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Abstract

Practical wireless communication channels are usually characterized by models. The models are 

determined by parameters. They are also represented by realizations in specific observation intervals 

that determine channel state. This thesis contributes to the estimation o f both channel state and 

model parameters.

First, maximum likelihood decision-based estimators for the channel state parameters are devel­

oped. Effects of channel estimation errors on the performances o f two selection diversity combiners 

are evaluated. Novel diversity receivers using statistics o f the channel estimation errors are de­

signed. Optimum pilot symbol assisted modulation using pilot symbols for channel state parameter 

estimation is also investigated. As well, novel non-data-aided maximum likelihood estimators for 

the channel state parameters in an ultra-wide bandwidth system are derived, and the Cramer-Rao 

lower bounds are calculated analytically.

Second, maximum likelihood and moment-based estimators for the channel model parameters 

are proposed by using noisy channel samples. The estimators operate with or without knowledge of 

the noise power. Also, maximum likelihood estimators for the Ricean K  parameter are derived by 

using fading phase samples, a method not considered previously.

Finally, maximum likelihood estimation o f signal-to-noise ratio is studied. Two measures of 

signal-to-noise ratio are considered. The performances of the estimators are analyzed under the as­

sumption of no decision errors. Using both known and unknown symbols in a frame, an approximate 

maximum likelihood estimator for signal-to-noise ratio is derived. A  non-data-aided moment-based 

estimator for signal-to-interference-plus-noise ratio in a quadrature amplitude modulation system is
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also developed. In other works, maximum likelihood estimation of the average signal-to-noise ratio 

and a jo int estimation of the K  parameter and the average signal-to-noise ratio in a Ricean fading 

channel are performed. As the last part o f this thesis, some concluding remarks are made and future 

possible works are outlined.
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Chapter 1

Introduction

Wireless communication has seen great development during recent years. It provides people with 

a way o f talking to anyone, about anything, at any time in any place. To realize this goal, one of 

the most important techniques is wireless channel estimation. In wireless communication systems, 

signals sent over wireless channels are usually distorted by random channel variations. As a result, 

one has to obtain knowledge of the random channel distortions imposed on the signal in order 

to detect the transmitted signal as accurately as possible. In practice, this is often achieved by 

estimation. In this chapter, we first give a review of wireless communication channels. Then, we 

discuss the importance o f wireless channel estimation by giving some examples. After this, we 

briefly introduce some frequently used methods o f wireless channel estimation. Some performance 

measures for the wireless channel estimators are also presented.

1.1 Wireless Communication Channel

Generally speaking, there are two types of random distortions in wireless communication channels. 

One is fading, which is mainly caused by attenuations, scatterings and delays in the channel and 

is imposed on the signal multiplicatively. The other is noise, which is mainly caused by circuit 

electronics and is imposed on the signal additively. In a slowly and flatly fading channel, the fading 

is usually represented by a random variable A =  re70 where r  is the envelope and 0 is the phase.

1
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On the one hand, one may be interested in a gross description o f the wireless channel distortions. 

This is often achieved by using channel models. For example, i f  there are scattering paths but no 

direct path between the transmitter and the receiver, the envelope of the fading, r, can be modeled as 

Rayleigh distributed. The probability density function (PDF) of the Rayleigh distribution is given 

by [1, eqn. (2.1-128)]

=  r >  0 (1.1)

where Q, =  E { r2}  is the second moment and the only parameter that distinguishes different Rayleigh 

distributions. I f  there are scattering paths as well as a direct path between the transmitter and 

the receiver, r  can be modeled as Ricean distributed. The PDF of a Ricean distribution is given 

by [1, eqn. (2.1-141)]

r  r^+P2, rP

M r ) =  a 2 e r ^ °  (L2 )

where P2 is the local mean power o f the direct path, 2 a 2 is the local mean power o f the random 

scattering paths and 70(-) is the zero-th order modified Bessel function o f the first kind [2, p. 374]. 

An alternative expression of (1.2) often used in the wireless literature is

where K  =  is the K  parameter measuring the relative strength o f the direct path in the channel 

and Q =  E { r2}  = P 2 +  2 a 2 is the second moment including both the local mean power of the direct 

path and the local mean power of the random scattering paths. The Ricean distribution is more 

flexible in modeling fading channels than the Rayleigh distribution in that it has two parameters. 

When K  =  0 or P2 =  0, there is no direct path and the fading envelope becomes Rayleigh distributed. 

A  larger K  corresponds to a better channel condition. In the extreme case when K  approaches 

there is no fading in the channel. Another, similarly flexible fading envelope model, which also has 

two parameters is the Nakagami-m distribution. The PDF of the Nakagami-m distribution is given 

by [1, eqn. (2.1-147)]

r * 0 (M )
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where m =  Y{(r*-o,y} *s t^e fading measure with m >  0.5 and Q =  E { r 2}  is the second moment. 

The flexibility o f this distribution derives from the fact that the m parameter can be chosen to model 

a wide range o f fading conditions. For example, when m — 0.5, this is a one-sided Gaussian dis­

tribution representing very deep fading; when m =  1, the Nakagami-m distribution specializes to a 

Rayleigh distribution and when m =  °°, to a static (no fading) channel.

The phase of the fading and the additive noise can also be described by models. In most system 

analyses, the phase of the fading, 0, is modeled as uniformly distributed over (0.2^], which is the 

worst case that could ever happen. The noise is usually modeled as a zero-mean Gaussian random 

process, which is distinguished by its single-sided power spectral density denoted as N 0.

On the other hand, one can benefit more by having more detailed information about a particular 

wireless channel. This is often accomplished by measuring values of the random channel variations 

in specific observation intervals. These values, such as the values o f r  and 0, are crucial for some 

applications. As an example, the value of 0 is required in coherent reception [1], In this case, 

knowledge of the random channel distortions includes values determining the channel state as well.

1.2 Importance of Wireless Channel Estimation

In wireless communication systems, many techniques and components need channel state infor­

mation, such as r  and 0, or channel model information, such as N0, m and K, to implement their 

algorithms. For example, knowledge o f channel state information is required in order to calculate 

the branch metrics in the Viterbi decoder [1]. It is also needed in the likelihood ratio test in de­

modulators for higher-order modulations to achieve optimal detection [3]. Another application is 

diversity techniques. In diversity techniques, depending on what channel state knowledge is avail­

able, combiners of different performances can be implemented. Noteworthy, the optimal diversity 

combining performance is achieved only when the channel state is perfectly known [4].

In addition to channel state information, knowledge o f channel model information is also in- 

dispensible in practical system designs. This knowledge is required in channel modeling where

3
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field measured data are used to determine the fading distribution. It is needed in some receiver de­

signs, where the parameters o f m and K  are needed to make the data decisions [5], [6], [7]. In link 

budget calculation [8], adaptive modulation [9] and transmitter diversity optimization [10], these 

parameters are also required as they are good link quality measures.

Some applications may require both channel state and model information. One example is the 

measurement of signal-to-noise ratio (SNR). Since channel conditions in wireless communication 

systems are often changing with time, the SNR measure is a very important indicator of the channel 

quality. As a consequence, it  is widely used in appliations, such as power control, error rate monitor­

ing and transmission data rate adaptation, for the purpose o f adaptive transmission [11], [12], [13].
2

The SNR is usually calculated as . Thus, it  is clear that both the channel state information r  and 

the channel model information N0 w ill be needed in order to derive the value o f the SNR.

Due to the randomness o f the channel variations, true values o f the channel parameters are un­

known in practical wireless communication systems. To provide these techniques and components 

with channel state and model information, wireless channel estimators have to be designed.

1.3 Methods of Wireless Channel Estimation

There are several methods o f estimation, each having its own characteristics and applicabilities. The 

focus in this thesis w ill be placed on maximum likelihood (ML) estimation and moment method 

(M M ) estimation.

The M L  method is probably one of the most frequently used methods in communications. A

M L  estimator is derived as follows. Denote f { x \a ) as the PDF o f the random variable X  given

the parameter a. The problem is to estimate the unknown parameter a using L observations o f X, 

X 1:X2, • • • -Xj . Introduce the notation of the likelihood function as

f ( a ) = f ( x l ,x2, - - - ,x L;a). (1.5)

A  M L  estimate of a, a, is defined as the value satisfying

m > f { a )  (1.6)

4
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where a is any value of the parameter in its permissible range. In wireless communication, a number 

o f PDFs o f the random variable X  occur in exponential form. A  more convenient way of dealing 

with such PDFs is to use the natural logarithm o f the likelihood function, that is, the log-likelihood 

function, since the natural logarithm is a strictly increasing function that w ill not affect the inequality 

in (1.6). In this case, a can also be defined as the value satisfying

In f {a )  >  In f (a ) .  (1.7)

Assuming that the desired maximum of the likelihood function is within the permissible range o f a 

and the first order derivative of f ( a )  or In f ( a )  is continuous, in practice, the M L  estimate o f a, a, is 

often derived by differentiating f { a )  or In f {a )  w ith respect to a, setting the derivative equal to zero 

and solving the resulting equation for a. I f  there are more than one unknown parameters, the like­

lihood function and the log-likelihood function can be expressed as / (a )  and In /(a ) , respectively, 

where a — [# j #2 " *' ̂ w ] is a vector o f W unknown parameters. The M L  estimates of these parame­

ters may then be found by differentiating / (a )  or In /(a )  with respect to each unknown parameter, 

setting the W partial derivatives equal to zero, and solving the resulting W equations jointly.

The M L method has been widely used owing to its elegant properties [14], First, as long as an 

efficient estimator exists, the M L  method w ill produce it [14]. Actually, as can be seen, the M L 

method has a systematic rule to generate an estimator, which is preferred in engineering practices. 

Second, the M L estimator has asymptotical optimality. It has been proved in [14] that a M L  estimate 

converges to the true value o f the parameter in probability when L  —>■ °°, that is, a M L  estimate is 

a consistent estimate. Therefore, assuming that the limitation of L °° and the expectation o f a 

are interchangable, the M L estimate is asymptotically unbiased when L  is large. Also, it  has been 

proved that the M L  estimate is asymptotically efficient, which means that its variance asymptotically 

reaches the Cramer-Rao lower bound (CRLB) when L  is large. Another useful property o f the M L 

estimation is its invariance property [15]. The invariance property o f M L  estimation maintains that 

the M L  estimate o f a function of several unknown parameters is the value that is the same function 

o f M L  estimates o f the unknown parameters. This property w ill be used later.

5
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The M L  estimator has many desirable properties. However, it is not always available. For 

example, i f  the resulting equation after differentiation is highly nonlinear, the solution and therefore, 

the M L  estimator may not be derived. Even i f  the M L  estimator is available, sometimes it may still 

be too complex to implement. In this case, one would rather use some simpler estimators. Moment- 

based estimators are some.

Unlike M L  estimators, M M  estimators don’t have any asymptotical optimality in general. How­

ever, they are simple, and often yield good performances when the sample size L  is large. Some M L 

estimators may require iterative algorithms to implement. In this case, M M  estimators can also pro­

vide a good initial estimate. A  M M  estimator is derived as follows. Assume there are W unknown 

parameters a =  [a^a2 • • •<%]■ Also, denote the n-th order moment of the random variable X  as jj.n. 

By calculating W different moments o f X,  one has

M(i) =  8\{a\ ia2i " '  ->aw)

M(2) =  82 ( a \ i a 2i ' "  i a W )

^(W) =  Sw(a\ ia2i ' ' '  iaw)

where indexes the n-th of W different moments, not necessarily the rc-th order moment o f X, 

and g l ,g2,--- ,gw are W functions including a as parameters. Next, replacing /r„ with in

the equations and solving them, moment-based estimators for a can then be obtained. An important 

part o f the M M  is to use the average o f the rc-th power o f L observations to approximate the n-th 

order moment o f X. Generally speaking, the lower the value o f n is, the smaller the variance of 

£S f= i*?  w ill be.

1.4 Performance Measures of Wireless Channel Estimators

The goal of estimation is to obtain an estimate o f the unknown parameter that approximates the true 

value as closely as possible. The closeness o f the estimate is usually evaluated by several common

6
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measures [16]. Denote a and a as the true value and the estimate o f the parameter, respectively. An 

estimate a is said to be unbiased i f

E {a }  =  a (1.9)

where E {a \  is the mean of the estimate. I f  (1.9) is not statisfied, the estimate is said to be biased. 

In this case, by shifting the estimate by its bias, an unbiased estimator may also be derived. The 

unbiasedness o f the estimator w ill guarantee that the estimator gives the true value of the unknown 

parameter “ on the average” . But an unbiased estimator is not necessarily a good estimator. The 

goodness of the estimator is also evaluated by its deviation from the true value. This requires 

another important measure, the mean squared error (MSE). The MSE o f an estimate is defined as

M SE{d} =  E { ( d - a ) 2}  (1.10)

where a is the true value o f the parameter. Note that, generally speaking, the variance o f the estima­

tor, defined as Var{a }  =  E {(a  — E {a } ) 2}, is different from the MSE. They satisfy the relation

M SE{d} =  Var{d} +  { a ~ E { d } ) 2. (1.11)

However, for an unbiased estimator, since E {a }  =  a, the variance and the MSE w ill give the same 

value. Sometimes, one is also interested in the positive square roots o f the variance and the MSE 

of the estimator. The positive square root o f the variance is called standard deviation, while the 

positive square root o f the MSE is called root mean squared error (RMSE).

To say that an estimator is good, one wants it not only to be unbiased, but also to have a variance 

as small as possible. The Cramer-Rao inequality states that, i f  a is any unbiased estimate of a, under 

certain assumptions, the variance o f a satisfies [17]

Var{a}  >  I E
d \n f{x \a ) 2 '

(1.12)
da

where f (x \  a) is the PDF o f the random variable X  given the parameter a. The value on the right 

hand side of the inequality is called the Cramer-Rao lower bound. The main task of finding a good 

wireless channel parameter estimator is to find an unbiased estimator that approaches its CRLB as
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closely as possible. Certainly, the optimum estimator (in the sense of minimum variance) is the one 

that reaches the CRLB. Its estimate is called an efficient estimate.

To obtain the estimator performance measures defined in (1.9) and (1.10) analytically, one needs 

to know the PDF o f a. However, this is not always possible as the estimate a can be a highly 

complicated function o f the observations. Even when the PDF o f a is available, it may still be 

difficult to calculate the integrations required by the expectation. In this case, a simulation method 

has to be used to examine the performance o f the estimator, and the performance measures o f the 

mean, the variance and the MSE w ill be replaced by the performance measures o f the sample mean, 

the sample variance and the sample MSE, respectively. Denoting a{ as the estimate obtained in the 

Z-th run of the simulation and L  as the total number o f runs, the sample mean, sample variance and 

sample MSE o f the estimate can be calculated by using

respectively. Note that, in some cases, the sample variance is calculated by dividing the sum with 

L — 1, instead o f L. They have little difference when L  is large though. The sample standard 

deviation and the sample RMSE can be defined and calculated accordingly.

(1.13a)

(1.13b)

SMSE{d} =  y ' Z i ^ - a ) 2, 
L* /— 1

(1.13c)

8
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Chapter 2

Wireless Channel State Parameter Estimation

Channel state parameter estimation algorithms can be generally categorized into three classes: data- 

aided (DA), blind, and decision-based. The DA algorithm operates with knowledge of the trans­

mitted data by sending a training sequence or pilot symbols. In this way, many classical estimation 

techniques, such as minimum mean squared error (MMSE), maximum a posteriori (MAP) and 

maximum likelihood (M L), can be used, and the resulting solutions are usually simple and optimal 

(given that the data are known) [17]. However, the DA method adds overhead to the system. It 

lowers the system throughput as well as costs extra power. In addition, the repeated transmission of 

this overhead w ill become untolerable when the channel changes too quickly. The blind algorithm 

assumes no knowledge o f the transmitted data. It estimates the channel parameters solely from the 

received signal [1]. This saves overhead expense and maximizes system throughput. However, the 

blind estimator usually underperforms the DA estimator. It is usually more complex than the DA 

estimator as well. The decision-based algorithm is a compromise between the DA method and the 

blind method. The decision-based estimator uses data decisions as i f  they were known in the es­

timation. As a result, the decision-based estimator usually performs poorer than the DA estimator 

but better than the blind estimator, and it is usually more complicated than the DA estimator but 

simpler than the blind estimator. In this chapter, we first study the problem of M L  decision-based 

estimation of the channel state parameter. Based on this study, we evaluate the effects of channel 

estimation errors on the performance o f selection diversity combiners (SDCs) for M-ary frequency

9
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shift keying (MFSK) signals. Next, we design new diversity receivers using statistics o f the channel 

estimation errors. We also design new receivers using pilot symbols for channel state parameter es­

timation directly, and therefore, we study the problem of optimum pilot symbol assisted modulation 

(PSAM). Finally, we discuss ultra-wide bandwidth (UWB) channel state parameter estimation.

2.1 ML Decision-Based Estimation of Channel State Parameter

Here, we focus on M L  decision-based estimation of the channel state parameter. Both static addi­

tive white Gaussian noise (AWGN) and slowly fading memoryless channels are studied. The M L 

estimators are developed for sampled systems with bandlimited AWGN as well as continuous-time 

systems. The performances o f the estimators are examined analytically by deriving approximations 

to the probability density functions (PDFs) o f the M L  estimates in error-free operation. For conve­

nience, we consider M L  decision-based estimation o f the noise power as well, although the titles o f 

this chapter and this section concern channel state parameter only.

2.1.1 Structures of M L Channel State Parameter Estimators

We consider M -ary memoryless digital signaling where the transmitter sends one of M  signals, 

^ ( t ) ,  corresponding to the y'-th symbol, j  =  1,2, • ■ • ,M. We assume that the signal is bandlimited 

to B Hz and is non-zero only over a time duration o f Td. Although it is not possible for a signal 

to be strictly bandlimited and strictly time-limited simultaneously, this is often achieved closely in 

practice by appropriately tmncating the signal. For example, in bandwidth efficient signaling using 

raised-cosine pulse shaping, the signal is often truncated at [—67^,67^], where Ts is the symbol 

period [18, p. 289]. In this case, one has Td =  \2TS. Assume that a sequence of L  independent 

symbols are used for estimation and that the channel remains approximately constant during the 

estimation [19]- [27]. Also, assume that perfect synchronization is achieved such that no inter­

symbol interference occurs and the channel is memoryless [22]. The data sequence is sent over 

channels corrupted by AWGN. The noisy received data sequence is bandlimited by an ideal prefilter

10
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to remove out-of-band noise. This gives the filtered received signal as

y { t )= A s W { t ) + n { t )  (2.1)

where s ^ ( t )  and n(t) is the filtered transmitted data sequence and filtered noise, respectively, A is 

the unknown channel gain, and k is the k-th sequence o f M L possible transmitted squences [22], The 

noise n(t) in (2.1) is a complex bandlimited AWGN process with E{n{t)n*  ( r ) }  =  W-

The value o f N0 is assumed unkown. The prefilter output, y(t), is sampled at f s =  B. The sampled 

received data sequence is

y; = A f ) + n ; (2.2)

where i =  1,2,-■■ , /  is the sample index and s j^  and ni is the f-th sample o f the transmitted data 

sequence and the noise, respectively. Assuming that the data sequence occupies a time duration o f T, 

the total number of samples is I  =  f sT  or /  =  where At =  j-  is the time spacing between samples. 

In the case when a symbol signal spans only one symbol period, T =  LTd. However, i f  bandwidth 

efficient signaling such as raised-cosine pulse shaping is used, T <  LTd. The noise samples, nk, are 

Gaussian random variables each with mean zero and variance N  =  BN0. Since sin(7tB jr )  =  0 for 

integer i, the noise samples are independent [28], [29]. The log-likelihood function can be written 

in terms of the sampled received data squence as [17]

Ei-itCv/ ~ As^ ) * ( y i  -  A jW )] 
ln /(y |A , A ,k ) =  —I ln ( n N )    (2.3)

where k =  1,2,--- ,M L and y =  (y, ,y2, • • • ,y7). Eqn. (2.3) is the basis for M L  estimation o f the 

channel state parameter.

We first consider a static AWGN channel. This case assumes that the static channel phase 

distortion is perfectly compensated and was studied in [19]- [27]. Then, A is an unknown real 

constant. Denote =  J ĵ=1 |s(^|2 for k =  1,2,■ ,M L. The log-likelihood function in (2.3) can 

be rewritten as

1  ̂ A  ̂ 9A ^
ln /(y |A ,A ,k ) =  - I \n (rcN )  -  -  j  |y; |2 -  ^  (2-4)

11
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By differentiating (2.4) with respect to A and N, setting the derivatives equal to zero, and solving 

the resulting equations, one has the M L  estimator for A as

sequences that have unequal energies and h2(y\k) =  X;=i f ° r sequences that have

equal energies.

The results in (2.5) and (2.6) when specialized to M-ary phase shift keying (MPSK) agree with 

previous results obtained in [22], They were derived here for a discrete time system with bandlim- 

iting prefilter. In other cases, it is also o f interest to study their continous time peers. First, this w ill 

allow us to examine the lim iting case o f the discrete time estimator and to see how the bandwidth 

affects the estimator performance. Second, this w ill give us approximate estimators for a system 

with a very wide bandwidth. Finally, this w ill also facilitate the evaluation o f the performance of 

a continuous time system using channel estimates. The underlying unknown paramaters in a con­

tinuous time system are the channel gain A and the noise power N  too. The corresponding results 

for a continuous time system without bandlimiting prefilter can be obtained by employing similar 

reasoning and techniques as those employed in the analysis o f digital matched filters in [29]. Let the 

prefilter bandwidth B grow without bound. Then, the bandlimited system becomes non-bandlimited 

as the prefilter bandwidth increases. One has from (2.5) and (2.6) that

and the M L  estimator for N  as

(2.5)

(2.6)

where k is the sequence data decision that maximizes h ] (y|&) =  ’Z Ii= lRe{yis ^ * }  for M l
' sd

A t j I i= lRe{yis f r }  

A?Zi=i k f> l2
(2.7)

JTRe{y{t)sW (t)}d t 

JT | jW (t)\2dt
(2.8)

and

TAtE0
(2.9)

12
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-> STm dt -
JTR e {y { t ) s ^ ( t ) }d t

JT \s(k)(t)\2dt
(2.10)

where one notes that At —> 0 as B —>■ °o and the fundamental theorem of calculus [30] is applied to the 

Riemann sums in (2.7) and (2.9). In (2.8) and (2.10), the integrations are taken over the time duration 

o f the entire data sequence, T . Denote =  f T | jW  (t)\2dt for k =  1,2, • ■ ■ , M h as the continuous 

time energies of the transmitted data sequence. The sequence data decision in (2.8) and (2.10), 

k, is derived by selecting the value of k that maximizes h lc (y(t)\k) =  -jjy [ J; R e {y ( t ) /k^ ( t ) }d t~\2
^ s c

for sequences o f unequal energies and h2c(y{t)\k) =  JT Re{y(t)sW (t) }d t  for sequences o f equal 

energies. Next, we derive estimators for slowly fading channels.

Unlike in a static AW GN channel, we don’t assume perfect compensation o f the channel phase 

distortion in a slowly fading channel, as it is dynamically changing. Then, A is an unknown complex 

constant and the log-likelihood function in (2.3) can be rewritten as

|A|2 £ 2 ) +  ^ E M ^ V S * )‘ }- (2 -1 1 )N  Sd N :1=1 ”  ”  1=1 

Again, by differentiating (2.11) with respect to A and N, setting the derivatives equal to zero and 

solving the resulting equations, one has the M L  estimators for A and N  as

2 i= i ̂ f r
A =

£■(*)
sd

and

N
1

=  7 
1 1 = 1 IE&)sd

(*)* |2

(2.12)

(2.13)

Note that this se-where k is the sequence data decision maximizing h3(y\k) =  'Z\= \y is ^ *
sd

quence detector is not applicable for all signalings, as the maximum o f h3(y\k) may have multiple 

solutions for signals such as MPSK.

By applying similar reasonings and techniques to those used in the previous section, results for 

continuous time are derived as

a ? e L i y 4 r
A =

AtEtysd

13
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STy( t)sW(t)dt
E &

(2.14)

and

n  =  - ^ s w 2 -
i= l T A t E ®sd

~ *  T
j T \y{t)\2d t -

JTy(t)sC^(t )dt
21

f T \s(k)(t)\2dt
(2.15)

where the sequence decision k may be derived by selecting the value of k maximizing h3c (y(t) \k) =

sc

2.1.2 Performances of M L Channel State Parameter Estim ators

Assuming that there are no decision errors, we have k =  k, where k is the index of the transmitted 

data sequence. Again, we begin with a static AWGN channel.

By using k =  k and (2.2) in (2.5) and (2.6), one has

£ /= i Re{niSf }

and

A =  A +  -
£(k)

sd

1
i=l

(2.16)

(2.17)

From (2.16), A is a Gaussian random variable and its PDF is

P i ( * )

1

i / ln a 2
e 2ct2 (2.18)

where a 2 =  t-tbt- It is clear from (2.18) that this estimator is unbiased in the absence o f decision2£•(*) • 
sd

Nerrors. The corresponding Cramer-Rao lower bound (CRLB) for estimation o f A in this case is 2£-7*y ■
sd

Therefore, the sampled signal M L  estimator for A in a static AW GN channel achieves the CRLB, 

and it is optimal in the sense o f minimum variance in error-free operation. The PDF of N  in (2.17) 

can be derived as follows. Denote

X  =
1

i= i
(2.19)

14
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Y =  i > , . | 2 (2.20)
1=1

Z  =  Y - X 2. (2.21)

It can be proved that X  and Z are independent; a proof is given in Appendix A. Therefore, one has 

'F y (jv ) =  x¥ z ( jv )xVx2(jv), where xYy(jv), xYz (jv)  and 'Vx2{jv)  are the characteristic functions of 

Y, Z  and X 2, respectively. The characteristic functions o f X 2 and Y are derived from (2.19) and 

(2.20) as [1, eqn. (2.1-109)]

^ X2 t/'v) = -------   r (2-22)
(1  - j v N Y

and

*> '<»=  <7^ -  <2-23>

Then, the characteristic function o f Z  is

W )  =  l— rr=T (2-24)
(1 - j v N ) ^ ~

where (2.22) and (2.23) are used. Finally, as A  =  | ,  the PDF of A  is derived from (2.24) as

1 /  I \  (/ - 2)
p a(x) =  =— ( — ) , x > 0  (2.25)

which is a central chi-square distribution with 27— 1 degrees o f freedom and where r(-) is the 

Gamma function [1, eqn. (2-1-110)]. The mean and the variance o f N  are F {A '} =  an(j

Var{N }  =  H jjrN 2. The CRLB for estimation o f N  in this case is Therefore, the sampled signal 

M L  estimator for A  in a static AWGN channel is asymptotically optimal when /  is large in error-free 

operation. An unbiased estimator when no decision errors occur is obtained by scaling N  in (2.17) 

with j / r y . This scaling w ill increase the variance o f the estimate by a factor of

The PDFs o f the continuous time M L estimates o f A and A  in a static AWGN channel can be 

derived similarly, assuming that no decision errors occur. Applying k =  k and (2.1) in (2.8) and

(2.10), one has

A = A  +  Ci (2.26)

15
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[.[TRe{n(t)sW  { t ) } d t \  

TE ty
C3 =  - ■  (2.28c)

The random variable Cx in (2.28a) has a Gaussian distribution with mean zero and variance a 2 =  

, and the random variable C3 in (2.28c) has a central chi-square distribution with one degree o f 

freedom and parameter Therefore, the M L  estimate o f A has a Gaussian random error Cv  while 

the M L  estimate o f N  has a chi-square random error C3 in the absence o f decision errors, as C2 in 

(2.28b) is the noise power in the T -second interval. Since Cj is a Gaussian random variable, from 

(2.26), the continuous time M L estimate o f A, A, has a Gaussian PDF

p* (x) =  (2'29)

with mean A and variance a 1 when no decision errors occur. The PDF o f N  can be derived by using 

similar reasoning to that used to derive (2.25). Since C3 is a central chi-square random variable, its 

characteristic function is

T C , ( »  =  —  ? « . . , ■ (2-30)
3 ( l - y v f ) j

The quantity C2 is the time-average power o f n(t) in a T -second interval. The distribution o f inte­

grated squared Gaussian noise is unknown; in fact, it is a long-standing problem to find its distribu­

tion in communication theory and applied physics [31], [32], A  useful closed-form approximation 

to the PDF was derived in [33]. Applying the trapezoidal rule of integration to the integral in C2 

given by (2.28b), one has [33]

C2 ^ C 2 =  R\ +  R22 (2.31)

16
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where R\ =  Hjy— +  ln̂ J' , ^  =  jE ^ = { |?I( ‘f ' ) | 2> ar|d 7 +  1 is the number o f samples used in 

the numerical integration. Setting J  =  BT, one has J +  1 independent complex Gaussian sam­

ples q [33]. Therefore, R\ is a Gamma random variable with characteristic function

^ 0 2  ( jv)  =  Ki—  and Ri is a Gamma random variable with characteristic function 'F „ ,( /v )  =
’  (1  - / V # ) 2 2  R l K 1

 79------ . Since R\ and R\ are independent, one has [34, eqn. (6-193)]
(1

Finally, as C2 =  N  +  C3 from (2.27), C2 =  NA +  C3 where NA ss N  is an approximation to N. Then, 

^  ( jv)  =  HU (yV)'Fc (/V). Using (2.30) and (2.32), one has
° 2  A 3

U v) =  N   j j-------y • (2-33)
V  ( i  _ 7vgL)2 (1

The PDF of the approximation to N, NA, is derived from (2.33) by using [35, eqn. (3.384.7)] as

p (x) =  ■ 4  1xBT- ^ e ~ ^ x jF j ( l , B T  +  \ \ - ^ x \ ,  *  >  0 , B T > \  (2.34)
’ T ( B T + \ )  \  N  J V 2 IV / ’ 2

where jF j (•,•;■) is the confluent hypergeometric function [2, p. 504] and the relation N  =  BN0 is

used. The n-th order moment of NA can be derived from (2.34) as

4 T(BT +  n +  \ )  ( N \ n 3 1. D„  , 1 _ 1,
E {N nA}  =  j  j—4— • I —— ] . F ( B T - - , B T  +  n + - - ,B T  +  - ; ~ )  (2.35)

1 AS 2BT+n+ i  r ^ r  +  d) \ B T  J  K 2 ’ 2 2  2  v 2

with BT  >  5 , BT +  n + \  > 0  and where F ( - , •;•;■) is the hypergeometric function [2, p. 556], The

mean and variance o f NA are obtained from (2.35) as E {N A}  =  2 1 N and Var{NA} =  j^ f jz N 2. An

approximately unbiased estimator for N  can be obtained by scaling NA with j f r r - i  > which increases

the variance as before.

Next, we analyze the performances o f the estimators for a slowly fading channel. Denote A =  

Ar -f jA t , nR =  Y!i=\Re{ nisf^ * }  ar|d ti j =  'Zli= l Im {n is ^ * } .  By using k =  k and (2.2) in (2.12) and 

(2.13), one has

A = A R +  jA I (2.36)

and

* = 7 E K I 2 -T T 3 « 4 - -7 7 3 « ” / <2-37)/£<*> /£<»>

17
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where AR =  AR +  and Al  =  AI +  are the M L  estimates of the real and imaginary components
sd  sd

o f the complex channel gain, respectively. Inspection o f the estimators AR and Aj shows that each 

has the same performance as that o f the estimator in (2.16). Their PDF’s are then derived as

1 (x-ar)2

=  v 5 P e <2-38)

and

where a 2 =  ^ y .  Since the M L  estimator for A in (2.36) is derived by combining AR and A,, one
sd

has that A in (2.36) has mean A and variance Since the CRLB for estimation of A in a slowly
sd

fading channel is the sampled signal M L  estimator for A in a slowly fading channel is optimal
sd

in the sense of minimum variance when no decision errors occur. The PDF of N  in (2.37) can also 

be derived by using a characteristic function approach, as previously. Denote

Si -  ~4=f~nR (2.40)

sd

S2 =  —^ = ni (2.41)

sd

u =  Y - S j - S l  (2.42)

It is proved that the random variables Sv S2 and U are independent; a proof is given in Ap­

pendix B. Therefore, Sf, S\ and U are also independent. Their characteristic functions satisfy 

'PyO'v) =  '¥u ( jv ) '¥S2 ( jv ) '¥Sz(jv), where T,K( » ,  'F^C/v), ^ ( / v )  and Wv (jv)  are the charac­

teristic functions of Y, S2, S\ and U, respectively. Note that 'Fy (jv ) can be derived from (2.23), 

while 'P^O'v) and xYs2(jv) can be derived from (2.22). One has

1

(1 - P N ) ‘
X* v ( P ) =  „  . (2-43)

Finally, as N  =  j ,  one has from (2.43)

18
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which is a central chi-square distribution with 21 — 2 degrees o f freedom. Its mean and variance are 

E {N }  =  r-=±N and Var{N } — '- j rN 2. The CRLB for estimation o f N  in a slowly fading channel 

is ?j-. Thus, the sampled signal M L  estimator for N  in slowly fading channels is asymptotically 

optimal when I  is large. An unbiased estimator can also be obtained by scaling the estimator in 

(2.37) with however, increasing the estimator variance.

By using k — k and (2.1) in (2.14) and (2.15), the continuous time M L  estimators for A and N  in 

a slowly fading channel can be rewritten in forms similar to those in (2.26) and (2.27), except that

f Tn(t)sW  (t)dt
£ ( * )

SC

_  |Jr»(QsW ,(0 A r

Cl =  v ’E(k) K '  (2.45a)

C3 -  TE{k) ' ■ (2'45b)
SC

in this case. Similarly, the continuous time M L  estimates of the real and imaginary components of 

A in a slowly fading channel, AR and A; , have PDFs

1 {x-Ar)2

px , {x) =  <246)

and

=  i2A7>

where cf2 is defined as before. Therefore, the M L  estimate A is a complex Gaussian random variable

with mean A and variance 2a 2 in error-free operation. By using similar techniques to those used

to derive (2.34), the PDF of the approximation to N, NA, can also be obtained. In a slowly fading 

channel, C3 in (2.45b) has the characteristic function

<2-48)

Since TL (yy) =  'P . (y'v)'Pr  ( jv) and T L  ( jv) is given by (2.32), one has
2 A 3 2

and

pK {x) =  f W )  ( ^ )  ^  le-B̂ F l( 2’s r ;~ T x) ’ x ^ ° i B T > l - (2-5°)

19
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The n-th order moment o f NA in a slowly fading channel is

4 r (BT +  n) f  N \ n , 1N
W  =  J f(B T )  ( e r j  ' n B T - l , B T  +  K B T : - )  (2.51)

with BT >  1 and BT +  n >  0. The mean and the variance of NA are E{NA}  =  —Bj XN  and Var{NA} =
^ 'J'_1 a a nT
Jbt$ ^  scaling with BT_ X, one also has an approximately unbiased estimator with increased 

variance.

The above results are based on the assumption o f no decision errors. They are valid for DA 

estimation and decision-based estimation with moderate to large values o f signal-to-noise (SNR). 

For decision-based estimation at small values o f SNR, they serve as benchmarks. Note that the 

system model used in the derivation is fairly simple, as our final goal is to estimate SNR in Chapter 

4. Next, we evaluate the effect o f channel estimation errors on the performances o f SDCs where 

practical channel estimators are used.

