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ABSTRACT 

 

There is a growing need to decrease the viscosity of bitumen using minimal diluent addition to 

reduce the cost of transportation. However, due to the inherently free radical rich nature of 

bitumen, even on exposure to low autoxidative conditions adverse effects on the viscosity and 

hardening of bitumen were observed. These effects were postulated to be caused by a compound 

class containing 5-membered rings attached to an aromatic ring since they have a high propensity 

to undergo free radical addition reactions.  

The objective of the work was to develop a better fundamental understanding of addition 

reactions in binuclear aromatic compounds with one 5-membered ring when exposed to different 

reaction environments. The compounds selected for this study were: indene, indane, indole, 

benzofuran and thianaphthene. The reaction environments focused on initiation of addition 

reactions caused by the addition and removal of hydrogen from the compounds. This was 

achieved by performing reactions in the presence of acids, bases, thermal conversion conditions 

and supported metal hydrogenation conditions.  

The reactions with acids and bases were performed at very low temperatures of 70 and 120 ° C in 

the presence of nitrogen at atmospheric pressure with a dilution in toluene of 2 wt% acid/base 

with 10 wt% model compounds. On reactions with acids, the aromatics containing a 5-membered 

ring polymerized to form much denser and heavier compound chains. The polymers in the cases 

of indole and benzofuran formed solid particles upon reactions with acids. Bases, however, did 

not react with indene, indole and benzofuran. Thianaphthene reacted only in the presence of 

NaH. 
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Thermal cracking conditions of 400 °C and 2 MPa promoted free radical reactions in indene, 

indole and benzofuran. While indane and thianaphthene did not react, indene, indole and 

benzofuran underwent addition reactions. The addition reactions led to formation of heavier 

compounds. Indene also produced asphaltenes in the product. The increase in asphaltene 

formation was linked to an increase in temperature.  

Hydrogenation in the presence of a metal supported catalyst was performed in a flow reactor in 

the presence of H2 gas. The reactions were performed between a temperature range of 150-180 

°C at a gauge pressure of 1 MPa, for indene, indole and benzofuran. The compounds 

hydrogenated in the descending order: indene >> benzofuran ~ indole. Thianaphthene, however, 

did not undergo hydrogenation at 180 °C, it required a higher temperature of 220 °C.   
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CHAPTER 1: INTRODUCTION  

 

1.1 Background 

 

The main objective of partial upgrading in oilsands is to produce an oil with a lower viscosity by 

using minimal amount of diluent, thereby increasing the capacity of the pipelines.
1
 Any 

upgrading technology involves complex feed and product mixtures, and multiple reactions that 

include cracking, hydrogenation, dehydrogenation, asphaltene formation, and removal of sulphur 

and nitrogen. They are conversion based processes and are focused on improving density and 

elemental composition of the products.
2
  Partial upgrading uses a subset of these technologies. 

Cracking is an important partial upgrading process and it is the primary conversion unit of the 

Nexen BituMaxÊ field upgrading technology (Figure 1.1).  Thermal cracking takes place by a 

free radical process. 

Free radical addition reactions in combination with hydrogen disproportionation can occur at 

temperatures lower than 350 °C. Since bitumen is inherently rich in free radials,
3
 it was realized 

that these reactions were taking place during in situ recovery, process heating and distillation 

operations. Free radical addition reactions are undesirable, because they potentially reduce 

conversion. It was of interest to investigate the possible compound classes that are to blame for 

addition reactions undermining thermal conversion.  

A research lead on possible compound classes that could result in addition reactions under free 

radical reaction conditions was found in a different type of study.  On exposure of bitumen to air 

under autoxidative conditions, which also proceeds by free radical reaction, it was found that low 

temperature oxidation had adverse effects on the viscosity and hardening of bitumen. An 

increase in density meant that heavier compounds were formed due to addition reactions. 

Addition reactions are an important class of side-reactions that can be initiated by oxidation 

contributing to bitumen hardening.
4
  Although these reactions were caused by oxidation, free 

radical addition does not require oxygen to proceed.  The compound classes that were mainly 

responsible for the hardening in bitumen, were compounds with a 5-membered ring attached to 

an aromatic ring.
4
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Figure 1.1 Flow Diagram for the partial upgrading process, highlighting the presence of 

naphtheno-aromatic compounds 

Bitumen is a complex feed. Aromatics such as alkylaromatics, naphtheno-aromatics and alkyl 

naphthenes are present in large quantities in bitumen. Bitumen constitutes of higher degree of 

heteroatoms which are rich in nitrogen, oxygen and sulfur containing compounds. Heavy oils are 

known to contain a H/C ratio between 1.4-1.6. A H/C ratio of 1.5 is indicative of presence of a 

higher concentration of naphtheno-aromatic compounds.
5
 From the study performed by 

Siddiquee 
6
, certain compounds were found to be highly inclined to forming free radicals. The 

order of propensity of these compounds to undergo free radical addition reactions, listed in the 

decreasing order, was: indene > indole > benzofuran >> thianaphthene.
6
  

From figure 1.1, the compounds of interest were not only present in thermal cracking unit of a 

partial upgrader, but they are formed during the solvent deasphalting of bitumen, in both layers 

i.e. asphaltenes and the DAO. The compounds present in the form of substrates of a bigger 

molecule, move up in the chain to the olefin treating segment of the process.   

