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Abstract

The class of Low-Density Parity-Check (LDPC) codes includes some of the
most powerful capacity-approaching codes reported to date. As a result, LDPC
codes have been considered for many new communication standards. However,
a better understanding of the effects of the signal impairments that exist in
such applications is required. In this thesis, the performance of various LDPC
codes, including recent candidate LDPC codes for I0GBASE-T Ethernet, in
the presence of channel impairments is evaluated and compared with the effects
of conventional Additive White Gaussian Noise (AWGN). The channel impair-
ments in this study include Inter-Symbol Interference (ISI), high-frequency and
low-frequency Additive Colored Gaussian Noise (ACGN), and 1/ f noise. The
results show that LDPC codes appear to be more sensitive to AWGN than to
ISI, but for the case of colored noise, they are more vulnerable to ACGN and

1/f noise than to AWGN.
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Chapter 1

Introduction

1.1 The Evolution of Ethernet

The ideas underlying Ethernet Local Area Network (LAN) technology were
originally presented by Bob Metcalfe at the Xerox Palo Alto Research Center
(PARC) in the early 1970’s. Figure 1.1 shows an early drawing of an Ethernet
network by Metcalfe [1]. He chose the word “Ether” to describe the physical
medium that carries the information bits to all nodes in the network. In fact,
the “Ether” prefix of Ethernet suggests that networks are not meant to be
restricted for use on only one connection type, and that Ethernet could be
used on many different systems and function the same way on all. Copper
cables, fiber optic cables, and even wireless technologies have now all been
used to implement Ethernet. This flexibility, combined with simple expand-
ability, makes Ethernet an attractive networking solution in today’s mixture
of different physical layer technologies.

Industry standards based on Ethernet LAN were adopted in 1980 under the
IEEE 802.3 series of specifications for data networks [6]. These specifications
define low-level data transmission protocols and the technical details that are
needed to build interoperable Ethernet LAN products like cards and cables.
Under the Open System Interconnection (OSI) model, Ethernet technology
operates at the physical and data link layers (see Figure 1.2).

The IEEE naming convention for Ethernet can be categorized as “XBASEY”,

where the prefix X indicates the data rate in Mbps, the second term stands
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Figure 1.1: An early drawing of an Ethernet network by Metcalfe [1].

Application

Presentation

Session

Transport

Network

Physical 802.3

Figure 1.2: Ethernet in the OSI model.

for the “baseband” transmission type, and the suffix Y indicates the segment
length (e.g. 500 m for 10BASE-5). In more recent standards, the suffix Y has
been replaced by a letter indicating the type of medium, for instance, T for
Unshielded Twisted Pair (UTP) copper cable (e.g. 1000BASE-T) and T4 for
four such pairs.

Ethernet technology has evolved and matured over a relatively long pe-
riod of time. The original Ethernet standard supports data transfers at a
maximum rate of 10 Mbps. 10BASES5, often referred to as Thicknet, was the
first incarnation of Ethernet technology. The industry used Thicknet in the
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early 1980’s until 10BASE2, so-called Thinnet, appeared in 1986 [6]. Com-
pared to Thicknet, Thinnet offered the advantage of thinner and more flexible
cabling, making it easier to wire office buildings for Ethernet. In 1991, the
IEEE 802.3 10BASE-T standard was approved. 10BASE-T soon became the
most common form of Ethernet. It was even more convenient than Thicknet
or Thinnet because 10BASE-T cables utilize cheap and flexible UTP cabling
rather than bulky coaxial cabling. Over time, to meet the increasing perfor-
mance needs of LANs, the industry created additional Ethernet specifications
for Fast Ethernet, which extends Ethernet performance up to 100 Mbps [6].
By the mid-1990’s, Fast Ethernet technology had matured and met its design
goals of (i) increasing the performance of traditional Ethernet while (ii) avoid-
ing the need to completely re-cable existing Ethernet networks. Fast Ethernet
comes in the 100BASE-T (1995) and 100BASE-FX varieties, which operate
on UTP and fiber optic cable, respectively. By far the most popular of these
alternatives is 100BASE-T, a standard that includes 100BASE-TX over Cate-
gory 5 (CAT-5) UTP, 100BASE-T2 (CAT-3 or better UTP), and 100BASE-T4
(a modified variation of 100BASE-T?2 that includes two additional wire pairs).

Whereas Fast Ethernet sped up traditional Ethernet from 10 Mbps to
100 Mbps, Gigabit Ethernet boasts the same order-of-magnitude improvement
over Fast Ethernet by offering speeds of 1000 Mbps. Gigabit Ethernet was
first made to travel over optical and copper cabling, but the 1000BASE-T
standard (1999) successfully supports UTP as well [7]. 1000BASE-T employs
baseband transmission over four pairs of CAT-5 cabling. A throughput of
1 Gbps is achieved while transmitting 250 Mbps over each wire pair with a
Bit Error Rate (BER) of less than 1071°. Standard transceiver architectures
for 1000BASE-T are commercially available, and can accommodate the target
BER at the 1 Gbps data rate.

At present, the next generation of Gigabit Ethernet (10 Gigabit Ethernet
or 10GBASE-T) is an active area of investigation in both companies and uni-
versities. In order to standardize 10GBASE-T, an IEEE Study Group was
formed in November 2003. The Study Group became the 10GBASE-T Task
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Force in January 2004 [8].

1.2 10GBASE-T Ethernet

10GBASE-T is aimed to provide a throughput of 10 Gbps over CAT-5 or CAT-
6 cabling with a BER of less than 1072 [8]. 10GBASE-T is an upgrade for
the existing 1000BASE-T standard and a competitor to 10 Gigabit Ethernet
over fiber [9]. Similar to 1000BASE-T, 10GBASE-T uses four wire pairs and
supports full-duplex operation, however, with an extremely short clock period
(1-2 ns).

There are several major engineering challenges and performance issues in
the design of 10GBASE-T systems. As will be addressed in the following
chapters, a 10GBASE-T transceiver must operate under the following severe

conditions [2,10,11]:

e Significant levels of Inter-Symbol-Interference (ISI) caused by the
band-limited UTP channel.

e Echo from the local transmitter on the same wire pair.

e Near-End CrossTalk (NEXT) from the local transmitters correspond-

ing to other adjacent wire pairs.

o Far-End CrossTalk (FEXT) from the remote transmitters of the ad-

jacent wire pairs.

o Alien Near-End CrossTalk (Alien NEXT) from transmitters in a sep-

arate multidimensional transmission.
e Insertion loss going onto the UTP Cable.
e Colored noise due to the use of equalization or a precoding scheme.
e Residual ISI due to imperfect equalization or a precoding scheme.

e Noise from sources other than those listed above (e.g. 1/f noise

caused by the loop filter in a phase locked loop).
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It should be noted that by increasing the bit rate and hence the signal edge
speeds, the amount of interference introduced by channel properties will tend
to increase. Therefore, a higher amount of interference will be present in a
10GBASE-T channel in comparison with a 1000BASE-T channel. In addition,
a shorter clock period (1-2 ns) and a lower BER is required for 10GBASE-T.

1.3 Thesis Organization

Based on the experience from 1000BASE-T receiver design, this project re-
views and investigates various equalization and coding alternatives for Gigabit
Ethernet and the corresponding issues for band-limited channels in order to
achieve sufficiently low BER. It then addresses the performance evaluation of
LDPC codes, including the candidate LDPC codes for 10GBASE-T, in the
presence of channel impairments such as IS, residual ISI, Additive Gaussian
Colored Noise (ACGN), and 1/f noise.

Following this introduction chapter, the rest of this thesis is organized as
follows. In Chapter 2 background material and concepts are presented. Chap-
ter 3 describes the coding scheme used in 1000BASE-T as well as the alter-
native coding schemes for I0GBASE-T Ethernet systems. Chapter 4 presents
the results of performance evaluation experiments for LDPC codes in the pres-
ence of ISI. Chapter 5 presents and discusses the effects of low-frequency and
high-frequency ACGN on the performance of LDPC codes. Chapter 6 presents
the results of performance evaluation of LDPC codes in the presence of 1/f

noise. Finally, conclusions and future work are given in Chapter 7 .
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Chapter 2

Background Material and
Concepts

This chapter is dedicated to background material and concepts related to Gi-
gabit Ethernet. Section 2.1 introduces the multidimensional constellation used
in Gigabit Ethernet. Section 2.2 discusses channel and impairments models.
Finally, Section 2.3 reviews various equalization methods and provides some

simulation results.

2.1 Symbol Constellations in Ethernet

Gigabit Ethernet uses a Pulse Amplitude Modulation (PAM) constellation for
signal modulation during data transmission. PAM (also known as Amplitude
Shift Keying or ASK) is a type of AM constellation in which the signal is
sampled at regular intervals to obtain a pulse whose amplitude is proportional
to the amplitude of the signal at the instant of sampling. A PAM-M signal
(with M levels of signal amplitude) can be defined as:

Ay ={2m—1- M}, m=1,2.M (2.1)

where A, is the amplitude of the m-th symbol and 2d is the distance between
adjacent symbol amplitudes.

PAM has the advantage of simplicity and controlled bandwidth but, like
other AM constellations, PAM has relatively high susceptibility to noise and

interference. The reason for this susceptibility to noise is that any interference
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in the transmission path will either add to or subtract from signal voltage.
As well, channel impairments that cause signal distortion and/or echos can
also change the signal voltage. Since the amplitude of the voltage encodes
the transmitted information, any unwanted change to the signal contributes
directly to bit errors at the receiver. This property makes equalization and,

possibly, error control methods critical parts in Gigabit Ethernet receivers.

2.1.1 The 1000BASE-T Constellation

As introduced in the previous chapter, 1000BASE-T employs full duplex base-
band transmission over four pairs of CAT-5 UTP cabling. The throughput of
1 Gbps is achieved by transmitting at 250 Mbps over each wire pair. Each
transmitted symbol on each wire pair is modulated using 5-level PAM (PAM-5)
having 2 information bits per symbol [10]. The total number of levels required
is 22 = 4. The extra level provided in PAM-5 is used for coding and control
purposes. The amplitude levels in PAM-5 are labeled -2, -1, 0, +1, +2 (£2
actually maps to =1 Volt, and +1 maps to £0.5 Volt). Figure 2.1 illustrates
the transmission scheme used in 1000BASE-T.

. {-2,-1,0,1,2} .
= Hybrid Hybrid —
o N
2 Hybrid |e—==212 31 Hybrid 2
: :
3 Hybrid 27013 Hybrid =
o o)
» -2,-1,0,1,2} )

Hybrid 002 »  Hybrid

Figure 2.1: Transmission scheme in 1000BASE-T.

The combined output of all four transmitters on each wire pair forms a
four-dimensional (4-D) symbol which carries eight information bits (i.e. 2
information bits per 1-D symbol on each wire pair). Therefore, the symbol

rate is 125 MBaud/s. The 4-D constellation can be thought of as taking the

7
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possible outputs of each transmitter as an axis orthogonal (at right angles) to
the other three axes. For every symbol period, one point in the constellation
is sent. This joint constellation is referred to as 4-dimensional PAM-5 or 4-D
PAM-5. By using 4-D PAM-5, 5 = 625 distinct symbols can be generated,
which provides enough symbol space to allow redundancy as well as special
symbols for control purposes (in 1000BASE-T, 512 symbols are used for data
and 113 is used for control signals) [12].

As mentioned before, PAM has a relatively high susceptibility to noise
and interference. One way to alleviate this is to increase the distance be-
tween transmitted symbols, which makes them more distinguishable in the
presence of noise and interference. For this reason, the PAM-5 constellation in
1000BASE-T is divided into two 1-D subsets A = {—1,1} and B = {-2,0, 2},
leading to a minimum squared Euclidean distance, A2, of 4 between any two
points in these subsets®. In addition, in order to form the 4-D PAM-5 symbols,
different combinations of the A and B subsets are grouped in a way that forms
eight 4-D subsets SO0, ..., S7. Each 4-D subset is sent over four wire pair and
consists of both A-type and B-type 4-D symbols (see Table 2.1). 4-D subset

partitioning guarantees the following properties [2]:

e The minimum square Euclidean distance of A? = 4 between any
two 4-D symbols in a same subset. For example, in the S4 subset,
the squared distance between A-type symbol (1,-2,2,-1) and B-type
symbol (0,-1,1,0) is (1—=0)2+ (=2~ (=1))*+(2-1)?+(-1-0)*> = 4.

e The minimum squared Euclidean distance of A? = 2 between any two
4-D symbols in either the even subsets (50,52, 54,56) or the odd
subsets (51,.53,55,S57). For instance, the square distance between
4-D symbol (0,0,0,1) from S1 and 4-D symbol (0,0,1,0) from 53 is 2.

As will be shown in the next chapter, this 4-D subset partitioning in combi-

nation with Trellis coding produces a significant Signal-to-Noise-Ratio (SNR)

!As an example, the minimum squared Euclidean distance for any two points in the
subset A can be calculated as A% = (1 — (—1))? = 4.
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improvement in 1000BASE-T.

Table 2.1: 4-D subsets in 1000BASE-T, A = {—1,1} and B = {-2,0, 2}.

l 4-D Subset H A-Type I B-Type

S0 AAAA | BBBB
S1 AAAB | BBBA
S2 AABB | BBAA
S3 AABA | BBAB
S4 ABBA | BAAB
S5 ABBB | BAAA
56 ABAB | BABA
S7 ABAA | BABB

2.1.2 The 10GBASE-T Constellation

10GBASE-T uses full duplex baseband transmission over four pairs of CAT-5
or CAT-6 UTP cabling. The data rate of 10 Gbps is achieved by transmit-
ting at 2.5 Gbps over each wire pair. However, to achieve this target data
rate, several dramatic improvements are required compared to the existing
1000BASE-T solutions. A straightforward extension of the techniques in the 1
Gbps specification to 10 Gbps is not realistic. For example, the use of a baud
rate of at least 1.25 GBaud/s would be extremely difficult. As a result the
constellation size has to increase beyond the PAM-5 used in 1000BASE-T [11].

At present, there are three proposals for the 10GBASE-T constellation,
PAM-16, PAM-12 and PAM-8 [8]. The PAM-16 and PAM-12 proposals operate
at 800 MBaud/s and 825 MBaud/s, respectively. In the PAM-12 proposal,
eight signaling levels are used for data transmission and the extra four levels
are used for coding and control purposes. PAM-16 and PAM-12 have the
advantage of using lower baud rates than PAM-8, which operates at 1000
MBaud/s. However, PAM-8 might be able to tolerate more noise than them.
Because PAM-8 maps sampled signal values into only eight distinct voltage

levels, the difference between each level is greater than it would be for PAM-16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and PAM-12, which makes it easier for the receiver to determine the level of

each sample.

2.2 Overview of Channel and Impairment Mod-
els

In general, a communications channel models the medium through which in-
formation is transmitted from a transmitter to a receiver. In many communi-
cations systems, the channel is often modeled by possibly frequency dependant
attenuation of the transmitted signal, followed by additive noise. The atten-
uation captures the loss in signal power over the course of transmission. The
noise in the model captures external interference and/or electronic noise in
the transmission medium and in the receiver circuit. Electronic noise sources
within the circuit can also be classified into two groups, namely, device noise
and interference [13]. Thermal, shot, and flicker noise are examples of the
former, while substrate and supply noise are in the latter group. Hence, de-
pending on the application, the mathematical model for the communication
system includes a model for the distortion introduced by the transmission
medium (and the receiver circuit).

Figure 2.2 shows a typical communication channel model. The input se-
quence of the channel can be expressed as a power series in the delay operator

D (assuming a D-transform) [14]:
.TI(D) = l'QD + CL‘lDl + 1‘2D2 + ... (22)

Following the theory of Linear Time Invariant (LTI) systems, the received

signal y(D) can be expressed as:
y(D)=3s(D) + n(D) = x(D)h(D) + n(D) (2.3)

where h(D) and n(D) are the D-transforms of the channel impulse response
and the channel noise signal, respectively, and S(D) is the output signal from

the channel before noise addition.

10
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Figure 2.2: Channel model in the discrete-time domain.

2.2.1 Additive White Gaussian Noise

The Additive White Gaussian Noise (AWGN) channel is one of the simplest
mathematical models for various physical communication channels, including
wireline channels and some radio channels. An AWGN model is usually char-
acterized by the mean and variance of the distribution. In this model the
transmitted signal is assumed to corrupt by the addition of white noise with

a Gaussian (normal) probability distribution of

P(s) = - b%e%_) (2.4)

where p is the mean and o2 is the variance of the noise. Figure 2.3 shows the
histogram of a typical AWGN sequence with 1 = 0 and o2 = 1 for 10° noise
samples generated in Matlab. There are two major characteristics associated

with AWGN:

e Statistical independence of any two noise samples.

e Constant power spectral density (i.e. the same distribution of power

for all equal-sized frequency intervals).

Figure 2.4 illustrates the power spectrum of the same sequence. The spectrum
gets flatter as the number of noise samples is increased.

Even if the AWGN channel is often used as a reference channel model in
digital communication systems, it is not sufficient to describe real channels

that, for example, suffer from Inter-Symbol Interference (ISI).

11
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Figure 2.4: Power spectrum density of a typical AWGN sequence.
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2.2.2 Inter-Symbol Interference

The process of transmitting an input sequence z(D) through the channel h(D)
and obtaining a distorted signal s{D) can be thought of as filtering the input
signal. In practice, channels are band-limited. This is basically due to the
frequency response characteristics of the communication medium. As an ex-
ample, parasitic series and parallel capacitance in twisted pairs results in a
limited frequency response channel model. A band-limited channel is usually
modeled as a low-pass filter. In practical channels the inevitable filtering ef-
fects and channel distortion tends to cause a spreading or smearing out of
individual data symbols passing through a channel (Figure 2.5). For consecu-
tive symbols, this spreading causes part of the symbol energy to overlap with
neighboring symbols causing a noise at the sampling time that is called ISI
(Figure 2.6). In addition to band-limited channels, transmitter filtering (when
channel spacing is crucial) and multi-path reflection in wireless channels can be
additional sources of ISI. Figure 2.7 illustrates the postcursor ISI of a CAT-5
UTP channel referred to in the 1000BASE-T standard [2]. Figure 2.8 illus-
trates the discrete time impulse response of a typical CAT-6 UTP channel [3],
which is an alternative medium for the 10GBASE-T standard. This channel

has severe delay spread over many symbol intervals, resulting in severe ISI.

Low-pass filter

=

Figure 2.5: Channel as a low-pass filter.

When ISI exists in a channel, the channel behaves as if it has memory
because each symbol value passed through the channel becomes correlated
with previous symbols (postcursor symbols) and following symbols (precur-
sor symbols). ISI can significantly degrade the ability of the data detector to

differentiate the present symbol from the diffused energy of the adjacent inter-

13
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Figure 2.7: Postcursor ISI for CAT-5 UTP [2].

fering symbols. Even with no noise present in the channel, IST alone leads to

the occurrence of errors produced at the so-called irreducible error rate. These

errors will degrade the bit and symbol error rate performance. To compen-

sate for the effects of ISI, communication systems use fixed and/or adaptive

channel equalizers. Equalization techniques will be discussed in Section 2.3.
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Figure 2.8: Channel impulse response for CAT-6 UTP [3].

2.2.3 Residual ISI

Residual IST is mainly due to mismatch between the transmission channel and

the equalizer or precoder [15,16]. Such a mismatch can be a result of:

e Equalizers whose finite length limits their possible impulse response

behaviour.
e Quantized (as opposed to infinitely precise) equalizer coefficients.

e Channel estimation error.

Residual ISI is among the important impairments for any high-speed wire-
line standard like 10GBASE-T Ethernet [17]. In practice, this phenomenon is
unavoidable and there will always exist some level of residual ISI in any real

wireline system.

2.2.4 Colored Noise

Most of the communication system models are usually analyzed under the
assumption that the noise in the system is independent of the transmitted
signals and that the noise components of any two samples are independent
(e.g. AWGN). However, in many communication systems, the dominant noise
sources are actually colored [17, 18], making colored noise an important im-

pairment that exists in practical communication channels.

15
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Colored noise is also a major impairment in the 10GBASE-T Ethernet.
10GBASE-T needs to implement an equalization scheme at the receiver to
overcome the ISI caused by severe delay spreads in the CAT-6 UTP channel
(see Figure 2.8). But such an equalization scheme results in correlated noise.
Even when an equalizer is provided at the transmitter (e.g. in Tomlinson-
Harashima precoding [19,20]), 1I0GBASE-T still needs to use various filtering
schemes at the receiver to overcome the effects of residual ISI and other im-
pairments, such as intra-cable crosstalk. In addition, the coding scheme in
10GBASE-T spans across four copper wire pairs which are in the same phys-
ical bundle and pass through the same connectors. All four wire pairs are
latched into the same transceiver chip. Also transmitters on all four wire pairs
are clocked by the same clock, which slightly correlates the noise sources in
both directions.

Another important source of colored noise for I0GBASE-T is a new type of
crosstalk that has been called Alien Near-End CrossTalk (ANEXT). ANEXT
refers to signal energy that couples from one 4-pair UTP cable to another
4-pair UTP cable. This type of crosstalk is due to the fact that at high oper-
ating frequencies, a UTP cable starts to behave like an antenna, radiating and
picking up energy from the surroundings [11]. This was not a problem in the
earlier, lower data rate versions of Ethernet such as 1000BASE-T. However,
ANEXT is predicted to be one of the major impairments for 10GBASE-T
systems. According to [11], issues associated with ANEXT include the lack
of synchronization between the symbol generator and the receiver, which im-
plies a cyclo-stationary relationship. In addition, ANEXT characteristics may
change abruptly and dramatically as cables at a switch box are plugged in and
unplugged. These features make ANEXT cancelation impractical at present.
Figure 2.9 illustrates ANEXT coupling in a multi-cable bundle and Figure 2.10
shows the measured spectrum of ANEXT for 10GBASE-T systems [4].

16
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Figure 2.10: Spectrum of ANEXT in a 10GBASE-T system [4].
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2.2.5 1/f Noise

1/ f noise (also known as flicker or pink noise) is a type of low-frequency colored
noise [21]. 1/f noise is ubiquitous in nature. It is observed in solid-sate circuits,
fractals and music, etc. For analog solid-state circuits, in particular, 1/f noise
becomes increasingly important because it can limit the channel minimum
spacing in communication systems when it is upconverted to phase noise in
oscillators and in mixers [13]. Even in the digital world, phase noise in the
guise of timing jitter is important. Clock jitter directly affects the timing
margins and hence limits system performance [13]. In addition, low frequency
noise is very sensitive to the technological processes and parameters which are
used in IC fabrication [22-25].
1/f noise is characterized by a power spectrum that falls like 1/f:

S(f) =+ (2.5)

where a is a gain factor and S(f) is the power spectrum of the 1/f noise. This
spectrumn is characterized by a 3 dB per octave drop (i.e., 10 dB per decade),
which means that whenever the frequency doubles, the amplitude drops by a
factor of 1/2:

S(2f) = % - %S( ) — 10logy, [ 5((2?)} = 10log,o(2) = 3 dB (26

This also implies that the amount of power contained in any octave interval

[f1, fo], where fy = 2f, is the same:

fa
ZS(f)df - aln(%) ::aln(2f—{1) = aln(2) (2.7)

Figure 2.11 shows the power spectrum of a typical 1/f noise sequence with
a variance of 1, and mean of 0. The power spectrum data was calculated
in Matlab by using 107 samples. Figure 2.12 shows the same spectrum in
log-scale. The 10 dB per decade drop is apparent in this figure.

There exist various methods for generating 1/f noise. The method used
in this thesis is discussed in Chapter 6. Discussion about other methods can

be found in [26-28].
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2.2.6 Insertion Loss, Echo and Crosstalk

In addition to the previously discussed impairments, there are some other
important impairments in Gigabit Ethernet systems, which are due to the
multi-dimensional transmission scheme. Figure 2.13 illustrates the following

impairments in a typical Gigabit Ethernet architecture.

