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Abstract

Practical wireless communication channels are usually characterized by models. The models are
determined by parameters. They are also represented by realizations in specific observation intervals
that determine channel state. This thesis contributes to the estimation of both channel state and
model parameters.

First, maximum likelihood decision-based estimators for the channel state parameters are devel-
oped. Effects of channel estimation errors on the performances of two selection diversity combiners
are evaluated. Novel diversity receivers using statistics of the channel estimation errors are de-
signed. Optimum pilot symbol assisted modulation using pilot symbols for channel state parameter
estimation is also investigated. As well, novel non-data-aided maximum likelihood estimators for
the channel state parameters in an ultra-wide bandwidth system are derived, and the Cramér-Rao
lower bounds are calculated analytically.

Second, maximum likelihood and moment-based estimators for the channel model parameters
are proposed by using noisy channel samples. The estimators operate with or without knowledge of
the noise power. Also, maximum likelihood estimators for the Ricean K parameter are derived by
using fading phase samples, a method not considered previously.

Finally, maximum likelihood estimation of signal-to-noise ratio is studied. Two measures of
signal-to-noise ratio are considered. The performances of the estimators are analyzed under the as-
sumption of no decision errors. Using both known and unknown symbols in a frame, an approximate
maximum likelihood estimator for signal-to-noise ratio is derived. A non-data-aided moment-based

estimator for signal-to-interference-plus-noise ratio in a quadrature amplitude modulation system is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



also developed. In other works, maximum likelihood estimation of the average signal-to-noise ratio
and a joint estimation of the K parameter and the average signal-to-noise ratio in a Ricean fading
channel are performed. As the last part of this thesis, some concluding remarks are made and future

possible works are outlined.
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Chapter 1

Introduction

Wireless communication has seen great development during recent years. It provides people with
a way of talking to anyone, about anything, at any time in any place. To realize this goal, one of
the most important techniques is wireless channel estimation. In wireless communication systems,
signals sent over wireless channels are usually distorted by random channel variations. As a result,
one has to obtain knowledge of the random channel distortions imposed on the signal in order
to detect the transmitted signal as accurately as possible. In practice, this is often achieved by
estimation. In this chapter, we first give a review of wireless communication channels. Then, we
discuss the importance of wireless channel estimation by giving some examples. After this, we
briefly introduce some frequently used methods of wireless channel estimation. Some performance

measures for the wireless channel estimators are also presented.

1.1 Wireless Communication Channel

Generally speaking, there are two types of random distortions in wireless communication channels.
One is fading, which is mainly caused by attenuations, scatterings and delays in the channel and
is imposed on the signal multiplicatively. The other is noise, which is mainly caused by circuit
electronics and is imposed on the signal additively. In a slowly and flatly fading channel, the fading

is usually represented by a random variable A = re/® where r is the envelope and 8 is the phase.
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On the one hand, one may be interested in a gross description of the wireless channel distortions.
This is often achieved by using channel models. For example, if there are scattering paths but no
direct path between the transmitter and the receiver, the envelope of the fading, r, can be modeled as
Rayleigh distributed. The probability density function (PDF) of the Rayleigh distribution is given
by [1, eqn. (2.1-128)]

2r _2
Q

fR(r)=§e‘ , r>0 (1.1)

where Q = E{r?} is the second moment and the only parameter that distinguishes different Rayleigh
distributions. If there are scattering paths as well as a direct path between the transmitter and
the receiver, r can be modeled as Ricean distributed. The PDF of a Ricean distribution is given
by [1, eqn. (2.1-141)]

r _2«2_ rP

feln) = S S (5, r20 1.2

where P? is the local mean power of the direct path, 2¢:2 is the local mean power of the random
scattering paths and I,(-) is the zero-th order modified Bessel function of the first kind [2, p. 374].

An alternative expression of (1.2) often used in the wireless literature is

2 I
—EZ(KH)re‘K‘&%”—IO(z Kik+1) )r>, r>0 (1.3)

fR(”) = Q Q

where K = 2%; is the K parameter measuring the relative strength of the direct path in the channel
and Q = E{r*} = P?+2a? is the second moment including both the local mean power of the direct
path and the local mean power of the random scattering paths. The Ricean distribution is more
flexible in modeling fading channels than the Rayleigh distribution in that it has two parameters.
When K = 0 or P? =0, there is no direct path and the fading envelope becomes Rayleigh distributed.
A larger K corresponds to a better channel condition. In the extreme case when K approaches oo,
there is no fading in the channel. Another, similarly flexible fading envelope model, which also has
two parameters is the Nakagami-m distribution. The PDF of the Nakagami-m distribution is given

by [1, eqn. (2.1-147)]
2r2m—1

fR(r) F(m)

Mm
(5) e , r>0 (1.4)
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where m = E(r?_zw is the fading measure with m > 0.5 and Q = E{r?} is the second moment.
The flexibility of this distribution derives from the fact that the m parameter can be chosen to model
a wide range of fading conditions. For example, when m = 0.5, this is a one-sided Gaussian dis-
tribution representing very deep fading; when m = 1, the Nakagami-m distribution specializes to a
Rayleigh distribution and when m = oo, to a static (no fading) channel.

The phase of the fading and the additive noise can also be described by models. In most system
analyses, the phase of the fading, 0, is modeled as uniformly distributed over (0,27], which is the
worst case that could ever happen. The noise is usually modeled as a zero-mean Gaussian random
process, which is distinguished by its single-sided power spectral density denoted as N,.

On the other hand, one can benefit more by having more detailed information about a particular
wireless channel. This is often accomplished by measuring values of the random channel variations
in specific observation intervals. These values, such as the values of r and 0, are crucial for some
applications. As an example, the value of 8 is required in coherent reception [1]. In this case,

knowledge of the random channel distortions includes values determining the channel state as well.

1.2 Importance of Wireless Channel Estimation

In wireless communication systems, many techniques and components need channel state infor-
mation, such as r and 6, or channel model information, such as N,;, m and K, to implement their
algorithms. For example, knowledge of channel state information is required in order to calculate
the branch metrics in the Viterbi decoder [1]. It is also needed in the likelihood ratio test in de-
modulators for higher-order modulations to achieve optimal detection [3]. Another application is
diversity techniques. In diversity techniques, depending on what channel state knowledge is avail-
able, combiners of different performances can be implemented. Noteworthy, the optimal diversity
combining performance is achieved only when the channel state is perfectly known [4].

In addition to channel state information, knowledge of channel model information is also in-

dispensible in practical system designs. This knowledge is required in channel modeling where
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field measured data are used to determine the fading distribution. It is needed in some receiver de-
signs, where the parameters of m and K are needed to make the data decisions [5], [6], [7]. In link
budget calculation [8], adaptive modulation [9] and transmitter diversity optimization [10], these
parameters are also required as they are good link quality measures.

Some applications may require both channel state and model information. One example is the
measurement of signal-to-noise ratio (SNR). Since channel conditions in wireless communication
systems are often changing with time, the SNR measure is a very important indicator of the channel
quality. As a consequence, it is widely used in appliations, such as power control, error rate monitor-
ing and transmission data rate adaptation, for the purpose of adaptive transmission [11], [12], [13].
The SNR is usually calculated as 1(71 Thus, it is clear that both the channel state information r and
the channel model information N, will be needed in order to derive the value of the SNR.

Due to the randomness of the channel variations, true values of the channel parameters are un-
known in practical wireless communication systems. To provide these techniques and components

with channel state and model information, wireless channel estimators have to be designed.

1.3 Methods of Wireless Channel Estimation

There are several methods of estimation, each having its own characteristics and applicabilities. The
focus in this thesis will be placed on maximum likelihood (ML) estimation and moment method
(MM) estimation.

The ML method is probably one of the most frequently used methods in communications. A
ML estimator is derived as follows. Denote f(x;a) as the PDF of the random variable X given
the parameter a. The problem is to estimate the unknown parameter a using L observations of X,

X,,X,,+++,X;. Introduce the notation of the likelihood function as

fla) = flxy,xy, 0 xp5a). (1.5)

A ML estimate of a, 4, is defined as the value satisfying

f(a) > f(a) (1.6)

4
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where a is any value of the parameter in its permissible range. In wireless communication, a number
of PDFs of the random variable X occur in exponential form. A more convenient way of dealing
with such PDFs is to use the natural logarithm of the likelihood function, that is, the log-likelihood
function, since the natural logarithm is a strictly increasing function that will not affect the inequality

in (1.6). In this case, d can also be defined as the value satisfying

Inf(a) > Inf(a). (1.7)

Assuming that the desired maximum of the likelihood function is within the permissible range of a
and the first order derivative of f(a) or In f(a) is continuous, in practice, the ML estimate of a, 4, is
often derived by differentiating f(a) or In f(a) with respect to a, setting the derivative equal to zero
and solving the resulting equation for a. If there are more than one unknown parameters, the like-
lihood function and the log-likelihood function can be expressed as f(a) and In f(a), respectively,
where a = [a,a, -+ - ay] is a vector of W unknown parameters. The ML estimates of these parame-
ters may then be found by differentiating f(a) or In f(a) with respect to each unknown parameter,
setting the W partial derivatives equal to zero, and solving the resulting W equations jointly.

The ML method has been widely used owing to its elegant properties [14]. First, as long as an
efficient estimator exists, the ML method will produce it [14]. Actually, as can be seen, the ML
method has a systematic rule to generate an estimator, which is preferred in engineering practices.
Second, the ML estimator has asymptotical optimality. It has been proved in [14] that a ML estimate
converges to the true value of the parameter in probability when L — oo, that is, a ML estimate is
a consistent estimate. Therefore, assuming that the limitation of L — oo and the expectation of &
are interchangable, the ML estimate is asymptotically unbiased when L is large. Also, it has been
proved that the ML estimate is asymptotically efficient, which means that its variance asymptotically
reaches the Cramér-Rao lower bound (CRLB) when L is large. Another useful property of the ML
estimation is its invariance property [15]. The invariance property of ML estimation maintains that
the ML estimate of a function of several unknown parameters is the value that is the same function

of ML estimates of the unknown parameters. This property will be used later.
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The ML estimator has many desirable properties. However, it is not always available. For
example, if the resulting equation after differentiation is highly nonlinear, the solution and therefore,
the ML estimator may not be derived. Even if the ML estimator is available, sometimes it may still
be too complex to implement. In this case, one would rather use some simpler estimators. Moment-
based estimators are some.

Unlike ML estimators, MM estimators don’t have any asymptotical optimality in general. How-
ever, they are simple, and often yield good performances when the sample size L is large. Some ML
estimators may require iterative algorithms to implement. In this case, MM estimators can also pro-
vide a good initial estimate. A MM estimator is derived as follows. Assume there are W unknown
parameters a = [a,a, - +-ay]. Also, denote the n-th order moment of the random variable X as u,.

By calculating W different moments of X, one has
.u(l) = 81(‘11,‘12,"' ,aW)

P‘(z) =g2(a1,a2,--- aaw)

Hewy = 8w(a1:ap,7+ s ay)
where Hny indexes the n-th of W different moments, not necessarily the n-th order moment of X,
and g,,8,," ", 8w are W functions including a as parameters. Next, replacing u, with %Elel x in
the equations and solving them, moment-based estimators for a can then be obtained. An important
part of the MM is to use the average of the n-th power of L observations to approximate the n-th

order moment of X. Generally speaking, the lower the value of n is, the smaller the variance of

13l will be.

1.4 Performance Measures of Wireless Channel Estimators

The goal of estimation is to obtain an estimate of the unknown parameter that approximates the true

value as closely as possible. The closeness of the estimate is usually evaluated by several common
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measures [16]. Denote a and 4 as the true value and the estimate of the parameter, respectively. An
estimate 4 is said to be unbiased if

E{d}=a (1.9)

where E{a} is the mean of the estimate. If (1.9) is not statisfied, the estimate is said to be biased.
In this case, by shifting the estimate by its bias, an unbiased estimator may also be derived. The
unbiasedness of the estimator will guarantee that the estimator gives the true value of the unknown
parameter “on the average”. But an unbiased estimator is not necessarily a good estimator. The
goodness of the estimator is also evaluated by its deviation from the true value. This requires

another important measure, the mean squared error (MSE). The MSE of an estimate is defined as
MSE{a} = E{(a—a)?} (1.10)

where a is the true value of the parameter. Note that, generally speaking, the variance of the estima-

tor, defined as Var{a} = E{(d — E{a})?}, is different from the MSE. They satisfy the relation
MSE{a} = Var{a} + (a — E{a})%. (1.11)

However, for an unbiased estimator, since E{4} = a, the variance and the MSE will give the same
value. Sometimes, one is also interested in the positive square roots of the variance and the MSE
of the estimator. The positive square root of the variance is called standard deviation, while the
positive square root of the MSE is called root mean squared error (RMSE).

To say that an estimator is good, one wants it not only to be unbiased, but also to have a variance
as small as possible. The Cramér-Rao inequality states that, if 4 is any unbiased estimate of @, under

certain assumptions, the variance of 4 satisfies [17]

. y12Y\ 7!
Var{a} > (E{[?%i”l} }) (1.12)

where f(x;a) is the PDF of the random variable X given the parameter a. The value on the right
hand side of the inequality is called the Cramér-Rao lower bound. The main task of finding a good

wireless channel parameter estimator is to find an unbiased estimator that approaches its CRLB as
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closely as possible. Certainly, the optimum estimator (in the sense of minimum variance) is the one
that reaches the CRLB. Its estimate is called an efficient estimate.

To obtain the estimator performance measures defined in (1.9) and (1.10) analytically, one needs
to know the PDF of 4. However, this is not always possible as the estimate @ can be a highly
complicated function of the observations. Even when the PDF of d is available, it may still be
difficult to calculate the integrations required by the expectation. In this case, a simulation method
has to be used to examine the performance of the estimator, and the performance measures of the
mean, the variance and the MSE will be replaced by the performance measures of the sample mean,
the sample variance and the sample MSE, respectively. Denoting &, as the estimate obtained in the
[-th run of the simulation and L as the total number of runs, the sample mean, sample variance and

sample MSE of the estimate can be calculated by using

M=

. 1
i=-Ya, (1.13a)
1 & <
SVar{a} = - 3 (a,-a8)%, (1.13b)
I=1
1 L
SMSE{a} = 7 Y (4, - a)?, (1.13c)
I=1

respectively. Note that, in some cases, the sample variance is calculated by dividing the sum with
L—1, instead of L. They have little difference when L is large though. The sample standard

deviation and the sample RMSE can be defined and calculated accordingly.
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Chapter 2

Wireless Channel State Parameter Estimation

Channel state parameter estimation algorithms can be generally categorized into three classes: data-
aided (DA), blind, and decision-based. The DA algorithm operates with knowledge of the trans-
mitted data by sending a training sequence or pilot symbols. In this way, many classical estimation
techniques, such as minimum mean squared error (MMSE), maximum a posteriori (MAP) and
maximum likelihood (ML), can be used, and the resulting solutions are usually simple and optimal
(given that the data are known) [17]. However, the DA method adds overhead to the system. It
lowers the system throughput as well as costs extra power. In addition, the repeated transmission of
this overhead will become untolerable when the channel changes too quickly. The blind algorithm
assumes no knowledge of the transmitted data. It estimates the channel parameters solely from the
received signal [1]. This saves overhead expense and maximizes system throughput. However, the
blind estimator usually underperforms the DA estimator. It is usually more complex than the DA
estimator as well. The decision-based algorithm is a compromise between the DA method and the
blind method. The decision-based estimator uses data decisions as if they were known in the es-
timation. As a result, the decision-based estimator usually performs poorer than the DA estimator
but better than the blind estimator, and it is usually more complicated than the DA estimator but
simpler than the blind estimator. In this chapter, we first study the problem of ML decision-based
estimation of the channel state parameter. Based on this study, we evaluate the effects of channel

estimation errors on the performance of selection diversity combiners (SDCs) for M-ary frequency
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shift keying (MFSK) signals. Next, we design new diversity receivers using statistics of the channel
estimation errors. We also design new receivers using pilot symbols for channel state parameter es-
timation directly, and therefore, we study the problem of optimum pilot symbol assisted modulation

(PSAM). Finally, we discuss ultra-wide bandwidth (UWB) channel state parameter estimation.

2.1 ML Decision-Based Estimation of Channel State Parameter

Here, we focus on ML decision-based estimation of the channel state parameter. Both static addi-
tive white Gaussian noise (AWGN) and slowly fading memoryless channels are studied. The ML
estimators are developed for sampled systems with bandlimited AWGN as well as continuous-time
systems. The performances of the estimators are examined analytically by deriving approximations
to the probability density functions (PDFs) of the ML estimates in error-free operation. For conve-
nience, we consider ML decision-based estimation of the noise power as well, although the titles of

this chapter and this section concern channel state parameter only.

2.1.1 Structures of ML Channel State Parameter Estimators

We consider M-ary memoryless digital signaling where the transmitter sends one of M signals,
sU) (¢), corresponding to the j-th symbol, j = 1,2,--- ;M. We assume that the signal is bandlimited
to B Hz and is non-zero only over a time duration of 7,. Although it is not possible for a signal
to be strictly bandlimited and strictly time-limited simultaneously, this is often achieved closely in
practice by appropriately truncating the signal. For example, in bandwidth efficient signaling using
raised-cosine pulse shaping, the signal is often truncated at [—67T%,67;], where T is the symbol
period [18, p. 289]. In this case, one has T, = 127;. Assume that a sequence of L independent
symbols are used for estimation and that the channel remains approximately constant during the
estimation [19]- [27]. Also, assume that perfect synchronization is achieved such that no inter-
symbol interference occurs and the channel is memoryless [22]. The data sequence is sent over

channels corrupted by AWGN. The noisy received data sequence is bandlimited by an ideal prefilter

10
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to remove out-of-band noise. This gives the filtered received signal as
¥(t) = As® (1) +n(2) 2.1)

where s(*)(¢) and n(z) is the filtered transmitted data sequence and filtered noise, respectively, A is
the unknown channel gain, and k is the k-th sequence of M~ possible transmitted squences [22]. The
noise n(t) in (2.1) is a complex bandlimited AWGN process with E{n(7)n*(7)} = Nos%’z%';—)fl [1].
The value of N, is assumed unkown. The prefilter output, y(¢), is sampled at f; = B. The sampled

received data sequence is

y; =As®) 4, 2.2)

where i = 1,2,--+,1 is the sample index and st(k) and n; is the i-th sample of the transmitted data

sequence and the noise, respectively. Assuming that the data sequence occupies a time duration of T,

the total number of samples is{ = f,T or [ = % where At = % is the time spacing between samples.
In the case when a symbol signal spans only one symbol period, T = LT,. However, if bandwidth
efficient signaling such as raised-cosine pulse shaping is used, T < LT,. The noise samples, n,, are
Gaussian random variables each with mean zero and variance N = BN,,. Since sin(7B J%s) =0 for

integer i, the noise samples are independent [28], [29]. The log-likelihood function can be written

in terms of the sampled received data squence as [17]

{_ . —A (k)* A (k)
lnf(YIA,N,k)=—11n(n1v)..2’—1[(yz S,N) (i —A4s)]

(2.3)

where k = 1,2,--- ,ML and y = (y;,¥5,-++,;). Eqn. (2.3) is the basis for ML estimation of the
channel state parameter.

We first consider a static AWGN channel. This case assumes that the static channel phase
distortion is perfectly compensated and was studied in [19]- [27]. Then, A is an unknown real
constant. Denote ES(;‘) =y, |s§k)|2 for k=1,2,--- ,M". The log-likelihood function in (2.3) can

be rewritten as

1G AP gy 241 ("
In f(y|A,N,k) = —IIn(7N) — v 3 yil* - ~Ed Y Re{y;s?'}. (2.4)
i=1 i=1

11
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By differentiating (2.4) with respect to A and N, setting the derivatives equal to zero, and solving

the resulting equations, one has the ML estimator for A as

Si i Re{y;s"}
(k)

E,

S

A= (2.5)

and the ML estimator for N as

T Re{yis,@y h§
k
IES( ¥

N RN
N=72|yi| - (2.6)
i=1

where k is the sequence data decision that maximizes hy(ylk) = EE? [ZleRe{yisl(k)*}]z for ML
sequences that have unequal energies and h,(ylk) = X1_, Re{yisl(k)*} for M™ sequences that have
equal energies.

The results in (2.5) and (2.6) when specialized to M-ary phase shift keying (MPSK) agree with
previous results obtained in [22]. They were derived here for a discrete time system with bandlim-
iting prefilter. In other cases, it is also of interest to study their continous time peers. First, this will
allow us to examine the limiting case of the discrete time estimator and to see how the bandwidth
affects the estimator performance. Second, this will give us approximate estimators for a system
with a very wide bandwidth. Finally, this will also facilitate the evaluation of the performance of
a continuous time system using channel estimates. The underlying unknown paramaters in a con-
tinuous time system are the channel gain A and the noise power N too. The corresponding results
for a continuous time system without bandlimiting prefilter can be obtained by employing similar
reasoning and techniques as those employed in the analysis of digital matched filters in [29]. Let the
prefilter bandwidth B grow without bound. Then, the bandlimited system becomes non-bandlimited

as the prefilter bandwidth increases. One has from (2.5) and (2.6) that

X ArSL . Re{y,s®)”
A - 21_11 e{y;:l } (27)

At¥io ’S,( 12

(k)*
Jr 1s®) (2)]2dt
and
. A d [Ar 3L Re{y,s®" )2

o= Y- —— 2.9)

T 4 TAE®
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2
[ bopa- [fTRe{y(z ()}t 10

Jrls® @) dr

where one notes that At — 0 as B — o and the fundamental theorem of calculus [30] is applied to the
Riemann sums in (2.7) and (2.9). In (2.8) and (2.10), the integrations are taken over the time duration
of the entire data sequence, T. Denote EX) = [, |s®)(r)|2ds for k = 1,2,-+- ,M" as the continuous
time energies of the transmitted data sequence. The sequence data decision in (2.8) and (2.10),
k, is derived by selecting the value of k that maximizes h,, (y(z)|k) = E—Efy [ Re{y(t)s*" (t)}a’t]2
for sequences of unequal energies and h,, (y(¢)|k) = [ Re{y(t)s®)" (r)}dr for sequences of equal
energies. Next, we derive estimators for slowly fading channels.

Unlike in a static AWGN channel, we don’t assume perfect compensation of the channel phase
distortion in a slowly fading channel, as it is dynamically changing. Then, A is an unknown complex

constant and the log-likelihood function in (2.3) can be rewritten as

ﬂ_

In f(y|A,N,k) = —IIn(nN) — ZI E® 4 = ZRe{A*y,l 1. (2.11)

Again, by differentiating (2.11) with respect to A and N, setting the derivatives equal to zero and

solving the resulting equations, one has the ML estimators for A and N as

Syt

A= (2.12)
k
EY
and A
g, ISy
=Yy po el L 2.
V=72 b 1£® (2.13)
S

©0* |2
sl( ) ' . Note that this se-

where % is the sequence data decision maximizing hy(ylk) = G
quence detector is not applicable for all signalings, as the maximum of %;(y|k) may have multiple
solutions for signals such as MPSK.
By applying similar reasonings and techniques to those used in the previous section, results for
continuous time are derived as
P R
AME®
sd
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— Es‘f) (2.14)
and
N At ! |At21 ¥;is |
= =P %
r4 TAtE()
lny t)dt
5 / N (2.15)
Jr 1s® (1) [2d1

where the sequence decision & may be derived by selecting the value of k maximizing ks, (y(z)]k) =

(k |ny ()s®)” t)dt,

2.1.2 Performances of ML Channel State Parameter Estimators

Assuming that there are no decision errors, we have k = k, where k is the index of the transmitted
data sequence. Again, we begin with a static AWGN channel.
By using k=kand (2.2) in (2.5) and (2.6), one has
~ Ell:l Re{nisl(k)*}
A=A+ R (2.16)

sd

and

P LA | 1 { )
N_Tgim,.[ -5 \/ﬁi:ZIRe{nisi M. (2.17)
sd

From (2.16), A is a Gaussian random variable and its PDF is

1 _x=A 2
Pl = e . (2.18)

where 02 = F k) It is clear from (2.18) that this estimator is unbiased in the absence of decision

errors. The corresponding Cramér-Rao lower bound (CRLB) for estimation of A in this case is 5 g T
Therefore, the sampled signal ML estimator for A in a static AWGN channel achieves the CRLB,

and it is optimal in the sense of minimum variance in error-free operation. The PDF of N in (2.17)

can be derived as follows. Denote

1
)_j Re{n;s"} (2.19)
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I

Y = Y (2.20)

i=1
Z = Y-X2 (2.21)
It can be proved that X and Z are independent; a proof is given in Appendix A. Therefore, one has
¥y (jv) = ¥,(jv)¥y.(jv), where ¥y (jv), ¥,(jv) and W,,(jv) are the characteristic functions of
Y, Z and X?, respectively. The characteristic functions of X2 and Y are derived from (2.19) and

(2.20) as [1, eqn. (2.1-109)]

) 1
lI’Xz(]v) =— (2.22)
(1— jvN)?
and
. 1
Y, (jv) = 1z ij)I. (2.23)
Then, the characteristic function of Z is
. 1
where (2.22) and (2.23) are used. Finally, as N= %, the PDF of N is derived from (2.24) as
NEY )
o) = — Z WD ¥, x>0 (2.25)
N rg-H\w~
2

which is a central chi-square distribution with 2 — 1 degrees of freedom and where I'(:) is the
Gamma function [1, eqn. (2-1-110)]. The mean and the variance of N are E {N} = %N and
Var{N} = %‘}N 2, The CRLB for estimation of N in this case is A%z Therefore, the sampled signal
ML estimator for N in a static AWGN channel is asymptotically optimal when / is large in error-free
operation. An unbiased estimator when no decision errors occur is obtained by scaling N in (2.17)
with 212—11 This scaling will increase the variance of the estimate by a factor of (2—121—1)2

The PDFs of the continuous time ML estimates of A and N in a static AWGN channel can be
derived similarly, assuming that no decision errors occur. Applying k = k and (2.1) in (2.8) and

(2.10), one has

A=4A+C (2.26)

15
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and

fV — C2 _ C3 (2.27)
with

®°
c =i Re{"(;)(i) (r)}ar (2.28a)

2
c, = Jr In(Tf)l di (2.28b)

(k)* 2

C, = Lz Re{n(;);(k) (£)}dr]” (2.28¢)

The random variable C, in (2.28a) has a Gaussian distribution with mean zero and variance 5% =

ﬁ%, and the random variable C; in (2.28c) has a central chi-square distribution with one degree of
freedom and parameter ;v_% Therefore, the ML estimate of A has a Gaussian random error C;, while
the ML estimate of N has a chi-square random error C; in the absence of decision errors, as C, in
(2.28b) is the noise power in the T-second interval. Since C, is a Gaussian random variable, from

(2.26), the continuous time ML estimate of A, A, has a Gaussian PDF

Py () = 5 (2.29)

2n6?

with mean A and variance &% when no decision errors occur. The PDF of N can be derived by using
similar reasoning to that used to derive (2.25). Since Cj is a central chi-square random variable, its

characteristic function is
1

Y. (jy)=————.
CJ(]V) (l—ij—T,Q)%

(2.30)

The quantity C, is the time-average power of n(f) in a T-second interval. The distribution of inte-
grated squared Gaussian noise is unknown; in fact, it is a long-standing problem to find its distribu-
tion in communication theory and applied physics [31], [32]. A useful closed-form approximation
to the PDF was derived in [33]. Applying the trapezoidal rule of integration to the integral in C,
given by (2.28b), one has [33]

C,~Cy=R:+R3 (2.31)
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2 R
where R? = M + ’"(T)‘ , R = ;2?;% In(%T)|2, and J + 1 is the number of samples used in
the numerical integration. Setting J = BT, one has J + 1 independent complex Gaussian sam-

ey
ples {n( %)} o [33]. Therefore, R? is a Gamma random variable with characteristic function

Wi (jv) = (1—1—&7)— and R is a Gamma random variable with characteristic function ¥ (v) =
1 -y 2

(1—jvlﬁTQ)1-1' Since R% and R% are independent, one has [34, eqn. (6-193)]
Y. (jv) = ! (2.32)
“ (1— jvgd)(1— jy2)~! '

Finally, as C, = N +C; from (2.27), C‘2 =N ', +C5 where N, ~ N is an approximation to NV. Then,

Yo (Jv) =¥, (W)¥c, (jv). Using (2.30) and (2.32), one has
2 A 3
1
Y. (j 2.33
WO TR B o

The PDF of the approximation to N, N '1» 18 derived from (2.33) by using [35, eqn. (3.384.7)] as

4 BT\*™% | 1 BT 1
. - T2~ F, (2,BT + —;—— >0,BT > = (2.34
Py, ) I‘(BT+%)(N) e b\ 28Tt 5imgyx), 2087 > 5 234

where F;(:,+;-) is the confluent hypergeometric function [2, p. 504] and the relation N = BN, is

used. The n-th order moment of N ', can be derived from (2.34) as

4 TBT+n+3) (N 3 1 11
: |\ == ) -F(BT—,BT =BT+ 55

E{N}} = (2-35)

2 28T +3:3)
with BT > % BT +n+ % > 0 and where F(-,-;-;-) is the hypergeometric function [2, p. 556]. The
mean and variance of N, are obtained from (2.35) as E{N,} = 2L=1N and Var{N,} = BT 1N2 An
approximately unbiased estimator for N can be obtained by scaling N ', With 527 BT 7> Which increases
the variance as before.

Next, we analyze the performances of the estimators for a slowly fading channel. Denote A =
Ag+ jAp ng =TI Re{n;s"} and ny = T, Im{n;s®"}. By using k =k and (2.2) in (2.12) and

(2.13), one has

A=Ag+ JjA, (2.36)
and
~ 14 1 1
N==¥|n|? - —=nk— ——n? 2.37
P g e
17
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where A rR=Agp+ E%T and A [ =A+ E—'i’? are the ML estimates of the real and imaginary components
of the complex channel gain, respectively. Inspection of the estimators A g and A ; shows that each
has the same performance as that of the estimator in (2.16). Their PDF’s are then derived as

2

1 _ (x—Ap)
P = e et (2.38)
and
1 (x4 )2
P, = 5—se 2 (2.39)
where 02 = 2]% Since the ML estimator for A in (2.36) is derived by combining A, and A,, one
sd

has that A in (2.36) has mean A and variance E]:/T) Since the CRLB for estimation of A in a slowly

sd
fading channel is Ejé’ the sampled signal ML estimator for A in a slowly fading channel is optimal
in the sense of minimum variance when no decision errors occur. The PDF of N in (2.37) can also

be derived by using a characteristic function approach, as previously. Denote

1
5, = ng (2.40)
E®&)
sd
1
S, = ="y (2.41)
Esd
U = Y-8§-§2 (2.42)

It is proved that the random variables S,, S, and U are independent; a proof is given in Ap-
pendix B. Therefore, $?, S% and U are also independent. Their characteristic functions satisfy
Y, (jv) = ‘I’U(jv)‘PS%(jv)‘I’S% (jv), where ¥, (jv), Tsf (), ‘I’S% (jv) and ¥ (jv) are the charac-
teristic functions of ¥, 52, $% and U, respectively. Note that ¥y (jv) can be derived from (2.23),

while ¥, (jv) and ¥, (jv) can be derived from (2.22). One has
1 2

) 1
Yy () = e (2.43)
Finally, as N= % one has from (2.43)
! I\-1y (1-2) -k
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which is a central chi-square distribution with 21 — 2 degrees of freedom. Its mean and variance are
E{N} =N and Var{N} = I5IN2. The CRLB for estimation of N in a slowly fading channel
is 1_va Thus, the sampled signal ML estimator for N in slowly fading channels is asymptotically
optimal when / is large. An unbiased estimator can also be obtained by scaling the estimator in
(2.37) with I_—I?T’ however, increasing the estimator variance.

By using k =k and (2.1) in (2.14) and (2.15), the continuous time ML estimators for A and N in

a slowly fading channel can be rewritten in forms similar to those in (2.26) and (2.27), except that

o _ Jn®s® @wyr

X 50 (2.452)
| frn(e)s®" (£)dt|
L = = (2.45b)

in this case. Similarly, the continuous time ML estimates of the real and imaginary components of

A in a slowly fading channel, A g and A 1» have PDFs

pAR(x)= 27[6'2[ 252 (2.46)
and
1 _eap?
P30 = Zo—se 32 2.47)

where &2 is defined as before. Therefore, the ML estimate A is a complex Gaussian random variable
with mean A and variance 282 in error-free operation. By using similar techniques to those used
to derive (2.34), the PDF of the approximation to N, N,, can also be obtained. In a slowly fading

channel, C; in (2.45b) has the characteristic function

1
¥ () = e (2.48)
ST
Since ¥ (jv) =¥y (Jv)¥c, (jv) and ¥, (jv) is given by (2.32), one has
2 A 3 2
1
¥ (jv) = (2.49)
W S B
and
BT
py (%) = W:;—T) (%) BT~ 5 F, (2,BT;—%7:x>, x>0,BT >1. (2.50)
A
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The n-th order moment of N 4 in a slowly fading channel is

4 F(BT—!—n)_(N

n
. 1
ny _ . v . _ . .
E{N} = 57 —T(aT BT) F(BT —2,BT +n;BT; 3) 2.51)

with BT > 1 and BT +n > 0. The mean and the variance of N, are E{N,,} = L= N and Var{N,} =
%%%TN 2. Byscaling N ', with E‘;—CT, one also has an approximately unbiased estimator with increased
variance.