2.2 SDC MFSK with Channel State Parameter Estimation Errors

A selection diversity combiner is often a good choice in the tradeoff between complexity and per­

formance in wireless communication systems [36]. Similarly, non-coherent frequency shift keying 

(NCFSK) is used in many practical systems [37], [38]. In [39] and [40], analyses of SDC and 

generalized SDC using noisy channel estimates have been performed, respectively, based on the 

assumption o f identical diversity branches and balanced noise powers. In this work, we evaluate the 

effect o f channel estimation errors on the performance o f SDC MFSK, under the assumption that 

all diversity branches are slowly and flatly Rayleigh faded and independent but are not identically 

distributed and that the diversity branch noise powers are different. This is the case, for example, 

when the mean powers of the fading on different diversity branches may differ because o f shad­

owing. In space diversity, the noise powers on the branches may be different due to the different 

loads o f the antennas [41] or some antenna processing [42], Also, in diversity systems with interfer­

ence, and when a Gaussian approximation of the interference is used, the powers of the equivalent 

noise terms on the branches (including both interference and noise) may be different [43]. Finally,
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component tolerances and aging in electronic systems result in imbalance between branches. Both 

maximum signal amplitude based selection and maximum SNR based selection are examined. The 

channel metrics are calculated by using noisy estimates o f the signal amplitude and the noise power 

obtained from a M L  estimator developed in Section 2.1, a MMSE estimator [44] or a Gans’ fading 

correlation model [45], [39].

2.2.1 System M odel

We consider the case when L d independent diversity branches are available. Each is slowly and 

flatly fading. It is assumed that all signals in the MFSK signaling set have equal symbol powers, 

which have been normalized to equal 1. Without loss o f generality, assume that the &-th signal is 

transmitted. Then, the output of the /-th matched filter on the /-th branch can be expressed as

yu =  A isi +  nii (2.52)

where A} is the complex fading gain on the /-th branch, Sj is a constant with S; =  1 for i =  k and 

st =  0  for / =  1 , 2 , • • • ,M  and i ^  k, and nu is the complex noise component in the output o f the 

/-th matched filter on the /-th branch. In a Rayleigh fading channel, At is a complex Gaussian 

random variable with mean zero and variance 2a f .  The noise components nu for a fixed / and / =  

1,2, ■ ,M  are independent complex Gaussian random variables each with mean zero and variance 

Nv Assuming that the noise processes are independent o f the fading processes, the random variables 

nu, / =  1,2, - • ■ ,M, are independent of A ;.

I f  perfect knowledge o f At and Nt is available in the SDC, one can calculate the branch SNR
U |2

according to pt =  L^L , compare pl (/ =  1 , 2 , - , Ld) and select the branch corresponding to the 

largest SNR. Equivalently, i f  N; =  N  for / =  1,2, ■ • ■ ,Zy, it suffices to calculate the signal amplitude 

by using r[ =  |A; |, compare r ( (I =  1,2. • ,Ld) and select the branch corresponding to the largest 

signal amplitude. Unfortunately, perfect knowledge o f A l and Nt is not available in practical com­

munication systems. Instead, one has to use channel parameter estimators to obtain estimates o f A {

A. A.  ̂ \A ft
and N[, At and Nt, and then use A{ and Nt to calculate the estimated branch SNR pt =  or the
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estimated signal amplitude r{ =  \At \, and finally select the best diversity branch according to p ; or 

f v Some general assumptions on At and (/ =  1,2, • ■ • ,Ld) are given as follows.

We assume that the channel estimate, A t, is a complex Gaussian random variable with mean 

zero. Denote At =  A f  +  j A \  and At =  A f  +  jA \.  Similar to [46, eq. (8 - 1 0 1 )], it is assumed that A f ,

Aj, A f  and A j  are jo in tly  Gaussian distributed with

ai2[(if)2+(4 )21+a2[(Af)2+(4 )2] - 2KdfAfAf+i ^ ] - 2fllfpfA'-A^f]

f ( A f  ,A J ,A f ,A j )  —
4tt2 |M ; |z

2 |M ,(Z (2.53)

where the covariance matrix is M ; =

« /2 0 ^cl

0 a f - X i Rd

Rd ~ X i a l 0

X i X i 0 a f

[46, eq. (8-98)]. The assumption

of (2.53) includes the MMSE channel estimate derived in [44] and the M L  channel estimate derived 

in Section 2.1 as special cases. A  detailed derivation o f (2.53) and the definitions of Rd and Rd are 

given in [46].

We also assume that the noise power estimate, Nt, is obtained using the M L  estimator developed 

in Section 2.1. It was derived in Section 2.1 that the M L  estimate, Nt, has PDF

1
m ) =

- X
-N?~Xe Nt >  0 (2.54)

T(p)(2Pf)P /

N
2 (p l+ \y  I  is the number o f available independent samples defined in Section 

2.1, and F(-) is the Gamma function [2, p. 255]. This is, for example, the case when the noise power

where p  =  I  — 1, f i f

is estimated using data-aided estimators. This is also the case when the noise power is estimated 

using decision-based M L estimators in Section 2.1 and no decision errors occur. Since the noise 

power normally changes little during the transmission o f the desired user’s data in most practical 

wireless communication channels, it can be estimated off-line by using training sequences (which, 

for example, may be for synchronizer training or equalizer training). Therefore, sufficiently large 

p  can be achieved by sampling enough symbols in the training sequences. We assume that N[ 

is independent o f A {. This is also proved in Appendix B when A l is obtained by using the M L 

estimator in Section 2.1.
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Most previous works on SDC base the analysis on perfect knowledge o f A l and Nv In practical 

systems, and in this work, we assume that the data recovery decision is based on the estimated 

quantities, At and Nv Assuming that the k-th signal has been sent and the /-th diversity branch has 

been chosen, the non-coherent data decision is made by comparing

zii ~  bz/l =  +  (2.55)

where i =  1,2, — ,M. An error w ill occur i f  z,lk is less than any o f zu, i =  1,2,••• ,M  and / ^  

k. In the sequel, we derive the average symbol error rate (ASER) o f SDC using the maximum 

estimated signal amplitude selection criterion as well as the maximum estimated SNR criterion. For 

convenience, we denote the SDC using the maximum estimated signal amplitude criterion as r-SDC 

and the SDC using the maximum estimated SNR criterion as p-SDC.

2.2.2 r-SDC

Assume that all M  possible transmitted signals have equal a priori probabilities. The ASER of the 

system can be expressed as
1 M

Pe = T i ^ P r { s ^ s k\sk) (2.56)
m k= 1

where P r(s^  ^ 1 ^ )  is the probability that the receiver decision, f, is incorrect when the k-th signal, 

sk, is transmitted. Note that Pe w ill depend on the branch selection criterion used in SDC. I f  the r- 

SDC criterion is used, the combiner chooses the branch with the largest estimated signal amplitude 

and uses matched filter outputs on that branch to make the data decision. Denote r ; =  \At | and 

r t =  \At \ as the estimate and the true value o f the signal amplitude on the /-th branch, respectively. 

Then, the /-th branch is chosen when r f  >  r j , j  =  1,2, ■ ■ • ,Ld, j  /, and the error rate in (2.56) can 

be rewritten as
1 M

pe =  7 i  X  2 P r t i  =  1,2, ■■ ■ ,LdJ  ±  l\sk) (2.57)
m *= i/= i

where denotes the data decision made by using matched filter outputs on the /-th branch. Condi­

tioning the error rate in (2.57) on r l and r; gives

1 M  C/ />oo p o o

/  P r( * i¥ : sk, r ' i > r j j = l , 2 , - - - , L dJ j t l \ r l , r l ,sk) - f ( r l , r l )drldrl . (2.58) 
m k = l l= lJ0 J0
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One sees from (2.58) that Pr(sl ^  sk, f j  >  r j j  =  1,2,- • • ,Ld, j  ^  Z|r/ 5r ; , ^ )  is the jo in t conditional 

probability o f Ld statistical events, j) ^  sk and f j  >  r j  ( j  =  1,2, ■ ■ ■ ,Ld and j  ^  I). Given rt and 

r t , the statistical event St ^  sk is determined solely by the random variables nu, i =  1,2,- •• ,M, 

while the statistical events r f  >  f j  ( j  =  1 , 2 , • • • ,Ld and j  ^  Z) are determined solely by the random 

variables f j  ( j  =  1,2,• ■■ ,Ld and j  I). Sincenu (/ =  1,2,- • • ,M) and r  • ( j  — 1 , 2 , ,Ld and j  ^  I ) 

are independent, it is clear that

1 M  L j  n o o  n a o n P r t f > ? j \ n )
\J=hW

The conditional probability Pr{sl ±  s^r^Sjf) is actually the ASER of the NCFSK signals in a 

static AWGN channel. It is well known that [1]

(2.60)

The conditional probability P r ( f j  >  ry|r;) is the value o f the cumulative density function (CDF) of 

r j  at f j ,  that is, P r(r f  >  r j \ r j )  =  F ^ r f ) .  Since A j  is a complex Gaussian random variable with 

mean zero and variance 2a j ,  f j  =  \Aj\2 has CDF

— x -
Ff l (x) =  1 - e  x >  0 (2.61)

for each j  =  1,2, • ■ ■ ,Ld and j  ^  I. From (2.61), one has

- 4
P r { f f  > f j \ r l ) =  \ — e 21  (2.62)

and

n  i ( - i r e- ^  (2.63)
j = \ , # l  /i,=0 n2=l

where Q =  ^  1 j  and rj =  'Znkl_1 j ip ~  (V ~ 0  when n t =  0). The index k„2 denotes the k-th number
kn2

in the n2-th combination obtained by selecting n ] numbers out o f Ld — 1 numbers j  =  1,2, • • • ,Ld

and j  7  ̂Z. For example, when Ld =  3, nl can be 0, 1, or 2. When n l =  \ and Z =  1, E ^ =1 e 11 r> =
o2 c2 uL -4^

e 2S2 +  e 2a3 since kx =  2 and k2 =  3 in this case.

The joint PDF o f r ; and rt is now derived as follows. Denote 0; =  arctan {A \,A f)  and 6t =  

arctan(Aj,Af) as the phase angles of At and At, respectively. Also, we have r ; =  ^ j  (A f) 2 +  (Af) 2
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and rt =  ^f (A f)2 +  (A’ )2. Following similar procedures to those in [46, p. 163], it is derived from 

(2.53) that the jo in t PDF of r {, r t , 9t and 0; is

f (P r  & a  \ _  r l r l  - m [ af !‘f + &f r f - 2Rd ri f i C0S(er ^ ) - 2Rsir i f i s i n(9r ^ ) ]
J \ r l i r l i v l i a l) ~  4 ^ 2^  e 1 i

r{ >  0, rt >  0, I n  >  0 „ 0, >  0 (2.64)

where A; =  M ; | i  =  a fa f — R2d — R2sl is the square root o f the determinant o f M ; . By integrating 6l 

and 0t from 0 to 2k  in (2.64), the jo in t PDF of and r t can be derived as

a 2̂ q,2 / a \

A w )  =  > ° ’ r ' >  0  (2-65)

where /0(-) is the zero-th order modified Bessel function of the first kind [2, p. 374]. Note that 

(2.65) agrees with [46, eqn. (8-103)] when a f =  af.

Using (2.60), (2.63) and (2.65), the integral in (2.59) can be solved. This is done as follows. 

Denote
p o o  /»oo

m - L  L e" " J= lJ&
• / ( r „  r, (2 .6 6 )

Inserting (2.60) in (2.59), one has

ft-HI
The integration in (2.66) is solved to give

^  M  ~  „ ? 0 « ? i 2v« f  +  n (4vA/ +  2“ 2) + 1 (2'68)

where [35, eqn. (6.631.1)] is used. Finally, the ASER of r-SDC is obtained by putting (2.68) into 

(2.67), giving

pe =  E  E  E  E  ------------- ,  A U  \ ------------  (2.69)
i= \m = \ «1=0n2=i tn fy + +  l) + m+ 1

2d} E{A A* I
where p, =  -rr- is the average SNR per symbol on the /-th branch. Defining c} =  > \  \ IS as

1 iyl 1 y/Var{Al }Var{Al }

the correlation coefficient between A/ and A/; it can be derived that \ct \ =  ~~,2 ai '  ■ Rewriting (2.69)

using ct, one has

Rd M - \ Rd~ 1 Q /_ 1  '\m+«1 + l r w - i tP _ y  y  y  y  __________________ I_________ mjO)
/=im=i„1=o„2=i^P;+2“/2r7 [mp l̂-lc ĵ+m+l] +m+l’
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which is the ASER o f r-SDC with channel estimation errors. Note that the only estimation error in 

r-SDC occurs in the estimation o f the channel state parameter, the signal amplitude, which is com­

pletely described by cl in (2.70). The result in (2.70) is general; for example, the result for balanced 

noise powers can be obtained from (2.70) by letting Nl =  N  for I =  1,2, ■ ■ ■ ,Ld. Furthermore, (2.70)

applies to various channel state parameter estimator scenarios. Next, we discuss some special cases.

First, i f  the M L  estimator in Section 2.1 is used to estimate the branch signal amplitude, when 

there are no decision errors in the estimation, one has from (2.36)

+  (2-71)

where gl is a complex Gaussian random error independent of at , and has mean zero and variance ^  

with q =  I  being the number o f independent samples used in the estimation as defined in Section 

2.1. Note that the signal power has been normalized equal to 1, as mentioned previously. From 

(2.71), it can be derived that

“ /2 =  ai +  Rd =  cc?> Rsi =  °  (2.72)

for I =  1,2, ■ ■ ■ , Ld. The ASER o f r-SDC in this case is obtained by putting (2.72) into (2.70), giving

tyM-lC*-1 Q t_l \m+nl +  \ (M —\ \

pe =  £  £  £  £  ------------------------------------   (2-73)
1=1 m= 1 n1=0n2=l mP[ T  b 4- m +  1QPt + 1 +  m +  1

1 aoc2+ N  12
where b =  2  V I  /  n ib =  0 when n, = 0). Assuming identical diversity branches and equal

k= \qa\ + NK2l l
noise powers, the branch parameters satisfy

a f  =  a 2 +  ~ ,  a f  =  a 2, Rd =  cc2, Rsl =  0, Nl = N  (2.74)

where I =  1,2, ■ ■ ■ ,Ld. Using (2.74) in (2.73), it can be shown that

P e = M̂ Y  ( - i r +n*+ i ( r i ) ^ Q

n=l n,= o mp +  n l mp + m+ 1 m -1-1
(2.75)

,<?p+i

One sees from (2.73) and (2.75) that the ASER of r-SDC in this case is related to q. This is expected, 

as q determines the estimation error in the estimation o f A t, which is the only estimation error in 

r-SDC. The results in (2.73) and (2.75) are also valid when data-aided estimators are used.
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Second, i f  the MMSE estimator is used to estimate the signal amplitude, one has [44]

A l = A l - g l (2.76)

where gt is independent of At, and is a complex Gaussian random error with mean zero and variance

,2
SI-2a.},. It is then derived from (2.76) that

af =  af +  a 2gh Rcl =  a f , Ra =  0, (2.77)

for / =  1,2,••• ,Ld. Using (2.77) in (2.70), the ASER of r-SDC when the MMSE estimator is used

to obtain Al can be derived as

Ld M - l L d ~ 1 Q \m + n ,+ \  ( M - \ \

------------------P  *  ’  I-------------■ (2.78)
i = i m = i n l =0 n 2- i m p l +  2afrj m p } ( l  — -^x) +  m  +  I  + m +  1

When all the diversity branches are identically distributed and the noise powers on all diversity

branches are the same, one also has from (2.77)

af — a 2, af =  a2 =  a 2 +  af, Rcl =  a 2, Rsl =  0, Nt =  N  (2.79)

where / =  1,2, • • ■ ,L  .. Similarly, by using (2.79) in (2.78), it can be derived that

Pe =  2 1 Y { - V m+n' + X{m -l ) LdQ (2.80)— 2 "I *
n=i n,=o mp +  m p ( l  — ^ ) + m + l  + m + l  

Fianally, in Gans’ fading correlation model [45], [39], an additional assumption of

a f  =  a f  (2.81)

for I =  1,2, • ■ ■ , Ld is used. This applies to the case where estimation error is due solely to temporal 

decorrelation between the estimate and the processed data symbol and not to independent estimator 

noise [47], [48]. Putting (2.81) into (2.70), the ASER of r-SDC becomes

Ld M - \ L d~ 1 Q / _ i  '\m+«|+ l ( M - l \
p _ y  y  y  y ________ v > \m >____________  n  82)

Z=1  m=i „ 1=0 n2=i mPi +  2 a f r i '  [m p,(l -  |c,|2) + m +  l ]  + m +  1

where r j1 =  (V' =  0 when n { =  0) and \c{\ =  --<Jg4 sl. I f  the fading on each branch is
_ *n2 * 

identically distributed and the noise power is the same, one further has

a f  =  a f  =  a 2, Rd =  Rc, Rsi =  Rs, Nt = N  (2.83)
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where / =  1,2, • ■ ■ ,Ld. Using (2.83) in (2.82), the ASER of r-SDC can be simplified as

M— lty-l / 1 \m-t-rz.-l-l ( M - \ \  j  r \
p  _  y  y   I L> U ) L d ^   (2.84)

m = 1 „ 1=0 mp +  nx [m p (l -  \cl \2) + m +  l ]  + m +  1 

It is easy to verify that (2.84) agrees with [39, eqn. (25)] for NCFSK signaling. Therefore, our result 

in (2.70) includes the corresponding result in [39] as a special case.

As the last part o f this section, we derive the ASER of SDC when perfect knowledge o f A z is

available. Denote it as r-SDC. The performance o f r-SDC serves as a benchmark for (2.70). In the

case when At is known, (2.56) becomes

1 M -QQ
^  =  /  P r(si ¥ : sk, r f > r lj J = l , 2 , - - - , L , j ^ l \ r l ,sk) f ( r l )drl .

m k= l l= \J0
(2.85)

Note that the CDF of r j  is

F 2 (x) =  1 — e 2aJ, x > 0 .  (2.86)

Employing similar techniques, it can be derived that

Ld M - \ L d - 1 Q / _ i  - v m + H j  +  l  / M - \ \

where r)' is defined as before. One sees that (2.87) can also be obtained from (2.70) by letting 

|c; | =  1 and af =  af in (2.70). This is expected as r-SDC without estimation errors w ill have 

Af =  At, which in turn gives |c; | =  1 and af =  af. Next, we derive the ASER of p-SDC.

2.2.3 p-SDC

Using similar reasoning as previously, the ASER of p-SDC can also be obtained. In p-SDC, the 

branch with the largest estimated SNR is selected and the error rate (2.56) is expressed as

Y m  L d

=  77 X  7  ̂sk i P i  — P j i J  =  1)2) ' i ^ d i i  ^  l \ sk )  (2.88)
m k=n=i

P
where p; =  ^- is the estimated SNR on the Z-th branch. Similarly, by using the conditional proba­

b ility  and the independence of the random variables nu (i =  1,2, ■ • • , M) and p • (_/' =  1,2, • ■ ■ , Ld and 

j  ^  I), one has from (2 .8 8 )

1 M  P) p o o  p o o n pr(pi>pj\pi) 
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where Pr{sl ^  sk\r^ sk) is given by (2.60).

The conditional probability Pr{p t >  Py|P/) is derived as follows. Since r  ■ is a Rayleigh random 

variable, r j  has a central chi-square distribution with two degrees o f freedom (an exponential distri­

bution) and parameter a? [1]. Also, since Nj has a central chi-square distribution with 2p degrees

r?
of freedom and parameter j3? as given in (2.54), the random variable Pj — A  has PDF [49, eqn. 

(27.3)]

p j i j  (  /3?
f n i x ) =  I 1 +  ~ ^ X I ’ ■x > 0 -af a?

2 \  -(P+1)

n  '
(2.90)

The CDF of Pj is then derived from (2.90) by integration as

1

1 +  | *
P’ x  >  o. (2.91)

Using (2.91), one finally has

Pr{p{ >  p j\p i)  =  1 -
1

! + |  A
p • (2.92)

The jo int PDF of r t and p; can be derived as follows. Since is independent of A{ and At, one

has

(2.93)

where / ( f ) ,  r ; ) and /(/V ;) are given by (2.65) and (2.54), respectively. By replacing A) with p; in

(2.93) and integrating the result with respect to r t , one has

(2.94)
(  B2a2 V(i+%K)

where jF / - , - ; - )  is the confluent hypergeometric function [2, p. 504].

Using (2.60), (2.92) and (2.94) in (2.89), the ASER of p-SDC can be derived. Again, denoting

p o o  /»»
Wi(v) =  /

Jo Jo n pr(Pi>pj\pi) ■ f( r i iP i)dr idPn (2.95)
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(2.89) can be written in a form similar to (2.67), except that Ut(v) is replaced by Wt{v) now. Using 

(2.92) and (2.94), together with [2, eqn. (7.621.5)], it can be shown that

Wt (v) = r  fr
2v+a*y0 1

1

(1  +  %p>l)p

1
dpv (2.96)

Finally, the ASER of the p-SDC is derived from (2.96) as 

Pe

■fJo. n0 7=l , # /
1

1

(1  +  -JzPi)p

1

(1 +
mp,+m+l j3,2 -Jp, (2.97)

mp;( l—|c(|2)+m+l ce(2A ) ^

which can be evaluated numerically. Note that, in p-SDC, estimation error not only occurs in the

estimation of the branch signal amplitude but also occurs in the estimation o f the branch noise power.

These two components are completely described by ct and p. Note further that (2.97) w ill specialize

to (2.70) when p  —> and Nt =  N (I =  1,2, • - • ,L). This can be verified by putting j3;2 =  2 (p+i) anc*

N, =  N  (I =  1,2, • ■ ■ , L) into (2.97), using lim  ( 1 +  =  e* [50, eqn. (2.9.2.7)], and solving the
' p->°° \  p J

resulting integral. Intuitively, this is also expected as r-SDC is a special case of p-SDC when noise 

powers on all branches are the same and the noise power estimation in the p-SDC is free of errors. 

Moreover, a closed-form expression of (2.97) for Ld =  2 can be derived as

2 y  (- i)™ + i ( j j f- i )

i mpl + m +  1 

■F ( p +  l , l ; 2 p +  1; 1 —

mpt +  m +  1

2 j8 ? a f  mp; ( l  — \cl \2) +  m +  1 

mpl +  m +  1
(2.98)

mPi(l — \c[\2) +  m +  1 a f  /3?

where F(-, ■;■;■) is the hypergeometric function [2, p. 556]. As previously, results for three special 

cases can be obtained from (2.97), given next.

The ASER of p-SDC when the M L estimator is used to estimate the channel state parameter, 

the signal amplitude, can be derived as follows. Putting (2.72) into (2.97), (2.97) becomes

pq
1=1 m=l T̂ + m +  i  q{p+P)P i +  p +  t

(2.99)
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p o o

7 n70 j= h j& (l + q{P+4 j+P+i Pi)p_ ( i +
mpl+m+1
^t+ m + 1  9(p+l)p,+p+l Pl)p+l

dp i .

By putting (2.74) in (2.99), one further has

M-

2 2
m= 1 rtj=0

! V - t  (_ l)m + n ,+ 1 F  +  1 > 1 ;p ( " l  +  1) +  1; -  jn L m+ m + l J + l

n, + 1 mp
1 + < ? P

+ m+ 1
(2.100)

which is the ASER o f p-SDC for identical branches. Comparing (2.99) and (2.100) with (2.73) and

(2.75), one sees that the ASER of p-SDC in this case is not only related to q but also to p, as the 

estimation errors in p-SDC result from the estimation o f both A t and Nv Again, these results are 

also valid for data-aided estimation.

Similarly, by putting (2.77) into (2.97), one has

p ( - i )m+1(%-l ) p  a 2
2 Lt _ a?, . 2

l=\m=\ mP[ (1 — -̂ 2 ) +  m +  1 I

p o o  A

7  n70 j=
1 -

1

(1 +
mp,+m-H 0f2

Pl)P+1
dpr  (2 .1 0 1 )

The corresponding result for identical branches can be shown to be

/  \  I  /  \  T

_ M -t^ i (-1)»+»1+1 (V1) L d F  (p + M " 1 +1) +
Pe~  2 j  Z j

m —  1 = 0

- a2 mp^

m p ( l - ^ ) + m + l
(2.102)

To derive the ASER o f p-SDC for Gans’ correlation model, one only needs to put (2.81) into 

(2.97), giving

Pe =  (~ i)m+1^ ~ 1̂  %
t \ m ^ \  mP l ( l  -  \cl \2) + m + l  t f

L,poo

7. n70 j= h m
1

1

^  +  % Pi)p

1

(1 + mP(+m+1 PL* )P+ 1
tnpi(l — \ct \2)+m +l oif P i '

dty (2.103)

By using (2.83) in (2.103) and solving the resulting integral, the ASER of p-SDC can be determined
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as

M 1 y - .  ( - ! ) - * , + ■  («-■) ( f t - - )  Ld f ( p +  l , l ;p (» ,  + 1 )  +

" ^ “ o W1 +  1 m p ( l - | C/|2) + m + l
(2.104)

when all the diversity branches are identically distributed and the noise powers are equal.

r2Finally, we derive the ASER of SDC when perfect knowledge o f p ; =  is available. Denote 

this as p-SDC. This w ill serve as a benchmark for (2.97). Again, with true values o f the branch 

SNRs available, one has from (2.56) 

m  A1 M  p o o

Pe =  T j ' Z ' Z  L P r ($l +  sk\Pnsk) ■
m jfc=i Z=1 J0

n Pr { P i > Pj \ p , ) ■ f ip M P v  (2-105)

Since r t is a Rayleigh random variable, it is derived that p ; has CDF

- \ x
FPl{x) =  1 - e  x > 0 .  (2.106)

By using similar techniques and reasonings to those in the previous subsection, one has

Ld M - \ L d—l  N ( _ i  N m + n j+ l ( M - \ \

where d =  pt '!!!]_, 7T~(d  =  0 when ni =  0). As previously, (2.107) can also be obtained from (2.97) 

by letting \cl \ = \ , a f  =  af and p —> as a correct estimate of A t gives |c; | =  1 and af =  af, and 

a correct estimate o f /V; results as p —>• «=. Note further that (2.87) is a special case of (2.107) when 

Nl =  N  for Z =  1,2, ■ • ■ ,Ld, which is also expected.

2.2.4 Numerical Examples

Here, we present some numerical examples to show the effect of channel estimation errors on the 

performance of SDC MFSK. Consider non-coherent binary frequency shift keying (NC-BFSK) sig­

naling. Dual-branch diversity is used. The two branches are assumed to have identical Rayleigh 

distributions, but may have different noise powers. Other cases can be examined accordingly. A 

slowly fading channel is assumed.
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Fig. 2.1 shows the performance of r-SDC when different values o f q are used to obtain A ;. As 

mentioned before, the only estimation error in r-SDC comes from A(, which is completely deter­

mined by q. One sees from Fig. 2.1 that there is a performance penalty o f about 0.5 dB between 

r-SDC and r-SDC at q =  2 when the ASER is 10~2. When q =  10 or q =  50, the performance differ­

ence between r-SDC and r-SDC is essentially negligible for all indicated values of SNR. Therefore, 

in this case, a value of q =  10 is a good design choice. Fig. 2.2 shows the performance of p-SDC 

when different values of p  are used in the estimation o f the branch noise power. Unlike r-SDC, two 

sources o f estimation errors occur in p-SDC, resulting from both A{ and Nr  Since the effect o f the 

estimation error in At has already been studied in Fig. 2.1, only the effect o f the estimation error in 

Nt is examined in Fig. 2.2. To see the effect o f estimation errors in Nt more clearly, we set q equal to 

10 to largely eliminate the performance degradation caused by Av From Fig. 2.2, one observes that 

there is a penalty o f about 1.2 dB between p-SDC and p-SDC for p =  2 when the ASER is 10-2 , 

caused mainly by the estimation error in Nt. The penalty decreases as p  increases. Based on the 

improvement seen in going from p =  2 to p =  10, to p =  50, it is concluded that a value of p  =  50 

can be used to eliminate most o f the penalty caused by Nr

Fig. 2.3 shows the performances o f p-SDC at p =  50 ,<7 =  10, p  =  25, 7  =  5, p  =  12, <7 =  2 

and p =  6 ,q =  1. The values of p and q are approximately doubled each time from p  =  6 , 7  =  1 to 

p  = 50,<7 = 10. One sees a performance gain of about 0.5 dB from p — 6 ,q = 1 to p =  12,q = 2 

and a performance gain o f about 0.4 dB from p =  12,q =  2 to p  =  25, 7  =  5. The performance 

gain from p =  25, 7  =  5 to p =  50, q =  10 is very small, less than 0.2 dB for all the values o f SNR 

considered. Therefore, p =  25,q =  5 is also a good design choice, particularly i f  one wants to 

minimize hardware. In realistic hardware designs, one may need to tradeoff p  with q. For example, 

consider a case where one can process and store 30 samples, so p  +  q =  30. Fig. 2.4 shows the 

performances of p-SDC at different combinations of values of p and q, where p  +  q =  30. One sees 

that p =  22, q — 8 and p = 25, <7 = 5 offer the best performances among all the combinations. This 

suggests that p  can be traded with q i f  a large value of q is not desirable. However, neither p  nor q 

should be too small when p + q  is fixed. I f  p  (or q) is too small, q (or p) becomes unnecessarily large.
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Max. Amplitude

+• q-10 
O q=50

QC
UJ
CO
<

Average SNR per bit (dB)

Figure 2.1. Comparison o f the performances o f r-SDC (maximum estimated signal amplitude) and 

r-SDC (maximum signal amplitude) for different values o f q when N 2  =  5N: and NC-BFSK is used.

  Max. SNR
p=2 

•+■ p-10 
o  p=5Q

EC
LU
CO
<

Average SNR per bit (dB)

Figure 2.2. Comparison of the performances of p-SDC (maximum estimated SNR) and p-SDC 

(maximum SNR) for different values o f p  when q =  10, N 2  =  5N1 and NC-BFSK is used.
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p=50,q=10 
—I— p=25,q=5 

p=12,q=2 
—Q— p=6,q=1

cc
LUcn 
<

Average SNR per bit (dB)

Figure 2.3. Comparison o f the performances o f p-SDC (maximum estimated SNR) for selected 

values o f p  and q when N2  =  5Nl and NC-BFSK is used.

Furthermore, the performance loss due to the decrease of p  (or q) cannot be fu lly  compensated by 

that gained in the increase o f q (or p) when p  (or q) is too small.

Figs. 2.5 and 2.6 examine the effect o f different noise power assumptions on the performance. 

To clarify this effect, both p  and q are fixed at 2. Fig. 2.5 shows the performances o f r-SDC and 

p-SDC when N2  — N l . As can be seen, when the noise powers on the two branches are the same, 

r-SDC performs better than p-SDC. The difference is about 0.9 dB in SNR when the ASER is 

10-2 . This is expected, since p-SDC introduces additional estimation errors in the estimation of 

the noise power, while r-SDC avoids this by assuming balanced noise powers, which is the case 

when N2  =  N} . Note also that r-SDC and p-SDC have the same performance, as the maximum 

SNR criterion is equivalent to the maximum signal amplitude criterion when the noise powers are 

equal and the estimation is perfect. Fig. 2.6 shows the performances o f r-SDC and p-SDC when 

N2  =  5/V|. From this figure, it can be seen that p-SDC has a performance advantage of about 1.1 

dB over r-SDC, over the range o f SNR values shown, when N 2  =  5N] . This is expected, as in this
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Figure 2.4. Comparison of the performances o f p-SDC (maximum estimated SNR) with different 

combinations o f values of p  and q when p  +  q =  30, N 2 — 5/V( and NC-BFSK is used.

case, the assumption o f balanced noise powers used by r-SDC is no longer true, and one has to 

take the unbalanced noise powers into account to minimize the probability o f error. Comparing the 

performances o f p-SDC with that o f r-SDC, one sees that there is a penalty o f about 2 dB when the 

ASER is 10~2, caused by not accounting for the difference in the noise powers.

In conclusion, the preceding results have shown that r-SDC performs better than p-SDC when 

the noise powers are balanced, confirming intuitive reasoning. When the noise powers are unbal­

anced, p-SDC performs better than r-SDC. The performance penalty caused by the estimation errors 

decreases as p  and/or q increase, and the performance penalty caused by ignoring noise power d if­

ferences increases as the noise power difference increases. Using these results, the effects of channel 

state parameter estimation error and noise power imbalance can be evaluated quantitively.
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Figure 2.5. Performances o f r-SDC (maximum estimated signal amplitude), p-SDC (maximum 

estimated SNR), r-SDC (maximum signal amplitude), and p-SDC (maximum SNR) at p =  2 and 

q — 2 with N2  =  Nx for NC-BFSK signaling.

2.3 Receiver Designs Using Error Statistics of Channel State Parame­

ter Estimation

In the previous section, we have evaluated the effect o f channel estimation errors on the perfor­

mances of SDCs. In this section, instead o f analyzing the effect o f estimation errors, we use esti­

mation error statistics to design better receivers. The estimation error statistics are obtained from 

analysis or simulation o f estimator performances, as in Section 2.1. Previous works include the 

following. In [4], the authors derived a diversity receiver that outperforms maximal ratio combiner 

(MRC) for binary equal energy signals on Ricean fading channels with Gaussian channel estimation 

errors. In [51], [52] and [53], the authors discussed optimal reception o f MPSK, M-ary quadrature 

amplitude modulation (MQAM), and coded M Q AM  signals with additive Gaussian channel estima­

tion errors on single Ricean fading channel, respectively. Here, we derive new diversity receivers for
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Figure 2.6. Performances of r-SDC (maximum estimated signal amplitude), p-SDC (maximum 

estimated SNR), r-SDC (maximum signal amplitude), and p-SDC (maximum SNR) at p  =  2 and 

q =  2 with N2  =  5N] for NC-BFSK signaling.

arbitrary M -ary signals on Ld independent and identically distributed channels, under more general 

assumptions on the knowledge o f the channel state parameter estimates. Two important cases are 

studied. The first case applies to either Nakagami-m or Ricean fading channel, while the second 

case applies to Ricean fading channel only.

We consider Ld independent and identically distributed branches. Each is slowly and flatly 

fading. The received signal on the /-th branch is matched filtered and normalized with respect to the 

transmitted signal energy to give y ; =  Alsk +  n; , where A l =  A f  +  jA \  is the complex channel gain 

on the Z-th branch, sk is the transmitted signaling point, and nt is the AWGN on the /-th branch with 

mean zero and variance 2cr2. The conditional PDF of the received signal is

1 (j-Vv)(y-Ji.A );i
/ ( y | A W , )  =  j ^ y Z - e  (2.108)

where y =  (yj y2 yLJ , A R =  (A* A f  ■■■ A ^ ) ,A / =  (A/1 A f A ^ ) ,  A =  A s +

y'A7, and (-)H is the conjugate transpose. I f  A, is perfectly known, one can derive the optimal
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diversity receiver from (2.108) as [54]

k =  a rg m in { (y -5 i(.A ) ( y -5 j(.A)H}  (2.109)

which implements MRC. However, the value o f A l is usually unavailable and has to be estimated. 

Denote A x =  A f  +  jA \ ,  A R =  (AR A f Ar J , A i =  (A\ A f and A  =  +  j A 1

as the channel estimates obtained from a channel estimator. The “ intuitive”  structure

k =  a r g n u n | ( y - i (feA ) ( y - 5 jtA )f f |  (2.110)

is frequently used in practice.

