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" area in a number of ways. Most previous work has investigated ways of .

\ Abstract , o

.

This thesis presehts' a 10g€ca1 formalism for represerrt-trig and rea'sprﬁng with
probabilisti_e knovyledg%. The formalism differs from previous ;effor'ts in this

, : ~

assign—ing probabilities to the sentences of a logical language. Such an as-
s1gnm’ent fails to capture an important class of probabﬂi’é’tw assertions,
emp1r1cal generahza.tlons Such generahza:tlons are partlcularly 1mportant
for Al s)mee they can be accumulated ’throgghv experlence with the world.

Thus, they offer the possibility of reasoning in very ger;e_ral domains, do-

‘mains where no experts are available to gather subjective probabilities from. *

b ]

A logic is developed Which'can'represent these empirical generalizations

’ sound and c%plete Furthermore the logic can represent and reaso/n with

4

a very genera.l set a,ssertxons includmg many non-numeric assertions. This

also is 1mportant for Al as numbers are usually not avallable

p—

+

,.Reasomng can be p@'formed through a proof theory which is shown to be

The 1og1¢ makes 1t clear that there is an essent1al d1fference between em- .

<
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pirical, or statistical, probabilities and probablhtles a551gned to sentences
e.g., subjective pro babrhtres The second part of the formalism is an in-

ductive mecharhsm for assigning degrees of belief to sentences based on the

emplrlcal generahzatrons expressed- in the loglc These degrees of behef '

have a strong advqntage qver subjective probabilities: they are founded on
obJectlve statistical knowledge about the world. Furthermore the’ mecha—
niism of assigning degrees Qf}belief gives a, natural answer to.the question
“'\/Vhere do the« probabilities come from:” they come from our e;cperience

i{ N
* with the world. b »
y

. The two parts of the formahsrn offer comblned, 1nteract1ng, but st1ll'

-~

clearly sepera.ted plausible inductive inference and sound deductive 1nfer-

ence.’ I

[ng
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Chapter 1 \'

a. -

N Ihtr.oduction

1.1 Logic and Knowledge Representation

It is well acceptec. in Al that the performance of a task requires an explicit

body of relevant knowledge. As a result most research in AI has used a

knowledge-based approach A mechanism for representmg l\nowledge in a.

computer model or program is a reqmrement of thls approach.

A natural consequence of this Las been a desire to develop géneral mech-
anisms for knowledge representation. It is clear that a truly intelligenﬁ
entity is not a specialist: given a sufficient diversity of knowledge, an in-
telligent entity is capable of performing a wide variety of tasks. Hence, to
the extent that the eventual aim of Al is to develop such an intelligence;‘it

- will be necessary to represent a variety of knowledge in the same program.

¥



‘ ]F‘urthtlarr_n\ore1 even less ambitious goals, such as the co’nétruction of natural

language nn’derstanding systems (or maybe as ambitious, if one agtees with
- -Turing), reqmre a large varlety of general knowledge Each time a repre-
sentation schemc is dev eloped to handle a partlcular t} pe of knowledge a

recurring set of problems arise. A general mechanism allows these problems,‘

to be dealt thh once, rather than continually.

The problems which arise come from the need to specify the meaning of =

the object's in the renresentation scheme. 'Say knowledge is represented in a

Al program through the use of sogg‘eparticular data structures, that infer-
ence 1s performed:through- t‘he algor-ithmic 'manjpulation of these structures,

-

and that output is generated from the modxﬁed data stnictures Then un-
less there'is a clear meaning attached to these data structllres it becomes_i
impossible to underst&rrd, or vahdate, the outputs of the program. EXactly.
- what knowledge is contained’in the program, exactly what the ontont rep- |
fes_ents (i.e., what ‘n‘ew knowleage it encodes), and how the output is to be"
justified will all be uncertain.
,Fo'rmal logics Rpseess the important property of transparency of mean-

ing. That ls, once we have aseigned Z meaning to the non-logical symbols

in the logic, each expression, no matter how complex, will be given a well

defined meaning. ThlS meaning is imparted through the logic’s formal

!
%

semzntics, and 1s bullt up recursively in a one- to one manner w1th the con-

struction of the expression. Since expressions can be built up- recursively



-

)

logics can be very general mechanisms for knowledge repeeseﬁtation u?i.tho‘:lt
sacrificing well defined meaning. | -
A bFurthermore, most;legics also have a well specified theory. of linferenee.
'1"qu eécample_, deduction in first order I, ic. These inference procedures
give formal guafamties, or justiﬁcat.ions, to their conclusions. For example,
deduction guaranties that if the knowledge used is _trne then the'jveenclusions

. “generated will.alse be true. |
It is.in;porfent to note that Al programs need not I_ise expreséions of a
" logic as their internai representation, nor do tl‘\xey-'need tc ise the inference
N proce"dure specified by the logic. Ind.eed, it is well known “hnt evea for sim-
, _p.le propositional lo~ics this infer‘ence procedure is NP-complete, while for

ordinary first order e cit 1s undeeiaable. However, this does not preclude

wanalyzing the program by relating its internal Structures and its inference

(TS

algorithms to a logicv. The logic will provide the tools neeessary for a rigor-.

ous analysis of the pr(')iram. Nor does the general intractability of inference

in logics mean that Al\programs cannot use logics directly, with expressions

ime-logic as its internal representation and implementing the logic’s infer-

ence procedure. Automated theorem provers have been able prove many

useful theorems even though they are implernenting an undecidable infer-
‘ence procedure.. Nor are these two uses of logic incompatible. Infact,
work by Schubert et al. [73] has demonstrated that special representations

and algorithms which are formally related to expressions and deduction in

~



first order logic can profitably co-exist in a program which also uses logic
S
directly.
o \QH

<

~1.1.1 First Order Logic - o o .

" Ordinary first order logic has been the primary formal logic used in Al for
khowledge representation. It has the advantage of having.a mecharﬁzable
inférence procedure whi'ch gives its concluéions a very strong ‘juét.iﬁcationf
The 'irvlference procedure is, of course, deduction, and the justiﬁcation is
that if the.‘knowledg.exused (i.e., the knowledge stored in the program) is
true then the conclusions must also be true. For exarﬂple, starting vffi.th
the knowledge that penguins are birds and that Opus is a penguin, deduc-
tion can produce the conclusion that Opus is a bird. This con.clu‘sion'is
necessarily true if }t'he premises are ti’;lé.

. There is a large set of knovwvledge which is true simply in virtue of ter-
minological conventions, e.g., bachelors.are unmarried men, I‘)enguiﬁs are

birds. Any deductive consequences of such knowledge must also be ac-

- . . v - . . .
cepted as being true. Deduction as a mechanism of inference is not; how- .

ever, limited to such an@iytically true statements. It can also be applied
to statements whose tmth‘ values are not known but which are believed to

be true. Most scientific'knowledge, for example, falls into this category.

Having accumulated sufficient” evidence to believe that Newton’s laws of

=
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e
mc:i}m yield good“approximations at sub-light velocities, a scientist can
deduce from ‘thc;se laws (premises) certain conclusions about the motion of
the planets, such as, “planets describe an elliptical o'x"bit,” whichc_he. tan
accept with gqual conviction. Deduction can even be applied to statements |
not yet bélieved- due -tot insufﬁ;:ient evidence, e.g., to explore, the conse-’
quences of a new hypothésis, or in a backwards manner, ‘e.g., to generate
possible theories which explain thel known observations (e.g., Poole [62],

i

Morgan [51]). B . : e

g

First or’derilogic, although powerful, cannot easily represent all of the
knowyl.'edge that people use.l\Nor is its deductive proof theory sufficient -

for all~of the reasoning performed. One of the shortcomings lies in its
] : i

inability to deal in a reasonable manner with plausible inferences, that is,

inferences which‘are not always true given the premises (i.e., not deductive

conclusions), but which are platisible, or probable, and can be believed at

varying levels of certainty.”
' )

1A great deal of knowledge can be expressed in first order logic through the use of
devices like set theory. With the axioms of set theory in the language much of mathematics
can be built up and many complex concepts thus expressed. However, the addition of the
axioms of set theory makes deduction in the ngxc so complex that any sort of automation
becomeg very difficult. : '
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1.2 Probabilities

« vi’/Iany ordinary _inferénces have a tentative character. For exafnple, if we
have th‘e /kn‘f)v’&zledge that most birds fly and we are pold that Tweéﬁy is a
biré, a ﬁlausible iﬁference is that Tweety cvan fly. Deciquctiox_i is not capable
‘of this kind of inféf:eﬁce—in 'th1s case the truth of t-he premises does not
i.aply.the truth of the con;lu;ion;" THere may be any number of reasons w_hy
Tweety might not'be able to fly, e.g., he might be a penguin, he might.have
a broken wing, he might be an\ostrich, etc. However, irfe;p.ect‘ive of these
negative 'ﬁossib'ilities,_ it is tlear that the ability to rﬁake such inferences is -
essential for the suécéssful performaﬁce of\ various tasks. In many situations

1t is necessary to act, to draw some conclusion, despite the fact that no

conclusions are ﬁossible through deduction.

N \

It 1s naturai to look to 'proba(bilities. for a means of modeling f:hese types
of inferences. Probabilities were oﬁginally developed with such a use in
mind. Speciﬁcally,, they were developed as a rational guide to action in
gar‘nb‘lin'_g, where, for example, one does not know what the outcome c;f the
uext toss of the die will be, and furthermare, one has insufﬁcient- knowl-
ed}ge to deciucethe outcome. Since they were first developed; probabilities
have been the subject of rﬁﬁch study, whichmﬁaskresikl_lt,ed in a simpl¢ and
-well unders‘too_gl formalization (Kolmogoroff [35]).' P;obabilities have also

°

been used by philosophers in their studies of non-deductive, or inductive,

N



inferences. Such work has produced some very strong reaéons/ for the use

o~
1

Qf probabilities. These results are normative results, i,e.', they sh?w that
in order to insure certlain criteria of rafionality probabi_lities ;re the only
possible formali§m when one wishes to hold graded levels of belief.

There are two, major normative resultg the results of Cox and the re-
sults of De Finetti and others. Cox [11] developed a set of simple criteria

intuitively required of any measure which represents a degree of belief in

P

-

an assertion. Hé then proceeded to prove that any measure which satisfied
these criteria must be a probability function. ‘De Finetti took a decision
theoretic approach to probabilities, viewing probabilities as being a guideA

to action. He was'able to prove that any measure over a propositional

‘lattice of sentences used to guide decisions must be a probability function

(see [8, chapters 3 and 7]); any other function will lead to certain loss is
some.situations.” These results were extended, independently, by Shimony

[74], Kemeny [34], and Sherman [42], who showed that any function whi¢h

‘given some evidence assigns a degree of belief to a hypothesis must be'a

-

conditional probability function, if that degree of belief is to be used to/
guide action. . ' ‘ _ é

The fact that these global justifications exist is a very important reason

2 Also see"Horvitz et a.l [31] for a discussion of the implications of Cox’s work to Al,
and’ Aleliunas [2] for a generalization of Cox’s results to probability functions whose range
is less structured that the reals. .

3 s ' 4



-
for fooking to probabilities. As mentioned abo{re, deduction gives a very
strong justification to its conclusions, but that justification is, in many sit-
uations, too strong: it ca.ln‘not be hoped that any mechénism for flausible
inference can be justified in such a strong mannér. At thé same time it
is important that such a mechanism be giVen some sort of élobal justi-
ﬁcatlon i.e., a justification which is 1ndepeﬁndent of context Citation of
spec1ﬁc examples of intuitive behaviour can never be a substitute for such

Jjustifications.

1.2.1 Types of Probabilities

\

" Although the formal model of probabilities is well.defined, its meaning, or
interpretation, remains a contentious issue. There are three major interp;re—‘
tations of probabilit‘igs': the empirical, the logical, and the subjective (see
Kyburg [37, Chapter 1] and for more detail Kyburg [38])." The empirical
interpretation is the oldest of the three, having Been explicitly proposed at
least as early as 1866 “by John Vem [80]; it has been adopted k;y many writ-
ers including Neyman [52], Reichenbach [64]; Salmon [68], von Misés [81],
and Popper [63]. The empi_riéal interpretation takes probability statements
as representing statistical tr1.1ths about the World. In this view, probabiiity
statements are objective statements about the world, and their truth or

falsity has nothing to do with a person’s opinions, or any body of evidence,



but only with the state of the world. This view of probabilities can be con-

| t;Jesfed with the logical interpretation (Carnap [9], Hintikka [29]), \;vhich
views ;robaﬁbilities as being a relationship between a body of evidence and
an assertion, both expressed in a fixed logical language, the relationship
being determined by the rules of the language. Finally, the subjectiv}e,
or personalistic, i{lte‘fpretation (De Finetti [14], Savage [70]), views prob-
abilities as being degrees of belief, or propensity to take-action, held by
-a particular pexfgen at a particular time. These degrees of belief need not"
have anything to do with ;eelity; they are purely subjective.
When we ezc;;mine the diffeeent types of kn,owledge we wish'to represent
- in Al programs it is found that a lot of it i$ in the form of staf;istical claims
abvout the World. These range from imprecisely quantiﬁed generalizations,
like “Most birds fly,” or, “People with a runny nose usually have a cold,"’
to more' preeiselgr qtuantiﬁed statistical statements, like those found in var-
ious expert systems which deal with uncertamty (e.g., the, MYCIN system
[75]) The interesting thing about such statistical claims is that they play
a'diﬁ'erentvro'}e in a knowledge based system than the plausible inferences
drawn from them, even though they are Koth 1;n some sense probabiiisf;ie. -
. These statistical clalms are used in a manner similar to objectivé 10g1ca1
knowledge For example when making the plausible inference “Tweety can

fly” the statistical claim “Most birds fly” is being used in the same man-

/
ner as the knowledge ‘Tweety is a'bird.” That is, _both are assumed- to



be objectively true pieces of knowledge. The plausible inference is, on the

other hand, a conjecture believed at some level of certainty. The statistical

claim is being interpreted as a statistiéal truth about the world, i.e., as an

empirical probability, whereas the plausible inference is being interpreted

as an assertion held to some degree of belief, ile., a subjective or logical

probabilify.

1.3 The Contribution of This Work

The major coptribution‘ of this work is to provide a formal logic capable.of
representing a wide variety of statistical claims, through an empirical prob-
abilistic component in the semantics. The logic is an ‘éxpension of ordinary
.
first order logic, aLnld- its development is complete; that ié,,not only are the
syntax and semantics sp_eciﬁed, but also a sound and cbmplete deductive
proof theory is provided. This proof theory is capablg;of reésoning with
statistical knowledge, as wgll as with sentences of first order logic. )
Since statistical knowledge is represented by statements of empirical
probability, it has a logic of its ow'nv, imparted by the logic of probabili-
ties. For example, from’ the generalization “Most birds fiy” élong with the
knowledge “Penguins are birds” and “Penguins do not fly,” it is possible to
” deduce fhat “Most birds are not Pen;guins.”' When‘more precisely quanti-

fied knowledge is present, all of the power of Bayesian analysis is available,

]
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: .including causal reasoning, and weighing of evidence.. In fact, since .the,

proof theory is complete it logically subsumes most of the deductiveproba-

bilistic reasoning systems (i.e., systems based on th- axioms of probability)

3 ]

'previo;sly developed. ) o

The second contribution is a general mechanism of plau31b1e ml'erence
called he.lef formation, Whlch can use the statjstical knowledge to generate
plausible conclusfens about particular cases. For example, the mechamsm

‘of belief formatlon is capable of makmg the inference that Tweetv can

probably fly, gnen ‘the knowledge that Tweety is a bird and that most -

birds fly.
Belief formatlon generates a graded conclusmn n that 1t a551gns a de-
gree of behef to the conclusion, a degree Wthh ranges from Zero to one and

which obeys the laws of probab111ty The deg;ree of belief is similar to an as-

s1gnment of a sub_]ectlve probability to the conclusion, and it can be usedto

b}

guide actlon m the face of uncertainty. Since these measures of behef obey.

\
the laws of probab1hty, the : normatlve results mentioned above can be used
to justify their use. The major dlfference between tHxs degree of belief and

a subJectxve probability, as defined by De Fmettl and Savage, is that a sub-

Jective probability is  based only on a person s subjective opinions and need .

have no basis in reality. If subjective probabilities are used to guide action,

then.these probabilities can be considered to be ‘correct’ to the extent that

' ’ ' : / |
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one’s actions are rational.? The degrees of belief generated throdgh belief

’ . ’ AN

rmation, on the other hand, are not based .on sub ject\i\ve\ opinions';‘. they

.re based on knowledge wh1ch is con51dered to be representatlve of certmn

!

' tatlstlcal truths ablout the world S Cy }T";' o

One feature of the plau51ble conclusxons which can’be drawn from the

..statlstmal Lnowledge 18" that they d1splay non-monotonic behav1our That _

ls,’ a conclusion sanct1oned by the system mhy no longer be sanctloned
when new facts are added to the system 4 ln the simplest case a plaus1ble

B concluslon may later be learned to be false, i.e., its negatxon. may’be adcled
. s B ) - .

as'a neWw fact. A slightly more. cornplex" case occurs when new evidence is -

/

12

~ added which changes your degree of beliefin a prev1ous plausxble conclusmn =

. For. example you may conclude that 1t is probable that Tweety can ﬂy but
~.upon learnlng some. new 1nformat1on e. g that Tweety has had hJS tLgs

‘clipped, you may be forced to retradt the previous conclus1on and conclude

-

instead that it is unlikely that Tweety can fly That i 1s, the degree of bellef -

n- Tweety flying has changed from some hlgh value to some. low value In

. a still more comphcated case, new 1mormat1on may .be added wh1ch mal\es

the stattwtlcal knowledge upon which the pl_ausible inference. is founded .

- 1

, .
3This could be the Justlﬁcatlon for the use of subJectlve probabilities. by, some ‘re-.

searchers (e.g., Duda et al. [17]) in expert systems. That is, the expert? subjective .
opinions are considered to be an accurate reflection of realit

“Hempel [28] ¢alls this behavisur the “Ambiguity of Statiszical Systematization” and

gives a lengthy discussion on why it occurs. =~

R e
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inapplicable. For example, you may conclude upon observing that John

has a runny ‘hose that John probably has'a cold, but | - you may learn ‘

‘that he suffers from allergies, which makes you questio. the applicability
- . / N )

of your statistical knowledge about runny noses-and colds.

‘ ' A reasoning system which consists of first v(\)rder logic along with deduc-
tion is, on the other hahd, purely mc tonic, i.e., a conclusion will never
' be invalidated by the a(:ldition of new knowledge. This 1s a result of the

_ . A
strong justification irhparted by deduction to its conclusions. As long as
the premises used in Ithe deduction remain in'the system the conclusion will
rexhain a valid deduction, regardless of what new knowledge is added to the

system.

| 1.4 Non-Uni‘vers‘al Genef‘alizations

There has béen a ex.ensive amount of work in Al addressing the problemv
of represénting and reasoning with non-universal géneralizations, le., gen-‘
eraliz'at':ions which admlt exceptions. .‘Notably, .vérious scherrie's have been
i deveioped for non-monotonic reasoning which address, z;rnong other thi;lgs,
this problem (see, e.g., the articles in (4]). TAhe system constructed here is’
capable of dealing with‘a large set of these generalizations, in particular,
with -those generalizations which can be given a statistical interpretation,

e.g., empirical generalizations like “People with a runny nose usually have

S—
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a cold”, “It almost never rains in Southern California in the summer”, “It’s
usually very cold in January in Edmonton”, “Most bir:is can fly”, “Milk is
usually kept in a fridge.” N

There are a number of non-universal generalszations which seem to have
more Phaﬁ a@tatistical interpretation. One c_ornmoh type are those gener-
alizations which take the form of generic sentences in English, fof example,
the sénj;en/c'e “Cats are stealtﬁy.” This sentence seems to have.?n inten-

tional megming as well as an extensional meaning. The intentional meaning

-
says that this is some sort of identifying property of cats, i.e., a property
which will be preserved across possible worlds.” The extensional meaning

may be more statistical, e.g., in most situations (in this world) cats are

stealthy, (see Schubert and Pelletier [60] for a discussion of these matters).

" The intentional part of the meaning of this sentence is beyond the capa-

bilities of the formalism developed here, hence it c.annot capture the full
meaning of such statements. -

What is claimed here is that.the set of non-universal generalizations
which can.be giv‘en a statistical interpfetation fepresents a large and im-
portant set of knowledge which is necessary for the performance of a ﬁumber
of different tas;ks in AL

The popular example of k“Most birds fly” can be used to compare some
of the other work in non-monotonic reasoning to the work presented here. It

<

should ~lso be noted, however, that the developers of most non-monotonic

14



reasoning systems have much more in mind than just the modeling of non-
universal generalizations.” In the non-monotonic system of default logic

constructed by Reiter [65] this generalization could be represented by a

default rule,

T~ Bird(z): M (m)
Fly(z)

where the meta-logical operator M indicates consistency. In the system of
non-monotonic logic of McDermott and Doyle [49] this example would be

represented using a formula containing a ~ntential consistency operétor:
Vz((Bird(z) A MFly(z)) — Fly(z))

Int‘uitively the meanings are sirﬁiiar. Both formulas asseft that the conclu-
sion that z can fly can be drawn if z 1sa bird and if it cannot be proved that
z cannot fly (i.e., Fly(z) is -~ :sistent with what is Akn.own.). McCarthy's cir-
cu_rnscriptionv[él?] is somewhat diﬁ'efent. In his for.malism onelvcircu'rnscribes
an ‘abnbr_mality’ predicate to}minir‘nize the number of non—ﬂ_;ying ,birdé.

“ Reiter’s and McCarthy’s systems are meta-language cqnstrquions built
upon ordin:;.ry first order logic. The meta-language constructions encode
the non—un?;versal generalizations, and are used as rules which can add cer-

tain sentehces‘ to an underlying first order theory. However, the only in-

ference mechanism provided is first order deduction: hence, there is no

mechanism for reasoning with the generalizations, since the meta-languagé

-

SMcCarthy [46] presents an ambitious list of copjectured uses.
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constructions are outside of first order logic.’ Thus,even outrivght contradic-
tions can be present in their systems, e.g., the assertions that “penguins are

”

birds” and “’Eypically penguins are.not birds,” can both be present without
¢ radiction.® . ' ‘ ’ »
Delgr'ande [16] has addressed this particular problem, and has con-
structed a conditional logic, with possible world sefnantics, which is capable
of doing some reasoning with the non-universel_ generalizations (defaults). .
It 1s particularly interesting to note that his system consists of two parts,
as does the work 'pregented here. He finds that his deductive modal loéie,
.I while capable of representing and reasoning with the noﬁ—uniyersal general-
izations, is iﬁcapable ¢ making the kinds of plausible .inferences sanctioned
by these generalizations. That is, his logic can represent and reasorn: wiEh
statements like “most birds can fly,” but is incapable of making the plau-
sible inference “T'weety can ﬂy’; when it is. known that Tweety is a bird.
In order to make these inferences he has to use certain inductive assump- 3;
tions, as is required by the system developed here. This is not surprising.
Since these inferences are only plausible, not certein, they ;nust be based

on some sort of inductive, i.e., non-deductive, rules of inference. There are

two ilgiuctive assumptions used in his system, an assumption of normality,

6In McDermott and Doyle’s system the consistency. operator is in the object language.
However, they provide no semantics for this operator. Hence, there is no way of relating
the truth of Mg to the truth of 8 (Davis [12]). Thus, their system, as they present it, also
allows this contradiction. ' ' '

~
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which is similar to'McCarthy’s circumscription of abnormality predicates,
and an assumption of minimal relevance, whiéh is sirmnilar to a probabilistic
assumption of independence. .

Tl\le probabilistic approach developed in i:his thesis has a number of ad-
vantages over thése formalisms for dealing with émpirical generalizations.
Also, even though the developers of most non-monotonic reasoning systems
claim that their formalisms deal with more than just empirical generahza-

tions, it is not clear j@st how general their forrrialisrns really are, since the

‘Intuitions behind these formalisms” seem to be of limited applicability.

The first advantage is representational power. These formalisms are

limited to “almost always true” stdteme‘nté. This is a result of the ungraded
nature of the plausible conclusmns generated. The probablhstlc approach
is capable of expressing, a%d dlfferentmtmg between, generahzatlons which
range from almost always true to just as often false as true. Also, due to a
key innovation, arithmetic relationships between these gener;ilizations can

be x1 essed. For example, the statement “It is thore likely that a politician

is a lawyer than an engineer” can be expressed in the probabilistic formalism

developed here. Furthermore, it can be expressed without any commitment

to the likelihood of either case, i.e., without any commitment either to

. "That is, that the generahzatlons should apply unless they can be proved to be inappli-
cable [Reiter, McDermott and Doyle], or, that there are a minimal number of abnormalities
[McCarthy, Delgrande). :
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“most politicians are lawyers” or “most poiitic_:ians are not engineers.”

Another advantage is that these fofffzalisms have, to my knowledge, no
formal justifications like those wl. :h .ave been demonstrated for proba-
bilistic degrees of belief.? Th1s is a serious limifatibn, since there are a wide
variéty of conjectured uses.for these formalisms. It is clear that citing spe-
cific examples where the theory appears f;o work is‘ no substitute for global
justifications, especially when the range of"clairrie‘d uses is so wide as to
preclude the possibility of empirical tq,sting.v ‘

Finally, the probabilistic approach presented is able to reason with the
empirical generalizations in a much more general manner that Delgrande’s
conditional logic. Again, this is a feshlt of the ungraded co1;1c1usions gen-
erated by his system. The fact that the conclusions are ungraded r;lakes it
yi.mpossible to weigh evidence in any sophisticaﬁed manner, as, for example,

is allowed by Bayesian analysis. Furthermore, the inductive assumption of

minimum relevance used by Delgrande has a formal analogue in probability

theory, as independence. The logic developed here is capable of explicitly =

representing independence assertions, and is also capable of reasoning with
them; hence, this type of assumption can be asserted at a much finer grain.

Tha* is, we are not stuck with a global assumption of independence; in-

stead, the exact limits of such an assumption can be represented. The

80ne problem which results from the lack of any formal justification is “A Clash of
Intuitions,” Touretzky {78]. '

~
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other non-monotonic formalisms are not capable of any sort of reasoning °

with non-universal generalizations.
s

14 —

’

1

1.5 Outline of thHe Presentation

Th,é next chaptef provides the motivation for the formalism developed in
the thesis. The logic used to represent statistical knowledge is introduced
along with some of the considera,tion§ whlch influenced its final form. The
légi‘c s a typ?of prbbability Iogchence the chapter also Cantaihs a
discussion of and cornparlson with, prev1ous work in probablhty logics.
The mechanism of behef formatlon 1s motivated by fipst explalnmg the need
for an 1nduct1ve inferenceé mechanism aKthen the intuition upon which it
1s based. JA simple model of a rational age it is presented, which helps to
clarify the role of the two parts of the formalism. A closely related system
of mduct{l;e inference, p:ev1ously constructed by Kyburg [37], is mentioned.

" Chapter 3 starts into the formal results) of the theéis. It presents the
syntax aﬁd.semantics of the logic, called Lp, used to represent the statistical
'knowlédge. Exa;xlplés are given of the types of knowledge expressible in this

logic. .

Chapter 4 presents the deductive proof théory for Lp. The proof theory

1s shown to be both sound and complete, and examples are givén of the
2 .

types of reasoning possible.

\
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Chapter.-S develops the inductive mechanism of belief formation, giving
. some formal justiﬁcafions for the mechanism. Examples arglpresented of
how the two pieces, knoWledge a.I'ld deduction in Lp and belief. formatiQn,
work togeth,er to solve various prqblems.

4

Chapter 6 presents an application of the formalism to a treatment of
multiple inheritance with exceptions. A graph based inheritance reasoner
is presented, which in some ways is more general than any previous system:.

Finally, chapter 7 su_rhs ‘'up what has been accomplished and presents

some suggestions for future research.
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Chapter 2
j Introduction to the Formalism

There are two parts to the formalism developed in this thesis. The first is a

_probabilistic logic, called Lp, which is used to represent and reason with a

.. )

wide range of statistical knowledge. The second is an inductive mechanism
“of inference’ which uses this knowledge to generate;'degrees of belief in a

wide class of assertions.
4

2.1 The logic Lp
K
) ® : :
. 2.1.1 Types of Statistical Knowledge

~ ~ |
One of the criticisms of the use of probabilities in AI was stated in an

influential article by McCarthy and Hayes [48], in which they observed:

—
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The information necessary to assign numerical probabilities is

e

1

not ordinarily available. Therefore, a formalism fhat required

numerical probabilities would be epistemologically inadequate.

This has been an on-going and valid criticism of the use of probabilities for
general knowledge repr}ese\rltatfon.
This is also the reason why the area in which probabilities have had

their major impact has been in spécialized expert systems. In such do-

mains numbers (of some degree of accuracy) are sometimes available, and

are obtained by interviewing domain experts. The development of methods
for structuring probai)ilities into causal networks (Peaﬂ [55]). has further in-
creased the popularitjy of using probabilities in expert system;, especially for
medical diz\mgnosis.1 These -methods have two main advantages. First, they
reduce the quantity of probabilistic information requifed, without positing
overly restrictive assumptions of independence. Sécorld, they reduce the
se;lsitivity of the ixj,ferenc_'es generated to errors in the original numbers. I'
However, the impact of probabilities on general kddowledge representa-

tion remains limited. These approaches still require a significant amount of

numerical data, which makes them unsuitable for general knowledge. Fur-

1The resurgence of probabilities in expert systems can be traced in a serieg of articles,
starting with Heckerman [26] who reinterpreted MYCIN’s mechanism of certainty factors
in terms of probabilities, Horvitz et al. [31] pointed out the importance of Cox’s normative
results, and most recently Heckerman et al. [27] and Schachter et al. [71] discuss the
advantayes of causal nets. ' : o
R&R

"\

22

’_\
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thermore, all of this work has been based on propositional languages, and

such languages are inadequate for general knowledge representation.

This work attempts to meet the objeétiqa of Mc(’ﬁg,hy and Hayes by

developing a logic which is capable of expressing a wide range of non-

numerical probabilistic kn'g)wledge; furthermore, if numbers are available.

they too can be represénted. In order to attain this goal the following

typology of probabilistic knowledge was constructed:

Relative: Probabilistic knovgledge may be strictly comparative. For ex-

ample, while most would agree that it is more likely that a politician
< . :

was trained as a lawyer than as an engineer, few would be able to -

assign values to these probabilities.

N
-

question these values may only be in the form of intervals: e.g., the

- Interval: Even when we can give numeric values to the probabilities in

I

probability of a politician being a lawyer may be in the range 0.7-0.9. .

Functional: Probabilistic knowledge can also be in the form of functional.

mformatxon For example it would seem that the weight of a bird

is a factor in its ablhty to fly. It is clear that given the Welght of a .

bird we cannot deduce its ability to fly, nor its inability to fly. This
knowledge could, however, be expressed as “The prbbability that a

bird can fly is a (decreasing) finction of its weight.” /

»
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Conditional: In a.fgeneral knowledge base we may have totally unre-
‘lated éets of probabilistic knowledge, e'.g., “Most dogs bark” along
with “Most 01& cars need repairs.” Conditional probabilities can
be used to répres.erilt the fact that these pieces of information are
independent.? For example, if we construe ‘Most’ as meaning more
‘than 50% these statements could be represented as the Lp sentences

. [Bark(x)|Dqg(m)]r > .5 and [Nceds_Repairs(z)]Old_Car(x)]I > .5,
where the square brackets are used to indicate probability dnd x-can
be conside;éd to be a random m:ember of the predicates’ denotations.
In ‘the first sentgnbe, for exampie_, no a'ssergion is being made a‘bout
the probability_bf a randomly selected object, z, barking unless z is

known to-be a dog.
—

Independence: Knowledge of indepéndence is also a type of probabilistic
knowledge which people possess. For example, most doctors would
agree that the coloﬁr of their patients’ shoes has no influence on their
illnesses. Work by Peari'and his associates has dem;)nstrated the

importance of this kind of knowledge ([56], [58], [59]). he

The log:'ic developed in this work, Lp, deals with all of these considera- °

tions. It allows for the expression of all of these different types of knowledge.