The above results are based on the assumption of no decision errors. They are valid for DA
estimation and decision-based estimation with moderate to large values of signal-to-noise (SNR).
For decision-based estimation at small values of SNR, they serve as benchmarks. Note that the
system model used in the derivation is fairly simple, as our final goal is to estimate SNR in Chapter

4. Next, we evaluate the effect of channel estimation errors on the performances of SDCs where

practical channel estimators are used.

2.2 SDC MFSK with Channel State Parameter Estimation Errors

A selection diversity combiner is often a good choice in the tradeoff between complexity and per-
formance in wireless communication systems [36]. Similarly, non-coherent frequency shift keying
(NCFSK) is used in many practical systems [37], [38]. In [39] and [40], analyses of SDC and
generalized SDC using noisy channel estimates have been performed, respectively, based on the
assumption of identical diversity branches and balanced noise powers. In this work, we evaluate the
effect of channel estimation errors on the performance of SDC MFSK, under the assumption that
all diversity branches are slowly and flatly Rayleigh faded and independent but are not identically
distributed and that the diversity branch noise powers are different. This is the case, for example,
when the mean powers of the fading on different diversity branches may differ because of shad-
owing. In space diversity, the noise powers on the branches may be different due to the different
loads of the antennas [41] or some antenna processing [42]. Also, in diversity systems with interfer-
ence, and when a Gaussian approximation of the interference is used, the powers of the equivalent

noise terms on the branches (including both interference and noise) may be different [43]. Finally,
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component tolerances and aging in electronic systems result in imbalance between branches. Both
maximum signal amplitude based selection and maximum SNR based selection are examined. The
channel metrics are calculated by using noisy estimates of the signal amplitude and the noise power
obtained from a ML estimator developed in Section 2.1, a MMSE estimator [44] or a Gans’ fading

correlation model [45], [39].

2.2.1 System Model

We consider the case when L, independent diversity branches are available. Each is slowly and
flatly fading. It is assumed that all signals in the MFSK signaling set have equal symbol powers,
which have been normalized to equal 1. Without loss of generality, assume that the k-th signal is

transmitted. Then, the output of the i-th matched filter on the I-th branch can be expressed as
Y =Apitny, (2.52)

where A, is the complex fading gain on the /-th branch, s; is a constant with s; = 1 for i = k and
s;=0fori=1,2,--- ,M and i # k, and n;; is the complex noise component in the output of the
i-th matched filter on the /-th branch. In a Rayleigh fading channel, A; is a complex Gaussian
random variable with mean zero and variance 20(,2. The noise components r;; for a fixed [ and i =
1,2,--- ,M are independent complex Gaussian random variables each with mean zero and variance
N,. Assuming that the noise processes are independent of the fading processes, the random variables
n;,i=1,2,--- M, are independent of A,.

If perfect knowledge of A, and N, is available in the SDC, one can calculate the branch SNR
according to p, = M}Vllﬁ’ compare o, (I = 1,2,---,L,) and select the branch corresponding to the
largest SNR. Equivalently, if N, =N for [ = 1,2,---, L, it suffices to calculate the signal amplitude
by using r, = |A,|, compare r; ({ = 1,2,---,L,) and select the branch corresponding to the largest
signal amplitude. Unfortunately, perfect knowledge of A; and N, is not available in practical com-
munication systems. Instead, one has to use channel parameter estimators to obtain estimates of A

~ ~ ~ A 2
and N, A; and N, and then use A ; and N, to calculate the estimated branch SNR p, = %l— or the
{
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estimated signal amplitude 7, = IAII, and finally select the best diversity branch according to g, or
7,. Some general assumptions on Al and Nl (=1,2,.--,L,) are given as follows.

We assume that the channel estimate, A ;» is a complex Gaussian random variable with mean
zero. Denote A, = Af—kjfif and A, = A{"—i—jA{. Similar to [46, eq. (8-101)], it is assumed that AR

Al Af and A/ are jointly Gaussian distributed with
_ o [(Af)h(ﬁ{ )2]+a,2 [(Af P +(al )2] ~2R, [AfA{" +A{A{J:2Rd/if/&{ —A}Af]

2,12 (2.53)

1

AR AL AR ANy = ——— ¢
f( [RES Y REEY A l) 47'52|Mlﬁ

@ 0 R, R

cl sl

0 5512 _Rsl Rcl
where the covariance matrix is M, = [46, eq. (8-98)]. The assumption

2
Rcl —Rsl o 0
2
Ry Ry 0 o

of (2.53) includes the MMSE channel estimate derived in [44] and the ML channel estimate derived
in Section 2.1 as special cases. A detailed derivation of (2.53) and the definitions of R ; and R ; are
given in [46].

We also assume that the noise power estimate, N |, is obtained using the ML estimator developed

in Section 2.1. It was derived in Section 2.1 that the ML estimate, ]Vl, has PDF

A | S/ B
18) = oy e T M0 @s
[

where p=1-—1, [312 = ﬂ}%ﬁ’ I is the number of available independent samples defined in Section
2.1, and I'(+) is the Gamma function [2, p. 255]. This is, for example, the case when the noise power
is estimated using data-aided estimators. This is also the case when the noise power is estimated
using decision-based ML estimators in Section 2.1 and no decision errors occur. Since the noise
power normally changes little during the transmission of the desired user’s data in most practical
wireless communication channels, it can be estimated off-line by using training sequences (which,
for example, may be for synchronizer training or equalizer training). Therefore, sufficiently large
p can be achieved by sampling enough symbols in the training sequences. We assume that Nl
is independent of Al. This is also proved in Appendix B when Al is obtained by using the ML

estimator in Section 2.1.
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Most previous works on SDC base the analysis on perfect knowledge of A; and N,. In practical
systems, and in this work, we assume that the data recovery decision is based on the estimated
quantities, A ; and Nl. Assuming that the k-th signal has been sent and the I-th diversity branch has

been chosen, the non-coherent data decision is made by comparing
= Iyli' = |A15i+”1,'| (2.55)

where i = 1,2,--- ,M. An error will occur if z;; is less than any of z;;, i =1,2,--- ,M and i #
k. In the sequel, we derive the average symbol error rate (ASER) of SDC using the maximum
estimated signal amplitude selection criterion as well as the maximum estimated SNR criterion. For
convenience, we denote the SDC using the maximum estimated signal amplitude criterion as #-SDC

and the SDC using the maximum estimated SNR criterion as H-SDC.

222 7SDC

Assume that all M possible transmitted signals have equal a priori probabilities. The ASER of the
system can be expressed as
P, = %éPr(fyé Selsy) (2.56)

where Pr(§ # s,|s,) is the probability that the receiver decision, §, is incorrect when the &-th signal,
5, is transmitted. Note that P, will depend on the branch selection criterion used in SDC. If the 7-
SDC criterion is used, the combiner chooses the branch with the largest estimated signal amplitude
and uses matched filter outputs on that branch to make the data decision. Denote 7, = |A,| and
r; = |A,| as the estimate and the true value of the signal amplitude on the /-th branch, respectively.
Then, the [-th branch is chosen when flz > ff J=12,---,L,,j#1, and the error rate in (2.56) can
be rewritten as

T

P = M};;Pr(@ #sufl 2P, j =12, L, j#lls,) (2.57)
where §; denotes the data decision made by using matched filter outputs on the /-th branch. Condi-

tioning the error rate in (2.57) on 7, and r; gives

=— z Z/ / Pr(3, #sk,rl > rf,] =1,2,-- Ly, j# 1P, rp,8,)  f(F,r)dRdr,. (2.58)

klll
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One sees from (2.58) that Pr(§, # s,,/? > sz-,j =1,2,---,L,,j #1|#},r,s,) is the joint conditional
probability of L, statistical events, §, # s, and ;12 > ;«JZ (=12,---,L; and j #I). Given 7, and
r;, the statistical event §;, # s, is determined solely by the random variables n;;, i = 1,2,--- , M,
while the statistical events flz > f*i (j=1,2,---,L; and j #[) are determined solely by the random
variables 7; (j=1,2,--- ,L, and j #1). Since n; (i=1,2,--- ,M) and Fi(j=1,2,---,L;and j #£1)

are independent, it is clear that

Ld
—22/ / Pr(s; # slrp5,) - { I Pr(*%zfﬂf,)]-f(f,,r,)dfldr,. (2.59)
k=1i=1 j=1,jzl

The conditional probability Pr(§, # s,|r,,s,) is actually the ASER of the NCFSK signals in a

static AWGN channel. It is well known that [1]

. S ymet -1y L mri
Pr(sl 74 sk|rl,sk) = mz—_;l(—l) (m ) 'nH__ICXp '—m . (260)

The conditional probability Pr(7? > ?%]fl) is the value of the cumulative density function (CDF) of
7% at 72, that is, Pr(#? > f*zlrl) F, ( 2). Since A ; is a complex Gaussian random variable with

mean zero and variance 267, 73 = |A | has CDF

X

Fo()=1—e &, x>0 (2.61)

.

for each j=1,2,---,L,; and j # l. From (2.61), one has

2
Pr(ff 2 7)) =1—e & (2.62)
and
L, ”
[ Pri# =>#7) = 2 2 1)e " (2.63)
J=1,j#l m=0n,=1

where 0 = ( d"l) and = 2" L ﬁz— (n =0 when ny = 0). The index k», denotes the k-th number
in the n,-th combination obtained by selecting n; numbers out of L; — 1 numbers j = 1,2,--- L,

and j # l. For example, when L, =3, n; canbe 0, 1, or 2. Whenn; =1andl =1, Zg_le"”flz =
=

L L o
e * +e *% since k; =2 and k, = 3 in this case.

The joint PDF of #, and r, is now derived as follows. Denote 6, = arctan (A, AX) and 6, =

arctan (A],AR) as the phase angles of A, and A, respectively. Also, we have 7, = (AR)2 4 (D)2
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and r, = /(AR)2 + (A!)2. Following similar procedures to those in [46, p. 163], it is derived from
1 ! 1

(2.53) that the joint PDF of 7;, r,, §, and 6, is

n A 0 rlrl Zi [(x, r,+ocl ri —2R r,r,cos(6,—-@1)—2Rslr,?,sin(9,—@,)]
f(#,r,6,,0) = e
DD Y 47E2A ’

#,>0,r,>0,21>6,,6,>0 (2.64)

1 ~
where A, = |M,|2 = &} —R% —

o Rfl is the square root of the determinant of M. By integrating él

and 6, from 0 to 27 in (2.64), the joint PDF of r; and 7, can be derived as

A 2 52 A
. A, A p e 7r N
f(#m) = —il’e BT (—AI’,/R§,+R§,>, 7,>0,r,>0 (2.65)

where I,(-) is the zero-th order modified Bessel function of the first kind [2, p. 374]. Note that
(2.65) agrees with [46, eqn. (8-103)] when o? = &2.
Using (2.60), (2.63) and (2.65), the integral in (2.59) can be solved. This is done as follows.

Denote

100 00 L
= / / e—vrrz{ IT Pr(ff2i2-|fl)] - f(#y,ry)dr,dr,. (2.66)
0 0

J=1,j#1
Inserting (2.60) in (2.59), one has

p_LdM—l e (1) L 4 m ) 2.67
=2 2 ( " Tm+1 I\ (m+ )N, ) -67)

The integration in (2.66) is solved to give

L1 (—1ym
=2 2 2vor +n(4vA, 4207 +1

n,=0ny=1

(2.68)

where [35, eqn. (6.631.1)] is used. Finally, the ASER of 7-SDC is obtained by putting (2.68) into

(2.67), giving

o Limalil N (—1)mtm+1 (M-1)
P = > Z Lo (2.69)
=1 m=1n,=0n,= mp,+2a2n(mplg'2?;+m+l)+m+l
where p, = 2L is th SNR bol on the I-th branch. Defining ¢, = — 24}
p,= - is the average per symbol on the [-th branch. Defining ¢; = —--rdtews as
1 1

the correlation coefficient between A ; and A, it can be derived that |cl|2 —alzfiRz— Rewriting (2.69)

using ¢;, one has

Ly M—1L,~1 ¢ (__1)m+n1+1 (%—1)

=% X X

5y v Zon 2y mpy+ 200 [mpy (1~ |e)2) +m+1] +m+1’

(2.70)
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which is the ASER of #-SDC with channel estimation errors. Note that the only estimation error in
7-SDC occurs in the estimation of the channel state parameter, the signal amplitude, which is com-
pletely described by ¢, in (2.70). The result in (2.70) is general; for example, the result for balanced
noise powers can be obtained from (2.70) by letting N, =N forl = 1,2,--- ,L,. Furthermore, (2.70)
applies to various channel state parameter estimator scenarios. Next, we discuss some special cases.

First, if the ML estimator in Section 2.1 is used to estimate the branch signal amplitude, when

there are no decision errors in the estimation, one has from (2.36)
A=A +g (2.71)

where g, is a complex Gaussian random error independent of a;, and has mean zero and variance ]—ZL
with ¢ = [ being the number of independent samples used in the estimation as defined in Section
2.1. Note that the signal power has been normalized equal to 1, as mentioned previously. From

(2.71), it can be derived that
~2 2, N 2
@ =0+, R,=0f, Ry=0 (2.72)

for/=1,2,---,L;. The ASER of 7-SDC in this case is obtained by putting (2.72) into (2.70), giving

Ly M—1L,~1 ¢ (_1)m+nl+l (M—l)

P=3Y Y X

I=1m=1n=0m,=1mp, +b

(2.73)

[qp+l +m+1] +m+1

where b = 2 ﬁ%(b = 0 when n; = 0). Assuming identical diversity branches and equal
ky,

noise powers, the branch parameters satisfy

N
af = o’ + > o}=0% R,=a’ R;=0, N,=N (2.74)
q
where I =1,2,---,L,. Using (2.74) in (2.73), it can be shown that
o M1 1)l (M1 1
P = 2 Z ( ) (m ) dQ (2.75)

m=1n=0 mp +n, [5;’;’%1_*'"1_{—1] +m+1'
One sees from (2.73) and (2.75) that the ASER of 7-SDC in this case is related to g. This is expected,
as g determines the estimation error in the estimation of A, which is the only estimation error in

7~-SDC. The results in (2.73) and (2.75) are also valid when data-aided estimators are used.
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Second, if the MMSE estimator is used to estimate the signal amplitude, one has [44]

~

where g, is independent of A, and is a complex Gaussian random error with mean zero and variance

205;1. It is then derived from (2.76) that

of =al+ah, Ry=0a}, R;=0, (2.77)

forl =1,2,---,L,. Using (2.77) in (2.70), the ASER of #-SDC when the MMSE estimator is used

to obtain A ; can be derived as

Ly M—1L;~1 @ (_1)m+n1+1 (%I—J)

LaPIPIPIP)

I=1m=1m=0m=1mp,+ 282N [mpl(l— )-I—m—!—l] +m+l.

(2.78)

When all the diversity branches are identically distributed and the noise powers on all diversity

branches are the same, one also has from (2.77)

At 8
2
()
[}
l
[
N
=

=@&% Ry;=0, N=N (2.79)

where [ = 1,2,-++,L,. Similarly, by using (2.79) in (2.78), it can be derived that

M-1L,-1 (—1)m+m+1 (%—I)LdQ

P, = — . (2.80)
m=1m=0 mp +n, [m[)(l — %) +m+ 1] +m+1
Fianally, in Gans’ fading correlation model [45], [39], an additional assumption of
of = &} (2.81)
for!=1,2,---,L, is used. This applies to the case where estimation error is due solely to temporal

decorrelation between the estimate and the processed data symbol and not to independent estimator

noise [47], [48]. Putting (2.81) into (2.70), the ASER of #~-SDC becomes

Ly Mm—1L,—1 (_1)m+nl+1 (%—1)

2222

St n Doz mpy+ 208" [mpy (1= ey ) +m+ 1] +m+1

(2.82)

2 2
where n' = 31 1@‘ (n' =0 when n; =0) and |¢,|> = —Q%ﬁ. If the fading on each branch is
1

identically dlstrlbuted and the noise power is the same, one further has

&lzzalz_—_az, R,=R;, R;,=R;, N =N (2.83)
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where [ = 1,2,.-- L. Using (2.83) in (2.82), the ASER of #~SDC can be simplified as

oM=Lt (_1)m+n1+1 %1—1 L0
Pe= 2 2 ( ) d

et o M +ny [mp(1—|e;?) +m+1] +m+1

(2.84)

It is easy to verify that (2.84) agrees with [39, eqn. (25)] for NCFSK signaling. Therefore, our result
in (2.70) includes the corresponding result in [39] as a special case.

As the last part of this section, we derive the ASER of SDC when perfect knowledge of A, is
available. Denote it as -SDC. The performance of r-SDC serves as a benchmark for (2.70). In the

case when A, is known, (2.56) becomes

_ 1 M Ld 00 . . .
Pe = M 2 2/0 Pr(sl #Skariz 2 r?a] = 1525"' 1La.] 76 llrlask)f(rl)drl' (285)
k=11=1
Note that the CDF of 77 is
F,(x)=1-e *, x>0. (2.86)

rs
J

Employing similar techniques, it can be derived that

- Ly m—1L,—-1 @ (_1)m+n1+1 (M—l)
fe= 0 N 2.87
‘ l=21m§1 n12=0n22=1 mPl+(1+2cx12n')(m+1) ( )

where 7' is defined as before. One sees that (2.87) can also be obtained from (2.70) by letting
|cl[ =1 and 5612 = ozl2 in (2.70). This is expected as #-SDC without estimation errors will have

Al = A, which in turn gives e, =1and 5512 = Oclz. Next, we derive the ASER of p-SDC.

2.2.3 p-SDC

Using similar reasoning as previously, the ASER of 5-SDC can also be obtained. In p-SDC, the

branch with the largest estimated SNR is selected and the error rate (2.56) is expressed as

-~ T .
Pe:MkZl;;Pr(sﬁésk’plij’J:1’21""Ld’1¢llsk) (2.88)

52
e

where P, = 3+ is the estimated SNR on the /-th branch. Similarly, by using the conditional proba-
]
bility and the independence of the random variables n;; (i=1,2,--- ,M) and [)j (=12,---,L; and

J # 1), one has from (2.88)

_ 1 M Ld 00 oo . Ld . R . R
Fe= Y, > 2/ / Pr(s; #sirpsy) - | TT Prg > bl | - fry p)dr,dp, (2.89)
k=11=170 70 =11
28
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where Pr(§, # s,|r;,s,) is given by (2.60).

The conditional probability Pr(p, > p;|f,) is derived as follows. Since 7; is a Rayleigh random
variable, ff has a central chi-square distribution with two degrees of freedom (an exponential distri-
bution) and parameter 65]2 [1]. Also, since N ; has a central chi-square distribution with 2p degrees

v}
of freedom and parameter BJZ as given in (2.54), the random variable p; = I—rv’— has PDF [49, eqn.
i

(27.3)]
=(p+1)
pB} B}
fﬁj (x) = "a‘z— (1 -+ —&—Zx y X > 0. (290)
J J
The CDF of p; is then derived from (2.90) by integration as
1
Fﬁ,- (x)=1- 7 7, x>0 (2.91)
Using (2.91), one finally has
A A A 1
Pr(p, 2 B (292)

) =1- gz _\7'
(1+52)
The joint PDF of r, and 9, can be derived as follows. Since IVI is independent of Al and A;, one

has

A

F(#pr,N) = f(R,r) F) (2.93)

where f(#,,r;) and f(N,) are given by (2.65) and (2.54), respectively. By replacing N, with p, in

(2.93) and integrating the result with respect to 7;, one has

2 a2 2 2
~\_ PB r ~in R+ R%) X
flrpp) == ﬁza’z prre SR (L | > 0,5>0 294)
C (1) Pt

where | F;(-,-;-) is the confluent hypergeometric function [2, p. 504].

Using (2.60), (2.92) and (2.94) in (2.89), the ASER of p-SDC can be derived. Again, denoting

Ly

VVI(V):/O /0 e—vrf[ H Pr(f’l>ﬁ’j|ﬁl)

Jj=1j#

-f(rl,ﬁl)drldﬁl, (2.95)
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(2.89) can be written in a form similar to (2.67), except that U,(v) is replaced by W,(v) now. Using

(2.92) and (2.94), together with [2, eqn. (7.621.5)], it can be shown that

W,(v) = EALIZQ / B ﬁ —— . ! dp,. (2.96)
v S| (a4 gfzf’z)” (1+%312ﬁ1)p+1
Finally, the ASER of the 5-SDC is derived from (2.96) as
ZdMZ (~)mH (M1 p g2
&2 mp(1—|o?)+m+1 &?
= 1 1 \
/0 jzg# - | W’"”%ﬁazpﬁ”“m 2.97)

which can be evaluated numerically. Note that, in p-SDC, estimation error not only occurs in the
estimation of the branch signal amplitude but also occurs in the estimation of the branch noise power.
These two components are completely described by ¢; and p. Note further that (2.97) will specialize

to (2.70) when p —+ e and N, =N (I = 1,2,---, L). This can be verified by putting ﬁlz = ) and

N,
2(p+1
P
=N({=1,2,.--,L) into (2.97), using 1i_r:1 (1 + :7) = ¢* [50, eqn. (2.9.2.7)], and solving the
p {=]
resulting integral. Intuitively, this is also expected as #-SDC is a special case of p-SDC when noise

powers on all branches are the same and the noise power estimation in the p-SDC is free of errors.

Moreover, a closed-form expression of (2.97) for L ; = 2 can be derived as

P 3 SN B
C e mptm+1 287 & mp(1—lef|?)+m+1
mp;+m+1 [31 ~j
F +1,1;2p+1;1 — — — 2.98
(” P =P m+1 & B2 (298)
where F(-,-;-;-) is the hypergeometric function [2, p. 556]. As previously, results for three special

cases can be obtained from (2.97), given next.
The ASER of p-SDC when the ML estimator is used to estimate the channel state parameter,
the signal amplitude, can be derived as follows. Putting (2.72) into (2.97), (2.97) becomes
_ Ly M—1(_q1ym+1 (M~1
B = E 2 ( ) ( ) 14

Sad fis+m+1 alp+ DA+ p+1

(2.99)
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o L 1 1
'/ [1 - . dﬁl
. II q A \p mp,+m+-1 a :
0 j=Li (1+ ‘1(1’“59#1’“'01) (1+ _Llj‘;; 1 sy e
1

By putting (2.74) in (2.99), one further has

- ) . 5 5
ot ) L Gt ),

- n
Pe:zz n1+1 I

m=1n;=0

mp
W-l—m—}-l

(2.100)
which is the ASER of p-SDC for identical branches. Comparing (2.99) and (2.100) with (2.73) and
(2.75), one sees that the ASER of p-SDC in this case is not only related to g but also to p, as the
estimation errors in P-SDC result from the estimation of both A; and N,. Again, these results are
also valid for data-aided estimation.

Similarly, by putting (2.77) into (2.97), one has

B - LZdM——l (_1)m+~12(%-1)p ﬁ_lz

~ 2
I=1m=1 mpl(l—gfz—)—{—m—i—l &

° 1 1
/ IT [1- ; : - ; dp,.  (2.101)
0 jiip | (1+2p)p| (14 2Rl Bp e
j mpy(1—-k ) +m+1 "1
1

The corresponding result for identical branches can be shown to be

52
. M
5 MilLd 1(__1)m+n1+1 (%—l) (ﬁf—l) La’ F(p+l,1,p(n1+1)+l, W)
e = '

P ny+1 mp(1— &) +m+1

(2.102)
To derive the ASER of p-SDC for Gans’ correlation model, one only needs to put (2.81) into

(2.97), giving

Ly, g
P = . ik
¢ S mpy(1-1¢?) +m+1 o}

[ 1
: - ! : i i dp,  (2.103)
0 jija (1+%;§1)P (1+ —2 +m)++1m+ B by

mp(1—|c;| 1 of

By using (2.83) in (2.103) and solving the resulting integral, the ASER of p-SDC can be determined
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as

Ale 12
M—1Ly—1 (=1)mrm+1(M=1) (5;1—1) L, F <p+ L,L;p(n,+1)+ 1;——0%‘%2’;—;,—";—1)

Fezz 2 ny+1 -

m=1n=0 mp(l_]cllz)+m+1

(2.104)

when all the diversity branches are identically distributed and the noise powers are equal.
Finally, we derive the ASER of SDC when perfect knowledge of p, = 15\,2’; is available. Denote
this as p-SDC. This will serve as a benchmark for (2.97). Again, with true values of the branch

SNRs available, one has from (2.56)

_ 18 e <
Poo= 22 / Pr(s,#sklpz,sk)-[ 11 Pr(pl>pjlpz)}-f(pl)dpz- (2.105)
k=1i=170 j=1,jl

Since r, is a Rayleigh random variable, it is derived that p, has CDF

N,

Fyp(x)=1- FH x>0, (2.106)

By using similar techniques and reasonings to those in the previous subsection, one has

=2

(_1)m+n1+1 (%I—d)
(L4 d)(m+ 1)

(2.107)

_ L, m—1L,—1
=% 2
I=1m=1n=0n

il

2

where d = p; 221:1 ﬁkl—(d = 0 when n; = 0). As previously, (2.107) can also be obtained from (2.97)
3

by letting |c;| = 1, &* = o} and p — o, as a correct estimate of A, gives |c;| =1 and & = o2, and

a correct estimate of N, results as p — oo. Note further that (2.87) is a special case of (2.107) when

N,=N forl=1,2,---,L,, which is also expected.

2.2.4 Numerical Examples

Here, we present some numerical examples to show the effect of channel estimation errors on the
performance of SDC MFSK. Consider non-coherent binary frequency shift keying (NC-BESK) sig-
naling. Dual-branch diversity is used. The two branches are assumed to have identical Rayleigh
distributions, but may have different noise powers. Other cases can be examined accordingly. A

slowly fading channel is assumed.
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Fig. 2.1 shows the performance of #-SDC when different values of g are used to obtain A - As
mentioned before, the only estimation error in 7~SDC comes from Al, which is completely deter-
mined by g. One sees from Fig. 2.1 that there is a performance penalty of about 0.5 dB between
#-SDC and r-SDC at g = 2 when the ASER is 10™2. When ¢ = 10 or g = 50, the performance differ-
ence between #-SDC and r-SDC is essentially negligible for all indicated values of SNR. Therefore,
in this case, a value of ¢ = 10 is a good design choice. Fig. 2.2 shows the performance of p-SDC
when different values of p are used in the estimation of the branch noise power. Unlike 7-SDC, two
sources of estimation errors occur in P-SDC, resulting from both AI and ]Vl. Since the effect of the
estimation error in A ; has already been studied in Fig. 2.1, only the effect of the estimation error in
Nl is examined in Fig. 2.2. To see the effect of estimation errors in IVI more clearly, we set g equal to
10 to largely eliminate the performance degradation caused by Al. From Fig. 2.2, one observes that
there is a penalty of about 1.2 dB between p-SDC and p-SDC for p = 2 when the ASER is 1072,
caused mainly by the estimation error in Nl The penalty decreases as p increases. Based on the
improvement seen in going from p =2 to p = 10, to p = 50, it is concluded that a value of p = 50
can be used to eliminate most of the penalty caused by Nl.

Fig. 2.3 shows the performances of p-SDC at p =50, =10, p=25,g=35, p=12,g =2
and p = 6,q = 1. The values of p and ¢ are approximately doubled each time from p = 6,g=1to
p = 50,4 = 10. One sees a performance gain of about 0.5 dB from p=6,g=1top=12,g=2
and a performance gain of about 0.4 dB from p = 12,9 =2 to p = 25,9 = 5. The performance
gain from p = 25,4 = 5 to p = 50,49 = 10 is very small, less than 0.2 dB for all the values of SNR
considered. Therefore, p = 25,9 = 5 is also a good design choice, particularly if one wants to
minimize hardware. In realistic hardware designs, one may need to tradeoff p with q. For example,
consider a case where one can process and store 30 samples, so p+ g = 30. Fig. 2.4 shows the
performances of p-SDC at different combinations of values of p and g, where p+ g = 30. One sees
that p = 22,9 = 8 and p = 25,9 = 5 offer the best performances among all the combinations. This
suggests that p can be traded with ¢ if a large value of ¢ is not desirable. However, neither p nor g

should be too small when p+¢ is fixed. If p (or g) is too small, g (or p) becomes unnecessarily large.
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Figure 2.1. Comparison of the performances of #-SDC (maximum estimated signal amplitude) and

r-SDC (maximum signal amplitude) for different values of ¢ when N, = 5N, and NC-BFSKis used.

ASER

0 2 4 6 8 10 12 14 16 18 20
Average SNR per bit (dB)

Figure 2.2. Comparison of the performances of p-SDC (maximum estimated SNR) and p-SDC

(maximum SNR) for different values of p when g = 10, N, = 5N, and NC-BFSK is used.
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Figure 2.3. Comparison of the performances of p-SDC (maximum estimated SNR) for selected

values of p and g when N, = 5N, and NC-BFSKis used.

Furthermore, the performance loss due to the decrease of p (or g) cannot be fully compensated by
that gained in the increase of g (or p) when p (or g) is too small.

Figs. 2.5 and 2.6 examine the effect of different noise power assumptions on the performance.
To clarify this effect, both p and g are fixed at 2. Fig. 2.5 shows the performances of 7-SDC and
p-SDC when N, = N,. As can be seen, when the noise powers on the two branches are the same,
7-SDC performs better than p-SDC. The difference is about 0.9 dB in SNR when the ASER is
10~2. This is expected, since P-SDC introduces additional estimation errors in the estimation of
the noise power, while #-SDC avoids this by assuming balanced noise powers, which is the case
when N, = N,. Note also that »-SDC and p-SDC have the same performance, as the maximum
SNR criterion is equivalent to the maximum signal amplitude criterion when the noise powers are
equal and the estimation is perfect. Fig. 2.6 shows the performances of /-SDC and p-SDC when
N, = 5N,. From this figure, it can be seen that 0-SDC has a performance advantage of about 1.1

dB over 7-SDC, over the range of SNR values shown, when N, = 5N,. This is expected, as in this
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Figure 2.4. Comparison of the performances of p-SDC (maximum estimated SNR) with different

combinations of values of p and g when p+ g = 30, N, = 5N; and NC-BFSKis used.

case, the assumption of balanced noise powers used by #-SDC is no longer true, and one has to
take the unbalanced noise powers into account to minimize the probability of error. Comparing the
performances of p-SDC with that of -SDC, one sees that there is a penalty of about 2 dB when the
ASER is 1072, caused by not accounting for the difference in the noise powers.

In conclusion, the preceding results have shown that #-SDC performs better than p-SDC when
the noise powers are balanced, confirming intuitive reasoning. When the noise powers are unbal-
anced, P-SDC performs better than 7-SDC. The performance penalty caused by the estimation errors
decreases as p and/or g increase, and the performance penalty caused by ignoring noise power dif-
ferences increases as the noise power difference increases. Using these results, the effects of channel

state parameter estimation error and noise power imbalance can be evaluated quantitively.
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Figure 2.5. Performances of 7-SDC (maximum estimated signal amplitude), p-SDC (maximum
estimated SNR), r-SDC (maximum signal amplitude), and p-SDC (maximum SNR) at p = 2 and

g = 2 with N, = N, for NC-BFSK signaling.

2.3 Receiver Designs Using Error Statistics of Channel State Parame-

ter Estimation

In the previous section, we have evaluated the effect of channel estimation errors on the perfor-
mances of SDCs. In this section, instead of analyzing the effect of estimation errors, we use esti-
mation error statistics to design better receivers. The estimation error statistics are obtained from
analysis or simulation of estimator performances, as in Section 2.1. Previous works include the
following. In [4], the authors derived a diversity receiver that outperforms maximal ratio combiner
(MRC) for binary equal energy signals on Ricean fading channels with Gaussian channel estimation
errors. In [51], [52] and [53], the authors discussed optimal reception of MPSK, M-ary quadrature
amplitude modulation (MQAM), and coded MQAM signals with additive Gaussian channel estima-

tion errors on single Ricean fading channel, respectively. Here, we derive new diversity receivers for
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Figure 2.6. Performances of #-SDC (maximum estimated signal amplitude), p-SDC (maximum
estimated SNR), r-SDC (maximum signal amplitude), and p-SDC (maximum SNR) at p = 2 and

q =2 with N, = 5N, for NC-BFSK signaling.

arbitrary M-ary signals on L, independent and identically distributed channels, under more general
assumptions on the knowledge of the channel state parameter estimates. Two important cases are
studied. The first case applies to either Nakagami-m or Ricean fading channel, while the second
case applies to Ricean fading channel only.

We consider L; independent and identically distributed branches. Each is slowly and flatly
fading. The received signal on the I-th branch is matched filtered and normalized with respect to the
transmitted signal energy to give y, = A;s; +n;, where A; = Af + jA{ is the complex channel gain
on the [-th branch, s, is the transmitted signaling point, and n, is the AWGN on the /-th branch with

mean zero and variance 262, The conditional PDF of the received signal is

R .1 1 _ O Ay a7
f(ylA%,AYs) = rot € A (2.108)
wherey=(y;, y, - yLd),ARz(AIf AR A'fd),A1=(A§ AL A’Ld),A=AR+

JA!, and (-)# is the conjugate transpose. If A, is perfectly known, one can derive the optimal
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diversity receiver from (2.108) as [54]

~

k= argmkin{(y-skA)(y—skA)H } (2.109)

which implements MRC. However, the value of A, is usually unavailable and has to be estimated.
Denote A, = AR+ jAl, AR = (AR A% ... Afd), Al=(AL A ... Aid), and A = AR 4 jA!
as the channel estimates obtained from a channel estimator. The “intuitive” structure

rS

f= argmkin{(y—skA)(y—skA)”} (2.110)

is frequently used in practice.