2.3.1 Case 1

In the first case, one only has knowledge o f the conditional PDF o f A ;, conditioned on A ;, as

f { A ^ ) =  2 ^ e~ ^ A'~Arb?  (2-U1)

which is a Gaussian distribution with mean A t +  b and variance 2a2. This occurs, for example, in

the case when the channel gain is estimated using the M L  estimator in Section 2.1 and there may be

some decision errors in the estimation, or a robust channel estimator in [51] and there may be some 

synchronization errors in the estimation. This also occurs in the case when a large sample size is 

used to estimate Al and the estimate is asymptotically Gaussian distributed [15]. The values o f b and 

2a2 can be determined through performance analysis or simulation of the estimator. Without any 

prior knowledge of A R and A 1, assume that they are uniformly distributed over (—R,R), where R is 

a large positive real number. Simulation results show that this assumption leads to a detector with 

good performance. The jo in t PDF o f the channel gain estimate and the true channel gain satisfies 

f ( A R,A I ,AR,A I ) =  D - f ( A R,A I \AR,A I ) where /(A *  A 7|A«, A 1) =  n f ^  f{A ,\A ,),  as /(A *  A 1) =  

D  is a constant and f (A .R,A I ,A R,A I ) — f ( A R,A I \AR,A I ) f ( A R,A I ). Assume that A( is independent 

o f nl (for example, A} is estimated using pilot symbols). Using the average likelihood ratio test 

(ALRT) principle, the likelihood function can be derived as / ( y ,  A R,A 7^ )  =  / f ( y \A R,A r,xk) ■
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f (A .R,A I ,A R,A l )dARdAl . Solving the integral, one has

/ - j  [ y - ^ ( A - f r ) ] [ y - ^ ( A - t ) ] f f

f ( y , A R, k I \sk) =  2{̂ {l+°2) (2.112)
{ a l \sk\A +  o l )Ld

where D, is a constant independent o f sk. The new diversity receiver is derived from (2.112) as

t  =  argmin ( ̂  +  ly-^  ~  ~  ^  ]  P -U 3)
k l Yl 2 (a 2|^ |2 +  a 2) J

where 0 ^  =  Ld In (or21 | 2 +  o 2). Several observations can be made from (2.113). First, the receiver 

in (2.113) is general and applies to all channel estimators giving a channel estimate based on the 

conditional PDF in (2.111). Second, the receiver in (2.113) can be used on either a Nakagami- 

m fading channel and a Ricean fading channel, as the distribution o f A ; is not specified and used 

to derive (2.113). Finally, in general, the receiver in (2.113) is not equivalent to that in (2.110). 

However, when constant modulus signaling is used and the channel estimator is unbiased, (2.113) 

w ill be equivalent to (2.110). In this case, (2.113) won’t provide any improvement over (2.110). By 

omitting the bias term (j>^ in (2.113), a simplified structure of (2.113) is derived from (2.113) as

f  [y — — h)l[y — s.(A — b)]H 1

)■ ( 2 ' 1 1 4 )

The receiver in (2.114) can also be derived by applying the generalized likelihood ratio test (GLRT) 

principle [17]. The GLRT receiver assumes that A l is a deterministic but unknown number, while 

the ALRT receiver assumes that A{ is a random number [14]. As w ill be seen later, the GLRT 

receiver outperforms the ALRT receiver for small values o f SNR, and it underperforms the ALRT 

receiver for large values o f SNR.

A special case results when the M L  estimator in Section 2.1 is used and no decision errors occur, 

or when the robust channel estimator [51] is used and no synchronization errors occur. In this case, 

Ai = A f + g t where gt is a Gaussian channel estimation error with mean zero and variance 2<r2. One 

has b =  0 and a 2  =  o f  as Z i-jA jA j} =  A[ and Var{Al |/t;}  =  2o f. Thus, the receiver in (2.113) 

specializes to
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and the receiver in (2.114) specializes to

k =  argmin • (2.116)
2{X\sk \ 2  +  \)  J

where =  Ld\n (^kyfel2 +  1) anc* ^  =  is the ratio o f the channel estimation error variance to 

the noise variance, a constant independent o f the SNR for fixed channel estimators [51], [52].

2.3.2 Case 2

In this case, in addition to knowing the conditional PDF o f At, one also knows the PDF of At , and 

therefore, the jo in t PDF of A; and Av A  diversity receiver that is better than the conventional MRC 

for binary equal energy signals when A; and Al are jo in tly  Gaussian distributed has been proposed 

previously in [4]. We extend it to arbitray M -ary signals. Similar to [4, eq. (11-1-11)], their jo int 

PDF can be written as

/(A f,A 7,Af,A7) =
47T2A

(2.117)

where A  =  (A f  A \  A f  A\), e =  £ {A }  =  (eR e1 eR e7), M  is the covariance matrix with

M  =

a 2 0 Rc Rs

0 a 2 -Rs Rc

Rc -Rs a 2 0

Rs Rc 0 a 2

, A =  |M |i is the square root o f the determinant of M , a 2 is the

variance of A f  (or A7), a 2 is the variance o f A f  (or A7), Rc is the covariance of A f  and A f  (or 

A7 and A7), Rs is the covariance o f A f  and A7, and A f  and A f  are assumed independent o f A7 

and A7, respectively. Solving / ( y ,  A 77, A 7)^ ) =  J f ( y \A R,A I ,sk) ■ f ( A R,A I ,A R,A I )dARdAI where 

/ ( A 77, A 7, A77, A 7) =  n f i , / (A f ,A 7,Af,A7), one has

/ ( y i  A  , A  \sk) =
[(A |ijt|2 - | -a 2(72) ] Ld

|i't |2[a2AAff+(ciAR+c2A/)lW+cnra,] 
j  2(A] s^+ci1^1)

q2(A-g)(A-̂ )̂ +q2yŷ  jc^)l-2(Rc -jRs )A]̂ }
.g 2(A|Sj.|2+a2cr2) . g 2(&|i|tl2+a2CT2) (2.118)

where D 2  is a constant independent o f sk, I  is a 1 x  L all-one row vector, e =  eR +  ye7, c0 =  (eR) 2 a 2  +  

(e7)2a 2 +  (eR)2 a 2  +  (e')2 a 2  — 2RceReR — 2Rce7e7 — 2RseRe! +  2RseIeR, =  —2eRa 2  +  2RceR +
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2Rser , c2  =  — 2eJ a 2  +  2Rce! — 2RseR, c3 =  —le Ra 2  +  2RceR — 2Rsel , and c4 =  —2eI 6t2  +  2RceI +  

2RseR. A  new diversity receiver in this case is derived from (2.118) as

k — arg min
k

+ M y 4 K c3+ j ca) 1  -  (Rc -  jR s)k ]H}  {k) 
2(A|sjt|2+ a 2 cr2) ~ ^ 2

(2.119)

where 0 ^  =  LdIn (A j^ l2 +  a 1  a 2). The diversity receiver in (2.119) is a maximum likelihood struc­

ture and is optimum for the case that the jo in t density o f the channel gains and the channel gain 

estimates are given by (2.117). The structure o f this receiver is general. It includes the case when 

the channel gain estimate is corrupted by temporal decorrelation [45] plus estimator noise as well 

as the case when the estimation error is independent o f the true channel gain. It can, thus, model 

the case when the channel gain estimate is obtained from a pilot carrier [45], pilot symbol [55], or 

a robust channel estimator [51]. Note that the receiver in (2.119) requires more knowledge of the 

channel estimate statistics than those in (2.113) and (2.114). As a result, it generally has a more 

limited usage than those in (2.113) and (2.114). For example, when the channel is Ricean faded and 

the Gaussian distribution o f the true channel gain is known, all three diversity receivers in (2.113),

(2.114) and (2.119) can be used. However, when the channel is Ricean faded and the Gaussian 

distribution of the true channel gain is unknown, or when the channel is Nakagami-m faded and 

the true channel gain follows an unknown non-Gaussian distribution, only the diversity receivers 

in (2.113) and (2.114) can be used. Therefore, Case 1 is not a special case o f Case 2. The former 

assumes less knowledge of the channel statistics than the latter and, consequently, accommodates a 

wider usage. Finally, when the M L  estimator in Section 2.1 and the robust channel estimator [51] 

are used, one has a 2  =  a 2  +  a 2, Rc =  a 2, Rs =  0, A =  ct2 o f, ^  ^  and e1 =  e1. Thus,

(2.120)

where — L ^ l n ^ A ^ ! 2 +  ^  +  A).
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2.3.3 Comparison of Case 1 and Case 2

Fig. 2.7 shows the symbol error rates (SERs) o f perfect MRC in (2.109), MRC with estimation 

errors in (2.110) and the new diversity receiver in (2.120) for binary phase shift keying (BPSK) 

signaling with Ld =  2. The true channel gain is assumed to follow a known Gaussian distribution 

with mean e =  2 +  j 2 and variance 2 so that all the new diversity receivers derived in the previous 

section can be fairly compared. Assume that the M L  estimator in Section 2.1 is used. Note that the 

receivers in (2.115) and (2.116) are equivalent to that in (2.110) in this case. One sees that the gain 

o f the new diversity receiver in (2.120) over MRC with estimation errors in (2.110) is negligible 

when X =  0.1. When X =  0.4, at SER = 10-2 , the new diversity receiver has a performance gain of 

about 0.6 dB over MRC with estimation errors. The gain decreases as the SNR increases. Fig. 2.8 

shows the performances o f perfect MRC in (2.109), MRC with estimation errors in (2.110) and the 

new diversity receiver in (2.120) for BPSK signaling with Ld =  4. Again, the performance gain of 

the new diversity receiver in (2.120) over MRC with estimation errors in (2.110) is negligible when 

X =  0.1. When X =  0.4, the performance gain is about 1.2 dB at SER = 10~2.

Fig. 2.9 compares the performances o f the diversity receivers in (2.109), (2.110), (2.115) 

(2.116), and (2.120) for 16-ary quadrature amplitude modulation (16-QAM) signaling with L d =  2. 

When the SER is 10-2 , the gain o f the new diversity receiver in (2.120) over MRC with estimation 

errors in (2.110) is about 0.2 dB for X — 0.1 and about 1.0 dB for X =  0.4. Thus, the improve­

ment for 16-QAM signaling is greater than that for BPSK signaling. Comparing the new diversity 

receiver in (2.115) to MRC with estimation errors at a SER o f 10~2, the gain is negligible when 

X =  0.1 and about 0.4 dB when X =  0.4. Therefore, Case 1 leads to less improvement than Case 

2. This is expected, as Case 1 assumes less knowledge o f the channel estimate statistics than Case 

2. Finally, comparing the receiver in (2.116) to MRC with estimation errors, one observes that the 

receiver in (2.116) is better than MRC with estimation errors at small values of SNR, and is worse 

than MRC with estimation errors at large values o f SNR. Since (2.116) is a suboptimal structure, it 

is not necessarily better than (2.110). Fig. 2.10 compares the performances of the diversity receivers
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Figure 2.7. Performances o f perfect MRC in (2.109), MRC with estimation errors in (2.110) and the 

new diversity receiver in (2.120) for BPSK signaling at A =  0.1 (solid line) and A =  0.4 (dash-dotted 

line) when Ld =  2 in Ricean fading channels.
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Figure 2.8. Performances o f perfect MRC in (2.109), MRC with estimation errors in (2.110) and the 

new diversity receiver in (2.120) for BPSK signaling at A =  0.1 (solid line) and A =  0.4 (dash-dotted 

line) when Ld =  4 in Ricean fading channels.
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Figure 2.9. Performances o f perfect MRC in (2.109), MRC with estimation errors in (2.110), the 

new diversity receivers in (2.115), (2.116) and (2.120) for 16-QAM signaling at A =  0.1 (solid line) 

and A =  0.4 (dash-dotted line) when Ld — 2 in Ricean fading channels.
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Figure 2.10. Performances o f perfect MRC in (2.109), MRC with estimation errors in (2.110), the 

new diversity receivers in (2.115), (2.116) and (2.120) for 16-QAM signaling at A =0 .1  (solid line) 

and A =  0.4 (dash-dotted line) when Ld =  4 in Ricean fading channels.
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in (2.109), (2.110), (2.115) (2.116), and (2.120) for 16-QAM signaling with L d =  4. When the SER 

is 10~2, the gain of the new diversity receiver in (2.120) over MRC with estimation errors is about 

0.7 dB for A =  0.1 and about 2.0 dB for A =  0.4. Also, comparing the new diversity receiver in

(2.115) to MRC with estimation errors at a SER of 10-2 , the gain is about 0.2 dB when A =  0.1 

and about 0.6 dB when A =  0.4. Similar observations to those from Fig. 2.9 can be made from 

Fig. 2.10. Note that the performance gains o f the new diversity receivers are achieved at the cost 

o f more complex structures. Also, exact values of the channel estimate statistics are assumed. Note 

further that the performances of MRC with estimation errors in Figs. 2.7 to 2.10 don’t show error 

rate floors, since we only consider slow fading channels here and the estimation error variance of 

the channel estimator used in the simulation varies inversely with the SNR.

2.4 Receiver Designs Using Pilot Symbols of Channel State Parameter 

Estimation

In the previous section, we have derived new receivers by using statistics o f the channel estimation 

errors. In practical communication systems, channel estimation is often performed with the aid 

of known pilot symbols. The statistics of the channel estimation errors are usually functions of 

the known pilot symbols. In this work, instead o f using statistics o f the channel estimation errors 

determined by the pilot symbols, we design novel receivers that use the pilot symbols directly. 

Specifically, we design optimum receivers for pilot symbol assisted modulation (PSAM) signals in 

Rayleigh and Ricean fading channels [55]- [57].

2.4.1 System M odel

We assume that the autocovariance function of the fading process is known, as was assumed in [55] 

and [57]. Consider a PSAM system where symbols are transmitted in frames of length Q. Without 

loss of generality, assume that, in each frame, the first symbol is a pilot symbol and the following 

Q — 1 symbols are data symbols. Each data symbol comes from a set o f M  possible signals,
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The pilot symbol comes from the same signaling set, but its value is known as b. These frames are 

transmitted over a flatly fading channel. The received signal can be written as

y(t) — A(t)s(t) +  n(t) (2.121)

where s(t) is the transmitted signal, A(t)  is the complex channel gain, and n(t) is the AWGN. 

Following the model in [55], the transmitted signal, s(t), satisfies

00
s ( t ) =  £  btp(t — IT)  (2.122)

/=—00

where b{ is the value o f the /-th symbol coming from {b j } ^ L j, T  is the symbol period, and p(t) is 

the shaping pulse with energy Ep. I f  the /-th symbol is a pilot symbol, bt =  b is known. Otherwise, 

it is unknown and may be one of M  possible values. The complex channel gain, A (t), is a Gaussian 

random process. Denote it as A(t) =  AR(t) +  jA l (t). I f  the channel is Rayleigh faded, one has [54]

£ {A * ( r ) }  =  £ {A 7(r)} =  0 (2.123a)

Cov(AR(t),AI (t +  z)) = 0  (2.123b)

Cov(AR(t),AR(t +  z)) = C o v (A l (t),A! (t +  z)) =  a 2 R(z) (2.123c)

where Cov (AR(t),AR(t +  r ) )  =  E{[AR(t) — +  r )  — E {A R{t +  t ) } ] }  is the autoco­

variance of AR(t), Cov (AI (t),AI (t +  t ) )  =  E{[A ! (t) — E {A { (t ) } ] ^ 1 (t +  t )  — E {A l {t +  t ) } ] }  is the 

autocovariance o f A 1 (t), Cov (AR(t),AI ( t +  t ) )  = £ ’{[As (t) — E {A R(t)}][A I (t +  t )  -  E {A 1 (t +  t ) } ] }  

is the cross-covariance between AR(t) and A; (r), and R( t )  is the normalized autocovariance function 

with R(0) =  1. I f  the channel is Ricean faded, one then has [54]

E {A R(t)} =  eR(t) (2.124a)

E {A ‘ (t)}  =  eI (t) (2.124b)

Cov(AR(t),AI (t +  t ) ) = 0  ( 2 . 1 2 4 c )

Cov(AR(t),AR(t +  T ) )= C o v (A ! (t),A I {t +  T)) =  a 2 R(z). (2.124d)
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Note that (2.123) is a special case of (2.124) when eR(t) =  0 and er(t) =  0. I f  the scattering in the 

Rayleigh or Ricean channel is isotropic, one further has [54]

R(z) =  J0 (2n fDz) (2.125)

where f D is the maximum Doppler shift in the channel. Although our analysis is not limited to any 

specific R(z), (2.125) w ill be used to obtain illustrative examples. The noise n(t) is also a Gaussian 

random process. It has mean zero and autocovariance E{n(t)n *( t  +  t ) }  =  N0 5 ( t ) .

Similar to [55], it is assumed that no intersymbol interference occurs. The received signal in 

(2.121) is matched filtered and sampled at the time t — IT. The received signal sample of the /-th 

symbol is

yl =  A { lT )b lEp +  nl (2.126)

where A (IT) is the Gaussian channel gain sample with mean zero (on a Rayleigh fading channel) or 

eR(IT ) +  je 1 (IT)  (on a Ricean fading channel) and variance 2 a 2, and nl is a Gaussian noise sample 

with mean zero and variance 2cr2 =  N0 Ep. The average SNR per b it is derived from (2.126) as

E p  \ b f H Q - m m
b ~  2(T2log2M  i ' < i U ' )

where Q =  E {A (IT) A* ( IT ) }  is the mean power o f the fading and E {\b s\2}  is the average transmitted 

signal energy. This measure accounts for the power penalty caused by sending pilot symbols.

Without loss o f generality, let the 0-th symbol in the transmitted sequence be a pilot symbol. 

Then, the 1-st, 2-nd, ■ • ■, (Q — l)- th  symbols in the transmitted sequence are data symbols in the 

same frame. Assume that the J  nearest pilot symbols are used to assist the data symbol detection 

in a frame. Let the function, [x\ , return the largest integer that is less than or equal to x. In this

case, the (|_—^ - jQ ) - th ,  0-th, •••, ([^p j< 2 )-th  symbols in the transmitted sequence are the

pilot symbols that w ill be used to assist the detection o f the 1-st, 2-nd, ■ ■ •, (Q — l)-th  symbols in the 

transmitted sequence, which are data symbols. For clarity, it is desirable to use different notations 

to denote the received signal for the data symbol and the received signals for the pilot symbols. 

Denote the received signal sample of the data symbol to be detected as

y k =  A kb k +  n k (2 .128)
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where Ak =  A{kT)Ep and A; =  1,2, ••• ,Q — 1. Also, denote the received signal samples of the pilot

symbols that w ill be used to assist the detection o f bk as

Pi =  Blb  +  ni (2.129)

where B{ =  A(iT)Ep and i =  [ — £),■■■ , Q- Express the complex channel gains as A k =

Ak +  jA k and Bi =  B f  +  jB \.  It can be derived from (2.123) and (2.124) that the covariance between 

A f  and B f  (or Ak and B2) is wk(i) =  E 2 a 2 R((k — i)T), i =  i and the covariance

between A f  and B f  (or A\ and Bf) is Ck( i , j ) =  E 2 a 2 R((i — j )T ) ,  i , j  =  |_— • i \ty~\Q-  F i­

nally, introduce the notations ' ' '  W* ( L ^ J 2 ) ]  ancl =  {Ck( i , j ) } ,  where

Ck( i , j )  is the (/, j)-th  element of Ck, for later use.

By using the assumptions and notations defined above, it can be derived from (2.128) that the 

conditional PDF of yk, conditioned on Ak and bk, is

f ( y k\Ak A )  =  2 ^ exp{ _ 2 ^ 2 ^ _ a A I 2} -  (2-130)

Similarly, the conditional PDF of pp conditioned on Bt, can be derived from (2.129) as

f ( p , m  =  ^ 2 exp { - 2 ^ i p . - £ .J i2} -  <2-131)

Since the symbol-spaced noise samples are independent, from (2.130) and (2.131), the condi­

tional jo int PDF of yk and pt (i =  [ — , L ^ J 6 )>  conditioned on Ak, bk and Bt (i =

[ — 2=1 JQ, ■ ■ ■ , |_2=lj 0 ,  can be obtained as

1 f  1 1 L̂ Je 1
f ( y k,p\Ak,B ,bk) =  { l n ( j 2 y +x exP ^ 2  ^  \P i~ BM 2 > (2-132)

where p =  [pL_y_,J2 ••• and B =  [B^_j^ q Finally, the likelihood

function for jo int processing of the data symbol and the pilot symbols can be derived by solving

f { y kM h )  =  1 1  f ( y k,p\Ak,B ,bk) . f ( A k,B)dAkdB (2.133)

where f ( A k,B) is the jo int PDF of Ak and B. The optimum PSAM (OPSAM) signal detector is 

obtained by maximizing (2.133) with respect to bk.
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2.4.2 Optimum PSAM  Signal Detectors

To derive the value o f bk that maximizes (2.133), one needs to solve the integration in (2.133) first. 

Since the jo in t PDF of Ak and B, f ( A k,B), depends on the fading channel model, we examine 

the optimum maximum likelihood detector for the PSAM signal on Rayleigh and Ricean fading 

channels separately in the sequel.

2.4.2.1 Rayleigh Fading Channel

In a Rayleigh fading channel, the statistics o f the fading process are determined by (2.123). Thus, 

the jo in t PDF of Ak and B can be derived as

1
(2n)J+x\lAk

(2.134)

where T denotes the transpose o f a matrix or a vector, |Ht | denotes the determinant o f H ,̂ 1 de­

notes the inverse o f H t , A s =  [Ak B^_j_,j Q Sfy-i ] is a 1 x  (7 +  1) row vector consisting 
L 2 J*

is a 1 x  (7 + 1 )of the real components o f the channel gains, A t =  [Ak B f_j_i ,n
I ~2~jy

row vector consisting o f the imaginary components o f the channel gains, FI^ is the (7 +  1) x  (7 +  1) 

covariance matrix with

H.
Ep<x2  wk

W ,

(2.135)

and vfk, Ck are defined as before. By using (2.134) in (2.133) and solving the resulting integral, it is 

shown in Appendix C that

f {ykM h )  =
l iu F ^ iP  + l v F r V-e2 k

2 x[^ - j 2 b,-l2
2<t2 2ct2

where F* =  1 +  Gk, Gk =  ^

v =

\ M 2  o

0T |S|2E

u = r  M
> L a* (T?

(2.136)

Re{p ; , £*}
2 1

Im{p **>
], 0 is a 1 x  7 zero vector, and E is a 7 x  7 identity

matrix. The optimum maximum likelihood detector chooses the value o f bk that maximizes (2.136) 

from a set of M  signals, { b j } ^ .  Two important special cases w ill be discussed next.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I f  the energies o f the M  possible transmitted signals are equal, such as those in MPSK signaling, 

\bk \ 2  is a constant independent o f k. This implies that \bk \ 2  =  \b\ 2  and that the energy o f the signal 

does not affect the choice of bk in (2.136). Ignoring those terms independent o f bk, one has

f b k M h )  x  e^uF‘ lur+^vF* lv r. (2.137)

Further simplification shows that

f {ykM bk) ~  (2.138)

where Sk is a 1 x  J  vector derived in Appendix D as

s* =  wr
(72 a 2 \bk\2 wt Z tw [ \  a 2

a 2  +  E 2 a 2 \bk\2 ^  (a 2  +  E 2 a 2 \bk\2)2)  a 2  +  E 2 a 2 \bk \ 2  1 k

and

Z1 =
cr2 |£>. I2 r

c * + ]5P E - ^ T

(2.139)

(2.140)
-p'* \uk\

Finally, the OPSAM signal detector in the Rayleigh fading channel when the transmitted signals are 

of equal energies can be obtained from (2.138) as

bk =  a r 8  max {Re{ykb*kX*k } }  (2.141)
>>MbjYf= i

where Xk =  b*p-Sk and Sk is given by (2.139). Note that the optimum detector in (2.141) is actually 

a correlator which weights the received symbol signal, r k, with the conjugate channel gain estimate, 

Xk , and then correlates the compensated received symbol signal with the corresponding signal value, 

bk, to make the data decision.

The performance o f the OPSAM signal detector for BPSK signaling in the Rayleigh fading 

channel can be analyzed as follows. It has been derived in [1] that the bit error rate (BER) of any 

BPSK signal detector satisfying [1, eq. (B -l) ] is [1, eq. (B-21)]

pb =  - T —  ̂ (2.142)v i+ v 2

w h e r e  V 1 =  y /w & + c # ' v 2 =  ‘y /w k -C y x ’ Cyy is  th e  v a r ia n c e  o f  yk’ cxx  is the variance o f Xk, and cyX 

is the covariance between yk and Xk. Denoting c j =  as the covariance coefficient between yk
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and Xk, (2.142) can be rewritten as

Pb = l- { \ - c x). (2.143)

I f  the OPSAM signal detector is used, it can be shown that cyy =  2(E 2 a 2  +  a 2)

(|b\2 Ck +  <t2E) • S[, and =  2|£|2W(t ■ S[. Then,

2) ’ cxx — 2|^|2Sk ■

c \ =
\ b \ W s l * . . (2.144)

\J(EpOi2  +  cr2 )\b\2 Sk ■ (\b\2 Ck +  a 2 E) • S[

where is given by (2.139). Therefore, the BER of the BPSK signaling can be evaulated analyti­

cally using (2.143) and (2.144).

I f  the energies o f the M  possible transmitted signals are not equal, such as those in M Q AM  

signaling, the choice o f bk in (2.136) depends on |bk \ 2  as well. In this case, one has

as IFJ is related to \bk\2. Examination of F4 shows that

(2.145)

1**1 =
\ h ?
Gl

+  d z 2+ ^ e
z a 2

(2.146)

whered =  ^ j i  +  ^ ? wf Z 2 -(]fjJZ 2 + E ) ' w[  and Z 2  =  {Ck - I ^ r2 w Tk wk\ ’ . Substituting (2.146) 

in (2.145) and doing some additional simplifications, one has

f ( y k,p\bk) oc ^  ej t { Re&kbk}Re{b*P-Sk}+Imb>tbk}Im{b>S l} }+Wk
\ ^ r  +  d\

(2.147)

where Wk -  |r*l21̂ 1 fk +  l5l Ref f i p } , (■)" denotes the conjugate transpose, Z3 =  Ĉ . -  i ( 1 +

IM 2w*z i wir 'v , l6d 2(C tz i w[ w*+ w[ w*z i c *) C  7  C  and f  -  £' “ 2a2 cr‘X z i " f  F im lb -
o*+Eja*\bk?) +  #+%cF\bk\i and h  -  o>+E-y\bk\> ~  y + E y \ b ky -  ™ a lly>

the OPSAM signal detector in the Rayleigh fading channel when the transmitted signals have un­

equal energies can be derived from (2.147) as

b,, — arg max < Re{y,b*kXk }  — cr4 In
i l k k k i

\ h \ 2 +  d +  aAWk \  (2.148)

where Xk =  b*p-Sk and Sk is given by (2.139), as before. Comparing (2.148) with (2.141), one sees 

that (2.148) has two additional bias terms caused by the unequal energies o f the transmitted signals, 

as expected.
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2A.2.2 Ricean Fading Channel

In the previous subsection, we derived the OPSAM signal detector for the Rayleigh fading channel. 

This exposition served to develop the theory. In practice, some real-world channels exhibit Ricean 

fading. In this subsection, we w ill derive the OPSAM signal detector for the Ricean fading channel.

In the Ricean fading channel, the statistics o f the fading process are determined by (2.124). 

Therefore, the jo in t PDF of Ak and B satisfies

f(A, B) =  i  e-z (A* - e«)Hf 1(A* - e* ) M ( A/ - e/)Hf 1(A/ - e/)7’ ( 2  MOt
J{ k' 1 (2n)J+'\Hk\ { ’

whereeR =  £ {  A R}  =  [e* ■" ande/ =  E {A , }  =  [e[ ^ _ ^ Je

One sees that (2.134) is a special case o f (2.149) when eR =  0 and e7 =  0. Similarly, by using (2.149)

in (2.133) and solving the resulting integral, as shown in Appendix C, one can derive

2 £L” T Jie W2i= -C i 9 1

f(v, d Ib,) = _______ -_______ ei u lV u + i y * t y e/ - ^ r ---------£3------
J W k i m )  (27c<y2y+i|H jt||Ft |e

(2.150)

where u ' =  u +  e^H^ 1 and v' =  v + e /H ^ 1. The OPSAM signal detector in the Ricean fading channel 

is derived by maximizing (2.150) with respect to bk. As previously, two important special cases are 

discussed.

Again, we begin with the case when the transmitted signals have equal energies. In this case, F k 

is independent o f bk. Thus,

(2.151)

By using u' =  u +  e^H” 1 and v' =  v +  ejHjT1 in (2.151), one has

f {ykM bk) x  e ^ { i?e{)’̂ ‘ ^ e{g*p 's* }+/m{;Vt6^ /m {5’ p 's^ +<72fe'[>’*6^ e«'Q* +CT2/m{;v^ ^ e' ' Q* }  (2.152)

where is a 1 x  ( / +  1) vector derived in Appendix D as

<72 /, , l ^ ! 2wt Z l W[  \ < * 2Q* = a 2  +  E 2 a 2 \bk\2^l  +  a 2  +  E 2 a 2 \bk\2>> a 2+  E 2 a 2 \bk\2WkZl
(2.153)
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The OPSAM signal detector for equal energy signals in the Ricean fading channel is derived from

(2.152) as

bk =  arg max {Re{ykb*kVk } }  (2.154)
bM b}Y?= i

where Vk — Xk +  o 2 Yk, Yk =  (eR +  je /)Q k , and Q̂ . is given by (2.153). Several observations can be 

made from (2.154). First, note that Yk in Vk is a deterministic number. Thus, Vk and Xk have different 

means but the same variances. Second, by comparing (2.154) with (2.141), one sees that there is an 

additional term in (2.154) caused by the non-zero specular component in the Ricean fading channel. 

I f  the channel is Rayleigh faded, eR — =  0 and (2.154) w ill specialize to (2.141).

The performance of the OPSAM signal detector for BPSK signaling in the Ricean fading chan­

nel can also be derived by using results in [1], The BER is [1, eq. (B-21)]

Ph =  Ql (a,b) -   I 0 {a b )e -^al+b2\  (2.155)
1 +  V2 / Vl

where <2j (-, •) is the Marcum’s Q function, /„(•) is the rc-th order modified Bessel function of the first

kind’ a =  +  =  je b ' =  1*12Ep(eP+ K ) s l  +

4 = 1 ^ - ^ Je eL-¥J2]’ C’p = K-¥JC eti ^ ’ cvv =  cxx>cyv = cyx,tmdvv v2,

cyy, cx x , cyX are defined as before. Denoting c2 =  ^ - c—  as the covariance coefficient between yk 

and Vk, (2.155) can be rewritten as

Pb =  Ql (a,b) -  - ^ l l Q(a b )e -^a2+b2\  (2.156)

It can be verified that c2 =  cl and (2.143) is a special case o f (2.156) when the specular component

in the fading channel is zero.

I f  the energies o f the transmitted signals are not equal, the likelihood function in (2.150) can

only be simplified to be

f(ykM h )  ~  v r + W ^ _  (2.157)
1**1

Again, by using (2.146) and the expressions o f u ' and v' in (2.157), one has

f(ykM h )  ~   e ^ {Rê bW } +w*+T* (2.158)
l ^ r  +  ^l
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w h e re  T  — - e  -I- i p  H - 1 F _ 1 TT- 1 p r  -I- Re( ^ eR+j ei ^ k P H} r»  _  f ,!fĉ 2,ZTw* 7 T1wnere l k — 2 eRt l k Vk a k R ' 2  I k *k  11k e/ H a2 ’ V k ~  1 CT2+£2a2|6t |2
2

and Z4 =  jp-Z,. Finally, the OPSAM signal detector for unequal energy signals in the Ricean 

fading channel is

bk =  ar8 bk max, ^Re{ykb*kV*k }  -  M + d  +  a 4lP, +  a 47 , | . (2.159)

Comparing (2.159) with (2.154), one observes that there are three additional bias terms caused by 

the unequal energies o f the transmitted signals in (2.159). Also, comparing (2.159) with (2.148), one 

sees that there is an additional bias term caused by the non-zero specular component in the Ricean 

fading channel. When the specular component is zero, the Ricean fading channel w ill specialize to 

the Rayleigh fading channel and (2.159) w ill specialize to (2.148), as expected.

2.4.3 Conventional PSAM Signal Detectors

In [55] and [57], the conventional PSAM (CPSAM) signal detector for BPSK signaling was derived. 

This detector obtains the channel gain estimate, X^, by using a Wiener filter. Following the ideas 

in [55], [57] and using notations and symbols defined here, one can show that

X'k =  b* p -S '[  (2.160)

with

S'* =  WC [|S|2c* +  <t2e] _1 (2.161)

in a Rayleigh fading channel for BPSK signaling. Note that the Wiener filter given by (2.160) can

also be used in a Rician fading channel [57]. This is the case when the specular component in

the Ricean fading channel is unknown. This is also the case when the Ricean fading channel is 

non-stationary with a time-varying specular component and an optimum Wiener filter may be un­

available, as studied in this paper. Our OPSAM signal detector improves the channel gain estimate 

in (2.160) by using a jo int processing of the data symbol and the pilot symbols in a Rayleigh fading 

channel and by using knowledge o f the time-varying specular component and a jo int processing 

of the data symbol and the pilot symbols in a Ricean fading channel, as can be seen from (2.141)
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and (2.154). Note further that one could also improve (2.160) by simply using knowledge of the 

time-varying specular component in the Wiener filter. This detector hasn’t been derived previously 

in the literature, and it cannot be considered as the conventional detector for comparison. Moreover, 

the Wiener filter in a non-stationary Ricean channel with time-varying specular component may 

not be optimal. Our OPSAM signal detector is an optimal maximum likelihood structure in a non- 

stationary Rician channel that necessarily uses knowledge of the time-varying specular components 

and jo in tly  processes the data symbol and the pilot symbols. Thus, there is no need to derive the 

Wiener filter using the time-varying specular component either. The channel gain estimate, Xk, is 

used to weight the received symbol signal for data decision. Therefore, the CPS A M  signal detector 

for BPSK signaling can be written as [55]

h  =  ar8 f) maxw {Re{ykb*kX j * } }  (2.162)

where X'k is given by (2.160). Comparing (2.162) with (2.141) and (2.154), one sees that the CPSAM 

detector has similar computation complexity, as well as similar structure, to the OPSAM signal 

detectors. Both need matrix inversion to derive the channel estimate. The main difference comes 

from their ways o f obtaining the channel gain estimate. In the CPSAM signal detector, the channel 

estimate is obtained by using the pilot symbols only, and channel estimation and signal detection are 

performed separately. However, in our OPSAM signal detectors, the channel estimate is obtained by 

processing both the pilot symbols and the data symbols, and channel estimation and signal detection 

are performed jointly. As a result, Xk does not depend on bk, while Xk and Vk do, in general.