)
)

“Hempel [28, page 136] makes a cogent argument that all probabilities are in fact
conditional probabilities. Indeed, in the logic constructed unconditional probabilities make
very little sense, except perhaps, in very circumscribed domains.




Along with all of this probabilistic kndwledgé it is also clear that some
knqwledge is certain, and in some situations both certain and probabilistic
knowledge mus,.t be used to make the desired inferences.. For exa;nple, if
we have the certain knowledge that Kiwis are cultivated fruits and also
the probabilistic knowledge that most cultivated fruit are'edible,.'we have
to use both pieces 'ef_infonnation to conclude that kiwis may be edible.
A formaiism is required which can represent both certain u’(logical) anc}
uncertain (probabilistic) knowledge before such types of rea‘siening can be

mechanized. Lp is an extension of first order logic, so logical knowledge of

this nature can also be exﬁressed.

2.1.2 The E;iéld of Numbers

A key, and rather simple innovation which contributed to the expressiveness
of the logic was to make it two sorted, by including a totally ordered ﬁeld
of . numbers in the semantic model. One sort 6f/ent1ty in the- loglc is a set
of Ob_]CCtS"., O, and the other sort is a field of \numbers, F. The intention is
" that the set of objects consists of the things of interest (e.g., cars, _peopie,
kinds of cars) wilile the field of numbers consists of ordinary real numbers.2

Since the numeric values of the probability terms are part of the ob ject

language, it becomes posbele to express relationships between them w1th—

3Using real numbers was the intention, however, technicalities forced the use of =1
abstract totally ordered field instead (see section 2.1.4).
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out specifying the actual ndmbers. For example, it is possible to e;;press the

statement “It’is more likely that a ,politicia\n is a lawyer than an engineer”
S v :

in Lp as

[Lawyef(:z:)|P’olitician(a:')]z > [Eng}ineer(m)|‘Politjbcian(:‘c)]r.

A

No cemmitment is rhade to a specific value for either of‘the probability
terms mentioned, i.e., no valueis asserted for either [Lawyer(z)lPolztzczan(m)]
or [Engmeer(:c)lPolztzczan(z)] Purthermore if symbo’is representlng some
subset of the reals are specified, it becomes p0551b1e to express 1ntervals :
Fot example, if the symbo]s ‘0.7” and ‘0. 9’ are used (and given their norrnal‘
arithrhetic meaning) statements like “The probab1hty that a p011t101an is a

lawyer Is between 0.7. and 0.9” can be represented by the Lp sentence:

77 '[Lawyer(:z:)|Politician(xj]r € (0.7, O.Q).‘

R}
A
El

Once a field of numbers was addedvto the logic it became possible to’
include ‘measuring’ functions in the logic. These measuring functions man
frd’rn' t‘he“set of objects to the field of nnmbers. Using the measuring func-.
" tions it ’ispossiblerto express a statement like ”“Jack’s weight is 80 kilo-
grams.” This can be expressed W1th the Lp sentence Weight_in K gs(JacL)

= 80, where Wezght zn_Kgs is defired to. be a measuring functlon and |
Jack and ‘80’ are constants (object and ﬁeld constants respectlvely) The

objective of expressmg funct1ona1 probablhstlc knowledge was attalned by
* . -



allowing sentcuces to be constructed gecursi\,/ely from these types of sym-
bols. For example, the statement “Heavier birds are less likely to be able

to fly” can be expréssed in Lp using a measﬁring function symbol.

2.1.3 Probabilities over the Domain of Discourse

It was the Aesire to represent logical ipformqti‘bn which played the key fole
in the evolution of this work. In a ggneqql knowledge base it would be
necessary to reiaresent both general knowf:adgé like “All rneﬁ are mo'rtal”
anci specific knowledge like “Socrates is a man.” Propositional logics are

" ‘inadequate for this purpose. These statements represent distinct assertions,

and thus musf'be encoded as’ distinct propositional symbols. There is

* no inherent relationship between distinct symbols in a propositional logic.

However, there is clearly a relationship between these.different assertions,
"« - v L.
. ‘a relationship which propositional logics cannot express nor reason with.

It-is necessary to use first order logic (i.e., predicates and quantification)
to cépt;lre the semantics of suEh (relationsh?{‘ps. For example, in first of_der
logic it is posgible to use the relationship between the assertions “All n;en
are 'mortal’f @d ‘;Socrate's 1s a m@n” to infer “Socrates is mortal.” |
Hence, in order to represent logical inforrnafiori, methods of mixing
probgbilities with first order légic were ex'amined.; Most work in this area

AT . . .
" has examined methogds for atfi_gchjng probabilities to the sentences. of-a
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logical language. The worl- of Nilsson {53! and Bundy [6] are examples ‘of
this approach in Al. They posit a probé.Bility distribution over a collection
of possible worlds. Each'possible w0rld'ih this collection gives a complete
specification of the truth values of the atomic sentences of the logic, and

the collection consists of all such distinct truth value specifications. Each

sentence of the lsgic is assigned a probability equal to the measure of the set '

of possible worlds in which that sentence is true. Tl}is approach is, however,
incapable o=f expressing statistical generalizations, e.g., the statement “More
than 50% of all dogs can bark.”*

Thi\s statement makes a claim about dogs in general, hénce, it cannot be
expressed by assigning probabilities to statements abd,ﬁt particular dogs.
It wéuld seem that some sort of variable is r'e’,‘quir.ed. The only type of
sentences in first order.logic which have variaBies are those which bcvont_ain
“a’ universal quantifier. However, this statement caﬂnot be expressed by

assigning a probability to the universal sen@ence VzDog(z) — Bark(z). If

the knowledge base contains a single instance of an individua‘)’,l dog which

cannot bafk, i.e., an individual dog with probabiiity zero of barking, the
universal sentence will be false in all possible worlds; thus, the probability of
the universal sentence will be zero, even if every other dog in the knowledge

bdse is known to bark.

4To l:e more precise, it is incapable of representing ‘'such statements without using
devices like set theory to build up enough mathematics to express statements of proportion.

-
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Recently Fagin et ail. [20] have e :loped a logic for reasoniné about
probabﬂities. Théylgive, unlike Nilsson, axioms for Areasonin"g,.about the
probabilities (N ilsson only provided some approximation'techniques), and
furthermore they prove their axiomatization to be complete. However.
their logic is also a method for assigning probabilities to seﬁtences using a
possible worlds approach; so it too suffers from the same difficulty wheﬁ it

~comes to. representing statistical statements.

There has also been a considerable .arnount of work in philosoéhy con-
.cerned with prc A,biility loéics (e.g.,\C‘ar‘nap [9], Gaifman [22],‘ Field [21],
van Fraassenl["i.g]; LeBlanc [41], Morgan [50]). This work also has been con-
cerned with attz;ch_ing probabilities to the sentences of a logic. The:possible

- worlds approach used in'AI'is equivalent to the approac}ga.:tziken by these
*)lhﬂOSOpheI‘S. In partic;llar, £hey pésit a'prolba.bility disizﬁbu'tizm over the
Linde‘nbaum-Tarski algebra formed by equivalence classes, of sentences in
the logic. These equivalence classes are defiried byv the re’l?a'tion of provable
e’qu_i;'/Aalence.5 The.bases for the probability distribution-are sentences whi.ch
are long éonjunctiéns and whi;:h fix the truth value of all other sentences.

Corresponding to each such long conjunction is a possible world. In fact,

- each possible world can be identified with a long conjunction which specifies

the truth values in that possible world. Hence, a probability distribution

SThat is, if @« — #'and also 8 — o, then o and § are in the same equiya‘l&nce class.

3

/
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_over these base sentences is equivalent tc‘> a prc;bability distribution over the
set of possiBle worlds. When the logic is first order logic, univ;ersally' quan-
tified sentences are assigned a probability w'hichﬁis equal to the iﬁmum of
the probabilities of all instantiations of that universal. This is called the
substitutional interpretation (see LeBlanc [41]). . (Technical details dil_‘fer
from aLuthor to author.) > fact, this is the oply reasonable interpretation if
one also wishes to preserve the normal meaning of umversal se¢ntences. The
subst1tut10nal 1nterpretat10n has the property that one false instantiation
(i.e, an instantiation with probability zero) forces the probability of the
universal to be zero (cf. the possible worlds approach described above).

The difficulty with the method of a:ttachin'g probabilities to the sen-

tences of a first order logic is that the only kind of variable available in a

Bl

first order logic are ﬁnjversally quantified variables. The devic_:e of attaching
probabilities to sentences does not change the essential charglcter of such
variablés. T}_',le statement “More than 50% of all dogs can bark” can also Be
interpreted as saying that a ra.ndornly selected dog has a greater than 50%
chance of being able to bark. Universally quantified variableé ér'e not ran-
dom variables. The novel feature of the logfc developed in thi work, Lp,
is that it has random variables as well as universaily quantified variables.
Lp does not have a probability distribution over the sentences of a
logicel language. In Lp the probablhty distribution i is, mstead over the

Fa

domain of dlscourse ThJS 1s an explicitly empmcal inte: Letatlon of the

J |

30



S

probabilities, whereas, the possible worlds approach can be viewed a.s be-
ing a subjective approach to probabilities. The logic is also an extension
.of c;rdinary first order logic. In the logic statistical knowledge is expressed
.through probability terms which contain open formulas (i.e., formulas wi£h'
free Var.iables). For example, the statement “More than 50% of all dogs
bark” can be expressed with the Lp sentence “[Bark(r)IDog(a:)]x"> 0.5”. -
| This sentence is formed frOI’El the ‘>’ predicate symbél, the'const'ant ‘0.5’,v'
and a probability term which contains two open formulas, Bark(x-) and
Dog(z). The square brackets are used to form probability terms. These
terms are formed by binding some of the free variables of the'open formula.
In this case the fr(fe ‘variable T is bound By t'hle probability term. The vari-
able z used ir'i;this manner can be interpreted as being a random variable.
Intuitively, the probability term represents the probability that a randomly
selected dog, =, will be ablé to bark. Equivalently, it can be viewed as
represent:ing the proportion of objects, z, which bark among those which
are dogs. These progability terms have a completely different semantics
from the semantics of universai sentences, and can be used to chpr_ess a
. wide variety of statistical knowledge.

In Lp, h:)wever, cl.osed. formulag can only have probability one or zero.
‘That is, in Lp a closed formula li'llce “Bar_k(ff’i;io)” is either tfue or false;
no intermediéte_ value is possibie.

’ So,)iit can be seen that the subjecti;e and empirical app\roaches to prob-
. :

§
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2.1.4 Non-Standard Probabilities

i

ability are in a.sense two parts of a complete picture. The possible worlds

-

“approach, which expresses a subjective probability, can assign a probability

to a closed formula, but is incapable of representing empirical probabilities,

which take the form of statistical statements. Lp, on the other hand, is

t

capable of expressing) these statistical statements, but is inéapabie of rep-
resenting a subjective probability assignment to a closed for-mula.

The generation of subjective probabilities, which can be viewed as being
dzagrees‘ of helief,dis fhé tasl; Qf the second part of the formalism; belief
férmation. Beliéf formation is én inductive inference mechanism which can

use the statistical knowledge expressed in Lp to generate degrees of belief in

- a wide class of closed formulas. These degrees of belief are not exactly like

subjective prbbabilitiés. As mentioned in chapter 1, subjective probabilities
needvhaw‘/e no_—relationship with reality. The degrees of belief generated in
this formalism, however, are based on objective knov’zledgé of the world,
i.e., on the statistical knowledge expressed in Lp.

-

Mathematically standard probabilities have two features beyond the calcu-
lus which defines their behaviour. First, théy are real valued measures, and
second they are sigma-additive. Sigma-additive probabilities are subject

to the constraint that the probability of any countably. infinite collection
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of mutua‘lly‘disjoint sets is equal to the limit of the sum of the individual
/Iarobai)ilities of those séts. )

The probabilities used in this work are ﬁon—standard in both respects.
First, their range of val.u‘eAé is only required to be a totally ordered field.
Second, they are finitely adc_li;ive but not necessarily sigma-additive. These
non-standard features are a result of éragmatic considerations.

One of the constraints under which this work was developed was £he

desire to keep the proof theory of the logic relatively simple, with the even-

tual aim of mechanization in mind. This precluded any constructions like

infinite rules of inferencei Without an infinite rule of inference it is impos- -

sible to have a complete proof theory which guarantees sigma-additivity.®

A trivial way out of this problem is to restrict the domain of discourse to

be finite. For finite domains finite additivity trivially corresponds to sigma

additivity. This is essentially the route taken by Fagin et al. [20], they

restrict their attention to propositional languages where it is impossiblé to -

refer to an infinite set (éince sentences, being finite in length, can only refer
to a finite collection of atomic symbols).
However, the.major aim here is an expressive logic for Al not adherence

to standard mathematical practice. There are many 1nterest1ng concepts

$Keisler [33] has shown that finite logics w1th‘51gma—add1t1ve probablhty distributions
over the domain of discourse are not compact. That is, such logics may have an infinite
set of sentences which is inconsistent even though every finite subset is con31stent
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particulari‘x in staLt_istics, which require the notion of at least countably
f . 4

infinite domains, e.g., repeatable trials. The difficulties which arise from
probabilities which are not sigma-additive are circumvented, to some ex-

tent, through the use a characterization of such pfobability ﬂmctions due

to Schervish et al. [72] (see chapter 3). ‘ .

The other non-standard property is the fact that the probabilities used |

here are fleld valued not real valued. Fagin et al. {?\0] are able“.to axiomatize

real valued probabilities by using the,theory'of real closed \_ﬁelds."; Tarski-

[76] has shown that this theory is complete for the reals/ That is, any
sentence in the theprylof real closed ﬁeids is provable 1f and only if it
is true of the reals. Unfortunately the theory is very exp'ressive——it only
allows the cénstants 0, 1, and ~1, and no func.\tions other than .addition
aﬁd multiplication.. This means that-the ‘measuring’ functions used here,
which play a key role in extending the eﬁpressiveness of Lp, would not be
- allowed. Also it would not be possible’ to make statements which assert.that
A
probabiiities are functions of othet values. So, for example,i'on\e\could not
assert thét certain quantities are normally distributed. Hence, he desire

for expressiveness again mandaté_d a sacrifice of standard mathematics.

Non-real valued probabiliti.'es'a;-i_lé,much easer to deal with than are non-

sigma-additive probabiiities. The reals are an example of a totally ordered

field; tnus anything provable of field valued probé.bilities will also be true

of real velued ones. It is also known that the rationals can be embedded in
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every totally ordered field, which means that the probabilities can take on'

any rational values (between 0 and 1) that they wish. This means that field

_valued probabilities are sufficient for all practical purposes since computers

S

are only capable of dealing with rational numbers (ancfl?‘q finite set of
them).

It will be shown later that many interesting statements true of real

- valued probajbilities are also provable of these field valued probabilities. In

fact, existent work in Al has only used simple properties of standard proba-

_ bilities, properties which are also provable of the non—staﬁdar_d probabilities

'used here. The advantage of using non-standard probabilities are that they

allow a very expressive logic with a complete proof theory which is very

similar to ordinary first order proof theory.

2.1.5 Related Work

~

As mentioned in the) previous section, previous work on pr(&ability logics

in artificial intelligence has investigated the attachment of probabilities to

senterices; thus, is not directly comparable with this work. It should be

i

noted, however, that Lp, along with the mechanism of belief formation, can

duplicate much of the reasoning performed by these logics. Furthermore,
B .

Lp can express a considerably greater variety of probabilistic information

than either Nilsson’s probability logic -r the ext=nsions to Nilsson’s logic

2
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presented by Grosof in [24].

The work of Grosof [25] represents an alternative approach to getting

non-monotonic behaviour out of probab‘ilities. Starting from sentences
(closed formulas) in an ordinary first order language he constructs a new

language in which these sentences are terms. The sentences in the new lan-

guage are assertions which assign probabilities to the sentences in the orig-
inal first order language. He then adds non-monotonic features to his new
language. These non-monotonic features are formalized using Lifschitz’s

pointwise cifurnscription [44] which requires the use of higher order lan-

guagmB;mdes the complexity of this approach, it is also the case that
Ale mechanism of assigning probab1ht1es to sentences of first order legic is

incapable of expressing statistical knowledge. Hence, it is not clear how

‘ , {
this scheme can be used in a knowledge-based reasoning system which uses

_ statistical knowledge. In Lp there is no need for higher order languages
to attain non-monotonicity; belief formation yields non-monotonicity using

just the classical laws of condltxonal probablhtles :

The work which-is most closely related to the lo}gm Lp 1s the work of

the mathematician Keisler {33].-His work lays the foundations for proba-

bility logics where the probability distribution is defined over the domain "

of discourse, ‘as is the case for Lp. The aim of his work is, however, to

develop a logic for expressing mathematical notions where uncountable do-

malins of discourse are common. erislerﬂhas shown that when the domain

~—

i
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is uncountable a logic cannot be coherent if it possesses both probabilities

-

over the domain of discourse and universal quantification.” Uncountable

domains are not, hov}fgver, of‘paramou'nt importance in Al, where wé afe
primarily concerned with statgﬁents about the ‘ordinary ob jécts’ of human
' expe;ience. Thus, restricting the class of admissibl\ifnodels to be at most
céuni;ably infinite in cardinality has enabled the developmeht of a logic Lp
which for Al is far mére éxpressive Atharf\Ke_isler’s logic. The Iogic allows
both universal quantification as well as a probability distr bution over the
c%omain of discourse. In fact, Lp ' is an eztension of oy{inary fir:1 order

N

?c; thus;¥ can represent all statements expressible in first order logic,

; well as probabilistic knowledge. Furthermore, Keisler has no need for an

inductive mechanism, and does not address this problem. .

There has also béen some work in'the philésophy of language which is
similar to the logic Lp. Aqvist et al. [1] give a semantic axlalyé'is of adverbs
of frequency (e.g., always, sometimes, often). Their semantic model is
essentiaily a first order logic with a probabilitgl function over the domain
of discourse.v They, however, restrict themselves to finite models and a

less expressive logic. Furthermore, they do not address the problem of

. . . 4 . S ’ ] .
induction. Hence, their forénahsrn can represent sentences which contain

"This limitation arises from the fact that the projection sets generated through universal
. quantification may not, in general, be in the domain of any probability function, i.e., they

may be nonmeasurable sets.
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adverbs of frequency, but it cannot reason inductive‘l-y with these sentenées.
Another impogtant diffe;ence between the logic Lp :'de both Keisler’s
logic and the formalism of Adyist et al. is the flield of numbers in the
'semantic modél. In order to refer to the values of the probabilitiés, Keisler
“uses a device he calls probability quaﬁtiﬁers (P-quantifiers). This device is
~similar to the so.'called J-operators which are standard in many valued
“logics (see Rosser and Turquette [66]). The intent of this dev;ice is to v /,@
give access in the ébject language (syntax) to .the semantic ér’bbabilities.
For example, one can write the sentence (Pzx = 0.5)0 to indicate. that
S \
the proportion of objects for which 6 is true (when the variable z in 6
is interpreted as that object) is 50%. These P-Quantiﬁefs -become part
of the fixed logical symbols of the language. With these\P-Quan-tiﬁers’,

however, the numerical values of the ~proba_bilities remalin outside the main

/f“(part of the logic. That is, the numbers (like 0.5) which appear inside the P-

<

N .
arithmetic relationships between probabilities cannot be expressed. For

Quantifiers cannot be referred to outside of the P-Quantifiers. As a result

example, it is not possible to express the previous statement: “It is more
' likely that a politician is a lawyer thaz‘; an engineer” uéing P-Quantifiers.
This statemegt cannot be expressed without a commitment to the values of.
the pro‘bab'ilities‘of both cases. That is, we could say something like (Pz =

.8)(Lawyer(x)\lilfai’i-tician(:r)) and (Pr = .4)(Er%ginee:-r(zy)|Politicia;1(m))

N
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but not something like .

-~

\(Pm)(Lawyer(m)|‘Polit:'cian(:é:)) > (P':z:)(E'ngineer(x)|Poﬁtician(x)), LA

as this is not a valid form of the P;Quantii‘ier. Aqvist et al. [1] are not .
concerned with exact numbers, and rely on predicates like ‘usually’, ‘some-
times’, etc., to express the numerical import of their sentences; no arith-

'

metic%elaf't"ionships between these predicates can be represented.

2.2 Beiief, Formation

$

Intuitively it is clear that a sentence like “Bark(Fido)” is ob'jectivelyy either
L-Aeae orbfalse; however, when the 'zlétxial truth Value‘is unknown it may be
necessary to make a reasohable' guess. This is the pﬁri)ose of the inductive
mechanism of belief formation. This mechanism génerates a: ‘reasonable’
guess which is based on the statistical knbwledge expressed in Lp.. This
' gueés is in the form ‘of. an assignment of a probabilistic degree of belief to
"';-‘the_‘closed formula. These induced degrees of belief are not to be confused
with statements in Lp. Lp is incapable of expressing such degrees b\of belief.

It is, however, capable of expressing base statistical information from V\;hich

these' deiprees of belief can be generated.

39



2.2.1 ‘The Inductive 'Assumption of Razn_d_omiz_‘ation

The mechamsm is founded on a very 81mple 1nduct1ve assumption wh1ch .

has a long hlstory The process is similar to the way in’ which we make
sense of statements like “The probability that a coin will show-heads when

flipped is 0.5”. For a particular instance of flipping a coin it is necessarily

the case that the coin will show either heads or tass, i.e., the truth value

~of “This ﬂip.‘willrshow heads” (abbreviated as Shoﬁ)_heads) will be either ,

zero or one. When we state that the probability of Show_heads is 0.5 we are

iniplicitly randomizing this particular coin flip. In other wor‘ds, weukn.ow
,thdt 50% of the ins’ganees'of flipping various coins yield heads (assuming
_ ;phat \th_ere_are 'aé‘ma;nJ coins biased to heads as to tails), and, since we do
not have aﬁy infor.m_atien‘ that distinguishes this particular coin ﬂip 4from

any other.coin flip, it is'reasonable to»believe- Show_heads to degree %5, by

assuming. that this is a randomly instance of a coin ﬂip Similarly for the

example of “Bark(deo) " if it is known that (say) 90% of all dogs bark
and all that i1s known about deo is that he is a dog, then the 1nduct1ve
assumptlon, that Fido is a randomly selected dOg, would 1mpart a degree

of belief.of 0.9 to th@ (closed) formula “Bark( deo)” ¢

These levels oﬁi’};}ehef are _)ust1ﬁed in the long term. For example, con-
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cept odds lower than 1:1 that a coin flip will show hea;ds, unless one’ had
_ reaéo;l to bélieve; that the particular coin was biased. These odds are ac-
‘ Jceptziblg,, since in the long .run, ove‘f a sequence of bets, one would break
even. .If the leirel_of belief was different from 0.?, while at the same i:ime the

long term frequency‘ of heads was 50%, then one could accept odds, either

for heads or for tails, which would lead to \“/entual ruin.

Inductive assumptions of randomization have appeared before in the

%philosophy of science literéture, at least as early as Reicheribach (1949 [64]) *

and more recently in work by Kyburg [37,40]. Similar inductive assump-
tions have also appeared implicitly in most of the expert systems which deal

with uncertainty. For example, 1& the MYCIN system most of the rules

which-have certainty factors are in the form_“The certainty of infection D

given syrr;pfonis A, B and C is z.” These certainty factgré are synopses
of an expert’s eXpefience with a population of patients. Yv’hen diagnosis is
' pe\rfovrrrile.d on zlm particular patient,it is assumed that; these ce.rtainty factors
are app'licablé to that patient. | Here an implicit fandomizatidn identical to

an inductive assumption is taking place; the’ particular patient is assumed

"to be a random member of the pqpulatioh of patients. .
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2.2.2 Conﬂictinb Knowledge

The inductive assumption must deal with situations where the knowledge:

available is conflicting. The previous examble of Fido barking can be used
to illustrate the point. The inductive assumption generétes a singlé de-
greé of belief for the sentence “Bark(Fido)” only when all that is known
about Fido is that he is a‘_dog (i.é., all that is deducible about Fido from

the knowledge base using Lp deduction). This situation is rare; ustally

A

much more is known about named individuals. For example, the sentences -

“Dingo(Fido)™ or “Brown(Fido)” may also be in the knowledge base. In
general, the; degree of belief in “Bark(Fido)” inducéd from the knowledge
'that Fido is a dog will be completely different from‘the degree of belief
induced from other knowledge about Fido, say for example, the knowledge
that Fido is a.dingo. That is, considering Fido to be a randomly selected
dog yields avdiﬂ'eren't degree of belief thgn when Fido is considered to b'e a
randomly selected dingo (dingos don’t barki. Thus, the knowledge base éan

generate a range of different degreés of belief for any sentence, dependent
on what knowledge is uéed in the inductive step of randonlizzi\tioﬁ.

F or'example, if the knowledge base contains the assertions “Most Re-

publicans are not pacifists”, “Most Quakers are pacifists”, “Nixon is a Re-

publican”, and “Nixdn is a Quaker”, where ‘Most’ is interpreted as meaning

greater that 50%, belief formation can generate two degrees of belief in the:
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assertion “Nixon is a pacifist”. The degree of belief in this assertion given

the knowledge that Nixon is a Republican will be more that 0.5, while-the

kngw‘led’ée that Nixon is a Quaker will generate a degree of belief of less'

than 0‘5 In some situations there will be no way to choose between these
"', dlfferéntlv founded degrees of belief; however in many s1tuat10ns there is a
‘ s1mple preference criterion which can be applied.

This preference criterion is based on the 51mp1e intuition that the more
Lnowledge that is used to generate the degree of belief the better is that
degree of belief. .More kn_owied.ge has a simple interpretation in Lp; the
. sentenceé « represents more knowledge than ﬂ if « — f is deducible from

8

the knowIedge base.® This allows us to use deductionv‘inv Lp in two dif-

* ferent ways when forming belief:s. First, deduction carl be used to gener-
ate degrees of belief in sentences for which there is no explicit statistical
krlorwledge', through the deduction of new sratistical knowledge. Second,
deduction can some)times be esed to decide b'fetween competing degreee of
belief generated from different knowledge. The assumption that subclasses

: shou:ld override superclasses, which is normally used in inheritang€ hier-

archies (Touretzky [§%7]), is generalized by this preference criterion. The
‘ 8

In general it is undecidable in first order logic (aud thus in Lp) as to whether or
‘mot, & — [ is deducible from the knowledge base. ‘One can, however, always make the
conservative assumption that o« — g is not deducxble if a deduction 'is not found before
some.resource limit is exceeded. By asqummg that no deduction exists one is forced to
con51der both degrees of belief. 3

r
i .
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generalization arises from the fact that the criterion is not restricted to a

limited notion of classes, but instead, is applicable to any ‘class’ defined by
arbitrarily complex formulas in Lp. Furthermore, the preference criterion

: ; i B .
can be given a formal justification based on the semantics of Lp.

‘"
Ce

-

2.2.3 Kyburg’s Work

Kyburg [37] ‘hzis de.veldped a forrnr—;tlism which is very similar in itsf'p}ulilos—
ophy to the system constructed here. HlS work 1s an attempt to gl\e a
definitive treatment of the logic of statistlcal 1nference removing rnany of
the phllosophlcal and logical shortcormngs of cla.ssmal statistics. In con-
trast, Lp and.its assomated mechanism of belief formation were arrived
at t'hrough an/ inveétigation of the mathematical consequences’ of mixing
probabilities with first order logic, ratﬁe; than thredgh'an inquiry into the
philosophical foundations of statistical inference. Kyburg cordlstructswa Sys-
tem in which probabilities, or degrees of belief as t‘hey iare called iiere, are
assigned to particular a;sertions based on some uh_derlying statistical kﬁowl-
- edge. This approach is similar to the systvem of belie[f‘: forrnétion presented
here. The chief differences are'that first, he uses a complex meta—‘lahguage
(which includes all of Zermelo-Fraenkel set theéry) to e\cpress the statlstl—
cal knowledge whereas here, the statlstlcal knowledge 1s expressed in the

object language Lp (clearly more suitable for our eventual aim of automa-
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" ltion), and second, he .dvre.evelo‘ps a complex set of preference criteria (in [40])
’f’or choosing a‘ single rri-ost preferred degree of belief, whereas here, there
is only fhe- single prefeferiée criterion of implication, which yields only a
iﬁaftial order between competing degrees of beiief. Furthermore, this. pref-

- erence criterion uses the prde theory of the object language to generate its

pféferences rather than expressions'in a meta-language, as used by Kyburg.

2.3 A Simple Rational Agent

13 .

The degrees of belief can be used by a rational agent to guide action in
situations where the actual truth value of an assertion is unknown. A simple

model of a rational agent can be developed which demonstrates where the

‘logic' Lp and the mechanism of belief formation fit in. There afe three
cotaponents to this simple model, a goal .directed 'planner,'a knowledge
base ex relssed in the logic Lp, and (\the mechanism of belief formation.
The planning component interacts with the environment performing
“actions inténded to a"ttain_ its goals and reéeiving' new information which
is added to the knov;llédge base. To be rational the agent must use its
knowledge of the environmeﬁt. If certain things var;a true in the envirémnent
then the agent must perform certain actions. For example, if the agent

wants to cross a road and there is a car coming, the agent must wait

until the car has passed in order to satisfy' goals of preservation. There
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are many situations, however, where knowledge is incomplete; for example,
there may be ):a'blind corner which makes it imposgible for the agent to
deteét oncoming cars. In this situation th"é; -ai.;geﬁt may use its statistical
\knowledge (also part of the same: Lp knowledge base) along w1th belief
formation to ;ssﬂgga reasonable degree of belief in the assert1on that a car
is coming. The statistical knowledge may be knowledge of the frequency of

sy

traffic around that partlcular corner, knowledge of the frequency of traffic

at that ti_me of day, etc. The degree of belief génerated through behef

formation ;:an then be used by the pl;nning component to make a rational
_decision, a\aecision which considex;s, for exami)le, the risk of cross_ing the
road at ‘;that point and the costs of moving to a safer spot.