2.3.1 Casel

In the first case, one only has knowledge of the conditional PDF of A ;» conditioned on A, as

: L LA —4-bP
FAA) = 5z T A @.111)

which is a Gaussian distribution with mean A, + b and variance 262, This occurs, for example, in
the case when the channel gain is estimated using the ML estimator in Section 2.1 and there may be
some decision errors in the estimation, or a robust channel estimator in [51] and there may be some
synchronization errors in the estimation. This also occurs in the case when a large sample size is
used to estimate A, and the estimate is asymptotically Gaussian distributed [15]. The values of b and
26?2 can be determined through performance analysis or simulation of the estimator. Without any
prior knowledge of AR and A/, assume that they are uniformly distributed over (—R,R), where R is
a large positive real number. Simulation results show that this assumption leads to a detector with
good performance. The joint PDF of the channel gain estimate and the true channel gain satisfies
f(AR AT AR AT) = D- f(AR, AT|AR, AT) where f(AR,AT|AR A7) =TT\, f(A/|A)), as f(AR,AT) =
Dis aconstant and f(AR, AL AR AT) = f(AR AT|AR AT)f(AR,A!). Assume that A, is independent
of n, (for example, Al is estimated using pilot symbols). Using the average likelihood ratio test

(ALRT) principle, the likelihood function can be derived as f(y,AR,Als,) = [ f(y|AR,Als,) -
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F(AR A1 AR AT)dARJA!. Solving the integral, one has

s (A-b))ly—s, (A-p))

)l
D, T 2@, Peed)

AR AT —
f(YaA 7A |sk) - (562|Sk|2+0'2)l‘de

(2.112)

where D is a constant independent of s,. The new diversity receiver is derived from (2.112) as

i { o0+ [y—sk@—b)][y—sk(z&—b)]ﬂ}

k= i .
argm]:n 2(&2|Sk|2+0_2) (2.113)

where ¢1(k) =L,In (&2 |sk|2 + 62). Several observations can be made from (2.113). First, the receiver
in (2.113) is general and applies to all channel estimators giving a channel estimate based on the
conditional PDF in (2.111). Second, the receiver in (2.113) can be used on either a Nakagami-
m fading channel and a Ricean fading channel, as the distribution of A, is not specified and used
to derive (2.113). Finally, in general, the receiver in (2.113) is not equivalent to that in (2.110).
However, when constant modulus signaling is used and the channel estimator is unbiased, (2.113)
will be equivalent to (2.110). In this case, (2.113) won’t provide any improvement over (2.110). By

omitting the bias term ¢1(") in (2.113), a simplified structure of (2.113) is derived from (2.113) as

. {[y—sk@—b)][y—sk(f&—b)]H}_

k= i
TETn 2(62]s,2 + 0?)

(2.114)

The receiver in (2.114) can also be derived by applying the generalized likelihood ratio test (GLRT)
principle [17]. The GLRT receiver assumes that A, is a deterministic but unknown number, while
the ALRT receiver assumes that A, is a random number [14]. As will be seen later, the GLRT
receiver outperforms the ALRT receiver for small values of SNR, and it underperforms the ALRT
receiver for large values of SNR.

A special case results when the ML estimator in Section 2.1 is used and no decision errors occur,
or when the robust channel estimator [51] is used and no synchronization errors occur. In this case,
A ; =A;+g, where g, is a Gaussian channel estimation error with mean zero and variance 202. One
has b= 0 and &% = 02 as E{A,|A,} = A, and Var{A,|A;} = 202. Thus, the receiver in (2.113)

specializes to

® (y—skfx)(y—skz&)ﬂ} 2115)

k:argmén{"’l 2(Als 2+ 1)02
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and the receiver in (2.114) specializes to

- - skA) (y— skA)H
k—argmkm{ 2(/1|5k|2+1) (2.116)

2
where llfl(k) =L,In(Als,[*+1) and A = % is the ratio of the channel estimation error variance to

the noise variance, a constant independent of the SNR for fixed channel estimators [51], {52].

2.3.2 Case?2

In this case, in addition to knowing the conditional PDF of Al, one also knows the PDF of A}, and
therefore, the joint PDF of A ; and A;. A diversity receiver that is better than the conventional MRC
for binary equal energy signals when A ; and A, are jointly Gaussian distributed has been proposed
previously in [4]. We extend it to arbitray M-ary signals. Similar to [4, eq. (11-1-11)], their joint
PDF can be written as

A 1 -
f(AfaAgaAfaA{) = 472A ) e—%(A—e)M (A=) (2.117)

where A = (AR Al AR Al) e=E{A}=(é® & R ), Mis the covariance matrix with

& 0 R, R

0 &* —Rs R, .
M= , A = |M]z is the square root of the determinant of M, a2 is the

R. —R, o> 0

R, R. 0 o

variance of Af (or Af ), a? is the variance of Af (or AZI ), R; is the covariance of Af and Af (or
Al and A)), R, is the covariance of AR and A!, and AR and AR are assumed independent of A!
and Al, respectively. Solving f(y,AR,Alls,) = [ f(y|AR,Als,) - F(AR AT AR AT\dARAA! where

F(AR AT AR AT) =TT f(AF, A, A, A]), one has

. . D _ |xk|2[tx2&§H+(clAR+CZAI)lH+cOLd]
fy,AR Al ls,) = 5 2~ YTl bl P+ate?)
[(Als 2+ &20?)]
_ ol (A-e)A- yalyyH _ Re{ysgl(cg+icy I=2Rc —jRy YAy
e 2 +aT0l) L, 285 P+5202) (2.118)

where D, is a constant independent of s, I'is a 1 x L all-one row vector, é = R4 jél, Co= (éR)Zoc2 +

()20 + (e?)?282 4 (e')28% — 2R éReR — 2R el — 2R eRe + 2R &R, ¢; = —2éRa® + 2R R +

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2Rse!, ¢, = 26" + 2Rce! — 2RseR, ¢y = —2eR02 + 2R R — 2R &, and ¢, = —2e/ &% + 2R " +

2RséR. A new diversity receiver in this case is derived from (2.118) as

|sk|2[oc2&&H + (clAR + CzAI + co)1¥] 0'2(A —&) (A — &) 4 atyyt
2(A|sk|2 + &%0?) 2(Als, |2 + &20?)

Refysil(es +je )= (R — jROAVT} |
2(Als, |2+ 6202) 2

ko= i
argmin {

(2.119)

where (])2(") = L,In(A|s,|? + &%0?). The diversity receiver in (2.119) is a maximum likelihood struc-
ture and is optimum for the case that the joint density of the channel gains and the channel gain
estimates are given by (2.117). The structure of this receiver is general. It includes the case when
the channel gain estimate is corrupted by temporal decorrelation [45] plus estimator noise as well
as the case when the estimation error is independent of the true channel gain. It can, thus, model
the case when the channel gain estimate is obtained from a pilot carrier [45], pilot symbol [55], or
a robust channel estimator [51]. Note that the receiver in (2.119) requires more knowledge of the
channel estimate statistics than those in (2.113) and (2.114). As a result, it generally has a more
limited usage than those in (2.113) and (2.114). For example, when the channel is Ricean faded and
the Gaussian distribution of the true channel gain is known, all three diversity receivers in (2.113),
(2.114) and (2.119) can be used. However, when the channel is Ricean faded and the Gaussian
distribution of the true channel gain is unknown, or when the channel is Nakagami-m faded and
the true channel gain follows an unknown non-Gaussian distribution, only the diversity receivers
in (2.113) and (2.114) can be used. Therefore, Case 1 is not a special case of Case 2. The former
assumes less knowledge of the channel statistics than the latter and, consequently, accommodates a
wider usage. Finally, when the ML estimator in Section 2.1 and the robust channel estimator [51]
are used, one has &% = a?+ 62, R, = 0%, R; =0, A= 0?02, é% = ¢ and &' = ¢!. Thus,
(A-&)(A -y
LAls 2+ % +1)0?

Ly =5 A) ¥ =5, A)7 + Ay — 25y — &5,)"
AGAls P+ % +2)0?

~

= i (k)
k argmin { v, %

(2.120)

+

where wék) = Ldln(—gi;}tls”2 + %; +A).
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2.3.3 Comparison of Case 1 and Case 2

Fig. 2.7 shows the symbol error rates (SERs) of perfect MRC in (2.109), MRC with estimation
errors in (2.110) and the new diversity receiver in (2.120) for binary phase shift keying (BPSK)
signaling with L, = 2. The true channel gain is assumed to follow a known Gaussian distribution
with mean e = 2+ j2 and variance 2 so that all the new diversity receivers derived in the previous
section can be fairly compared. Assume that the ML estimator in Section 2.1 is used. Note that the
receivers in (2.115) and (2.116) are equivalent to that in (2.110) in this case. One sees that the gain
of the new diversity receiver in (2.120) over MRC with estimation errors in (2.110) is negligible
when A =0.1. When A = 0.4, at SER = 1072, the new diversity receiver has a performance gain of
about 0.6 dB over MRC with estimation errors. The gain decreases as the SNR increases. Fig. 2.8
shows the performances of perfect MRC in (2.109), MRC with estimation errors in (2.110) and the
new diversity receiver in (2.120) for BPSK signaling with L, = 4. Again, the performance gain of
the new diversity receiver in (2.120) over MRC with estimation errors in (2.110) is negligible when
A =0.1. When A = 0.4, the performance gain is about 1.2 dB at SER = 102,

Fig. 2.9 compares the performances of the diversity receivers in (2.109), (2.110), (2.115)
(2.116), and (2.120) for 16-ary quadrature amplitude modulation (16-QAM) signaling with L ; = 2.
When the SER is 1072, the gain of the new diversity receiver in (2.120) over MRC with estimation
errors in (2.110) is about 0.2 dB for A = 0.1 and about 1.0 dB for A = 0.4. Thus, the improve-
ment for 16-QAM signaling is greater than that for BPSK signaling. Comparing the new diversity
receiver in (2.115) to MRC with estimation errors at a SER of 1072, the gain is negligible when
A = 0.1 and about 0.4 dB when A = 0.4. Therefore, Case 1 leads to less improvement than Case
2. This is expected, as Case 1 assumes less knowledge of the channel estimate statistics than Case
2. Finally, comparing the receiver in (2.116) to MRC with estimation errors, one observes that the
receiver in (2.116) is better than MRC with estimation errors at small values of SNR, and is worse
than MRC with estimation errors at large values of SNR. Since (2.116) is a suboptimal structure, it

is not necessarily better than (2.110). Fig. 2.10 compares the performances of the diversity receivers
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Figure 2.7. Performances of perfect MRC in (2.109), MRC with estimation errors in (2.110) and the

new diversity receiver in (2.120) for BPSK signaling at A = 0.1 (solid line) and A = 0.4 (dash-dotted

line) when L; = 2 in Ricean fading channels.
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Figure 2.8. Performances of perfect MRC in (2.109), MRC with estimation errors in (2.110) and the

new diversity receiver in (2.120) for BPSK signaling at A = 0.1 (solid line) and A =0.4 (dash-dotted

line) when L, = 4 in Ricean fading channels.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107
107
i
w
0
@
j=1
I
2
<
107°
10_, ] * new diversity receiver in Case 2
F ] ¢ new diversity receiver in Case 1
2] O simplified new diversity receiver in Case 1
+  perfect MRC
x  MRC with estimation errors : : :
T T T T T 1 1 L 1]
0 2 4 [ 8 10 12 14 16 18 20

Average SNR per bit per channel(dB)

Figure 2.9. Performances of perfect MRC in (2.109), MRC with estimation errors in (2.110), the
new diversity receivers in (2.115), (2.116) and (2.120) for 16-QAM signaling at A = 0.1 (solid line)

and A = 0.4 (dash-dotted line) when L, = 2 in Ricean fading channels.
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Figure 2.10. Performances of perfect MRC in (2.109), MRC with estimation errors in (2.110), the
new diversity receivers in (2.115), (2.116) and (2.120) for 16-QAM signaling at A = 0.1 (solid line)

and A = 0.4 (dash-dotted line) when L 4 = 4 in Ricean fading channels.
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in (2.109), (2.110), (2.115) (2.116), and (2.120) for 16-QAM signaling with L, = 4. When the SER
is 1072, the gain of the new diversity receiver in (2.120) over MRC with estimation errors is about
0.7 dB for A = 0.1 and about 2.0 dB for A = 0.4. Also, comparing the new diversity receiver in
(2.115) to MRC with estimation errors at a SER of 1072, the gain is about 0.2 dB when A = 0.1
and about 0.6 dB when A = 0.4. Similar observations to those from Fig. 2.9 can be made from
Fig. 2.10. Note that the performance gains of the new diversity receivers are achieved at the cost
of more complex structures. Also, exact values of the channel estimate statistics are assumed. Note
further that the performances of MRC with estimation errors in Figs. 2.7 to 2.10 don’t show error
rate floors, since we only consider slow fading channels here and the estimation error variance of

the channel estimator used in the simulation varies inversely with the SNR.

2.4 Receiver Designs Using Pilot Symbols of Channel State Parameter

Estimation

In the previous section, we have derived new receivers by using statistics of the channel estimation
errors. In practical communication systems, channel estimation is often performed with the aid
of known pilot symbols. The statistics of the channel estimation errors are usually functions of
the known pilot symbols. In this work, instead of using statistics of the channel estimation errors
determined by the pilot symbols, we design novel receivers that use the pilot symbols directly.
Specifically, we design optimum receivers for pilot symbol assisted modulation (PSAM) signals in

Rayleigh and Ricean fading channels [55]- [57].

2.4.1 System Model

We assume that the autocovariance function of the fading process is known, as was assumed in [55]
and [57]. Consider a PSAM system where symbols are transmitted in frames of length Q. Without
loss of generality, assume that, in each frame, the first symbol is a pilot symbol and the following

Q— 1 symbols are data symbols. Each data symbol comes from a set of M possible signals, {b j}’J‘.”:I.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The pilot symbol comes from the same signaling set, but its value is known as b. These frames are

transmitted over a flatly fading channel. The received signal can be written as
y(t) = A(t)s(t) + n(2) (2.121)

where s(7) is the transmitted signal, A(#) is the complex channel gain, and n(z) is the AWGN.
Following the model in [55], the transmitted signal, s(z), satisfies
s(t) = bp(t—IT) (2.122)
J=—00
where b, is the value of the /-th symbol coming from {b J}’J”: 1» T is the symbol period, and p(¢) is
the shaping pulse with energy Ep. If the [-th symbol is a pilot symbol, b, = b is known. Otherwise,
it is unknown and may be one of M possible values. The complex channel gain, A(t), is a Gaussian

random process. Denote it as A(t) = AR(z) + jA!(¢). If the channel is Rayleigh faded, one has [54]

E{AR1)} =E{A'(1)} =0 (2.123a)
Cov (AR(r),A(t + 7)) =0 (2.123b)
Cov (AR(r),AR(t + 7)) = Cov (A/(),AT(t + 1)) = 0?R(7) (2.123c)

where Cov (AR(¢),AR(r+ 7)) = E{[AR(r) — E{AR(r)}]]AR(r + T) — E{AR(¢ + 7)}]} is the autoco-
variance of AR(r), Cov (A!(r),A(t+ 1)) = E{[A!(t) — E{AT(t) }}]AT(t + ©) — E{A(t + T)}]} is the
autocovariance of A!(r), Cov (AR(r),Al(r + 7)) = E{[AR(¢) — E{AR(£)}]]A(t + 7) — E{AT(t + 7)}]}
is the cross-covariance between AR(¢) and A’(¢), and R(7) is the normalized autocovariance function

with R(0) = 1. If the channel is Ricean faded, one then has [54]

E{AR(1)} = &"(2) (2.124a)

E{Al(t)} =€ (1) (2.124b)

Cov (A%(1),Al(t+ 1)) =0 (2.124c¢)

Cov (AR(r),AR(t + 7)) = Cov (A1(r),A"(t + 7)) = R (7). (2.124d)
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Note that (2.123) is a special case of (2.124) when e®(t) = 0 and €/(z) = 0. If the scattering in the

Rayleigh or Ricean channel is isotropic, one further has [54]
R(t) =Jy(2mfp7) (2.125)

where f, is the maximum Doppler shift in the channel. Although our analysis is not limited to any
specific R(7), (2.125) will be used to obtain illustrative examples. The noise n(¢) is also a Gaussian
random process. It has mean zero and autocovariance E {n(t)n*(t + 1)} = Ny6(7).

Similar to [55], it is assumed that no intersymbol interference occurs. The received signal in
(2.121) is matched filtered and sampled at the time r = IT. The received signal sample of the I-th
symbol is

y; =A(IT)b,Ep+n, (2.126)
where A(IT) is the Gaussian channel gain sample with mean zero (on a Rayleigh fading channel) or
e®(IT) + je! (IT) (on a Ricean fading channel) and variance 2%, and , is a Gaussian noise sample

with mean zero and variance 202 = NyEp. The average SNR per bit is derived from (2.126) as

_ B BP+(e-DE{p[}
Po = 25710g, M 0-1 ‘

(2.127)

where Q = E{A(IT)A*(IT)} is the mean power of the fading and E{|b,|} is the average transmitted
signal energy. This measure accounts for the power penalty caused by sending pilot symbols.
Without loss of generality, let the O-th symbol in the transmitted sequence be a pilot symbol.
Then, the 1-st, 2-nd, -+, (Q — 1)-th symbols in the transmitted sequence are data symbols in the
same frame. Assume that the J nearest pilot symbols are used to assist the data symbol detection
in a frame. Let the function, |x|, return the largest integer that is less than or equal to x. In this
case, the (|—Z31|Q)-th, ---, O-th, -+, (| 551]Q)-th symbols in the transmitted sequence are the
pilot symbols that will be used to assist the detection of the 1-st, 2-nd, - --, (Q — 1)-th symbols in the
transmitted sequence, which are data symbols. For clarity, it is desirable to use different notations
to denote the received signal for the data symbol and the received signals for the pilot symbols.

Denote the received signal sample of the data symbol to be detected as
Vi =Ab, 1y (2.128)
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where A, = A(kT)E, and k = 1,2,--- ,Q — 1. Also, denote the received signal samples of the pilot

symbols that will be used to assist the detection of b, as
p;=Bb+n (2.129)

where B; = A(iT)E, and i = |—231]Q,-++,| 53} |Q. Express the complex channel gains as A, =
Af + jA{C and B; = Bf + jB,I- . It can be derived from (2.123) and (2.124) that the covariance between
AR and BR (or A} and BY) is w, (i) = E30*R((k—i)T), i= |- =110, , 1551 | Q, and the covariance
between AF and BY (or A] and BY) is C; (i, j) = E20®R((i— )T). i,j = |-5511Q,--+, [ 532] Q. Fi-
nally, introduce the notations w, = [w, (|-%52]Q) -+ w,(|52]0Q)] and C, = {C,(i, )}, where
C,(i, j) is the (i, j)-th element of C,, for later use.

By using the assumptions and notations defined above, it can be derived from (2.128) that the

conditional PDF of y,, conditioned on A X and b,, is

1 1
Fela ) = Smgl OXP {—Tc‘ﬂ)’k—f‘kbﬂz}- (2.130)

Similarly, the conditional PDF of p;, conditioned on B, can be derived from (2.129) as

1 1 3
f(pi|B) = 5= exp{ —>—|p;,— Bbl ;- 2.131)
2no 20

Since the symbol-spaced noise samples are independent, from (2.130) and (2.131), the condi-
tional joint PDF of y, and p; (i = |-52]Q,---, |5 ]Q), conditioned on A,, b, and B; (i =
L—JLZIJQ, e I_JE—IJ ), can be obtained as

T

1 1 2 712
fOrPALB,b) = (Grory 1 P —ml)’k—f‘kl’d ar=3 Z_l |p; — Bb| (2.132)
i=l-51Q
where p = [pL—’z;lJQ p[,z;le] and B = [B[—%JQ BL’—E—IJQ]' Finally, the likelihood

function for joint processing of the data symbol and the pilot symbols can be derived by solving

F0upib) = [ [ 01p1AB,B)- f(4,,B)dA,dB 2133)

where f(A,,B) is the joint PDF of A, and B. The optimum PSAM (OPSAM) signal detector is

obtained by maximizing (2.133) with respect to b,.
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2.4.2 Optimum PSAM Signal Detectors

To derive the value of b, that maximizes (2.133), one needs to solve the integration in (2.133) first.
Since the joint PDF of A, and B, f(A,,B), depends on the fading channel model, we examine
the optimum maximum likelihood detector for the PSAM signal on Rayleigh and Ricean fading

channels separately in the sequel.

2.4.2.1 Rayleigh Fading Channel

In a Rayleigh fading channel, the statistics of the fading process are determined by (2.123). Thus,

the joint PDF of A, and B can be derived as

1 1 IAT_ 1A [~-1AT
f(A,B) = W}I_kle 3ARH, Ap— 3 AHT A (2.134)

where T denotes the transpose of a matrix or a vector, [H, | denotes the determinant of H,, Hk‘1 de-

notes the inverse of H,, A = [AR Blf__ = B’f =y Q] isa 1 x (J+ 1) row vector consisting
2 2
of the real components of the channel gains, A; = [A} BIL— L B’L =y Q] isalx(J+1)
2 2

row vector consisting of the imaginary components of the channel gains, H, is the (J+1) x (J+1)

covariance matrix with

E2a? w
H=| "’ 1 (2.135)
wi C

and w,, C, are defined as before. By using (2.134) in (2.133) and solving the resulting integral, it is

shown in Appendix C that
1F e 12
FOrplb) ! ot ety M e)e (2.136)
= 20 20 .
TP = ra?) TR
|bk|2 0 * Re{p, ;1 D'} Re{p ;_, Db}
—H- _1 _ [Rely b3} -L5te (470
where F, =H;'+G,, G, = 2 i Ju= [~ T St 1L )
0T |5PE
o Im{p b} Im{p ,_ b}
v= [”"{zébk} l ;%_JQ lc 12 "1,0is a1 xJ zero vector, and E is a J x J identity

matrix. The optimum maximum likelihood detector chooses the value of b, that maximizes (2.136)

from a set of M signals, {b j}’}-”:l. Two important special cases will be discussed next.
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If the energies of the M possible transmitted signals are equal, such as those in MPSK signaling,
|by|? is a constant independent of . This implies that |b,|> = |b|? and that the energy of the signal

does not affect the choice of b, in (2.136). Ignoring those terms independent of b, one has
FOeplby) o 3TN (2.137)
Further simplification shows that
f(yk, pl bk) o eEIT {Re{y,br}Re{B*p-S] }+Im{y, bt }im{b*pS[}} (2.138)

where S, is a 1 x J vector derived in Appendix D as

2 2 2 T 2
c o°lb ‘W, Z,w o
S, =w,- + LN g Y. S | PN Z,-C (2.139)
k— Tk <a2+E};a2|bk|2 (02 + E202|by[2)? o2+ EZo?|p 27 Tk
and 1
2 2 -
o A
Z,=|C,+—E———% __ _wI 2.140
Il AT 02+Ega2|bk|2w’<wk] (2.140)

Finally, the OPSAM signal detector in the Rayleigh fading channel when the transmitted signals are

of equal energies can be obtained from (2.138) as

b, = argbker&zzﬁil {Re{y,b;X;}} (2.141)
where X, = I~)*p . S,{ and S, is given by (2.139). Note that the optimum detector in (2.141) is actually
a correlator which weights the received symbol signal, r,, with the conjugate channel gain estimate,
X, and then correlates the compensated received symbol signal with the corresponding signal value,
b, to make the data decision.

The performance of the OPSAM signal detector for BPSK signaling in the Rayleigh fading
channel can be analyzed as follows. It has been derived in [1] that the bit error rate (BER) of any

BPSK signal detector satisfying [1, eq. (B-1)] is [1, eq. (B-21)]

v
P=—1— 2.142
b Vi, ( )

_ 1 _ 1 . . . .
where v, = Tt vy = Tt cyy is the variance of Yy» Cxx 18 the variance of X, and Cyx

ny

is the covariance between y, and X,. Denoting ¢, =
T 2R 84 = o

as the covariance coefficient between y,
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and X, (2.142) can be rewritten as

1
Pb:i(

1—c). (2.143)
If the OPSAM signal detector is used, it can be shown that ¢,y = 2(E1%oc2 + 0-2), Cyx = 2[5[25 »
(IB[2C; + 0%E) - ST, and ¢,y = 2|b|?w,-S]. Then,
bw, - ST
)= l~ v 4 (2.144)
/(32 + oVIBPS, - (BIC, + 0°E) -ST

where S, is given by (2.139). Therefore, the BER of the BPSK signaling can be evaulated analyti-
cally using (2.143) and (2.144).
If the energies of the M possible transmitted signals are not equal, such as those in MQAM

signaling, the choice of b, in (2.136) depends on |b,|* as well. In this case, one has
1 -
FOusplBy) o WeZ“F vV (2.145)
k

as |F,| is related to |b,|>. Examination of F, shows that

b 2 bZ
IF,| = iw‘ z, +| | (2.146)

where d = —7—7—!- 4wk Z,- (55 > 7 ,+E)7'wl and Z, = [C, — 7> Wl w,] 1. Substituting (2.146)
p

IbP?

in (2.145) and domg some additional simplifications, one has

1 * T* * Ty
FOplby) =< me;’z{Re{ykbk}Re{b pS] }+im{y, b} Hm{b*p-ST } } +W, (2.147)

2 2 H 2T
where W, = Il |b"| Je 4 4 Re{pz3p } , (-) denotes the conjugate transpose, Z; =C, — —Q—rf—"—;clﬁflEvg‘rb I (1+
k

’bkfz(ckzlwk w+wiw,Z,C,) E2o?c? oWz, w

|bk1 szlwk
CZ\Cp, and f, = 02+E2a2|b 7 (02+E2a2|b 12)

T AELG[b, )+ 2+ EZaTD,

Finally,
the OPSAM signal detector in the Rayleigh fading channel when the transmitted signals have un-

equal energies can be derived from (2.147) as

~

b, =arg max {Re{ykb,’;X,f} —~0o*In

2
!"I +d‘ 4Wk} (2.148)
bk {bj}j—l

where X, = l~)*p . S,{ and S, is given by (2.139), as before. Comparing (2.148) with (2.141), one sees
that (2.148) has two additional bias terms caused by the unequal energies of the transmitted signals,

as expected.
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24.2.2 Ricean Fading Channel

In the previous subsection, we derived the OPSAM signal detector for the Rayleigh fading channel.
This exposition served to develop the theory. In practice, some real-world channels exhibit Ricean
fading. In this subsection, we will derive the OPSAM signal detector for the Ricean fading channel.

In the Ricean fading channel, the statistics of the fading process are determined by (2.124).

Therefore, the joint PDF of A, and B satisfies

1
f(A,B)= We — 3 (Ag—ep) B! (Ag—ep)" — 3 (A~ )H ' (A —e))" (2.149)

where eg = E{Ag} = [eR Jande, =E{A;} =]e}

R RO I Y I
“l-e st “I-4te )0k
One sees that (2.134) is a special case of (2.149) when e = 0 and e; = 0. Similarly, by using (2.149)
in (2.133) and solving the resulting integral, as shown in Appendix C, one can derive
2[ e Ip,2

1 el /F_l 1T 1v’Fk_1V'T—%eRHk_leR elH_l ! MT l_L—jZUIJ
(2mo?)TH1H,||F,|

fOplby) =
(2.150)
whereu' =u+e RH;1 andv =v+e ,H;l. The OPSAM signal detector in the Ricean fading channel
is derived by maximizing (2.150) with respect to b,. As previously, two important special cases are
discussed.
Again, we begin with the case when the transmitted signals have equal energies. In this case, F,,
is independent of b,. Thus,

Frplby) o= VE W HIVEIYT (2.151)

By using v’ =u+e,H: ! and v/ = v+ ¢,H ! in (2.151), one has
y g R iy

f(yka Plbk) o< e&%{Re{ykbi}Re{i’*l"s{}“’"{ykl’;}Im{i’*l"slf}+C’2Re{ykbz}eR'QZ+C’21’"{ykbz}el'QZ} (2.152)

where Q, is a 1 x (J+ 1) vector derived in Appendix D as

o? AR AT o?
= - W7 |. 2.153
Q crz—l—El%oczlbklz( 0'2+Egoc2|bk|2) o2+ EZo2[b, K N
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The OPSAM signal detector for equal energy signals in the Ricean fading channel is derived from
(2.152) as

bk—arg r?bw}; {Re{yb;V;'}} (2.154)

JjIj=1

where V, =X, + 0'2Yk, Y, = (ex + je;)Qf , and Q, is given by (2.153). Several observations can be
made from (2.154). First, note that ¥, in V, is a deterministic number. Thus, V, and X, have different
means but the same variances. Second, by comparing (2.154) with (2.141), one sees that there is an
additional term in (2.154) caused by the non-zero specular component in the Ricean fading channel.
If the channel is Rayleigh faded, e, = e, = 0 and (2.154) will specialize to (2.141).
The performance of the OPSAM signal detector for BPSK signaling in the Ricean fading chan-
nel can also be derived by using results in [1]. The BER is [1, eq. (B-21)]
P, = 0,(a,b) - ﬁﬁ—l—— ly(ab)e™ 3@+, (2.155)
+va/v

where Q, (-, -) is the Marcum’s Q function, I,,(-) is the n-th order modified Bessel function of the first

kind,azﬁt/y——:ﬁ—\/civ;] =%|\/y*_+\/67| i =Ep(ef +jer), V, = |BI*Ep(eR + jel)ST + 6%,
e le
°l-

R _ [oR I =
et = _ e, Cyy = Cyy, Coy = C.y, and v,, v,,
p =1 -4t =119 [L—’ 10 L’Z—IJQ]’ vv = Cxx> G = Gy 1 V2
C
Vv . .
Cyy, Cxx» Cyx are defined as before. Denoting ¢, = —Lcyy = as the covariance coefficient between y,

and V,, (2.155) can be rewritten as

1+ I)(ab)e™2(@+0), (2.156)

P[,: Q](aub)_

It can be verified that ¢, = ¢; and (2.143) is a special case of (2.156) when the specular component
in the fading channel is zero.

If the energies of the transmitted signals are not equal, the likelihood function in (2.150) can
only be simplified to be

1 =107 1 —1 /T
Fuplby) = ﬁe“‘F ALY (2.157)
k

Again, by using (2.146) and the expressions of u’ and v’ in (2.157), one has

Dl < l,,%eﬁ{’“{y"bzvf PHWA T, (2.158)

d|

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A : T H 29T T
where T = JeH 'F 'Hy e + Lo Hy 'Fy 'Hy of + 2(Hetinib ) p, — ["E% z]
and Z, = %Zl. Finally, the OPSAM signal detector for unequal energy signals in the Ricean

fading channel is

b, =arg max

bke{bj}éil

bl

*Y 7K 4
{Re{ykbkvk } —0"In ?

+d‘ + o'W, + 0'4Tk}. (2.159)

Comparing (2.159) with (2.154), one observes that there are three additional bias terms caused by
the unequal energies of the transmitted signals in (2.159). Also, comparing (2.159) with (2.148), one
sees that there is an additional bias term caused by the non-zero specular component in the Ricean
fading channel. When the specular component is zero, the Ricean fading channel will specialize to

the Rayleigh fading channel and (2.159) will specialize to (2.148), as expected.

2.4.3 Conventional PSAM Signal Detectors

In [55] and [57], the conventional PSAM (CPSAM) signal detector for BPSK signaling was derived.
This detector obtains the channel gain estimate, X}, by using a Wiener filter. Following the ideas

in [55], [57] and using notations and symbols defined here, one can show that
X} =b*p-S7 (2.160)

with

S, =w,-[B*C, + 0°E] "' (2.161)

in a Rayleigh fading channel for BPSK signaling. Note that the Wiener filter given by (2.160) can
also be used in a Rician fading channel [57]. This is the case when the specular component in
the Ricean fading channel is unknown. This is also the case when the Ricean fading channel is
non-stationary with a time-varying specular component and an optimum Wiener filter may be un-
available, as studied in this paper. Our OPSAM signal detector improves the channel gain estimate
in (2.160) by using a joint processing of the data symbol and the pilot symbols in a Rayleigh fading
channel and by using knowledge of the time-varying specular component and a joint processing

of the data symbol and the pilot symbols in a Ricean fading channel, as can be seen from (2.141)
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and (2.154). Note further that one could also improve (2.160) by simply using knowledge of the
time-varying specular component in the Wiener filter. This detector hasn’t been derived previously
in the literature, and it cannot be considered as the conventional detector for comparison. Moreover,
the Wiener filter in a non-stationary Ricean channel with time-varying specular component may
not be optimal. Our OPSAM signal detector is an optimal maximum likelihood structure in a non-
stationary Rician channel that necessarily uses knowledge of the time-varying specular components
and jointly processes the data symbol and the pilot symbols. Thus, there is no need to derive the
Wiener filter using the time-varying specular component either. The channel gain estimate, X/, is
used to weight the received symbol signal for data decision. Therefore, the CPSAM signal detector

for BPSK signaling can be written as [55]

b, = argbkem{ba;)}%il {Re{y,5;X:"}} (2.162)
where X, ,2 is given by (2.160). Comparing (2.162) with (2.141) and (2.154), one sees that the CPSAM
detector has similar computation complexity, as well as similar structure, to the OPSAM signal
detectors. Both need matrix inversion to derive the channel estimate. The main difference comes
from their ways of obtaining the channel gain estimate. In the CPSAM signal detector, the channel
estimate is obtained by using the pilot symbols only, and channel estimation and signal detection are
performed separately. However, in our OPSAM signal detectors, the channel estimate is obtained by
processing both the pilot symbols and the data symbols, and channel estimation and signal detection
are performed jointly. As a result, X; does not depend on b,, while X, and V, do, in general.