Insertion Loss: This refers to the loss of signal power between two points
along a cable. Insertion Loss is usually expressed as the reciprocal
of the ratio of the signal power delivered to one point to the signal

power delivered to the other point.

Echo: Echo is caused by an impedance mismatch between two points of
medium. It is dominated in 10GBASE-T due to the mismatch in-
troduced by the hybrids.

Crosstalk: This impairment is due by signal coupling from one pair of UTP
cable to another pair. It can occur at the near end of the transmitter
(NEXT), the farther end of the transmitter (FEXT), or as described
in Section 2.2.4, from a remote transmitter (ANEXT).

The above mentioned impairments do not have the same effects in all
XBASE-T Ethernet standards. However, the effect of all of them tends to be
more significant in 10GBASE-T systems [11]. Figure 2.14 shows the frequency
response of these impairments over CAT-5 UTP in a 10GBASE-T Ethernet
system [5].

2.3 Equalization Methods :

The process of compensating for the ISI and other channel impairments is
called equalization. Equalization is usually performed by a filter, known as
channel equalizer, which effectively flattens the channel transfer function and
hence improves the recovery of the transmitted symbols. There are various

types of equalizers which are different in structure, complexity, performance
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and the situations in which they can operate (e.g. channel conditions). In ad-
dition, equalizers can be categorized as being either preset (fixed) or adaptive
equalizer. In preset equalizers, all the parameters are set and don’t change
during equalizer operation. Therefore, this type of equalizer is suitable for
situations where the channel behavior is known a priori. Adaptive equalizers,
on the other hand, are suitable in situations where the channel characteristics
may vary over time since adaptive equalizers are capable of updating their
parameters according to channel variations. This section gives an overview of

classical equalization methods, their benefits and their drawbacks.
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2.3.1 Linear Equalization

In the linear equalization method, the output of the equalizer is a linear combi-
nation of the present and post equalizer inputs. The equalizer is implemented
using a Finite Impulse Response (FIR) filter. The coefficients of such a fil-
ter can be constant (preset scheme) or updated during equalization (adaptive
scheme). Figure 2.15 shows the structure of a preset linear equalizer, where D
is a delay element, N is the order of the filter, a; is the i-th coefficient of the
filter, y(n) is the received signal and z(n) is the equalized signal.

In the preset scheme the equalizer coefficients are calculated to estimate
the inverse transfer function of the channel (i.e. 1/h(D)). This method is also
known as zero-forcing linear equalization as it can completely eliminate the

ISI leaving only an AWGN component, n/(D) :

z(D) = y(D)/h(D) = (z(D)h(D) + n(D))/M(D) = z(D) + n(D) /(D) (2.8)
n’(D)

22
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However, despite this advantage and its simple structure, this method has the

following drawbacks:
e The noise energy experiences a gain of ||1/ h||2.
o Filtering the AWGN, n(D), makes it colored (n'(D)).
e Not all channel transfer functions have a well-defined inverse 1/h(D).

Due to these problems, another type of equalizer, known as a Decision Feed-

back Equalizer, is used in many high data rate communication systems.

2.3.2 Decision Feedback Equalization

The equalization scheme used in 1000BASE-T Ethernet is based on decision
feedback equalization. A Decision Feedback Equalizer (DFE) is a nonlinear
equalizer that employs previous decisions to eliminate the ISI caused by pre-
viously detected symbols on the current symbol to be detected [29]. A block
diagram for a typical DFE is shown in Figure 2.16. The DFE structure can
be thought of as a special type of Infinite Impulse Response (IIR) filter. The
first filter in a DFE is called the feedforward filter. This filter is generally a Fi-
nite Impulse Response (FIR) filter with adjustable coefficients. The input for

23
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this filter is the received signal y(D). The second filter is called the feedback
filter and it is also an FIR filter with adjustable coefficients. Its input is the
sequence of previously detected symbols. The output of the feedback filter is
subtracted from the output of the feedforward filter to form the input to the
detector. The detector determines which of the possible transmitted symbols
is closest to the input signal (i.e. received symbol). Thus, it makes a deci-
sion and outputs the corresponding decision. What makes the DFE nonlinear

is the nonlinear characteristic of the detector that provides the input to the

feedback filter.

Input f Detected
sequence Feedforward W(n) Detoct sequence
y(n) " Filter etector z(n)
! P,

Feedback
Filter
/

Figure 2.16: Decision feedback equalizer.

Let the N be the order of the feedforward filter, M the order of the feedback
filter, and {a;} and {b;} the coefficients of the feedforward and feedback filters.

The input of the detector can then be expressed as:
N M
wn) =Y ay(n—k) =Y bz(n—1) (2.9)
k=1 1=1

2.3.2.1 Adaptive DFE

In Gigabit Ethernet the adaptive version of DFE is used. In the adaptive
DFE scheme, the tap coefficients of the feedforward and feedback filters are
selected to optimize some desired performance measure. For the sake of sim-
plicity as well as lower hardware cost, the Least Mean Square (LMS) algorithm
(also known as the stochastic gradient algorithm) [29,30] is usually applied for

adaptation (see Figure 2.17). In each iteration of this adaptive scheme the
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following steps are applied:

i) The new input sequences for both the feedback and feedforward

filters are updated.

ii) The difference between detector input and output is calculated as

an error value.

iii) Based on the error, the filters’ inputs and the step size parameter,

the filter coefficients are updated.

To ensure convergence of this iterative procedure, the step size p is chosen
as a small positive number to scale down the error signal. The following matrix

equations formulate the above steps [30]:

i) U(n)=U(n)+ S b¥(n—1)
ii) e(n)=z2(n) —w(n) (2.10)
ili) Cn+1)=C(n)+puxe(n)¥(n)

where p is the step size and U(n) and C(n) are two matrixes containing the

filters’ input sequences and coefficients, respectively, as follows:

Un)=[{y(n -k} {wn-0}]
C(n)=[{zk} Y] k=1,.,N I=1,..,M (2.11)

When the DFE starts to operate, its coefficients are given initial values that
are not the optimal coefficients. Hence, the DFE cannot initially make reli-
able decisions and the filter coefficients are updated by a nonzero error value.
Therefore it is possible that the incorrect decisions will propagate through the
DFE and hence the DFE will continue to make its next iterations based on pre-
vious wrong decisions. This phenomena known as error propagation [16,31].
Error propagation phenomena can also happen during the normal mode op-
eration of a DFE by making large number of consequent errors decisions. To
prevent this practical problem at the beginning of the equalization, it is com-
mon to use a training sequence, which is a sequence of data symbols known
in advance by both the receiver and transmitter. Thus, the equalizer has two
operating modes. In training mode, the error e(n) is calculated as the dif-

ference between the actual transmitted data (i.e. the predetermined training
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Figure 2.17: Adaptive decision feedback equalizer.

sequence) and the detector input. Training mode occurs when the detector is
out of service. After an adequate number of iterations, the filters’ coefficients
converge to the optimum values. Then, the equalizer can switch to the normal
(also called decision-directed) mode and use its detector to make decisions.
The length of the training sequence (i.e. the number of iterations needed for
convergence) as well as the maximum amount error after adaptation depends
on the step size and channel characteristics. The smaller the step size the
less the error but the more iterations that are required to converge. A rule of
thumb for selecting the step size parameter to ensure convergence and good
tracking capabilities in slowly-varying channels is [32]:
_ 1
5(M + N)E,

where E, is the received signal-plus-noise power estimated from the received

© (2.12)

signal, .
In general, the advantages of using an adaptive scheme, such as the LMS

algorithm, for DFE can be summarized as follows:

e Simplicity of implementation.
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e Accounts for noise, unlike the zero forcing equalizer.
e Avoids the need to calculate the inverse channel, 1/h(D).

From the optimization point of view, the LMS criterion in DFE tries to mini-
mize the Mean Square Error (MSE). However, there is no guarantee that the
DFE will indeed converge to the global minimum of the MSE function. It
may happen that it converges to only a local minimum and gets stuck there
because the step size is too small. In such cases, choosing a proper value for
the step size is essential. Adding noise to the received input may help DFE to
escape a local minimum and then converge to the global minimum, but this is
not necessarily the case.

In comparison with linear equalizers, which are either adaptive or preset
FIR filters, the DFE can achieve a better performance [14]. However, it is
not the optimum equalizer from viewpoint of minimizing the probability of
error in the detection of the information from the received signal samples [29].
From digital communications theory, optimum detection is done by using a
Maximum Likelihood Sequence Estimator (MLSE). An MLSE outputs the
most probable symbol sequence for the given received sampled sequence. This
method will be discussed in the next chapter.

Due to its superior performance over linear equalizers [33], especially when
the channel introduces severe signal attenuation within specific frequency re-
gions, the DFE is preferred in many digital communication applications. How-
ever, there are some drawbacks for DFE. It suffers from error propagation ef-
fects. Error propagation generally does not severely affect DFE performance
if the channel delay spread is on the order of a symbol duration or less [33,34].
However, to accommodate high data rates, the associated increase in relative
delay spread may result in error propagation for a given channel [31]. There-
fore, error propagation might result that causes bursts of decision errors and
a corresponding increase in the average probability of bit and symbol errors
in systems like 10GBASE-T. In addition to the error propagation problem,

coding schemes such as LDPC coding cannot be applied in a straightforward
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manner in a DFE [33,35]. The difficulty arises because the DFE requires zero-
delay decisions, which is incompatible with the idea of channel coding. These
problems can be avoided by exploiting the feedback filter in the DFE at the
transmitter and by introducing a nonlinearity for power limitation. This ap-
proach is in fact the basis for Tomlinson-Harashima Precoding (THP) [19,20].
THP is discussed in Section 2.3.3

2.3.2.2 Performance Evaluation of DFE in 1000BASE-T Ethernet

Figure 2.18 plots the simulation results that show the convergence of PAM-5
DFE for CAT-5 UTP channel in 1000BASE-T (see Figure 2.7). In the sim-
ulation study, the training sequence consists of 100K symbols and the step
size, u, was 0.0001. As shown in Figure 2.18(A), at the beginning the MSE is
high but after about 50000 iterations, the DFE coefficients have largely con-
verged to stable values and the MSE becomes much less. At the same time the
PAM-5 equalized symbol becomes distinct. Figure 2.18(B) shows this behav-
ior clearly. After transmission of the training sequence, the equalizer switches
to its normal mode operation. At this time it is either possible to continue
the adaptive scheme (decision directed) or turn off the adaptive scheme and
work with constant filter coefficients. The former form is suitable for channels
which might vary with time.

Figure 2.19 shows the result of a BER performance evaluation for a con-
ventional DFE scheme using the 1000BASE-T 4-D PAM-5 constellation. It
was assumed that the DFE cancels ISI due to 14 postcursor channel taps, i.e.,
the channel memory is 14 (CAT-5 UTP channel in Figure 2.7). The sym-
bol detector in the simulation study was a PAM-5 slicer which makes hard
decisions on the equalized symbol. The SNR in this simulation is defined as
10log10(Es/Ey), where Eg is the average symbol energy for a 4-D PAM-5
symbol and Ey is the AWGN variance. As illustrated, the DFE can achieve
BER in order of 10”7 at SNR = 23 dB. Such performance is considerable, but
it is actually far from the 1071 target BER for 1000BASE-T. Therefore, as

will be discussed in the next chapter, to satisfy the target BER, a more pow-
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Figure 2.18: Convergence of PAM-5 DFE: A) MSE, B) Equalized PAM-5
symbols.

erfull joint equalization and coding scheme has been used in the 1000BASE-T

standard.

2.3.3 Tomlinson-Harashima Precoding

The THP structure [19, 20] is illustrated in Figure 2.20. Unlike other equal-
ization techniques in which equalization takes place in the receiver, THP is
performed as a form of equalizing predistortion at the transmitter. In THP, it
is assumed that the channel response h(D) is known at the transmitter. The
transmitter generates a data symbol, d(n), using PAM-M. The transmitted
symbol z(n) is then formed by subtracting the ISI introduced by previously
transmitted signal (i.e., decision feedback in the transmitter) and then per-

forming a modulo-2M operation. The modulo-2M operation limits z(n) to
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Figure 2.19: BER performance of a DFE in a 1000BASE-T Ethernet system.

the interval (—M, M| and can be expressed as:

» N 2(n) = d(n) +2Mv(n) — 3 h(@)z(n — i)
z(n) = d(n)—-z h(i)z(n — i) — i=1
= (n) € (—M, M]

(2.13)
where v(n) is the unique integer that satisfies the above relationships. Equiv-
alently, in D-transform notation the transmitted sequence, (D), can be ex-
pressed as:

z(D) = d(D) + 2Mv(D) — z(D)[h(D) — 1] — z(D) = [d(D) + 2Mv(D)}/h(D)

(2.14)
Consequently, the received signal is an ISI-free signal:

y(D) = &(D)R(D) + n(D) = d(D) + 2Mv(D) + n(D) (2.15)
ISI—free

The original data symbols can be retrieved by reducing y(n) to the interval

(=M, M] with a modulo-2M operation.
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Figure 2.20: Tomlinson-Harashima precoding.

THP is a practical solution to overcome the DFE error propagation problem
in a receiver equalizer. It has been widely used as an alternative to the DFE,
e.g., in digital subscriber loop (xDSL) systems, and it has been selected as an
alternative equalization scheme for I0GBASE-T. The benefits of THP can be

summarized as follows:

e Since channel equalization is performed at the transmitter, error

propagation is circumvented.

e Coding techniques can be exploited in the same way as for channels

without ISI.

e THP reduces the complexity of the receiver by bringing the equaliza-
tion back to the transmitter. This is advantageous for applications
like 10GBASE-T, in which many other computationally-expensive

tasks are performed at the receiver.

There are also some drawbacks with THP. The precoded signal exhibits a
huge dynamic range for a satisfactory degree of noise whitening, especially if
the discrete time channel includes spectral nulls [35]. These dynamics cause
increased sensitivity to equalization and symbol clock jitter. In addition, a
transmitter with perfect THP requires knowledge of the actual channel char-
acteristics for satisfactory precoder design [16,35]. However, since a perfect
match between the channel and precoder is not possible in practice, there will

be always be some residual ISI.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.4 Delayed Decision Feedback Sequence Estimation

Figure 2.21 shows the structure of a Delayed Decision Feedback Sequence Esti-
mator (DDFSE). As shown in this figure, DDFSE [36] combines the structure
of MLSE (i.e. the Viterbi algorithm) and DFE. Such a structure tends to have
a superior performance than a DFE and trades off the exponentially increas-
ing complexity of the Viterbi algorithm and MLSE performance. DDFSE has
been used in 1000BASE-T Ethernet. The Viterbi algorithm and DDFSE are

discussed in greater detail in the next chapter.

o Detected
seqﬁzr)xce—“ Feedforward | w(n) Viterbi sequence
g Filter Algorithm z(n
| Feedback

Filter

Figure 2.21: DDFSE structure.
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Chapter 3

Coding Schemes in Gigabit
Ethernet

The main purpose of coding is to add redundant structure to the transmit-
ted data to allow the receiver to detect and correct errors introduced during
passage through a noisy and distorting channel. In general, in order to de-
crease the effect of errors and achieve reliable communication, it is necessary
to transmit sequences that are as different as possible, in a Hamming distance
sense, so that the channel noise will be less likely to change one valid sequence
into another. However, the introduction of redundancy results in the transmis-
sion of extra bits and thus a reduction of the information transmission rate.
Thus there is a tradeoff between the transmission rate and the reliability of
communication. Such a tradeofl is very important for communication systems
such as 10GBASE-T, in which reliable high data rate transmission needs to
be guaranteed over the band-limited UTP channel.

Channel coding schemes can be divided into two classes, convolutional
codes and block codes [29]. These two schemes are reviewed in this chap-
ter through the discussion of 1000BASE-T and 10GBASE-T Ethernet coding

schemes, respectively.
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3.1 The 1000BASE-T Ethernet Coding Scheme

As briefly mentioned in the previous chapter, 1000BASE-T uses a joint cod-
ing and equalization scheme known as DDFSE. In general DDFSE structure
in 1000BASE-T can be considered as a combination of the Viterbi Algorithm
(VA) and DFE. The VA is a famous algorithm for the optimal decoding of con-
volutional codes [37,38] as well as optimal detection of data sequences distorted
by IST [39-42]. This section firstly introduces convolutional codes, their encod-
ing methods and the VA. It then discusses the usage of the VA in 1000BASE-T

as an optimal detection algorithm for ISI-distorted data sequences.

3.1.1 Convolutional Coding

In convolutional coding, each block of k£ information bits is mapped into a
block of n bits, which are not only determined by the present & information
bits, but also by the previous information bits. The term “convolutional” is
used because the encoded output sequence is generated by the convolution
of the input sequence and a generator sequence. As will be discussed in the
following sections, the dependence on the previous information bits introduces
memory into the encoding scheme and indeed causes the encoder to behave as

a Finite State Machine (FSM).

3.1.1.1 Encoding of Convolutional Codes

The encoder in a convolutional coding scheme is usually a sequence generator
based on a Linear Feedback Shift Register (LF'SR). Convolutional encoding is
accomplished by multiplexing two or more different convolutions of the same
source data onto a channel. This process is done in a continuous manner with
the use of shift registers and modulo-2 adders. These modulo-2 adders are
XOR gates whose inputs are various combinations of the shift register state
bits and whose outputs are multiplexed together to form the output stream.
Figure 3.1 shows the block diagram of a typical convolutional encoder with

Lk stages, where L is called the constraint length of the code and “4” implies
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the XOR operation. To input the next block of information, k& information bits
enter the LFSR and the contents of the last &k stages of the LFSR are dropped.
Then n linear combination of the content of the LESR are calculated and used
to generate the encoded sequence. From this coding scheme it is obvious that
the n output bits outputs depends on the most recently recent k bits as well

as the last (L — 1)k bits. The rate of this code is given by

k
R=- (3.1)
n
R et Lk stages --------=----------mmmmeeee o 4
K42 K 1] 2 kK b——a 1| 2 K
Information -
bits

K Encoded

sequence
Figure 3.1: An example of a convolutional encoder.

The 1000BASE-T Ethernet coding scheme is based on Trellis Codes Modu-
lation (TCM). TCM adds redundancy by combining convolutional coding and
modulation into a single operation. As described previously, the more redun-
dancy that is added to the data, the more error correction can usually be done
at the receiver, thus the lower the BER. However in 1000BASE-T Ethernet,
where the available bandwidth is limited and has to be used efficiently, the
added redundancy can reduce the actual bit rate. Therefore, in this standard
just one bit of redundancy is added to each word (8 bits) to preserve the bit
rate at 1 Gbps. Figure 3.2 depicts the structure of the encoder for 1000BASE-
T, where Sdn[0,...,7] denotes 8 bits of data for transmission. It can be seen in
this figure that the rate of the TCM is —§- In the encoder structure, the last

two MSBs (Sdn[6] and Sdn[7]) of the transmitted word are used to generate
one bit redundant information (i.e. Sdn[8]). After encoding, the 3-bit output
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of the TCM encoder (Sdn[6], Sdn[7] and Sdn[8]) is used to select among 8 pos-
sible 4-D symbol subsets (labeled S0 to S7 in Table 2.1) and the first 6-bit of
Sdn (Sdn[0] to Sdn[5]) is used to select the symbol combination in the selected
subset [7]. This is done by a mapper (Figure 3.3).

Sdn[6]
Sdn{[7]

v

Y Sdn[8]
D —»@—r D D

Figure 3.2: Convolutional encoder in the 1000BASE-T TCM.

Selects the symbol

combination
£
Sdn[0] ’,’ ; > PAMS5 symbol for
P UTP pair 1
Sdn[1] > e Py
Sdn[2] > PAM5 symbol for
UTP pair 2
Sdn[3] » ————
Sdn[4] — > Mapper PAMS5 symbol for
Vo UTP pair 3
Sdn[5] » e
— Sdnl6] —» — Sdn[6] \‘-." PAMS symbol for
n[6] i UTP pair 4
TCM — Sdn[7] —» —L’
e SAN[T] —P] .
— Sdn[8] —»

Selects the 4-D
symbol subset

Figure 3.3: The TCM encoder and mapper in the 1000BASE-T.

The preceding encoder can be considered as a FSM with 8 states (since it
has 3 bits of memory) in which each state has two inputs (Sdn[6] and Sdn[7])
and 3 outputs (Sdn[6], Sdn[7] and Sdn[8]). A widely used method to represent
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such an FSM is to use a trellis diagram. A trellis diagram is basically a state
transition diagram plotted versus time. In the 1000BASE-T literature, the
trellis diagram for the encoder usually shows the combined function of the
encoder and the mapper. Figure 3.4 shows the 1000BASE-T trellis diagram.
In this diagram, each branch value (i.e. output of each state) represents a
4-D symbol. For example, when the encoder state is even (e.g. 000), only
a 4-D symbol from the four even constellation subsets (i.e. S0, S2, S4 and
S56) can be output by the TCM. Thus, the next state must be selected from
{000,001, 010,011}, as determined by the input bits Sdn[6] and Sdn][7].

Encoder state Encoder state
at time n at time n+1
/\

S0 S2 54 36\\ S0S2S4S6

S$1S3 8587 S2 S0 S6 S4

S2 S0 S6 S4 S4 S6 S0 S2

S$S38187S85 S6 S84 52 S0
A Y

5456 S0 S2 \_31 35557

S587 5183 S3S8187S5
\

S$6 S4 82 S0

P RALY
> D\
/',>< 335373133
"'//-/\\\
S7 553 S1 @é- -—— g@sms S3 81

Figure 3.4: Trellis diagram of the 1000BASE-T TCM encoder.

The 1000BASE-T code trellis takes advantage of the subset partitioning,
as discussed in Section 2.1.1. Due to subset partitioning and labeling of the

transitions in this code trellis, only branches corresponding to even or odd
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4-D subsets leave or enter each state. Therefore, the minimum square Euclid-
ian distance between allowed sequence is A% = 4, which corresponds to an
asymptotic maximum coding gain of 10log(4) = 6 dB in SNR [2|. However,
achieving this coding gain also depends on both decoding and equalization

schemes, which are described in the following sections.

3.1.1.2 Decoding of Convolutional Codes

In general, the various decoding schemes can be classified as either soft deci-
sion decoding or hard decision decoding. In soft decision TCM decoding, the
decoder input sequence is compared with all the possible signal points in the
constellation of the coded modulation systems and the one with the closest
Euclidian distance is chosen as the decoder output. In hard decision TCM
decoding, on the other hand, the input sequence is first mapped to a binary
sequence by making binary decisions on its individual components and then
the codeword with the closest Hamming distance! is chosen [29)].

There exist many algorithms for decoding convolutionally encoded data.
The Viterbi algorithm (VA) [42] is probably the most widely used decoding
method for convolutional codes. VA can be viewed as an efficient way of form-
ing an optimal trellis searching algorithm. VA is an ML decoding algorithm
which, upon receiving the channel output, searches through the trellis to find
the path that is most likely to have generated the received sequence output.
This path is called a “survivor path” and has the minimum distance from the
received sequence. As previously mentioned, the distance can be computed as
a Euclidian distance in soft decision decoding or as a Hamming distance in
hard decision decoding. To do so, VA stores a metric for each state in the trel-
lis. Each state metric represents the minimum distance of the paths leading

to that state. VA steps can be described briefly as follows:

e Initialization: Set the metric of the leftmost state of the trellis to 0.