It will be shown that if the truth value of the sentence is k'nown, le.,
the sentence or its negation is deducible from the knowledge base, then the
degree ‘of the most preferred belief assignable by the mechanism of belief
formation will be representative of that truth value, i.e., it will be 0 or
1 as the truth value is false or true respectively. So, there is no ne_ed to
distinguish between situat-ions where .~know}edge is certain and v'vhere it is
not. The agent always uses its beiiefs to guide. its ::iétions, beliefs which are
in turn generated by re‘ag:pmng with its knowledge.

e

" Since Lp subsumes 'ﬁfst order logic, it is undecidable. Hence, this “most

preferred belief” will not always be generatable, since it will never be known

when to stop looking for a deduction of the sentence. As most rational
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agents. operate under time constraints a reason‘able thing to do is to use’

the beliefs which have been generated up to that time limit.-

To insure that such a “real time” agent behaves ratlonally it would

necessary for it to organize its knowledge base in an efficient manner. Th&{‘

is, facts which are most relevant to the formatfon of grucial beliefs (i.e.
:‘J‘ Ny

beliefs which gmde important actlons) ‘must be qu1ck1y deducible. Spe-
cialized inference structures like taxonomic hlerarchles or causal networks,
play andrnportant role in this regard. Thls Pemt ‘will be further ex_ar-nlned
in chapter 6. :

As the agent interacts v;ith»its environment it learns new facts, which

are added to the knowledge base. These new facts can change the agent’s

IS

beliefs. That is, the degreeso%ehef generated through the inductive mech-

]

anism change as new k wledge 1s added to the knowledge base they ex-
/

hlblt non-monotonic béhaviour. For example, the agent may have a degree
. L4 '

of belief > 0.5 in the assertion that Fido can bark, based on kno.\:éledge

H

about Fido. If later the agent actually hears Fido barking, i.e., the asser-

tion is added tn the knowledge base, then the belief formation mechanism

)
will generate a new preferred degree of belief, equal to one, in the assertion.
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~ Chapter 3

The Logic Lp o o

[ T4

B . ’ . . N o :
This chapter presents the syntax and semantics of the logic Lp&f The for-
mahzatlon of Lp follows the standard steps used in the development of

ordinary first-order loglc (see for example Bell [3]). FlI‘St the set of allowed

symbols is deﬁned Then rules are given which sfy the strings of sym-
'i
bols which are the well- forrned formulas. ThlS deﬁnes the syntax of Lp.~

Next, the semantics of Lp are given, by first deﬁningAthe set of admissible

rnodels (Lp Structures), then a correspondence between truth in the mod-

els and the well formed formulas. In the next chapter a deductive proof
theofy is presented which provides a correspondence between truth in the

model and a syntagtic manipulation of the formulas. The deductive proof
theory is shown to be both sound and‘complete_.

The letters n and m are used as variables which refer to natural numbers.

BN
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3.1 Syrfgbols

» The following are the symbols of the language Lp. The fotal number of

“symbols is denumerable.

a) A set of constant symbols (ﬁ S

S . ey »\J &

b) A set of function symbols (f,9, Is; ). # ~
o

c) A set of predicate s'ymbols"(P, QR . ).
d) A set of variables (m,y,z, ce)e

For each of (a)- (d) there are two types of syrnbciafob_]ect symbols and field -

symbols. . The ﬁeld symbols will be written in a bold font when there is a

@
danger of confusmn

>

e) A set of measuring function symbols (Weight, Size, p, v, p, ...).
Aléo included are the distinguished symbols of Lp:

a) The binary ob?ect predicate symbol =

)

b) The field constant symbols 1 and 0, the field binary predicate sjmbols

> and =!, and the figld binary function symbols +, X, —, and =.

-

c) The connectives A and -

INote, ‘=’ is used both as a field and as an object equality symbol Thls should not
* however, cause any “confusion.
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d) The quantifier V.

-e) The proba.bilit§ term former [o].

i

3.2 Formulas

The formulas of Lp ar~ strings of Lp symbols foﬁned_by the following re-

cu-sive rules. The formulas constructed by these rules are the only formulas

of Lp. ' &y,

TO) A single object variable-or constant is an o-term; a single field variable

or constant is an f-term.
v

T1) Iff is an n-ary object function symbol and ¢;,...,¢, are o-terms,

then ft;...t, is an o-term. If f is an n-ary field function symbol and

t;,...,t, are f-terms then, ff%\...tn is an f-term. If v is an n-ary
; \ B
measuring function symbol and t,..., ¢, are o-terms, then vt; ...,

1s an f-te‘rm. ¢

F1) If' P is an n-ary object predicate symbol and #;,...;%, are o-terms,

then Pt,...%t,1s a fgrmula.

F2) If P is an n-ary fleld predicate symbol and t;,...,t, are f-terms, then

Pt,...t isa }‘OTmula. /

A

- F3) fuis ‘a formula. then_so is —-a. k oL
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F4) If o and 3 are formulas then so is a A 8. ~ )

F5) If a is a formula and = is,@. variable (of either type), then Vza is a ’

& h

formula.

T2) If a is a formula and 7 is a vector of - object variables (z1,. .. 2y Tn),

- then [a]z is an f-term.

This definition of formulas is different from the standard first order defini-
tion; the last mle of formation allows terms to be construéted % m formulas.

The connectives V.and —, and the quantifier 3 are defined in the stan-
dard manner from the given primiti'vés. The predicat‘e symbols = and > as
well as the function symbols +, x, —, and +, are written in the more read-
able infix form. Furthermore, sta. lard conventions of scope and precedence
are used to limit the use of parentheses. It is Vlalso convenient to introduce

the following abbreviations to express inequalities between field terms.

a)lfﬁmy:d yzx ( b)l'E(y Z),zd'ySI/\ISz .
Definition 3.2.1 f ’ f

c)z <y=g(z2>y) d)z>y=4-(y2z)
Conditional probabilities are represented in Lp through the following

N -~
abbréviation. ’ o -,

Definition 3.2.2 [a]B8]z =4 [a A Bz + ()

Note, in this definition there is no mention of what happens if ]z = 0.

&

2 reason is that this is a syntactic abbreviation, and there is no way of

\
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determinifig syntactically if a term such as [3] # is equal to zero. This will
be determined by the underlying segpantic model; i.e., in some models this

- N . . . . . i 1
term will be equal to zero in others it will not. In fact, it can be seen that

this problem occurs with any use of the division function. That is, it is . - ,

impossible to detect division by zero syntactically. This problem isl dealt
with pragmatically—the rgsﬁlt of division B;’éero is left undetemnined. in
any model the division function will be total, that is, the division function
will give a particular result when the divisor is zero, but this result can be’
. ’ . : \
anything and can vary from model to model. Division by non-zero numbers
‘Will, howe;;rer, behave in the expected manner in all models. When neces-
‘séry it is always possible to gudrd against division by zero syntactically, by

including an explicit conditional. For example, one could write .

6]z # 0 — [alB)z > [618]z

Here the initial imph'éation acts as a guard against division by zero.

3.3 Semantic Model
‘ 1. ’\l( . .
De@hition"?».&l (Thé‘Model) An Lp-Structure is defined-to be the tu-

e - - .
pae R v -

v

l
e ko ‘
),(f7RF)Ff)le,7{Hﬂ_’/ln‘n’=1,2"'}>
w _ ' s ‘ ‘

, -
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a) (O, Ro,(Fo) represents a countable set of individual objects O, a set Ro

of relations’on the objects, including the‘equality relation, and a set

Fo of functions from tuples of objects to objects (O™ — O).

b)dF, Rx, Fr) represents a totally ordered field of numbers F, a set Rx

of relations on the numbers, including the equality relation and or-

dering relation greéater than or é%lué.l, and a set Fr of functions from

‘tuples of numbers to numbers including the ﬁeld'operations- addition,

multiplication, division and negation.. F contains two distinguished

elements which are the units of addition and multivlication. In the

" field of r.eal numbers these units are called zero and one, and the sasne

. Pl
names will be used to refer to the units of F.

- c) U represents a set of meé.suring' functions, functions from O™ to F.

[N

d) Each II, (n = 1, 2,...)isa field of subsets of O™. ‘This ﬁeld contains

- all smgleton sets of O™, i.c., every singleton n-tuple. It also contalins

all subset.s of (9" dQﬁned by the formulas 6f Lp (later the semantic

definition of the' formulas will give a more precise chax‘actemzatlon

of these subsets). This- field of subsets acts as the domain of the

Pr‘?ﬁ}f@mhty function u.,,.

"'b
,““’jﬁ\- F . v ;

&, .
e) {;1,',’ in f'_ 1,2,: } is'a sequence of probability functions. Each u, is a
Ty l
_ set fbghctmn whose domainis Hn, whose range is .7-" and which satisfies



54

the axioms of a finitely additive probability f|§(ction (i.e., p(A) > 0,

pn(AUB) = 1n(A) + pn(B) if AN B = 0, ang p.(O") = 1).

This sequence of probabiiity functions is subject %o some further con-

[

straints. These constraints ensure that the probébility terms behave

coherently. The implications of these constraints are discussed in the

[

next section.

1. The sequence of probébility functions is a sequence of product
measures. That is, for any two sets A € O and B € O™, and

~ their Cartesian product A x B € O™ ™ if A € domain(u,) and

g

B € domain( ), then

A x B € domain(finym) and pppna(Ax B) =\,un(.4) X pm(B).

-

The implication of this constraint will be discussed in the next
section, but for now it can be noted that this constraint is not
~ a restrictive assumption of independence, like those which have

appeared in; previous work (see. J{)hnson [32]).

- ‘
’ . k3 o .t . . . oy .
For models where the domain of discourse is finite this constraint is
sufficient. However, there are many natural notions which involve

countably infinite sequences of events or individuals. For example,

infinite sequences of trials are oftelgreferred to in the study of statis-

£
*

tics. In order to include this genefality Ef\the logic .the probability

Py



functions must be sigma-additive, i.e., the measure of the union of a

countably infinite collection of disjoint sets must be equal to the limit ";

o
of the sum of their individual probabilities. Sigma-additivity ensures

f

the p‘i‘obability functions'are well behaved.in the limi_t.

As-noted in chapter 2 enforcing this constraint presents a difficulty. -

That is, it cannét be guaranteed that the probability functions are
sigma—additi;re unless inﬁﬁite rules .o‘f inference are ailowed. To avoid
the complexities é.fising from infinite rules of inference, weaker con-
straints are placed on the probability functions. When O™ is finite
these weaker constraints can be déduced directly from the two facts:
(a) every singleton set in O™ is p, measurable, and (b) the u,s are
product measures. When O is countably infinite the additional con-

dition sigma—additivity is needed to derive these constraints.

The weaker constraints have the advantage (over sigma-additivity) of
~ being expressible as axioms in the logic. However, they do admit a.
. 2 _

larger class of Lp models than would sigma-additivity. This situation

is similar to the use of an abstract field. That is, the class of Lp mod-

els includes models in which the field is not the field of real nurr;beré, »

and similarly it includes models in which the probability functions
are not completely sigma additive. The weaker conditions do, how-
ever, ensure that the probability terms in Lp have properties which

&
k]
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‘are sufﬁcxently s1m11ar for our pu-poses, to the propertles thwr*‘ﬁley

J
would have under the stronger condition of sigma- add1t1v1ty There ,

are two additional constraints which are 1mposed on the proaablhty
\q .

functions. .
R "-. e

“The first constraint-is that the p, measures remain invariant under‘glf‘*

permutation, even when O" becomes infinite. This has the effect that

the value of the prebability terms are unaffected by the order of the

cited variables.

The gecond' constraint can be derived from a characterization of non-
sigrpa-advditivity due to Schervish et al. [72]. They have shown that
probability functions which are finitely additive but not sigma-additive

~are characterized by a condition called non-conglomerability.

Let 7 = {h;}2, be a partition of O™. The probability/Taasure ., is

said to be congiomerable in © when for every set E in tiic domain of

in for which =~ ' C T
. pa(ENRi)
pnlhi)
is defined for all z, and for all numbers z;, z,, if
o < pn(E N k) <z \
YT (R T

for all h; € 7, then o \

S (B <

.,



That is, conglomerability asserts that, for each set E, if all the condi-

tional probabilities over a partition = are bounded by two quantities,,

-

z1 and z,, then the unconditional probability for that event is likewise

bounded by the same quantities. The notion of conglomerability is
,\'(,I‘ ‘due originally to de Finetti [13]. )

Schervish. et al. have shown that probability functions which are
finitely additive but not sigma-additive can be precisely character-
ized by their failure to be conglomerable over all denumerable parti-
tions. Of come"éong\iomerﬁbility over all partitions cannot e guar-
" anteed axiomatically, otherwise we wbuld have succeeded in captur-
ing sigma-additivity axiomatically. H‘ov\'rever, conglomerability over a
large class of partitic;ns can be guaranteed through an additional con-
straint whichican be expressed axiomatically. This cgnstraint guar-
anteés the conglomerability of conﬁitionai probabilities over certain
partifcions. That is. it gmarantees that conditional probabilities will

be within certain bounds if they are within those same bounds when

subdivided over certain partitions.

To be precise, the two conditions are as follows: ' \

2. Each p, is invariant under permutations. That is, for every per-

ﬁ/utation wof {1,...,n}and S € domair@\)if

TS = {(an(1)s s animy) : (a1, .-, a,) € S},
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then

S € domain(un)“ and p,(7S) = p.(S).

3. The probability functions satlsfy a conglornerablhty condition. Let

/

;&a

A™t™ and B™t™ be two sets in- O"*‘"‘ which are in the domain of

k¥

fintm, and such that the projections of A™ N B™™ and B™™
into O™ are identical, i.e.,
(A™mNB™ ™ = {g|3e((a, &) € A" n BMT™}

= {b|3a(b,&) € B**™)} = B™.

¢

Furthermore, let the conditional probability of A™*™ given B™*+™

. satisfy certain bounds over the partition generated by the first

n dimensions: If there\exists two numbers z; and z, such that

for every vector @ in (A™"™ N B"+m)" (: B™)

un{Z1(E, ) € AMm Brm) e
21 S { ) Bn+m} S ZQ,- ' . .

then, ’ o S R

) -
gzl ;U'n-}-m( A™tmN <B~n.+m) < 22 o T
ST Haem(BTY T o

This condition says “that 1f the cond1t1ona1 proba.b1hty of ~1"+m

g

wgiven B™T™ is bounded by the numbers zl and 22 over the par—

tition defined by the vectors in the first n d1mensans, then -

the unpartitioned conditional probabiiity,.al.'so."resijects the same

bounds. . ' ” REREEE)

)\ . . &
4 ' .

.
e



3.4 The Effect of the Coherence Constraints

The sequence of probability functions is constrained to be a sequence of
product measures. This insures that distinct variables bound by the prob-
a}?i_lity term formers bghave in an iﬁdependent manner. This is similar to
the independence of distinct universally quantified variables in first order
logic, ‘e.g., the sentence VzVyP(z) A Q(y) can be decomposed into two in-
dependent sentences, T.e., V:rP(x)-and VyQ(y). Since y and z are distinct

. 'variables-bound,by sa‘;%x;‘:\ltf qgéntiﬁers, thelir meanings are}ndepe.ndent of
each other. - 7 E‘ ,(5"5

lWith i'ndependen;:é’ we yhave, for example, that the probability terms
are unaffected by tautologies,we.g., [P(a:) A(R(y) Vv ﬂR(y))]@'y)rﬁ [P(ﬁ:)](r).

It should be noted that this constraint on the p“robability functions do
~ not make any implicit assumptions of iﬁdependence\qf the form commonly
found in probabilistic inference engines (e.g., the independence assumptions
of tihe‘Prospector system [17], see Johnson [32]) This constraint éﬁ'ects the
values of probability terms with disPinct variables, als}o, complex probability

terms, e.g., [[a]; = z,.” (This can be seen from axiom (P7), presented in

the next chgpfﬁr, which:e%pr"es?@;s. the constraint.) The ‘Cons'traintrdoes not,

B

R
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/I’mwevef, make any presumpti’ons éoqcerning the independence of formujas
which contain the samé set of probability variables. That is, in general, ..

(oA Bla # [als x 6]
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In fact, thé probabilistic knowledge that we wish to express in Iip nor-
r'na.llyk r;akes some claim of correlation between the properties poszéssed by
the same object (or tuple of objects). For example, corfelation between the
properties of being a birdhand being able to fly. In this example, the correla-

tion can be expresied by the probability term [Fly(z)|Bird(z)]s, where the

same variable .appears in both formulas. This probability term expresses

‘A

the ratio of flying birds among birds. This can be contrasted with the prob-
a,bility Vter/’ﬁ"x [Fly(y).[Bird(r)](,,,y). In this te@ the variables are distiﬂlcf,
and its é%mantic ‘meaning is thét we have chosen pairs of objects and are
expréssing the ratio of éhe p;irs in which the?ﬁrst object is-a bird while
thk.e seéond object“can ﬁ}’r‘t‘o, the pairs in which the first objéét is a bird
irresi)'e-cﬁt.ive of fhe properties of the second object. Since we are referring to
different 6bjects, th.ere is no reason for there to be any correlation between
Fhei; properties. —
Correlations between the properties of a.particular set of objects can

be expressed through the use of n-place predicates. For example, the prob-

ability term

‘ [(Boy(z:)/\G’irl(y)),_:.\/ (Girl(z)ABoy(y))|Loves(z, y)j(x'y)

is ndt, in general, equal to the product any simpler probability terms.
‘The, second céndition, mnvariance under permutﬁtions, ensures, for ex-

~ample, that the order of the variables cited in the probability terms makes

2. - f
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; ,
go difference, e.g., [al:, = {a],..” Universal quantification also displays

this property, e.g., VzVya = VyV¥za. For finite domains the fact that every

. ¥ .
singleton set is meéasurable ensures that all sets of objects are measur-

-

able, since the-probability function is finitely additive. This along with the

product measure constraint ensures that the measures are invariant under. -

./ :
permutations. For example,

ALl

Az{«{ab)} = urfa} x (b} = pol(bra)).

However, this condition must be made explicit for i’nﬁnite domains.

The third condition is also true in finite domains. For finite domains the

partition along the first n dlrnensmns will be a finite one, hence the unpar-

titioned conditional probablhty will 51mply be the welghted average of the -

.probablhtms over the partltlon The wsnghted averacge of a set of numbers

"’tf’un certain bounds W1ll be within the same bounds As
Sy

d1scussed before, this cond1t10n ensures that the probablht& ctions are

all of thch a.r(‘*‘-‘

iy

conglomerable over a large cla.ss of partitions in infinite domains. -

4

_Another example of the coherence of the probability terms is that they

are invariant under variable fhame changes, e.g., [P(z)], = [P(y)],~ This

. behaviour comes from the manner in which the semantics of the formulas.

i1s defined.

IS
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3.5 Semarntics of Formulas &8

Meaning 1s given to the fqrmulés of Lp by deﬁning a..,cofrespondence b--
tween the formulas and the ‘Lp-Structu'r.e, M, augmented by the truth
~values T and L (true a-nd false). Such a correspondence is called an in-
teri)retation. An interpretation assigns ‘o every ob‘je;:t éoﬁstant symbol an
element of O, to every n-ary object function symbol an n-'ary element of
. Fé, .and. to every n-ary object predicate symbol an n-ary element of Ro,

mapping the dis'qinguiéhed. predicate symbol ‘=""to the equality relation.

Similarly, it maps the field"constant, function and predicate symbols to'el- .

ements of F, Fr, and Ry respectively, mapping the distinguished symbols
1, 0,0, X, '+, —, >, and =, to the expected constants, operations, and

relations in F, Fr, and Rx. It maps each measuring function symbol to an

“element of-\I{;lFinally, it assigns to each object variable r an element of O )

i and to each "'ﬁt‘ald. variabhle x-an element of 7. ’

These asSignments serve as the induc’;ive basis for an interpretation of
the vformula:‘s;. Two ihterpretationé o and T are said to agree on a gix'en
symbol 8 if 7 = 67, whéfe 6° denotes the interpretation of 8 under o. Also,
o and T ar‘e said to have -the same unaerlying structure if they- agree
on all constant, preéic‘at;ﬁ, and function symbols (of all types). Let o(z/u)
dencte a new intérp'r:etation which is identical to o except that it assigns
~ the individual u to‘vthe"\:fariable x‘(typés mﬁst match). lM‘6r-e generally, let

~
N



o(Z/a), where @ = (ay,...,a,) and T = (z1,...,z,) are vectors Of individu-
als and variables (of matching type), deﬁote 2 new interpretz;tion identical
to o except that (z:)°#/3 = q; (i=1,..,n). An mterpreta.tlon ois extended to
a truth value interpretation of the formulas of Lp in the follgwmg recursive

manner:
[

TO) Ifzisa variable or constant (of either type) then z7 is already defined.

T1) If fis an nEary function symbol (of either type) and t;,...,¢, are
terms of the same type, or if f is an n—ary' measuring function Symbol

and t,...,t, are o-terms, then _ ' ‘ o

(Ft. b)) = fo(4] . 0).

d

F1) If Pis an n- ary predlcate symbol (of elther tvpe) and tl, cey by a_re .

terms of the same type then .
S (T i (#,...,t0) € P,
(Ptl v tn)ba = .
' 1 otherwise.
F1=) If s and t are terms of the same type then
| { T ifs? =17,
L otherwise.
F2) For eyery formula a,

' . (T ifa’ = _l_',
(-a) —{ .

L otherw15e
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T fa’=Tand §7=T,

| ) {_L otherwise.

B F4a) For every formula‘ci@ﬁlg?bject variable z, .
(Vza)? = { .

f a®(#/3) = T for every a.€ O,

P
otherwise.
T .“ K “5 -
o

F4b) For every formula « and field variable x, -

@

T fa®™*/™ =T for évery u € F,
(Vxa)? =

1 otherwise.

T2) For every formula o the f-term created by the probability t for-

mer, [0}z, is given the interpretation,
Co /

([a]2)” = ua{dla”@® = T}).

Since p, is a .probﬁbility function which maps to the field of numberé
F, it is clear that [a]z cienotes an element <.)f F under any interpreta-
tion o; thus, it is a valid f-term. As mentioned before, the domain of
Hn 1s the a fleld of subsets of O™ which includeé those subsets defined

lgy the formulas of Lp. Hence the above set is in the domain of An.

64
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4

3.6 Examples of Knbwledge' Representable -

b

in Lp i
Now present some examples of knowledge which can be represented in
Lp: 3

Fel . ‘ 3

Example 3.1 Notions of typicality.

~

“Most birds can fly:”

fFly(@)lbird(z)]. > 0.5,

-

where ‘> 0.5’ ® the least presumptive reading of ‘Most’.
Example 3.2 Functional probabilistic relations.

“Heavier birds are less likely to be able to fly:”

Vy (Reasonable_Weight(y) —

[fly(@)lbird(z) A weight(z) <yla > [fly(z)lbird(z) A weight(z) > ¥),

where Reasonable Weight(y) is a field predicate which ir};licates that ‘y’

is a number which is a reasonable weight for a bird, e.g., not negative.

o,

T

Examplé 3.3 Mizing universal qua@ation and probabilities.

NI

’



“The probability of finding a given type of animal at a zoo is given by
a function, f, of the exp‘ensé of a_cquiring'and maintaining that type of

animal:” ]
X ;(/‘

-

Vm(animal_typé(ﬁ:) — [at(z, y)|zoo(~y‘2]y = f(ea:pense(x))),

where ezpense is a measuring function symbol and f is a field function
symbol. Here ezpense may be a function which’can be calculated through

other information in the knowledge base, e.g.,

L . 5
Vz(ezpense(z) = weight(z) x 100 + initial cost(z)). .

Also, f could be declared to be non-decreasing:

Vxy(x >y — f(x) > f(y)).

™

Example 3.4 Knowledge of independence (in most other systems this would

PR

be meta-knowledge ):

-

The canonical tri-functional expression of independence (see Pearl [56])

“The properties P and @ are independent givex} R

5;1
A |

\

[P(z) A Q@)IR()]. = [P(z)|R()], x [Q(=)|R(=)L..

Example 35 Notions from Statistics.

[
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1. “A sequence of ten tosses of a fair coin will land heads with a frequency

T between 45-55% with greater than 95% probability:”
[frequency_heads(z) €'(0.45,0.55)|sequence of tosses(z)], > 0.95.

Here the domain contains a set of objects, sequence_of_tosses(z), with
each member representing a sequence of ten coin tesses of a fair coin,
and a measuring function, frequﬁené@.heads, which maps each sequence
of tosses to a number in the élosed interval [0,1], a number which

represents the relzitive; frequency of heads in that sequence.

2. Other notions from Statistics, e.g, “The height of adult males (hu-
. mans) is normally distributed with mean 177cm and standard devia-

tion 13cm:”

N B N

Vxy ([height(z) € (x,y)|Adult male(z)]. = normal(x,y, 177,13))

Here normal is a field fun‘ct.ionvwhich, given an interval (x,y), a
mean, and a standard deviation, returns an approximation of the
integral (approximation since we don’t necessarily have access to réal
numbers) ef a normal distribution, wit\l\i~ specified mean and standard

deviation, over the given interval.
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. Chapter 4

Deductive Proof Theory
This chapfer provides a deductive proof theory for Lp. The proof theory

b .
consists of a set of axioms and ruleg of inference, and is shown to be both

W

sound and cognplefe. In fact,_~t bor Lp is essentially the same

as the proof theory for normal : the major change being in
" the set of amoms Two new sets ‘ must be 1ntroduced one set to
deal with the loglc of the probablhty function, and another set to define the
loglc of the field . There are, however, some techm%;aldlfﬁcultles arising

from the probability function. v

One dlfﬁcultj arises from the fact that when probablhty terms" are

N

formed by rule T2 (section 3.2) all of the variables z; € T, Wthh ap-

1 A reference for all discussions of first order logic in this chapter is the textbook A

Course 1n Mathematical Logic by Bell and Machover [3]
n



pear in the formula «, are bound by the probah'{ term former. That is,
B’

their semantic interpretation is altered, as specified by the rule of interpre-

tation T2 (section 3.5). This creates a difficulty with those formulas which .

also contain other quentiﬁers, a difficulty which is similar to the difficulty
arising from nested ciuantiﬁers in ordinary first order logic.
" One 'o;f‘the rules of inference in first order logic allows terms to be
suhstituted for the variable bound by the universal quantifier. For example,
/

in first .order logic it is valid to infer the sentence “Man(Socrates) —

]\Io‘rtal(Socrates)” gifen the sentence “Vr(ﬁ/fan(x) — -]VIortal(x))"’ Here

the term Socrates has been??bstltuted for the bound variable z. When ﬁﬁst |

1

order quantifiers are nested care, rnust be used to avoxd invalid conclusmns

For example, in the formula V:zP(:I:) — 3zQ(z) a term t substituted for the

first (universally) quantified = cannot be substituted for the second z; the i

second z is in the scoig‘e of a distinct quantifier. Such a substitution would

8 2

lead to the érroneous conclusion P(t) — Q(t). In general, terms can only

‘

be substitute‘d for the free occurrénces of a variable in'a formula.

Af}nother dlﬁiculty arises fmm the fact that the term t may 1tself con-

tain variables (especially in Lp, where the probablhty tefms can cdntain
\

arbitrary open formulas) When such a \ term is substituted into a formula

its varlables may be acc1dently captured by other quantlﬁers in the for-

mu.la For example in the fonnula Vz3yP(z) A Q(y) 1fjhe term f(y) is |

.substl_tuted for the varxable z the formula 3yP(f(y)) A.Q
: ' : . o “ 4

b‘ R ; .
o ." . N‘«' @

Y) results, where
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the'y in f(y) has b.een. captured by the existential qua'ntiﬁ'er. This formula
» cannot be validly inferred froﬁ the previousA formula. |
Since the probability terms bind variables, these two difficulties arise
in the interaction of the probability terms with the ordinary quantifiers V
and 3. These difficulties are dealt with, as in first order logic, by. precise
definitions which specify when a given variable is free in a given formula.
Substitution of terms for variables is then defined in such a way that only
free variables are affected. The problem of accidental capture is overcome
. by developing rules for renaming quantiﬁéd variables. f.f;hesf&ules transform

formulas to new formulas which are identical in their semantic meaning and

in which there is no possibility of accidently capturing any of the variables :

in the term to be substituted m g

)

" The fact that the probaibility function generates terms from formulas

';'_c‘rieatgs another difficulty. Most of the theorems of first order iogic are

»

;ﬁq&gdi(by,i_nduction on the formulas of the logic. With Lp these theorems
musi‘.beﬁaroved by simultaneous induction on both the formulas and the

terms of the 'logic.\

AR &

The development of the proof theory consists of two parts. First we,

define substitution to suit the requirements of Lp. After this, we present

the axioms and rules of inference which make up the deductive proof theory

2
v

of . This proof theory is shown to be sound and-cor‘r‘xplete.'
g ‘ o
\

(-
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4.1

Substitution : .

In this section a and § are used to refer either to terms or formulas of

Lp. We begin with a definition of when a given instance of a variable in

71

a formula is free and when it is bound. .Tfh.is definition is central to the -

1

development of a sound notion of substitution. , )

« i3 free iff it s not bound in «. Furthermore:
°

&

Definition 4.1.1 A given occurrence of a variable = in a formula or term

-~

. If a is the variable z then z is free in a.

. fa=ft;...t, or a = Pt;...t,, then a given occurrence of z in « is

free in o iff it is free in the term ¢; in which it occ;lrs.

. If @ = - then a given occurrence of z in a is free in « iff that

k8

£,
occurrence is free.in 3.

. If @ = B A S then a given occurrence of # i « is free in « iff that

ocgurrence is a free occurrence of z in 3 or 6.

v

. If & = VzB then ‘every occurrence of = in «'is bound in a, but if

a = VyB, where y is a variable other than z, then'a given occurrence

of z in « is free in a iff that occurrence is free in g. (
{ x ¥ : - .

G

Hfa=[flzandz =1; €% (for some ), then every occurrence of z

}
'

in a is bound in ¢. Otherwise, a given occurrence of T in « is free in

-
>
Py



R

a iff that occurrénce is free in 3.

We say z is free in « if  has at least one free occurrence in a. The free
variables of a are all those variables which are free in «. The next theorem
shows that it is only the free variables of a formula or term which can alter

its meaning, once we have fixed on a specific Lp-Structure.

iy

Theorem 4.1.2 Let 0 and T be interpretations with the same underlying

)
structure M which agree on every free

Proof The theorem is proved by induction on the length of a. The claim '

is obvious if a is a single variable or constant. If & = fti...t, then since

ne

o and 7 have the same underlying structure o” = fot] ... 17 =.f"t7...¢7

iéée.hyiﬁﬁ%esis, frtg .. t2 = frt] ... t]. The last term is a”7. A
similar argument holds when a = Pt;...t,. |

¥ a = - or @ = B A § the free variables in 8 and § will be a subset of
o o '

the free variables in a.. So by induc§ion, B = B" also. §7 = 67. The claim

now follows eésidlly,from the semantic definition.
N s

'If & = Vzf then thé free variables of § are exactly the free va;iab_les of -

-a as well as possibly z. By the semantic definition

o’ =T! iff B/ =T ‘forall ac€O. ,

72



Since g(:z: /a) and 7(z/a) agree on all the free variables of 3, we have from

v

‘the inductive hypothesis l
ﬁa(:x:/a) — ﬁ‘r(x/d).

’

Thus, by the semantic definition,
=T ff a"=T.

If & = [B]z then the free variables of 8 are exactly the free variables of

a as well as possibly th- variables z; € Z. By the semantic definition,

4
I

L 812 = (@B = T}

Since o(Z/a) agrees with T(Z/a) on all of the free variables of B, the induc-
. .

tive hypothesis gives
Ba(i‘/a) /BT(.’L‘/G

Thus - )

L GE{apN=T) iff Fe {aw”/a> 7

an
| (915 = a8 = T) = (3
T ) ‘

J ' '
A formula a Wl’llCh hj‘s no free varlables 18 called a sentence or a closed

. formula. ThlS theorem implies that the truth value of a sentence o

A

' depends only.on the underlymg structure M This allows a deﬁmt1on of

structure (modeél) satisfaction. i ' “.

R B

S»

Ty

~
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Definition 4.1.3 jAn Lp-structure M satisfies a sentence o, written M |=
a, if a® = T for all interpretations, o, whose underlying structure is M.
More g’enerally, an interpretation o satisfies a fofm loa (se.t of formulas @)
ifa® =T (ﬁ" =T for every Be®) written o |2 a (o =&). Finally, a set

vt
" of formulas ® entails @ formula a (written ® |= a) if every interpretation

I

which satisfies ® also satisfies a.

low.we can give a preliminary definition of substitution.  This definition

) sHere is no éos'sibji'li'ty of an écciden’c’al capture of the variables

4

" 'the exact forrn of the new formulq‘, denoted by a(:n/t), Wthh is the result._)
of ’performing the Sﬁbstitution Of course, for substitution to make sense .

sernantmall;y tHe term ¢ and the’ &arlable z must be Qf the same typﬁ it is

. \ “v- .

assumed r‘tharﬁihey are, throughout thls section.

