] ;

}
}

}
for  ( i= 0;i< N u m C h ann els;i+ + ){  

for (j= 0;j< D F E _L ength ;j+ + ){
DFE_Coeffs[j][i]=ForgettingConst*DFE_Coeffs[j][i]+LearningConst*Error[i]*NPsi[j][i];

}
}
for  (i= 0 ;i< N u m C h an n els;i+ + ){  

for  (r= 0;r< D F E -L en gth ;r+ + ){
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for  (c=FBE _Length—2 ;c> = 0;c---- ){
P si[r ][c + l][ i]  =  P si[r ][c ][ i ];

}
}

I
for  ( i= 0;i< N u m C h ann els;i+ + ){  

for ( r=0;r<D FE _L ength;r++) {
P si[r][0][ i]=N P si[r][i ];

}
}
for  ( i=0;i<N um C hanneIs;i++){  

for (j= 0;j< D F E _L ength ;j+ + ){  
i f  (j <FFE .L ength)
{

FFE.C oeffs [j] [ i]=D FE.C oeffs [j] [i ] ;
}
e ls e {

FBE_Coeffs[j -FF E -L ength] [i] =DFE-Coeffs[j] [i];
}

}
} / / fo r  %

FArrayShift(FBEJnVector, FBE.Length,Sym bOut);

for  (i= 0 ;i< N u m C h an n els;i+ + ){
if  (PAM 5J3etector(SymbOut[i]) !=  OrgSymbBuffer[Delay][i]){ 

ErrorJMum++;
}

}
}

} ; / / fo r  k

/ /S E R  and B E R  Calculation

/ /S E R  fo r 1D—PAM 5 symbols
SE R = d o u b le  (Error_N'urn)/doublefk — Delay);
/ /O n  ’’average”, 1.32 bits o f 2 bits in a 1D—PAM5 symbol have error. 
B E R = SER*1.32/8;

time(&End_Time);
d o u b le  Elapsed_Tim e= (End_T im e-Start-T im e)/60;

cerr <  < en d l<  < ” ************************************ ******” <<endl; 
cerr < < ”Number of Symbols: ” < < k —D elay<<endl; 
c err < < ”Number of Errors : ” <<Error_N um <<endl; 
cerr < < ”Symbol Error Rate (SER) for I D —PAM5: ” < < S E R < < en d l;  
cerr< < ”Bit Error Rate (BER): ”< < B E R < < en d l;  
cerr < < ”Simulation Time: ” < < E lap sed _T im e< < ” m in.”<<endl; 
cerr < < ” < < en d l< < en d l;

} ; / /m a m

/*  Functions’ Body *

v o id  IA rrayShift(int A  [] [NumChannels] ,in t A Jjength, in t  * NewCell)
{
/*
PURPOSE:
Sh ift—right each row o f A  and place the NewCell as the first element of A. 
NOTES:
A should be 2D array o f Integer.
*/

for ( in t  k=0;k<N um C hannels;k++){
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for  ( in t  j=A _L ength—2;j> = 0;j ) {
A [j+l][k]=A [j][k];

}
A [0] [ k]=NewCell [k];

}
}
v o id  FA rrayShift(double A[] [NumChannels] ,in t A_Length, d o u b le  * NewCell)
{
/*

PURPOSE: Shift—right each row o f A and place the NewCell as the first element o f A. 
NO TES: A  should be 2D array of Float.

*/
for  ( in t  k—0;k<N um C hannels;k++){

for  ( in t  j=A _L ength—2;j> = 0;j----) {
A [j+l][k]=A [j][k];

}
A [0] [k]=NewCell[k];

}
}
d o u b le  noise( d o u b le  variance, d o u b le  u l, d o u b le  u2 )
{

d o u b le  pi =  3.14159265358979;
r e tu r n  sqrt(( —2)*variance*log(ul)) * cos(2*pi*u2);

}
d o u b le  PAM5_Detector (d o u b le  x)
{
/*  PURPOSE-.PAM5 Detector (Sheer)*/

d o u b le  y=0; 
i f  (x>1 .5)
(y  = +2;}
e ls e  {

if  (x > = 0 .5 )
{y= i;}
e ls e  {

i f  (x >  ——0.5)
{y=0;}
e lse
{

i f ( x > = —1.5) 

e lse
{ y = -2 ;}

}
}

}
retu rn (y );
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A .2 D elayed  D ecision  Feedback Sequence E s
tim ator for 1000B A SE -T  E thernet

PURPOSE: This program evaluates the BER  performance o f DDFSE in a 
1000BASE—T  system.

INPUTS:
NUM -SYM B: Number o f 4D symbols to be generated.
SNR: Signal—to—noise ration in  dB.

NOTES: Program reads DFE coefficients from ”DFECoeffs.txt”
/************************************************************************************ */  
# in c lu d e  <std lib .h >
^ in c lu d e  <fstream .h>
^ in c lu d e  < iostream .h>
^ in c lu d e  < cm ath >
# in c lu d e  <cstd lib >
^ in c lu d e  <iom anip.h>
^ in c lu d e  < ctim e>
# in c lu d e  ” simulation.h”
^ in c lu d e  ’’trellislOOOBaseT.h”

/*  Function Definition  * /

v o id  FA rrayShift(double A[][NumChannels] ,in.t A X en gth , d o u b le  * NewCell); 
d o u b le  noise( d o u b le  variance, d o u b le  u l ,  d o u b le  u2 ); 
sh o r t PAM _X_Detector(double a); 
sh o r t PA M _Y X )etector(double a);

m ain(int argc,char* argv[])
{
/*  Parameters and Variables * /
/*************************alt********** * /

lo n g  NUM .SYM B =  (in t) (atof(argv[l]) +  FFEX ength); 
d o u b le  SNR =  (d o u b le) atof(argv[2]);

c o n s t  sh o r t  bits_per_word=8; 
sh o r t  buf[bits_per_word+l];

s ta t ic  sh o r t  Sdn6, Sdn7, Sdn8;
s ta t ic  sh o r t  D elay0=0, D e la y l= 0 , Delay2=0,Delay0_Temp=0; /*  initialize encoder state  * /  

sh o r t  point, subset;
s ta t ic  d o u b le  Symb[Num Channels]={0};
c o n s t  in t  D elay=  (in t) ceil ((F F E X en gth + F B E X en gth  —1)/2);
s ta t ic  d o u b le  OrgSym bBuf[FFEXength+Trellis JnFram eLength—1] [NumChannels]= {0 };
s ta t ic  d o u b le  ChannelBuf[CIRXength][NumChannels]={0};
s ta t ic  d o u b le  SumVar[NumChannels]={0};
s ta t ic  d o u b le  u l ,  u2;
s ta t ic  d o u b le  noise.power;

/ /  Average Power fo r 4D—PAM 5 Symbols 
c o n s t  d o u b le  avg_point_power =  4*1.8125;
d o u b le  variance =  avg_point_power /  exp((SN R /10.0)*log(10.0));
/ /  Noise variance to be added to 4 0 —PAM 5 Symbols 
variance=variance /  4;

c o n st  d o u b le  N =  (d o u b le) (RAND_MAX)-|-1.0;

s ta t ic  d o u b le  FFE.C oeffs [FFEXength] [NumChannels]={0}; 
s ta t ic  d o u b le  FFE JnVector [FFEXength] [NumChannels]= {0 };  
s ta t ic  d o u b le  FBE.Coeffs [FBEXength][NumChannels]—{0};
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s ta t ic  d o u b le  FBEJnVector[FBE.Length][Num Channels]={0}; 
s ta t ic  d o u b le  SymbTemp [NumChannels]={0}; 
s ta t ic  sh o r t  SymbOut [NumChannels]={0};

s ta t ic  sh o r t  Q uanSym blD  [NumPaths] [NumChannels] [NumSubsetTypes] = {0 };  
s ta t ic  d o u b le  M etriclD  [NumPaths][NumChannels][NumSubsetTypes] = {0 };  
s ta t ic  d o u b le  Metric4D [NumPaths] [NumChannels] [NumSubsetTypes] = {0 };  
s ta t ic  sh o r t  DecodedPath [NumPaths][TrellisJnFrameLength][CodeDimention]={0}; 
s ta t ic  d o u b le  ISI-Estimate [NumPaths][NumChannels]={0}; 
sh o r t  InB S,InB Subset,X ,X 0,X l,X 2,X 3,Y 0,Y l,Y 2,Y 3; 
sh o r t min_index,Symb4DPatternTemp,SurvivirPathNum; 
d o u b le  min,tem p,tem px,tempy;

tim e.t seed,Start.Tim e,End-Tim e; 
srand( u n s ig n e d  (tim e(&seed)));

in t i,k = 0 ,t,s ,p ,b ,d ,c ,j= 0 ,E rro r = 0 ;  
d o u b le  SER=0; 
d o u b le  BER =0;

/*********** ******* ********* **********
/*  Initialization  * /

a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ /  Reading DFE coefficients from  DFECoeffs.txt 
ifstream DFECoeffsFile;
DFECoeffsFile.open(” D FECoeffs.txt”);

for (i=0;i< D F E _L en gth;i+ + ) { 
i f  (i<FFE _Length)

DFECoeffsFile> >FFE_Coeffs[i] [0]>>FFE_Coeffs[i] [1] >  >FFE_Coeffs[i] [2] >  >FFE-Coeffs[i] [3];
e ls e

DFECoeffsFile>>FBE_Coeffs[i—FFE-Length] [0]>>FBE_Coeffs[i—FFE_Length] [1]>>  
FBE-Coeffs [i—FFE-Length] [2] >  >FBE-Coeffs [i—FFE X ength] [3];

}
/****************************** SIM U LATIO N  M A IN  LO OP  ****************************/ 

time(&;Start_Time); 
w h ile  (k<NUM _SY M B){ 

k-j—h;
for ( i=0;i<bits_per.word;i-f~f) 

buf[i]=rand() &; 01;

