

Open Flow Firewall Implementation

By Xiaoxin Lu

 Master of Science in Internetworking

University of Alberta, 2015

Mentor: Pete Nanda

ABSTRACT

With rapid development of information technology, information security becomes more and

more important in enterprises, governments and service providers networks. As we are

transferring from traditional networks to SDN (Software Defined Network), the IT budget will be

reduced dramatically due to the cutting cost of purchasing expensive security devices and

deploying security services. In contrast with traditional networks, SDN offers centralised

management, flexible deployment and programmability. Some SDN controllers were created to

take the advantage of SDN’s flexibility, but it is not flexible to add new modules with designated

firewall functions on these controllers. A new network programming language, Pyretic, was

developed to solve this problem. Programmers who use pyretic to develop SDN applications

will focus on how to specify a network policy at a high level of abstraction instead of

implementing it using low-level OpenFlow mechanisms [2]. This paper demonstrates the

benefits of implementing firewall modules using pyretic language. The firewall modules are

capable of some firewall functions, such as access control and denial of service prevention. This

paper will also talk about a detailed implementation, test and analysis of firewall modules on

Pyretic controller.

Contents
1. INTRODUCTION ... 4

2. IMPLEMENTATION .. 6

2.1 Set up a SDN virtual network .. 6

2.2 Pyretic ... 7

2.2.1 Installing Pyretic ... 7

2.2.2 Running Pyretic .. 7

2.2.3 Using Match for Interested Packets ... 7

2.2.4 Query policies .. 9

2.2.5 Dynamic Policy ... 10

2.3 Network Diagram .. 11

2.4 Flow Chart ... 12

3. CONTROLLER TEST AND ANALYSIS .. 14

3.1 Connectivity Analysis .. 14

3.2 Denial of Service Test .. 19

4. FINDINGS ... 25

5. CONCLUSION AND FUTURE WORK ... 26

APPENDIX .. 27

Pyretic Code .. 27

Reference .. 32

1. INTRODUCTION

Pyretic is an open source network programming language. It uses modular programming

techniques. In comparison with traditional OpenFlow programming, Pyretic can be used to

write application modules independently. It also ensures that these modules will not interfere

with one another. In addition, Pyretic is capable of creating a dynamic policy whose behavior

will change over time, as specified by the programmer. Finally, Pyretic offers the ability to

abstract the underlying network so programmers are dealing with high level abstractions when

programming SDN controller.

Furthermore, Pyretic writes functions to generate network policies which are used to control

underlying network forwarding behaviors. When Pyretic needs to do multiple tasks at same

time, Pyretic policy compositions can be used to combine policies in series or in parallel. Pyretic

writes complex policies easier and causes less conflicts between applications. Furthermore,

Pyretic policy function can match any header field in packets and can change any header field

value according to policies. Because using virtual packet head can create new headers, it makes

forwarding methods more flexible.

Finally, Pyretic is running on top of a run-time system which is a SDN controller. The run-time

system connects Pyretic and underlying network. It translates pyretic policies to open flows to

install in the switches. The run-time system also mapping the underlying topology for pyretic’s

network virtualization purpose. Current pyretic version is using POX as run-time server. Due to

this design aspect, Pyretic programmers are able to focus on codes from a high level abstract

perspective. It offers some advantages like efficiency, less prone to errors and simplified design

compared with other SDN controllers such as OpenDaylight or Trema.

 Figure 1: Software Defined Network [2]

2. IMPLEMENTATION

2.1 Set up a SDN virtual network
In this project Mininet is used to create a virtual network. Mininet is a network emulator which

creates a network of virtual hosts, switches and links. Mininet hosts run standard Linux

network software, and its switches support OpenFlow for highly flexible custom routing and

Software-Defined Networking [3]. Mininet official VM can be downloaded from Mininet official

site. After running Mininet VM in Oracle VirtualBox, one line of command will create a virtual

network (Figure 2.1.1).

Figure 2.1.1 Screenshot From Mininet VM

This virtual network includes four hosts, two switches. Two switches will connect to a remote

controller at port 6633 which is Pyretic SDN controller (Figure 2.1.2). “—mac” option is used to

assign static mac addresses for hosts.

