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Abstract—Modulated materials are artificially structured 

materials with effective properties that vary periodically in time 

in response to an external stimulus. The time-dependent elastic 

properties of a modulated material enable them to exhibit 

vibration transmission characteristics that are not typical of 

regular materials. Modulated materials have a demonstrated 

ability to restrict the transmission of waves to only one 

direction. Thus, the transmission properties become dependent 

on the direction of the propagating waves, in contrast with the 

reciprocity principle in linear time-invariant materials. In this 

work, we study the reciprocity of vibration transmission in a 

discrete model of a modulated material with two degrees of 

freedom. We highlight the role of the difference in modulation 

phases of the two units on controlling the reciprocity bias in the 

linear operating regime. We then investigate and discuss the 

influence of nonlinear elasticity on the transmission reciprocity, 

highlighting the significant role played by the type of 

nonlinearity. This work facilitates further parametric studies on 

the combined effects of modulation and nonlinearity on 

reciprocity in modulated materials.  

Keywords-reciprocity; metamaterials; nonlinear dynamics; 

temporal-spatial modulation 

I.  INTRODUCTION 

Propagation of mechanical waves in elastic materials has 
been studied for about three centuries, dating back to Sir 
Newton’s study of sound propagation in air [1]. For a regular 
material with constant density and Young’s modulus, wave 
propagation characteristics between two arbitrary points remain 
invariant after interchanging the locations of the vibration source 
and receiver. This symmetry property, known as the principle of 
reciprocity, remains valid for propagation of small-amplitude 
waves in materials with properties that do not change with time; 
i.e. linear time-invariant systems. Within this context, it is not 
possible for waves to have different transmission characteristics 
(e.g. changes in amplitude and phase) depending on the direction 
of travel between two points. Such asymmetric wave 
transmission can be utilized for development of novel vibration 
mitigation devices and energy harvesting mechanisms, for 
example. Accordingly, there the physics and engineering of 

nonreciprocal propagation of elastic waves has recently drawn 
the attention of many researchers [2].  

Nonreciprocal wave propagation has recently been 
investigated in the context of periodic materials, both for discrete 
and continuous models. Periodic materials provide an amenable 
context for this study because their wave propagation 
characteristics are dictated by the properties of their repeating 
sub-structure, also known as the unit cell. Nonreciprocal and 
directional propagation was analyzed in a discrete infinite-long 
modulated metamaterial, in which a wave-like temporal-spatial 
modulation was added to stiffness coefficient of the resonant 
spring in every unit cell [3]. Within the one-dimensional 
structure, directional scattered waves are generated because of 
the modulation. The scattered waves are coupled to the incident 
wave at certain frequencies, resulting in nonreciprocal 
propagation. For uniform continuous media, researchers found 
the appearance of nonreciprocity due to temporal-spatial 
modulation in Young’s modulus of the media [4-6], as well as 
both Young’s modulus and density (two-phase modulation) [7]. 
A similar nonreciprocal wave propagation phenomenon can be 
realized in elastic metasurfaces by means of temporal-spatial 
modulation of resonant springs at the surface [8,9]. 

In experimental demonstration of nonreciprocity due to 
temporal-spatial modulations, periodic systems naturally 
comprise only a few units. For example, the temporal-spatial 
modulations have been realized by means of magnetic forces 
[10, 11]. The spatial modulation, in particular, corresponds to a 
constant phase shift between the modulated elasticity of adjacent 
units. This spatial phase shift is as essential in breaking 
reciprocity as the temporal modulation. To investigate this in 
more detail, we focus in this work on the special case of a system 
with two degrees of freedom (2DoF). Our goal is to 
systematically study the influence of system parameters on the 
reciprocity of vibration transmission in this system, highlighting 
the significance of modulation phase shift and nonlinear 
elasticity. This will be the first building block for investigating 
the combined effects of modulation and nonlinearity in 
modulated materials.  