-,Deﬁmtlon 4. 1.4 Given ¢ term, t, 4 vanable of the same- type z, and a

formulga;&r term a, t is free for T in a under the followmg condztzons

1. If a is a variable or constaﬁt then t.is free for ¢ in a. If « = = then

a(z/t) =1, otherwise, a(zjty= o



.IHfa=ft;...t, ot @ = Pt;...t,, then t is free for z in a iff t is free

for z in every term ¢;. And oz /t) is defined as ft;(z/¢t)...ta(z/t) or

Pti(z/t)...tu(z/?).

If a = —f then t is free for z in a iff t is free for z in B. In this case,

“a(z/t) is defined as ~(8(z/%)).

. Ifa=pFAéthen tis free for z in o iff t is free for z in both # and

-

§; a(z/t) is defined as f(z/t) A 5(x/t).

g

. If @ = Vyp then ¢ is free for z in « iff ore of the following conditions

hold: - S
o | , ;? NG

g

(I

(i) =z is not free in a (as is the case when z = y); a(:z:/t)"is defined .« -

9]

as. «.

(ii) -z is free in @, ¢t is free for z in B, and y is not free in ¢; a(z/t) is

deﬁﬁéd as Vy(B(z/1)).

. If @ = [f]y then t is free:for z in o iff one of the following conditions

holds: -

K4

- (i) "z is not free in « (as in the case when z € 7); a(:r/f) is defined

)

as a.
(ii) = is freein o, t is free for z in 4, and no v; € 7 1s free in t; az/t)

is defined as [B(z/t)];. 1\



The pext fiheore’ni. clarifies the semantic bekavior .of legal s‘ub‘stitutic")n_s‘ -

‘as defited above. . -

Theorem 45'1\5 Ift is free for z'in a, then for every interpretation o
_'Q('l'/t)of :‘aa(z/gl)la. . where ' = 1°.

Proof By .i\\duction,on the length of a. If o is a variable or constant not

.‘equz'al ty z then oé = a(z/t). If @ = z then a(z/t)” =7 = t' = z°0/¥) =

/ )
.‘aa(z:/‘z ) ) . :

U Ifa = fty .ty (or Pt ...t) &hen a(z/t) = fot(z/t)7 .. ta(z /) =
..fa(r/t’)ttlw(f/") ... 1°=/Y) by induction. v
Ifa = B ora=fA6 the claim follows easily from the ipductive

hypothesis and the semantic cefinition. : ‘ o

‘IfQ = YyB tﬁ'e;i 6ne of twe conditions holds:

(i) s ¢ not free in «, in which case a(z/t) = o and the conditions of

theorem 4.1.2 hold. Tbat/is, a’ % '_a"(%"), so a(z/t)? = a’ = /),

(ii) 7 i free in a, t is free for z in B3, and y is not free in ¢, in which case

Q(g;/t) = Yyp(z/t). By the semantic definition?
, // - . .

. .

x

R , ' .
(WwyBlz/t))" =T. iff ,B(m/t)f'(_v/ﬂ =T forall a€O. (1)
L2IfY g 2 field variahle Lﬁ;en the set.of'o'bj.ects O.Should l;e,reﬁlaced by thc' field F in

this paft of the proof. ‘ S .

S\
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Since t is free for z in 3, we have by the inductive hypothesis

kY

B2/t = gEWNEE)  where 7 = (9,

y 1s not free in ¢ so, by theorem 4.1.2, t” = t°W/%) = t7 = ¢, Also,
.since z and y are distinct (otherwise = would not be free in «),

a(y/a)(:c/t')‘ = U(l‘/t’)(y/a) Hence,

L ety = e, (3)

By the semantic definition

o0/ = T forall a€® iff '}*%ssf-:yﬁ)”(.x/t’): =T.
This, along with (1) and (3), gives the desired result. o

Similarly, if « = [f]y then one of two conditions holds: i

(i) z is not free in . This case is identical to case (i) abf?;‘

(ii) z is free in a, t is free for z in3,andnoy; € y is free m t. In this case
a(rf;) = [ﬁ(:z:/t)]g By the semantic definition
RSN = e @8 T = T,

Ast is free for r in 3, the inductive hypothesis vields \j,

/3(1'/[30“7/;),: ',»30(5/‘1),“/{”" where ; " = {79

f . L

f



Since no y; € 'is free in ¢, theorem 4.1.2 implies t/ = t7(¥/3) = 47 = ¢/ _
Also, z is not equal to any y; € § so a(y/a)(z/t) = U('m/t’)(g}'/c'i).k
Hence, o /-

Bz /)T = got=l )

- Therefore, : »

Toal

Ze {@fz/t) D = T} i Fe {@|p=/MuD = Ty,

So, from the semantic definition, [8(z/t)];” = [8];"*/") as claimed.

.
—~—

To deal with substitution when an accidental captire would occur it is
B N ’

necessary to rename quantified variables in formulas. The next definition
gives rules for renaming which preserve meaning. Th_éy,expand the stan-

dard first order definitions by alldwing the renaming of variables bound by
“the prob"abilit} function. ) v
) o, ‘ A

-

Definition 4.1.6 The variants of o are thé.féllowing: '

T~

(a) a is its own variant.

(b) Any direct wariant of a. as defined below, is a variant of a:

N\

1. If a 1s 1 variable or constant then it has no direct variants.

. . : K - ! 2
~- a . - '



o

o=/ ft...t, ora = Pty...t,, then the direct variants of «
are all terms (formulas) of the form fti...th (Pt,...t), where

t! =t\,-or t; is a direct variant of ¢; and at least one of the ¢/ # ¢,.

If o = —f then the direct variants of a are all formulas of the

forrr£ ~(8), where B is a direct varian of 5.

If « = B A& then the direct variants of o are all formulas of
the form B’ A §’, where §’, and 6’ are direct variant§ of 3 and §

respectively.

. ‘o
4 S »

If @ = Vzf then the direct variants of a are all fofmulas of the

form ‘v’xﬂ/’, where 3’ is a direct variant of S. As well as, all
L

formul7§ Vz(B'(z/z)) formed from Vz ', where z is a variable of

the sam.  ype as z but not equal to z, z is not free in B’, and

. z is free for z in B (é.g., these conditions are met if z doesfiot

occur in '), '
¢ o

If o« = [B]z then the direct varidits of a are all terms of the

form [§']z, where ﬂ' is a direct variant of B. As well as, all terms
[8'(z:/2))2(z: /=) formed from [§)z, where z is an object variable
not equal to any z; € T, 'ﬁfffch 1s niotvffeé\i;l B’ but is free for z;
in 3 (e‘.g., if\: does not occur in 3') aﬂd T(zi/z) is a vector of

object variables idefitical to £ except that = has been substituted

for the i-th variable T



(c) Any formula (term) a’ which results from a sequence of direct variations
of a is a variant of @. That is, if o’ = a,, and a = «@;, where, in the

sequence (o, . .., Qy), iy is a direct variant of a;, then o' is a variant

of a.

.We can prove that variable renaming in this manner preserves meaning.

Theorem 4.1.7 If o’ ws a variant of o then _for_évery interpretation func-

tion o

10
o = a’.

o4
!
& .

Furthermore,.“'t-’éhe underlying sets defined by two variant probability terms

‘ . '71\, ’
are identical. Z;f‘ia,t is, if ' = [B']y and a[: (Blz, then
©{@]gN = T = (@7 = T).

[

~a

Proof The theorem is proved by induction on the number of direct varia-
tions applied to a to yield o'.
0) If o' is equal to « (i.e. zero variations applied) the claim is obvious.

_ : : \
1) If ' is the result of one direct variation of a then we prove the claim by

induction of the length of o. First, o cannot be a variable or constant as -

4

then it would "not have any direct variants. If a = fty...t,ora = Pty ...1,,

then o = ft’1 . t. (Pt,...t\), where the t! are either{direc‘t variants of

the corresponding t; or are mequal X) t;. In this caée, the claim follows

80
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C

directly from the inductive hypothesis and the semantic deﬁﬁition, similarly

fa=-fora=8As | |

'Ifd = Vz 3 then two cases arise:

(1) o = Vzf, where ' is a direct variant of 8. By_inductibn BrrE =

B°=/%) 5o by the semantic definition, (Vz3")° - (VzB)°.

(ii) o' = Vz(B'(z/z)), where §' is a direct variant of 8, z is niot free in
B', and z is free for z in §’." Since z is free for z in §' we have
B(z/2)" = ﬂ'T(I/:I) (z/ = z7) for any interpretation 7, by theorem

e

4.1.5. Therefore,

-~

B(a /)71 = gD where 2! = 271, (1) -
{. -

By the definition of o(z/u), 2/ = u. Furthermore, since z is not free

in)ﬂ’, a(z/u)(z/2") and o(z/2') agree on all of the fye variables of oi

. thus by theorem 4.1.2, 5"&'(1/“).(”:') g ﬁ"’(r/z’). H,em:a

ﬁla(z/’_‘)(l‘/:) = ﬂ/”(l‘/'z) — B/U(I,/U)- (9)

-

" By the induction hypothesis
v

o ?/0(1/“) o ﬁa(r/u).._

‘The result fol'ld'}vs from this algng with (2), (1), and the semantic /

definition. ‘ ' : " o -

14

" If a = [B]; then two casrs also arise. - N



(i) o' = [B']z, where B’ is a direct variant of B. By induction 6’
B° for any interpretatfon o; therefore, & € {a|g”°¥9 = T} 1’ff ¢ €

{@|p°#/3 = T}. S&the claim follows from the semantic definition. (,

(ii) o' = ['(zi/2))2(zi/2), where §' is a;direct variant of 3, z is a variable
not free in A’, but free for z; in.#'. Since z is free for z; we have from

theoretn 4.1.5

. ﬁ/(zi/z)‘a(f(r.'/g/&') — 5/0@(&:;/:)/5)(:.‘/:/),' S = za(:’f(r.‘/z)/&').
Since z is not free in 3, 0(£(z;/z)/d) and

U((JSI, ey Ty Tigiye - .,.’L’n)/<al, ey @io1y, i1, - - .,an))

agree on all thé free variables of B'. So theorem 4.1.2 implies

Bld ((zi/=2)/3) (r, 2") _ ﬂ/a((rl,...,r;_l,x;+1 ..... Zn) /(@1 Bim14@idg 1 yenns a">)(zg/:’)'

‘\_:xx.]_Also, by definition z’ = a;, hence,

TR o <«
: SN ,B’U((Ilw-.l'i—lvrl'-i-l ----- zn)/{a1,8im1,8i 41,0080 ) ) (i =) = ﬁ'a(f/a). M

| %‘1 '“gg;':BIy“the induction hypothesis B - ﬁ"(f/a); thus,

"f}e{au S ERm S TY i F e {alprEm = T}

“This proves the stroxwer condition satisfied by variant probablhty terms.

The first claim of the theorem follows from this eqmvalence and the seman-
<. .

sl definition.

32



n), If~oz’ is the result of n direct variations of «, then o’ is-a direct variant of

Qn1, where Cn1 ] is the result of » — 1 dlrect var1at10ns of a™ By 1nduct1on

a? | = a also af_,; = a'’, so, it is obvxous that o’ = a’. W

. {
%‘ This definition and theorem allew a final definition of substitution. In

the final definition there is no condition of ‘free <for’. The de_ﬁnition works
by ﬁret specifying a vai’idhtxflormula, a variant in which the given term
is free for the given variable. Onee t'his vatiant is forfned substitﬁt‘ion can
occur, Just as in definition 4. 1 4 The definition is an extension of deﬁmtlon"
4.1. 4 when the g1ven term 1s elready free for the glven vamable the variant
‘15 the omgmal formula 1tself As before oz(:z:/ t). denotes the new formula
Iwhlch results from the substltutlon of the term t for the va,rlable z in the

formula .
. S

Definition 4.1.8 (Substitution) For given z, t, and o define a(z/t) to
be o(z /1), where o'(z/t) is defined according td definition 4.1.4 and o is
defined as follows! B

R, N
1. If a is a constant or variable then o’ = «.

2. o= ft...ta or Pty jt, then o = fti .. B (Pry.. 1)
3. If « = ~f then o' = ~(8').

‘4, If =B NS then o' =p"' A&



5. If o = Vyf3 there are thre¥ cases: . L E

a) If z is not free in a then o' = c.
. b) Ifzis frée_. 1n « and Yy is .n\ot free in ¢, then ;x' = Vyﬂ_’.‘b
c:) If z is free ‘i‘n a and y is free in ¢, then o' : Vz(ﬁ'(y/z)) 'Where
ﬁ é is the first variaBle’ (in some Qxed but arbitrary enumeration
of the variables) of the same type as y which does not occur in -
.eigher t or.f5’. | |
--6./If a = [B]; again there are three cases: | ) “
a) If z 1s not free in a then o’ = a.
b) If z is free n o and' no y; € ¥ is free in ¢, thenﬁa' = [A']3- o E 4
c) If z is free in « and so‘me subset of y; € ¥ (callit § = {y], L v b
are free in ¢, then o¥ = = (87 /D)y 7/%)- Where z = {~1,... yZm}

1s a set of new obJect variables which do not’ appear 1n e1ther t

or ﬂ’. The substitution of z; for y; is done one at a tlme, formmg

x
%

a sequence of m direct variants. o 1

‘The next theorem showd that the general form of substitution has the

© same: semantxc beha.v1our as the preliminary form

. :.‘ o ! >- * ) | o . )
_Theorem 4.1.9 For all o, t, z and interpretations o
oEeTE R 0T eppTer 4

K . L ,a(a:/'—t)" = q7(#/¥) where t' = ¢°."
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. ‘ | , | .
Proof By definition 4.1.8, a(z/t) = a'(z/t), where o’ is a varfant of a and

t is free_ for z in o’. By theorem 4.1.5, a'(z /)" = o ol and by theorem ,
/4 1.7, INCACZAD _4aa(r/t) . : . 5 B

The results of this section allow us. to prove that the subsets of on
defined by the formulas of Lp forms a ﬁeld of subsets This fact Wlll. be

used later in the proof of completeness. _ ‘ . -

Theorem 4.1.10° The set of subsets of O™ defined by the formulas of Lp,
18 o field of swbsets. | |

Proof Let A a.nd B be two subsets of O™ defined by formulas of Lp, 1.e.,
'— {Ei]oz"(z/“) = T} and B = {bl,@”(y/*) = T}. By deﬁmtmn 41, 6, there
exists two variants of [a]s and | ﬂjg, ]z and [f']z, formed by s\’bstrtutmg
all the .vari_;ables z; € TIna and 'all_ the variebles y; € 7 in B by a new
set of variables (zl, ., zn) which do not appear in « or §. By theorem
417, A" = (€| = T} = 4, and B' = {{ "D = T} = B; thus,
"ANB = A’ N B = {C|(B' A &)%) = T}. That is, the 1ntersect1on .
of A and B is deﬁnable by a formula of Lp Slmllarly, for A, as deﬁned
* above, by the semantlc deﬁmtlon osﬂ(f/“) =T 1ff ﬂcr"(f/“) = 1 Thus
'a eAiffa¢ A’:’-——-,{,alﬁa (2@ = T}, Th t 1s,‘A’.1s :the complement of 4
_.“w1th respect to O" and is deﬁnable by a formula of Lp Hence, the set\
‘of subsets of or deﬁ/n)able by formulas of Lp is* closed under & ‘Q}ers%mons

and complementations. Flnally, if. we take the term [ \ ] the set 4 = .




A

{@l(an—a)’CG/D = T} is empty; thus the empty set is definable by a formula

of Lp. Q.ed m .-
‘ . : .

.

4.2 - Proof Theory L | .

This .section gives a proof theory for Lp. The ISr‘oof theory consists of a
set of axioms and rules of inference, and it is sliown to be bath sound and

N,

complete. There are, in addition to the normal first order axioms, two new -

‘sets of axioms. One set of axioms defines the logic of the probabiliﬁy te,m“ns,.-‘ h

and the other set defines the logic of the field F.

In this section a, 3, etc., will usually be used to represent formulas, not

/

. formulas or terms, as was thé common usage in the previous section. It will -

" be explicitly stated whenr they may also'refer to terms. : -
. ) N . 1 .

4.2.1 Axioms and Rules of Inference

First the axioms and rules of inference '(actually‘\ﬁh‘:ér'e is orliy one) for the
proof theory are presented. R
If a is a formula of Lp then a generalizatipn":ofa 18 any fgﬁhu'la.of the -

-, form Vz,...Vz,a, where {zi;...,z,} is a set of not mecessarily distinct
=

variables of either type. -

First order Axioms All the axioms of the Predica‘te ‘Calculus.

-

PCla) a = f — a.

-2

A

86 °
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PC1b) (@ — f — 8) — (a — B) —+ & — 6.

PClc) (ma — f)*> (na — =f) - a. g

~

PC2) Vx(a — ) = Vza —-Vz . » P o i
o L
PC3) ¢ — Vza, *-
. where z is not, free in «. . .
ﬂ .

PC4) Vza — &(x/t), S

«

where t is any term, of the same type as z, free for 7 in @, and a(z/t)

is defined according to definition 4.1.4.

EQ5) t =t

where t id| any term.

EQG) tlztn+1 - — =ty — ftl <. tn:ft;l+1 s t?na
where f is any ri-afy function symbol and #q,..., ¢, are terms of a

compatible type.
EQ7) t1=tn+;1 — - —3 tn_—“tgn — Ptl . thPtﬁ+1 . tgn,:‘

where P is any n-ary predicate symbol and #,.. ., s, are terms of the

same type. !

- -

Field Axioms All of the axioms of a totally ordered feld (see, for exam-

‘ R X . / _— -
ple, MacLane [45]). Here all variables are field variables and they are all

- Tuniversaily qud\ntiﬁ_ed;_q.hiess the existential quantifier is used.

L~

o



>

F1) - T+ (—y + z) = (~:1:j+ y)+z -
T i

F2) z4+0=2z .

F3) By +y=0), =
F4) z+y =y+z. " | R

FS‘) _x\,_xl;—-:z:‘ B
F6) x,xi(yxz)'z(‘:cxy)x::

‘F7)-‘:1:i_><y=yx:z:‘

-

F8)' z % (y + Z)=(zxXy)+(zxz) .

‘ . . . ‘o.—-mz%'
"F9) 1>0A=(1=0)
- ' i .

F10) \m;éoﬁay(;ny::U

F11). (z > YAYy>z2)—z >z

F12) (z2yAy2z)ma=y

F13) z >z
4

F14) 22 4vy 2z
Fw)x2y42+z2y+$ 

F16) (z>2yAz2>20) S zxz>yxz

“L’(:
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- ) . ! N
Probability Function Axiams :
o
P1) :v’a:l .. .‘v.’xnd —[a]z=1, .
where Z = (z,.7.,z,) ‘and every ’xi is an object variable.
s . 2. _ :
. .. AR
P2) [a]z20. |
P3) [afi+[nals=1.
P4) o]z + [0z 2 [aV Az ] o
P5) [Oz /\ﬂl/_:,; =0 — [a]5+ [,B]z = [Ot \ ﬁ]f
P6) [a]5 = [a(xi/z)}i(z.’/z)y
- where z is an object variable which is free for_ z; in «, z is not free in :
* @, and #(z;/z) is a new vector of object variables:
(Il,;.:?x{_1,2,$i+1,...,.'Ifn). -
P7) Vzlz«z[[a];_.- = Zl]g'z 22—) (‘[a](f‘@?_ lez'z).
Y . ' |
| ig) (Required for infinite domains only) . - N

o [a]z = [?‘]w(z),

- where 'ﬂ" is any _.pé:.miifation of {1,...,n}, and n(F) is 91(3 permuted

""Vectdzf I, ie, 7r(:?:‘) = (Zr(1)s - 1 Trr(m) )

——

P9) (Requ.ifed for infinite domains only)

Vaiz,([ < (ol <z) A Bl S A0 o
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\ = z, < [QI(T:1 S[alﬂlgs Zg') A 'B](E,U) < z.2>.

" Generalization
G1l) Al generalizafions of the preceding axioms. >
ﬁul,e of inference The only rule of inference is modus ponehns, i.e:,

" R1) .Frém {q,a_ — [} infer ﬂ; . » /

4.2.2 Deductions °
. g o n

This section defines the notion of q&fpecial ‘sequence of formulas. called. a

; deduction, and notes some of its properties.

‘. IV)‘éﬁn‘itioAn 4.2.1 Let ® be a set of Lp formulas. A deduction from 3 in

.Lbz"is a;ﬂ‘m'te non-.empty sequence of formulas ¢1,..., ¢, such that for each

k(1< .I;'S'n) dp 18 an dziom of Lp, or ¢ € <i>, or ¢ 18 obtained by modus ~

+

ponens from earlier formulas in the same sequence’(i.e., there exists 1,7 < k
; . : .

such that ¢; = ¢; — ¢x). The set & is called.ﬁthe set of hypotheses. If @ .

13 'evmpty the Jeductiqn 13 cd_lléd a proof, i.e., a proof i3 a deduction which

~

just uses the azioms of Lp.. A deduction whose last formula 1s o 1s called a

' dédqction ofa.; Thé symbol ‘I’ 1is used to indicate 'deducibili-t"y;”i.e., Dk o’

. means there 1s a,,d‘eldudign‘ofa from ®, and g’ m'ean..s'_"ihat f_here is a

‘proof.of
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Theorem 4.2.2 (Deduction Theorem) Given a deduction of B from {®,

a}, a deduction of a — B can be constructec{dfrqm o, 4
. N ;

Proof St_a‘ndva,rcvi‘ first order proof holds. W

Definition 4.2.3 4 variable = s free in a set ® of formulas if = 13 free
in some fof‘mula. in ®. Similarly, T is free in u deduction D) if T 13 free in

some formula in D.

[

Theorem 4.2.4 Let z be a variable which is not free in ®. Given a de-
duction D of a from ®, a deduction D' of Vza from @ can be constructed

which has the following properties:

®
(i) <z is mot free in D',

(ii) every variable free in D' is free in D as well.
Proof Standard first order proof holds. ®

Tileorem 4.2.4 has two special cases which are particularly important.
ia) If <I>‘|-‘a and z is not free in @, then' ® an.

. b) If « is provable (i.e., deducible from dn empty set of hypotheses) then

- Vzais prdvable for any variable z; symbolically, if F « then  Vza.

1
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4.2.3 Provable Equivalence. o K o
This section presents the important notion of provable eqﬁivz_xlence; shows
that the teL in the language are divided into equivalence classes by the ‘=’
relation; and shows that variants (terms and formulas) possess the property

of provable‘ equivalence. These two results are important for the proof of

the completeness‘ theorem. Also, the results of this l.,éection ‘show that the

simpler.
- M y .
Definition 4.2.5 Two formulas a and f are said to be provably equivalent

ifalk f and BF a. Two terms a and B are said to be prévably equivalent
ifba=p. _ R S . '

'Theorem 4.2.6 The following are provable in Lp.

4

'a) = is an equivalence relation. That is for any terms t;, t;; and t;3 of Lp

“we have: _ <

’ (i) - tl—_-;tl, "

(i) F ti=t; — t,=t,,

’

(iii) - t]_‘:t; A t2=t3 — t =t3.

//‘“‘\

b) (@ = Blz=1A[8 — alz=1) - [a]z = [f]= |



P . . : ]
’ ¥

Proof The first prop051t1on is needed for the completeness proof and the

second is.a halkly fact abo,ut the probability terms which is often used

The proofs der_nonstrate t.he nature of symbolic reasoning with the various .

axioms.

o, . ’ - . ‘ '
_a) t;=t; is an instance of axiom EQ5. With the predicate symbol P taken to
be‘the equality predicate symbol ‘=" we have t,;=t, — t;=t; — t,=t; -is an
instance of axiom EQT. So we have tl—t'z F to=t;. And by the deduct1on

>

theorem, I~ t1=t2 — ty=ty. Also to=t; — t2_t3 — to=ty, — tl—t3 is

another instan(fe of EQ7. Since tlétg A t2=t3 [ t1'=t2 by tautologies and

C o=ty tg——tl, we have, through apphcat1ons of modus ponens tl——-tg

'tz_ts i tl—t3 Thus l— ti=t, A tg—ts — t,=t3, by the deduct\lon theorem.

b) We construct «. deduction of [a]z = [B]z from [a — Blz=1A [[3 — d];;:l

(The axiom or rule of inference used in each step is specified at_the right).

P

, (= fle=tAlal=1)~femf=1"  (PCI)
@~ fl=1ABoal=1 . (Ep]
@ fle=1  (mp)
- ~ [evfli=1 R | _
el Ble 2 Favpls - (P
R J

[FaVBlz=1=[-als+ [Bl: > [~aVpl: = [~alz+ [l 21 (EQT)

Falst(Ble21 0 (mp)
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~[ﬂ2§]5+[,a]5=1 - (P3) B
mals+ (Bl 2 el +lads (EQT)
ol (Sals=0 . (¥
[rads + {Ble + (=)[mals 2 [els + [a]z + (- ~lels (P15 mp)
Blet0zlaro. (P4, EQT)
| Ble>(ode ) .A o (F2EQY)
Similarly from [=8 v a]s = 1 wé derive R
D felez Bl ;
L e L o
'_ [ﬂ]z= ol N | (F12 mp)

So, [ — ﬂ}}:lj‘\ [ﬁ — alz=1F [a]g—-[,@}e thus By the dedpctmn theorem

. }‘([Q—*ﬂ]g—l/\[[@—-)a]z_l)__,{a]z_[ ] . | - -“‘\

: Theorem 4 2.7 Ifo' 1s a variant ofa fhen o and j*rc prolb(.tbly equiva-"

lent where a can be elther a term or a formula
'} M . ;

Proof ThJS ‘theorem i1s proved by mductlon on the number of d1rect varx-‘ IS

atIODS apphed to a .to yield o' If o' is equal to a (1 e.; zero varlatmns

a formula. then obv1ously a F a and a' t— a. Ifof 1s the result of one

apphed) then if. o is.a term, ‘axiom, EQ5 is a proof of o' ="c. . If 1s_._v

. ’,..A L

: dlrect vanatlon of a we prove the clalm by 1nductlon on the length of ‘d

Flrst a gannot be a Vanable or constant as these do not- have any dlrect"“;



variants.” If o = f#;...¢, or Pt ...t,, then o' = ft t; (Pty... £,
where t'; = t; or t/; is a direct variant of t;. Iri this case \ye have by the

inductive assumption F ¢; = t""f' = '1' n) Therefore by axiom EQ6- - .

and n appl1cat1ons of modus ponens, we have l— ftl ft’ If

o= Pt1 - tn then ax1om EQ7 and'n appl1cat10ns of modus ponens ylelds

l—-nPt'l t — Pt’ t;-. Since t, = t’ Y t' =t (theorem 4 2 6) we also

) héve + Pt’ .t — Pt .. If a = —ﬂ then a = —15 and by Jnductlon

E /3 = /3' and F 5' — 5 B{lt, \p? — ﬁ) — (—!ﬂ’ — ﬁﬁ) is a tautology so

0B = —«B sumldrly, F —|,B’ —. ﬁb Ifa= ﬁ /\ 6 then o' = ﬁ' A 5’ ‘and
I ,8 — BAB = ,3 also l— 6 — 6’ A& — 5 by 1nduct10n ~S0 by’ the use of
’ tautolovr;es Fa—= a a.nd Fa — a. ‘

- If a_=_VxB two cases anse. K .‘ . S \

(i ) a = V:z:ﬂ' Where B is a dlrect varlant of B By 1nduct10n, I— ,6’ — ,3’

So by theorem 4.2 4 - ‘v’z(ﬂ‘ — ﬂ) Usmsz a*c1om PC" and modus B

ponens we have o Vxﬁ ~ Vg, Slmllarly, from F B — 5 we deduce

' f‘ V.’l:ﬂ' — V:E,B

(11) o = Vz(ﬁ (z/z)), where ,B’ is a direct varlant of,B z is not free in g,

and z 1s free for 1n ﬁ' Since z is free for z in G, we have \i:z:B'

v

,3 (a:/z) as an. instance of axiom PC4. Thus V:vﬂ’ F— B'tx/z). Also z

‘&‘-.'

is not free in ,B' nor in ‘v’:cﬂ', 0) by theorem 4, 2. 4, Vx5’ l— Vzﬁ (z/= )
By the prevrous result Vxﬁ F V:rﬂ’ 50, Va;ﬁ - Vzﬂ'(x /z) It is easy to

a
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A

check that z is fiot free in B'(z/z), z is free for z in f(z/z), and thelt

B'(z/z)(z/x) = f'; hence, the same arguments can be used to prove

VzfB'(z/z) - Vz 8. Part (i) gives V28’ F VzB.hence, Vzp'(z/z) I Vz 3.

If o = [B]z there are two cases.

' (1) o = [8']z, where B’ is a direct Vaxfiémt of 8. By induction F 8’ — 3,

“so by theorem 4.2.4 F Vzi... Vz. (8" — f). Hehce by axiom P1 and
modus ponens we have, - [3’ - Blz = 1. Similarly,  [3 — ']z =
_ Theorem 4.2.6 yields - [ﬁ]z = [3]z

(i) o' = [# (x,/z)]g(x /z), where ﬂ is a d1rect variant of ﬂ, z 1s an object
variable not free in ﬁ’ and free for z; in B By (1), F [Blz = [#']s,
. and by axiom (PG) F 8z = [8'(zi/2)]2(s:/2)- The tranmtlvxty of the

equahty predicate (theorem 4.2.6) gives F [B]z = ['(z; /Z)]I(I.'/z)'

Flnally, if a’ is the result ofﬁ direct variations of a we have o' is a dlrect
variant of an_l, where a,_; 1s the result of n — 1 direct variations of «. By
dnductxon, if a is a term then F a = a,_;, also F a,_; = o' So, Fa=ad,
by the transitivity ef the equality predicate. If is a formula then o F «,,_,

also a1 F @', So, at o' Similarly, oo m

Theorem 4.2.8 For every formula, a, variable, z, and term, t (of the

same type)
FVra — a(z/t).

»
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Proof By definition 4.1.8, a(z/t) = a'(z/t), where o' is a variant of «
such that ¢ is free for z in o’. By axiom PC4, Vza' F a(m/t), and by
' theorem 4.2.7, Vza + Vza'. Hence, Vza F a(z/t), and by the deduction

theorem,  Vza — a(z/t). m

'4.24 Maximal Consistency

To prove the complet¥ness theorem we need the notion of mazimal consis-
tent sets-of formulas. The next few definitions and theorems develop some

properties of maximal consistent sets of formulas.

Definition 4.2.9 A set of Lp formulas ® is inconsistent if for some a both
® F a and (I??‘}- -, otherwise, ® 13 consistent. ® is maximal consistent
if ® is consistent and is not a proper subset of any other consistent set of

formulas.

Theorem 4.2.10 A se: of formulas ® is inconsistent iff ® F '« for every

I
formula a. ~

Proof Standard first order proof holds. m

¢

Theorem 4.7 11 For any & and «,

a) ®,-a 1. nconsistent if a,

b) @, is inconsistent iff d + -



Proof Standard first order proof hold’s. [ |

Theorem 4.2.12 A set & is mazimal consistent iff both of the following

conditions are satisfied:

a) ® is consistent. *
; o _

b) For every forfnula a, a €® or ma € d.