Figure 2.1.2 Screenshot From Mininet VM

2.2 Pyretic

2.2.1 Installing Pyretic

There are two options to install Pyretic. One is to download pre-packaged Pyretic VM from

Pyretic official website. The other is to manually install it inside the Mininet VM.

2.2.2 Running Pyretic

Pyretic is invoked by running “pyretic.py” followed by a mode and a module name. For

example, the following command will invoke Pyretic and run a firewall module located inside

the pyretic/modules directory using mode “Proactive”:

$ pyretic.py -m p0 pyretic.modules.fw

There are three pyretic runtime’s modes of operation.

 Interpreted (i) - every packet is processed in the controller runtime.

Unsurprisingly slow, but useful for debugging [1].

 Reactive (r0) - rules are reactively pushed to switches based on the Pyretic policy

and the packets seen [1].

 Proactive (p0) - rules are proactively pushed to switches based on the Pyretic

policy. Generally the highest performant mode currently available [1].

2.2.3 Using Match for Interested Packets

Pyretic provides a lots of match fields to capture interested packets traversing the network

[Figure 2.2.1]. The syntax is simple. For example, below is match packets whose field f has value v.

 match (f=v)

Also several fields can be matched in one line using comma to separate them.

 #match packets’ source IP is 10.0.0.4 and destination port is 80
 match(srcip=IPAddr("10.0.0.4"),dstport=80)

Conjunction (&), disjunction (|), and negation (~) operators are very useful to compose more

complicated matches.

 #match packets from switch4 and source IP is 10.0.0.4 and destination port is 80
 match(switch=4) & match(srcip=IPAddr("10.0.0.4"),dstport=80)

 #match packets whose source IP is 10.0.0.1 or 10.0.0.2 and protocol is 1
 match(srcip=IPAddr('10.0.0.1'),protocol=1) | match(srcip=IPAddr('10.0.0.2'),protocol=1)

 #match packets whose destination mac address is not ff:ff:ff:ff:ff:ff
 ~match(dstmac=EthAddr('ff:ff:ff:ff:ff:ff')

Figure 2.2.1 Pyretic Match Fields [1]

2.2.4 Query policies

One of the most important tasks in the network management is network traffic monitoring.

Pyretic offers a method called query policies to collect traffic statistics and install flows on the

switches according to a statistic result. Query policies can also combine with other policies to

compose a restricted policy. There are three different kinds of policies available in Pyretic. One

is used to monitor raw packets. The other two are to count packets or bytes of packets.

For example, below codes will start a new query for each unique combination of source IP and

destination IP for the first packet. “Self.query” also registers a callback function called

“self.query_action” to handle interested packets.

 self.query =packets(1,['srcip','dstip'])
 self.query.register_callback(self.query_action)

Another one counts every packet and run callback function every 2 seconds grouped by source
IP and destination IP.

self.query = count_packets(2,['srcip','dstip'])
self.query.register_callback(self.query_action)

Count_bytes function is doing the same thing as previous one, but instead of counting the

packets, it counts the every byte of a packet received.

self.query = count_bytes(2,['srcip','dstip'])
self.query.register_callback(self.query_action)

Last several lines of codes below composes a combination of query policy with match policy

(self.query_pkt >> self.query). It restricts what packets can be sent to “self.query” using a

Sequential composition “>>”.

self.query_pkt= match(srcip=IPAddr('10.0.0.2'),dstip=IPAddr('10.0.0.4'))
self.query = count_packets(2,['srcip','dstip'])
self.query.register_callback(self.query_action)
self.query_pkt >> self.query

2.2.5 Dynamic Policy

Dynamic policy is a very handy policy function to deal with policies changes at runtime. Query

policies are often used to trigger these changes in dynamic policy. Dynamic policy defines a

“self.policy” attribute which is dynamic and can take the changes from programmer's

specification. For example, below class Access_control uses class DynamicPolicy as a super

class. It uses a query policy to run “query_action” when new packets with unique source and

destination IPs are coming. Method “update_policy’s” behavior is to assign “self.policy” a new

value. So all future packet with these source and destination IPs will follow the new policies’

rules.