The performance of the CPSAM signal detector for BPSK signaling can also be evaluated an-
alytically by using results in [58]. The BER of the CPSAM signal detector for BPSK signaling in
the Rayleigh fading channel is, again, given by (2.143). However, the value of ¢, in (2.144) should
be replaced by {55]

[b*w, - SlI{

= o g (2.163)
|/ (E302 + 0)|BS', - (BI2Cy+ 0°E) - ST

for the CPSAM signal detector, where S'; is defined in (2.161). It is proved in Appendix E that

(2.144) and (2.163) are actually equivalent. Therefore, although the CPSAM signal detector and
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the OPSAM signal detector have different channel gain estimates, their BER performances are the
same for BPSK signaling in the Rayleigh fading channel. We have confirmed numerically that
the CPSAM channel gain estimate is a scaling of the OPSAM channel gain estimate for all cases
considered. This implies that the CPSAM signal detector for BPSK signaling in Rayleigh fading
channels is optimum in the sense of minimum probability of error. This fact has not previously been
established.

The BER of the CPSAM signal detector for BPSK signaling in the Ricean fading channel can

also be derived from (2.156). However, the values of a, b and c, in (2.156) should be replaced

X -
by the corresponding values of @’ \/—| 7 \/Wl ‘/—] 7 ‘/E___| ¢y =c}, where X| =

|E|2Ep(e§+jef,)S’T, ey = |B1?S', - (|BJ*C, + G2E) -8’7, and ¢} is given in (2.163).

The CPSAM signal detector for 16-QAM signaling was derived in [55] and [56] as a threshold-
based detector. To facilitate the performance comparison, we need its correlator-based form. Fol-
lowing similar ideas and procedures to those in [55] and [56], one can derive the CPSAM signal

detector for 16-QAM signaling in its correlator-based form as

b, = argbké}‘llg)}(ﬁl {Re{ykbzx,;*} b K 1x))| } (2.164)
for a Rayleigh fading channel, where X}, is given in (2.160). Similarly, one can also use (2.164) in a
Ricean fading channel. The CPSAM signal detector in this case is simpler than the OPSAM signal
detector, as it has less bias terms and the channel gain estimate in (2.164) doesn’t depend on the

values of the possible transmitted signals.

2.4.4 Comparison of Optimum and Conventional PSAM Signal Detectors

Here, we compare the performances of the OPSAM signal detectors derived previously with those
of the CPSAM signal detectors. For simplicity, we discuss the case when the means of the fading
process in (2.124) are constant. The case of time-varying means can be examined accordingly.
Thus, one has e®(¢) = ef and ¢/ (t) = /. Define P? = (ef)? + (¢! )2 as the local mean power of

the line-of-sight component in the Ricean fading channel and K = ;- as the Ricean K factor [1].
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We examine the performances of the detectors at K = 0 (the Rayleigh fading channel), K = 4 and
K = 8. Also, we assume that the scattering in the fading channel is isotropic, and the values of the
normalized Doppler shift (normalized with respect to the symbol rate), f,T = 0.03, f,T = 0.06
and f;,T = 0.09 are used. The frame length is chosen to be Q = 5, and the number of pilot symbols
used to assist the detection of the data symbol is chosen to be J = 11. The error rates are obtained
by averaging the error rates of the data symbols over all positions in one frame.

Figs. 2.11 to 2.13 show the performances of the OPSAM signal detectors for BPSK signaling.
One sees that the performance of the OPSAM signal detector improves when the power of the
specular component in the fading channel increases or the normalized Doppler shift in the fading
channel decreases. For example, when the BER = 10~2 and fpT = 0.03, the performance of the
OPSAM signal detector for K = 8 is about 8.8 dB better than that for K = 0, and about 2.2 dB better
than that for K = 4. When the BER = 1072 and K = 0, the performance of the OPSAM signal
detector for f;,T = 0.03 is about 0.6 dB better than that for f,7 = 0.06, and about 2.6 dB better
than that for f,T = 0.09. This is expected, as a larger power in the specular component gives a
better fading channel condition, and a smaller value of the normalized Doppler shift allows a more
accurate channel gain estimate, which results in fewer errors in the data decisions.

Comparing the performance of the OPSAM signal detector with that of the CPSAM signal
detector, one sees that the OPSAM signal detector has a performance gain over the conventional
detector. The performance gain decreases when the power of the specular component in the channel
decreases or the normalized Doppler shift in the channel decreases. As an example, when the
BER = 1072 and f,,T = 0.03, the OPSAM signal detector has a performance gain of about 1.5 dB
for K = 8, a performance gain of about 1.0 dB for K = 4, and no performance gain for K = 0.
When the BER = 1072 and K = 8, the OPSAM signal detector has a performance gain of about
3.2 dB for fpT = 0.09, about 2.4 dB for f,T = 0.06, and about 1.5 dB for f,7 = 0.03. Observe
that the performance gain decreases as p, increases. This is explained as follows. Comparing
(2.154) with (2.162), one sees that the performance gain of our OPSAM signal detector for BPSK

signaling comes from the fact that we are using an additional offset, 0'2Yk, to calculate the channel
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Figure 2.11. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for BPSK signaling in Rayleigh and Ricean fading channels when f,T = 0.03.
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Figure 2.12. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for BPSK signaling in Rayleigh and Ricean fading channels when f,T = 0.06.
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Figure 2.13. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for BPSK signaling in Rayleigh and Ricean fading channels when f,,T = 0.09.

gain estimate. When the power of the specular component in the channel or the normalized Doppler
shift in the channel decrease, or the SNR increases, ¥, or o2 will become relatively smaller, and the
offset will become less significant. Then, the performance gain decreases.

Figs. 2.14 to 2.16 show the performances of the OPSAM signal detectors for 16-QAM signaling.
Again, the performance of the OPSAM signal detector improves when the power of the specular
component in the fading channel increases or the normalized Doppler shift in the fading channel
decreases. At SER = 1072 and fpT = 0.03, the OPSAM signal detector for K = 8 is about 10.0 dB
better than that for K = 0, and about 2.6 dB better than that for K = 4. At SER =10"2 and K = 0,
the OPSAM signal detector for f,T = 0.03 is about 0.4 dB better than that for f,T = 0.06, and
about 0.8 dB better than that for f,,T == 0.09.

Comparing the performance of the OPSAM signal detector with that of the conventional detec-
tor, one sees that the optimum detector outperforms the conventional detector. When the BER =

10~! and fpT = 0.06, the OPSAM signal detector has performance gains of about 1.0 dB for K =8,
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Figure 2.14. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f,T = 0.03.
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Figure 2.15. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f; T = 0.06.
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Figure 2.16. Performance comparison of the OPSAM signal detector and the CPSAM signal detec-

tor for 16-QAM signaling in Rayleigh and Ricean fading channels when f,T = 0.09.

Table 2.1. Performance gains of OPSAM over CPSAM for BPSK

Fading Conditions | SER=10"! | SER=10"% | SER=10"3 | SER=10"*
(fpT.K) (dB) (dB) (dB) (dB)
fpT=0.03,K=0 0.0 0.0 0.0 0.0
fpT =0.03,K=4 2.1 1.0 0.4 0.0
fpT=0.03K=38 2.5 1.5 1.2 0.9
fpT =0.06,K=0 0.0 0.0 0.0 0.0
fpT =0.06,K =4 2.7 1.6 0.8 0.0
fpT =0.06,K =8 3.2 2.4 1.9 1.7
fpT =0.09,K=0 0.0 0.0 0.0 0.0
fpT =0.09,K =4 3.7 2.3 0.8 0.0
fT =0.09, K =8 4.3 3.2 2.9 2.1
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Table 2.2. Performance gains of OPSAM over CPSAM for 16-QAM

Fading Conditions | SER=10"' | SER=10"2 | SER=10"3 | SER=10"*
(fpT.K) (dB) (dB) (dB) (dB)
fpT =003,K=0 0.0 0.0 0.0 0.0
fpT =003, K =4 0.1 0.0 0.0 0.0
fpT=003K=8 0.6 0.2 0.0 0.0
fpT =0.06,K=0 0.0 0.0 0.0 0.0
fpT =0.06,K =4 0.2 0.0 0.0 0.0
fpT =006,K=8 1.0 0.3 0.1 0.0
fpT=009,K=0 0.0 0.0 0.0 0.0
fpT=0.09,K=4 0.4 0.0 0.0 0.0
fpT =0.09,K =8 1.2 0.4 0.2 0.0

about 0.2 dB for K = 4, and approximately 0 dB for K = 0. When the BER = 10"" and K = 8, the
OPSAM signal detector has a performance gain of about 1.2 dB for f,,7 = 0.09, about 1.0 dB for
fpT =0.06, and about 0.6 dB for f,T = 0.03. Again, the performance gain decreases as the SNR
increases. Note that the performance gains of the OPSAM signal detector over the conventional
detector for 16-QAM signaling are smaller than the corresponding performance gains for BPSK
signaling. Note further that our OPSAM signal detector requires knowledge of e and e;, or equiva-
lently, P2, as well as knowledge of 202, as can be seen from (2.154) and (2.159), while the CPSAM
signal detector only needs knowledge of 2a:2. Both 2a? and P? can be accurately estimated using
estimators developed in [59]. Tables 2.1 and 2.2 show the performance gains in SNR of OPSAM
over CPSAM for BPSK and 16-QAM, respectively. For BPSK signaling the gain ranges from 0 dB
for Rayleigh fading to 4.3 dB for Rician fading with f,7 = 0.09 and K = 8 at an error rate of 10™!.
Observe that OPSAM has the desirable property that its gains over CPSAM are greatest at larger

error rates, where the gains are most needed. The gain for BPSK signaling comes exclusively from
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the use of P2, while the large part of the gain for 16-QAM signaling comes from the use of P2 and
the joint processing of data and pilot symbols contributes some small gain. Next, we investigate the

problem of channel state parameter estimation in a UWB system.

2.5 Channel State Parameter Estimation in a UWB System

Ultra-wide bandwidth technology has attracted much research interest recently [60]}- [62]. In [63]
and [64], ML estimators for the multipath gain and the multipath delay in a UWB system that use
an isolated monocycle and an information-bearing signal, respectively, were proposed. In [65],
the authors derived the CRLB for the DA ML channel estimator developed in [64]. In this work,
we first derive closed-form expressions of the CRLBs for non-data-aided (NDA) ML channel gain
estimation and channel delay estimation in a UWB system. Then, we propose some new NDA ML

channel gain and delay estimators.

2.5.1 UWB System Model

We consider a time-hopping, pulse position modulation UWB system. The desired user’s transmit-
ted signal is [64]

s(t) = Y, p(t — KIT,; — d;5t) (2.165)

k

where k is the information bit index, I is the repetition length, T,is the frame interval, d, € {0,1} is
the k-th information bit with equal a priori probabilities, 8¢ is the additional time shift introduced
whend, =1,and p(t) = ¥/ g(r— nT, —c,T¢) is the symbol signal with g(¢) being the monocycle
pulse with duration Dg, {cn,0 < ¢, < N, — 1} being the time-hopping code and T, being the chip

time. After transmission over the UWB channel, the received signal can be expressed as [64]

() = 30 1ys(e = ) +wit) (2.166)

where L, is the number of multipath components assumed known, and ¥, and 7, are the gain and
the delay, respectively, of the [-th path to be estimated. The interference-plus-noise component is

denoted w(z) and is assumed white and Gaussian with power spectral density 62 [64].
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The received signal is observed over (0,7,] where T, = L x (I Tf). As in [64], we assume that
fOTO s(t— rll)s(t— le)dt ~0(;#L)and 7, < Ty~ (N,—1)T.—6 (=1,2,--+ ,L.) such that the inter-
path interference and the inter-frame interference can be ignored. For independent and identically

distributed information bits, the log-likelihood function can be derived from (2.166) as

LE. L L~1
InA(8) =C— z—cg’gjlyf + ,;O [Incosh(a,) +b,] (2.167)
where ¥ = [y, Ve T ’TLC] is the parameter vector, C is a constant independent of ¢, E, =

fOITf p*(t)dt is the signal energy, cosh(-) is the hyperbolic cosine function, a, = ¥i< ya,, a, =

IT T,
5L ti** Iy(t)[p(t =t — 1) = plt—t,— 7, — 81)]dt, by =3 | Vby, by = 55 ft;” ' y(0)[p(t—1,—

7))+ p(t — 1, — 7, — 81)]dr, and £, = kIT;.

2.5.2 CRLB for NDA ML UWB Channel Estimation

From (2.167), the second order derivatives of the log-likelihood function with respect to ¥ can be

derived as
92InA L-1
TI;’#*) = akiakjseChz (a;) (2.168a)
i k=0
2 In A9 L-1
_a?a% =YY, Y, aai;sech®(a;) (2.168b)
Y% k=0

’InA(d) I*InA(S L-1
ay.ai. ! = 81.85/. ) = Vj;bakiakjsechz(ak) (2.168¢)
g joh =

fori# jandi,j=1,2,---,L., and

?InA(®)  LE, &

T + goa,%,-sechz(ak) (2.1692)
*InA(S =
—STTQ =, 3 [B; + Bl tanh (@) + va Gsech?(a,)] (2.169b)
i k=0

*InA(®)  *mA) &, L
PR Py -—kzo[bk,-+akitanh(ak)+yiakiakisech (a)] (2.169¢)

fori=1,2,---,L., where aﬁd and af; are the first and the second order derivatives of a « With respect

to T, respectively, and b}, and by} are the first and the second order derivatives of B,; with respect to
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T, respectively. Denote

ITf

®,(7) = /0 p()p' (1 + 7)dt (2.170a)
ITf

®,(7) = /0 PP (¢ +7)dr (2.170b)
ITf

®,(7) = /O p()p" (¢ + 7)dt. (2.170¢)

In a UWB system with large T, the functions in (2.170) are approximately zero when D, <
7] < T, — (N, — 1)T. — 6t (see, e.g., [66, Fig. 4]). Assume that the values of d¢, |‘rl1 -~ le|, and
|7, — 7, & 8| are within this region for [; # I. It can be shown that a;; are independent Gaussian
random variables each with mean (Jky,-p) and variance p, a}d are independent Gaussian random vari-
ables each with mean (—Jky,-pe) and variance (1), aZi are independent Gaussian random variables
each with mean (d,%,0{), b/, are independent Gaussian random variables each with mean (—¥,0€),
and b}; are independent Gaussian random variables each with mean (y;0¢) for k =0,1,--+ ,L—1
and i = 1,2,---,L., where p = E,/(20?) is the signal-to-interference-plus-noise ratio (SINR),
€= @,(0)/Ep, N = ®;(0)/E,, { = ®,(0)/E,, d, = sign(1 ~2d,), and sign(-) is the signum func-
tion. The values of €, ) and { are determined by the shape of g(¢). For a monocycle pulse satisfying
g2(D,) = g*(0), one can further show that &€ = 0 and a,, is independent of a};.

Using the PDFs of a,;, aj;, a};, b}; and by obtained, the expectations of the functions in (2.168)

and (2.169) can be calculated. Let R = ElLél }/12. One has

1 L—1 . :
_E{—_‘)ZIDAW)} _ ] T Eeofin iF (2.171a)
dy,0v; _ L '
e 2p— 530Gy i=]
_E{M}z 0 7 2.171b)
91,07, _ . '
Y —Solov +Hy =
d2InA(9) 2 InA(D)
-E{W - _E e =0 (2.171c)
where
1>, here? ., YAxd,~Ro+pvD), , vixd,—Rp)
ijk = ——Q‘m _wSCCh (x)e” T - {[Py, + R_ng Jlo i T]
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2.
Rl + gd —Ro)P 1

R L b ax (2.172)
G. = 1 /m Sechz(_x)e_(x—dg;g_p)z . [p,y2+ ytz(xjk—Rp)]Z_,_p(R_ytz)le dx (2.173)
k= \/2nRp J— ! R R '
Jk o0 b —Ro)? c '}/.2 -
He = ot /_ tnh(e W [pLr?+ 2L (xd, — Rp)Jax (2.174)
oo (xd —Rp)?
L= er]ﬁﬁ / sech?(x)e” % dx+€. (2.175)

The functions in (2.172)-(2.175) are obtained by taking the expectations of }/i}/_]-akiakjsechz(ak),
v?alsech?(a,), v,ai;tanh(a,), and [bY;/v; + d'5sech? (a,)]/p with respect to the Gaussian random
variables, respectively. They can be computed numerically.

Finally, denoting A (i, j) = —E { %jﬂ} as the (i, j)-th element of the matrix A, the CRLB
for estimation of ¥, is A~!(1,1), which is the /-th diagonal element of the inverse matrix A=, and
the CRLB for estimation of 7; is —1/ Zi;[pylzllk + H,,]. One sees that the CRLBs for estimation of
¥, and 7, depend on d, (k=0,1,--- ,L: D,y (=1,2,---,L), the SINR and the sample size.

Consider a sample size of L = 100. Assume d, =0fork=0,1,---,99. Similar to [64] and [65],

the monocycle pulse is chosen as

2
glr) = {1—16% (“OD&) }exp [—Sn(’"gﬂ)z] 2.176)
8 8

with € =0, n = 125.61 and { = —125.71. Consider an UWB channel with L, =3 and R =1.1. The
SINRis p = %2; with E, = E,. We denote the CRLB for NDA ML estimation of ¥, as CRLBy_NDA,
the CRLB for DA ML estimation of v, derived in [65] as CRLBy_DA, and the corresponding CRLBs
for ML estimation of 7, as CRLB,__yp, and CRLB,__,,, respectively. Figs. 2.17 and 2.18 show
the square roots of the CRLBs for ML estimation of y; and 7;, respectively, at different values
of SINR. The multipath gains are fixed to y; = 0.73, ¥, = 0.67 and y; = 0.35. One sees from
Figs. 2.17 and 2.18 that CRLBy_NDA and CRLB,_ 4 are greater than CRLB),_DA and CRLB,_,,

respectively, when I' <7 dB, and they approach CRLB,_p,, and CRLB,_,, respectively, when
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L
2 4 6 8 10 12 14 16 18 20
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Figure 2.17. The square root of the CRLB for ML estimation of ¥, at different values of p, when

v; = 0.73, y, = 0.67 and y; = 0.35. The CRLB for DA ML estimation is also shown.

I' > 7 dB. Figs. 2.19 and 2.20 show the square roots of the CRLBs for ML estimation of y; and 7;,
respectively, at different values of y,. The SINR is set to 0 dB and y; is set to 0.35 in the calculations.
Again, CRLB,_yp, and CRLB,_y,, are greater than CRLB,,_p,, and CRLB _,,, respectively. They
decrease as ¥, increases. Interestingly, the CRLB for the NDA case is close to the CRLB for the DA
case, raising the question of whether one can obtain UWB channel estimation almost as good as in
the DA case without the overhead expense of pilot symbols.

2.5.3 Novel NDA ML UWB Channel State Parameter Estimators

In [64], the authors approximated (2.167) with [64, eq. (25)]
LE, L, L—1
InA(8) = —2722‘1 v+ géb" (2.177)

to derive NDA ML estimators for the UWB channel. The approximate log-likelihood function in

(2.177) was obtained by using the approximation in [64, eq. (24)]. Equivalently, one can also obtain
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Figure 2.18. The square root of the CRLB for ML estimation of 7, at different values of p, when

¥; = 0.73, v, = 0.67 and y; = 0.35. The CRLB for DA ML estimation is also shown.
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Figure 2.19. The square root of the CRLB for ML estimation of ¥, at different values of y;, when

p = 0dB. The CRLB for DA ML estimation is also shown.
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Figure 2.20. The square root of the CRLB for ML estimation of 7, at different values of y;, when

p = 0dB. The CRLB for DA ML estimation is also shown.

(2.177) from (2.167) by using the approximation of

Incosh(a,) = 0. (2.178)

Note that the performances of the NDA ML estimators depend on the accuracy of the approxi-
mation to (2.167). Note further that (2.178) has large approximation errors, especially when the
SINR is large. One can improve the performances of the NDA ML estimators in [64] by using an

approximation that is more accurate than (2.178). In this work, we propose using the approximation

Incosh(a,) = 2}/,|akl| (2.179)

which is obtained by using the approximatiion Incosh(a,) = |a,| together with the approximation

|a,| = ZIL;I ¥|ay,|- By using (2.179), the log-likelihood function in (2.167) can be approximated as

LE, & , &
InA(® —2—2 2 Zmak,Hb] (2.180)
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Comparing (2.180) with (2.177), one sees that there is an additional term Zﬁ;& IL;] Y Iakll in (2.180).

Similar to [64], one has from (2.180)

LE, L 26 > 202
InA(®) ~ — 20127 [yl TF J(Tl)] L_E,,J (2.181)

where J(7) = TF24 Mb—’i and J = ELC J?(7,). Since the maximum of J is found by maximizing
eachof J(7,),1=1,2,--- , L, the NDA ML estimates of 7;,/ =1,2,--- , L, are obtained by locating

L. maximas of J2(t) [64]. Denoting £, as the estimate of 7;, the NDA ML estimate of y,, 7, is
=2 |7()| (2.182)

where we assume that the attenuation is always positive. The performances of the new NDA ML
estimators, the NDA ML estimators and the DA ML estimators in [64] are compared as follows.
Without loss of generality, we focus on the estimation of 7; and ;. For convenience, we denote
the new NDA ML estimators for 7, and y; as Typ,; and Yyp4q. respectively, the previous NDA
ML estimators for 7; and y; in [64] as Typ,, and Yypa,. respectively, and the previous DA ML
estimators for 7, and ¥, in [64] as 7;, and yp,, respectively. Using the Gaussian monocycle as
defined in (2.176), the received signal is sampled with a sampling interval of T; = 0.1D,. We
choose I =5, N, =35, ot=1. 2Dy, Tf = 20D, and T, = —h Denote NU as the number of users
in the UWB system. The cases when NU =1, NU = 10 and NU = 20 are considered. We use a
sample size of L = 10. Similar to [64], the number of multipath components is assumed to be L, =3,
the multipath delays are the same for all users and are fixed at 7, = 5IDg, | = 1,2, 3, the multipath
attenuations vary from user to user and are assumed to be independent Rayleigh random variables
with an exponential power-delay profile of E { }/12} =De /4, 1=1,2,3, where D is the normalization
factor. The desired user’s multipath attenuations are fixed at y; =0.73, ¥, = 0.67 and y; = 0.35. The
interfering users have transmitted signals similar to that in (2.165), except that their time origins are
randomly selected from 0 to 7/, to reflect the asynchronous operation. Each interfering user has the
same transmitted signal power as the desired user. Note that, in the simulation, the values of Tf 1

N,, L. and L are fairly small, as the simulation time becomes intolerable for large values of Tf, I,
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Figure 2.21. The normalized biases of Ty 41, Typa, and 7p, for different numbers of users.

N,, L. and L, and our purpose here is only to show that the new design leads to a better performance.
In practice, the values of Tf, I, N,, L; and L will be much larger. Note also that, in addition to the
MALI, the simulation carried out here also takes the inter-symbol and the inter-frame interference
into account, as 7, > T, — (N, — 1)T, — 8t for [ = 1,2,3 in this case.

Figs. 2.21 and 2.22 show the normalized estimator biases and the normalized root mean squared
errors (RMSESs) of Typa1, Typas and Tp,, respectively, where the normalization is with respect to
D, [64]. One sees that the performance of 7,,,, improves when the SINR increases and/or the
number of users decreases. At large values of SINR, the estimator exhibits a performance floor,
caused mainly by the interferences in the system. Comparing Ty, With Typ.,, One sees that Ty,
outperforms Ty, for all the cases considered, as (2.179) has smaller approximation errors than
(2.178). Also, comparing Ty, With 7j,, one observes that 7,,,; underperforms 7,,, as expected,
as T, uses pilot symbols. When NU = 1 and the SINR is large, Typ4, approaches 7.

Figs. 2.23 and 2.24 show the normalized estimator biases and the normalized RMSEs of ¥y p4;>
Ynvpa2 and ¥p,. respectively, where the normalization is with respect to y; [64]. Again, the perfor-

mance of Yy, improves as the SINR increases and/or the number of users decreases. Comparing

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 T T T T T

——— Y
09 —o—NU=tagpp, |4
e NU=tT,
08} — = NU=1070 1
_ o~ NU=t0g o
o7l — s —NU=10;7, | ]
coow.. NU=20z
06 .. NU=20;t

NDA1

Normalized estimator root mean squared error
(=]
w
T
L

Figure 2.22. The normalized root mean squared errors of Ty 41, Typas and Ty, for different numbers

of users.
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Figure 2.23. The normalized biases of Yy 41> Yypaz and ¥py4 for different numbers of users.
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Figure 2.24. The normalized root mean squared errors of Yyp.;» Yvpas and ¥py for different numbers

of users.
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Figure 2.25. The normalized biases of ¥y,,; and ¥p, at small values of SINR.
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Figure 2.26. The normalized root mean squared errors of ¥yp,; and ¥y, at small values of SINR.

Ynpa1 With Yypass one sees that Ty, performs at least 5 times better than Ty, for all values of
SINR considered. Also, comparing T, With Tp,, one sees that ¥y, underperforms v, in most
cases. However, when NU = 20 and the SINR is small, the RMSE of Yy, is slightly smaller
than that of y,,. This is caused by the fact that the estimate bias shifts from a negative value to a
positive value as the SINR decreases. Figs. 2.25 and 2.26 compare the normalized estimator biases
and the normalized RMSEs of ¥y, and ¥,, when the SINR decreases further. One sees that that
the absolute value of the bias, and therefore, the RMSE of vy, are again larger than those of ¥;,,
when the SINR is small enough. This confirms our explanation. In the next chapter, we will study

channel model parameter estimation in wireless communication channels.
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Chapter 3

Wireless Channel Model Parameter Estimation

In the previous chapter, we have derived new channel state parameter estimators and new receivers
that take channel estimation errors into account. Some applications may require knowledge of the
channel model parameters as well. In this chapter, we estimate the model parameters in wireless
communication channels. Specifically, we derive estimators for the parameters of three common
fading distributions, Rayleigh, Ricean and Nakagami-m. Research in this area has been conducted
by several researchers previously. In [9], [67]- [72], maximum likelihood (ML) and moment-based
estimators for the Ricean parameters were proposed. In [73]- [80], estimation of the m parameter
was studied in detail for the Nakagami-m fading channel. Some ML estimators for  on Rayleigh
channels were derived in [81]. Most of these works are based on processing samples from a noise-
less channel. However, in practical systems, one must process noisy samples. In this chapter, we
first design new estimators for the fading distribution parameters by using noisy channel samples,
with or without knowledge of the noise power. We then derive ML and approximate ML estimators

for the Ricean K parameter by using fading phase samples, a method not studied previously.

3.1 Channel Model Parameter Estimation with Known Noise Power

In this section, we derive ML and/or moment-based estimators for £ of the Rayleigh distribution in

(1.1), K and Q of the Ricean distribution in (1.3), and m and & of the Nakagami-m distribution in
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(1.4), assuming known noise power.

3.1.1 System Model

The transmitted signal is assumed known in the estimation of the fading distribution parameters.
This is the case for received signal samples taken during the transmission of a training sequence
(which may be for channel estimation, synchronizer training or equalizer training). This is also
the case when the receiver makes correct decisions which occur with high probability in a well
designed system. The fading in the channel is assumed slow and flat. The fading signal is corrupted
by additive white Gaussian noise (AWGN), which is independent of the fading. The received signal

in the /-th symbol period can be expressed as

() = e/, (8) +ny(2) G.1)

where s,(t) is the transmitted signal in the /-th symbol period, r; is the fading envelope in the I-th
symbol period having a Rayleigh, Ricean or Nakagami-m distribution, 6, is the fading phase in the
I-th symbol period and #,(r) is the complex AWGN on the channel in the /-th symbol interval with
E{n,(t)n}(7)} = NyS (¢ — 7) where §(-) is the impulse function. The value of N, is assumed known.
The received signal y,(¢) is correlated with the known transmitted signal s,(¢) and normalized by its

symbol energy E;. The absolute value of the normalized correlator output is
z, = |re® 4 n)] (3.2)

. . . . . N,
where n; is a complex Gaussian random variable with mean zero and variance 20',2 = 7. In the
(]

discussion, we assume that the transmitted signals are of equal energy. In this case, E;, = E for any

land 207 =202 =",

3.1.2 Estimators for the Rayleigh Distribution Parameter

When the channel is Rayleigh faded, it can be derived from (3.2) that the PDF of z, is

, >0 (33)
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Using (3.3), the likelihood function for ML estimation of Q can be derived. By differentiating the
likelihood function with respect to €2, setting the derivative equal to zero and solving the resulting

equation, the ML estimator for €2, QRay, is

A

@ —20%, (3.4)

1=
M=

QRay =

-
Il

1

where L independent noisy channel samples are used. It can be proved that the likelihood function
for Q = 0 is smaller than that for (3.4) when 2—6121 P z2 > 1. Note that when the noise level is
small compared to the symbol energy, the term 2672 in (3.4) can be ignored and the resulting ML
estimator for Q is that derived in [81]. Note further that if the noiseless-based ML estimator derived
in [81] is used in the noisy Rayleigh channel, the estimate obtained will be larger than that of our
estimator in (3.4), giving a pessimistically modeled channel. Finally, if QRay < 0 in practice, the
estimate will be discarded.

The mean and the variance of Qp  are derived as E {QRay} =Q and Var{QRay} = 1(Q+

Ray

26?%)2. The Cramér-Rao lower bound (CRLB) for Q can be derived analytically and is 1 (Q+202)2.

Therefore, the ML estimator for Q given in (3.4) is optimal in the sense of minimum variance.

3.1.3 Estimators for the Ricean Distribution Parameters

The PDF of z; in a Ricean faded channel can be shown from (3.2) as

2+p2
7z - Pz,
) = ———=€ 20°+42u I
W) =G (e

), 7 >0, (3.5)

which is again a Ricean distribution. Comparing (3.5) with (1.2), one notes that effectively the
mean power of the line-of-sight (I.LOS) component remains the same while the mean power of the
“scattering” components is changed from 20 to 202 + 2a?, showing the effect of noise in the
estimation. Denoting Q' = Q4202 =P2+202+20? and K’ = T ﬁ_zw , (3.5) can be rewritten in

terms of Q' and K’. The ML estimator for @', &', is

Nl
N
~r

Q= (3.6)

=
X
L
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and the ML estimator for K’, K', is determined by the relation

. ' de < /N
1 _1—1§L’,( L) g 2K' +1 ill(z K(KH)\/@) 4
R'+1 Lo vy L /16'(I€'+1) l=1]0(2\/le’(18'+1)\7§)\/§

where, again, L independent samples are used. The invariance principle of ML estimation maintains

=0 3.7

that the ML estimate of a transformation of several parameters equals the value obtained by applying
the same transformation to ML estimates of each parameter [15]. Using the invariance principle

here, one has that the ML estimators for Q and K, Q rice and R, are

A

Q.. =Q —205% (3.8a)

Rice

A K¢y
K=— - . (3.8b)
O —202(K'+1)

where &' —202(K’ 4 1) > 0 as 2a2Q' > 0. Several observations can be made from the results in
(3.6), (3.7) and (3.8). First, the ML estimates in (3.6) and (3.7) have the same forms as the noiseless-
based ML estimators derived in reference [70]. But the ML estimators given in (3.6) and (3.7) use
samples from a noisy Ricean channel while the noiseless-based ML estimators in reference [70]
used samples from a noiseless Ricean channel. Second, the noiseless-sample-based estimators will
pessimistically model the fading channel if they are used in a practical noisy channel. Finally, note
that when the noise level in the channel is very small and/or the symbol energy is large, 202 < €',
In this case, the noiseless-based ML estimators and the ML estimators derived here will yield nearly
the same estimates.

The mean and the variance of €2y, ., =1

are E{Qp;,} = Q and Var{Qy, .} = I(K%F1 +20%)2 +

Z%I%(K—?—_l + 20’2). The CRLB for QRice has to be calculated numerically. On the other hand,
estimation of the K parameter requires deriving K’ by solving a highly non-linear equation whose
complexity increases with the sample size. Therefore, both performance analysis and implementa-
tion of (3.8b) are difficult. In the alternative, we propose some moment-based estimators for K. The

n-th order moment of the noisy Ricean sample is [1, p. 48]

QI

n n g n
Mn=E{Z?}=(K—,+—1)7F(§+1)€ K1F1('2‘+111;K') (3.9
79
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where | Fi(+,-;+) is the confluent hypergeometric function [2, p. 504]. As we mentioned in Chapter
1, in moment-based estimation, the true value of u, is usually approximated by the value of i, =
%Ef;l Zj. By extending the result of [68, eqn. (3)] to the noisy sample case, one moment-based

. 7] AI .
estimator for K', K MB1> 18

K'yp = ———=. (3.10)

The corresponding moment-based estimator for K, K,p;, can be derived by using (3.10) in (3.8b),

resulting in the estimator
. B

Kyp = =
i, (1— 2—%) —20?

where the ML estimator for €’ given in (3.6) is used.