Proof ‘Standard first order proof holds. m

Theorem 4.2.13 If ¢ 1s mazimal consistent and @ + a then a € 9.

¢ Proof Standard first order proof holds. m

Theorem 4.2.14 Let & be mazimal consistent. The following-cojndit‘ions

hold:

. a and -« do not both belong to o, - | .

If v—a € ® then a € &.

.MfanpePthenacePand F€d. .

I ~(aAB)€E P then ma € ® or -3 € &.

If Vza € & then a(z/t) € ® for every term t of the same type as the

variable z. \ ' /

. For every term ¢, (¢t =1t) € ®.



CTo I flS an nQary lfﬁnétibn symbol of Lp and f’l, .V,Atzn are terrs of

compatible tjpe, then the formula
tl = tn+1 — ... — tn = tgn‘ —+'ft1 . tn :'~ftﬁ+1 ‘e .‘tgn

is 1in @.
3

8. If Pisan n-ar_%gp_re’dicate symbol and ty,...,¢;, are terms of the same

' “type, then _th‘e‘f'ofmul'a

by = gy o> o B =t — Pt = Plagr .ty

is in &.

Proof By item ns f lows:
TN ‘ . . g
1. Follows immediately from the fact that @ is consistent.

-

2. Jf ~~& € ® we have ®  « (as ~—a > aisa ﬁéutolc)gy) so by theorem |

(

‘ 4213 acd.

3. If a A BE® wehave - aand ® + S (again by tautologies) so by

~theorem 4.2.13 both « and 8 are in &. (

4 If ~(a A B) € @ then if « € & we have - ~8. So either ~a € & or
-8 € &. |

5. If Vza € ® then for every term t we have & + a(z/t) by theorem 4.2.8.
Thus a(z/t) € & by theorem 4.2.13.

4
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6-8. 'ESvery instdnce of « -er axiom of Lp (in particular all instances of
axioms EQS, EQ6, and EQ7) is provable; hence, deducible from @,

thus, in & by theorem 4.2.13.

4.2.5 Soundness and Comple- eness ‘o_fithe Proof The-

¢

ory

" Nev e have all of the necessary machinery to prove the folloiﬁ’rig existence
S ~ \ .
' theorem, from which the completeness theorem follows easily. This is done
in a manner similar to the proof in first order logic, i.e., by way of a Henkin

construction [3]. Mogdifications have been made to deal with the definition

of the probabi'lity‘ function and to handle the two sorted universe.

Theorem 4.2.15 (Existence of a Model) IfQ is a consistent set of Lp
formula.s.then there ezists an interpretation o, with underlying Lp-Structure

M, which satisfies . That is, 37 = T for all B € Q.

Proof First, we extend Q to a maximal consistent set of formulas & which
has witnesses, ie if “Vza € ® then for .some constant e, —aa.(:z:/c) € &.
"To begin it should be noted that Lp has only a denumerable number of

formulas (as each formula i is a string of finite length) We extend Lp toa

new language Lp(C) by addmg 2 denumerable set_of new constants {eili= -
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1,...}. It is clegr that Q is also a consistent set of Lp(C) formulas. We
fix an ordering {¢;|¢ = 0,1,. } on all the formulas of Lp(O), and define

for every n a set @, of Lp(C) formulas such that:

4

1. &, is a subset (may be equal) of ;I>j for all j > .

2’. ®; is consistent.. ~

P

3. Only ﬁniteljr many new constants occur in ®;.

.. First put &, = Q; (1) holds vacuously, (2) holds by assumption and (3)
holds because Q is in Lp so has no new'constant,s. At the n-th stage define

@n;l as follows.

= 4

Case 1) If &, U {¢,} is inconsistent we put ®,,; = 3., Cleerly_-(l),_(Q), y

- and (3) hold for <I>.,,+1.

.\

Case 2) If ®,U {45 } is consistent and ¢, is not of the form —Vza, make -

<I>n+1 =, U {(}5 }. Again 1t is obvious that (1) and (2) hold for CI>,1+1

We also have (3) since ¢, is a formula of finite length

Case 3) If <I> U {qS } is consistent and ¢y is of the form —Vza, then by
(3) there exlsts a new constant ¢ Wthh does not occur in ®, nor
in Pn- W]th such ¢ we put Pnyy = &, U {(ﬁn,-ﬂa(x/c)} If z is an
object vapable then the new constant ¢ is defined to be an o-term;
otherwise, z is a field variable and c is defined to be an f-term. It

15 easy to see that (1) and (3) hold. If &,.,, were inconsistent then,

1
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by theorem 4.2.11, we have {®n, én} F a(z/c); thus, {®,, ¢.} F Vza
by axiom PC3 (obviously z is not free'in a(z/c)). Since ¢, = —Vza,
this contradicts our assumption that &, U {¢n} is cénsistent. Thus

>

we see that (2) also holds.

-3 . -
Finally we put & = U2, ®,.. By definition of & we have Q = &, C i

furthermore, we claim that @ is' consistent. If ® is inconsistent thén we

"have @ - « %\Qell as & F —a. Since both of tilese deductions are finite,

there must be a finite subset of ® which is inconsistent (namely the set of

' (
formul%ss. which appear in the two deductions), but every finite subset of &*

is contained in some @, and every ®, is consistent by (2), contradiction.

Not only is ® consistent it is maximal consistent. To see this let a be any. .
formula of Lp(C) not in . For some n, a = an.’Since a &€ P it follows that
®,,1 must have been defined as in case 1. Thus &, U {a} is inconsistent

so ® U {a} must also be inconsistent. This shows that & has no proper

1

superset which is consistent. 3 -

Since "® is maximal consistent all of the eight conditions of theorem

4.2.14 hold. Furthermore, if “Vza € & then by-the construction we have,
- for some constant ¢, ma(z/c) € ®. And, by definition, this constant is a

- term of the same type as the variable z.

Now we can construct an Lp-Structure and an interpretation which

atisfies ®. For each term t we define [t] = {s|s =t € ®}. By theorem

4.2.6 it is deducible that ‘=" defines an equivalence relation and since @,

"102
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being maximal consistent, is closed under deduction it follows that these are

-

equivalence classes of terms in Lp(C). Since these are equ! alence classes,

it is clear that [t] = [s] if s =t € @.

Lemr;la'4.2.1_ Let t1,...,t2, be terms of identical type such that [t;] =
IIt,'_*_n]] (’L = 1, ;;.. .,Tl) then

: : ' '
(a) For any n-ary function” symbol, f, of type compatible with the terms

t1, ... ton
1

L}

[Iftla ey th = [Ift'n.-i-l e tzn]],‘ .

(b) For any m-ary predicate symbol, P, of the same type as the terms
\ .

Sty tan

Cif Pty,...,t.€® then Ptoi1...t, € .

-

Proof The assumption is that ¢; = i;y, € ® (: = 1,...,n), so, using

condition (7) of theorem 4.2.14 and applying (1) and (4) n_times (‘a'long

~ with the definjtion of —), we get (ft1... fta) = (ftat1...122) € & Thus =

| [ftr... fta] = [ftngr- - tzn]] Similarly, (b) follows from (8) and applying
(1) and (4) n+ 1 times. m oo ’ .

. (-
f. )
4

' Now we define an interpretation function ¢ and a Lp-Structure M which

satisfies ®. As the set of objects O we take the set of all equivalence classes :

of o-terms, i.e., ) e

o= {[[t}:t ié an ‘o-t':erm}.‘ ~
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As the ﬁelﬂ'of numbers F we take the set of all e}quivalence classes of

.7‘::,
fterms, i.e., ¢

: F= {[[t]t is an f-tex:_m}. )

Note, F and O include the new constants added by case 3.

If f is an n-ary object function symbol of Lp we define an n-ary oper-

atlon on O as its interpretation by putting

Fr(Itl - [ta]) = Iftr - tal.
" - -
If fis a field function symbol or a measuring function symbol then the
operation is defined on F and on © — F respectively. By the lemma this
definition-is independent of the particular choice of representatives of the

equivalence classes t,,...,t,. - .

If P is an n-ary object predicate symbol we define an n-ary relation on
O by p:ut_ting ’ .
<Htlnyaﬂtnﬂ>epa‘ lff PtltnE(I)

&

Similarly if P is an n-ary field predicate. The lemma shows that this
. definition is indepéndent of the choice of #;,...,t,:
For each variable, z, we put z7 = [z], where z can be a variable of

either type. A

-
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Finally we define the sequence of probability functions x, on any set of

O™ defined by a formula a by

/in{([[aﬂ], , [ 1]) (@ lesd--wlonl)) = T} - [[[a]zl]

Lemma 4.2.2 For any n the prabab;lity function p, is well defined. ~iat
<18, if A 13 a set of tuples 7n O™ defined by two different formulas a and 8

then pn(A) is independent of which formula is used.

Proof\ By assumption, A = {([ai],..., [a.]): @/ {[al-leal) = T} and:

also 4 = {{[b:],-- ., [5.]): ﬂ"(y/(l[bxll ----- BeI) = T3, @y definition, p,(A) =
llo]z] also pa(A) = [[B5] The claim of the lemma is that [[c]z] = [[Lg]ﬂlf-
Let 2 = ('zl,". .., 2n) be a new set of object variables which do not appear
in either a or . There exists two variants e and S, called o' and g’
respectivély, formed by substituting all the variablés z; € T in a and all tﬁe
variables y; € 7 in 3 by the new variables z; € Z. By theorem 4.1.7, the sets
A" and B’ (of tuples of O™) defined by these variants is__the same as the set 4.
Further, by theorém‘4.2.7, it is provable that [a']; = [a]z also [,é']; = (Bl
So by theorem 4.2.13 we have [[a/]:] = [lalz] also [[8']:] = IH,B]g]] Hence,
the claim can be redt;ced to proving that l[a:] = Ho'))- '
Since- ’?

(.. ., [eal): @/ Madentenl) _ 1y

(er].... [el): 7ol deb) _ 7y

w7
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‘ 1tmt15tbe the case that the formulas Vz{\b‘v’zn(a’ — f') and Vz;...Vz, (8" —

a’)a:e _in ®. As @ is maximal consis:ent, either these formulas or their
néga:cioﬁémust be in ®. If their negations are in‘<1'> it is easy to see, using
thé'v&ﬂn&cs .ﬁr'operty. of & and théorem 4.1.4, that 'thése two sets cannot be
equal. Using axiom P1 and theorem 4.2.13, the formulas. [a = Bz =1

and [’ — a']z = 1 must be in . Thus, by theorem 4.2.6, @]z =[B): € &.

Hence, b¥ definition, [[a'];] = 1[5z =

This defines each u,, on all subsets of O™ defined by formulas of Lp. It
~ should a.lsp be clear from the construction of @ that pn 1s also defined on
each singleton set of O™, since the formula (z; = t; A... A :v.n = t,]z defines
the singleton set {([t,],..., [Itn]])} In .an Lp-Structﬁre each p, is defined
-on a field of subsets of O™, II,,. However, theorem 4.1.10 shows that the set
of subsets defined By the formulas of Lp is itself a field of subsets. Hence,
Kn s alreédy defined over a field of subsets which includes all singleton sets
~as well as all subsets deffx;ed' by the formulas of Lp. That 1s,-II,, can be

taken to be the field of subsets over which ln 1s already defined.

Lemma 4.2.3 For eﬁch term t

= I]-

Proof The lemma is proved by induction on the complexity of ¢. If ¢

is a variable z then z° = [z] by the definition of 0. If { = [a]z then



N

[]z” = [[a]z], again by definition. If t = f#,...t, then

7 = (fty...ta)°

= () (By Sem. Defii.)
= fo([#]. .. [ . (Inductive Hypothesis)
=[ftetd (Def of %)
= [t]. |

Now we can prove that @ is in fact satisfied by o. We prove by induction

. (on the length of a formula g) that
(a) if 8 € & then 8° = T, and
(b) if -8 € @ then 8° = L (hence =7 = T).

1. B = Pt;.. t,, where P is a predicate symbol of either type.

(a) If Pt;...t, € &,

then ([t:],...,[t.]) € P°, - (by def. of P°)
o | (t7,...,t2) € P°, ‘ | (by lemma 4.2.3)
(Pty...t,) = [ (by Sem. Def.)
(b) I =Pt...ta€ @,
then Pt;...t, & ®, : (by theorem 4.2.14-(1.))'
(6], [ta]) & P, | (by def. of P?)
(1],....t5) & P°, (by lemma 4.2.3)

(Pty...t,) = L. ‘ (by Sem. Def.)
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2. B = (s = t), where s and ¢ are terms of the same type.

(a) I (s = t) € &, A
B then [s] = [t - Lo o
s =t (by lemma 4.2.3)
(s=t)=T. . " (by Sem. Defn.)
(b) (s £¢)€d | o C. |
.\_éhen (1 £ 11, | ( | ; : o e
Al ' ' - (by lemma 4.2.3) /
' (s = tjv =1 . (by Sem. Defn.) °
3. B =a. ' - [.
(@) f-ac® - .
tlﬁién a’=1, i - S _~  . (by iﬁd. hyp.)-
(~a)*=T. i |  (by Sem. Defn.) -
2 (b):df e € B - o S
! then'a € ®, . (by thm. 4.2.14(2))
a’ =T, - - © (by ind. hyp.)
(ma)’ = 1. - o . (by Sem. ﬁefn:’)
4. B=a A 5. ‘ | | - a0
(a) fanéed
' fhen € @ and § € B, - ' (by thm. 4.2.14(3))
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#
& ;

s S - . L
=T and 6° = .~ (byind:-hyp.)
(aAma—T T;f _Ff";_ -,uws&gDamy.

C(B) IE(anb) € ' | o -
7 'mmﬁae@Mﬁae@' - (mwmn4zmM»
" =Llorg” =1, . (bymd hyp)*"“
(a/\&)”—J_ ., : (bySem Defn)“.‘
5. ,6 = \'/:ca, whe;je z is a variable éf"eit_heI; t'iype L
(a)‘If"v’xaE@" \( IR
, then a(a:/t) € fI> for every term t of the same type o (by thm _‘
| 42145 | ’ o
a(z/t)}y =T for every t, ' : _ (by 1nd hyp.)
a#¥) = T for every t, where t/ = LOE . (b:;thm419)
d#ML—Tﬂxe%qm1EO(u€f) | (Bxgdef of )
wmy— - . f‘¢ | 5@y$mbﬁq*

(b) IfﬂV:z:ae@ : -

then, by’ the witness property of @, —aa(a:/t) € for some term

t (same type) R ' -

—a(z/t) =T _fof some t, . ; (by imd. hyp.)
‘a"(‘”/'.')‘::'v 1, wheré =17, . (by thm.4.1.9)
o=/ = L _ o (by lemma. 4.2.3)

a”=/*) = | for some u € O (veF), (By Def- of O)



(Vza)? = L. h ' (By Sem. Defn.)

Thus -ﬁ" =T for 11 2 € ®. Since & is maximal consistent it contains all
instances of all axioms. hus the structure aﬁd interpretation constructed
satisfies all of these axioml%. In particular, since all of the field axioms are
true it is clear that F has‘ tvhe'str‘ucture of a field. Further, since.all oi_.' the
probability axioms are true it is the case that the functions p, are in fact
probability f_unct\io‘ns.v' |

. The sequence of probability functions is a sequence of product measures,

since every instance of axiom P7 is true. Let 4 = {@la’®® = T} Cc O™

and B = V{E—a‘|ﬂ"(f’/?") = T} C O™ be two sets in the domain of g, and
Lm TE éctively, with pn(A) = 21 and’un(B) = z. It can be seen that
At.he equivalence dass of the probability term [a A B)z7 is equal to the
probability of their Cartesian product. Also, we havg»[{a/-\,@]z =z = 22 is
t,_rue,v so must be in &. Hénce, by axiom P7 the probability of the Cartesian
- product is greate than or equal to z; X ;22 ¢ It must be shown th.a.t it is in fact
.equal. This can‘ be done by considering the complemént of the Cartesian
product. This hset is not a product set, but it is equal to the union of two
product sets. That is, it is equal to the (disjoint) union of —A4 x O:’" and
Ax-B. Using P7 again, we see that the complement is greater than equal
to 1—z; + 21 x(1—2,), which is 1.— z1X2,. The resuit-follows from axiom

P3.
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4

Axiom P8 insures that the p"robability functions satisfy the constraint

of invariance under permutations. Similarly axiom P9 forces the functions

to satisfy the conglomerability condition. This can be seen by examining
: ’ N
the semantic interpretation of axiom P9. 2 .
Hence, the structure constructed is a valid Lp-Structure.

,Since {2 is contained in ®, it is obvious that o satisfes Q. That is,

;» a" =T for all « €  as claimed. &

Lo ‘
| The proof theory is both sound and complete. This means that de-.

ductions are semantically valid and that deductions exist for -all semantic

entailments.

Theorem 4.2.16 ((%“ompleteness) If® =, then & F «.

’

Proof If ® = « ther} no interpretation satisfies {®, ~a}. Hence, by the:
Existence Theorem, {®, —a} is inconsistent. Thus, by theorem 4.2.11,

oo m
Theorem 4.2.17 (Soundness) If ® F «, then & = a.

-Proof Let ¢1,...,¢, be a deduction of o from @, i.e. ¢, = a. We show
by induction on k = 1,...n that & | ¢,. If ¢, is an axion} then we claim
that ¢ is satisfied by every interpreta;'tioxz. Thus, & &= ¢. If'qbk e P
then 1t i1s clear t.hét ® = ¢4 Thg last Ca.S(; is 1if for some 7,5 < k -we have

¢; = ¢: — ér. By induction ® = ¢; and & = ¢;, so, from the semantic
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dqgnition and the definifion of ‘—’, it follows that & |= ¢;. Now, all that
rema\iﬁB&s%Q_,prove the claim that the axioms of Lp are satisfied by every

interpretation. The first order axioms pose no problem, since Lp is an

extension of first order logic. The standard proof of the soundness theorem -

for first order logic suffices to show that these axioms are valid (satisﬁgd
bjf every i_nterpretation). Since in the Lp-Structure F is defined to be an
ordered field, it is clear that all of the ,ﬁeld-axioms'are valid. Finally, since
cach pu, is deﬁﬁed to be a probability function in the Lp—Stfucture, we
can use the semantic definition of the p-roba_bility'terms [a]z to. see that
axioms P1-P? are valid. Theorem 4.1.7 shows that axiom P6 is valid. The
fact that the sequence of probability functions is a sequence of product
measures ylelds the validity of axiom P7. The additional constraints (2)

and (3) ensure that axioms P8 and P9 are valid. m

4.3 Properties of the Probability Terms

This section presents some simple lemmas which demonstrate some prop-. .

erties of the "probabiwlity terms. These resu. : will be used in the examyples

- which follow. The existence of a completeness proof allows a proof of these

lemmas from the semantics; the corresponding syntactic proof is guaran-
: ‘ Yo,

teed to exist. In these éases, a proof fresh the semantics is much simpler, as

it just requires using some notions from set theory and probability theory,
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whereas, a syntactic proof would involve a lot of symbolic manipulation, a

task more suited to an automatic theorem prover.

Lemma 4.3.1 ‘The .foll‘owing are provable in Lp.

>

. a) [a]f S 1.

e

>

b) [a'A Bz < [als and [ A ]z < Az

c) [aV Bz 2 [a]z and [a V Bz 2 [B]=.

¥

d) [V Bz = [a]s + Az - [a A Blz.

-

Proof All of these results can be simply deduced from the fact that seman-’
tically the probability terms fepresent assignments of probability. That is,

each probability term represents the prokbability‘ of a corresponding set of

<

objects.in O". Hence, all of these results follow from.the properties of the
probability functions u,, (their non-standard features do not affect these

v - S
results). Equivalently they can be deduced from the probability and field

T

axioms, in a manner similar to the proof of theorem 4.2.6. m

‘ »
<

That these results are provable in Lp is an important point. They..indi-

'cate that the probability functions have many of the familar properties of

_ ordinary real valued probability functions, even though they assume values -

in a field which is only defined E)y abstract field axioms, a field which is

not necessarily the field of real numbers. This means that when numeric

N~
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values are available, a practical reasoning system could use the arithmetic

hardware already built into computers. Any new numeric probability com-

puted by arithmetic calcﬁa}tion from other numeri¢ probabilities, using
the familiar propérties of probability functions, will be a valid deduction. |

This deduction will be inferred much faster than if it was inferred through -

| .
symbolic manipulation of the field axioms. The advantage of having the

field axioms, besides the contribution of the ﬁe];d to representational power,

éxrises from the fact that in many, if not most, situations numeric prob‘a—

bilities are not available. In thls case the field axioms allow oné to reason

;;vith ~wh'a.tever( infogf;nation is available. For example, if the knowlecige base

contained the set of statements {[P(z)]. > [Q(z)], (Q(z)], /> [R(z)]:},
~ \

then it would be possible, using axiom F11, to infer [P(z)]. > [R(z)]s,

even though no numeric values were available.

Theorem 4.3.1 (Bayes’ Theorem) Using definition 3.2.2, the following

18 provable in Lp:

(e #£0A (B £0) = [Blale = [alf)s x £
This theorem shows that the powerful ;nechanisms of Bayesian iﬁférence

are also 'valid in Lp. Bayesian analysis is useful when numeric probabilities

are available. It requires a certain minimum amount of probabilistic infor-

mation (although, as Pear] has shown [55], the information requirements

can be made reasonable if knowledge of dependencies are also available).

/—\
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Inference engines formally b;ised on B;zyes’ theorem and the laws of prob-
ability can be used on nurmetic probabiﬁties expressed in Lp. Since both
the probability axioms and Béy&s’ fheorem are valid in Lp, the conclt;sions
obtained from such inferenc:e eﬁgines will be valid deductions in Lp.

' The next lemma shows that when 8 — X, A does not affect the condi-

»
tional probability.

Lemma 4k.3.2 If B+ X then [allél\ Nz = [a|5]z; given that [B]z # 0.
o

Proof: Since [8]z > 0, {G@|(8)°*/® = T} is not empty. Let & be a mem-

ber of this set. By the soundness theorem 8 = A, i:e., if 87 = T then

AT = T for any interpretation 7. Hence, we have that A(%/9) = T, and,

by the semantic deﬁmtlon ¢ e {al(B A )\)“(5/“) = T}. Therefore, we have ‘

{@|(B)°ED. = T} ¢ {@|(8 A A)#D = T}. Clearly, the opposite contain-
. <
ment also holds, hence, the two sets are equal. By the semantic definition

we have [8]z = [8 A ]z, and it is easy to show that BAralz=[BAXA]z

N
also The lemma follows from the definition of conditional probab1ht1es |

The last lemma shows that deductive consequences always have greater-

conditional probability.

Lemma 4.3.3 Ift Yz, ... 2,(f — \) then [\ajz > [Bla]s.

~

115



Je

Proof: Using the soundness theorem it is easy to show that {@|(8 A»

@)@ = T) is‘_a subset of {a@](A A a)?(®/D = T}, Sinci Mn is a proba-

bility function [AAajz > [BA a];;z, and the result follows from the definition

_ N -
of conditionals. m
R P

4.4 Examples of Reasoning with the Statis-

tical Knowleglgé

LUC

i

Exg;hple 4.1 Nilsson’s Probabilistic Entailment. : =~

Nilsson (53] develops a p{obability logic based on the p‘os‘sible worlds gp—
proach. He shows how the p}()@b_ilities of sentences iﬁ A.the,lOgic‘a.re con-
strained- by known probabilities, 1 ﬁ., constrained by tlie_ probabilities of a
bfise set of sentences. For exampl, if [P A Q] = 0.5, then the values of
[P] and [Q] are both constrained t be > 0.5. Nilsson demonstrates how
the.imblied constraints of a base sét of sentences can be represented in a
canonical manner, as a set of linear équations.. These linear equation;s can
be used toyidentify the strongest constraints on the pfobability of a new
sehténce, i.e., the tightest bouﬁds on its probz;biﬁty. The‘se cdﬁstraints are,
in Nilsson’s terms, probabilistic en;tailfrients.

Nilsson gives some approximate methods for calculating these entail-

ments, as well as noting that the methods of linear programming can give,
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exact solutions. The important point, however, is that these bounds are

simply conseq:uences of the laws of probability. In fact, the theorem

oV Ble = [als + 8z — [ A B,

along with the fact‘.that‘ probabilities are not ﬁegative,‘,gives the full set
of constraints from which all prebabilistic entaiiments are derived. This
theorem is true in Lp (lemma 4.3.1)\. And, since the proof theory of Lp
is complete,‘ probabilistic entailments can be deduced in Lp. Numerically
the constraints are identical, i.e., the best bounds deducib}le in Lp are same
r?umbers as the best probabihstié entailments. |

For.exampie, if the base set in Nilsson’s logic is {{P]=0.6, [P ——:Q]:O.S},

probabilistic entailment gives the conclusion 0.4 < [Q] < 0.8. If we write the

symbols P and Q as one place predicates, then in .va the knowledge could

* be represented by the following set: {[P(z)] = 0.6, [P(z) — Q(z)]. = 0.8}.
From this knowledge it is gasy to deduce the bounds [0.4,0.8] on the

probability term. [Q(x)]..%

Example 4.2 Simple reasoning with empirical generalizations (defaults).

31t should be noted that Nilsson’s probabilities are subjective while the probabilities
in Lp are empirical, hence they are not quite comparable. "However, the next chapter

will demonstrate a mechanism of generating ‘subjective’ probabilities from the empirical:

probabilities encoded in Lp. It will be shown how reasoning with. these ‘subjective’ prob-
abilities can be performed by reasoning with the base empirical knowledge encoded in Lp.
Hence, this formalism is in fact capable of duplicating all of the reasoning possible with
Nilsson’s system.
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. 1. If the statement “P’s are typically Q’s” is given the statistical in- .
terpretation that more than ¢% of all P’s are also Q’s, where c is
some number close to 1, then the dpposite conclusion, that “P’s are

typically not @’s,” can be proved to be false.* That is, -
yp y

[R@)IP(@). > ¢ F =~(1-Q(@)[P(x)], > c).
) The derivation follows from'axi;)rn P3.

2. Similarly, the if {he statement “P’s are Q’s” is asserted then the
‘statement “P’s are typically not @’s,” can be proved to be false. gor
e'xa:rnple, “pehguins are birds” implies that “penguins are typically
not birds” is false. |

(Vz(penguin(m) — bird(z)) k- ﬁ([bird(m)|pefzguin(m):]"r‘ > c).

i -
" .

The derivation follows from axioms P1 and P3;

v

Example 4.3 More complez reasoning with generalizations.

v -

’

1. The knowlelige, “most ravens are black” along with “black objects are

b

- not white,” can be used to deduce that “most ravens are not white.”

N

{[black(z)|raven(z)], > c,

~ *The fact that most non-monotonic formalisms allow both of these statements to be
asserted without contradiction has been noted, and cited as a weakness, by both Touretzky
et al. [78] and Delgrande [16]. '
\ -~
Y

.



lV:z:(black(:v) — ‘fwhitgi(‘fl?))}

F [~white(z)|raven(z)], > c.
"This can be shown with an argument similar to lemma 4.3.3.

2. The knowledge, “most birds fly” aldng with “penguins da not fly”,

* can be used to deduce that “most birds are not penguins.”

(rbrdale>e. T
Vz(penguin(z) — = fly(z))}

F ["PengUin(.x)lbird(x)]r > c. [

Example 4.4 Weighing of evidence with ezplicit as&umptions of indepen-

dence.

Let F(z) represent the assertion that z is a car wifh faulty hydraulics,
5q(z) the assertion that :1:\ iIs a car with squeaky brakes, and Sp(:z:) the
assertion that T is a car with spongy bra.kes Given knowledge about the
prior probabilities of faulty hydraulics, squeaky brakes, and spongy brakes,
the cof-lditional probabilities of squeaky brakes and spongy brakes given
faulty hydraulics, as well as the knowledge that the probability of spongy

‘brakes is independent of squeaky brakes, both unconditionally and when

given that the ear has fauity flydrauli.cs, then the probability that a car

- has faulty hydraulics when it is observed to have both squeaky and spongy
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brakes can be deduced using Bayes theorsm.
{{S9(2)|F(2)]. = Ca™,
[SP&)|P(=)]. = Ca,
[F(2)). = o, [Sq(a)]. = ¢,
[Sp(2)]. = ¢, |
[Sa(z) A Sp(z)). = [Sq(z)]. x [Sp(=)]e,
[Sa(2) A Sp(@) ()] = [Sa()|F(2)]. x [Sp(a)|F(2)].)

: Sq Sp X CF '
- [F(2)ISq(z) A Sp(a)] = == X Cd

cS1 x ¢Sp

This example is, of course, very simple and requires a lot of statistical .

knowledge, however, it serves to illustrate the point that the techniques of

Bayesian analysis are subsumed by the deductive proof theory.
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Chapter 5 = N
Belief Formation

As mentioned in chapter 2, Lp cannot express an assignment of proba-
bility to a.closed fbrmula, e.g., a probability assignment to the formula
Bark(Fido). The p’rob'abilibty terms state the probability of the set of ob-
jects for which a forrﬁula 1s true. In theirrsemaﬁtic definition (section 3.5),
there Is no mention of which individuals satisfy the formula. These prob-
ability terms express empirical probabilities over sets of individuals; such
probabilities do not apply to particular individuals.! This limitation of
empirical probabilities has long been noted, by various writers who have

adopted an empirical interpretation of probabilities (see Kyburg [37, page

8]). In fact, the semantics of Lp allows a formal demonstration of this

1Thic can be contrasted with universal qua..ntiﬁcationv. A universally quantiﬁed formula
is true for all individuals; so, it is necessarily true for any particular individual.
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limitation, as is shown by the following lemma.
Lemma 5.0.1 Ifa i3 a closed formala then [a]z = 0 or 1.

Proof By the semantic definitign, for any inferpretation o:

a

(la)s)” = pa{@la®®D = T},

Since & has no free variables, o and o(Z/&) will agree on all the free variables
of o, for any @. Hence, by theorem 4.1.2, a’ = %a(z\/a). Either a’ =T or
a’ = 1, since o is an interpretaﬁion and « is a forrnula. Thus, the above
set of d is either all of O™ or the empty set, and, for any Ln, the probabi_lity

is either 0 or 1.. |

Even !hough probabilities cannot be- a.551gned to closed formulas in Lp,
there is clearly a need for such probablhty assignments. For e\arnple the i
assertion Bark(F'ido) may not be deducible from the knowledge base, but
it"may be necessary to asmgn it some degree of belief, e.g., as a guide to
"action. This assertion can be assxgned a reasonable degree of belief by using
the statxsticid knowledge that most dogs bark (given that Fido is a dog).

Thls chapter presents a general 1nduct1ve rnechamsm of belief formation,

which can use the non- specxﬁc statistical 1nformat10n exp ~s-=d in Lp to

generate degrees of belief in closed formulas (sentences) which cite specific

1nd1V1dnals.
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When the sentence is not deducible from the knowledge base, the mech-

anism is capable 6£_generat1ng degrees of belief in the range 0-1, or other
. -

1nformat1c’>n, e.g., interval information or comparative information. In fact,

. the information about the degree of belief can be any - 1nformat1on about

-

a number expressible in Lp The extreme degrees of belief, i.e., 0 or 1,

can be generated when the sentence, or its negation, is deducible. That

is, when the séntence is deducible the mechanism can genere.te a degree of .

belief representative of the entailed truth value:

+

First, the mechanism itself is presented. Then, it is demonstrated-how '

it can be justified by.the semantics of Lp. The last seétion gives some
‘ 1 - .

4 examples which illusfrate the generzi‘lity- f@he formalism.