The compounds in this list can all be classified as bicyclic, aromatic, and containing one 5-

membered ring.  Although these specific compounds would not be found in bitumen, larger 

molecules that contain such substructures could be present in bitumen.  For ease of study 

binuclear aromatic compounds with one 5-membered ring were selected for study, exploring the 

main reaction environments that could be considered for bitumen processing: thermal 

conversion, acid conversion, base conversion and hydroprocessing conversion. 
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1.2 Objective 

  

The objective of the work was to develop a better fundamental understanding of addition 

reactions in binuclear aromatic compounds with one 5-membered ring when exposed to different 

reaction environments.  

 

1.3 Scope of work 

 

The key focus of reaction environments studied, revolved around the removal and addition of 

hydrogen in different ways to the 5-membered ring, since this was postulated to be responsible 

for initiation of addition reactions. The compounds selected for this study were indane, indene, 

indole, thianaphthene, and benzofuran.  The chapter layout is described below: 

Chapter 2: Literature Review 

Chapter 3: Reactions of aromatic compounds containing 5-membered rings with Acids 

Chapter 4: Reactions of aromatic compounds containing 5-membered rings with Bases 

Chapter 5: Free radical addition reactions of aromatic compounds containing 5-membered rings 

under Thermal conversion conditions 

Chapter 6: Hydrogenation of aromatic compounds containing 5-membered rings over a 

supported metal hydrogenation catalyst in a flow reactor in the presence of H2 gas 

Chapter 7: Conclusions  
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CHAPTER 2 : LITERATURE REVIEW  

 

2.1 Introduction  

 

This literature review is focused on understanding how the selected binuclear aromatic with 5-

membered rings react under different processing conditions. The conditions revolve around the 

four different transformations relevant to industry: 

a) Acid catalysis 

b) Basic catalysis 

c) Free radical chemistry (thermal conversion) 

d) Metal catalysis 

The review will investigate into how indane, indene, indole, benzofuran and thianaphthene, have 

been known to react in the presence of the above reaction environments and what could 

potentially occur.  

 

2.2 Acid catalysis 

 

Heterocyclic 5-membered rings present in the bicyclic aromatic compounds are susceptible to 

protonation. They polymerize when treated with strong acids, leading to chain growth catalyzed 

by acids. The degree of polymerization, i.e. multiple addition reactions, is dependent on the 

strength of the acid and the structure of the compounds.
1
 Since polymerization was an expected 

outcome of the reactions of the model compounds with acids, the focus of the literature review 

was on possible polymerizations of the compounds in the presence of a proton. 

 

In one study
2
, the reaction of indene with H3PO4 and H2SO4 was investigated. The study was 

focused on understanding the monomer and in turn isomerized dimer formation of indene. The 

yield and distribution of dimers in the product, on reactions with acids, was higher in comparison 

to boron trifluoride, a strong Lewis acid. Sulfuric acid produced lower quantities of oligomer and 

higher quantities (10 times more) of dimers. Phosphoric acid led to similar results but required a 

longer reaction time of 24 h compared to 8 h in the case of sulfuric acid.  
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Figure 2.1 Indene (left) and the expected protonation product of indene (right) 

 

In the presence of an acid, indene forms an indan-1-ylium ion (figure 2.1) which in the presence 

of another indene molecule reacts to form a dimer of 2-(2ô,3ô-dihydro-1ôH-inden-1ô-yl)-1H-

indene. Different isomers of the same compound can form based on the delocalization of the 

positive charge in the dimer.
2,3

    

 

Ability of benzofuran, indene and 1,2-dihydronaphthalene to polymerize were compared in a 

study performed by Mizote and Tanaka.
4
 The study involved comparison of parameters like ring 

strain, ring stabilization and steric hindrance in the transition state during the polymerization of 

the three compounds. These parameters were also compared with those of styrene. It is known 

that benzofuran, similar to indene, can be easily polymerized by cationic catalysts.
4
  Unlike 

aliphatic cyclic olefins, benzofuran and indene do not produce crystalline polymers. The 

compounds were heated at 30 °C, in the presence of IBr solution in glacial acetic acid as a 

catalyst. The degree of polymerization is in the decreasing order: indene > benzofuran > styrene 

>> 1,2- dihydronaphthalene.
4
   

 

Indole is an aromatic compound with a high activity towards even weak electrophiles. Although 

indole is classified as a neutral nitrogen-containing compound, indole is reactive to electrophilic 

reagents, like acids, and undergoes protonation in the presence of strong acids. These 

electrophiles can initiate polymerization or dimerization, resulting in large amounts of 

byproducts.
5,6

 Indoles are rendered susceptible to attack by electrophiles due to high electron 

density and low localization energy for substitution of electrophiles. Indole and its substituents 

are known to polymerize on reaction even with moderately strong acids, for example nitrous and 

phosphoric acids. In the presence of a strong acid, however, it completely protonates, largely in 

the C3 position to form an iminium ion. On addition of high concentrations of sulfuric and 

perchloric acids, instantaneous precipitation of the acid salts of indole are formed.
5
  

 