(3.11)

Another moment-based estimator can be derived by using the relation a,Fj(a+ 1,b;x) = (x+
2a—b),F\(a,b;x) + (b—a),F;(a—1,b;x) [2, eqn. (13.4.1)]. One has the moment-based estimator

for K', K' 4p,, as

3Py — 201+ B2 — i+ iy 1y

K py = = 3.12
MB2 20, — 20,0 (3.12)
. 3 K'+2)Q/ Q7 . 5 . . .
since 2F(‘;3/2) = (2, ++1)i‘(3l/1]2) ~ /2)?12,1 Ty The estimator for K, Kj,, is derived by using (3.12)
in (3.8b) as
N 0, (30,0, —2fi
Kypr = = A3 — 20 + a) (3.13)

P (205 — 20 1) — 202 (Dy /4, + a)

where a = i, \/ A2 —f_ 0+ iy f1, and the ML estimator for Q' given in (3.6) is also used.

3.1.4 Estimators for the Nakagami-m Distribution Parameters

As previously, one has to find the PDF of z; in order to derive estimators for the parameters m and

Q. It can be shown by integration that

2 2
Z — Z
) = — 3 5 Fmli— ). 2 >0 (3.14)
Zl( l) Gz(zfm-l-l)m 1 l( 20_2_*_40;;"1) )
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in a noisy Nakagami-m fading channel. Note that if the asymptotic expansion of the confluent hy-
pergeometric function [2, eqn. (13.5.1)] is used in (3.14) and 2072 is set equal to O, the PDF of the
noiseless samples in a Nakagami-m fading channel can be derived, as expected. Using (3.14), the
likelihood function can be derived and the ML estimators for m and € could be found by differenti-
ating it with respect to m and Q. Unfortunately, the results are complex and do not lead to tractable
estimators. We propose moment-based estimators for € and m instead. The n-th order moment of
the noisy Nakagami-m channel sample is

20%m n

m=E{f) = 0°)VTG+) (g 50

(3.15)

where F(-,+; ;) is the hypergeometric function [2, p. 556]. From [2, eqn. (15.2.11)], one has (i, —
20%)Q+ (6071, — 40* — py)m+ 1, Qm = 0 and (1, — 62u_)Q+ (862, — 2, —20*u_,)m +

2u;mQ = 0. Solving the equations for m and Q, moment-based estimators for m and Q are

o — @lbiey=bycy) +by(aye, ~aycy) (3.16)
c,(byc; —bycy)
. ay(byc, —byc) +by(aye; —ajcy)
Oy = 22724 286 46 3.17)

cy(ayc; —ayc)
where a; = fi, —20%, b, = 600, —40* — Dy, ¢; = Dy, ay = by — 62Q_;, by = 802 —2[1; —

200_; and ¢, =20,.

3.1.5 Numerical Results

Here, we use Monte Carlo simulation to examine the fading distribution parameter estimators in
terms of the sample means and sample root mean squared errors (RMSEs). Sample sizes of L = 100,
L =500 or L = 1000 are used and noise variances of 62 = 0.1 and 6 = 0.5 are considered. Previous
work [68]- [80] has shown that fewer samples do not provide reliable estimates.

Figs. 3.1 to 3.3 show the performances of the moment-based estimatiors IA(A,H_,;1 given in (3.11)
and K, given in (3.13), where negative estimates have been set equal to 0 when obtained. Figs. 3.1
and 3.2 show the estimator means normalized to the true value of K to better show the differences.

The estimators Kj5, and K, 5, have positive biases, but the biases are very small, less than 3% for
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Figure 3.1. Comparison of the normalized sample means of I?MBI given in (3.11) and kMBZ given

in (3.13) with the true value for L = 500, 6% = 0.1 and L = 500, % = 0.5.
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Figure 3.2. Comparison of the normalized sample means of I%MBI given in (3.11) and kMBz given

in (3.13) with the true value for L = 1000, 62 = 0.1 and L = 1000, o2 = 0.5.
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Figure 3.3. Comparison of the RMSEs of kMBl given in (3.11) and KMBz given in (3.13) with the

CRLBs for L = 500, 0% = 0.1, L = 500, 02 = 0.5, L = 1000, 62 = 0.1 and L = 1000, 6% = 0.5.

most values of K shown in Figs. 3.1 and 3.2, Also, in the case when 62 = 0.5, the normalized
mean increases with the value of K, while in the case when 02 = 0.1, the normalized mean nearly
remains constant. Fig. 3.3 shows the RMSEs of the estimators. Also shown in Fig. 3.3 are the
corresponding CRLBs, computed numerically, to benchmark the RMSEs of the estimators. The
CRLBs for K = 0 go to infinity, and they are not shown in the figures. These estimators have small
positive deviations from the CRLBs. The biases and the deviations can be reduced by increasing
the sample size and/or decreasing the noise variance, as can be seen in Figs. 3.1 to 3.3. Comparing
K5, with K5, one notes that K, outperforms K,,z,. This is expected because the former uses
lower order moments and, therefore, is less susceptible to large outlying noise samples. Figs. 3.4
and 3.5 show the performance of che given in (3.8a). The bias of QRice is less than 0.1% of the
true value. It attains the CRLBs graphically when L = 1000. When L = 100, the estimator has very
small deviations from the CRLBs at large values of Q. Figs. 3.6 and 3.7 show the performance of

A

Q. given in (3.4). One sees that it has similar performance to &

'Ray Rice*
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Figure 3.4. Comparison of the normalized sample mean of Qp;., given in (3.8a) with the true value

for L= 100, 62 =0.1, L =100, 62 = 0.5, L = 1000, 02 = 0.1 and L = 1000, 6% = 0.5.
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Figure 3.5. Comparison of the RMSE of Q given in (3.8a) with the CRLBs for L = 100, c2=0.1,

‘Rice

L=100, 0% =0.5,L=1000, 62 =0.1 and L = 1000, 62 =0.5.
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Figure 3.6. Comparison of the normalized sample mean of QRay given in (3.4) with the true value

for L= 100, 02 = 0.1, L = 100, 62 = 0.5, L = 1000, 62 = 0.1 and L = 1000, 0% = 0.5.
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Figure 3.7. Comparison of the RMSE of QRay given in (3.4) with the CRLBs for L = 100, c?=0.1,

L =100, 52 =0.5, L =1000, 62 =0.1 and L = 1000, % =0.5.
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Figure 3.8. Comparison of the normalized sample mean of #: given in (3.16) with the true value for

L =500, 0%>=0.1,L=500, 62 =0.5, L =1000, 62 = 0.1 and L = 1000, 02 = 0.5.
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Figure 3.9. Comparison of the RMSE of 7 given in (3.16) with the CRLBs for L = 500, ¢ = 0.1,

L =500, 02 =0.5, L=1000, 6% = 0.1 and L = 1000, o = 0.5.
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Figure 3.10. Comparison of the normalized sample mean of QNaka given in (3.17) with the true

value for L = 100, 02 = 0.1, L = 100, 6% = 0.5, L = 1000, 6% = 0.1 and L = 1000, 52 = 0.5.

Figs. 3.8 and 3.9 show the normalized sample mean and RMSE, respectively, of 7 given in
(3.16), where estimates less than 0.5 have been set equal to 0.5 when obtained. The derivation of
the CRLB for m is untractable in a noisy Nakagami-m channel. The CRLB for m in the noiseless
Nakagami-m channel is used instead in Fig. 3.9. One sees from Fig. 3.8 that the estimator # has
a positive bias, but the bias is small, less than 5% for most values of m. Also, from Fig. 3.8, one
sees that the noise has a greater influence on the estimator performance than does the sample size.
Consider the case when 62 = 0.5; not only is the normalized mean in this case larger than that in the
case when 62 = 0.1, but the normalized mean increases with the value of m as well. From Fig. 3.9,
one sees that the estimator /7 has a positive deviation from the noiseless CRLB. The performance
of the estimator /% is greatly improved when the noise variance decreases and/or the sample size
increases, as can be seen in Figs. 3.8 and 3.9. Figs. 3.10 and 3.11 show the performance of QNaka

given in (3.17). Most of the biases of QNaka are less than 1%. Also, even when the sample size is

small (L=100) and the noise variance is high (02 = 0.5), the deviation from the CRLB is still small.
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Figure 3.11. Comparison of the RMSE of QNaka given in (3.17) with the CRLBs for L = 100,

02=0.1,L =100, 02 =0.5, L = 1000, 62 = 0.1 and L = 1000, 62 = 0.5.

3.2 Channel Model Parameter Estimation with Unknown Noise Power

In the previous section, novel noise-based estimators for fading distribution parameters were devel-
oped. Derivation of these estimators requires knowledge of the noise power in the channel. How-
ever, in some cases, it is necessary to estimate fading distribution parameters without knowledge
of the noise power in the channel, and therefore, it is required to jointly estimate the noise power
and the fading distribution parameters. In this work, estimation of fading distribution parameters

without knowledge of the noise power in the channel is studied.

3.2.1 System Model

Use similar assumptions to those previously, except that the values of N, or 202 are unknown now.

Express the received signal in (3.1) in a vector form, where the i-th component is

Yy = rlejelsil +ny (3.18)
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with y, = [py, (1) fi(t)dt, sy = [p5,(t) fi(t)dt, ny = [rn(t)f;(t)dt, T being the time duration of
one symbol signal, and {f;(t)}._; being a set of I orthonormal functions. The noise samples Ry
i=1,2,---,1, are independent Gaussian random variables each with mean zero and variance N, [1].

The likelihood function in terms of the samples obtained from the /-th symbol can be derived as

1Yy 14 o 12
f(y,INg,71,6)) = (n_No> exp{—ﬁgizzlm —rjelsy| (3.19)
where y, = [y;,¥y,"** »¥y] is the received signal samples in the I-th symbol interval. Denote
D2
E; =3 lsyl (3.20)
=1
1|& .
=7 | 2vush (3.:21)
I |i=1
and
Im{>_ y.s
v = arctan | IS8} "sjj} (3.22)
Re{Zi—1yysy}

as the energy of the [-th transmitted signal, the envelope and the phase of the normalized corre-
lator output correlating the received signal and the transmitted signal in the /-th symbol interval,
respectively. Note that (3.21) is also given in (3.2). As previously, we consider the case when the
energies of the transmitted signals are the same. In this case, E; = E and 20‘,2 =202 = % for all
1. Also, define 1—% as the transmitted-signal-to-noise ratio (TSNR) (the average signal-to-noise ratio
in the fading channel equals the product of the TSNR and the mean fading power). The likelihood
function in (3.19) can be rewritten as

2
4l "

1\ 1 L,
flylo,r,6,) = (m) CXP{—W;MI —F‘szzcos(ez—%)} (3.23)

where 202 is unknown.

3.2.2 Estimators for the Rayleigh Distribution Parameter

In order to estimate Q, a joint estimation of 262 and & is needed as the noise power in the channel

is also unknown. The likelihood function for joint ML estimation of 262 and Q in terms of the
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samples obtained from the /-th symbol can be derived as

1wlo. = [ [ 310, 0)u(nl@) o 0)dnde, (324

where f(y,|0,r,,6,) is the likelihood function given by (3.23), fz(r,|Q) is the PDF of the Rayleigh
distribution given by (1.1), and f(6,) = zl” is the PDF of the fading phase. Solving the integral in

(3.24), one has

N9 =\2rE0?) 202 +Q"P 2B &1 T 2657 T 25710 '
In practice, more accurate estimate can be obtained by using a sequence of symbols instead of one

single symbol. Assuming L independent symbols are available, the likelihood function in terms of

the samples obtained from the L symbols can be derived from (3.25) as

i 2 AL Loyl 2 L 2 gL .2
f(YIO',Q)=( ! ) ( 20 ).exp{_21=121=1|yl1| PSP }(3.26)

2nEg? 2024+ Q 2Ec? 202 2024 Q

where y = [y,,¥,,**,¥,] is the sample vector of L symbols. The ML estimators for 2062 and Q in

a noisy Rayleigh fading channel can be derived as

A 1 4 1 &
202 = ——— yal* = g (3.27)
(1—1)LE1§1,~=1| o (1~1)Lz=21 l
and
Qpay =Ygy — 202 (3.28)
where €Y/ Ray = 1 31, 2}. Note that the ML estimator for Q in (3.28) derived with unknown 202 has

similar form to that in (3.4) derived with known 202, except that the true value of 262 in (3.4) is
replaced by the ML estimate of 262 given in (3.27).

The performances of the estimators 202 and §,,, can be analyzed as follows. Rewrite (3.27) as

Ray
1 L

" I
20%= (I—1)LE > [; |yillz_EZ12:| - (3.29)

It is proved in Appendix B that Zle Iyil|2 - Ezl2 is independent of z; and has a central chi-square

distribution with (21 —2) degrees of freedom and parameter % Moreover, since noisy samples
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taken during different symbol intervals are independent, 7 [31, [y,|> — E?] is also independent
of 35, 2. Thus, 202 s indpendent of €/ Ray @nd has a central chi-square distribution with (21L-2L)
degrees of freedom and parameter ZITN?EZ‘E‘ The mean and the variance of 262 are E{202} = 202

and Var{262} = (‘1——115Z (20‘2)2. The performance of Q,_, in (3.28) can be determined similarly.

Ray

Using results in the previous section, one can derive E{z}} = Q+20? and Var{z}} = (Q+20?)%.

Since the random variables €’ Ray and 202 in (3.28) are independent, the mean and the variance of

2
(I—ll)L (20%)".

A benchmark for unbiased estimators is the Cramér-Rao lower bound (CRLB) [17]. Since

QRay are E{QRay} =Q and Var{QRay} = 1(Q+20%)%+

both 26?2 and Q are unknown, the CRLBs for estimation of 26* and Q in a noisy Rayleigh fading
channel are the (1,1) and (2,2) elements of J~1 [17, eqn. (259)], respectively, where J is the Fisher

information matrix defined as

Inf Pnf
—-E FleeoU —E{ 55510
J= t 820 {":j 2. (330)
1 1
—E{ agarzlf;?} _E{ nf}
Using the likelihood function in (3.26), the elements in J can be derived as —E{ —zazglzf ( ) Ly
3% d%1 3?1 . .
Gotray —E{ ) = Gotsay> and ~E {Forda) = ~Elzami) = @errap: Putting these in

(3.30) and solving (3.30) for its inverse matrix, the CRLB for estimation of 252 in a noisy Rayleigh
fading channel is (=) 1) (20‘ ) and the CRLB for estimation of € in this case is %(Q +20%)% +
= 1) - (202 ) . Therefore, the ML estimators for 26 and Q in a noisy Rayleigh fading channel,
262 and Q Ray &iven by (3.27) and (3.28), respectively, are unbiased and achieve the CRLB’s. They

are optimal in the sense of minimum variance.

3.2.3 Estimators for the Ricean Distribution Parameters

Here, we derive estimators for Ricean distribution parameters, K and Q. As previously, a joint
estimation of 262, K and Q is performed since 262 is unknown. The likelihood function for joint

ML estimation of 262 and the Ricean distribution parameters can be derived by using integration as
© o

fwloseP)= [ [ £(3,10,1,6)feo(r, 00t Pdnde, (3.3
-7
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where fR’@(rl, 0,c, P) is the joint PDF of the fading phase and the fading envelope in a Ricean

channel. Solving (3.31), one has

1 ) 202 2,P
P = I L

f(yl|0',06, ) (ZHEO'Z) 202 4202 0(20'2-}-2062)

1 &, 2027 P?
'exp{_ZEo.z ;I)’tﬂ + 2062(202 +202) 2024202 (° (3.32)

If L independent symbols are used in the estimation, the likelihood function is then

1 LI 252 Ly 2z,P

a,P) = I 5y
f(ylo, e, P) (27:E02> (20‘2—1-2062) 111 0(20'2+2a2>

. 1 iil o 202 EL: 2 LP?
exp{ ——x . e — RN ———
P17 2E42 Pt Yl T 62207 1 202) 2% 2024202

(3.33)

Again, denote Q' = P2+ 202 +20?% and K’ = W Rewriting (3.33) with Q' and K', the ML
estimators for 262, Q' and K’ in a noisy Ricean fading channel can be derived as
L

. 1 L I 1
202 = ————— y,|? = — ¥ 2%, (3.34)
(1—1)LE,=21§1 il 1)L,=21’

& le (3.35)

T M=~

1
Rice — z

and

1 1 & 2K, +1 L 124/ Ky (R yy + 1)2)
it el GUCVEMEW DD,
Ky +1 =1 LA/K'y (K'yyp + 1) 1= 124 /Ky (K py + 1)27)

where zj = —S—;L and I, () is the first-order modified Bessel function of the first kind [2, p. 374].

Rice

One sees that the ML estimates of 262 and ¢/, 202 and & can be calculated in explicit forms

Rice®
given by (3.34) and (3.35), respectively, while the ML estimate of K’, K’ w18 implicitly determined
by (3.36). According to the invariance principle of ML estimation [15], the ML estimates of K and

Q are, respectively,

IeML — K’MLQlRlce (3373)
Q Rice 2O-Z(KIML + 1)
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Qpice = ¥ pige — 202. (3.37b)
Again, one sees that the ML estimators for Q and K of the Ricean distribution derived when 252
is unknown, QRice and I%ML, given in (3.37a) and (3.37b), respectively, have similar forms to those
given in (3.8) derived when 202 is known, except that the true value of 252 in (3.8) is replaced by
its ML estimate given in (3.34).

The mean and the variance of 202 in (3.34) are the same as those of the estimate given in
(3.27). The CRLB for estimation of 252 in a noisy Ricean channel can be derived as U—_llﬁ (20’2)2.
Therefore, the ML estimator for 262 in a noisy Ricean fading channel is optimal in the sense of
minimum variance, as was that in a noisy Rayleigh fading channel, as necessary since Rayleigh

fading is a special case of Ricean fading. The mean and the variance of Q.  in (3.37b) can be

Rice
derived as E{Qp;.,} = Q and Var{Qp, .} = (75 +20%)2+ L(%fl)(,(%_l +20?%) + ﬁ (20'2)2.
The CRLB for estimation of € in a noisy Ricean channel has to be calculated numerically. Next,
we propose moment-based estimators for K in a noisy Ricean fading channel with unknown noise
power. We use {zl}le1 as noisy channel samples for moment-based estimation of K in this paper.
One could use y,;, samples of the received signal, as samples for moment-based estimation of K,
as one did in the ML estimation of K. However, the choice of z; is intuitively motivated as it was
shown in Chapter 2 that z; in (3.21) is a ML estimate of .

To derive moment-based estimators for K when knowledge of the noise power in the channel is
unavailable, we replace the true value of 202 in the estimators given in the previous section with
the ML estimate of 202, 202, given in (3.34). Then, moment-based estimators for K using noisy
channel samples when 202 is unknown are given as

A N
Kyp = ~ (3.38)
(82— /283 - ) 20

X Pa (3R =25 + Py 03 — Ay + Py )
KMBZ

and

(3.39)

Py (20 = 2, ) = 262 (P by + By [~ iR+ By )

Next, we develope estimators for the Nakagami-m distribution parameters.
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3.2.4 Estimators for the Nakagami-m Distribution Parameters

Estimators for Nakagami-m distribution parameters, m and €2, can be developed by using similar
techniques to those used in the previous sections. We derive the likelihood function for joint ML
estimation of 262, m and Q first. In a noisy Nakagami-m fading channel, this function can be

obtained by solving the integration

oo pTT
swlom@ = [ [ £lo,r,0)fxe (n,8/m Q)dnde. (340)

One has from (3.40)

1\ 20 \" _sape 2 2
f(yl|0',m,Q)=( ) | ¢ wt - F|ml 5 - L (3.41)

2 2 [¢)
2nEoc 202 4 - 20 20'2+;ﬁ

where |F)(,-;-) is the confluent hypergeometric function [2, p. 504]. When using L independent

symbols, the likelihood function for joint ML estimation is

L
1 \Y/[ 202 \" 1 &
Q) = - 2
f(ylo-ama ) (27ZEO'2> (20_2+%) exp 2EO'212 Ilylll

=1i=
L 2 2
4 4
TLE (m 125 - . 3.42
H“(’”’ 252 202+%) 642

The ML estimators for 262, m and Q might be found by using the log-likelihood function given in

(3.42). Unfortunately, the difficulty in calculating the derivative of the log-likelihood function with
respect to m makes it untractable. Therefore, moment-based estimators for m and Q are proposed.
Again, our moment-based estimation of Nakagami-m distribution parameters is based on samples
{Zl}szr The n-th order moment of the noisy Nakagami-m channel sample z, is given in (3.15).

Using the second order moment of z;, one moment-based estimator for €, Q Naka® 18

Qata = ¥ vata — 20%, (3.43)

T

where €/ Naka = % zl2 is the noiseless-based ML estimator for Q mentioned in [75] and 202 is
the estimate of 20 given by (3.27) and (3.34). This choice is motivated by the fact that the ML
estimators for 20 are the same for the Rayleigh and Ricean fading cases. Note that the moment-

based estimator for Q of the Nakagami-m distribution has a similar form to those ML estimators of
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€ for the Rayleigh and Ricean distributions. The mean of QNaka isE {QNaka} = Q. The variance of
Qg is Var{Qy,.} =1 (80’2Q+ 8o+ %2) + =z (26?)®. The CRLB for estimation of & in
a noisy Nakagami-m fading channel has to be calculated numerically.

Using the moment-based estimator for Q given in (3.43) and the estimator for 262 in (3.27)
and (3.34), moment-based estimators for m of the Nakagami-m distribution can also be developed.
From [2, eqn. (15.2.11)], one has (¢ — b)F(a,b — 1;¢;x) + (2b — ¢ — bx + ax)F (a,b; ¢; x) + b(x —

1)F (a,b+ 1;c;x) = 0. Using this identitity, two equations can be obtained as
(1, —201)Q+ (602w, — 406* — p)m+ u,Qm =0 (3.44a)

(1, — 2 u_)Q+ (802u, — 2uy —20*u_ | )m+ 2u;mQ = 0. (3.44b)

Solving these two equations for m and using the moment-based estimator for Q in (3.43) and the

estimator for 262 in (3.27) and (3.34), two moment-based estimators for m, 7,5, and g, , are

derived as
N "2 2
and
mMBZ - (/3«1 — 0:2.‘:‘—1)([42 - 20:2) (3.46)

20, — 2 iy + 2040, — 4020,
where f1,, is defined as before. Note that (3.46) uses the first, the second, the third and the inverse first
order moments of the noisy samples, while (3.45) uses the second and the fourth order moments.
Therefore, it is expected that (3.46) will outperform (3.45), as the former uses a lower order of
moment which is more robust to noise outlyers. The noiseless-sample-based estimators derived in

the literature are [74]

A

= 2 (3.47)
Hy— “2
and
= 12 (3.48)

20— 20,8,

We will compare the performances of iy, and #t,,, with those of i and iy, later.
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Figure 3.12. Comparison of the normalized sample means of the estimators K}z, in (3.38), K5, in
(3.39), K',p, in (3.10) and K'),, in (3.12) with the true value for L = 500, TSNR = 7 dB (dashed

line}, L = 500, TSNR = 0 dB (dotted line) in a noisy Ricean fading channel.

3.2.5 Numerical Results

In this part, numerical results are presented to show the performances of the estimators derived. The
value of [ is set equal to 2, which corresponds to the case of two-dimensional signaling. Consider
02 = 0.1 (TSNR =7 dB) and 02 = 0.5 (TSNR = 0 dB).

Figs. 3.12 to 3.15 show the performances of K, in (3.38), Ky/p, in (3.39), K’} in (3.10)
and K’ w2 i (3.12) for the Ricean distribution parameter K, where negative estimates have been set
equal to zero. The estimators IE'MBI and kMBZ are noisy-sample-based while the estimators K’ MB1
and K g, are noiseless-sample-based. Figs. 3.12 and 3.13 show the normalized sample means of
the estimators, where the sample means are normalized with respect to the true value. One sees that,
with the same sample size, the biases of the estimators decrease significantly as the TSNR increases,
while with the same TSNR, the biases of the estimators decrease little even when the sample size

increases. Therefore, the TSNR has a greater influence on the sample means than the sample size.
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Figure 3.13. Comparison of the normalized sample means of the estimators K, yp in (3.38), IA{Maz
in (3.39), I%’MBI in (3.10) and I?’MBZ in (3.12) with the true value for L = 1000, TSNR =7 dB (solid

line), L = 1000, TSNR = 0 dB (dashdotted line) in a noisy Ricean fading channel.

In the case when both the sample size and the TSNR are fixed, K g1 and K g2 have much smaller
biases than K’ mp) and K upy Moreover, the biases of K ug1 and K o increase dramatically as
the true value of K increases while the biases of K wp and K wp2 changes little. For example, when
L =500 and TSNR = 0 dB, IA(A,“_,;l and kMBZ have a bias which is about +1% of the true value at
K =2 and +2% at K = 20. However, K’ yp and K e have a bias which is about -12% of the
true value at K = 2 and -51% of the true value at K = 20. Figs. 3.14 and 3.15 show the root mean
squared error (RMSE) of the estimators. The CRLBs for K = 0 go to infinity, and they are not
shown in the figures. The RMSE decreases significantly as the TSNR increases and the sample size
remains the same. When the sample size increases and the TSNR remains the same, the RMSE
decreases little. Therefore, the TSNR also has a greater influence on the RMSE than the sample
size. If both the sample size and the TSNR are fixed, one sees that KMBI and kMBZ have much

smaller RMSEs as well as much smaller deviations from the CRLBs than K' up and K yp2- FOr
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Figure 3.14. Comparison of the RMSEs of the estimators K,,p, in (3.38), K,/3, in (3.39), K',5,
in (3.10) and klMBZ in (3.12) with the CRLBs for L = 500, TSNR = 7 dB (dashed line), L = 500,

TSNR = 0 dB (dotted line) in a noisy Ricean fading channel.

example, when L = 500 and TSNR =0 dB, I%MBI and kMBz have approximately the same RMSE,
which is about 0.7 at K = 6 and about 3.3 at K = 20. The deviation from the CRLB is negligible
at K = 6 and about 0.4 at K = 20. However, K';p; and K'),, have a RMSE of about 1.6 at K = 6
and about 10.1 at K = 20. The deviation from the CRLB is about 0.9 at K = 6 and about 7.1 at
K = 20. Therefore, the noisy-sample-based estimators, I%MB] and K wmp2» perform much better than
the noiseless-sample-based estimators, K’ up and K wmp2- Comparing the two noisy-sample-based
estimators, KMBI and K wmp2» one sees that they have similar sample mean performance while the
latter has a smaller RMSE when the sample size and the TSNR are the same. Therefore, K, VB2
outperforms K, ,, as expected.

Figs. 3.16 and 3.19 show the performances of iy, in (3.45), iyp, in (3.46), rits in (3.47)
and %, in (3.48) for the Nakagami m parameter, where estimates less than 0.5 have been set equal

to 0.5. The first two are noisy-sample-based while the last two are noiseless-sample-based. For
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Figure 3.15. Comparison of the RMSEs of the estimators kMBl in (3.38), I%MBZ in (3.39), K’ MBI
in (3.10) and K wg2 in (3.12) with the CRLBs for L = 1000, TSNR = 7 dB (solid line), L = 1000,

TSNR = 0 dB (dashdotted line) in a noisy Ricean fading channel.

comparison, performances of the noisy-sample-based m parameter estimators derived in [76, eqn.
(28)] and [79, eqn. (14)], denoted as 7 ;;; and i1 4, respectively, are also shown in Figs. 3.17 and
3.19 for L = 10,000 and TSNR=7 dB. The derivation of the CRLB for m is untractable in a noisy
Nakagami-m channel. The CRLB in the noiseless case, which is a lower bound of that in the noisy
case, is used instead in Figs. 3.18 and 3.19. Figs. 3.16 and 3.17 show the normalized sample means
of the estimators. Similar observations to those made for the K parameter estimators can be made.
Again, the biases decrease as the TSNR and/or the sample size increases, and the TSNR also has a
greater influence on the sample means than the sample size. When the sample size and the TSNR are
the same, the noisy-sample-based estimators have much smaller biases than the noiseless-sample-
based estimators and the biases of the noisy-sample-based estimator also increases much slower
than the noiseless-sample-based ones when m increases. As an example, when L = 500 and TSNR

=0dB, i, and rity,p, have approximately the same positive bias of about +2% at m = 6 and about
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Figure 3.16. Comparison of the normalized sample means of 7,5, in (3.45), 77ty,p, in (3.46), i in
(3.47) and #, in (3.48) for L = 500, TSNR = 7 dB (dashed line), L = 500, TSNR = 0 dB (dotted

line) in a noisy Nakagami-m fading channel.

+5% at m = 20, while rii; and 7, have a negative bias of about -33% of the true value at m = 6 and -
63% at m = 20. Figs. 3.18 and 3.19 show the RMSEs of the estimators. Again, the RMSE decreases
as the TSNR and/or the sample size increases, and the TSNR has a greater influence. With the same
TSNR and sample size, 1,5, and #t,,p, have much smaller RMSEs than 5 and ##,. This can be
seen when L = 500 and TSNR = 0 dB. The noisy-sample-based estimators 7y, and 5, have
RMSE of about 0.8 at m = 6 and about 5.5 at m = 20 while the noiseless-sample-based estimators
i, and 7, have RMSE of about 2.1 at m = 6 and about 12.0 at m = 20. Therefore, the noisy-sample-
based estimators, #iy.5, and ., outperform the noiseless-sample-based estimators, i and 1.
Also, comparing the two noisy-sample-based estimators, 1,5, and 7i,5,, one sees that they have
nearly the same sample mean performance while the latter has a smaller RMSE. Therefore, #,,p,
outperforms #i,p,, as expected. One can also see from Figs. 3.17 and 3.19 that our noisy-sample-

based estimators have smaller biases as well as smaller RMSEs at L = 1000 and TSNR = 0 dB than
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Figure 3.17. Comparison of the normalized sample means of 71,5, in (3.45), #iyp, in (3.46), rit; in
(3.47) and 1, in (3.48) for L = 1000, TSNR =7 dB (solid line), L = 1000, TSNR = 0 dB (dashdotted

line) in a noisy Nakagami-m fading channel. /1, and 1, use L = 10,000 and TSNR =7 dB.

the noisy-sample-based estimators derived in references [76] and [79] at L = 10,000 and TSNR =
7 dB, which implies that they are at least ten times better than the noisy-sample-based estimators
in [76] and [79] even when stronger noise is assumed. Therefore, our noisy-sample-based estimators
for the m parameter perform better than not only the noiseless-sample-based estimators but also the
noisy-sample-based estimators for m parameter derived in the literature when both are used in a

noisy Nakagami-m fading channel.

3.3 Channel Model Parameter Estimation Using Phase Samples

In the previous two sections, estimators for fading distribution parameters with or without knowl-
edge of the noise power have been studied. All these estimators, including those derived in the
literature, use samples of the fading envelope (the absolute value of the complex fading gain). How-

ever, in some cases, the fading phase (the angle of the complex fading gain) contains information
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Figure 3.18. Comparison of the RMSEs of i),z in (3.45), rity,p, in (3.46), rit; in (3.47) and 1, in
(3.48) with the CRLBs for L = 500, TSNR = 7 dB (dashed line), L = 500, TSNR = 0 dB (dotted

line) in a noisy Nakagami-m fading channel.

on the fading distribution parameters as well. It is of great interest to explore the use of the fading
phase in the estimation of the fading distribution parameters. In this work, we propose ML and

approximate ML estimators for the Ricean K parameter by using fading phase samples.

3.3.1 System Model

It is well known that the complex fading gain in a Ricean fading channel can be modeled as a
Gaussian random variable according to the central limit theorem [54]. The joint probability density

function (PDF) of the fading envelope and the fading phase is given by [83]

r? +P*—2rPcos (6 — 6,) }

,
fra(n0)= T XP { - o (3.49)

where r > 0 is the fading envelope, —7 < @ < 7 is the fading phase, P? is the mean power of the
LOS component, 2¢:? is the mean power of the scattering components, and 6, is the angle of arrival

of the LOS component with —7 < 6, < 7. Define K = -2%27 and Q = P2 + 202 as the Ricean K factor
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Figure 3.19. Comparison of the RMSEs of i, in (3.45), iy, in (3.46), 1, in (3.47) and iy, in
(3.48) with the CRLBs for L = 1000, TSNR =7 dB (solid line), L = 1000, TSNR = 0 dB (dashdotted

line) in a noisy Nakagami-m fading channel. @, and # ,;, use L = 10,000 and TSNR =7 dB.

and the total mean power of the fading, respectively, as before. By integrating over 8 in (3.49), one
obtains the fading envelope Ricean PDF as (1.3). By integrating over r in (3.49), one obtains the

fading phase PDF

0) — e®  VKcos(6-6)) —Ksin?(0—0p)
fol0) = Ey N €

where erfc(-) is the complementary error function.

-erfc(—v/K cos (6 — 6;)) (3.50)

3.3.2 K Estimator Using Phase Samples Only

When K is large, one has ¢ =X ~ 0. From (3.50), one derives an approximation to the log-likelihood

function using samples of the fading phase only as
L L L
Inf(01K,6,) =~ —LIn(2y/7)+ 3, Incos(6,—8,) —K Y sin*(6,— 6;) + 7 InK
I=1 =1

+ ¥ Inerfc(—vKcos(6, - 6,)) (3.51)

L
=1
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where 8 = [0, 6, --- 0] is the sample vector of the fading phase and the term ‘32_—; in (3.50)
has been ignored. It can also be shown that erfc(—+/K cos(6, — 8,)) depends only on the sign of
cos(6, — 6,) and that E{@} ~ 6, for large values of K. As a result, an approximate ML-based

estimator for K can be obtained from (3.51) as

k - L
AML = a3t sin?(6,— )

(3.52)

where éo = %Z{‘:l 0,. One sees that, unlike the ML estimator for K in [70] that uses samples of r,

only, the estimator in (3.52) has a very simple structure.