- >

5.1 Belief‘ Formatio.n.

F1rst we deﬁne a behef function, B, whichk maps pairs of Lp sentences to

numbers in the closed interval [0, 1]

Definition 5.1.1 (Belief Function) Lgt B(a|f) denote the degree of be-

o

~ lief in the sentence o given the base kgowledge B (also a sentence). This

degree 13 a number’in the closed interval (O, 1].

S

' 'It will be ’see_n, howeter, that the result of the belief function is de'pen_-

dent not only on its two arguments, o and 3, but also on a background

knowledge base. | -
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5.1.1 Inductive Evaluation Function

It is convenient to use a specialization of the notation developed for sub-

stitution in section 4.1. If ¢ = (cl, .,Cn) IS a vector.of distinct object

constants and T a vector of dlstlnct object vanables then denote by a(é/T)
the new formula which results from substituting z; for every occurrence of

¢; in the formula «. (If the ¢;’s were considered to be free variables in a,

. definition 4.1.8 would yield the same formula.) Also, let K B denote the set

of closed Lp fonﬁulas which cbmprise the knowledge base.

. The belief function is evaluated through the follovﬁng inductive princi-

-

ple.

Iy

" Definition 5.1.2 (Inductive Principle) Given that a closed formula, «,

' cEntaina the vector of object éonstants ¢ (and no other object constants),

* the degree of belzef B(a|B) 1s asszgned a value equal to the following Lp

.probabzlzty term:

BalB) = [a(é, )lﬂ( ),

where T 1s a vector of object va’rzables whzch do not occur in « or ,8

I

, This\inductiv?e principle has a simplé,intu;itive interpretation. The de-
L : ,

gree of belief in a(E) given the knowledge ﬂ(é"«‘\ B(a|B), is equal to the
probability that a random tuple Z, with all the properties f3 g1ven for c,

will ha,ve properties «.

tal
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a . ]
The degree of belief is generated through an inductive assumption of

randoxmzatmn That is, the partlcula.r tuple of individuals mentioned in
the formula a, ¢, 1s con51dered to be a randomly selected tuple from the
set of tuples {a|(ﬂ(é’/§:’)"@/“) = T}. For exarnple, if we had the statistical
knowledge [lFly(a:.)|Bird(z)]r > .75, the inductive principle would assign the
degree \of belief B(Fly(Tweetg))IBird(Tweety)) a value > .75. This value,
is based on the statistical knowledge that ife bird was selected at ran ' m

(1.e., an 1nd1v1dual selected at random from the set {aIBzrd(x)"(’:/“ ™

then there is a > 75% chance that it would be able to ﬂy The induc-

tive assumption is that it is reasqnable to use this value as the degree of

belief in the assertion that this particular bird, Tweety, can fly, since the
only knowledge being used about Tweety is that he is a bird. This ex-

ample also demonstrates that the belief function depends not Vonly on the

two sentences which are it\s arguments, but alsh on background statistical y

‘knowledge which determine the value of the probability te'rm that ls the
assigned degree of belief. | |
If anbagent' is intel‘&cted’ in a." particular sentence «, it would seem that
there is an 1mpos51bly large set of different degrees of behef B(alﬂ ), Wthh
could be formed a.bout @, each one based on a different sentence . However
the knowledge base will not contain any guseful information about_ the values
of most of these degrees of belief, Le., all that will be deducible about the

proba,bi‘ity terms generated by the inductive principle is that they are in



the closed interval 0-1. Furthermore the following lemma shows that it is
only knowledge about the particular set of individuals appearing in « that

is relevant.

Lemma 5.1.1 If no z; E T'is free in A then [a|B ANz = (@] 8]z, assuming

?

that [ A Az # 0.

Proof: Since [ﬁ A Az >0, {Gl(BAX)E/D - TY is not ‘empty. Let @ be

&) -

a member of this set; since (8 A A)?(¥/T) = T we have by the semantic

deﬁmtlon A?(F/T) = T, Since no member of T is free in A, A9 5/") =T

for all u € O" by theorem 4.1. 2. Therefore CE {a[(ﬂ AXED = TY iff

Ze {alpEd = T}. It is clear from this result that {a|(a AB A )\)"(5/“) =

" T} = {@l(anB)"E/d = T}, Thus by deﬁmt1on 3.2.2, [a|BAA]z = [a]B]z.

k]

ThlS lemma 1mphes that when inducing a degree of belief in a senterce a

which contams the vector of object constants ¢, only those sentences which .

‘contain one or more of the constants ¢; need be used as base knowledge

For example if the knowledge base is. - . )

{ [P@)IQ)). =
[P()|R(2). = 0.5, y
[P@)IQ(z) A R(z)]. = 08, &
Q(Tvini)','R(Ti’m),. o
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Q(John),~R(John) 1},

then when inducing a degree of belief in the‘sentenc_:e P(sz), it is only the
knowledge Q(Tim) and R(Tim) which need be used. Let I' represent the
co'njunctionl of all the sentences inthe knowledge base, then B(P(Tim)|T’)

“has a value equal to the probability term
‘ ’

P(z) | [P(2)|Q(z)]s = 0.9 A
[P(2)|R(z)]s.= 0.5 A
[P(2)|Q(2)AR(z)]. = 08 A
Q(John) A ~R(John)
Q) AR,
By the lemma, this is equal to [P(z)|Q(z) A R(z)].. By axiom P6,
[P(2)|Q(2)AR(2)]. = [P(£)|Q(2)AR(2)]s, which from the information if
* the knowledge base is equal to 0.8. Hence, B(P(Tim)[T), whichis b .d on
all of the knowledge in the knowledge base is equ..i to B(P(Tim)|Q(Tim) A
'R(Tim)), which is based only on those sentences which contain the constant

Tim.

5.1.2 Preference Criterion

Even with the result of the previous lemma, the inductive principle can still _

yield many different degrees of belief in the sentence-«. That is, in gene\fal,
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the knowledge base will contain information about various probability terms
. iy
[a(c/Z)|B(E/ %))z, where B includes one or more of the constants ¢;. In

some cases these degrees of belief may be conflicting or contradictory. For

. example, the knowledge base may be the set

{ [Bark(z)|Dingo(z)], < 0.1,

“ (Bark(z)|Dog(z)]. > 0.9,
V& Dingo(z) — Dog(z),
Dingo(Fido) }.

In this case, bot-h the sentences Dingo(Fido) and Dog(Fido), deducible
from’ the knowledge base, contam the constant Fido. Furthermore, the

l\nowledge ‘base contams non-trivial 1nformat10n about the value of the
/

* belief functlon evaluated on both sentences. This information is contradic-
tory. One sentence yields a low level of belief in the assertion Bark(deo)

while the other yields a hlgh level of belief. In some sxtuatlons 1t may be
X

impossible to choose between these competing degrees of belief.
. The intuitive int\erp'retation of B(alﬂ) however, yields a natural pref-
~ erence criterion which in rnany cases. can decide wh1ch degree of belief is

{

‘better. Intuitively B(alﬁ) represents the degree of behef in a given the

knowledge ﬂ{. Hence, 1#is reasonable to prefer degrees of belief based on

more knowledge, which yields the following criterion: e ‘

’

. . ’ l\
Definition 5.1.3 (Preference Criterion) The degree of belief B(a|B) is
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i
to .lgép‘referred to the degree of belief B(al6), written
B(a|B) >> B(a|6), if KB\ VZA(&/Z) — 8(Z/%).

In the previous example jt can be seen that KB + Vz(Dingo(z) —
' )
Dog(z)). Hence,

b

¢
B(Bark(Fido)|Dingo(Fido)) >> B(Bark(Fido)|Dog(Fido)),
and the preferred degree of belief has a low value (< 0.1).

So far we have__:not imposed any restrictions on the sentences, 8, which
can act as base knowledge. ‘Lemma 5.1.1 shows that some sentences are
irrelevant, and the preference criterion asserts that some sentences are to be
préferred, but neither impose an.y restlric'tionsv on the set of sentences which
can be used as base knowledge. However, to attain a coherent mechanism
- of belief formation a éimple restriction is needed.

The restriction is that the degree of belief be well-founded.
Deﬁnitidn 5.1.4 A degree of belief B(«|B) is well-founded if KB F 3.

- This. restriction eliminates the possibility of forming beliefs based on

2

conjecture.” The obvious contradiction which could occur if this was al- .

lowed is that when inducing a degree of belief in @, a could-itself be used

-

2Forming beliefs using conjectures, i.e., sentences which are not deducible from the
knowledge base, may have some uses. In partxcular such non~well founded beliefs could .
be useful for hypothetlcal reasoning.



as the base knowledge. B(ala) :;lways has degree one, but it is seldom
'informative./The only situation in.which it is informative is when it is
well-founded. ‘ |

For any belief B(|B), the belief B(a|B A @) is to be preferred: If KB -
a A B then B(a|f A a) is well-founded and its value is 1. Similarly if
KBt —aAf, then B(aw A —|a) is preferred, well founded and has value
0. That is, when the tru_th value of « is,entailed by the knowledge base the

most preferred, well-founded degree of belief about « 1s representative of

that truth value. In this case, degrees of belief about o based on the same"

sentence o are informative.

5.1.3 Properties of the Mechanism

The entire mechanism of belief formation can be viewed as a process over

time, with deduction in Lp playing the most important role. The process

would involve the continuing deduct1on in Lp of new base knowledge B,

about the individuals, c, whlch appear in the sentence of interest, a. Inter-
leaved with the deduction of new base knowledge would be the deduction
of information ab'out the degrees of belief generated by the new base knowl-
_ edée The inductive principle a351gns as thé value of each new degree of

belief a particular probability term. These probab111ty terms are terms of

Lp, hence, vadeductlon can be used t_o generate informat:on aBout them.
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\A ‘key factor in this process of belief formagioh is the organization of the
knowledge base. Work by Schubert and his. associates (see, e.g., [15]) has-
. demonstrated that an efficient orggfn‘ization‘ of the knowledge base allows
very rapid deduétion of certain types of information, independent of the
size of the knowledge base. The next chapﬁei‘ will demonstr~a,te~one such
organizational scheme, an inheritance net, which allows, through the above
process, rapid deduction of, informatioft\'abdut the‘degrees of belief in a

<
simple class of assertions. ~ . . \

f]
i
A

The preference criterion allows the mechanism of belief formation to -

behave non-monotonically. If the mechanism is inducing degrees of belief
in a sentence o, those degrees can change radically with the addition of new
infornj.ation to the knowledge base. Nev;r infoﬁnation allows the formation
of new well-founded degrees of beiief. These new\ilegrees of belief may have'
values, assigned to them by ;che inductive principle,\which are very different
from any of the previously available degrees of ,elief, fhug: calling iqtq
question these previously held levels of belief. The new degrees of belief may
even be preferred over the previously availagle degrees, thus euperceding
all of the previously held leverls of bglief. For example, if the sentence « is
added to the knowledge .b:a;s"e‘, all the old degrees of belief, B(alB), WOuid ‘be
superceded by ne;)v preferred degrees of belief which conj‘oin the sentence «
to the base knowledge: B(a|B /\g).. The value of all of these new preferred

degrees of belief is one.
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5.2 Semantic Justification

The two parts of the inductive mecha.nisfn, the inductive principle, and the

~ preference criterion can both be given a justiﬁcat'on?ased on the ;emantics ‘

of Lp. é | '
The inductive principle can be justified by reference to long term be-

haviour. B(a|B) is assigned a value by coﬁsidering c, the vector of individ-

uals which appear in @, to be a random member Qf.the set of vectors which

satisty B(¢/Z). It is easy to show, using the laws of large numbers (see, e.g.,

Chung [10, Theorem 5.4.2]), that if vectors of objects are drawn at random

from the set of object vectors O™ (n = the size of &), then the proportion of
vectors which satisfy the formula a(¢/Z)A B(C/7) to the vectors which just
 satisfy B(c/ <) approaches in the limit [«(/Z)|B(E/T)]z. That is, if we just

count those vectors which are in ,6’(6'/5:‘), theﬁ. the proportion of them which

satisfy a(C'/Z) approaches in the limit the value assigned as the degree of

belief. > -

Th;e preference criterion can be given a simple justification, which cann
be viewed either syntactically or semantically. Syntacticélly, if f — ¢ then "
;3 « B AS. Thus, B(a|R is equa. to B(ia|ﬁ A b) .(sée lemma 4.3.2). That

I'd

1s, the degree of belief iz. o basec only on the knowledge § is equivalent

to a degree of belief based on both B and §; whereas, B(a|6) is the degree \

of belief in « ba‘sed'. only on 6. In this sense, B(a|B) is based on more
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knowledge, and thus, sh01(1'.d be a preferred degree o% belief.

Semantically, when the degree of belief is assigned a value, we are con-
sidering the constants which appear in a to be indistiﬁguishaBle from all of
the vectors which satisfy 8(&/%). If VZB(E/Z) — §(&/Z) then it is the case
that the set of vectors satisfying 8(&/Z) is included in the set of vectors sat-
1sfying 6(5/5) Hence, we are losing less information when & is considered
to be indisutinguishable from the vectors which satisfy 8(¢/Z) than when ¢
is considéred to be iﬁdistinguishable from the vectors which satisfy §(¢/T),

since, in the former case, we are randomizing over a subset of §(¢/%).

5.3 Belief Formation—Examples

Example 5.1 Classical Bayesian Analysis.-

For simplicity only two hyp_othes‘es~ are dealt with. Let H,(z) and H;(z)
represent an exhaustive and mutually exclusive set of hypotheses which

explain some evidence E(z). This knowledge can be rewd in'Lp by
. the set -

{[Hl(?i‘{ﬁz(I)IE(m)J; = 1,[Hy(z)AH2(z)]; = 0}.

2

The follovﬁ?ng derivation is deducible from this knowledge in Lp .(i.e., a

deduction can be constructed for each step'in this derivation):

E@). = [E() 5 Hg)VE()-
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. [E(:z:)/\Hl(r)VE(Z)Wﬁg(z)],
= [E(z)AH1(z)]: + [E(2)AHy(2)]: _
= [E(z)|H(2)]:[H1(2)]: + [E(x)le(x)].x[fb&)]x

Hence, the. generalized Bayes’ rule for the obability of causes is provable .
in Lp, 1e., ' -
(B, - EE A J (B e H():
' - E(). DB H():[Hi(z)]

If the values of these probability terms are known then degrees of belief .

of the form B(H;(c)|E(c)), where c is any object constant, can be evaluated.

That is, 1f we know that ¢ has property E then we can deduce a- Jevel of

belief in the assertion that it also has property H
A

Example 5.2 Compara.tivé\P_robabilities.

Ifour knowledge base consisted of a set of rankings, e.g., the set

{{Hi(@)|E(z))e>[Ha(2)| E(2)]2, [*Hz(w)IE(x)]J—.l>[Hs(fv)lE(z)]z},

then using the field axioms, it is possible to rank degrees of belief of the

form B(H; (¢)|E(c)). That is, given E(c) for some constant c, it is deducxble ,

that the degree of’/behef in, e.g., Hl(c) is greater than the degree of belief*

- fh Hj(c). Rankings of this sort may be sufficient when all that is required

——

is to choose among the alternative hypotheses, for example, when choosing

between competing diagnoses.
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Example 5.3 Inheritance with ezceptions; Inheritable Relations.

Touretzky [77] identifies two difficulties with mul_tipié inheritance hi-
: :.éhra.rchiéfs when excep‘tions~are allowed. - One arises from the presence of
redundant information, a_nd the other from the possibility of ambiguity.
His examples will be used té‘ demonstrate ho;v the rﬁechaMsm'of bélief
fo'rmati.on‘and Lp can deal.with these problems.

For example, we mayvhave thé following information: “Elephants are
gray”, “Royal Elephax}ts are elepharnts” ,‘, “Royal Elephants are not gray”,
« C_l;‘(/de is a Royal Elephant”, anc} then we add the redundant statement
“Clyde is ar; Elephant”'. Sir;ce Clyde is a speé:ial type of elephant, a type
which age not usuall;rf"gray,.w: do not want the information that he is also
an elephant to t‘ﬁgger an infefence thatﬂ he i1s gray. That is, we wish. Clyde
to inherit properties from his most specific class. The preference c;‘iteribn

of the belief formation mechanism allows just that.

This knowledge can be encoded in Lp with the following set of sentences:

{ [Gr'ay(:z:)|Elephant(1:‘)]I > c,
. VzRoyal_Elephant(z)— Elephant(z),
[Gray(z)|Royal_Elephani(z)], < 1 — c,
Royaz_ééephaﬁq(czyde),Ezébhant(ayde) 1,

whe_:g c is some field constant close to one.? Given this knowledge, we have

3There is'an explicit serr&ntic difference between defeasible properties like “Elephants
. . v \' . -

L
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that :
" B(Gray(Clyde)|Royal El:phant(Clyde)) < 1 — c,

| ‘ Nt o
while

' - \
B(Gray(Clyde)|Elephant(Clyde)) > c.

However, the knowledge base can prove that
Yz Royal_Elephant(x)—>Ele_phant(a:). :

Hence, B(Gray(Clyde)IRoyal_Elephant(Clyde)) is a preferred degree of

belief. It is Iess than 1'— c; hence, it is probable that Clyde is not gray.

* If it was not known that Clyde is- a Royal elephant, just that he is ..

an elephant then belief forrnat1on would assign a degree greater than c

to the belief that Clyde 1s  gray, given thaf he is an elephant. If the new

1nformat10n that CI yde is a Royal elephant is now added to the knowledge

base, then this old degrée of belief would be superceded. That is, a preferred

degree of belief, based on the knowledge that Clyde is. a Rbyal elephant,

would now be obtamable from the l\nowledge base. -This is an example of
non- monotomc behaviour.
Ambigu_ity arises in the Nixon example. Here we are given the infor-

mation “Quakers are Pacifists”, “Republicans are not Pacifists”, “Nizon is

are gray” and necessary properties like “Royal Elephants are Elephants”, a difference
which is expressible in Lp, but not in Touretzky’s inheritance net formalism.
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‘a 'Quaker”, and “Nizon is a Republican.” "This knowledge could be repre-’
< [
sented in Lp with the following sentences:

{ : _[lt’aciﬁ.sat(:v,)|Qu.ak'e'r(:zr)],.,c > c,
[Paciﬁst(:v)IRepubli;:dn(m)]x <1l-c,
: ' — . Quaker(Nizon), Republican(Nizon) }.

Two degrees of belief can be generated, -

B(Paciﬁst(Nimon)IQuaker(Ni:z:on)) _
. T~
B(Pacifist Nizon)|Republican(Nizon))

which i1s > ¢, and

whichis <1 —c. In this case no preference is deducible between these
different degrees of belief, i.e., neither

Yz Quaker(z —>Republican z) nor V R‘epubl‘ican z —>Quc£ker z).”
y ) l'g‘ LN

oo
)yv

¥ ;LlHen@g ambiguity exists, since there are conflicting degr@es of belief about
Satr T : b

m

: ,ﬁ“" B@éﬁwt(]\’zzon) and no ch01ce between them.

AU

’.:th_ls case, smce the knowledge base is so small, it is easy to see that

true amblgmty exists. ‘ﬁowever when the knowledge ba.:e is large, it will in
general not be known if amblgulty really exists, or if we sxmply have not yet

been able deduce a pre,ference which would resolve the ambiguity. This is
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a result of the undecidability of 'I:p; i.e., there exists no decisien p‘roc'edure
whlch will detect the non—deduc1b1l1ty of a formula In this case, ‘the most
e reasona.ble actlon is to be conservative by assuming that the ambiguity is
factual. .
If later we learln something about the class of people who are both

Republicans and Quakers, e.g., [Pacifist(z)|Quaker(z)ARepublican(z)], <

v+ 1—c, thena new preferred degree of belief would be
B(Paczﬁst(Nz:con)|Quaker(Nza:on)/\Republzcan(Nz:z:on))

Whese value is less than 1-c. ThlS kmd of an update is not p0531b1e
in Touretzky’s system, since complex classes formed from con3unct1ons or
other logical connectives are not expressible in his systen:.

Touretzky also introduces_ inheritablev relations, as an e;cfcensien of his
Qork on inheritaBle properties. For example, given the information “Ele-
phants love Zookeepers”, “Clyde ie an Elephant”, “Fred is a Zookeeper”,
one would want to conclude that Ciyde probabfy loves Fred. These kinds

of inferences are also possible throug{l belief formation.

. This information could be repfesented in Lp as
. \ . ,
'{ [Loves(z,4)|Elephant(z)AZookeeper(y))iz,y > ¢,
, | ' \ “
‘& . Elephant(Clyde), Zookeeper(Fred) }.
/ . - N ) .
From which the degree of belief

B(Lovés(Clyde, Fred)|E’le’phant(C{yde)RZoekeeper(Ffed))



@

would be > c. - | 4
Inheritable relations can also have exceptions, and these exceptions are
handled by belief formation. For example, we may have specific information

about Fred or Clyde which make them exceptions to the generalization

“Elephantsklove Zookeepers”—maybe Fred is bad tempered and not loved -

by many elephants. In this case, the speéiﬁc information about Fred Would
take precedence.: "

For example; if the sentence [Lov\es(:z:, Fred)|Elephant(z)], < 1—c was
added to the knowledge base, then a new prefefred -degree of beli=f can be
. generated in the assertion Loves(Clyde, Fred) which is < ' — ¢, making it

unlikely that Clyde loves Fred.-

 When [Loves(z, Fred)|Elephant(z)], < 1—cis added to the knowledge

o

base, the new sentence
[Loves(x,'Fred)|E;eph;1nt(:c) A Zookee;.oer(f“"red)]I <1l- c
can ge deduced. (z is not free in Zookeeper(Fred),. éo this term has the
same value as the previdus ;term, by lemma 5.'1.1)\. Hence,
" B(Loves(Clyde, Fred)|
| Elephant(Clyde) A Z'ookeeper(Fr‘ed) A -
[Loves(z, Fred)|Elephant(z) A Zooke;eper/'(Fred)]x‘<..1 —c).

is well founded. - Furthermore it is a preferred degree of belief, as it is
- N . /

) . N . o e
found=d on more knowledge, and its value is < 1 —c. R

ViR
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To see that it is < 1 — c, consider the probability term arising from its

evaluation:

[Loves(z; y)| A
[Loves(z, y)[Elephaﬁt(x) A Zookeeper(y)]: <1—cA

Elephant(z) A Zookeeper(y)(z,yy-

This probability term is a variant (definition 4.1.6) of the probability term

+

[Loves(z,y)|
[Loves(z,y)|Elephant(z) A Zookeeper(y)]. <.1 —c A

Elephant(z) A Zookeeper( Wiz

in w})nch the variable z has been %eplacea by the variable z. By theorem
4.1.7, variants define the same underlying set of objects;. thus, these terms
have the same value. An application of axiom P9 (along with the equality
axigz%é to take care of the f&cf that the pred.icyéentioned 1s < not <,
and the fact that 0 < all prdBéL'bility terms) shows that this probability

term is < 1 —c. Hence, the ori.g:'i;la,l term is < 1 —c, and the degree of belief

is € 1—c¢, as clajmed. -

This example sho_.vyé that the same preference criterion can be used for

There has,bé?en a lot of recent work on inheritance systems which allow

exceptioms—,f-'rln;g;s;t~ of it based on graphical structures called inheritance nets. ¥

P

4

inheritable relations as well. - . ‘ . j"-‘
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These struc,tures are an example of thesspecmhzed structures whlch can bé

RS

used to spreed up reasoning, mentioned above in section 5.1. 3 The next ‘
' chapter shows how such a structure can orgamze the kind of Lnowledge used :

~in the ﬁrst part of this example ie. umversa.l set inclusions, hke “Royal ele-

phants are elephants ” and statistical generahz_atlons like “Most elephants

0
are gray Thls structure perm1ts the rapid deduction of the values of the

degrees'of belief in assertrons whlch cncern property mhentance
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Chapter 6
An Inheritance Re,asdner

The problem of reasorlirlg about preperty inheritarrce in multiple inheri-

- tance hiera.rchies‘wh}en exceptiens are allowed, has received a lot of recent

attention.in ‘AI_(eg Touretzky [77], Hort}r et al. [30], Touretzky et al.

[78] Pearl [57], Geffner and Pearl (23], Etherington [19], Sandev:zall [69]).

\4 The previous chapter presented an example which demonstrated that the

main ‘problems arising from 'the existence of exceptions, i.e., ambiguity and

redundaney; can be dealt with by the formalism developed in this thesis.

The example used unstructured sets of Lp sentences to represent the knowl-

- edge and belief formation, along with Lp-deduction, to infer the plausible
_property inheritances.

In contrast, most other works on inheritance systems (mcludmg most of

the work c1ted above) have represented the knowledge in a hlghly structured
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graph formalism called an inheritance net, and has performed inference by

e T

tured representation is also possible within the formalism of Lp and belief

"ﬁm-‘;

formation; "

_vStructbured representations can be viewed as being mechanisms for or-
‘ganizing knowledge. Efficient structured representations are available for
certain sets of knowledge, but a large knowledge base will also require a
moie general scheme for representing knowledge. Since a’é;;neral scheme
must be provided, it is profitable to view all'of the knowledge in the knowl-
edge bg.se as being expr&sseci in the same general scheme. This eliminates
the need for providing separate semantics for eaéh different paft of the
knowledge base. In this view, the structured representations are not differ-
ent formalisms for representing knov(rlédge; they are instead structures for
organizing knowle&gg reéresented in some underlying géneral‘forrhalism.
The chief advaritage of these organizational structures is that they allow
inferences to be generated thr'ough simple procedures, e.g., graph traversal,

e
a .

1nsté§§@f through the application of an abstract, and probably computa-

tionally complex, inference procedure, e.g., a proof theory. Thus, another

way of viewing these organizational structures is as a compilation of the
knowledge; i.e., the form of the knowledge is changed to increase efficiency,

but its Imeaning remains intact.
In this chapter inheritance graphs are viewed as being organizational

[}

» ' . S H '
w ﬁﬁ%iingrpaths in this net. This ehapter demonstrates that such a struc-
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structures for a special subset of knowledge, the subset of gri‘w'ral knowledge

v

which is commonly used for reasoning about property inhefftance. It will be
demonstrated how this kno__wledgei;f expressed in Lp, can be structured into
an inheritance net. This jnet has the property that traversing certain types
of paths in it is eduiyalent to performing certain deductions in Lp. The net
permits the rapid inference of‘plausible conjectures about an individua{’s
~ properties. These plausible conjectures tz;v.ke the form of closed formulas

which assert that a particular individual has a particular property and

" which can be given a high dégree of belief by belief formation.

6.1 The Nature of Inheritance Systems

The Knowled@z\,— | . o

/

~

Inheritance s:’}stems are concerned with classes which are sets of individuals
..with a 4particular property, and with individuais who are members of some
set of classes, e.g., the class of elephants which is the set of individuals who
are elephants ‘(i.e., they _posséss the property “elephantness”), the class of
gray which is ithe set of gray individuals, or Clyde a particular individual
who is an élephant (i.e., 'a member of the class of elephants). ..Tlh'e mem-
bers of certéin classeg are known to be rr  oers of other clagses, either
uniformly or with allowaﬁce for exceptions, e.’g.,_ the rﬁembers ‘of the class

’

of elephants are also membersgof the class of mammals, without exception,
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W,

\ 2
KA . oamew,l

or the members of the class of birds are usually members of the class_of
flying objects, but there are exceptivus.
Hence, there are three types of_knowledge present in an inheritance

system: o ' o /

1. some set of known individuals and known classes;

some set of assertions which state that parti®ular individuals are mem-

o

bers of particular classes; - ) s

3. some set of assertions which state that the members of a certain class

have some property, i.e., they are also members of* some other class,

either uniformly or with excepig

i)

Most systems extend this set of knowledge types by also allowing items 2

P
L}

and 3 tobe negative claims. That isz they allow the claims that a particular
individual is not a member of a particular class, and that members of a
certain class do not have somé property.

~_In inheritance systems ;vhjch represent this knowledge as an inheritance
net, item 1 is represented as a set of nodes inbthe net, item 2 is represented as
links between nodes representing individuals to nodes representing classes,
and item 3.is represented as links betxx?een nodes which represent classes.

In Lp this .knowledge can be represented as: item 1-—object constant

" symbols for the individuals and object predicate s‘ymbols for the classes;

)
.;«
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item 2—atomic formulas formed by applying the ppropriate predicate to
. the appropna.t nstant; and item 3—in the case(;f uniform assertlons as

' umversa.l sentences %Qrmed &th the approprl%»palr of predicates, and in

PR ‘ &3

- the case of . exceptr@n allovsﬁng asScAMAN-a XD robab;hty terms forrned
L ¥ 070 .
. ".;

. the predlcates ‘For §Yample we mag have the knoidiigye: |

'.
4 let 3’\0

1. Clyde and Tweety are 1nd1v1duals Elepha.nt Anzmal Bzrd Gray,

and Fly are classes,

2(.) Clyde is an Elephant, and Tweety is a Bird;

bR

©
3. Bn‘d.s and Elephants are Animals without exceptlon Bzrd.s can Fly,

and Elephants are Gray, w1th exceptions.

This knowledge can be eneoded in Lp as the following: »

»

1. Clyde and Tweety are encoded as object constant symbols, and each

of the classes are encoded as object predicate symbols;
2. Blephant(Clyde) and Bird(Tweety) are atomic formulas;

- 3. Vz Bird(z) — Animal(x‘) Vr Elephant(z) — Anzmal(z)
[Fly(m)lBird(:z:)] > b and [Gray(:z;)|E’lephant]r > b, where ‘b’ is

some ﬁeld constant close to one.

s

Chapter 5, example 5.3, gives a few more examples of this encoding« It

will be shoWn in this chapter how the set of Lp formulas produced by this



encoding can be mapped ontc an inheritance net which has two types of
links, in such a manner that there is a one-one correspondence between the

'nodes and links in the net and the Lp formulas.

The Inferqnces R

Thexknowledge in the inheritance system is used to infer the properties of

various individuals. Each individual in the system is known to be a member.

of certain classes, and using the information present about the relationships

” . .
between classes, other properties (i.e.; class memberships) can be inferred.

For example, since in the above example all elephants are animals, it can be

b

inferred that Clyde the elephant is also an animal, or since most. elephants
. - . :3“, - ®
" are gray, it can be infefred that Clyde is probably gray.

It has previously béen demonstrated, in chapter 5, how Lp deduction

and belief formation can be used to ISroducé these inferences. In graph

! . .
" based approaches, these inferences are produced by tracing paths which

emanate from the node representing the individual and terminate at nodes
\ representing‘ other properties. For example, in a graph representing the
above set of knowledge (see, figure 1), the node Clyde would be connected
to va.nA“elephant” node which would in turn be connected to an “animal”
node. By tr;cing the path from Clyde to tl’_le “animal” node, a graph based

system could produce th?/inference that Cly”de is an Animaf.

