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Abstract

As the process control industry and production lines become highly complex and signi�cantly

invested with high-dimensional variables, process health monitoring attracts more attention

from the domain experts and process operators. Since data is ubiquitous nowadays thanks to

the advanced computer and communication technology, data-driven approaches are frequently

used to ensure the safety and process quality performance. The proposed research in this thesis

is mainly focused on two aspects: fault detection in non-stationary processes and root-cause

fault diagnosis using causality analysis.

In Chapter 2, fault detection is investigated from an unsupervised perspective for processes

with non-stationary time-series measurements, especially those subject to time-varying mean

changes. To this end, a moving-mean principal component analysis (MM-PCA) approach is

proposed, in which the mean values of process measurements are updated using a moving-mean

algorithm based on the upper bound of expected range of variations. The proposed MM-PCA

does not require a heavy online calculation in comparison with the existing adaptive solutions

and it can successfully compartmentalize the faults from healthy variations. Applying the

concept of MM-PCA, three monitoring feature indices are proposed to monitor the statistical

behavior of the process measurements. Moreover, an overall health index is suggested based on

the proposed features using kernel density estimators (KDEs) which is considered as a process

condition indicator.

In Chapter 3, quality output-related fault detection based on non-stationary process mea-

surement is studied. A cascaded modeling framework based on partial least-squares (PLS)

approach is introduced, which entails a complete orthogonal projection of the process variables

onto quality output-related and quality output-unrelated subspaces. The principal manifold is

de�ned to represent the underlying auto-regressive model of the time-series, and such a rela-

tionship remains unchanged during the normal time-varying operations. Consequently, proper

quality output-related and unrelated indices are derived.

In a majority of multivariate processes, the propagating nature of abnormalities makes

root-cause fault diagnosis a challenging task. As the second main focus of this research,
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we endeavor to develop a root-cause fault diagnosis framework based on causality analysis

using transfer entropy (TE). With this aim, in Chapter 4, a novel data-driven strategy is pro-

posed for real-time root-cause fault diagnosis in (non-)linear processes by estimating the causal

strength between measured process variables and variations of a residual signal (e.g. square

prediction error derived by PCA or kernel PCA) using normalized transfer entropy (NTE).

A novel approach for TE estimation, i.e. the so-called symbolic dynamic-based normalized

transfer entropy (SDNTE) is proposed, which has achieved a faster computation speed and

less complexity than the conventional KDE method. For this purpose, a new de�nition of

joint xD-Markov machine is given to capture dynamic interactions between two time-series.

The concept of SDNTE is built upon principles of time-series symbolization, joint xD-Markov

machine, and joint-Shannon entropies. Not only the SDNTE has less calculation complexity

in comparison to KDE approach, but also the proposed general framework in this chapter can

e�ectively identify the source of the process fault among certain potential candidates. The

proposed root-cause fault diagnosis framework is applied to the Tennessee Eastman Process

(TEP) benchmark and its computational advantages are clearly demonstrated.

Finally in Chapter 5, a complete autonomous framework is proposed for conducting root-

cause fault diagnosis which requires a minimum a priori process knowledge and intervention

of a human operator. Upon the presence of a fault, potential process variables are identi�ed

using a contribution score algorithm and SDNTE is used for generating the directed graph

which presents the causal inference among the candidates. Then, Direct transfer entropy

(DTE) is utilized to prune the indirect and spurious edges. To this aim, the application of

symbolic dynamic �ltering (SDF) is extended to the propose symbolic dynamic normalized di-

rect transfer entropy (SDNDTE). Accordingly, concepts of immediate and source intermediate

variables are de�ned and autonomous algorithms are developed to e�ciently �nd them using

the initial causal graph. In the end, a depth-�rst search (DFS)-based algorithm is developed

and deployed on the pruned graph to locate the root-cause variable(s).
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Chapter 1

Introduction and Motivation

1.1 Background and Research Scope

Process health monitoring techniques have been widely applied in industrial processes to e�ec-

tively enhance safety and reliability as well as reduce maintenance costs by detecting anomalies

in time. This line of work also plays a prominent role in the design and implementation of

a reliable and cost-e�cient control system. Initiated in the early 1970s, model-based fault

detection and diagnosis, also known as quantitative approaches have been signi�cantly devel-

oped since then. A few years later, qualitative data-driven methods were introduced for the

same purpose, speci�cally when there is no clear knowledge about the system base-line model.

Many qualitative and quantitative methods have been proposed and well summarized in sur-

veys [3], [4] and [5]. Application of model-based techniques [4] [6] [7] [8] may lead to di�culties

in implementation due to high complexity of the industrial processes and lack of information

about their model structures. On the other hand, data-driven methods [9] [10] [11] [12] are

simpler and easier to implement which can be performed e�ectively without the need for a

priori knowledge of the process model. Hence, the focus of this thesis is on the application of

data-driven approaches for process monitoring and fault diagnosis.

In Fig. 1.1, the general road map for a typical process monitoring investigated in this

thesis is depicted. Given a process, the �rst step after conducting necessary pre-processing

is to detect the presence of a fault by monitoring the measured time-series. This step alone

has been discussed in numerous studies for di�erent case scenarios and applications with the

topic of fault detection. The statistical nature of the measurement (e.g. stationarity) plays an

important role in the selection of the right approach and most of conventional fault detection

methods impose stationary assumptions which are not the case in the majority of industrial

processes. To this end, two chapters of this thesis are centered around addressing the fault

detection problem for the process with non-stationary measurements.

As can be seen in Fig. 1.1, the second step after detecting a fault is to identify the variables

that are a�ected by it. Some methodologies [13] [14] [2] can �ag faulty variables, but due to

the propagating nature of the fault in most cases, the �agged variables may not be the true

source of the fault. Although process operators �nd it useful to know the faulty variables in a
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Figure 1.1: The general block diagram for the thesis research scope.

high-dimensional process in order to have a better understanding of the process health status,

this information is not su�cient to identify the faulty components due to the propagating

nature of the faults.

One of the timely demands of process operators is to gain knowledge about the root-cause

of the detected fault. This information is mainly required to conduct preventive actions to

the system to avoid reaching critical conditions or maintain the quality of key performance

indicators (KPIs) by conducting proactive maintenance actions. According to the type of the

process, e.g. (non-)linear and/or (non-)stationary, various methodologies may be chosen for

conducting causality analysis and further identifying the root-cause of the detected fault. In

this thesis, two chapters are dedicated to this topic, based on transfer entropy analysis in a new

symbolic dynamic formulation for conducting causality analysis and root-cause diagnosis of

the detected fault. For the application of causality analysis based root-cause fault diagnosis,

there are various tuning parameters, and manual selection/design needs to be done by the

domain experts who are assumed to know the topology of the system under study. One of

the examples of how a priori knowledge and intervention of the domain expert is necessary

can be found in [15]. Heavy tuning and dependence on operator knowledge may hinder the

application of such a technique. For this reason, Chapter 5 proposes an autonomous framework

for the suggested root-cause fault diagnosis which requires less human intervention and has less

computational complexity. Reducing the domain experts' interactions in implementation of

process health monitoring methodologies has received remarkable attention in both literature

and industry and it is also one of the main topics in machine learning [16] [17].

1.2 Literature Survey

• Fault Detection in Non-Stationary Processes:

An industrial system can be classi�ed with respect to di�erent system properties such

as linear/non-linear, and time-invariant/time-varying system [18]. Similarly, based on the
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properties of time-series, one can treat process measurement that follows a distribution with

constant mean and variance, as the stationary process, or the one with varying mean/variance

as the non-stationary process. Non-stationary measurements may be the result of a stochas-

tic system in which the base-line parameters are subjected to changes or random variations.

Consequently, this results in mean and variance changes in the time-series probability distri-

butions. In addition, some other cases that lead to non-stationarity are manipulated inputs

(e.g. intentional changes or close-loop compensation e�ect) and/or other internal process

actions such as material degradation (e.g. catalyst degradation in CSTR process [19]), cor-

rosion and valve/nozzle plugging (e.g. residue plugging in high-speed centrifuges [20]), etc.

In [21], co-integration is considered as an assumption for non-stationary time-series to provide

one solution. Other research work that adopts a co-integrated structure for non-stationary

time-series to create health monitoring indices can be found in [22] [18].

Among all available data-driven methods, PCA [23], canonical variate analysis (CVA)

[24], independent component analysis (ICA) [25] and partial least-squares (PLS) [26] have

been frequently used for fault detection. From the implementation perspective, each one of

the aforementioned methods has pros and cons in comparison with other counterparts [9].

Principal component analysis (PCA) [27] and its various modi�ed versions [23] [28] [29] were

utilized for di�erent types of processes. For the multivariate non-linear cases, kernel PCA is

widely used [30] [31] [32] [33]. By utilizing kernel trick [34], KPCA �rstly maps the process

variables with non-linear relations onto a high-dimensional feature space and then applies the

standard PCA for generating statistical indices to monitor the process. Ordinary PCA [23] and

partial least-squares (PLS) [35] were initially proposed to monitor linear stationary processes

such that the relationship between measurements follow a static and linear pattern. The

other underlying assumption behind these two methods is that the measurement time-series

follow Gaussian distribution. To handle dynamic relationship between process time-series,

the Augmentation approach was proposed in [23] to take into account the auto-correlation

and cross-correlation, which led to proposing dynamic PCA (DPCA) to identify the base-line

model of the chemical process.

PCA is a straightforward yet powerful method for fault detection and has been imple-

mented in many process monitoring products, and its modi�ed and improved versions are of

great interest. On the other hand, fault detection in non-stationary processes is still an ongo-

ing challenge, particularly for the high-dimensional industrial processes with non-stationary

mean variations. Alongside with the ordinary PCA sequels, two viable schemes are adaptive

and recursive PCA [36] [37]. These methods suggest updating the mean, covariance matrix

and number of principal components in a block-wise manner. Hence, it requires to conduct

singular value decomposition (SVD) upon arrival of a new block of the test data which can be

computationally involved and requires an enormous amount of attention from the operators

for parameter tuning. The other limitation of adaptive PCA is that it attempts to update

the base-line model with any changes in the process unless the change is relatively abrupt and

violates a tuning threshold. In other words, whenever an abnormal block of data is observed, a
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decision index is calculated and it is compared with a corresponding threshold. If the decision

index crosses the threshold, the base-line model is getting updated, otherwise, it concurs that

a fault exists in the process. Furthermore, relatively complex parameter tuning steps that are

required for updating the threshold violate the simplicity of the original PCA approach and

hinder its industrial implementations.

• Output-Related Fault Detection in Non-Stationary Processes:

To build a linear relationship between process measurements and the process quality out-

put, PLS [38] is commonly used. The core idea of ordinary PLS for output prediction is to

extract a number of latent variables from highly correlated measurements based on the covari-

ance between process variables and quality outputs [35]. For monitoring processes with the

static relationship between measured variables and quality outputs, there have been a variety

of modi�ed versions of standard PLS. In [39], a recursive PLS scheme is proposed which up-

dates the latent model with the most recent process measurements. Yin et al. studied some

other modi�cations on PLS algorithm for output monitoring purposes [40]. In [41], Qin and

Zheng utilized concurrent projection in the structure of PLS and proposed the concurrent-

PLS method as an e�cient process monitoring tool. Moreover, Zhou et al. proposed total

projection to latent structure (T-PLS) [42], in which a post-processing step is added to further

decompose the scores and loading matrices of standard PLS. Although T-PLS extracts more

information about the impact of detected fault on the quality outputs, it uses oblique projec-

tion which does not guarantee complete decomposition of quality-related information from the

quality-unrelated counterpart. To address this problem, Yin et al. proposed improved PLS

(IPLS) [43] algorithm which leverages complete orthogonal projection to totally decompose the

quality output-related information from the process variables. For non-linear cases, similar to

KPCA, kernel PLS (KPLS) [44] was proposed to remedy output-related fault detection prob-

lem. Majority of conventional fault detection methods have a relatively strong stationarity

assumption. Moreover, applications of these PLS-based algorithms are usually limited to the

processes, in which the relationship between process variables and quality outputs is static.

One solution to this limitation is to construct augmented matrices from process variables in

order to incorporate the inner dynamic interactions [23]. Based on this idea, Jiao et al. has

proposed a dynamic improved PLS algorithm [1], which is claimed to be more e�cient than

its previously developed counterparts.

In general, the aforementioned techniques are able to monitor the quality of a stationary

process in which the operating-point(s) or mean-value(s) of both process variables and quality

outputs are time-invariant. In other words, if the mean of process measurement has a con-

tinuous variation, the typical monitoring statistics used in previous PLS-based methods may

falsely �ag the normal time-varying operating condition as an output-related malfunction.

In [45] and [46], multi-mode PLS schemes are proposed to tackle quality-related fault detec-
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tion for non-stationary multi-mode processes. In [47], a recursive T-PLS approach is proposed

to update the loading matrices upon receiving the new data. In the updating mechanism

proposed in this paper, singular value decomposition is conducted every time which adds com-

putational complexity for real-time applications. On the other hand, certain research works is

focused on the modi�cation of the PLS algorithm without using a moving window or other real-

time adaptation mechanism. The aim of such an approach is to directly tackle non-stationary

variation inherent in certain processes such as non-isothermal continuous stirred tank reactor

(CSTR) or acetylene hydrogenation process [48].

• Application of Causality Analysis for Root-Cause Fault Diagnosis:

In general, the underlying idea of PCA-based algorithms including kernel PCA is to �nd a

correlation(s) among process variables. Therefore, certain common methods for fault diagnosis,

such as contribution plot analysis [14] and accumulative rate contribution score [2] incorporated

with PCA and kernel PCA, may su�er from smearing-out e�ects as a result of fault propagation

[49] [14]. Consequently, these methods may not be able to locate the fault root-cause in

an industrial process. This limitation is due to ignoring causal relationships among process

variables, which are of great importance for identifying the fault source(s). According to the

type of the process (e.g. (non-)linear and/or (non-)stationary), various methodologies may be

utilized for conducting causality analysis and further identifying the root-cause of the detected

fault. For causality analysis among stationary time-series, there already exist several methods

including spectral envelope, adjacency matrix, Bayesian network inference, Granger causality

(GC) and transfer entropy (TE). However, for the non-stationary counterpart, the application

of the aforementioned methods might lead to an erroneous result, thus other alternatives such

as dynamic time warping-based analysis [50] can be applied to identify the root-cause of the

malfunction.

Among the existing methods, spectral envelope is presented as a causality analysis scheme

in frequency domain [51]. A graph-based method so-called adjacency matrix [52] is another

technique strictly dependent on the process model, which is not always available especially for

complex industrial systems. Bayesian network (BN) inference [53], as a direct acyclic graph

(DAG)-based method, is applicable to cases where less amount of historical data is available.

BN method generally su�ers from high computational complexity and may be used for risk as-

sessment purposes in industrial processes. Granger causality (GC) is another common scheme

that �nds the causal relations among time-series utilizing the regression structure (e.g. ARX

and AR). This method is easy to implement and has low computational complexity, but it is

not generally applicable to the case when the time-series have non-linear relationships [54] [55].

Transfer entropy (TE) originally proposed in [56] is another conventional and viable tool for

�nding causality between two time-series. TE has been widely adopted in di�erent industrial

and neuroscience applications. In [57] [58], TE is applied to �nd cause and e�ect relationships
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(causal map) among process measurements in the multivariate industry process. Moreover, Le

et al utilized TE to �nd the fault root-cause among the potential faulty candidates selected

from all process variables by utilizing a reconstruction-based contribution method. There exist

other modi�ed versions of TE such as direct transfer entropy (DTE) [59] and transfer zero

entropy (T0E) [60], which provide more explicit information under certain assumptions about

the existing direct pathways between time-series.

The key point of the TE approach for causality analysis is that it relies on the distribution

(i.e. joint probability density functions) of the process variables rather than their regression

model, which is the case in Granger causality. Hence, TE can be applied for both linear and

non-linear processes [59]. This advantage of the TE over GC is the main reason for it to

be used for root-cause fault diagnosis in this thesis. However, as mentioned in [50] [57] [59],

causality analysis using TE requires a burdensome computational e�ort and may not be ap-

plicable for real-time root-cause diagnosis. The reason behind this computational obstacle is

that in almost all of the proposed TE-based approaches, joint probability density functions

(PDFs) in the de�nition of TE are estimated by kernel density estimator [61], which has high

computational order and requires signi�cant amount of temporal data. Therefore, this com-

putational complexity limits application of TE-based methods to o�-line causality analysis in

industrial processes. In order to address this limitation of the TE method for real-time root-

cause fault diagnosis application, we propose a new and fast symbolic dynamic-based pathway

for estimating transfer entropy between time-series, which has signi�cantly lower computa-

tional order and requires less amount of temporal data. For completeness, symbolic dynamic

�ltering (SDF) method is introduced at �rst and its procedure is reviewed in section 4.4.2.

• Root-Cause Fault Diagnosis Using TE and DTE:

In the literature, there are certain research works on root-cause fault diagnosis using TE

and DTE, in which some unresolved challenges exist. For instance, in [50] and [62], TE was

utilized to generate a directed causal graph amongst candidate variables that are selected by

reconstruction-based contribution index and modi�ed canonical variable analysis (MCVA),

respectively. A priori knowledge about the base-line models was utilized to locate the source

of the faults. Furthermore, in the causal map indirect and spurious connections were not

distinguished from a direct path for �nding root-cause variables, which may lead to false

diagnosis. In order to eliminate the indirect connections in the causal map, an approach is

proposed in [63] by conducting a dedicated search algorithm on the a priori topology of the

process which might not be available for any industrial cases. Moreover, Ma et al [64] recently

has adopted DTE to prune the indirect connections in an initial causal map generated by

TE. Due to the presence of the intermediate variables (IVs) in the de�nition of the DTE, the

computation complexity of PDF estimation increases drastically and becomes even worse than

the estimation of TE. Furthermore, this approach also requires a priori knowledge about the

process to manually determine the potential indirect pathways and there is no algorithmic way
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to e�ciently �nd the intermediate variables for calculating the DTE. One of the motivations

that we pursue in this research is to develop a systematic way to �nd the right IVs in the

implementation of DTE.

In summery, the application of TE and DTE in a systematic framework to identify the

source variable(s) among potential candidates has been a point of interest. Although TE and

DTE have been developed and utilized for root-cause fault diagnosis in [62], [64] and [15],

the lack of automation in implementation and the level of domain expert intervention pose

limitations which have not been fully addressed.

1.3 Objectives and Contributions

The general objective of this thesis is to propose data-driven solutions for the aforementioned

process health monitoring problem statements speci�cally in fault detection of non-stationary

systems and real-time root-cause fault diagnosis. For this purpose, two chapters are dedicated

to studying fault detection in non-stationary processes that violate the fundamental assump-

tions in some state-of-the-art methods using PCA and PLS. Then in two other chapters, the

root-cause fault diagnosis is investigated for both linear and non-linear processes with rela-

tively low calculation complexity in comparison with the other existing solutions. Moreover,

an autonomous framework is proposed to reduce the dependency of real-time implementation

on the a priori process knowledge and the domain expert intervention.

• Chapter 2
The core objective of this chapter is to tackle anomaly detection in non-stationary indus-

trial processes with unexpected manipulated set-point changes and uncertainties in the prior

knowledge about the statistical nature of the measurements. In this chapter, the fault detec-

tion is investigated from an unsupervised perspective such that a moving-mean PCA approach

is proposed, which utilizes the base-line loading matrices and a de�ned upper bound for the

expected variation range to loosen the stationarity assumption. Hence, the mean values that

are being used for normalizing the time-series are adaptively updated without any need for

a real-time recalculation as in other existing solutions. Moreover, the �rst- and second-order

error indices are de�ned to monitor a wide range of dynamic changes.

This chapter proposes a hybrid framework that integrates the application of principal

component analysis (i.e. kernel trick transformation for non-linear cases) and an unsupervised

probability-based anomaly detection method for (non-)linear processes with non-stationary

measurements. The following lists main contributions of the proposed solution that has been

submitted as a pending US patent1.

1B. Rashidi, M. S. Krishnaswamy, Q. Zhao, On the application of unsupervised machine learning for fault
detection in linear non-stationary industrial process, Pending US Patent, sponsored by Honeywell Company,
�le H0081201, 2017-2018.
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1- This framework is proposed to tackle the problem of fault detection in non-stationary

processes which has not been well addressed by other similar approaches. In other words,

the proposed paradigm is a suitable anomaly detection tool for the majority of an industrial

process which is composed of manipulated variables subjected to non-stationary changes. The

proposed strategy does not require a heavy online updating calculation upon arrival of the new

test data, hence, the computational cost of the proposed method is much less than existing

schemes such as moving-window PCA [65] and adaptive PCA [36].

2- Novel feature indices are proposed to be extracted from a non-stationary time-series,

which have clear physical interpretations for a better understanding of the users and monitor

the higher-order changing behaviour of process measurements.

3- Along with these features, a novel health index is introduced with some favourable prop-

erties to distinguish normal non-stationary changes from di�erent types of process faults.

• Chapter 3
In this chapter, a novel least-squares-based scheme is proposed for quality-related fault

detection of the dynamic linear processes, in which the measured variables and quality-

outputs may be subjected to time-variant changes. The proposed method is built upon a

cascade modeling framework including complete orthogonal projection of the process variables

onto output(quality)-related and output(quality)-unrelated subspaces and �nding the princi-

pal manifolds for the projected components which represent their underlying auto-regressive

moving average models. Moreover, a new residual index is proposed, which is insensitive to

the mean changes in the process variables. The proposed method and dynamic improved par-

tial least-squares (DIPLS [1]) technique are �nally applied to a numerical case study and a

non-isothermal continuous stirred tank reactor (CSTR) benchmark, and the simulation results

demonstrate the e�ectiveness of the proposed scheme2.

• Chapter 4
This chapter presents a new data-driven strategy for real-time root-cause fault diagnosis

in (non-)linear processes by estimating the strength of causality using normalized transfer

entropy (NTE) between measured process variables and variations of a residual signal. More-

over, for conducting causality analysis in the proposed strategy, a new and fast pathway for

estimation of transfer entropy so-called symbolic dynamic-based normalized transfer entropy

(SDNTE) is proposed. This chapter also introduces a new theory of joint xD-Markov machine

to capture dynamic interactions between two time-series, based on which joint-Shannon en-

tropies are utilized to develop the theory of SDNTE. The computational complexity of the

proposed SDNTE is signi�cantly lower than conventional kernel-based methods for estimat-

ing probability density functions (PDFs) in the calculation of TE. SDNTE also requires less

amount of historical process data to reveal causality between two time-series, enabling early
2B. Rashidi, Q. Zhao, Quality-Related Fault Detection for Processes with Time-Varying Measurements,

2019 18th European Control Conference (ECC), 3873-3879
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fault diagnosis and real-time application of transfer entropy. A part of this chapter is pub-

lished in3.

• Chapter 5
This chapter proposes a general framework for autonomous root-cause fault diagnosis in

a complex process. In this framework, as a prerequisite step after conducting fault detection,

the potential root-cause fault candidates are selected using a contribution score-based method

(e.g. accumulative rate contribution scores [2]). Then a fully automated procedure is proposed

to determine the root-cause(s) of the detected fault amongst potential candidates without a

priori knowledge of the base-line model or intervention of an expert. To locate the root-cause

variable(s), �rstly symbolic dynamic-based normalized transfer entropy (SDNTE) de�ned in

Chapter 4 is used to generate an initial causal graph of root-cause fault candidates. Then

symbolic dynamic �ltering is further applied to estimate the DTE and symbolic dynamic-based

normalized direct transfer entropy (SDNDTE) is proposed and utilized for pruning the initial

graph (i.e. discard indirect and spurious causal edges). To this aim, explicit de�nitions of

immediate intermediate variables (IIV) and source intermediate variables (SIV) are given and

systematic algorithms are developed to �nd them e�ciently. At last, a topological approach

is proposed to autonomously locate the root-cause variables according to the pruned causal

graph. To demonstrate the e�ectiveness and applicability, the proposed autonomous scheme is

tested on a numerical example and �nally validated on the Tennessee Eastman process (TEP)

benchmark model.

3B. Rashidi, D. S. Singh, Q. Zhao, Data-driven root-cause fault diagnosis for multivariate non-linear pro-
cesses, Control Engineering Practice, Elsevier, Volume 70, Pages 134-147, Nov 2017.
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Chapter 2

Fault Detection of Non-Stationary

Processes Using Moving-Mean PCA

2.1 Introduction

Fault detection in processes with non-stationary time-series measurements is a challenging line

of research. In most of industrial processes, sensor measurements fall into the non-stationary

category, in which the mean and/or variance vary in normal operating conditions. PCA has

been recognized as a useful approach for fault detection in high-dimensional processes due to

its simplicity and e�ectiveness. However, this approach su�ers from a stationary assumption.

To address this limitation, several modi�ed versions of PCA (e.g. Adaptive PCA [36] [30] and

moving window PCA [65]) are proposed such that upon receiving the test data subjected to

non-stationary changes, the base-line model is updated using a set of algorithms. Although

updating the base-line parameters using real-time adaptation can be a solution to address the

non-stationarity, it introduces additional implementation limitations and adds computational

complexity due to the real-time recalibration (e.g. conducting SVD). This motivated authors

to propose a new PCA-based technique that not only handles the non-stationary changes

in the time-series but also avoid a real-time updating structure to reduce the computational

complexity and simplify the implementation. The core objective of this chapter is to distinguish

between faults and process variations due to intentional/induced manipulated inputs changes.

The proposed strategy can be applied to both stationary and non-stationary cases and provide

feasible features about the health status of the process under study.

The following shows structure of the systems under study, in which the process measure-

ments may have non-stationary statistic behaviour. Eq. (2.1) is a generic de�nition of a

(non-)linear process such that the time-series X ∈ Rm are measured.

X = G(U) + w (2.1)

where U = [ν, µ]T ∈ Rn+l. ν ∈ Rn is the i.i.d noise and µ ∈ Rl is the non-stationary

time-series with time-variant mean, e.g. bounded random walk. w acts as the independent

measurement noise and G(.) can be a general linear or non-linear function. According to Eq.
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(2.1), the mean and variance of the process variables might be subjected to changes under

normal operating condition. However, this research only focuses on the mean-variation and

assumes that the variance of the process variables remains relatively constant.

In this proposed approach, the normal operating condition is considered as non-stationary

inevitable changes that domain experts expect as non-faulty process (non-)parametric changes

such as set-point change, equipment degradation, etc. On the other hand, the fault scenarios

that can be detected by the proposed approach includes but not limited to constant bias with

di�erent magnitudes and faults with deterministic trends such as ramp with slow and steep

slope. In addition, stochastic random drift can also be handled by the proposed MM-PCA.

To be able to distinguish between normal non-stationary mean changes and actual faults, it

is assumed that the statistical dynamic of the fault scenarios are di�erent from the normal

non-stationary changes.

2.2 Moving-Mean PCA (MM-PCA) and Proposed Feature In-
dices

The proposed strategy includes two main steps; �rst, generating feature indices and, second,

unsupervised probability distribution analysis to optimally distinguish the normal time-varying

behavior of the process measurements (non-stationary) from actual faults. As a rule of thumb,

for implementation, 30 percent of the entire available training data is used for learning the

base-lines and calculating feature indices and 70 percent of that is utilized for learning a

probability-based model for creating a fault hypothesis test. The following subsections present

the details in each step of the proposed approach.

2.2.1 Feature Extraction

To conduct e�ective anomaly detection, three feasible feature indices are de�ned for a given

process which carry key information about the non-stationary behaviour of process measure-

ments. It should be noted that the formulation in this chapter is given for a linear process,

but the non-linear extension of the proposed feature can be similarly derived by using KPCA

(See Appendix for details of the KPCA method [34]).