3.3.3 K Estimator Using Both Phase Samples and Envelope Samples

From (3.49), the log-likelihood function for estimation of K using both fading envelope samples

and fading phase samples can be derived as

L LPZ

L ?—2pyk 6,—6
_21:1 ] Zl:lrlcos( I 0) +Z]an—Lln(27F062)—'2_

Inf(r,0|P,0,6,) =

202 Pt a?
(3.53)
wherer=[r, r, --- r.]isthe sample vector of the fading envelope. By differentiating (3.53)

with respect to 6,, P, 202, setting the derivatives equal to zero, and solving the resulting equations,

one has the ML estimators for 6, P and 202, éo’ P and 2&2, as

L .
Yi=178in6,

8, = arctan T cos0) (3.54)
s 1 & .
P= 7 1=Zl r;cos(6, — 6,) (3.55)
262 =1 }Lj F— P (3.56)
L

According to the invariance principle of ML estimation [15], the ML estimator for the Ricean K
factor, KML, is
p2

R, =— (3.57)
ML 2052
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where P is given by (3.55) and 202 is given by (3.56). One sees that (3.57) uses samples of the
fading envelope, r;, as well as samples of the fading phase, 0,. The ML estimator in (3.57) also has
a simple structure which is implementable.

Finally, the best known realizable noiseless-based estimator for K using samples of the fading

envelope only, K Envs 18 derived in the literature by solving the equation [70]

By _ yme [(1+ K)Io(K/2) +KI, (K /2)] (3.58)
"1

VB 2K

for K, where iy = 1 3%, 0, = 1 ¥}, 77, and [,(-) is the first-order modified Bessel function of
the first kind. One sees that, unlike the new estimators in (3.52) and (3.57), this estimator doesn’t
have an explicit form. In practice, it has to be implemented by using a look-up table, which costs

extra memory as well as searching time. A closed-form estimator for K based on an approximation

to (3.58) was derived in [72].

3.3.4 Numerical Results

In this section, we simulate the performances of K,; and K,,,; and compare them with that of K,
in a Ricean fading channel. The Ricean channel is simulated by generating independent complex
Gaussian random variables with, in general, nonzero mean. Thus, the scattering distribution of the
incoming waves doesn’t contribute any error to the estimate. Without loss of generality, we fix the
angle of arrival of the LOS component to 1.0 and the total mean power of the fading to 1.0. The
value of K varies from 0.0 to 10.0 with increments of 0.5. Practical values of K are reported to be
less than 10.0 in mobile communication systems [71]. The look-up table in K, is constructed for
K from 0.0 to 15.0 with a step size of 0.05, resulting in 300 possible values for search.

Figs. 3.20 and 3.21 show the biases and the RMSEs of K,;, K,,,; and Kp,, in a Ricean fading
channel with L = 500. One sees that the bias of K}, is between 0.00 and 0.05, and the RMSE of
KML is between 0.00 and 0.50, when the true value of K varies from 0.0 to 10.0. The bias and the
RMSE of K,,; are very small. As an example, at K = 10.0, the bias of K,,; is only 0.5% of the true

value and the RMSE of K, is only 5% of the true value. Therefore, the estimator K,,, performs
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Figure 3.20. The biases of K, K,,,, and K, for a sample size of L = 500 in a Ricean fading

channel.
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Figure 3.21. The RMSEs of K,;, K,,,; and K, for a sample size of L = 500 in a Ricean fading

channel.
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fading channel.

well in a Ricean fading channel. Also, one sees from Figs. 3.20 and 3.21 that the estimator R AML
has good performance when the true value of X is larger than 3.0; the bias of K oy 18 between 0.17
and 0.06 and the RMSE of I%AML is between 0.25 and 0.64 for 3.0 < K < 10.0. However, when
00<K<3.0K g, performs poorly, as the bias and the RMSE of K i, are fairly large, and they
increase when the true value of K decreases. This is caused by the large errors in the approximations
used to derive (3.52) at small values of K. Comparing K;,, with Ky, one sees that K,,, always
has a smaller bias as well as a smaller RMSE than K s fOr all the values of K considered. Thus,
I%ML outperforms I%Env. Comparing K Ly, With I%Env, one sees that K amr outperforms KE,W when
5.0 < K £ 10.0. When 0.0 < K < 2.5, K,,,; underperforms Kj,,. Otherwise, their performances
are comparable. Fig. 3.22 shows how the RMSEs of the estimators vary with the sample size at
K = 5. One can determine how much the estimator performance improves as the the sample size
increases from Fig. 3.22. For example, kML has a RMSE of 0.62 when L = 100, while it has a

RMSE of 0.19 when L = 1000. Next, we investigate the problem of signal-to-noise ratio estimation.
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Chapter 4

SNR Estimation in Wireless Communication Channel

As we mentioned in Chapter 1, signal-to-noise ratio (SNR) is an important channel parameter that
is widely used in wireless communication. Two measures of SNR can be defined in a static additive
white Gaussian noise (AWGN) channel. One is the SNR defined as the ratio of the signal power to
the noise power. The other is the SNR defined as the ratio of the signal amplitude to the noise power.
In a fading channel, a third SNR, the average signal-to-noise-ratio (ASNR), is also defined as the ra-
tio of the average signal power to the noise power. In contrast, the first two SNR measures are refered
to as instantaneous SNRs. In the following, until otherwise specified, the term of SNR refers to the
instantaneous SNRs in a fading channel. Many techniques and components need SNR and ASNR
information in their implementation. For example, knowledge of SNR and ASNR is required in rate
adaptation [13], power control [11], [84], optimum diversity combining [85], macro-diversity [86],
turbo decoding [87], and maximal ratio combining (MRC) [88]. These applications give impetus to
an investigation of their estimation techniques. Previous works include the following. In [19]- [21],
maximum likelihood (ML) SNR estimators were derived and shown to be asymptotically optimal in
the sense of minimum variance. These results are only applicable for pulse-code modulated signals
in a real AWGN channel. Pauluzzi and Beaulieu extended these results to M-ary phase-shift keying
(MPSK) signals in complex AWGN channels [22]. They also summarized and compared their pre-

decessors’ work in [22]. In another work [23], based on observations from the link quality estimator
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used in [24], Beaulieu et al. proposed four different SNR estimators for quaternary phase-shift key-
ing (QPSK) signals. These estimators have fairly large biases when the true value of SNR is small.
To improve the estimator bias performance at small SNRs, Li et al. developed another estimator
in [25]. In related work [26], [27], the Cramér-Rao lower bound (CRLB) for non-data-aided SNR
estimation of phase-shift keying signals in an AWGN channel was obtained. A new non-data-aided
SNR estimator based on an iterative algorithm was also derived in [27]. All these estimators are
limited to a static AWGN channel. They are only valid for a sampled system with bandlimited
AWGN. The performances of most estimators were examined by simulation. Estimation of ASNR
in a slowly fading channel has been studied by many researchers as well. In [81], [89], [90], esti-
mation of the average signal power has been studied. These estimators can be adapted to estimate
ASNR assuming that the noise power is known. In [91] and [92], moment-based estimators for
ASNR in a Rayleigh fading channel and a Nakagami-m fading channel, respectively, were derived.
There is no result on estimation of ASNR in a Ricean fading channel without knowledge of the noise
power though. In this chapter, we first derive ML estimators for SNR in a static AWGN channel
as well as a slowly fading channel, considering both sampled system with bandlimited AWGN and
continuous system. The performances of the estimators are examined by analysis. We then design
approximate ML estimators for SNR using both pilot and data symbols. We also derive a ML es-
timator for ASNR in a Ricean fading channel without knowledge of the noise power and perform
a joint estimation. of ASNR and the Ricean K parameter using noisy correlated channel samples.
Finally, we design moment-based estimators for the signal-to-interference-plus-noise ratio (SINR)

when interferences occur and quadrature amplitude modulation (QAM) is used.

4,1 ML Decision-Based Estimation of SNR

In this section, we derive ML decision-based estimators for SNR in static AWGN and slowly fading
memoryless channels. For convenience, we denote p; = % as SNRA and p, = % as SNRB, where

A is the channel gain, N is the noise power, and P; is the signal power. The ML estimators for A, N
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and P, have been derived in Chapter 2. Using these results, together with the invariance principle,

the ML estimators for p; and p, can be derived.

4.1.1 Static AWGN Channel

We consider first a static AWGN channel. According to the invariance principle, one has

A
H, = — 4.1
=3 “4.D
and
AZ
By = C— 4.2
h=c% 4.2)

A N ®
where A and N are the ML estimates of A and N in a static AWGN channel, respectively, ¢ = —E‘—}”—

(k) R R
for a sampled system and ¢ = %L for a continuous time system, and Es(s), Es(f), I and T are defined

in Section 2.1. From (2.5) and (2.6), one has
IS]  Re{y,s®"}
k ea12
Es((li() (2{:1 |yt|2) - [le'lee{yisl(k) }]

b= 4.3)

and 5
(S, Re{ys®}]
Py =— - 5 4.4)
Es(s) (i il?) - [Z{:l Re{y,'s,(k)* }]

as the sampled signal ML estimators for SNRA and SNRB, respectively. Also, from (2.8) and

(2.10), one has
T f; Re{y(1)s®" (¢)}ds
B (fy () 2a) — [ Re (1B ()]

P = “.5)

and

A [fr Re{y(r)s®" (l‘)}dt] ’
= : (4.6)

ED (I bOP) ~ [fr Re(y(e)s® ()]

as the contimuous signal ML estimators for SNRA and SNRB, respectively.

Fig. 4.1 shows a block diagram of the ML SNRA and SNRB estimators given by (4.5) and (4.6),
respectively. One sees that the ML static AWGN channel SNR estimator for a digitally modulated

signal is a decision-based structure that incorporates a digital data receiver. The bulk of the cost and

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W >

r@) » Digital Data Receiver

A

) lm ]s™®

Correlator »
[ rRefr()-s™ @)t

1
SNR estimator T

Figure 4.1. Structures of the ML SNR estimators for p; and p, in an AWGN channel.

complexity of the ML estimator resides in the digital receiver component, used to determine k. The
digital receiver is required anyway. Thus, ML SNR estimation is achievable with relatively minor
complexity. Next, we analyze the performances of p; and p, in error-free operation.
For two independent random variables T; and 7, the PDF of T = % can be derived by solving
the integral [34, eq. (6-60)]
pr(t) = [ topr, () pr, ()t @7
By using the results of (2.18) and (2.25), together with the identity [35, eq. (3.462.1)], one has the

PDF of the sampled signal ML estimate of p; as

201 [Ioc\'"? l(Lf_{_A_)Z_AZ Io A
R - I\M "o 202D —_ .
Pp, ) = 35— (Nx) ¢ Eaeh) \Nx T o “48)

where 02 = yi_vw and D,() is the parabolic cylinder function [2, p. 686]. The mean and the variance
sd

A ~ A 2 2 .
of p, are E{p,} = 212—13;01 and Var{p,} = (21_3335(21_5);)12 + (2,_;)1(21_5 2N112(§)' The Cramér-Rao
lower bound (CRLB) for estimation of p, in a static AWGN channel is derived as %f + T}Ef'
Therefore, the sampled signal ML estimator for o, in a static AWGN channel is asymptotically

optimal when [ is large and no decision errors occur. An unbiased estimator for p, can be derived by

scaling f, in (4.3) with 23 This scaling will decrease the variance by a factor of =3 ’ . This does
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not represent a contradiction since the ML estimator is not necessarily the optimal [14]. Moreover,
when [ is large, there is little difference between the performances of the original estimator and the
modified estimator.

Also, from (4.2), one has

P, =p',d (4.9)
1 S _ R : 2A7E®) AN
where d = 5 and p', = 5(21 — 1) with R= —5*¢ and Q = 5" From Chapter 2, one sees

that the random variable R has a normalized noncentral chi-square distribution with one degree of

) 242E®) . .
freedom and noncentrality parameter —5%-, and the random variable Q has a normalized central

chi-square distribution with 2/ — 1 degrees of freedom. A singly noncentral F random variable is

defined as [49, eq. (30.2)]
x:z )
F= L%I_)V_Z (4.10)
sz vl
where x",f(/ll) is a normalized noncentral chi-square variable with v, degrees of freedom and non-
centrality parameter A, and }(32 is a normalized central chi-square variable with v, degrees of free-

dom. Inspection of ,5’2 shows that it is a singly noncentral F random variable with parameters

(k)
vy=1,v,=2I-1,and 4; = % Then, the PDF of the sampled signal ML estimate of p, is

derived as
KL YZ v_1 _l 1
pe () = vz (dv,)? x7T-le=? . (v]+v2 V1. MV IX >0 @11
e m v, v,y D1 2 '27dv, +vx”’ -
(@vy+vix) T B(3,%) 2

where B(-,-) is the Beta function [2, p. 258]. The mean and the variance of P, are derived from

E® S[EW2p2 +16EX) (1—1)p,+4(1-1)
(4.11) as E{D,} = 5550, + g5 and Var{p,} = — e . The CRLB for

2E0p E(k 2p2
g 2 4 [—Il——z—, which includes

estimation of p, in a static AWGN channel can also be derived as
the result in [22, eq. (64)] as a special case. Therefore, the sampled signal ML estimator for p, in
a static AWGN channel is asymptotically optimal when [ is large and no decision errors occur. An

unbiased estimator is derived by scaling 0, in (4.2) with 2 F 3 and then shifting the result with —(,‘7

21-3)?

The variance will vary by a factor of EDR

Results for a continuous time system can also be derived. These results will provide insights

2>|:>,

into continuous time systems using SNR estimates. Denote p;, = <~ as an approximation to p;.
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Similarly, by using (2.29) and (2.34), one has

4 BT\BTHE = o a2, 1 BT
. (x) = — BT TN F (2,BT + =3 — ——t)dt (4.12
P, ) \/2n62r(BT+%)(N) /0 © Fi2 BT+ 2=t (412)

where 62 = %‘(L and B is the signal bandwidth defined in Section 2.1. The mean and variance of p, ,

4BTF(BT—3,BT—1 BT+l 1
are E{Piy} = ( (BT l)zBT— 2 l)pl and Var{p,,} = E{p},} — [E{p,,})*, where E{p},} =

2p(BT—3 BT—3
4(BTEB};(5;(;’TB~T );;T:Z :2) (N—; + p?) and BT > 3. They are calculated by integration from (4.12).

(B7—3)2" - 3

An approximately unbiased estimator for p, is obtained by scaling p,, with BTGB 15T TBT+ 1)’

One can show that the scaling decreases the variance. Again, this is possible because the ML es-
timator may not be optimal, and furthermore, an approximation has been used for the continuous

time PDF of N.

~

. R ® 4 o N
Similarly, denote p,, = %‘4—"— as an approximation to J,. One has

N

" av/be i (BT ) BT+;
~ X = —_
Poas V2r&2T(BT + 1) \ N

> VbxtA 1 BT
/ BT By o Gx F(2,BT + = Wt)dt, x>0 (4.13)
0

2’
. N " 4BTF(BT—3 B BT+l )
where b = E—Z(}y The mean and variance of 9,, are E{p,,} = - 1)231- 22 (p, + ) and
N N N N 4(BT)*F(BT-3,BT—3 BT 2
Var{Py} = E{p3} — [E{0 ', where E{pl} = 500 G T 1))

b (BT—1)(BT— )21”—2
and BT > % They are, again, calculated by integration from (4.13). An approximately unbiased

1
b(BT~1)25712
4BTF(BT—3,BT—1:BT+1:1)

estimator can also be obtained by scaling p,, with and shifting the result

with == " . The variance changes accordingly.

4.1.2 Slowly Fading Channel

The ML estimators for SNRA and SNRB in a slowly fading channel can be derived in a similar

manner to before. According to the invariance principle, one has

py = Pf + b (4.14)
and
5 A2+A’ (4.15)
C—= .
Pr=CR TR
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Figure 4.2. Structures of the ML SNR estimators for p; and p, in a slowly fading channel.

where pR = lzlv’ pl = —’, and AR and A, are the ML estimates of Az and A; in A = A, + jA,,
respectively. The sampled signal ML estimators for SNRA and SNRB in slowly fading channels,

P, and D,, are derived by using equations (2.12) and (2.13) with the invariance principle as

I3 sk
,@1= i1, (4.16)

( 11y |2 ’2,~1)’, ,k) 1

and
.12

’El“lyl i

E( ( |y1 lzl—lyl i

The ML estimators for SNRA and SNRB in a continuous time system are obtained from (2.14) and

4.17)

(2.15) as
Gy
ED (fp b(r) ) = | fy y(0)s®" (1)
and
. |ny )dt,
P, = (4.19)

A R 2"
ER (J yO)P) = |fry0)s®" (1)
Fig. 4.2 shows a block diagram of the ML SNRA and SNRB estimators given in (4.18) and

(4.19), respectively. Similar observations can be made from Fig. 4.2. Again, this is a decision-

based structure where the ML SNR estimate is based on the decision output of the digital data
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receiver. The difference is that, here, the correlator in Fig. 4.2 produces a complex output whereas
the correlator in Fig. 4.1 produces an output that is real.

The performances of 9, and p, in a slowly fading channel can be analyzed as previously. From
(4.14), the ML estimate of p;, p,, is completely determined by the ML estimates of pf and pf , f)f

and p!. One sees that each of Pf and P! has a similar form to that given in (4.1). Therefore, their

PDFs are derived by solving the integral in (4.7), giving

I-1 (1o\"7" 1(je-t)'- 2% Io A
- [ = I\~ p —~ _ZR
P = o (m) ‘ e (Nx a> 420
and
(==L (10N p(e-4) -k, (o4 (4.21)
Pop = V2mx \Nx ¢ “I\Nx o/’ '

From (4.20), one also has E{pR} = -5 pR and Var{pR} = —_—121— PR+ 7= s — L The
{1} -2F1 {1} (I-2Y2(T 3)( 1) mi@

CRLB for estimation of pl is (—‘)- +

T E o Therefore, the sampled signal ML estimator for pR is
asymptotically optimal when [ is large in the absence of decision errors. An unbiased estimator can
also be obtained by scaling pI with I . The variance is reduced, as before. By inspection, similar

conclusions can be made regarding p{ .

Also, from (4.15), one has

py=p'yd 4.22)
A2 0 A2\ (k)
where d’ = 715 and p/, = Q,( — 1) withR' = Mﬂ— nd Q' = 2119 . Then, the random variable

R’ has a normalized noncentral chi-square distribution with two degrees of freedom and noncentral-
: (AR+A2) (d) !

ity parameter —T~—f— The random variable Q' has a central chi-square distribution with 27 —2
degrees of freedom. Therefore, ;5’2 is also a singly noncentral F random variable with parameters

2(A3+ADER)
N

Vi=2, v, =2[-2and A{ = . The PDF of the sampled signal ML estimate for p,,

p,, has a similar form to that in (4.11) except that the values of d, v, v, and Al are replaced by

. . R R E®)
d', v}, v and A{, respectively. The mean and the variance of p, are E{p,} = ; ! 5 -0, + Tl—z and

B2 2 42K} (1 — -
Var{p,} = [E5)] ’32("]'3};3%((]1_31))” 2t 1, The CRLB for estimation of p, in a slowly fading channel is

0 )12
Z—E%i [—Eﬂ—l—p— Therefore, the sampled signal ML estimator for p, in a slowly fading channel is
also asymptotically optimal when / is large, in the absence of decision errors. An unbiased estimator
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(1-2)%

is derived by scaling p, by %—(k_z) and then shifting by ETI"T The variance changes by a factor of GO
sd sd sd

as previously.

The PDFs of the approximations to the continuous time ML estimates PR and f){ , PR, = %& and
A
Pls %’- are
A
4 BT /m P LT BT
N t°le” T2s v F(2,BT;——1t)dt 4.23
Pop,0) = WF(BT)( ) 0 il N “23
and
4 BT\ T /°° P » B, BT
g ()= —— — . BTt~V 2,BT;——-t)dt. (4.24
Pa}, ) WF(BT)(N) 0 il N )
The mean and the variance of p¥, are E{p%,} = 4BTF(£;TT 21;?3, llBT 2) pFand Var{pR } = E{[pR,]*} —
a 2 AR 4(BT)*F(BT~2,BT—2;BT;1) ; 52
[E{pf,}]", where E{[p}]*} = BT—T)(BT 2202 )[%7 + (pR)?] and BT > 2. They are calcu-

(BT—1)257-!
4BTF(BT—2,BT—1:BT;})

lated from (4.23) by integration. Scaling PR, with gives an approximately

unbiased estimator. This scaling decreases the variance, as before. The performance of p! is the
same as that of [)f.

(k) 22442 .
The PDF of the approximation to the continuous time ML estimate p,, p,, = EM ARFAL s

R
42
473 (BT\®T [ pr _ou_sr, /Bxi|A| BT
R . WITN -
ppu(x) 352 (BT) ( ) /0 re 2 Io( =2 )1F1(2,BT; N t)dt,
x>0, (4.25)
The mean and variance of p,, are E{p,,} = 4BTF(I(;£TZS;BT1 2152 2) (o, + 2i) and Var{p,,} =

A N N 4(BT*F(BT—2,BT—2;BT; 1
E{PQZA} - [E{pZA}]Z’ where E{p%cx} = (b2()BT(—1)(BT_2)23T—22)(pz + S 86 + 852 |A‘ ) and BT > 2.

They are also calculated by integration from (4.25). An approximately unbiased estimator is ob-

b(BT—1)287-1
4BTF(BT—2,BT—1;BT;])

tained by scaling p,, with and shifting the result with 21%2 The variance

changes as well.

4.1.3 Numerical Examples

Since the SNRA estimator in a slowly fading channel is completely determined by pR and p{ while

[)fe and [)f have the same performance, only ﬁf is examined. Figs. 4.3 and 4.4 show the biases and
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the root mean squared errors (RMSEs) of the sampled signal SNRA estimators, where % is set

2vE(

equal to 1. As can be seen from Fig. 4.3, at I = 8, ¢, in an AWGN channel has a bias of about
1.80 dB and pAf in a slowly fading channel has a bias of about 2.50 dB, while at I = 20, p, has a
bias of about 0.70 dB and PR has a bias of about 0.90 dB. Thus, a larger value of I corresponds to
a smaller bias of the estimator. One can also see from Fig. 4.4 that the RMSEs of the estimators
decrease as I increases. Therefore, the performance of the estimator in both channels is improved
by increasing I, as expected. Figs. 4.5 and 4.6 show the performances of the continuous time signal
SNRA estimators, where %; is set equal to 1. Similar observations to those made from Figs. 4.3 and
4.4 can be made, with BT in Figs. 4.5 and 4.6 playing a similar role to the role that / plays in Figs.
4.3 and 4.4. Comparing the continuous time signal estimators with the sampled signal estimators,
one sees that the continuous time signal estimators perform slightly better than the corresponding
sampled signal estimators. As an example, at BT = 8 and pf = 60 dB, the continuous time signal
estimator for pf in a slowly fading channel has a bias of about 2.4 dB and a RMSE of about 630
while the sampled signal estimator for pX in a slowly fading channel has a bias of about 2.5 dB and
a RMSE of about 690.

Figs. 4.7 and 4.8 show the performances of the sampled signal SNRB estimators, where the
sampled signal power E—é‘g is set equal to 1. Again, the biases and RMSEs of the estimators decrease

as [ increases. Note that P, has a fairly large bias at small values of p,, as E{p, } has a shifting factor,

which is dominant when p, is small. Figs. 4.9 and 4.10 show the performances of the continuous

time signal ML estimators for SNRB, where the continuous time signal power E;(Ek) is set equal
to 1. Again, the continuous time signal estimators perform slightly better than the corresponding
sampled signal estimators. One concludes from Figs. 4.3 to 4.10 that the SNR estimator in an
AWGN channel outperforms that in a slowly fading channel.

Figs. 4.11 and 4.12 compare the PDFs of the sampled signal ML estimates of p; and p, in an
AWGN channel with the limiting Gaussian PDF’s. The limiting Gaussian PDF has a variance equal

to the CRLB and a mean equal to the true value of p, or p,, which has been fixed to 10. One sees

that the difference between the estimate PDF and the Gaussian PDF decreases as I increases, as

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 T T T T T T T
-— AWGN channel
--- - slowly fading channel
D5 Bt PO e Fe e *
g 2 1
4 " . " X N
F= *: ¥ ¥
8
o
£
9 1.5F B
1 -
P> TETT TR OR [ TERETE TN [ TR, O e O
© —
05 1 1 1 1 1 1 B 1 - 1.
10 15 55 60

20 25 30 R 45 50
True value ofp‘ in AWGN channel or A in fading channel {(dB)

Figure 4.3. The biases of the sampled signal ML estimator for p; in an AWGN channel and pf in a

slowly fading channel at I = 8 (*) and I = 20 (o).

700 T T T T T 1
AWGN channel
--------- slowly fading channel :
600[| — — — - square root of CRLB ]
5 500+
o
kel
kil
g
£ 4001
c
o
@
£
8 300
g
£
W 200
100
0 ° v
A 10 60

2 30 " 40 50
True value ofp, in AWGN channel or p, In fading channel (dB)

Figure 4.4. The RMSEs of the sampled signal ML estimator for o, in an AWGN channel and pf in

a slowly fading channel at / = 8 (*) and I = 20 (o).
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Figure 4.5. The biases of the continuous time signal ML estimator for o, in an AWGN channel and

pf in a slowly fading channel at BT = 8 (*) and BT = 20 (o).
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Figure 4.6. The RMSEs of the continuous time signal ML estimator for 0; in an AWGN channel

and pf in a slowly fading channel at BT = 8 (*) and BT = 20 (o).
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Figure 4.7. The biases of the sampled signal ML estimator for p, in an AWGN channel and a slowly

fading channel at / = 8 (*) and I = 20 (o).
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Figure 4.8. The RMSEs of the sampled signal ML estimator for p, in an AWGN channel and a

slowly fading channel at I = 8 (*) and 7 = 20 (o).
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Figure 4.9. The biases of the continuous time signal ML estimator for p, in an AWGN channel and

a slowly fading channel at BT = 8 (*) and BT = 20 (o).
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Figure 4.10. The RMSEs of the continuous time signal ML estimator for 0, in an AWGN channel

and a slowly fading channel at BT = 8 (*) and BT = 20 (o).
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Figure 4.11. Comparison of the limiting Gaussian PDF and the PDF of the sampled signal ML

estimator p; in an AWGN channel for different values of sample sizes.

expected [15]. At =100, the estimate PDF can be approximated by the Gaussian PDF graphically.
The approximation errors around x = 7 and x = 13 in Figs. 4.11 and 4.12 won’t diminish until /
goes to infinity and both the estimate PDF and the Gaussian PDF become pulse functions. The
PDFs of the sampled signal ML estimates in a slowly fading channel and the continuous time signal
ML estimates can be examined in a similar way.

The above results are based on the assumption of no decision errors. They are valid for data-
aided (DA) estimation. In the case when decision-based estimation is performed, they are also valid
for moderate to large values of SNR. In applications such as rate adaptation and power control, the
SNR estimate is used to control the transmission rate and power of subsequent symbols. If the value
of SNR in the decision-based estimation is small, by a proper receiver design, the error rate can still
be kept low. Moreover, as can be seen from the numerical results, good estimator performances are
achieved with tens of samples. Even an error rate as large as 10~ still implies that the decision-

based estimation is probably accomplished in the absence of decision errors. In this case, the results
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Figure 4.12. Comparison of the limiting Gaussian PDF and the PDF of the sampled signal ML

estimator P, in an AWGN channel for different values of sample sizes.

obtained under an error-free operation assumption are useful [20], [22].

4.2 ML Estimation of SNR Using Both Pilot and Data Symbols

The previous SNR estimators use either known or unknown symbols. In a practical communication
system, a frame usually consists of both known pilot symbols and unknown data symbols. It is
advantageous to use all available symbols in the frame to estimate the SNR as accurately as possible.
In this work, we derive a novel ML-based SNR estimator for binary phase shift keying (BPSK)
signals using both pilot and data symbols simultaneously. The obtained estimator is simple. It can

be applied to systems where signals are transmitted in frames with both known and unknown fields.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.1 Estimator Structure

Using the same system model as those in [19]- [27], one has the received signals after matched
filtering as

y =As;+n (4.26)

where | = 1,2,---,L + Q index different symbols in the frame, A is the channel gain assumed
constant over the frame, s; € {—1,1} is the transmitted BPSK signal of the I-th symbol, and »,
is the noise term of the /-th symbol assumed to be a Gaussian random variable with mean 0 and
variance o2. Without loss of generality, assume that [ = 1,2,--- ,L index the pilot symbols in the
frame and that / = L+1,L+2,---, L+ Q index the data symbols in the frame. Also, assume s, = 1
(1=1,2,---,L) as the pilot symbols. The SNR to be estimated is defined as p = %;. The probability

density function (PDF) of the received signals of the pilot symbols can be derived from (4.26) as

1 =P
fOpA,0%) = T 27 (4.27)

where [ =1,2,---, L. Assuming that the BPSK signals have equal a priori probabilities, the PDF of

the received signals of the data symbols is derived from (4.26) as

B Ji;; cosh ( ) (4.28)

f(yl’A o ) \/2?—

where [ =L+ 1,L+2,--- ,L+ Q and cosh(-) is the hyperbolic cosine function. Finally, assuming

n, (I =1,2,--- ,L+ Q) are independent, one has from (4.27) and (4.28) the log-likelihood function

In f(y;A,0) =

L+Q o P (L+Qp P31y o P
5 ln( ) +Y, lncosh(T)

2mA? 242 2 + A =L+1

(4.29)
wherey=[y;, ¥, -+, Yy +Q] and p = ‘g—zf has been used. By differentiating (4.29) with respect
to A and p and setting the derivatives equal to zero, one derives the two equations

L+Q

L+Q 2 ylp
P i~ (L+Q)A APZI 1= Apzl Ly tanh ( )

y; =0 (4.30)
and

ylp)

L L L
P (L+Q)(p-1)A2—24p ¥ v, ~24p ¥ 2 tanh (Z)y, =0 4.31)
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where tanh (-) is the hyperbolic tangent function. An exact solution of (4.30) and (4.31) for p is
difficult to obtain due to the nonlinearity of the hyperbolic tangent function. Note that tanh (y'Tp) S
+1 when % > 0 and tanh(y’Tp) ~ —1 when Xf‘f—o— < 0, for sufficiently large p [25]. Using this
approximation, one can solve (4.30) and (4.31) to give an approximate ML-based estimator for p as

A2
o A

PR T S7002_ 12
o2l Y —A

(4.32)

where A = @(2{;1 v+ EIL:LQH [v;]). The denominator of (4.32) is actually a biased estimate of

02 [93]. A reduced-bias ML-based estimator for p can be derived by multiplying the denominator

of (4.32) with 7527, giving
AZ
p= 1 L+0.2 L+0 12°
Iro-1 Z1=1Qy1 ~ yoa4

(4.33)

It can be shown that the CRLB for estimation of p when L pilot symbols and Q data symbols are

. . 2p(p+2)(L+Q)—4p* -£ .

available is 7 Q)ﬂggc)—(zggg)@ +Z(Ler oo Where ¢ = nz—pe 7 +erf( \/g )— L and erf(-) is the error
function. Note that the SNR estimator in (4.33) uses the received signals of both the pilot symbols
and the data symbols in the frame. Two special cases are considered below. If one uses the received
signals of the pilot symbols in the frame only, p becomes

At
1T gL L 2

-1 =1 — =141

where Al = %ZIL=1 ¥;- On the other hand, if one uses the received signals of the data symbols in the

p, = (4.34)

frame only, p becomes
A3
- o443

ﬁzz_l_ZHQ (4.35)
O—1 &~=L+1

where Az = ézgﬁl ly,| and an approximation similar to that in (4.33) is also used. Observe that

A is a linear combination of A, and A,, as A = ~L-A, + LA , but P is not a linear combination of
1 2 L+O0'1 T L+Q ™2

P, and p,.