Sdn6 =  buf[ bits.per.w ord — 2 ];
Sdn7 =  buf[ bits.per.word — 1 ];
Sdn8 =  DelayO;

/*  append the new bit (Sdn8) to the right end of the vector * /  
buf[ bits.per.word ] =  Sdn8;

/*  update the encoder state * /
DelayO_Temp=DelayO;

if  (S d n 7 = = D ela y l)
{D elay0=0; } 
e lse
{D ela y 0 = l;}
i f  (Sdn6——Delay2)
{D elay l= 0; } 
e ls e
{ D e la y l= l;}
D elay2=  DelayO.Temp;

//1 0 0 0 B A S E T  4D Symbol Mapping

point =  32*buf[5] +  16*buf[4] 4- 8*buf[3] +  4*buf[2] +  2*buf[l] 4- buf[0]; 
subset =  4*buf[6] +  2*buf[7] +  buf [8];
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s w i t c h  (subset) {
c a se  0: Symb[0] =  constelLDO [point ] [0];

Symb[l] =  constell_DO[point][l];
Symb[2] =  constelLDO [point] [2];
Symb[3] =  constelLDO [point] [3]; 

b r e a k ;

c a s e  1: Symb[0] =  constelL D l [point ] [0];
Symb[l] =  constell_Dl[point][l];
Symb[2] =  constelL D l [point] [2];
Symb[3] =  constelL D l [point] [3]; 

b r e a k ;

c a se  2: Symb[0] =  constell_D2[point ][0];
Symb[l] =  constell_D2[point][l];
Symb[2] =  constell_D2[point ] [2];
Symb[3] =  constell_D2[point ] [3]; 

break;

c a se  3: Symb[0] =  constell_D3[point ] [0];
Symb[l] =  constelLD3[point ] [1];
Symb[2] =  constell_D3 [point ] [2];
Symb[3] =  constell_D3 [point ] [3]; 

b r e a k ;

c a s e  4: Symb[0] =  constell_D4[point ] [0];
Symb[l] =  constell_D4[point][l];
Symb[2] — constell_D4[point][2];
Symb[3] =  constell_D4[point][3]; 

b r e a k ;

c a se  5: Symb[0] =  constell_D5[point ][0];
Symb[l] =  constell_D5[point][l];
Symb[2] =  constell_D5[point][2];
Symb[3] =  constell_D5[point][3]; 

b r e a k ;

c a se  6: Symb[0] =  constell_D6[point ] [0];
Symb[l] — constell_D6[point][l];
Symb[2] =  constell_D6[point][2];
Symb[3] — constelLD6[point][3]; 

b r e a k ;

c a se  7: Symb[0] =  constell_D7[point][0];
Symb[l] =  constell_D7[point][l];
Symb[2] =  constell_D7[point][2];
Symb[3] =  constell_D7[point][3]; 

b r e a k ;
} /*  end switch * /

FArrayShift(OrgSymbBuf,FFE_Length+TrellisJnFrameLength—l,Symb);

//P a ss in g  symbols through A W G N  channel with IS I  
FArrayShift (ChannelBuf ,CIR_Length ,Symb);

for(c=0;c< N u m C han n els;c+ + ){
SumVar[c]=0;
f o r  (i=0;i<C IR _.L ength;i++){

SumVar[c]=ChannelBuf[i] [c]*CIR[i]+SumVar[c];
}
Symb[c]—Sum Var [c];

/ /A W G N
for(c=0;c< N u m C han n els;c+ + ){
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u l =  (ra n d ()+ l) /N ; 
u2 =  (rand() +  l)  /N ;
Symb[c] =  Symb[c] +  noise(variance, u l ,  u2 );

/ / DDFSE

FArrayShift(FFE_InVector,FFEXength,Symb);

f o r  (c=0;c<N um C hannels;c++)
{

SumVar[c]=0;
f o r  (i=0;i< F F E _L ength ;i+ + )
{

SumVar [c]=FFE JnVector [i] [c] *FFE_Coeffs [i] [c] +SumVar [c];
}
Symb[c]=SumVar[c];

i f  (k>=FFE _L ength)
{

j+ + ;
fo r (t= 0 ;t< T r e llisD e p th -l;t+ + ){

for(s= 0;s< N um C od eS ta tes;s+ + ){
Trellis [t ] [ s] . StateM etric — Trellis [ t+ l] [s ] . StateMetric;
Trellis [t ][ s ]. SurvivorBranch =  T e llis  [ t+ l] [s ] . SurvivorBranch; 
for(b=0;b<N um InB ranches;b++)

T e llis  [t][s].InBranchM etric[b] =  T e ll is [ t+ l] [ s ] .  InBranchMetric[b]; 
for(b=0;b<N um InB ranches;b++){  

for(d=0;d<C odeD im ention;d++)
T e llis  [t ][s ]. Survivor4DSymbol[b][d]= T e llis [t+ 1 ][s]. Survivor4DSymbol[b] [d];

}
}

}
for(s=0;s<N um C odeStates;s+-t'){

T e ll is  [T ellisD ep th —1] [s]. StateM etric =  0;
T e ll is  [T ellisD ep th —1] [s]. SurvivorBranch =  0;

for(b=0;b<N um InB ranches;b++)
T e llis  [T ellisD ep th —1] [s ]. InBranchMetric[b] =  0; 

for(b=0;b<N um InB ranches;b++){  
for(d=0;d<C odeD im ention;d++)

T e ll is  [T ellisD epth —l][s]. Survivor4DSymbol[b][d] =  0;
} } 

i f  ( j = = l ) {
T e ll is  [T e llisD e p th — 2][0].StateM etric =  0; 
fo r(s= l;s< N u m C od eS ta tes;s+ + )
{

T e llis  [T ellisD ep th —2][s]. StateM etric =  1000;
}

}

/ /  ID  M etric Computation 
fo r(p = 0;p < N u m P ath s;p + + ){

for(c=0;c< N um C hannels;c+ + ){
SymbTemp[c]—Symb [c]+ISI_Estimate [p] [c];

Q uanSym blD  [p] [c] [0]=PAM _X-Detector (SymbTemp [c]); 
QuanSymblD[p][c][l]=PAM _Y_Detector(SymbTemp[c]);
MetriclDjp] [c] [0]=pow(SymbTemp[c] — Q uanSym blD  [p] [c] [0] ,2);
MetriclD[p][c] [l]=pow(Sym bTem p[c]— Q uanSym blD  [p] [c][l],2);

}
}
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/ /  J^D M etric Computation
for(s= 0;s< N um C od eS ta tes;s+ + ){

for(b=0;b<N um InB ranches;b++){
InBS=InBranchState [s] [b];
InBSubset=InBranch4DSubset [s] [b];
X 0=Subset4D Pattern [InBSubset] [0] [0];
X l=Subset4D Pattern  [InBSubset] [0] [1];
X 2=Subset4D Pattern [InBSubset] [0] [2];
X 3=Subset4D Pattern [InBSubset] [0] [3];
Y 0=Subset4D Pattern [InBSubset] [1] [0];
Y 1=Subset4D Pattern [InBSubset] [1] [1];
Y 2=Subset4D Pattern [InBSubset] [1] [2];
Y 3=Subset4D Pattern [InBSubset] [I] [3];

tem px=M etriclD [InBS] [0] [X0] +  M etriclD  [InBS] [1] [Xl] +
M etriclD  [InBS] [2] [X2] + M etriclD  [InBS] [3] [X3]; 

tem py=M etriclD  [InBS] [0] [YO] +  M etriclD  [InBS] [1] [Y l]+
M etriclD  [InBS] [2] [Y2]+M etriclD[InBS] [3][Y3];

i f  (tem px<tem py){
Met ric4D [s] [b] [0]= tem p x;
Metric4D[s] [b] [1]—0;

}
e ls e  {

Metric4D[s] [b] [0]=tempy;
Metric4D [s] [b] [1]—1;

}
}

} / / fo r  s

/ /  Calculating code—state m etric fo r  the whole trellis except the last stage 
i f  (j >Trellis_InFrameLength){

fo r (t= l;t< T re llisD ep th — l ; t+ + ) {
for(s= 0;s< N um C od eS ta tes;s+ + ){

m in=le300;
for(b=0;b<N um InB ranches;b++) {

tem p =  Trellis[t—l][InBranchState[s][b]]. StateM etric +
Trellis [t][s].InBranchM etric[b]; 

i f  (tem p<m in){  
m in=tem p; 
min_index=b;

}
}
Trellis [ t ] [ s ] .  StateM etric=m in;
Trellis [ t ] [ s ] .  SurvivorBranch=minJndex;

}
}

}
//C alculating code—state metrics of the last stage (for current symbol) of the trellis 
for(s= 0;s< N um C od eS ta tes;s+ + ){  

m in~le300;
for(b=0;b<N um InB ranches;b++){

Trellis [ T rellisD ep th -1] [s ]. InBranchMetric[b]=Metric4D [s] [b] [0]; 
tem p =  Trellis[TrellisDepth—2][InBranchState[s][b]]. StateM etric +

Trellis [TrellisDepth—1] [s ]. InBranchMetric[b]; 
i f  (tem p<m in){  

m in=tem p; 
min_index=b;

}
}
Trellis [TrellisDepth—1] [s ]. StateM etric=m in;
Trellis [TrellisDepth—1][s]. SurvivorBranch==min_index;

for(b=0;b<N um InB ranches;b++){
InBS—InBranchState[s] [b];
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InBSubset=InBranch4DSubset[s] [b];
Sym b4D PatternT em p=int (Metric4D [s] [b] [1]);

for(d=0;d<C odeD im ention;d++) {
X=Subset4D Pattern [InBSubset] [Symb4DPatternTemp] [d];
Trellis [ TrellisDepth—1] [s ]. Survivor4DSymbol[b] [d] =  Q uanSym blD  [InBS] [d] [X];