The Zero-Order Error Index Φ0
MM :

This index indicates the zero-order (constant) trend of a time-series according to the base-line

model derived in the training step. To make this feature robust to time-varying mean changes

of process variables, a moving-mean strategy is proposed as follows,

Step 1: A complete training data-set is collected to construct the process base-line model.

If the process is assumed to be linear, dynamic PCA [23] with a proper number of augmentation

shift h may be applied to reduce the dimensionality and extract the principal components used

in the proposed framework. On the other hand, if the process is non-linear, kernel PCA [31]

with a proper choice of kernel function (i.e. Gaussian, polynomial Sigmoid, etc.) can be
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utilized. As the �rst step, we determine the nominal average mean m0 and average variance

v0 of the entire training data and accordingly conduct mean centering and standardize the

time-series to unit variance.

Step 2: Apply PCA to calculate the proper transformation matrix Mϕ0 =
MT 2

UCLT 2

+

MSPE

UCLSPE
(See Appendix for derivation of MSPE and MT 2 ), i.e. required for calculation of

the combined index ϕ0 [66], for the training data.

Remark 2.1 The superscript 0 in the combined index ϕ0 indicates the zero-order di�erence

of the time-series, i.e. original signal with no di�erencing, X ∈ RN×m are used in PCA to

derive the loading matrices.

Step 3: Determine the combined index ϕ0(i) = x(i)Mϕ0x
T (i) using the baseline correlation

matrix Mϕ0 for a given new test measurement x ∈ Rm.
The geometrical interpretation for the underlying concept of MM-PCA is to relocate the

origin coordinates of the original multivariate signal space as long as their mean variations are

within the normal/expected operating zone. This origin relocation maintains the stationarity

assumption of PCA for transformation of the signal space to the scores while the signal mean

varies. The upper bound of operating zone is de�ned according to the di�erence between

combined index ϕ0 and its threshold. To this end, it is proposed to de�ne a moving window

with a length of WL in which weighted average �ltering is conducted with respect to the

di�erence of the combined residual index ϕ0 from its nominal base-line threshold for the entire

training data. As a result, the mean values of the variables used for mean centering get updated

at each sample time and resist to exceed threshold as long as it is within the normal operating

zone. However, if there exists a signi�cant mode change due to malfunction occurring in the

process which drives one/some of the variables out of the normal/expected operating zone,

the mean values do not adapt to the fault induced changes, leading to successful detection of

faults.

Step 4: Calculate the scalar distance D(i) = ϕ0(i)−UCLϕ between the current combined
index ϕ0 and its upper control limit UCLϕ = 2 which is selected as a less conservative threshold

based on the de�nition of combined index ϕ0(i) =
SPE(i)

UCLSPE
+

T 2(i)

UCLT 2

(See Appendix for

calculation of upper control limits).

Remark 2.2 The upper control limit UCLϕ is considered as a tuning parameter in the pro-

posed MM-PCA, which can be alternatively selected using the approximate distribution of ϕ0

in [67]. When setting UCLϕ = 2, it assumes that mean variations of the process measurements

should be signi�cant enough to distort both T 2 and SPE indices beyond their upper control

limits for activating the proposed mean updating rule given in Eq. (2.2).

Step 5: Use a switching function to activate the updating rule for the mean of the new
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test data, ⎧⎪⎨⎪⎩
g1(i) = 1, g2(i) = 0 D(i) < 0

g1(i) = 0, g2(i) = 1 D(i) ≥ 0 and D(i) ≤ V̄
g1(i) = 1, g2(i) = 0 D(i) ≥ V̄

(2.2)

where g1(i) and g2(i) act as two switching parameters with respect to D(i) to properly

activate and deactivate the updating rule, as given in Eq. (2.3).

Step 6: Upon receiving a new test data x(i), determine the updated mean m∗(i) of the

test data, which adjusts the original training data mean according to the normal/expected

operating zone as follows,

m∗(i) = g1(i)m0 + g2(i)

WL−1∑︂
j=0

WL − j
0.5WL(WL + 1)

x(i− j) (2.3)

Remark 2.3 The switching function in Eq. (2.2) is a simple choice for performing the

mean recalibration. Other choices such as sigmoid or hyperbolic functions may be alterna-

tively adopted to regulate the traversing action inside and outside of the normal operating zone

(variation range V̄).

Eq. (2.4) is another suggested form of the updating rule using a di�erentiable and smoother

sigmoid function.

m∗(i) =

⎛⎜⎝ 2

(
1

1 + e−aD(i)
− 1

1 + e−a(D(i)−V̄) ) + 1
− 1

⎞⎟⎠m0

+

(︃
1

1 + e−aD(i)
− 1

1 + e−a(D(i)−V̄)

)︃WL−1∑︂
j=0

WL − j
0.5WL(WL + 1)

x∗(i− j)

(2.4)

where a ≥ 10 is the tuning parameter to adjust the sharpness of the switching function.

The above formulation normalizes the new test data using the updated mean and the same

standard deviation. It should be noted that the standard deviation of the measurements is

assumed almost constant.

In Eq. (2.2) and (2.4), the term V̄ stands for upper bound of variation of the normal

operating zone which is also the upper bound of changes for combined index ϕ0. This value

can be calculated based on the operator's knowledge about the normal/expected range of

variation of each process measurement. If the upper bounds of expected variations of all process

measurements Vi ∈ VX , i = 1, ...,m are known, V̄ can be determined as V̄ = VTXMϕ0VX .
In practice, knowledge about the expected range of variations for all the process measure-

ments might not be available. If the upper bound of expected variations of a < m process

measurements are known, it may still be possible to calculate the other m − a unknown Vi
using SVD as follows,
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XN×m =
[︂
ÛN×r ŨN×(N−r)

]︂ [︃
Ŝr×r 0
0 0

]︃ [︂
V̂ m×r Ṽ m×(m−r)

]︂T
. (2.5)

According to Eq. (2.5), Ṽ m×(m−r) is the right null space of XN×m, which contains columns

of V corresponding to the zero singular values. The auto-regressive relationship between

process measurements X = [x1, x2, ..., xm]
T can be captured using the rows of Ṽ m×(m−r) such

that Ṽ
T
X = 0. Using this homogeneous equation and knowing that (m− a) upper bounds of

measurements' variations are unknown, we can write Ṽ
TVX = 0, in which VX is an array of all

process measurements' upper bounds. The problem is then rede�ned and changed into solving

a set of linear equations for (m− a) unknown upper bounds. To this aim, by rearranging the

columns of Ṽ according to the rearranged upper bound matrix VX = [VunknownX , VknownX ]T ∈
Rm, the matrix A ∈ R(m−r)×(m−a) is built such that the problem is rede�ned to solve the

following,

AVunknownX = C, (2.6)

where VunknownX ∈ R(m−a). C ∈ R(m−r) is calculated by multiplying VknownX to the columns

of the Ṽ m×(m−r) corresponding to the a known upper bounds. The columns of Ṽ m×(m−r)

corresponding to the (m − a) unknown upper bounds VunknownX are put together in matrix

A. In general, Eq. (2.6) is consistent, i.e. it has at least one solution, if the row rank of

augmented matrix [A | C] ∈ R(m−r)×(m−a+1) is equal to the row rank of coe�cient matrix

A ∈ R(m−r)×(m−a). This solution is unique if this rank is equal to (m− a). Finally, when the

upper bound of variations for all m process measurements are determined, the upper bound

required in Eq. (2.2) is calculated as V̄ = VTXMϕ0VX .

Step 7: In the �nal step, as shown in Eq. (2.7), the zero-order moving-mean error index

Φ0
MM is de�ned as the �rst feature index that helps to capture the time-series behaviour.

X̄test(i) =
(Xtest(i)−m∗(i))

ν0
∈ Rm

Φ0
MM (i) = X̄test(i)Mϕ0X̄test(i)

T

(2.7)

By following this updating rule for variables' means, it is assumed that the structure of

the process is intact which implies that the principal directions remain the same during the

process. Any relatively slow changes in the mean or oscillations due to normal operating

variations are compensated by the adaptive mean rule. On the other hand, if there is a severe

malfunction in the process which drives the combined index ϕ0 to signi�cantly exceed its

threshold (UCLϕ0 = 2), the combined index Φ0
MM will not get updated and it will detect that

malfunction.
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The First-Order Error Index Φ1
MM :

This index is de�ned to monitor the �rst order di�erencing (rate of change) of process variables.

Although the non-stationary mean variations of the process variables are unexpectedly random,

it is expected that the rate of change is bounded in many cases. For instance, in continuous

stirred tank reactor (CSTR) process, there exists a catalyst that degrades along with time

and induces a �rst-order (ramp) change into two variables during the operating process. In

acetylene hydrogen reactor [48], some of the variables are subjected to drifting mean changes

due to the degradation. Moreover, in the distillation column process, variables have a similar

trend to a random walk signal, but the rate of change of the variations has a bounded envelope.

The following shows the detailed steps to calculate the proposed Φ1
MM :

Step 1: Use the nominal mean value m0 determined in the �rst preprocessing step to

bring all time-series to the comparable range to each other for PCA implementation.

Step 2: Consider a block-wise approach with the length of WI , determine the average

rate of change of the variables X(i) ∈ Rm as the following,

Xd1(i) =
1

WI

⎛⎝WI∑︂
j=1

X(i− j)−
2WI∑︂
j=WI

X(i− j)

⎞⎠ (2.8)

Step 3: Conduct PCA on the Xd1 ∈ RN×m for N training samples to extract the principal

transformation matrices Mϕ1 by following the Algorithm 7 in the Appendix.

Step 4: determine the �rst-order error index as following,

Φ1
MM (i) = Xd1(i)Mϕ1X

d1T (i) (2.9)

For a non-linear case, Kernel PCA will be applied on the time-series Xd1 to extract the

kernel transformation matrices Mkernel
ϕ1 accordingly and the �rst order moving-mean feature

can be similarly calculated as Φ1
MM = k(xd1)MKPCA

ϕ1 k(xd1)T .

The Second-Order Error Index Φ2
MM :

This index is de�ned to monitor the second-order di�erencing of the process variations. Sim-

ilar to the aforementioned steps for determining Φ1
MM , this index can also be determined

accordingly. Using a block-wise approach, we obtain

Xd2(i) =
1

WI

⎛⎝WI∑︂
j=1

Xd1(i− j)−
2WI∑︂
j=WI

Xd1(i− j)

⎞⎠ . (2.10)

It should be noted that the training data Xd1 is already standardized before it is used

to generate the training data for the second-order feature Φ2
MM . After applying PCA on the
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Xd2 ∈ RN×m for the linear case and deriving the corresponding transformation matrix, the

proposed feature is determined as follows,

Φ2
MM (i) = Xd2(i)Mϕ2X

d2T (i) (2.11)

Similarly for the non-linear case, it is de�ned as Φ2
MM = k(xd2)MKPCA

ϕ2 k(xd2)T , where k(xd2)

represents the transformed test data with respect to Algorithm 8 in the Appendix.

Remark 2.4 The �rst-order error index Φ1
MM tends to monitor the rate of changes of the

process time-series. Accordingly, the second-order error index Φ2
MM monitors the acceleration

of the changes. It should be noted that higher-order indices may be also derived and incorporated

as additional features, but as a rule of thumb, the zero-, �rst- and second-order indices convey

three feasible (mechanical) aspects of the variations in the processes under study.

2.3 Unsupervised Non-Parametric Learning for Overall Index
Derivation

In the previous section, three monitoring indices that carry useful information about the

condition and variation behaviour of the process measurements are de�ned. In this section,

it is proposed to utilize a probability-based approach to learn the normal behaviour of the

features while the process is at normal (no-fault) operating condition. Fig. 2.1 illustrates

the main steps in this section, in which an unsupervised probability-based learning method

is utilized to distinguish non-stationary normal operating conditions form faulty counterparts

without any need for pre-tagged training data from the domain experts. Assuming X ∈ RN×m

with N observation is utilized for generating the feature indices, then, Nc is the number of

sample point to build the feature matrix as follows,

Xf = [log(Φ0
MM ), log(Φ1

MM ), log(Φ2
MM )] ∈ RNc×3 (2.12)

Derivation of the feature indices ΦnMM , n = 0, 1, 2 is presented in section 2.2.1. As shown

in Fig. 2.2, the distribution shape of the feature indices are quite distinct from a normal

Gaussian distribution. Therefore, logarithm trick is applied to transform the feature density

function into a distribution shape which has more resemblance to the Gaussian distribution

for further analysis.

Before using the matrix Xf , standardization is applied as a pre-processing step. After

determining the proposed features, the goal is to generate an overall condition monitoring

index and use it in the hypothesis testing for fault detection. In this case, a null hypothesis is

de�ned for normal (no-fault) case to distinguish process malfunction from normal operating

condition including non-stationary mean variations and normal mode changes. To achieve

this, it is suggested to learn the probability density function(s) (PDF) of the feature indices

for their normal operating condition. Therefore, for a given new process observation and its
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Figure 2.1: The �owchart of the training steps of the proposed framework.

Figure 2.2: The histogram of the feature matrix de�ned in Eq. (2.12) with and without the
logarithm trick for a synthetic numerical example in section 2.5.
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corresponding feature indices, the estimated PDFs can be utilize to estimate how likely the

new observation belong to the normal operating condition.

One conventional non-parametric approach for estimating the PDF of time-series is Kernel

density estimator (KDE) [61]. We suggest to use KDE to approximate the individual PDF for

each column of the feature matrix xf ∈ Xf .

F pj (x
j
f ) =

1

Nch

Nc∑︂
i=1

K(
X − xf (i)

h
) , j = 1, 2, 3 (2.13)

Where, K(.) is a kernel function (e.g. Gaussian, spherical, Epanechnikov, etc.) satisfying

Mercer's conditions. h is the bandwidth of the KDE which introduces a smoothing e�ect to

the shape KDE. A large value of h leads to �tting a smoother kernel distribution function

and a small value produces a sharper distribution curve with a higher level of �uctuations.

Bandwidth h can be selected adaptively using the maximum likelihood method or k-nearest

neighbor approach that updates h according to the Euclidean distance from the kth nearest

observation [68] [69].

For each column of the feature matrix Xf , an individual KDE is derived to estimate

P̂ j(xf (i)) shown in Eq. (2.14) which stands for the estimated probability of feature index

xj(i) such that it belongs to the corresponding normal operating condition.

P̂ j(xf (i)) =

∫︂ xf (i)+τj/2

xf (i)−τj/2
F pj (x)dx ≃ τjF

p
j (xf (i)) , j = 1, 2, 3 (2.14)

To calculate the parameter τj in Eq. (2.14), �rst, the minimum and maximum values

corresponding to the upper and lower 99.99% percentile of the F pj (x
j
f ) are estimated. Then

according to the property of the density function such that
∫︁max(xjf )
min(xjf )

F pj (x)dx ≃ 1, the interval

between min(xjf ) and max(x
j
f ) can be divided to Nb subintervals. By using the Newton-Cotes

formula, τj is approximated as τj = 1/
∑︁Nb−1

k=1 F pj (min(x
j
f ) + k

max(xjf )−min(x
j
f )

Nb
). When

the process measurements are subjected to a fault, the feature indices will diverge from their

normal operating conditions, hence, the estimated probability P̂ j(x
j
f (i)) → 0 depend on the

severity of the fault-induced change. On the other hand under normal operating condition,

each feature may be around the maximum possible probability of xjf which can be determined

as γj = τjmax(F
p
j (x

j
f (k))), k = 1, ..., Nb.

After estimating P̂ j(x
j
f (i)) for all three feature indices, they are utilized for calculation of

the overall health index R as follows,

R(i) = a(1−
Π3
j=1P̂ j(x

j
f (i))

Π3
j=1γj

) (2.15)

where a is a tuning parameter representing the upper bound of the overall index R.

Eq. (2.15) is designed to have certain desirable properties. For example, when there

is a malfunction in the process and P̂ j(xf (i)) values are close to zero, the magnitude of
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overall health index reaches to the upper bound of R = a. This feature is favorable for

industrial users because they mostly desire to work with a bounded health index which yields

to the maximum for faulty condition and relatively negligible values for normal operating

counterparts. Therefore, this health index is de�ned in such way to mostly generate values

close to zero or its maximum limit.

As a �nal step, it is required to determine the upper control limit (UCL) for the proposed

health index R for proper thresholding. For each feature index, the α tails percentile of the

corresponding KDE is calculated and its corresponding value is considered as ϵ for that feature.

In other words, for the jth feature index, ϵj is determined as,

ϵj = max(F pj (max(x
j
f )), F

p
j (min(x

j
f ))) s.t.

∫︂ max(xjf )

min(xjf )
F pj (x)dx = α (2.16)

Hence, the overall UCL for the R in Eq. (2.15) is as follows,

UCLR = a(1−
Π3
j=1ϵj

Π3
j=1γj

) (2.17)

Upon observation of a new test process variables xf ∈ R3, the proposed health index is

determined by following the Eq. (2.15). Then the null hypothesis is de�ned asH0 : R < UCLR

(fault free), and the alternative hypothesis is H1 : R ≥ UCLR for faulty process. This means

that if the overall health index R has values greater than its threshold, it supports the rejection

of the null hypothesis.

2.4 Alarm-Based Process Monitoring

Alarm-based fault detection from the health residual signal in chemical processes is investigated

in a great amount of research studies. In some cases, the end-user prefers binary alarm

signal indicating whether the process is subjected to a malfunction. With this aim, an alarm

generator can be utilized especially when the process is subjected to an oscillatory type of

fault that leads to �uctuation in the proposed health index. Among results of alarm-based

fault detection, some are focused on minimizing the fault detection delay [70] [71]. Although

the proposed general health index in Eq. (2.15) has certain favorable advantages mentioned

above, various uncertainties and disturbances such as occasional missing data, a surge in

data acquisition system and sensor noise might create unwanted spikes that should not be

detected as a process fault. To tackle this challenge, a rule-based alarm generator given in

Algorithm 1 is proposed. The underlying idea in Algorithm 1 is based on 3-step processing

of alarm signals using a moving average �lter and alarm delay technique. First, a higher

weight is assigned to the faulty residual samples to penalize the normal samples in comparison

with faulty counterparts. Second, the length of the fault is considered to be greater than a

prede�ned window to ensure that the alarm is not active for an outlier measurement or surge

of DAQ card due to digitization. Finally, a rule-based approach is deemed to connect the
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Algorithm 1 Alarm generating procedure using the proposed monitoring index R
1: INPUTS of Algorithm:

R(i) := The overall health index
UCLR := The upper control limit of overall health index
b := Weighting parameter for marking up the faulty observations
w1 := Window size for weighted averaging of overall health index
w2 := The window size for fault continuity test

2: (Assign more weights to the residuals samples greater than UCL)
3: if Rc(i) < UCLR then
4: Rc(i) = R(i)
5: else
6: Rc(i) = bR(i)

7: (De�ne a window of length w1 to store previous weighted Rc)

8: R1(i) =
1

w1

∑︁j=w1
j=0 Rc(i− j)

9: ������� (First Layer Alarm Generator → Alarm1) ������-
10: if R1(i)) > UCLR then
11: Alarm1(i) = True
12: else
13: Alarm1(i) = False

14: ������� (Second Layer Alarm Generator → Alarm2) �������
15: if Alarm1(i) == True then

16: if
1

w2

∑︁j=i
j=i−w2

Boolval(Alarm1(j)) > 0.75 then

17: Alarm2(i) = True
18: else
19: Alarm2(i) = False

20: else
21: Alarm2(i) = False

22: ������� (Third Layer Alarm Generator → Alarm3) �������
23: if Alarm1(i) == True & Alarm2(i− 1) == True then
24: Alarm3(i) = True
25: else if Alarm1(i) == True & Alarm2(i) == False & Alarm3(i− 1) == True then
26: Alarm3 = True
27: else
28: Alarm3(i) = False

29: OUTPUT of Algorithm: Alarm2 ⇒ Caution, Alarm3 ⇒ Fault
30:
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Figure 2.3: The time-series of the synthetic numerical example for di�erent normal operating
modes.

entire faulty zone and create a continuous alarm for the detected malfunction. In addition to

the �nal fault alarm (Alarm3), Algorithm 1 also generates a caution signal (Alarm2) to notify

operators to consider proper maintenance actions before the process reaches the more severe

faulty condition.

2.5 Simulation Results

To verify the performance of the proposed fault detection scheme, at �rst, a synthetic numerical

example is given and simulation results are shown in this section. The following shows the

process model initially identi�ed in Eq. (2.1),

X = UP + w , P =

⎡⎣3 2 3 −5 0 −3 0 0 0 0
0 0 −2 0 −1.5 0 2 0 0 0
1 0 −3 0 −2 −5 0 −2 8 3

⎤⎦ (2.18)

where U = [ν, µ]T ∈ R3, ν ∼ N (0, 0.05), δ ∼ N (0, 0.005) and w ∼ N (0, 0.0005) ∈ R10. Also,

µ(i) = µ(i − 1) + δ(i − 1) acts as a random walk noise that introduce the non-stationary

behaviour to the process measurements. In Fig. 2.3, the process variables of the above

synthetic simulation are illustrated. The process is simulated for 400 seconds with sample

time T=0.01 second, which yields N=40,000 observations. The entire simulation composes 4

di�erent modes in which only two of them are considered in the training base-line features

and KDE determination and the other two modes are unknown to the proposed framework

during the learning process. The expected upper bound of the normal variation range of the

time-series are known as V = [10, 7, 14, 19, 22, 10, 14, 15, 2, 3, 3]T . then V̄ = VMϕ0VT = 298.
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When training the base-line models while applying PCA, the cumulative percentage variance

CV P = 95% is chosen for all features. Fig. 2.4(a) shows the indices Φ0
MM and ϕ0 (i.e.

combined index from DPCA [66]) for the normal operating condition and shows how the

proposed moving-mean index is robust to the mode change and non-stationary variations.

After determining the feature matrix Xf in Eq. (2.12) for this process, the histogram of each

column of the matrix after and before conducting the logarithm trick is shown in Fig. 2.2.

The objective of this simulation study is to demonstrate whether the proposed framework

and overall health index R can be used to e�ectively distinguish the normal operating mode

changes or non-stationary variations from the actual process malfunctions. In Fig. 2.4(b), the

overall index is shown for normal operating condition and it can be observed that while there

are two signi�cant mode changes and non-stationary mean variations of four process variables,

the overall index can successfully �ag normal operating condition. In the next step, three

di�erent fault scenarios are de�ned and introduced to the process to evaluate the capability of

the proposed framework in detecting faults. It is worth mentioning that all the fault scenarios

chosen in the simulation should satisfy the detectability criteria [68].

The proposed MM-PCA approach is mainly designed to perform fault detection in both

stationary and non-stationary processes. This means that the process operators do not need

to manually monitor the stationarity of the process time-series and the proposed approach

performs as an ordinary (kernel) PCA when non-stationary changes do not exist.

2.5.1 First Fault Scenario: Bias

An additive bias fault F = [0, 8, 0, 0, 0, 0, 0, 0, 0, 0]T is added at 290th second to the process and

overall health index R is shown in Fig. 2.5(b). This indicates that although the magnitude of

the additive fault is in the safe range of variation for the second variable, but the SPE portion

of the combine index ϕ0 reacts aggressively and exceeds V̄ = 298. Therefore, as shown in the

Fig. 2.5(a), the mean updating rule is deactivated and the error index Φ0
MM shows the fault

.

2.5.2 Second Fault Scenario: Slow Ramp Variation

In this case, an additive slow ramp variation with the slope of 0.05 is introduced to the x10
at 290th second. The challenge in this scenario is that the additive fault does not drag the

process measurements out of their upper bounds, hence as shown in Fig. 2.6(a), the moving-

mean updating rule is active and Φ0
MM does not reject the null hypothesis and it is blind to

the fault. For this type of fault scenarios, the �rst-order error index Φ1
MM plays a prominent

role in fault detection. This scenario appears as a bias for the �rst-order di�erence of the

time-series. Fig. 2.6(b) shows R for this scenario which successfully detect the presence of the

malfunction.
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(a) Comparison between moving-mean combined in-
dex Φ0

MM and the original combined index Φ0.
(b) The proposed index R is shown in this plot for
normal operating conditions, which indicates a few
false alarms.

(c) The feature indices Xf after normalization.

Figure 2.4: The error indices using MM-PCA and the DPCA approach in the numerical
example under normal operating condition.

(a) Comparison between moving-mean combined in-
dex Φ0

MM and the original combined index Φ0.
(b) Proposed index R.

Figure 2.5: The general health index R for the �rst fault scenario (additive bias).
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(a) Comparison between moving-mean combined in-
dex Φ0

MM and the original combined index Φ0.
(b) Proposed index R for the slow ramp fault sce-
nario.

(c) Feature indices Xf after normalization.

Figure 2.6: The comparison between the proposed error indices using moving-mean PCA and
the DPCA approach in the second fault scenario (slow ramp).

2.5.3 Third Fault Scenario: Steep Ramp

In this case, x3 and x6 are subjected to a fault with steep ramp trend with -0.2 and 0.4 slopes,

respectively, which drag mean variations out of the expected range of time-series V̄ as shown

in Fig. 2.7(c). Both Φ0
MM and Φ1

MM can detect this fault and R (i.e. presented in Fig. 2.7(b))

could successfully �ag the fault which can be considered as an obvious fault scenario for the

proposed framework.

2.5.4 Fourth Fault Scenario: Random Drift

In this case, a random drift d(i) = d(i−1)+ϵ(i−1), ϵ ∼ N (0, 0.1), is added to the x4 at 300th

second and the time-series are shown in Fig. 2.8(c). As can be seen in Fig. 2.8(a), the index

ϕ0 �uctuates around the upper bound V̄ = 298 which results in false alarms in moving-mean

zero-order index Φ0
MM . The challenge of the random drift fault is that it does not have a

deterministic trend that can be detrended by regression-based approaches. Also, random drift

malfunction frequently drags the process measurements' mean to cross their upper bounds V̄
randomly and increase the false alarm rate if using only the zero-order index Φ0

MM . On the

other hand, as shown in Fig. 2.8(b), the combined index R could successfully detect the fault

with no false alarm due to feature indices Φ1
MM and Φ2

MM , for which their normalized log

values are shown in Fig. 2.8(d).
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(a) Comparison between moving-mean combined in-
dex Φ0

MM and the original combined index Φ0.
(b) Proposed index R.

(c) Process measurements

Figure 2.7: Simulation result of numerical example for third fault scenario (steep ramp).

Table 2.1: Sensor measurement classi�cation for industrial compressor; each class belongs to
a di�erent component.

Vibration Measurement Sealing System Lubrication Oil Process Measurement

x1 → x9 x10, x11, x12 x13, x14, x15 x16 → x26

2.6 Industrial Application

An industrial compressor data set including 26 sensor measurements categorized in Table 2.1

is investigated for validating the performance of the proposed strategy. The main reason for

considering this industrial application is that the compressor process is generally a complex

non-linear and time-varying system, and the measurement data has regular non-stationary

mean variations, which is the case of interests for this research. In this industrial application,

only the process variables x16 to x26 are considered for monitoring the process health condition.

From inspection and prior knowledge of domain experts, some normal batches of data are

collected and used for training the non-linear base-line model and extracting the proposed

features. Sampling rate for all measurement is 1sample/min. The indices of the training

data batches are 1000 to 2000, 4500 to 5500, 15000 to 15500, 26000 to 27000 and 96000 to

97000. The length of weighted moving average �lter in Eq. (2.3) Wl = 10 and for generating

the �rst- and second-order feature indices shown in Eqs. (2.9) and (2.11) , a window of size

WI = 5 is considered acting as a moving average �lter on the measurement increments. The
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(a) The moving-mean combined index Φ0
MM (b) The general monitoring index R

(c) The process variables for the fourth fault scenario
(random drift)

(d) The feature indices Xf after normalization for
the fourth fault scenario (random drift)

Figure 2.8: Simulation result of numerical example for fourth fault scenario (random drift).

relationships among the compressor measurements follow a non-linear structure, hence, KPCA

is adopted, in which RBF kernel function is used. To decompose the principal direction of

the kernel matrix for the entire three features, CV P = 98% is considered and the number of

principal components is determined to be 5, 1 and 4 for the three feature indices, respectively.