+ 
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Not much literature was available on the reactions of acids with thianaphthene. Literature was 

found on reactions of thianaphthene with sulfates of metallic ions. The reactions with the 

aqueous metals species were performed at 240 °C, to create steam stimulation conditions in 

heavy-oil reservoir for a period of 28 days. The proton donation was due to the dissociation of 

the water molecule from the aqueous metal ions. The aqueous metal species produced an acidic 

solution by solvolysis mechanism. Products 6-8 in figure 2.2 were the major compounds 

produced from the reaction. However, metal ions appeared to have more drastic product 

formation as compared to HCl and H2SO4, which resulted in little reaction.
7
 

 

 
Figure 2.2 Reaction mechanism for formation of major products on reaction of thianaphthene   

with aqueous metal sulfates 
7
  

 

 

Indane, is not susceptible to acid catalyzed conversion, expect under very forcing conditions, 

where the Haag-Dessau mechanism of protolysis is active.
8
 

 

 

 

 

 



 

8 
 

2.3 Base catalysis 

 

Base-catalyzed reactions for hydrocarbons are dependent on the ease of removal of a proton or 

the acidity of the hydrocarbons. Since hydrocarbons are naturally less acidic in nature, a strong 

base as catalyst is needed for a reaction. An effective example of a strong alkali metal used as a 

base would be sodium, potassium, and cesium.
9
  

Alkali metals could be used for desulfurization of multinuclear aromatics. Base catalyst like 

sodium hydride is used as a strong reducing agent. It facilitates conversion by having sodium as 

a strong electron donor, or in the case of sodium hydride, the hydride ion as a strong electron 

donor. The aromatic acts as the ion acceptor during the reaction. During the hydrogen exchange 

reactions, the aromatic is susceptible to partial hydrogenation.   

Sodium can be used to desulfurize thiophenes. In one study, the conversion was studied under 

nitrogen atmosphere using different solvents to compare conversion based on hydrogen 

availability in the matrix. The solvents selected for the study were decalin (hydrogen rich) and 1-

methylnaphthaline (hydrogen poor). The hydrogen donor capacity did favor desulfurization by 

hydrogenolysis (figure 2.3). However, desulfurization through hydrogenolysis is a reversible 

reaction. The desulfurization in the presence of hydrogen was favored in the presence of sodium 

hydride, but it led to precipitation without removal of sulfur from the product.
10

   

 

Figure 2.3 Reaction pathways during conversion of dibenzothiophene in decalin with sodium 
10
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Looking further into the possible hydrogenation of unsaturated compounds in the presence of 

base-catalyzed reactions, the hydrogenation is known to take place for alkenes between 

temperatures of 170-250 °C. Hydrogenation at low temperatures takes place from alkadienes and 

cycloalkadienes. However, polynuclear aromatic hydrocarbons undergo hydrogenation at 250 

°C. The hydrogenation reactions take place through addition of alkali metals from the hydrides to 

the C-C bonds. This is followed by hydrogenolysis with molecular hydrogen.
9
  

 

2.4 Free radical chemistry 

 

Free radicals can be formed by three different processes: irradiation, thermal homolysis and 

oxidation-reduction reactions. The focus of this literature review will be thermal homolysis. It is 

defined as a bond dissociation of a molecule creating two radicals, because of heat addition. The 

propagation reaction, that is of interest in this literature review, is by hydrogen abstraction. This 

occurs as a principle or a side reaction during almost all radical reactions.
11

   

 

A study was performed by Laskin and Lifshitz, aimed at better understanding of the combustion 

process of polyaromatic hydrocarbons, in specific, indene.
12

 The work investigated on the 

product distribution, pyrolysis mechanism and kinetic modelling. The pyrolysis was studied 

behind reflected shock waves in a single-pulse shock tube. The temperatures attained for the 

study were in the range of 877-1627 °C. The products formed at 1147 °C were lighter 

compounds starting from the very base of methane, ethane, prop-1,2-diene, etc., onto heavier 

molecules like isomers of naphthalene. The thermal decomposition of the indene is initiated by 

the formation of a hydrogen radical following the reaction shown in figure 2.4a. The indenyl ion 

is formed by breaking of the sp
3
 C-H bond in the heterocycle. Depending on the location of 

breakage and hydrogen migration ortho-ethynyl benzyl and Ŭ-ethynyl benzyl radicals can be 

formed.  

Another radical formation could be that of indanyl radical, by addition of a free radical to the 

indene structure at the ́ bond of the 5 membered ring (figure 2.4b). The two radicals, indenyl 

and indanyl, are the competing fragments as the source of product formation. The fragments 

undergo recombination and hydrogen disproportionation to produce much heavier compounds.
12
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There is also the possibility of molecule-induced hydrogen transfer leading to free radical 

formation.
13

 In this type of reaction two neutral molecules (indene) would participate in a 

bimolecular interaction leading to hydrogen disproportionation to produce two free radicals as 

products. 

a) 

 

 

b) 

 

Figure 2.4 Possible initiation steps in the thermal decomposition of indene 
12

 

Pyrolysis of indene was performed at 700 °C, by Badger and Kimber 
14

, by passing indene 

vapour through a silica tube filled with porcelain chips, using nitrogen gas. Similar to the study 

above, gases containing methane and ethane were detected. Several heavier compounds were 

identified in the study, but chrysene was the major product with a 31.7 wt% composition in the 

product. Based on bond dissociation, figure 2.5 shows the three possible primary radicals which 

help in explaining all the suitable reactions.   