4.2.2 Performance Analysis

Figs. 4.13 and 4.14 compare the performances of 0, p; and P, when L = 8 and Q =28. One

observes that, when SNR > 9.0 dB, the bias and the normalized root mean square error (NRMSE)
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Figure 4.13. The biases of p (using both pilot symbols and data symbols), p, (using pilot symbols

only), and p, (using data symbols only), when L = 8 and Q = 28.
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Figure 4.14. The normalized root mean squared errors of P (using both pilot symbols and data
symbols), 0, (using pilot symbols only), and p, (using data symbols only), when L = 8 and Q = 28,

and the Cramér-Rao lower bound.
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of p are approximately constant at 0.25 dB and 0.30, respectively, and the estimator p performs
well. It performs poorly, however, when the SNR is less than about 2.0 dB. Since both p and p, use
the approximation of the tanh (-) function in their derivations and their performances demonstrate
similar behaviors, as can be seen from Figs. 4.13 and 4.14, the poor performance of p at small values
of SNR is probably caused by the approximation errors in (4.33). (Observe further that p; does not
use this approximation and its performance degradation with decreasing SNR is not as severe as is
the case for p and p,). Comparing p with 5, and p,, one observes that p outperforms p; for most
values of SNR considered, and outperforms p, for all the values of SNR considered. When the SNR
is less than about 1.9 dB, p has a larger bias than p,. This is explained as follows. First, from (4.33)
and (4.34), the main difference between 7 and p, is the fact that O uses the received signals of Q
unknown data symbols, in addition to the received signals of L known pilot symbols used by p;.
This leads to two consequences. On the one hand, p benefits from a larger sample size by including
the data symbols in the estimation. On the other hand, p also suffers from the approximation error
introduced by using these unknown symbols. As a result, one sees in Fig. 4.13 that the performance
gain of p over P, for a fixed Q decreases as the SNR decreases from 9.0 dB to 2.0 dB, since the
approximation error cannot be ignored in this case and it increases as the SNR decreases. At SNR
values less than about 1.9 dB, the penalty incurred by using the data symbols is too large to be
compensated by the gain, and p shows a larger bias than p, in this SNR region. Second, from (4.33)
and (4.35), the main difference between p and p, is the fact that p uses the received signals of L
known pilot symbols, in addition to the received signals of M unknown data symbols used by p,.
Unlike the previous case, since the pilot symbols are known, there is no penalty incurred from using
the pilot symbols. As a result, p outperforms p, for all values of SNR considered, as seen in Figs.
4.13 and 4.14, as it always benefits from a larger sample size by including the pilot symbols in the
estimation.

Figs. 4.15 and 4.16 compare the performances of p, the M,M, estimator in [22, eq. (42)] and
the SNV estimator in [22, eq. (30)] when L = 8 and Q = 28. To make a fair comparison, we

assume that both the pilot symbols and the data symbols in the frame are available to the M,M,
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Figure 4.15. The biases of the ML-based estimator p, the M, M, estimator and the SNV estimator

when L = 8 and Q = 28.
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Figure 4.16. The normalized root mean squared errors of the ML-based estimator P, the M,M,

estimator and the SNV estimator when L = 8 and Q = 28, and the Cramér-Rao lower bound.
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estimator and the SNV estimator. One sees from Figs. 4.15 and 4.16 that p performs better than
the SNV estimator for all values of SNR considered. As an example, p always has a bias gain
of about 0.1 dB over the SNV estimator at the considered values of SNR. Comparing p with the
M,M, estimator, one observes that 0 has smaller bias and NRMSE than the M,M, estimator, when
30.0dB > SNR > 5.0 dB. Therefore, p performs better than the M,M, estimator when 30.0 dB >
SNR > 5.0 dB. When 5.04B > SNR > 0.0 dB, p has a smaller NRMSE but a larger bias than the
M,M, estimator. The performance of the M,M, estimator is mainly determined by errors in the
approximation of the second- and fourth-order moments [22], while the performance of p is mainly
determined by errors in the approximation of the tanh (-) function in this case. From Figs. 4.15
and 4.16, the performance of p is more sensitive to the value of SNR than the performance of the
M, M, estimator. This suggests that the approximation error in the tanh (-) function used to derive
the ML-based estimator P is more sensitive to the value of SNR than the approximation errors in
the second- and fourth-order moments used to derive the M,M, estimator. As a result, increasing
the SNR improves the performance of p greatly. It can also be shown that p outperforms the SNV
estimator over the SNR region of interest, while p outperforms the M, M, estimator at large values
of SNR and underperforms the M, M, estimator at small values of SNR, when other values of L and
Q are used. The preceding estimator is obtained for BPSK signaling, which is used, for example, in

a ¢cdma2000 system [94].

4.3 ML Estimation of ASNR in a Ricean Channel

In the previous two sections, we have actually estimated the instantaneous SNR. In this work, we

derive ML estimator for ASNR in a slowly Ricean fading channel.

4.3.1 Estimator Structure

Use the same system model as that in Section 3.2. The i-th component of the received signal is

given by (3.18), where r; and 6, here are the Ricean fading envelope and the Ricean fading phase,
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respectively. The received signal is correlated with the known transmitted signal, giving
I .
w = 2y = el E+ny (4.36)
i=1

where E = 3 1|511| is the signal energy assuming all signals used in the estimation have the
same energy, and n; = 2{21 n,s; is a complex Gaussian random variable with mean O and vari-
ance E{nn} = NyE. The instantaneous SNR can be derived from (4.36) as N%rlz Note that it is
changing from symbol to symbol since r; is a random variable. A useful performance measure is

the ASNR, defined as

Q

752 (4.37)

_ FE
P=—OE{ r}=

where Q = E{ rlz} = P2+ 202 is the total mean power of the fading signal, P? is the mean power of
the LOS component, 22 is the mean power of scattering component, and 262 = %

From the invariance principle of ML estimation, one has that the ML estimator for p, ﬁ, satisfies
(4.38)

where © and 262 are the ML estimates of Q and 202, respectively. It has been shown in Section
3.2 that the ML estimators for 20 and Q in a Ricean fading channel, 262 and Q, are
~ L 1 1 L
202 = iz EZ{ lyal? —~)—Ll:21z,2 (4.39)
and

Q= 7 —20? (4.40)

Mh

t~ |

{

1

where z; = %|w1| is the normalized absolute value of the correlator output in (4.36) and is also the

ML estimate of r; as shown in Section 2.1. Using (4.38), (4.39) and (4.40), D is then

. X
=—-1 4.41
pP=y (4.41)
where X = %Ef‘zlzlz and ¥ = 1_ YIE SEx - = 1 LE, 122. By taking an average of the

ML estimates of the instantaneous SNR in L symbol intervals, one can also obtain a moment-based

estimator for p as 5M Vs Zl 1pl, where pl T—‘;E" is the ML estimate of the instantaneous

=1 |y11|2
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SNR using the I-th symbol only [22]. It can be shown that p,, has larger bias, variance and mean
square error than p. Therefore, the ML estimator, p, outperforms the moment-based estimator, f)M,

as expected. Next, we examine the performance of the ML estimator, O, analytically.

4.3.2 Analytical Performance

We derive the PDFs of X and Y first. It was derived in Section 3.1 that the PDF of z; in a noisy
Ricean fading channel is given by (3.5). Since X = %Z,il 212 is a sum of zlz, [=1,2,---,L, one has

the PDF of X [1, eq. (2-1-118)]
1 /x\% _Pu VxP?
X)=—1|—= e &I | —— x>0 4.42)
Px(x) 2,1x(p2) s 1( A )’ (

which is a noncentral chi-square distribution with 2L degrees of freedom, noncentrality parameter

P?, and parameter A, = %(0'2 + ). The PDF of Y can be derived from (4.39) as a central chi-
square distribution with 2(I — 1)L degrees of freedom and parameter A, = %)— which is given
by [1, eq. (2-1-110)]

1
py(y) = (2A,)I=DLT ((1—-1)L)

N ) (4.43)

Moreover, as discussed in Chapter 2, ¥ is independent of X.
Using (4.42) and (4.43), together with (4.41), the PDF of f) can then be derived. Denote X' = 1}%
as a normalized noncentral chi-square random variable with 2L degrees of freedom and noncentral-
Lp?

ity parameter 53—z, and Y "= % as a normalized central chi-square variable with 2(I — 1)L degrees

of freedom. Also, rewrite (4.41) as

. ., 20%+207
XI YI -1
_I _ -
=5 [2(1_1)L] . (4.44b)

One sees that p’ is a singly noncentral F-variable with parameters v, = 2L, v, = 2( — 1)L and

A= GZL_T&?. From [49, eq. (30.8)], 6 has PDF

v V. oy N
() = (20%v,) 7 (202, +202v,) # . (1+p)Fle? s
T B(3,%) (20%v; 4+ 20%, + 20y )K¥Z 202, . ur
202 1 2 2 (m,@ + 1)
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LR [ v 3Mvi(1+p)0’
I\ 2 727 0%, (14 D) + 0%v, + a2y,

where |F(-,-;-) is the confluent hypergeometric function [2, p. 504]. The mean, the variance

a a —_ - a —_ 2 -—
and the mean square error of p are E{p} = (I(il)lL)flp + (1—11)L—1’ Var{p} = [(1—[(11)L1)1L]]2[§1Li1)12~2] .

Br [(1-1)£(ﬁ]][)(1L]—21)L-2] -1 (&57)2P" and MSE{p} = Var{p} + (E{f} — p)* as P? = 255 Q. The
Cramér-Rao lower bound for estimation of p in a Ricean fading channel is calculated numerically.
Figs. 4.17 to 4.19 show the bias, the normalized variance and the normalized mean square error of
f). One sees that even when L = 100, the bias of f) is less than 0.09 dB, the normalized variance of
p deviates from the CRLB within a range of 3% to 4%, and the normalized mean square error of

0 deviates from the CRLB within a range of 4% to 5%. As the sample size increases, the bias and

the deviations are further reduced. An unbiased estimator for 9 can be obtained by shifting p with

=01 ,_11) 7—7 and then scaling with %, giving
="a-nr 1P 07—l 4.46
P=Ta-nL [P U (4.46)
One also has Var{f} = MSE{p} = (I—L{)_Ll——2 (;3421)2 - 8:32:;%@%)2[)2, which are smaller than

the corresponding values of 5. Therefore, the estimator § has better performance than p.

4.4 Joint Estimation of ASNR and K Parameter in a Ricean Channel

In the previous section, estimation of ASNR for a noisy Ricean fading channel has been studied. As
well, in Chapter 3, estimators for the Ricean K parameter using noisy samples have been proposed.
These estimators estimate the ASNR and the Ricean K parameter separately by using independent
samples. In some cases, it is desirable to perform a joint estimation of the ASNR and the Ricean
K parameter. Also, in a practical wireless communication system, the channel samples are usually
correlated. As an example, in a communication system with a carrier frequency of 900 MHz, if
the mobile moves at a speed of 100 Km/h and the received signal is sampled at a rate of 2 KHz,
the covariance between the neighboring two channel samples is about 0.9829, according to Jakes’

model [54]. Therefore, it is of great practical interest to design estimators for the Ricean K parameter
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Figure 4.17. The biases (in dB) of p for I = 2 and K = 5 for different sample sizes.
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Figure 4.19. The normalized mean square errors (with respect to the corresponding CRLBs) of 0

for I =2 and K = 5 for different sample sizes.

and the ASNR using correlated samples. In this work, we investigate the problem of estimating
the ASNR and the Ricean K parameter jointly in a Ricean fading channel using noisy correlated
samples, a case of great practical importance. Two Ricean fading channel models, a time-varying
line-of-sight (ILOS) component model and a constant LOS component model, are considered [54].

Both data-aided (DA) and non-data-aided (NDA) designs are discussed.

4.4.1 System Model

Consider a system where the data signals experience fast and flat fading. The signal after transmis-

sion over the fading channel can be expressed as
y(t) = A()s(t) +n(t) (4.47)

where A(z) is the fading process, s(f) is the transmitted signal, and n(t) is the additive white
Gaussian noise (AWGN). In a Ricean fading channel, A(r) is a complex Gaussian random process

with mean E{A(t)} = e(t) (e(r) # 0) and autocovariance E{[A(?) — e(t)][A(t + T) —e(t + 7)]*} =
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R(t,t+ 7). We consider Jake’s isotropic scattering model in this paper. Thus, one has [54]
R(t,t+ 1) = 202, (2nf)T) (4.48)

where 20 = E{|A(r) — e(z)|*} is the variance of A(t), J,(-) is the Bessel function of order zero of
the first kind [2, p. 358], and f}, is the maximum Doppler shift. The mean, e(¢), is actually the LOS

component in the Ricean fading channel. One Ricean fading channel model suggests that [54]
e(t) = Pe/? /s + %)) (4.49)

where P is the amplitude of the LOS component, fd = fpcos B, is the Doppler shift of the LOS
component, 6, is the angle of arrival of the LOS component, and @, is the phase offset of the LOS
component. One sees from (4.49) that the LOS component is actually a deterministic sine wave.
Since e(z) depends on the time, this model leads to A(#) being a non-stationary fading process and
y(¢) being a non-stationary received signal. In some applications, a stationary fading process or a

stationary received signal may be prefered. In this case, another Ricean fading channel model [54]
e(r) = Pe/®o (4.50)

can be used. Comparing (4.50) with (4.49), one sees that (4.50) is actually a special case of (4.49)
where fd = 0. Since (4.50) is a constant independent of time, the fading process, and therefore,
the received signal are stationary under this model. We will discuss both models in the paper.
The transmitted signal can be written as s(r) = 3, b;p(t —IT), where b, is the I-th transmitted data
symbol, p(t) is the shaping pulse with unit symbol energy and T is the symbol interval. The noise

in the channel is a complex Gaussian random process with mean zero and autocovariance
E{n(t)n*(t+ 1)} = 20%5(7) (4.51)

where 6(+) is the impulse function.
Assume that there is no intersymbol interference. The received signal in (4.47) is matched-

filtered and sampled at the time ¢ = IT. The I-th sample of the received signal is [55]

Y =Albl+nl (452)
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where A, = A(IT) represents the complex Gaussian fading gain in the /-th sample and n, represents

the complex Gaussian noise in the I-th sample. From (4.49) and (4.50), the mean of A is
e, = e(IT) = Pe/aTl+%0) 4.53)
under the assumption of a time-varying LOS component, and is
e, = e(IT) = Pe/® (4.54)
under the assumption of a constant LOS component. The autocovariance of A, is
E{(A; - ¢))(A1p—€100)"} = 20202 £, Th) (4.55)
where h is an integer. The mean of n, is zero, and the autocovariance of n; is
E{nn}.,} =20%e(h) (4.56)

where €(h) =1 when & = 0 and £(h) = 0 when & # 0. Note that, in [67]- [72], either A, (I =1,2,--)
are assumed to be independent, or y, (I = 1,2,-.) are assumed to be noiseless, or both, while in
this paper and in practice, A; (I = 1,2,--) are correlated and y, (I = 1,2,---) are noisy, as can be
seen from (4.52). Define K = z%zf as the Ricean K parameter and p = 10log,, (P—Z;’Ez;a—z) as ASNR
to be estimated. In the sequel, we will propose both DA and NDA estimators for K and p using L

correlated and noisy channel samples.

4.4.2 DA Estimation

In DA estimation, the transmitted data symbols are known. Thus, the received samples in (4.52) can

be compensated by the known data symbols to give
x=A+z (4.57)

where [ = 1,2,--- L, x; = %, and z; = gll. This is the case when the samples are obtained from the
received signals of the modulated or demodulated pilot symbols that may be for synchronizer train-

ing or channel estimation [95]. This is also the case when the samples are taken from the received

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



signals of the data symbols and correct data decisions are made with high probability. Assume that
|| =1 for I = 1,2,---,L such that the noise samples in (4.57) are identically distributed. Two

Ricean fading channel models are considered as follows.

4.4.2.1 Time-varying LOS Component

In this Ricean fading channel model, the L.LOS component is time-dependent. From (4.57), together

with (4.53), (4.55) and (4.56), one has

py = E{x;} = e/t %) (4.58a)

tyy = E{xxf, )} = Pre % - 202, (H wm) (4.58b)
ty = E{xx},0n } = PP 1% 4 202, (2H wyn) (4.58¢)
Wy = E{|x,|*} = P2 +2a* + 202 (4.58d)

where @y, = 270 fpT is the normalized maximum Doppler shift in radians, w,; = 27 de is the nor-
malized Doppler shift of the LOS component in radians, and H > 1 is an integer. Note that, among
the three parameters P, ¢ and o, the imaginary parts of (4.58b) and (4.58c) depend on P only,
the real parts of (4.58b) and (4.58c) depend on both P and o, while (4.58d) depends on all three
parameters P, & and o. This enables us to separate them and to design estimators for each of
them. Based on the estimates of P, & and &, one can then obtain estimators for K and p. Note
further that, by properly choosing a large value of the sample lag H such that J,(H®,,) = 0, nearly
independent channel samples used in the previous estimators may still be available from (4.57).
However, in doing this, many useful samples will be lost, especially when w,, is small. Next, we
derive moment-based estimators for K and 5. We obtain estimators for P? and 202 first.

Denote fl; = £ Sy Xy, oy = 127 Bi_1 %p5Fem oy = romm St %p¥faon and fy = 1 By I
as estimates of U, Wy, ly, and i,, respectively. From (4.58b) and (4.58c), one moment-based
estimator for w,, @, is

s 1 Im{fy,}

), = + arccos

H 2Im{fy, ) (4.59)
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where the imaginary part of the autocorrelation function of the Ricean fading process is used. Based
on (4.59), the mean power of the LOS component, P2, can be estimated using the imaginary part of

(4.58b) as

A

2 —

Im{/:‘zl}

sin (H @) (4.60)

and the mean power of the scattering components, 202, can be estimated using the real part of

(4.58b) as

~

052 = Re{f1,,} — P*cos(Hd,)

Jo(H0)

(4.61)

where the magnitude is used, recognizing the fact that both P? and 2a:? are positive numbers. In
(4.61), @,, is assumed to be known. Finally, the DA moment-based estimators for K and p can be

derived by using the estimates of P? and 2a:? to give, respectively,

-~

N P2
Kpa-Losa = 2—85 (4.62)
and
. P2+202
Pra_ =10logy | ———= (4.63)
DA—LOSA 10 f,— P52

where P2 is given by (4.60), 202 is given by (4.61), and (4.58d) is used. One sees that the estimators
in (4.62) and (4.63) are derived by using the second order statistics of the received signals only, as the
autocorrelation function of the Ricean fading process contains enough information for estimation.
Specifically, the moment-based estimator for K in (4.62) uses [,, and U,,, and the moment-based
estimator for p in (4.63) uses U,;, U, and ,. One also sees that the estimators in (4.62) and (4.63)
actually represent a class of moment-based estimators, as the values of the sample lags, H and
2H, can be any positive integers. Estimators with different values of H and 2H will have different
performances, as will be discussed later. In our derivation, the sample lags of H and 2H are used to
facilitate the calculation of @, in (4.59). Several comments are made as follows.

First, in (4.61), m,, is assumed available. It is well known that f,, = {—, where v is the mobile
speed and A is the wavelength [54]. Since w,, =27, T, given a specific communication system and

a specific symbol rate, @,y is solely determined by the mobile speed. Estimation of the mobile speed
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has been well studied by several researchers [96]- [99]. In [96] and [97], mobile velocity estimators
that are independent of, or robust with respect to, the Ricean K parameter have been derived. In [98]
and [99], the authors proposed mobile velocity estimators for a Rayleigh fading channel, which can
be easily extended to a Ricean fading channel. All these estimators have good performances. As
reported in [99], the standard deviation of the estimate is within 2.4 Km/h. Therefore, the value
of wy, can be accurately estimated. Moreover, it will be shown later that by properly choosing the
value of H, the performances of the derived estimators are not sensitive to errors in the estimation
of wyy.

Second, in [9], the authors have derived another moment-based estimator for @ 7 as

} (4.64)

(4.65)

1 & .
- X;€e

1
L~

@, = argmax {

and another moment-based estimator for P? as

2
P =

1L -

— E —Ji®

I xle d
I=1

for a noiseless Ricean fading channel. These estimators could also be used in the noisy case, as
they use the first order moment of the sample and the mean of the noise is zero. However, one
sees from (4.64) that this estimator requires a search over all possible values of w,, which has a
complexity of Llog, L for each w. Our proposed estimator in (4.59) saves estimation time as well

as estimator complexity. Also, denoting A = w; — @, as the estimation error in the estimation of

2

g L+l
sin{ == A

Lsin(5)
the ratio of P? to 2062 + 202 is large. At L = 1000, A = 0.01 will give an estimate of P? = 0.037P2,

o, the estimator in (4.65) is very sensitive to A. From (4.65), one has P? ~ p2

which is far from the true value of P2. Thus, an estimate of w 4 With very high accuracy is required
by (4.65). On the contrary, our proposed estimator in (4.60) is robust to A, giving higher quality
estimates.

Finally, it can be seen from [59] that 202 and 2a? always appear together as 202 4+ 2a? in
moments of the sample envelope on a noisy Ricean fading channel. As a result, one cannot use the

sample envelope to estimate p and K, as one did in the noiseless case. We use the autocorrelation
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function of the samples in this paper. Since the samples from the Ricean fading process are corre-
lated while the samples from the noise process are uncorrelated, this is probably the only way of
differentiating 20?2 and 2a?, without the use of an independent noise power estimator. Next, we

discuss moment-based estimators for the case of a constant LOS component.

4.4.2.2 Constant LOS Component

In this Ricean fading channel model, the LOS component is constant, giving a stationary Ricean

fading process. The moments of the received samples are obtained from (4.57) as

Uy = E{x;} = Pe/® (4.66a)
tyy = E{xpx5, g} = P2 42020y (H 0n) (4.66b)
ty = E{|x|*} = P*+ 20> + 202 (4.66¢)

where the notations are defined as before. Similarly, one sees that, among the three parameters
P, o and o, (4.66a) depends on P only, (4.66b) depends on both P and «, and (4.66¢) depends
on all three parameters, enabling us to estimate P, & and o separately. One also sees that i, in
(4.66a) doesn’t depend on the sample index / and the imaginary part of the autocorrelation function
in (4.66b) disappears, as a result of the stationarity of the Ricean fading process. Similar to before,
we derive estimators for P? and 2¢¢? first.

Using (4.66a) and (4.66b), a moment-based estimator for P2, 152, is
P2 =|p,)? (4.67)

and a moment-based estimator for 202, 2a2, is

~

2a2 — Re{la21} _P2

Jo(How) (4.68)

where fI; and fl,, are defined as before. The moment-based estimators for the Ricean K parameter

and the local average SNR can be obtained, respectively, as

~

. P2
Kpa—Loss = 2762 (4.69)
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and

Ypa—ross = 10log;g 4.70)

P24 202
where P2 is given by (4.67), 202 is given by (4.68) and fI, is defined as before. As in the previous
subsection, the value of ®,, in (4.68) is assumed known. Note that estimation of the Ricean K
parameter and the local average SNR under the assumption of constant LOS component is much
simpler than under the assumption of time-varying LOS component, as one doesn’t need to estimate
the Doppler shift of the LOS component in this case. Note further that the moment-based estimator
for K in (4.69) uses u, and u,,, and the moment-based estimator for p in (4.70) uses u,, U,, and
W,. Next, we derive NDA estimators for K and p. To the best of the authors’ knowledge, no
NDA estimators for the Ricean K parameter have been described in the literature, nor have NDA

estimators designed for noisy fading channels been examined.

4.4.3 NDA Estimation

In NDA estimation, the transmitted data symbols are unknown. As a result, the received samples
cannot be compensated by the data symbols and the properties of the data sequence, b; (I =1,2,--+),
will affect the blind estimation of the Ricean K parameter and the local average SNR. As done
in [1, eq. (4.4-5)], we assume that the data sequence, b; (I = 1,2,---), is wide-sense stationary with

mean d and autocorrelation function
Y(h) = E{blb;‘+h}. 4.71)

As will be seen later, our NDA estimators require that \¥(%) be non-zero at A = H and h = 2H,
where H and 2H are the sample lags used in the estimation.

It is well known that the autocorrelation function of a wide-sense stationary process is the sum
of the squared mean of the process and the autocovariance function of the process [34, eq. (9-
9)]. In a communication system where coding is introduced, if the received signals are sampled
before decoding, the autocovariance function of the data sequence in these samples will be non-

zero, which in turn makes the autocorrelation function of the data sequence non-zero. Also, in a
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communication system where modulation with memory is used, if the received signals are sampled
before demodulation, the autocovariance function of the data sequence in these samples will be
non-zero, giving a non-zero autocorrelation function as well [1]. Even if no coding or modulation
with memory is adopted in the communication system and the autocovariance function of the data
sequence is zero, by using signaling schemes such as on-off keying and frequency-shift-keying, the
mean of the data symbols may still be non-zero, leading to a non-zero autocorrelation function of
the data sequence as well. In fact, the autocorrelation of the data sequence is often used in practical
systems to control the power spectrum of the modulated signals [1]. With a zero autocorrelation
function of the data sequence, the power spectrum of the modulated signals will also be zero, an
impractical case in realistic systems. We assume that ‘P'() is non-zero and is known at h = H and

h = 2H in the following derivation.

4.4.3.1 Time-varying LLOS Component

Again, we begin with the Ricean fading channel model where the LOS component is time-varying.

Assuming that the data sequence is independent of the fading process, from (4.52), we have

v, = E{y,} = Pe/l@t®lg (4.722)

Vor = EQypylen} = [PPe 0% 4 202 1o (H o) ¥ (H) (4.72b)
Voo = E{yptian} = [PPe™2H% 4 202 ) (2H w,,) ¥ (2H) (4.72¢)
v, = E{ly,*} = (P*+2a*)¥(0) + 20> (4.72d)

where d is the mean of the data sequence, W(H ), ¥(2H) and ¥(0) are the values of ¥(h) at h = H,
h = 2H and h = 0, respectively, and w,, and w, are defined as before. One sees that the only dif-
ference between the second order moments of the DA samples in (4.58b)-(4.58d) and the second
order moments of the NDA samples in (4.72b)-(4.72d) is that (4.72b)-(4.72d) depend on the auto-
correlation function of the data sequence, as the data symbols are unknown in this case. Denote
W= 13 Y = S Wi Ve = rom St Yian and ¥y = 230 Iyl as esti-

mates of v, V,;, V,, and v,, respectively. Using similar techniques as previously, we can derive the
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moment-based estimator for @,, @, as

1
@), = — arccos { 4.73)

Y(H)Im{¥,,} }
T e e

2¥(2H)Im{V,, }
The moment-based estimators for P2 and 22, P? and 22, can be obtained by using (4.73), together

with (4.72b), as

. Im{¥,}
P = |2 .
‘ F(H) sin(HS,) “74)
and
2ol = Re{Vy} —P2cos(Hd,)¥(H) @75)
Y(H )Jo (H @)
Finally, the NDA moment-based estimators for K and p are
N P2
Kypa—Losa = 2‘?; 4.76)
o
and
X P2 4202
Vnpa—rosa = 101og = 4.77)
NDA—LOSA 10 % _W(0) (P2 1 262)

where P2 is given by (4.74) and 202 is now given by (4.75). Note that, again, the estimators in
(4.76) and (4.77) use the second order statistics of the received samples only, as the autocorrelation

function contains enough information about the unknown parameters.

4.4.3.2 Constant LOS Component

In this Ricean fading channel model, the LOS component is constant. From (4.52), one has

v, =E{y,} = Pe/%d (4.782)

Vo = E{yyfin} = [P* +20%)y(Hwy,) ¥ (H) (4.78b)
Vay = E{y}an} = [P* + 207y (2H w,) ¥ (2H) (4.78¢)
v, = E{|y,|*} = [P* +20}]¥(0) + 202 (4.78d)

where, again, d is the mean of the data sequence. If d # 0, the moment-based estimators for P2 and

202 are derived from (4.78a) and (4.78b) as

o 12
A %
pr= Il dlZ' (4.79)
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and

rep — | Relvn} —¥(H P2 4.80)
¥ (H)Jo (H @om)
Using (4.79) and (4.80), the moment-based estimator for K, KNDA_ Losp 18
: B
Knpa—LosB = 5&“5 4.81)
and the moment-based estimator for g, 5ND A—LOSB® 1S
5NDA—LOSB = 10log,, [02 _ \;2();_(125?_2{_ 2&2)} (4.82)

where P2 is given by (4.79) and 202 is given by (4.80). Note that I%NDA_LOSB uses v, and v,,,
while f)NDA_ Losg USES Vi, Vy; and v,. Both estimators fail in the case when d = 0, as the first order
moment of the received samples will become zero and will not be usable in the estimation. We
propose estimators that can be used for d = 0 in the following. From (4.78b) and (4.78c), one has

moment-based estimators for P2 and 22, P2 and 2&2, as

5 Jo(H ©p) Re{Vp} Jo(2H ©) Re{9,,}

2 4.83)
To(Hoom) —To(2Haom) F(2H)  Jo(Hom) —Jo(2Hom) F(H) (
and
262 = ?(2H)Re{021} - \P(H)Re{f’zz} _ (4.84)
Y (H)Y (2H)[Jy(H 0n) — Jo(2H 0y,)]
Using (4.83) and (4.84), the moment-based estimator for K, I?NDA_ LOSB2 18
i p
K - = = (485)
NDA-LOSB2 = 575
and the moment-based estimator for g, f)ND A—LOSB2 1S
N 152 +2&2
Onpa_ = 10log = = (4.86)
NDA—LOSB2 10 9, —¥(0) (P21 202)

where P2 and 202 are given by (4.83) and (4.84), respectively. Note that the estimators in (4.85)
and (4.86) apply to the case when d # 0 as well as the case when d = 0, since they don’t use the

first order moment of the received samples.
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Figure 4.20. The performance of Kj,, rosa for different values of the sample lag with L = 1024 and

p =10 dB.

4.4.4 Numerical Results

Here, the performances of the estimators for K and P are examined and compared with the estimator
in (3.39) and the estimator in (4.41), respectively. For convenience, we denote the estimator in
(3.39) as K iz and the estimator in (4.41) as ﬁold' We study a communication system with a carrier
frequency of 2 GHz. The mobile travels at a speed of 100 Km/h and the received signal is sampled
at a symbol rate of 25 kb/s. Without loss of generality, let @, = § and 6, = Z be the phase offset
and the angle of arrival of the LOS component, respectively. The total mean power of the fading is
fixed to 1.0, while K varies from 0 to 5 with a step size of 0.5. The true value of p is set from 0 dB to
15 dB with increments of 1 dB. In the NDA estimation, binary frequency shift keying is assumed to
illustrate the effect of unknown data symbols on the estimator performance, where b; =0and b, = 1
are sent with equal probabilities and b, (I = 1,2,--- ,L) are mutually uncorrelated. Other schemes
can be examined accordingly.

We discuss the effect of H on the estimator performance first. We use I%DA_LOS 4 as an example.
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Figure 4.21. The performance of Ky, _; o5 for different values of the sample lag with L = 1024 and

p=10dB.
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Figure 4.22. The performance of Kyj,_; o4 for different values of the sample lag with L = 1024

25
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and p = 10 dB.
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Figure 4.23. The performance of kNDA_LOSB for different values of the sample lag with L = 1024

and p = 10 dB.
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Figure 4.24. The performance of 5DA—LOS 4 for different values of the sample lag with L = 1024 and

K=5.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Estimator bias (dB)

o

«

»

N
T

-

Estimator standard deviation (dB}
w

(=]

¥ o d 4 ¥ ¥ ¥ ¥
5

10 15
True value of local average SNR (dB)

Figure 4.25. The performance of f)DA_ Losg for different values of the sample lag with L = 1024 and

K=5.
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Figure 4.26. The performance of Pyp,_;os4 for different values of the sample lag with L = 1024

and K = 5.
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Figure 4.27. The performance of ﬁNDA_ rosp for different values of the sample lag with L = 1024

and K = 5.

The value of H affects the simulated performance of K DA-Losa in three ways. First, it determines
the value of Hw,. For a fixed @, the imaginary parts of u,, and u,, will be close to zero and the
estimators (4.59) and (4.60) will be vulnerable to noise when H is small. Second, it determines
the value of Hw,,. For a fixed w,,, the Bessel functions in u,, and p,, will be close to zero and
estimator (4.61) will be vulnerable to noise when H is large. Third, it determines the effective
sample sizes of L— H and L — 2H. A larger H corresponds to smaller effective sample sizes. The
overall performance of the estimator depends on all the three factors. Fig. 4.20 shows the effect
of H on the performance of KDA_LOSA. Five values of the sample lag, H = 1, H = 10, H = 20,
H =30 and H = 40 are examined. One sees that H = 30 gives the best overall performance of
KDA_LOSA among all values of the sample lag evaluated. Similarly, one can see from Figs. 4.21 to
4.27 that H = 30 gives the best overall performance of I?NDA_LOSA, H = 20 gives the best overall
performance of KDA_ rosg» and H =1 gives the best overall performance of kNDA_ LOSB" f)DA_LOS "
f)DA_ LOSB f)NDA_ rosa and f)NDA_ rosg- among the values of sample lag examined.

Next, we discuss the effect of the estimation accuracy of @, on the estimator performance.
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Figure 4.28. The performance of Kj,,_; 54 for mobile speed estimates having different accuracies

at L= 1024, p = 10 dB.
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Figure 4.29. The performance of IA<D A—rosg for mobile speed estimates having different accuracies

at L=1024 and p =10
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Figure 4.30. The performance of K vpa—Losa for mobile speed estimates having different accuracies
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Figure 4.31. The performance of I?ND A—r0sg for mobile speed estimates having different accuracies
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Figure 4.32. The performance of f)DA_ Losa for mobile speed estimates having different accuracies
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Figure 4.33. The performance of f)DA_LOSB for mobile speed estimates having different accuracies
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Figure 4.34. The performance of Pyp,_sosa for mobile speed estimates having different accuracies

at L=1024 and K = 5.
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Figure 4.35. The performance of f)ND A—10sg for mobile speed estimates having different accuracies

at L =1024 and K = 5.
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Figure 4.36. Performances of kDA_LOSB, R g and KNDA_LOSB with L = 1024 (dashed line) and

L =512 (solid line) at p = 10 dB, assuming a constant LOS fading component.