Fig. 2.9 shows the standardized training data used for KPCA in training mode. Also, the �rst

and second-order rate of variations for extracting the feature indices are shown in Figs. 2.9(b)

and 2.9(c), respectively.

Fig. 2.10 presents the result KPCA fault detection in the compressor data utilizing the

proposed moving-mean method alone with the Algorithm 1 for generating caution and alarm

signals. The red spot (i.e. circles) represents the fault alarm, and the purple star shows the

caution signal and the status of the process should be investigated. The idea behind generating

a caution �ag is to account for a situation that a fault at its primitive stage is developing or

a disturbance case due to data acquisition surge, sensor spikes (i.e. oscillation) and missing

data.

Moreover, Fig. 2.10 demonstrates advantages of the proposed moving-mean concept Φ0
MM

in Eq. (2.4) for updating the mean of the variables in expected normal operating range. On

the other hand, Fig. 2.11(c) shows the proposed health index R for the compressor data by

�tting a multivariate kernel density estimator. As can be seen, the health index is mostly zero

for the normal condition and is maximum for the faulty periods. This attribute of the health

index helps the operators to compartmentalize the normal condition from anomalies much
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(a) The compressor measurements in normal operat-
ing condition X.

(b) First-order di�erencing of the compressor vari-
ables in normal operating condition Xd1 .

(c) Second-order di�erencing of the compressor vari-
ables in normal operating condition Xd2 .

Figure 2.9: The zero-order, �rst-order and second-order di�erence of the time-series for the
industrial compressor training data-set.

easier comparing to similar methods. Although the manipulated inputs of the compressor

in the range of 30,000 to 40,000 induce a mean change into entire process variables, the

health index could successfully recognize that as a normal operating variation and stays within

the threshold. It should be noted that there exist several spikes and outlier samples of the

proposed health index around the upper control limit which are mainly due to the presence of

uncertainties, disturbances or missing data. This issue can be handled by applying an alarm

generator such as the one proposed in Algorithm 1. The zoomed snapshots of two evens are

also illustrated in Figs. 2.11(a) and 2.11(b) which indicate the response of overall index R

with higher resolution.

2.7 Summary

The �rst yet important step for a thorough process health monitoring is to detect the presence

of malfunction(s). Although there are di�erent data-driven methods for fault detection, they

mostly su�er from stationarity assumptions. One of the frequently used methods is princi-

pal component analysis (PCA), which assumes that the process time-series follow Gaussian

distributions with time-invariant mean and variance. However, this assumption is violated in

the majority of the industrial processes such as chemical plants and reactors, e.g. continuous
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Figure 2.10: The generated alarm log-history using Algorithm 1 for 5 months of the compressor
data. This �gure compares the di�erence of the proposed MM-KPCA and conventional kernel
PCA.

stirred tank reactor (CSTR), compressor in power plant, etc. The non-stationary nature of

the time-series may be due to the presence of manipulated inputs, system degradation, and

close-loop compensation action of the controllers.

In this chapter, a moving-mean PCA (MM-PCA) method is proposed that is applicable for

both stationary and non-stationary processes. The basis of the proposed MM-PCA is to update

the mean value of the variables based on their upper bound of expected range of variations.

New feasible feature indices are de�ned which are good indicators for the statistical behavior of

the process variable. Moreover, a non-parametric approach based on a kernel density estimator

is used to generate a new health index to reconcile the features. In the end, an alarm-based

algorithm is proposed to generate caution alarm and fault alarm to make the proposed method

applicable to the industrial chemical process. The e�ectiveness of the proposed approach is

presented in a numerical synthetic example for di�erent fault scenarios. A real industrial

compressor is also used to show the industrial implication of the proposed strategy for a non-

stationary process subjected to time-variant mean changes of the measurement time-series.
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(a) Zoomed snapshot of the compressor FD result
for the �rst 10,000 samples

(b) Zoomed snapshot of the compressor FD result
for between 20,000 to 30,000 samples

(c) The proposed health index R for the industrial compress

Figure 2.11: Process monitoring result of the compressor data using proposed framework.
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Chapter 3

PLS-Based Quality Output-Related

Process Monitoring in Non-Stationary

Processes

3.1 Introduction

Amongst model-based and data-driven approaches, the latter has attracted considerable at-

tention for quality-related process monitoring due to their distinct advantages of easy im-

plementation in high-dimensional processes and less requirement for process knowledge. Al-

though quality output-related fault detection has been extensively studied using PLS-based

approaches [26] [42] [1], they usually assume that the process measurements have a stationary

statistic behavior. To handle the cases with time-series subjected to time-variant changes,

adaptive/recursive PLS solutions [47] have been applied to update the base-line model upon

receiving a new batch of data. The updating mechanism for this solution induces a real-time

analysis with a relatively high computational complexity that might hinder the industrial

applications.

Another solution to monitor the non-stationary processes subjected to variations which

change the process base-line structure is to create a bank of models for each mode (scenario)

in the training phase and according to proper classi�cation, apply the corresponding model for

a certain batch of given test data. This solution is recognized as a supervised fault detection

technique which is di�erent from the proposed approach in this chapter. In this chapter, a

cascade approach is proposed to overcome the time-variation of operating point(s) when pro-

cess variables have a dynamic relation with quality-outputs (i.e. key performance indicators

(KPIs)). According to the regression relationship found by dynamic improved PLS tech-

nique [1], �rst, the process variables are orthogonally decomposed into quality output-related

and quality output-unrelated subspaces, second, it is proposed to obtain a principal manifold

for each individual subspace, which remains unchanged during the normal time-varying operat-

ing mode. In addition, new residual statistics and logics are developed to successfully monitor

quality output measurements. The proposed PLS-based approach is considered as an alterna-
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tive for adaptive and recursive PLS counterparts [47] with simply less calculation complexity

and providing the same fault detection result. The improvement in the proposed approach is

that the online mean adjusting step is replaced with the o�-line training of principal manifolds

to capture the underlying structure of the output-relevant and irrelevant measurements.

3.2 Preliminaries and Problem Statement

For an industrial process with n measurements and m process quality output measurements

(KPI), data matrices X ∈ RN×n and Y ∈ RN×m with N ≫ n > m ≥ 1 observations are built

for process health monitoring. For this case, we assume that the underlying relationship be-

tween X and Y is linear, and the process measurements time-series have a normal distribution

with a time-variant mean and constant standard deviation as the following,

x ∼ N (mx(t),Σx), y ∼ N (my(t),Σy) (3.1)

The mean variations of the time-series might be the result of closed-loop control actions for

dissipating disturbances, equipment degradation/corrosion, the evolution of malfunction(s)

with time in the structure of the process equipment, intentional variation of the set-points and

manipulated inputs, etc.

Before any further analysis, columns of X and Y should be normalized using their nominal

mean values to bring their variations to a comparable range. In addition to the aforementioned

assumptions, it is also assumed that the quality outputs Y are dependent on both current

and past values of the X, hence, has a dynamically linear relation with them. In order to

incorporate this dynamic interconnection, we assume that the dynamic dependency order of

h between X and Y is known, thus, the augmented version of the process measurements

XA ∈ R(N−h)×(nh+n) is constructed as follows,

XA =

⎡⎢⎢⎣
xTh+1 xTh ... xT1
xTh+2 xTh+1 ... xT2
... ... ... ...
xTN xTN−1 ... xTN−h

⎤⎥⎥⎦ , Y =

⎡⎢⎢⎣
yTh+1

yTh+2

...
yTN

⎤⎥⎥⎦ (3.2)

In Eq. (3.2), Y ∈ R(N−h)×m is also re-de�ned such that its dimension matches with XA.

The above augmentation step converts the underlying dynamic relation between X and Y to

a static linear counterpart Y = XAψ +W . Therefore, the problem is simpli�ed to �nding a

regression model for a linear static process.

Improved PLS (IPLS) was recently proposed for quality output-related fault detection [1]

[43]. To particularly monitor the impact of malfunctions on the quality outputs, a complete

orthogonal decomposition is done on process measurement XA at �rst,{︄
XA = X̂A + X̃A

Y = Ŷ + Ỹ ⇒ Y = XAψ + Ỹ
(3.3)
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where,

ψ = (XA
TXA)

†XA
TY ∈ Rn(h+1)×m. (3.4)

If XA
TXA in Eq. (3.4) is not full-rank, SVD can be used to calculate the pseudo inverse.

Assume that XA is decomposed in a way that X̂A includes all the information in Y , hence X̃A

should be uncorrelated with Y and perpendicular to X̂A. For this purpose, correlation matrix

ψ in Eq. (3.4) is utilized to perform the orthogonal decomposition of XA. By conducting SVD

on ψψT , loading matrices required for projectingXA onto X̂A ∈ span{ψ} and X̃A ∈ span{ψ⊥}
are derived by �rst performing SVD on ψψT as following,

ψψT =
[︁
Γ̂ψ Γ̃ψ

]︁ [︃Λψ 0
0 0

]︃[︄
Γ̂
T
ψ

Γ̃
T
ψ

]︄
(3.5)

where, Γ̂ψ ∈ Rn(h+1)×m, Γ̃ψ ∈ Rn(h+1)×(n(h+1)−m) and Λψ ∈ Rm×m. Thus, the projection

matrices are obtained as Πψ = Γ̂ψΓ̂ψ
T
and Π⊥

ψ = Γ̃ψΓ̃ψ
T
, as a result, the X̂A and X̃A are

determined as,

X̂A = XAΠψ ∈ R(N−h)×n(h+1)

X̃A = XAΠ
⊥
ψ ∈ R(N−h)×n(h+1)

(3.6)

After successfully projecting the process variables onto two quality output-related and

quality output-unrelated components using Eq. (3.6), for a given new process variables xnew ∈
Rn, the quality output-related and output output-unrelated scores t̂xnewA = xnewAΓ̂ψ and

t̃xnewA = xnewAΓ̃ψ are obtained, respectively. Since the score matrices T̂XA = XÂΓ̂ψ ∈
R(N−h)×q and T̃XA = X̃AΓ̃ψ ∈ R(N−h)×n(h+1)−q have full column rank q and m(h + 1) − q,
respectively, the Hotelling T 2 statistics can be utilized to monitor them as follows [43] [1],

T̂
2
XA

= t̂
T
xnewA

⎛⎝ T̂
T
XA
T̂XA

(N − h)− 1

⎞⎠−1

t̂xnewA

T̃
2
XA

= t̃
T
xnewA

(︄
T̃
T
XA
T̃XA

(N − h)− 1

)︄−1

t̃xnewA

(3.7)

Given a process, when the mean of one or some of the measurements XA is subjected to

variation under the normal operating condition, both of the quality output-related and quality

output-unrelated T 2 statistics in Eq. (3.7) may violate their upper control limits. The reason

behind this issue is that this conventional T 2 index particularly measures the distance of the

scores' mean-values from the origin of XA coordinate. For instance, as demonstrated in Fig.

3.1, for a hypothetical process with two scores t̂XA ∈ RN×2, although the process is still in its

normal operating condition, T 2 index measures each data-point's distance from the origin and

can falsely report presence of a fault if the mean-values of process measurements change. In

general, application of Eq. (3.7) is valid only when mean-values of the XA's columns, and the
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Figure 3.1: The interpretation of the T 2 index de�ned on scores in Eq. (3.7). T1 and T2 are
two scores derived for this hypothetical example.

columns of score matrices T̂A and T̃A are consistently around zero after mean-centering. This

condition originates from stationarity assumption of the PLS approach, which fails in quality

output monitoring of those processes in which their measurement time-series are subjected to

non-stationary mean changes.

Rather than supervised classi�cation-based solutions to resolve this shortcoming [45] [46],

there exist two other options. One is to proceed with relatively computationally intense

adaptive/recursive methods utilized in [47] to recalibrate the base-line models and thresholds

in the online phase. The other approach is to propose a set of post-processing procedures

without any base-line recalibration in the online phase and capture the structure of normal

changes in the training phase. The latter approach is adopted in this chapter and a cascade

PLS-based monitoring scheme is proposed which monitors the underlying principal manifold.

The suggested manifolds are constructed to preserve the dynamic linear relationship between

the principal loading vectors of X̂A and X̃A. The proposed scheme can be considered as the

modi�ed version of the method proposed in [1] [43], which can be applied for general dynamic

linear processes for which the measurement may vary with time or remain consistent during the

normal operating conditions. Not only this approach can be used for non-stationary processes,

but it also has low computation cost because it requires no online updating/calculation for

the adaptation of base-line parameters.

3.3 Proposed Method for Quality Output-Related Fault Detec-
tion

After building the regression structure shown in Eq. (3.3) and decomposing XA to XÂ and

XÃ, it is proposed to de�ne a principal manifold for each component. This new modi�cation

makes the PLS algorithm robust to the normal changes in the operating condition since it

does not measure the absolute distance of the scores from the origin but instead measures the
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Figure 3.2: A pictorial example with three dimensional X̂
l
A and geometrical overview of pro-

posed residual in Eq (3.9). The T 2 index using DIPLS is the red broken line which does not
reveal the deviation from the principal manifold. The perpendicular black broken line is the
proposed residual statistic.

distance form the proposed principal manifold.

De�nition 3.1 The principal manifolds of X̂A and X̃A spaces are respectively de�ned as the

subspaces spanned by their principal loading vectors as basis, representing the directions along

which maximum populations of data-points in X̂A and X̃A are distributed.

According to the above de�nition, the principal manifolds is spanned by basis, in which the

data-point might possibly vary during the normal operating condition. To derive the principal

manifolds, the �rst step is to determine the number of time lag between the columns of both

quality-related X̂A and quality-unrelated X̃A measurement matrices. This can be done by the

following method presented in [23].

Assume l is the time-lag between columns of X̂A. If l > 0, X̂A is required to be augmented

l times according to Eq. (3.2) and derive the augmented matrix X̂
l
A. However, in the case

that l = 0, to ensure that the minimum dimension of the principal manifold subspace of X̂
l
A

in Eq. (3.8) is at least one, i.e. principal manifold is a one-dimensional line, l = 1 is selected

such that X̂
l
A is not of full column rank. Similarly for X̃A , the number of augmentation l′

can be determined using the same procedure and derive the augmented matrix X̃
l′

A.

In order to �nd the basis of the principal manifolds that carry direction(s) with maximum

population of X̂
l
A ∈ R(N−h−l)×n(h+1)(l+1) and X̃

l′

A ∈ R(N−h−l′)×n(h+1)(l′+1), it is suggested to

apply SVD as follows,

X̂
l
A =

[︂
Û
X̂
l
A

Ũ
X̂
l
A

]︂ [︄Ŝ
X̂
l
A

0

0 S̃
X̂
l
A

]︄⎡⎣V̂ T

X̂
l
A

Ṽ
T

X̂
l
A

⎤⎦
X̃
l′

A =
[︂
Û
X̃
l′
A

Ũ
X̃
l′
A

]︂⎡⎣ŜX̃l′
A

0

0 S̃
X̃
l′
A

⎤⎦⎡⎣V̂ T

X̃
l′
A

Ṽ
T

X̃
l′
A

⎤⎦ (3.8)
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The direction(s) with maximum population distribution required for determining the prin-

cipal manifolds of X̂
l
A and X̃

l′

A are the columns of the V̂
X̂
l
A
and V̂

X̃
l′
A

corresponding to relatively

dominant singular values of the Ŝ
X̂
l
A
∈ Rd×d and Ŝ

X̃
l′
A

∈ Rd′×d′ , respectively. In Eq. (3.8), d

and d′ are the number of dominant singular values and it can be determined by following the

cumulative percentage variance (CPV) technique [72].

In order to monitor deviation from the obtained principal manifold, as can be seen in

Fig. 3.2, we propose to use Q statistic which geometrically measures the Euclidean distance

between each data-point of X̂
l
A and X̃

l′

A from their corresponding principal manifolds. For this

purpose, the Ṽ
X̂
l
A

and Ṽ
X̃
l′
A

are derived using Eq. (3.8). The Q statistic for each new given

point x̂lA ∈ Rn(h+1)(l+1) and x̃l
′
A ∈ Rn(h+1)(l′+1) are the new proposed monitoring indices for

quality output-related fault detection as follows,

⎧⎨⎩Qx̂lA = x̂lAṼ X̂
l
A
Ṽ
X̂
l
A

T
x̂A

lT

Q
x̃l

′
A

= x̃l
′
AṼ X̃

l′
A

Ṽ
X̃
l′
A

T
x̃A

l′T
(3.9)

Fig. 3.2 shows a pictorial example of the scores' manifold for a dynamic linear time-

variant process that has a three dimensional X̂
l
A with the column rank of d = 2. Then the

corresponding principal manifold has two basis. The Euclidean distance of the decomposed

process variables from the determined principal manifold is the new residual index (i.e. black

broken lines perpendicular to the manifold in Fig. 3.2) which is utilized to monitor the

deviation of X̂
l
A from their underlying vector auto-regressive (VAR) structure. Therefore, as

long as the process is in the normal operation, even if the mean values of X̂
l
A and X̃

l′

A change

with time, they vary along the derived principal manifold and the proposed residuals Qx̂lA
and Q

x̃l
′
A
will not exceed their normal thresholds. On the other hand, as shown in Fig. 3.2

by broken red lines, the T 2 index de�ned in Eq. (3.7) may violate its threshold even for the

normal variation of the process variables.

According to [73], the upper control limit for index Q
X̂
l
A
is de�ned as,

UCLQ
X̂
l
A

= θ̂1

⎛⎝ ẑα
√︂
2θ̂2ĝ

2
0

θ̂1
+ 1 +

θ̂2ĝ0(1− ĝ0)2

θ̂1

⎞⎠2

(3.10)

where, θ̂i =
∑︁n(h+1)(l+1)−d

j=1 S̃
X̂
l
A

(j), ĝ0 = 1 − 2θ̂1θ̂3

3θ̂
2

2

and ẑα is the value of the normal

distribution function with con�dence level α and the degree of freedom n(h + 1)(l + 1) and

N − n(h+ 1)(l+ 1). By following similar procedure, the upper control limit UCLQ
X̃
l′
A

can be

determined.

In Algorithm 2, the step by step procedure for the proposed PLS-based approach is summa-

rized. The proposed PLS-based approach consists of an o�-line training step and a real-time

testing counterpart.
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Algorithm 2 Cascade PLS approach for fault detection in non-stationary processes
1: procedure Training:
2: Collect normal process variables data (X) and quality-outputs (Y ),
3: Construct XA as shown in Eq. (3.2) and mean-center each columns of XA and Y ,
4: Calculate the correlation matrix ψ by Eq. (3.4) and utilize it for determining the X̂A

and X̃A as shown in Eq. (3.6),

5: Determine the parameter l and l′, then construct X̂
l
A and X̃

l′

A.

6: Conduct SVD on X̂
l
A and X̃

l′

A to determine Ṽ
T̂
l
A

, S̃
X̂
l
A

, Ṽ
X̃
l′
A

and S̃
X̃
l′
A

as shown in Eq.

(3.8),
7: Determine UCLQ

X̂
l
A

and UCLQ
X̃
l′
A

by following Eq. (3.10).

8: procedure Testing:
9: For a given new sample xnew ∈ Rn, determine the mean-centered augmented xnew_A ∈
Rn(h+1),

10: By following Eq. (3.6), determine x̂new_A and x̃new_A,
11: Perform augmentation on x̂new_A and x̃new_A to build x̂lnew_A and x̃l

′
new_A if necessary,

12: Determine the proposed new indices Qx̂
Al

and Q
x̃l

′
A
in Eq. (3.9),

13: if Qx̂
Al
> UCLQ

X̂
l
A

and Q
x̃l

′
A
> UCLQ

X̃
l′
A

then

14: ⇒ Quality output-related fault exists

15: if Qx̂
Al
< UCLQ

X̂
l
A

and Q
x̃l

′
A
> UCLQ

X̃
l′
A

then

16: ⇒ Quality output-related fault exists
17: else
18: ⇒ Normal operation

It is worth noting that the collected data-points for the training step must include certain

time-varying operating conditions of the process. This time-varying mode does not need to

match the actual mode in the testing step and it is only required to learn the underlying

principle manifold.

3.4 Simulation Results and Case Studies

In this section, the proposed strategy is conducted on a numerical example and a non-

isothermal CSTR chemical process. Moreover, the results of the proposed method are com-

pared with the dynamic improved PLS method [1] in order to clarify the contribution of the

proposed algorithm and its performance for time-variant cases. A false alarm rate (FAR)

index is considered to inspect the accuracy of the proposed algorithm. The lower FAR for

normal conditions represents the better performance of the method to capture the normal

time-varying information of the process.

FAR =
number of false alarms

total numberofsamples
× 100 (3.11)
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3.4.1 Numerical Example

A time-variant version of the numerical example studied in [1] is considered here as following,

Ui =W1Ui−1 +W2Ui−2 + gi + µi

Xi = BUi + fi + νi,

Yi = C1Xi + C2Xi−1 + ei

(3.12)

where, ν, e ∼ N(0, 0.02, I5) and µ ∼ N(0, 22, I2). fi is the additive fault to the process

variables. gi is the additive time-varying component of the process variables and may be any

function of the increment i. The following is the matrices in Eq. (3.12),

W1 =

⎡⎣ 0.4389 0.1210 −0.0862
−0.2966 −0.0550 0.2274
0.4538 −0.6573 0.4239

⎤⎦ ,
W2 =

⎡⎣−0.2998 −0.1905 −0.2669
−0.0204 −0.1585 −0.2950
0.1461 −0.0775 0.3749

⎤⎦ ,

B =

⎡⎢⎢⎢⎢⎣
0.5586 0.2042 0.6370
0.2007 0.0492 0.4429
0.0874 0.6062 0.0664
0.9332 0.5463 0.3743
0.2594 0.0958 0.2491

⎤⎥⎥⎥⎥⎦

C1 =

⎡⎢⎢⎢⎢⎣
0.9249 0.4350
0.6295 0.9811
0.8783 0.0960
0.6417 0.5275
0.7984 0.5456

⎤⎥⎥⎥⎥⎦C1 =

⎡⎢⎢⎢⎢⎣
1.7198 −0.3715
0.5835 1.5011
1.4236 1.3226
0.4963 −1.4145
−2.5717 1.0696

⎤⎥⎥⎥⎥⎦

(3.13)

For o�-line training step, 10,000 samples are generated with sample time T = 0.01 sec and

20,000 samples are collected for real-time analysis. In this numerical example, the process

variables utilized for training step have a ramp trend as gi = 0.03× (i− 1)T, i = 1, ..., 10, 000.

However, after sample 10, 000th, their time-varying trend become a random drift as gi =

0.03× (i− 1)T + 0.015×D(i), i = 10, 000, ..., 20, 000, where, D(i) is the added random drift.

This choice of gi is to demonstrate that the time-varying trend of process variables do not

need to be similar for both training and real-time analysis. In this simulation, we compare

the proposed PLS-based approach with the Improved PLS method [1] to demonstrate that

the proposed method achieved the non-stationary fault detection with the same calculation

complexity of the IPLS method. It should be noted that the application of adaptive PLS is

also a fair comparison in this chapter, but since both methods will lead to the approximately

same false alarm rate (FAR) result, it may not clearly indicate the contribution of the proposed

PLS-based approach.

The quality output-related additive fault vector is considered f1 = [2, 1,−3, 2,−5]T . The
fault vector f2 = [0.0054, 0.3145,−0.0432, 0.7516,−0.4440]T which is perpendicular to the
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Table 3.1: FAR of the proposed approach and DIPLS method [1] for numerical example and
CSTR case study.

Scenarios
Numerical Example CSTR

DIPLS
New

method DIPLS
New

method

No Fault 59%,21% 9%,7% 46%,5% 1%,2%
Fault 1 39%,22% 4%,8% 18%,18% 2%,4%
Fault 2 24%,19% 8%,2% 31%,8% 1%,7%

subspace of Y is also considered as the quality output-unrelated fault vector, thus, it does not

a�ect output Y in Eq. (3.12).

Fig. 3.3 shows the process variables and outputs for the normal operation. In Figs. 3.3(a)

and 3.3(d), the T 2 index of the DIPLS method [1] gives false alarm in the normal mode because

of the non-stationarity in the process time-series. Fig. 3.5 shows the results when a quality

output-related malfunction f1 is introduced to the process. As can be seen in Fig. 3.5(a), T 2

quality output-related index crosses the UCL around 10, 000th sample, at which the process is

still in the normal operation. However, both Q
X̂
l
A
and Q

X̃
l
A
can successfully detect the quality

output-related malfunction, (see Figs. 3.5(c) and 3.5(d)).

As shown in Figs. 3.6(c) and 3.6(d), the fault f2 which does not a�ect the quality output

is also successfully detected by using the proposed PLS-based approach . However, quality

output-related T 2 index in Fig. 3.6(a) produces false alarms while the process quality output

remains intact. The FAR for both methods and two operating scenarios are determined and

presented in Table 3.1, which indicates a signi�cant improvement in reducing FAR.

3.4.2 Case Study on Continuous Stirred Tank Reactor (CSTR)

In this section, the �rst-order non-isothermal CSTR reactor is under study. This process is

utilized as a viable case study in [74] [19] [48] for fault detection and diagnosis purposes due

to the time-varying nature of its process variables. Fig. 3.4 is the schematic diagram of the

CSTR reactor indicating the inputs, intermediate measurements, and quality-outputs.

In this process (A → B), the reactant A is premixed with the solvent �ow in order to

produce B. There is one feed stream into the reactor including the reactant (A) mixed with a

solvent. Also, there is a cooling water stream that regulates the temperature of the process.

As can be seen in Fig. 3.4, the reactant and cooling water �ows FA and Fc control the

output concentration CA and temperature, respectively. Also, in this process, there exists a

PI controller that regulates the temperature.

By assuming the ideal mixture and constant physical properties of the materials, the

material and energy balance equations of the CSTR process is as follows,
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(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) Q
X̂

l
A
index using proposed method (d) Q

X̃
l
A
index using proposed method

(e) Process variables in normal operating condition

Figure 3.3: Simulation results of the numerical example for normal mode (no-fault) using the
proposed method and DIPLS.
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Figure 3.4: Non-isothermal continuous stirred tank reactor (CSTR) process.

(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) Q
X̂

l
A
index using proposed method (d) Q

X̃
l
A
index using proposed method

Figure 3.5: Simulation result of numerical example for quality output-related fault f1 using
the proposed method and DIPLS.
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(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) quality output-related Q
X̂

l
A

index using proposed

method

(d) quality output-unrelated Q
X̃

l
A

index using proposed

method

Figure 3.6: Simulation result of numerical example for quality output-unrelated fault f2 using
the proposed method and DIPLS.
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Figure 3.7: The CSTR process measurements in normal operating condition

dCa
dt

=
F

V

CaaFa + CasFs
Fa + Fs

− F

V
Ca − k0e

(−
E

RI
)
Ca

VρCp
dT

dt
= ρCpF (T0 − T )− a2aF b+1

c

Fc + a2aF bc /2ρcCpc
(T − Tc) + (−∆H)Va1k0e

(−
E

RI
)
Ca

(3.14)

where the empirical relationship between the heat transfer coe�cient and the �ow of the

cooling water is assumed UA = aF bc . The process disturbances is introduced by multiplication

of a random coe�cient to the reaction constant K = a1k0e
(
E

RT
)
and heat transfer coe�cient

UA = a2aF
b
c . The additive disturbances to the process are in the form of an auto-regressive

and a random independent noise. The list of the process variable is shown in the Fig. 3.4.

