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Abstract 

Contemporary climate change has become rapid, and its impacts affect forest growth and 

productivity directly and indirectly through changes in temperature, precipitation, carbon 

dioxide, and other factors. Forest ecosystem plays an essential role in carbon exchange 

between the atmosphere and terrestrial. Green plants absorb carbon from the atmosphere 

through photosynthesis, whereas degradation and deforestation release carbon. Given 

appropriate and efficient management, forest can be a beneficial asset in climate mitigation. 

The fraction of photosynthetically active radiation (fPAR) is a fundamental term to 

quantifying light used by plants in photosynthesis. This term has been mainly derived from 

satellite data, but some inherent issues of satellite data limit the quality of long-term fPAR 

estimation. Advances in technology and the emergence of wireless sensor networks have 

allowed for long-term, continuous, high spatial and temporal fPAR measurements. In Chapter 

1, the general methods of estimating fPAR are reviewed, and the importance of accurate 

fPAR estimation and factors that can cause measurement bias are explored. Needs for 

long-term fPAR study and its role in forest dynamics are proposed, and the research questions 

and hypotheses of this thesis are then posed. 

In Chapter 2, forest structure metrics, such as leaf area index (LAI), were extracted from the 

3D point cloud developed by terrestrial laser scanning (TLS). In situ wireless sensor networks 

(WSNs) were used to collect continuous photosynthetically active radiation (PAR) in the 

mixed coniferous Graswang forest site and were calculated into fPAR. The spatial 

distribution of fPAR from 2016 to 2019 was compared and analyzed using Kriging 



iii 
 

interpolation to determine the spatiotemporal variation of fPAR in the mixed wood forest. 

Chi-square statistical test was performed to assess the significance of fPAR variation. To 

better understand the vertical forest structure of the study site, metrics such as LAI, centroid 

(Cx, Cy), and radius of gyration (RG) were interpolated to explore and understand the spatial 

forest structure variation. Forest inventory included tree species, diameter breast height 

(DBH), and mortality was documented. To assess the influence factors on fPAR, multiple 

correlation analyses was used between LAI, tree species type, mortality and fPAR.  

The third chapter of this thesis examined the significance of the results concluded in Chapter 

2 and suggested the study's limitation. Potential future explorations are proposed, including 

the advance of wireless sensor networks outdoor performance and factors, such as mortality 

and drought, influence on the effect of LAI on fPAR in a coniferous and deciduous mixed 

forest.  
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Chapter 1 - Introduction 

1.1 Background and Motivation 

Nowadays, climate change has become a hot topic in all kinds of disciplines. Its impacts can 

be seen throughout every aspect of the world we live in and are threatening the ecosystem, 

biodiversity, and human health (Diffey, 2004). Rapid changes of climate has induced a series 

of dangerous weather events. Events such as drought, storms, heatwaves, rising sea levels, 

melting glaciers and warming oceans are more severe and frequent than before (National 

Academies of Sciences and Medicine, 2016). The dominant cause of rapid climate change is 

widely recognized as human activities, such as burning fossil fuels and deforestation 

(Somerville, 2020). These anthropogenic activities emit carbon dioxide and methane in the 

atmosphere and have risen the dominant greenhouse gases stored in Earth's atmosphere now 

about 45% more than they were in the early 1800s (Somerville, 2020). The average global 

land and ocean temperature has also risen and caused the average thickness of glaciers 

decreased more than 60 feet and the sea ice cover survives the summer melt season has 

declined to approximately half of its extent since 1980 (Francis and Wu, 2020). Rising sea 

levels due to thermal expansion, in addition to melting ice sheets and glacier, put coastal 

areas at great risk of erosion and storm surge (Bindoff et al., 2007). The potential impacts of 

climate change on human lives, socioeconomics, and ecosystems highlight the importance of 

understanding all the components of the climate system. With this knowledge, one can 

simulate a better prediction of future climate scenarios and be used as a vital component to 

policy makers to develop climate change mitigation and adaptation strategies. 