}
}

}
v / p  

} / / i f  k
};///or  k

/ /  Updating Paths 
for(p = 0;p < N u m P ath s;p + + ){  

s=p;
fo r ( t=  TrellisDepth—l;t> 0 ;t— ){  

b=Trellis [t ] [ s ]. SurvivorBranch; 
for(d=0;d<C odeD im ention;d++) {

DecodedPathfp][t—1][d]=Trellis[t ][s ]. Survivor4DSymbol[b][d];
}
s=InBranchState [s] [b];

}
}
/ /  Decoding Symbol 
i f  (j >= T rellis JnFrameLength){ 

m in=le300;
for(s= 0;s< N um C od eS ta tes;s+ + ){

tem p =  Trellis[TrellisDepth—1] [s ]. StateMetric; 
i f  (tem p<m in)
{

m in=tem p;
m inJndex=s;

}
}
SurvivirPathNum =m in.index;

for(d= 0;d<C odeD im ention;d+ +){
SymbOut [d]=DecodedPath [SurvivirPathN um] [0] [d];

}
f o r  (d= 0;d<C odeD im ention;d++){

i f  (SymbOut[d] !=  OrgSym bBuf[FFE_Length+TrellisJnFram eLength-2][d])
{

Error++;
}

}
}
f o r  (p= 0;p < N um P ath s;p + + ){

f o r  (c= 0;c<N um C hannels;c++){
for(t=0;t<T rellis_[nFram eL ength;t++){

FBE_In Vector [Trellis Jn F ram eL en gth -t—1] [c]=DecodedPath[p] [t] [c];
}

}

f o r  (c= 0;c< N um C hanneis;c++ ){  
tem p=0;
f o r  (t= 0 ;t< F B E -L en g th ;t+ + )
{

tem p = F B E  JnVector [t] [c] *FBE_Coeffs[t] [c] -(-temp;
}
ISI_Estimate[p ] [ c] =tem p;
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SE R = d o u b le  (E rror)/double(C odeD im ention*j);
/ /O n  ’’average”, 1.32 bits o f 2 bits in a 1D—PAM 5 symbol have error.
B E R =  d o u b le  (Error*1.32)/double(C odeD im ention*j*2);

time(&;End_Time);
cerr < < e n d l< < ” ******************************************” <<endl;
cerr < < ” SNR: ” < < S N R < < ” dB”« e n d l ;
cerr < < ”Number of Symbols: ” < < j< < en d l;
cerr < < ”Number of Errors : ”<<E rror<<endl;
cerr< < ”Symbol Error Rate (SER) for ID —PAM5: ”< < S E R < < en d l;
cerr < < ”Bit Error Rate (BER): ”« B E R < < e n d l;
cerr < < ” Simulation R unT im e: ”<<difftim e (End-T im e,Start_T im e)<<” s” <<endl; 
cerr <  ************** ********************** ****** ” <  <endl<C <Cendl;

} ; //m a in

y / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/ *  Functions’ body*/

v o id  FA rrayShift(double A[][NumChannels] ,in t A-Length, d o u b le  * NewCell){
/*
PURPOSE: Shift—right each row o f A and place the NewCell as the first element o f A. 
NOTES: A  should be 2D array o f Float.
*/

for ( in t  k=0;k<N um C hannels;k+-b){
for ( in t  j=A _L ength—2;j> = 0;j-----) {

A[j+1] [k]=A [j] [k];
}
A [0] [k]=NewCell[k];

}
}
d o u b le  noise( d o u b le  variance, d o u b le  u l, d o u b le  u2){ 

d o u b le  pi =  3.14159265358979; 
r e tu r n  sqrt((—2)*variance*log(ul)) * cos(2*pi*u2);

}

sh o r t PAM_X_Detector (d o u b le  a){
/*  PURPOSE: PAM 5 Detector fo r  X = { —1,+T} subset.*/ 

if  (a > = 0 )
r e t u r n ( l ) ;

e lse
r e tu r n (—1);

}
sh o r t PAM _Y_Detector(double a){
/*  PURPOSE: PAM 5 Detector fo r  Y = {-2 ,0 ,+ 2 }  subset.*/ 

i f  ( a > = l )  
retu rn (2); 

e ls e  {
i f  ( a < = —1) 

r e tu r n (—2);
e ls e

return(O);
}

}
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A .3 L D PC  D ecoder

/*************************************************************************************  
PU RPO SE : LD PC  decoder. This program works fo r  both fu ll—rannk and not fullrank code.

INPUTS: A —list file name, B ER  file name, error lim it,maximum iteration, Number o f SN R  points, 
SN R  points, info

N 0T E 1: This program is orginally porvided by the HCDC labratorty at the University o f Alberta 
and then modidied by the author fo r the purposes o f this thesis .

N 0T E 2: Lch is a long double.Lch values will be Lch values used in LDPCdec, which are
opposite sign to initially calculated Lch values where Lch= log(p(v= l)/p(v—0))) Prints 
screen output every 100000 frames A ll—zeros codeword is sent as usual. 

y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * /

^ in c lu d e  < m ath .h >
^ in c lu d e  < std io .h >
^ in c lu d e  < string.h>
^ in c lu d e  < std lib .h >
^ in c lu d e  < tim e.h >
^ in c lu d e  < signal.h>
^ in c lu d e  <errno.h>
^ in c lu d e  <netdb .h>
# in c lu d e  < sy s/ty p es .h >
^ in c lu d e  < sys/sock et.h >
^ in c lu d e  < n etin et/in .h >
# in c lu d e  < arp a/inet.h >
^ in c lu d e  <unistd .h>

# i f n d e f  M .PI
# d e f in e  M_PI 3.14159265358979323846 
# e n d i f
# d e f in e  DISPLAY 0

FILE * file in ;
FILE *berfileout;
FILE * ferhistfileout ;
FILE *ERRpos_file;

d o u b le  M AX_R48= 2147483648.0;

ch ar *filein_name; 
ch ar *berfileout_name;

in t itermax; 
in t SNRnum; 
floa t *SNR; 
lo n g  d o u b le  *N0; 
u n sig n e d  sh o r t  *randseed;

in t n; 
in t m; 
in t in fo ;
in t maxvardegree; 
in t maxpardegree; 
in t *vardegree; 
in t *pardegree; 
in t *varnode; 
in t *parnode; 
in t *varindex; 
in t *parindex;

in t *bits;
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in t  *x;
lo n g  d o u b le  *y;

lo n g  terrors; 
lo n g  *cwerrors; 
lo n g  *cwdeterrors; 
lo n g  *cwundeterrors;

lo n g  *frameerrors; 
lo n g  *cwdetframeerrors; 
lo n g  *cwundetframeerrors; 
f loa t *cwdetber; 
f loa t *cwundetber; 
f loa t *fer; 
floa t *cwdetfer; 
floa t *cwundetfer;

floa t *cwber;
/*  output o f LD PC  decoder * /  
lo n g  *nerrors; 
lo n g  *cwerrs; 
lo n g  *chksum; 
in t * iters ;

flo a t *ber;
lo n g  d o u b le  *varmsg; 
lo n g  d o u b le  *parmsg;

lo n g  d o u b le  *channelmetric; 
lo n g  d o u b le  *Lch;

in t*  itmppointer; 
long* Itmppointer; 
float*  ftmppointer; 
d ou b le*  dtmppointer; 
lo n g  d o u b le  *ldtmppointer;

/*
statistics memory allocation variables initial allocation 1000 memory blocks 

expansion o f 1000 ok says i f  expansion was successful 
*/
lo n g  *fe;
lo n g  fe_length=1000; 
in t  ok_fe; 
lo n g  fe_count=0;

lo n g  *cwdetfe; 
lo n g  cwdetfe_length=1000; 
in t  ok.cwdetfe; 
lo n g  cwdetfe_count=0;

lo n g  *cwundetfe; 
lo n g  cwundetfe_length=1000; 
in t  ok.cwundetfe; 
lo n g  cwundetfe_count=0;

in t expansionhist=1000;

in t *ERRpos;
floa t *ERRout; 
in t  ERRok;

clock_t starttim e, endtime; 
d o u b le  cpu_time_used;
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/*  for term ination signal handling * /  
s tr u c t  sigaction a c t , oa ct; 
v o id  term handler(int sig);

v o id  A W G N (long d o u b le  *out, in t *inp, lo n g  d o u b le  var, in t len);
v o id  B PSK m etrics(long d o u b le  *out, lo n g  d o u b le  * inp ,long d o u b le  mean, lo n g  d o u b le  var, in t
v o id  probtoL LR (long d o u b le  *out, lo n g  d o u b le  *inp, in t len, in t highis);
lo n g  d o u b le  _atanhl(long d o u b le  x);
v o id  TransposeM (int* Mx, in t maxrow, in t maxcol);
v o id  h ist(lon g*  buffer, lo n g  length, char* printtext, FILE* fileh ist);
v o id  sw ap(long a[], lo n g  i, lo n g  j);
in t R andom (long i, lo n g  j);
v o id  quicksort(long a[], lo n g  le f t , lo n g  right);

v o id  LDPCdec(
lo n g  *nerrors, 
lo n g  *cwerrs, 
lo n g  *chksum, 
in t * iters ,

in t  *varnode, 
in t  *varindex, 
in t  *parnode, 
in t  *parindex, 
lo n g  d o u b le  *Lch, 
in t  *b its , 
in t  itermax, 
in t L, 
in t M, 
in t in fo , 
in t maxvardeg, 
in t maxpardeg 
);

in t m ain(int argc, ch a r  *argv[ ], ch a r  *envp[ ]) {

/*  Read Alist == Code* /  
in t numclosed; 
lo n g  i; 
lo n g  j;
lo n g  k; /* /o r  loop counter* /  
lo n g  d o u b le  rate; 
in t errlim; 
in t detecterr;
u n s ig n e d  sh o r t  ss[3]={0,0,0};

i f  (argc = = 1 ){  
p rin tf(” 1 
printf (” 
printf (” 
printf (” 
printf (” 
p rin tf(” 
p rin tf(” 
p rin tf(” 
p rin tf(” 
printf(” 
printf (” 
prin tf(” 
return(O);

}
i f  ( ( argv [l]= —”h”) 11 (a rg v [l]= = ”H”) || (a rg v [l]= = ” - h ”) ||

(a rg v [l]= = ” - H ”) || (a rg v [l]= = ”/h ”) || (a rg v [l]= = ” /H ”)||
(a rg v [l]= = ” /? ”) 11 (argv[l]= = ” — ?”) || (a rg v [l]= = ”?”))