The time-variation of the process variables is due to the deactivation of the catalyst and it

is simulated through adjustment of pre-exponential factor K0 = (1− t× 10−4)Kinitial
0 . More

detailed information about the coe�cients and PI controller used in this simulation can be

found in [19]. The process is simulated for 2,500 minutes with a sample time of 1 minute,

which 750 samples are chosen for training.

Fig. 3.7 shows the process time-series for the normal operating condition. As can be

concluded from the Fig. 3.8, both the quality output-related and quality output-unrelated

T 2 indices using DIPLS violate their UCL for the normal operating mode. However, QX̂A

and QX̃A
are not sensitive to time-variation of process variables and remain below their cor-

responding UCLs since they operate along with their ARMA model without the presence of

faults.

The process is subjected to two types of faults as following,
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(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) quality output-relatedQ
X̂

l
A
index using proposed

method

(d) quality output-unrelated Q
X̃

l
A
index using pro-

posed method

Figure 3.8: Simulation result of CSTR benchmark for normal operating condition comparing
DIPLS with the proposed scheme.
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(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) quality output-relatedQ
X̂

l
A
index using proposed

method

(d) quality output-unrelated Q
X̃

l
A
index using pro-

posed method

(e) Ca concentration for the �rst fault scenario

Figure 3.9: Simulation result of CSTR case study for Fault 1 scenario.
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(a) quality output-related T 2 index using DIPLS (b) quality output-unrelated T 2 index using DIPLS

(c) quality output-relatedQ
X̂

l
A
index using proposed

method

(d) quality output-unrelated Q
X̃

l
A
index using pro-

posed method

(e) Ca concentration for the second fault scenario

Figure 3.10: Simulation result of CSTR case study for Fault 2 scenario.

45



Fault 1: A step malfunction of 3.0 C◦ in inlet cooling water temperature Tc starting at

2, 000th sample,

Fault 2: A step malfunction of 5.0 C◦in the inlet temperature T0 starting at 2, 000th

sample.

Fig. 3.9(e) shows that for Fault 1 scenario, the quality-output Ca is deviated from its

expected envelop, thus, subjected to a fault. Therefore, this fault scenario is a quality output-

related case. Figs. 3.9(a) to 3.9(d) show that the proposed Q
X̂
l
A
and Q

X̃
l
A
indices successfully

detected the quality output-related fault. However, the T 2 index used in DIPLS method (see

Fig. 3.9(a) and 3.9(b)) produces false alarm before the fault truly happens because it miss

detects the normal mean changes as a fault.

In Fault 2, the 5 C0 step change in the inlet temperature is not signi�cant enough and

it is compensated by the incorporated PI controller, thus, as indicated in Fig. 3.10(e), the

quality output is not a�ected by this malfunction. Therefore, this scenario is deemed as a

quality output-unrelated case. Fig. 3.10(c) shows that the QX̂A
remains below its UCL while

QX̃A
in Fig. 3.10(d) shows the present of a malfunction in the X̃A. Hence, by utilizing the

proposed method, the quality output-unrelated fault is also successfully detected. Even though

the T 2 quality output-unrelated index is showing the presence of a fault in Fig. 3.10(b), the

quality output-related T 2 index falsely indicates presence of a quality output-related fault.

The comparative FAR for both fault scenarios is presented in Table 3.1. The results show

that the proposed method can successfully compartmentalize the time-varying mean changes

of measurements under normal condition form quality output-related/unrelated faults. In

general, as can be concluded from the result of the DIPLS method as the most recent improved

version of the PLS-based approach, it performs poorly for processes subjected to non-stationary

variations and has a high FAR.

3.5 Summary

In this study, a modi�ed PLS-based framework is proposed to distinguish quality output-

related process faults from the time-variation of measured variables in the normal operating

mode. In contrast with the state-of-the-art methods, such as DIPLS, which measures the

distance of each data-point from the origin and consequently fails to capture the normal time-

varying operating condition, the proposed scheme forms the monitoring model built upon the

new concept of principal manifolds using the time-varying information of process variables.

Therefore, the proposed method can successfully distinguish normal time-varying changes from

the quality output-related and unrelated faults in dynamic linear processes. It should be noted

that the proposed method assumes the normal non-stationary mean-changes of the process

should be seen in the training data which will lead to preserving the ARMA structure of

each component in the principal manifold. Moreover, the suggested solution assumes that

the process base-line model stays unchanged during the normal non-stationary variations.

Finally, two case studies on a numerical example as well as a CSTR benchmark are conducted
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to demonstrate the e�ciency of this method.
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Chapter 4

Root-Cause Fault Diagnosis Using

Symbolic Dynamic Transfer Entropy

4.1 Introduction

Fault diagnosis and root cause identi�cation of an abnormal event are considered as complex

and time-consuming tasks. The bene�ts of these monitoring steps in industrial processes are

presented in [75] and some of the improvements in fault diagnosis are reviewed. For conducting

data-driven fault diagnosis, causality analysis is a viable solution. By using this approach, the

causal connections between process measurements are investigated. Since the symptoms of the

process fault propagate to all measurement time-series through these causal connections, i.e.

smearing out e�ect, knowledge of these connections can be e�ectively utilized to diagnose the

root-cause fault. Various techniques have been used for this purpose such as transfer entropy

(TE) [57] [76] [58]; Granger causality (GC) [54] [77] [63], cross-correlation with time lag [78],

partial directed coherence [79], and convergent cross-mapping [80].

Selecting the proper method for conducting causality analysis always depends on statistic

nature of time-series and the application. Among all available approaches, GC and TE have

gained relatively more interests due to their simple structure and their compatibility with

industrial processes. For these two well-known approaches, Lindner et al [81] provided a

comparative analysis, and it can be used to decide which method is a proper choice given a

particular application. These two techniques have been proven e�ective for root-cause fault

diagnosis in industrial processes as shown in some research investigations. In this chapter, TE

is selected as the main tool for conducting causality analysis since it can be applied to both

linear and non-linear processes.

One of the conventional ways for estimating the TE between two time-series is using the

kernel density estimators (KDE), which can �t a proper distribution function to the joint

and conditional PDFs [59]. However, this approach has a high-computational complexity

making the real-time application of TE for causality analysis an arduous task. To address this

limitation, in this chapter an alternative method for estimating TE between two time-series is

proposed and it is further used for root-cause fault diagnosis.

48



Symbolic time-series analysis (STSA) is a powerful tool for modeling and characterization

of the non-linear dynamical systems [82] [83]. Following this theory, Ray in [84] proposed

symbolic dynamic �ltering (SDF) as a viable tool for fault detection and pattern recogni-

tion. A thorough comparison between SDF and other data-driven approaches such as PCA

and arti�cial neural networks (ANN) is conducted in [85]. SDF has been recently proposed

as a relatively fast feature extraction tool from time-series [84]. In the SDF approach, the

time-series are symbolized according to a proper partitioning which is performed according

to nominal time-series. It should be noted that the partitioning remains invariant during

the analysis, hence, the symbolic sequences will change while the dynamical behavior of the

time-series changes. Probabilistic �nite state automata (PFSA) [86] is generated from the

symbolic sequence of the time-series to model the dynamical behavior. Moreover, the proba-

bility distributions that are obtained from the PFSA provides a statistical representation of

the behavioral pattern that can be further utilized for anomaly detection and diagnosis.

One of the prominent advantages of the symbolic analysis of time-series data is its en-

hanced computational e�ciency. Also, analysis of the symbolic data is often less sensitive

to measurement noise and therefore its application attracts great interest while the compu-

tational e�ciency is crucial. This prominent feature motivated the authors to utilize SDF

formulation for e�cient and fast calculation of causal dependency through TE between a pair

of time-series data, which is further applied for real-time root-cause fault diagnosis. Although

the application of SDF itself has been reported earlier [87] [88] [89] [90], important preliminary

concepts of this technique are reviewed for the completeness of the proposed framework. The

proposed solution for the problem of root-cause fault diagnosis using transfer entropy in a

real-time manner is presented in the following.

4.2 Proposed Framework

In this chapter, a new approach based on symbolic dynamic �ltering is proposed, which can

be applied as a fast alternative for estimating transfer entropy between two times series for

causality analysis. Furthermore, a general framework is proposed for conducting root-cause

fault diagnosis by using the proposed approach which reveals the root-cause variable(s) that

holds responsible to be the source of the detected fault. Symbolic dynamic �ltering (SDF) is

used as an alternative for conventional kernel density estimators (KDEs) to estimate the joint

and conditional Shannon entropies in the de�nition of the TE. Then, by utilizing symbolic

dynamic �ltering-based modelling, a novel and fast procedure for estimation of conditional

entropy H(ψi+h|ψl1i , x
l2
i ) in Eq. (4.4) is proposed. To achieve this, a new concept of joint

xD-Markov machine is introduced (See Def. 4.3).

The schematic diagram that summarizes the main steps of the proposed root-cause fault

diagnosis strategy is shown in Fig. 4.1. In the �rst part, a reduced-rank kernel trick introduced

in [34] is applied to project the process variables X ∈ RN×m with non-linear relations onto

a higher dimensional linear space Φ(X) ∈ RN×f . Then, a residual index that represents the

49



Figure 4.1: Schematic diagram of the proposed root-cause fault diagnosis algorithm.

existing fault in the process is calculated. In the second part (root-cause diagnosis mechanism

in Fig. 4.1), it is proposed to �nd the strength of causality (measured by the proposed symbolic

dynamic-based normalized transfer entropy (SDNTE)) from each process x ∈ X variables to

the residual signal ψ. The underlying idea behind the proposed framework is that the source

of the fault has a stronger causal contribution to the residual signal, while in the normal (i.e.

fault free) situation, there is no signi�cant causal pathway between process variables and the

residual signal. It should be noted that the relationship between the generated residual signal

ψ and process variables X may be non-linear, thus, normalized transfer entropy (NTE) which

is applicable to non-linear relations is utilized for causality analysis.

4.3 Residual Generation Using Kernel Trick

Assume that the given non-linear process contains m process variables x(i) = [x1(i),

x2(i), ..., xm(i)] ∈ Rm. In an o�-line measurement, N >> m samples of process variables

are observed and put into a matrix X ∈ RN×m for training purposes. Later, x∗ ∈ R1×m

indicates a single test measurement vector. The common way that has been used for dealing

with non-linearity of the process variables is to map them into a high-dimensional feature

subspace where the mapped version of variables follow approximately a linear dependency

[29] [33]. For this purpose, consider Φ to be a non-linear function that maps x(i) ∈ R1×m

into a new feature subspace Φ(x(i)) = [ϕ(x1(i)), ϕ(x2(i)), ..., ϕ(xm(i))] ∈ R1×f , f >> m,

where in theory, f may tend to in�nity. By assuming that the mapped training matrix

Φ(X) is already mean centered, the covariance matrix in the feature space is determined

as CΦ =
1

N

∑︁N
j=1Φ(x(j))Φ(x(j))

T . Instead of carrying out the map Φ and directly eigen-

decomposing CΦ, kernel trick can be alternatively used for simplifying dot product in the above

high dimensional feature space without explicit knowledge of non-linear mapping function

Φ(X) [31]. To this aim, dot product can be replaced with di�erent types of kernels such as a
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N ×N Gram kernel matrix K(x(i), x(j)) =< ϕ(x(i)), ϕ(x(j)) >. Therefore, for the training

data-set X ∈ RN×m, we can �nd the training kernel matrix K = Φ(X)TΦ(X) ∈ RN×N .

Since the necessary condition for the training data Φ(X) is to be mean-centered, the kernel

training matrix must be centralized. Assuming K is obtained from uncentered training data,

the mean-centered kernel K can be obtained as following,

K = (IN − EN )K(IN − EN ) ∈ RN×N (4.1)

where, IN is N × N identity matrix and EN =
1

N
1N1

T
N such that 1N = [1, ..., 1]T . Later,

once a single test measurement vector x∗ ∈ R1×m is available, its uncentered kernel vector

κ(x∗) = [κ(x(1), x∗), ..., κ(x(N), x∗)]T ∈ RN×1 can be mean centered as follows,

k(x∗) = (IN − EN )
[︃
κ(x∗)− 1

N
K1N

]︃
∈ RN×1. (4.2)

In [34], it is shown that the e�ective rank of training kernel matrix K is r ≤ N − 1. Hence,

instead of eigen-decomposing K itself that is de�ned in the mapped space Φ(X), a reduced-

dimensional subspace of the feature space Φ(X) so-called P can be obtained by conducting

singular value decomposition as follows,

K =
[︁
Uk ⋆

]︁ [︃Λk 0
0 ⋆

]︃ [︃
UTk
⋆

]︃
(4.3)

where, Uk ∈ RN×r and Λk = diag(λ1, ..., λr) ∈ Rr×r are the corresponding non-zero

eigenvectors and eigenvalues of K, respectively. It can be proven that the columns of Π =

Φ(X)UkΛ
−1/2
k = [π1, ..., πr] ∈ Rf×r contains the orthonormal bases of the reduced-rank sub-

space P . By considering ΦP (X) as the projection of Φ(X) onto P whose bases are Π, the cor-

responding Cartesian coordinate is ΦP (x∗) = ΠΛ
−1/2
k UTk k(x

∗), where, k(x∗) = Φ(X)Tϕ(x∗) ∈
R1×N is the mean-centered kernel vector obtained by Eq. (4.2). Intuitively, ΦP (x

∗) can

be deemed as a non-linear mapping of N -dimensional subspace onto a r-dimensional coun-

terpart spanned by Π. Therefore, the coordinates of feature mapped training data Φ(X) is

Y = Λ
−1/2
k UTk K = Λ

−1/2
k UTk UkΛkU

T
k = Λ

1/2
k UTk .

In [34], Kwak proposed to extract the principal components of Y instead of kernel matrix K,

which reduces the dimensionality while keeping the key information of the process variables.

When Y ∈ RN×r matrix is obtained from the N observation of the training data, SVD can

be deployed on the covariance matrix CY =
1

N − 1
Y TY ∈ Rr×r to extract the principal di-

rections with maximum distribution of r-dimensional data Y as CY = Û Λ̂Û
T
, where, Û and

Λ̂ represent the loading vectors corresponding to non-zeros singular values Λ̂. For a new test

data x∗ ∈ Rm, y = Λ−1/2UTk(x∗) ∈ Rr is calculated and the square prediction error signal,

ψ = (Ir − Û Û
T
)y is suggested to be utilize for fault detection and further in the proposed

root-cause diagnosis methodology. The upper control limit for the ψ can be determined by

following procedure proposed in [91]. The summary of the required steps for residual signal

generation using kernel trick is explained in Appendix 8.
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4.4 Root Cause Fault Diagnosis

4.4.1 Causality Analysis Using Transfer Entropy (TE)

In order to �nd the causality inference among a group of variables, this chapter studies the use

of transfer entropy (TE) as a tool to measure the information �ow. Assume that time series

xa ∈ RN is independent and xb ∈ RN is dependent, then Eq. (4.4) is the generic de�nition of

TE from xa to xb represented by Shannon Entropy function H,

TExa−→xb = H(xi+hτb |xl1b )−H(xi+hτb |xl1b , x
l2
a )

=

N∑︂
i=1

p(xi+hτb , xl1b , x
l2
a ) log

p(xi+hτb |xl1b , x
l2
a )

p(xi+hτb |xl1b )

(4.4)

where xl2a = [xia, x
i−τ
a , ..., x

i−(l2−1)τ
a ] and xl1b = [xib, x

i−τ
b , ..., x

i−(l1−1)τ
b ] are the embedding

vectors including the current and past values of the corresponding time series. h is the shifting

index and τ is a scaling factor that allows the scaling in time of the embedding vectors, which

can be set τ = h ≤ 4 as a rule of thumb [57].

H(xi+hτb |xl1b ) and H(xi+hτb |xl1b , x
l2
a ) presented in Eq. (4.5) are the non-negative discrete

Shannon conditional entropies determined for a set of time series with lengths ofN samples, i.e.

N is the number of samples exist in a window batch for each variable required for calculating

causality.

H(xb
i+hτ |xbl1) = −

N∑︂
i=1

p(xb
i+hτ , xb

l1) log p(xb
i+hτ |xbl1),

H(xb
i+hτ |xbl1 , xal2) = −

N∑︂
i=1

p(xb
i+hτ , xb

l1 , xl2a ) log p(xb
i+hτ |xbl1 , xl2a )

(4.5)

Eq. (4.4) is non-negative and its relative small value indicates no information �ow from

xa to xb. The intuition behind Eq. (4.4) is to calculate the improvement in prediction of xb
by having past information on both xa to xb versus the case when only information on past

values of xb is available. In order to determine TE between two time-series presented in Eq.

(4.4), one can determine the conditional entropies H(xb
i+hτ |xbl1) and H(xb

i+hτ |xbl1 , xal2) by
estimating their joint probability density functions (PDFs). In [61], a survey is conducted on

di�erent methods for estimating PDFs using time-series data. Kernel functions are widely

used for estimating PDFs, e.g. [56], [92] and [93]. For further details about application of

kernel functions regarding estimation of PDFs, readers are refereed to [57] and [59]. It should

be mentioned that even though kernel functions have been adopted in several studies, its high

complexity and burdensome computation are still considered as barriers for real-time appli-

cation of TE for causality analysis purposes. Therefore, this is a motivation to propose a

symbolic dynamic-based approach to estimation conditional Shannon entropies shown in Eq.
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(4.5) [20].

4.4.2 Symbolic Dynamic Filtering Modelling of Time-Series

In order to estimate the TE shown in Eq. (4.4) from xa to xb, one would use conventional

kernel density estimators (KDEs) [59]. However, in this thesis, it is proposed to adopt a

modeling technique known as symbolic dynamic �ltering (SDF). This approach is a powerful

tool for feature extraction and time series analysis. Symbolic dynamic �ltering (SDF) has

been recently proposed as a feature extraction tool from time-series.

In order to calculate TE between a pair of time-series, one of the time-series is assumed

as an independent (e.g. xa ∈ RN×1; N observation from one variables) and the other as

a dependent (e.g. xb; N observation from another variable or a residual in section 4.3).

The �rst step is to derive symbolic sequences as representatives of the statistical nature of

the evolving dynamical system. For this purpose, partitioning of the time-series is required.

Uniform partitioning (UP) and optimal partitioning (OP) can be selected for this purpose

[94]. Also, maximum-entropy partitioning (MEP) [95] is based on maximizing the Shannon

entropy of the symbolic sequence, thus the time-series regions with rich information have

narrower partitions and those with sparse information have broader counterparts. All time-

series in the simulation and industrial results of this chapter are partitioned utilizing (MEP)

for constructing symbol sequences. As can be seen in Fig. 4.2, as a pictorial example of

the partitioning and symbolic encoding of a time-series, the signal space Φ of a time-series is

partitioned for instance into two number of mutually exclusive and exhaustive regions that

are labeled as symbols σi ∈ Σ, i = 0, 1, i.e., the number of cells are identically equal to the

cardinality of the alphabet (symbol) Σ. If the value of the time-series at a given instant is

located in a particular cell, then it is coded with the symbol associated with that cell. Thus,

a �nite array of symbols s called a symbol string (see Fig. 4.2), can be generated from each

(�nite-length) time-series data (e.g. process variable x).

The next step is to generate the probabilistic �nite state machines (PFSM) out of the

symbolized time-series. To achieve this, four-string states qi ∈ Q, i = 0, ..., 3 with length

D = 2 are generated from all possible permutations of symbols. Hence, by considering a

window with length D = 2 and moving it along the s, the time-series can be encoded.

To reformulate the derivations for a speci�c time-series xa, the probability of being at state

qxai which is called state probability p(qxai ), qxai ∈ Qxa at the corresponding time epoch is one

of the key components of the symbolic dynamic �ltering. The state probability vector of a

time-series is P = [p(qxa1 ), ..., p(qxa|Qxa |)], where |Q
xa | is the state cardinality for time-series xa.

As shown in Eq. (4.6), p̂(qxai ) can be estimated by frequency counting as the ratio of the

number of times state qxai occurs, i.e. N(qxai ) → number of occurrence of qxai , in the symbol

sequence over the number of times that all states qxaj , j ∈ Qxa occur.

p̂(qxai ) =
N(qxai )∑︁

j∈Qxa N(qxaj )
(4.6)
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Figure 4.2: Steps for construction of �nite state machine from time-series.

Following the de�nition of state probability vector, the stationary irreducible state-transition

probabilities πxaxaij is required at each epoch time to obtain the state transition matrix.

Πxaxa = [πxaxaij = p(qxai |q
xa
j )], i, j = 0, ..., |Qxa |−1, whose element represents transition prob-

ability from state qxaj to state qxai upon occurrence of a symbol σxa ∈ Σxa at each epoch time.

In Fig. 4.3, a pictorial explanation of πxaxaij = p(qxai |q
xa
j ) is shown. By utilizing the frequency

counting method, the state transition probability can be determined as shown in Eq. (4.7).

πxaxaij = p(qxai |q
xa
j ) =

N(qxaj , q
xa
i )∑︁|Qxa |−1

k=0 N(qxaj , q
xa
k )

(4.7)

N(qxaj , q
xa
i ) is the total counts of events when qxai occurs adjacent to qxaj along the symbol

sequence. For each time-series, a probabilistic �nite state automata (PFSA) can be de�ned as

following which describes the atomic dynamic characteristics of the time-series,

De�nition 4.1 (PFSA [96]) A probabilistic �nite state automaton (PFSA) (describing time-

series xa) Axa is 4-tuple Axa = (Σxa , Qxa ,∆xa , Π̃
xaxa

), where :

1. Σxa = {σ0, σ1, ....., σ|Σxa |−1} is a nonempty �nite alphabet (symbol) set with cardinality

|Σ|xa<∞.

2. Qxa = {qxa0 , qxa1 , ....., q|Qxa |−1} is a �nite set of states with cardinality |Qxa |.

3. ∆xa : Qxa × Σxa → Qxa is a state transition map.

4. Πxaxa is a square matrix of size (|Qxaxa |= |Qxa |2); where πxaxaij is probability of moving

from multi-dimensional joint state qxaxai at nth epoch to qxaxaj at (n + 1)th epoch for

i, j = 0, ..., |Qxaxa |−1.
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5. Π̃
xaxa

= [π̃xaxaij ] : Qxa × Σxa → [0, 1] is the |Qxa |×|Σxa | symbol emission matrix (proba-

bility morph matrix), where π̃xaxaij is the probability of emitting a symbol σj ∈ Σxa from

state qi ∈ Qxa.

The statistical properties of a PFSA can be described by the state transition matrix Π

or the state probability vector P . For a symbol sequence sxa , it can be shown that the state

probability vector P = [p(qxa0 ), ..., p(qxa|Qxa |−1)] is the left eigenvector of Πxaxa corresponding

to the unique unity eigenvalue.

This research uses naive standard likelihood estimate method in Eqs. (4.6) and (4.7)

which are based on frequency counting approach. In [97], it is shown that although we can

replace the naive estimator with other counterparts, for the case of entropy estimation in the

symbolic sequence, the naive approach has satisfactory results. The statistics of the symbolic

sequence sxa represented by the state-transition Πxaxa may change from one time epoch to

another. Therefore, a suitable feature for this change is morph matrix Π̃
xaxa indicating the

symbol emission probability. The morph matrix elements π̃xaxaij is the probability of emitting

a symbol σxaj ∈ Σxa from state qxai ∈ Qxa [96], which is pictorially shown in the Fig. 4.3.

Each entry of morph matrix Π̃
xaxa for a symbolic sequence can be determined by frequency

counting as following,

π̃xaxaij = π̃(qxai , σ
xa
j ) =

N(qxai , σ
xa
j )

N(qxai )
(4.8)

where N(qxai , σ
xa
j ) is the total count of events qxai ∈ |Qx| followed by σxaj ∈ Σxa .

It should be noted that the assumption behind the SDF approach is that for the measured

observations, symbolization is approximated as aMarkov chain of order D (a positive integer),

which is called D-Markov machine and required steps for determining D as a tuning parameter

is explained in section 4.4.4.

In order to capture the cross dependency between two symbolic sequences sxa and sxb ,

which is an essential step in the estimation of conditional entropy H(xb
i+hτ |xbl1 , xal2) in a

window with the length of N symbols, relational PFSA de�ned as a xD-Markov machine is

adopted to extract relational pattern(s) between time series [98].

De�nition 4.2 (xD-Markov machine [98] [96]) Let Axa and Axb be the PFSAs for the

hypothetical source and target variables symbol streams sxa and sxb, Then a xD-Markov ma-

chine is de�ned as a 8-tuple Axa→xb ≜ {Σxa , Qxa ,Σxb , Qxb ,∆xa ,∆xb ,Πxaxb , Π̃
xaxb}

1. Σxa ,Σxb are non-empty �nite sets of alphabets belong to symbolic sequences sxa , sxb ,

respectively.

2. Qxa , Qxb are �nite sets of states of the corresponding symbol sequences.

3. ∆(.) : Q(.) × Σ(.) → Q(.) is the general form of a state transition map which applies to

every symbolic sequence involved in the calculation.
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4. Π̃
xaxb

is the output symbol emission matrix of size (|Qxa |×|Σxb |); where π̃(xaxb)ij is prob-

ability of observing σxbj ∈ Σxb as the (n+ 1)th symbol in the sequence sxb, while making

a transition from the multi-dimensional joint state sequence qxa at epoch nth.

Each entry of the relational morph matrix Π̃
xaxb can be determined by following Eq. (4.8),

where σxbj ∈ Σxb .

4.4.3 Proposed Symbolic Dynamic Normalized Transfer Entropy (SDNTE)

The core idea behind the proposed root-cause fault diagnosis framework in this chapter is

to �nd the process variable(s) that has the maximum contribution, i.e. maximum causal

inference, to the deviation of the residual ψ calculated in section 4.3 from its normal zone

(below its upper control limit), amongst all variables. The two time-series x ∈ RN (e.g. one

of the process variables time-series in a process under study) and ψ ∈ RN (e.g. the residual

signal determined using KPCA) are assumed as the driver and the driven, respectively. Then,

as shown in Fig. 4.2, a symbol sequence is generated from each of the time-series data and

their corresponding states are denoted by qx and qψ, respectively. After partitioning and

generating symbolic sequence and states, atomic (Def 4.1) and relational PFSAs (Def 4.2) for

time-series x and ψ are determined.

According to Eq. (4.4) for calculation of TEx−→ψ, estimation of two conditional entropies

H(ψi+h|ψl1i ) and H(ψi+h|ψl1i , x
l2
i ) are required. For estimation of H(ψi+h|ψl1i ), relational

PFSA (xD-Markov machine, Def (4.2)) can be used, which represents the auto dependency of

a time-series on its past values. However, the xD-Markov machine is not su�cient for measur-

ing the dependency of a time-series (e.g. ψ) on past values of itself and past values of another

time series (e.g. x), which is the case for H(ψi+hτ |ψl1i , x
l2
i ). Therefore, in order to estimate

H(ψi+hτ |ψl1i , x
l2
i ), the new concept of the joint xD-Markov machine is proposed as follows,

De�nition 4.3 (joint xD-Markov machine) Let Ax and Aψ be the PFSA with correspond-

ing symbol streams sx and sψ, respectively. Then a joint xD-Markov machine is de�ned as a

9-tuple Axψ→ψ ≜ {Qx,Σx,∆x, Qψ,Σψ,∆ψ, Π̃
ψψ
,Π(xψ)(xψ), Π̃

(xψ)ψ}

1. Σx, Σψ, Qx, Qψ are determined as in (1)-(2) in Def 4.2.