In the study of the Earth's climate system, most research focuses on the changes of more 

visible components such as the carbon cycle (Friedlingstein, 2015; Friedlingstein et al., 2003, 

2001; Mitchard, 2018) and the water cycle (Ellison et al., 2017; Imbach et al., 2012; Tao et al., 

2003). Whereas less observable climate variables, such as photosynthesis, have just started to 

catch more attention. Photosynthesis is a major process leading to primary production in the 

biosphere and is considered the fundamental life process for plants and animals (Craggs, 
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2016). Plants take carbon dioxide out of the atmosphere through photosynthesis and thus help 

reduce the greenhouse gases concentration. This process fixes more than 100bn out of 

7000bn tons of carbon dioxide annually in the atmosphere (Baslam et al., 2020). Previous 

experimental studies show that photosynthesis can be strongly affected by climate variables 

such as temperature (Medlyn et al., 2002; Sieber et al., 2016) and carbon dioxide 

concentration (Sanz‐ Sáez et al., 2017; Urban, 2003). Therefore, having a good 

understanding of the role photosynthesis plays in climate change and the impact of changing 

environmental conditions on its performance can be an asset in climate mitigation, starting 

from carbon balance.  

Photosynthetically Active Radiation (PAR) is the part of electromagnetic radiation in the 

spectral range from 400 nm to 700 nm that can be used as the source of energy for 

photosynthesis by green plants (Mõttus et al., 2012). The PAR absorbed by plants for 

photosynthesis (APAR) can be either measured directly using PAR sensors or estimated 

indirectly based on canopy gap fraction measurements. Fraction of Photosynthetically Active 

Radiation (fPAR) is a fundamental term in the quantification of light used by plants in 

photosynthesis. It is represented by the ratio of APAR relative to the incident PAR on the top 

of the canopy (Fensholt et al., 2004). FPAR is one of the critical biophysical variables for the 

quantitative analysis of many physical and biological processes related to vegetation 

dynamics (Knorr et al., 2005). A detailed estimation and characterization of fPAR provide 

information for assessing the gross primary production (GPP), terrestrial net primary 

production (NPP), light-use efficiency (Fan et al., 2014), the associated fixation of 

atmospheric carbon dioxide and the energy balance of the surface (GCOS, 2016). Thus, 

long-term monitoring with high temporal and spatial resolution fPAR data is required. 

The estimation of fPAR can be divided into remote sensing and in situ measurements. The in 

situ measurement obtains high temporal resolution data, while remote sensing quantifies the 

spatial heterogeneity data of fPAR (Senna et al., 2005). The ability of providing spatial 

distribution functions of land-surface properties makes remote sensing a good asset in fPAR 

measurements. Regional and global fPAR datasets can now be derived from multiple sensors, 
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including Moderate Resolution Imaging Spectroradiometer (MODIS) (Dong et al., 2016; Li 

et al., 2020; Myneni et al., 2002; Yang et al., 2006), Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS) (Wang et al., 2001), the Medium Resolution Imaging Spectrometer (MERIS) 

(Myneni, 2001; Sun et al., 2014; Yang et al., 2014), Advanced Very High Resolution 

Radiometer (AVHRR) (Claverie et al., 2016), and Sentinel-2 (Dong et al., 2015; 

Putzenlechner et al., 2019a; Sun et al., 2021). Research assesses the performance of these 

satellite products in estimating fPAR and finds the differences are consistent over most of the 

land cover types excepts forests (Pickett-Heaps et al., 2014; Tao et al., 2015). The reason 

could be the varied assumptions in the retrieval algorithms, as well as the disparities between 

green and total fPAR products over forests due to tree trunks and branches absorption (Tao et 

al., 2015). These satellite products play an essential role in measuring and monitoring surface 

variables such as fPAR and provide an opportunity to gain insight into the dynamic processes 

within ecosystems. However, accurate estimation across broad spatial extents and long 

periods require efficient methods, calibration and validation for derived fPAR products 

(Fritsch et al., 2012; Majasalmi et al., 2014; Nestola et al., 2017; Putzenlechner et al., 2019a; 

Serbin et al., 2013). Issues such as weather conditions and propagation delay could extend the 

challenge of calibration and validation of the sensor. The weather condition, for instance 

atmospheric interference and cloud cover, can limit the availability and quality of satellite 

data (Reiche et al., 2016); its ability to monitor temporal variability is unreliable due to its 

propagation delay, brings the uncertainty of using satellite data in detecting small climate 

changes such as important phenological events (Ryu et al., 2014) and subtle changes in forest 

productivity. Due to these limitations and constraints, the in situ sensor has been advanced to 

produce high-quality time series data and has become popular in temporal observation 

(Moreno et al., 2014).  