class Access_control(DynamicPolicy):

def start_query(self):
 self.query =packets(1,['srcip','dstip'])
 self.query.register_callback(self.query_action)

def query_action(self):
 self.update_policy()

def update_policy(self):
 self.policy= self.whitelist + self.query

2.3 Network Diagram

Figure 2.3 Network Diagram

Host Name Mac Address IP Address Note

H1 00:00:00:00:00:01 10.0.0.1

H2 00:00:00:00:00:02 10.0.0.2

H3 00:00:00:00:00:03 10.0.0.3

H4 00:00:00:00:00:04 10.0.0.4

C0 n/a 127.0.0.1 port 6633

Table 2.3 IP and Mac Address Table

2.4 Flow Chart

The Flow chart gives a detailed picture of how the controller will do when packets start to come

in. The controller has three main modules. These are ACL, DOS and Switch modules. ACL

module checks whether packets are allowed to pass through switches. First it checks ACL white

list which is preconfigured in the module to find a match. Then, if a match is found, ACL assigns

dynamic self.policy with a new policy. In the new policy, these allowed packets are sent to the

Switch module. Switch module’s function is to find a route for these allowed packets. For Dos

module, it keeps polling packets’ statistics from switches. If numbers excess the maximum, Dos

will change the self.policy and remove relative flows from it.

Figure: 2.4.1 ACL and Switch Module

Figure: 2.4.2 DOS Module

3. CONTROLLER TEST AND ANALYSIS

3.1 Connectivity Analysis
Firewall module loads ACLs’ from a CSV file. These ACLs have some allows and denies (Figure 3.1).

Host HTTP Telnet Deny of Service Attack

Host 1 (H1) Deny Allow Deny

Host 2 (H2) Allow Deny Deny

 Figure: 3.1.1 ACL Configuration

There are two hosts (h3 and h4) which are running network services. H3 is used as a Telnet server and

H4 is a web server.

H1 can telnet into H3, but cannot access H4’s webpage.

 Figure: 3.1.2 Telnet Service on H3

 Figure: 3.1.3 H1 Telnet into H3

 Figure: 3.1.4 Web Service on H4

 Figure: 3.1.5 H1 Failed to access H4 Web Server

On the contrary, H2 cannot telnet into H3, but can access H4’s webpage.

 Figure: 3.1.6 H2 Failed to telnet H3

 Figure: 3.1.7 H2 Connect to H4 Web Server

After using command (dptcl dump-flows tcp: 127.0.0.1:6634) on switch3 (S3), the flow table of S3 shows

the controller installed flows with output actions. Each flow includes source IP, destination IP and

action fields. The actions point out the egress ports for each pair of IPs.

 Figure: 3.1.8 S3’s Flow Entry from Src 10.0.0.2 to Dst 10.0.0.4

 Figure: 3.1.9 S3’s Flow Entry from Src 10.0.0.4 to Dst 10.0.0.2

 Figure: 3.1.10 S3’s Flow Entry from Src 10.0.0.1 to Dst 10.0.0.3

 Figure: 3.1.11 S3’s Flow Entry from Src 10.0.0.3 to Dst 10.0.0.1

Issue the same command on switch4 (S4).

 Figure: 3.1.12 S4’s Flow Entry from Src 10.0.0.2 to Dst 10.0.0.4

 Figure: 3.1.13 S4’s Flow Entry from Src 10.0.0.4 to Dst 10.0.0.2

 Figure: 3.1.14 S4’s Flow Entry from Src 10.0.0.1 to Dst 10.0.0.3

 Figure: 3.1.15 S4’s Flow Entry from Src 10.0.0.3 to Dst 10.0.0.1

Also according to wireshark captured packets, h1 can telnet into host 3 and H2 can get web access on

h4.