!The Hamming distance is defined as the number of positions in two equal-length se-
quences for which the corresponding elements are different. In another words, it measures
the number of bit inversions required to change one into the other. For example, the Ham-
ming distance between 1011101 and 1001001 is 2.
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e Computation step n + 1: Assume that at the previous step (time
n) all survivor paths to each state are identified and each state’s
survivor path is stored. For each state at level n + 1, the metric of
all of the incoming paths is computed as the addition of the metric
of the incoming branch and the metric of the survivor path at the
time n. Then the path with the smallest metric for each state is
chosen as a survivor path for that state. For the trellis in Figure 3.4,
four incoming paths for each of the eight possible next encoder states
would need to be considered. Only one of these paths would survive

for each state going to the next iteration.

¢ Final step: The computation is iterated until the algorithm reaches
the termination node (i.e. the last node in the trellis), at which the
VA makes a decision on the maximum-likelihood path which is the
final survivor path. The decoded sequence is the sequence of bits

corresponding to this path’s branches.

Figure 3.5(B) illustrates the VA steps on the 4-state trellis of the simple
one input TCM encoder shown in Figure 3.5(A). In the trellis diagram, a solid
line indicates that the received data is 0 and a dashed line indicates that the
received data is 1. It is assumed that the encoded sequence “00 00 00 00 00”
is sent over the channel and received as “01 00 01 00 00” (i.e. 2 bit errors). As
shown in Figure 3.5, the VA is able to properly decode the received sequence
as the best survivor path indicates the “00 00 00 00 00” sequence. In general,
a Viterbi decoder provides both error detection and error correction. Thus,
the overall system performance, expressed in terms of the SNR, is effectively
increased by several dB when a TCM and Viterbi decoder is employed in
transceivers [10].

In the context of convolutional decoding, the VA has been shown to be
the optimal detection scheme for detection data signals distorted by ISI. In
1000BASE-T, VA is an optimal trellis searching algorithm, that simultane-

ously provides equalization and detection. The major drawback of the VA is
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Figure 3.5: A) A simple TCM encoder, B) VA steps on the trellis of the TCM
encoder.

its exponential behavior in computational complexity. An optimal implemen-
tation of the VA for this purpose would require a large number of states. The
total number of states in a trellis for joint optimal decoding and equalization
of 4-D PAM-5 is given by

S x 2mk (3.2)

where S is number of coding states, m is the number of information bits
contained in a 4-D code symbol and L is the length of trellis. In 1000BASE-
T,S =8, m = 8 and L is 14, which is equal to the expected 1000BASE-T
channel length (see Figure 2.7). Therefore, the total number of states for an

optimal detection scheme would be 103 [2], which would make the MLSE
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scheme a prohibitively computationally expensive solution for 1000BASE-T.
This problem motivated the search for alternative near-optimal solutions with

reduced complexity for 1000BASE-T.

3.1.2 Separate Equalization and Decoding

One possible near-optimal way to reduce the MLSE complexity for 1000BASE-
T systems is to use an 8-state Viterbi decoder (Figure 3.4). Here it is assumed
that the ISI was separately canceled by a DFE equalizer. Figure 3.6 shows
this structure. This scheme is based on pre-equalization performed by four
parallel DFE (one for each wire pair) to remove ISI and a Viterbi decoder that

runs the VA on the code trellis to decode convolutional coded symbols.

Received sequence
from UTP pair 1
> DFE >
Received sequence
from UTP pair 2
> DFE > Vi bi Decoded
iterbi sequence
Receiver sequence >
from UTP pair3 DFE o DeCOder
» »
Received sequence
from UTP pair 4 o DFE ;

Figure 3.6: Separate equalization and decoding for 1000BASE-T.

The advantage of this structure is that it is simple, however, the SNR
improvement by exploiting this scheme in 1000BASE-T is not sufficient to
meet the target BER of 1071%. According to [12], the SNR improvement is
only about 1 dB in comparison with uncoded DFE detection (Figure 2.19).

3.1.3 Delayed Decision Feedback Sequence Estimation

DDFSE [36] is another method to reduce the number of states in VA. The
DDFSE algorithm recursively finds an approximation to the MLSE problem.
In fact, DDFSE is a detection algorithm that trades complexity off against

performance. The complexity of the algorithm is controlled by a parameter,
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[, which can be varied from zero up to the length of channel (i.e. 0 <[ < L).
When [ = 0, the DDFSE structure is the same as a DFE and when [ = L,
the complexity of DDFSE is the same as VA. For intermediate values of [, the
structure of DDFSE can be described as the combination of a reduced state
VA and DFE. In this case, the VA cancels the ISI for the most recent [ received
samples and DFE cancels ISI from the past inputs greater than [ samples (i.e.
samples [ + 1 to L) [36].

The steps of the DDFSE algorithm are similar to the steps in the VA
described in Section 3.1.1.2. DDFSE is also based on a symbol-to-symbol
trellis but with a reduced number of states. As in the VA, it recursively
estimates the survivor path in the trellis. However, since each state in the
DDFSE trellis provides only partial information about the full state of the
channel (i.e. when [ < L), the algorithm also stores the best path leading to
each state and extracts the feedback information, provided by DFE, from each
of these paths to compute the state metric. This implies that the state metric
calculation, hence the survivor path selection, also depends on the feedback
information provided by DFE.

Figure 3.7 depicts the DDFSE structure in 1000BASE-T system. In the
DDFSE approach for 1000BASE-T, an independent feedback signal is com-
puted for each path in the Viterbi decoder as the convolution of the sequence
of symbols associated with that path and the coefficients of the feedback filter
of the DFE. For an 8-state trellis decoder (see Figure 3.4), there are 8 paths
associated with each state (one path per state). This requires the computation
of 8 independent feedback signals (the feedforward filter is common). Since
the feedback filter coefficients are the same for all states, the only difference is
in symbols associated with the 8 different paths. The use of DDFSE implies
that instead of one decision in the VA, there are 8 of them (one per path) that
must be tracked independently. As it will be shown in the simulation results,
by using DDFSE, it is possible to take advantage of coding gain up to 6 dB

without using a full-blown Viterbi decoder.
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Figure 3.7: DDFSE structure in 1000BASE-T.

3.1.4 BER Performance of DDFSE in 1000BASE-T Sys-

tems

Figure 3.8 shows a block diagram of the 1000BASE-T encoding/decoding

scheme. This scheme performs the following tasks:

o Generates a random byte stream.

e Performs TCM on each byte, which adds 1 bit of redundancy to each
byte of data (a total of 9 bits).

e Maps each 9-bit data word to one of the 4-D PAM-5 symbols.

e The output stream of the transmitter is distorted by channel ISI and
then corrupted by AWGN.

e The received sequence is decoded by the DDFSE.

Figure 3.9 shows the results of a BER performance evaluation for a conven-
tional DDFSE scheme using the 1000BASE-T 4-D PAM-5 constellation. For
comparison, simulation results of uncoded PAM-5 transmission and detection
with DFEs (from Figure 2.19) is also included in this figure. In the simulation
study, it was assumed that the channel memory was 14 (CAT-5 UTP chan-
nel in Figure 2.7). The SNR in the figure is 10log,o(Es/En), where Eg is
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Figure 3.8: Block diagram of the 1000BASE-T encoding/decoding scheme used
in the simulation study.

the average symbol energy for a 4-D PAM-5 symbol and Ey is the AWGN
variance (noise power). As illustrated, in comparison with the DFE scheme,
the DDFSE scheme can achieve a coding gain of about 5.3 dB. Such a coding
gain enables the 1000BASE-T system to satisfy the target BER of 10710 at a
reasonable SNR2.

3.2 Alternative Coding Schemes for 10GBASE-
T Ethernet

The choice of coding scheme is crucial for I0GBASE-T, in a sense that such a
scheme should guarantee a BER performance of 107! with a reasonable decod-
ing complexity to achieve the required 10 Gbps data transmission rate. Com-
pared to the 1000BASE-T coding scheme, the coding scheme in 10GBASE-T
should also have an improved noise performance as well as coding gain in order
to be able to operate despite severe impairments that exist in the 10GBASE-T
channel. In addition, the coding scheme also needs to be compatible with Eth-
ernet practice. For example, it has to have a reasonable encoding and decoding
latency to accommodate the maximum allowable latency of an Ethernet sys-
tem. Also the coding scheme needs to be compatible with the variable-length

frame formats in Ethernet.

2 Approximately, at 22 dB SNR.
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Figure 3.9: BER performance of DDFSE versus DFE.

There have been several coding proposals for I0GBASE-T, including con-
ventional coding schemes such as TCM as well as novel coding schemes such as
Low-Density Parity-Check (LDPC) codes. This section reviews and describes
the alternative coding schemes for I0GBASE-T.

3.2.1 LDPC Codes

LDPC codes were discovered by Gallager in the early 1960s [43]. This class of
codes was recently shown to be capable of error correcting performance close
to the Shannon limit [44-47]. For example, it has been shown for a rate 0.5
LDPC code that reliable communication is possible within 0.0045 dB of the
Shannon limit for the binary input AWGN channel at BER of 107° [48]. LDPC
codes are decoded with iterative decoding algorithms, such as the sum-product

algorithm, with linear decoding complexity. These essential features, along
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with recent improvements in LDPC code design, have produced coding systems
that match or outperform many conventional and modern coding schemes, and,
hence, have made LDPC codes as a candidate coding scheme for 10GBASE-T.
LDPC codes are a special class of linear block codes. In block codes, each
block of k information bits is mapped into a length n block of output bits
by a rule defined by the code. The coding rule ignores all input bits prior
to the k most recent information bits. An (n,k) block code is a collection of
2* binary sequences, each of length n, called codewords. Such a block code is
called linear, if the modulo-2 sum of any two codewords is also a codeword.
A rate £ binary LDPC code can be defined as an (n, k) linear code with an
(n — k) x n parity-check matrix H. Let d, and d, be the maximum number of
1’s in each row and column of H, respectively. Then, the parity-check matrix

H usually has the following properties [32]:

i) No two columns have more than two rows with 1’s in those two

row locations.
ii) Both d. and d, are small compared to the dimensions of H.

An example of the parity-check matrix for a (12,3) LDPC code with d, = 4
and d, = 3 is as follows [32]:

00100111000 0T
110010000001
000100001110
0100011007100
H=[1010000100T10 (3.3)
000110001001
100110100000
000001010011
(01100000110 0]

Let ¢ = (21, 2, ..., Tn) be a codeword associated with an (n, k) LDPC code

with parity-check matrix H. Then for all codewords z it is true that

cHT =0 (3.4)
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where the operator T denotes the matrix transposition operation. This re-
lationship introduces n — k linear equations, each containing d, of z;’s. For
example, for the parity-check matrix in Equation 3.3, we have the following

set of parity-check equations (E; to Fy):

B 23®reDar g =0
E:z1®z, 025 @212=0
Es:24®x9® 210D 211 =0

Ey: 2026 D 07 ®x10=0

Es 01 Qs ®arg Do =0 (3.5)
Es : 24D x5 T9gDT12 =0
Er:21024P25P27=0

By :xg®za®x11 P12 =0

Ey :20Px3P 9 ®T10=0

where @ denotes the XOR, operation.

LDPC codes can be represented effectively by a bipartite graph called a
Tanner graph [49]. Tanner graphs are an effective graphical representation for
LDPC codes. They not only provide a complete representation of the code,
but they also help to describe the decoding algorithm as explained later on in
this chapter. As with all bipartite graphs, the nodes of a Tanner graph are
separated into two distinctive sets and each edge connects nodes from the two
sets. The two types of nodes in a Tanner graph are called variable nodes and
check nodes. Figure 3.10 shows the Tanner graph of the party check matrix in
Equation 3.3. It consists of m = n — k check nodes (the number of parity bits)
and n variable nodes (the number of bits in a codeword). Check node c; is
connected to variable node v; if and only if element h;; of H is one. In another
words, check node c¢; performs the party check equation E; in Equation 3.5.

A LDPC code is called regular if d. is constant for every column and
d, = d.(n/m) is also constant for every row. For example, the LDPC code of
Equation 3.3 is a regular code with d. = 3 and d, = 4 for all columns and rows.
The regularity of this code can also be seen in its graphical representation in
Figure 3.10. Note that the variable nodes all have the same degree, that is,
the same number of connecting edges. In addition the check nodes all have the

same degree. If H is low density but the number of 1’s in each row or column

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n variable nodes

m check nodes

Figure 3.10: Tanner graph of the parity-check matrix in Equation 3.3 .

is not constant, then the code is called an #rreqular LDPC code. Another
category for LDPC codes is full rank LDPC codes. In a full rank LDPC code,
m =n —k. When an LDPC code is not full rank, it has redundant rows in its

H matrix, thus m # n — k.

3.2.1.1 LDPC Encoding

Given a parity-check matrix H, we can define a corresponding k x n generator

matrix, G, such that
GHT =0 (3.6)

The generator matrix can be used as an encoder according to
T =G (3.7)

where u is the input sequence of the encoder and z is the encoded sequence.
Equation 3.6 implies a quadric complexity for LDPC encoding with re-
spect to the code length [50], i.e. O(n?). It is worth mentioning that there
exist encoding algorithms for LDPC codes with less complexity. Some of these
techniques exploit the sparseness of the parity-check matrix for efficient en-
coding or that impose some structure on the Tanner graph so that encoding

is simpler. Repeat-Accumulate [50] codes are an example of codes based on
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structured graphs. It has been shown that transforming the generator matrix

to upper triangular form leads to reduced complexity encoding [50].

3.2.1.2 LDPC Decoding

As mentioned before, a principal advantages of LDPC codes is that they can
be decoded by an iterative algorithm with complexity that is linear in the
code length, i.e. O(n). This important property, in addition to the promising
performance of LDPC codes, make them a strong candidate coding scheme
for I0GBASE-T. This section briefly reviews two main algorithms for LDPC
decoding.

3.2.1.3 Sum Product Algorithm

The Sum Product Algorithm (SPA), also known as Message Passing Algorithm
(MPA), is an iterative algorithm for LDPC decoding. SPA can be done using
either hard decision or soft decision decoding. In hard decision decoding, each
received symbol is thresholded to yield a single received bit as input to the
decoding algorithm, and the messages passed between the variable and check
nodes each consist of single bits only. In soft decision decoding, multiple bits
are used to represent each received symbol and the messages passed between
the variable and check nodes. Soft decision decoding can achieve substantially
better coding performance because the confidence with which each decoder
decision is encoded and is forwarded to subsequent decoder iterations [51].
The soft decision form of SPA is called the Belief Propagation Algorithm
(BPA). It has been shown that BPA can closely approximate the optimal
decoder algorithm for AWGN channels, i.e. the Mazimum Aposteriori Proba-
bility (MAP) algorithm {50]. The MAP algorithm computes the log-likelihood
ratio (LLR) of the received sequence and makes a decision by comparing this
LLR to the threshold value. In a PAM-2 modulation®, the LLR value of the

3PAM-2 is equivalent to the Binary Phase Shift Keying (BPSK) modulation.
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i-th received signal defined as:

Ma(i)) = log(iggg — (1):58;;) (3.8)

where x(i) and y(i) denote the i-th sample of the transmitted and received

sequence, respectively. A positive LLR value (i.e. A(z(%)) > 0) implies that
P(z(i) = 1ly(@)) > P{z(:) = O|y(i)) and therefore, it is more likely that
z(Z) = 1 would have been transmitted. On the other hand, when the LLR
value is negative, P(z(¢) = 1|y(¢)) < P(z(i) = 0Jy(:)) and it is more likely
that x(i) = 0 would have been transmitted. A zero LLR value means that
P(a(i) = 1ly(i)) = P(a() = Oly(3)).

Let PAM-2 be the modulation scheme, y; € R the received symbol at
variable node 7, and \; € R the decision at variable node 4. A message from
variable node i to check node j is represented by a;_.; € R, and a message from
check node j to variable node i is represented by g;—; € R. Let V}; denote the
set of variable nodes which connect to check node j, excluding variable node
i. Similarly, let C;\; denote the set of check nodes which connect to variable

node i, excluding check node j. The decoding algorithm is then as follows [50]:
e Step 1: Initialize \; = 2y;/0? for each variable node.
e Step 2: Variable nodes send «;_,; = A; to each check nodes j € C;.

e Step 3: Check nodes connected to variable node ¢ compute and send
(see Figure 3.11(A))

Bjmi = 2tanh ™ ] tanh(%)) (3.9)

leViy

e Step 4: Variable nodes connected to check nodes j compute and send
(see Figure 3.11(B))
Gij = D B (3.10)

lECj\,;
e Step 5: Stop decoding process once a fixed number of iterations has
been completed or the estimated codeword, &, satisfies the HZ = 0

criterion. Otherwise return to Step 3.
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A B

Figure 3.11: A) extrinsic and B) intrinsic messages in SPA.

The above mentioned SPA algorithm process log-likelihood ratios in the
probability domain. As Equation 3.9 involves transcendental functions, a hard-
ware implementation of the SPA will often use look-up tables to more rapidly
calculate tanh(.) and tanh™*(.) functions. The SPA can also be done in log-
arithmic domain. In the this approach, the computation and the subsequent
calculation of the extrinsic check message is greatly simplified by operating
logarithms of probabilities because multiplications become then additions and
divisions become subtractions. For example, this approach has been used for

implementation of LDPC decoder in [51].

3.2.1.4 Min-Sum Algorithm

The Min-Sum Algorithm (MSA) is a simple approximation to the SPA [52,53].
In MSA, the extrinsic message in Equation 3.9 is approximated as:
Bivj = | Amin] H sign(\;)) (3.11)
leViy;
where A\, 18 the minimum magnitude input LLR.
The main advantage of min-sum approximation is that it is simple to im-
plement, which makes it more suitable for high data rate applications like
10GBASE-T. However, MSA causes a loss of about 0.5 to 1 dB [54,55] in per-

formance compared to SPA. If all input LLR messages except one are large, the
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min-sum output is quite accurate as the tanh product would then be dominated
by the smallest LLR. However, if all of the input LLRs are relatively small
in magnitude, the min-sum approximation overestimates the output LLR, as
compared to exact sum-product decoding [56]. This problem has motivated
the development of the modified min-sum approximations [57, 58] to recoup

some of the performance loss of min-sum approximation.

3.2.2 LDPC Convolutional Codes

Low-Density Parity-Check Convolutional Codes (LDPC-CCs) were first pro-
posed in [59]. LDPC-CCs can be considered as convolutional codes defined
by low-density parity-check matrices and decoded in an iterative way [59,60].
LDPC-CCs have been shown to have a comparable performance in comparison
with LDPC block codes [61]. They are similar to LDPC block codes in the
way that they generate code words based on parity-check operations. However,
LDPC-CCs are similar to convolutional codes since any codeword is generated
using both previous information bits and previously generated code-bits.

In comparison with LDPC block codes, there are some advantages asso-
ciated with LDPC-CCs which make them suited for certain applications like
10GBASE-T. One advantage is that LDPC-CCs are able to encode and decode
arbitrary lengths of data without the need to fragment them into fixed-sized
blocks [62]. This feature is advantageous for streaming applications, such as
streaming video, and also for packet switching applications such as Ethernet.
The frame length in Ethernet systems can vary and this makes the integration
of LDPC block codes awkward and difficult. However, by using LDPC-CCs,
there is no need to fragment randomly-sized packets into fixed-sized packets.
Another important advantage of LDPC-CCs is that the parity-check matrix
for LDPC-CCs is lower diagonal and this simplifies the encoding process and
reduces the encoding latency [62]. Therefore, the encoder structure is sim-
pler for LDPC-CCs than for LDPC block codes. More details about hardware
implementation of LDPC-CCs can be found in [62,63].

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.3 Other Coding Schemes

In addition to the above mentioned schemes, there have been other coding
proposals for I0GBASE-T. Some of these proposals are based on using con-
volutional codes for 10GBASE-T. As an example, in [64] two TCM schemes
are proposed, that can relax the decoding speed requirement. Also in [3] a
joint multiple-input, multiple-output equalization and decoding based on a
4-D TCM and DFE is proposed. Some other proposals are based on other
coding system such as Turbo equalization (such as [65]). A discussion about

these coding schemes can be found in [50].
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Chapter 4

Performance Evaluation of
LDPC Codes in the Presence of
ISI

As discussed in Chapter 2, ISI and residual ISI are among the most impor-
tant impairments in 10GBASE-T systems. Although the effect of ISI on the
performance of conventional coding systems such as TCM has been well stud-
ied [66-69], for LDPC codes, the effects require more investigation.

This chapter presents and discusses the simulation result of BER per-
formance evaluation of LDPC codes in the presence of ISI. The simulation
study considers various LDPC codes, including two recent candidate codes for

10GBASE-T Ethernet.

4.1 Codes Used

Table 4.1 lists the six LDPC codes that were considered in the study. In this
table, n is the block length of the code, k is the number of information bits,
d, is the maximum variable node degree and d, is the maximum check node
degree. The reason for selecting these particular codes was to isolate, and
hopefully more clearly, observe the effects of ISI on BER performance. Also,
to study different classes of LDPC codes as well as 10GBASE-T candidate
codes. Code A and Code B in the table are two recent candidate codes for

10GBASE-T Ethernet [8]. These codes are not full rank. They have 129 and
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59 redundant check nodes, respectively. The special structure of these codes
are a result of the methods in [70]. Code C and Code D are two regular codes
with the same variable degrees and the same check node degrees. They both
have relatively high error-floors. The major difference between these two codes
is their shortest cycle. The reason for choosing these codes was to see if there
is any similarity between the effects of correlation between received symbols
caused by ISI, and the effects of cycles on the performance and error-floor of
LDPC codes. Code E is a relatively low rate regular code and, finally, Code

F is an irregular code with a relatively high error-floor.

Table 4.1: LDPC codes used in the simulation study.

| Code | n k R d, d, Structure Characteristics |
A 1024 833 0.81 10 32 Regular 4-cycle-free, not full rank
B 12048 1723 084 6 32 Regular 4-cycle-free, not full rank
C 11024 512 050 3 6 Regular 6-cycle-free
D 1024 512 050 3 6  Regular 2-cycle-free
E 816 544 033 4 6 Regular 4-cycle-free
F 14000 2000 050 7 7 Irregular 4-cycle-free

4.2 System Model

Figure 4.1 illustrates the system model used in the studies. This model is based
on an AWGN channel with ISI. It is assumed that the encoded sequence, z(D),
is transmitted using PAM-M. The transmitted sequence x(D) is then passed
through the channel and corrupted by AWGN to form the received sequence

y(D):
y(D) = z(D)h(D) + n(D) (4.1)

The Channel Impulse Response (CIR) h(D) is assumed to have the following

D-transform:

WD) = ho+h1D +hoD? + ... + hy D (4.2)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where h; is the i-th tap of the CIR and L is the channel length. For the sake

of simplicity, we refer to the CIR by its ordered sequence of taps, h, as follows:
h = {h(),h/l,hg,...,h[/._l} (43)

The CIR is used to model post-cursor ISI in the system. Therefore, hg was
first set to 1 and the remaining taps were considered to be much less than hg.

Then h was also normalized to have a unity gain as follows:

h — h/ A (4.4)

-1

where ||h]| = 4/ & h? is the Euclidean norm of h. The LDPC decoder in this
i=0

model performs standard soft-decision message-passing decoding and uses full

tanh processing in the parity-check nodes.

AWGN
n(D)
Transmitted | Received Decoded
sequence
sequence . sequence
e (D) s(D) ¥ y(D) LDPC | o D
x(D) N Decoder xX(D)

Figure 4.1: System model used for the performance evaluation in the presence
of ISI.