{
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l \ n” );
Error: The program needs input parameters see below: |\n ”)

| \ n ” )
Help of the U nix/M ac OS version LDPC decoder | \n ”)
LDPCdecoder {A  list file name}, {B E R  file nam e},... | \n ”) 

{error lim it} ,{m aximum  iteration}, | \n ”)
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HCDC LAB. Dec. 2004 | \n ”)

l \n ”)
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}

printf (” | 
printf (” | 
printf (” | 
printf (” j 
printf (” | 
printf (” | 
printf(” j 
printf (” j 
printf (” |

Help of the U nix/M ac OS version LDPC decoder 
LDPCdecoder {A  list file nam e}, {B E R  file nam e},... 

{error lim it} , { maximum iteration}, 
{Number of SNR poin ts},{SN R  points}, 
{info}

This simulator is good for error rates up to l e —12 
H CDC LAB. Dec. 2004

% s\n” ,filein_name); 

% s\n” ,berfileout_name); 

% d\n” ,errlim);

% d\n” ,iterm ax);

filein.nam e=argv [1]; 
printf (” A  list file :
berfileout_name=argv[2]; 
printf (” BER file output to :
sscanf (argv [3], ” %d” ,&;errlim); 
printf (” Error limit :
sscanf (argv [4], ”%d” ,&ritermax); 
printf (” Maximum Iteration :
sscanf ( argv[5],”%d” ,&;SNRnum); 
printf (’’Number of SNR points : % d\n” ,SNR,num);
SNR =  (flo a t *)calloc( SNRnum, s iz e o f(  f lo a t ) ); 
for  ( i= 0 ;i< S N R n u m ;i+ + ){

sscanf( argv[6+i], ”%f’, (SN R +i) );
printf (” at SNR : %f\n’’,*(SN R +i));

}
/ *  Input random seed as parameter — is short in t array o f 3 * /  
ran d seed = (u n sign ed  sh o r t  *)calloc(3, s iz e o f(u n s ig n e d  sh ort));  
for  ( i= 0 ; i< 3 ; i+ + ){

sscanf( argv[6+SN R num +i], ”%hd”, (randseed+i)); 
printf (”random seed : % hd\n” ,*(randseed+i));

}
sscanf( argv[9+ SN R num ]% d” ,&info); 
printf (’’Number of info bits k : % d\n” ,info);
/*  abort ( ) ;* /

p rin tf(” | 
p rin tf(” j 
prin tf(” | 
printf(” | 
prin tf(” | 
printf (” j 
prin tf(” | 
prin tf(” | 
prin tf(” j 
prin tf(” j

LDPC All zero decoder for regular/irregular code | \n ’
| \n ’
l \ n’ 
I V  
I V ’ 
IV 
I V  
IV 
IV 
I V

By Sheryl Howard
Siavash Sheikh Zeinoddin 
December 2004

Caution: Using 48 bit random generator

This simulator is for error rates up to l e —12 
HCDC LAB. Dec. 2004

I V ” );
I V ” );
I V ” );
I V ” );

I V ” );
I V ” );
I V ” );
I V ” );
I V ” );

/*  Input seed as parameter * /  
seed48 (randseed); 
starttim e =  clock ();

errors= (lon g  *)calloc( SNRnum*itermax, s iz e o f(  lo n g  ) ); 
i f (  errors = — NULL )

prin tf( ’’Can’t allocate m em ory\n” ); 
cw errors=(long *)calloc( SNRnum*itermax, s iz e o f(  lo n g  ) ); 
i f (  cwerrors = =  NULL )

printf ( ’’C an’t allocate m em ory\n” ); 
cw deterrors=(long *)calloc( SNRnum, s iz e o f(  lo n g  ) ); 
i f (  cwdeterrors = — NULL )

prin tf( ’’Can’t allocate m em ory\n” ); 
cw undeterrors=(long *)calloc( SNRnum, s iz e o f(  lo n g  ) ); 
i f (  cwundeterrors = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” ); 
b er= (flo a t =t=)calloc( SNRnum*itermax, s iz eo f(  flo a t ) );
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i f (  ber = =  NULL )
p rin tf  ( ” C a n ’t  allocate m em o ry \n ” );

cw b er= (floa t *)calloc( SNRnum*itermax, s iz eo f(  flo a t ) ); 
if (  cwber —— NULL )

printf ( ’’Can’t allocate m em ory\n” );

fram eerrors=(long *)calloc( SNRnum, s iz e o f(  lo n g  ) ); 
i f  ( frameerrors = =  NULL )

prin tf( ’’C an’t allocate m em ory\n” );

cw detfram eerrors=(long *)calloc( SNRnum, s iz e o f(  lo n g  ) ); 
i f (  cwdetframeerrors = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” ); 
cw undetfram eerrors=(long *)calloc( SNRnum, s iz e o f(  lo n g  ) ); 
i f (  cwundetframeerrors = =  NULL )

printf( ’’Can’t allocate m em ory\n” );

cw d etb er= (float *)calloc( SNRnum, s iz e o f(  flo a t ) ); 
if (  cwdetber = =  NULL )

prin tf( ’’C an’t allocate m em ory\n” ); 
cw u ndetber=(float *)calloc( SNRnum, s iz e o f(  f lo a t ) ); 
i f (  cwundetber = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” );

fe r = (f lo a t  *)calloc( itermax, s iz e o f(  f lo a t ) ); 
i f  ( fer = =  NULL )

printf ( ’’C an’t allocate m em ory\n” ); 
cw detfer= (float *)calloc( itermax, s iz e o f(  f lo a t ) ); 
i f (  cwdetfer = =  NULL )

printf( ’’Can’t allocate m em ory\n” ); 
cw undetfer=(float *)calloc( itermax, s iz e o f(  f lo a t ) ); 
if (  cwundetfer = =  NULL )

printf ( ’’Can’t allocate m em ory\n” );
/* fo r  decoder output* /
nerrors= (long *)calloc( itermax, s iz eo f(  lo n g  ) ); 
if (  nerrors = =  NULL )

p rin tf( ’’C an’t allocate m em ory\n” ); 
cw errs= (lon g  *)calloc( itermax, s iz e o f(  lo n g  ) ); 
i f (  cwerrs = =  NULL )

p rin tf( ’’Can’t allocate m em ory\n” ); 
ch k su m = (lon g  *)calloc( 1, s iz e o f(  lo n g  ) ); 
i f (  chksum = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” ); 
iters = ( in t  *)calloc( 1, s iz e o f(  in t  ) ); 
i f  ( iters = =  NULL )

printf ( ’’C an’t allocate m em ory\n” );

/*  histogram statisrtic variables*/ 
fe = (lo n g  *)calloc( fe_length, s iz e o f(  lo n g  ) ); 
i f  ( fe = =  NULL ){

printf ( ’’Can’t allocate m em ory\n” ); 
ok_fe=0;

}e ls e
ok_fe=l;

cw d etfe= (lo n g  *)calloc( cwdetfeJength, s iz e o f(  lo n g  ) ); 
if (  cwdetfe = =  NULL ){

p rin tf( ’’Can’t allocate m em ory\n” ); 
ok.cw detfe—0;

}e ls e
ok_cwdetfe=l;

cw u n d etfe= (lon g  ^)calloc( cwundetfeJength, s iz e o f(  lo n g  ) );
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i f (  cwundetfe = =  NULL ){
p rin tf( ’’C an’t allocate m em ory\n” ); 
ok_cwundetfe=0;

}e ls e
ok_cwundetfe=l;

/*  Open for read (will fail i f  file ”data” does not exist) * /

if (  ( filein =  fopen( filein_name, ”r” )) —— NULL )
{

printf ( ’’The Alist file was not opened check the name and existence\n” ); 
exit (2);

}
e ls e {

printf ( ’’The file A list was opened\n” ); 
fscanff filein ,”%d”,&n); 
fscanff filein ,”%d”,&m);
/*  in fo= n—m; * /
fscanf( filein ,”%d” ,&maxvardegree);
fscanf( filein ,”%d” ,&maxpardegree);

vardegree =  (in t * )calloc( n, s iz e o f(  in t ) ); 
i f (  vardegree = =  NULL )

printf ( ’’Can’t allocate m em ory\n” ); 
itmppointer=vardegree;
fo r (i= 0 ;i< n ;i+ + ,itm p p o in ter+ + )  

fscanf( filein , ”%d”,itmppointer);

pardegree =  (in t *)calloc( m, s iz e o f(  in t ) ); 
i f (  pardegree = =  NULL )

printf ( ’’C an’t allocate m em ory\n” ); 
itmppointer=pardegree; 
for( i= 0 ;i< m ;i+ + ,itm p p o in ter+ + )  

fscanf( filein ,”%d”,itmppointer);

varnode =  (in t *)calloc( n*maxvardegree, s iz e o f(  in t  ) ); 
i f (  varnode = =  NULL )

printf ( ’’Can’t allocate m em ory\n” ); 
itmppointer=varnode;
for( i=0;i< (n*m axvardegree);i+ -f,itm ppointer++) 

fscanf( filein , ”%d” ,itmppointer);

parnode =  (in t *)calloc( m*maxpardegree, s iz e o f(  in t ) ); 
i f (  parnode = =  NULL )

printf( ’’Can’t allocate m em ory\n” ); 
itmppointer=parnode;
for( i=0;i<m *m axpardegree;i++ ,itm ppointer++)  

fscanf( filein , ”%d”,itmppointer);

varindex =  (in t * )calloc( n*maxvardegree, s iz e o f(  in t  ) ); 
i f f  varindex = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” );

parindex =  (in t *)calloc( m*maxpardegree, s iz e o f(  in t  ) ); 
i f f  parindex = =  NULL )

prin tf( ’’Can’t allocate m em ory\n” );