 

Figure 2.5 Ring fission of indene at 700 °C giving three possible primary radicals 
14
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Based on the bond dissociation energies, it is harder to break the bond at positions 2,3 and 3,9 in 

comparison to bonds at positions of 1,2 and 1,8. Therefore, dimerization of the first suggested 

primary radical is expected to bind with in duplicates and give chrysene or 1,2-benzanthracene.
14

  

 

Laskin and Lifshitz 
15

 also studied the pyrolysis of pyrrolic compounds resulting from reflected 

shocks in a pressurized single-pulse shock tube over the temperature range of 777-1377 °C. The 

most reactive site on the indole ring is at the C(3) position. In a pyrrole ring, the C(2) and C(5) 

positions were seen as the most reactive sites. The presence of a benzene ring impacted the 

location of the sp
3
 C-H bond location. Isomerization reactions were identified as the main 

reactions as a result of the shock heating. The three primary products leading to isomerization 

products were benzyl cyanide, o- and m-tolunitriles. At a lower temperature of 1127 °C, the 

decomposition products outweighed the isomerization products. Ring opening products like 

C2H2, HCN, HCſC-CN, C4H2, C6H5-CN, CH3-CN, C6H6 were majority of the products formed. 

At higher temperatures, the three primary products form fragments to produce heavier 

compounds.
15

  

Literature was scarce on the pyrolysis of benzofuran and thianaphthene but pyrolysis of furan 

and thiophene was a topic of abundant available research. It is important to note, however, the 

aromatic ring influences the reactivity of the compounds. The reactive positions in heterocyclic 

rings attached to a benzene ring are different from that of the 5-membered ring on its own.    

Pyrolysis on furan behind reflected shocks in a pressurized single-pulse shock tubes over the 

temperature range of 827-1427 °C was performed by Organ and Mackle.
16

 Carbon monoxide 

was the major product formed during the pyrolysis at all temperatures. The primary reactions 

that acted as the initiation steps are shown in figure 2.6. The initiation was postulated to occur by 

the unimolecular C-O ring scission to form a biradical, which further decomposed.  

 

Figure 2.6 Primary reaction in furan pyrolysis at >827 °C 
16,17
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The problems realized in the second reaction suggested, was that through experimentational 

work, acetylene and ketene were not found in equal concentrations. There was an excess 

production of acetylene suggesting that there was secondary reaction which produced acetylene 

or a secondary reaction that caused decomposition of ketene.
16

   

In a continuous flow pyrolysis of thianaphthene at a temperature range of 500-1100 °C under 

atmospheric pressure, polycyclic aromatic hydrocarbons and sulfur-containing polycyclic 

hetarenes were observed. The reactions were temperature dependent. At temperatures lower than 

800 °C, oligomers were main products due to radical recombination reactions. Above 800 °C, 

benzo[b]naphtho[2,1-d]thiophene and [1]benzothieno[2,3-b][1]benzothiophene were obtained as 

products. From figure 2.7, the first step is initiated at a temperature of 600 °C and increases 

above 700 °C. 
18

         

 

Figure 2.7 Reaction mechanism for thianaphthene in continuous flow pyrolysis at temperatures 

between 750-850 °C 
18

   

 

Indane contains a saturated 5-membered ring, with two benzylic CH2 groups.  It is likely that 

thermal cracking would proceed by thermal homolysis to producing a ring-opened product with a 

C1 and C2 alkyl group attached to the benzene ring.  Depending on conditions, it is also possible 
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to facilitate cleavage at different positions.  For example, in the presence of H2, it was found that 

some cleavage between the benzene and the benzylic carbon was possible to produce a C3 alkyl 

group attached to the benzene ring.
19

 

 

2.5 Metal catalysis 

 

Catalysts used for hydrotreating are required to be highly active, have good selectivity to 

targeted hydrogenated products and should be suitable for use in large-scale reactors. Nickel is 

known to be used as a metal in hydrogenation catalysts in a wide variety of industries, because it 

is one of the least expensive of the transition metals and has high hydrogenation activity.
20

 Since 

Ni was employed in the present investigation, a brief overview of Ni catalyzed hydrogenation of 

the target compounds is provided.  

Indene can be hydrogenated to form indane and hexahydroindane. For example, hydrogenation 

was performed in a rotating autoclave in the presence of a nickel-kieselguhr catalyst. At an initial 

hydrogen pressure of 10 MPa and a temperature of 30 °C indene is hydrogenated to form indane. 