2. ∆ψ : Qψ × Σψ → Qψ is a state transition map.

3. q
{xψ}
r1 ∈ Q{xψ} represents a joint state sequence similar to Def. 4.2 with r1 = 0, ..., |Qx|×|Qψ|−1.

4. Π̃
(ψ)ψ

is the output symbol emission matrix of size |Qψ|×|Σψ|; where π̃ψψij is probability of

observing σj ∈ Σψ as the (n+ 1)th symbol in the sequence sψ, while making a transition

from state qi in symbol stream sψ.

5. Π(xψ)(xψ) is a square matrix of size
(︁
|Q{xψ}|= |Qx|×|Qψ|

)︁
, where π

(xψ)(xψ)
r1r2 is the proba-

bility of moving from multi-dimensional joint state q
{xψ}
r1 at epoch nth to q

{xψ}
r2 at (n+1)th

for r1, r2 = 0, ..., |Q{xψ}|−1.
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6. Π̃
(xψ)ψ

is the output symbol emission matrix of size (|Qx|×|Qψ|)× |Σψ|; where π̃(xψ)ψijk is

probability of observing σk ∈ Σψ as the (n+1)th symbol in the sequence sψ, while making

a transition from state {qi, qj}, qi ∈ Qx, qj ∈ Qψ in joint symbol stream {sx, sψ}.

The pictorial de�nition of the join probability matrix Π(xψ)(xψ) and joint morph matrix

Π̃
(xψ)ψ

is shown in Fig. 4.3 for two general time-series xa := x and xb := ψ. A joint state se-

quence needs to be generated and utilized for simultaneous measurement of cross-dependency

between a time-series x and residual time-series ψ as well as its own auto-dependency on its

past values. By using this de�nition, the conditional entropies required for the estimation of

TE in Eq. (4.4) are de�ned as follows,

SDH(ψi+hτ |ψl1i ):

This conditional entropy refers to the ability to predict future ψi+hτ by using the past values of

itself ψil1 . This ability is quanti�ed by symbolic emission matrix Π̃
ψψ

. This matrix quanti�es

the prediction capability (or uncertainty) of the next, i.e, (n+1)th symbol of the sequence sψ,

from the known history of sequence till nth time stamp (See Fig. 4.3). Therefore, by pursuing

the conventional de�nition of Shannon entropy, the proposed symbolic dynamic-based entropy

(SDH) is de�ned as follows,

H(ψi+hτ |ψl1i ) = −
∑︂

p(ψi+hτ , ψ
l1
i ) log p(ψi+hτ |ψ

l1
i ),

⇒ SDH(ψi+hτ |ψl1i ) = −
|Σψ |∑︂
k=1

|Qψ |∑︂
j=1

p(qψj )π̃
ψψ
jk log π̃ψψjk

(4.9)

where, π̃ψψjk is the morph matrix de�ned in Def (4.1) and can be determined using Eq. (4.8).

p(qψj ) is state probability that can be estimated using Eq. (4.6).

SDH(ψi+hτ |ψl1i , x
l2
i ):

This joint conditional entropy refers to the ability of predicting future ψi+hτ by using both

past values of ψil1 and xil2 . Intuitively, this ability is provided by proposed joint xD-Markov

machine Axψ→ψ and it is quanti�ed by symbolic emission matrix Π̃
(xψ)ψ

, where each element

is the probability of observing a particular symbol σψn+1 (at the (n + 1)th time epoch) in

the symbol stream sψ, given the joint process {x, ψ} is in the state qxψn at nth epoch time.

The state of joint process (symbol sequence) can be derived from the combination of two

individual processes x and ψ as, qxψ = {qx, qψ}. The symbolic dynamic-based version of this

joint conditional entropy with regards to PFSA Axψ→ψ is derived as following,

H(ψi+hτ |ψl1i , x
l2
i ) = −

∑︂
p(ψi+hτ , ψ

l1
i , x

l2
i ) log p(ψi+hτ |ψ

l1
i , x

l2
i )

⇒SDH(ψi+hτ |ψl1i , x
l2
i ) = −

|Σψ |∑︂
k=1

|Qψ |∑︂
j=1

|Qx|∑︂
i=1

P (qxi , q
ψ
j )π̃

(xψ)ψ
ijk log π̃

(xψ)ψ
ijk

(4.10)
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Figure 4.3: Pictorial explanation of the components explained in Def. 4.35.1. The colored
broken rectangles indicate the joint states. All the proposed probabilities in section 4.4.3 are
shown between the nth epoch and (n + 1)th epoch. However, for the sake of clarity, some of
them are de�ned on other epochs.

where, P (qxi , q
ψ
j ) is the probability of joint symbolic sequence x be in the state qxi ∈ Qx and

ψ be in symbolic state qψj ∈ Qψ, simultaneously at a given time instant. State probability

distribution of the joint process {x, ψ} is derived from combining states of two individual

D-Markov machines, Ax and Aψ. The states of combined machine are represented by qxψij =

{qxi , q
ψ
j }. State transition matrix, Π(xψ)(xψ) = [π

(xψ)(xψ)
lm ] is further extracted from the joint

state sequence Qxψ, and it is of size (|Qx|×|Qψ|)×(|Qx|×|Qψ|). This proposed state transition
matrix can also quantify the uncertainty in the joint process {x, ψ}.

Each element of the above mentioned state transition matrix is given by,

π
(xψ)(xψ)
ij = P (q(xψ)(n+ 1) = q

(xψ)
j |q(xψ)(n) = qi), ∀n,∑︁

j π
(xψ)(xψ)
ij = 1

(4.11)

where, {qi, qj} ∈ Qxψ. The state transition probability is calculated from the state sequence,

by counting the number of transitions between each pair of states. The state transition matrix

Π(xψ)(xψ) is the corresponding irreducible stochastic matrix of joint symbolic time-series, where

each row sum is 1. The left eigenvector pxψij corresponding to the unique unit eigenvalue of the

state transition matrix is the probability vector whose elements are the stationary probabilities

of the states belonging to Qxψ.

By utilizing the proposed SDH(ψi+hτ |ψl1i ) and SDH(ψi+hτ |ψl1i , x
l2
i ), in order to determine

the strength of the causal relation between two time-series, the normalized transfer entropy is

de�ned as follows,
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De�nition 4.4 (symbolic dynamic-based normalized TE (SDNTE)) The normalized

TE from variable x to ψ by incorporating the proposed SDHs is de�ned as following,

SDNTEx−→ψ =
|SDH(ψi+hτ |ψl1i )− SDH(ψi+hτ |ψl1i , x

l2
i )− SDTE

training
x→ψ |

SDH(ψi+hτ |ψl1i )
∈ [0, 1] (4.12)

where, SDTEtrainingx−→ψ is de�ned as an average of SDTEx−→ψ = SDH(ψi+hτ |ψl1i )−
SDH(ψi+hτ |ψl1i , x

l2
i ) obtained on ns trials of time-series in training data-set (i.e. The same

o�-line training data-set in normal operating condition, which was used for generating the

base-line of the residual ψ). Eq. (4.12) intuitively represents the fraction of information about

the future observation of ψ obtained from both past values of x and ψ, after discarding, �rst,

the information about the future of ψ provided by its own past, and second, the calculation

bias for normal operating condition which is represented by SDTEtrainingx→ψ . In the de�nition of

Eq. (4.12), the zero entropy is considered as the origin and represent a deterministic ψ. This

proposed SDNTE will be used later in section 4.5 for root-cause fault diagnosis purposes.

4.4.4 Parameters Determination

• Cardinality of Symbols (|Σ|):
Consider H(k − 1) = −

∑︁i=k−1
i=0 PilogPi as the Shannon entropy of the symbolic sequence

obtained from partitioned data with k symbols, where, Pi is the ith symbol probability in a

symbolic sequence with length NSD (number of samples required for the proposed SDNTE).

The following steps are proposed to obtain the optimal symbol cardinality for a time-series [99],

Steps:

1) Set k = 2 and choose a threshold ϵh such that 0 < ϵh << 1,

2) Sort the data with length NSD samples in the ascending order,

3) Partition the raw data into a symbolic sequence as shown in Fig. 4.2,

4) Determine the symbols' probabilities Pi =
N(σi)∑︁

j=0,...,k−1N(σj)
, i = 0, 1, ..., k − 1,

5) Compute H(k − 1) = −
∑︁i=k−1

i=0 PilogPi and h(k − 1) = H(k − 1)−H(k − 2),

6) If h(k) < ϵh, then stop and set |Σ|= k, else increment k by 1 and go to step 3.

In the above algorithm, ϵh is a design parameter that must be selected according to the

level of noise in time-series. It should be noted that a very small value of ϵh leads to a large

number of symbols, thus, increases the number of states. On the other hand, a large choice

of ϵh may cause insu�cient partitions in D-Markov machines with regards to the intrinsic

dynamic of time-series. In the training step, the cardinality of symbols |Σ| are determined

and will be used for the real-time root-cause fault diagnosis procedure.

• Depth of Markov Machine (D):

This parameter has a crucial role in generating the D-Markov machines since it exponentially
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increases the maximum number of states (i.e. |Q|≤ |Σ|D). In general, a very small choice of

D leads to insu�cient memory of the D-Markov machine, thus, lose of information about the

dynamic of the time-series. On the other hand, large value of D increases the sensitivity to

dynamic distortion and computational complexity. One way to determine the proper value

for the depth D is monitoring the entropy rate while changing D [99]. The rate of entropy hµ
is shown in Eq. (4.13) for a symbolic stochastic process of time-series x, which also can be

interpreted as the uncertainty in the next symbol.

hµ =

|Qx|∑︂
i=1

|Σx|∑︂
j=1

p(qxi )π̃
xx
ij logπ̃

xx
ij (4.13)

As a rule of thumb, hµ monotonically decreases while the depth D increases. However, be-

yond a certain point, increasing D does not signi�cantly change the entropy rate, hence, the

corresponding D is the optimal choice for the depth of D-Markov machine. It should be noted

that for noise-free time-series hµ −→ 0 and for noisy time-series, hµ monotonically decreases

to a small non-zero value.

•The State Cardinality (|Q|):
The depth D of an xD-Markov machine exponentially increases the number of states

|Q|= |Σ|D. Therefore, for processes with relatively high depth and symbols' cardinalities,

it is required to truncate those states with a relatively small probability of occurrence. In [99],

it is proposed to de�ne a threshold ε = 1/NSD based on the length of the symbols NSD such

that if the probability of some states is less than ε, they are considered as a transient state

and can be neglected. Also, the number of states can be further reduced by the state-merging

algorithm [99] which merges the state with the same probability of happening. State splitting

is another method [100] for adjusting the number of PFSAs states by using a metric on the

probability distributions of symbolic blocks.

• Required Number of Samples NSD:

One of the advantages of proposed SDTE is that the number of samples NSD (i.e. length of

symbolic sequence in Fig. 4.2) required for generating the state transition matrix is less than

the number of samples Nkernel required for estimating the entropies using the conventional

KDE utilized in [59] [57]. In [101] [99], two methods based on the properties of state transi-

tion matrix and inference approximation with speci�ed absolute error ϵ and probability λ are

proposed. In the simulation result section 4.5 of this chapter, the former method that is based

on Frobenius theorem is utilized for determining NSD that is the minimum required length of

the symbolic sequence s for time-series x and ψ. Later the number of temporal samples NSD

required for SDNTE estimation is compared with its counterparts Nkernel and it is shown that

the proposed SDNTE method requires less amount of temporal data (i.e. NSD < Nkernel) in

a similar condition.
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4.4.5 Computational Complexity

Estimation of TE using joint PDFs commonly involves heavy computation for causality anal-

ysis. In [59], joint PDFs are estimated using multi-dimensional kernel functions. The compu-

tational order of a q dimensional PDF is O(N2q2), where q = l1 + l2 + 1 is determined by the

number of sample delay incorporated into embedding vectors in Eq. (4.4). Thus, the total

complexity order of calculating TE using Eq. (4.4) is O(N2(l1 + l2)
2).

One of the contributions of the proposed SDNTE approach is the improvement in the com-

putational complexity, hence, real-time application of the TE for root-cause diagnosis. The

complexity order of SDNTE estimation is divided into two parts: �rst, �nding the compu-

tational complexity of the proposed conditional SDHs in Eqs. (4.10) and (4.9), and second,

determining the computational complexity of the proposed symbolic dynamic normalized TE

in Eq. (4.12).

In this chapter all the frequency counting formula that are proposed to estimated the

state probability and morph emission matrices are calculated using a nested loop search

approach. Therefore, the complexity order of probability state vector P (qxi , q
ψ
j ) inside the

cascade summation in Eq. (4.10) is O(N |Qx||Qψ|). Also, the computational order for de-

termination of Π̃
(xψ)ψ

= [π̃
(xψ)ψ
ijk ] is of O(N |Σψ|). Thus, the total computational order for

SDH(ψi+hτ |ψl1i , x
l2
i ) is O(N |Σx|D |Σψ|D+1). Similarly, the computational order for the Eq.

(4.9) is of O(N |Σψ|D+1) and since it is less than the computational order of the proposed

symbolic conditional joint entropy, the total computational order for the SDNTE proposed

in the Eq. (4.12) is O(N |Σx|D |Σψ|D+1). By simple comparison, even for the same amount

of temporal data (i.e. Nkernel = NSD) the proposed SDNTE needs less computational e�ort

rather than its opponent kernel estimation of PDFs adopted in [57] and [59]. This di�erence

is further presented in the simulation result in the section.

4.5 Simulation Results

In this section, a case study is conducted on the Tennessee Eastman process (TEP) which is a

well-known benchmark for fault detection/diagnosis analysis. TEP contains 12 manipulated

variables and a total of 41 measurements which include 22 intermediate variables and 19

quality indices. However, as shown in Appendix, Table 1, only 22 direct process measurements

as well as 11 manipulated variables are considered as the process variables under study [50].

The �ow chart of the TE process is also brought in Appendix, Fig. 2 for better understanding

of the interconnections of the process variables.

In TEP, 21 di�erent malfunction scenarios are de�ned [102], which (IDV(1-15)) are the

known faults and brought in Appendix, Table 2. Amongst these known faults, IDV(8), IDV(10)

and IDV (11) which satisfy quasi-stationary criteria are considered for evaluation of the pro-

posed framework.
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4.5.1 O�-Line Training and Determination of Parameters for Tennessee
Eastman:

The TEP is run for 72 hours and 72000 samples are collected for each scenario. N =

500 samples are collected from normal operating condition IDV(0) and the kernel function

k(xi, xj) = exp

(︃
−||xi − xj ||

2

3

)︃
is utilized for conducting kernel trick, hence, generating the

mean-centered kernel matrix K in Eq. (4.1). Then, after �nding the covariance matrix CY ,

the cumulative percentage of variance (CPV=92%) is considered to extract 17 non-zeros sin-

gular values Λ̂ and their corresponding principal directions Û . The con�dence level of 98% is

considered for determining the UCLψ.

The next step is to �nd the parameters of the proposed SDNTE method by using an

initial NSD = 1500 samples of data in normal conditions. Later, the minimum number of

samples required for the real-time calculation will be determined. MEP method [95] is utilized

to partition the TEP time-series for IDV(0). In Table 3, the calculated symbols' cardinality

|Σ|, depths D and the number of states after merging are presented for all process variables

and the residual signal. The number of symbols |Σ| are found by deeming a threshold ϵh

and following the steps presented in section 4.4.4. After �nding the symbols' cardinality, the

number of states |Q| after merging and truncating the ignorable transient ones are determined

for each process variable. Also, by monitoring the entropy rate hµ(k) for all process variables,

the depth D for constructing the Markovian machines is determined.

Figs. 4.4(a) and 4.4(b) indicate the monotonically decreasing trend of entropy rate hµ(k)

with respect to the D and number of merged states for �ve time-series X2-4-16-21-23-33.

The optimum depths D are considered for variables when the hµ(k) values remain relatively

constant.

(a) (b)

Figure 4.4: Entropy rate trend of the process variables for di�erent values of depth D.
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(a) The temporal data chosen for �nding the parame-
ters of the ψ and the pictorial procedure for partition-
ing and encodeing the ψ time-seires

(b) Trend of entropy rate for di�erent values of depth
D

Figure 4.5: Procedure details to �nd parameters of the D-Markov machines for time-series ψ.

Due to the fact that the residual signal supposedly behaves as random i.i.d noise for the

ideal normal operation, whereas has a distinct characteristic (e.g. range of variation) for the

faulty condition, the same normal set of data IDV(0) may not be an appropriate choice for

determining the optimum parameters for PFSAs construction of the residual ψ. To this aim,

NSD = 1500 samples of the residual signal obtained for IDV(13) (i.e. a random choice among

available quasi-stationary scenarios) is used for �nding ψ parameters. Fig. 4.5(a) shows the

temporal data chosen for parameter identi�cation of ψ. Also, Fig. 4.5(b) indicates the trend

of entropy rate for the residual signal with respect to the depth and corresponding merged

states, where the optimum depth D = 3 is chosen.

As mentioned before, the initial number of symbol sequence NSD = 1500 is considered

for determining the parameters in Table 3. Then, by following the procedure in [99], the

maximum number of required samples for X23 which needs more samples in comparison with

other variable is calculatedNSD = 900. As a result, for the real-time root cause fault diagnosis,

900 samples of temporal data for each time-series are utilized for conducting the root-cause

fault diagnosis.

4.5.2 Real-Time Root-Cause Fault Diagnosis in Tennessee Eastman Pro-
cess:

After determining the optimum parameters of the proposed D-Markov machines, the proposed

SDNTE is used to �nd the root-cause(s) for three quasi-stationary fault scenarios IDV(8),

IDV(10) and IDV(11).

Fig. 4.6(a) shows the residual signal ψ for IDV(8) which is a random variation in A, B

and C streams starting at 2000th sample. After detecting fault at 2250th sample, a window

of temporal data between samples 2250 and 3150 are considered for time-series of all 33

process variables and residual signals. Then, the symbolic dynamic normalized transfer entropy

(SDNTE) proposed in Eq. (4.12) is calculated from each process variables to the residual
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signal. As can be seen in Fig. 4.6(b), X4 (total feed-stream 4) and X26 (E feed-stream 4)

have the top two contributions in residual signal. Also, X3 (E feed-stream 3) and X24 (E

feed �ow-stream 3) have the third and fourth ranks in the bar charts while the rest of the

contributions are relatively negligible. With regard to the TE process �owchart in Fig. 2, if a

fault is introduced into A/B/C composition, the controller (X26) is responsible to compensate

the fault and accordingly change the total feed (X4) to adjust the set-point, thus, X4 and X26

are root-causes for IDV(8). The reason for relatively high contributions of X3 and X24 is that

they are responsible to adjust the E feed �ow along the controller X26 with delay to maintain

the overall process performance, thus, any change in A/B/C stream directly a�ects them.

Fig. 4.6(c) indicates residual ψ for another random fault scenario IDV(10), which intro-

duces variation into C feed temperature and directly a�ects the gas mixture temperature in

stream 4. In Fig. 4.6(d), the causality of each process variable in ψ is shown and X18 has

the only dominant contribution for generating the residual and can be considered as the true

root-cause of fault. With regards to the nature of the IDV(10), stripper temperature X18 is

the �rst variable that must react to any change in the C feed mixture.

To further demonstrate the computational e�ectiveness of the proposed SDNTE algorithm

over the ordinary kernel PDF-based method for transfer entropy estimation [57] [59], the con-

ditional entropies de�ned in Eq. (4.12) is determined using both methods and the results are

presented in Fig. 4.6(e). The fault IDV(11) is considered for this comparison study which

is a random variation of the reactor cooling water inlet temperature. This variation directly

propagates into the reactor cooling water �ow X32 and reactor cooling water outlet tempera-

ture X21 because of the closed-loop regulation (see Fig. 2). Moreover, other reactor sensors

(X5-X6-X7-X8-X9), as well as the stripper sensors (X15-X16-X18-X30), can be signi�cantly

a�ected by this random variation and make the root-cause diagnosis even more arduous. The

result for the causality contribution of each process variable to ψ is shown in Fig. 4.6(f). The

contributions of variables X32 and X21 are correctly determined maximum amongst others

by using both SDNTE and ordinary kernel PDF-based TE, thus, highlighted as the fault

root-cause for IDV(11).

For the ideal case, the contribution values found by SDNTE and ordinary kernel PDF-based

transfer entropy estimation method shown in Fig. 4.6(f) should approximately match for each

process variable. However, due to the generic di�erence in the calculation procedure of each

method and di�erence in the length of utilized temporal data, the results are slightly di�erent,

while the major contributors are consistent which leads to the same root-cause fault diagnosis

conclusion. In Fig. 4.6(f), the contributions are consistent from both methods for X4 (total

�ow of stream 4) and X26 (�ow controller in stream 4) has a questionable dissimilarity. The

reason behind this contrast may be due to the di�erence in the NSD = 900 and Nkernel = 2000

such that for calculation of the yellow bars, wider temporal data are used which include the

delayed feedback dependency between reactor temperature and stream 4.

In order to show the computational advantage of the proposed SDNTE method over the

ordinary kernel PDF-based estimation algorithm for transfer entropy (see [57] [59]), the total
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(a) Residual for IDV(8) (b) SDNTE from each process variables to residual ψ
for IDV(8)

(c) Residual for IDV(10) (d) SDNTE from each process variables to residual ψ
for IDV(10)

(e) Residual for IDV(11)

(f) SDNTE from each process variables to residual ψ for IDV(11)

Figure 4.6: Root-cause fault diagnosis result of TEP for the fault scenario IDV(8).
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time delay is compared in the same calculation condition (CPU i7 @3.2 GHZ and RAM 8

GB) for fault IDV(11). The time delay for conducting kernel trick and detecting fault which

is similar for both cases is 0.65 second. The time delay for root-cause fault diagnosis utilizing

proposed fast SDNTE is 16.2 second and for ordinary kernel, the PDF-based method is 68.9

second, which indicates more than 4 times improvement in real-time calculation speed.

4.6 Industrial Application

In this subsection, the data from a large scale centrifuge is used to test the applicability and

performance of the proposed root-cause fault diagnosis scheme in industrial processes. The

centrifuge understudy is shown in Fig. 4.7(b) is fed with a mixture of liquid containing oil and

water as well as other solid substances and its main task is to separate water and solids from

oil by using centrifugal force. This centrifuge is assumed as a complex mechanical process

that the inner structure and variables relations are unknown to the operators which hinder

the application of model-based monitoring techniques. The measurements for this separation

process are; vibration RMS, heavy phase pressure (KPa), Eline pressure (KPa), power (V)

and lubrication oil pressure (KPa) and inputs are rotating speed (RPM) and production �ow

(Lit/sec), which are all considered as the process variables.

There are two fault scenarios that site engineers have encountered with the centrifuge.

First, nozzle plugging that happens when there are residue sediments accumulating at one or

some of the nozzles in the bowl of the centrifuge, which also create excessive centrifugal force

acting as imbalance around the rotating shaft. This type of fault makes the vibration RMS

reach its critical value leading to the shut-down of the process. Severe vibration caused by

this process fault might lead to cracks in the centrifuge's shaft and consequently breakdown.

The second type of fault detected by operators is power �uctuation that leads to a change in

speed and creates symptoms similar to nozzle plugging and can not be diagnosed by common

monitoring techniques. The main challenge in this process is that both regulatory change of

speed and true presence of nozzle plugging have the same impact on residual ψ. However, the

proposed scheme can detect and separate input changes from malfunction and further isolate

the type of existing aforementioned faults utilizing the operator's knowledge shown in Fig.

4.7(a). For instance, for the case of nozzle plugging, the key monitoring variables are vibration

RMS and E-line pressure. These two variables can be treated as key fault indicators (KFI).

These KFIs are used along with the proposes scheme to isolate the true plugging events.

The industrial data was collected with a 1 second sampling interval that is a relatively

high sampling frequency with respect to the time constant of the process, thus, the data is

down-sampled with a ratio of 10:1 for conducting the proposed SDNTEs. N=2000 samples of

down-sampled data are used for training the kernel PCA base-line and a standard deviation

of 5 is considered for the Gram kernel matrix. To create residual ψ, 9 principal directions are

determined using CPV = 85%. For the determination of the PFSAs machines' parameters,

the optimum number of samples NSD = 1000 is considered and results are presented in Table
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Table 4.1: The parameters for PFSA construction of the industrial centrifuge variables
Variables ϵh |Σ| D

Lubrication Oil 0.2 4 1
Power 0.2 7 2
Speed 0.2 6 2

Vibration RMS 0.1 8 2
Production Flow 0.2 5 2
Heavy Phase 0.2 5 1

Eline 0.2 5 2
ψ 0.1 10 2

Table 4.2: Scores for each fault scenario determined by the summation of corresponding SD-
NTEs with regards to the operator's knowledge

Sspeed Sprodflow SFnozzle SFpower SFunknown
12 Feb 0.294 0.030 0.621 0.019 0.036
15 Feb 0.214 0.079 0.527 0.055 0.124
16 Feb 0.539 0.09 0.14 0.075 0.154
22 Feb 0.551 0.04 0.149 0.015 0.029
23 Feb 0.211 0.069 0.161 0.115 0.244
23 Feb 0.511 0.001 0.101 0.001 0.358
24 Feb 0.001 0.001 0.152 0.84 0.006

(a) Operators knowledge (b) Centrifuge

Figure 4.7: Industrial centrifuge.
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Figure 4.8: The residual ψ for centrifuge data in February. The exaggerated windows indicate
the temporal data portion before down-sampling utilized for calculating the SDNTE from
process variables to residual ψ.

Figure 4.9: Contribution of all seven process variables for each detected fault event using
proposed SDNTE method.
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4.1.

Fig. 4.8 plots the down-sampled residual signal against days for the month of February,

where, the fault events are highlighted through dotted elliptical shapes and the raw data in

the vicinity of highlighted areas are magni�ed and shown in subplots of Fig. 4.8. With respect

to the nature of the centrifuge data, for calculating the SDNTEx−→ψ for each fault event,

a window of length NSD = 1000 is chosen from down-sampled time-series starting from 500

samples before the violation of upper control limit. The SDNTEs from seven process variables

to residual signal for events A:1-7 are presented in Fig. 4.9 as bar charts. Missing intervals in

the residual in Fig. 4.8 are due to the dates that the centrifuge was shut down maintenance

purposes.

For this industrial application, the operators can utilize the SDNTE result for diagnosing

the pre-de�ned fault scenarios shown in Fig. 4.7(a) by summation of the highest contributions.

According to the operators' knowledge shown in Fig. 4.7(a), the SDNTExi−→ψ of variables

corresponding to each fault scenario are summed and presented in the Table 4.2 for decision

making. Accordingly, for each event in Table 4.2, the maximum value is identi�ed as the type

of fault and was matched with the inspection results.

4.7 Summary

In This chapter, we propose a novel root-cause fault diagnosis framework which has e�cient

calculation complexity and requires less number of TE calculation for conducting causality

analysis compared to existing techniques. The underlying idea behind the proposed framework

is to measure the strength of the contribution of process variables towards the change in

residual signal once the fault is detected. To �nd these causal dependencies of each process

variable x ∈ X ∈ Rm×N on the residual ψ ∈ RN , we propose a new and fast technique named

symbolic dynamic normalized transfer entropy (SDNTE). Intuitively, proposed SDNTEx−→ψ

can be considered as a quantity gauges the level of contribution of each process variable to the

existing fault in a process. The SDNTE enables the real-rime application of transfer entropy

for root-cause identi�cation which has been su�ered from computational complexity. In the

end, the proposed strategy is applied to the Tennessee Eastman benchmark and the results are

compared with the conventional KDE method for estimating the transfer entropy. Also, the

root-cause fault is identi�ed by conducting the proposed strategy on an industrial centrifuge,

which endorses its application for complex industrial process monitoring and diagnostics.
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Chapter 5

Autonomous Root-Cause Fault

Diagnosis

5.1 Introduction

Autonomous operation and adaptation is an active line of research that has attracted great

interests in manufacturing and process industries. The word �Autonomous� can be used when

a manual task is performed automatically by algorithms and the level of human interaction

is either reduced or eliminated. Among various existing applications, automatic parameter

tuning has raised signi�cant attention in the �eld of control and robotics [103] [104] [105].