The performance of the CPSAM signal detector for BPSK signaling can also be evaluated an­

alytically by using results in [58]. The BER of the CPSAM signal detector for BPSK signaling in 

the Rayleigh fading channel is, again, given by (2.143). However, the value o f c x in (2.144) should 

be replaced by [55]

/ _____________ iW ^ k -S 'k _____________
C\ j ----------------------------------------------------------------------------------------------------------------------  ( 2 . 1 6 3 )

<J{E2 a 2  +  ■ (\b\2 Ck +  cr2 E) • S '[

for the CPSAM signal detector, where S'k is defined in (2.161). It is proved in Appendix E that 

(2.144) and (2.163) are actually equivalent. Therefore, although the CPSAM signal detector and
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the OPSAM signal detector have different channel gain estimates, their BER performances are the 

same for BPSK signaling in the Rayleigh fading channel. We have confirmed numerically that 

the CPSAM channel gain estimate is a scaling o f the OPSAM channel gain estimate for all cases 

considered. This implies that the CPSAM signal detector for BPSK signaling in Rayleigh fading 

channels is optimum in the sense o f minimum probability o f error. This fact has not previously been 

established.

The BER o f the CPSAM signal detector for BPSK signaling in the Ricean fading channel can 

also be derived from (2.156). However, the values o f a, b and c2 in (2.156) should be replaced

i v X^ 1 v X* —by the corresponding values o f a' =  -W|-S= — 7= =  I, b' =  -4=|-^= +  ■ ■k I, =  c\, where X! =
V 2 1 v cyy \  x ,X f v2  y /cyy y 1X ’ X '

The CPSAM signal detector for 16-QAM signaling was derived in [55] and [56] as a threshold- 

based detector. To facilitate the performance comparison, we need its correlator-based form. Fol­

lowing similar ideas and procedures to those in [55] and [56], one can derive the CPSAM signal 

detector for 16-QAM signaling in its correlator-based form as

for a Rayleigh fading channel, where is given in (2.160). Similarly, one can also use (2.164) in a 

Ricean fading channel. The CPSAM signal detector in this case is simpler than the OPSAM signal 

detector, as it has less bias terms and the channel gain estimate in (2.164) doesn’t depend on the 

values o f the possible transmitted signals.

2.4.4 Comparison of Optimum and Conventional PSAM  Signal Detectors

Here, we compare the performances o f the OPSAM signal detectors derived previously with those 

of the CPSAM signal detectors. For simplicity, we discuss the case when the means o f the fading 

process in (2.124) are constant. The case o f time-varying means can be examined accordingly. 

Thus, one has eR(t) =  eR and e! (t) =  e1. Define P2  =  (eK ) 2  +  (e1 ) 2  as the local mean power of 

the line-of-sight component in the Ricean fading channel and K  =  as the Ricean K  factor [1].

\b\2£p(ep +  2'ep)S/[ ,  cx,x , =  \b\2 S'k - (\b\2 Ck +  o fa )  - S ' l ,  and c\ is given in (2.163).

arg max
bM bj))

(2.164)
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We examine the performances o f the detectors at K  =  0 (the Rayleigh fading channel), K  =  4 and 

K  =  8 . Also, we assume that the scattering in the fading channel is isotropic, and the values of the 

normalized Doppler shift (normalized with respect to the symbol rate), f DT  =  0.03, f DT =  0.06 

and f DT =  0.09 are used. The frame length is chosen to be Q =  5, and the number of pilot symbols 

used to assist the detection o f the data symbol is chosen to be J  =  11. The error rates are obtained 

by averaging the error rates o f the data symbols over all positions in one frame.

Figs. 2.11 to 2.13 show the performances o f the OPSAM signal detectors for BPSK signaling. 

One sees that the performance o f the OPSAM signal detector improves when the power o f the 

specular component in the fading channel increases or the normalized Doppler shift in the fading 

channel decreases. For example, when the BER =  10- 2  and f DT =  0.03, the performance of the 

OPSAM signal detector for K  =  8  is about 8 .8  dB better than that for K  =  0, and about 2.2 dB better 

than that for K  =  4. When the BER =  10- 2  and K  =  0, the performance o f the OPSAM signal 

detector for f DT  =  0.03 is about 0.6 dB better than that for f DT  =  0.06, and about 2.6 dB better 

than that for f DT =  0.09. This is expected, as a larger power in the specular component gives a 

better fading channel condition, and a smaller value o f the normalized Doppler shift allows a more 

accurate channel gain estimate, which results in fewer errors in the data decisions.

Comparing the performance o f the OPSAM signal detector with that o f the CPSAM signal 

detector, one sees that the OPSAM signal detector has a performance gain over the conventional 

detector. The performance gain decreases when the power o f the specular component in the channel 

decreases or the normalized Doppler shift in the channel decreases. As an example, when the 

BER =  ICC2 and f DT =  0.03, the OPSAM signal detector has a performance gain of about 1.5 dB 

for K  =  8 , a performance gain o f about 1.0 dB for K  =  4, and no performance gain for K  =  0. 

When the BER =  10- 2  and K  =  8 , the OPSAM signal detector has a performance gain of about 

3.2 dB for f DT =  0.09, about 2.4 dB for f DT — 0.06, and about 1.5 dB for f DT =  0.03. Observe 

that the performance gain decreases as pb increases. This is explained as follows. Comparing 

(2.154) with (2.162), one sees that the performance gain o f our OPSAM signal detector for BPSK 

signaling comes from the fact that we are using an additional offset, <J2Yk, to calculate the channel
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Figure 2.11. Performance comparison of the OPSAM signal detector and the CPSAM signal detec 

tor for BPSK signaling in Rayleigh and Ricean fading channels when f DT  =  0.03.
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O • • • CPSAM in Ricean channel with K=8

15
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Figure 2.12. Performance comparison of the OPSAM signal detector and the CPSAM signal detec 

tor for BPSK signaling in Rayleigh and Ricean fading channels when f DT =  0.06.
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Figure 2.13. Performance comparison o f the OPSAM signal detector and the CPSAM signal detec­

tor for BPSK signaling in Rayleigh and Ricean fading channels when f DT =  0.09.

gain estimate. When the power o f the specular component in the channel or the normalized Doppler 

shift in the channel decrease, or the SNR increases, Yk or a 2 w ill become relatively smaller, and the 

offset w ill become less significant. Then, the performance gain decreases.

Figs. 2.14 to 2.16 show the performances of the OPSAM signal detectors for 16-QAM signaling. 

Again, the performance of the OPSAM signal detector improves when the power o f the specular 

component in the fading channel increases or the normalized Doppler shift in the fading channel 

decreases. A t SER =  10- 2  and f DT =  0.03, the OPSAM signal detector for K  =  8  is about 10.0 dB 

better than that for K  =  0, and about 2.6 dB better than that for K  =  4. A t SER =  10~ 2 and K  =  0, 

the OPSAM signal detector for f DT  =  0.03 is about 0.4 dB better than that for f DT  =  0.06, and 

about 0.8 dB better than that for f DT  =  0.09.

Comparing the performance o f the OPSAM signal detector with that o f the conventional detec­

tor, one sees that the optimum detector outperforms the conventional detector. When the BER =  

10_1 and f DT =  0.06, the OPSAM signal detector has performance gains o f about 1.0 dB for K =  8 ,
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Figure 2.14. Performance comparison o f the OPSAM signal detector and the CPSAM signal detec­

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f DT =  0.03.

— Perfect estimation in Rayleigh channel

— OPSAM in Rayleigh channel

— CPSAM in Rayleigh channel

• • Perfect estimation in Ricean channel with K=4
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Perfect estimation in Ricean channel with K=8 

OPSAM in Ricean channel with K=8

• CPSAM in Ricean channel with K=8

10 15
Average p (dB)

Figure 2.15. Performance comparison o f the OPSAM signal detector and the CPSAM signal detec­

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f DT =  0.06.
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Figure 2.16. Performance comparison of the OPSAM signal detector and the CPSAM signal detec­

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f DT  =  0.09.

Table 2.1. Performance gains of OPSAM over CPSAM for BPSK

Fading Conditions 

( fDT X )

SER =  10_1 

(dB)

SER =  10~2 

(dB)

SER =  10~3 

(dB)

SER =  10~4 

(dB)

f DT =  0.03, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.03, K  =  4 2.1 1.0 0.4 0.0

f DT  =  0.03, K  =  8 2.5 1.5 1.2 0.9

f DT =  0.06, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.06, K  =  4 2.7 1.6 0.8 0.0

f DT =  0.06, K  =  8 3.2 2.4 1.9 1.7

f DT =  0.09, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.09, K  =  4 3.7 2.3 0.8 0.0

f DT =  0.09, K  =  8 4.3 3.2 2.9 2.1
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Table 2.2. Performance gains o f OPSAM over CPSAM for 16-QAM

Fading Conditions 

( fDT,K)

SER =  lO "1 

(dB)

SER =  10~2 

(dB)

SER =  10~3 

(dB)

SER =  10"4 

(dB)

f DT  =  0.03, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.03, K  =  4 0.1 0.0 0.0 0.0

f DT =  0.03, K  =  8 0.6 0.2 0.0 0.0

f DT =  0.06, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.06, K  =  4 0.2 0.0 0.0 0.0

f DT =  0.06, K  =  8 1.0 0.3 0.1 0.0

f DT  =  0.09, K  =  0 0.0 0.0 0.0 0.0

f DT =  0.09, K  =  4 0.4 0.0 0.0 0.0

f DT  =  0.09, K  =  8 1.2 0.4 0.2 0.0

about 0.2 dB for K  =  4, and approximately 0 dB for K  =  0. When the BER =  10- 1  and K  =  8 , the 

OPSAM signal detector has a performance gain o f about 1.2 dB for f DT  =  0.09, about 1.0 dB for 

f DT  =  0.06, and about 0.6 dB for f DT =  0.03. Again, the performance gain decreases as the SNR 

increases. Note that the performance gains o f the OPSAM signal detector over the conventional 

detector for 16-QAM signaling are smaller than the corresponding performance gains for BPSK 

signaling. Note further that our OPSAM signal detector requires knowledge o f eR and e/5 or equiva­

lently, P2, as well as knowledge of 2ct2, as can be seen from (2.154) and (2.159), while the CPSAM 

signal detector only needs knowledge o f 2 a 2. Both 2ct2 and P2 can be accurately estimated using 

estimators developed in [59]. Tables 2.1 and 2.2 show the performance gains in SNR of OPSAM 

over CPSAM for BPSK and 16-QAM, respectively. For BPSK signaling the gain ranges from 0 dB 

for Rayleigh fading to 4.3 dB for Rician fading with f DT  =  0.09 and K  =  8 at an error rate of 10-1 . 

Observe that OPSAM has the desirable property that its gains over CPSAM are greatest at larger 

error rates, where the gains are most needed. The gain for BPSK signaling comes exclusively from
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the use o f P2, while the large part o f the gain for 16-QAM signaling comes from the use o f P 2 and 

the jo in t processing o f data and pilot symbols contributes some small gain. Next, we investigate the 

problem o f channel state parameter estimation in a UWB system.

2.5 Channel State Parameter Estimation in a UWB System

Ultra-wide bandwidth technology has attracted much research interest recently [60]- [62], In [63] 

and [64], M L  estimators for the multipath gain and the multipath delay in a UWB system that use 

an isolated monocycle and an information-bearing signal, respectively, were proposed. In [65], 

the authors derived the CRLB for the DA M L  channel estimator developed in [64], In this work, 

we first derive closed-form expressions o f the CRLBs for non-data-aided (NDA) M L  channel gain 

estimation and channel delay estimation in a UWB system. Then, we propose some new NDA M L  

channel gain and delay estimators.

2.5.1 UW B System M odel

We consider a time-hopping, pulse position modulation UWB system. The desired user’s transmit­

ted signal is [64]

s(t) =  ] ? p ( t -  kITf  -  dk8t) (2.165)
k

where k is the information bit index, I  is the repetition length, T j is the frame interval, dk E {0 ,1 } is 

the Uth information bit with equal a priori probabilities, St is the additional time shift introduced 

when dk =  1 , and p(t) =  s(f ~  n^ f  ~  cnTc) is the symbol signal with g(t) being the monocycle 

pulse with duration Dg, {c „,0  <  cn <  Nh — 1} being the time-hopping code and Tc being the chip 

time. After transmission over the UWB channel, the received signal can be expressed as [64]

y(0  z=Y !iL \ 'y A t ~ Ti) +  w (t ) (2.166)

where Lc is the number o f multipath components assumed known, and y, and r [ are the gain and 

the delay, respectively, o f the Z-th path to be estimated. The interference-plus-noise component is 

denoted w{t) and is assumed white and Gaussian with power spectral density cr2 [64].
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The received signal is observed over (0, T0] where T0 =  L x  (IT j-). As in [64], we assume that 

/ Qr° s(t — Tt )s(t — z^)dt R2 0 (/j 7^ /2) and Tt <  T j — (Nh — \)T c — 8 (I =  1,2, • • • ,L C) such that the inter­

path interference and the inter-frame interference can be ignored. For independent and identically 

distributed information bits, the log-likelihood function can be derived from (2.166) as

LE Lc 2,-1
ln A (f l)  = C ~ — |  'Z  [lncosh(at ) +  6 t ] (2.167)

ZCT 1=1 k=0

where $  =  [yx, • • ■ , yLc, T j, ■ • •, t J  is the parameter vector, C is a constant independent o f ■&, Ep =  

P2{t)d t is the signal energy, cosh(-) is the hyperbolic cosine function, ak =  X ; l i  7/% , %  =

251 J J + /7 / ?(0 [ p { t - h - Ti )~  ~ tk ~ Ti ~  5t)]dt> r A ; . * «  =  >(0 -  h ~

Tl) +  p (? ~ tk ~ zl~ & t) ]d t,  and tk =  &T7}-.

2.5.2 CRLB for NDA ML UW B Channel Estimation

From (2.167), the second order derivatives o f the log-likelihood function with respect to #  can be 

derived as

9 =  E  ak i% sech2(ak) (2.168a)
dYidYj t z  1

=  YiYJ ^  a'kia'kjsech2(ak) (2.168b)
StiOCj t=o

<92 ln A (tf)  <?2 ln A (tf)  t ,1 , , 2/ .
= ~ d ^ ~  = r; I  w « *  (fl*) (2-168c>

for i ^  j  and i , j  =  1 ,2 , ■ • • ,L C, and

=  ~ ~ T + ' Z  4sech 2 (ak) (2.169a)

=  Yi E K -  +  ^ tanhK )  +  y,«1/sech2( ^ ) ]  (2.169b)
/ 4=0

^ =  +  «fa tanhK )  +  Yiakia'ki ^ 2{ak)} (2.169c)

for i =  1 ,2 , • • • ,LC, where a!ki and aki are the first and the second order derivatives of aki with respect

to Tj, respectively, and b'ki and b'ki are the first and the second order derivatives of f iki with respect to
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t;, respectively. Denote

0 2 ( t ) =  [  f  p ( t ) p ' ( t + T ) d t
Jo

f y i * )  =  [  r  p '{ t)p '{ t +  x)dt
J 0 

IT
^ 4(t ) =  [  f  p ( t )p " ( t+ r )d t .

Jo

(2.170b)

(2.170a)

(2.170c)

In a UWB system with large Tp the functions in (2.170) are approximately zero when D g <

|t | < T f — (Nh — 1 )TC — 8t (see, e.g., [66 , Fig. 4]). Assume that the values o f 8t, |r, — t , |, and1 2

|Tj — Tj ±  <5r| are within this region for l x /  Z2. It can be shown that aki are independent Gaussian 

random variables each with mean ( d ^ p )  and variance p, a'ki are independent Gaussian random vari-

each with mean (d ^ p C ), b'ki are independent Gaussian random variables each with mean (—y;pe), 

and bki are independent Gaussian random variables each with mean (y;p £ ) for k =  0,1, • • • ,L  — 1 

and i =  1,2,- ■■ ,LC, where p =  Ep/{2 o 2) is the signal-to-interference-plus-noise ratio (SINR), 

s =  <f>2(0) /E p, T\ =  & 3(0)/E p, £ =  & 4(0 )/E p, dk =  s ign(l — 2dk), and sign(-) is the signum func­

tion. The values o f £, rj and C, are determined by the shape o f g(t). For a monocycle pulse satisfying 

g2(Dg) =  g2(0), one can further show that e =  0 and aki is independent o f a'ki.

Using the PDFs o f aki, a'ki, aki, b'ki and b'ki obtained, the expectations o f the functions in (2.168) 

and (2.169) can be calculated. Let R — X f l ,  y}- One has

ables each with mean (—d ^ p e )  and variance (pt)), a'^ are independent Gaussian random variables

(92ln A ($ )
(2.171a)

i92lnA(t?) 0 i ^ j

E fc ^ p y 2/ , ,+  //,,] i =  j
(2.171b)

<92lnA(j9) <?2ln A (fl)
(2.171c)

where

F‘Jk y/2nRp

yf(xdk ~ R p  +  p y ]) y](xdk -R p )

R
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yf[p fj + i K  -  rp )}2 p r h j .
R _  y 2  R  '  U - l / A )

f + “ | -  < - >

d, f°° (rfj-Rp)2 - £y?
Hik = ~̂ R p L tanh{x)e 2RP '̂ P̂  + ~Ŷ Xdk~RP̂ dx (2 -174)

n r°° wk-Rpr
L* = v r m  L j ^  {x)e~ 1Rp dx+£• (2-175)

The functions in (2.172)-(2.175) are obtained by taking the expectations o f yiy/a<.;a(t;.sech2(a(t),

y?a|isech2(ajt), y a ^ ta n h ^ ) ,  and [b 'ljY i +  a'^sech2(at ) ] /p  with respect to the Gaussian random

variables, respectively. They can be computed numerically.

Finally, denoting A (2, j )  =  —E  {  }  as ^ e  (/, j)- th  element o f the matrix A, the CRLB

for estimation o f yl is A-1 (/,/) , which is the /-th diagonal element o f the inverse matrix A-1, and
l-  t

the CRLB for estimation o f t, is — 1/ £  [PYihk +  ^ik\ • ®ne sees ^ a t the CRLBs for estimation of
k=0

Yi and r l depend on dk (k =  0,1, • • • , L  — 1), (I =  1,2, • • • , Lc), the SINR and the sample size.

Consider a sample size o f L  =  100. Assume dk =  0 for k =  0,1, ■ • • , 99. Similar to [64] and [65], 

the monocycle pulse is chosen as

s(t) 1 -  16tt
t~ 0 .5 D  x 2

exp[—8tt(-— ^ ^ £ )2] (2.176)
L) od 8

with e =  0 , 1 7 =  125.61 and £ =  —125.71. Consider an UWB channel with L c =  3 and/? =  1.1. The 

SINR is p — with Eb =  Ep. We denote the CRLB for NDA M L  estimation o f y, as CRLBy_NDA, 

the CRLB for DA M L  estimation of y} derived in [65] as CRLBy_DA, and the corresponding CRLBs 

for M L  estimation o f Tj as CRLBT_NDA and CRLBt _da, respectively. Figs. 2.17 and 2.18 show 

the square roots of the CRLBs for M L  estimation o f Y\ and Tl , respectively, at different values 

of SINR. The multipath gains are fixed to Y\ =  0.73, y2 =  0.67 and y3 =  0.35. One sees from 

Figs. 2.17 and 2.18 that CRLBy_NDA and CRLBr_NDA are greater than CRLBy_DA and CRLBT_DA, 

respectively, when T  <  7 dB, and they approach CRLBy_DA and CRLBT_DA, respectively, when
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Figure 2.17. The square root of the CRLB for M L estimation o f y1 at different values o f p, when 

7 j =  0.73, y2 =  0.67 and y3 =  0.35. The CRLB for DA M L  estimation is also shown.

T >  7 dB. Figs. 2.19 and 2.20 show the square roots o f the CRLBs for M L  estimation o f yx and Tj, 

respectively, at different values o f y , . The SINR is set to 0 dB and y3 is set to 0.35 in the calculations. 

Again, CRLBy_NDA and CRLBT_NDA are greater than CRLBy_DA and CRLBT_DA, respectively. They 

decrease as y, increases. Interestingly, the CRLB for the NDA case is close to the CRLB for the DA 

case, raising the question o f whether one can obtain UWB channel estimation almost as good as in 

the DA case without the overhead expense o f pilot symbols.

2.5.3 Novel NDA M L UWB Channel State Parameter Estimators

In [64], the authors approximated (2.167) with [64, eq. (25)]

/  F L c  „
(2.177)

ZCT 1=1 k=o

to derive NDA M L  estimators for the UWB channel. The approximate log-likelihood function in

(2.177) was obtained by using the approximation in [64, eq. (24)]. Equivalently, one can also obtain
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Figure 2.18. The square root o f the CRLB for M L  estimation o f zl at different values o f p, when 

7 ] =  0.73, y2 — 0.67 and y3 =  0.35. The CRLB for DA M L  estimation is also shown.
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Figure 2.19. The square root o f the CRLB for M L  estimation o f y1 at different values o f y(, when 

p =  0 dB. The CRLB for DA M L estimation is also shown.
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Figure 2.20. The square root o f the CRLB for M L  estimation o f T, at different values o f yr , when 

p =  0 dB. The CRLB for DA M L  estimation is also shown.

(2.177) from (2.167) by using the approximation of

lncosh(a(t) «  0. (2.178)

Note that the performances of the NDA M L estimators depend on the accuracy o f the approxi­

mation to (2.167). Note further that (2.178) has large approximation errors, especially when the 

SINR is large. One can improve the performances o f the NDA M L  estimators in [64] by using an 

approximation that is more accurate than (2.178). In this work, we propose using the approximation

In cosh (ak) ~  ^ T / l ' -kl I (2.179)
1=1

which is obtained by using the approximatiion In cosh ( a j  m | ak\ together with the approximation 

\ak\ ~  7/kL/l' By using (2.179), the log-likelihood function in (2.167) can be approximated as

ln A (0 )
LEn L- 1

1=1 k=0

Lc

1=1

(2.180)
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Comparing (2.180) with (2.177), one sees that there is an additional term E£=d E f l j  Yi\au\ ’n (2.180). 

Similar to [64], one has from (2.180)

each o f 72(Ty), I =  1,2, ■■ ■ ,LC, the NDA M L  estimates o f r ; , Z =  1,2, • ■ • ,LC, are obtained by locating 

Lc maximas o f J2(z) [64], Denoting as the estimate o f r ; , the NDA M L  estimate o f yy y , is

where we assume that the attenuation is always positive. The performances o f the new NDA M L 

estimators, the NDA M L  estimators and the DA M L  estimators in [64] are compared as follows.

Without loss of generality, we focus on the estimation o f T1 and yi ■ For convenience, we denote 

the new NDA M L  estimators for z] and y, as tnda1 and yvft41, respectively, the previous NDA 

M L  estimators for Tj and y1 in [64] as zNDA2 and yA7M2, respectively, and the previous DA M L 

estimators for Tj and yt in [64] as xDA and yDA, respectively. Using the Gaussian monocycle as

defined in (2.176), the received signal is sampled with a sampling interval o f Ts =  0.1 Dg. We

T
choose I  =  5, Nh =  5, 8t =  1.2D g, Tj- =  20Dg, and Tc =  j f .  Denote N U  as the number of users 

in the UWB system. The cases when N U  =  1, N U  = 1 0  and N U  =  20 are considered. We use a 

sample size of L  =  10. Similar to [64], the number o f multipath components is assumed to be L c =  3, 

the multipath delays are the same for all users and are fixed at T; =  5lD g, / =  1,2,3, the multipath 

attenuations vary from user to user and are assumed to be independent Rayleigh random variables 

with an exponential power-delay profile o f E {y 2}  =  De~1/4, 1 =  1,2,3, where D  is the normalization 

factor. The desired user’s multipath attenuations are fixed at yl =  0.73, y2 =  0.67 and y3 =  0.35. The 

interfering users have transmitted signals similar to that in (2.165), except that their time origins are 

randomly selected from 0 to T j to reflect the asynchronous operation. Each interfering user has the 

same transmitted signal power as the desired user. Note that, in the simulation, the values of Tp I, 

Nh, Lc and L  are fairly small, as the simulation time becomes intolerable for large values of Tp I,

(2.181)

where 7 (r,) =  and J  =  72(r/). Since the maximum of J  is found by maximizing

(2.182)
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Figure 2.21. The normalized biases o f tndav xvm2 and t nA for different numbers of users.

Nh, Lc and L, and our purpose here is only to show that the new design leads to a better performance. 

In practice, the values of Tj, I, Nh, Lc and L  w ill be much larger. Note also that, in addition to the 

M A I, the simulation carried out here also takes the inter-symbol and the inter-frame interference 

into account, as T) >  T j — (Nh — 1 )TC — 8t for I =  1,2,3 in this case.

Figs. 2.21 and 2.22 show the normalized estimator biases and the normalized root mean squared 

errors (RMSEs) o f r /Va41, t NDA2 and zDA, respectively, where the normalization is with respect to 

Dg [64]. One sees that the performance o f zNDA1 improves when the SINR increases and/or the 

number of users decreases. A t large values of SINR, the estimator exhibits a performance floor, 

caused mainly by the interferences in the system. Comparing tndm  with t NDA2, one sees that tndm 

outperforms zNDA2 for all the cases considered, as (2.179) has smaller approximation errors than

(2.178). Also, comparing zNDAl with tda, one observes that tnda, underperforms tda, as expected, 

as t DA uses pilot symbols. When NU =  1 and the SINR is large, zNDA( approaches t DA.

Figs. 2.23 and 2.24 show the normalized estimator biases and the normalized RMSEs of Yn d a v  

YNDa 2 ar|d Yd a ' respectively, where the normalization is with respect to Y\ [64]. Again, the perfor­

mance of Yndai imProvos as the SINR increases and/or the number o f users decreases. Comparing
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Figure 2.26. The normalized root mean squared errors o f Yn d a i an^  Yd a  at small values of SINR.

Y n d a i with Ynda2 ' one sees that t n d m  performs at least 5 times better than t NDA2 for all values of 

SINR considered. Also, comparing t NDAl with rDA, one sees that Yndm underperforms Yda i n most 

cases. However, when N U  =  20 and the SINR is small, the RMSE of Y n d a i is slightly smaller 

than that of Yd A' This is caused by the fact that the estimate bias shifts from a negative value to a 

positive value as the SINR decreases. Figs. 2.25 and 2.26 compare the normalized estimator biases 

and the normalized RMSEs o f Y n d a i an<̂  Yda when the SINR decreases further. One sees that that 

the absolute value o f the bias, and therefore, the RMSE o f Yndax are aSain larger than those o f Yda 

when the SINR is small enough. This confirms our explanation. In the next chapter, we w ill study 

channel model parameter estimation in wireless communication channels.
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Chapter 3

Wireless Channel Model Parameter Estimation

In the previous chapter, we have derived new channel state parameter estimators and new receivers 

that take channel estimation errors into account. Some applications may require knowledge o f the 

channel model parameters as well. In this chapter, we estimate the model parameters in wireless 

communication channels. Specifically, we derive estimators for the parameters of three common 

fading distributions, Rayleigh, Ricean and Nakagami-m. Research in this area has been conducted 

by several researchers previously. In [9], [67]- [72], maximum likelihood (M L) and moment-based 

estimators for the Ricean parameters were proposed. In [73]- [80], estimation of the m parameter 

was studied in detail for the Nakagami-m fading channel. Some M L  estimators for £2 on Rayleigh 

channels were derived in [81]. Most o f these works are based on processing samples from a noise­

less channel. However, in practical systems, one must process noisy samples. In this chapter, we 

first design new estimators for the fading distribution parameters by using noisy channel samples, 

with or without knowledge of the noise power. We then derive M L  and approximate M L  estimators 

for the Ricean K  parameter by using fading phase samples, a method not studied previously.

3.1 Channel Model Parameter Estimation with Known Noise Power

In this section, we derive M L  and/or moment-based estimators for £2 o f the Rayleigh distribution in

(1.1), K  and £2 of the Ricean distribution in (1.3), and m and £2 of the Nakagami-m distribution in
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(1.4), assuming known noise power.

3.1.1 System M odel

The transmitted signal is assumed known in the estimation o f the fading distribution parameters. 

This is the case for received signal samples taken during the transmission o f a training sequence 

(which may be for channel estimation, synchronizer training or equalizer training). This is also 

the case when the receiver makes correct decisions which occur with high probability in a well 

designed system. The fading in the channel is assumed slow and flat. The fading signal is corrupted 

by additive white Gaussian noise (AWGN), which is independent o f the fading. The received signal 

in the /-th symbol period can be expressed as

where Sj(t) is the transmitted signal in the /-th symbol period, r ( is the fading envelope in the /-th 

symbol period having a Rayleigh, Ricean or Nakagami-m distribution, Qt is the fading phase in the 

/-th symbol period and nt (t) is the complex AWGN on the channel in the /-th symbol interval with 

E {n l (t)n * ( r ) }  =  N05 (t — r )  where <5(■) is the impulse function. The value o f N0 is assumed known. 

The received signal y l (?) is correlated with the known transmitted signal (?) and normalized by its 

symbol energy £). The absolute value o f the normalized correlator output is

discussion, we assume that the transmitted signals are o f equal energy. In this case, El =  E for any 

/ and 2 a f =  2<r2 =

3.1.2 Estimators for the Rayleigh Distribution Parameter

When the channel is Rayleigh faded, it can be derived from (3.2) that the PDF of zt is

yi(t) =  riejeisi( t ) + ni( t ) (3.1)

(3.2)

-J Nwhere nt is a complex Gaussian random variable with mean zero and variance 2 a f =  In the

e a+2a2 (3.3)
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Using (3.3), the likelihood function for M L  estimation o f £2 can be derived. By differentiating the 

likelihood function with respect to £2, setting the derivative equal to zero and solving the resulting 

equation, the M L  estimator for £2, ClRay, is

^  =  7 £ ^ - 2ct2’ (3-4)
L /= l

where L  independent noisy channel samples are used. It can be proved that the likelihood function 

for £2 =  0 is smaller than that for (3.4) when >  1- Note that when the noise level is

small compared to the symbol energy, the term 2cr2 in (3.4) can be ignored and the resulting M L  

estimator for £2 is that derived in [81]. Note further that i f  the noiseless-based M L  estimator derived 

in [81] is used in the noisy Rayleigh channel, the estimate obtained w ill be larger than that o f our 

estimator in (3.4), giving a pessimistically modeled channel. Finally, i f  & Ray <  0 in practice, the 

estimate w ill be discarded.

The mean and the variance of & Ray are derived as E{ClRay}  =  £2 and Var{ClRay\  =  j(£2 +  

2a2)1. The Cramer-Rao lower bound (CRLB) for £2 can be derived analytically and is j(£2+ 2cr2)2. 

Therefore, the M L  estimator for £2 given in (3.4) is optimal in the sense o f minimum variance.

3.1.3 Estimators for the Ricean Distribution Parameters

The PDF o f zi in a Ricean faded channel can be shown from (3.2) as

7  z f+ P 2 p 7

/ z ,W  =  >  0. (3-5)

which is again a Ricean distribution. Comparing (3.5) with (1.2), one notes that effectively the 

mean power of the line-of-sight (LOS) component remains the same while the mean power o f the 

“ scattering”  components is changed from 2a 2 to 2a 2 +  2a2, showing the effect of noise in the 

estimation. Denoting £2' =  £2 4- l a 2 =  P2 +  2a 2 +  2a 2 and K ' =  2a2+2 a'1 ’ can t>e rewritten in 

terms o f £2' and K 1. The M L  estimator for £2', £2', is

& = lT i z t  (3.6)
u i=l

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the M L  estimator for K 1, K 1, is determined by the relation

1 1 L z 2K ' +  1 L h ( ^ K ' { K '  +  l ) - j ~ )
 +  2K  + 1  X '   V g;___5 _ = o  (3 .7)

K ' + 1 £ /=1 %/q7 L ^ ' ^ '  +  l )  i= i I 0( 2 ^ K '{K ' +  l ) - ^ )

where, again, L  independent samples are used. The invariance principle o f M L  estimation maintains 

that the M L  estimate o f a transformation o f several parameters equals the value obtained by applying 

the same transformation to M L estimates o f each parameter [15]. Using the invariance principle 

here, one has that the M L  estimators for Q  and K, ClRice and K, are

&Rice =  & ~ 2° 2 (3.8a)

(3.8b)
Q '~ 2 a 2(Kl +  l)

where £2' — 2a2 (K1 +  1) >  0 as 2a 2Q! >  0. Several observations can be made from the results in 

(3.6), (3.7) and (3.8). First, the M L  estimates in (3.6) and (3.7) have the same forms as the noiseless- 

based M L  estimators derived in reference [70]. But the M L  estimators given in (3.6) and (3.7) use 

samples from a noisy Ricean channel while the noiseless-based M L  estimators in reference [70] 

used samples from a noiseless Ricean channel. Second, the noiseless-sample-based estimators w ill 

pessimistically model the fading channel i f  they are used in a practical noisy channel. Finally, note 

that when the noise level in the channel is very small and/or the symbol energy is large, 2cr2 <C £2'. 

In this case, the noiseless-based M L  estimators and the M L  estimators derived here w ill yield nearly 

the same estimates.

The mean and the variance o f ClRice are E{Q.Rife} =  £2 and Var{ClRice]  =  + 2 c r2)2 +

l(k+ l) (g fT  +  2cr2). The CRLB for ClRice has to be calculated numerically. On the other hand, 

estimation of the K  parameter requires deriving K ' by solving a highly non-linear equation whose 

complexity increases with the sample size. Therefore, both performance analysis and implementa­

tion o f (3.8b) are difficult. In the alternative, we propose some moment-based estimators for K. The 

n-th order moment o f the noisy Ricean sample is [1, p. 48]

Hn = E { 4 }  =  1 ; ^ )  (3-9)
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where !/*/(■, ■;•) is the confluent hypergeometric function [2, p. 504]. As we mentioned in Chapter 

1, in moment-based estimation, the true value of [ i„  is usually approximated by the value o f (ln =  

lX f=  i t f -  By extending the result o f [68, eqn. (3)] to the noisy sample case, one moment-based 

estimator for K ', K 1 is

( 2 - $

K ' m b i  =  '  I— *— ■ (3 -1Q)

The corresponding moment-based estimator for K, KMBV can be derived by using (3.10) in (3.8b), 

resulting in the estimator

MB\ — /  j  \  (3-11)

where the M L  estimator for O' given in (3.6) is used.

Another moment-based estimator can be derived by using the relation a jF ^a -l-  l,b \x ) =  (x +  

2a — b)^Fx(a,b\x) +  (b — a )xFx{a — 1,£;jc) [2, eqn. (13.4.1)]. One has the moment-based estimator 

for K ' , K ' B2, as

3 0 'fi, - 2 / t ,  +  O '- i/A ? -  A - 1A3 +  A - 1A1 &
K 'mb2 = --------------------------— ----- =-----------------------  (3.12)

MB2 2 /1 3 - 2 /1, 0 '

since =  ^ '+ 1) ^ 2 ) ~  2r ( i /2)(g'+i)*- The estimator for K > ^mbi- is derived by using (3.12)

in (3.8b) as

/12( 3/12^1 — 2 /I3 +  a) 
j l 2(2fi3 - 2 f i l j l 2) - 2 ( j 2(fi2f l l + a )* mb2 =  - P j r r r r ,  , a  (3-13)

where a =  /t2 f i f  — and the M L  estimator for O ' given in (3.6) is also used.