4.3 SNIR Scenarios

The standard approach in the literature for evaluating the performance of
error correcting codes is through BER measurements for data transmission
over AWGN channels. A common way to do this is to measure the code BER
performance at different SNRs. Hence, the performance of the systems consid-
ered in this paper was also compared to the memoryless (i.e. no ISI) AWGN
channel. However, as the model in Figure 4.1 shows, the simulated system

includes both noise and interference. Therefore, in the study both noise and
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IST power were taken into account, and instead of SNR, the Signal-to-Noise-
and-Interference Ratio (SNIR) is used. Equation (4.5) gives the definition of
the SNIR for the received sequence y(D):

2 21,2
— Uy _ U:vh’O
SNIR = —*— = 0_ (4.5)
Ntotal 0‘% _I_ O-g Z hlz
=1

where o2 and 05 are the average power of the transmitted and received signals,

respectively. 02 is the total variance of the AWGN (per dimension) and

Ntotal

interference, while o2 is the variance of AWGN noise component alone.
In order to have a fair comparison between a memoryless AWGN channel
and the channel model in Figure 4.1, the SNIR of the received sequence y(D)

was kept the same for both cases:

2 2h2
SNIR = & — %20 (4.6)

g 2 oK
n
! Unz + U:c 2:1 h’i
=

where 02 is the variance of the AWGN .(per dimension) in a memoryless

ni

AWGN channel and o2, is the variance of the AWGN in our system model.
The right hand side of Equation 4.6 is equivalent to the SNIR for the AWGN
channel with ISI, and the left hand side is the equivalent to the SNIR for the

AWGN memoryless channel®. The 072“ in this equation is known according to

the average bit energy in the transmitted sequence and the operating SNR in
the AWGN memoryless channel (E, and SNR in Equation 4.7 and Equation

5.4, respectively):
E,
B xR

SNR = 10logo(52) — 02, = o = $(10CSNE/10 ) (4.8)

ni

E, (4.7)

!

where E is the average energy per symbol (E, = ¢2), B is the number of bits
per symbol, R is the code rate and Nj represents the AWGN variance for two

dimensions. Therefore, based on Equation 4.6, the 07212 can be computed as:

ISince there is no interference in the AWGN memoryless channel, the SNIR for an AWGN
channel is the same as its SNR.
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n2

L—1
ol = U,?Llhg — og Z h? (4.9)
i=1

2
n2

It is important to mention here that since o is a positive number, Equa-
tion 4.9 imposes a constraint on the maximum amount of ISI. This constraint
varies according to the SNR and can be calculated by setting afw equal to zero
in this equation. For instance, given the values of £Fs =1, R =05, B =1
(i.e., PAM-2 Modulation) and SNR = 3 dB in Equation 5.4, the o2 would be
equal to 0.5012. By assuming h = {1, 1} as the CIR model, the maximum

value for h; would be 0.7079.

4.3.1 Error Probability of the Received Signal

In order to have a fair comparison between the proposed ISI model and an
AWGN channel, it is useful to consider the error probability of the received
sequence y(D) for both cases. The error probability of an AWGN channel can
be obtained by using Q-function, which expresses the right-tail cummulative
probability for a Gaussian random variable, r, with zero mean and unit vari-
ance [14]. The Q-function is defined as the probability that r exceeds a given
ro value:

1 o0 2
Q(ro) =P(r>mry)=—=[ e“dt, r ~N(01) (4.10)
VTl
When r has a mean value of u and a variance of o2, this cummulative proba-
bility can be calculated by translating and scaling the normalized Q-function

as follows:

P(r> ) = Q(TO; Ky~ N(u,o?) (4.11)

Figure 4.2 shows the Probability Density Function (PDF) of the received

sequence in an AWGN memoryless channel with PAM-2 modulation. As illus-
trated, the received sequence in this figure has Gaussian distributions centered
over the two nominal symbol values of 1 and —1. Therefore, by assuming the

parameters in Equation 4.6, the error probability of the received sequence in
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the AWGN channel, EP;, can be expressed as:

10— (-1)

0
EP =Py>0lz=-1)+Py<0lz=1) = 5Q(

1),
(412)

1

) 50—
where z and y are the transmitted and received sequences, respectively.
Equation 4.12 can be extended for ISI channels. Figure 4.3 shows the
resulting PDF of the received sequence for an ISI channel with a CIR model
of {ho, h1} using PAM-2 modulation and at the same fixed SNIR as in Figure
4.2. The ISI in this CIR model causes the received sequence to form Gaussian

distributions over four possible values:
p1 = —ho—hy, po=—ho+hy, p3=hy—hy, ps=ho+nh (4.13)

The error probability of the received sequence for this case, EP,, is?:

EP, = i(Q(O; ’”)+Q(O; 2y 4 (1- Q) 1 (1-(C=L4))) (4.14)

na ng Ony Ony
Equations 4.12 and 4.14 can be easily extended for other PAM and ISI schemes
using similar criteria. As an example, for PAM-4 modulation the received
sequence forms Gaussian distributions over four values in AWGN memoryless
channel and over 16 values in the CIR model with {ho, h1}.

Tables 4.2, 4.3 and 4.4 give the EP; and EP, error probabilities for R =
0.33, R = 0.5 and R = 0.81, respectively®, for PAM-2 modulation and h =
{1,h1}. The minus sign,“-”, in the tables indicates that h; has reached its
maximum possible value in association with Equation 4.9. From these tables,
it can be seen that at higher SNRs and at high values of hy, EP, < EP;. This
means that at these values, the ISI model will introduce fewer errors in the
receiver than a purely AWGN channel. Therefore, to have a fair judgement
about the BER performance of LDPC codes in the proposed ISI model, the
BER evaluation should be made at the SNRs and hy values in which EP; >
EP;.

26, in this equation is calculated according to Equation 4.9.
3See Equations 4.7 to 4.9.
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PDF of the received symbols y for no I1SI and o'f=0.7 with PAM2 modulation
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Figure 4.2: PDF for an AWGN in a memoryless channel.

PDF of the received symbols y for CIR={1, 0.6} and 0'§=0.12017 with PAM2 modulation
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Figure 4.3: PDF for an ISI channel with A = {1,0.6}.
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Table 4.2: Error probability for AWGN and ISI channels, R = 0.33.

SNIR || EP; EP,
(dB)Y || h1=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1798 | 0.1798 0.1799 0.1801 0.1807 0.1821 0.1851 0.1906 0.2008
0.1520 | 0.1520 0.1521 0.1524 0.1533 0.1553 0.1595 0.1672 0.1798
0.1244 | 0.1244 0.1245 0.1249 0.1260 0.1286 0.1333 0.1396 0.1374
0.0978 | 0.0978 0.0979 0.0984 0.0996 0.1018 0.1031 0.0899 -
0.0733 | 0.0733 0.0734 0.0737 0.0743 0.0732 0.0592 - -
0.0516 | 0.0516 0.0517 0.0516 0.0500 0.0401 0.0005 - -
0.0338 | 0.0338 0.0337 0.0326 0.0270 0.0061 - - -

OO W

Table 4.3: Error probability for AWGN and ISI channels, R = 0.5.

SNIR || EP; EP,
(dB) || by = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1309 | 0.1309 0.1310 0.1314 0.1325 0.1350 0.1398 0.1472 0.1527
0.1040 | 0.1040 0.1041 0.1046 0.1058 0.1082 0.1111 0.1061 -
0.0789 | 0.0789 0.0790 0.0794 0.0802 0.0803 0.0718 0.0011 -
0.0565 0.0566 0.0566 0.0557 0.0485 0.0101 - -
0.0377 | 0.0377 0.0376 0.0368 0.0324 0.0130 - - -
0.0230 | 0.0230 0.0227 0.0206 0.0117 - - - -
0.0126 | 0.0126 0.0120 0.0086 0.0006 - - - -

O U W N~
o
o
ot
(o]
(s34

Table 4.4: Error probability for AWGN and ISI channels, R = 0.81.

SNIR || EP: EP,
dB) || =0 01 0.2 0.3 0.4 0.5 06 0.7

1 0.0766 | 0.0766 0.0767 0.0771 0.0778 0.0775 0.0670 -
0.0545 | 0.0545 0.0546 0.0546 0.0535 0.0452 0.0050 -
0.0361 | 0.0361 0.0360 0.0351 0.0302 0.0100 - -
0.0218 | 0.0218 0.0215 0.0193 0.0101 - - -
0.0118 | 0.0118 0.0112 0.0077 0.0003 - - -
0.0055 | 0.0055 0.0047 0.0015 - - - -
0.0022 | 0.0021 0.0014 0.0000 - - - -

N O U s W N
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4.4 Simulation Results

Figures 4.4, 4.5 and 4.6 show the effects of IST on the BER of Code A and Code
C. Figure 4.4 shows the performance of Code A at an SNIR of 3 dB and Figures
4.5 and 4.6 show the performance of Code C for PAM-2 and PAM-4 at SNIRs
of 2 dB and 5.75 dB, respectively. The BER in each simulation was calculated
based on at least 100 frame errors by the 50-th decoding iteration. The dashed
line in each figure refers to the BER for the AWGN memoryless channel with
the same SNIR. The CIR model in this experiment was {1, h;} and the z-axis
in these figures represents the amount of h; before gain normalization.

The simulation results indicate improved performance for LDPC codes in
the presence of ISI and AWGN, compared to purely AWGN in a memoryless
channel at the same fixed SNIR. In another words, by decreasing the amount
of AWGN and introducing ISI to the system to preserve the same fixed SNIR,
the LDPC decoder will perform better. Therefore, in this scheme the LDPC
decoder appears to be more sensitive to AWGN than to the modeled ISI. As
shown in the figures, for a small amount of ISI the BER performance is very
close to the performance of an AWGN channel. However, by introducing more
ISI (and decreasing the AWGN in the system) the performance gap becomes
more significant. As h; reaches its maximum possible value, the performance
gap between these two cases becomes very significant. This arises because it
is at this point that JZZ becomes very small and EP; becomes a lot smaller
than E'P;. This can be seen in Table 4.2 to 4.4 for large values of hy.

Figures 4.7 to 4.12 show the effects of ISI for Code A to Code F', respec-
tively, in a so-called waterfall plot over a wide range of SNIRs for h = {1, h}.
As shown in these figures, the BER performance of all codes for an ISI chan-
nel is upper-bounded by their BER performance in the AWGN memoryless
channel. As mentioned in Section 4.3.1, a fair comparison between the given
ISI model and AWGN channel should be made in the SNIRs and h; values
in which EP, > EP,. As an example, in Table 4.2 at SNIR=3 dB, EP; is
0.1244 for AWGN channel and EP, is 0.1249 for a {1, h; = 0.3} ISI channel
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Figure 4.4: Effect of ISI on Code A, PAM-2 and SNIR = 3 dB.

model. However, Figure 4.11 shows that the BER of Code E at this SNIR is
less (about a factor of 9) for the ISI channel than AWGN channel. Therefore,
it can be concluded that the BER performance of Code E is better for this ISI
model compared to that of the purely AWGN channel. Similar comparisons

and conclusions can be made for the other LDPC codes used in this study.
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Figure 4.5: Effect of ISI on Code C, PAM-2 and SNIR =2 dB .
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Figure 4.6: Effect of ISI on Code C, PAM-4 and SNIR = 5.75 dB.
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Figure 4.7: Effect of ISI on Code A.
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Figure 4.8: Effect of ISI on Code B.
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Figure 4.9: Effect of ISI on Code C.
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Figure 4.10: Effect of ISI on Code D.
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Figure 4.11: Effect of ISI on Code E.
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Figure 4.12: Effect of ISI on Code F'.
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4.4.1 Increasing the ISI Taps

The CIR model in the previous section had two coefficients. As mentioned
previously, Equation 4.9 imposes a constraint on the maximum amount of ISL.
This implies that in the proposed SNIR scenario, increasing the response length
of CIR results in smaller CIR coeflicients. As an instance, by assuming L = 5,
equal CIR coefficients and the parameters of the example given in Section 4.3,
the maximum CIR tap is lowered from 0.7079 to 0.3762. However, it is worth
mentioning that as the CIR length L, increases, the BER performance gap
between an ISI channel and an AWGN memoryless channel becomes smaller.
When L becomes very large (e.g. more than 200), the gap is almost zero. This
phenomenon is due to the fact that in the proposed SNIR scenario, a very
long CIR, which must have very small coefficients, acts increasingly like an
AWGN channel. This is in accordance with the Central Limit Theorem, since
by assuming hg = 1 the amount of ISI added to the transmitted symbol at

time ¢ is obtained by:
L-1

3 a(t - i)h (4.15)

i=1

Therefore, when L is large, the ISI value can be considered as a random vari-
able with Gaussian distribution. This effect is shown in Figure 4.13. In this
figure, the BER performance of Code D for h = {1,0.3} is compared to its
performance in CIR with L = 100 and exponentially decreasing coefficients.
Both CIRs introduce the same amount of ISI energy to the transmitted se-
quence. As shown in the figure, the code performance in long CIR is much

closer to its performance in AWGN.

4.4.2 Effect of ISI Pattern and Code Structure

It should be mentioned that in addition to the results presented in this chapter,
I completed other simulation studies to study the effects of various ISI patterns
and code structures on the performance of LDPC codes in the presence of ISI.
However, the preliminary results did not show any change in the BER perfor-

mance of the codes. For example, the performance of Code A was compared
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Figure 4.13: Effect of long ISI on Code D.

to other versions of this code with randomly permuted variable nodes? to see
if the correlation introduced by ISI would have different effects on these codes.
In another study, due to the special structure of the 10GBASE-T candidate
codes, the position of the strongest ISI taps were changed in the CIR to in-
troduce correlation between the inputs of variable nodes which are connected
to the same check node. Neither of these studies showed a difference in the

performance of the codes in the presence of ISI.

4.5 Conclusion

In this chapter, we reviewed performance evaluation results for the recent
LDPC code candidates for 10GBASE-T Ethernet and for standard benchmark
LDPC codes over AWGN and ISI channels. It was shown that at the same
level of SNIR, LDPC codes are more sensitive to the AWGN than to ISI and
the performance of LDPC codes is upper-bounded by their performance in the

4This was done by randomly exchanging the columns in its H matrix.
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an AWGN channel.

An important application for the proposed results is the interpretation of
the performance of LDPC codes in the channels in which the levels of AWGN
and residual ISI are known or can be approximated. In another words, since
the LDPC code is more sensitive to AWGN than to ISI, it is possible to
characterize the AWGN equivalent for given amounts of residual ISI® in a
channel and then estimate the worst case BER performance of the LDPC
codes. This application can be used for systems, like 1I0GBASE-T, Ethernet
in which a target BER must be guaranteed.

5As mentioned in Chapter 2, the amount of residual IST depends on such parameters
as the equalizer length and the finite precision of the equalizer coefficients and channel
estimation error.
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Chapter 5

Performance Evaluation of
LDPC Codes in the Presence of
Colored Noise

The previous chapter compared the performance of LDPC codes over AWGN
and ISI channels. In an ISI channel, the received symbols are correlated but
it is usually assumed that the noise model is AWGN. This chapter evaluates
the effects of correlation between noise samples (i.e. colored noise) on the
performance of LDPC codes while the channel does not introduce ISI. Two
colored noise models are considered in this chapter: high-frequency Additive
Colored Gaussian Noise (ACGN) and low-frequency ACGN. The effects of

these noise models are discussed in Sections 5.1 and 5.2, respectively.

5.1 Performance Evaluation in the Presence
of High-Frequency ACGN

This section compares the performance of LDPC codes over AWGN and high-
frequency ACGN channels. The ACGN model used in this section is generated
based on an Infinite Impulse Response (IIR) coloration filter that emphasizes
high-frequencies. This filter model is described in Section 5.1.2. The LDPC

codes used for this study are the same as the codes presented in Section 4.1.
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5.1.1 System Model

Figure 5.1 illustrates the system model. In this model, the transmitted signal,
z(D), is transmitted using PAM-2 modulation. The transmitted signal is then
corrupted by noise to form the received signal. In the case of ACGN, the noise
is generated by passing an AWGN sequence through a coloration filter. The

received signal in this model can be expressed by its D-transform as:
y(D) = (D) + nw(D)fc(D) = (D) + nc(D) (5.1)

where fo(D) is the D-transform of the impulse response of the coloration filter,
nw(D) is the AWGN sequence, ng(D) is the corresponding ACGN sequence
and y(D) is the received signal. The LDPC decoder in this model performs
standard soft-decision message-passing decoding and uses full Zanh processing

in the parity-check nodes.

Coloration
AWGN
n, (D)—st  Filter ACGN
" 7.(D) n,(D)
inpu':D g\gfence Received Decoded
sequence LDPC squence
" G "% (D)

|
y( D) Decoder

Figure 5.1: System model used for the performance evaluation in the presence
of ACGN.

5.1.2 Colored Noise Generation

To generate the high-frequency colored noise, AWGN is filtered by a 1st-order
high-pass Infinite Impulse Response (IIR) filter with a Z-transform of:

a

where a is a gain factor and b is a correlation coefficient. This filter corre-

lates each AWGN sample with the preceding noise samples. When b = 0 the
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filter does not introduce any correlation and the noise is strictly AWGN. By
increasing b, the correlation between noise samples increases. This correlation

noise can be expressed for the k-th ACGN sample as:
k-1 ‘
nek) =a X (=b)'nw(k —-i) k=12,.. (5.3)
=0

To fairly compare the performance of LDPC codes with respect to high-
frequency ACGN and AWGN, the ACGN should have the same noise power
as the AWGN. Hence the variance of the noise should be same for both cases.
Consequently, a and b in Equation 5.2 must be determined so as not to intro-
duce any gain in the channel model. The noise variance in the system can be

obtained according to the SNR as:

N 1
o2 =g =0 5(10(‘SNR/10)Eb) (5.4)

nw ne = 5
where Ej is the average energy per bit, Ny represents the AWGN variance for
two dimensions, and o2 and o7 are the variances of the AWGN and ACGN,
respectively. According to Parsaval’s relation for the Fourier transform [71],

the gain of Fi(z), G, can be computed as:
1
G=_— }4 Fo(v)Fo(v™Y)o 4, (5.5)
27y 4

where S is a closed contour in the region of convergence of Fg(z). To have a
unity gain filter, G in Equation 5.5 was set to 1 and the filter coeflicients were

calculated as follows:

=—————1_b2=1—ea,:i\/l——bz——>Fc(z)=1+bz_1

Figure 5.2 shows the frequency response of Fiz(2) for different values of b.

G (5.6)

As illustrated, by increasing the b coefficient, the filter becomes increasingly
high-pass. Thus as b is increased, the colored noise resulting from filtering

AWGN becomes increasingly “blue”.

5.1.3 Simulation Results

Figures 5.3 to 5.10 show the BER performance of the codes used in the presence
of high-frequency ACGN. The BER was calculated based on at least 100 frame
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Figure 5.2: Frequency response of high-pass F(z) for different values of coef-
ficient b.

errors immediately after the 50-th decoding iteration. The dashed line in
each figure shows the BER for an AWGN memoryless channel (i.e., b = 0
and a = 1). Figures 5.3 and 5.4 compare the BER performance for Code
A and Code C with respect to colored noise versus AWGN at fixed SNRs
of 3.5 dB and 2 dB, respectively. The z-axis in these figures corresponds to
the b coefficient in Fp(z). These figures show that in comparison with the
BER performance over an AWGN channel, more highly blue ACGN more
severely degrades the performance of the LDPC decoder. As b increases and
the correlation in the ACGN samples increases, the relative performance loss
increases. It should also be noted here that the BER degradation for small
values of b is approximately log-linear in b. However, for higher values of b the

degradation is more rapid than linear. This can be easily seen by comparing

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the BERs at points b = 0.5 and b = 0.9 in Figure 5.4.

Figures 5.5 to 5.10 show the same effect for Code A to F, respectively,
in their BER “waterfall” plots over a wide range of SNRs. As these figures
show, the SNR performance loss!, for a certain value of b, for all of the codes
is comparable. For example, the performance loss at b = 0.4 is about 0.25 dB

for all of the codes. Figure 5.5 and 5.6 confirm the above mentioned effects

for the 10GBASE-T candidate codes, Code A and B.

5.1.3.1 Effect of Colored Noise on Error Floor

One of the important properties of LDPC codes is their error floor. An error
floor is an undesirable lower limit on the BER that dominates at high SNRs.
It is known that the existence of cycles in the structure of an LDPC code
can affect its error floor. A cycle correlates the messages in the code Tanner
graph and LDPC codes with cycles tend to have a higher error floor. As an
example, Code C has an error floor that shows up approximately at BER
= 10" and Code D has an error floor approximately at BER = 107° in an
AWGN channel. The only difference between these two codes is the length
of their shortest cycle?. The reason for investigating these two codes for this
simulation study was to see if there is any similarity between the effect of
correlation introduced by cycles and the effect of colored noise on the BER
performance and error floor of short LDPC codes.

Figure 5.7 shows the effect of high-frequency ACGN on the error floor of
Code C. This figure indicates that, with respect to BER, the high-frequency
ACGN raises the error floor. This rise for the worst case coloration is about
a factor of 10. The same effect can be seen in Figure 5.8 for Code D. By
comparing the performance of Code C and Code D, it can be seen that the
short-cycle difference (6-cycle-free to 2-cycle-free) results in superior perfor-
mance as well as a lower error floor for Code C' in the presence of ACGN. This

is similar to the result for the case of AWGN. Therefore, it can be concluded

IThe SNR performance loss refers to the amount of SNR loss at a certain BER, whereas
the BER performance loss refers to the amount of BER loss at a certain SNR
2 As mentioned in Section 4.1, Code C is a 6-cycle-free code and Code D is 2-cycle-free.
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that this characteristic of LDPC codes remains the same even in the presence
of high-frequency ACGN. Finally, Figure 5.10 shows the effect of ACGN for
Code F, which is an irregular code with a relatively high error floor. The
rise in BER in the error floor region of this code is comparable to the rise
observed for the the regular codes that were considered. These results show
that the BER curve for high-frequency ACGN channel can be considered as
a shifted version of the BER curve for AWGN channel. This means that the
LDPC codes have worse BER performance in the presence of high-frequency
ACGN, but the overall BER trend (in both the waterfall and error floor re-
gions) over high-frequency ACGN and AWGN channels is qualitatively similar.

10°

T I
== Colored Noise
=1 AWGN memoryless chann

ol

BER

0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9

Figure 5.3: Effect of high-frequency ACGN on Code A at SNR = 3.5 dB.
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Figure 5.5: Effect of high-frequency ACGN on Code A.
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Figure 5.6: Effect of high-frequency ACGN on Code B.
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Figure 5.7: Effect of high-frequency ACGN on Code C.
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Figure 5.8: Effect of high-frequency ACGN on Code D.
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Figure 5.9: Effect of high-frequency ACGN on Code E.
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Figure 5.10: Effect of high-frequency ACGN on Code F'

5.1.3.2 Effects of ACGN on PAM Signal Constellations with More
Signal Levels

The constellation used in the previous section was PAM-2. However, as men-
tioned in Chapter 2, the candidate constellations for 1I0GBASE-T are actually
PAM-8, PAM-12 and PAM-16. Therefore, a brief study of the effects of ACGN
on PAM constellations with more signal levels was also carried out. The pur-
pose of this study was to see if code performance in the presence of ACGN,
while using a PAM constellation with more signal levels, is comparable to their
behavior with PAM-2.

Figure 5.11 shows the effects of high-frequency ACGN on Code C' at fixed
SNR = 6 dB using a PAM-4 constellation. By comparing the BER perfor-
mance shown in this figure with that shown in Figure 5.4, it can be seen that

the high-frequency ACGN causes comparable BER loss for both constellations.
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Figure 5.11: Effect of high-frequency ACGN on Code C' at SNR = 6 dB,
PAM-4.

5.2 Performance Evaluation in the Presence
of Low-Frequency ACGN

The results in the previous section showed the effect of high-frequency ACGN
on the BER performance of LDPC codes. In this section, the effects of low-
frequency ACGN are investigated. The system model used in the study is
same as the system model in Section 5.1.1 except for the coloration filter.
The coloration filter in this study is an IIR filter that emphasizes the low-
frequencies. Thus this filter produces “reddish” as opposed to the “blueish”
noise studied earlier.

In order to generate a low-frequency ACGN, it is sufficient to negate the
value of b coefficient in Equation 5.2 and make the coloration filter low-pass.