/*  Newly added * /
E R R p os= (in t *)calloc( n, s iz e o f(  in t  ) ); 
i f f  ERRpos = =  NULL )

printf ( ’’Can’t allocate m em ory\n” );
E R R ou t= (floa t *)calloc( n*SNRnum, siz eo f(  f lo a t ) ); 
i f f  ERRout = =  NULL )

printf ( ’’C an’t allocate m em ory\n” );
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/ /in d e x  m atrix fo r variables

in t  varrow; 
lo n g  lindtmp;
fo r (i= 0 ; i< n ;i-f+ ){

varrow=0;
if  (DISPLAY) printf(” \n ”); 
for(j —0;j<m axvardegree;j++)

if  ((* (varnode-fi*m axvardegree+j))!=0)  
varrow++;

for(k=0;k<varrow ;k++){
/*  all these numbers are indexed one more than C * / 
lindtm p= (*(varnode+i*m axvardegree+k));

for(j =0;j<m axpardegree;j++)
if  ((*(parnode-i-(lindtmp— l)* m a x p a rd eg ree + j))= = i+ l){

* (varindex+i*m axvardegree+k) =  j+1; 
i f  (DISPLAY) printf(”%d ” ,j+ l);

}
}

}
fo r ( i= 0 ; i< n ; i+ + ){

if  (DISPLAY) printf(” \n ”); 
for(j=0;j<m axvardegree;j++)

if  (DISPLAY) printf(”%d ” ,*(varindex+i*m axvardegree+j));
}
/ *index m atrix fo r parity nodes* /  
in t parrow;

fo r (i= 0 ; i< m ;i+ + ){
parrow=0;
i f  (DISPLAY) printf(” \n ”); 
for(j =0;j<m axpardegree;j++)

i f  ((*(parnode+i*m axpardegree+j))!=0) 
parrow++;

for(k=0;k<parrow ;k++){
/*  all these numbers are indexed one more than C * /  
lindtm p= (*(parnode+i*maxpardegree+k));

for(j =0;j<m axvardegree;j++)
i f  ((* (v a rn o d e+ (lm d tm p -l)* m a x v a rd eg ree+ j))= = i+ l){

*(parindex+i*m axpardegree+k)= j+1; /*  original matlab index starting from  1* / 
i f  (DISPLAY) printf(”%d ” ,j+ l);

}
}

}
fo r (i= 0 ; i< m ;i+ + ){

if  (DISPLAY) printf(” \n ”); 
for(j =0;j<m axpardegree;j++)

if  (DISPLAY) printf(”%d ” ,*(parindex+i*m axpardegree+j));
}

} /* e lse* /

/*  initializing message in variable and parity check node*/ 
varm sg= (long  d o u b le  *)calloc(n*maxvardegree, s iz eo f(  lo n g  d o u b le  ) ); 
i f (  varmsg = =  NULL ) 
printf( ’’Can’t allocate m em ory\n” );
parm sg= (lon g  d o u b le  *)calloc(m*maxpardegree, s iz e o f(  lo n g  d o u b le  ) );
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i f (  parm sg  = =  NULL )
p rin tf ( ” C a n ’t  a llocate m em o ry \n ” );

printf (’’berfilename: %s \n ” ,berfileout_name);

if (  ( berfileout =  fopen( berfileout_name, ”a” )) = =  NULL ) 
{

printf ( ’’The file ’BER data’ was not opened\n” ); 
exit (3);

}
e ls e {

printf ( ”\n T h e file for Biterrorrate was opened \n” );
}

/*  Signal Handling Parameters * /  
act.sa.handler =  termhandler; 
sigemptyset(&act.sa_mask); 
act. saJiags =0;
/*  Signal Termination Handler * /  
sigaction (SIGTERM ,&act,NULL);

/*  Noise parameters* /
r a te = (lo n g  d o u b le  ) ( in fo )/( lo n g  dou b le)n ;
N 0 = (lo n g  d o u b le  *)calloc( SNRnum, s iz e o f( lo n g  d o u b le  ) );

if (  NO = =  NULL )
printf( ’’Can’t allocate m em ory\n” );
e lse  {

ldtmppointer=NO;
fo r(i= 0 ;i< S N R n u m ;i+ + ,ld tm p p o in ter+ + )

*ldtm ppointer=pow (10,(long d o u b le )  (—l*SN R [i]/10))/rate;
}
/*Encoding*/
/*send  all zeros*/
b its= (in t  *)calloc( n, s iz e o f(  in t ) );

if (  bits = =  NULL )
printf ( ’’Can’t allocate m em ory\n” );

/*  Transmit as BPSK * /
x = ( in t  *)calloc( n, s iz e o f(  in t  ) );

if (  x = =  NULL )
printf( ’’C an’t allocate m em ory\n” ); 
e lse  {

itm ppointer=x;
fo r (i= 0 ;i< n ;i+ + ,itm p p o in ter+ + )

*itm ppointer=2*(*(bits+ i)) —1;
}
y = (lo n g  d o u b le  *)calloc( n, s iz e o f(  lo n g  d o u b le )  ); 

if (  y  = =  NULL )
printf ( ’’C an’t allocate m em ory\n” );

channelm etric=(long d o u b le  *)calloc( 2*n, s iz e o f(  lo n g  d o u b le )  ); 
i f (  channelmetric = =  NULL ) 
printf ( ’’C an’t allocate m em ory\n” );

L ch = (lo n g  d o u b le  *)calloc( n, s iz e o f(  lo n g  d o u b le )  );
i f  ( Lch = =  NULL )
printf( ’’Can’t allocate m em ory\n” );

TransposeM(varnode, n, maxvardegree);
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TransposeM(varindex, n, maxvardegree); 
TransposeM(parnode, m, maxpardegree); 
TransposeM(parindex, m, maxpardegree);

* SN R  LOOP
ate**************************************************************************/
in t s;
in t nloops;

for(s= 0;s< SN R nu m ;s+ + )
{

nloops =0; /*  Reset number o f loops fo r new SN R  * /  
fprintf ( berfileout ,”SN R =% 4.2f\n” ,*(SN R +s));

*(frameerrors+s)=0;
*(cwdeterrors+s)=0;
*(cwundeterrors+s)=0;
*(cw detber+s)=0.0;
*(cw undetber+s)=0.0;
*(cwdetframeerrors-fs)=0;
* (cwundetfram eerrors+s)=0;

m em set(fe,0,sizeof(long)*fe_length);
fe_count=0;
m em set(cw detfe,0,sizeof(long)*cw detfe_length);
cwdetfe_count=0;
m em set(cw undetfe,0,sizeof(long)*cw undetfeJength);
cwundetfe_count=0;

w h ile (*  (frameerrors+s) <errlim) {

/* send  over A W G N  channel* /

AW GN(y, x, * (N 0 + s)/2 , n);
BPSKmetrics(channelmetric, y, 1, * (N 0 + s)/2 , n);
probtoLLR(Lch, channelmetric, n, 1); /*  1 negates the Lch so neg LLR  means x—1 likely * /  
/^m essage—passing Decoding*/
LDPCdec(nerrors, cwerrs, chksum, iters, 

varnode, varindex, parnode, parindex,
Lch, b its , itermax, n, m, info, 
maxvardegree, maxpardegree);

/*  Calculate Error rate*/
/*  nerrors are info bits errors*/
ERRok=0;
fo r (i= 0 ;  i<info; i + +  ){

i f  (abs(*(E R R pos+ i))){
ERRok—1;
fprintf (ERRposJHe,”%d ” ,i);
* (E R R ou t+ s*n + i)=  *(E R R ou t+s*n + i)+ (float)(ab s(*(E R R p os+ i)));

}
}
if  (ERRok) {

for(i= in fo ; i< n ; i+ +  ){
if  (abs(*(E R R pos+ i))){

fprintf (ERRpos_file,”%d ” ,i);
» (E R R ou t+ s*n + i)=  *(E R R ou t+s*n + i)+ (float)(ab s(*(E R R p os+ i)));

}
}

}
i f  (ERRok) fprintf(ERRpos_file,” \n ”); 
if  (ERRok) {

fo r (i= 0 ; i<n; i+ + )  {
fprintf (E R R p o s ile ,”%Lf ” ,*(Lch+i));

}
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fprintf (ER R posJile,” \n ”);
}
/*  check to see i f  fell out early, possibly from  undetected codeword error * /  
i f  ((* iters) <  iterm ax—1)

f o r (  i= (* iters); i< iterm a x ;i+ + ){
*(nerrors +  i)=*(nerrors+(*iters));
*(cwerrs -f i)=*(cw errs+(*iters));

}

for( i= 0 ;i< iterm a x ;i+ + ) *(errors+s*iterm ax+i)+=*(nerrors+i); 

nloops++;

for( i= 0 ;i< iterm a x ;i+ + ) * (ber+s*iterm ax+i)=
((f lo a t)(* (  errors -f-s* iterm ax+ i)))/((float)n loops*(float)in fo);