Al

RS
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6.2 Hetefogeheous vs. Homogeneous Inher-

s <

itance Syste:ras

’Using the tenmgplogy of 'I/'ou"retzky et al: [78], inl_leritance system can be
divided »into homogeneous/ and heterogeneous systems. Most of the work
on inheﬁtance systems has coﬁgeﬁffated on h;mogenéous system (includ-
ing, Touretzky [77], Horty et ‘al. [30], Pearl [57], Sandewall [69]) Homo-
geneous systems do 'nét- differentiate‘relationswhips between classes u.rhich
hold uniformly from relatibnships which allow excepfiohs. So, for exam-

ple, 2 homogeneous system would not differentiate between the assertions

“Elephants are mammals” and “Most birds fly”, even though the former

allows no exceptions while/,the lé.tter does. In order to m_odel defeasible

WD { . ‘
(exception allowing) properties of classes, homogeneous systems represent
A ‘

all properties of classes as defeasible properties, dispensing with necessary

properties. Heterogeneous systems, on the other hand, do make an explicit

differentiation between necessary and defeasible properties of classes. Het-

_ erogeneous systems have been proposed before, e.g., in Etherington [18]

and more recently in Gef%r;er and Pearl [23]. The system presented here is
oy .

heterogeneous.
Homogeneous inheritance systems. have been: criticized at length by
Brachman in [5]. The main focus of his very sound criticisms is that since

: -
there is no differentiation between defeasible and necessary properties, all
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mnclu510m drawn by homogeneous systems must be defea.31b1e That is, 1t
is always possible that the system may be lying. This makes it 1mposs1b1e
for such systems to represent ¢compositional classes Jaccur,a.tely, e.g., classes

like three legged elephants. One could never conclude with certainty that

N

three legged elephants possess three legs, even th.r%ugh this follows frorny
the definition. |

Homogeneous systems also ethblt another difficulty not m‘éﬁmonfd by
Brachman. From a formal standpomt there is no a pnorl limit on th\e*depth
of an inheritance net, and thus, no a priori limit on the length ;)/f paths down
which propertles can be inherited. There 1s no problem with 1nher1tancev

down an arhltranly lengthy path of strict IS- A links. For example, given

‘.

the strict IS- A path ; ;l

Tweety = Bird = Animal = Physical Object = Occupies Space,

the 1nference that Tweety occupies space is perfectly vahd and 1ntu1t1ve
1.

L

. However,  property inheritance down a path’ of defeas1b1e l1nks can quickly

lead to cotmter—mtultwe conclusions. For example, the path of defeasible

N, Has Wings

, Helicopter_?#}”:F?Iying Object
leads to the cougté'b—"ihtuitive conclusion that helicopters have wings after

only two p«erfeotiy reasonable defeasible inferences. It might be argued that,

P : : .
in any inheritance net the node Helicopter should have an exception link

~
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o

v to the node Has Wings. However, it is easy to see that in general a\(oid-
Iiﬁg all such counter-intuitive conclusions would necessitate examini(Pg all
allowable paths in the inheritance net and then adding the required excep-
tion links. I would argi®® that this vitiates the very'purpose of inheritance
systems: Inheritance systerﬁs, like any reasoning system, are igtende‘d to
.generate plausible con¢lusions which go beyond/the expliﬁcit knowlédge actu-
ally contained 1n them. To require the addition of such intuition pr,esér\zing

- exception links is, in a sense, réquiring that thé-conclﬁsiong be known pri;)r
to any reasoning being performed. ' T

Hgmogenegﬁs syétems, through their inability to differentiate Bet\g{een
n_ecesszi.ry and deféésible links, cannot know when a lengthy chain of in&ier—'m
itance leads to a valid conclusion and when it leads to a counter-intuitive

¥

e ,.CODCIUSion,' If lengthy chains are prohibited in yain attempt to avoid counter-

>
\ [

1ntu1t, e gﬁi’iclusjons, many valid ¢hains will also be excluded. if lengthy

?Q}' g-difficulty. They interpret defeasible links as holding with probability almost
‘ ., .one, Hence, thei_r\s’ystein sanctions property inheritance down arbitrarily
. ,5; , ' ,‘:~\‘:"~:' .

* 7 lengthy chains of defeasible links.

L4
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6 3 Representlng Statements of Typlcahty

Wlth Probablhtles ” | I

It can be seen from the eiample in section 6.1 that the proposed encod-
1 %

.ing of defeasible properties in Lp is as high valued conditional probabihtyw/ .
terms. For example the defeasible property “birds fly” will be encoded by
asserting that the probability term [Fly(:l:)lBi'rd(x)]I has a value close to
one. Semantically, this means that we are encoding the defeasible property
in a statistical manner, i.e., as “A large percentage of birds can fly.”

It has, however, been claimed that};\ probabilities are inappropriate to
encode notions of typicality, and for meny researchers inheritance systems
are 1ntended to reason with notions of typicahty The example of “Dogs give
live birth”, uséd by Carlson [7] points out difficulties with a probabihstic
interpretation of statements of typicality (see also a recent article by Nutter
[54]). Giving live birth is a typical property of dogs (or any mammal) which
is not’ however, mropeﬂy possessed by a majority of dogs. This example
demonstrates:the need for-a careful distinction between different notions of
’cypicality:.:\T /

Brachman [5{ pege 98] has pointed out that there is a difference between -

» pratotypical properties, Which, i@ sense, are characteristic of a kind, and
descriptions .whi'ch specify the iroperties which usually apply to instances

of a kifd. It is certainly .trug that prototypical properties may not be

bl

- ) ) -

[N
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probable properties and as such not representable in the semantic model

constructed here.! However, Brachman argues that inheritance nets are
“ . S
_ -

more concerned with' the expression of properties which usually apply to

instances of a kind, rather than prototypical properties. Indeed, given an

" instanceof a kind the inheritance net is used to .reason about the properties

" which that mstance may possess. Surely, the fact that a large percentage
of instances of that kind possess a property is a good reason to conJecture
that a partlcular,‘instance possesses that property.

In fact, it is not clear that inheritance systems are appropriate for rea-
soning about p;rototypica'l properties. In the typical use of inheritance sys-
tems we are given an individyal who is kuown to possess some set of prop-
erties, e. g Tweety -who is a bird and a ca.nary The task of the 1nher1tance
system is to generate a new set of plau31b1e properties which that 1nd1v1d—
ual may also possess, based on the properties which he is erown to have;
e.g., since Tweety is a bird it is i)lausible that he can fly. If prototypical

properties like “birds lay eggs” were to be encoded in the inheritance net,

- one would be led to rather counter-intuitive conclusions like “Tweety lays

1This does not necessarily mean that probabilities are not useful for expressing notlons
of prototypicality. For example, although the majority of dogs do.not give live birth
the probability of a dog giving live birth is much greater than the probability of say, a
bird giving live birth. So, perhaps prototypical properties can be expressed by ratios of

probabllltles If they were so expressed, the probability ratios could be used to reason

with these properties. For example, if we know that Fido is either a dog or a canary, and
then we are told that she had given birth to a live litter, a’ simple Bayesian model would
allow one to make théreasonable conclusion that Fido is probably a dog.
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~ eggs,” once it was known that Tweety is a bird. The pﬁ&blern here is that it - -

is not always reasonable to conclude that an arbitrary’ m&hwdual is proto- =’

‘3@ e

typical. There may be 31tuatlons where the assumption of prota%yplcahty‘ "

is reasonable, but it could be claimed that-such an assumptlon is hardly, |
TN , a -, ‘ o
" ever reasonable in the advertised use of inheritance systermns.

Peatl [57] has also proposed a probabilist"ic interpretation for defeasible

ESN
!5 -3

properties. In his system a defeasible property is encoded as a property
- which has proldability 1 — ¢, where € can bev‘made arbitrarily close to zero.
However, his is a homogeneous systein; hence;t all assertions are assumed
to hold with high probability, even certain aesertions like “Tweety is a-
bird” or “Birds are animals.” Even without coﬁsi,{iering the problems which
_.arise from- homogenelty/,’ the assertion that def:asible propertles have an
arb1trar113qh1gh probability is counter-intuitive. It may be true that a large
percentage of birds can,fly, but this percentage is surely,not arbitrarily clpse
to one hundred The system of Geffner and Pearl [23] is also subject to this
‘criticism; they interpret defeasible properties as holding with probebility
approximately one. The interpretation oﬁ'eredbhere, le., thet defea,sible'
_ properties hold with probability greater than some constant w\hich is close
to one seems t0.be more natural. It has not been specified how close to one
this' constahﬁ' is, but it is not arbitrarily close. | ,
One possibie problem with this interpretation of defeasib‘ility is that

properties which are probable cannot serve as the basis for further conjec-
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ture. In the gi’aph representation tﬁjs means that only one defeésible link
can be traversed 1n any path. It is easy to see that even if more than 100b%
of all P’s are Q s and more than 100b% of all @ s are S’s there is no reason
to suppose that more than 100b% of all ];s are S’s. In fact, there j is no & g
reason to suppose tha.t even more that 50% of all Q’s are S’s. If the set of
Q’s is much larger than the set of P's we could have 99% of all P’s being
Q’s é.nd 99% of all @’s being S’s artd still havé no P’s being S’s (try 100 P’s
and 10 000 Q s). Property inheritance down more than one defeasible link
can never be aniformly valid within these semantics. In fact, this is the
reason why chmnsv of defeasible links sometimes lead to éognte;-intuitive
conclusions.

There are cértain situations where it seems intuitive to allow propérty
ihheri_tance down more that one defeasible link, ;;d this can be done with -
an additional independence af%sumptibn.. For example, if the conditional R
probability of § gifen Q is independent of P, i.c., [S(2)1Q(z) A P(z)], =
[S(2)|Q(z)]z, then it is deducible that [S(z)|Q(z)AP(z)], > (S(2)|Q(z)]: x .
[R@)IP()]s; [S(2)|P(2)]: 2 [S(2) A Q@) P(2)]. = [S(2) A O(2)|P(2)], x
[P  (5(2)]Q(2)AP(2)]. x [y P (2)]: = [S(2)Q(2)lX[Q(=) | P(2)]..
Thus, with this independence assumptiomit can be deduced that > (100)B% -
of all P’s are S’s. This has the ﬁzattural result that'each time a defeasible
mpr/opérty is used the final concluéion becomes less certain. If the proba/,bility

of each defeasible property is very high, i.e., b is close to one, then the final
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conclusion W111 have a reasonably hxgh probability. The real problem, how-
2‘:.“: "}
ever, is dec1d1ng, under what 51tuat10ns this assumption of 1ndependence is

vahd Clearly such an assumptlon is not umformly valid, as was indicated
\// by the “helicopter ‘has wings’ example
It will be seen later that limiting the use of defeasible properties does

not exclude lengthy chains of inheritance. Property inheritance can occur

down arbitrary length;r' chains, but all of the'links in the chain will be strict
IS-A links exceg&t, possibly, for one defeasible link. However, this still means
i ’ .

4 ~
that some of the examples which have appeared in the literature cannot be

f— ¢

handled by this reasoner. Asa result it could be ciaimed that this reasoner
is 1ncomplete however, the mot1vat1on bethd thls work is to develop an

inheritance reasoner which is sound That is, one that will not produce

e
-

invalid 1nferer.ces irrespective of the meanlng of the nodes in the net

RY
e )
» .

r
5 o
By

6.4 The I.nheritan'@Gfaﬁh*“

The formal detalls of the 1nher1tance reasoner are- presented in thls section.

First, the set of Lp sentences ‘which can be used as knowledge Is spec1ﬁed

b4

more prec1sely, as follows: R

1. We have a set of_object dbnstan.t‘fsynﬂ;ols, e.g., Tweety, Fido, Nizon,

and a set of unary? dbject predicate symbels,’e.g., Bird, F ., Elephant,

"’Relatlons are not handled by this reasoner. : {

]\
i
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Animal, and finally, a field constant symbol, b, which is in the open

interval (0.5,1).

* 2. There is a set of atomic formulas and negations of atomic formulas

constructed from the above set of predicate and constant symbols, -

e-g. Bird(Tweety), ~Fly(Tweety).
«,? #\, i g ' .
3.8 mﬁliw there is a set of universal 1mphcat1ons formed from the above
a ‘predlcate symbols e.g., Yz Bird(z) — Ammal(m) where the conse-
quent predicate may be negated, e.g., Vz Elephant(z) *» —~Bird(z),
and a set of probablhty assertions containing prObabl,liitV terms formed

from the above predicate symbols, e.g., [Fly(a:t)IBzrd(a:)]x > b, these

assertions can also be negated; e.g., [Fly(z)|Elephant(z)], < 1 — b.

An inheritance graph can be constructed Wthh encodes th1s knowl-
edge. The graph has four types of four hnI\ ?ymbols = (IS-A), and #
- (IS-NOT- A) Wthh are strict links, — (Probably IS-A), and A (Probably—
IS NOT- A) Whlg,h are defeasible links. Each constant and predicate symbol
generat&s a node in the graph. ‘The atomic formulas generate strict links
runnmg from the node representing the individual to the appropriate prop-
erty node. The universal implications generate strict 'lin‘ks between the two
property nodes, while the probability.assertions generate defeasible‘ links
.between the property nodes, IS-NOT-A hnks are used when the assertions

&
- are negated. For example, the knowledge given in section 6.1 generates the
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-* | Gray

AN

Elephant

/ 'Clyde Tweety i

Figure 1: The Grdph Encoding

graph given in figure 1.

Inference about the properties of a particular individual is accomplished
by following certain ty'peé of paths in the graph‘which emanate from the
node rgpresenting that i}ndividual. : A\}l of the property nodes which are‘
reachable from that node through legal non-preempted paths can be con-
cluded to be possii)lé properties of the individual. V

The next section defines what constitutes legal paths, as well as what

!
1

it means for a path to be preempted.

=5



6.5 Inferences in the Inheritance Net

Reasomng in the inheritance net is performed by ﬁndmg paths and excep-

tions are handled by a concept of path preemptlon These are notlons de—
rived from Tburetzky’s original work on inheritance hlerarchJes [77] Fn:st‘ '

we define the legal pa.ths and the concluswns they support then pa.th pre-‘ N

&

emption, and finally, once the 1nteract1on between paths 1s taken mto con- ., o

A ‘3-

sideration, ftyhe conclusions supported by the inheritance graph as a whole_ -

There are two types of paths, necessary paths and probable paths The :

158

followmg deﬁmtxons are based on finding paths emanatmg from the ndde E

representing a particular individual c. Furthermore, P ig ’used to representu -

y

"y

1£erat1ons of the link to which it is applied, and a, supemcnpted star (1 [

*) indicates zero or more iterations of the link to which it is _apphed. -

Definition 6.5.1 (Paths) Positive and Negative, Necessary and Probab—le :

paths are defined as follows:

‘Positive Necessary 1.A path c =% P supports the conclusion ¢ is cer-

t(rinly a P.

Negative Necessary 1 A pathc =" e # e <" P supports the conclusion

¢ 18 certainly not a P.

}Jroperty node, a superscnpted plus sign (i.e. +) 1ndxcates one or more S



Negatrve Netessary 2 A path ¢ =71 e & ¢ <" P suppcts :he conclu-

sion c¢ 13 certainly not a P.

Rositive Probable 1 A path ¢ =% A — e =" P supports the conclu-ion
probably ¢ 1s a P founded on X. That is, this conclusion is based on

¢ being an random member of the class .

Negative Probable 1 Apathc=>t A A e="P supports the conclusion

probably c 18 nota P founded on A.

Negative Probable 2 A path ¢ =% A — «--- R, where -- “represents a

negative necessary path (either type 1 or 2) from « to R, supports

the conclusion probably ¢ is not a P founded on .

As long as the original set of Lp sentences is consistent, they will hay‘e a
A E model, by theorem 4.2.15. This means that there will be some set of objects
for which the assertions are true. We impose the restriction that the original
‘set‘ of Lp sentences be consistent, and say that the net is consistent if and
" only if thlew originz}l' set of Lp sentences a're_. For the net to be consistent
it Ac.ayr_l.r‘x‘ot':J contain both.a rleceséary positive path and a necessary negative
path from any individual to the same property node, nor can it contain
. both a probable positive and a probable negative path from any individual

.c to, the same property node founded on the same class. Consistency does

not’ requlre however that the graph be acychc In fact two propertxes may

1“ R
R

EEX
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often be cross correlated (i.e., existeﬁce for. eitﬂer maﬁy provide evidence for

the other) The restriction to acychc graphs has been cited as a deﬁc1ency
e uof previous 1nher1ta.nce reasoners (Geﬁ'ner and Pearl [23]). Figure 4 presents

-an example of a graph representing a reasonable set of knowledge ..whylch is

~em

not acyclic.

Deﬁmtlon 6.5.2 (Path Preemptlon) Probable -paths are p'reempted if

any of tke followmg conditions hold: «

1. A probab path from ¢ to P is preempted if there is a necessary path

from ¢'fo P. In this case the polarity of the two paths is irrelevant.

2. A pféb ble path from ¢ to P founded on A is pre}zmptéd if there is
‘ ' >

_a probable path of the opposite pollarity from ¢ to P founded on A\,

~

~ such that there exists a Rath A =% )\ in the graph.

3. A probable path from ¢ to P is preempted if ank of its subpaths are

preempted.

Definition 6.5. 3 (Conclusmns Supported by the Graph) Given an in-

dwzdual c, the graph supports the followmg conclwzons

‘

1. c 13 certainly a P if a positive necessary path exists from ¢ to P.

3

2. c 1s certainly not a P if a negative,necessary path exists from ¢ to P.
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negaty

4. ¢ 13 evidélntstot a P if there exists a non-preempted negative prob-

o

able path from ¢ to P, and there does not exist any non-preempted

positive probable paths to from ¢ to P.

1

The graph is ambiguous about ¢ being a*P if there exists both a non-
preempted positive probable and a non-preempted negative probable

path from ¢ to P.

6.6 vThe Relation to Beli'e'f Formafion

All of the certain convclusions supported by the graph are deductive conse-
quences of the original set of knowledge. That is, given the original set of
Lp sentences the certain conclusions can be deduced using Lp dedugtion.
Each link in one of the certain paths 'representsb a; universal implication, ex-

cept for the first link (from the individual node to a property nod?) which
R

represents an atomic formula. For the positive necessary paths, it is easy
to see that the final consequence of the chain of universal implications can
be deduced given the instantiation of the initial antecedent. For example,

given the chain Vz P(z) — Q(z), Vz Q(z) — R(z), and an instantiation of




[

the initial antecedent, P(c), R(c) can be deduced. The negative Juecessary
paths can also be seen.toy(ield deductive consequences once bne notes that
Vz ~@(z) — —~P(z) is a tautological consequence of Vz . z) — Q(:v)

The probable paths yield conclusions éupported by the 1eqhaqism of be-
lief forrr\;(gtion. Six:ié‘e the path to the founding class ) is & itive necessary
path, A is a deductive 'propért"y of the individual c, i.e.,"?)\(c) can be deduced
" from the original set of Lp sentences. For the positive probable paths the
pcgobable link from A to.the next node i;l the path, call it a, en‘cv:‘odes the
probability assertion [a(z)|A(z)]: > b; hence, belief formation gives a value
> b to the degree of belief B(a(c)|A(c)). That is, based on the knowledge
A(e), a(c) can be held to a high degree, > b. Since a is connected to the
final node in the paf;h via a positive necessary path, Vz.a(z) — P(z) can be
deduced. Lemma 4.3.3 shows that [P(z)|A(z)]; is larger than [a(z)|A(2)].;
thus the degree of belief B(P(c)|A(c)) is greater than b. Similar reasoning
shows that the negative probable paths also generate conclusions supported
by belief formationc’ ,
| The conclusions supported by these paths are only based on the knowl-
edge A(c). However, /\(c) is, in general, not the only knowledge available
about the individual c. For example, in fhe Nixon diaxhond, figure 3, both
Republican(Nizon) and Quaker(Nz'zl'on-) are known properties of the indi-
vidual Ni:z:o\ﬁ»\As was shown in chapter 5, different knowledge can’generate

different degrees of belief in an assertion. In the Nixon diamond, there
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are two probable pafhs from Nizon to Pacifist, a positive one founded on

- Quaker, and a negative one founded on Republican. These two paths cor-

respond to the two degrees of " elief B(Paczfzst(Nz:ron)]Quaker(Nz:ron))

which is greater than b, and B(Paczfzst(Nz:z:on)|Republzcan(Nz:1:on)) which

is than 1 — b In thls net ne1ther\15ath preempts the other thus, the net .

1s amb1guous about Nixon being a pa(:1ﬁ§t. This corresponds to the situa-
tion where there is no preference between the different degrees of Dbelief. A
preference criterion was, however, presented in chapter 5. This criterion is

N
reflected as path preemption in the graph ba:.se'd reasoner.,

g

A probable path preempts a probable path of t.ﬁé opposife polarity if
there is a positive necessary path from its founding class, \; to the founding
class of the preempted path, A;. The preeence of a positive necessary path
indicates that Vz A 1{z) — Az(z). Since the probable paths correspond to

the ‘two degrees of belief B(P(c |A1(c)), and B(P(c)|A2(c)), it can be seen

q. 0 e

that the preference criterion sanctions the preemption of the path based on -

the knowledge A;(c)..

3]

A probable path is also preempted if any of its subpaths are preempted.
: > .

For example, say we have a positive probable path ¢ = \; - R'= P and

a negative probable path ¢ = A; /4 R, where ), is a subset of ;. In this

case the positive path is preempted because the subpath from c to R is’

preempted. Since more than 100b% of all Ai’s are R’s it is necessarily the

case that more than 100b% of them are P’s. On the other hand, less than
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100(1 — b)% of all \;’s are R’s, and this gives no reason to.conjecture any
thing about the proportion of them thatvare members of the superset P.

As noted above, degrees of belief based on the knowledge that cisa Aq are

-preferred to degrees of belief based on the knowledge that ¢ is a A1; so, we

are left with no conclusions abott ¢ possessing the property P.

: Thev existence of non-preempted probable paths of only one polarity
from an individual ¢ to a préperty P indicates that all of the evidence in
the net about c’s P—ness:'is of that polarity. It is in this sense that the

evidential conclusions are supported by the net.

6.6.1 .On the Independence Assilrr{ptions 'Underlying

Inheritance Reasoners

The probabilistic semantlcs of Lp mal\e it clear that there are some implicit '

- assumptions being used in 1nhentance reasoners.

One implicit assumption was previously identified Bs; Pearl [57], who

calls it the Principle of Positive Conjunction. In actuality it is a princi- '_

ple of both positive and negatnfe conjunction. The graph will support the
conclusmn that ¢ is ev1dently a P if more that one non-preempted posi-
tive path exists from ¢ to P. In probability theory it is not necessarily

the case that two items of positive evidence remain pos1t1ve That is, if

[P(x)lR(x)] > b-and [P(z)|Q(z)]; > b it is not necessarily the case that
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[P(z)|R(z) A Q(:B)]z > b. When there is more that one positive (negative)

probable path from ¢ to P each pa.th may be based on a different piece
of kng_wledgé.‘ In continuing to conclude that ¢ is probably (not) a P, it
is being implicitly assumed that such cancellation does not oc_ur. This
assumption also exists in the non-probabilistic systems of Tour-etzky and
Horty et al. Infact, becausé the net is incapable of representing conjunctive

classes like R(z) A Q(z), graph based inheritance reasoners cannot help but

make this assumption; they have no means of representing any cancella-

tions that might exist. The general mechanism of belief format‘i'on, which
-, &

is performed on %

S

and taking into co i;cellation of this formi.

Another implich

of knowledge to the propertf we are édhjecturing. For example, in multiple

inheritance nets Clyde the elephant may;also be a circus performer. He
phent mpyg P

will inherit properties from both the class of elephants and the class of

circus performers. Howevér, it is assumed that the knowledge that he is
a circus performér will not affect properties; hé may inherit from tI:.e ciass
of elepliants, if those properties are not connected to the circus performer
node. So, fof example, the graph may support the concllusvion thaﬁ Clvde'is
gray if there exists a probable path from Clyde to gray founded on the class
elephant, but this conclusion fails to consider tge knowledge that Clyde is

also a cireus performer. This failure occurs because there is no information
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entences of Lp, is capable of representing .

iy " :
tion occurs when no path exists from an item



-~

wh1ch indicates that beiag a circus p>eformer affects the property of being
gray, and it is equivalent to an 1mpl1c1t assumption that the net is complete
in the sense that all possible influences are represented in the net.

The existence of these implicit assumptions places restrictions on the

generality of graph based inheritance reasoners. There are certainly do-

»

-mains wher& such reasoners seem to be useful, e.g., animal taxonomies;. -

howew;er s%geof the proposed applications are questionable. ) Identifying
=

applicable domams and more 1mportantly, charactemzmg the set of apph-

cable domains; 7 femain open problems.

6.7 -* Behavior of the Reason_er

= .
<

This section examlnes the behavior of the reasoner developed in this chapter: -

- throdgh the use of some examples All of the examples have appeared
prev1ously in ti‘rev.llterature However, since this reasoner is heterogeneous
. “

the example nets have been altered., In partlcular some of the edges in.

these eXamples have been changed to strict IS-A links. In some cases it

s clear whicll edges should be writteh as strict links. For example, Royal

elephants are strictly a subset of .elephar}fs. In other. cases. the decisions

, mgy be contenti"ous",’ but nevertheless,-the examples still serve to explicate-

e , !
the behavior of this inheritagce reasoper. '

,First, ‘the behav'ior of the 'reasoner'ig examined in the presence of re- .

-

f A
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Gray

Elephant

Royal Elephants /

/

Clyde \/

Figure 2: Redundant Information

dundancy' and in the presence of ambiguity. ‘These two features of inher-
itance nets wete the moti\tation for Touretzky’s original work cn inheri-
- tance systems [77]. The gray elephant net is shewn in figure 2. In the net
| a non- preempted negatwe probable Dath exists from Clyde to the prop—
erty node Gray founded on the property Royal Elcphant The opposmg

positive probable path, founded on the node Elephant is preempted since

‘ Royal elephants are a’ subset of‘ elephants, as mdlcated by the. presence of

a =>+ ath from Ro al ElepKant to FElephant. Hence, the net sanctigns the
P y

conclus1on that Clyde is probably not gray, based otﬁ-—Clyde bexng a royal

- elephant An 1nterestmg pomt is that the ev1dence used to generate the

/

"plau81ble copclusmn can be retr1eved by examlnlng the path wused.
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/ .
Repu(b_li<:< Quaker-
. Nixon

Figure 3: Ambiguous Information

Figure 3 demonstrates the existence of true ambiguity. In this graph,

called the Nixon dia,mond,Ath.ere is both a positive and a negative probable

non—preempted path to the node Pacifist, sanctioning the conclusion that.

the graph is a.mblguous The amblguxty corresponds to the fact that nelther
of the foundang sets for the two pa.ths Republzcan and Quaker is a subset
of the other.. . ‘ ' : ‘ 4

These two examples' demonstrate that the main desiderata for inher.-.

itance re__é.soners ‘are satisfied by this reasoner. The next two examples

dem‘onstrate some additional features of the reasoner.

The next example, in figure 4, is due to M. Glnsberg .This graph sup-

por‘ts the conclu510n that szon is probably pohtlca.lly motlvated but is

at the same time a.mbxguous about Nz:z:on being elther a dove ora hawk :

-

The knowledge contalned in the graph 1s quite rea.sonable am ‘/th% conclu— :

_;,\

s1ons which 1t su’pports 1ntu1t1ve However it contams a cycle a‘qd thu-s

N

4
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Politically Motivated = SN

’Quake‘r

Figure 4: (M. Ginsberg) Is Nixon Politically motivated?

. I

“351“15{}5;% reasoner [30] The system of Geffner and Pearl (23] can ha‘ndle

this example. N _ \/ |

| The negatwe paths generated by backward AIIS -A links can sometimes
generatemnterestlng conclusions, as in ﬁgu‘re 5, although, many times the

conglusmns are unmter%txng negatlve facts.® This graph supports the con-‘
clusion that Tweety is probably not a penguin founded on Tweety belng

a bird (through a negatlve probable 2 path). Semantxcally, the conclusion

‘that most (p 1_»00b%_) blI‘dS az_;e not pengtgns is ent,alled by the’ knowledge

8As George Bernard' Shaw -once said “An mtelllgent man. wants to. know what you'; ’
beheve, not what you don’t believe.”  ~.: . . . -
" B 4



Figufe’ S5: Tweety is prohably not a }genguin a -

in this graph Geflner and Pearl (op. cit.) have argued that the ability to

ma.ke such inferences, which &esentlally are a consequence of the properties

of probablhtxes repr&sents an argument in favor of usmg probabilities as a

semantic foundation for defeasxble inference.

’

6.8 ATouretzf(y et al.’s Design Space |

v

Touretzky et al. (78] present a taxonomy of dlfferent design decisions which

_ they claim represent reasonable a.lternatlves for any 1nher1ta.nce reasoner.

> They pr&sent three areas where ch01ces can be made, ‘thus 1mphc1tly deﬁn—

-

ing a desxgn spa.ce for mhentance reasoners ‘These choices are discussed inr

this section, /énd an attempt is made to identify where i in the desxgn space

thls reasoner hes AgaJn the fact that th1s reascuer is heterogeneous plac\es

a caveat on the compansons It will be seern, however that the ex1stence

. L)
- o T Lt - -

. .
I
\.
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~ the justifications presented for N

of an underlying set of Lp sentences, which make the knowledge contained
in the net explicit, sheds some light on the “clashes of intuition” discussed

by Touretzky et al.

6.8.1 Skepticism vs. Credulity

" The first. choice is between skepticis‘f_n and credulity. A skeptical reasoner

tries to be careful in what it concludes, while a credulous reasoner tries to

conclu I as much as stsibIe. Thj

Iy

s.reasoner can be said to be skeptical, in

3

4-‘.

IR

that all of t@ conclusions it drz "%‘ e a semantic jlfstiﬁcation,_given by
v k . v 2
e

Je "_forma’tion. Furthermoré, the conclu-
sions can be ‘hedged’ by identifying the knowledge on which the probable

paths are founded, It is not, however, skeptical in the sense that it refuses

wil.
Eraad

to draw conglusioi;:@:,in ambiguous situations, as does the skeptical reasoner

- . presented by Horty ét al. [30]. Instead, when there is both positive, and

negative support -for an assertion this redéoner.draws the conclusion 'tha.t

the net is ambiguous about that particular éésertioq. For example in fig-

ure 3, Horty et al.’s skeptical reasoner draws no conclusions about Nizon

being a pacifist, while this rqaéoner draws the conclusion that the graph is

ambiguous about this assertion. .It is only when.there are no paths from

the individual to the property in-question that- this reasoner draws'ro con-

- clusions.’ - v ‘ o B .'&..\
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In a sense this behavior is similar to the original credulous reasoner of
Touretzky [77), except that -'I"‘ouretzky’s reasoner generates multiple exten-
sions. 'In1 one extension Nizon is a pacifist while in another_ extension Nizon
is not a pacifist. Ambiguity is detected by the presense of rnﬁitiple exten-
sions. However, in any particula.r extension there is no ambiguity, i.e., the
assertion is eithef true or false in that extension. This reasoner does not
generate multiple extensions, the conclusion that ambiguity exists about
Nizon being a pacifist ie not expresscd by asserting that in one possible
model Nizon is a pacifist and in another he 1s not. The reasoner simply

# : .
aisserts that there is evidence for both conclusiofis.

 Horty et al.’s skeptical reasoner tirns out to be rot completely skepti—
+cal; it does not propagafe ambiguity.. Figure 6a shows a net with cascaded

ambiguities taken from Touretzky et al. [78] and altered to be heteroge-
neo’us In the homogeneous version of thzs net (just make all of the links
the same type while preserving polanty) Horty et al.’s reasoner makes no
claims abou? Nizon being a.,pacn‘ist, but it concludes that Nigon is :not
vaxllt'i-military. This Behgvio;'is a;:ifes‘,ult of it being skepticel about oéciﬁsm.
Since there is no pa."th to Paciﬁst,'fhere is no obpo’sing positive path to Aﬁti-
 military. This reasoner does not p',riopagate‘ambiguity either, although in
certai'n heterogeneous topologies it behaves' as if it did. Figure 6b shows
a heterogeneous topology (which would be 1dent1cal to ﬁgure 6a .in-a ho-

tu‘ ;..

mogeneous sy§tem) in ﬁ'uch the reasoner behaves as 1f it was propagatmg

v
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Ant1 Mil 1tary L Antl M:htary

_ Football Fan  Pacifist - Conservative - P.amflst |
-Republican hiaker , - Republican  Quaker
\. A | Nixon- _ B Nixon

A
5 I\\ R
Figure 6: Two examples of cascaded ambiguities
ambiguity. This graph is ambiguous both about Nizon being a pacifist and
about Nizon being anti-military.