Therefore, the low-pass coloration filter model can be expressed as follows

Fo(z) = — ~1<b<0 (5.7)

1406271
The gain factor, a, can be also calculated according to Equation 5.6.
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Figure 5.12 shows the frequency response of the low-pass Fg(z) for different
values of b. As illustrated, by increasing the b coefficient, the filter becomes

increasingly low-pass, i.e. increasingly red.

Magnitude (dB)

L : L ! !
04 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xn rad/sample)

Figure 5.12: Frequency response of low-pass F(z) for different values of co-
efficient b.

5.2.1 Simulation Results

Figures 5.13 to 5.18 show the BER performance of Code A to Code F', respec-
tively, in the presence of low-frequency ACGN. These figures show that as |b|
increases and the ACGN becomes more colored, the relative performance loss
increases. This behavior is similar to the effect of high-frequency the ACGN on
LDPC codes. However, in comparison with high-frequency ACGN, the BER
performance loss is more severe for low-frequency ACGN. This is more appar-

ent for more colored low-frequency ACGN models (i.e., |b| = 0.6 or |b| = 0.8).
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As an instance, the BER loss for 10GBASE-T candidate codes, Figures 5.13
and 5.14, for |b] = 0.6 at SNR = 4 dB is about a factor of 20. This is almost
twice the BER. loss observed for the high-frequency ACGN scheme in Figures
5.5 and 5.6 with b = 0.8.

The SNR performance loss is also more degraded in the presence of low-
frequency ACGN. The results show that the SNR performance loss for || = 0.4
can be up to 0.4 dB. This was about 0.25 dB for high-frequency ACGN with
b = 0.4. As |b] increases, the performance gap between low-frequency ACGN
and high-frequency ACGN becomes more dominant. This is shown in Figures
5.19 and 5.20, where BER performance of Code C and Code F in the presence
of low-frequency ACGN are compared to their performance in the presence of

corresponding high-frequency ACGN.

Bit Error Rate
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- b=-0.4 :

- b=-02 |

— - b=0 (AWGN)
I

1 1 1 1 1 1 i
0 0.5 1 15 2 25 3 35 4
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Figure 5.13: Effect of low-frequency ACGN on Code A.
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Figure 5.14: Effect of low-frequency ACGN on Code B.
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Figure 5.15: Effect of low-frequency ACGN on Code C.
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Figure 5.16: Effect of low-frequency ACGN on Code D.
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Figure 5.17: Effect of low-frequency ACGN on Code E.
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Figure 5.18: Effect of low-frequency ACGN on Code F.
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Figure 5.19: Comparison between BER performance under low-frequency and
high-frequency ACGN, Code C.
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Figure 5.20: Comparison between BER performance under low-frequency and
high-frequency ACGN, Code F'.

5.3 Conclusion

In this chapter, the BER performance of LDPC codes in the presence of ACGN
were investigated. Two filter models were used to generate low-frequency
and high-frequency ACGN. The results for both the low-pass and high-pass
schemes showed that the BER performance of LDPC codes degrades in the
presence of ACGN, and that as the coloration increases, the performance
degradation becomes worse. Such degradation is more severe for low-frequency
ACGN. However, regardless of the performance degradation in the presence
of ACGN, the overall performance behavior (in both the waterfall and error
floor regions) is qualitatively similar to the behavior in AWGN.

The filter models used in this chapter generated correlations between noise
samples. This enabled us to investigate the effects of this simple coloration
model on the BER performance. In the next chapter, the effects of 1/f noise

are studied.
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Chapter 6

Performance Evaluation of
LDPC Codes in the Presence of
1/f Noise

As mentioned in Section 2.2.5, 1/f noise is associated with clock noise in
digital systems and considered as an important impairment that is observed
in solid-state circuits [13,22-25,28]. This chapter investigates the effects of
1/f noise on the performance of LDPC codes. The system model used in this
chapter is different from the system model used in the previous chapter. In
Chapter 5, only ACGN noise exists in the channel. However, in the system
model used in this chapter, both AWGN and 1/f noise exist in the channel

model.

6.1 System Model

Figure 6.1 illustrates the system model used in the simulation study. In this
model, the transmitted signal, (D), is transmitted using PAM-2 modulation.
The transmitted signal is then corrupted by AWGN and 1/ f noise to form the
received signal. The received signal, y(D), in this model can be expressed by
its D-transform as:

where ny (D) is the AWGN sequence and ny,¢(D) is the 1/ f noise sequence.

Similar to the previous chapters, the LDPC decoder in this model performs
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standard soft-decision message-passing decoding and uses full tanh processing

in the parity-check nodes.

AWGN 1/fnoise
ny (D) nl/f (D)

inpuf ?e'\gzjzence Received Decoded
sequence
x(D) n sequence | LDPC D)

o/
y( D) Decoder

Figure 6.1: System model used for the performance evaluation in the presence
of 1/ f noise.

In the simulation study, the performance of the LDPC codes in the 1/f
noise model is compared to the performance of the equivalent pure AWGN
channel. To do so, the total power of the noise (i.e., the sum of the AWGN
variance and the 1/f noise variance) is kept equal to the power of AWGN in
a pure AWGN channel:

(6.2)

2 2 _ 2
ol/f + 0p, = Opy

where o2 ) 1s the variance of the 1/f noise, o2, is the variance of the AWGN in
the 1/f noise model, and o7 is the variance of the AWGN in a pure AWGN
channel of the same total noise power. It should be noted that o2 can be
computed according to the average bit energy of the transmitted sequence

and the operating SNR using Equation 5.4.

6.1.1 1/f Noise Generation

There are various methods in the literature for generating 1/f noise. The
method used in this study is based on IIR filtering of an AWGN noise sequence
[28] (see Figure 6.2). The output of the filter is a 1/f noise sequence that has
a spectrum with -10 dB drop per decade!. The transfer function of the 1/f

1See Figure 2.12 in Chapter 2.
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coloration filter, F/¢(2), is [28]:

a

where a is a gain factor. Fy/¢(z) can be expanded as

a
h bo + blz“l + bgz‘2 + ...+ ka_k + ...

Fi/5(2) (6.4)

where {bg, by, ...} are the coefficients of the denominator, which can be com-
puted in a recursive way as follows:

bp=1

b = (k — %)lzkk—_l (6.5)

In the simulation study, the denominator was expanded to 30 coefficients.
Figure 6.3 shows the resulting frequency response of F,¢(z) for a = 1 and 30
coefficients in the denominator. Note how the filter strongly emphasizes the
low-frequencies, more strongly even than the reddened white noise considered

in the previous chapter.

Input AWGN Fyr(2) Output 7/f noise
-———. _.
sequence 1/f noise sequence
coloration filter

Figure 6.2: 1/f noise generator.

In comparison with the ACGN coloration filter, Fo(2), in Chapter 5, the
1/f coloration filter, Fy¢(z), produces a stronger correlation between noise
samples. This can be seen in Figure 6.4, where the impulse responses of Fe(2)
and Fy,;(z) are depicted. Figure 6.4(A) shows the impulse response for F(2)
with b = —0.8 and a = 0.6. Figure 6.4(B) shows the impulse response for
Fi/¢(z) with a = 0.6580. Both filters have a unity gain.
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Figure 6.3: Frequency response of Fy/f(2), a = 1.
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Figure 6.4: Impulse response of A) Fo(z) with b = —0.8 and unity gain and,
B) Fi/¢(z) with unity gain.
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6.2 Simulation Results

Figures 6.5 to 6.10 show the BER performance of Code A to Code F, respec-
tively, for the channel model of Figure 6.1. Each figure also shows the BER
performance for pure AWGN as well as for pure 1/f noise channel. In the
simulation study, the BER performance was measured for various levels of
1/f noise as a percentage of the total noise power in the channel. The total
noise power was kept constant, at each SNR, in association with Equation 6.2.
This means that by increasing the power of the 1/f noise in the channel, the

power of the AWGN is decreased to keep the total noise power constant. As
2

ny?

SNR = 2 dB for Code C with the rate of 0.5 is 0.6310. For the case that 10%
of the noise in the channel is 1/f noise, the variance of the 1/f noise, o2 /55 18
0.0631 and the variance of the AWGN in the channel, 62, is 0.5679.

These figures show that as the percentage of 1/ f noise increases, the BER

an example, according to Equation 5.4, the total variance of the noise, o7 , at

loss becomes more severe. The BER loss for 10% 1/ f noise in the channel is
more than a factor of 10 in the waterfall region (e.g. see Figures 6.7 and 6.10).
The BER performance loss increases when a higher level of 1/ f noise exists in
the channel. As an example, when 50% of the total noise in the channel is 1/ f
noise, the BER loss of Code A at SNR = 4 dB and Code C at SNR =3 dB is
about a factor of 30. This trend can be also seen in the SNR performance loss?
of these codes. The SNR. performance loss for 25% 1/f noise is more than 1
dB while for 50% 1/f noise, the SNR performance loss is more than 2.5 dB
(e.g. Figure 6.10).

Interestingly, the results show that the BER loss in the error floor region
is less than in the waterfall region. This effect can be easily seen in Figures
6.7 and 6.8. This is different from the behavior of LDPC codes in the presence
of ACGN. However, it should be noted that for the highly colored ACGN

2Tt should be noted that the SNR performance comparison is more common in the wa-
terfall region, since at the error floor the BER performance is almost constant and a small
gap between BERs of the codes, at a same SNR, in the error floor region can be interpreted
as a huge SNR performance loss.
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with [b] = 0.8, a similar effect (but less severe), was also seen (see Figure
5.16). It appears that the effects of highly colored noise, such as 1/f noise or
ACGN with |b] = 0.8, is more detrimental in the waterfall region, and that at
higher SNRs, in which the power of the colored noise is decreased, the BER
performance is less degraded.

In general, when compared With the effects of ACGN, 1/f noise causes
more degradation. However, such an increased degradation is in accordance
with the results of Chapter 5. The reason is that 1/f noise is more strongly
colored than the ACGN model that we assumed and, as observed in Chapter
5, the more the coloration of noise, the worse the performance. In addition,
the comparison between low-pass (i.e. reddish) ACGN and high-pass ACGN
(i.e. blueish) in Chapter 5 showed that low-pass ACGN is more detrimental

to performance. The 1/f noise model is a very low-pass model.

Bit Error Rate

-4 100% 1/f .
~A~ 50% 1/f, 50% AWGN
E| B~ 25% 1/f, 75% AWGN {:
- 10% 1/f, 90% AWGN |-

-~ 5% 1/f, 95% AWGN |- - : - \
- - 100% AWGN ! : ;
107 T T I ) ] 1 I 1
0 0.5 1 15 2 25 3 3.5 4 4.5
SNR (dB)

Figure 6.5: Effect of 1/f noise on Code A.
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Figure 6.6: Effect of 1/f noise on Code B.
10°
107
107
107

Bit Error Rate
>

e 100% 1/f
—A— 50% 1/f, 50% AWGN |--
1077 H -8~ 25% 1/f, 75% AWGN
B~ 10% 1/f, 90% AWGN
-6~ 5% 1/f, 95% AWGN
- - 100% AWGN . 4 | ] ;

I I L H

0 0.5 1 15 2 25 3 3.5 4
SNR (dB)

Figure 6.7: Effect of 1/f noise on Code C'.
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Figure 6.8: Effect of 1/f noise on Code D.
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Figure 6.9: Effect of 1/ f noise on Code E.
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Figure 6.10: Effect of 1/f noise on Code F'.

6.3 Conclusion

In this chapter, the BER performance of LDPC codes in the presence of 1/ f
noise was investigated. In comparison with the ACGN model used in Chapter
6, the 1/f noise model considered in this chapter was a more strongly colored
model. The BER performance was measured for various percentages of 1/f
noise in the channel. The simulation results showed that as the percentage
of 1/f noise increases in the channel, the performance loss increases. The
observed BER loss was more in the waterfall region than in the error floor
region. It was concluded that highly colored noise, such as 1/ f noise or ACGN
with |b] > 0.8, is more detrimental on the performance in the waterfall region.
Also, at higher SNRs, in which the power of colored noise is decreased, the
BER performance of the LDPC codes is less degraded. The simulation results
suggest that, in general, compared to the effects of ACGN, 1/f noise causes

more performance degradation.
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Chapter 7

Conclusions and Future Work

7.1 Main Contributions

Low-Density Parity-Check codes are among the most powerful error control
codes known. They can produce error-correcting performance close to the
Shannon limit and can be decoded using iterative decoding algorithms with
only linear complexity. These key advantages have made LDPC codes a can-
didate coding scheme for various novel applications and upcoming standards.
The next generation of Ethernet, I0GBASE-T, is among such standards. This
standard aims to provide a data rate of 10 Gbps over four-pair UTP cabling
with a minimum bit error rate of 10712, This data rate is 10 times faster
than the data rate of the existing wireline Ethernet standard, 1000BASE-T.
Despite its numerous advantages, 10GBASE-T transmission suffers from nu-
merous impairments that must be tackled.

This thesis first reviewed the organization of 1000BASE-T and 10GBASE-
T systems and explained the major impairments that arise in their commu-
nication media. Some of these impairments are common between these two
standards, and some of them, such as ANEXT, are either unique to or more
severe in 10GBASE-T. The thesis has also reviewed the alternative coding and
equalization schemes for 1000BASE-T and 10GBASE-T systems. It provided
simulation results for the performance of alternative coding and equalization
schemes, such as decision-feedback equalization and delayed-decision-feedback-

sequence estimation, that are being considered for 1000BASE-T. The advan-
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tages of LDPC codes over these schemes, with respect to the performance
and complexity in high-speed applications such as 10GBASE-T, were then
explained.

In Chapter 4, performance evaluation results were presented for recent can-
didate LDPC codes for I0GBASE-T Ethernet and some standard LDPC codes
over AWGN and ISI channels. It was shown that at the same level of signal-
to-noise-and-interference ratio, LDPC codes appear to be more vulnerable to
AWGN than to ISI. It was also shown in the simulations that, given this sce-
nario, the performance of LDPC codes over an ISI channel is upper-bounded
by its performance in the AWGN channel. An important application for the
proposed results is the interpretation of the performance of LDPC codes in the
channels in which the levels of AWGN and residual ISI are known or can be
approximated. In another words, since LDPC codes appear to be more sensi-
tive to AWGN than to ISI, it is possible to characterize the AWGN equivalent
for given amounts of residual ISI in a channel and then estimate the worst-case
BER performance of the LDPC codes.

Chapter 5 presented the BER performance evaluation of LDPC codes in
the presence of ACGN. Two simple filter models were used in this chapter to
generate low-frequency and high-frequency ACGN. The results for both low-
pass and high-pass schemes showed that the BER performance of LDPC codes
degrades in the presence of ACGN, and as the degree of coloration increases,
the performance degradation becomes worse. Such degradation is more severe
for low-frequency ACGN. It was also observed that the overall performance
loss, in both the waterfall and error floor regions, is comparable in both ACGN
scenarios.

The filter models used in Chapter 5 introduce a simple correlation between
noise samples. In Chapter 6, the effects of 1/ f noise, which is a more strongly
colored noise, were studied. It was shown that as the percentage of 1/f noise
in the channel increases, the BER loss increases. The BER performance loss
can be very severe when a high level of 1/f noise exists. This trend was

also observed in the SNR, performance loss of LDPC codes. In general, the
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observed performance loss was greater in the waterfall region than in the error
floor region. It was concluded that highly colored noise types, such as 1/ f noise
or ACGN with |b| > 0.8, are more detrimental to performance in the waterfall
region. Also by decreasing the power of the colored noise at higher SNRs, the
BER performance of the LDPC codes is less degraded. In comparison with
the effects of ACGN, 1/f noise causes more degradation. However, such an
increased degradation is in accordance with the results of Chapter 5. The
reason is that 1/f noise is more colored than the ACGN considered, and as
observed in Chapter 5, the more the coloration of the noise, the worse the
performance. In addition, the comparison between low-pass ACGN and high-
pass ACGN in Chapter 5 showed that low-pass ACGN is more detrimental to

the performance. The 1/f noise model is also a very low-pass model.

7.2 Possible Future Work

Possible future work, which the author would like to undertake shortly, is the
investigation of the effects of ANEXT in 10GBASE-T systems, specifically,
the effects on the BER performance of LDPC codes. Such an investigation
would be useful for understanding the actual performance of 10GBASE-T
candidate LDPC codes in more realistic situations. This study can be done by
using a similar method used in Chapter 6. In [4], ANEXT spectrum has been
measured in a I0GBASE-T system and modeled as a Finite Impulse Response
(FIR) filter. However, the length of the FIR filter is long (4.e. more than 2500
taps). But it is possible to approximate this filter with an IIR filter with less
taps, and model an ANEXT sequence by passing an AWGN sequence, which
has a flat spectrum, through this IIR filter. The output ANEXT sequence
can be then treated as colored noise in the system for the sake of the BER
performance evaluation.

The results provided in this thesis give insight into the performance of
LDPC codes in real practical applications. Theoretical analysis of the effects

studied in this thesis should be undertaken as a follow-up project. For exam-
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ple, the possible relationships between vulnerability to colored noise and the
Tanner graph structure of the LDPC codes should be investigated.

The modulation scheme used in the majority of simulations of the thesis
was PAM-2. PAM-2 is a modulation scheme that is used in most of the LDPC
code literature and in related simulation studies. Although the preliminary
results of this thesis showed that the same error-correcting behavior should be
expected for PAM modulations with more signaling levels, it would be worth
carrying out a more in-depth study of the effects of these impairments when
the PAM modulation has more signalling levels. Such a study might be useful
for the 10GBASE-T standard, in which PAM-8, PAM-12 and PAM-16 are
candidate modulation schemes. In addition to this, it would be also interesting
to study the effects of impairments for the case when, instead of using the Sum-
Product algorithm, the LDPC decoder uses more implementable approximate
methods, such as the Min-Sum algorithm.

Another interesting possible research direction would be the investigation of
the effects of SNR mismatch at the receiver on the performance of LDPC codes
in the presence of AWGN as well as colored noise. Similar studies have been
recently done for some special LDPC codes used in magnetic recording [72];
however, the effects of SNR mismatch, to the best of our knowledge, have
not yet been studied for colored channel models such as the ones used in this

thesis.
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Appendix A

Programs

A.1 Decision Feedback Equalizer for 1000BASE-
T Ethernet

A.1.1 Header Files
A.1.1.1 simulation.h

#if !defined (SIMULATION_H)
#define SIMULATION

const int NumChannels=4;
const int  CIR_Length=14;

const double CIR[CIR_Length]={
1.00000000000000,
0.90909090909091,
0.36363636363636,
0.18181818181818,
—0.18181818181818,
—0.22727272727273,
—0.36363636363636,
—0.20000000000000,
—0.18181818181818,
—0.10909090909091,
—0.09090909090909,
—0.07272727272727,
—0.05454545454545,
—0.03636363636364

b
const double LearningConst = le—4; // Learning Constant
const double ForgettingConst= 1.0; // Forgetting Constant

const int  FFE_Length = 14;
const int FBE_Length = 13;
const int DFE_Length= FFE_Length--FBE_Length;

#endif

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.1.1.2 Trellis1000BaseT.h

#if !defined (TRELLIS1000BASET _H)
#define TRELLIS1000BASET

const short NumCodeStates=8;

const short Num4DSubsets =8;

const short TrellisDepth =15;

const short Trellis InFrameLength=TrellisDepth—1;
const short NumInBranches =4;

const short NumPaths=NumCodeStates;

const short CodeDimention =4;

const short NumSubsetTypes=2;

typedef struct TrellisState

double StateMetric;

short SurvivorBranch;

short Survivor4DSymbol [NumInBranches|[CodeDimention]|;
double InBranchMetric [NumInBranches];

}7

static TrellisState Trellis [TrellisDepth ]| NumCodeStates|={0,0,{0},{0} };

const short InBranchState [NumCodeStates][NumInBranches|={
{0,2,4,6},{0,2,4,6},{0,2,4,6},{0,2,4,6},
{1,3,5,7},{1,3,5,7},{1,3,5,7},{1,3,5,7} };

const short InBranch4DSubset[NumCodeStates][NumInBranches]={
{0727476}7{2’0,674}7{47670’2}7{6747270}1
{1,3,5,7},{3,1,7,5},{5,7,1,3},{7.5,3,1} };

const short Subset4DPattern{Num4DSubsets]{NumSubset Types][CodeDimention]={

{ {0,0,0,0}, {1,1,1,1} },
{ {070?071}’ {171’170} }7
{ {0,0,1,1}, {1,1,0,0} },
{ {0,0,1,0}, {1,1,0,1} },
{ {0,1,1,0}, {1,0,0,1} },
{ {o,1,1,1}, {1,0,0,0} },
{ {0,1,0,1}, {1,0,1,0} },
{ {0,1,0,0}, {1,0,1,1} },
b
/x DO: XXXX + YYYY x/
const short constell_D0[64][4] = {
{0, 0,0, 0} {-2,0, 0, 0}, { 0,—2, 0, 0}, {—2,-2,0, O},
{0, 0,-2, 0}, {-2,0,-2, 0}, { 0,—-2,-2, 0}, {—2,-2,-2, O},
{0, 0, 0,-2}, {-2,0, 0,2}, { 0,-2, 0,—2}, {—2,-2, 0,-2},
{ 07 07'—27_2}7 {—27 07_27—'2}7 { 01— y 7 v—2}7 - 7_25_27_2}7
{1, 1,1, 1}, {-1,1, 1, 1}, {1,-1, 1, 1}, {-1,-1, 1, 1},
{1, 1,-1, 1}, {-1,1,-1, 1}, { 1,-1,-1, 1}, {-1,-1,-1, 1},
{1, 1, 1,-1}, {-1,1, 1,-1}, { 1,-1, 1,-1}, {-1,-1, 1,1},
{1, 1,-1,-1}, {-1,1,-1,-1}, { 1,-1,-1,—-1}, {-1,—-1,—-1,-1},
{2 0 0 0}, {2,-2,0, 0}, {2 0,-2,0}, {2,~2,-2,0},
{2 0, 0,-2} {2,-2,0,-2} {2 0,~2,-2}, { 2,—2,-2,-2},
{o, 0, 2 0} {-2,0, 2, 0}, {0,~2, 2, 0}, {-2,—-2, 2,0},
{0, 0, 2-2}{-2,0, 2,-2}, { 0,-2, 2,-2}, {-2,-2, 2,—2},
{0, 2 0 0} {-2,2,0 0}, {0, 2,-2,0}, {-2,2,-2,0},
{ 07 27 07_2}y {_2: 2> 0"—2}7 { 07 27_27_2}7 {_27 2,—27_2}7
{0, 0 0,2} {-2,0,0, 2}, { 0,2, 0, 2}, {-2,-2,0, 2},
{0, 0,~2, 2}, {-2,0,-2, 2}, { 0,—2,-2, 2}, {-2,—2,-2,2} };
/x D1: XXXY + YYYX x/
const short constell D1[64}{4] = {
{0, 0,0, 1}, {~2,0, 0, 1}, { 0,2, 0, 1}, {-2,—-2,0, 1},
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A.1.2 DFE Program

/********************************************************* * *k *okok
PURPOSE: This program evaluates the BER performance of DFE in o
1000BASE—T system.

INPUTS:
RunLength: Number of 4D symbols to be generated.
SNR: Signal—to—noise ration in dB.