In situ measurements of fPAR are usually combined with satellite data and used as reference 

data for satellite-derived fPAR products validation (Fensholt et al., 2004; Liu et al., 2019; 

Putzenlechner et al., 2020; Tao et al., 2016). In situ sensors technologies are increasingly 

being implemented for environmental and climate monitoring. Compared with 

satellite-derived fPAR, in situ methods quantify the fPAR at a local scale and provide 
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spatially precise, continuous, and near real-time data (Kotamäki et al., 2009). In situ fPAR is 

generally measured by radiation monitoring or detecting directional gap fraction using 

hemispherical photographs (Wang et al., 2016). Some common in situ instruments are Digital 

Hemispherical Photography (DHP) (Baret et al., 1993; Whitmore et al., 1993), PAR 

ceptometer (AccuPAR) (Camacho et al., 2021), and Light Detection and Ranging (LiDAR) 

(Luo et al., 2014; Qin et al., 2017; Thomas et al., 2006). One of the recent improvements in in 

situ measurement is Wireless sensor networks (WSNs). It has gained a lot of popularity due 

to its ability to provide continuous, automated, and high temporal and spatial resolution data 

of dynamic environmental processes in remote locations with poor accessibility (Rankine et 

al., 2014). This technique has been widely used in environmental applications (Aslan et al., 

2012; Bauer et al., 2019; Díaz-Ramírez et al., 2012; Pawlowski et al., 2009; Qu et al., 2014) 

and is an effective tool of measuring key micro-meteorological variables sensitive to climate 

change and land use/cover change (Sánchez-Azofeifa et al., 2011). WSN enables the 

execution of asynchronous operations according to a timetable or set of rules, as well as the 

construction of data collection networks with minimal wire infrastructure (Ferre et al., 2010). 

Regardless of the strength, the individual nodes in WSNs still has concerns with 

long-duration and large-scale environmental monitoring and are constrained by limited 

processing speed, storage capacity, and communication bandwidth (Corke et al., 2010; Matin 

and Islam, 2012). WSN has the advantage of increasing the observational sample area for 

continuous PAR data, which allows capturing spatial and temporal variation (Rankine et al., 

2014). As the advancements in communication and computing technologies, WSN may 

become more suitable for outdoor environment as it was original designed for indoor and 

provides more information in responding to environment issues, for instant droughts and 

extreme temperature events. Hence, exploring the utility of WSN for long-term fPAR 

monitoring outdoor is necessary to advance the usefulness of in situ technologies in 

monitoring forest phenology and understanding the biosphere.  

FPAR value results directly from the radiative transfer in the canopy and depends on canopy 

structure, vegetation element optical properties and illumination conditions (Peng et al., 

2012). The estimation of fPAR, both satellite-derived and in situ, still have considerable bias. 
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Studies show that changes in solar zenith angle, wind speed (Putzenlechner et al., 2019b), 

atmospheric conditions (Liu et al., 2019), and surface roughness (Zhao et al., 2016) can 

create bias in fPAR estimation. Phenological conditions, such as Leaf angle distribution 

(LAD) (Fensholt et al., 2004), foliage clumping (Hovi et al., 2017), and canopy structure 

(Liang et al., 2017), could also vary fPAR estimation. Leaf Area Index (LAI), an Essential 

Climate Variable (ESV), is one of the most informative parameters for monitoring forest 

function (Culvenor et al., 2014). It is defined as one-sided green leaf area per unit ground 

area in broadleaf canopies (Chen and Black, 1992) and as the projected needle leaf area in 

coniferous canopies (Myneni et al., 2002). LAI varies with stand development, stand 

structure, and environmental conditions, which also affect the carbon exchange, water 

balance, evapotranspiration, and vegetation photosynthesis (Vose et al., 1994). Hence, the 

estimation of LAI becomes important in assessing vegetation phenology and climate change 

impact. 