Autonomous algorithms are in place not only to remove manual parameter tuning but also

enable the real-time implementation of an approach without dependency on operators' choice

of actions. For example, in [106], an approach is proposed to dynamically update the clusters

upon receiving new data on the data-streaming platforms. For this particular line of research,

there are various parameter-dependent approaches (e.g. evolving clustering methods ESOMs

[107], growing neural gas [108], batch clustering methods k-means [109], etc.) that can cluster

the live streaming data. However, in the sense of automation, the proposed autonomous

approach in [106] can be seen as an important improvement towards a a priori knowledge-free

(or at least towards a parameter-sensitive-low) evolving clustering.

Autonomous algorithms can be applied in process monitoring applications such as fault

diagnosis, which usually su�ers from heavy tuning and require operators' knowledge. Root-

cause fault diagnosis is considered as one important step for the process monitoring because

it can reveal the source of the detected malfunction. Knowing the fault root-cause provides

su�cient information for operators to adopt proper maintenance actions. In [58], TE and

DTE are utilized to �nd the information pathway among process measurements based on

operator/expert knowledge. Similarly, Ma et al [64] used a combination of TE and DTE

for �nding the pathway among process measurements, but all the intermediate variables are

chosen according to the logics provided by process operator. By considering the power of au-

tonomous algorithms and the ongoing challenges for root-cause fault diagnosis using TE/DTE,

a framework for autonomous process root-cause fault diagnosis is proposed in this chapter.
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In Chapter 4, symbolic dynamic �ltering was utilized to develop a computationally e�cient

scheme for TE estimation of time-series. This scheme is further extended in this chapter to

handle DTE estimation with intermediate variables.

5.2 The Proposed Framework

The following lists main challenging problems to be addressed in this chapter:

(1) High computational complexity of DTE with the presence of multiple intermediate

variables.

(2) Determination of intermediate variable(s) required for DTE without human inter-

vention. Since time-complexity of DTE rises exponentially with the number of intermediate

variables, proper determination of intermediate variables plays a crucial role in the proposed

strategy;

(3) Fully automated strategy after collection of time-series data to systematic identi�cation

of the root-cause variable(s) for the detected fault.

Therefore, the primary goal of the proposed work in this chapter is to autonomously locate

root-cause fault variable(s) according to the causal information pathways amongst process

measurements under the faulty condition without the need for knowledge of process topology

and intervention of an expert. A schematic diagram of the overall framework is shown in Fig.

5.1, with each component and main steps brie�y summarized in the following. Detailed design

and analysis are presented in the subsequent sections.

Step (1): A fault detection method (e.g. KPCA for non-linear cases and PCA for linear

cases) is utilized to generate a monitoring index. It is worthwhile to mention that the proposed

strategy in this chapter can be used for both linear and non-linear processes.

Step (2): Upon detection of a fault, a fast �screening� and preliminary diagnosis procedure

(e.g. RBC [110] or ACRC [2]) is used to identify and �ag the potential faulty variables. In

other words, at this stage, only a portion of the variables are selected as the candidates for

further root-cause fault diagnosis. It is assumed that the process fault a�ects at least one

measurement variable for the sake of detectability and diagnosability.

Step (3): Symbolic dynamic-based normalized transfer entropy (SDNTE) proposed by

authors in [20] are computed for all pairs of potential faulty candidates from step (2) to

generate an initial causal graph.

Step (4): Since certain connections in the initial causal graph may be spurious/indirect,

a novel symbolic dynamic-based normalized direct transfer entropy (SDNDTE) approach with

multiple intermediate variables (IVs) is proposed to eliminate the spurious and/or indirect

connections. To address the challenge (1), the SDNDTE is proposed as a time-e�cient al-

ternative to calculating the direct transfer entropy (DTE). This new contribution enables the

real-time application of DTE for root-cause fault diagnosis in process industries and other

applications.

Step (5): In order to e�ciently choose intermediate variable(s) required for calculation of
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Figure 5.1: Schematic diagram of the proposed paradigm for autonomous root-cause fault
diagnosis.

SDNDTE in step (4) which is also a solution to the challenge (2), in this step, IVs are classi�ed

into Immediate IVs and Source IVs (see Defs 5.3-5.2). Then two algorithms are proposed (see

Algorithms 3 and 4) to e�ciently determine both types of IVs by calculating SDNDTE for

a pair of hypothetical source and target variables. Based on this, the initial causal graph is

pruned by removing indirect/spurious causal path(s).

Step (6): To tackle challenge (3), Algorithm 5 is proposed for the pruned causal graph to

autonomously locate the source (i.e. root-cause representative) of the detected fault.

5.3 Causal Structure and Identi�ability of Causal Model

Each process can be represented by a set of structural equation models (SEMs) including the

endogenous process measurements X = [x1, x2, ..., xm] ∈ RN×m and exogenous disturbance

variables U = [u1, u2, ..., um] ∈ RN×m that are independent from each other as the following,

xi = gi(fi(PA(xi)) + ui), i = 1, ...,m (5.1)

where gi is invertible and fi is either a linear or non-linear function. PA(xi) represents all the

parent variables of xi, also considered as the causes of xi. As mentioned in [111], the concept

of SEM can be also interpreted as functional model classes. In this research, the identi�able

functional model classes (IFMOCs) are of interest. They are considered as underlying models

for the process in order to show the identi�ability of a unique causal graph Ḡ.

Challenge: Given a process data-set with su�cient i.i.d sample observations and su�cient

number of measurements (V ), let P (xi), i ∈ V represent the conditional probability distribution

among process time-series. Assume that a direct acyclic graph (DAG) Ḡ exists and it repre-

sents the true causal structure of the temporal process. Is such a unique Ḡ identi�able by using

set of P (xi)s?
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This question is important since identi�ability is required as an essential assumption for

the proposed strategy.

Identi�ability of Ḡ for a given temporal process can be studied by checking theMarkov and

faithfulness conditions [112] [113] [114]. If these two conditions are satis�ed, an algorithm such

as PC (named after its authors, Peter and Clark) [115] can be utilized to partially reconstruct

graph G which can be recovered up to Markov equivalent classes. On the other hand, the

concept of IFMOCs can be opted for proving the identi�ability of a graph Ḡ, for which the

following theorem is given.

Assumption 5.1 (IFMOC:) The true underlying functional model that generates the given

process data-set belongs to an identi�able functional model class (IFMOC) with graph Ḡ such

that PAḠ(xi) are the direct causes of the xi, where PA(.) represents the parent nodes.

Theorem 5.1 Assume that P (xi), xi ∈ V is induced from an identi�able functional model

class (IFMOC) with a graph Ḡ. Then the same conditional/joint probability space can not be

induced from the same IFMOC corresponding to a di�erent graph Ḡ
′ ̸= Ḡ.

The proof of this theorem can be found in [111]. This theorem can be reformulated in the

context of the causal inference such that if a given process data-set satis�es Assumption 5.1,

then the unique graph Ḡ can be identi�ed by the proposed strategy, which can be used to

locate the root-cause fault variables.

Corollary 5.1 If the IFMOC condition in Assumption 5.1 is satis�ed, then the true causal

DAG Ḡ from the joint distribution P (Xi), i ∈ V , can be identi�ed.

For a given process data-set, one can check if the Assumption 5.1 is satis�ed by using a

statistical algorithm given in [111], which outputs the number of possible DAG. If the result

of the algorithm is one (#DAG = 1), then the time-series data satis�es Assumption 5.1.

Furthermore, it is desirable for the causal graph Ḡ to be minimal, which means that its edges

represent direct causal relationships instead of indirect/spurious ones. Therefore, the focus of

this chapter is to �rst �nd a causal graph G among potential candidates xi that represents the

existing dependencies of their temporal conditional/joint probability distributions especially

under a process fault, then such a graphG is further pruned to Ḡ by removing indirect/spurious

edges.

For generality, xs represents the hypothetical source variable and xt represents the hypo-

thetical target counterpart for investigating causal inference from xs to xt. If G representing

causal structure of a given IFMOC is known, for the best case scenario, G is a DAG and the

�nal goal is to extract its minimal sub-graph Ḡ ⊂ G. This means that any edge xs → xt

in Ḡ implies a direct causation from xs to xt (i.e. xs ∈ PAḠ(xt)) without presence of any

intermediate variables.

In [56], it was shown that if the two variables xs and xt are dependent, then under certain

assumption [56] [59]), both mutual information I(xs, xt) and TExs→xt or TExt→xs can reveal
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Figure 5.2: Illustration of spurious and indirect pathways xs → xt. (a) indirect causal path,
(b) spurious causal path.

the directional causal inference. Therefore, if the given process data-set satis�es Assumption

5.1 and the general conditions mentioned in [56] [59] hold, according to Corollary 5.1, a unique

causal graph Ḡ exists and TE/DTE can be used to identify it.

5.4 Direct and Indirect Causality

As discussed in the following, there exist two possibilities for which an edge detected by TE

may not represent a true direct causal inference.

a) Fig. 5.2.(a) shows an indirect path from xs to xt represented by broken line, while the solid

line represents true direct causal inference according to unknown IFMOC between variables.

This indirect causal edge xs → xt is identi�ed by utilizing TE only. This causality exists due

to presence of one/some intermediate variables in the sub-graph that mediate from source to

target. If the intermediate variables are known, one can apply a method (e.g. Direct TE as

proposed in 5.5) to evaluate whether the edge is direct or not.

b) Fig. 5.2.(b) shows a spurious path from xs to xt. It should be noted that this spurious

edge can be bi-directional or from xt to xs, but one of the three possibilities are presented in

Fig. 5.2.(b).

It is worthwhile mentioning that the direct causal connection from xs to xt is a relative

concept. If the only available measurements are xs and xt in Fig. 5.2 and all the confounding

variables are not measured in the given data-set, the direct status of the causal relation xs → xt

can not be fully investigated and as a result, the edge can be taken as a direct causal inference.

It is proven that under reasonable conditions, the TE can reveal all causal relations, e.g.

direct, indirect and spurious, among nodes xi and generate an initial graph G, knowing that

the true causal graph representing the process IFMOC is Ḡ ⊂ G. Also, if a su�cient number
of intermediate variables are measured and available, then DTE can be used to prune the

edges which do not represent direct causal inference, and accordingly it leads to recover graph

Ḡ from G.
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5.5 Proposed Symbolic Dynamic-Based Direct Transfer Entropy
(SDDTE)

Given a set of potential candidate variables for root-cause fault diagnosis by following the steps

shown in the Fig. 5.1, the Shannon entropies proposed in Eqs. (4.9) and (4.10) are utilized for

a hypothetical source variable xs := xa and a target variable xt := xb to reformulate symbolic

dynamic-based TE. Furthermore, in order to measure the strength of the information �ow

determined by proposed SDTE, the normalization approach proposed in [59] is applied to

derive the symbolic dynamic-based normalized transfer entropy (SDNTE) as follows;

SDNTExa−→xb =
SDTExa−→xb

H0 − SDH(xi+hτb |xl1b , x
l2
a )
, H0(xb) = log(xmaxb − xminb ) (5.2)

where the xmaxb and xminb denote the maximum and minimum values of time-series xb. H0

represents the maximal di�erential entropy of xb with uniform distribution.

Eq. (5.2) is utilized to �nd a provisional (initial) directional causal graph G (causal map)

indicating the information pathways while a malfunction exists in a process. The edges in G

indicate either direct information pathways or the ones that exist through inter-connections

of single/multiple intermediate variables (IVs). If a pathway is not direct, it is either spurious

or indirect and must be pruned to avoid complications such as an increase in computational

complexity and miss diagnose root-cause fault. In [116], partial TE is proposed to test whether

the connection between two variables is spurious assuming all other variables as IVs. Con-

sidering all environmental variables as confounding contributors tremendously increases the

computational complexity especially when kernel functions are utilized to estimate conditional

probability functions (PDFs). On the other hand, DTE proposed in [59] has a similar formu-

lation with partial TE, but it only considers a single or multiple particular IVs. Eq. (5.3)

shows the DTE from xa to xb considering c number of IVs zj , j = 1, ..., c.

DTEz1,...zcxa−→xb
= H(xi+hτb |xl1b , z

v1
1 , z

v2
2 , ..., z

vc
c )−H(xi+hτb |xl2a , x

l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) (5.3)

Conditional Shannon entropy H(xi+hτb |xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) is de�ned in Eq. (5.4) and repre-

sents the uncertainty about predictability of xb according to the knowledge about past values

of itself as well as all existing IVs z1, ..., zc.

H(xi+hτb |xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) =

−
N∑︂
i=1

p(xi+hτb , xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) log p(xi+hτb |xl1b , z

v1
1 , z

v2
2 , ..., z

vc
c )

(5.4)

Also, H(xi+hτb |xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) represents the uncertainty of predicting future values

of xb by knowing the past values of itself, all chosen IVs z1, ..., zc and xa. This entropy is de�ned
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in Eq. (5.5),

H(xi+hτb |xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) =

−
N∑︂
i=1

p(xi+hτb , xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) log p(xi+hτb |xl2a , x

l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ),

(5.5)

where zv1j = [zij , z
i−τ
j , ..., z

i−(v1−1)τ
j ] is the embedding vector for the intermediate variable zj .

DTE in Eq. (5.3) determines the amount of information about the future of xb obtained

from simultaneous observation of xa and zj , j = 1, ..., c after discarding the information about

future of xb by only knowing the information of zj , j = 1, ..., c. This means that if DTE is

relatively non-zero, there is a direct information �ow from xa to xb. In order to estimate

a (c + 2) dimensional joint-probability distribution function, one would try to apply Gaus-

sian kernel �tting technique as indicated in [59]. However, this approach su�ers from heavy

computational complexity and curse of dimensionality, especially when the number of inter-

mediate variables c increases. Therefore, the application of symbolic dynamic �ltering (SDF)

explained in section 4.4.2 is extended to estimate multi-dimensional joint/conditional PDFs

(e.g. p(xi+hτb , xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) and p(xi+hτb |xl2a , x

l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c )) in a time-e�cient

sense. This contribution enables utilization of DTE for real-time causality analysis appli-

cation as discussed in the proposed autonomous root-cause fault diagnosis technique in this

chapter. To this aim, a multi-dimensional joint xD-Markov machine is proposed as following

which enables fast determination of the joint-PDF functions presented in Eq. (5.3) from a

new SDF perspective,

De�nition 5.1 (Multi-dimensional joint xD-Markov machine) Let Axa and Axb be the

PFSAs for the hypothetical source and target variables symbolic streams sxa and sxb, re-

spectively. Az1 , ... ,Azc are the corresponding PFSAs for the selected intermediate vari-

ables. Then a multi-dimensional joint xD-Markov machine is de�ned as a (c + 2)-tuple

Axaxbz1...zc→xb ≜ {Q{xaxbz1...zc}, Q{xbz1...zc},Σxa ,Σxb ,Σz1 , ...,Σzc ,∆xa ,∆xb ,∆z1 , ...,∆zc ,

Π(z1...zcxb)(z1...zcxb), Π̃
(xaxbz1...zc)xb},

1. Σxa ,Σxb ,Σz1 , ...,Σzc are non-empty �nite sets of alphabets belong to symbolic sequences

sxa , sxb , sz1 , ..., szc , respectively.

2. Qxa , Qxb , Qz1 , ..., Qzc are �nite sets for states of the corresponding symbol sequences.

3. q
{xbz1...zc}
r3 ∈ Q{xbz1...zc} represents a multi-dimensional joint state sequence similar to

Def. 4.3-6 with r3 = 0, ..., |Qxb |×|Qz1 |×....|Qzc |−1. Similarly, q{xaxbz1...zc}r5 ∈ Q{xaxbz1...zc}

is de�ned with r5 = 0, ..., |Qxa |×|Qxb |×|Qz1 |×....|Qzc |−1 .

4. ∆(.) : Q(.) × Σ(.) → Q(.) is the general form of a state transition map which applies to

every symbolic sequence involved in the calculation.

5. Π(xbz1...zc)(xbz1...zc) is a square matrix of size (|Q{xbz1...zc}|= |Qxb |×|Qz1 |×... × |Qzc |);
where π

(xbz1...zc)(xbz1...zc)
r3r4 is probability of moving from multi-dimensional joint state q

{xbz1...zc}
r3

at nth epoch to q
{xbz1...zc}
r4 at (n+ 1)th epoch for r3, r4 = 0, ..., |Q{xbz1...zc}|−1.
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6. Π̃
(xbz1...zc)xb

is the output symbol emission matrix of size (|Q{xbz1...zc}|×|Σxb |); where
π̃
(xbz1...zc)xb
r3k

is probability of observing σxbk ∈ Σxb as the (n+ 1)th symbol in the sequence

sxb, while making a transition from the multi-dimensional joint state sequence q{xbz1...zc}

at epoch nth.

7. Π(xaxbz1...zc)(xaxbz1...zc) is a square matrix of size(︁
|Q{xaxbz1...zc}|= |Qxa |×|Qxb |×|Qz1 |×...× |Qzc |

)︁
, where π

(xaxbz1...zc)(xaxbz1...zc)
r5r6 is the prob-

ability of moving from multi-dimensional joint state q
{xaxbz1...zc}
r5 at epoch nth to q

{xaxbz1...zc}
r6

at (n+ 1)th for r5, r6 = 0, ..., |Q{xaxbz1...zc}|−1.

8. Π̃
(xaxbz1...zc)xb

is the output symbol emission matrix of size (|Q{xaxbz1...zc}|×|Σxb |); where
π̃
(xaxbz1...zc)xb
r5k

is the probability of observing σk ∈ Σxb as the (n+ 1)th symbol in the se-

quence sxb, while making a transition from the multi-dimensional joint state sequence

q
{xaxbz1...zc}
r5 at epoch nth. This multi-dimensional joint morph emission matrix is shown

in Fig. 4.3.

The concept of all transition and emitting matrices presented above are pictorially illustrated

in Fig. 4.3. Def. 5.1, explains the basis of the symbolic-dynamic approach for fast estimation

of the joint and conditional multi-dimensional PDFs which are required in the calculation of

DTE. As a result, the multi-dimensional conditional probabilities exist in Eqs. (5.4) and (5.5)

can be calculated using morph matrix (see Def. 5.1, step 6 and 8) as following,

N∑︂
i=1

p(xi+hτb |xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) ≈

|Σxb |−1∑︂
r3=0

|Q{xbz1...zc}|−1∑︂
k=0

π̃
(xbz1...zc)xb
r3k

N∑︂
i=1

p(xi+hτb |xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) ≈

|Σxb |−1∑︂
r5=0

|Q{xaxbz1...zc}|−1∑︂
k=0

π̃
(xaxbz1...zc)xb
r5k

.

(5.6)

With regards to the Def. 5.1, the joint probability p(xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) is approximated

by p(q
{xbz1...zc}
r3 ) calculated as the left eigenvector of unit eigenvalue of the state transition

matrix Π(xbz1...zc)(xbz1...zc). Similarly, the other joint PDF is symbolically approximated as

p(xl1b , x
l2
a , z

v1
1 , z

v2
2 , ..., z

vc
c ) ≈ p(q

{xaxbz1...zc}
r5 ). Moreover, according to Bayes' rule p(A,B) =

p(B)p(A|B) and Eq. (5.6), the symbolic dynamic entropies are derived as following,

SDH(xi+hτb |xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c ) =

|Σxb |−1∑︂
k=0

|Q{xbz1...zc}|−1∑︂
r3=0

p(q{xbz1...zc}r3 )π̃
(xbz1...zc)xb
r3k

log π̃
(xbz1...zc)xb
r3k

SDH(xi+hτb |xl2a , x
l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c ) =

|Σxb |−1∑︂
k=0

|Q{xaxbz1...zc}|−1∑︂
r5=0

p(q{xaxbz1...zc}r5 )π̃
(xaxbz1...zc)xb
r5k

log π̃
(xaxbz1...zc)xb
r5k

(5.7)
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Eq. (5.7) presents the symbolic dynamic representation of the Shannon entropies given in

Eq. (5.3). Thus, by substituting the SDHs in Eq. (5.3), the proposed symbolic dynamic-based

transfer entropy SDDTEz1,...,zcxa−→xb is given as follows,

SDDTEz1,...,zcxa−→xb
=

SDH(xi+hτb |xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c )− SDH(xi+hτb |xl2a , x

l1
b , z

v1
1 , z

v2
2 , ..., z

vc
c )

(5.8)

Therefore, in order to measure the strength of the direct causality from xa to xb considering

all intermediate variables z1, ..., zc, the same normalization procedure similar to Eq. (5.2) is

utilized and the symbolic dynamic-based normalized direct transfer entropy SDNDTEz1,...,zcxa−→xb

is derived as follows,

SDNDTEz1,...,zcxa−→xb
=

SDDTEz1,...,zcxa−→xb

SDH(xbi+hτ |xbl1i )− SDH(xi+hτb |xl2a , xl1b , z
v1
1 , z

v2
2 , ..., z

vc
c )

(5.9)

The numerator in the above equation represents the SDDTEz1,...,zcxa−→xb and the denominator

is the total causality from both xa and intermediate variables z1, ..., zc to xb. Therefore,

SDNDTEz1,...,zcxa−→xb intuitively determines the percentage of direct causality in the total causality

from both xa and z1, ..., zc to xb. For the ease of implementing the proposed symbolic-dynamic

based SDNTE in Eq. (5.2) and SDNDTE in Eq. (5.9), the frequency counting formulas for

all the required components are summarized in Table 5.1.

5.5.1 Computation Complexity of Proposed SDNDTEz1,...,zc
xa−→xb

One of the advantages of the proposed SDNDTE in Eq. (5.9) is the computational e�ciency

in comparison with the traditional method based on estimating the joint-conditional PDFs

shown in Eqs. (5.4) and (5.5) using kernel functions [59] [57]. The computational order of a cd
dimensional joint PDF is O(N2c2d) using Fukunaga method [61]. The maximum dimension of

the joint PDF in Eq. (5.3) is cd = l1+ l2+ v1+ ...+ vc+1 which is the sum of the dimensions

of the embedding vectors. Therefore, the total computational complexity of calculating TE

using kernel function is O(N2(l1 + l2 + v1 + ...+ vc)
2).

The computation complexity of the proposed method in this chapter is due to two main

factors in two steps of the proposed algorithm. The �rst step is generation of the sym-

bolic sequences out of the m time-series as shown in Fig. 4.2 which can be done by com-

plexity order of O(mN). In the second step, according to Def. 5.1, calculation of the

proposed SDNDTE is based on the frequency counting approach. In Table 5.1, the for-

mula for calculating each component exist in Eq. (5.9) (e.g. state transition matrices and

morph emission matrices) are provided. It is proposed to deploy frequency counting func-

tion N(., .) using index-based linear search in which all the elements of Π and Π̃ are deter-

mined within one loop with size of N (i.e. length of the symbolic sequences). Therefore,

the calculation complexity of all components in proposed SDNDTE is O(N). In addition,

eigenvector decomposition required to calculate p(qxaj , q
xb
j , q

z1
i1
, ..., qzcin) has theoretical calcula-

tion complexity of O(|Q{xaxbz1...zc}|2.376) [117]. According to the summations exist in Eqs.

78



Table 5.1: The frequency counting equations for all of the symbolic-dynamic probability terms
required for proposed SDNTE Eq. (5.2) and SDNDTE Eq. (5.9). Note that N(.) represents
the number of occurrences

Causality terms Frequency counting formula

p(qxbj )
N(qxbj )∑︁|Qxb |
i=0 N(qxbi )

πxaxaij

N(qxai , q
xa
j )∑︁|Qxa |−1

k=0 N(qxai , q
xa
k )

π̃xbxbjk

N(qxbj , σ
xb
k )

N(qxbj )

π
(xaxb)(xaxb)
r1r2

N(q
{xaxb}
r2 , q

{xaxb}
r1 )∑︁|Q{xa,xb}|−1

r=0 N(q
{xaxb}
r2 , q

{xaxb}
r )

P (qxai , q
xb
j )

is the left eigenvector of

unit eigenvalue of Π(xaxb)(xaxb)

π̃
(xaxb)xb
r1k

N(q
{xaxb}
r1 , σxbk )

N(q
{xaxb}
r1 )

π
(xbz1...zc)(xbz1...zc)
r3r4

N(q
{xbz1...zc}
r4 , q

{xbz1...zc}
r3 )∑︁|Q{xb,z1,...,zc}|−1

r=0 N(q
{xbz1...zc}
r4 , q

{xbz1...zc}
r )

p(qxbj , q
z1
i1
, ..., qzcin)

is the left eigenvector of

unit eigenvalue of Π(xbz1...zc)(xbz1...zc)

π
(xaxbz1...zc)(xaxbz1...zc)
r5r6

N(q
{xaxbz1...zc}
r5 , q

{xaxbz1...zc}
r6 )∑︁|Q{xa,xb,z1,zc}|−1

r=0 N(q
{xaxbz1...zc}
r5 , q

{xaxbz1...zc}
r )

p(qxas , q
xb
j , q

z1
i1
, ..., qzcin)

is the left eigenvector of

unit eigenvalue of Π(xaxbz1...zc)(xaxbz1...zc)

π̃
(xaxbz1...zc)xb
sji1...iqk

N(q
{xaxbz1...zc}
r5 , σxbk )

N(q
{xaxbz1...zc}
r5 )
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(5.7) and (5.9), the total complexity order of calculating SDNDTEz1,...,zcxa−→xb is O(mN + N +

|Q{xaxbz1...zc}|2.376+|Σxb ||Q{xaxbz1...zc}|+|Σxb ||Q{xbz1...zc}|+|Σxb ||Qxb |+|Σxb ||Qxb ||Qxb |) which is
equal to O((m+ 1)N + |Q{xaxbz1...zc}|2.376).

5.6 Proposed Autonomous Framework for Root-Cause Fault
Diagnosis

This section explains the proposed autonomous framework for �nding the root-cause fault in

a process. It is important to know that this proposed framework is a general paradigm for

root-cause diagnosis and it is not limited to the application of proposed SDNTE and SDNDTE

for causality analysis. Hence, other techniques for causality analysis (e.g. Granger causality,

constraint-based causality analysis [118], time-warping [50], etc.) can also be �t into this

proposed framework. In this chapter, symbolic-dynamic TEs are considered as the main tool

to determine whether there is a causal relationship between two variables and validate direct

causal inference. Therefore, by applying the proposed SDNTE in Eq. (5.2) between every

pair of variables, a directed graph is derived indicating the causality map between potential

candidates for being root-cause(s) of the detected fault. In this graph, the vertices represent

process measurements and the edges represent causal information pathways between them.

According to the intuition behind de�nition of transfer entropy, if TExs→xt is relatively

signi�cant, it only indicates that there is possibly a direct (immediate) pathway xs → xt. In

other words, there is no guarantee that this detected information pathway is direct and it is

not due to the presence of single/multiple IVs. To this end, the proposed symbolic dynamic-

based normalized direct transfer entropy SDNDTEz1,...,zcxs−→xt in Eq. (5.9) is proposed as a viable

technique to test whether the detected pathway xs → xt is a direct pathway or it is possibly

induced by the presence of one/some IV(s).