In Section 2, the problem formulation and methodology are 
introduced. In Section 3, the effects of system parameters on 
nonreciprocity are presented in the linear operating range. The 
influence of nonlinear elasticity on nonreciprocity is described 
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in Section 4. We conclude in Section 5 by summarizing our 
findings and pointing out directions for future work.  

II. ANALYSIS OF A 2DOF SYSTEM WITH MODULATION 

We consider a 2DoF system composed of two identical 
masses, viscous dampers, coupling springs and weakly 
modulated grounding springs with nonlinearity. On each of the 
two masses, there is an external force applied. The two external 
forces have the same frequency. See Fig. 1.  

 

Figure 1. Scheme of the 2DoF system. Each grounding spring has three 

components: a constant term, a time-dependent term and a nonlinear 

(amplitude-dependent) term. 

A. Formulation of the Problem 

The equations of motion for the system in Fig. 1 are:  

 
{
𝑚�̈� + 𝑐�̇� + (2𝑘𝑐 + 𝑘1)𝑢 − 𝑘𝑐𝑣 = 𝐹1 cos(𝜔𝑓𝑡)

𝑚�̈� + 𝑐�̇� + (2𝑘𝑐 + 𝑘1
′ )𝑣 − 𝑘𝑐𝑢 = 𝐹2 cos(𝜔𝑓𝑡)

, (1) 

where 𝑘1 = 𝑘𝐿 + 𝑘𝑚 cos(𝜔𝑚𝑡) + 𝑘𝑁𝑢
2  and 𝑘1

′ = 𝑘𝐿 +
𝑘𝑚 cos(𝜔𝑚𝑡 − 𝜑) + 𝑘𝑁𝑣

2 . The phase shift 𝜑  represents a 

spatial modulation in the grounding stiffness of each mass. We 

introduce the following parameters to non-dimensionalize the 

governing equations: 𝑡 = 𝜏 𝜔0⁄ , 𝜔0
2 = (2𝑘𝑐 + 𝑘𝐿) 𝑚⁄ , 𝜔𝑚 =

Ω𝑚𝜔0 , 𝜔𝑓 = Ω𝑓𝜔0 , 𝑐 = 2𝜁𝑚𝜔0 , 𝑘𝑐 = 𝐾𝑐(2𝑘𝑐 + 𝑘𝐿) , 𝑘𝑚 =

𝐾𝑚(2𝑘𝑐 + 𝑘𝐿), 𝑘𝑁 = 𝐾𝑁(2𝑘𝑐 + 𝑘𝐿) 𝑎
2⁄ , 𝐹1 = 𝑎(2𝑘𝑐 + 𝑘𝐿)𝑃1 , 

𝐹2 = 𝑎(2𝑘𝑐 + 𝑘𝐿)𝑃2 , 𝑢(𝑡) = 𝑎𝑥1(𝜏)  and 𝑣(𝑡) = 𝑎𝑥2(𝜏) , 

where 𝑎 is a representative length, The governing equations (1) 

are therefore rewritten as:  

 

{
  
 

  
 
𝑑2

𝑑𝜏2
𝑥1 + 2𝜁

𝑑

𝑑𝜏
𝑥1 + [1 + 𝐾𝑚 cos(Ω𝑚𝜏)]𝑥1

+𝐾𝑁𝑥1
3 − 𝐾𝑐𝑥2 = 𝑃1 cos(Ω𝑓𝜏) ,

𝑑2

𝑑𝜏2
𝑥2 + 2𝜁

𝑑

𝑑𝜏
𝑥2 + [1 + 𝐾𝑚 cos(Ω𝑚𝜏 − 𝜑)]𝑥1

+𝐾𝑁𝑥2
3 − 𝐾𝑐𝑥1 = 𝑃2 cos(Ω𝑓𝜏) .