Direct measurements of LAI, such as harvesting, allometry and litter collection (Breda, 2003), 

are considered the most accurate and hence are often used as reference for calibrating or 

validating indirect methods (Sonnentag et al., 2007). However, all direct measurements have 

the disadvantage of being labor-intensive and time-consuming, making them unsuitable for 

long-term monitoring (Jonckheere et al., 2004). Indirect measurements require less time and 

labor and are more practical for collecting extensive spatial and temporal data. Most 

frequently used indirect methods are ground-based instruments (LAI-2000, hemispherical 

photography) and above-canopy methods (satellite, terrestrial and airborne laser scanning) 

(Goude et al., 2019). Terrestrial laser scanning (TLS), a ground-based LiDAR, provides a 

measurement technique that can acquire a three-dimensional detail from the surrounding area. 

It has been used in documenting basic tree attributes, such as DBH (Murphy et al., 2010; 

Vastaranta et al., 2009) and has shown to be capable of determining important tree attributes 

that are not directly measurable in conventional forest inventories, such as gap fraction, leaf 

area profile, and plant area volume density (Anderson et al., 2016; Danson et al., 2007). 

Some of these attributes are tightly related to climate changes and are able to provide special 

viewpoint of climate dynamic by document data consecutively in a time series (Liang et al., 
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2012; Luoma et al., 2021; Srinivasan et al., 2014). The utility of TLS in LAI estimation still 

require more research. 

Both fPAR and LAI are used for calculating surface photosynthesis, evapotranspiration, and 

net primary production, hence are the two key variables in most climatic, hydrological, 

biogeochemical, and ecological models. (Chen et al., 2019). Because of their linkage, a 

number of LAI/fPAR products have been developed from satellite data algorithms, for 

instance MODIS (Fu and Wu, 2017; Ranga B Myneni et al., 2002; Serbin et al., 2013; 

Shabanov et al., 2003; Zhu et al., 2013), MISR (Hu et al., 2007; Tao et al., 2016, 2015), 

VIIRS (Xiao et al., 2016; Xu et al., 2018), and Sentinel-2 (Li et al., 2015; Putzenlechner et al., 

2019a). These products were extracted from non-geostationary satellite observations (Chen et 

al., 2019), and their uncertainties are evaluated (Hu et al., 2007; Pu et al., 2020; Xu et al., 

2018). The impact of LAI on fPAR has also been studied but mainly used satellite-based data 

(Myneni et al., 2002; Y. Tian et al., 2004; Yang et al., 2006). However, the satellite data are 

not spatially and temporally continuous due to the orbital period and climate conditions 

(Chen et al., 2019). Hence, having a better understanding of the influence of LAI on fPAR 

helps monitor the impact of climate change and provide mitigation strategies by interfering 

with forest ecosystem.  

1.2 Specific hypothesis and objectives 

With the background information and some context of the previous scientific research, the 

state of fPAR knowledge about its spatiotemporal variability in a mixed wood forest the 

purpose of this thesis can be introduced. While fPAR have primarily been derived from 

satellite data, advanced in situ technology, Wireless Sensor Networks, still require further 

exploration in its long-term duration monitoring. Most studies of long-term fPAR have 

conducted in boreal forest (Serbin et al., 2013; Tao et al., 2016; J. L. Widlowski, 2010; Yang 

et al., 2021), and only a few are in temperate forest (Carrer et al., 2013; Parker, 2020; 

Putzenlechner et al., 2019b, 2019a). As LAI and fPAR are both recognized as Essential 

Cliamtic Variables (ECVs), it is necessary to continue to explore their connection and 

interaction with each other in the deciduous and coniferous forest. Therefore, this thesis 
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explores two specific hypotheses: 

1. FPAR has a natural spatiotemporal change in the mixed coniferous forest and varies 

with forest dynamics over the time 

2. Forest structure, especially LAI, is related to fPAR. It is expected to have a negative 

impact on fPAR as the low LAI value creates more gaps, thus leading to high fPAR. 

With the context provided above, the main goal of my thesis research is  

1. To explore the spatiotemporal variability of fPAR in a mixed coniferous forest using 

Wireless Sensor Networks (WSNs). 