NOTES: Program reads DFE coefficients from ”DFECoeffs.txt”
/*************************************************************************************/
#include <fstream.h>
#include <iostream.h>
#include <math.h>
#include <cstdlib>
#include <iomanip.h>
#include <time.h>
#include ”simulation.h”

#include ”trellis1000BaseT.h”

/*************************************

/* Function Definition */

Vi *ok Kok ook ok /

void IArrayShift(int A [[[NumChannels] ,int A_Length, int * NewCell);

void FArrayShift(double A[][NumChannels] ,int A Length, double * NewCell);
double noise( double variance, double ul, double u2 );

double PAMS5_Detector(double x);

main(int argc,charx argvi])

/*************************************
/* Parameters and Variables x/
JREAR *okk * *% kokk /
long RunLength = (int) (atof(argv{1]));
double SNR = (double) atof(argv|2});
// double LearningConst = (double) atof( argv[3] );
//  double ForgettingConst= (double) atof( argvf4] );

double Symb [NumChannels]={0};

const short bits_per_word=8;

short buf[bits_per_word+1J;

short Sdn6, Sdn7, Sdn8;

short Delay0=0, Delay1=0, Delay2=0,Delay0_Temp=0; /* initialize encoder state %/
short point,subset;

double ChannelBuf[CIR-Length|[NumChannels|={0};
double SumVar[NumChannels|={0};

double ul, u2;

double noise_power;

double avg_point_power = 4x1.8125; // Average Power for 4D—PAMS5 Symbols
// Noise variance to be added to 4D—PAMS Symbols

double variance = avg_point.power / exp((SNR/10.0)*log(10.0));

// Noise variance to be added to 1D—PAMS5 Symbols

variance=variance/4;

const double N = (double)(RAND_MAX)+1.0;

time.t seed,Start_Time,End_Time;

const int Delay= (int) ceil((FFE_Length+FBE Length—1)/2);
double SymbQOut[NumChannels|={0};

double Error[NumChannels}={0};

double FFE_Coeffs [FFE_Length][NumChannels]={0};
double FBE_Coeffs {FBE_Length][NumChannels}={0};
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double DFE_Coefls [DFE_Length][NumChannels|={0};
double FFE InVector [FFE_Length][NumChannels]={0};
double FBE InVector [FBE_Length][NumChannelsj={0};
double DFE_InVector [DFE_Length]{NumChannels]={0};
double Psi [DFE_Length] [FBE_Length][NumChannels]= {0};
double NPsi [DFE_Length][NumChannels] = {0};

double OrgSymbBuffer[FFE_Length|[NumChannels]={0};
int i,j,k,r,c;

int Error Num=0;

double SER,BER;

/*************************************
/* Initialization */
/*************************************/
srand( unsigned (time(&seed)));

// Reading DFE coefficients from DFECoeffs.txt
ifstream DFECoeffsFile;
DFECoeftsFile.open(” DFECoeffs.txt”};

for (k=0;k<DFE_Length;k++) {
DFECoeffsFile>>DFE_Coeffs[k][0]>>DFE_Coeffs[k][1]>>DFE _Coeffs[k][2] > >DFE _Coeffs k] [3];

if (k<FFE_Length){
FFE_Coeffs[k|[0]=DFE_Coeffs k] [0];
FFE_Coeffs[k][1]=DFE_CoefIs[k][1];
FFE_Coeffs[k][2|]=DFE_Coeffs k] [2];
FFE_Coeffs[k|[3]=DFE_Coeffs[k][3];

}
else{
FBE_Coeffs(k—FFE_Length][0]=DFE_Coeffs k] [0];
FBE_Coeffs[k—FFE_Length][1]=DFE_Coeffs[k]{1];
FBE_Coeffs[k—FFE_Length][2]=DFE_Coeffs[k]{2];
FBE_Coeffs[k— FFE_Length][3]=DFE _Coeffs[k] [3];
}
}
DFECoeffsFile.close();

SRRkl kksookookosorokokcok SIMULATION MAIN LOOP wiokskrrksskikdddksiskrkhrsknrs k [
time(&Start_Time);

for(k=1;k<RunLength+Delay;k++){
//Random Bit Sequence Generation and word forming

for (i=0;i<bits_per_word;i++)
buf[i]=rand() & 01;

//1000BASE—T Convolutional Encoding
Sdn6 = buf[ bits_per_word ~ 2 |;

Sdn7 = buf| bits_per_word — 1 ];

Sdn8 = Delay0;

/+ append the new bit (Sdn8) to the right end of the vector x/
buf| bits.per-word ] = Sdn8;

/* update the encoder state x/
Delay0_-Temp=Delay0;

if (Sdu7==Delay1)
{Delay0=0; }

else
{Delay0=1;}
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if (Sdn6==Delay2)
{Delay1=0; }

else

{Delayl=1;}

Delay2= Delay0_Temp;

//1000BASET 4D Symbol Mapping
point = 32xbuf]5] + 16xbuf[4] + 8xbuf[3] + 4xbuf[2] + 2xbuf[1] + buf[0];
subset = 4xbuf[6] + 2+«buf{7] + buf{8];

switch (subset) {

case 0:  Symb[0] = constell_DO[point ][0];
Symb(1] = constell_DO0[point ][1];
Symb(2] = constell_DO0[point ][2];
Symb{3] = constell_DO0[point ]{3];

break;

case 1:  Symb|0] = constell_D1[point }[0];
Symb[1] = constell_D1[point ][1];
Symb[2] = constell_D1{point ][2];
Symb(3] = constell_D1[point ][3];
break;

case 2:  Symb[0] = constell_D2[point }[0];
Symb([1] = constell_D2[point ] [1];
Symb[2] = constell_D2{point }[2];
Symb(3] = constell_D2([point ][3];
break;

case 3:  Symb|0] = constell_D3[point ][0];
Symb(1] = constell_D3[point ][1];
Symb(2] = constell_D3[point ][2];
Symb{3] = constell_D3[point ][(3];
break;

case 4:  Symb[0] = constell_D4[point ][0];
Symb[1] = constell_D4[point }[1];
Symb(2] = constell_D4[point ][2];
Symb(3] = constell_D4[point ][3];
break;

case 5:  Symb{0] = constell_D5{point }[0];
Symb[1] = constell_D5[point ] [1];
Symb[2] = constell_D5[point ][2];
Symb[3] = constell.D5{point }[3];
break;

case 6:  Symb|[0] = constell_D6[point | [0];
Symb|1] = constell_D6[point ]{1];
Symb|[2] = constell_Dé[point ]{2];
Symb[3] = constell_D6[point }[3]

break;

)

case 7:  Symb|0] = constell_D7[point ]{0];
Symb][1] = constell_D7[point ]{1};
Symb|2] = constell_D7[point ][2];
Symb[3] = constell_D7{point |[3];
break;
} /% end switch x/
FArrayShift(OrgSymbBuffer, FFE_Length,Symb);

//Passing symbols through AWGN channel with ISI
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FArrayShift(ChannelBuf,CIR Length,Symb);

for(c=0;c<NumChannels;c++){
SumVar[c]=0;
for (i=0;i<CIR.Length;i++)

SumVar[c]=ChannelBuf[i] [c|*CIR[i]+SumVar[c|;

}
, Symb(c]=SumVar[c];

//AWGN
for(c=0;c<NumChannels;c++){
ul = double(rand()+1) /N;
u2 = double(rand()+1) /N;
Symb]c] = Symb|c] + noise(variance, ul, u2 );

//DFE
FArrayShift(FFE_InVector, FFE_Length,Symb);

if (k>Delay){
for (i=0;i<NumChannels;i++){
for (j=0;j<DFE_Length;j++){
if (j<FFE_Length){
DFE_InVector[j][i]=FFE_InVector[j]i];

else{
DFE_InVector[j][ij=FBE_InVector[j—FFE_Length|[i];
}

}
Y/ ffor i

for (i=0;i<NumChannels;i++){
SymbOutli]=0;
for (j=0;j<DFE_Length;j++){
SymbOut[i]=DFE_InVector|j]{i]xDFE_Coeffs[j][i] +SymbOut [i];

Error[i]=PAM5_Detector (SymbOut[i]) —SymbOut [i];
SymbOut[i] =PAM5_Detector(SymbOutli]);

for (i=0;i<NumChannels;i++){
for (j=0;j<DFE_Length;j++){
NPsi[j][i]= DFEInVector[jj[i];

}

for (i=0;i<NumChannels;i++){
for (r=0;r<DFE_Length;r++){
for (c=0;c<FBE_Lengthjc++){
NPsi[r]{i]= NPsi[r][i] + FBE_Coeffs[c][i] * Psi{r]{c][i];

}
}

for (i=0;i<NumChannels;i++){
for (j=0;j<DFE_Length;j++){
DFE_Coeffs{j}[i]=ForgettingConst + DFE_Coeffs[j] [i] + LearningConstxError[i] «NPsil[j] [i];

}

for (i=0;i<NumChannels;i++){
for (r=0;r<DFE_Length;r+-+){
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for (¢=FBE_Length—2;c>=0;c——){
Psi{r][c+1][i]= Psifr][c][i];

}
}

for ( i=0;i<NumChannels;i++){
for ( r=0;r<DFE_Length;r++) {
Psi[r ][0][ i]=NPsi[r][i];

}

for (i=0;i<NumChannels;i++){
for (j=0;j<DFE_Length;j++){
if (j<FFELength)

FFE_Coeffs[j}{i]=DFE_-Coeffsj][i |;

else{
FBE_Coeffs[j—FFE_Length][i] =DFE_Coeffs]j][i];
}

}
Y/ for i
FArrayShift(FBE InVector, FBE_Length,SymbOut);

for (i=0;i<NumChannels;i++){
if (PAMS5_ Detector (SymbOut[i]) != OrgSymbBuffer[Delay][i}){
Error Num++;
}

}
}
Y/ /for k

//SER and BER Calculation

//SER for 1D—PAMS5 symbols

SER= double (Error_Num)/double(k—Delay);

//On "average”, 1.82 bits of 2 bits in a 1D—PAMSE symbol have error.
BER= SERx1.32/8;

time(&End.Time);
double Elapsed_Time= (End_Time-Start_Time)/60;

cerr < <end]< <7 sxxx KK wkksokkookkockkok” < < endl;
cerr <<”Number of Symbols: ” <<k-Delay< <endl;

cerr < <" Number of Errors : ” <<Error Num<<endl;

cerr< <" Symbol Error Rate (SER) for ID—PAMS5: ” <<SER<<endl;
cerr<<”Bit Error Rate (BER): ”<<BER<<endl;

cerr<<”Simulation Time: ” <<Elapsed.Time<<” min.” <<endl;

CEIT < <7 sk sokaidarokook dokaiokok ok %ok stk otoiok kol ook ” < <endl < <endl;

}i//main

JREIRRAARAAAKEA KRR AR KK IA KKK K
/* Functions’ Body *
SrERork * skt ok ok kok %/
void IArrayShift(int A{][NumChannels] ,int A_Length, int * NewCell)
{
/*
PURPOSE:
Shift~right each row of A and place the NewCell as the first element of A.
NOTES:
A should be 2D array of Integer.
E
/

for (int k=0;k<NumChannels;k+-){
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for (int j=A Length—2;j>=0;j——) {
Alj+1][k]=A[]{k];

A [0)[k]=NewCell[k];

}

void FArrayShift(double Af][NumChannels] ,int A_Length, double x NewCell)
{

Vs
PURPOSE: Shift—right each row of A and place the NewCell as the first element of A.
NOTES: A should be 2D array of Float.

*/

for (int k=0;k<NumChannels;k++){
for (int j=A_Length—2;j>=0;j——) {
Alj+1] [k =Af][k];

A[0)[K]=NewCell[k];
}
}

double noise( double variance, double ul, double u2 )

double pi = 3.14159265358979;
return sqrt((—2)*variancexlog(ul)) * cos(2#pixu2);

double PAM5_Detector(double x)
{
/x PURPOSE:PAMS5 Detector (Slicer)x/

double y=0;
if (x>1.5)
{y =+2}
else {
if (x>=0.5)
{r=L}
else {
if (x>=-0.5)
{y=0}
else

{ if (x>=-1.5)
{y=-13}
else
{yr=-2}

return(y);
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A.2 Delayed Decision Feedback Sequence Es-
timator for 1000BASE-T Ethernet

/% *% ok Rk sk kKRR RSk o R R SRRk R KR o K Sk ok kKK o kK S KKk
PURPOSE: This program evaluates the BER performance of DDFSE in a
1000BASE—T system.

INPUTS:
NUM_SYMB: Number of 4D symbols to be generated.
SNR: Signal—to—noise ration in dB.

NOTES: Program reads DFE coefficients from ”DFECoeffs.txt”
/******************************************* * **********************/
#include <stdlib.h>

#include <fstream.h>

#include <iostream.h>

#include <cmath>

#include <cstdlib>

#include <iomanip.h>

#include <ctime>

#include ”simulation.h”

#include trellis1000BaseT.h”

/*************************************

/* Function Definition x/

/*************************************/

void FArrayShift(double A[][NumChannels] ,int A _Length, double * NewCell);
double noise( double variance, double ul, double u2 );

short PAM_X _Detector(double a);

short PAM_Y Detector(double a);

main(int arge,charx argvl(])

/*************************************

/* Parameters and Variables x/

/5 *¥ HAEHAKAFAAKAKAK KKK K K /|
long NUM_SYMB = (int) (atof(argv{l]) + FFE_Length);
double SNR = (double) atof(argv|2]);

const short bits_per_word=8§;
short buf[bits_per_word+1];

static short Sdn6, Sdn7, Sdn§;
static short Delay0=0, Delayl=0, Delay2=0,Delay0_Temp=0; /* initialize encoder state */

short point, subset;

static double Symb[NumChannels]={0};

const int  Delay= (int) ceil ((FFE_Length+FBE Length—1)/2);

static double OrgSymbBuf[FFE_Length+Trellis InFrameLength—1][NumChannels]={0};
static double ChannelBuf{CIR.Length}[NumChannels}]={0};

static double SumVar[NumChannels]={0};

static double ul, u2;

static double noise_power;

// Average Power for 4D—PAMS5 Symbols

const double avg_point_power = 4x1.8125;

double variance = avg.point_power / exp((SNR/10.0)*log(10.0));
// Noise variance to be added to 4D—PAMS5 Symbols

variance=variance/4;
const double N = (double) (RAND_MAX)+1.0;
static double FFE_Coeffs [FFE_Length}[NumChannels]={0};

static double FFE.InVector[FFE_Length][NumChannels|={0};
static double FBE_Coeffs [FBE_Length][NumChannels]={0};
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static double FBE InVector[FBE _Length][NumChannels]={0};
static double SymbTemp [NumChannels|={0};
static short SymbOut [NumChannels]={0};

static short QuanSymblD [NumPaths|[NumChannels][NumSubsetTypes] ={0};
static double MetriclD  [NumPaths][NumChannels][NumSubset Types] ={0};
static double MetricdD  [NumPaths][NumChannels][NumSubsetTypes] ={0};
static short DecodedPath [NumPaths][Trellis InFrameLength]{CodeDimention)={0};
static double ISI_Estimate [NumPaths}[NumChannels|={0};

short InBS,InBSubset,X,X0,X1,X2,X3,Y0,Y1,Y2,Y3;

short min_index,Symb4DPatternTemp,SurvivirPathNum;

double min,temp,tempx,tempy;

time_t seed,Start_-Time,End._Time;
srand{ unsigned (time(&seed)));

int i,k=0,t,s,p,b,d,c,j=0,Error=0;
double SER=0;
double BER=0;

/*************************************

/* Initialization */

JHRARAAAR I A A AAAAAKAAKAFAAK KK F KA K
// Reading DFE coefficients from DFECoeffs.txt
ifstream DFECoeffsFile;
DFECoeffsFile.open(” DFECoeffs.txt”);

for (i=0;i<DFE_Length;i++) {
if (i<FFE_Length)
DFECoefsFile>>FFE_Coeffs{i] [0]>>FFE_Coeffs[i][1]>>FFE_Coeffs[i] (2] > >FFE_Coeffs]i] [3];
else
DFECoeffsFile>>FBE_Coeffs[i— FFE_Length)][0]>>FBE_Coeffs[i—FFE_Length] [1]>>
FBE_Coeffs[i~FFE_Length][2]>>FBE_Coefls[i— FFE_Length][3];

}

SRRk koo ookoksonokok SIMULATION MAIN LOOP Fokokok kKKK wkrkkkk K [
time(&Start_Time);
while (k< NUM_SYMB){
k++;
for (i=0;i<bits_per.word;i++)
buf[i]=rand() & 01;

Sdn6 = buf] bits_per_word — 2 [;
Sdn7 = buf] bits.per_-word — 1 [;
Sdn8 = Delay0;

/% append the new bit (Sdn8) to the right end of the vector %/
buf[ bits.per_word | = Sdn8;

/* update the encoder state %/
Delay0_Temp=Delay0;

if (Sdn7==Delayl)
{Delay0=0; }

else

{Delay0=1;}

if (Sdn6==Delay?2)
{Delay1=0; }

else

{Delayl=1;}

Delay2= Delay0_Temp;

//1000BASET 4D Symbol Mapping

point
subset

32+buf[5] + 16«buf[4] + 8xbuf(3] + 4xbuf[2] + 2xbuf[1] + buf{0];
4xbuf[6] + 2xbuf[7] + buf[8];

I
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switch (subset) {

case 0:  Symb|[0] = constell DO[point ][0];
Symb{1l] = constell_DO[point ][1];
Symb[2] = constell_DO[point ][2];
Symb[3] = constell_DO[point ][3];

break;

case 1:  Symb([0] = constell_D1[point ]{0];
Symb(1] = constell_D1[point ][1];
Symb(2] = constell_D1{point ][2];
Symb[3] = constell_D1[point ][3];
break;

case 2:  Symb[0] = constell_D2[point ][0];
Symb|[1] = constell_D2[point }[1];
Symb[2] = constell_D2[point }[2];
Symb[3] = constell_D2[point ][3];
break;

case 3:  Symb|0} = constell_D3[point ][0];
Symb[1] = constell.D3[point ]{1];
Symb[2] = constell_D3[point ][(2];
Symb[3] = constell_D3[point ][3];
break;

case 4:  Symb[0] = constell_D4[point ][0};
Symb(1] = constell_D4[point ][1];
Symb(2] = constell_D4[point ][2];
Symb(3] = constell_D4[point ][3];
break;

case 5:  Symb[0] = constell_D5[point ]{0};
Symb(1] = constell_D5[point ][1];
Symb{2] = constell_D5[point ][2];
Symbi{3] = constell_D5[point ](3];
break;

case 6:  Symb[0] = constell D6[point ]{0];
Symbi{1} = constell_D6[point ][1];
Symb(2] = constell_D6[point ][2];
Symb(3] = constell_D6[point ][3];
break;

case 7:  Symb|[0] = constell D7[point ][0];
Symb(1] = constell_D7[point ][1];
Symb[2] = constell_D7[point ][2];
Symb[3] = constell_D7[point ][3];

break;

} /* end switch x/

FArrayShift(OrgSymbBuf,FFE_Length+Trellis_InFrameLength—1,Symb);

//Passing symbols through AWGN channel with IST
FArrayShift(ChannelBuf,CIR Length,Symb);

for(c=0;c<NumChannels;c++){
SumVar[c]=0;
for (i=0;i<CIR_Length;i++){
SumVar|[c]=ChannelBuf[i] [c|«CIR[i] +SumVar(c|;
Symb|[c]=SumVar|c];

//AWGN
for(c=0;c<NumChannels;c++){
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ul = (rand()+1) /N;
u2 = (rand()+1) /N;
Symb|c] = Symb]c] + noise(variance, ul, u2 );

//DDFSE
FArrayShift(FFE_InVector, FFE_Length,Symb);
for (c=0;c<NumChannels;c++)

SumVar[c]=0;
for (i=0;i<FFE.Length;i++)

SumVar(c]=FFE_InVector|[i] [c|«*FFE_Coefls|i][c| +SumVar|c];

Symb[c]=SumVar|c];
}

if (k>=FFE_Length)
{ .
J++;
for(t=0;t<TrellisDepth—1;t++){
for(s=0;s<NumCodeStates;s++){
Trellis [t ][ s]. StateMetric = Trellis [t+1][s]. StateMetric;
Trellis [t ][ s]. SurvivorBranch = Trellis {t+1]{s]. SurvivorBranch;
for(b=0;b<NumInBranches;b++)
Trellis [t][s]. InBranchMetric[b] = Trellis[t+1]{s]. InBranchMetric[b];
for(b=0;b<NumInBranches;b++){
for(d=0;d<CodeDimention;d++)
Trellis [t ][s]. SurvivordDSymbol[b][d]= Trellis[t-+1][s]. Survivor4DSymbol[b][d];

}

for(s=0;3<NumCodeStates;s+-){
Trellis [TrellisDepth—1][s]. StateMetric =~ = 0;
Trellis [TrellisDepth—1][s]. SurvivorBranch = 0;

for(b=0;b<NumInBranches;b++)
Trellis [ TrellisDepth—1]js}. InBranchMetric[b] = 0;
for(b=0;b<NumInBranches;b++){
for(d=0;d< CodeDimention;d++)
Trellis [TrellisDepth—1)}[s]. SurvivordDSymbol[b][d] = 0;

}oo}

if (j==1){
Trellis [ TrellisDepth —2][0]. StateMetric = 0;
for(s=1;s<NumCodeStates;s++)

Trellis [TrellisDepth—2]}[s]. StateMetric = 1000;

}
}

// 1D Metric Computation
for(p=0;p<NumPaths;p++){
for(c=0;c<NumChannels;c++){
SymbTemp{c}=Symb[c]+ISI_Estimate[p][c];

QuanSymb1D|p][c][0]=PAM_X_Detector (SymbTemp|c]);
QuanSymb1D[p][c][1]=PAM.Y Detector(SymbTemp|c|);

Metric1D|p][c][0]=pow(SymbTemp[c]— QuanSymb1Dp](c][0],2);
Metric1D|p][c][1]=pow(SymbTemp|c]— QuanSymblDp|[c][1],2);
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// 4D Metric Computation
for(s=0;3s<NumCodeStates;s++){
for{b=0;b<NumlInBranches;b++){
InBS=InBranchState[s][b};
InBSubset=InBranch4DSubset s]

[ Y
X0=Subset4DPattern(InBSubset][0][0];
X1=Subset4DPattern InBSubset][0][1];
X2=Subset4DPattern{InBSubset][0}[2];
X3=Subset4DPattern{InBSubset][{0}{3];
Y0=Subset4DPattern {InBSubset][1}{0};
Y1=Subset4DPattern{InBSubset][1]{1];
Y2=Subset4dDPattern[InBSubset]{1]{2];
Y3=Subset4dDPattern[InBSubset][1}[3];
tempx=Metric1D{InBS][0][X0]+ Metric1D[InBS][1][X1]+

Metric1D(InBS]{2]{X2]+Metric1D[InBS]{3}{X3];
tempy=Metric1D{InBS}[0][Y0]+ Metric1D[InBS][1][Y1]+
Metric1D[InBS][2][Y2]-+Metric1D[InBS]{3]{Y3];

if (tempx<tempy){
Metric4Dis][b] {0]=tempx;
Metric4D[s][b]{1]=

else {
Metric4D{s][b]{0)=tempy;
Metric4D[s](b]({1]=

}
Y/ /for s

// Calculating code—state metric for the whole trellis except the last stage
if (j>Trellis InFrameLength){
for(t=1;t<TrellisDepth—1;t++){
for(s=0;s<NumCodeStates;s++){
min=1e300;
for(b=0;b<NumInBranches;b++){
temp= Trellis[t—1][InBranchState(s][b]]. StateMetric +
Trellis [t ]{s]. InBranchMetric[b];
if (temp<min){
min=temp;
min_index=b;

}

Trellis [t][s]. StateMetric=min;
Trellis [t][s]. SurvivorBranch=min_index;

}
}

//Calculating code—state metrics of the last stage (for current symbol) of the trellis
for(s=0;s<NumCodeStates;s++){
min=1e300;
for(b=0;b<NumInBranches;b++){
Trellis [TrellisDepth—1](s]. InBranchMetric[b]=Maetric4D([s] [b] [0];
temp= Trellis[TrellisDepth—2]{InBranchState[s][b]]. StateMetric +
Trellis [TrellisDepth—1][s ]. InBranchMetric[b];
if (temp<min){
min=temp;
min_index=Db;