 (2) 

Our focus is on investigating the steady-state response of the 
system. In order to distinguish the two directions of wave 
propagation (left to right versus right to left), two configurations 
are defined: (i) the forward configuration with 𝑃1 = 𝑃, 𝑃2 = 0 
where the output is the steady-state response of the second mass 
𝑥2
𝐹(𝜏) ; (ii) the backward configuration with 𝑃1 = 0, 𝑃2 = 𝑃 

where the output is the steady-state response of the first mass 

𝑥1
𝐵(𝜏) . If and only if 𝑥2

𝐹(𝜏) = 𝑥1
𝐵(𝜏) , vibration transmission 

through the system is reciprocal. The reciprocity bias 𝑅  is 
introduced to quantify the degree of nonreciprocity between the 
outputs of forward and backward configurations:  

 

𝑅 = lim
𝑇→∞

√
1

𝑇
∫ [𝑥2

𝐹(𝜏) − 𝑥1
𝐵(𝜏)]2𝑑𝜏

𝑇

0

. (3) 

If 𝑅 = 0, the vibration transmission is reciprocal; otherwise, the 
transmission is nonreciprocal [12]. Output norms 𝑁𝐹  and 𝑁𝐵 
are introduced to represent the response in the forward and 
backward configurations respectively:  

 

𝑁𝐹 = lim
𝑇→∞

√
1

𝑇
∫ [𝑥2

𝐹(𝜏)]2𝑑𝜏
𝑇

0

, 

 𝑁𝐵 = lim
𝑇→∞

√
1

𝑇
∫ [𝑥1

𝐵(𝜏)]2𝑑𝜏
𝑇

0

. 

(4) 

In direct numerical simulations, the norms in (3) & (4) are 
evaluated after the steady state is reached. 

B. Solution Methodology 

Approximating the solutions of (2) is the key strategy to 
estimate the displacement output in the steady-state. The steady-
state displacement output of the 2DoF system in different 
configurations is expressed by the expansion in Fourier series:  

 
𝑥2
𝐹(𝜏) = ∑ [(

𝜉𝑛
2
𝑒𝑖𝑛Ω𝑚𝜏) 𝑒𝑖Ω𝑓𝜏 + 𝑐𝑐. ]

∞

𝑛=−∞

, 

𝑥1
𝐵(𝜏) = ∑ [(

�̂�𝑛
2
𝑒𝑖𝑛Ω𝑚𝜏) 𝑒𝑖Ω𝑓𝜏 + 𝑐𝑐. ]

∞

𝑛=−∞

, 

(5) 

where 𝑐𝑐. represents the corresponding complex conjugate, 𝜉𝑛 
and �̂�𝑛  are complex-valued amplitudes for a given Ω𝑓 . The 

representation of the displacement in (5) points out an important 
characteristic of the steady-state response of the systems subject 
to simultaneous external and parametric excitation: the response 
contains spectral components not only at the frequency of the 
external force, Ω𝑓 , but also at Ω𝑓 ± Ω𝑚, Ω𝑓 ± 2Ω𝑚 and so on. 

To find the amplitudes, 𝜉𝑛 and �̂�𝑛, we substitute (5) into (2) and 
integrate the result over one modulation period. This procedure 
yields a system of nonlinear algebraic equations for the 

amplitudes 𝜉𝑛  and �̂�𝑛 , which can be solved numerically. We 
refer to this procedure as the averaging method.  

The transient response is computed by using the Runge-
Kutta method [13]. We use the results from direct numerical 
integration of the governing equations to validate the predictions 
made by the averaging method.  

Fig. 2 shows the output norms calculated for (2) for the 
following parameters: Ω𝑚 = 0.15, 𝐾𝑚 = 0.1, 𝐾𝑐 = 0.44, 𝜁 =



   

0.02 and 𝑃 = 0.1. There is very good agreement between the 
analytical and numerical prediction of the steady-state response. 
Thus, we will use the analytical approach in the remainder of this 
work. Unless otherwise stated, these parameters are used in 
examples in other sections as well.  