Figure: 3.1.16 Wireshark Captured Telnet Packets from h1 to h3

Figure: 3.1.16 Wireshark Captured HTTP Packets from H2 to H4

3.2 Denial of Service Test

Because Mininet creates a virtual network, in order to simulate a DoS attack, I am using the

ping command with the -i option which manipulates the number of pings for one second. In

the Dos module, a static threshold of 20 has been set, so that when the number of packets per

second exceeds the threshold, it triggers the controller to build a new self.policy to drop any

further packets from the attacker. The legitimate traffic from other hosts will not be affected.

Figure 3.1.1 and 3.2.2 will show the difference of two self.policies before and after attack.

When the attack meets the threshold, the match policies related to the attack have been

removed from self.policy.

Figure: 3.2.1 H2 Attacks H4 Web Server

Figure: 3.2.2 Self.policy Before attack

Figure: 3.2.3 Self.policy after attack

After changes made on the self.policy, the controller sends new flows to switches. So when H2

ping H4 again, there is no action associated with the flow. Packets from H2 will be dropped by

switches.

Figure: 3.2.4 Wireshark Captured Open Flow packets

H1 can still reach h3.

Figure: 3.2.5 Wireshark Captured Open Flow packets

4. FINDINGS
This paper demonstrates that Pyretic is a powerful and concise SDN programming language. It

has the following main features:

 using function to realize network policy

 using policy composition to build one module on top of another

 flexible packet header

These features make Pyretic an ideal language to build SDN Northbound applications. With its

simple syntax, programmers can write a powerful application using less effort compared with

other methods. It also reduces the risk of the policies conflicts with each other and ensures

that it easy to debug for programmers. Furthermore, with flexible packet header feature, new

virtual fields can be added to the packet header. These new information can be used to

manipulate network paths of packets, ensure QOS, deploy load balancing, etc. For example, a

programmer may want a packet to follow a special path through a network. After adding the

packet with a new head field, it makes it easier to forward the packet to destination based on

the new field in the path.

This paper also shows that it is possible to build a firewall module using pyretic. The pyretic

controller with a firewall module can replace expensive traditional hardware firewalls.

Although pyretic used POX as a runtime system to handle underlay network behaviors, this

implementation proved that the firewall module can perform well in manipulating network

traffic compared with a traditional firewall.

5. CONCLUSION AND FUTURE WORK

In this paper, I have demonstrated several pyretic firewall modules. With the development of

Pyretic modules, it is safe to say Pyretic is capable of creating modular SDN application. Pyretic

as a comprehensive framework is one of a solutions for developing complex SDN firewall. In

addition, the current version of Pyretic can support a POX SDN controller as run-time system.

With the contribution from Pyretic developers, the Pyretic runtime could run on top of any

Openflow controller platform in the future. Currently, Pyretic only provides very limited access

to packet-level information in the controller. Therefore, there is improvement needed to

support statefull packet inspection in Pyretic. It also need to point out that this implementation

scope is limited by pyretic system. Some of advanced firewall functions cannot be simulated by

the firewall module, such as anti-virus, malware detection, VPN tunnel, etc. There are still a

lots of work to do for pyretic contributors in the future. For future work, it is hoped to develop

robust security modules in the pyretic framework to support the advanced firewall functions for

SDNs.

APPENDIX

Pyretic Code

switch.py
Switch module is used to select network path for allowed packets

from pyretic.lib.corelib import *
from pyretic.lib.std import *

h1=IPAddr('10.0.0.1')
H2=IPAddr('10.0.0.2')
h3=IPAddr('10.0.0.3')
H4=IPAddr('10.0.0.4')

def switch():

 return(
 (match(dstip=h1)>>((match(switch=4)>>fwd(1))+(match(switch=3)>>fwd(1))))+
 (match(dstip=H2)>>((match(switch=4)>>fwd(1))+(match(switch=3)>>fwd(2))))+
 (match(dstip=h3)>>((match(switch=4)>>fwd(2))+(match(switch=3)>>fwd(3))))+
 (match(dstip=H4)>>((match(switch=4)>>fwd(3))+(match(switch=3)>>fwd(3)))))

fw.py
fw module imports acl and dos modules. Pyretic run this module to start the controller.