Using the same apparatus at a higher temperature of 160 °C, and pressure of 10 MPa, indene 

could be hydrogenated to hexahydroindane.
21

  

Another study hydrogenated indene in the presence of 10 % nickel catalyst, pressurized at 7 MPa 

at a temperature of 100 °C in a batch reactor. Indene was hydrogenated to indane and the major 

side-product in this reaction was of hexahydroindane.
22

   

Indole reduces to indoline on catalytic hydrogenation. While hydrogenating indole to indoline is 

the most straightforward method of forming indoline, it comes with additional challenges:
23

  

a) Indole has a high resonance stability and thus requires higher temperature and pressure 

conditions to react; 

b) Difficulty in achieving high selectivity leading to by-product formation because of over 

hydrogenation and possible polymerization reactions. 

c) Catalyst deactivation from indoline. 
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Initial reports stated that hydrogenation on unprotected indole requires severe conditions, i.e. a 

temperature of 227 °C and pressure of 15 MPa, under the influence of hydrogen gas. The 

reaction achieve a conversion of 82 % using nickel on silica-alumina catalyst.
24

   

To perform the same reaction at relatively less severe conditions, a more expensive catalyst, 

Pt/C, was employed.  The reaction was performed in acidic solution. The selectivity of this 

reactions was 100 % on performing the reaction at ambient temperature with H2 pressure of 3 

MPa.
6
   

In a study performed by Entel and Ruof, 
25

 benzofuran was selected as an oxygen containing 

compound to investigate the hydrogen absorption in bituminous coals. Compared to indene and 

furan, benzofuran was found to have a slower hydrogen absorption rate. In the presence of Raney 

nickel, benzofuran reduces to 2,3-dihydrobenzofuran at a temperature of 120 °C and a pressure 

of 13.8 MPa. The reaction was conducted over a time of 18 h and with a ratio of 1.88 moles of 

H2 per mole of benzofuran. Under over hydrogenation conditions, after the breaking of the 

double bond in the furan ring, the benzene ring saturates and the furan ring ruptures 

hydrogenolytically to produce phenols and alcohols.
25ï27

 

Direct conversion to 2,3-dihydrobenzothiophene by reduction of thianaphthene was found in the 

presence of a sulfided catalyst of palladium on ҫ-alumina. A conversion of 50 % with a high 

selectivity of 91 % is achievable under certain reaction conditions. A study was based on 

understanding the reaction conditions on achieving that conversion rate. To do so, the 

experiment was carried out in a stainless-steel shaken reactor, pressurized with hydrogen. 

Pressure of hydrogen was kept constant at 5 MPa while changing temperature, contact time and 

the concentration of thianaphtene during the reaction. The reaction product constituted of 2,3-

dihydrobenzothiophene and ethylbenzene. Change in concentration had no effect on the 

conversion. On increasing the contact time from 0.25-3.0 h, there was an increase in the yield of 

2,3-dihydrobenzothiophene while keeping temperature, thianaphtene conversion and 

ethylbenzene yield constant. This was found to be a linear relationship. The same trend was also 

observed on increasing temperature. Increase in temperature from 160-200 °C led to an increase 

in desirable product yield. However, the selectivity of 2,3-dihydrobenzothiophene is dependent 

on the degree of conversion of thianaphtene which in any case should be below 60 %.
28
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An important difference between the use of Ni as hydrogenation catalyst for all of the 

compounds except thianaphthene, is that the Ni can be employed as reduced metal.  When 

hydrogenating thianaphthene, release of H2S would lead to sulfidation of the Ni and the Ni is 

then employed as a sulfided hydrogenation catalyst.  A detailed discussion of the differences 

between reduced and sulfided Ni catalysts can be found in the work by Pines.
29
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CHAPTER 3 : REACTIONS OF AROMATIC COMPOUNDS CONTAINING 5 -

MEMBERED RINGS WITHS ACIDS  

 

Abstract 

Acids are present in the oilsands upgrading processes, starting from the presence of naphthenic 

acid in composition of bitumen to use of solid acid catalysts in refining processes. The objective 

of this chapter was to study the impact of some of the common acids on selected binuclear 

aromatic compounds with 5-membered rings under mild conditions.  Reactions were performed 

by heating a dilution 2 wt% acid and 10 wt% model compounds in toluene, to 70 and 120 °C. 

The organic layer of the solution was then analyzed further. On studying the results, it was found 

that all compounds oligomerized depending on the selection of acids. Compounds like indene, 

indole and benzofuran further went through physiochemical changes. Indene not only 

polymerized to form heavier compounds but also showed formation of ring opening structures. 

Indole and benzofuran produced solids, as byproducts of the reactions.  

 

 

 

 

 

 

 



 

19 
 

 

 

 

 

 

Keywords: Acids, oligomerization.  

3.1 Introduction  

 

Acids are present in various steps during upgrading and refining of oilsands. To start off, 

bitumen contains 1-2 % of naphthenic acids which could undergo hydrolysis in the presence of 

calcium salts to form hydrochloric acid.
1
 Like hydrochloric acid, some acids appear as a result of 

reactions while some other acids are used as catalysts. For example, sulfuric acid is used as a 

catalyst in alkylation units where excess isobutane is reacted with alkenes to produce alkanes.
1
 

Similarly, solid catalysts impregnated with phosphoric acid are used in alkylation desulfurization 

of fluid catalytic cracking of gasoline.
2
  

Hydrogen disproportion reactions are considered key intermediate steps in free radical addition 

reactions; however, hydrogen can also be transferred by Bronsted acids as H
+
. Given the 

deleterious behavior of binuclear aromatics attached to 5-membered compounds, the aim was to 

understand the fundamental chemistry during the presence of protons (H
+
) from the acids. The 

acids selected for this study were HCl, H2SO4, H3PO4 and Amberlyst® 15.  

The objective of this chapter is focused on studying the possible implications that different acids 

could have on reacting with the alicyclic and heterocyclic compounds attached to aromatic rings 

at lower temperatures.  