Again, we use K pa—1osa @ an example. Fig. 4.28 shows the effect of the estimation accuracy of @,
on the performance of Kj,_; osa» Where 7] is defined as the ratio of the mobile speed estimate to its
true value and the normalization is taken with respect to the performance of K pA—Losa When 11 =1,
One sees that KDA_ Losa 18 more sensitive to 1 = 1.1 than to 1 = 0.9. One also sees that the effect
of the estimation accuracy of w,, depends on H. The smaller H is, the less sensitive the estimator
performance will be to the mobile speed estimation error. From Figs. 4.29 to 4.35, one sees that
this observation is valid for other estimators as well. As a compromise between robustness and
optimality, in the following simulation, we use H = 20 for I?DA_LOSA and kNDA_LOSA, and H=1
for other estimators.

Figs. 4.36 and 4.37 show the performances of I%DA_LOSB and KNDA_ rosg for different values of
p and N. One sees that K pA—Losg has a bias between 0.1 and 1.3 and a standard deviation between
0.0 and 3.0 when L = 512 and p = 10 dB, a bias between 0.0 and 0.5 and a standard deviation

between 0.0 and 1.9 when L = 1024 and p = 10 dB, a bias between 0.1 and 1.4 and a standard
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Figure 4.37. Performances of KDA_LOSB, I%old and kNDA_LOSB with L = 1024 (dashed line) and

L =512 (solid line) at p = 5 dB, assuming a constant LOS fading component.

deviation between 0.0 and 3.3 when L = 512 and p = 5 dB, and a bias between 0.0 and 0.6 and
a standard deviation between 0.0 and 2.0 when L = 1024 and p = 5 dB, for all the values of K
considered. Hence, KDA_ rosp has good performance, especially when the true value of K is small.
The estimator performance improves as the sample size and/or the local average SNR increases.
Comparing Kp,4_; 05z With Kypa_1 s> One observes that Ky, _; osp outperforms Ky, _; os5 for all
the cases discussed. Also, comparing I?DA_ Losg With K 14> One sees that IE’DA_ rosp outperforms R oid
greatly, as expected.

Figs. 4.38 and 4.39 show the performances of I%DA_LOSA and I%NDA_LOSA at different values
of p and L. Similar observations can be made. Again, the performance of I?DA_LOSA improves
as L or(and) p increase(s). Comparing I?DA_LOSA with 1%0, 4» one sees that our correlated-sample-
based estimator Ky, _; 54 outperforms the independent-sample-based estimator K, in [59] for all
cases considered. Also, comparing KDA_LOSA with I?NDA_LOSA, one sees that I?DA_ Losa performs

much better than f(NDA‘LOSA for most cases. However, when p = 5 dB and L = 512, KDA_LOSA
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L =512 (solid line) at p = 10 dB, assuming a time-varying LOS fading component.
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Figure 4.40. Performances of Kyp,_;os4 at p = 5 dB for different sample sizes, assuming a time-

varying LOS fading component.

has a smaller standard deviation but a larger bias than kNDA_LOSA for 4.2 < K <5.0. Also, when
42 <K <5.0, I%NDA_ rosa With L = 512 has a smaller bias as well as a smaller standard deviation
than IA(NDA_LOSA with N = 1024. This, however, doesn’t imply that the overall performance of
KNDA_ 10s4 18 better than that of I?DA_LOS 4 and that the overall performance of kNDA_ L0s4 IMproves
as the sample size decreases. Fig. 4.40 shows the performance of K NpA—Losa for different sample
sizes. It is clear that the bias of I%NDA_LOSA will become negative and KNDA_ rosa Will underperform
I?DA_LOSA again when K increases further. Also, when K increases further, KNDA_LOSA will have
a larger bias and a smaller standard deviation for small sample sizes than for large sample sizes.
Since a larger bias with a smaller standard deviation means that the estimate is more concentrated
on some value that is farther away from the true value, the overall performance of KND A—rosa Still
deteriorates as L decreases. This phenomenon is probably caused by the time-variation of the fading
mean, as Kyp,_;osp in the constant LOS component model don’t demonstrate such behavior.

Figs. 4.41 and 4.42 show the performances of f)DA_LOSB and f)NDA_ rosp for different values of
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K and L. One sees that f)D A_1osp has a bias of about -0.1 dB and a standard deviation of about 1.8
dB when L = 128 and K = 5, a bias of about zero and a standard deviation of about 0.3 dB when
L=1024 and K =5, a bias of about -0.3 dB and a standard deviation of about 2.0 dB when L = 128
and K = 2.5, and a bias of about zero and a standard deviation of about 0.3 dB when L = 128
and K = 2.5. The new estimator, f)DA_ rosg> Shows good performance. The estimator performance
improves as the sample size increases, as expected. Comparing f)DA_ rosg With f)NDA_ Losg» One ob-
serves that Dp,_; ogp is much better than Py p,_; osp- Comparing Sp,_; o5z With B, one sees that
their performances are comparable when L = 1024. When L = 128, f)D A—rosg Slightly outperforms
Jo id> 85 5DA—LOSB has a smaller bias than 501 4 The new estimator, f)D A—rLosg» benefits from taking
the sample correlation into account, but it suffers from using estimates of two parameters P2 and
202, On the other hand, the previous estimator, f)ol 4> benefits from using an estimate of only one
parameter 202, but it suffers from not taking the sample correlation into account. When L is large,
there are enough independent samples among the L correlated samples for f)ol 4 10 obtain an accurate
estimate of 2a2, and the sample correlation doesn’t dominate. In this case, they show comparable
performances. When L is small such that few samples among the L correlated samples are indepen-
dent, f)ol 4 cannot obtain an accurate estimate of 202, In this case, the sample correlation dominates,
and our correlated-sample-based estimator, Oy, _; osz. Shows some advantage.

Figs. 4.43 and 4.44 show the performances of 0y, ;54 and Pypa_rosa for different values
of K and L. Similar observations can be made. Again, the DA estimator, f)DA_LOSA, has good
performance, and it outperforms the NDA estimator, ﬁNDA_LOSA. Comparing 5DA_L0SA with f)old,
one sees that 5DA_LOSA is slightly better than 501 4 When L =128, When L = 1024 and p is large,
0,4 is slightly better than Bp,_; os4, as the sample correlation is not dominant and our estimator
f)DA_ Losa introduces extra estimation errors by using estimates of two parameters in this case; the

performance difference is small.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g gy g =

b~ @~ -8 - ®— —0 — o--—o— ot = 8= —EF =X -8 o -4

0 5 10 15
True value of local average SNR (dB)

G Tb e TN L e e
ks) . -
2 —"‘“"‘--’(——x——-x——x——--x
g ok D .
5 -4
g, * Moo N
£ :
d o] haty,,,
-2 x haty pa-Losa : T
1
0 5 10 15
True value of local average SNR (dB)
= 10 T
@
kA hatvp s Losa :
é 8 ° haty,, T
S
N x ety pa-tosa R
-
@
°
c
g
12
S
®
£
@
il

Figure 4.43. Performances of f)DA_LOSA, ﬁold and ﬁNDA_LOSA with L = 1024 (dashed line) and

L =128 (solid line) at K =5, assuming a time-varying LOS fading component.
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4.5 Moment-based Estimation of SINR

In the previous sections, estimation of SNR and ASNR has been performed. The estimation is based
on the assumption of no interferences. In some wireless communication systems, interferences may
also occur, in addition to the noise. In this case, the SINR, defined as the ratio of the signal power
to the interference-plus-noise power, is frequently used as an important link quality measure. Esti-
mation of SINR has been studied previously by several researchers [100]- [104]. These estimators
assume either known data symbols or constant modulus signaling. However, for a high data rate
transmission system using QAM, known data symbols may not be available in the signaling format
or may be undesirable since they reduce throughput. New estimators that blindly estimate the SINR
of QAM signals are desired. In [105] and [106], non-data-aided (NDA) SNR estimators were de-
rived for QAM signals in an additive white Gaussian noise channel and a slowly fading channel,
respectively. These estimators are designed to operate in the absence of interferences. In this work,
we examine the more general case when interference and noise are both present. We derive NDA

SINR estimators for QAM signals in a slowly fading channel under two channel conditions.

4.5.1 Channel Condition 1

First, we consider channels where the interference can be modeled as a Gaussian random variable

with non-zero mean. The received signal is
y=As+1h+n (4.87)

where [ = 1,2,.--,L index different samples, A is the unknown complex channel gain assumed
constant over the estimation time in a slowly fading channel, s, is the unknown transmitted signal in
the I-th sample, I, is additive Gaussian interference with mean e and variance 20 2 and n, is additive
Gaussian noise with mean zero and variance 202. Note that the channel gain of the desired signal is
subjected to fading, but the fading is assumed constant over the estimation time [100]- [106]. This
can be achieved by properly selecting the estimation time. For example, when the channel is fading

slowly enough such that the channel gain remains approximately the same over one packet period
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(but it may change from one packet to another), the estimation can be performed over the time
duration of one packet and the fading channel gain is constant for all samples obtained during this
time period. This assumption applies to each of the interfering signals as well. However, the overall
interference is modeled as a Gaussian random variable [14], [107], which differs from sample to
sample, similar to the noise. Assume that the average energy of the transmitted signal, E{|s,[*},
is normalized to 1. Also, assume that the interference and the noise are circulary symmetric with
independent real and imaginary parts, and that the noise is independent of the interference. Denote
¢, = |I| as the amplitude of the interference. Then, c, is a Ricean random variable with probability
density function (PDF) £ (x) = &S?lge"(‘gl%ﬁlo <2\/ ﬂ%bc) where K = %27 is the Ricean
K factor and Q = |e|? + 202 is the total mean power of the interference. The interference model
in (4.87) is flexible. For example, when K = 0 or e = 0, I, becomes a zero mean Gaussian random
variable. This represents channels where there are many weak interferers plus noise but no dominant
interferers. When K — oo or a =0, I, becomes a constant. This represents channels where there
is one dominant constant interferer plus noise throughout the estimation. Finally, when the value of
K is between 0 and oo, this represents channels where there are many weak interferers, a strong but
not dominant constant interferer, and noise. The SINR to be estimated in this case can be defined as
P = Qlf——fdf. Next, we derive a moment-based estimator for ;.

From (4.87), one has

E{y}=e (4.88)
E{]y[’} = A +Q+20° (4.89)

and
E{ly|*} = PIAI' +2(Q+20%)* +4|A}(Q + 2067) — |e|* (4.90)

where P = E{|s,|*} and E{s;} = 0 for most practical QAM signalings. Using (4.88), (4.89) and
. __ Ppi+dp +2 _ E{y)*HIEpY . :
(4.90), one has an equation for p; as h; = m, where h; = —IEZ{TI!ZTJ— Solving this

equation, one moment-based estimator for p; can be derived as

—by+4/b3 —4a,c,

2a,

P = (4.91)
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Figure 4.45. The biases of p; for 16-QAM and 256-QAM signals for different values of K.

where ay =hy —P, by =2 4, ¢, =h; 2. by = ﬂiulg‘ﬂﬁ Py= 130y By = 13
fiy =131 |y|* and y,,y,,-+- ,y, are L independent and identically distributed samples.

Figs. 4.45 and 4.46 show the bias and root mean squared error (RMSE) of p,, respectively.
Two signaling schemes, 16-QAM and 256-QAM, are examined. Similar to [106], a sample size
of L = 1000 is used. Channel conditions of K = 1 and K = 10 are considered. One sees that the
bias of P, is between 0.05dB and 0.154B for 16-QAM and between 0.094dB and 0.284B for 256-
QAM, and the RMSE of p, is between 0.25 and 2.20 for 16-QAM and between 0.30 and 3.20 for
256-QAM, over all the values of SINR considered. Therefore, the estimator [)1 performs well in
this SINR region. The bias and the RMSE of p, increase as the true value of SINR increases. A
larger constellation size corresponds to a larger bias as well as a larger RMSE. Also, comparing
the performance of p, at K = 1 with that at K = 10, one sees that the estimate has a smaller bias
and smaller RMSE in a channel with larger K. These observations suggest that p; works better for

QAM with smaller constellation size in a channel with larger K.
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Figure 4.46. The root mean squared errors of P, for 16-QAM and 256-QAM signals for different

values of K.

4.5.2 Channel Condition 2

Next, we consider channels where there is one dominant synchronous interferer. The received signal

in this case can be written as

where B is the channel gain of the dominant synchronous interfering user affecting the desired
user, £, is the transmitted signal component of the dominant synchronous interfering user in the /-th
sample, and [, A, s; and n; are defined as before. Note that this case cannot be modeled by (4.87).
Note further that the desired signal and the interfering signal have the same statistical structures in
this case. For simplicity, we assume that ¢, has the same signaling scheme as s;. Extension to the
case when s; and ¢, have different signaling schemes is straightforward. The SINR to be estimated

in this case can be defined as p, = IT?TAA-II-ZZW' From (4.92), one has

E{ly[*} = A]* +|B|* +20? (4.93)
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Figure 4.47. The biases of p, for 16-QAM and 256-QAM signals for different values of INR.

and

E{y,[*} = PIA]*+2(1B* +262)* + 4|A]*(|B|> + 20%) + (P - 2)|B|*. (4.94)
- : _ Ppit+dp,+d _ P2
Using (4.93) and (4.94), one has an equation for p, as h, = T where d = 2 + T

4
h, = gz%y)lll—'% and INR = ‘2%'; is the interference-to-noise ratio (INR). When INR > 1, one has
d = P, and P is around 1.3 for 16-QAM signaling. When INR < 1, one has d = 2.0. After testing
several values of d between 1.3 and 2.0 by simulation, we found that d = 1.6 gives a SINR estimator

with best overall performance in the cases considered. Thus,

_Ppy+4p,+1.6

~ 4.95
27 pi+2p,+1 (4.95)
By solving (4.95), one has a moment-based estimator for p, as
—by+ /b3 —4a,c,
P, = (4.96)

2a,
where a, =hy — P, by =2, —4,¢, =h, — 1.6, and h, = %
2
Figs. 4.47 and 4.48 show the bias and RMSE of p,, respectively. Again, two signaling schemes,

16-QAM and 256-QAM, are examined. We consider the cases when INR = 10dB and INR = 20dB.
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Figure 4.48. The root mean squared errors of p, for 16-QAM and 256-QAM signals for different

values of INR.

The estimator 0, has a bias between 0.2 dB and 2.7 dB for 16-QAM and between 0.3 dB and 2.5 dB
for 256-QAM, and a RMSE between 0.5 and 2.3 for 16-QAM and between 0.6 and 3.3 for 256-
QAM, in the SINR region considered. The bias of p, decreases as the true value of SINR increases
and becomes approximately constant at large values of SINR. The RMSE of p, decreases as the
SINR increases over the range of 0 dB to 3 dB, and it increases as the SINR increases over the range
of 3dBto 10dB. One also sees that p, for 16-QAM has a smaller RMSE than p, for 256-QAM, over
all the values of SINR considered. The bias of p, for 16-QAM is comparable to that for 256-QAM.
Finally, observe that the estimate has a smaller bias and smaller RMSE in a channel with smaller
INR. These observations also suggest that p, works better for QAM with smaller constellation size
in a channel with smaller INR. The above results consider QAM signals only. However, they can be

extended to constant modulus signals as well.
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Chapter 5

Conclusions and Future Work

In this chapter, we first highlight important findings of this thesis, and then suggest several topics

for future research.

5.1 Conclusions

1. Maximum likelihood decision-based estimators for the channel state parameter in a static
AWGN channel and a slowly fading channel have been developed. The approximations to the
probability density functions of the maximum likelihood estimates have been derived under
the assumption of no decision errors. Based on these approximate functions, the estimator

performances have been examined and possible performance improvement has been stated.

2. The performances of maximum estimated branch signal amplitude SDC and maximum es-
timated branch SNR SDC using practical channel estimators have been analyzed, under the
assumption of independent and non-identically distributed diversity branches and unequal
noise powers. The effects of channel estimation errors and imbalanced noise powers have

been quantified in terms of closed-from expressions for the error rates.

3. When the noise powers are balanced, maximum estimated branch signal amplitude SDC per-
forms better than maximum estimated branch SNR SDC. When the noise powers are im-

balanced, maximum estimated branch SNR SDC performs better than maximum estimated
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branch signal amplitude SDC.

4. Novel diversity receivers that operate in the presence of Gaussian channel estimation errors
have been proposed by using statistics of channel estimation errors. The structures of the

novel receivers depend on the nature and the amount of knowledge of error statistics available.

5. The conventional MRC receiver is suboptimal when channel estimation errors occur. The

new diversity receivers outperform the conventional MRC receiver in most cases considered.

6. Optimum PSAM signal detectors for Rayleigh and Ricean fading channels have been derived.
The conventional PSAM signal detector is proved to be optimum in the sense of minimum
probability of error for BPSK signaling in Rayleigh fading channels. It is suboptimal for 16-
QAM signaling in Rayleigh fading channels and for BPSK signaling and 16-QAM signaling

in Ricean fading channels.

7. The performance gain of the optimum PSAM signal detector for BPSK signaling comes from
the use of the specular component in Ricean fading channels, while the performance gain of
the optimum PSAM signal detector for 16-QAM signaling comes from the use of specular

component in Ricean fading channels as well as the joint processing of data and pilot symbols.

8. The CRLBs for NDA ML channel gain and delay estimation in an ultra-wide bandwidth
system have been derived analytically. Novel NDA ML estimators for the channel gain and
delay in an ultra-wide bandwidth system have also been designed by using a more accurate

approximation to the log-likelihood function.

9. Noisy sample based ML and moment-based estimators for the fading distribution parameters
have been derived, under the assumption of known or unknown noise power. These estimators
have superior performances when operating in a practical noisy fading channel. They are very

useful for channel modeling and receiver design in realistic communication systems.
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10.

11.

12.

13.

14.

15.

16.

5.2

Novel estimators for the Ricean K parameter have been derived by using fading phase sam-
ples. The new estimators have much simpler structures than previous envelope-based estima-

tors. In most cases, they also have better performances than the previous estimators.

Maximum likelihood estimators for two measures of SNR in a static AWGN channel and
a slowly fading channel have been proposed, considering both sampled signal system and
continuous signal system. The approximations to the probability density functions of the

SNR estimates have been derived under the assumption of no decision errors.

The ML estimator for SNR is a decision-based structure that necessarily incorporates a digital
data detector. Therefore, the optimal performance of ML estimation of SNR can be achieved

at minimal additional cost in a digital signal receiver.

A novel approximate ML estimator for SNR in a static AWGN channel has been derived by
using all symbols in a frame. This estimator can be applied to any system where signals are

transmitted in frames and the frame has both known and unknown fields.

Maximum likelihood estimator for the average SNR in a Ricean fading channel has been
derived. The probability density function of the estimate has been obtained, and the mean, the

variance and the mean squared error have been calculated to show its asymptotical optimality.

Joint estimation of the K parameter and the ASNR in a Ricean fading channel has been
performed. New estimators for the Ricean K parameter and the ASNR have been designed

by using noisy and correlated channel samples.

Non-data-aided moment-based estimators for the SINR in a system using QAM signals have

been derived, considering two different practical channel conditions.

Future Work

. The performances of the ML SNR estimators in a static AWGN channel and a slowly fading

channel are analyzed under the assumption of no decision errors. This analysis is not valid for
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decision-based estimation with low operating SNR. In some cases, it is of interest to analyze

the performances of the decision-based ML SNR estimators with decision errors.

2. The proposed ML SNR estimators can be used in the acquisition mode of the system. It is also
of interest to extend these results to the tracking mode of the system, where one uses current
received signals to update the SNR estimate continuously. In this way, the estimator adapts to
the channel changes. Another useful extension is to design an iterative algorithm where the
decision-based SNR estimate is fed back into the detector to improve the data decision and
the improved data decision is used for SNR estimation again in the next iteration. In this way,

both the SNR estimation and the data decision may be improved.

3. The values of statistics of the channel estimation errors are assumed known in the receiver
design. In practice, they have to be obtained by estimation as well. There will be a mismatch
between the true value and the estimate of the error statistics. It is of interest to evaluate the

effect of this mismatch on the receiver performance.

4. The proposed optimum PSAM signal detector doesn’t take diversity combining into account.
It is well known that diversity combining is a very effective method in combating fading.
Therefore, it is of great interest to investigate the problem of optimum PSAM signal detection

in a diversity system.

5. The fading distribution parameters have been estimated by using practical noisy channel sam-
ples. However, these estimators don’t consider interferences in the system. Interference-
limited systems, such as those code division multiple access systems, have been widely used
currently. Design of fading distribution parameter estimators in an interference-limited sys-

tem is still a challenging problem.

6. The results in the thesis consider flat fading channels and single-input systems only. It is
also of interest to extend them to a frequency-selective fading channel and a multiple-input-

multiple-output system.
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Appendix A

Proof of Independence of X and Z

A sufficient and necessary condition for the indenpendence of X and Z is that the joint characteristic

function of X and Z satisfies [109, eqn. (5.3.1)]

Fyz(jv1:Jvy) = ¥y (v) ¥z (jv,) (A1)

where Wy (jv;) and ¥,(jv,) are the marginal characteristic functions of X and Z, respectively.

Denoting n; = u; + jv; and s = pl(k) + jq(k) fori=1,2,---,1,(2.19) and (2.21) can be rewritten as

i i
21
X =Y xm, (A2)
i=1

and

21 21 2
Z=Yx— (‘_lx,.m,.) (A.3)

i=1

where x; = u; and m; = ;(k) pgk) wheni=1,2,---,Iand x;=v,_;and m; = \/;—mqgf)l wheni=1+
sd sd

1,14-2,---,2I. The random variables x;, i = 1,2, ,2I, are Gaussian variables each with identical
PDF
1 _
p(x;) = e 3 (A4)

o

where £2 = % Denote x = (x;x,---x,;). Since X is a function of x, the marginal characteristic
function of X can be derived by solving the integral ¥y (jv,) = [e/"1* f(x)dx where f(x) is the

joint PDF of x;, i = 1,2,--- ,21, and dx = dx,dx, - - - dx,;. This gives
§; 2
Yy(jvy) =e 7M. (A.S)
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The marginal characteristic function of Z is derived by solving the integral ¥, (jiv,) = [e/"2% f(x)dx

This integral can also be rewritten as

1 1
¥, (jv,) = __/e—iQo(xnxza"'»xzr)dx (A.6)
A = e
where Qy (X)X, - 1 Xp;) = I, T2 v, X%, is 2 quadratic form of x and y,, = 2jv,mm, for i # n

and ¥, = gy —2jv, +2jv,m} for i = n. From [109, eqn. (7.4.3)], one has Jem 1%, gy =
5%, where |T'| is the determinant of the matrix I" whose (i, n)-th element is ¥,,. Denote a = 2 jv,
and b = gf —2jv,. 1t is derived that |T| = b*~Y (a3, m? +b) = -élz(é% —2jv,)#~1. Then, the

marginal characteristic function of Z is

1
(1-2jv,&2)"

The joint characteristic function of X and Z can also be derived by using a similar definition of

¥, (v,) = (A7)

¥y (V14 vy) = [eMETMZ f(x)dx. Using (A.2), (A.3) and (A.4), one has

1 1
¥ V.. TV, ) = _—./e—i[Qo(xlrxz:“'»le) 2jv 32 xm]dx (A.8)
xz(V1,%2) (\/27E0)
where Q, (xl B S 1) is the quadratic form defined as before. By completing squares for x in the

52

exponent, one has Qy(x;,Xy, -+ yXoy) — 2jv; IH  xm; = Q1 (%1, %y, y%yp) + X2Ly T2 | @, m;mpv?
where Q,(x,,X,, -+ ,x,) is a quadratic form of x with complete squares and w,, is the (i,n)-th
element of Q =I'~! [109, p. 167]. Moreover, the quadratic form Q(x;,x,,-- ,x,;) also satisfies

Je~ 301 ) g = (V220 [109, p. 168]. Therefore, the joint characteristic function of X and Z

Wi
is

_~_1*_
(1—2jv,E2)"F

It is derived that w,, = —ﬁby‘zamimn fori#nand w,, = ]ﬁbﬂ a3 m2+b—am?) fori=n.

Wz (v1va) = ~EEA T o (A.9)
Using these in (A.9), one finally has

W (v, i) = ———— (A.10)
XZI I = e
- 2

Therefore, X and Z are independent.
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Appendix B

Proof of Independence of S, S, and U

In this appendix, we prove the independence of S, S, and U defined in (2.40), (2.41) and (2.42),

respectively. Again, we use the sufficient and necessary condition that [109, p. 121]

‘PSISZU(jvl’jvzvjv3) = IIlsl (jvl)‘Psz (V) ¥y (ivs) (B.1)

where ‘I’Sl S2U( JV1, Jv, Jvs) is the joint characteristic function of S;, S, and U, ‘I’SI (), ‘I—’SZ( vs)
and ¥, (jv;) are the marginal characteristic functions of S, S, and U, respectively. Rewrite (2.40),

(2.41) and (2.42) as

21

S, = Yxm (B.2)
i=1
21

S, = Yxg (B.3)
=1

a 2 2 2 2
U = in — inmi — ingi (B.4)
i=1 i=1 i=1

_ 1 (k F -
where x; and m; are the values defined as before and g; = — \/@qg ) when i = 1,2,---,Iand g; =

—L_ )

p\ wheni=1+1,142,---,2]. The marginal characteristic functions of §, and S, can be
EQT(-1) 1 2

derived by following similar procedures to those used to derive (A.5) as

& 5
¥ () =e" 71 (B.5)
and
2
¥y (jvy) = e T, (B.6)
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The marginal characteristic function of U can also be shown to have similar form to that of (A.6),
except that the (i,n)-th element of I" is ¥;, = 2jv5(m;m, + g,8x) for i # n and y,, = ‘52 —2jvs +

2jvym? + 2 jvyg? for i = n now. It is derived that |} = T in this case. Therefore, ¥, (jv;) is

found to be
1
(2,2

The joint characteristic function of §;, S, and U can be derived in a similar way to that in

Wy (jvs) = (B.7)

Appendix A. From the definition of the joint characteristic function, one has

1

. . . —1 —2ivH . .

‘Yslszu(lvlaJvz’J%) = W/e 3[Qolxity ) =25 B vy mit280)] g (B.8)

Completing the squares for x, one has Q(x;,%y,+ ;%) =27 X X;(vym;+v,8;) = O (X1, %5, 1 %y,) +
i=1

a U
Y 3 @, (vim;+v,8;) (vima +v,8,) where Qy(x;,x,,- -+ ,x,;) has complete squares of x and w;, =

i=1n=1
21
pH- 2 2., .2 . : .
m,g, —m +2ab Y (mi+ for i = n, and in other cases when i # n,
2 l iht kh#l( «8h hgk) kzl’k#( k gk)
-3 A .
w,, = _éi—l“l— [ab(mimn +8,8n) +a? gl (m;g, —m,8;) (mng, — mkg,,)] now. Therefore, (B.8) is fur-

ther simplified as

1
(1-2jv,&E2)-1

a U
The summation in the exponent can be derived as 3, Y @;,(v;m; + v,8,) (v;mn + v,8n) = E2 (v} +
i=1n=1

¥y 5,0 (Vi 720 Jv3) = ¢ T T O amitvyg) ymatgn) B.9)

v2). Finally, the joint characteristic function of §;, S, and U is

. 1 _&a
LPSISZU(]VUJvza]%) = (l~—2jv3—57)1—"~e 2 (V1+"z) (B.IO)

So, the random variables S, S, and U are independent.
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Appendix C

Derivation of (2.136) and (2.150)

In this appendix, we derive (2.136) and (2.150). By using (2.132) and (2.134) in (2.133), one has
(5te 2
Iy }2 Ei;?vj IJQ) |Pi[

e 227 _1 1 T
f(yk’plbk) = (4n262)1+1|H ] // ARFkAR AIFkA +UAR+VA, dA dB (Cl)

where F;, Ag, A;, u and v are defined in Section 2.4. Using the fact that H,, F, and their inverse

matrices are symmetric, it can be shown that
1 ! 1T 1 —1 T
2A FkAR +uAR = — ARF A R+—uF C.2)

and

1
—EA,FkA,T +vAT = —%A',F AT+ 1vF—‘ T (C.3)

where A'p = Ap — uF,:1 and A’; = A, — vF;!. Putting (C.2) and (C.3) in (C.1) and executing a

transformation of variables, one can obtain

17l
Iy 2 E:—L 3 IJQ'p'
e_Eﬁf _____%_____*_2“1; 1 T+2vF 1T
b,) =
f(yk’p| k) (47120-2)J+1IH1¢1

-//e"%AIRFkA’l]?-_%AIIFkA”TdA/RdAII' (€4

Note that the random variables, A, and A’;, are Gaussian since A and A, are jointly Gaussian and

the transformations are linear. Therefore, they satisty [109, eqn. (7.4.3)]

J+1

/e—%AIRFkA’,gdA/R _ /e—%A/,FkA’,TdAIIZ (zlg)l? (C.5)
el

Substituting (C.5) in (C.4), and after doing some mathematical manipulations, (2.136) can be ob-

tained. Equation (2.150) can be derived in a similar way.
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Appendix D

Derivation of S, and Q,

Here, we derive the expressions for S, in (2.139) and Q, in (2.153). Since F, = Hk‘1 +G,, by

using [110, eqn. (5.32)], one has

F;!=H,-H,-(G;'+H,)"'H,. (D.1)
It can be shown that
o 2.2
mm+Eso w
Gyl+H, = | B 7 2 k (D.2)
wi ICZ;?E+ C,

Therefore, the inverse of G;l +H,, is obtained from (D.2) as [110, eqn. (1.35)]

|b,* 1 |y *w, 2, wi lb,
— w
02+E§a2|bk|2( + 02+E§a2|bk12) a?+EZallb ]2 "k
'bk|2 T
T IFE G Z,w; Z,

Z,

(Gy'+H) ' = (D.3)

where Z, is defined as before. Substituting (2.135) and (D.3) into (D.1) and performing the matrix

multiplication, one has
Eja’c’  otwZw] 0'2(2wk—wkZ1Ck) T 0'2|2bk[2wkZ1w{wk
o?+Eja2 (b, (02+Ep71a7[bk|7)7 o’ +EZ0?(b,? (o*+EXa2|b 7)Y

X (wi-C,Zwl) n ol|b, Pw,Z, wiwl
oZ+EZa?[b,? (o2 +ELa?|b,]7)?

F'l=

(D4

Z,

— [AR/AR |b, 2w, Z, wi |6 2(C, 2, wi wit-wi Wi Z, Cy) : :
where Z, = C, — THETaT ] (142 B2, )+ ST EL7D, -C,Z,C,. Since S, is

the first row of F ;1 excluding the first element, (2.139) can be obtained from (D.4). Also, one has

22 2 2
Ezaalbk[ 41 V)_szka
FH, = i . . The inverse of F H, can be obtained by using [110, eqn.
b b
’?l;w,{ J;’;Ck +E
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(1.35)]. This gives

a? 1 [bk|2|13|2wkZ4wZ |bk|2
- w.Z
(F.H )_1 _ 02+E§a2]bk[2( + 0'2(0'2+E§a2]bk]2)) 24 EZo?|b,[* Tk D.5)
k*Tk - - .
1B T
TFEZGTID, P Z,wy Z,

where Z, = I%%Z] and Z, is defined as before. Finally, since Q, is the transpose of the first column

of (Fka)‘l, one can obtain (2.153) from (D.5).
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Appendix E

Proof of the Equivalence between (2.144) and (2.163)

We prove the equivalence between (2.144) and (2.163) here. Denote

b, [*w,Z,wT
R=[|14+—-%~~>="=1E-Z,.-C,. E.1
k ( +0'2+E§a2|bk[2 1 (E.1)

From (2.139), (2.161), (2.144) and (2.163), it is enough to show that

wRTW] = /W, (B2C, + 0%E)='w] - w,R,(|B2C; + G2E)RT w. (E.2)
Using (2.140) and [110, eqn. (5.32)], one has

2“1 “,T

T 712 2 712 |bk| kZ1 k T

w.w,Z (|blC,+0°E) = |b|“ | 1+ 52— | Wy W,. E.3
Kk l(l | T )= b ( + 62+E12,052’bk|2 kWi (E.3)

This in turn gives

2w Z.wl

T 72 2 712 bW, 2y Wi T

ww, Z,(|b|°C, +0°E)C, —|b|" | 1+ w,w,C, =0
kWi Ly (|bI°Cy )G, — 10| ( o2+ E202|b,[? kT~ k

Ibk|2WkZ1W1€

b|? *E)Z wiw, — b 1+ KAk
Ci(lbI"Cy+ 0" E)Z Wi Wy — [b] +0'2+E§Ot2|bk|2

) C,wiw, =0 (E.4)
where 0 is a J X J zero matrix. From (E.4), it is easy to verify that

T |bkl2WkZ1w£ 712 2 712 2
W W, [(1+W (lbl Ck+0' E)—-Zl(lbl Ck+0' E)Ck

AR 712 2 712 2 T
= I+W (lb' Ck+U E)—‘Ck(lb| Ck+0' E)Zl W, W,. (E.5
Since (|b*C, + 6’E)C, = C,(|b|*C, + 6?E), from (E.5), one further has
wiw,R,(|b*C, + 6°E) = (|b|*C, + 0’E)Rl wi w, (E.6)

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where R is given by (E.1). Multiplying both sides of (E.6) with w,(|5]°C, + 62E)~! on the left

and RI'wl on the right, one has
w(|5]°C,+ 0’E)"'wi - w, R (5]°C, + 0’E)RE wl = w, Rl wl w, Rl w . (E.7)

From (E.7), eqn. (E.2) can be obtained. Therefore, (2.144) and (2.163) are equivalent.
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