2. To discover the relationship between vertical forest structure and fPAR using 

Terrestrial Laser Scanner (TLS). 
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Chapter 2 - The Spatiotemporal Variability of the Fraction of Photosynthetically Active 

Radiation (fPAR) in a Mixed Coniferous Forest 

Abstract 

The fraction of photosynthetically active radiation (fPAR) quantifies the fraction of the solar 

radiation absorbed by plants for the photosynthesis activity. Long-term fPAR variation is 

required to monitor forest function and climate dynamics, but it is challenging to estimate in a 

complex and heterogeneous canopy. Leaf area index (LAI), a parameter of vertical forest 

structure, is often studied along with fPAR as both of them are crucial biophysical variables 

in most climatic and ecological models. Their relationship has been previously studied 

mainly using satellite-derived data. In this context, this study investigates the long-term 

spatiotemporal variability of fPAR and the relationship between LAI and fPAR in a mixed 

coniferous forest using terrestrial laser scanner (TLS) and advanced wireless sensor networks 

(WSNs). The study was conducted in the Graswang forest station, where the WSN was 

installed with PAR sensor. Waveform metrics (LAI, centroid and radius of gyration) were 

estimated through TLS data. We performed Kriging interpolation for fPAR to determine its 

variation and multiple correlations to explore fPAR response to LAI, tree species, and tree 

mortality. Results show that fPAR has a natural spatiotemporal variation over a year and a 

significant change from 2016 to 2019. LAI and tree species present a significant positive 

correlation with fPAR, whereas mortality has an insignificant small influence on fPAR. Our 

work contributes to the study of long-term fPAR variation in mixed coniferous forest and 

shows the potential for WSNs monitoring long-term fPAR observations. This study lays the 

groundwork for the relationship between vertical forest structure and fPAR in a mixed 

coniferous forest, as well as providing a potential project for the influence of tree species and 

mortality rate on LAI impacts on fPAR. 

Keywords: Fraction of photosynthetically active radiation (fPAR); Wireless sensor networks 

(WSNs); Leaf area index (LAI). 

2.1 Introduction 

Over the past century, functions inherent to forests have been implemented in many different 
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disciplines to help gain a stronger understanding of these fields and the processes that drive 

them. Forests couple the biosphere to other components of the Earth system and are 

connected to and influenced by climate dynamics (Khaine and Woo, 2015a). Changes in 

canopy structure, composition, and functional processes in a forest ecosystem would impact 

climatic variables and in turn, the resulting changes in the environmental conditions would 

disturb forest growth, affecting net primary productivity and habitat functions (Khaine and 

Woo, 2015b; Mo et al., 2018). Based on this ecological interrelationship between forest and 

climate, studying the interaction and response between climate dynamics and forest 

ecosystems has become essential for climate mitigation and adaptation.  

In 2003, the Global Climate Observing System (GCOS) program introduced a set of essential 

climatic variables (ECVs) critical to the characterization of Earth's climate (GCOS, 2016). 

The fraction of photosynthetically active radiation (fPAR) and leaf area index (LAI) are 

examples of ECVs that characterize vegetation canopy functioning and energy absorption 

capacity (Myneni et al., 2002). FPAR is the fraction of incident photosynthetically active 

radiation (400- 700 nm) absorbed by the vegetation (Fensholt et al., 2004). It characterizes 

the energy used in the process of photosynthesis (Myneni et al., 2002) , and thus expresses a 

canopy's energy absorption capacity (Tian et al., 2015). Quantifying fPAR provides vital 

information for estimating the vegetation net primary productivity, carbon balance, ecosystem 

energy and mass exchanges over a range of temporal and spatial resolution (Gobron and 

Verstraete, 2009; Sánchez-Azofeifa et al., 2011).  

Estimation of fPAR can be categorized into in situ and satellite-derived. FPAR derived from 

polar orbit satellites, such as MODIS (Dong et al., 2016; Li et al., 2020), Landsat-TM (Li and 

Fang, 2015), and Sentinel-2 (Putzenlechner et al., 2019a), has the advantages in monitoring 

large-scale spatial variability, but at the same time observations are constrained by weather 

conditions (Reiche et al., 2016) and temporal delay. Atmospheric interference and cloud 

cover can limit the quality and availability of satellite-derived data (Reiche et al., 2016). The 

propagation delay of satellites brings uncertainty in detecting small temporal changes (Ryu et 

al., 2014). As such, in situ sensor technologies fill the gaps of temporal resolution and have 
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become widely used for long-term environmental and climate monitoring (Kotamäki et al., 

2009). 