 

3.2 Experimental 
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3.2.1 Materials 

 

All the chemicals used in the reactions are listed in table 3.1. The aromatic compounds with a 

five membered ring were reacted in the presence of acids. The use of a variation of acids was 

based on different acidic strengths, phases and availability of hydrogen atoms. 

Amberyst® 15 was used as an acid resin. It is strongly acidic macroporous chain of styrene-

divinylbenzene, with a sulfonic acid functional group. 

Deionized water was used for the water washes during the experimental runs. The deionized 

water was obtained from a Millipore water purification system with a conductivity of less than 3 

ɛS/cm at 25 ÁC. 

Table 3.1 Materials employed in this study  

Compound Formula CASRN 
a
 Mass fraction 

purity 
b
 

Supplier 

Chemicals     

Indene C9H8 95-13-6 0.90 Sigma-Aldrich 

Indole C8H7N 120-72-9 0.99 Sigma-Aldrich 

Benzofuran C8H6O 271-89-6 0.99 Sigma-Aldrich 

Thianaphthene C8H6S 95-15-8 0.95
 

Sigma-Aldrich 

Tetrahydrothiophene C4H8S 110-01-0 0.99 Sigma-Aldrich 

Hydrochloric acid 1N solution HCl 7647-01-0
 

            -
c
 Fisher Scientific 

Sulfuric acid solution 1M H2SO4 7664-93-9 -
c
 Fluka 

Phosphoric acid H3PO4 7664-38-2 0.98 Sigma-Aldrich 

Amberlyst® 15 hydrogen form - 39389-20-3 -
c
 Sigma-Aldrich 

Methanol CH3OH 67-56-1 0.995 Fisher Scientific 

Sodium carbonate anhydrous Na2CO3 497-19-8 0.995 Fisher Scientific 

Sodium hydroxide solution 1M NaOH 1310-73-2 -
c
 Fisher Scientific 

Toluene C7H8 108-88-3 0.995 Fisher Scientific  

     

Cylinder gases     

Nitrogen N2 7727-37-9 0.99999
d 

Praxair 
 

a
 CASRN = Chemical Abstracts Services Registry Number 

b
 This is the purity of the material guaranteed by the supplier; material was not further purified 

c
 Mass fraction purity not specified 

d 
Mole fraction purity 
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3.2.2 Equipment and procedure 

 

Reactions in the presence of acids were performed in 250 mL three-neck round bottom flasks. 

The solution was prepared using toluene as the solvent with 10 % model compound and 2 % 

acid. Since the acid was insoluble in the organic layer, the mixture comprised of two liquid 

phases. The round bottom flask was placed in metal blocks, to ensure uniform distribution of 

heat over the entire solution. A magnetic stir bar was added to the flask for constant mixing of 

the solution while heating. The metal block was left on the heating plate connected to the 

condenser, which was circulating water at a temperature of 3 °C, for 1 h. The reactant was heated 

at two temperature ranges of 70 °C and 120 °C with magnetic stirrer rotating at 200 rpm, after 

purging the system with nitrogen gas for 5 min at a flow rate of 200 mL/min. After leaving the 

reaction on for 1 h, the flask was left to cool for 30 min.  

If the acids are considered catalysts, both, homogenous and heterogeneous catalysts where used. 

Homogenous reactions involved reactions with hydrochloric acid, sulfuric acid and phosphoric 

acid while the heterogeneous reactions were performed with Amberlyst® 15.  

 

Figure 3.1 Experimental setup 

 

Heating plate 
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In the case of homogenous catalysis, after the reaction, the solution was further transferred to a 

500 mL separation funnel for liquid-liquid extraction. 10 mL of sodium hydroxide solution was 

added to neutralize the acid. The product was washed three times using 100 mL of water. Since 

water is a polar solvent in comparison with the non-polar nature of toluene, water was used to 

dissolve all the acid from the product, thereby separating it from the organic layer. Sodium 

carbonate was added after the last wash with water to remove any water molecules present in the 

organic layer. The product was collected in a vial and weighed on a Mettler Toledo balance 

XP1203S, to ensure there was not a significant loss of product. The scale had a readability limit 

of 1 mg with a maximum capacity of 1210 g.  It was observed that some products had an 

accumulation of solids at the bottom of the flask that were insoluble in toluene and water. The 

solids were dissolved in methanol and collected in a vial to be analyzed. Using the rotovap 

(Heizbad Hei-VAP from Heidolph), toluene was separated from the product under 7.7 kPa of 

pressure at 44 °C.  

On the other hand, heterogeneous catalysis did not require water washing. The liquid product 

was transferred to a vial using 0.2 µm membrane filter attached to a syringe to separate the solid 

catalyst from the organic liquid. 

Control experiments were run for each of the model compounds. This was done to have a 

reference point for comparison with any changes that might arise because of the reactions with 

acids. For control runs, the reactions were run with a solution of 10 % model compound with 

toluene, without the presence of any acid. The same set up was used as above and the solution 

was heated to 120 °C. After the reaction had cooled down, toluene was separated from the 

mixture using the rotovap and the samples were further analyzed. All experiments were 

performed once. 

 

3.2.3 Analyses 

 

The gas chromatograph with mass spectrometer (GC-MS) and Zeiss StereoMicroscope were 

used for analyzing samples in this chapter. The working principle behind these analyses can be 

found in Section 5.2.3 of Chapter 5.  
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Thermogravimetric Analysis (TGA) connected to ABB MB 3000 FTIR (TGA-FTIR) was used. 