from pyretic.lib.corelib import *
from pyretic.lib.std import *
from pyretic.modules.dos import Dos
from pyretic.modules.acl import Access_control

def main():

 print ('Firewall is runing')
 acl=Access_control()
 return Dos(acl)

dos.py

dos monitor real time statistics from switch and make changes on self.policy when the
number of packets per second exceeds the threshold.

from pyretic.lib.corelib import *
from pyretic.lib.std import *
from pyretic.lib.query import *

class Dos(DynamicPolicy):

 def __init__(self,acl):

 super(Dos,self).__init__()
 self.query_pkt= match(srcip=IPAddr('10.0.0.2'),dstip=IPAddr('10.0.0.4'),protocol=1)
 self.r=0
 self.launch()

 def start_query(self):

 self.query = count_packets(1,['srcip','dstip'])
 self.query.register_callback(self.query_action)

 def update_policy(self):

 self.policy=self.acl + (self.query_pkt >> self.query)
 #print ('dos.self.policy',self.policy)

 def query_action(self,stats):

 #print('dos.stats-->',stats)
 for (p,c) in stats.items():

 print ('*****p=', p, '-->c=',c,'*****')
 if c>20 and self.r==0:

 del self.acl.rules_p[str(p.map['srcip']),str(p.map['dstip'])]

 del self.acl.rules_t[str(p.map['srcip']),str(p.map['dstip'])]
 del self.acl.revers_rules_t[str(p.map['dstip']),str(p.map['srcip'])]
 del self.acl.revers_rules_p[str(p.map['dstip']),str(p.map['srcip'])]
 #print ('self.acl.rules_p',self.acl.rules_p)

 #print ('self.acl.rules_t',self.acl.rules_t)
 #print ('self.acl.revers_rules_t',self.acl.revers_rules_t)
 #print ('self.acl.revers_rules_p',self.acl.revers_rules_p)
 self.r=1

 self.acl.whitelist=self.acl.allow(self.acl.rules_p,self.acl.rules_t)|
self.acl.allow_revers(self.acl.revers_rules_p,self.acl.revers_rules_t)

 self.acl.whitelist=if_(match(ethtype=2054),passthrough, self.acl.whitelist)
 self.acl.update_policy()
 self.update_policy()
 else:
 self.acl.update_policy()
 self.update_policy()

 def launch(self):

 self.policy=self.acl + (self.query_pkt >> self.query)

acl.py
#acl reads while list from whitelist.csv and forward allowed traffic to switch module

import os
import csv
from pyretic.lib.corelib import *
from pyretic.lib.std import *
from pyretic.lib.query import *
from pyretic.modules.switch import switch
wl_file = "%s/pyretic/pyretic/examples/whitelist.csv" % os.environ['HOME']

class Access_control(DynamicPolicy):

 def __init__(self):

 super(Access_control,self).__init__()
 self.switch=switch()
 self.rules_p={}
 self.rules_t={}
 self.revers_rules_p={}
 self.revers_rules_t={}
 self.openfile()
 self.whitelist=if_(match(ethtype=2054),passthrough,drop)

 self.run()

 def openfile(self):

 self.f=open(wl_file, 'r')
 self.f.readline()
 self.lines=csv.reader(self.f)
 for s,d,p,t in self.lines:
 if t=='6':
 self.rules_p[(s,d)]=p
 else:
 self.rules_t[(s,d)]=t

 #print ('self.rules_p', self.rules_p)
 #print ('self.rules_t', self.rules_t)

 def allow(self,arg1,arg2):

 p=union([match(srcip=s,dstip=d,dstport=int(arg1[s,d])) for (s,d) in arg1.keys()])
 t=union([match(srcip=s,dstip=d,protocol=int(arg2[s,d])) for (s,d) in arg2.keys()])
 pa=p | t
 return pa

 def allow_revers(self,arg1,arg2):

 p=union([match(srcip=s,dstip=d,scrport=int(arg1[s,d])) for (s,d) in arg1.keys()])
 t=union([match(srcip=s,dstip=d,protocol=int(arg2[s,d])) for (s,d) in arg2.keys()])
 pa=p | t
 return pa

 def start_query(self):

 self.query =packets(1,['srcip','dstip'])
 self.query.register_callback(self.query_action)

 def update_policy(self):

 self.policy= (self.whitelist >> self.router) + self.query

 #print ('Update_policy')

 def query_action(self, p):