Long-term observations of fPAR are required to monitor global vegetation dynamics and 

assess global carbon balances in the context of climate variability and change studies (Xiao et 

al., 2018, 2016; Zhu et al., 2013). However, accurately measuring fPAR over a long period 

tends to be problematic in large complex vegetative stands because of the spatial 

heterogeneity of these environments (Sánchez-Azofeifa et al., 2011). Both in situ and 

satellite-derived fPAR can be influenced by changes in phenological and meteorological 

conditions and create estimation bias. This bias the sampling error and the transfer error (J.-L. 

Widlowski, 2010) on the estimation can be strongly affected by solar zenith angle, wind 

speed (Putzenlechner et al., 2019b), atmospheric conditions (Liu et al., 2019), as well as 

surface roughness (Zhao et al., 2016). Since the satellite-based data are often not continuous 

and consistent in space and time (Ryu et al., 2014), filtering methods are required to fill in 

gaps and produce high-quality time series (Moreno et al., 2014). The in situ sensors have 

been advanced and become popular in climate variables observation.  

Wireless sensor networks (WSNs) are new in situ technologies that bring advances in sensor 

technology, wireless communications, digital electronics and computer networks to the realm 

of environmental monitoring (Takruri et al., 2008). Compared with satellite sensors, WSNs 

use low-cost, low-power, multi-functional small-size sensor nodes (Takruri et al., 2008) to 

collect continuous, automated, and high temporal and spatial resolution data of dynamic 

environmental processes in remote locations with poor accessibility (Rankine et al., 2014). 

These strengths make WSNs a beneficial asset in in situ monitoring forest 

micro-meteorological variables (Rankine et al., 2014), especially for assessing long-term 

fPAR spatiotemporal variability.  

Along with fPAR, LAI is another ECV generally defined as one-sided green leaf area per unit 

ground area in broadleaf canopies (Chen and Black, 1992) and the projected needle leaf area 

in coniferous canopies (Myneni et al., 2002). It is one of the most informative parameters for 

monitoring mass and energy exchange processes in the forest (Culvenor et al., 2014), and 



26 
 

hence was recommended as a promising indicator of climate change impacts on vegetation 

(IPCC, 1998). Dense canopies with high LAI can intercept 95% solar radiation from reaching 

the Earth’s surface (Bonan, 2015), decreasing the amount of energy that penetrates through to 

the soil (Hardwick et al., 2015). The estimation of LAI can be done using direct and indirect 

methods. Direct methods are the most accurate, but they are destructive in nature and can be 

time-consuming and labor-intensive; thus, they are not compatible with the long-term 

monitoring of spatial and temporal dynamics (Jonckheere et al., 2004). Indirect methods are 

non-destructive measurements that extrapolate LAI from measurements of another variable 

and are faster and thus suitable for extensive spatial data collection.  

Digital hemispherical photography (DHP) is an in situ optical method that estimates LAI 

from the measurement of the gap fraction of an image taken from ground level looking up at 

the canopy using a wide angle lens (Chianucci and Cutini, 2012). However, it is limited by 

user subjectivity and the sky condition. AccuPAR LP-80, another indirect instrument, 

estimates LAI using the amount of light energy transmitted by a plant canopy (PAR) (Breda, 

2003). However, it is not helpful in very tall and dense forest canopies and can be affected by 

foliage clumping (Adeboye et al., 2019). These methods are advanced from direct methods 

but are still labor-intensive, time-consuming, and difficult to implement over large areas.  

Terrestrial laser scanners (TLS) use ground-based LiDAR technology to provide a permanent 

3D record of forest structure and detailed information about forest canopy architecture (Wang 

and Fang, 2020). They can capture high precision and spatial resolution data with promising 

accuracy on large scales in a short time. A TLS emits laser pulses and classifies them into the 

discrete return and full-waveform models, from which vertical profile information such as 

LAI, plant area volume density (PAVD), and shape-metrics (centroid and radius of gyration) 

can be extracted. The centroid (Cx, Cy) assesses the shape of a waveform, and RG captures 

how the waveforms are distributed around the centroid (Muss et al., 2013). These 

shape-based metrics can be well related to forest structures and biomass (Muss et al., 2013), 

and are useful for differentiating forest successional stages (Gu et al., 2018). 