Any gases released from the sample in the TGA during the pyrolysis process were carried over to 

the FTIR through a PIKE heated gas flow cell via a line that was heated and kept at a constant 

temperature of 200 °C. Amberlyst® 15 was placed in a 70 L alumina crucible and weighed using 

a MettlerīToledo dual range analytical balance (Model XS105) with a readability of 10 ɛg, in 

the range of 0ī41 g and a readability of 100 ɛg for the remaining range, until 120 g. It was 

heated, starting at 40 °C to 600 °C in the presence of a constant flow of 100 mL/min of nitrogen 

gas at increments of 10 °C/min. A spectrum was captured using the FTIR at intervals of 10 °C at 

a resolution of 8 cm
-1

 and an average of 20 scans.  

 

 

 

3.3 Results  

 

The results are arranged based on the effects of the acids on each model compound. Model 

compounds reacted differently in the presence of different acids. However, the results from the 

GC coupled with mass spectroscopy were identical for the two temperature selections of 70 C 

and 120 C for each set of reactions. The nature of the products formed at 70 and 120 °C was 

similar, but the reaction rate at higher temperature was higher. All reactions were compared with 

the control samples for the respective model compound. On analyzing the pure compounds with 

the help of the GC-MS and comparing with the control samples, the results obtained were the 

same. 

 

3.3.1 Quantifying water content in Amberlyst® 15 

 

In some of the results obtained from the GC-MS, there were compounds containing oxygen. 

However, the reactions were performed under inert atmosphere. There were no other sources of 
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oxygen present during the reaction. Therefore, to understand whether Amberlyst® 15 could have 

been a potential source of oxygen present during the reactions, the TGA was used. The TGA- 

FTIR was able to provide more accurate figures on the amount of water present in the solid 

resins.  

 

Figure 3.2 Heat curve obtained using the TGA (red) overlapped with the mass loss (black) of 

Amberlyst® 15 with respect to temperature under nitrogen. 

Figure 3.2 shows the TGA curve obtained. There is a considerable mass loss starting around 275 

°C, declining at 450 °C. The drop in mass during the degradation of the solid resins has one 

major stage of mass loss, which can be directly correlated to the decomposition of sulfonic acid 

groups to release sulfur dioxide (SO2) since no other significant changes in peaks were observed 

at any other wavenumber.  

Figure 3.3 shows the highest release of SO2 and water at a temperature of 300 °C. The expected 

sulfur dioxide peak at 1360 cm
-1

 was distinctly visible amongst all others. The water peak was 

expected to be observed close to the wavenumber of 1650 cm
-1

.  
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Figure 3.3 Absorbance of sulfur dioxide and water at 1360 and 1650 cm

-1
 respectively, during 

the degradation of Amberlyst® 15 as a function of temperature under nitrogen 

 

From figure 3.2 and 3.3, it can be observed that there are three different events taking place. The 

first event, between the temperature range of 100-200 °C, is the region of adsorbance of water on 

the acid resin. Very small amount of water is seen to decompose within that range. The second 

peak (between 200-350 °C) takes place at a higher temperature due to release of water during the 

decomposition of the sulfonic group, as a byproduct. Therefore, only the first event was taken 

into consideration for the possible presence of water initially in Amberlyst® 15. From figure 3.2, 

the mass loss in the temperature range of 100-200 °C was calculated to be 0.6 mg (2.2 wt%) 

which is in close approximation with the specifications provided by the manufacturer i.e. Ò1.60 

% water content.  

 

3.3.2 Results for indene 

 

3.3.2.1 Gas chromatography for reactions with indene 
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A comparison of the chromatograms obtained of the reagents and the products after reaction with 

HCl and H2SO4 indicated that no reactions took place. However, in the reaction of indene with 

Amberlyst® 15 and H3PO4, sharp peaks were observed around the retention time region of 14 

and 21 min, and several other smaller peaks were found after the 9 min mark. Figure 3.4 shows 

the peaks for reaction with all acids. 
 

a) 

 

 

b) 



 

27 
 

 
Figure 3.4 Chromatograms obtained from the reactions of indene with acids where a) shows the 

retention time from 2.5- 15 minutes while b) goes from 9.5 to 28 minutes 

 

Bumps in figure 3.4 a) at a retention time of 4.5 min which are significantly bigger in the cases 

of HCl and H2SO4 were due to acid decomposition. It is possible that the product samples were 

contaminated with acids even after the water washes.  

 

The peaks between the retention time of 2.5 and 4 min overlap with the control experiment. 

These peaks were found to be present in the indene provided by the supplier when the compound 

was analyzed using the GC-MS. The peaks were further labelled and identified for the control 

sample for better understanding (figure 3.5 and table 3.2). Majority of the peaks were present in 

very low concentrations and their mass spectrums were added in Appendix A. Peaks obtained 

from the reaction of indene with Amberlyst® 15 and H3PO4 at longer retention times are also 

further labelled and identified in figure 3.5 and table 3.2.  
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a)

 

b) 
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c)

 

*N- Bleeding in the column. 