/*cw errs is coded bit errors* /  
detecterr =0;
i f  (*(cwerrs+iterm ax—1)>0) /*  error at last iteration  * /  

i f  ((*chksum) !=0) { /*  error detected* /
*(cw deterrors+s)+=  (*(cwerrs+iterm ax— 1));
*(cw detber+s)=  ((float)(* (cw d eterrors-fs)))/((float)n*(float)n loops);

}
e ls e  { / * undetected error*/

* (cwundet errors+s)+ =  (* (cwerrs-f iterm ax—1));
*(cw undetber+s)=  ((flo a t) (*(cw undeterrors+s)))/((float)n*(float)n loops);

for( i= 0 ;i< iterm a x ;i+ + ){
* (cw errors+s*iterm ax+i)+ =  (* (cw errs+i));
*(cw b er+ s* iterm ax+i)= ((float)(* (cw errors+ s* iterm ax+ i)))/((float)n *(float)n loop s);

};

i f  (*(nerrors+iterm ax—1)>0) {
*(fram eerrors+s)+=l;

/ * building a hist list processed later which expands itself as memory is needed* /  
i f  (ok_fe) {

*(fe-f-fe_count)=*(nerrors+iterm ax— 1); 
fe_count++;
if  (fe_count==feJength) {

i f (  (fe  = ( lo n g  *) realloc(fe, ( ( feJength+ expansionh ist)*sizeof( lo n g  )) ) ) = =  NULL ) 
ok_fe=0; 

e ls e  {
ok_fe=l;
feJength +=expansionhist;

}
}

}e ls e
printf (”I am not able to record more histogram data on frame errors”);

printf (”Number of loops=% d\n” ,nloops); 
printf ("Number of errors are:\n”);
for ( i= 0 ;i< iterm a x ;i+ + ) printf("%7d, ” ,(*(nerrors+i))); 

printf (” \n ” );
printf ("Total errors at SNR=% 6.2f are:\n” ,*(SN R +s));
for ( i=0;i<iterm ax;H -4-) printf(”%15d ” }(*(errors+s*itermax4-i)));
printf (” \n ”);
printf ("Total frame errors are: ");
printf (” %15d \n ” ,*(fram eerrors+s));

/ * i f  codeword frame has errors* /  
i f  (*(cwerrs-bitermax—1) >0)
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i f  ((*chksum) !=0){  
detecterr =1;
(*(cw detfram eerrors+s))++;
/*  build statistics o f errors per fram e* /

i f  (ok_cwdetfe) {
* (cwdetfe+cwdetfe.count) =  (* (cwerrs+iterm ax— 1)); 
cwdet fe.count+ + ;
if  (cwdetfe_count==cwdetfe_length) { 

i f (  (fe = ( lo n g  *) realloc(cwdetfe,
((cw detfe_len gth + exp an sion h ist)*sizeof(lon g))))= =  NULL) 
ok_cwdetfe=0; 

e ls e  {
ok_cwdetfe=l;
cwdetfe_length+=expansionhist;

}
}

} e ls e
printf (” I am not able to record more histogram on codeword frame errors”);

}e ls e  {
(*(cw undetfram eerrors+s))++;

i f  (ok.cwundetfe) {
* (cw undetfe+cw undetfe.count) =  (* (cwerrs+iterm ax—1)); 
cwundetfe_count++;
if  (cwundetfe_count==cwundetfe_length) { 

i f (  (fe = ( lo n g  *) realloc(cwundetfe,
((cw u n d etfe_length+ expansionh ist)*sizeof(long))))= =  NULL )

ok_cwundetfe=0; 
e ls e  {

ok_cwundetfe=1;
cwundetfe_length+=expansionhist;

}
}

}e ls e
printf (”I am not able to record more histogram on codeword frame errors” );

}
i f  ((nloops % 100000)==1) {

printf (” Number of frames =  % d\n” ,nloops);

printf (’’Total errors : \n ” );
for ( i= 0 ;i< iterm a x ;i+ + ) printf(” %d ” ,(*(errors+s*iterm ax+i))); 

printf (” \n H);
printf (” B it Error ra te :\n ” );
for ( i= 0 ;i< iterm a x ;i+ + ) printf(” %lf ” }(*(ber+s*iterm ax+i)));

printf (” \n  Frame Errors =  % d\n ” ,*(frameerrors+s));
} /*  i f  nloops*/

} /* while fram eerr. . .* /
*(fer + s)= (((float)*(fram eerrors+ s))/(float)n loop s);
*(cw detfer+s)= (((float)*(cw detfram eerrors+s))/(float)n loops);
*(cw undetfer+s)=(((float)*(cw undetfram eerrors+s))/(float)n loops);

/*  print error count to B E R  file * /
fprintf ( berfileout ,”%d %d % d\n” ,itermax,info,n);
fprintf ( berfileout ,”% d\n” ,nloops);
for  (i= 0 ;i< iterm a x ;i+ + ) fprintf(berfileout,” %d ” ,(*(errors+s*iterm ax+i))); 
fprintf ( berfileout ,”\n \n ”);

fprintf ( berfileout ,” info errorrate= %8.6e, errors=%d, %d iterations\n” + (b er + s* iter m a x + iterm a x -l), 
* ( errors + s*iterm ax+iterm ax— 1), iterm ax);
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}/*for s in SNR*/

free vardegree );
free pardegree );
free errors );
free cwerrors );
free cwdeterrors );
free cwundeterrors );
free frameerrors );
free cwdetframeerrors );
free cwundetframeerrors );
free cwdetber );
free cwundetber );
free ber );
free varmsg );
free parmsg );
free NO );
free S N R );
free bits );
free x );
free y );
free channelmetric );
free Lch );
free nerrors );
free cwerrs );
free chksum );
free iters );
free cwber );
free ERRout);
free ER R pos);

/*  Close stream  * /

if (  fclose ( filein ) )
printf ( ’’The file ’data 1’ was not closed \n” );

/*  All other files are closed: * /

i f  ( fclose ( berfileout))
printf ( ’’The file ’data 2 ’ was not closed \n” );

endtime =  clock ();
cpu_time_used =  ( (d o u b le )  (endtime — starttim e)) /  CLOCKS_PER_SEC;

printf (” \n T im e elapsed =  % lf\n” , cpu.tim e.used);
}
return(O);
} /*  i f  argc*/

/********************************************************************** * /  
lo n g  d o u b le  _atanhl(long d o u b le  x) {

r e tu r n (0 .5 * lo g ( ( l+ x ) /( l—x)));

}y********************************************************************** * /  
v o id  A W G N (long d o u b le  *out, in t *inp, lo n g  d o u b le  var, in t len){ 

in t i ;

lo n g  d o u b le  *a; 
lo n g  d o u b le  *b;

a = (lo n g  d o u b le  *)calloc( len, s iz e o f(  lo n g  d o u b le )  );
i f (  a = =  NULL )

prin tf( ’’C an’t allocate m em ory\n” );
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b = (lo n g  d o u b le  *)calloc( len, s iz e o f(  lo n g  d o u b le )  ); 
i f  ( b = =  NULL )

printf( ’’C an’t allocate m em ory\n” );

fo r (i= 0 ; i< le n ;i+ + ){
* (a + i)—(lo n g  double)lrand48() /  (1 .0 + (lo n g  d o u b le )  MAX-R48);
* (b 4 -i)= (0 .5 + (lo n g  doub le)lrand48()) /  (1 .0 + (lo n g  d o u b le )  MAX-R48);
*(out4-i)=  ( lo n g  d o u b le )  *(inp+i);
*(out44)-f-= (lon g  double)cos(2.0*M _PI* (* (a+ i))) *

sq r t(-2 .0 * lo g ((* (b + i))))* (lo n g  double)sqrt(var);

}
free( a ); 
free( b );

}
/***********************************************************************/
v o id  B PSK m etrics(long d o u b le  *out, lo n g  d o u b le  * inp ,long d o u b le  mean, lo n g  d o u b le  var, in t  len){ 

in t i ;
lo n g  d o u b le  tm pl; 
lo n g  d o u b le  tmp2;
/* /o r  antipodal signalling* /  
fo r (i= 0 ; i< le n ;i+ + ){

tm p l= ( lo n g  d o u b le )  exp(pow ((*(inp-K )+ m ean),2)/(-2*var)); 
tm p 2 = (lo n g  d o u b le )  exp(pow ((*(inp+ i)—m ea n ),2 )/(—2*var));
*(out+2*i) = tm p l /  (sqrt(M_PI*2*var));
*(out-b2*i+l)=tm p2/(sqrt(M _PI*2*var));

}
}̂

********************************************************************** * /  

v o id  probtoLLR (long d o u b le  *out, lo n g  d o u b le  *inp, in t len, in t highis){ 

in t i ;

fo r (i= 0 ;i< le n ;i+ + ){
i f  ((* (inp+ 2*i))!= 0.0)

* (o u t+ i)=  * (in p + 2 * i+ l)/(* (in p + 2 * i));
e ls e

*(out+ i)=exp(50);

i f  ( (* (o u t+ i) )< =  l e —22)
* (o u t+ i)= ( lo n g  d o u b le )e x p (—50); 

e ls e  i f  ( (* (o u t+ i) )> —le22)
* (o u t+ i)= ( lo n g  d ou ble)exp(50);

* (o u t+ i)= ( lo n g  d o u b le )  —1* highis*log(*(out+i));
}

}
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * /  
v o id  TransposeM (int* Mx, in t  maxrow, in t m axcol){ 

in t *tempi; 
in t j ; 
in t i ;

tempi =  ( in t  *)calloc( maxcol*maxrow, s iz eo f(  in t ) ); 
i f (  tem pi = =  NULL ){

printf( ’’Can’t allocate m em ory\n” ); 
exit (1);