- g7 PR : :
In this example, it %%g;‘fllui%inating to examine the knowledge contained

in the net. It is not accurate to say that ambiguity is being propagated. In °

fact, one could remove -he probable link from Republican to Pacifist and

/\4

the grapb we 11d become una.mblguous about Nz:z:on bemg a pac1ﬁst wh1le

femammg ambiguous about Nizon. bemg anti- mxhtary If one examines the

meamng of the edges in this net it is clear that it conta.ms no d1rect infor--

-

mation about the antl-mlhtary tendeflm&s of Repubhcans. 'It'just contains

information about the-anti- rmhtary tendencxes of conservatwes and Quak-,

- ers. The posxtlve probab1e path to ant1 mmtary 1s based on Nizon being a
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4Qua.ker while the negative probable path is based on Nizon being a con-
servatwe ‘The fact that Nizon is a Repubhcan has no influence on him
being antl—mxhtary For example Nizon could be a non- Repubhcan conser-
vatlve a.nd the gré.ph would still support the probable path to anti-n.ilitary
founded on szon belng a conservative,

F]gure 6a further illustrates tgat amb1gu1ty is not being propagated
by th1s reasoner. When reasomng;:%out Nz:z:on in the net in this figure
the reasoner concludes that. szon 13' probably a football fan (based on
him being a Republican), that the net is- amb1guous about Nizon being
a pacifist, and that Nizon is probably anti- mmtary based on him being a

nclusion is the opposite

Quaker. The behavior with respect to the l&
of Horty et al.’s reasoner. h

The conclusion that Nizon is anti-military” freontentious. It could be

argued that this is z‘g; reasonable conclusion; the graph contains no direct

1nformatlon about Repubhcans being pro-xmhtary to contradict the antl—

mlhtaty conelusmn and also the conclusmn can be hedged by exp11c1t men- .

tion of the foundmg class Quaker. Névertheless it could also be argued that

since the graph is amblguous about Nizon being a\cjx/ﬁst it should also

be ambiguous about Nizon bemg anti- rmhtary, as this conclu51on 1s a con-

sequence of him bexng a pacxﬁst ThlS type of argument was put forward

by Touretzky et al n support of a mechamsm for propagatlng ambiguity.

The consequences of trnnt7 to propagate ambxgmtw so that the graph be-

-/
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comes a.mbiguoiis about Nizon bein‘g anti-military will be discussed later,

in section 6.9. o o ' @’

682 Upwards vs. Downwards Reasoners

The second choice preseritéd by Toui‘etzky et al. is the choice between up-
wards and downwards reasoning. This reasoner, liké Horty et al.’s reasoner,
can be considered to be an dpwards reasoner. ’I:hét is, it starts at the in-
dividual in question and moves up the 1nher1ta;;:e net, denvmg propertles
of that individual along the way. This, as noted by Touretzky et al can
be v1ewed as being similar to constructmg proofs sequences in a logic. |
The downward crédulox.ls reasoner of Touretzky [77] exhibits a phenom-
enon cailed coupling. In the homogeneous vémion of the gfaph displayed in
ﬁgure 74 Tqufetzky’s regson;r treé:fs the nodes A and B identically. That
is,.even though the graph is émiﬁziguous and generétes multipie extensions,
‘in any extension if the prop’érty E is inheﬁted by members of B then F
" is also inherited by mermbers of A, Similarly, if E is not inherited by the
B’s it &s not inherited by the A’s. There is no extension sznerated‘ in th:ch

the conclusion about B’s being E’s is different from the conclusion about

A’s being E’s. A a.nd B can be said to be coupled Upwards creduloug

‘ 4In figure 7 and 8 individuals are omitted—all of the nodes are properﬁ{“nodcs The
windividuals, ie., the constant nodes can be attached to any of the property odes n t.}l(.
graph. ’ -

o

- - . v i A2
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Figure 7: Nodes A and B are coupled

'reason/ers, on the other hand, do not exhibit coupling; e.g., in some of the
extensions they generate, 4’s may be E’s while B’s are not.

Even through the reasoner presenteci here is an upwards reasoner it
also displays a fotm of coupiing. Unlike Horty et al.’s skeptical reasoner
whig:h draws no conclusions about the F-ness of A’s or B’s, this féasone;
concludes that the gfabh 1s ambiguous about A’s and B’s being E’s. That'- '_
is, the conclusion about A’s and B’s is identical. The difference is: multiple
extensions are n‘ot; gerlerated.

.Another difference between 'u.pward_s and downwards ‘reasoners is that

upwards reasoners display opportuﬁism. In the homogeneous version of the
" graph in figure 8, Horty et al’s ékeptical ﬁpwar&% reasoner would conclude
v ‘ . . 4

s



Figure 8: Opportunism '

¥

that A’s are E’s even$through it draws no conclusions about B’s being E’s.
Touyretzky’s downwards reasoneﬁ, however, can only conclude that A’s are
E’s if it also concludes that B’s are E’s. That is, the extension in which

A’s are E’s also contains the conclusion that B’s are E’s, while the other

extension, in which B’s are not E’s, contains no conclisions about A’s

being E’s.

1

This reasoner displays a form of opportunism in certain heterogeneous

i;bpolog'i&s. In p;irticula.r, in the graph d(splayed in‘ﬁgure 8 the reasoner
‘concludes that A’s are probably E’s founded on them being C’s, while
at the same time it co;lclud&s that B’s are probably not E’s founded on

them beiﬁg B’s. -This latter conclusion is- different from the corfclusion

#
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drawn by Horty et al.’s skeptical reasoner. Hence, the type of oppertunism

displ;a,jred by this reasoner is different and not directly comparable. (Note;
the negative probable path from A to E founded on B is preempted, since

the positive subpafh from A to D is preempted.)

6.8.3 On-Path vs. Off-Path Preemption

The third choice is between on-path and off-path preemption. The tech-

nical details of the difference are complex, and not really relevant to this

discussion. The difference can be arﬂply explained by examining the graph

in figure 9a. Touretzky"s credulous reasoner, which uses on—path preemr
tion, concludes that Clydc s grayness is ambiguous in the homogenec
version of this graph Sandewall [69],on"the other hand claims that this
graph should support the conclusion that Clyde i is gray unambiguously and
sugges'gs the use of off-path preemptibn

ThJS ré"asoner behaves hke an oﬁ'—path preemptor. For the net in ﬁg—

ure 9a it concludes that ‘Clyde is probably not gray based on him being a

Royal elephant. The p]robablfj: positive path to Gmy though African ele-

phant is founded on Clyde béing a%‘l'elephant, and thus is preempted by the
negative path.

It can be seen that this graph contains no information about the gray-

ness of African elephants. African elephants inherit their grayness from*
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- PGrAziy .ﬁeer Drinker

- =

Elephant M;}m
/ \ \ / \ g
Royal Elephaht  African Elephant Chaplain Marine
N/

Clyde , B George

Figure 9: Two examples ‘of On-path vs. Off-path preemption

| the superclass elephant; thus, as Sandewall argued,!the faéf that Clyde isa
Royal eléphant, which are known to be normally non-gray, should ov.erride
the normal grayn&ssv of ave?age elephants. If we hawe specific knowledge
about the grayness of African elephants; then this kno_wledée could be en-
coded in the graph through‘ an explicit probable link from A frican elephant
to ‘Gray. In this case there would also be a nonjpreempt:ad positive prob-
able path from Clyde to Gray, and the graph would be ambiguous about
Clyde’s 'gra.ynesg |

- The same reasoning applies to the graph in figure 9b. The homoge-

neous version of this graph was cited by Touretzky et al. as being a pos- °

sible counter-example to Sandewall’s argumeait. Touretzky et al. argue

1
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that George s beer dnnkmg habxts should be arnbrguous in this graph, be-

canse, although he is'a chaplaln he is also a marine.?” They do, however

) 'acknowlec%ge that possibly the ‘node Marme should have its own l1nk to

. Beé’r Drmker if we have explicit knowledge about the beer drmkrng,habrts

of marines. When the knowledge in this graph is exammed it can be seen

e thatqt,he graph contains no mforma’mon about the beer drinking propertres

of marines. Hence w1th these semantics t ere is no ch01ce but to add an

exphc1t probable lll’ll{ from Marine to Beer Drmker 1f marines are known

: to be l%eavy beer dnnkers If thls is done the~graph wrll become ambiguous

' ab_out | George ’s beer drrnkmg habits.

6.9 Extending.the Graph’s Exp‘ressivene's.s -

.

If the gﬂraph notation was extended to approach the expressiveness of the

proach the complexity of theorem provmg in the underlymg logic: Path
construction in the system presentedhe%e is eas_y because the graph can
only exor&ss a simple set ol' forrrrulas. 2 ‘. : ¥ ,

For exarnple, consider the situation whic_hlwouldoccur‘ if conjunctive
classes were _‘alloweld in the graph. In order for path' preemption fo continue

to work properly, each conjunctive class would require an IS°A link to each

of its constituents. For example, if the class RepublicanAQuaker was added

®

:,:;,
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' underlyrng logic, the complex1ty of ﬁndmg paths in the graph would ap- Sl
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to the Nixon 'dia'mong, prolilablep&ths#frorh this conjuncti';'e class should

I.)reempl:' probable;pe.fhs from ei‘ther'R.epublicafn or Quaker. Preemptl‘on
would only be p0551ble if there was an [S-A link from this con_]unctlve
class to both Republican and Quaker. Furthermoré 1nd1v1duals who were
known tﬂ be. both Republicans and Quakers would have to have an IS-A
hnl»l to the conJunctwe class. That is, Nizon would have to have a link to
Republzcan A.Quaker in order for preempt1on to function correctly
What is happemng here is that deductive consequences afrg being added
" to the graph. For exaxhple, Nizon is known to be a Repu-lica/n and is
also known to be a Quaker; so, the deductive c_onsequence that Nizon--is
a Republican A Qu.alcerl‘ must also be added to the graph. S_uchodeduetive
consequences increase the numdper of Vp_aths in the graph exponentially; thus,
the time required to check for path preemption will alsq glrow. o
Although limitlné ‘the graph to primitive classes yields an efficient rea-
soning system, it aiulso poses certain problems. For e;cemple, ‘pl"opagatinyg
" a.mb1gu1ty in a sound manner is difficult.: One simple means of propagating

'anihigulty is simply to make all paths which have an ambi:guous subpath,

'_'ambiguous However propagatmg ambiguity in th1s manner would have'

the consequénce of makmg the conclus1on that: Nzxon 1s pohtlcally motl—'

vated in ﬁgure 4 ambiguous, as both\paths to Polztzcally Motivated have

vamblguous su-bpa.ths L

The problem here is that although there is amb1gu1ty about Nizon belng
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Hawk and about him being a Dove, there is no ambiguity about him being-
. - . - ' b
a Hawk V Dove. Thus, there should be no ambiguity aboutkhim being

" Politically Motiv.at'ed, as this conclusion comes from him being a Hawk V

Dove. The fact that the gfaph is incapable of repre.se'nting 'd_isjuncfive

¢lasses like Hawk V. Dove makes it difficult to"p>ropagate a.mbigu.ity na

" sound manner——sometifn,es two ambiguities will cancel, sometimes they will

not. Y

These problems point out that although efficient special .purp_bse struc--

tured reasoners have an important role to play in a reasoning system, more

> N

general less efficient reasoners, like theorem provers, will also be ‘re'-quired .

v ’ T
to handle the difficult cases. . S ™~

‘ ” . . . 1
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Cha‘pter' 7

Conclusion

1 _What .has Been Accﬁor'_nplish’e_d -

This thesis has dealt with the problem ol' representing and reasoning with

probabilistic knowledge. ‘It was motivated by a desire to include proba-

-bihstic knowledge in a general knowledge base and to extend the deductlve

inference mechanisms of ﬁrst log1c to mechamsms whlch could be used with

[4

probabihstic knowledge. | s

ThlS led to an exploratxon of ways of rmxing first: order log1c w1th prob-

w

abilities. Viewmg probabilimes as a generalizatxm of 0-1 truth values isa

method which has been used extenswely, both in philosophy and in AL ThJS‘

g

approach attaches to sentences of ﬁrst order loglc graded truth values in

the range 0-1, instead of just: the endpomt 0 1 values. Tl’llS can be accom-
. 7 .

iy
4
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‘_ plished by p031t1ng a probablhty dlstnbutlon over the Lmdenbaum Tarsk1 :
a.lgebra formed by the eqmvalence classes of provably eqmv_alent‘ sentences. o
_ Equlvalently, a proba.b1l1ty d1stnbut1on can be placed over a set of possr.

ble worlds, where each p0551ble *borld in th1s set 1s a umque ass1gnment .

of truth. values to the sentence's of the Togic.. ThlS approach is, however,

.
[3

1nadequate for the eggpressmn of probab1hst1c knowledge wh1ch takes thee..

form of statistical a,ssertlons

- .

3

Statlstlcal assertions are statements of empmcal probablhty vsl'h1ch as-"”
sert something about the world Although empmcal probablllty statements. o
are not the only kind of probability assertion that we‘W1sh 'to'deel w1th,'
they are an essential sugset of the probaoilis‘tic kno;w'ledge p‘oss‘es:s'.’e'd'by a>ny1

rat10nal agent. Their importance lies in the fact that they can in prlmuple :

be ‘learned’ through accumulated experience with the env1ronrnent

3

In order to capture empirical probab1ht1es a new m1xture of probabrlity .,
- » : :

and logic was 'needed. A natural alternative candidate over which a proba-

bility ‘distrib?ution co,u_ld be placed is the domain of discourse. The existence

of the negation and conjunction operators in first order logic ensures that .

. / :
the collection of sets deflned by the formulas of the logic form a field of

sets, t_he minimal structure. over whih a probability distribution can be. |

- placed. The development of this intuition led to the major cofitribution of

"the thesis the loglc Lp. o " . | .

Lp is an extens:on of ﬁrst order logic: the model structure has been

e
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T extended to include a probability function over the domain of discourse, and

the Syntax extended to allow the formation of probe;bility terms which can

o ‘ be used to express statements of emplrlcal probabxhty Another innovation

was to embed» a totally ordered ﬁeld of numbers in the semant1c model.

:ThJS allows access In the syntax to the values of the robablhty function.

By makmg the logic. two sorted the probablhty terms can participate in

the formatlon of complex sentences which allow the expression of a very

: géheral set of probablhty a.ssertlons, Jr;cludgng many assertions wh1ch make
'no»rhention of particulartnur'rlbers -
. :
Although this logic solves' the problem of representing statements of
emplrlcal probablhty, probablllstm degrees of belief ass1gned to sentences
‘ _'of the loglc remain  outside its scope. In contrast, the ex1st1ng approach of a
' 'probab1hty dxstnbutmn over a set of possible worlds is capable of expressmg

‘ such degrees of behef

The second contribution of the thesis is the development of a mecha-

P

nism of belief formation. This mechanism is capable of usi;ig the ernp'ir'ical -

probablhtxes expressed in Lp to generate probablhstlc d‘egrees of belief in a

3

~large clqss of log1cal sentences These degrees of behef oﬁ'er a maJor advan-

-

tage over the purely subJectwe possﬂ)le worlds approach they come trom
emp1r1cal data, i.e., they are.fourrged on ki~ ledge about the world? This

B goes a long way towdrds answering the tommon question “Where do the

”

probabilities come from,” especially in view of the factlthat the underlying
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.logic is capable of expressing vague, non-numeric assertions of probability,

_i.e., numbers are not required. This approach als? has the adéant&gé»vthat

the empirical knowledge can in principle be accumulated througfl experi-

/-

ence. . T ‘

-
- .

Another feature ‘of{ these degrees of belief is.that they display non-
m'onotoniq beil’avior; thus, the mechanism offer‘sb an alterﬁative formalism
for reéisoning ;vith defaults which have a statistical ingerpretation. This fea-
t:ure has been used fo give a freatment of mu,ltiph; inheritance hierarchies
with ep.cceptions, a problem‘ whjvch is beyond the monotonic capabiiitiés of |
étrictly deductive inference. The formalism gives a n;tural statistical in-
térpretation to the defeasible links in the hierarchy, and can,‘ in ité full
géneralitty, deal with composite ciasses and n-place predicates. The freat— :
ment of inheritance hierarchies démonstrateé some of the gengraiify _Qf the

formalism. - . A r

4

There are three importaﬂt__ extensions to this work which I feel are promising

areas for fﬁitﬁfquearch? extending the mechanism' of belief formation,

developing a theory of diagnosis from statistical principles; and learning

‘ fi:bm experience. 1 will conclude this thesis with a more detailed discussion

N AY
of these areas of research.



7.2.1 Extensions to Belief i?ormation"

Degrees of Belief |

¢
.

One oh,vjous weakness of the mechanisrn of belief formation is that the

7\degrees of belief lie outside of the logical formalism. One possible solution is
to cornbine a poesible worlds approach with the approach of Lpto get a logic,_ :

. capable of expressing both empirical probabilities as well as probab1ht1es

attached to sentences. In this approach each p0551b1e world would be an

-

Lp-structure, with a probability distribution oxer its domain of discourse.

“In addition there would be a prok ablhty dlstrlbutlon over the set of Lp-
 structures. Thls latter probab111ty dlstnbutxon would give a probability

assignment to the Lp sentences—the probability of a sentence would be -

" the measure of the set of worlds in which it is true.

-

Thia combination would have the advantage of giving the degrees of be-
lief an exphc1t sernantlcs Furthermore it would allow the development of
a proof theory for the degrees of behef such a proof theory would allow rea-
somr}g with the degrees of belief directly, i.e., without havmg to returning
to_the level of Lp. |

The d1iﬁculty lies captunng the 1nduct1ve principle in this extended

formahsm The 1nduct1ve principle expresses a reasonablé relatxonshrp be-

tween the probab1ht1es a551gned to the Lp sentences and the ernpmcalp

~probapbilities in the Lp- structure One can gwe up this rela’tlonshlp onlv>

I
4
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on pain of rettw%g t'é—jinfoundéd sub je\et:;ve probabilitieé.
. o

4

Further Theoretical Justifications for Belief Formation

: When an agent’é beliefs are simply a set of new facts deduced from his
knowledge base using souﬁd rules of inference, there is a simple relation-
ship between the agent’s beliefs ax;d _the state of the world. If the ;gent’s
factual knowledge is accurate then he will believe assertions which are true.

3

This. gives a good reason for claiming that the agent is rational. However,
, ° ~ :
if the agent uses belief formation and Lp deduction to generate degrees of
belief, there will be no such direct assurance that the agent is rational. This
is because be]ief formation does not deduce a sentence «; instead it imparts
a degree of belief.to the sentence a. Hence, we are dealing with. an agent

-who, after some deduction in his internal language, believes a sentence «

to some degree. Characterizing the relationship between these degrees of

belief and the state of the world is 2 much more difficult pfoblem. All that

. can be »hqped for is that if the agent accumulates sufficient information
about the world and is able to devote sufﬁcient'computational résources to
evaluatmg his degrees of belief, he will tend to ass:gn high degrees of belief
to statements which are true statements about the world and low degrees

of belief to sta,tements which are false. In essence thls would require show—

1ng that the mechamsm of behef formatxon and its assoelated inductive .

a,ssumptlon of randoszatlon is'in fact a rational mechamqm in the long

188"
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run. - . o ” /\\‘
It has already -Déen shown that if random selection is used the degrees
of belief are jt‘lstiﬁﬁi by long term trends. However, a stronger justiﬁcatidn

would involve showing that an vagent acting on these induced degrees of

s belief (1.e.; using these degrees of belief as guides to action) would be better

off, in’ the long run, than if he acted on any other degrees of .bélief. A

‘possible a.ppro'a;ch.tcg-'this (iiﬁi::ult problem- would be to show that in ‘the T
context of éertain statistical games ag.ainst nature‘the inductive principle is

optimal. It may be possible. to show that if the game has certain rules (e.g,

a lack of knov‘rledge of nature’s éelection rule) then the inductive principle

is the best strategy. A related project w”ould. be to justify the preference

criterion by showing, for example, that a player who used it would do betfef

than a.player who ;iid not.

, Beliefs About Beliefs _ . : )

Work on formal models of belief has been motivated by a desi'}e to reason

about other agents’ beliefs, something ‘which 1s important when reasoning

about their actions. This involves being able to reason with iterated bélief

statements like “John believes that Mary believes he loves her‘."’ In order )

to deal with many agents each having their own beliefs, inclucii_ng beliefs
_about each‘othefs beliefs, 'mbdal In~ics are required. Modal logics can

represent the different world yiews possessed by distinct agents and can



oo

i

~ reason w1th ‘the. relat1onsh1ps between, those d1fferent views. An mterestmg

| pro Ject woul}&be to eygkend the formalism developed in this thes1s to a modal A

loglc that would be capa.ble of ;:easomng about a collection of 1nteract1ng

. agerits. One attraculve feature of thlS formalism lies in its ability to generate

beliefs from incomplete information. ,When one considers how an agent
. o .

" could generate beliefs about another agent’s beliefs it is seen that such

,beliefs‘must be based on incomplete knowledge. For example, how could .

John arrive at the conclusion that Mary believes he loves her? John does -

not have dlrect access to Mary’s beliefs; instead, he must base his behefs

about Mary’s behefs on Mary’s act1ons as well as on knowledge about the‘

world, e.g., knowledge of how people act when they thmk someone is in love

with them. Such knowledge has a distinctly statistical ﬁa\vour; i.e., people

“usually” act in a eertain manner when they hold certain'béliefs, but no_t

always.

.~

Universal Sentences _ .

P

Another extension to the mechanism of belief formation would.-be o deal

with universally qnantified sentences. Belief fermation can Aonly say trivial

thmgs about universal sentences which contain no. obJect constants eg.,

“Yz P(z) — Q(z).” If the sentgnce or its negatmn is dedumble from the}

knowledge base, then belief formation will asmgn agegree of belief to the

sentence equal to one or zero. Otherwise,}lothing_ can be deduced about the

190 -
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sentence’s degree of belief except for the trivial fact that it is in the range- T

L) , ’ ) .
0-1. The reason for this is that there are no individuals in the sentence

that’'can’'be randomized. Hence, some other inductive- principle must be

-

tfound to deal with universals.
Uni'=rsals have always posed a problem for induction,idue-to_ H,empel’s
paradox of confirmation. One example of the paradox is as follows. Suppese

-~

that we are interested in the unlversal sentence “All ravens are black ” then

) a loglcally equ1valent sentence is “All non-black object are not rax rens ” If a
umversal sentence is to be conﬁrmed by observmg a large number of ground .

' 'mstances “then observmg a large number of snow ﬁakes in'a snow Storm

«
wolld TIVC a lot of evrdence for the second sentence and thus would also

:."

be conﬁrm,mg ev1dencé for the assertlon about ravens: ThJs is obv1ous1y an" -
‘ unnatural conclus1on o -
One approach to this problem would be to assert that un1versals are i
- mever induced frorn expenence Instead what is 1nduced are condltxonal:

probablhtlae e.g., [Black(:c)|Raven(.r)] The conﬁrmatlon of pondltlonals i

do&i}not suffér from thlS paradox s1nce only observatmns of ravens count

,j.

can be found In many areas, e.g.,!in phy51cs These umverSals Hava- been,

/mduced from observatlons although in many cases not ‘solely from large sets'

of ground 1nstances It has been noted (Russell [67]) that the 1nduct10n of

umversals requlres add1t1onal knowledge bes1des a set of conﬁrrmng ground

.;p.
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. However, this do&c not seem to be the case: assertlons of umversal laws e
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k strated how- certaln types of defaults can be proﬁtably represented b

. . TN . P

instances. For‘example,‘ in the domain of physiCs an important piece of

knowledge used in the induction of universals is the fact that physical laws

P

generally are universal. Another e ample is that.of the black ravens. If it is

known that many species of birds do exhibit uniforxn colouration, it would

be rea onable to 1'1duce a high degree of behef in the umversal if all of the

-

* ravens that have been observed ha.ve been black It is p0551ble that these
.'hlgher level generahzatxons may be statlstmal generahzatlons expressxble in .

'Lp, and that a mechamsm could be oeveloped to a551gn degrees of belief

to lower level umversals

Lo

The results ‘on 1nher1ta.nce hlerarchles presented in'this the31s ha.ve tmon— )

high

cond1t10nal probab111t1es Slmple condltlonal probab1ht1es are not sufﬁcxent.
to encode the causal relat1onsh1ps present | in domains where dragnoms is

- pdssxble The- followmg exa.rnple due to Leh Schubert mal\es this clear

) Consxder two sets of statxstlca.l assertlons about the dxseases Dl and

. D2 and thexr relatlon to the symptom S. The ﬁrst set of assertlons is

~

*[chzuz = 0., [5@)IDx(@))e = _0.9

[Dafe)le =09 [S(2)IDa(z)e = 0.1,
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while the seéond set is

(Dy(2)): =09,  [S(2)|Da(z)]e = 0.1

[Da(2)]: = 0.1 [S(z)|Dy(z)]= = 0.9.
Clearly, the symptom S has a diﬁ'_eren(t.signiﬁcance in these two cases. In
the first casel S usually aécompanjgs D, but rarely accompanies D,;. In ~the
éecond case, S is, instead, correlated with D;. Intuitively, given the ﬁr;t
set of assértions one would think that S provides good eﬂvidence for (tends
to conﬁrm) D,, while given the scfcond ‘-set, one would think thz;t S provides
evidence for D,. Yet, as \can.be easily\ verified, for both éets of assertions
the inversé conditionals are equé.l: from the first set of assertions it can
be deduced that [Dy(z)|S(z)]. = [D2(2)|S(z)]: = 0.5, while the second set
derives [Di()|S(2)). = (Da(2)|S(2)]- = 0. |
T'hjs example suggests that what is imporf:ant in measuring 'gyiden-
~ tial support is not just the coﬁditional probabiliti:es, but is insteaé\fheir
magnitudes relative to the unconditional probabilities. Measures of causal
support can be expressed by ratios of probaBili{:}; terms. ‘It is easy to see
{hétisuéh ratios ,‘are exbressible in Lp, and thus the causal infon;la;tion used

“in 'dia'gri()sis can be represented in the formalism.

Of course, the representation of causal information is just a start. There E

are a number of other problems which would have to be solved before a
workable diagnosis system could be developec. %y the 1echanism of

belief formation (which would be used to reason about particular cases



using the background statistical knowledge expressed in Lp) has only beent
specified in a very general manner. A more specific control structure must

be developed for an effective computer diagnosis system. One possibility

is to use the causal networks developed by Pearl [55] as a special pufpose

reasoning structure. However, what is really required for a diagnosis system
with « wide range of coverage is th}ébility to dynamically configure such a
r‘easbf\ning structure depending on what the system isreasvaing about. For

this, backwards reasoning from effects to causes (e.g., Morgan [51], Poole

et al. [61]) may be very useful. A set of possible causes which explain the-

observed symptoms (explain in a more.general sense of making probéble,
insteaci of logicall}?entailing) cnould be generated by such methods and
then structured inté-a causal net. Once the causal net was constructed
babilistic analysis could be performed.
Qne useful feature .of this [ormalism is that it is based on probabili-

ties; hence, it leads naturally imto decision theory. Much-of diagnosis deals

with tradeoffs. For example, should more tests be performed or should a

treatment be ‘pres'cribed which will deal with the most'probable disorder?

These tradeoffs car e approached rationally from the standpoint of deci-
sion theory. For e -umple, given knowledge of a treatment’si$ide effects the
above question couid be answered by considering the expected utility of the
treatxinex;t. One would expect that.any ‘}“)o‘werful theo.ry of diagnosis would

incorporate notions from decision theory.
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7.2.3 Learning, or Induction, from _Grround "F_acts |

One of the most attractive features of this work is that the statistical knowl- .. -

edge expressed in Lp could be accmulated th:ough experience. To specxfy
exactly how this could be done would be a major piece of research. There

‘are a large number of methods in statistics which may be applicable. These

methods use data from the world, i.e., samples, to assign degrees of cre- .

dence to various statistical assertions, i.e., hypotheses. The most difficult
problem, } iwever, is the problem of 'acceptance; :
_Asit stands now, it has been assumed that there is some extemal‘ageﬁt,

e.g., a domain expert, who has decided what the accepted knowledge is and

“has encoded this knowledge as a set of Lp sentences. From this already ac- ’

cepted knowledge, uncertain beliefs are gegegated ‘through belief form%ion.'

Hence, the problem of acceptance has not arisen. If we wish to develop au-

_tomated mechanisms which can accumulate evidence for various assertions-

and then accept those assertions into the.knowledge base when sufficient
evidence has been accumulated, then we must face the lottery- paradox

This paradox, due to Kyburg [39] is as follows

® A large number of people buy tickets to a lottery having a single

winner. The probability that the i-th person wins the lottery is very

small and can be made arbitrarily small as the number of tickets

increase. If an assertion is to be accepted as true when it has a very "

195
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high probability, théhv,,'évefy statement 1‘perSon i i§ not the winner”
would be accepted. But, the collection -of all tvherse'stateme’nts‘ is

. inconsistent,with the fact that one person will definitely be the winner.

Some recent work by Kyburg [36] has produced what seems to be a
workable solut1on to this p;pblem. Levi and Morgenbesser [43] have prev1—
ously poiﬁ%éd out that to a certa‘iri‘ejctent there e_iré no such things as fully

accépted beliéfs, fto Q‘Ubktej:» .:ﬁf, .

-“for any poﬁtingentt proposition p on thich zii(_:_‘t,i:)n c'zivn be“ltak’eﬁn‘,
there is a least o.ne objective relative to -Which a r‘lonsuic"idal
ratlonﬂl_igent weild : cfuse to act as 1f p were true. Con51der
for example, the followmg amble on the truth value of p: If the
agent bets on p and p is true he wins some paltry prize, and if p’
is false he fqrf@ts his life. However, if he bets on - p, he stands

to win or lose some minor stake. ... (Hence) ... the agent could

not rationally and sincerely believe p where p is contingent.”

‘This argues thaf the acceptance of beliefs involves éome notion of utilitjlf.
‘Kyburg con;tmcts a system in which beliefs.are tagged by their odds, i.e.,
theix\‘, pro"\Bability divided by one rhiniisi__"cheir probability. For aétidns where
the-rati'o of risk to reward is less that the tagged ddds, the agent will act
as if ne has fully accepted the belief. For example, 'if you park your car

in a pa~king lot you may accept the belief that it will still be there when

b

~196



) ' | : o 197

- ,y“o.u -‘tetur?'lé.ter. In this case'if the odds of the car being thér¢ are high,
‘ say 1000:‘1! tﬁén if the rat.io of risk to reward is less than 1000:1, }:r.ou are
justiﬁéd in aoa;r\epting the beliei". For exarﬁplg, it may cost you $20 to take
. é._cab home versus a benefit-of, say, $1 if the car is there. Since the odds
of the cbnjimction of two statements must be lower two statements may
be acc;eptéd at‘ some ievel‘ Qf‘_l’iSk to reward whi’= their conjzuinétionv is not;
thus, the ilot‘t'ery paradox is avoided. By adapting these ideas it rﬁay be
- possible t~ = luctively accelzt asser%ions into the knowledge base, pé:f‘:h'gps
By partitidning the knowledge base into levels of acceptance igdexed by risk

to reward ratios.
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