It should be noted that the potential intermediate variables z1, ..., zc for determining

SDNDTEz1,...,zcxs−→xt must be e�ciently selected since the calculation complexity of SDNDTE

depends on the number of selected intermediate variables (c). Hence, only the true interme-

diate variables must be considered if the relatively fast determination of accurate results is

the �nal goal. For this purpose, explicit de�nitions of two types of IVs (e.g. Immediate IV in

Def. 5.2 and Source IV in Def. 5.3) are introduced. Finding intermediate variables between

xs and xt is conventionally done manually by an expert or by looking at the topology map of

the process which is a challenge for autonomous real-time applications. Therefore, this paper

proposes a systematic paradigm to autonomously determine the intermediate variables and

further determine the root-cause fault without any need for intervention of an expert.

5.6.1 Proposed Algorithms to Find Immediate and Source Intermediate
Variables (IVs)

Assume that a process with n variables is given and a FD method (e.g. Kernel PCA recalled

in section (4.3)) is applied for detecting process fault. Upon detection of a fault in the process,
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Figure 5.3: Illustration of spurious and indirect pathways xs → xt through either presence
of an immediate or source intermediate variable. (a) Immediate intermediate variable (IIV)
case, (b) Source intermediate variable (SIV) case.

a conventional diagnosis technique (e.g. accumulative rate contribution (ACRC) [2]) is used

to choose only m ≤ n faulty variables as potential root-cause(s). The �rst step for �nding

root-cause of the detected fault is to apply SDNTE in Eq. (5.2) to determine an initial causal

directed graph representing information pathways. The second step is to e�ciently utilize

SDNDTE proposed in Eq. (5.9) to prune indirect and spurious pathways. With regards to

the underlying intuition of the SDNDTE, if the pathway xs → xt is not a direct pathway,

there must be a single or multiple IV(s) inducing this indirect/spurious pathway detected by

SDNTE.

De�nition 5.2 (Immediate Intermediate Variable (IIV)) When there exists an indirect

path (xs → xt as shown in Fig. 5.3(a) by a broken green arrow) and at the same time there

exist one/multiple other direct paths connecting xs to xt in the sense that the path is unidi-

rectional and through a set of intermediate variable(s) (IVs), the last variable in such path(s)

that is immediately before xt is de�ned as the immediate intermediate variable (IIV).

De�nition 5.3 (Source Intermediate Variable (SIV)) Under the circumstance that a spu-

rious path exists between xs and xt (as shown in Fig. 5.3(b) by broken green arrow) in the

sense that xs and xt are a�ected simultaneously by certain common source (parent) variable(s)

excluding the xs, these variable(s) are de�ned as source intermediate variables (SIVs).

Fig. 5.3(a) indicates a pictorial explanation for the case that IIV results in the presence

of an indirect edge xs → xt denoted by broken green line. Although along a path from xs to

xt several IVs may exist, the variable right before xt in the path is the only one required for

calculation of SDNDTE. The intuition behind this assumption is that if xs → xt is not directly

due to the transmission of information from xs to xt through other IVs shown in Fig. 5.3,

the complete transmitted information through that path exists in the last variable immediate

adjacent to xt. Therefore, it su�ces to only consider this variable, which we de�ne as IIV (zj
in Fig. 5.3). It should be noted that not only incorporating other variables in addition to IIV

does not a�ect the result of DTE calculation, it may also make the calculation of SDNDTE

inaccurate.
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Before presenting the proposed algorithms to �nd IIV and SIV, two objectives of this

subsection are recapitulated. First, the developed algorithms must not select redundant IVs

that do not a�ect the result of SDNDTEz1,...,zcxs−→xt . This objective guarantees to identify only

the e�ective IVs, which as a result minimizes the calculation complexity . Second, develop

algorithm(s) to autonomously �nd all c existing IIVs and SIVs required for calculation of

SDNDTEz1,...,zcxs−→xt in Eq. (5.9).

Algorithm 3 is proposed to e�ciently �nd IIVs zj between xs and xt using the idea of

depth �rst search (DFS) method [119]. There are di�erent ways to validate the correctness

of an algorithm such as induction, case analytics, and contradiction. Hereby we investigate

correctness of the proposed Algorithm 3 by contradiction.

Algorithm 3 Find immediate intermediate variables (IIVs) between xs and xt
1: stack → s, path → p, vertex → v, Neighbours → Neigh, node → n, graph → G
2: Inputs:G, xs, xt
3: s← xs
4: VIIV ← empty
5: loop(1): s ̸= empty
6: pIIV ← s[end], and remove it from s
7: v ← last node of pIIV
8: Neigh = G[v]
9: loop(2): n ∈ Neigh
10: if n /∈ pIIV then:
11: pnewIIV ← pIIV
12: pnewIIV ← pnewIIV + n
13: s← s+ pnewIIV

14: if {n = xt} & {length(pnewIIV ) ≥ 3} then:
15: if {pnewIIV [length(p

new
IIV )− 2] /∈ VIIV } then:

16: VIIV ← pnewIIV [length(p
new
IIV )− 2]

17: go to loop(2).

18: go to loop(1).
19: Output:VIIV

Assume that there are m1 potential confounding variables exist to be incorporated in vali-

dation of the information pathway xs → xt. After implementing Algorithm 3, n1 ≤ m1 of the

potential variables are chosen as IIV. According to the proof of correctness by contradiction,

we assume that there is another variable xr that is indeed an intermediate (confounding) vari-

able and is missed by the proposed Algorithms. With respect to Def 5.2, it means that there

is a path from xs to xt passing through xr such that none of the variables in this path exist in

those chosen nIIV1 ≤ n1 variables. Hence, with regards to the intuition explained in Def 5.2,

there must be one path from xs to xt that is missed by Algorithm 3. On the other hand, the

underlying basis of the proposed Algorithm 3 is depth �rst search (DFS) method. Therefore,

this assumption leads to the fact that the DFS method failed to �nd all possible distinct paths

from xs to xt, which is not possible.
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As depicted in Fig. 5.3(b), since zj is the common source of information to both xs and

xt, there is a similar piece of information present in both xs and xt transmitted from zj which

causes this spurious pathway. The proposed Algorithm 4 e�ciently �nds the SIVs, in which all

of the variables except the source, target and those ones that are already chosen as intermediate

variables are topologically tested to be possibly SIVs according to the initial causal graph G.

As can be seen in Fig. 5.3(b), if the path from zj to either xs (or xt) passes through xt (or xs),

the path is ignored. The intuition behind the proposed Algorithm 4 is to �nd those variables

that might induce a similar piece of information into xs and xt which lead to generation of a

spurious path (i.e. edge in the graph xs → xt). In Algorithm 4, depth �rst search (DFS) is

used to �nd all possible path between two vertices. The proposed algorithm consists of one

procedure as the main paradigm (i.e. line 1-11 ) and one procedure as a helper function (line

9). The main part of Algorithm 4 indicates the steps of validating each potential common

source variable. On the other hand, a helper function is proposed to validate the suggested

intuition in this research to e�ciently �nd true SIVs.

Algorithm 4 Find source intermediate variables (SIVs) between xs and xt
1: path → P , graph → G
2: Inputs: G, visited, xs, xt
3: VSIV ← empty
4: loop: k = 0, ...,m− 1, (m← number of vertices in G)
5: dummyA ← visited+ xt
6: P allxs ← all possible path from k to xs using DFS Algorithm, when visited← dummyA
7: dummyB ← visited+ xs
8: P allxt ← all possible path from k to xt using DFS Algorithm, when visited← dummyB

9: Helper Function (Algorithm 9):Inputs⇒ P allxs , P
all
xt , Output = V potential

SIV

10: Append the elements of V potential
SIV to VSIV if they do not already exist there

11: Outputs: VSIV

Similar to the proposed algorithm for �nding the IIVs, Algorithm 4 can �nd all necessary

source intermediate variables needed for determination of SDNDTEz1,...,zcxs−→xt . The following

explains the correctness for the proposed Algorithm 4.

Assume that there are m1 potential confounding variables to be incorporated in validation

of the information pathway xs −→ xt. After implementing Algorithm 4, n2 ≤ m1 of the

potential variables are chosen as SIVs. The contradicting assumption is that there is an

SIV xr that is not found by Algorithm 4. According to the intuition behind Def. 5.3, this

assumption infers that there must be two distinct paths, one from xr to xs, and one from xr

to xt. Moreover, DFS is the basis of the Algorithm 4 and it is deployed to �nd all possible

paths from xr to xs and xt. This leads to the fact that DFS failed to �nd all possible paths,

which is a contradiction.
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5.6.2 Proposed Autonomous Technique for Root-Cause Fault Diagnosis

In Algorithms 3 and 4, the proposed idea for �nding the IVs are presented, as one of the core

components of the proposed autonomous paradigm for root-cause fault diagnosis. Each edge

in the extracted directed graph G from a hypothetical source variable xs to a hypothetical

target variable xt is required to be validated by SDNDTEz1,...,zcxs−→xt . This is where the proposed

Algorithms 3 and 4 play their prominent roles to e�ciently determine the IV(s) z1, ..., zc. After

pruning the indirect edges of G and generate Ḡ, this graph is e�cient enough to be utilized

for �nding the root-cause fault variable(s). The proposed idea for autonomously determining

the root-cause vertices in the pruned causal graph is developed in Algorithm 5.

Remark 5.1 One assumption in this algorithm is that if there exists only one fault in the

process, the source of the fault information in a directed graph must have a path to at least one

node of the graph for the sake of detectability and diagnosability.

The idea behind the fault diagnosis step explained in step 2 mentioned in section 5.1 is that

any process variable that is a�ected by the existing fault is successfully diagnosed and has a

representing node in the graph G for the Algorithm 5. As a particular case, if a process is

subjected to a fault that only a�ects one process variable, and that orphan variable does not

have any causal connections to any other variables, Algorithm 5 will output that variable as a

potential root-cause fault.

Remark 5.2 The proposed strategy for root-cause fault diagnosis is not limited to the single

process fault occurrence at a time. If multiple faults occur simultaneously, they introduce more

sources of information in the pruned graph Ḡ. Therefore, Algorithm 5 reports all of them as

potential sources of detected fault. At that point, a domain expert or additional analysis will

be required to distinguish between di�erent fault scenarios.

Algorithm 6 summarizes the step-by-step actions proposed in this chapter to autonomously

�nd the root-cause fault in the process. The �nal output of Algorithm 6 is the measurement

variable(s) that are identi�ed as source of the detected fault.

5.7 Simulation Results

In the �rst part of this section, a synthetic numeric process is simulated and a hidden fault is

introduced to some variables. The IFMOC shown in Eq. (5.10) is de�ned such that satis�es

Assumption 5.1 stated in section 5.3. Therefore, the proposed strategy can be applied to iden-

tify the graph Ḡ representing the Eq. (5.10). In this numerical example, fault detection step

(e.g. Kernel PCA) and faulty variable diagnosis (e.g. accumulative rate contribution (ACRC)

index) counterpart are skipped and the only goal is to evaluate the e�ciency and applicability

of the proposed SDNTE, SDNDTE and autonomous algorithms for deriving causal graph and
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Algorithm 5 Proposed autonomous procedure to �nd the root-cause fault using the pruned
causality graph
1: procedure (finding the root-cause fault variable(s)):

2: Listvar ← list of all vertices in the graph
3: Rootcauses ← Listvar
4: loop(1): Vcandidate ∈ Listvar
5: if Vcandidate ∈ Rootcauses then
6: if G[Vcandidate] is not empty then:
7: dummy1 ← DFS Helper function with inputs: G, Vcandidate
8: loop(2): var ∈ dummy1
9: dummy2 ← DFS Helper function with inputs: G, var
10: if (G[Vcandidate] is empty) & ( var is in Rootcauses) then:
11: remove var from Rootcauses
12: else if (Vcandidate is not in dummy2) & (var is in Rootcauses) then:
13: remove var from Rootcauses
14: Output:Rootcauses

15: ���������������������
16: procedure (DFS Helper function to determine all reachable nodes of a

graph starts from xs):
17: DFS Inputs: G, xs
18: s← xs
19: visited← empty
20: loop(1): s ̸= empty
21: node← last element of the s
22: Remove the last element of the s
23: loop(2): n ∈ Neighbours
24: if n /∈ visited then:
25: visited← visited+ n (append node to the visited)
26: s← s+ n (append node to end of the s)

27: Output:visited
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Algorithm 6 Summery of the proposed strategy for autonomous root-cause fault diagnosis
1: Apply a fault detection method (e.g. KPCA or PCA) and detect fault(s),
2: Select root-cause fault candidates xi, i = 1, ...,m using a FD method (e.g. ACRC),
3: Generate a directed causal graph G amongstm candidates using proposed SDNTE method

in Eq. (5.2),
4: �Prune indirect and /or spurious edges in G�
5: loop(3): i = 0, ...,m− 1,
6: xs ← G[i]
7: loop(4): k ∈ G[xs] (�nd all neighbour vertices to xs)
8: xt ← G[xs][k]
9: VInter ← empty (Initialize intermediate variables which will store both IIVs and SIVs)
10: ��������Find IIV s��������-
11: VInter ← VInter +Output of Algorithm 3 with inputs: {G, xs, xt}
12: �������� Find SIV s ��������
13: VInter ← VInter +Output of Algorithm 4 with inputs: {G,VInter, xs, xt}
14: After �nding all possible intermediate variable between xs and xt, conduct SDNDTE as

indicated in Eq. (5.9) and validate it if the path way xs → xt is indirect/spurious or
direct.

15: if xs → xt is spurious (SDNDTEInterV arxs→xt < UCL) then: (UCL = 0.1 in this study)
16: remove edge xs → xt from G

17: go to loop(3).
18: Output:Pruned graph with direct information connection
19: �Locate the root-cause fault using pruned G�
20: Apply Algorithm 5 with input of pruned graph G.
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consequently �nding root-cause fault variables. In the second part, Tennessee Eastman Pro-

cess (TEP) is considered to show the usefulness as well as the performance of the proposed

general framework for industrial fault scenarios.

5.7.1 Numerical Example

Assume an additive noise model (ANM) including seven non-linear continuous random vari-

ables xi, i = 0, ..., 6 as follows;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(i) = 1− 1.5e−0.2x0(i−1)+2 + sin(x1(i− 2)) + 0.1x5(i− 1) ∗ x5(i− 2) + u0(i− 1)

x1(i) = 2 +
0.2x0(i− 1)

12− x0(i− 1)
− 0.3x1(i− 1) + u1(i− 1)

x2(i) = −0.5x1(i− 1) + 0.2x2(i− 1)x5(i− 1) +
√︁
|x3(i− 1)− 2|+ u2(i− 1)

x3(i) = 3 + 0.1x4(i− 1)2 − 0.2x6(i− 1) +
√︁
|x6(i− 1)|+ u3(i− 1)

x4(i) = 1− 0.05x4(i− 1)2 − 0.4x3(i− 1)sin(x4(i− 2)) + u4(i− 1)

x5(i) = µ0(i− 1) + 0.2µ0(i− 2) + F (i− 1) + u5(i− 1)

x6(i) = µ1(i− 1)− 0.3µ1(i− 2) + 0.2F (i− 1)sin(F (i− 1)) + u6(i− 1),

(5.10)

where µi, i = 0, 1 are the two i.i.d exogenous inputs with zero mean and unit variance.

ui ∼ N(0, 0.01), i = 0, ..., 6 are the independent measurement disturbances. It should be noted

that the initial condition of zero is considered for all variables. According to the identi�ability

conditions in [112];

1- This process is index-based and causal.

2- fis are non-linear which insures the causal identi�ability among the measurements [120].

gi is also unity and invertible.

3- ui ∼ N(0, 0.1), i = 0, ..., 6 are additive and mutually independent.

4- According to the SEM shown in Eq. (5.10), each variable xi is independently de�ned

from those ones that are not function or sub function of xi, conditioned on the parent(s) of

xi.

5- The additive ui corresponding to xi is de�ned such that they are mutually and condi-

tionally independent from PA(xi).

In Eq. (5.10), F is a random stationary independent fault with an average mean of zero and

variance of 2 that is added to x5 and x6 and it is considered unknown from the measurements.

Since the added fault is immeasurable in this example and the root-cause of the fault is

a relative concept with respect to the available measurements, as a result of utilizing the

proposed autonomous framework, x5 and x6 must be diagnosed as the true root-causes of the

fault.

The process is simulated for 5000 samples and the fault is added at 4000th sample. The

�rst 1000 sample of the simulation is discarded to ensure the stationarity of the time series.
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Fig. 5.4 shows 1000 samples of all seven variables. The assumption is that the time when

the fault is introduced into the process is known upon its detection and all of the variables

are considered as candidates of root-cause fault. Therefore, the goal is to utilize the proposed

SDNTE and SDNDTE as well as autonomous algorithms to, �rst, derive an initial causal map,

second, discard spurious and indirect edges and �nally determine the root-cause(s) of the fault.

To this aim, the parameters required for symbolizing the time series should be determined

according to the steps proposed by authors in [20]. It should be mentioned that the number of

states is reduced by applying the state merging technique mentioned in [99] to neglect those

unlikely states in the estimation procedure to decrease the calculation memory/complexity the

naive estimators included in Table 5.1. These parameters are determined and derived for the

�rst 2000 samples in normal condition and the results are presented in Table 5.2. Moreover,

the number of samples required for conducting causality analysis is determined as N sd = 1000.

Table 5.2: Selected parameters for the state machine construction of the synthetic numerical
example.

Index ϵh |Σ| D |Q|
X0 0.10 3 2 9
X1 0.10 5 2 23
X2 0.10 5 2 18
X3 0.10 3 2 9
X4 0.10 4 2 16
X5 0.10 3 2 9
X6 0.10 3 2 9

After �nding the tuning parameters and symbolizing the time series, the next step is to

apply the proposed SDNTE in Eq. (5.2) amongst all pairs of variables to generate an initial

causal graph. All the required component to calculate the SDNTE is presented in Table

5.1. As can be seen in Table 5.4, the calculated SDNTE between each pair of variables is

presented. In order to generate the initial causal graph indicating the information pathways,

each connection indicated in Table 5.4 is considered as a pathway (i.e. graph edge) if its value

is greater than a signi�cant level of 10 percent. In Fig. 5.5, the initial graph is indicated

on the top left corner in which edges represent signi�cant pathways in Table 5.4. According

to Algorithm 6 which summarizes the proposed autonomous framework, the next step is to

check whether the connection between variables (i.e. each edge in the initial causal graph)

is direct. Then for each validation of a connection, the Algorithms 3 and 4 are utilized to

�nd the IIVs and SIVs, respectively. After autonomously and e�ciently �nding intermediate

variables zj between a source variable xs to a target variable xt, SDNDTE
z1,...,zc
xs→xt in Eq.

(5.9) is calculated. The step by step result of the procedure is presented in Table 5.5. Also,

the particular steps regarding discarding indirect/spurious edges are pictorially illustrated

in Fig. 5.5. The signi�cant level of 10 percent is considered for accepting a direct causal

connection and if the SDNDTEz1,...,zcxs→xt < 0.1, the corresponding edge is considered indirect or

spurious. As can be seen in Fig. 5.5, after applying the procedure proposed in Algorithm 6,
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Figure 5.4: Seven process variables of synthetic numerical example between 3500th to 4500th

samples.

the pruned causal map between process variables is derived. The next and �nal step for root-

cause fault diagnosis is to apply Algorithm 5 and identify the variable(s) causing the anomaly

and propagating it through all other variables. Fig. 5.6 shows the detected root-cause fault

variables using Algorithm 6 and compare it with the true causal map among process variables

according to Eq. (5.10). As a result, Algorithm 6 could successfully diagnose the root-cause

fault variables that is consistent with the variables relationships in Eq. (5.10). However,

one would consider the bidirectional edge between x5 and x6 as miss-identi�ed direct causal

pathway. The reason behind that is the direct causal pathway is a relative concept according to

all measured variables and since the true fault F in Eq. (5.10) is not measured, the connection

between x5 and x6 is considered direct according to available information in measured time

series.

The proposed autonomous approach is a general framework in which various causality

analysis techniques can be �tted into. Therefore, in order to indicate the improvement in the

calculation complexity of the proposed SDNDTE, the conventional way of determining DTE

through kernel PDF �tting ( [59]) is also utilized for the pruning procedure. Table 5.3 shows the

hyper-parameters required to generate embedding vectors for �tting kernel joint-PDF function

f̂(x) =
(detS)−0.5

NΓq

∑︁N
i=1K{Γ−2(x − Xi)

TS−1(x − Xi)}, where Γ = 1.06N−1/(4+q) and S is

the covariance matrix of time-series data and K is the Gaussian kernel function. Table 5.5

indicates the result of normalized direct transfer entropy (NDTE) which is determined from

Eq. (5.9) except in the SDHs are replaced with conventional entropy H. The result of both

approaches are consistent except for the NDTEx3x6→x4 = 0.109 in which the normalized direct

causality is greater than threshold of 0.1 by 0.009 and it contradicts with the SDNDTE results.

This inconsistency might be due to the di�erence in the length of the time series considered
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Figure 5.5: The pictorial step by step pruning procedure explained in Table 5.5, which leads
to discarding indirect or spurious edges.

Figure 5.6: The comparison between the pruned graph which is determined by applying pro-
posed autonomous algorithms, SDNTE and SDNDTE (a) and the actual causal graph found
according to the Eq. (5.10).
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Table 5.4: The result of calculating SDNTExs→xt (i.e. xs row variable to xt column variable),
for all seven variables in numerical example.

Index x0 x1 x2 x3 x4 x5 x6
x0 N.A. 0.486 0.291 0.025 0.051 0.079 0.081
x1 0.386 N.A. 0.205 0.023 0.007 0.082 0.049
x2 0.335 0.372 N.A. 0.018 0.023 0.062 0.211
x3 0.001 0.045 0.298 N.A. 0.413 0.002 0.009
x4 0.000 0.002 0.312 0.160 N.A. 0.062 0.015
x5 0.431 0.061 0.227 0.024 0.031 N.A. 0.422
x6 0.010 0.035 0.282 0.405 0.319 0.472 N.A.

in the calculation of NDTE. It should be noted that this di�erence will not a�ect the result

of the root-cause fault diagnosis after applying the steps in Algorithm 6.

The calculation elapsed time for determiningNDTE and SDNDTE are presented in Table

5.5 in the same computational condition (CPU i7 @3.2 GHZ and RAM 8 GB). Elapsed time

indicates the time that is needed to verify whether the corresponding edge is direct. This case

study indicates that the total elapsed time for pruning the initial causal graph using the

proposed SDNDTE method is 23.859 second and for conventional DTE method [59] is 354.41

seconds that is showing over 15 times improvement.

Table 5.3: The hyper-parameters required for creating embedding vector prior to �tting joint-
pdf function for all seven variables in the numerical example.

variable index x0 x1 x2 x3 x4 x5 x6
τ 1 1 1 1 1 1 1
h 1 1 1 1 2 2 2
l 1 2 1 1 2 2 1
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(a) ACRC score of TEP varibles to residual ψ for
scenario IDV(8)

(b) ACRC score of TEP varibles to residual ψ for
scenario IDV(10)

Figure 5.7: Accumulative rate contribution score proposed in [2] is utilized to determine the
relative contribution of each process variables to the combined index.

5.7.2 Tennessee Eastman Process

In this section, the performance and real-time e�ciency of the entire proposed root-cause fault

diagnosis scheme are under study. To this aim, the Tennessee Eastman process (TEP) [121]

is considered, which is a well-known benchmark in the �eld of process monitoring and fault

diagnosis. readers can �nd the preliminary information about the TEP including the list of

variables and simulated fault scenarios in section 4.5

In [102], 15 di�erent known malfunction scenarios (IDV(1-15)) are de�ned for TEP. But

since the SDNDTE approach is proposed to handle (quasi-)stationary time series, only those

types of fault scenarios are considered here. In this section, two fault scenarios IDV(8) and

IDV(10) are under study to show the performance of the proposed framework. The details of

the simulation and fault detection step for these two fault scenarios can be found in section

4.5.

Fig. 4.6(a) shows the combined index for fault scenario IDV(8) that is introducing a ran-

dom variation in A, B and C streams at 2000th sample. After detecting a fault, accumulative

rate contribution (ACRC) [2] is determined for each process variables to diagnose those vari-

ables that have a signi�cant relative contribution rate to the fault detection index. Fig. 5.7(a)

presents the result of the ACRC analysis for IDV(8), which leads to choosing 13 root-cause

fault candidates out of 33 process variables.

After �nding the potential root-cause fault candidates, according to the �owchart shown

in Fig. 5.1, the next step is to generate an initial causal graph using the proposed SDNTE

approach. The parameters are chosen for normal operating condition IDV(0) and summarized

in Appendix Table 3. As presented in Algorithm 6, SDNDTEz1...zcxs→xt proposed in Eq. (5.2) is

calculated for each pair of 13 process variables for IDV(8) and if the value of each validation is

greater than the signi�cance level of 10%, that pathway is considered as a direct causal edge

for the initial causal graph shown in Fig. 5.8. In order to identify the indirect or spurious edges

in the initial causal graph, SDNDTEz1...zcxS→xt is determined according to the proposed steps in

Algorithm 6 and the results are brought in Tables 5.6. The �rst column in Table 5.6 shows the

connection under examination and the second and third columns indicate the IIVs and SIVs,
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Figure 5.8: The left indicates the result of SDNTExs→xt with signi�cance level of 10% for TE
process and scenario IDV(8). The right shows the pruned causal map after utilizing Algorithm
6. The identi�ed potential root-causes are found using Algorithm 5 and they are distinguished
by di�erent colors.

respectively. The right graph in Fig. 5.8 indicates the pruned causal graph after discarding

the edges which do not satisfy the signi�cance level of 10%. By inspection, the proposed

SDNDTE approach successfully discards the unnecessary edges in the causal map between

process variables to avoid inaccuracy and complication for �nding the root-cause variable(s).

At this step, Algorithm 5 is adopted to autonomously determines the root-cause variables.

For fault scenario IDV(8), three potential root-cause candidates x4 (total feed stream(4)), x26
(total feed �ow stream(4)) and x19 (striper stream�ow) are identi�ed in Fig. 5.8. According

to the TEP �owchart shown in Fig. 2, if A/B/C composition is subjected to a malfunction

which is the case in IDV(8), the fault will directly a�ect the measurements corresponding to

the stream 4. The controller (x26) is acting to compensate the fault and accordingly change

the total feed stream x4 to adjust the set-point, thus, the x4 and x26 are autonomously and

successfully diagnosed as the fault root-causes. Also, the stripper stream is directly connected

to the stream 4 and variable x19 is apparently a�ected by this fault scenario and it is happened

to be an orphan node in the causal graph G.

To further evaluate the e�ectiveness of the proposed strategy, fault scenario IDV(10) is also

considered as a case study. Fig. 4.6(c) shows the combined residual index for this scenario.

After detecting a fault, as shown in Fig. 5.7(b), ACRC is utilized to choose 10 root-cause

candidates amongst total 33 variables. Then, SDNTE in Eq. (5.2) is applied to �nd pathways

between candidates and generate the initial causal graph shown in Fig. 5.9. Although this

initial graph provides intuition regarding the interconnection of the process variables, the

spurious and indirect connections might mislead the root-cause diagnosis procedure. Hence,

the proposed SDNDTE approach is utilized to test whether each edge in the initial graph
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Table 5.6: The result of applying Algorithm 6 to create a pruned causal graph which indicates
direct causal pathways amongst variables of TEP for scenario IDV(8).