}
for(j=0;j<m axrow ;j4-+)

fo r (i= 0 ;i< m a x co l; i+ + )
*(tem pi+ i*m axrow +j)=  *(M x-fj*m axcol+i);

for( i =0;i<m axrow *m axcol;i++)
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* (M x + i)=  *(tem pi+i); 

free (tempi);

y 1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

v o id  sw ap(long a[], lo n g  i, lo n g  j) { 
lo n g  tm p =  a[i]; 
a[i] =  a[j]; 
a[j ] =  tmp;

}
/********************************************************************** * /  
in t R andij(long i, lo n g j )  {

r e tu r n  i 4* rand() % (j—i+1);
}/***********************************************************************/ 
v o id  quicksort(long a[], lo n g  le f t , lo n g  right) { 

in t last =  le f t , i ;

i f  ( left > =  right) retu rn ;

swap(a, left ,Randij( le f t , r ig h t)); 
for ( i  =  left +  1; i < =  right; i+ + )  

i f  (a [i]  <  a [left])  
sw ap(a,++ last,i);  

sw a p (a ,le ft, la s t ); 
quicksort (a, le f t , last —1); 
quicksort (a , la st+ 1 ,right);

}
/*********************************************************************** * /  
v o id  h ist(lon g*  buffer, lo n g  length, char* printtext, FILE* filename){
/*  feJength=1000 length i f  the buffer in general 
fe-count length used till now which is passed to thehist graph 

*/
long* hist-buffer; 
lo n g  max_bin; 
lo n g  i;
/*
p r in tf( ’’before quicksort\n”); 
fo r ( i=0;i< length;i-h -h) 
p r in tf(”%d ”, *(buffer+i));
* /
quicksort( buffer , 0, length—1);

/*  p rin tf ( ”\n A fte r  quicksort\n”); 
fo r (  i=0;i<length;i-h+) 
p rin tf ( ”%d ”, *(buffer-{-i));
* /

max_bin= *(buffer+length—1);

hist-buffer —(lo n g  *)calloc( m ax_bin,sizeof( lo n g  d o u b le )  ); 
i f (  hist_bufFer = =  NULL )

printf ( ” Can’t allocate memory buffer for histogram \n” );

fo r(i= 0 ;i< len g th ;i+ + )  
i f  ( * (buffer+i)!=0)

*( hist_buffer +(*(buffer+ i)) —! )+ = ! ;

for(i= 0;i< m ax_b in ;i+ + )
if  (*( hist-buffer -fi)!= 0)

fprintf (filenam e, printtext , ( i+ 1 ) ,*( hist-buffer + i));

free ( hist-buffer );
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}

v o id  LDPCdec(
lo n g  *nerrors, 
lo n g  *cwerrs, 
lo n g  *chksum, 
in t  * ite r s ,

in t  *varnode, 
in t  *varindex, 
in t  *parnode, 
in t  *parindex, 
lo n g  d o u b le  *Lch, 
in t *b its, 
in t itermax, 
in t L, 
in t M, 
in t info, 
in t  maxvardeg, 
in t  maxpardeg)

in t iter ; A
in t iterfinal ; /*
int var; /*
int par; /*

int j , i ;
int Hrow; /*
in t xhat; /*
in t diff; A
in t checksumall; A
in t varrow; A
int varcol A
int parcol A

o n g  ^checksum; 
in t *parrow; 
o n g  terrors; 
o n g  *cwerrors;

o n g  d o u b le  LLRtanh; 
o n g  d o u b le  extrinsic;

iteration counter * /
final iteration value when all parity checks—0 * /

/*  edge connection (message) counter * /  
parity check H  row counter * /

col pos in  parmsg m atrix to variable node var * /
/*  col pos in  varmsg m atrix to parity check node par * /

/ *  vector of parity check sums * /
/*  row pos in varmsg m atrix to parity node par * /

/*  number of info errors in LD PC  decoding hard decision * /  
/ *  number o f cw bit errors in  LD PC  decoding hard decision * /

/*  prod(tanh(LLR m sgs/2)) at parity nodes * /
/*  divide LLRtanh by tanh(m sg/2) to get extrinsic * /

lo n g  d o u b le  *varnodemsg; 
lo n g  d o u b le  *LLRx; 
lo n g  d o u b le  *parmsg; 
lo n g  d o u b le  *parnodemsg; 
lo n g  d o u b le  *varmsg;

/*  parity msgs to each variable node * /
/ *  sum o f LLR  messages at variable nodes * /

/ *  LLR  messages out of parity check nodes * /  
/*  variable msgs to each parity node * /

/*  LLR  messages into parity check nodes * /

/*  Computational S e c tio n ------------------------- * /

/*  Initialize with zeros * /
varnodemsg =  ( lo n g  d o u b le  *)calloc(m axvardeg,sizeof(long d o u b le ));  
varmsg =  ( lo n g  d o u b le  *)calloc(L *m axvardeg,sizeof(long d o u b le ));  
LLRx =  ( lo n g  d o u b le  * )ca lloc(L ,sizeof(lon g  d ou b le ));  
parrow =  ( in t  *)cailoc (m axpardeg,sizeof(in t));
parnodemsg =  ( lo n g  d o u b le  *)calloc(m axpardeg,sizeof(long d o u b le ));  
parmsg =  ( lo n g  d o u b le  *)calloc(M *m axpardeg,sizeof(long d o u b le ));  
checksum =  (lo n g  *)ca lloc(M ,sizeof(long)); 
errors =  ( lo n g  *)calloc(iterm ax,sizeof(long)); 
cwerrors =  ( lo n g  *)calloc(iterm ax,sizeof(long)); 
iterfinal =iterm ax; /*  initialize to itermax  * /
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/*  Message—Passing Decoding Iterative Loop * /
for ( ite r = 0 ;  iter < itermax; ite r + + ) { /*  iterate fo r  itermax loops * /

/*  Variable Node Processing: Sum  LLR  messages * /  
for  (var=0; var<L; v a r+ + ) LLRx[var] =  Lch[var];

for  (var=0; var<L; v a r+ + ) { /*  each variable node * /
for  (j= 0 ; j<m axvardeg; j + + )  { /*  each edge connection * /  

varrow=varnode[j*L +  var]; /*  row.in parmsg, 1 to M  * /  
varcol=varindex[j*L -f- var]; /*  col in  parmsg, 1 to maxpardeg * /
/* p r in tf(”\ n  %d %d”, varrow, varcol);*/

i f  (varrow) { /*  0 denotes no edge connection fo r  that degree * /  
varnodemsg[j]=parmsg[(varcol—1)*M +  varrow—1];

} e ls e  {
varnodemsg[j]=0.;

}
LLRx[var]+=varnodemsg[j]; /*  sum all msgs to variable node var * /

}
for  (j= 0 ; jCmaxvardeg; j + + )  { /*  each edge connection * /  

varrow=varnode[j*L +  var]; /*  row in parmsg, 1 to M  * /
/ *  subtract off same edge to get extrinsic msg from  var to parity chk varrow * /  
i f  (varrow) varmsg[j*L +  var]=LLRx[var]—varnodemsg[j];

}
} /*  end o f variable node processing loop * /

/*  Hard Decision and Errors * /  

memset (checksum, 0 ,sizeof(lon g)*M );  

xhat=0;
for  (var=0; var<L; v a r+ + ) { /*  each variable node * /

i f  (LLRx[var]<=0) x h a t= l;  /*  negative LL R  means a 1 is most likely * /  
i f  (LLRx[var]>0) xhat=0; /*  positive LLR  means a 0 is most likely * /
/*  check parity check sum  * /  
for  (j= 0 ; j<m axvardeg; j + + )  { 

i f  (varnode[j*L +  var]) {
Hrow=varnode[j*L +  var]; 
checksum [Hrow— 1]+ = x h a t ;

}
}
/ *  i f  ((var<5)\\(var>L—5)) prin tf(”checksum[l]=% d\n”,checksum[0]); * /
/ *  check fo r errors * /  
diff = x h a t—bits [var];

/*  (*(ERRpos+var))=diff; * /
/* p r in tf(”%d ”,d iff);* /  
i f  ( diff < 0 ) diff= —diff;

*(ERRpos+var)=diff;

i f  (var<info) errors [ iter]+=diff; /*  info bit errors — systematic code * /  
cwerrors[ iter]+=diff;

}

/*  see i f  all parity check sums are satisfied or we have undetected err * /  
checksumall=0;
/*  take modulo 2 o f checksum * /
for  (Hrow=0; Hrow<M; H row ++) checksum[Hrow]%=2;
/*  then add together; i f  checksum ==0, all checks are satisfied * /  
for  (Hrow=0; Hrow<M; H row ++) checksumall+=checksum[Hrow];
/*  p rin tf (” total check sum = % d\n”,checksumall); * /
/*  i f  all parity check sums are satisfied, stop decoding now  * /  
i f  (checksum all==0) iterfinal=iter;
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i f  (checksum all= = 0) b r e a k ;

/*  Parity Check Node Processing: full tanh processing * /

f o r  (par=0; par<M ; par-j—f )  { /*  each parity check node * /
LLRtanh—1.0;
f o r  (j= 0 ; jCmaxpardeg; j + + )  { /*  each edge connection * /

parrow[j]=parnode[j*M +  par]; /*  row in varmsg, 1 to L  * /  
parcol=parindex[j*M  +  par]; /*  col in varmsg, 1 to maxvardeg * /  
i f  (parrow[j]>0) { /*  0 denotes no edge connection fo r that degree * /  

parnodemsg[j]=varmsg[(parcol—1)*L +  parrowp] —1];
/*  prod(tanh(all msg to parity node par)) * /  
LLRtanh*=tanh(parnodemsg[j]/2.0);

}
}
f o r  ( j =0; j<m axpardeg; j + + )  { /*  each edge connection * /  

i f  (parrow[j]>0) {
/*  divide out same edge to get extrinsic msg from  parity to variable * /  
extrinsic =LLRtanh/tanh(parnodem sg[j]/2.0); 
i f  ( extrinsic >  0.9999)

parmsg[)*M +  par]=10.0; 
e l s e  i f  (extrinsic <  —0.9999) 

parmsg[j*M +  par]=—10.0; 
e l s e  parmsg[j*M +  par]=2.0* atanh(extrinsic);