3.1.4 Estimators for the Nakagami-m Distribution Parameters

As previously, one has to find the PDF of zt in order to derive estimators for the parameters m and 

O. It can be shown by integration that

Ẑ ^
/ 7 (z/) =  a 1 ------ ^ - 7-7 -)>  Z/ >  0 (3-14)

a ( x k  +  l )m 2a2 +  * g *
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in a noisy Nakagami-m fading channel. Note that i f  the asymptotic expansion o f the confluent hy­

pergeometric function [2, eqn. (13.5.1)] is used in (3.14) and 2a 2 is set equal to 0, the PDF of the 

noiseless samples in a Nakagami-m fading channel can be derived, as expected. Using (3.14), the 

likelihood function can be derived and the M L  estimators for m and £2 could be found by differenti­

ating it with respect to m and £2. Unfortunately, the results are complex and do not lead to tractable 

estimators. We propose moment-based estimators for £2 and m instead. The n-th order moment of 

the noisy Nakagami-m channel sample is

*  =  * « }  -  (2 ^  +  l ) ( ; ^ r . f K =  +  1 ; l ; i ^ )  (3.15)

where F(-, •; ■;•) is the hypergeometric function [2, p. 556]. From [2, eqn. (15.2.11)], one has { j i2 ~  

2 g 2)Q .+  (6 o-2^ 2  -4 < t4 -  n4)m +  i^Q m  =  0 and -  <r2ji_j)£2-F (8g 2/j,x - 2 g 3 -2 (T V _ j)m  +  

2iu1m£2 =  0. Solving the equations for m and £2, moment-based estimators for m and £2 are

fa _  a 2 ( b l C2 ~ b 2Cl )  +^2(a2Cl ~ a l c7)  (3
C2i b2Cl b l c2̂

q  _  al ( b l C2 ~  b2C\ ) +  b2(a2C\ ~  a \ Cl )  n i 7 v
c2(alC2- a 2Cl) (3‘17)

where ax =  — 2ct2, =  6u2 — 4a 4 - f lA, C[ =  p.2, a2 =  f i j — a 2fx_x, b2 =  8a2f ix — 2fX2 —

2cr4jU_1 and c2 =  2(xv

3.1.5 Numerical Results

Here, we use Monte Carlo simulation to examine the fading distribution parameter estimators in 

terms o f the sample means and sample root mean squared errors (RMSEs). Sample sizes o f L  =  100, 

L  =  500 or L  =  1000 are used and noise variances o f a 2 =  0.1 and <r2 =  0.5 are considered. Previous 

work [68]- [80] has shown that fewer samples do not provide reliable estimates.

Figs. 3.1 to 3.3 show the performances o f the moment-based estimatiors KMm given in (3.11) 

and KMB2 given in (3.13), where negative estimates have been set equal to 0 when obtained. Figs. 3.1 

and 3.2 show the estimator means normalized to the true value o f K  to better show the differences. 

The estimators KMm and KMB2 have positive biases, but the biases are very small, less than 3% for
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Figure 3.1. Comparison of the normalized sample means o f Km i  given in (3.11) and KMB2 given 

in (3.13) with the true value for L  =  500, cr2 =  0.1 and L =  500, a 2 =  0.5.
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Figure 3.2. Comparison of the normalized sample means o f KMBl given in (3.11) and KMB2 given 

in (3.13) with the true value for L  =  1000, a 2 — 0.1 and L  =  1000, a 2 =  0.5.
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3.5

9 —  CRLB for L=500,cr=0.1
L=500.cr=0.1 for hatK

L=500.<r=0.1 for hatK

Q- -  CRLB for L=500.ct2=0.5
L=500.<r=0.5 for hatK

L=500.cr=0.5for hatK

CRLB for L=1000.o2=0.1
L^OOO.a^O.1 for hatK

L=1000.a =0.1 for hatK

CRLB for L=1000,<r =0.5 
L^OOO.o^O.Sfor hatK

- * ■ *  £SL=1000.cr=0.5 for hatK

r r ?

10 12 
True value of K

Figure 3.3. Comparison o f the RMSEs o f KMBX given in (3.11) and KMB2 given in (3.13) with the 

CRLBs for L =  500, a 2 =  0.1, L  =  500, <72 =  0.5, L =  1000, a 2 =  0.1 and L  =  1000, <72 =  0.5.

most values o f K  shown in Figs. 3.1 and 3.2. Also, in the case when cr2 =  0.5, the normalized 

mean increases with the value o f K, while in the case when a 2 = 0 .1 , the normalized mean nearly 

remains constant. Fig. 3.3 shows the RMSEs of the estimators. Also shown in Fig. 3.3 are the 

corresponding CRLBs, computed numerically, to benchmark the RMSEs o f the estimators. The 

CRLBs for K  — 0 go to infinity, and they are not shown in the figures. These estimators have small 

positive deviations from the CRLBs. The biases and the deviations can be reduced by increasing 

the sample size and/or decreasing the noise variance, as can be seen in Figs. 3.1 to 3.3. Comparing 

Kmbi with k MB2, one notes that KMB2 outperforms KMBV This is expected because the former uses 

lower order moments and, therefore, is less susceptible to large outlying noise samples. Figs. 3.4 

and 3.5 show the performance of ClRice given in (3.8a). The bias o f ClRice is less than 0.1% of the 

true value. It attains the CRLBs graphically when L  =  1000. When L  =  100, the estimator has very 

small deviations from the CRLBs at large values o f Q. Figs. 3.6 and 3.7 show the performance of 

ClRay given in (3.4). One sees that it has similar performance to ClRice.
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Figure 3.4. Comparison o f the normalized sample mean o f & Rice given in (3.8a) with the true value 

for L =  100, a 2 =  0.1, L  =  100, cr2 =  0.5, L  =  1000, a 1 =  0.1 and L =  1000, a 2 =  0.5.
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Figure 3.5. Comparison o f the RMSE of ClRice given in (3.8a) with the CRLBs for L — 100, cr2 =  0.1, 

L =  100, a 2 =  0.5, L  =  1000, cr2 =  0.1 and L  =  1000, a 2 =  0.5.
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Figure 3.6. Comparison o f the normalized sample mean o f CiRay given in (3.4) with the true value 

for L =  100, a 2  =  0.1, L  =  100, a 2  =  0.5, L  =  1000, a 2  =  0.1 and L  =  1000, <r2 =  0.5.
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Figure 3.7. Comparison of the RMSE of ClRay given in (3.4) with the CRLBs for L  =  100, a 2  =  0.1, 

L =  100, a 2  =  0.5, L =  1000, o 2  =  0.1 and L  =  1000, a 2  =  0.5.
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Figure 3.8. Comparison o f the normalized sample mean o f m given in (3.16) with the true value for 

L  =  500, a 2  =  0.1, L =  500, a 2  =  0.5, L  =  1000, a 2  =  0.1 and L =  1000, cr2 =  0.5.

o  CRLB (or L=500 in noiseless case 

L=500,ct2=0.1 
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+  CRLB for L=1000 in noiseless case 
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Figure 3.9. Comparison o f the RMSE of m given in (3.16) with the CRLBs for L =  500, a 2  =  0.1, 

L  =  500, a 2  =  0.5, L  =  1000, a 2  =  0.1 and L =  1000, cr2 =  0.5.
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Figure 3.10. Comparison of the normalized sample mean of QNaka given in (3.17) with the true 

value for L =  100, cr2 =  0.1, L =  100, cr2 =  0.5, L  =  1000, a 2  =  0.1 and L =  1000, a 2  =  0.5.

Figs. 3.8 and 3.9 show the normalized sample mean and RMSE, respectively, o f m given in 

(3.16), where estimates less than 0.5 have been set equal to 0.5 when obtained. The derivation of 

the CRLB for m is untractable in a noisy Nakagami-m channel. The CRLB for m in the noiseless 

Nakagami-m channel is used instead in Fig. 3.9. One sees from Fig. 3.8 that the estimator m has 

a positive bias, but the bias is small, less than 5% for most values o f m. Also, from Fig. 3.8, one 

sees that the noise has a greater influence on the estimator performance than does the sample size. 

Consider the case when a 2  =  0.5; not only is the normalized mean in this case larger than that in the 

case when a 2  =  0.1, but the normalized mean increases with the value o f m as well. From Fig. 3.9, 

one sees that the estimator m has a positive deviation from the noiseless CRLB. The performance 

o f the estimator m is greatly improved when the noise variance decreases and/or the sample size 

increases, as can be seen in Figs. 3.8 and 3.9. Figs. 3.10 and 3.11 show the performance o f ClNaka 

given in (3.17). Most o f the biases of & Naka are less than 1%. Also, even when the sample size is 

small (L=100) and the noise variance is high (cr2 =  0.5), the deviation from the CRLB is still small.
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Figure 3.11. Comparison o f the RMSE of & Naka given in (3.17) with the CRLBs for L =  100, 

a 2  =  0.1, L  =  100, <7 2 =  0.5, L =  1000, rr2 =  0.1 and L  =  1000, a 2  =  0.5.

3.2 Channel Model Parameter Estimation with Unknown Noise Power

In the previous section, novel noise-based estimators for fading distribution parameters were devel­

oped. Derivation o f these estimators requires knowledge o f the noise power in the channel. How­

ever, in some cases, it  is necessary to estimate fading distribution parameters without knowledge 

o f the noise power in the channel, and therefore, it is required to jo in tly  estimate the noise power 

and the fading distribution parameters. In this work, estimation o f fading distribution parameters 

without knowledge o f the noise power in the channel is studied.

3.2.1 System M odel

Use similar assumptions to those previously, except that the values o f N 0  or 2 a 2  are unknown now. 

Express the received signal in (3.1) in a vector form, where the /-th component is

yu =  r iel6 lsi i + n u (3-18)
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with ya =  JTy i( t) f i( t)d t, sa =  j Tsl { t ) f i {t)d,t, nu =  f Tnl ( t ) f i (t)dt, T  being the time duration of 

one symbol signal, and { / ) ( f ) } f= i being a set o f I  orthonormal functions. The noise samples nu, 

i =  1,2, • • • , / ,  are independent Gaussian random variables each with mean zero and variance A 0 [1]. 

The likelihood function in terms o f the samples obtained from the /-th symbol can be derived as

f{y i\N 0 , rv 6 i ) =  e x p j - i - X k - ^ ' ^ l 2!  (3-19)

where y; =  \yu ,y 2 i, • • • i>7 /] is the received signal samples in the /-th symbol interval. Denote

£ / =  I > a l 2 (3-2°)
i= 1

Zl =  E i=i
(3.21)

(3.22)

and

xif, =  arctan — r
1 [ R e i i L y i t f , } .

as the energy of the /-th transmitted signal, the envelope and the phase of the normalized corre­

lator output correlating the received signal and the transmitted signal in the /-th symbol interval, 

respectively. Note that (3.21) is also given in (3.2). As previously, we consider the case when the 

energies of the transmitted signals are the same. In this case, Et =  E and 2o f  =  2<r2 =  ^  for all 

/. Also, define ^  as the transmitted-signal-to-noise ratio (TSNR) (the average signal-to-noise ratio 

in the fading channel equals the product o f the TSNR and the mean fading power). The likelihood 

function in (3.19) can be rewritten as

where 2a2 is unknown.

3.2.2 Estimators for the Rayleigh Distribution Parameter

In order to estimate Q, a jo in t estimation o f 2cr2 and Q, is needed as the noise power in the channel 

is also unknown. The likelihood function for jo in t M L  estimation of 2cr2 and Q in terms of the
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samples obtained from the I-th symbol can be derived as

/ ( y / l<7 >£2) =  [  [  (3-24)
Jo J —n

where f ( y l \a ,r l , 6 l ) is the likelihood function given by (3.23), / /f(r; |Q) is the PDF o f the Rayleigh 

distribution given by (1.1), and / e (0; ) =  i  is the PDF of the fading phase. Solving the integral in 

(3.24), one has

'W " '0 ’ = ( s k » )  2 ^ Q exp{ - d ^ , | l,," |2+ i - t o f e } '  <3-25)

In practice, more accurate estimate can be obtained by using a sequence o f symbols instead o f one 

single symbol. Assuming L independent symbols are available, the likelihood function in terms o f 

the samples obtained from the L symbols can be derived from (3.25) as

/ ( y l ’ ) \ 2 n E o i )  V2 ct2 +  q J  P |  2E g 2  +  2 a 2 2<t2 +  Q J  ( }

where y =  [y i, y2 1' '  • >yzJ's the sample vector o f L  symbols. The M L  estimators for 2<r2 and Q, in 

a noisy Rayleigh fading channel can be derived as

2<j2= ( 1 - 1 ) L E  <3,27)

and

&Ray =  &Ray - ^ 2  0-28)

where £2'Ray =  £ Xf_ 1 h - Note that the M L  estimator for Q in (3.28) derived with unknown 2<r2 has

similar form to that in (3.4) derived with known 2cr2, except that the true value of 2cr2 in (3.4) is

replaced by the M L  estimate o f 2cr2 given in (3.27).

The performances o f the estimators 2cr2 and & Ray can be analyzed as follows. Rewrite (3.27) as

2cr2 = 'Z\yii\2-Ezf
i= 1

(3.29)
( I - l ) L E f r

It is proved in Appendix B that Yli=\ b ,-/!2 ~  Ezj is independent o f zt and has a central chi-square 

distribution with (21 — 2) degrees o f freedom and parameter Moreover, since noisy samples
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taken during different symbol intervals are independent, [X£=i |) '(7|2 — Ezf] is also independent 

of Yk= i zf. Thus, 2cr2 is indpendent o f & Ray and has a central chi-square distribution with (2IL  — 2L) 

degrees of freedom and parameter 2 ( i- i) le  • mean and the variance o f 2cr2 are E {2 a 2}  — 2a 2  

and V ar{2 <7 2} =  (2cr2) 2. The performance o f & Ray in (3.28) can be determined similarly.

Using results in the previous section, one can derive E {z f}  =  £2 +  2(7 2 and Var{z?} =  (£2 +  2cr2)2. 

Since the random variables & Ray and 2a 2  in (3.28) are independent, the mean and the variance of

&Ray are =  Q and V a r {& R a y }  =  1  +  1<y2) 2 +  (I=T)L i 2^ ) 2•

A  benchmark for unbiased estimators is the Cramer-Rao lower bound (CRLB) [17]. Since 

both 2a 2  and £2 are unknown, the CRLBs for estimation of 2 c 2 and £2 in a noisy Rayleigh fading 

channel are the (1,1) and (2,2) elements of J-1 [17, eqn. (259)], respectively, where J is the Fisher 

information matrix defined as

p f  d 2 l n /  1 p f  d2l n f  -> 

_E f  d 2] n f  -i _ F r i 2_ln / -|
n  t  dSldlol J

(3.30)

Using the likelihood function in (3.26), the elements in J can be derived as —E { }  =  (2<t2)2

(2ct2+Q)2 > ~ E {~dQ?~} =  (2<y2+Q)2 ’ and =  ( ic h w  Putting these in

(3.30) and solving (3.30) for its inverse matrix, the CRLB for estimation o f 2cr2 in a noisy Rayleigh

fading channel is (2cr2 ) 2 and the CRLB for estimation o f £2 in this case is £(£2 +  2cr2 ) 2 +

(2cr2) 2. Therefore, the M L  estimators for 2cr2 and £2 in a noisy Rayleigh fading channel,

2a 2 and & Ray, given by (3.27) and (3.28), respectively, are unbiased and achieve the CRLB’s. They

are optimal in the sense o f minimum variance.

3.2.3 Estimators for the Ricean Distribution Parameters

Here, we derive estimators for Ricean distribution parameters, K  and £2. As previously, a jo int 

estimation o f 2a2, K  and £2 is performed since 2cr2 is unknown. The likelihood function for jo int 

M L  estimation of 2cr2 and the Ricean distribution parameters can be derived by using integration as

f ( y l \a ,a ,P ) =  [  [  /(y jC T ,rp 0/) / f l 0 (r/ ,0/ |a,P)r//-z<iei
JO J - n  '

(3.31)
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where f RQ{rRQl \a^P) is the jo in t PDF of the fading phase and the fading envelope in a Ricean 

channel. Solving (3.31), one has

f{y i\o ,< * ,P )  =  ( 2 ^ 2 )  2 g 2  +  2 a 2^° ( 2 (t2 +  2 a 2)

{ 1 1 2a 2 z2  P2  1
~~ IE g 2  ^  |2 +  2cr2 (2cr2 +  2a 2) ~  2a 2  +  2a 2 j '  ° 32)

I f  L  independent symbols are used in the estimation, the likelihood function is then

u  /  n^-2 \ L  L
E
1=1

=  ( ^ h )  ( 2 & T 2 & )  f t j i . ( 2 ^ 5 ^ )

[  1 *  ' .  l2 2a 2 *  ,  IP 2  \
exP |  2 E a 2 £ ^ r^ x ll ^  2 a 2 (2 o 2  +  2 a 2) ^  2 cr2 +  2 a 2 J

(3.33)

Again, denote Q' =  P2 +  2 a 2 +  2<r2 and A"' =  ic /+ 2 cj2 • Rewr' t' ng (3.33) with Q ' and AT', the M L  

estimators for 2cr2, £2' and A'' in a noisy Ricean fading channel can be derived as

( I -  t)LE J j  J  |y«12 ”  ( / — 1 ) L Z' ’ (334)

(3-35)

2 cr2 =

L ' i= 1

and

1 * 2 ,  2 K ' M L + 1  *  h ( 2 ^ K 'ML{ k 'ML+ \ y l ) ;1 1 _ L ̂  z'2 ̂  mz, ~ ^ 1 v V v

^ +  1 L '=1 ' L V/ / e V ( * V + 1) '=1 Io{2 yJk 'ML(K'
4 =  0 (3.36)

V +  !)4 )

where 4  =  —A —  and /,(■) is the first-order modified Bessel function o f the first kind [2, p. 374].
Venice

One sees that the M L  estimates o f 2cr2 and Q', 2cr2 and & 'Rice, can be calculated in explicit forms 

given by (3.34) and (3.35), respectively, while the M L  estimate of K 1, K 'ML, is im plicitly determined 

by (3.36). According to the invariance principle of M L  estimation [15], the M L  estimates of K  and 

Q are, respectively,

Km l =  K 'MLZ f . e   (3-37a)
Q'Rice- 2 o 2 (K 'ML +  l)  
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&Rice =  & R ic e - l° 2- 0.37b)

Again, one sees that the M L  estimators for Q and K  of the Ricean distribution derived when 2cr2 

is unknown, ClRice and KML, given in (3.37a) and (3.37b), respectively, have similar forms to those 

given in (3.8) derived when 2cr2 is known, except that the true value o f 2<r2 in (3.8) is replaced by 

its M L  estimate given in (3.34).

The mean and the variance o f 2cr2 in (3.34) are the same as those o f the estimate given in 

(3.27). The CRLB for estimation o f 2 a 2  in a noisy Ricean channel can be derived as (I-l)L  (2(t2) ' 

Therefore, the M L  estimator for 2cr2 in a noisy Ricean fading channel is optimal in the sense of 

minimum variance, as was that in a noisy Rayleigh fading channel, as necessary since Rayleigh 

fading is a special case o f Ricean fading. The mean and the variance o f ClRice in (3.37b) can be 

derived as E{C lRice}  =  Q and Var{ClRice)  =  z ( ^ r  +  2cr2 ) 2 +  I ^ ( ^ T +  2cr2) +  (2ct2) 2.

The CRLB for estimation o f Q in a noisy Ricean channel has to be calculated numerically. Next, 

we propose moment-based estimators for K  in a noisy Ricean fading channel with unknown noise 

power. We use {z ; } ^ =1 as noisy channel samples for moment-based estimation of K  in this paper. 

One could use y ;, samples o f the received signal, as samples for moment-based estimation o f K, 

as one did in the M L  estimation o f K. However, the choice o f zt is intuitively motivated as it was 

shown in Chapter 2 that z{ in (3.21) is a M L  estimate o f r {.

To derive moment-based estimators for K  when knowledge o f the noise power in the channel is 

unavailable, we replace the true value o f 2 <r2 in the estimators given in the previous section with 

the M L estimate o f 2cr2, 2cr2, given in (3.34). Then, moment-based estimators for K  using noisy 

channel samples when 2 cr2 is unknown are given as

1 / 2  A f — £ 4
m b i  =  7  / \  7" (3.38)

( £ 2  -  v 2£2 _  £4 )  -  2(7

and
£ 2 (3£2£i -  2 £ 3  +  £ 2  j £ ! 2 - £ _ i£ 3+  £ _ !£ !£2)

K MB2 = ---------------------------------- r --------y- -----------= = _ = = - .  (3.39)
£2(2£3 -  2£1£2) -  2<72(/t2iu1 +  £ 2  ̂ /£ 2 -  A _i£3 +  £ - r £ i£ 2 )

Next, we develope estimators for the Nakagami-m distribution parameters.
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3.2.4 Estim ators for the Nakagami-m Distribution Parameters

Estimators for Nakagami-m distribution parameters, m and £2, can be developed by using similar 

techniques to those used in the previous sections. We derive the likelihood function for jo int M L  

estimation o f 2 c 2, m and £2 first. In a noisy Nakagami-m fading channel, this function can be 

obtained by solving the integration

/ ( y ; |c,m,£2) =  f  f  / ( y j c , ^ ,  0/ ) / f fe (r/ , 0,1m, £ 2 ) ^ 0 , .  (3.40)
JO J —n  ’

One has from (3.40)

/(y,|<7,m,Q) =  ( ^ )  <3'41)

where is the confluent hypergeometric function [2, p. 504]. When using L  independent

symbols, the likelihood function for jo int M L  estimation is

(3.42,

The M L  estimators for 2 c 2, m and £2 might be found by using the log-likelihood function given in 

(3.42). Unfortunately, the difficulty in calculating the derivative o f the log-likelihood function with 

respect to m makes it untractable. Therefore, moment-based estimators for m and £2 are proposed. 

Again, our moment-based estimation of Nakagami-m distribution parameters is based on samples 

{ zi} \= y  The n-th order moment of the noisy Nakagami-m channel sample zt is given in (3.15). 

Using the second order moment of z{, one moment-based estimator for £2, & Naka, is

^N aka =  ^ N a k a  ~  (3.43)

L
where & 'Naka =  z X  z2  is the noiseless-based M L  estimator for £2 mentioned in [75] and 2 c 2 is 

the estimate of 2 c 2 given by (3.27) and (3.34). This choice is motivated by the fact that the M L 

estimators for 2 c 2 are the same for the Rayleigh and Ricean fading cases. Note that the moment- 

based estimator for £2 of the Nakagami-m distribution has a similar form to those M L  estimators of
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Q for the Rayleigh and Ricean distributions. The mean of ClNaka is E {Q Naka}  =  Q. The variance of 

ClNaka *s Va r{&Naka} =  I  ^8ct20  +  8 (74+  (2a2) 2. The CRLB for estimation o f Q in

a noisy Nakagami-m fading channel has to be calculated numerically.

Using the moment-based estimator for Q given in (3.43) and the estimator for 2 a 2 in (3.27) 

and (3.34), moment-based estimators for m o f the Nakagami-m distribution can also be developed.

From [2, eqn. (15.2.11)], one has (c — b)F(a,b — 1 ;c;x) +  (2b — c — bx +  ax)F (a,b\c\x) +  b(x —

1 )F (a ,b +  l;c ;x )  — 0. Using this identitity, two equations can be obtained as

(jU2 -  2cr2)Q +  (6 <j2 H2  -  4 a 4 -  piA)m +  n 2 Q.m =  0 (3.44a)

(jtij -  <7 2 h _ })Q .+  (8 ct2̂ j  -  2 ^ - 2 a 4Ju_1)m + 2 ^ mQ =  0. (3.44b)

Solving these two equations for m and using the moment-based estimator for £2 in (3.43) and the 

estimator for 2 a 2 in (3.27) and (3.34), two moment-based estimators for m, mM B 1  and mMB2, are 

derived as

(u , — 2a2)2
=  - ................................................................................... (3.45)

g4 - Ju2z -4 (T zg2 +4(T4

and

= (Ai-<frA-i)(fe-2<*)
M B 1  2/t3 - 2 ^ / 1 2  + 2a 4 /t_ j - 4 c t 2/2 j’ 

where f in is defined as before. Note that (3.46) uses the first, the second, the third and the inverse first

order moments o f the noisy samples, while (3.45) uses the second and the fourth order moments.

Therefore, it is expected that (3.46) w ill outperform (3.45), as the former uses a lower order of

moment which is more robust to noise outlyers. The noiseless-sample-based estimators derived in

the literature are [74]

ms =  2 (3.47)

and

m ,=  .  . (3.48)
2jU3 - I j X ^

We w ill compare the performances o f mM B 1  and mM B 2  with those o f ms and m, later.
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Figure 3.12. Comparison of the normalized sample means o f the estimators KMBl in (3.38), K M B 2  in 

(3.39), K ‘mbx in (3.10) and K ' M B 2  in (3.12) with the true value for L =  500, TSNR = 7 dB (dashed 

line), L =  500, TSNR = 0 dB (dotted line) in a noisy Ricean fading channel.

3.2.5 Numerical Results

In this part, numerical results are presented to show the performances o f the estimators derived. The 

value o f /  is set equal to 2, which corresponds to the case of two-dimensional signaling. Consider 

cr2 =  0.1 (TSNR = 7 dB) and a 2  =  0.5 (TSNR = 0 dB).

Figs. 3.12 to 3.15 show the performances o f KMm in (3.38), KM B 2  in (3.39), K 'MBX in (3.10) 

and K ' mb2 in (3.12) for the Ricean distribution parameter K, where negative estimates have been set 

equal to zero. The estimators KMBl and KM B 2  are noisy-sample-based while the estimators K 'MBX 

and K ' m b 2  are noiseless-sample-based. Figs. 3.12 and 3.13 show the normalized sample means of 

the estimators, where the sample means are normalized with respect to the true value. One sees that, 

with the same sample size, the biases o f the estimators decrease significantly as the TSNR increases, 

while with the same TSNR, the biases o f the estimators decrease little even when the sample size 

increases. Therefore, the TSNR has a greater influence on the sample means than the sample size.
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Figure 3.13. Comparison of the normalized sample means of the estimators KMBl in (3.38), KM B 2  

in (3.39), K ' M B 1  in (3.10) and K ' M B 2  in (3.12) with the true value for L  =  1000, TSNR = 7 dB (solid 

line), L  =  1000, TSNR = 0 dB (dashdotted line) in a noisy Ricean fading channel.

In the case when both the sample size and the TSNR are fixed, KMm and KM B 2  have much smaller 

biases than K 'MBl and K 'MB2. Moreover, the biases o f K 'MBl and K! MB2 increase dramatically as 

the true value of K  increases while the biases o f KMm and KM B 2  changes little. For example, when 

L =  500 and TSNR = 0 dB, KMBX and KM B 2  have a bias which is about +1% o f the tme value at 

K  =  2 and +2% at K =  20. However, K 'Mm and K ' M B 2  have a bias which is about -12% o f the 

true value at K =  2 and -51% of the true value at K  =  20. Figs. 3.14 and 3.15 show the root mean 

squared error (RMSE) o f the estimators. The CRLBs for K  =  0 go to infinity, and they are not 

shown in the figures. The RMSE decreases significantly as the TSNR increases and the sample size 

remains the same. When the sample size increases and the TSNR remains the same, the RMSE 

decreases little. Therefore, the TSNR also has a greater influence on the RMSE than the sample 

size. I f  both the sample size and the TSNR are fixed, one sees that KMBl and KM B 2  have much 

smaller RMSEs as well as much smaller deviations from the CRLBs than K 'MBl and K 1 MB2. For
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Figure 3.14. Comparison o f the RMSEs o f the estimators KMBX in (3.38), KM B 2  in (3.39), K 'MBX 

in (3.10) and K ' M B 2  in (3.12) with the CRLBs for L  =  500, TSNR = 7 dB (dashed line), L =  500, 

TSNR = 0 dB (dotted line) in a noisy Ricean fading channel.

example, when L =  500 and TSNR = 0 dB, KMBX and KM B 2  have approximately the same RMSE, 

which is about 0.7 at K  =  6  and about 3.3 at K  =  20. The deviation from the CRLB is negligible 

at K  =  6  and about 0.4 at K  =  20. However, K 'MBX and K ' M B 2  have a RMSE of about 1.6 at K  =  6  

and about 10.1 at K  =  20. The deviation from the CRLB is about 0.9 at K  =  6  and about 7.1 at 

K =  20. Therefore, the noisy-sample-based estimators, KMBX and KMB2, perform much better than 

the noiseless-sample-based estimators, K 'MBl and K 'MB2- Comparing the two noisy-sample-based 

estimators, KMBX and KMB2, one sees that they have similar sample mean performance while the 

latter has a smaller RMSE when the sample size and the TSNR are the same. Therefore, KM B 2  

outperforms KMBX, as expected.

Figs. 3.16 and 3.19 show the performances o f mMBX in (3.45), mM B 2  in (3.46), ms in (3.47) 

and mt in (3.48) for the Nakagami m parameter, where estimates less than 0.5 have been set equal 

to 0.5. The first two are noisy-sample-based while the last two are noiseless-sample-based. For
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Figure 3.15. Comparison o f the RMSEs o f the estimators KMBl in (3.38), KM B 2  in (3.39), K 'MBX 

in (3.10) and K ' M B 2  in (3.12) with the CRLBs for L =  1000, TSNR = 7 dB (solid line), L  =  1000, 

TSNR = 0 dB (dashdotted line) in a noisy Ricean fading channel.

comparison, performances o f the noisy-sample-based m parameter estimators derived in [76, eqn. 

(28)] and [79, eqn. (14)], denoted as molcn and mold2, respectively, are also shown in Figs. 3.17 and 

3.19 for L  =  10,000 and TSNR=7 dB. The derivation o f the CRLB for m is untractable in a noisy 

Nakagami-m channel. The CRLB in the noiseless case, which is a lower bound o f that in the noisy 

case, is used instead in Figs. 3.18 and 3.19. Figs. 3.16 and 3.17 show the normalized sample means 

of the estimators. Similar observations to those made for the K  parameter estimators can be made. 

Again, the biases decrease as the TSNR and/or the sample size increases, and the TSNR also has a 

greater influence on the sample means than the sample size. When the sample size and the TSNR are 

the same, the noisy-sample-based estimators have much smaller biases than the noiseless-sample- 

based estimators and the biases o f the noisy-sample-based estimator also increases much slower 

than the noiseless-sample-based ones when m increases. As an example, when L =  500 and TSNR 

= 0 dB, mMm and mM B 2  have approximately the same positive bias of about +2% at m =  6  and about
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Figure 3.16. Comparison o f the normalized sample means o f mMBX in (3.45), mM B 2  in (3.46), ms in 

(3.47) and m, in (3.48) for L =  500, TSNR = 7 dB (dashed line), L =  500, TSNR = 0 dB (dotted 

line) in a noisy Nakagami-m fading channel.

+5% at m =  20, while ms and m, have a negative bias o f about -33% o f the true value at m =  6  and - 

63% at m =  20. Figs. 3.18 and 3.19 show the RMSEs o f the estimators. Again, the RMSE decreases 

as the TSNR and/or the sample size increases, and the TSNR has a greater influence. With the same 

TSNR and sample size, mMBX and mM B 2  have much smaller RMSEs than ms and mt. This can be 

seen when L =  500 and TSNR = 0 dB. The noisy-sample-based estimators mMBX and mM B 2  have 

RMSE of about 0.8 at m =  6  and about 5.5 at m — 20 while the noiseless-sample-based estimators 

ms and m, have RMSE o f about 2.1 at m =  6  and about 12.0 at m — 20. Therefore, the noisy-sample- 

based estimators, mMBX and mMB2, outperform the noiseless-sample-based estimators, ms and mt. 

Also, comparing the two noisy-sample-based estimators, mMBX and mMB2, one sees that they have 

nearly the same sample mean performance while the latter has a smaller RMSE. Therefore, mM B 2  

outperforms mMBX, as expected. One can also see from Figs. 3.17 and 3.19 that our noisy-sample- 

based estimators have smaller biases as well as smaller RMSEs at L =  1000 and TSNR = 0 dB than
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Figure 3.17. Comparison o f the normalized sample means of mMBX in (3.45), mM B 2  in (3.46), ms in 

(3.47) and mt in (3.48) for L =  1000, TSNR = 7 dB (solid line), L =  1000, TSNR = 0 dB (dashdotted 

line) in a noisy Nakagami-m fading channel. moldx and mo l d 2  use L  =  10,000 and TSNR = 7 dB.

the noisy-sample-based estimators derived in references [76] and [79] at L  =  10,000 and TSNR = 

7 dB, which implies that they are at least ten times better than the noisy-sample-based estimators 

in [76] and [79] even when stronger noise is assumed. Therefore, our noisy-sample-based estimators 

for the m parameter perform better than not only the noiseless-sample-based estimators but also the 

noisy-sample-based estimators for m parameter derived in the literature when both are used in a 

noisy Nakagami-m fading channel.

3.3 Channel Model Parameter Estimation Using Phase Samples

In the previous two sections, estimators for fading distribution parameters with or without knowl­

edge o f the noise power have been studied. A ll these estimators, including those derived in the 

literature, use samples o f the fading envelope (the absolute value o f the complex fading gain). How­

ever, in some cases, the fading phase (the angle o f the complex fading gain) contains information
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Figure 3.18. Comparison o f the RMSEs o f mMBl in (3.45), mM B 2  in (3.46), ms in (3.47) and mt in 

(3.48) with the CRLBs for L  =  500, TSNR = 7 dB (dashed line), L  =  500, TSNR = 0 dB (dotted 

line) in a noisy Nakagami-m fading channel.

on the fading distribution parameters as well. It is o f great interest to explore the use o f the fading 

phase in the estimation o f the fading distribution parameters. In this work, we propose M L  and 

approximate M L  estimators for the Ricean K  parameter by using fading phase samples.

3.3.1 System M odel

It is well known that the complex fading gain in a Ricean fading channel can be modeled as a 

Gaussian random variable according to the central lim it theorem [54]. The jo in t probability density 

function (PDF) o f the fading envelope and the fading phase is given by [83]

. r  f  i2  +  P 2  — 2rPcos(0 — 0n) ]
/« ,9 M >  =  ^ “ p { ------------------ 2 t ? ---------------- }  <3'49>

where r  >  0 is the fading envelope, — n  <  9 <  n  is the fading phase, P 2  is the mean power o f the 

LOS component, 2a 2  is the mean power o f the scattering components, and 0O is the angle of arrival 

of the LOS component with —n < 9 0 < n .  Define K  =  ^  and Q. =  P2  +  2a 2  as the Ricean K  factor
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Figure 3.19. Comparison of the RMSEs o f mMBX in (3.45), mM B 2  in (3.46), ms in (3.47) and mt in 

(3.48) with the CRLBs for L  =  1000, TSNR = 7 dB (solid line), L  =  1000, TSNR = 0dB (dashdotted 

line) in a noisy Nakagami-m fading channel. moldl and mo l d 2  use L =  10,000 and TSNR = 7 dB.

and the total mean power o f the fading, respectively, as before. By integrating over 0 in (3.49), one 

obtains the fading envelope Ricean PDF as (1.3). By integrating over r  in (3.49), one obtains the 

fading phase PDF

where erfc(-) is the complementary error function.