 

 

Figure 2. Comparison between the results of averaging method and numerical 

simulation. (a): forward configuration with 𝐾𝑁 = −0.05 , 𝜑 = 0.5𝜋 ; (b): 

backward configuration with 𝐾𝑁 = 0.1, 𝜑 = 0.5𝜋. 

III. NONRECIPROCAL VIBRATION TRANSMISSION IN LINEAR 

MODULATED SYSTEMS 

We first investigate nonreciprocity in the linear modulated 
system; i.e. 𝐾𝑛 = 0 in (2). This will establish the importance of 
linear system parameters on breaking reciprocity. In this work, 
we only discuss the case of weakly modulated systems (𝐾𝑚 ≤
0.1 ). The methodology presented in Section II.B, however, 
remains valid even for strong modulations.  

A. Effects of 𝐾𝑐 and 𝛺𝑚 in the Modulated Linear Systems 

We start by considering the system with temporal 
modulations only; i.e. 𝜑 = 0 . In this case, the parameter 𝐾𝑐 
determines the two natural frequencies (dimensionless) of an 

unmodulated linear system: √1 ± 𝐾𝑐 , which are approximately 

the primary resonant frequencies of a weakly modulated linear 
system (indicated by the green solid arrows in Fig. 3). The 
secondary resonant frequencies of a weakly modulated linear 

system occur near frequencies √1 ± 𝐾𝑐 ± Ω𝑚 (indicated by the 

green hollow arrows in Fig. 3), with each pair corresponding to 
one of the natural frequencies of the unmodulated system. Due 
to the mirror-symmetry of the system, response is reciprocal. 

 

 

Figure 3. Effect of 𝐾𝑐 and Ω𝑚 on the response of the system with temporal 

modulation (𝜑 = 0). (a) and (c) are plots of the output norms for forward and 

backward configurations with respect to forcing frequency. (b) and (d) are 
plots of reciprocity bias of the systems represent by (a) and (c) respectively. 

The green solid arrows indicate primary resonances, the green hollow arrows 

indicate secondary resonances. In both 2DoF systems: 𝐾𝑁 = 0, (a) and (b): 

Ω𝑚 = 0.15, (c) and (d): Ω𝑚 = 0.05. In (b) and (d), reciprocity bias is equal 

to zero over the frequency range, responses of both systems are reciprocal. 

B. Effect of 𝜑 in the Modulated Linear System 

When 𝜑 ≠ 0 , the modulated system is no longer mirror-
symmetric. Thus, the transmission is no longer reciprocal. Fig. 4 
shows the output norms and reciprocity bias of the system at two 
different values of 𝜑. As expected, the degree of nonreciprocity 
can be controlled by 𝜑, the difference in the modulation phases 
of the two degrees of freedom.  

Notice that the output norms in panels (a) and (e) are very 
similar, but the corresponding reciprocity bias in panels (b) and 
(f) remain non-zero. This implies that a significant contribution 
to non-reciprocity is possibly due to the phase difference 
between the response in the forward and backward 
configurations. It can be verified in panels (d) and (h). A similar 
phenomenon may occur when 𝐾𝑚 = 0 and 𝐾𝑛 ≠ 0 [12]. 



   

 

 

 

 

Figure 4. Effect of 𝜑 on reciprocity for the linear system, 𝐾𝑁 = 0. Panels (a)-

(d): 𝜑 = 0.5𝜋 , (e)-(h): 𝜑 = −0.25𝜋 . Panels (c), (d), (g) and (h): output 

displacement at different values of forcing frequency, Ω𝑓, (c) and (g) Ω𝑓 =

0.748, (d) and (h) Ω𝑓 = 1.05. 𝑇𝑓 = 2𝜋 Ω𝑓⁄ . 

IV. NONRECIPROCAL VIBRATION TRANSMISSION IN 

NONLINEAR MODULATED SYSTEMS 

Although the operation of mechanical systems is 
traditionally based on their linear response, it is sometimes 
beneficial or necessary to consider the influence of nonlinear 
forces, particularly in experiments [10]. Therefore, we 
investigate the influence of nonlinear elasticity on the 
nonreciprocity of vibration transmission in our 2DoF system.  