Figure 3.5 GC-MS results for the a) indene control sample and reaction of indene with b) H3PO4 

and c) Amberlyst® 15 

 

Table 3.2 Products from reactions of indene with acids 

Peak 
Retention 

time (min) 
Compound name Structure 

1
a 

2.75 2-Propenyl benzene 

 

2
a 

2.85 Indane 

 

3
a 
- 9

a 
3.03 - 4.10 -

b
 - 
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10
c 

10.26, 10.45 
Isomers of 1-methyl-2-[(E)-2-(2-

methylphenyl)ethenyl]benzene 

 

11
c 

13.31 Mass spectrum shown below 

(figure 3.7) 

Unidentified 

12
c 

13.60 
1,1'-(1,5-hexadiene-1,6-

diyl)bisbenzene 

 

13
c 

13.96, 14.15, 

15.82, 21.25, 

21.36, 21.41, 

21.59, 22.59 

Isomers of 1-(1- 

indanyliden)indan 

 

14
c 

13.31 
Mass spectrum shown below 

(figure 3.7)
 

Unidentified 

15
c 

13.95, 14.20 

Isomers of 1-(1- 

indanyliden)indan 

 

a Peak present in the pure compound acquired from the supplier as an existing impurity or 

unidentified compound. 

b Mass spectrum for the respective retention time is shown in Appendix A. 

c These compounds should be seen only as being indicative of the nature of the products. The 

true 

identities of these compounds have not been confirmed. 

 

Several peaks were observed after the retention time of 9 min. On further speculation the 

majority of the peaks, in case of reactions with Amberlyst® 15, pointed to the formation of 1-(1-

Indanyliden)indan. Meanwhile, the majority of the peaks for reactions with H3PO4 were due to 

the formation of 1-methyl-2-[(E)-2-(2-methylphenyl)ethenyl]benzene. A plausible hypothesis 

was that peaks at different retention times imply that various isomers of the two compounds were 

formed for the products of each of the acids in the injected samples. 
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Figure 3.6 Chemical structure for 1-methyl-2-[(E)-2-(2-methylphenyl)ethenyl]benzene and 1-(1- 

indanyliden)indan 

 

Quantitative comparison is not a viable option using the GC-MS, however, on comparing the 

intensities of the peaks for the product of the reaction between indene and Amberlsyt® 15, the 

peak for the polymer of 1-(1-indanyliden)indan was comparably larger than the indene peak. 1-

(1-indanyliden)indan produced the largest peak at a retention time of 13.9 min which was 6.8 

times higher than the indene peak. Therefore, a significant amount of indene had taken part in the 

reaction over Amberlyst® 15.  

The fragment ion at 18 m/z is present in all compounds because of the presence of 0.03 % in 

toluene provided by the supplier, that was used as a solvent and for sample preparation in the 

GC-MS.  

The unidentified peaks 11 and 14 had the same mass spectrum, as shown in figure 3.7. From the 

mass spectrum, the base molecular ion in the spectrum is at 116 m/z. Molecular ion of 91 m/z is 
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a fragment related to toluene and might also suggest that the presence of an alkyl benzene group. 

Therefore, the compound does contain benzene rings. The molecular weight of the compound is 

expected to be approximately 232 g/mol from the spectrum. Given the neighborhood that the 

peak lies in, the compound is expected to contain 17 carbons. The formula that can be predicted 

by reading the spectrum is C17H28. 

    

Figure 3.7 Mass spectrum for peak 11 and 14 at a retention time of 13.31 min for reactions of 

indene with Amberlyst® 15 and H3PO4 

 

The unlabeled compounds between retention times of 14-21 minutes are peaks representative of 

bleeding in the column.  

 

3.3.2.2 Physical changes observable in reaction of indene with acids 

 

Physical changes in the products obtained after the reaction of indene with Amberlyst® 15 were 

distinct. The liquid was more viscous in comparison and sticky in nature. The sticky liquid 

formed was observed to be no longer soluble in toluene. The change in liquid properties is 

directly related to the formation of the dimer, 1-(1-indanyliden)indan and potentially heavier 

oligomers.  
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These changes were not as striking in the products from the phosphoric acid due to relatively low 

amount of dimer formation with different chemical structure and properties.  

 

3.3.3 Results for indole 

 

3.3.3.1 Photoreactions in indole on exposure to light and atmospheric conditions 

 

While performing the analysis for the products from reaction of indole with acids, it was 

observed that on exposure to atmospheric conditions the liquid would quickly start solidifying. 

To further understand this phenomenon, a saturated solution of indole dissolved in toluene was 

prepared. The solution was then observed under the Zeiss StereoMicroscope with respect to time. 

Figure 3.8 shows the changes that the solution underwent; each frame was taken after an interval 

of 30 seconds. Indole is light sensitive; it is susceptible to photoreactions in the presence of a 

solvent which can be seen from figure 3.8. On exposure to light and atmospheric conditions, 

physical changes are evident which advocate further investigation towards the chemical changes. 
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        t=180s                                        t=210s                                        t=240s 

 
        t=270s                                        t=300s                                        t=330s 

 
        t=360s                                        t=390s                                        t=420s 

 
        t=450s                                        t=480s                                        t=510s 

Figure 3.8 Crystallization following on reaction from a saturated solution of indole seen from 

Zeiss StereoMicroscope over a period of time 
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