3.3.2 K Estim ator Using Phase Samples Only

When K  is large, one has e~K ~  0. From (3.50), one derives an approximation to the log-likelihood 

function using samples of the fading phase only as

£ f n \  e K  , V K c o s ( e - G 0) _ X s in 2

/ 0 ( e )  =  2 iT  +  V * ----------
(0 - 0o ).e r fc (-v /^ c o s ( e - 0 o)) (3.50)

\ n f ( 9 \ K , e 0)

+  ^  lnerfc(—V K c o s (6 1 — 0O)) (3.51)
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where 0 =  [0] 02  ■■■ 0L] is the sample vector o f the fading phase and the term ^  in (3.50)

has been ignored. It can also be shown that erfc(—\/£ co s (0 ; — 0O)) depends only on the sign of 

cos(0; — 0O) and that £ { 0 }  «  0O, for large values o f K. As a result, an approximate ML-based 

estimator for K  can be obtained from (3.51) as

Kaml =  2 £ f= 1 sin2 ( 0 , - 0 o) (3‘52)

where 0O =  £ x f= i 0/- One sees that, unlike the M L  estimator for K  in [70] that uses samples of r t 

only, the estimator in (3.52) has a very simple structure.

3.3.3 K Estim ator Using Both Phase Samples and Envelope Samples

From (3.49), the log-likelihood function for estimation o f K  using both fading envelope samples 

and fading phase samples can be derived as

l „ / M | P , a . eo) =  - :& 1i - .g +  g l „ ,  - Un(2na2) -  g

(3.53)

where r =  [rx r 2  ■■■ rL] is the sample vector o f the fading envelope. By differentiating (3.53) 

with respect to 0O, P, 2 a 2, setting the derivatives equal to zero, and solving the resulting equations, 

one has the M L  estimators for 0O, P and 2a2, 0O, P and 2a2, as

y f l ,  r, sin 0 ,
0 O =  arctan ^ = L J  L (3 .5 4 )

‘ 2 ^ 1 ^  cos 0,

P = j ' Z n co< ei - % )  (3-55)
L l

1 L

' 1=1

2a 2  =  j j ^ t f - P 2. (3.56)
L i= 1

According to the invariance principle o f M L  estimation [15], the M L  estimator for the Ricean K  

factor, KML, is

P 2

Kml =  ^ ~ 2  (3-57)
2 a 2
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where P is given by (3.55) and 2a 2  is given by (3.56). One sees that (3.57) uses samples o f the 

fading envelope, r t , as well as samples of the fading phase, 0,. The M L  estimator in (3.57) also has 

a simple structure which is implementable.

Finally, the best known realizable noiseless-based estimator for K  using samples o f the fading 

envelope only, KEnv, is derived in the literature by solving the equation [70]

LL . H i e - V 2

7 ^  =  2 V K + I  \-(l + K M K / 2) + K h (K /2 ) \  (3.58)

for K, where Ai =  i£ f = i  rv f h ~ Z 5w=i ' f  > an^ h ( ')  ' s first-order modified Bessel function of 

the first kind. One sees that, unlike the new estimators in (3.52) and (3.57), this estimator doesn’t 

have an explicit form. In practice, it has to be implemented by using a look-up table, which costs 

extra memory as well as searching time. A  closed-form estimator for K  based on an approximation 

to (3.58) was derived in [72],

3.3.4 Numerical Results

In this section, we simulate the performances of KML and KAML and compare them with that o f KEnv 

in a Ricean fading channel. The Ricean channel is simulated by generating independent complex 

Gaussian random variables with, in general, nonzero mean. Thus, the scattering distribution o f the 

incoming waves doesn’t contribute any error to the estimate. Without loss o f generality, we fix the 

angle o f arrival o f the LOS component to 1.0 and the total mean power o f the fading to 1.0. The 

value o f K  varies from 0.0 to 10.0 with increments o f 0.5. Practical values o f K  are reported to be 

less than 10.0 in mobile communication systems [71]. The look-up table in KEnv is constructed for 

K  from 0.0 to 15.0 with a step size o f 0.05, resulting in 300 possible values for search.

Figs. 3.20 and 3.21 show the biases and the RMSEs o f KML, KAML and KEnv in a Ricean fading 

channel with L  =  500. One sees that the bias of KML is between 0.00 and 0.05, and the RMSE of 

k ML is between 0.00 and 0.50, when the true value o f K  varies from 0.0 to 10.0. The bias and the 

RMSE of k ML are very small. As an example, at K  =  10.0, the bias o f k ML is only 0.5% of the true 

value and the RMSE of KML is only 5% of the true value. Therefore, the estimator KML performs
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Figure 3.20. The biases o f KML, KAML and KEnv for a sample size o f L  =  500 in a Ricean fading 

channel.
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Figure 3.21. The RMSEs o f KML, KAML and KEnv for a sample size o f L =  500 in a Ricean fading 

channel.
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Figure 3.22. The RMSEs o f KML, KAML and KEnv versus the sample size with K  =  5 in a Ricean 

fading channel.

well in a Ricean fading channel. Also, one sees from Figs. 3.20 and 3.21 that the estimator KAML 

has good performance when the true value o f K  is larger than 3.0; the bias o f KAML is between 0.17 

and 0.06 and the RMSE of Km L  is between 0.25 and 0.64 for 3.0 <  K  <  10.0. However, when 

0.0 <  K  <  3.0, Kaml performs poorly, as the bias and the RMSE of KAML are fairly large, and they 

increase when the true value o f K  decreases. This is caused by the large errors in the approximations 

used to derive (3.52) at small values o f K. Comparing KML with KEnv, one sees that KML always 

has a smaller bias as well as a smaller RMSE than KEnv, for all the values o f K  considered. Thus, 

KML outperforms k Env. Comparing k AML w ith k Env, one sees that k AML outperforms k Em when 

5.0 <  K  <  10.0. When 0.0 <  K  <  2.5, KAML underperforms KEm. Otherwise, their performances 

are comparable. Fig. 3.22 shows how the RMSEs o f the estimators vary with the sample size at 

K  =  5. One can determine how much the estimator performance improves as the the sample size 

increases from Fig. 3.22. For example, KML has a RMSE o f 0.62 when L =  100, while it has a 

RMSE of 0.19 when L  =  1000. Next, we investigate the problem o f signal-to-noise ratio estimation.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

SNR Estimation in Wireless Communication Channel

As we mentioned in Chapter 1, signal-to-noise ratio (SNR) is an important channel parameter that 

is widely used in wireless communication. Two measures o f SNR can be defined in a static additive 

white Gaussian noise (AWGN) channel. One is the SNR defined as the ratio o f the signal power to 

the noise power. The other is the SNR defined as the ratio of the signal amplitude to the noise power. 

In a fading channel, a third SNR, the average signal-to-noise-ratio (ASNR), is also defined as the ra­

tio o f the average signal power to the noise power. In contrast, the first two SNR measures are refered 

to as instantaneous SNRs. In the following, until otherwise specified, the term o f SNR refers to the 

instantaneous SNRs in a fading channel. Many techniques and components need SNR and ASNR 

information in their implementation. For example, knowledge of SNR and ASNR is required in rate 

adaptation [13], power control [11], [84], optimum diversity combining [85], macro-diversity [86], 

turbo decoding [87], and maximal ratio combining (MRC) [88]. These applications give impetus to 

an investigation of their estimation techniques. Previous works include the following. In [19]- [21], 

maximum likelihood (M L) SNR estimators were derived and shown to be asymptotically optimal in 

the sense of minimum variance. These results are only applicable for pulse-code modulated signals 

in a real AWGN channel. Pauluzzi and Beaulieu extended these results to M -ary phase-shift keying 

(MPSK) signals in complex AWGN channels [22]. They also summarized and compared their pre­

decessors’ work in [22], In another work [23], based on observations from the link quality estimator
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used in [24], Beaulieu et a1. proposed four different SNR estimators for quaternary phase-shift key­

ing (QPSK) signals. These estimators have fa irly large biases when the true value of SNR is small. 

To improve the estimator bias performance at small SNRs, L i et al. developed another estimator 

in [25], In related work [26], [27], the Cramer-Rao lower bound (CRLB) for non-data-aided SNR 

estimation o f phase-shift keying signals in an AWGN channel was obtained. A  new non-data-aided 

SNR estimator based on an iterative algorithm was also derived in [27]. A ll these estimators are 

limited to a static AWGN channel. They are only valid for a sampled system with bandlimited 

AWGN. The performances o f most estimators were examined by simulation. Estimation o f ASNR 

in a slowly fading channel has been studied by many researchers as well. In [81], [89], [90], esti­

mation o f the average signal power has been studied. These estimators can be adapted to estimate 

ASNR assuming that the noise power is known. In [91] and [92], moment-based estimators for 

ASNR in a Rayleigh fading channel and a Nakagami-m fading channel, respectively, were derived. 

There is no result on estimation of ASNR in a Ricean fading channel without knowledge o f the noise 

power though. In this chapter, we first derive M L  estimators for SNR in a static AWGN channel 

as well as a slowly fading channel, considering both sampled system with bandlimited AWGN and 

continuous system. The performances o f the estimators are examined by analysis. We then design 

approximate M L  estimators for SNR using both pilot and data symbols. We also derive a M L  es­

timator for ASNR in a Ricean fading channel without knowledge o f the noise power and perform 

a jo int estimation o f ASNR and the Ricean K  parameter using noisy correlated channel samples. 

Finally, we design moment-based estimators for the signal-to-interference-plus-noise ratio (SINR) 

when interferences occur and quadrature amplitude modulation (QAM) is used.

4.1 ML Decision-Based Estimation of SNR

In this section, we derive M L  decision-based estimators for SNR in static AWGN and slowly fading 

memoryless channels. For convenience, we denote Pj =  ^  as SNRA and p2 =  ^  as SNRB, where 

A is the channel gain, N  is the noise power, and Ps is the signal power. The M L  estimators for A, N
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and Ps have been derived in Chapter 2. Using these results, together with the invariance principle, 

the M L  estimators for p, and p2 can he derived.

4.1.1 Static AWGN Channel

We consider first a static AWGN channel. According to the invariance principle, one has

and

p2 =  c
N

(4.1)

(4.2)

£ ( * )

where A and N  are the M L  estimates o f A and A  in a static AWGN channel, respectively, c =  - f  

for a sampled system and c =  for a continuous time system, and E^kj , E$), I  and T are defined

in Section 2.1. From (2.5) and (2.6), one has

Pi
IY li=xRe{yis f r }

and

Pi =

E ®  ( s L t b / l2) -

(4.3)

(4.4)

as the sampled signal M L  estimators for SNRA and SNRB, respectively. Also, from (2.8) and

(2.10), one has

T JT Re{y(t)s(kY (t)}d t
P i =

( It b (O I2* )  -  STRe{y{t)s(k) '{ t) }d t
(4.5)

and

P2 =
I r R e { y (  t)s{k r(t)}d t

2- (4.6)

as the contimuous signal M L  estimators for SNRA and SNRB, respectively.

Fig. 4.1 shows a block diagram of the M L  SNRA and SNRB estimators given by (4.5) and (4.6), 

respectively. One sees that the M L  static AWGN channel SNR estimator for a digitally modulated 

signal is a decision-based structure that incorporates a digital data receiver. The bulk o f the cost and
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Figure 4.1. Structures o f the M L  SNR estimators for p 1 and p2 in an AWGN channel.

complexity o f the M L  estimator resides in the digital receiver component, used to determine k. The

digital receiver is required anyway. Thus, M L  SNR estimation is achievable with relatively minor

complexity. Next, we analyze the performances o f p x and p2 in error-free operation.

TFor two independent random variables Tx and T2, the PDF o f T =  ^  can be derived by solving 

the integral [34, eq. (6-60)]

Pr(t) = J  hPrSh^PT^h^h- (4-7)

By using the results of (2.18) and (2.25), together with the identity [35, eq. (3.462.1)], one has the 

PDF of the sampled signal M L  estimate of p x as

2/ — 1 / I a \ r~^ { l a  A \
e' U  " ) ^ - U + i l U - a )  (4'8)

where cr2 =  and Dv(-) is the parabolic cylinder function [2, p. 686]. The mean and the variance
sd

of p x are £ { p , }  =  £ sp 1 and V ar{px}  =  (2/_3f (2/_5)p \  +  {2 l ^ ) ( 2 i - 5 ) 2 n e^  ~ The Cramgr' Rao
sd

lower bound (CRLB) for estimation o f p , in a static AWGN channel is derived as +  2̂ k) ■
sd

Therefore, the sampled signal M L  estimator for p , in a static AWGN channel is asymptotically 

optimal when I  is large and no decision errors occur. An unbiased estimator for p x can be derived by 

scaling p, in (4.3) with This scaling w ill decrease the variance by a factor of '2/4~23̂  . This does
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not represent a contradiction since the M L  estimator is not necessarily the optimal [14]. Moreover, 

when I  is large, there is little difference between the performances o f the original estimator and the 

modified estimator.

Also, from (4.2), one has

P2 =  P ' id (4.9)

where d =  and P ' 2 =  § (2 / — 1) with R =  — and Q =  From Chapter 2, one sees

that the random variable R has a normalized noncentral chi-square distribution with one degree o f
2A2eM

freedom and noncentrality parameter — and the random variable Q has a normalized central 

chi-square distribution with 21—1 degrees o f freedom. A  singly noncentral F  random variable is 

defined as [49, eq. (30.2)]

F =  ^  (4 ,0 )

where ) is a normalized noncentral chi-square variable with v : degrees o f freedom and non­

centrality parameter A ,, and is a normalized central chi-square variable with v2 degrees o f free­

dom. Inspection o f p '2 shows that it is a singly noncentral F  random variable with parameters

2A2eM
Vj =  1, v2 =  2/ — 1, and Aj =  —j f * - .  Then, the PDF of the sampled signal M L  estimate o f p 2 is 

derived as

v f  {dv2) ^ x ^ - xe~^  v + v 7 v, iA .v.je s
P p U ) =  1 ----------------iF) ) ’ (4-11)

(dv2 +  v1x)~Kr 1 B { v̂ , v-z) 2 2 d v 2  +  vix

where B (•,■) is the Beta function [2, p. 258]. The mean and the variance o f p2 are derived from

(4.11) as E {p 2}  =  5 ^ 3  % -p 2 +  27=3 and Var{p2}  =  8[£̂  , The CRLB for

2 f iW p ,  [ £ w ]2P22
estimation of p2 in a static AWGN channel can also be derived as —j r — I— sAp— , which includes 

the result in [22, eq. (64)] as a special case. Therefore, the sampled signal M L  estimator for p 2 in 

a static AWGN channel is asymptotically optimal when 1 is large and no decision errors occur. An 

unbiased estimator is derived by scaling p2 in (4.2) with and then shifting the result with
sd  sd

The variance w ill vary by a factor of

Results for a continuous time system can also be derived. These results w ill provide insights 

into continuous time systems using SNR estimates. Denote p XA =  4- as an approximation to p v

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similarly, by using (2.29) and (2.34), one has

4 ( B T \ BT+)i f°° BT, i  / 1 BT  N
^ {x) =  V S t i r ( B T + i M )  ■I  ^  (4.12)

o Nwhere a L =  and B is the signal bandwidth defined in Section 2.1. The mean and variance o f p lA

are E { p 1A}  =  ~  ~ Pi and * W P ia }  =  ^ {P ia }  ~  [£ {P m )]2- where £ {P?a> =

4(gr) r(isr j i t  2j | 7’+ ?,2_) ^ ^  p 2  ̂ ancj >  3 They are calculated by integration from (4 .1 2 ).
(bt- 2)(bt- 2) 2 2

(ft'j' I \257’- 2
An approximately unbiased estimator for p x is obtained by scaling p XA with 3 ; L U1 .4y I r (131 “ 2 )P / 2 iP 1 t  2 12 J

One can show that the scaling decreases the variance. Again, this is possible because the M L  es­

timator may not be optimal, and furthermore, an approximation has been used for the continuous 

time PDF of N.

E A 2Similarly, denote pu  =  ~f~jp  as an approximation to p 2. One has

_  4 V b e ~ ^  / B T \ BT+i

P?2A X ~ V2na2xT(BT +  i )  V N )

rJo n T  bxt BT t  w  L / / V I l  A. , X. U  X V

, t e 2&1 N cosh— — xFA2,BT +  -- \  i)d t,  x > 0  (4.13)
o <Jl  2 N

where b =  The mean and variance o f p2A are =  4/f /7  (/}y .g2f [ + 2'2\ p2 +  and

\JbxtA 1 BT

b { B T - \ )  2b

V a r i M  =  E { & )  -  w h «  E {& >  =  ( $  +  <*££  +  pf)

and BT >  They are, again, calculated by integration from (4.13). An approximately unbiased2 ‘
lMsr-ib(BT  * MBT~ \

estimator can also be obtained by scaling pu  with ABTF B̂T_ i  ^ - ‘ - g r + lT )  and shifting the result

with j j -. The variance changes accordingly.

4.1.2 Slowly Fading Channel

The M L  estimators for SNRA and SNRB in a slowly fading channel can be derived in a similar 

manner to before. According to the invariance principle, one has

P \ = P i + j p [  (4-14)

and
a 2 42

p2 =  c^  +  c 4  (4.15)
2 N N
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Figure 4.2. Structures o f the M L  SNR estimators for p 1 and p2 in a slowly fading channel.

where p f  =  , p f =  and AR and A j  are the M L  estimates o f AR and Ar in A =  AR +  jA {,

respectively. The sampled signal M L  estimators for SNRA and SNRB in slowly fading channels, 

Pj and p2, are derived by using equations (2.12) and (2.13) with the invariance principle as

Pi (4.16)

and

P2
s L i  y / t

2' (4.17)

The M L  estimators for SNRA and SNRB in a continuous time system are obtained from (2.14) and 

(2.15) as

Pi
T JTy ( t ) s ^  (t)dt

E $ ( $ T \y(t)\2d t ) -  JTy(t)sCk)’ (t)dt
(4.18)

and

Pi
fTy(t)s{i)*(t)dt

2' (4.19)
4 ^ ( / r b ( 0 l2) -  f Ty ( t ) s ^ ( t ) d t  

Fig. 4.2 shows a block diagram of the M L SNRA and SNRB estimators given in (4.18) and

(4.19), respectively. Similar observations can be made from Fig. 4.2. Again, this is a decision- 

based structure where the M L  SNR estimate is based on the decision output o f the digital data
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receiver. The difference is that, here, the correlator in Fig. 4.2 produces a complex output whereas 

the correlator in Fig. 4.1 produces an output that is real.

The performances o f p l and p2 in a slowly fading channel can be analyzed as previously. From 

(4.14), the M L  estimate o f P j, p v  is completely determined by the M L  estimates of p f  and p(, p f  

and p{. One sees that each of p f  and p [ has a similar form to that given in (4.1). Therefore, their 

PDFs are derived by solving the integral in (4.7), giving

, x 7 - 1  ( I a V ~ l ( l a  A r \
p.ofx ) =  ,  —  e * \Mx r I  ^  (4.20)
Pp?K) y /2Hx \ Nx)  - ! \ N x a )  K )

and

/x  7 - 1  /  7 c r \ /_1 ( l a  A , \

From (4.20), one also has E { p f }  =  j ^ p f  and V a r {p f }  =  n_2m - 3 ) ^ f ) 2 +  ( / - 2)(/-3) The
2  ^  

CRLB for estimation of p f  is +  2/Vf  w . Therefore, the sampled signal M L  estimator for p f  is
sd

asymptotically optimal when 7 is large in the absence o f decision errors. An unbiased estimator can 

also be obtained by scaling p f  with ^ . The variance is reduced, as before. By inspection, sim ilar 

conclusions can be made regarding p[.

Also, from (4.15), one has

p2 =  p '2d' (4.22)

where d' =  j r j  and p '2 =  |y (7 — 1) with R1 =  ^ R+̂ E*<t an(j  q 1 =  ^ .  Then, the random variable 

R1 has a normalized noncentral chi-square distribution with two degrees o f freedom and noncentral- 

ity parameter — ——. The random variable Q' has a central chi-square distribution with 27 — 2

degrees of freedom. Therefore, p '2 is also a singly noncentral F  random variable with parameters

2(Â
i/j =  2, v2 =  27 — 2 and X[ =  — ——. The PDF o f the sampled signal M L  estimate for p2, 

p2, has a similar form to that in (4.11) except that the values of d, Vj, v2 and A, are replaced by
£[k)

d1, v\ , v2 and A{, respectively. The mean and the variance o f p2 are E {p 2}  =  jZ 2 ~f~P2  +  7=2 an<̂
^ jC ~ (7 r)j2p 2  j 2 £ ( * )   l ) p  ~ \~ I 1

Var{p2}  =  —■sA— 2'-------• The CRLB for estimation o f p2 in a slowly fading channel is

2 £Mp2 [£W]2p|
—$-----1— “ /3— ■ Therefore, the sampled signal M L  estimator for p2 in a slowly fading channel is

also asymptotically optimal when 7 is large, in the absence o f decision errors. An unbiased estimator
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is derived by scaling p2 by and then shifting hy -4^. The variance changes by a factor of
sd sd L sd '

as previously.

The PDFs o f the approximations to the continuous time M L  estimates p f  and p f , p fA =  and

A  /  4 ,

Pm  =  / . a r eA

BT4 ( B T \  H  r t  (” - V  ,  5T  ,
W  — /  I - r r  I ■ t e 2®* n f  (2 ,B 7 ; fWr

x ^ 2 r ( s r ) V ^ y  7o i lV n  '

and

p ., (jc) =  - 7= ^ ---------- ( — ') ■ [  tBTe ~ ^ L ~ ^ , 1Fl (2 ,B T - ,-— t)dt.
W '  y / 2 n & T { B T ) \ N  )  Jo 1 U N  ;

(4.23)

(4.24)

The mean and the variance o f pfA are E {p fA}  =  ABTF^ T ̂ 2st- \ B T ' 2 ̂  P f and ^ a r{ P u }  =  £ { [ p f j 2}  ~ 

[£ {P m }]2’ where £ { [P u l2} =  ~ +  ( p f ) 2] and BT >  2. They are calcu-

n (BT_\)2BT~l
lated from (4.23) by integration. Scaling p*A with 4BTF(BT_2’BT„ i .BT.i) gives an approximately 

unbiased estimator. This scaling decreases the variance, as before. The performance of p f is the 

same as that o f p f .
g{k) ^2 _l̂ 2

The PDF o f the approximation to the continuous time M L estimate p2, p2A =  -f~  A 1, is 

. . 4e~2dZ ( B T \ BT f°° KT _bxi_m, \ / to |A | .  _ _  BT  . ,

x >  0. (4.25)

The mean and variance o f pu  are E {p 2A}  =  4B— ( p2 +  and Var{p2A} =  

E { P l }  ~ [E {P 2A) ]2> where E { f a }  =  +  ^  +  ^ W )  and BT  >  2.

They are also calculated by integration from (4.25). An approximately unbiased estimator is ob­

tained by scaling p2A with 4BT̂ Bj ~2B̂T_\ Bt a- )  and shift'ng the result with The variance 

changes as well.

4.1.3 Numerical Examples

Since the SNRA estimator in a slowly fading channel is completely determined by p f  and p f while 

p f  and p f have the same performance, only p f  is examined. Figs. 4.3 and 4.4 show the biases and
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the root mean squared errors (RMSEs) o f the sampled signal SNRA estimators, where is set
sd

equal to 1. As can be seen from Fig. 4.3, at /  =  8 , p i in an AWGN channel has a bias o f about 

1.80 dB and p f  in a slowly fading channel has a bias o f about 2.50 dB, while at /  =  20, Pj has a 

bias o f about 0.70 dB and p f  has a bias o f about 0.90 dB. Thus, a larger value of I  corresponds to 

a smaller bias o f the estimator. One can also see from Fig. 4.4 that the RMSEs of the estimators 

decrease as I  increases. Therefore, the performance o f the estimator in both channels is improved

by increasing I, as expected. Figs. 4.5 and 4.6 show the performances o f the continuous time signal

- 2
SNRA estimators, where is set equal to 1. Similar observations to those made from Figs. 4.3 and 

4.4 can be made, with BT  in Figs. 4.5 and 4.6 playing a similar role to the role that I  plays in Figs.

4.3 and 4.4. Comparing the continuous time signal estimators with the sampled signal estimators, 

one sees that the continuous time signal estimators perform slightly better than the corresponding 

sampled signal estimators. As an example, at BT — 8  and p f  =  60 dB, the continuous time signal 

estimator for p f  in a slowly fading channel has a bias o f about 2.4 dB and a RMSE o f about 630 

while the sampled signal estimator for p f  in a slowly fading channel has a bias o f about 2.5 dB and 

a RMSE of about 690.

Figs. 4.7 and 4.8 show the performances o f the sampled signal SNRB estimators, where the

fiW
sampled signal power - f -  is set equal to 1. Again, the biases and RMSEs o f the estimators decrease 

as I  increases. Note that p2 has a fa irly large bias at small values o f p2, as E {p 2}  has a shifting factor,

which is dominant when p 2 is small. Figs. 4.9 and 4.10 show the performances of the continuous

£(*)
time signal M L  estimators for SNRB, where the continuous time signal power - f -  is set equal 

to 1. Again, the continuous time signal estimators perform slightly better than the corresponding 

sampled signal estimators. One concludes from Figs. 4.3 to 4.10 that the SNR estimator in an 

AWGN channel outperforms that in a slowly fading channel.

Figs. 4.11 and 4.12 compare the PDFs o f the sampled signal M L  estimates of p , and p2 in an 

AWGN channel with the lim iting Gaussian PDF’s. The lim iting Gaussian PDF has a variance equal 

to the CRLB and a mean equal to the true value o f p x or p2, which has been fixed to 10. One sees 

that the difference between the estimate PDF and the Gaussian PDF decreases as 1 increases, as

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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True value o fp1 in AWGN channel or p1 in fading channel (dB)
55

  AWGN channel
slowly fading channel

Figure 4.3. The biases o f the sampled signal M L  estimator for p i in an AWGN channel and p f  in a 

slowly fading channel at /  =  8 (*) and /  =  2 0  (o).
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AWGN channel 

slowly fading channel 

square root of CRLB

5 500

cr 400

S 300

200

100

True value ofp in AWGN channel or p in fading channel (dB)

Figure 4.4. The RMSEs of the sampled signal M L  estimator for P j in an AWGN channel and p f  in 

a slowly fading channel at 7 =  8 (*) and I  =  20 (o).
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• AWGN channel 

slowly fading channel

10 15 20 25 30 35 40 45 50 55 60
True value o fp 1 in AWGN channel o rp 1 in fading channel (dB)

Figure 4.5. The biases of the continuous time signal M L  estimator for p , in an AWGN channel and 

p f  in a slowly fading channel at BT  =  8 (*) and BT =  20 (o).
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True value o fp1 in AWGN channel orplj1 in fading channel (dB)

Figure 4.6. The RMSEs of the continuous time signal M L  estimator for P j in an AWGN channel 

and p f  in a slowly fading channel at BT  =  8 (*) and BT =  20 (o).
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• AWGN channel
slowly fading channel

15 20
True value ofp_ (dB)

Figure 4.7. The biases o f the sampled signal M L  estimator for p 2 in an AWGN channel and a slowly 

fading channel at /  =  8 (*) and 1 — 2 0  (o).
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200

100
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Figure 4.8. The RMSEs o f the sampled signal M L  estimator for p 2 in an AW GN channel and a 

slowly fading channel at /  =  8 (*) and /  =  2 0  (o).
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slowly fading channel

15 20
True value of p . (dB)

Figure 4.9. The biases o f the continuous time signal M L  estimator for p 2 in an AWGN channel and 

a slowly fading channel at BT =  8 (*) and BT =  20 (o).
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Figure 4.10. The RMSEs o f the continuous time signal M L  estimator for p 2 in an AWGN channel 

and a slowly fading channel at BT  =  8  (*) and BT  =  20 (o).
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0.35
— Gaussian PDF at 1=10
.. Estimate PDF of p1 at 1=10

— Gaussian PDF at l=50
.. Estimate PDF of p1 at l=50

— Gaussian PDF at 1=100
,. Estimate PDF of p at l=10C
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CL

0.15
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Figure 4.11. Comparison of the lim iting Gaussian PDF and the PDF of the sampled signal M L  

estimator p x in an AWGN channel for different values o f sample sizes.

expected [15]. A t /  =  100, the estimate PDF can be approximated by the Gaussian PDF graphically. 

The approximation errors around x =  7 and x  =  13 in Figs. 4.11 and 4.12 won’t diminish until I  

goes to infinity and both the estimate PDF and the Gaussian PDF become pulse functions. The 

PDFs o f the sampled signal M L  estimates in a slowly fading channel and the continuous time signal 

M L  estimates can be examined in a similar way.

The above results are based on the assumption o f no decision errors. They are valid for data- 

aided (DA) estimation. In the case when decision-based estimation is performed, they are also valid 

for moderate to large values o f SNR. In applications such as rate adaptation and power control, the 

SNR estimate is used to control the transmission rate and power o f subsequent symbols. I f  the value 

of SNR in the decision-based estimation is small, by a proper receiver design, the error rate can still 

be kept low. Moreover, as can be seen from the numerical results, good estimator performances are 

achieved with tens o f samples. Even an error rate as large as 10~ 2 still implies that the decision- 

based estimation is probably accomplished in the absence of decision errors. In this case, the results
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0.4
— Gaussian PDF at 1=10
,. Estimate PDF of pg at 1=10

— Gaussian PDF at l=50
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Figure 4.12. Comparison o f the lim iting Gaussian PDF and the PDF o f the sampled signal M L  

estimator p2 in an AWGN channel for different values of sample sizes.

obtained under an error-free operation assumption are useful [2 0 ], [2 2 ].

4.2 ML Estimation of SNR Using Both Pilot and Data Symbols

The previous SNR estimators use either known or unknown symbols. In a practical communication 

system, a frame usually consists o f both known pilot symbols and unknown data symbols. It is 

advantageous to use all available symbols in the frame to estimate the SNR as accurately as possible. 

In this work, we derive a novel ML-based SNR estimator for binary phase shift keying (BPSK) 

signals using both pilot and data symbols simultaneously. The obtained estimator is simple. It can 

be applied to systems where signals are transmitted in frames with both known and unknown fields.
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4.2.1 Estimator Structure

Using the same system model as those in [19]- [27], one has the received signals after matched 

filtering as

y l = A s l + n l (4.26)

where Z =  1 , 2 , , L  +  Q  index different symbols in the frame, A is the channel gain assumed 

constant over the frame, st E { —1,1} is the transmitted BPSK signal o f the Z-th symbol, and nl 

is the noise term o f the Z-th symbol assumed to be a Gaussian random variable with mean 0 and 

variance a 2. Without loss o f generality, assume that Z =  1 , 2 , , L index the pilot symbols in the 

frame and that Z =  L +  l , L  +  2, ••• , L  +  Q index the data symbols in the frame. Also, assume s, =  1 

(Z =  1,2, ■ • ■ , L) as the pilot symbols. The SNR to be estimated is defined as p — ~1. The probability 

density function (PDF) o f the received signals of the pilot symbols can be derived from (4.26) as

1 (yrA'i2
f ( y i -,A, a 2) =  - j = = e — is r-  (4.27)

where Z =  1,2, • • •, L. Assuming that the BPSK signals have equal a priori probabilities, the PDF of 

the received signals o f the data symbols is derived from (4.26) as

/ ( y , ; '4’ CT2) =  V 5 b 5 e" ^ c° sh(^ ) (4'28)

where I =  L +  \ ,L  +  2,- ■ ■ ,L +  Q and cosh(-) is the hyperbolic cosine function. Finally, assuming 

nl (Z =  1,2,• • ■ ,L  +  Q) are independent, one has from (4.27) and (4.28) the log-likelihood function

i £< a „ \  L +  2 ,  f  P \  P ^ i= iQyf (L +  Q)p p yi y ii+ e  , u ,ytp ,In fty.A,p) = —  In ( — 2) -------^5------------- —  +  +  2 , =t+1 l„coSh (— )

(4.29)

where y =  \yv  y2, • • ■ , }’i,+q\ and p =  ^  has been used. By differentiating (4.29) with respect

to A and p and setting the derivatives equal to zero, one derives the two equations

P S ^ S 2 -  {L +  Q)A2 - A p X t ,  yt - t anh (y- f ) y t =  0 (4.30)

and

p l i = ? y i  + ( L  +  Q ) ( P -  1)A2 -  2A p X t ,  >7 -  2A p X t+f +1 tanh ( ^ ) y ,  =  0 (4.31)

1 2 4
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where tanh(-) is the hyperbolic tangent function. An exact solution o f (4.30) and (4.31) for p  is 

difficult to obtain due to the nonlinearity of the hyperbolic tangent function. Note that tanh ( yj£~) «  

+  1 when >  0 and ta n h ( ^ )  «  —1 when <  0, for sufficiently large p  [25]. Using this 

approximation, one can solve (4.30) and (4.31) to give an approximate ML-based estimator for p  as

( 4 ' 3 2 )

where A =  +  ^ f^L+ i l^/ i) • The denominator o f (4.32) is actually a biased estimate of

(T2 [93]. A  reduced-bias ML-based estimator for p  can be derived by multiplying the denominator 

of (4.32) with giving

A2
(4.33)

H 1 y l + 0 v2 L+Q A 2 ' t+ e - i A = i y i L + Q -

It can be shown that the CRLB for estimation o f p  when L  pilot symbols and Q data symbols are 

avaiiabie is ^ q^ ^ X q& a^ Q c' where c =  \ [ h e~^ +  ~  1 and erf ^  is the error

function. Note that the SNR estimator in (4.33) uses the received signals o f both the pilot symbols 

and the data symbols in the frame. Two special cases are considered below. I f  one uses the received 

signals o f the pilot symbols in the frame only, p  becomes

=  _J_ y L J  _  _L_j^i (4-34^
L-l ̂ l = W l L—1 1

where A j =  £ X f= i ))■ On the other hand, i f  one uses the received signals o f the data symbols in the 

frame only, p  becomes

A 53 ^ y u < r s _ 3 _ p  <4-35>
Q - \ ^ l = L + \ y l 2 -1  2

where A2 =  -q , I)) I and an approximation similar to that in (4.33) is also used. Observe that 

A is a linear combination o f A j and A 2, as A =  jxqA^ +  j+ g A 2, but p  is not a linear combination of 

Pj and p2.

4.2.2 Performance Analysis

Figs. 4.13 and 4.14 compare the performances o f p, p x and p2 when L =  8 and Q =  28. One 

observes that, when SNR >  9.0 dB, the bias and the normalized root mean square error (NRMSE)
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Estimator using both pilot and data symbols 
H — Estimator using pilot symbols only 
- e -  Estimator using data symbols only________

~  2.5

0.5

30
True value of SNR (dB)

Figure 4.13. The biases o f p  (using both pilot symbols and data symbols), (using pilot symbols 

only), and p 2 (using data symbols only), when L =  8 and Q — 28.

Estimator using both pilot and data symbols 

Estimator using pilot symbols only 

Estimator using data symbols only 

CRLB for L=8 and Q=28

z  0.6

0.4

0.2

True value of SNR (dB)

Figure 4.14. The normalized root mean squared errors o f p (using both pilot symbols and data 

symbols), p, (using pilot symbols only), and p2 (using data symbols only), when L  =  8  and Q =  28, 

and the Cramer-Rao lower bound.
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of p  are approximately constant at 0.25 dB and 0.30, respectively, and the estimator p  performs 

well. It performs poorly, however, when the SNR is less than about 2.0 dB. Since both p and p2 use 

the approximation o f the tanh(-) function in their derivations and their performances demonstrate 

similar behaviors, as can be seen from Figs. 4.13 and 4.14, the poor performance o f p at small values 

of SNR is probably caused by the approximation errors in (4.33). (Observe further that p x does not 

use this approximation and its performance degradation with decreasing SNR is not as severe as is 

the case for p  and p2). Comparing p with p, and p2, one observes that p  outperforms p x for most 

values o f SNR considered, and outperforms p2 for all the values of SNR considered. When the SNR 

is less than about 1.9 dB, p has a larger bias than p x. This is explained as follows. First, from (4.33) 

and (4.34), the main difference between y and p x is the fact that p  uses the received signals of Q 

unknown data symbols, in addition to the received signals of L  known pilot symbols used by p x. 