We consider both the hardening ( 𝐾𝑁 = 0.1 > 0 ) and 
softening (𝐾𝑁 = −0.05 < 0) types of nonlinearity. Fig. 5 shows 
the output norms of the nonlinear system as a function of forcing 
amplitude, 𝑃 . Given that the coupling force is linear, the 
influence of nonlinearity is larger on the response near the in-
phase modes (near 0.75). The steady-state response of (2) with 
𝐾𝑁 ∈ {−0.05, 0.1} and 𝑃 ∈ {0.06, 0.08, 0.1} is calculated using 
the averaging method, and the output norms for forward and 
backward configurations are shown in Fig. 5. As expected, the 
primary and secondary resonant frequencies are all amplitude-
dependent.  

 

 



   

 

 

Figure 5. Steady-state responses of 2DoF nonlinear systems in forward and 

backward configurations with different excitations, (a)-(c): 𝐾𝑁 = 0.1, 𝜑 =
0.5𝜋 ;(d)-(f):  𝐾𝑁 = −0.05, 𝜑 = 0.5𝜋 . Panels (b), (c), (e) and (f): output 

displacement at different values of forcing frequency, Ω𝑓, (b) Ω𝑓 = 0.8, (c) 

and (f) Ω𝑓 = 1.05, (e) Ω𝑓 = 0.7. 

We use the normalized reciprocity bias, 𝑅 𝑃⁄ , to study the 
effect of the forcing amplitude on the degree of nonreciprocity. 
For the linear system, the degree of nonreciprocity does not 
depend on the amplitude of motion; this can be inferred by the 
three overlapping curves in Fig. 6(a). For the nonlinear system, 
panels (b) and (c) in Fig. 6 show that the degree of nonreciprocity 
depends on the forcing amplitude, as expected. Interestingly, 
increasing the forcing amplitude increases the normalized 
reciprocity bias for the system with hardening nonlinearity, 
while it has the opposite effect in the system with softening 
nonlinearity. Note that the most significant effect of nonlinearity 
is observed near the primary in-phase resonance peak in both 
cases.  

 

 

 

Figure 6. Plots of normalized reciprocity bias, 𝑅 𝑃⁄ . (a): a 2DoF linear 

modulated system, 𝐾𝑁 = 0 and 𝜑 = 0.5𝜋. (b): a 2DoF nonlinear modulated 

system, 𝐾𝑁 = 0.1 and 𝜑 = 0.5𝜋. (c): a 2DoF nonlinear modulated system, 

𝐾𝑁 = −0.05 and 𝜑 = 0.5𝜋. 

V. CONCLUSION 

We studied the reciprocity of vibration transmission in a 
discrete model of modulated materials. Temporal-spatial 
modulation in the stiffness coefficient is the key factor in 
breaking the reciprocity invariance in coupled systems, within 
which the phase shift between two adjacent modulations 
presents the modulation in space. Nonreciprocity in coupled 
modulated systems can be quantified using the reciprocity bias. 
We observed that having equal output norms for the forward and 



   

backward configurations is not a sufficient test for reciprocity. 
We presented scenarios in which it is the phase difference that 
plays a major role in increasing the reciprocity bias. In weakly 
modulated linear systems, the locus of the primary and 
secondary resonance can be adjusted by manipulating the 
coupling stiffness and frequency of modulation. We emphasized 
the role of the difference in modulation phases of the two units 
on controlling the reciprocity bias in the linear operating regime. 
We then reported the influence of cubic (on-site) nonlinearity on 
the reciprocity bias and highlighted the significance of the type 
of nonlinearity on how reciprocity depends on the forcing 
amplitude.  

The analysis of coupled modulated systems provides a new 
perspective on nonreciprocal wave propagation in nonlinear 
materials. The methodology described in this work facilitates 
further parametric studies in this context. 
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