Step xs → xt

Source
intermediate
variables

Immediate
Intermediate
variables

SDNDTEz1,...,zc
xs→xt

Direct
Connection

(1) x0 → x7 x4, x5, x2, x10, x3, x11 N.A 0.001 ✗
(2) x1 → x4 x2, x5, x10 N.A 0.212 ✓
(3) x1 → x12 N.A N.A N.A ✓
(4) x2 → x4 N.A x1, x5, x10 0.020 ✗
(5) x2 → x6 N.A x10, x5 0.254 ✓
(6) x2 → x10 N.A N.A N.A ✓
(7) x2 → x7 N.A x3, x4, x5, x9, x10, x11 0.219 ✓
(8) x3 → x1 N.A x11 0.330 ✓
(9) x3 → x7 x2, x10 x4, x5, x9, x11 0.004 ✗
(10) x3 → x6 N.A x5 0.415 ✓
(11) x3 → x11 N.A N.A N.A ✓
(12) x4 → x5 x2, x10 N.A 0.202 ✓
(13) x4 → x7 x2, x10 x5, x9, x11 0.041 ✗
(14) x5 → x6 x2, x3, x10, x11 N.A 0.029 ✗
(15) x5 → x7 x1, x2, x3, x10, x11 N.A 0.001 ✗
(16) x5 → x0 N.A N.A N.A ✓
(17) x5 → x4 x10 N.A 0.515 ✓
(18) x6 → x3 N.A N.A N.A ✓
(19) x9 → x7 x2, x3, x10, x11 N.A 0.391 ✓
(20) x10 → x2 N.A N.A N.A ✓
(21) x10 → x4 N.A x5, x1 0.501 ✓
(22) x10 → x6 N.A x2 0.515 ✓
(23) x10 → x7 N.A x2, x9, x11 0.208 ✓
(24) x10 → x5 N.A x4 0.004 ✗
(25) x11 → x7 x2, x10 x9 0.211 ✓
(26) x11 → x1 N.A x3 0.015 ✗
(27) x11 → x3 N.A N.A N.A ✓
(28) x12 → x9 N.A N.A N.A ✓

represents a direct pathway. Table 5.7 presents the step by step results of SDNDTE analysis

of initial edges. According to the results of Table 5.7, the spurious and indirect edges are

discarded and the pruned causal graph is generated and shown in Fig. 5.9. Then Algorithm

5 is adopted to �nd the root-cause variables x18 (striper temperature) and x14 (separator

under�ow stream 10). By following the interconnection of streams in Fig. 2, fault scenario

IDV(10) introduces variation into C feed temperature and directly a�ects the gas mixture

temperature in stream 4 that is monitored by variable x18. Also, due to the closed-loop

controller for temperature control of the striper, separator under�ow x14 is also a�ected by

the source of the fault. At this point, these two variables are the output of the proposed

strategy to the domain experts in order to decide the proper maintenance actions.

95



Figure 5.9: The left indicates the result of SDNTExs→xt with signi�cance level of 10% for
TE process and scenario IDV(10). The right shows the pruned causal map after utilizing
Algorithm 6. The identi�ed root-cause variables found by using Algorithm 5 are shown by
orange color.

5.8 Summary

According to the existing challenges for real-time root-cause fault diagnosis, an autonomous

framework is proposed. The proposed framework is developed to diagnose the root-cause fault

of a (non-)linear industrial process which enables quick actions for quality maintenance and

safety purpose. To this aim, �rst, a fault detection approach (e.g. PCA, KPCA, etc.) is

conducted to capture the malfunction and a variable screening technique (e.g. RBC, ACRC,

etc.) is utilized to choose the potential root-cause candidates. Second, symbolic dynamic nor-

malized transfer entropy (SDNTE) is de�ned to generate an initial causal map (G) among the

candidates. In the third step, the symbolic dynamic �ltering approach presented in Chapter

4 is extended to estimate DTE and SDNDTE is proposed to prune indirect/spurious causal

edges of the initial map G and generate a pruned causal graph Ḡ with direct information

pathways. Immediate intermediate variable (IIV) and source intermediate variable (SIV) are

de�ned and autonomous e�cient algorithms are introduced to identify them without any a

priori knowledge of process and intervention of an expert. In the last step, a depth �rst search

(DFS)-based algorithm is introduced to locate the root-cause(s) of the fault in the pruned

graph. The proposed SDNDTE has less calculation complexity with the conventional way of

determining DTE which enables the real-time application of TE for root-cause fault diagno-

sis. Moreover, this framework eliminates the requirement for process knowledge and expert

inspection. It should be noted that the proposed general strategy in this paper is not tied to

any particular FD method and causality technique and the individual components presented

in Fig. 5.1 can be replaced with respect to the nature of the process and its malfunctions. Fi-
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Table 5.7: The result of applying Algorithm 6 to create a pruned causal graph which indicates
direct causal pathways amongst variables of TEP for IDV(10).

Step xs → xt

Source
intermediate
variables

Immediate
Intermediate
variables

SDNDTEz1,...,zc
xs→xt

Direct
Connection

(1) x0 → x1 N.A x8 0.015 ✗
(2) x1 → x2 N.A x8 0.305 ✓
(3) x1 → x6 N.A x8, x4 0.445 ✓
(4) x1 → x8 x7 x4 0.215 ✓
(5) x1 → x9 N.A N.A N.A ✓
(6) x2 → x3 N.A N.A N.A ✓
(7) x3 → x1 N.A x4, x6, x8 0.002 ✗
(8) x3 → x4 N.A N.A N.A ✓
(9) x4 → x1 N.A x6, x8 0.035 ✗
(10) x4 → x6 N.A x1, x8 0.080 ✗
(11) x4 → x8 x1, x7 N.A 0.386 ✓
(12) x6 → x0 N.A N.A N.A ✓
(13) x6 → x1 x8, x7 N.A 0.513 ✓
(14) x7 → x6 N.A x1, x8 0.077 ✗
(15) x7 → x8 N.A N.A N.A ✓
(16) x8 → x1 N.A x6 0.012 ✗
(17) x8 → x2 N.A x1 0.045 ✗
(18) x8 → x6 x1 N.A 0.194 ✓

nally, successful applications of the proposed strategy on a numerical simulation and Tennessee

Eastman Process (TEP) are presented.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Industrial processes are often subjected to anomalies that need to be detected and require

treatment. These abnormal conditions deteriorate the quality of the process and increase op-

erational costs and possibly lead to hazardous consequences. To this aim, this thesis proposes

solutions for some of the ongoing challenges in industrial process health monitoring.

Chapters 2 and 3 are dedicated to remedying the fault detection in non-stationary pro-

cesses, in which the measurement time-series follow a probability distribution with time-

varying mean and constant variances. Although there exist numerous approaches that are

based on projection to latent variables such as principal component analysis (PCA) and par-

tial least-squares (PLS), they require the time-series to be stationary with a constant mean and

variance. On the other hand, PCA and PLS are well-recognized by industrial operators due

to their easy implementation and powerful basis for handling the high-dimensional processes.

Although there are adaptive/recursive solutions that update the base-line model in a real time

manner, they su�er from on-line computational complexity. Hence, this became a motivation

to propose a moving-mean PCA (MM-PCA) approach in Chapter 2, which is not limited to

only stationery cases and it does not include any heavy online adaptation. This approach

considers the upper bounds of expected range of variations for the process measurements and

updates the mean values of the measurements which are utilized in normalization of a new test

data. Accordingly, three feature indices are introduced using MM-PCA which monitors the be-

havior of the time-series variations. The �rst feature Φ0
MM is the zero-order error index in the

de�nition of ordinary PCA [12]. Furthermore, Φ1
MM and Φ2

MM are the �rst- and second-order

error indices which were de�ned to monitor the trend pattern of the �rst and second-order

di�erence of the time-series. These three feature indices are de�ned and used to propose an

overall health index using the concept of kernel density estimator (KDE), which helps process

operators to distinguish normal (i.e. no-fault exist) non-stationary mean variation cases form

faulty operating conditions. Even though the proposed overall health index may be utilized

directly for process health monitoring, an alarm-based algorithm is further suggested which

provides caution and fault alarms to assist operators for adopting proper preventive actions.
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One of the fundamental di�erences between the adaptive PCA and the proposed MM-PCA

approach is how, i.e. based on what criteria, to recalibrate the mean value of the test data

when the process is subjected to a new variation. In MM-PCA, proper distance-based criteria

along with the upper bound of expected variations for time-series are utilized to remove the

need for real-time recalibration of the base-line model. Considering knowledge about the upper

bound of all process time-series is di�cult to achieve in some cases, we propose an analytical

solution for �nding the unknown upper bounds. Another assumption in the proposed MM-

PCA is that the loading vectors for the process time-series remain the same during the normal

non-stationary mean changes. On the contrary, in adaptive PCA, there is no assumption

regarding the consistency of the loading vectors and a real-time recalibration mechanism will

update the base-line loading vectors with the price of applying singular value decomposition

for each new batch of test data.

Each process may have one or some process measurements that represent the quality of the

normal operating condition. These measurements are also considered as key performance indi-

cators (KPIs) and play a prominent role in the �eld of process control and monitoring. For the

latter case, domain experts are often more interested to conduct fault detection and simultane-

ously monitor the impact of the fault on the process quality outputs. To this aim, PLS-based

approaches have been commonly applied for the stationary processes. Moreover, adaptive

PLS methods are developed to update the baseline structure when the process time-series are

subjected to non-stationary variations. However, this solution requires online parameter adap-

tation which introduces heavy computational complexity. To this aim, a PLS-based approach

is proposed in Chapter 3 without an online update mechanism applicable for a process that

is subjected to non-stationary mean changes in their measurements. This method leverages

from the orthogonal projection of time-series into quality output-related and unrelated compo-

nents. Furthermore, the concept of principal manifolds is adopted to model the time-varying

relationship between the projected loading directions with respect to the normal changes that

should not be miss-detected as a fault. The performance of the proposed formulation is shown

using numerical synthetic simulation and continuous stirred tank reactor (CSTR) process.

When calculation complexity is a concern, the proposed PLS-based approach is an alterna-

tive for adaptive PLS [47] method. However, there exist some assumptions such as it assumes

the regression model between process time-series and the quality output remains unchanged

during the non-stationary mean variations. Also, some of the normal non-stationary changes

should be included in the training data-set. It should be mentioned that this approach can be

considered as an unsupervised technique which do not require any faulty data in the training

phase. On the other hand, there exist some methods such as Fisher discriminate analysis

(FDA) [122] which create a bank of base-line models for both normal and faulty conditions.

Chapters 2 and 3 give solutions for performing anomaly detection in non-stationary pro-

cesses, which is often the �rst main step for conducting a through process monitoring. After

detecting the fault in a process, knowledge about the source of it is crucial. Hence, domain

experts are motivated to perform root-cause analysis approaches to identify the process mea-
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surements that are the source of the fault propagating into other counterpart. This information

helps the operators to diagnose the abnormality and therefore identify the faulty process com-

ponent(s). One of the recent solutions to identify the root-cause of the fault is based on

performing causality analysis among the process time-series to �nd the information pathways.

In Chapter 4, it is proposed to utilize transfer entropy (TE) as a viable tool for measuring the

information inference between time-series which may have (non-)linear relationships. Although

TE has been recently utilized for this purpose, the its conventional estimation approach which

is based on kernel density estimators su�ers from computational complexity and can not be

used for real-time causality analysis purposes. To this aim, symbolic dynamic �ltering (SDF)

is utilized to de�ne symbolic dynamic transfer entropy (SDTE) that has less computational

complexity in comparison with the conventional KDE approach. The SDF concept is applied

to de�ne the joint XD-Markov machines to estimate the joint Shannon entropies in the def-

inition of TE. Moreover, the general framework proposed in Chapter 4 requires less number

of TE estimation to identify the root-cause fault variable(s) among the potential candidates.

The e�ciency and contribution of the proposed approach are presented by applying it to the

Tennessee Eastman Process (TEP) benchmark. Furthermore, this method is applied to an

industrial centrifuge that su�ers from nozzle plugging issue and its operators were interested

to identify the root-cause of the fault to apply proactive maintenance actions.

Although TE can identify the presence a causal inference between two time-series, it can

not guarantee that the causality is direct or due to one/some intermediate variables. To this

aim, direct TE (DTE) has been used to reveal the spurious and indirect causal pathways among

the process variables. In Chapter 5, application of SDF is extended to de�ne multi-dimensional

joint XD-Markov to propose symbolic dynamic direct transfer entropy SDDTEz1...zcxa→xb
from xa

to xb with presence of intermediate variables z1, ..., zc. This contribution let the operators

replace the conventional KDE approach for estimating DTE and incorporate it for real-time

causality analysis purposes. The proposed SDNTE in Chapter 4 and SDNDTE in Chapter

5 enables the application of TE and DTE for real-time root-cause fault diagnosis for early

treatment of the detected abnormality in a process.

Autonomous algorithms can be applied to reduce the complex parameter tuning and reduce

(or eliminate) the need for a-priori knowledge and domain expert intervention. Also, the

structure of using the available monitoring tools such as SDNTE and SDNDTE can be properly

adopted in such a way to reduce the manual selection/intervention of an operator during the

process monitoring. In Chapter 5, a general schema is proposed to autonomously identify the

root-cause fault variable(s). This framework assumes that the proper fault detection approach

is in place to detect the fault upon existence. Then, a complementary fault diagnosis approach

is adopted to select the process measurements a�ected by the fault. In the next step, SDNTE

is used to create an initial directed graph G that represents the connection among the process

candidate variables. Then, SDNDTE is used to validate if each edge in graph G is indirect or

spurious. For this purpose, it is required to e�ciently identify which surrounding variable may

possibly act as an intermediate counterpart to infer the indirect/spurious edge. To this aim,
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�rst the concept of immediate intermediate variables (IIV) and source intermediate variables

(SIV) are de�ned and then topological algorithms are developed to e�ciently select them for

each edge in the graph G. This part of the proposed framework eliminates the intervention of

the process operators or any required process knowledge. After pruning the edges that do not

represent a direct causal interaction, a depth �rst search (DFS)-based algorithm is developed

to select the root-cause fault variable(s). The output of the proposed framework lets the

operators realized which measurements are the cause of the detected fault in the process. The

performance of the proposed approach in Chapter 5 is tested on a synthetic numerical example

and TEP. Also, the computational e�ciency of the proposed SDNTE and SDNDTE approach

in comparison with the conventional KDE-based approach is compared.

6.2 Future Work

This thesis provides solutions to some of the limitations in two main steps of process health

monitoring; fault detection and autonomous root-cause fault diagnosis. However, there exist

more potential research that can be conducted to increase the accuracy and implementation of

the process monitoring strategies for di�erent case scenarios. As the future work plan, machine

learning (ML) and arti�cial intelligence (AI) are the main tools to achieve the objectives.

Data-driven modeling attracts great attention and has been widely applied due to the fast

development of ML and big-data analytics. It is known that ML encompasses the more tradi-

tional multivariate statistical analysis methods, such as principal component analysis (PCA),

partial least-squares (PLS) and their variants. AI-based deep learning (DL) has gained signif-

icant interests in the �eld of industrial process health monitoring such as fault detection and

diagnosis, owing to its inherent ability to handle uncertainties and non-linear transformation

for data with any distributions (e.g. non-Gaussian).

As the future work of this thesis, we investigate various machine learning techniques to

speci�cally handle non-linear transformation and classi�cation, and when the data exhibits

non-stationary trends. Methods including random forest [123], autoencoder (AE) [124], deep

belief network (DBN) [125], deep boltzman machines (DBM) [126], convolutional neural net-

work (CNN) [127] and recurrent neural network(RNN) have been applied and implemented to

detect and diagnose anomalies in di�erent industrial processes and systems.

Two main objectives are set forward as the future work of the research proposed in this

thesis.

• Objective 1: Application of Recommender System for Fault Diagnosis

The conventional way of conducting fault detection and diagnosis for process monitoring

purposes is to �rstly select and apply a method on normal operating modes and di�erent fault

scenarios. Then by utilizing a particular criterion (e.g. false alarm rate, RMS value, etc.),

the accuracy of the method is measured and it is evaluated by the domain expert or cross-

validation approach. This procedure that is so-called pipe-line testing is repeated for di�erent
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methodologies and the best performance is selected as a proper method for the problem under

study. One of the limitations of this schema is that sometimes the selected method may not

be the right �t for the next upcoming test data or test scenario because it was not meet the

statistical properties of that speci�c case scenario. Moreover, each method has its own pros

and cons, hence, for di�erent operating/fault scenarios of a process, a single method may not

have the best performance. This motivates us to propose a framework to aggregate di�erent

approaches for the same fault detection/diagnosis task on a process.

This can be done by application of the content-based recommender systems (i.e. categori-

cal AE). The idea for this objective is that the concept of recommender system can be utilized

in a way that each one of p di�erent approaches (i.e. assume that there are p methods for

conducting a fault detection/diagnosis task) is deemed as a voter and each fault scenario (i.e.

assume that N di�erent operating mode, fault scenario exist, process mode, etc.) is an object.

Then each user will have a normalized vote for an object that is the result of applying that

particular method on the corresponding data-set. Then the goal is to create m number of

�ctitious categorical features from an adequate training data-set and create an interconnected

relationship between the votes and those categorical features. This formulation similarly used

in the NETFLIX platform as a movie recommender module and the system is successfully

working for that purpose and can be considered as a proof of concept as a potential solution

to the proposed objective.

• Objective 2: Hybrid Twin-Model for Fault Detection in Non-Stationary Pro-

cesses

One of the ongoing challenges in process monitoring is the accuracy of the data model,

also referred to as `digital-twin' (of the actual process/plant). In addition, prognosis based

on KPI prediction is of great interests as discussed in Chapter 3. Plant data collected in

real-time generally is non-stationary that may represent di�erent operating conditions. As

a result, a model built upon such data may su�er from inaccuracy and �delity, since it is

considered to be an average model for multiple operating conditions. In addition, noises and

disturbances are also sources of modeling errors. In existing works, data models are built

by applying multivariate statistical analysis approaches, which usually impose assumptions

of linearity, stationarity, and Gaussian distribution. E�orts have been made in this thesis to

tackle practical applications (when these assumptions are violated), by adding mechanisms to

detect the nominal change of statistical characteristics and modify baseline model parameters

accordingly, leading to an unsupervised learning based fault detection approach [128] [129].

Along with this objective, we will also investigate various supervised learning approaches and

their applications to fault diagnosis and prognosis.

There exist numerous software systems that include sophisticated and scalable simulation

systems to emulate various process components, equipment, and units, based on �rst-principle

models and laboratory experiments. These systems can be referred to as the operator's training

system (OTS), which can be used to simulate and test numerous operations including both
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Figure 6.1: The future work�ow of the proposed objective for the digital-twin platform

normal and faulty ones. These systems are under constant tuning, testing, and customization,

and are considered to be of high �delity. Hence an initiative has been proposed to utilize the

data produced by an OTS for the training of the digital-twin (data) model. More speci�cally,

plant data and OTS data will be integrated into supervised learning for early fault detection

and prognosis.

A schematic diagram is given in Fig. 6.1 to show the proposed integrated digital-twin

model, and the fault diagnosis and prognosis modules. The advantage of incorporating the

OTS model software is twofold. First, it can provide more valuable training data by simulating

di�erent operation modes, including normal ones, �uctuations in manipulated variables, and

even some failure modes in equipment. Such data may not always be available from the

real plant but are essential for the successful application of data-driven and machine learning

techniques. Secondly, OTS works similarly as a �rst-principle model, providing redundancy

in the fault diagnosis and health monitoring system. It can also be used to tune the baseline

model and threshold for the fault detector. Notwithstanding the obvious advantage, OTS

cannot completely replace the data model due to the following challenges:

1) OTS is an o�ine process and cannot produce online data in real-time;

2) Certain physical scenarios are not modeled in OTS, such as vibration dynamics of

rotating equipment, and slow changes of physical parameters due to decaying, wearing and

corrosions.

OTS data and plant data should be fused and utilized for diagnosis and prognosis. We

use the measured actual plant input X and feed it into the OTS to reconstruct output Ŷ t

periodically (o�ine), which can be used together with actual measurements to train localized

base-line models. To achieve this, regression techniques or autoencoder can be applied, which
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are suitable for online output reconstruction under di�erent modes of operation. A residual

signal can then be generated for fault detection and analytics in the next step. In order to

tackle multiple operations of the processes, a mode classi�cation and recommender system

need to be designed, which operates at both pre-processing and post-processing stages and is

responsible for parameter updating and adaptation.
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Algorithm 7 Principal component analysis (PCA) based on conducting SVD on the stan-
dardized data [23]

1: For training data X ∈ RN×m, conduct mean centering and standardization.

2: perform singular value decomposition (SVD)
1√
N − 1

X = [Û Ũ ]Λ[V̂ Ṽ ]T .

3: By following the cumulative percentage criteria choose the �rst r columns of the matrix
U which include 95% (tuning parameter) of the variables variance.

4: Build the project matrices MSPE = Ṽ Ṽ
T
and MT 2 = ÛΛ−0.5Û

T
from the loading vectors

for generating the proper residual signals.
5: The upper control limit (UCL) for the Hotelling's T 2 statistic is calculated based on the

fact that under normal operating condition, T 2 follows a F distribution as UCLT 2 =
(N −m)/(m(N − l))Fα(m,N −m).

6: The upper control limit (UCL) for the SPE index is calculated as UCLSPE =

θ1(
cα
√︁

2θ2h20
θ1

+1+
θ2h0(h0 − 1)

θ21
)(1/h0), where cα is the con�dence interval that corresponds

to the 1− α percentile of the normal distribution. Also, θi =
∑︁r

j=m+1 λ
2
j , i = 1, 2, 3 and

h0 = 2θ1θ3/(3θ
2
2).

7: The projection matrix for the combined index is Mϕ =
MSPE

UCLSPE
+

MT 2

UCLT 2

.

Figure 2: Tennessee Eastman benchmark process �owchart
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Algorithm 8 kernel PCA algorithm for generating the residual signal ψ in non-linear processes
[34]
1: • Training Phase:
2: Calculate uncentered training kernel matrix K using Gram kernel Kij = κ(x(i), x(j)).
3: Compute the centered kernel K by using Eq. 4.1.
4: Conduct eigen-value decomposition on K using Eq. 4.3.
5: Calculate the coordinates of Φ(X) as Y = Λ

1/2
k UTk and determine the covariance matrix

CY =
1

N − 1
Y TY .

6: Apply SVD on CY and �nd Û and Λ̂.
7: Compute upper control limit for ψ residual by following procedure in [91].
8: • Testing Phase:
9: Calculate the uncentered kernel vector κ(x∗) for testing vector x∗ ∈ R(1×m).
10: Compute the centered kernel vector k(x∗) using Eq. 4.2.
11: Obtain the reduced-coordinate y = Λ

−1/2
k UTk k(x

∗).

12: Calculate the residual ψ(i) = (Ir − Û Û
T
)y.

13: In real-time calculation, if the ψ(i) ≥ UCLψ, as it is shown in Fig. (4.1), the on/o�
mechanism activates the root cause diagnosis mechanism to analysis the causality between
process variables and residual signal.

Table 1: Tennessee Eastman process fault
Index Description Index Description
X1 A feed (stream 1) X18 Stripper temperature
X2 D feed (stream 2) X19 Stripper stream �ow
X3 E feed (stream 3) X20 Compressor work
X4 Total feed (stream 4) X21 Reactor cooling water outlet temperature
X5 Recycle �ow (stream 8) X22 Condenser cooling water outlet temperature
X6 Reactor feed rate (stream 6) X23 D feed �ow (stream 2)
X7 Reactor pressure X24 E feed �ow (stream 3)
X8 Reactor level X25 A feed �ow (stream 1)
X9 Reactor temperature X26 Total feed �ow (stream 4)
X10 Purge rate (stream 9) X27 Compressor recycle valve
X11 Separator temperature X28 Purge valve (stream 9)
X12 Separator level X29 Separator pot liquid �ow (stream 10)
X13 Separator pressure X30 Stripper liquid product �ow
X14 Separator under�ow (stream 10) X31 Stripper steam valve
X15 Stripper level X32 Reactor cooling water �ow
X16 Stripper pressure X33 Condenser cooling water �ow
X17 Stripper under�ow (stream 11)
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Table 3: Selected parameters for PFSAs construction of TEP variables
Index ϵh |Σ| D |Q| Index ϵh |Σ| D |Q|
X1 0.15 5 2 19 X18 0.10 8 3 201
X2 0.15 3 2 9 X19 0.15 3 1 3
X3 0.15 3 2 9 X20 0.15 5 2 25
X4 0.15 4 1 9 X21 0.15 4 2 16
X5 0.15 4 2 12 X22 0.15 5 2 18
X6 0.15 4 2 16 X23 0.10 8 3 311
X7 0.15 4 2 14 X24 0.10 7 2 35
X8 0.15 4 1 4 X25 0.10 7 2 31
X9 0.15 5 2 25 X26 0.15 5 2 25
X10 0.10 4 3 43 X27 0.15 1 0 1
X11 0.10 5 2 25 X28 0.10 6 2 36
X12 0.15 4 2 10 X29 0.15 4 2 16
X13 0.15 5 2 24 X30 0.15 3 1 3
X14 0.15 3 1 3 X31 0.15 1 0 1
X15 0.15 4 2 16 X32 0.15 4 2 16
X16 0.10 5 3 41 X33 0.15 3 1 3
X17 0.15 3 1 3 ψ 0.15 7 3 220

Table 2: Tennessee Eastman process fault (the highlighted scenarios are considered for simu-
lation case study).

Fault scenario Process variables Type
IDV(0) Normal operation Step
IDV(1) A/C feed ratio, B composition constant Step
IDV(2) B composition, A/C ratio constant Step
IDV(3) D feed temperature Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) condenser cooling water inlet temperature Step
IDV(6) A feed loss Step
IDV(7) C header pressure loss-reduced availability Step
IDV(8) A,B,C feed composition Random variation
IDV(9) D feed temperature Random variation
IDV(10) C feed temperature Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Random variation
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
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Algorithm 9 (Helper Function): Proposed procedure to test a variable to be a source inter-
mediate variable (SIV)

1: Helper Function Inputs: P alls , P allt

2: P1 ← empty (dummy potential variable)
3: Vnode ← empty (a list to store the visited nodes)
4: maxs ←length of the longest path in P alls

5: maxt ←length of the longest path in P allt

6: loop(1): d = 0, ...,maxt − 1
7: loop(2): jt = 0, ..., LPallt −1 (number of all path in P allt )
8: lent ← length of P allt [jt]
9: if d < lent − 1 then:
10: dpt ← P allt [jt][(lent − d − 2) : (lent − 1)] (dummy vector that gets the current path

from the dth to one before last variable)
11: dvt ← P allt [jt][(lent − d − 2)] (dummy variable gets the dth variable to the last of the

path)
12: if dvt /∈ Vnode then:
13: Vnode ← Vnode + dvt
14: loop(3): dd = 0, ...,maxs
15: loop(4): js = 0, ..., LPalls

(number of all path in P alls )
16: lens ← length of P alls [js]
17: if dd < lens − 1 then:
18: dps ← P alls [js][(lens − dd− 2) : (lens − 1)] (dummy vector that gets the current

path from the ddth to one before last variable)
19: dvs ← P alls [js][(lens − dd − 2)] (dummy variable gets the ddth variable to the

last of the path)
20: if dvs == dvt then:
21: if Ldps > 1 and dps ̸= dpt then:
22: Cond1 = True
23: if Check if any of the vertices in dps exist in P1 then:
24: Cond1 = True

25: Cond2 = True
26: if Check if any of the vertices in dpt exist in P1 then:
27: Cond2 = True

28: if dvt /∈ P1 and {Cond1or Cond2} then:
29: P1 ← P1 + dvt append dvt to P1

30: if Ldps == 1 then:
31: if dvt /∈ P1 then:
32: P1 ← P1 + dvt append dvt to P1

33: Output:P1 ⇒ validated SIVs
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