This leads to two consequences. On the one hand, p  benefits from a larger sample size by including 

the data symbols in the estimation. On the other hand, p  also suffers from the approximation error 

introduced by using these unknown symbols. As a result, one sees in Fig. 4.13 that the performance 

gain o f p  over p, for a fixed Q decreases as the SNR decreases from 9.0 dB to 2.0 dB, since the 

approximation error cannot be ignored in this case and it increases as the SNR decreases. A t SNR 

values less than about 1.9 dB, the penalty incurred by using the data symbols is too large to be 

compensated by the gain, and p shows a larger bias than p x in this SNR region. Second, from (4.33) 

and (4.35), the main difference between p and p2 is the fact that p  uses the received signals o f L 

known pilot symbols, in addition to the received signals o f M  unknown data symbols used by p2. 

Unlike the previous case, since the pilot symbols are known, there is no penalty incurred from using 

the pilot symbols. As a result, p  outperforms p2 f ° r values o f SNR considered, as seen in Figs. 

4.13 and 4.14, as it always benefits from a larger sample size by including the pilot symbols in the 

estimation.

Figs. 4.15 and 4.16 compare the performances o f p , the M 2M4 estimator in [22, eq. (42)] and 

the SNV estimator in [22, eq. (30)] when L =  8 and Q =  28. To make a fair comparison, we 

assume that both the pilot symbols and the data symbols in the frame are available to the M 2M4
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Figure 4.15. The biases o f the ML-based estimator p, the M2M 4 estimator and the SNV estimator 

when L  =  8  and Q =  28.
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Figure 4.16. The normalized root mean squared errors o f the ML-based estimator p, the M 2M 4 

estimator and the SNV estimator when L  =  8  and Q =  28, and the Cramer-Rao lower bound.
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estimator and the SNV estimator. One sees from Figs. 4.15 and 4.16 that p  performs better than 

the SNV estimator for all values o f SNR considered. As an example, p  always has a bias gain 

of about 0.1 dB over the SNV estimator at the considered values o f SNR. Comparing p with the 

M2M4 estimator, one observes that p  has smaller bias and NRMSE than the M 2M4 estimator, when 

30.0 dB > SNR >  5.0 dB. Therefore, p  performs better than the M 2M4 estimator when 30.0 dB >  

SNR >  5.0 dB. When 5.0 dB >  SNR >  0.0 dB , p  has a smaller NRMSE but a larger bias than the 

M2M4 estimator. The performance o f the M 2M4 estimator is mainly determined by errors in the 

approximation o f the second- and fourth-order moments [2 2 ], while the performance of p  is mainly 

determined by errors in the approximation o f the tanh(-) function in this case. From Figs. 4.15 

and 4.16, the performance o f p  is more sensitive to the value o f SNR than the performance o f the 

M2M 4 estimator. This suggests that the approximation error in the tanh(-) function used to derive 

the ML-based estimator p  is more sensitive to the value o f SNR than the approximation errors in 

the second- and fourth-order moments used to derive the M 2M4 estimator. As a result, increasing 

the SNR improves the performance o f p  greatly. It can also be shown that p  outperforms the SNV 

estimator over the SNR region of interest, while p  outperforms the M 2M4 estimator at large values 

of SNR and underperforms the M 2M4 estimator at small values o f SNR, when other values o f L  and 

Q are used. The preceding estimator is obtained for BPSK signaling, which is used, for example, in 

a cdma2000 system [94].

4.3 ML Estimation of ASNR in a Ricean Channel

In the previous two sections, we have actually estimated the instantaneous SNR. In this work, we 

derive M L estimator for ASNR in a slowly Ricean fading channel.

4.3.1 Estimator Structure

Use the same system model as that in Section 3.2. The i-th component o f the received signal is 

given by (3.18), where r { and Q{ here are the Ricean fading envelope and the Ricean fading phase,
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respectively. The received signal is correlated with the known transmitted signal, giving

wi =  =  r ieJ°‘E + ni (4-36)
i=l

where E  =  £ - =1 K / l2 *s the signal energy assuming all signals used in the estimation have the 

same energy, and nt =  £ /= i nus*u is a complex Gaussian random variable with mean 0 and vari­

ance £ {n ;n*} =  N0E. The instantaneous SNR can be derived from (4.36) as j r> j .  Note that it is 

changing from symbol to symbol since r t is a random variable. A  useful performance measure is 

the ASNR, defined as

(437)

where Q =  E { r f }  =  P2 +  2a2 is the total mean power o f the fading signal, P2 is the mean power of 

the LOS component, 2 a 2 is the mean power o f scattering component, and 2cr2 =

From the invariance principle o f M L  estimation, one has that the M L  estimator for p, p, satisfies

Q
P =  - * z  (4-38)

l a 2

where Cl and 2cr2 are the M L  estimates of £2 and 2cr2, respectively. It has been shown in Section 

3.2 that the M L  estimators for 2 c 2 and Q, in a Ricean fading channel, 2<r2 and Q, are

1 „  1 L
l a 2

anti

1 L
Q =  - X ^ - 2 ^ 2 (4.40)

L i=i

where zt — ^|vv; | is the normalized absolute value o f the correlator output in (4.36) and is also the 

M L  estimate of r i as shown in Section 2.1. Using (4.38), (4.39) and (4.40), p  is then

P =  y  ~  1 (4-41)

where X =  \  £ f= i zf and Y =  j f_ \)LE S f=1  E ;=i I2 -  Xf=i A- By takin§ an average o f the

M L  estimates o f the instantaneous SNR in L  symbol intervals, one can also obtain a moment-based

i i  ~ z2estimator for p as pM =  f  £/= , p/5 where pt =  jw —i 2 ,2_g i is the M L  estimate o f the instantaneous

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SNR using the /-th symbol only [22]. It can be shown that pM has larger bias, variance and mean 

square error than p. Therefore, the M L  estimator, p , outperforms the moment-based estimator, pM, 

as expected. Next, we examine the performance o f the M L  estimator, p, analytically.

4.3.2 Analytical Performance

We derive the PDFs of X  and Y first. It was derived in Section 3.1 that the PDF o f z{ in a noisy 

Ricean fading channel is given by (3.5). Since X =  £ x f= i is a sum of zj, I =  1,2, ■ • ■ ,L, one has 

the PDF of X  [1, eq. (2-1-118)]

1 /  x \  P+* ( y/xP2, \

p M  =  2 z ( p )  ‘  * - °  <4'42>

which is a noncentral chi-square distribution with 2 L  degrees o f freedom, noncentrality parameter 

P2, and parameter Xx =  j ( c 2 +  a 2). The PDF o f Y can be derived from (4.39) as a central chi- 

square distribution with 2(7— 1)L degrees o f freedom and parameter Xy =  j f jE j ]Z’ which is given 

by [ 1, eq. (2 - 1- 1 1 0 )]

=  7 - a  ( 4 ' 4 3 )

Moreover, as discussed in Chapter 2, Y is independent of X.

Using (4.42) and (4.43), together with (4.41), the PDF of p  can then be derived. Denote X 1 =  j -  

as a normalized noncentral chi-square random variable with 2 L degrees of freedom and noncentral­

ity parameter ~ i^ ai , and Y' =  j -  as a normalized central chi-square variable with 2(7 — 1)L degrees 

of freedom. Also, rewrite (4.41) as

2a2 + 2cr2
P =  P  2 ^ 2 ---------1 (4.44a)

- i
P = 2L

Y'
(4.44b)

2 ( 7 - 1)L ‘

One sees that p ' is a singly noncentral F -variable with parameters Vj =  2L, v2 =  2(7 — 1)L and 

Aj =  From [49, eq. (30.8)], p  has PDF

P(P) =  ( ^ v . P C a S  +  S a S ) ?   il + M l C *  (4,45)
2 1 2 )  ( 2 < 7 2 V 1 +  2 c t 2 v 2  +  2 a 2 v 2 )  2 (    2 .U , ,  -

\ 2<j2v1+ 2a l v2+ 2a2v2t^

1 3 1

2
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Vl + V2 vl .  Vj (1 +p)<J2
1 2  ’ 2  ’ cr2v , ( l + p )  +  CT2v2 +  a 2v2y

where ,Fj (•,•;■) is the confluent hypergeometric function [2, p. 504]. The mean, the variance

and the mean square error o f p  are E { p }  =  +  ^ z z r ,  V a r{p } =  •

-  [ ( / - ! f(/ l l ) F - 2] • Z ( ^ l ) 2^ 2 and { p }  =  ^ { p }  +  (E { p }  -  P)2 as p2 =  j ^ fQ -  The

Cramer-Rao lower bound for estimation o f p  in a Ricean fading channel is calculated numerically. 

Figs. 4.17 to 4.19 show the bias, the normalized variance and the normalized mean square error of 

p. One sees that even when L =  100, the bias o f p  is less than 0.09 dB, the normalized variance of 

p  deviates from the CRLB within a range of 3% to 4%, and the normalized mean square error o f 

p deviates from the CRLB within a range o f 4% to 5%. As the sample size increases, the bias and 

the deviations are further reduced. An unbiased estimator for p  can be obtained by shifting p with

( / - i )l - i and t îen scaling with § 'vln§

1( ^ - 1 ) L - 1

P ( / - I  )L
P ~ (4.46)

One also has V ar{p }  =  M S E {p }  =  —  [ / - i) ^ - 2 l ( ^ T T ) 2P2’ whid1 are smaller than

the corresponding values o f p. Therefore, the estimator p  has better performance than p.

4.4 Joint Estimation of ASNR and K Parameter in a Ricean Channel

In the previous section, estimation o f ASNR for a noisy Ricean fading channel has been studied. As 

well, in Chapter 3, estimators for the Ricean K  parameter using noisy samples have been proposed. 

These estimators estimate the ASNR and the Ricean K  parameter separately by using independent 

samples. In some cases, it is desirable to perform a jo in t estimation o f the ASNR and the Ricean 

K  parameter. Also, in a practical wireless communication system, the channel samples are usually 

correlated. As an example, in a communication system with a carrier frequency o f 900 MHz, i f  

the mobile moves at a speed o f 100 Km/h and the received signal is sampled at a rate o f 2 KHz, 

the covariance between the neighboring two channel samples is about 0.9829, according to Jakes’ 

model [54], Therefore, it is o f great practical interest to design estimators for the Ricean K  parameter
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Figure 4.17. The biases (in dB) o f p  for /  =  2 and K  =  5 for different sample sizes.
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and K  =  5 for different sample sizes.
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Figure 4.19. The normalized mean square errors (with respect to the corresponding CRLBs) of p 

for /  =  2 and K =  5 for different sample sizes.

and the ASNR using correlated samples. In this work, we investigate the problem o f estimating 

the ASNR and the Ricean K  parameter jo in tly in a Ricean fading channel using noisy correlated 

samples, a case of great practical importance. Two Ricean fading channel models, a time-varying 

line-of-sight (LOS) component model and a constant LOS component model, are considered [54]. 

Both data-aided (DA) and non-data-aided (NDA) designs are discussed.

4.4.1 System M odel

Consider a system where the data signals experience fast and flat fading. The signal after transmis­

sion over the fading channel can be expressed as

y(t) =  A(t)s(t) +  n(t) (4.47)

where A(t) is the fading process, s(t) is the transmitted signal, and n(t) is the additive white 

Gaussian noise (AWGN). In a Ricean fading channel, A{t) is a complex Gaussian random process 

with mean E {A ( t) }  =  e(t) (e(t) ^  0) and autocovariance £{[A (r)  — e(t)][A(t +  r )  - e ( r - t - r ) ] * }  =
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R(t, t +  t ) .  We consider Jake’s isotropic scattering model in this paper. Thus, one has [54]

R(t,t +  t )  =  2a2J0{2n fDx) (4.48)

where 2 a 2 =  E{\A(t) — e(t) |2}  is the variance of A(t), 70(-) is the Bessel function o f order zero of 

the first kind [2, p. 358], and f D is the maximum Doppler shift. The mean, e(t), is actually the LOS 

component in the Ricean fading channel. One Ricean fading channel model suggests that [54]

e{t) =  P e ^ t+^ )  (4.49)

where P is the amplitude o f the LOS component, f d =  f D cos 60 is the Doppler shift of the LOS 

component, 0O is the angle o f arrival o f the LOS component, and <f>0 is the phase offset of the LOS 

component. One sees from (4.49) that the LOS component is actually a deterministic sine wave. 

Since e(t) depends on the time, this model leads to A(t) being a non-stationary fading process and 

y(t) being a non-stationary received signal. In some applications, a stationary fading process or a 

stationary received signal may be prefered. In this case, another Ricean fading channel model [54]

e{t) =  Pej0 o (4.50)

can be used. Comparing (4.50) with (4.49), one sees that (4.50) is actually a special case o f (4.49)

where f d =  0. Since (4.50) is a constant independent o f time, the fading process, and therefore,

the received signal are stationary under this model. We w ill discuss both models in the paper. 

The transmitted signal can be written as s(t) =  X/ btp(t  — IT), where bt is the Z-th transmitted data 

symbol, p(t) is the shaping pulse with unit symbol energy and T is the symbol interval. The noise 

in the channel is a complex Gaussian random process with mean zero and autocovariance

E{n(t)n*(t  +  t ) }  =  2 c t 2c5( t ) (4 .51)

where <5(-) is the impulse function.

Assume that there is no intersymbol interference. The received signal in (4.47) is matched- 

filtered and sampled at the time t =  IT. The Z-th sample of the received signal is [55]

yi ^ Aibi +  nl (4.52)
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where At =  A(IT)  represents the complex Gaussian fading gain in the I -th sample and nx represents 

the complex Gaussian noise in the /-th sample. From (4.49) and (4.50), the mean of A ; is

et =  e(lT) =  pe;(W /+ 4 > 0) (4 .5 3 )

under the assumption o f a time-varying LOS component, and is

et =  e(lT)  =  Pej0 ° (4.54)

under the assumption o f a constant LOS component. The autocovariance o f A ; is

E {(A l - e l )(Al+h- e l+hy }  =  2 a 2J0(2n fDTh) (4.55)

where h is an integer. The mean o f nl is zero, and the autocovariance of nx is

E i nin*+h} =  2a2e{h) (4.56)

where e{h) =  1 when h =  0 and e{h) =  0 when h ^  0. Note that, in [67]- [72], either A t (/ =  1,2, ■ • •) 

are assumed to be independent, or yl (/ =  1 , 2 ,••■) are assumed to be noiseless, or both, while in 

this paper and in practice, Ax (I =  1,2, ■ • •) are correlated and yt (Z =  1,2, ■ ■ ■) are noisy, as can be 

seen from (4.52). Define K  =  ^  as the Ricean K  parameter and p =  101og10 as ASNR

to be estimated. In the sequel, we w ill propose both DA and NDA estimators for K  and p using L  

correlated and noisy channel samples.

4.4.2 DA Estimation

In DA estimation, the transmitted data symbols are known. Thus, the received samples in (4.52) can 

be compensated by the known data symbols to give

xl ~ A l + z l (4.57)

where I =  1,2, • ■ ■ ,L, xx =  jj-, and zx =  This is the case when the samples are obtained from the

received signals o f the modulated or demodulated pilot symbols that may be for synchronizer train­

ing or channel estimation [95]. This is also the case when the samples are taken from the received
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signals o f the data symbols and correct data decisions are made with high probability. Assume that 

\bt \2 =  1 for / =  1 , 2 , , L such that the noise samples in (4.57) are identically distributed. Two 

Ricean fading channel models are considered as follows.

4.4.2.1 Time-varying LOS Component

In this Ricean fading channel model, the LOS component is time-dependent. From (4.57), together 

with (4.53), (4.55) and (4.56), one has

Mi =  £ { * / }  =  P ^ lmd+%) (4.58a)

M2 ! =  E {x [X*l+H}  =  P2e~jHo>“ +  2 a% {H (O m) (4.58b)

p 22 =  E {x tx*+2H} =  P2e~j2H(,l“ +  2a2J0(2H(Om) (4.58c)

H2 =  E{\x l \2} = P 2 +  2 a 1 +  2a2 (4.58d)

where 0)m — 2 n fDT is the normalized maximum Doppler shift in radians, cod =  2n fdT is the nor­

malized Doppler shift o f the LOS component in radians, and H  >  1 is an integer. Note that, among 

the three parameters P, a  and a, the imaginary parts o f (4.58b) and (4.58c) depend on P only, 

the real parts o f (4.58b) and (4.58c) depend on both P and a , while (4.58d) depends on all three 

parameters P, a  and a. This enables us to separate them and to design estimators for each of 

them. Based on the estimates o f P, a  and <7 , one can then obtain estimators for K  and p. Note

further that, by properly choosing a large value of the sample lag H  such that J0(Hcom) «  0, nearly

independent channel samples used in the previous estimators may still be available from (4.57). 

However, in doing this, many useful samples w ill be lost, especially when com is small. Next, we 

derive moment-based estimators for K  and p. We obtain estimators for P2 and 2 a 2 first.

Denote (Xl =  {  £ f=1 xt, £21 =  77377 E t " */*?+»• A22 =  l=M  1 , = ^ xixi+w  and f i2 =  {  Xf=1 |x; |2 

as estimates o f Mj, p2l, p 22 and p2, respectively. From (4.58b) and (4.58c), one moment-based 

estimator for cod, cod, is

1 /m jp , , }
— arccos -■
H  2 /m {p2 i)

=  77 a10008 0 , "p? ~  (4.59)
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where the imaginary part o f the autocorrelation function o f the Ricean fading process is used. Based 

on (4.59), the mean power of the LOS component, P2, can be estimated using the imaginary part of 

(4.58b) as

p2 = M A 2J (4.60)
sin (Hcdd)

and the mean power o f the scattering components, 2 a 2, can be estimated using the real part of 

(4.58b) as

2 a 2 =
Re{fl2l}  -  P2 cos{Hcod)

J0(H (dm)
(4.61)

where the magnitude is used, recognizing the fact that both P2 and 2 a 2 are positive numbers. In 

(4.61), com is assumed to be known. Finally, the DA moment-based estimators for K  and p can be 

derived by using the estimates of P2 and 2 a 2 to give, respectively,

p2
K,DA-LOSA

and

Pd a - lo s a  — 10 l°g 10

2 a 2

P2 +  2 a 2

(4.62)

(4.63)
jX2 - P 2-  2 a 2

where P2 is given by (4.60), 2a 2 is given by (4.61), and (4.58d) is used. One sees that the estimators 

in (4.62) and (4.63) are derived by using the second order statistics o f the received signals only, as the 

autocorrelation function o f the Ricean fading process contains enough information for estimation. 

Specifically, the moment-based estimator for K  in (4.62) uses p 21 and p22, and the moment-based 

estimator for p  in (4.63) uses p2], / i22 and jJ^. One also sees that the estimators in (4.62) and (4.63) 

actually represent a class of moment-based estimators, as the values o f the sample lags, H  and 

2H,  can be any positive integers. Estimators with different values of I I  and 2H  w ill have different 

performances, as w ill be discussed later. In our derivation, the sample lags o f H  and 2H  are used to 

facilitate the calculation o f (Sd in (4.59). Several comments are made as follows.

First, in (4.61), a>m is assumed available. It is well known that f m =  j ,  where v is the mobile 

speed and A is the wavelength [54]. Since 0)m =  2n f mT , given a specific communication system and 

a specific symbol rate, com is solely determined by the mobile speed. Estimation of the mobile speed
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has been well studied by several researchers [96]- [99]. In [96] and [97], mobile velocity estimators 

that are independent of, or robust with respect to, the Ricean K  parameter have been derived. In [98] 

and [99], the authors proposed mobile velocity estimators for a Rayleigh fading channel, which can 

be easily extended to a Ricean fading channel. A ll these estimators have good performances. As 

reported in [99], the standard deviation o f the estimate is within 2.4 Km/h. Therefore, the value 

o f 0)m can be accurately estimated. Moreover, it w ill be shown later that by properly choosing the 

value o f H , the performances of the derived estimators are not sensitive to errors in the estimation 

of (Dm'

Second, in [9], the authors have derived another moment-based estimator for (Od as

ft), =  argmax • -jlm (4.64)

and another moment-based estimator for P2 as

P2 =
‘ l=\

(4.65)

for a noiseless Ricean fading channel. These estimators could also be used in the noisy case, as 

they use the first order moment o f the sample and the mean of the noise is zero. However, one 

sees from (4.64) that this estimator requires a search over all possible values o f wd, which has a 

complexity of Llog2 L for each w. Our proposed estimator in (4.59) saves estimation time as well 

as estimator complexity. Also, denoting A =  (Dd — (dd as the estimation error in the estimation of

cod, the estimator in (4.65) is very sensitive to A. From (4.65), one has P2 «  P2
sin(^A)
t,sin(|) when

the ratio of P2 to 2<r2 +  2a 2 is large. A t L  =  1000, A =  0.01 w ill give an estimate of P2 =  0.037P2, 

which is far from the true value of P2. Thus, an estimate o f wd with very high accuracy is required 

by (4.65). On the contrary, our proposed estimator in (4.60) is robust to A, giving higher quality 

estimates.

Finally, it can be seen from [59] that 2cr2 and 2a 2 always appear together as 2a 2 +  2a 2 in 

moments of the sample envelope on a noisy Ricean fading channel. As a result, one cannot use the 

sample envelope to estimate p and K, as one did in the noiseless case. We use the autocorrelation
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function o f the samples in this paper. Since the samples from the Ricean fading process are corre­

lated while the samples from the noise process are uncorrelated, this is probably the only way of 

differentiating 2cr2 and 2a2, without the use of an independent noise power estimator. Next, we 

discuss moment-based estimators for the case of a constant LOS component.

4.4.2.2 Constant LOS Component

In this Ricean fading channel model, the LOS component is constant, giving a stationary Ricean 

fading process. The moments of the received samples are obtained from (4.57) as

Ml =  E {x t}  =  Pej0 o (4.66a)

M21 =  E { x i x *+ h )  — p2 +  2 a 2J0(Ha>m) (4.66b)

H2 =  E {\x l \2}  =  P2 +  l a 2 +  2 a 2 (4.66c)

where the notations are defined as before. Similarly, one sees that, among the three parameters 

P, a  and a, (4.66a) depends on P only, (4.66b) depends on both P and a , and (4.66c) depends 

on all three parameters, enabling us to estimate P, a  and a  separately. One also sees that [Xl in 

(4.66a) doesn’t depend on the sample index I and the imaginary part of the autocorrelation function 

in (4.66b) disappears, as a result o f the stationarity o f the Ricean fading process. Similar to before, 

we derive estimators for P2 and 2 a 2 first.

Using (4.66a) and (4.66b), a moment-based estimator for P2, P2, is

P2 =  I Ail2 (4-67)

and a moment-based estimator for 2 a 2, 2a2, is

Re{(i2X } - P 2
l a 2 = (4.68)

7q (H(Om)

where /i, and jX2l are defined as before. The moment-based estimators for the Ricean K  parameter 

and the local average SNR can be obtained, respectively, as

P d a - lo s b  =  (4.69)
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where P2 is given by (4.67), 2a2 is given by (4.68) and p2 is defined as before. As in the previous 

subsection, the value of com in (4.68) is assumed known. Note that estimation of the Ricean K  

parameter and the local average SNR under the assumption o f constant LOS component is much 

simpler than under the assumption of time-varying LOS component, as one doesn’t need to estimate 

the Doppler shift o f the LOS component in this case. Note further that the moment-based estimator 

for K  in (4.69) uses p , and p21, and the moment-based estimator for p  in (4.70) uses n v  / i21 and 

p2. Next, we derive NDA estimators for K  and p. To the best of the authors’ knowledge, no 

NDA estimators for the Ricean K  parameter have been described in the literature, nor have NDA 

estimators designed for noisy fading channels been examined.

4.4.3 NDA Estimation

In NDA estimation, the transmitted data symbols are unknown. As a result, the received samples 

cannot be compensated by the data symbols and the properties o f the data sequence, b} (I =  1,2, • • •), 

w ill affect the blind estimation o f the Ricean K  parameter and the local average SNR. As done 

in [1, eq. (4.4-5)], we assume that the data sequence, bt (/ =  1,2, ■ • •), is wide-sense stationary with 

mean d and autocorrelation function

^ { h ) = E { b lb*l+h}. (4.71)

As w ill be seen later, our NDA estimators require that x¥(h) be non-zero at h =  H  and h =  2H, 

where H  and 2H  are the sample lags used in the estimation.

It is well known that the autocorrelation function of a wide-sense stationary process is the sum 

of the squared mean of the process and the autocovariance function of the process [34, eq. (9- 

9)]. In a communication system where coding is introduced, i f  the received signals are sampled 

before decoding, the autocovariance function o f the data sequence in these samples w ill be non­

zero, which in turn makes the autocorrelation function o f the data sequence non-zero. Also, in a
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communication system where modulation with memory is used, i f  the received signals are sampled 

before demodulation, the autocovariance function o f the data sequence in these samples w ill be 

non-zero, giving a non-zero autocorrelation function as well [1], Even i f  no coding or modulation 

with memory is adopted in the communication system and the autocovariance function of the data 

sequence is zero, by using signaling schemes such as on-off keying and frequency-shift-keying, the 

mean o f the data symbols may still be non-zero, leading to a non-zero autocorrelation function of 

the data sequence as well. In fact, the autocorrelation o f the data sequence is often used in practical 

systems to control the power spectrum o f the modulated signals [1]. W ith a zero autocorrelation 

function of the data sequence, the power spectrum of the modulated signals w ill also be zero, an 

impractical case in realistic systems. We assume that 'E(/j) is non-zero and is known at h =  H  and 

h =  2H  in the following derivation.

4.4.3.1 Time-varying LOS Component

Again, we begin with the Ricean fading channel model where the LOS component is time-varying.

Assuming that the data sequence is independent of the fading process, from (4.52), we have

Vj =  E {y t}  =  P e ^ + ^ d  (4.72a)

v2i =  E b iV i+H } =  [P2e~jHm« +  2a2 J0(Hcom)]W (H) (4.72b)

V22 =  E { y t f+2H}  =  [P2e - j2Hm“ +  2a2 J0 (2H  <um)]'F (2H) (4.72c)

v2 =  E {\y t \2}  =  (P2 +  2a2)'P(0) +  2cr2 (4.72d)

where d is the mean o f the data sequence, 'F(Zf), X¥(2H ) and 'F(O) are the values of 'P(ft) at h =  H, 

h =  2H  and h =  0, respectively, and com and (Od are defined as before. One sees that the only d if­

ference between the second order moments o f the DA samples in (4.58b)-(4.58d) and the second 

order moments o f the NDA samples in (4.72b)-(4.72d) is that (4.72b)-(4.72d) depend on the auto­

correlation function of the data sequence, as the data symbols are unknown in this case. Denote

=  i l i j y i ,  v21 =  E Z ffS fe fy /y /V ff. v22 =  yiyi+2H and ^2  =  1 ^ 1 = 1  W 2 as esti­

mates of Vj, v21, v22 and v2, respectively. Using similar techniques as previously, we can derive the
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moment-based estimator for cod, (dd, as

=  <4'73> 

The moment-based estimators for P2 and 2a2, P2 and 2a2, can be obtained by using (4.73), together

with (4.72b), as

and

P2 — M % }

2a2 =

Y (^ )s in  (H(6d) 

Re{V21}-& c o & (H (8 dyP(H)

Finally, the NDA moment-based estimators for K  and p  are

p2
K,NDA—LOSA

and

Yn d a - lo sa  ~  10 log 10

2a2

P2 +  2 a 2

-'F(O) (P2 +  2a2)L 2'

(4.74)

(4.75)

(4.76)

(4.77)

where P2 is given by (4.74) and 2a2 is now given by (4.75). Note that, again, the estimators in

(4.76) and (4.77) use the second order statistics o f the received samples only, as the autocorrelation

function contains enough information about the unknown parameters.

4.4.3.2 Constant LOS Component

In this Ricean fading channel model, the LOS component is constant. From (4.52), one has

V, =  E {y t}  =  PeJ0«d (4.78a)

v2i =  £{»)'/*+//} =  [P2 +  2 a 2J0(Hc°m)]W (H) (4.78b)

V22 =  E{y,yi+2„} =  [P2 +  2a2J0(2H(om)y¥(2H) (4.78c)

v2 =  E i  b/12}  =  [P2 +  2a2]T (0 ) +  2ct2 (4.78d)

where, again, d  is the mean o f the data sequence. I f  d ^  0, the moment-based estimators for P2 and 

2a2 are derived from (4.78a) and (4.78b) as

P2 =
I vi> 12

d2
(4.79)
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and

2 a 2 =
Re{v21} - ^ ( H ) P 2

Y (H )J0(Hcom)

Using (4.79) and (4.80), the moment-based estimator for K , KNDA_LOSB, is

(4.80)

K,NDA—tOSB '
P2 

2a2
(4.81)

and the moment-based estimator for p, P n d a -lo s b ^  ' s

Pn d a - lo s b  ~  10 log 10
P2 +  2a2

(4.82)
v2 — Y  (0) (P2 +  2 a 2) _

where P2 is given by (4.79) and 2 a 2 is given by (4.80). Note that Kn d a - lo s b  uses v i an<̂  v2 i ’ 

while P n d a - lo s b  uses v i> v2 i aiK* v v  ^ ° th  estimators fail in the case when d  =  0, as the first order 

moment of the received samples w ill become zero and w ill not be usable in the estimation. We 

propose estimators that can be used for d  =  0 in the following. From (4.78b) and (4.78c), one has 

moment-based estimators for P2 and 2a2, P2 and 2a2, as

J0{Hcom) 7?c{v2 2}  J0(2Hcom) Re{v2 l}
P2 =

and

J0(Hmm) - J 0(2Hcom) 'I '{2 H ) J0{H a m) - J 0(2Hcom) W{H) 

^{2 H )R e {v2x} - ^ { H ) R e { v 22}
2 a 2 =

'¥ (H )'¥ (2H )[J0(H(Om) -  J0(2H(om)\ 

Using (4.83) and (4.84), the moment-based estimator for K, KNDA_L0SB2, is

P2

(4.83)

(4.84)

K,NDA-LOSBl
2 a 2

(4.85)

and the moment-based estimator for p, PNd a - lo s b i > ' s

Pn d a - lo s b 2 ~  lOlog 10
P2 +  2 a 2

v2 —'F(0)(P2 +  2a2)
(4.86)

where P2 and 2 a 2 are given by (4.83) and (4.84), respectively. Note that the estimators in (4.85) 

and (4.86) apply to the case when d  ^  0 as well as the case when d  =  0, since they don’t use the 

first order moment o f the received samples.
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Figure 4.20. The performance of KDA_L0SA for different values o f the sample lag with L  — 1024 and 

p =  10 dB.

4.4.4 Numerical Results

Here, the performances o f the estimators for K  and p are examined and compared with the estimator 

in (3.39) and the estimator in (4.41), respectively. For convenience, we denote the estimator in 

(3.39) as Kgld and the estimator in (4.41) as pM . We study a communication system with a carrier 

frequency o f 2 GHz. The mobile travels at a speed o f 100 Km/h and the received signal is sampled 

at a symbol rate o f 25 kb/s. Without loss of generality, let <£>0 =  |  and 0O =  |  be the phase offset 

and the angle o f arrival o f the LOS component, respectively. The total mean power of the fading is 

fixed to 1.0, while K  varies from 0 to 5 with a step size o f 0.5. The true value o f p  is set from 0 dB to 

15 dB with increments o f 1 dB. In the NDA estimation, binary frequency shift keying is assumed to 

illustrate the effect o f unknown data symbols on the estimator performance, where bt =  0 and bt =  1 

are sent with equal probabilities and bt (I =  1 , 2 , ,L) are mutually uncorrelated. Other schemes 

can be examined accordingly.

We discuss the effect o f H  on the estimator performance first. We use KDA_WSA as an example.
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Figure 4.21. The performance of KDA_L0SB for different values of the sample lag with L — 1024 and 

p =  10 dB.
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Figure 4.22. The performance of KNDA_LOSA for different values of the sample lag with L  =  1024 

and p =  10 dB.
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Figure 4.23. The performance of KNDA_L0SB for different values of the sample lag with L  =  1024 

and p  =  10 dB.
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Figure 4.24. The performance o f P d a _ L osa f ° r different values of the sample lag with L  =  1024 and 

K =  5.
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Figure 4.25. The performance of P d a - lo s b  f ° r different values o f the sample lag with L  =  1024 and 

K  =  5.
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Figure 4.26. The performance of P n o a - lo s a  f ° r different values o f the sample lag with L =  1024 

and K =  5.
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Figure 4.27. The performance of Pnda- losb f ° r different values o f the sample lag with L =  1024 

and K  =  5.

The value o f H  affects the simulated performance o f KDA_L0SA in three ways. First, it determines 

the value o f H(Od. For a fixed cod, the imaginary parts o f p 2] and M22 w ’d be close to zero and the 

estimators (4.59) and (4.60) w ill be vulnerable to noise when H  is small. Second, it determines 

the value o f Hcom. For a fixed com, the Bessel functions in jU2l and p 22 w ill be close to zero and 

estimator (4.61) w ill be vulnerable to noise when H  is large. Third, it determines the effective 

sample sizes o f L — H  and L — 2H. A  larger H  corresponds to smaller effective sample sizes. The 

overall performance o f the estimator depends on all the three factors. Fig. 4.20 shows the effect 

of H  on the performance of KDA_L0SA. Five values o f the sample lag, H  =  1, H  =  10, H  =  20, 

H  =  30 and H  =  40 are examined. One sees that H  =  30 gives the best overall performance of 

^ d a -  ■lo sa among ad values o f the sample lag evaluated. Similarly, one can see from Figs. 4.21 to 

4.27 that H  =  30 gives the best overall performance o f KNDA_L0SA, H  =  20 gives the best overall 

performance o f KDA_WSB, and H  — 1 gives the best overall performance o f KNDA_WSB, pDA_L0SA>

Pd a - l o s b ’ Pn d a - lo s a  and Pn d a - l o s b ’ amon§ the values o f sample lag examined.

Next, we discuss the effect o f the estimation accuracy o f (om on the estimator performance.
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Figure 4.28. The performance o f KDA_WSA for mobile speed estimates having different accuracies 

at L  =  1024, p  =  10 dB.
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Figure 4.29. The performance of KDA_LOSB for mobile speed estimates having different accuracies 

at L =  1024 and p  =  10 dB.
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Figure 4.30. The performance o f KNDA_L0SA for mobile speed estimates having different accuracies 

at L — 1024 and p =  10 dB.
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Figure 4.31. The performance of K n d a _ LOsb f ° r mobile speed estimates having different accuracies 

at L — 1024 and p =  10 dB.
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Figure 4.32. The performance o f Pqa- losa f ° r mobile speed estimates having different accuracies 

at L  =  1024 and K  =  5.
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Figure 4.33. The performance of P d a - lo s b  i ° r mobile speed estimates having different accuracies 

at L =  1024 and K  =  5.
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Figure 4.34. The performance of P n d a - lo s a  f ° r mobile speed estimates having different accuracies 

at L =  1024 and K =  5.
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Figure 4.35. The performance of Pnda- losb f ° r mobile speed estimates having different accuracies 

at L  =  1024 and K  =  5.
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Figure 4.36. Performances o f KDA_L0SB, Kold and KNDA_WSB with L =  1024 (dashed line) and 

L =  512 (solid line) at p =  10 dB, assuming a constant LOS fading component.