}

Trellis [TrellisDepth—1][s]. StateMetric=min;
Trellis [TrellisDepth—1][s]. SurvivorBranch=min_index;

for(b=0;b<NumInBranches;b++){
InBS=InBranchState(s] [b];
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InBSubset=InBranch4DSubset|[s][b];
Symb4DPatternTemp=int (Metric4D[s][b][1]);

for{d=0;d<CodeDimention;d++) {
X=Subset4DPattern|[InBSubset][Symb4DPatternTemp][d];
Trellis [ TrellisDepth—1}[s]. Survivor4DSymbol[b][d]= QuanSymb1D[InBS](d]{X];
}
}
}

// Updating Paths
for(p=0;p<NumPaths;p++){
s=p;
for(t= TrellisDepth—1;t>0;t——){
b=Trellis[t][s]. SurvivorBranch;
for(d=0;d<CodeDimention;d++) {
DecodedPath[p][t—1]}[d]=Trellis[t |[ s ]. SurvivordDSymbol[b][d];

}
s=InBranchState|s|{b];

}
}

// Decoding Symbol
if (j>=Trellis InFrameLength){
min=1e300;
for(s=0;s<NumCodeStates;s++){
temp= Trellis[TrellisDepth—1][s]. StateMetric;
if (temp<min)

min=temp;
min_index=s;

SurvivirPathNum=min_index;

for(d=0;d<CodeDimention;d++){
SymbOut[d]=DecodedPath[SurvivirPathNum][0]{d];

for (d=0;d<CodeDimention;d+-+){
if (SymbOut[d] != OrgSymbBuf[FFE_Length+Trellis InFrameLength—2]{d])

Error++;

}
}

for (p=0;p<NumPaths;p+-+){
for (c=0;c<NumChannels;c++){
for(t=0;t<Trellis InFrameLength;t++){
FBE._InVector|Trellis InFrameLength —t—1] [c]J=DecodedPathp][t][c];

}
}
for (c=0;c<NumChannels;c++){
temp=0;
for (t=0;t<FBE_Length;t++)
temp=FBE_InVector|t][c]+*FBE_Coeffs|t] {c| +temp;
ISI_Estimate[p]|c}=temp;
}
}/p
Y/ R

Yi//for k
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SER= double (Error)/double(CodeDimentionxj);
//On "average”, 1.82 bits of 2 bits in a 1D—PAMS5 symbol have error.
BER= double (Error«1.32)/double(CodeDimention=j*2);

time(&End.-Time);

cerr < < endl < < sk sk s kol osolok sk kokok ok ok sk okkk ok xorkkokaok 7 < < endl;
cerr<<”SNR: ”<<SNR«<<” dB” <<endl;

cerr<<”Number of Symbols: ” < <j< <endl;

cerr <<”Number of Errors : ” <<Error<<endl;

cerr<<”Symbol Error Rate (SER) for 1ID—PAMS5: ” <<SER< <endl;

cerr<<”Bit Error Rate (BER): ”<<BER< <endl;

cerr <<”Simulation Run Time: ” <<difftime (End_Time,Start_Time)<<” s” <<endl;
COTT < <7 stk ks ok sk s kol ok sk sk sk ko ok kokoiok ook ok << <endl< < endl;

};//main

/* * * Sk ook ok ok
/* Functions’ bodyx/
Srok ok ddok ok kSR R Rk R Rk ok o/

void FArrayShift(double A[J[NumChannels] ,int A_Length, double * NewCell){
/%
PURPOSE: Shift—right each row of A and place the NewCell as the first element of A.
NOTES: A should be 2D array of Float.
*/
for (int k=0;k<NumChannels;k++){
for (int j=A_Length—2;j>=0;j—-) {
Afj+1][k=A[j][k];

A[0][k]=NewCell[k];
}

double noise( double variance, double ul, double u2){
double pi = 3.14159265358979;
return sqrt((—2)«variancexlog(ul)) * cos(2#pixu2);

short PAM_X_Detector(double a){
/* PURPOSE: PAMS& Detector for X={—1,+1} subset.x/
if (a>=0)
return(1);
else
return(-1);

}

short PAM.Y Detector (double a){
/+ PURPOSE: PAMS5 Detector for Y={—2,0,+2} subset.x/
if (a>=1)
return(2);
else {
if (a<=-1)
return(—2);
else
return(0);
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A.3 LDPC Decoder

* *k ok ook o ok KoK ok 3 o ok sk ok ok o K KoK o o ok K o KoK oK o o ok kKol o o ook koK oK e sk ok ok kR oKk

/
PURPOSE: LDPC decoder. This program works for both full—rannk and not fullrank code.

INPUTS: A-list file name, BER file name, error limit,mazimum iteration, Number of SNR points,
SNR points, info

NOTE1: This program is orginally porvided by the HCDC labratorty at the University of Alberta
and then modidied by the author for the purposes of this thesis.

NOTE2: Lch is a long double.Lch values will be Leh values used in LDPCdec, which are
opposite sign to initially calculated Lch values where Leh=log(p(v=1)/p(v=0))) Prints
screen output every 100000 frames All—zeros codeword is sent as usual.
/*************************************************************************************/

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

#ifndef M_PI

#define M_PI 3.14159265358979323846
#endif

#define DISPLAY 0

FILE xfilein;

FILE xberfileout;
FILE *ferhistfileout ;
FILE xERRpos._file;

double MAX_R48= 2147483648.0;

char «filein_name;
char xberfileout_name;

int itermax;

int SNRnum;

float *SNR;

long double *NO;
unsigned short *randseed;

int n;

int m;

int info;

int maxvardegree;
int maxpardegree;
int xvardegree;
int xpardegree;
int xvarnode;

int xparnode;

int xvarindex;
int xparindex;

int xbits;
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int *x;
long double xy;

long *errors;

long xcwerrors;

long xcwdeterrors;
long *cwundeterrors;

long *frameerrors;

long xcwdetframeerrors;
long xcwundetframeerrors;
float xcwdetber;

float xcwundetber;

float *fer;

float xcwdetfer;

float xcwundetfer;

float xcwber;

/+output of LDPC decoder x/
long *nerrors;

long xcwerrs;

long *chksum;

int =xiters;

float xber;
long double xvarmsg;
long double xparmsg;

long double xchannelmetric;
long double xLch;

int* itmppointer;

longx ltmppointer;

float* ftmppointer;
doublex dtmppointer;

long double xldtmppointer;

/*
statistics memory allocation variables initial allocation 1000 memory blocks
expansion of 1000 ok says if expansion was successful

*/

long «fe;

long fe_length=1000;
int ok.fe;

long fe.count=0;

long *cwdetfe;

long cwdetfe_length=1000;
int ok_cwdetfe;

long cwdetfe_count=0;

long *cwundetfe;

long cwundetfe_length=1000;
int ok_cwundetfe;

long cwundetfe_count=0;

int expansionhist=1000;

int *ERRpos;

float *ERRout;

int ERRok;

clock-t starttime, endtime;
double cpu-time_used;
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/* for termination signal handling x/
struct sigaction act, oact;
void termhandler(int sig);

void AWGN(long double *out, int *inp, long double var, int len);

void BPSKmetrics(long double xout, long double xinp,long double mean, long double var, int len);
void probtoLLR(long double *out, long double *inp, int len, int highis);

long double _atanhl(long double x);

void TransposeM (intx Mx, int maxrow, int maxcol);

void hist(long* buffer, long length, charx printtext, FILE* filehist );

void swap(long a[], long i, long j);

int Random(long i, long j);

void quicksort(long a[], long left, long right);

void LDPCdec(
long *nerrors,
long xcwerrs,
long *chksum,
int xiters,

int xvarnode,
int xvarindex,
int *parnode,
int *parindex,
long double xLch,
int xbits,

int itermax,
int L,

int M,

int info,

int maxvardeg,
int maxpardeg

)
int main(int arge, char xargv[ |, char xenvp{]) {

/* Read Alist == Codex/

int numclosed;

long i;

long j;

long k; /xfor loop counters/
long double rate;

int errlim;

int detecterr;

unsigned short ss[3]={0,0,0};

if (arge ==1){

printf (*| e
printf (”| Error: The program needs input parameters see below: [\n”);
printf (| [\n");
printf (*| Help of the Unix/Mac OS version LDPC decoder \n”);
printf ("| LDPCdecoder {A list file name}, {BER file name},... [\n”);
printf (” | {error limit },{maximum iteration}, \n");
printf (" | {Number of SNR points},{SNR points} [\n");
printf (" | {info} \n");
printf (?| \n”);
printf (|  This simulator is good for error rates up to le—12 [\n");
printf (| HCDC LAB. Dec. 2004 \n”);
printf (* | ),
return(0);

else {
it ((argv[l]=="1")]| (argv[l]=="F") || (argv[l]=="—D") ||

(argv[l]=="—H") || (argv[l]=="/b") || (argv[1]=="/F")
(argv[l]=="/7")|argv[1]=="—7") || (argv[1]=="7"))
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Help of the Unix/Mac OS version LDPC decoder \n”);

|

printf ("] LDPCdecoder {A list file name}, {BER file name},... |\n”);
printf (” | {error limit },{maximum iteration}, \n”);
printf ("] {Number of SNR points},{SNR points}, |\n");
printf (” | {info} [\n”);
printf (" | \n”);
printf (”|{ This simulator is good for error rates up to le—12 [\n");
printf(”| HCDC LAB. Dec. 2004 \n");
printf ("] \n”);

}

filein_name=argv[1];

printf (" A list file : %s\n” filein-name);

berfileout_name=argv(2];

printf (" BER file output to : %s\n” berfileout_name);

sscanf (argv (3], ” %d” &errlim);

printf (” Error limit : %d\n” errlim);

sscanf (argv [4],” %d” &itermax);

printf (” Maximum Iteration : %d\n”,itermax);

sscanf( argv [5],” %d” ,&SNRnum);
printf (” Number of SNR points : %d\n”,SNRnum);
SNR = (float *)calloc{ SNRnum, sizeof( float ) );
for (i=0;i<SNRnum;i++){
sscanf( argv[6+i], "%, (SNR+i) );
printf ("at SNR : %A\n” *(SNR+1));

/+ Input random seed as parameter — is short int array of 3 x/
randseed=(unsigned short x)calloc(3, sizeof(unsigned short));
for (i=0;i<3;i++){

sscanf( argv]6+SNRnum-i], ”%hd”, (randseed+i));

printf (" random seed . %hd\n” ,*(randseed+i));
sscanf( argv[9+SNRnum],” %d”,&info);
printf (" Number of info bits k  : %d\n”,info);
/xabort();x/
printf (| LDPC All zero decoder for regular/irregular code {\n”);
printf(”| By Sheryl Howard \n");
printf (7| Siavash Sheikh Zeinoddin \n”);
printf (7| December 2004 \n”);
printf (| [\n”);
printf (”|  Caution: Using 48 bit random generator \n”);
printf (*| \n”);
printf (|  This simulator is for error rates up to le—=12 [\n”);
printf (”| HCDC LAB. Dec. 2004 \n”);
printf (*| \n”);

/* Input seed as parameter x/
seed48(randseed);
starttime = clock();

errors =(long #*)calloc( SNRnum#itermax, sizeof( long ) );
if ( errors == NULL )

printf ( ”Can’t allocate memory\n” );
cwerrors=(long )calloc( SNRnum+itermax, sizeof( long ) );
if ( cwerrors == NULL )

printf( ”Can’t allocate memory\n” );
cwdeterrors=(long *)calloc( SNRnum, sizeof( long ) );
if ( cwdeterrors == NULL )

printf ( ”Can’t allocate memory\n” );
cwundeterrors=(long *)calloc( SNRnum, sizeof( long ) );
if( cwundeterrors == NULL )

printf( ”Can’t allocate memory\n” );
ber=(float *)calloc( SNRnumxitermax, sizeof( float ) );
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if( ber == NULL )
printf ( ”Can’t allocate memory\n” );

cwber=(float *)calloc{ SNRnumsitermax, sizeof( float ) );
if ( cwber == NULL )
printf ( ”Can’t allocate memory\n” );

frameerrors=(long *)calloc( SNRnum, sizeof( long ) );
if ( frameerrors == NULL )
printf ( ”Can’t allocate memory\n” );

cwdetframeerrors=(long )calloc( SNRnum, sizeof( long ) );
if ( cwdetframeerrors == NULL )

printf( ”Can’t allocate memory\n” );
cwundetframeerrors=(long *)calloc( SNRnum, sizeof( long ) );
if ( cwundetframeerrors == NULL )

printf ( ”Can’t allocate memory\n” );

cwdetber=(float *)calloc( SNRnum, sizeof( float ) );
if( cwdetber == NULL )

printf ( ”Can’t allocate memory\n” );
cwundetber=(float )calloc( SNRnum, sizeof( float ) );
if( cwundetber == NULL )

printf ( ”Can’t allocate memory\n” };

fer=(float *)calloc( itermax, sizeof( float ) );
if( fer == NULL )

printf ( ”Can’t allocate memory\n” );
cwdetfer=(float x)calloc( itermax, sizeof( float ) );
if ( cwdetfer == NULL )

printf ( ”Can’t allocate memory\n” );
cwundetfer=(float *)calloc( itermax, sizeof( float ) );
if ( cwundetfer == NULL )

printf ( ”Can’t allocate memory\n” );
/xfor decoder outputx/
nerrors=(long #)calloc( itermax, sizeof( long ) );
if ( nerrors == NULL )

printf ( ”Can’t allocate memory\n” );
cwerrs=(long *)calloc( itermax, sizeof( long ) );
if( cwerrs == NULL )

printf ( ”Can’t allocate memory\n” );
chksum=(long *)calloc( 1, sizeof( long ) );
if( chksum == NULL )

printf ( ”Can’t allocate memory\n” );
iters =(int *)calloc( 1, sizeof( int ) );
if ( iters == NULL)

printf ( "Can’t allocate memory\n” );

/x histogram statisrtic variablesx/
fe=(long *)calloc( fe_length, sizeof( long) );
if( fe == NULL ){
printf ( ”Can'’t allocate memory\n” );
ok_fe=0;

telse

ok_fe=1;
cwdetfe=(long *)calloc( cwdetfe_length, sizeof( long ) );
if ( cwdetfe == NULL ){

printf ( ”Can’t allocate memory\n” );

ok_cwdetfe=0;

}else
ok_cwdetfe=1;

cwundetfe=(long *)calloc( cwundetfe_length, sizeof( long ) );
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if ( cwundetfe == NULL ){
printf ( ”Can’t allocate memory\n” );
ok_cwundetfe=0;

}else
ok_cwundetfe=1;

/% Open for read (will fail if file ”data” does not exist) x/
if( (filein = fopen( filein_-name, "r” )) == NULL )

printf ( " The Alist file was not opened check the name and existence\n” );
exit (2);

else{
printf( "The file Alist was opened\n” );
fscanf( filein ,”%d” ,&n);
fscanf( filein ,” %d” ,&m);
/* info=n—m; x/
fscanf( filein ,”%d” ,&maxvardegree);
fscanf( filein ,” %d” ,&maxpardegree);

vardegree = (int *)calloc( n, sizeof( int ) );
if ( vardegree == NULL )

printf ( ”Can’t allocate memory\n” );
itmppointer=vardegree;
for(i=0;i<n;i++,itmppointer+)

fscanf( filein ,” %d” itmppointer);

pardegree = (int *)calloc( m, sizeof( int } );
if ( pardegree == NULL )

printf ( ”Can’t allocate memory\n” };
itmppointer=pardegree;
for( i=0;i<m;i++,itmppointer++)

fscanf( filein ,”%d” itmppointer);

varnode = (int x)calloc( nxmaxvardegree, sizeof( int ) );
if ( varnode == NULL )
printf ( ”Can’t allocate memory\n” );
itmppointer=varnode;
for( i=0;i<(nxmaxvardegree);i+-+,itmppointer++)
fscanf ( filein ,”%d” ,itmppointer);

parnode = (int *)calloc( mxmaxpardegree, sizeof( int ) );
if ( parnode == NULL )

printf ( ”Can’t allocate memory\n” );
itmppointer=parnode;
for( i=0;i<m+maxpardegree;i++,itmppointer+-+)

fscanf ( filein ,”%d” ,itmppointer);

varindex = (int *)calloc( nxmaxvardegree, sizeof( int ) };
if ( varindex == NULL )
printf ( ”Can’t allocate memory\n” );

parindex = (int *)calloc( msmaxpardegree, sizeof( int ) );
if ( parindex == NULL )
printf ( ”Can’t allocate memory\n” );

/* Newly added x/
ERRpos=/(int *)calloc( n, sizeof( int ) );
if( ERRpos == NULL )

printf ( ”Can’t allocate memory\n” );
ERRout=(float *)calloc( n*SNRnum, sizeof( float ) );
if( ERRout == NULL )

printf ( "Can’t allocate memory\n” );
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//index matriz for variables

int varrow;
long lindtmp;
for(i=0;i<n;i++){
varrow=0;
if (DISPLAY) printf(”\n”);
for(j=0;j<maxvardegree;j++)
if ((x(varnode+ixmaxvardegree+j))!=0)
Varrow-+-;

for(k=0;k<varrow;k++){
/+ all these numbers are indezed one more than Cx/
lindtmp= (*(varnode-i*maxvardegree+k)};

for(j=0;j<maxpardegree;j++)
if ((*(parnode+(lindtmp—1)+maxpardegree-+j))==i+1){
*(varindex-+i*maxvardegree+k)= j+1;
if (DISPLAY) printf(”%d " ,j+1);

}

for(i=0;i<n;i++){
if (DISPLAY) printf(”\n");
for(j=0;j<maxvardegree;j++)
if (DISPLAY) printf(”%d ” ,*(varindex+ixmaxvardegree+j));

/xindex matriz for parity nodesx/
int parrow;

for(i=0;i<m;i++){
parrow=0;
if (DISPLAY) printf(”\n");
for(j=0;j<maxpardegree;j--+)
if ((x(parnode+ixmaxpardegree+j))!=0)
parrow-+-+;

for(k=0;k<parrow;k-++){
/* all these numbers are indexed one more than Cx/
lindtmp= (*(parnode-+ixmaxpardegree+k));

for(j=0;j<maxvardegree;j+-+)
if ((*(varnode+(lindtmp—1)*maxvardegree-+j))==i+1){
#(parindex+i*maxpardegree+k)= j+1; /x original matlab index starting from 1x/
if (DISPLAY) printf(”%d ”,j+1);

}

for(i=0;i<m;i++){
if (DISPLAY) printf(”\n”);
for(j=0;j<maxpardegree;j++)
if (DISPLAY) printf(” %d " *(parindex+ixmaxpardegree+j));

}/xelsex/

/* initializing message in variable and parity check nodex/
varmsg=(long double #)calloc(nxmaxvardegree, sizeof( long double ) );
if ( varmsg == NULL )

printf ( ”Can’t allocate memory\n” );

parmsg=(long double x)calloc(m+maxpardegree, sizeof( long double ) );
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if ( parmsg == NULL )
printf ( ”Can’t allocate memory\n” );

printf (" berfilename: %s \n”,berfileout_name);
if ( (berfileout = fopen( berfileout_-name, ”a” )) == NULL )

printf ( " The file 'BERdata’ was not opened\n” );
exit (3);

else{
printf ( "\nThe file for Biterrorrate was opened\n” );

/* Signal Handling Parameters x/
act.sa_handler = termhandler;
sigemptyset (&act.sa_mask);

act. sa_flags =0;

/* Signal Termination Handler x/
sigaction (SIGTERM, &act,NULLY};

/xNoise parametersx/
rate=(long double )(info)/(long double)n;
NO=(long double x)calloc( SNRnum, sizeof(long double ) );

if( N0 == NULL)
printf ( ”Can’t allocate memory\n” );

else {
ldtmppointer=N0;
for(i=0;i<SNRanum;i++,ldtmppointer++)
*ldtmppointer=pow(10,(long double)(—1xSNR[i}/10))/rate;
}
/*Encodingx/

/*send all zeros«/
bits=(int *)calloc( n, sizeof( int ) );

if( bits == NULL )
printf ( ”Can’t allocate memory\n” );

/* Transmit as BPSKx/
x=(int *)calloc( n, sizeof( int ) );

if( x == NULL )
printf{ ”Can’t allocate memory\n” );

else {
itmppointer=x;
for(i=0;i<n;i++,itmppointer+-+)
xitmppointer=2x(x(bits+i))—1;
}

y=(long double *)calloc( n, sizeof( long double) );

if( y == NULL )
printf ( ”Can’t allocate memory\n” );

channelmetric=(long double x)calloc( 2*n, sizeof( long double) );
if ( channelmetric == NULL )

printf ( "Can’t allocate memory\n” };

Lch=(long double x)calloc( n, sizeof( long double) );

if ( Lch == NULL )
printf ( ”Can’t allocate memory\n” );

TransposeM (varnode, n, maxvardegree);

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TransposeM(varindex, n, maxvardegree);
TransposeM(parnode, m, maxpardegree);
TransposeM (parindex, m, maxpardegree);

/***************************************************************************

* SNR LOOP

sk sk stk o sk ook ok ok ok o sk otk sk ok ok ok ok ok sk st ok s ok ok ook ok ook oK kst ok ok ok ok s skok sk ok ok sk ok sk ok ok sk sk ok ok o sk skok ook ok ok */
int s;

int nloops;

for(s=0;s<SNRnum;s++)

nloops =0; /x Reset number of loops for new SNR x/
fprintf ( berfileout ,”SNR=%4.2f\n” ,*(SNR+s));

#(frameerrors+s)=0;
*(cwdeterrors+s)=0;
#(cwundeterrors+s)=0;
*{cwdetber+s)=0.0;
*{cwundetber+s)=0.0;
*(cwdetframeerrors+s)=0;
*(cwundetframeerrors+s)=0;

memset(fe,0,sizeof(long)+fe_length);

fe_count=0;
memset(cwdetfe,0,sizeof(long)xcwdetfe_length);
cwdetfe_count=0;
memset(cwundetfe,0,sizeof(long)*cwundetfe_length);
cwundetfe_count=0;

while(*(frameerrors+s)<errlim){
/xsend over AWGN channelx/

AWGN(y, x, *(N0+s)/2, n);
BPSKmetrics(channelmetric, y, 1, #(N0+s)/2, n);
probtoLLR(Lch, channelmetric, n, 1); /* I negates the Lch so neg LLR means x=1 likely /
/*message—passing Decodingx/
LDPCdec(nerrors, cwerrs, chksum, iters,
varnode, varindex, parnode, parindex,
Lch, bits, itermax, n, m, info,
maxvardegree, maxpardegree);
/*Calculate Error ratex/
/* merrors are info bits errorsx/
ERRok=0;
for(i=0; i<info; i++ ){
if (abs(x(ERRpos+i))){
ERRok=1;
fprintf (ERRpos file,” %d ” ,i);
*(ERRout+s*n+i)= x(ERRout+s*n+i)+{float)(abs(x(ERRpos+i)));
}

if (ERRok) {
for(i=info; i<n; i++ ){
if (abs(x(ERRpos+i})){
fprintf (ERRpos_file,” %d 7 ,i);
*(ERRout+s*n+i)= *(ERRout+s*n+i)+(float)(abs(x(ERRpos+i)));

}
}
if (ERRok) fprintf(ERRposfile,”\n");
if (ERRok) {
for(i=0; i<n; i++) {
fprintf (ERRpos_file,” %Lf ” *(Lch+i));
}
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fprintf (ERRpos_file,” \n”);