}
}

} /*  end o f parity check node processing loop * /

} /*  end o f iteration loop * /

/*  Output * /

for ( ite r = 0 ;  iter <  itermax; ite r + + ) { 
nerrors [ iter ] =  errors [ iter ]; 
cwerrs [ iter ] =  cwerrorsj iter ];

}
*chksum=checksumall;
/*  p rin tf( ”parity checksum s satisfied at iteration % d\n”,iterfinal); * /
* iters =  iterfina l;

free (varnodemsg); 
free (varmsg); 
free(LLRx); 
free (parrow); 
free (parnodem sg); 
free (parmsg); 
free (checksum ); 
free ( errors); 
free (cwerrors);

}

/ *  Signal Handling Routine * /  
v o id  term handler(int sig) { 

fflush (NULL); 
exit (0);

}
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A .4 ISI C hannel M odel
/ i f  * * * *  *  *  *  *  *  *  * * * *  *  * * * *  *  *  *  *  *  * * * *  *  *  * * * * *  *  *  *  * *  *  *  *  *  *  *  * * *  *  *  *  *  * * * *  *  * * * * *  *  *  *  *  * * * *  *  * * * *  *  * * * * * *  *

PURPOSE: The IS I  function applies the channel IS I (as an FIR  filter) to the input sequnce.

IN P U TS and OUTPUTS: 
out: Output sequence 
inp: Input sequence 
len: sequence length

/************************************************************************************ */  

y ' * * * * * * * * * * * * * *

The following command lines should be placed before the ’’m a in” function (i.e. as G LO BAL variables
/ i f  * * * * * * * * * * * *  *  /

^ in c lu d e  <fstream .h>
^ in c lu d e  < iostream .h>
# in c lu d e  < m ath .h>
# in c lu d e  < std io .h>
^ in c lu d e  < string.h>
^ in c lu d e  <std lib .h >
^ in c lu d e  < tim e.h >
# in c lu d e  < signal.h>

/ /  Channel Impulse Response (CIR)
^ d e f in e  CIR-Length 30 
lo n g  d o u b le  CIR[CIR_Length]={0};

/ /R e a d in g  CIR coefficients from  CIRCoeffs.txt 
ifstream CIRCoeffsFile;
CIRCoeffsFile.open(” CIRCoeffs.txt”); 
for  ( in t  k=0;k<C IR _Length;k+-f){

CIRCoeffsFile> >CIR[k];
}
CIRCoeffsFile.close ();

^ / *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * *  * * * * * *  i f /

v o id  IS I(lon g  d o u b le  *out, lo n g  d o u b le  *inp, in t len)
{

v o id  FArrayShift(long d o u b le  A [],int A_Length, lo n g  d o u b le  NewCell);

lo n g  d o u b le  ChannelBuf[CIRJLength]={0}; 
lo n g  d o u b le  S;

fo r (in t  i= 0 ;i< le n ;i+ + ){

FArrayShift(ChannelBuf,CIR_Length,*(inp+i));

S=0;
for  ( in t  j=0;j<C IR _L ength;j++){

S + =  ( lo n g  d o u b le )  ChannelBuf[j]*CIR[j];
}
* (out+ i)= S ;

}
}
/% ************************************************************************************/ 
v o id  FArrayShift(long d o u b le  A[],int A_Length, lo n g  d o u b le  NewCell)
{

/*  PURPOSE: Shifts each row o f A  and places the NewCell as the first element o f A .* /
for ( in t  j=A _L ength—2 ;j> = 0;j-----){

A [j+ l]=A [j];
}
A[0]=NewCell;
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A .5 A C G N  G enerator

PURPOSE: This function generates A C G N  sequence and add it to the input sequence.

IN P U TS and OUTPUTS: 
out: Output sequence 
inp: Input sequence 
var: A C G N  variance 
len: sequence length 
a : gain factor in  coloration filter 
b : coloration filter coefficient

v o id  A C G N (long d o u b le  *out, in t  *inp, lo n g  d o u b le  var, in t len, lo n g  d o u b le  a, lo n g  d o u b le  b)
{

in t i ;
lo n g  d o u b le  *p; 
lo n g  d o u b le  *q;

p = (lo n g  d o u b le  *)calloc( len, s iz e o f(  lo n g  d o u b le )  );
i f  ( p = =  NULL )

prin tf( ’’C an’t allocate m em ory\n” );

q = (lo n g  d o u b le  *)calloc( len, s iz e o f(  lo n g  d o u b le )  );
if (  q = =  NULL )

prin tf( ’’C an’t allocate m em ory\n” );

fo r (i= 0 ;i< len ;i+ 4 -){
* (p + i) =  (lo n g  double)lrand48() /  (1.04*(long d o u b le )  MAX_R48);
* (q + i)—(0 .5 + (lo n g  double)lrand48()) /  (1 .0 + (lo n g  d o u b le )  MAX_R48);
* (o u t+ i)= ( lo n g  double)cos(2.0*M ~PI* (* (p + i))) * sq r t(-2 .0 * lo g ((* (q + i))))* (lo n g  double)sqrt(var);

}

* (o u t+ 0 )= (lo n g  d o u b le )  a * (*(out-f-0)); 
fo r (i =  l; i< le n ;i+ + ){

*(out+ i) = ( lo n g  d o u b le )  a * (* (out+ i)) — (lo n g  d o u b le )  b * (* (o u t+ i—1));
}

fo r (i= 0 ; i< le n ;i+ + ){
* (o u t+ i)+ =  ( lo n g  d o u b le )  *(inp+i);

}

free( p ); 
free( q );

}
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A .6 1 / f  N o ise  G enerator

PURPOSE: This P IN K  function generates 1 / f  (pink) noise sequence and add it to the 
input sequence.

IN P U TS and OUTPUTS: 
out: Output sequence 
inp: Input sequence 
var: 1 / f  variance 
len: sequence length

/*********** ****** ********* *************************** *********** sic************ * /

The following command lines should be placed before the ’’m ain" function (i.e. as G LO BAL variables etc)

^ in c lu d e  <iostream .h>
^ in c lu d e  < m ath .h>
^ in c lu d e  < std io .h >
# in c lu d e  < string.h>
^ in c lu d e  <std lib .h >
^ in c lu d e  < tim e.h >
# in c lu d e  <signal.h>

# i f n d e f  M .PI
# d e f in e  M_PI 3.14159265358979323846 
# e n d i f

d o u b le  M A X -R 48= 2147483648.0;

/ /  Calculating coloration filter coefficients 

^ d e f in e  Coloration-Filter.Length 30
lo n g  d o u b le  Coloration_Filter[Coloration_Filter_Length]={0}; 
lo n g  d o u b le  Buf[Coloration_Filter_Length]—{0}; 
lo n g  d o u b le  a lp h a= l;  
lo n g  d o u b le  T = l;
for  ( in t  j= l;j<C oloration_Filter_L ength;j++)
{

T =  (lo n g  d o u b le )  ((lo n g  d o u b le )j—1—(a lp h a /2 ))* T /(lo n g  d ou b le)j;
Coloration_Filter [ j—1]=T;

}
/*  *** * * * ******** * * ***************** * ** *** ************ * ** ** ************ ** * ************ * /  
v o id  P IN K (long  d o u b le  *out, lo n g  d o u b le  *inp, lo n g  d o u b le  var, in t len)
{

v o id  FArrayShift(long d o u b le  A [],int A_Length, lo n g  d o u b le  NewCell); 
lo n g  d o u b le  gas_dev(long d o u b le  noise.var);

lo n g  d o u b le  w;
lo n g  d o u b le  pink_noise_sample; 
lo n g  d o u b le  SumTemp;

fo r(in t i= 0 ;i< len ;i4 -+ ){
w =gas_dev(l);

SumTemp=0;
for  ( in t  j=0;j<C oloration_Filter_L ength;j++){

SumTemp + =  (lo n g  d o u b le )  Buf[j]*Coloration_Filter[j];
}
pink_noise_sample=w—S umTemp;
FArrayShift(Buf,Coloration_Filter .Length,pink_noise_sample);

/ /  3.2 is the output variance o f coloration filter , sqrt (1 /3 .2)= 0.65653216429861
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pink_noise_sample= pink_noise_sample * (lo n g  d o u b le )  sqrt(var) * 0.65653216429861; 
*(out-f-i)= *(inp+ i) +  pink_noise_sample;

}

/ * * * * * * * * * *  * * * * * * * *  * * * * * * * * *  * * * * * * * *  * * * * * * * *  * * * * * * * * * *  * * * * * * *  * * * * * * * * * *  s i c * * * * * * *  * * * * * * *  /
v o id  FArrayShift(long d o u b le  A [],int A_Length, lo n g  d o u b le  NewCell)
{
/ *  PURPOSE: Shifts each row o f A and places the NewCell as the first element o f A . * /

for ( in t  j=A _L ength—2;j> = 0;j-----){
A [j+ l]=A [j];

}
A[0]=NewCell;

}/* ****************** ****** ****************************************** * /
lo n g  d o u b le  gas_dev(long d o u b le  noise-var)
{
/*  PURPOSE: Generates white Gaussian noise.* / 

in t i ;
lo n g  d o u b le  a,b,out;

a =  ( lo n g  double)lrand48() /  (1 .0 + (lo n g  d o u b le )  MAX_R48);
b — (0 .5 + (lo n g  double)lrand48()) /  (1 .0 + (lo n g  d o u b le )  MAX-R48);
ou t=  ( lo n g  double)cos(2.0*M _PI*a) * sqrt(—2.0*log(b))*(long double)sqrt(noise_var);
return(out);
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