Again, we use Kda_Wsa as an example. Fig. 4.28 shows the effect o f the estimation accuracy o f com 

on the performance o f KDA_L0SA, where f) is defined as the ratio o f the mobile speed estimate to its 

true value and the normalization is taken with respect to the performance of KDA_L0SA when rj =  1 . 

One sees that KDA_L0SA is more sensitive to 17 =  1.1 than to r\ =  0.9. One also sees that the effect 

of the estimation accuracy o f com depends on H. The smaller H  is, the less sensitive the estimator 

performance w ill be to the mobile speed estimation error. From Figs. 4.29 to 4.35, one sees that 

this observation is valid for other estimators as well. As a compromise between robustness and 

optimality, in the following simulation, we use H  — 20 for KDA_L0SA and KNDA_WSA, and H  — 1 

for other estimators.

Figs. 4.36 and 4.37 show the performances o f KDA_L0SB and KNDA_L0SB for different values of 

p and N. One sees that KDA_L0SB has a bias between 0.1 and 1.3 and a standard deviation between

0.0 and 3.0 when L =  512 and p =  10 dB, a bias between 0.0 and 0.5 and a standard deviation 

between 0.0 and 1.9 when L  =  1024 and p =  10 dB, a bias between 0.1 and 1.4 and a standard
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Figure 4.37. Performances of k DA_L0SB, Kdd and KNDA_L0SB with L  =  1024 (dashed line) and 

L  =  512 (solid line) at p  =  5 dB, assuming a constant LOS fading component.

deviation between 0.0 and 3.3 when L =  512 and p =  5 dB, and a bias between 0.0 and 0.6 and 

a standard deviation between 0.0 and 2.0 when L =  1024 and p  =  5 dB, for all the values o f K  

considered. Hence, KDA_WSB has good performance, especially when the true value of K  is small. 

The estimator performance improves as the sample size and/or the local average SNR increases. 

Comparing KDA_WSB with KNDA_L0SB, one observes that k DA_WSB outperforms KNDA_WSB for all 

the cases discussed. Also, comparing KDA_L0SB with Kold, one sees that k DA_WSB outperforms Kold 

greatly, as expected.

Figs. 4.38 and 4.39 show the performances o f k DA_L0SA and k NDA_LOSA at different values 

of p  and L. Similar observations can be made. Again, the performance o f KDA_L0SA improves 

as L  or(and) p increase(s). Comparing k DA_LOSA with Kold, one sees that our correlated-sample- 

based estimator k DA_LOSA outperforms the independent-sample-based estimator Kald in [59] for all 

cases considered. Also, comparing k DA_LOSA with KNDA_L0SA, one sees that KDA_LOSA performs 

much better than k NDA_WSA for most cases. However, when p =  5 dB and L =  512, k DA_L0SA
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Figure 4.38. Performances o f KDA_LOSA, Kold and KNDA_LOSA with L  =  1024 (dashed line) and 

L =  512 (solid line) at p  =  10 dB, assuming a time-varying LOS fading component.
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Figure 4.39. Performances o f KDA_WSA, K()ld and KNDA_L0SA with L  =  1024 (dashed line) and 

L =  512 (solid line) at p =  5 dB, assuming a time-varying LOS fading component.
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Figure 4.40. Performances o f KNDA_WSA at p =  5 dB for different sample sizes, assuming a time- 

varying LOS fading component.

has a smaller standard deviation but a larger bias than KNDA_WSA for 4.2 <  K  <  5.0. Also, when

4.2 < K <  5.0, Knda_losa with L  =  512 has a smaller bias as well as a smaller standard deviation 

than Knda_losa with N  =  1024. This, however, doesn’ t imply that the overall performance of 

K NDA- w s a ' s better than that of KDA_WSA and that the overall performance o f KNDA_LOSA improves 

as the sample size decreases. Fig. 4.40 shows the performance o f KNDA_L0SA for different sample 

sizes. It is clear that the bias of KNDA_LOSA w ill become negative and KNDA_WSA w ill underperform 

Kd a - losa  again when K  increases further. Also, when K  increases further, KNDA_LOSA w ill have 

a larger bias and a smaller standard deviation for small sample sizes than for large sample sizes. 

Since a larger bias with a smaller standard deviation means that the estimate is more concentrated 

on some value that is farther away from the true value, the overall performance of KNDA_LOSA still 

deteriorates as L  decreases. This phenomenon is probably caused by the time-variation o f the fading 

mean, as KNDA_L0SB in the constant LOS component model don’t demonstrate such behavior.

Figs. 4.41 and 4.42 show the performances o f Pd a _ LOsb ar*b P n d a - lo s b  f° r different values o f
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Figure 4.42. Performances of PDa- losb> Poid an(l  Pnda- losb w ' lh L  =  1024 (dashed line) and 

L  =  128 (solid line) at K  =  2.5, assuming a constant LOS fading component.
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K  and L. One sees that Pda_LOsb has a bias ° f  about -0.1 dB and a standard deviation of about 1.8 

dB when L  =  128 and K  =  5, a bias of about zero and a standard deviation o f about 0.3 dB when 

L =  1024 and K  — 5, a bias of about -0.3 dB and a standard deviation of about 2.0 dB when L  =  128 

and K  =  2.5, and a bias of about zero and a standard deviation o f about 0.3 dB when L  =  128 

and K  =  2.5. The new estimator, P d a -lo s b ' shows good performance. The estimator performance 

improves as the sample size increases, as expected. Comparing PDa - lo s b  whh P n d a -lo sb ' one °b ' 

serves that PDA- l o s r ' s much better than P nda -losb - Comparing PDA_WSB with pold, one sees that 

their performances are comparable when L  =  1024. When L  =  128, PDA- lo s b  slightly outperforms 

pold, as Pda_W sb has a smaller bias than pold. The new estimator, PDA- lo s b ’ benefits from taking 

the sample correlation into account, but it suffers from using estimates of two parameters P2 and 

2 a2. On the other hand, the previous estimator, pold, benefits from using an estimate of only one 

parameter 2 a 2, but it suffers from not taking the sample correlation into account. When L  is large, 

there are enough independent samples among the L  correlated samples for pold to obtain an accurate 

estimate of 2a2, and the sample correlation doesn’t dominate. In this case, they show comparable 

performances. When L  is small such that few samples among the L  correlated samples are indepen­

dent, pold cannot obtain an accurate estimate o f 2 a 2. In this case, the sample correlation dominates, 

and our correlated-sample-based estimator, PDA- lo s b ' shows some advantage.

Figs. 4.43 and 4.44 show the performances o f pD\ _ W S A  and PNDA_WSA for different values 

of K  and L. Similar observations can be made. Again, the DA estimator, PDA- lo s a > has good 

performance, and it outperforms the NDA estimator, P n d a - lo s a ■ Comparing PDA- lo s a  whh poid, 

one sees that Pda_ LOsa *s slightly better than pold when L  =  128. When L  =  1024 and p  is large, 

pold is slightly better than Pd a _ LOsa> as the sample correlation is not dominant and our estimator 

P d a - lo s a  introduces extra estimation errors by using estimates o f two parameters in this case; the 

performance difference is small.
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L =  128 (solid line) at K  =  5, assuming a time-varying LOS fading component.
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L =  128 (solid line) at K  =  2.5, assuming a time-varying LOS fading component.
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4.5 Moment-based Estimation of SINK

In the previous sections, estimation of SNR and ASNR has been performed. The estimation is based 

on the assumption of no interferences. In some wireless communication systems, interferences may 

also occur, in addition to the noise. In this case, the SINR, defined as the ratio o f the signal power 

to the interference-plus-noise power, is frequently used as an important link quality measure. Esti­

mation o f SINR has been studied previously by several researchers [100]- [104]. These estimators 

assume either known data symbols or constant modulus signaling. However, for a high data rate 

transmission system using QAM, known data symbols may not be available in the signaling format 

or may be undesirable since they reduce throughput. New estimators that blindly estimate the SINR 

o f QAM  signals are desired. In [105] and [106], non-data-aided (NDA) SNR estimators were de­

rived for QAM  signals in an additive white Gaussian noise channel and a slowly fading channel, 

respectively. These estimators are designed to operate in the absence of interferences. In this work, 

we examine the more general case when interference and noise are both present. We derive NDA 

SINR estimators for Q AM  signals in a slowly fading channel under two channel conditions.

4.5.1 Channel Condition 1

First, we consider channels where the interference can be modeled as a Gaussian random variable 

with non-zero mean. The received signal is

y i = A s i + I i + n i (4 -87)

where I =  1,2, • • ■ , L  index different samples, A is the unknown complex channel gain assumed 

constant over the estimation time in a slowly fading channel, st is the unknown transmitted signal in 

the I-th sample, is additive Gaussian interference with mean e and variance 2 a 2, and nl is additive 

Gaussian noise with mean zero and variance 2cr2. Note that the channel gain o f the desired signal is 

subjected to fading, but the fading is assumed constant over the estimation time [100]- [106]. This 

can be achieved by properly selecting the estimation time. For example, when the channel is fading 

slowly enough such that the channel gain remains approximately the same over one packet period
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(but it may change from one packet to another), the estimation can be performed over the time 

duration o f one packet and the fading channel gain is constant for all samples obtained during this 

time period. This assumption applies to each o f the interfering signals as well. However, the overall 

interference is modeled as a Gaussian random variable [14], [107], which differs from sample to 

sample, similar to the noise. Assume that the average energy o f the transmitted signal, £ { | j j | 2}, 

is normalized to 1. Also, assume that the interference and the noise are circulary symmetric with 

independent real and imaginary parts, and that the noise is independent o f the interference. Denote 

c; =  |/j| as the amplitude o f the interference. Then, c; is a Ricean random variable with probability 

density function (PDF) f Cl(x) =  1)xe~K~ ( V  /Q ( ^ 2 \ J > where K  =  is the Ricean

K  factor and Q =  |e|2 +  2a2 is the total mean power o f the interference. The interference model 

in (4.87) is flexible. For example, when K  — 0 or e =  0, I t becomes a zero mean Gaussian random 

variable. This represents channels where there are many weak interferers plus noise but no dominant 

interferers. When K  —> or a 2 — 0, l t becomes a constant. This represents channels where there 

is one dominant constant interferer plus noise throughout the estimation. Finally, when the value of 

K  is between 0 and °°, this represents channels where there are many weak interferers, a strong but 

not dominant constant interferer, and noise. The SINR to be estimated in this case can be defined as

U |2
p, =  Q+2 ai ■ Next, we derive a moment-based estimator for P j.

From (4.87), one has

E {y t}  =  e (4.88)

E {\y t \2}  =  |A|2 +  Q +  2ct2 (4.89)

and

E { |y(|4}  =  P|A|4 +  2(Q +  2ct2)2 +  4|A|2(Q +  2ct2) -  \e\4 (4.90)

where P =  E -d ^ f4}  and E{.s; }  =  0 for most practical QAM  signalings. Using (4.88), (4.89) and 

(4.90), one has an equation for p 1 as h1 =  ^ ^ p l+ i ’ w^ere =  • Solving this

equation, one moment-based estimator for p } can be derived as

-b1 +  y jb \ - A a xcx
/>, = ----------^ -----------  (4.91)
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Figure 4.45. The biases o f p, for 16-QAM and 256-QAM signals for different values o f K.

where a1 = k 1 -  P, bl =  2hl -  4, q  =  hx -  2, hx =  Ai =  I  h  =  i2 ? = i b / l2’

=  |X f= i |)';|4, and y, ,),2 ; • • ■ ,} ’L are L  independent and identically distributed samples.

Figs. 4.45 and 4.46 show the bias and root mean squared error (RMSE) o f p v  respectively. 

Two signaling schemes, 16-QAM and 256-QAM, are examined. Similar to [106], a sample size 

of L  =  1000 is used. Channel conditions o f K  =  1 and K  =  10 are considered. One sees that the 

bias o f Pj is between 0.05 dB and 0.15 dB for 16-QAM and between 0.09dB and 0.28dB for 256- 

QAM, and the RMSE o f Pj is between 0.25 and 2.20 for 16-QAM and between 0.30 and 3.20 for 

256-QAM, over all the values o f SINR considered. Therefore, the estimator p l performs well in 

this SINR region. The bias and the RMSE o f Pj increase as the true value o f SINR increases. A  

larger constellation size corresponds to a larger bias as well as a larger RMSE. Also, comparing 

the performance o f p x at K  =  1 with that at K  =  10, one sees that the estimate has a smaller bias 

and smaller RMSE in a channel with larger K. These observations suggest that p { works better for 

QAM  with smaller constellation size in a channel with larger K.
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Figure 4.46. The root mean squared errors o f p, for 16-QAM and 256-QAM signals for different 

values o f K.

4.5.2 Channel Condition 2

Next, we consider channels where there is one dominant synchronous interferer. The received signal 

in this case can be written as

yl =  Ast +  Btt +  nl (4.92)

where B is the channel gain o f the dominant synchronous interfering user affecting the desired 

user, tt is the transmitted signal component o f the dominant synchronous interfering user in the /-th 

sample, and /, A, st and nl are defined as before. Note that this case cannot be modeled by (4.87). 

Note further that the desired signal and the interfering signal have the same statistical structures in 

this case. For simplicity, we assume that tt has the same signaling scheme as s; . Extension to the

case when sl and have different signaling schemes is straightforward. The SINR to be estimated

in this case can be defined as p2 =  From (4.92), one has

£ { b / |2}  =  \A\2+  \B\2+  2a2 (4.93)
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Figure 4.47. The biases o f p2 for 16-QAM and 256-QAM signals for different values of INR.

and

£(1)714} — F|A|4 +  2(|B|2 +  2ct2)2 -l-4|A|2(|S|2-|-2cr2) +  (P — 2)|B|4. (4.94)

Using (4.93) and (4.94), one has an equation for p 2 as h 7 =  where d  =  2 +  . f ~ 2 , 2 ,p2+zp2+ i
E fly I4) Ifll2

h2 =  |f}' and INR  =  is the interference-to-noise ratio (INR). When INR  1, one has

d t t  P, and P is around 1.3 for 16-QAM signaling. When INR  <C 1, one has d  «  2.0. After testing 

several values of d  between 1.3 and 2.0 by simulation, we found that d  =  1.6 gives a SINR estimator 

with best overall performance in the cases considered. Thus,

^  P p |+ 4 p 2+ l  6 .

2 p f  +  2p2 +  l

By solving (4.95), one has a moment-based estimator for p2 as

-b2 +  \Jb 2 ~~ ^a2C2
f t  = ---------- ^ ------------ (4.96)

where a2 =  h2 — P, b2 =  2h2 — 4, c2 =  h2 — 1.6, and /i2 =  .

Figs. 4.47 and 4.48 show the bias and RMSE o f p2, respectively. Again, two signaling schemes, 

16-QAM and 256-QAM, are examined. We consider the cases when INR =  10dB and INR =  20dB.
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Figure 4.48. The root mean squared errors o f p2 for 16-QAM and 256-QAM signals for different 

values o f INR.

The estimator p2 has a bias between 0.2 dB and 2.7 dB for 16-QAM and between 0.3 dB and 2.5 dB 

for 256-QAM, and a RMSE between 0.5 and 2.3 for 16-QAM and between 0.6 and 3.3 for 256- 

QAM, in the SINR region considered. The bias o f p2 decreases as the true value o f SINR increases 

and becomes approximately constant at large values o f SINR. The RMSE of p2 decreases as the 

SINR increases over the range of 0 dB to 3 dB, and it increases as the SINR increases over the range 

of 3 dB to 10 dB. One also sees that p2 for 16-QAM has a smaller RMSE than p2 for 256-QAM, over 

all the values o f SINR considered. The bias o f p2 for 16-QAM is comparable to that for 256-QAM. 

Finally, observe that the estimate has a smaller bias and smaller RMSE in a channel with smaller 

INR. These observations also suggest that p2 works better for Q AM  with smaller constellation size 

in a channel with smaller INR. The above results consider Q AM  signals only. However, they can be 

extended to constant modulus signals as well.
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Chapter 5

Conclusions and Future Work

In this chapter, we first highlight important findings o f this thesis, and then suggest several topics 

for future research.

5.1 Conclusions

1. Maximum likelihood decision-based estimators for the channel state parameter in a static 

AWGN channel and a slowly fading channel have been developed. The approximations to the 

probability density functions o f the maximum likelihood estimates have been derived under 

the assumption o f no decision errors. Based on these approximate functions, the estimator 

performances have been examined and possible performance improvement has been stated.

2. The performances o f maximum estimated branch signal amplitude SDC and maximum es­

timated branch SNR SDC using practical channel estimators have been analyzed, under the 

assumption o f independent and non-identically distributed diversity branches and unequal 

noise powers. The effects o f channel estimation errors and imbalanced noise powers have 

been quantified in terms of closed-from expressions for the error rates.

3. When the noise powers are balanced, maximum estimated branch signal amplitude SDC per­

forms better than maximum estimated branch SNR SDC. When the noise powers are im­

balanced, maximum estimated branch SNR SDC performs better than maximum estimated
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branch signal amplitude SDC.

4. Novel diversity receivers that operate in the presence o f Gaussian channel estimation errors 

have been proposed by using statistics o f channel estimation errors. The structures o f the 

novel receivers depend on the nature and the amount o f knowledge o f error statistics available.

5. The conventional MRC receiver is suboptimal when channel estimation errors occur. The 

new diversity receivers outperform the conventional MRC receiver in most cases considered.

6 . Optimum PS A M  signal detectors for Rayleigh and Ricean fading channels have been derived. 

The conventional PSAM signal detector is proved to be optimum in the sense o f minimum 

probability o f error for BPSK signaling in Rayleigh fading channels. It is suboptimal for 16- 

Q AM  signaling in Rayleigh fading channels and for BPSK signaling and 16-QAM signaling 

in Ricean fading channels.

7. The performance gain o f the optimum PSAM signal detector for BPSK signaling comes from 

the use of the specular component in Ricean fading channels, while the performance gain of 

the optimum PSAM signal detector for 16-QAM signaling comes from the use o f specular 

component in Ricean fading channels as well as the jo in t processing o f data and pilot symbols.

8 . The CRLBs for NDA M L  channel gain and delay estimation in an ultra-wide bandwidth 

system have been derived analytically. Novel NDA M L estimators for the channel gain and 

delay in an ultra-wide bandwidth system have also been designed by using a more accurate 

approximation to the log-likelihood function.

9. Noisy sample based M L  and moment-based estimators for the fading distribution parameters 

have been derived, under the assumption o f known or unknown noise power. These estimators 

have superior performances when operating in a practical noisy fading channel. They are very 

useful for channel modeling and receiver design in realistic communication systems.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10. Novel estimators for the Ricean K  parameter have been derived by using fading phase sam­

ples. The new estimators have much simpler structures than previous envelope-based estima­

tors. In most cases, they also have better performances than the previous estimators.

11. Maximum likelihood estimators for two measures of SNR in a static AWGN channel and 

a slowly fading channel have been proposed, considering both sampled signal system and 

continuous signal system. The approximations to the probability density functions o f the 

SNR estimates have been derived under the assumption o f no decision errors.

12. The M L  estimator for SNR is a decision-based structure that necessarily incorporates a digital 

data detector. Therefore, the optimal performance o f M L  estimation o f SNR can be achieved 

at minimal additional cost in a digital signal receiver.

13. A  novel approximate M L  estimator for SNR in a static AWGN channel has been derived by 

using all symbols in a frame. This estimator can be applied to any system where signals are 

transmitted in frames and the frame has both known and unknown fields.

14. Maximum likelihood estimator for the average SNR in a Ricean fading channel has been 

derived. The probability density function o f the estimate has been obtained, and the mean, the 

variance and the mean squared error have been calculated to show its asymptotical optimality.

15. Joint estimation of the K  parameter and the ASNR in a Ricean fading channel has been 

performed. New estimators for the Ricean K  parameter and the ASNR have been designed 

by using noisy and correlated channel samples.

16. Non-data-aided moment-based estimators for the SINR in a system using QAM  signals have 

been derived, considering two different practical channel conditions.

5.2 Future Work

1. The performances o f the M L  SNR estimators in a static AWGN channel and a slowly fading 

channel are analyzed under the assumption o f no decision errors. This analysis is not valid for
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decision-based estimation with low operating SNR. In some cases, it is o f interest to analyze 

the performances o f the decision-based M L  SNR estimators with decision errors.

2. The proposed M L  SNR estimators can be used in the acquisition mode of the system. It is also 

o f interest to extend these results to the tracking mode o f the system, where one uses current 

received signals to update the SNR estimate continuously. In this way, the estimator adapts to 

the channel changes. Another useful extension is to design an iterative algorithm where the 

decision-based SNR estimate is fed back into the detector to improve the data decision and 

the improved data decision is used for SNR estimation again in the next iteration. In this way, 

both the SNR estimation and the data decision may be improved.

3. The values o f statistics o f the channel estimation errors are assumed known in the receiver 

design. In practice, they have to be obtained by estimation as well. There w ill be a mismatch 

between the true value and the estimate o f the error statistics. It is o f interest to evaluate the 

effect o f this mismatch on the receiver performance.

4. The proposed optimum PSAM signal detector doesn’t take diversity combining into account. 

It is well known that diversity combining is a very effective method in combating fading. 

Therefore, it  is of great interest to investigate the problem o f optimum PSAM signal detection 

in a diversity system.

5. The fading distribution parameters have been estimated by using practical noisy channel sam­

ples. However, these estimators don’ t consider interferences in the system. Interference- 

limited systems, such as those code division multiple access systems, have been widely used 

currently. Design o f fading distribution parameter estimators in an interference-limited sys­

tem is still a challenging problem.

6 . The results in the thesis consider flat fading channels and single-input systems only. It is 

also o f interest to extend them to a frequency-selective fading channel and a multiple-input- 

multiple-output system.
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Appendix A

Proof of Independence of X  and Z

A  sufficient and necessary condition for the indenpendence o f X  and Z  is that the jo int characteristic 

function o f X  and Z  satisfies [109, eqn. (5.3.1)]

^ x z U vv i v2) = ^ ( i vi ) vpz ( i ' ,2) (A -1)

where X¥x ( jv x) and xVz ( jv 2) are the marginal characteristic functions o f X  and Z, respectively. 

Denoting «■ =  ui +  jv i and sW =  pW  +  jc /p  for i =  1,2, • • •, I,  (2.19) and (2.21) can be rewritten as

21

X = X ximi (A-2)
;=i

and
21 f 21 \  2

Z = £ • * ? - (  £*,■»*/ (A .3)
i= i  \ i = i  J

where x; =  u, and ms =  —7=  p(*) when i =  1 , 2 ,• • • , I  andx : =  v, , and m: — ■■■■/  , q{k\  when i =  I  +
1 1 ‘ ' ‘ ,_/ ' ^  l- J

1,1 +  2, • • • ,21. The random variables x t, i — 1,2, ■ • •, 21, are Gaussian variables each with identical

PDF

p(x;) =  — i= = e  &  (A.4)
_

y/2nl?- 

where =  j .  Denote x — 1 x2 * * * X2I ). Since A  is a function o f x, the marginal characteristic 

function o f X  can be derived by solving the integral xPA.( jv 1) =  f  e/vix f(x )d x  where /(x ) is the 

jo in t PDF of Xj, i =  1,2, ■ • ■ , 21, and dx =  dxxdx2 ■ • ■ dx2r This gives

' f x O  i)  =  e - ^ v>. (A.5)
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The marginal characteristic function o f Z  is derived by solving the integral ^ 7{]v2) =  f  eJVl-zf(x )d x . 

This integral can also be rewritten as

x¥7( jv 2) =  — -jJ -— —  f  e ~ iQo(-x"X2''" 'x2i'ldx (A .6 )

where Q0(xl ,x2, ■ ■ ■ ,x2I) =  Y}L \ £ 2L i Ymx ix n is a quadratic form o f x and yin =  2jv 2mimn for i ^  n 

and Yin =  j r  ~  2/v2 +  2jv 2mf for i =  n. From [109, eqn. (7.4.3)], one has fe~z@o(xi ’x2 ’- ’x2/)dx =  

^ j p p ,  where |T| is the determinant o f the matrix T whose (i , n)-lh element is yin. Denote a =  2jv 2 

and b =  j j  — 2yv2. It is derived that |T| =  b2I~1(a'Z2L l mf +  b) =  — 2jv 2)2/~] . Then, the

marginal characteristic function of Z  is

<A7)

The jo in t characteristic function o f X  and Z  can also be derived by using a similar definition of 

^ x z U vi J v2 ) =  / e->v'x+ i Vl-zf{x )d x . Using (A.2), (A.3) and (A.4), one has

V x z U v iM  =  ^ | 2 )2/ 1  (A. 8 )

where Q0(xx,x2, - -  ,x2I) is the quadratic form defined as before. By completing squares for x in the 

exponent, one has Q0(xv x2, ■ ■ ■ ,x2I) -  2 jv x 'ZfL1ximi =  Q} (xv x2,--- ,x2I) + 'Z }L 1’Z n = i^ inmimnv\ 

where Q1(x1,x2,--- ,x2I) is a quadratic form of x with complete squares and coin is the (i.n)-lh  

element of Q =  T - 1  [109, p. 167]. Moreover, the quadratic form Q l (x l l x2, ■ ■ ■ ,x2/) also satisfies 

Je~^Qi(xi ’x2 >-^c2i)dx  =  [109, p. 168]. Therefore, the jo in t characteristic function of X  and Z

is

l iz O i .A )  = T . u d a a w i .  <A-9)
( 1 - 2 jv 2t,2) 2

It is derived that (Oin =  — ■^b2J~2amimn for i 7  ̂n and (Oin =  i^~b2!~2(a'Z2L l mf +  b — am2) for i  =  n. 

Using these in (A.9), one finally has

y x z l i v i J v2 ) =  77  * 2 (A -10)
(1  — 2 ys v2) 2

Therefore, X  and Z are independent.
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Appendix B

Proof of Independence of Sv  S2 and U

In this appendix, we prove the independence of Sl5 S2 and U defined in (2.40), (2.41) and (2.42), 

respectively. Again, we use the sufficient and necessary condition that [109, p. 121]

¥ >2»>3) =  WSl O l ) 'FS2 (> 2 ) 'F£/(>3) (B -l)

where ^  s ^ u iP n  Jv2 -> P j )  is the jo in t characteristic function o f 5 ,, S2 and U, Th,. (yv,), { jv 2)

and ^ ( > 3 ) are the marginal characteristic functions o f Sv  S2 and U, respectively. Rewrite (2.40), 

(2.41) and (2.42) as

2/
(B.2) 

(B.3)

( 7 1  \ 2 ( 7 1  \ 2

-  ( ' Z x i 8 i j  (B -4)

where xi and mi are the values defined as before and gt =  — jL=q{k) when i =  1 , 2 , ■■ ■ , /  and gt =
V sd

—7=  pW when i =  I  +  1,1 +  2, • ■ • ,21. The marginal characteristic functions o f and S2 can be
y E sd

derived by following similar procedures to those used to derive (A.5) as

(B-5)

and

^s ,(yv 2 ) =  g" ^ -  (B-6)
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The marginal characteristic function o f U can also be shown to have similar form to that o f (A.6),

except that the ( i , n ) - th element o f F is yin =  2jv 2{mimn +  g^gn)  for i  ^  n  and yin — ̂  -  2 jv3 +

2 jv3mf +  2jv ^g j for i  =  n  now. It is derived that |F| =  in this case. Therefore, 'P [/(-/,v3) is 

found to be

' W = (l - -2 <B-7)

The jo in t characteristic function o f Sv  S2 and U can be derived in a similar way to that in 

Appendix A. From the definition o f the jo in t characteristic function, one has

^ V 2t / ( > t  > 2,./v3) =  {^ 2 )2I I  (B.8)

21
Completing the squares for x, one has Q0(x1,x2,--- ,x2I) —2 j  £  xi (vl mi + v 2gi) — Q l (x1,x2, - ■ ■ ,x2/) +

1=1
21 21
E E tiJ,,,(V[ m i +  v 2g j )  (v jm n +  v 2g n ) where Qx (xx ,x2, ■ ■ ■ ,x2I) has complete squares o f x and 0)in =

(=1 n= 1

a2 E (mkSh ~ mhSk)2 + 2ah E (m2k + g2k)k,h=\,k,ĥ i k=l,k̂ i
T 2 21ab(mimn +  gtgn) +  a2 £  K'<?r -  /«*&■) -  mkgn)

k= 1
ther simplified as

J2/-3
w

<,2/-3

=  " i r r

for z =  n, and in other cases when i ^  zz, 

now. Therefore, (B.8) is fur-

' • W U v „ > 2 > 3 >  =  ( l - 2 JV3^ ) ' - ' e~ a i " !:' " " ‘ '(,‘ ',,+ ''i '" )(' l" ' 7,lS' )- <B'9)

21 21
The summation in the exponent can be derived as £  £  co(J!(v1mi- +  v2gi-)(v1m„ +  v2g„) =  £2(vj +

i=  1 n= 1

v2). Finally, the jo in t characteristic function o f 5 j, S2 and U is

SlS2uU v\ J v2 J v3) =

So, the random variables Sx, S2 and U are independent.
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Appendix C

Derivation of (2.136) and (2.150)

In this appendix, we derive (2.136) and (2.150). By using (2.132) and (2.134) in (2.133), one has

, 2 N 2_M - 'ri-~X.Ja)__

‘  ( W ) W | H t l / / B (C.1)

where F^, A R, A u  and v are defined in Section 2.4. Using the fact that H^, F̂ , and their inverse 

matrices are symmetric, it can be shown that

4 A«F*A£ +  uA£ =  ~ \ ' RFkA ,TR+ 1- u F ^ u T (C.2)

and

- \ A , F kA j  +  vA J =  - l- A ' l FkA ’7I +  i VF * ‘ v r  (C.3)

where A 'R =  A R — u F ^ 1 and A '[ — A 7 — vFjT1. Putting (C.2) and (C.3) in (C .l) and executing a

transformation o f variables, one can obtain

, l2 x L^ J 2  \P,\*
\yk\ l=L— , i„F-i„ r  ,

f ( y k,p\bk) =  — -------- (4n2<j2)J+ l [HJ----------  1 1  e 4 A ',,F‘A' ^ A',F‘A'[r fA V A V  (C.4)

Note that the random variables, A 'R and A ' r , are Gaussian since A R and A  { are jo in tly Gaussian and 

the transformations are linear. Therefore, they satisfy [109, eqn. (7.4.3)]

- K , f ,a 'JdX i w= (2n) i "

Substituting (C.5) in (C.4), and after doing some mathematical manipulations, (2.136) can be ob­

tained. Equation (2.150) can be derived in a similar way.
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Appendix D 

Derivation of S* and Qk

Here, we derive the expressions for in (2.139) and in (2.153). Since =  H^.1 +  Gk, by 

using [110, eqn. (5.32)], one has

(D .l)

It can be shown that

If ^  +  E 2pa 2 wk

W E + C «

Therefore, the inverse of G, 1 + H . is obtained from (D.2) as [110, eqn. (1.35)]

(D.2)

\ h \2 ( i  I W k V ^ k ^ l  \  Iuk\~ . . .  7
■2+£2a2|6J2 '.1 +  o i + E j a ^ b t f  > a 2+ E 2a 2\bk\2 y ik ^ \

IM w*z . <
E}a2\bk

\ h \ 2 rZ .W!

\bk\
"T“ V *r 

z, (0.3)

<r2+£2a2W 2 1 * ~1

where Z t is defined as before. Substituting (2.135) and (D.3) into (D .l)  and performing the matrix 

multiplication, one has

F r*  =
.____________________________ cr2(wk- w kZ ,C k) , <T2 |fe i . | 2 W f r Z 1 w [ w t

G2+ E ja 2\bk\2 (a2+ E 2a 2\bk\2)2 a 2+ E 2a 2\bk\2 {o i + E 2d 2\bk\2)2
E2a 2n 2 °4! M

g2(wr - CtZlWp  | <7- bj -hv;2!
CT2+ £ 2a 2|6il|2 (tT2+ £ 2a 2|6i |2)2

(0.4)

where Z 3 =  Ct - J ^ ] ; * |2n  _l l^l2wtziwI  \ i IM2(ctziw[ wt+w[ wrzict) r  7 r  sinre s u
v1 +  a f + E 2a 2\bk\'2> +  a2+ E 2a 2\bk\2 lW '  ilnC e  1S

the first row o f F^ 1 excluding the first element, (2.139) can be obtained from (D.4). Also, one has

. The inverse o f F^H,. can be obtained by using [110, eqn.F * H *  =

' k
EW\h\2 , x N ! w
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(1.35)]. This gives

( w - '  =
.............. /I I \h\2\ W ^ iK

o 2+ E 2a 2\bk\2 1 ' a2(a2+ E ja 2\bk\2) ) a 2+ E 2a 2\bk\2 vv<:Zj4
I t P  w 7

|5|2
'^ + T p Ti^ F Z 4Wt

(D.5)

2

where Z4 =  j ^ Z ,  and Z, is defined as before. Finally, since Qk is the transpose o f the first column 

of ( F ^ I I j -1 , one can obtain (2.153) from (D.5).
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Appendix E

Proof of the Equivalence between (2.144) and (2.163)

We prove the equivalence between (2.144) and (2.163) here. Denote 

From (2.139), (2.161), (2.144) and (2.163), it is enough to show that

W*R[W[ = ^™k(\b\2Ck + °2E)~lwI -wkRk(\b\2Ck + a2E)RIwI-

Using (2.140) and [110, eqn. (5.32)], one has

w[w^Z1(|ft|2C/t +  cr2E) =  \~b\2 ( l  +  - h l ^ ? k \  w[w*.% Z , w [

?2p<*2\bk

This in turn gives

wrwtZ,(|S |2C1 +  a 2E)C, -  |&|2 ( l  +  w fw .C , =  0

C.dif-C , I CTJE)Z,wJw, -  \b\'- ( l  +  ^ 3 ^ |2)  Cl:wfw, =  0

where 0 is a 7 x 7  zero matrix. From (E.4), it is easy to verify that

|2 ,„ -7 „ , T

1 +  d J l2c * +  <,2E> “ Z '<I*I2C» +  ° 2E>C.

1 +  <I8I2C» +  C’2E> -  C*d®l2c* +  <t2e>Z'

Since {\b\^Ck +  o,2E )C jfe =  Ck(\b\2Ck +  cr2E), from (E.5), one further has

w [w i R ,(|5 |2C , +  (T2E) =  (|£|2C , +  tx2E )R [w [w ,
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where Rt  is given by (E .l). Multiplying both sides o f (E.6) with v ik{\b^C.k +  cr^E)-1 on the left

r w r
k Wkand R fw l"  on the right, one has

+  ’ wt ' w A ( f f C i  +  ^ E l R jw I  =  w ^ w ^ W jR lw ^ . (E.7)

From (E.7), eqn. (E.2) can be obtained. Therefore, (2.144) and (2.163) are equivalent.
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