 #print ('*****acl_p=', p,'****')
 if (str(p['srcip']),str(p['dstip'])) in self.rules_p.keys():

self.revers_rules_p[(str(p['dstip']),str(p['srcip']))]=self.rules_p[(str(p['srcip']),str
(p['dstip']))]

self.revers_rules_t[(str(p['dstip']),str(p['srcip']))]=self.rules_t[(str(p['srcip']),str(
p['dstip']))]

 print ('Access allowed from %s to %s' % (p['srcip'],p['dstip']))
 print ('Access allowed from %s to %s' % (p['dstip'],p['srcip']))

self.whitelist=self.allow(self.rules_p,self.rules_t)|
self.allow_revers(self.revers_rules_p,self.revers_rules_t)

 self.whitelist=if_(self.whitelist, passthrough,drop)
 self.whitelist=if_(match(ethtype=2054),passthrough, self.whitelist)
 self.update_policy()
 else:
 if (str(p['srcip']),str(p['dstip'])) not in self.revers_rules_p.keys():
 print ('Access denied from %s to %s' % (p['srcip'],p['dstip']))

 def run(self):
 self.start_query()
 self.policy= (self.whitelist >> self.switch)+ self.query

Whitelist.csv
#pre-configured white list, read by acl

scrip,dstip,port,protocol-type
10.0.0.1,10.0.0.3,23,6
10.0.0.2,10.0.0.4,80,6
10.0.0.1,10.0.0.3,0,1
10.0.0.2,10.0.0.4,0,1

Reference

[1] Pyretic Reference Implementation
http://www.frenetic-lang.org/pyretic

[2] Modular SDN Programming with Pyretic
http://frenetic-lang.org/publications/pyretic-login13.pdf

[3] Mininet official website
http://mininet.org/overview/

[4] Programming SDNs: Module 6.4: Pyretic
http://vk5tu.livejournal.com/41153.html

[5] The Python Tutorial
https://docs.python.org/2/tutorial/

[6] Software-Defined Networking (SDN) Definition
https://www.opennetworking.org/sdn-resources/sdn-definition

[7] The Pyretic language and runtime system
https://github.com/frenetic-lang/pyretic

[8] Composing Software-Defined Networks
Joshua Reich, Nate Foster, Jennifer Rexford, David Walker
ps://www.usenix.org/system/files/conference/nsdi13/nsdi13-final232.pdf

[9] Opendaylight Use Cases
https://www.opendaylight.org/example-use-cases

[10] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: programming platform-independent stateful openflow applications inside the
switch. ACM SIGCOMM Computer Communication Review, 2014.

[11] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic: A
Network Programming Language. In ACM ICFP (Sep. 2011),
pp. 279–291.

[12] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn and Ziming Zhao
FLOWGUARD: Building Robust Firewalls for Software-Defined Networks
http://people.cs.clemson.edu/~hongxih/papers/HotSDN2014.pdf

[13] KELLER, E., AND REXFORD, J. The ’Platform as a Service’
Model for Networking. In IMN/WREN (Apr. 2010).

 [14] NICIRA. It’s time to virtualize the network, 2012.
http://nicira.com/en/network-virtualization-platform

http://www.frenetic-lang.org/pyretic
http://frenetic-lang.org/publications/pyretic-login13.pdf
http://mininet.org/overview/
http://vk5tu.livejournal.com/41153.html
https://docs.python.org/2/tutorial/
https://www.opennetworking.org/sdn-resources/sdn-definition
https://github.com/frenetic-lang/pyretic
https://www.opendaylight.org/example-use-cases
http://people.cs.clemson.edu/~hongxih/papers/HotSDN2014.pdf
http://nicira.com/en/network-virtualization-platform

[15] S. Shirali-Shahreza and Y. Ganjali. Flexam
Flexible sampling extension for monitoring and security applications in openflow.

[16] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng.
Towards a security-enhanced firewall application for openflow networks. In
Cyberspace Safety and Security, 2013.