/% check to see if fell out early, possibly from undetected codeword error x/
if ((xiters) < itermax—1)
for( i=(xiters);i<itermax;i++){
*(nerrors + i)=x*(nerrors+(xiters));
*(cwerrs + i)=x(cwerrs+(xiters));

for( i=0;i<itermax;i++) *(errors+s*itermax-+i)+=x(nerrors+i);
nloops—+-+;

for( i=0ji<itermax;i++) *(ber+s*itermax+i)=
((float ) (x( errors-sxitermax+i)))/((float)nloops«(float)info);

/xcwerrs is coded bit errorsx/
detecterr =0;
if (x(cwerrs+itermax—~1)>0) /x error at last iteration =/
if ((xchksum) !=0) {/x error detectedx/
*(cwdeterrors+s)+= (x(cwerrs+itermax—1));
*(cwdetber+s)= ((float)(x(cwdeterrors-ts)))/((float)nx(float)nloops);

else {/xundetected errors/

x(cwundeterrors+s)+= (x(cwerrs-+itermax—1));

*(cwundetber+s)= ((float)(={cwundeterrors+s)))/((float)nx(float)nloops);
b

for( i=0;i<itermax;i++){
*(cwerrors+sxitermax+i)+= (x(cwerrs+i));
*(cwber+s«itermax-+i)=((foat)(x(cwerrors+sxitermax-i))) /((float)n«(float )nloops);

b

if (*¥(nerrors+itermax—1)>0) {
*(frameerrors+s)+=1;

/xbuilding a hist list processed later which expands itself as memory is neededx/
if (ok-fe) {
*(fe+fe_count)=+(nerrors+itermax—1);
fe_count+-+;
if (fe_count==felength) {
if( (fe =(long ») realloc(fe, ((felength+expansionhist)xsizeof( long )) ))== NULL )
ok_fe=0;
else {
ok_fe=1;
fe_length +=expansionhist;

telse
printf ("I am not able to record more histogram data on frame errors”);

printf (" Number of loops=%d\n”,nloops);
printf (" Number of errors are:\n”);
for (i=0;i<itermax;i++) printf("%7d, ”,(+(nerrors+i)));

printf (" \n”);
printf (" Total errors at SNR=%6.2f are:\n” ,*(SNR+s));
for (i=0ji<itermax;i++) printf(” %15d ”,(x(errors+sxitermax-+i)));
printf (”\n”);
printf (" Total frame errors are: ”);
printf (”%15d \n”,*(frameerrors+s));
}

/xif codeword frame has errorsx/
if (x(cwerrs+itermax—1) >0)
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if ((*xchksum) !=0){
detecterr =1;
(*(cwdetframeerrors+s))++;
/xbuild  statistics of errors per framesx/

if (ok_cwdetfe) {
*(cwdetfe+cwdetfe_count)= (x(cwerrs+itermax—1));
cwdetfe_count++;
if (cwdetfe_count==cwdetfe_length) {
if( (fe =(long %) realloc(cwdetfe,
((cwdetfe_length+expansionhist)+sizeof(long))))== NULL)
ok_cwdetfe=0;
else {
ok_cwdetfe=1;
cwdetfe_length-+=expansionhist;

telse
printf ("I am not able to record more histogram on codeword frame errors”);
telse {
(*(cwundetframeerrors+s))-+-;

if (ok_cwundetfe) {
*(cwundetfe+cwundetfe_count)= (x(cwerrs+itermax—1));
cwundetfe_count++;
if (cwundetfe_count==cwundetfe_length) {
if ( (fe =(long *) realloc(cwundetfe,
((cwundetfe_length-+expansionhist)*sizeof(long))))== NULL )

ok_cwundetfe=0;

else {
ok_cwundetfe=1;
cwundetfe_length+=expansionhist;

}else
printf ("I am not able to record more histogram on codeword frame errors”);

if ((nloops % 100000)==1) {
printf (" Number of frames = %d\n” ,nloops);

printf (” Total errors:\n”");
for (i=0;i<itermax;i++) printf(” %d ”,(*(errors+s*itermax-+i)));

printf ("\n”);
printf (” Bit Error rate:\n”);
for (i=0;i<itermax;i++) printf(” %If ”,(*(ber+s+itermax+i)));

printf ("\n Frame Errors = %d\n ”,x(frameerrors+s));
Y/* if nloopsx/

}/*while frameerr...x/

*( fer +s)=(((float)x(frameerrors+s))/(float)nloops);
*(cwdetfer+s)=(((float)*(cwdetframeerrors+s))/(float)nloops);
*(cwundetfer+s)=(((float)*(cwundetframeerrors+s))/(float)nloops);

/% print error count to BER file x/

fprintf ( berfileout ,” %d %d %d\n” itermax,info,n);

fprintf { berfileout ,” %d\n” ,nloops);

for (i=0;i<itermax;i++) fprintf(berfileout,” %d ”,(x(errors+s*itermax+i)));
fprintf ( berfileout ,”\n\n");

fprintf ( berfileout ,” info errorrate= %8.6e, errors=%d, %d iterations\n” ,x(ber-+sxitermax+itermax—1),
*(errors +s*itermax-+itermax—1),itermax);

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



}/xfor s in SNRx/

free( vardegree );
free( pardegree );
free( errors );

free{ cwerrors );

free( cwdeterrors );

free( cwundeterrors );
free( frameerrors );

free( cwdetframeerrors );
free( cwundetframeerrors );
free( cwdetber );

free ( cwundetber );

free( ber );

free( varmsg );

free( parmsg );

free{ NO);

free( SNR );

free( bits );

free( x );

free( y );

free( channelmetric );
free( Lch );

free( nerrors );

free( cwerrs );
free( chksum );
free( iters );
free( cwber );
free (ERRout);
free(ERRpos);

/* Close stream x/

if ( fclose ( filein ) )
printf ( ”The file 'data 1’ was not closed\n” );

/* All other files are closed: */

if (fclose (berfileout ))
printf ( *The file 'data 2’ was not closed\n” );

endtime = clock();
cpu_time_used = ((double) (endtime - starttime)) / CLOCKS_PER_SEC;

printf (”\nTime elapsed = %If\n”, cpu_time_used);

return(0);

}x if argex/

/*** *okk sk sk o 3ok sk ok sk ok 3Kk 3 ok ok Kk ok oo ok ok o s ok K ok 3k ok sk ok o ok ok KoK ok oK Kk */
long double _atanhl(long double x) {
return(0.5xlog((1+x)/(1-x)));

}

S HRAARRA A AR AR IAKIK IR KK KA A KA K * * ok Konk ok
void AWGN(long double xout, int xinp, long double var, int len){
int i;

long double x*a;
long double *b;

a=(long double x)calloc( len, sizeof( long double) );
if( a == NULL )
printf( ”Can’t allocate memory\n” );
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b=(long double x*)calloc( len, sizeof( long double) );
if( b == NULL)
printf( ”Can’t allocate memory\n” );

for(i=0;i<len;i++){
*(a+i)=(long double)lrand48() / (1.0+(long double) MAX 1R48);
*(b+i)=(0.5+(long double)lrand48()) / (1.0+(long double) MAX R48);
*(out+i)= (long double) *(inp+i);
*(out+i)+=(long double)cos(2.0+M_PLx (x(a+i))) *
sqrt (—2.0xlog((*(b+1))))*(long double)sqrt(var);

}
free( a );
free( b );
}
/** *kk koK kokok ok ok of ok 3 ok e 3k ok o e 3 e 3K 3k ok ok ke ke Sk Ok Sk ek sk e sk stk sk kool kel ok sdeokok */
void BPSKmetrics(long double *out, long double *inp,long double mean, long double var, int len){
int i;
long double tmpl;
long double tmp2;
/+for antipodal signalling+/
for(i=0si<len;i++){
tmpl=(long double) exp(pow((*(inp+i)+mean),2)/(—2xvar));
tmp2=(long double) exp(pow((*(inp+i)—mean),2)/(—2xvar)};
*(out+2+i) =tmpl/(sqrt(M_PIx2xvar));
*(out+2xi+1)=tmp2/(sqrt{M_PI«2xvar));
}
}

/***********************************************************************/
void probtoLLR(long double xout, long double *inp, int len, int highis){
int i;

for(i=0;i<len;i++){
if ((*(inp+2xi))!=0.0)
x(out+1)= *(inp+2xi+1)/(*(inp+2+i));
else
*(out+i)=exp(50);

if ((*(out+i))<= 1e—-22)
*(out+i)=(long double)exp(—50);

else if ((x(out+i))>=1e22)
*(out+i)=(long double)exp(50);

*(out+i)=(long double) —1x highisxlog(*(out+i));

}
;*** k %k Kk * ***************************************/
void TransposeM (int* Mx, int maxrow, int maxcol)}{

int xtempi;

int j;

int i

tempi = (int *)calloc( maxcolxmaxrow, sizeof( int ) );
if ( tempi == NULL ){
printf ( ”Can’t allocate memory\n” );
exit (1);

}

for(j=0;j<maxrow;j++)
for(i=0;i<maxcol;i++)
*(tempi+ixmaxrow+j)= *(Mx+j*xmaxcol4i);

for(i=0;i<maxrowxmaxcol;i+-+)
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*(Mx+i)= *(tempi+i);
free (tempi);

}

/* ok *okk o e L L Lt LT
void swap(long af}, long i, long j) {

long tmp = ali];

a[i] =afj];

a[j] = tmp;

SRk Rk Rk Rk ok ko Rk SRR KR SRR R Rk ok sk sk ok ok
int Randij(long i, long j) {
return i + rand() % (j—i+1);

SERARKEEEAAREFAFKAAAEAKFAAR KK KKK KKK RAK A AR R AR AR KKK KRR A Ao K
void quicksort(long a[], long left, long right) {
int last = left, i;

if (left >= right) return;

swap(a, left , Randij(left , right ));
for (i = left + 1; i <= right; i++)
if (a[i] < a[left])
swap(a,++last,i);
swap(a, left , last );
quicksort (a, left , last —1);
quicksort (a, last +1,right);
}*********************************************************************** */
void hist(longx buffer, long length, charx printtext, FILE* filename){
/x fe_length=1000 length if the buffer in general
fe-count length used till now which is passed to thehist graph

x/

long* hist_buffer ;

long max_bin;

long i;

/%

printf (" before quicksort\n”);
for (i=0;i<length;i++)
printf (" %d 7, = (buffer+i));

¥

quicksort ( buffer, 0, length—1);
/% printf ("\nAfter quicksort\n”);
for (i=0;i<length;i++)
printf ("%d 7, *(buffer+1i));
*
max_bin= x(buffer+length—1);
hist_buffer =(long *)calloc( max_bin,sizeof( long double) );
if( hist_buffer == NULL )
printf ( ”Can’t allocate memory buffer for histogram\n” );
for(i=0;i<length;i++)

if (x( buffer+i)!=0)
*( hist_buffer +(x(buffer+i))—1)4-=1;

for(i=0;i<max_bin;i++)
if (x( hist-buffer +1)!=0)
fprintf (filename, printtext ,(i+1),*( hist_buffer +i));

free ( hist_buffer );
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}

/********************************************************************** */
void LDPCdec(

long *nerrors,

long xcwerrs,

long *chksum,

int xiters,

int xvarnode,
int xvarindex,
int xparnode,
int *parindex,
long double *Lch,
int xbits,

int itermax,
int L,

int M,

int info,

int maxvardeg,
int maxpardeg)

int iter ; /* iteration counter x/

int iterfinal ; /* final iteration value when all parity checks=0 x/
int var; /* variable node counter x/

int par; /* parity check node counter x/

int i, /* edge connection (message) counter x/

int Hrow; /* parity check H row counter x/

int xhat; /* LDPC decoded codeword bit (hard decision) =/

int diff; /* difference between zhat and bits x/

int checksumall; /* sum of all parity check sums x/

int Varrow; /* row pos in parmsg matric to variable node var */
int varcol ; /* col pos in parmsg matriz to variable node var x/
int parcol; /* col pos in varmsg matriz to parity check node par */

/* vector of parity check sums */

/% Tow pos in varmsg maotriz to parity node par x/

/% number of info errors in LDPC decoding hard decision */
/x number of cw bit errors in LDPC decoding hard decision x/

long *checksum,;
int xparrow;
long xerrors;
long xcwerrors;

long double LLRtanh;
long double extrinsic;

/* prod(tanh(LLR msgs/2)) at parity nodes x/
/+ divide LLRtanh by tanh(msg/2) to get extrinsic x/

/* parity msgs to each variable node *x/
/* sum of LLR messages at variable nodes x/
/% LLR messages out of parity check nodes x/
/% variable msgs to each parity node *x/
/+ LLR messages into parity check nodes »/

long double xvarnodemsg;
long double *LLRx;

long double *parmsg;
long double xparnodemsg;
long double xvarmsg;

/* Computational Section ————~———— x/

/* Initialize with zeros x/

varnodemsg = (long double x)calloc(maxvardeg,sizeof(long double));
varmsg = (long double *)calloc(Lxmaxvardeg,sizeof(long double));
LLRx = (long double #)calloc(L,sizeof(long double));

parrow = (int x)calloc (maxpardeg,sizeof(int));

parnodemsg = (long double *)calloc(maxpardeg,sizeof(long double));
parmsg = (long double x)calloc(M*maxpardeg,sizeof(long double));
checksum = (long =*)calloc(M,sizeof(long));

errors = (long x)calloc(itermax,sizeof(long));

cwerrors = (long *)calloc(itermax,sizeof(long));

iterfinal =itermax; /x initialize to itermaz */
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/* Message— Passing Decoding Iterative Loop x/
for (iter =0; iter <itermax; iter++) { /x iterate for itermaz loops */

/* Variable Node Processing: Sum LLR messages x/
for (var=0; var<L; var++) LLRx[var] = Lch[var];

for (var=0; var<L; var++) { /* each variable node +/
for (j=0; j<maxvardeg; j++) { /* each edge connection */
varrow=varnode[j*L + var]; /* row. in parmsg, 1 to M */
varcol =varindex[j*L + var]; /* col in parmsg, 1 to mazpardeg */
Jxprintf("\n %d %d”, varrow, varcol);x/

if (varrow) { /* 0 denotes no edge connection for that degree x/
varnodemsg|j]=parmsg[(varcol—1)xM + varrow—1];

} else {
varnodemsg[j}=0.;

LLRx[var]+=varnodemsglj]; /* sum all msgs to variable node var */

for (j=0; j<maxvardeg; j++) { /* each edge connection */
varrow=varnode[j*L + var]; /* row in parmsg, 1 to M */
/% subtract off same edge to get extrinsic msg from var to parity chk varrow x/
if (varrow) varmsgj*L, + var]=LLRx[var]—varnodemsg(j];

} /+ end of variable node processing loop x/
/x Hard Decision and Errors x/
memset (checksum,0,sizeof(long)*M);

xhat=0;
for (var=0; var<L; var++) { /* each variable node */
if (LLRx[var]<=0) xhat=1; /x negative LLR means a 1 is most likely x/
if (LLRx[var]>0) xhat=0; /+ positive LLR means a 0 is most likely */
/* check parity check sum x/
for (j=0; j<maxvardeg; j++) {
if (varnode[j*L + var]) {
Hrow=varnode[j*L + var};
checksum[Hrow—1)+=xhat;

}

}

/v if ((var<5)||(var>L~35)) printf(”checksum[1]=%d\n”,checksum(0]); */
/* check for errors x/

diff =xhat—bits[var];

/* (x(ERRpos+var))=diff; */
Jeprintf("%d 7, diff);x/
if (diff <0) diff=—diff;

*(ERRpos-+var)=difl;

if (var<info) errors|iter]+=diff; /x info bit errors — systematic code */
cwerrors | iter |4+=diff;

/* see if all parity check sums are satisfied or we have undetected err */
checksumall=0;

/* take modulo 2 of checksum x/

for (Hrow=0; Hrow<M; Hrow++) checksum[Hrow]%=2;

/x then add together; if checksum ==0, all checks are satisfied =/

for (Hrow=0; Hrow<M; Hrow++) checksumall4+=checksum{Hrow};

/«  printf(”total check sum=%d\n”,checksumall); x/

/* if all parity check sums are satisfied, stop decoding now x/

if (checksumall==0) iterfinal=iter;
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if (checksumall==0) break;
/* Parity Check Node Processing: full tanh processing */

for (par=0; par<M; par++) { /* each parity check node x/
LLRtanh=1.0;
for (j=0; j<maxpardeg; j++) { /* each edge connection */
parrow(j]=parnode[j*M + par]; /* row in varmsg, 1 to L x/
parcol=parindex[j*M + par]; /* col in varmsg, 1 to mazvardeg x/
if (parrow[j]>0) { /* 0 denotes no edge connection for that degree %/
parnodemsg][j]=varmsg[(parcol—1)«L + parrow[j]—1];
/* prod(tanh(all msg to parity node par)) x/
LLRtanh*x=tanh(parnodemsg(j]/2.0);

}

for (j=0; j<maxpardeg; j++) { /* each edge connection */
if (parrow[j]>0) {
/x divide out same edge to get extrinsic msg from parity to variable %/
extrinsic =LLRtanh/tanh(parnodemsg]j]/2.0);
if (extrinsic > 0.9999)
parmsg[j*xM + par]=10.0;
else if (extrinsic < —0.9999)
parmsg[j*M + par]=—10.0;
else parmsg[j*M + par]=2.0+ atanh(extrinsic);

}

} /* end of parity check node processing loop */

} /x end of iteration loop %/

/* Output x/

for (iter=0; iter <itermax; iter++) {
nerrors| iter | = errors| iter ;
cwerrs|iter] = cwerrors|iter ];

*xchksum=checksumall;
/* printf(”parity check sums satisfied at iteration %d\n”iterfinal); x/
* iters = iterfinal ;

free (varnodemsg);
free (varmsg);

free (LLRx);

free (parrow);

free (parnodemsg);
free (parmsg);

free (checksum);
free (errors );

free (cwerrors);

}

/*  Signal Handling Routine =/
void termhandler(int sig) {
fitush (NULL);
exit (0);
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A.4 ISI Channel Model

/*************************************************************************************

PURPOSE: The ISI function applies the channel ISI (as an FIR filter) to the input sequnce.

INPUTS and OUTPUTS:
out: Output sequence
inp: Input sequence

len: sequence length

/ *k *****************************************************************/
RRREAREAKKKRAK

The following command lines should be placed before the "main” function (i.e. as GLOBAL variables etc)
Rk kR xok ok /

#include <fstream.h>
#include <iostream.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>

// Channel Impulse Response (CIR)
#define CIR._Length 30
long double CIR[CIR Length]={0};

// Reading CIR coefficients from CIRCoeffs.tat

ifstream CIRCoeffsFile;

CIRCoeffsFile.open(” CIRCoefls.txt”);

for (int k=0;k<CIR _Length;k++){
CIRCoeflsFile>>CIR[k];

}
CIRCoeftsFile.close ();

/************************************************************************************ */
void ISI(long double *out, long double *inp, int len)

void FArrayShift(long double A[},int A Length, long double NewCell);

long double ChannelBuf[CIR Length]={0};
long double S;

for(int i=0;i<len;i++){
FArrayShift(ChannelBuf,CIR Length,*(inp+i));
S=0;
for (int j=0;j<CIR_Length;j++){
S += (long double) ChannelBuf[j]«CIR[]];
*(out+i)=S;
}
}
SRR Rk R AR R KRR K AR KR K A AR SRR AR IR R Rk HH R AR AR ROk &/
void FArrayShift(long double A[],int A _Length, long double NewCell)
/+ PURPOSE: Shifts each row of A and places the NewCell as the first element of A.x/
for (int j=A_Length—2;j>=0;j——){
Alj+1]=Alj;

Al0]=NewCel};
}
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A.5 ACGN Generator

SRR KRR koo KRR R R R SR Rk A ok o o ok o s koo R sk koo RSk SRR R sk sk K ks et
PURPOSE: This function generates ACGN sequence and add it to the input sequence.

INPUTS and OUTPUTS:
out: Output sequence
inp: Input sequence
var: ACGN variance
len: sequence length
o : gain factor in coloration filter
b : coloration filter coefficient

*k KHAEAAAA KA AR AAKAKA K F KA KA K FAFAAA A A FA A KKK KAK KK A AAAAAKAK K /|
void ACGN(long double xout, int xinp, long double var, int len, long double a, long double b)
{
int i;
long double xp;
long double xq;
p=(long double x*)calloc( len, sizeof( long double) );
if( p == NULL)
printf ( ”Can’t allocate memory\n” );
g=(long double x)calloc( len, sizeof( long double) );
if( ¢ == NULL )
printf ( ”Can’t allocate memory\n” );
for(i=0;i<len;i++){
*(p+i)=(long double)lrand48() / (1.0+(long double) MAX R48);
*(q+i)=(0.5+(long double)lrand48()) / (1.0+(long double) MAX_R48);
*(out+i)=(long double)cos(2.0¢«M_PIx (x(p+i))) * sqrt(—2.0xlog((x(q-+1))))*(long double)sqrt{var);
*(out+0)=(long double) a * (x(out-+0));
for(i=Li<len;i++){
*(out+i) =(long double) a * (x(out+i)) — (long double) b * (x(out+i—1));
for(i=0;i<len;i++){
*(out+i)+= (long double) *(inp-+i);
free( p );
free( q );
}
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A.6 1/f Noise Generator

JRAR IR AR AR KA FA KR FA KA A A AR A K kKK Fokokdkx KAk
PURPOSE: This PINK function generates 1/f (pink) noise sequence and add it to the
input sequence.

INPUTS and OUTPUTS:
out: Qutput sequence
inp: Input sequence
var: 1/f variance
len: sequence length

/ *k ok ok AR AR KR Hk ok ook KR KKK KRR kS KK KK ko ok /)
[k koK ok ok ok

The following command lines should be placed before the "main” function (i.e. as GLOBAL variables etc)
SRRk R Rk K /

#include <iostream.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

double MAX _R48= 2147483648.0,
// Calculating coloration filter coefficients

#define Coloration_Filter_Length 30

long double Coloration_Filter {Coloration_Filter_Length]={0};
long double Buf[Coloration.Filter_Length|={0};

long double alpha=1;

long double T=1;

for (int j=1;j<Coloration_Filter _Length;j++)

T = (long double) ((long double)j—1—(alpha/2))*T/(long double)j;
Coloration_Filter [j—1]=T;

}

YA TIEE T *¥ *k Sk s s ek s sk KK AR K R K KR KRR SRk ek ok K ko o/

void PINK(long double xout, long double xinp, long double var, int len)

void FArrayShift(long double A[},int A Length, long double NewCell);
long double gas.dev(long double noise_var);

long double w;
long double pink-noise_sample;

long double SumTemp;

for(int i=0;i<len;i++){
w=gas_dev(1);
SumTemp=0;
for (int j=0;j<Coloration-Filter_Length;j++){
SumTemp += (long double) Buf{j]xColoration. Filter|j];
}

pink_noise_sample=w—SumTemp;
FArrayShift(Buf,Coloration_Filter_Length,pink_noise_sample};

// 3.2 is the output variance of coloration filter , sqrt(1/8.2)=0.65655216429861
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pink_noise.sample= pink_noise_sample * (long double) sqrt(var) x 0.65653216429861;
x(out+i)= x(inp+i) + pink_noise_sample;

}
}

/************************************************************************************ */

void FArrayShift(long double A[],int A_Length, long double NewCell)

{
/x PURPOSE: Shifts each row of A and places the NewCell as the first element of A.x/
for (int j=A_Length—2;j>=0;j——){
Ali+1]=A[jl;

A[0]=NewCell;
}

/************************************************************************************ */
long double gas_dev(long double noise_var)

{
/* PURPOSE: Generates white Gaussian noise.x/

int i;

long double a,b,out;

a = (long double)lrand48() / (1.0+(long double) MAX R48);

b = (0.5+(long double)lrand48()) / (1.0+(long double) MAX R48);

out= (long double)cos(2.0+xM_PIxa) * sqrt(—2.0xlog(b))*(long double)sqrt(noise_var);
return(out);
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