Most long-term fPAR studies have conducted in the boreal forest (Serbin et al., 2013; Tao et 
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al., 2016; J. L. Widlowski, 2010; Yang et al., 2021), and only a few are in mixed coniferous 

forest (Carrer et al., 2013; Parker, 2020; Putzenlechner et al., 2019b, 2019a). As the severe 

growth reduction and mortality in European forest (Pretzsch et al., 2014), a better 

understanding of the fPAR variation and how it varies with LAI in a temperate forest would 

provide a critical insight in restore and protect forest ecosystem and mitigate climate impacts. 

In this context, the specific objective of this paper is to explore the spatiotemporal variability 

of fPAR, as well as study the influence of LAI on fPAR in a mixed wood temperate forest 

using WSNs and TLS. 

2.2 Materials and methods 

2.2.1 Study Site 

Measurements of fPAR were carried out at the Graswang forest station located in Bavaria, 

Germany (47.571
0 

N, 11.033
0 

E, 864 m a.s.l) (Figure 1). Graswang is a temperate mixed 

coniferous forest and it comprises a mid-age spruce-dominated forest stand with Norway 

spruce, European beech, and Sycamore maple (Putzenlechner et al., 2019a). The Graswang 

forest station is situated on a flat alluvial plain in a sub-alpine valley, and it is the highest 

elevated site in the Ammer catchment. The climate is classified as a warm-temperate, fully 

humid climate with warm summers and cold winters (Köppen Classification). The study area 

has a mean annual air temperature of 6.8 
0
C and a mean annual precipitation of 1300 mm 

(Putzenlechner et al., 2019b). The site is part of Germany's Terrestrial Environmental 

Observatories (TERENO) project to conduct long-term environmental research on the 

impacts of climate change on terrestrial ecosystems in Upper Bavaria Germany (Zacharias et 

al., 2011).  

The Graswang site is currently equipped with a WSN for continuous fPAR ground 

observations (Putzenlechner et al., 2019b). This WSN has been in operation since 2015 by 

Ludwig Maximillian University – Munich and the University of Alberta. A forest inventory 

was collected in 2017 at the WSN site. A total of 350 trees were documented, including 

position, diameter breast height (DBH), radius, species, and vitality. The latitude and 
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longitude were also recorded for each tree. The tree species within the study area are 

combined with Norway spruce and European beech. The vitality of trees was categorized as 

healthy, damaged or sick, or dying or dead. 

2.2.2 Vertical Forest Structure Data Collection 

The RIEGL VZ-400i terrestrial laser scanner (TLS) was deployed at the study site from 

September 11
th

 to 13
th

, 2018. This instrument is a 3D real-time laser scanning system and has 

a 100
o 
*360

o
 field of view (RIEGL, 2019). It collects simultaneous scan and image data with 

5 mm accuracy per 3 mm repeatability and a measurement range of up to 800 m (Kamnik et 

al., 2020). The TLS was mounted on the tripod at a 90
o
 angle. Both a vertical and horizontal 

scan were performed at each point to avoid the blind spots of the instrument. A total of 69 

scans were collected on the study site using the RIEGL TLS and organized and stored in 

RISCAN Pro's project structure (Figure 2). These TLS data include scans, digital images, 

coordinates of control points, and transformation matrices needed to transform the data of 

multiple scans into a standard, well-defined coordinate system (Krelling et al., 2012).  

Digital Hemispherical Photographs (DHPs) were captured early in the morning at each WSN 

node in 2018 using a digital camera equipped with a fisheye Sigma 8mm lens. The camera 

was leveled at 1.50 m by using a tripod and facing towards magnetic north to ensure 

photographic standardization. The resulting circular images are analyzed by Gap Light 

Analyzer (GLA) (Frazer et al., 1999), image processing software to extract canopy structure 

data such as effective LAI and canopy openness (Frazer et al., 1999).  

2.2.3 Processing of TLS and DHP Data and Analysis of Forest Structure Estimates 

Each TLS scan was exported as an individual point cloud and then processed using the 

R-package "rTLS"(Guzmán Q., 2021). The resulting waveforms illuminate different canopy 

elements to present and describe the 3D structure of vegetation canopies (Anderson et al., 

2016). Parameters, such as the gap fraction, LAI, PAVD, Cx, Cy and the radius of gyration 

(RG), can be extracted from the waveforms for each scan. The height was calculated as the 

cosine of the laser zenith angle (57.5
o
) multiplied by the laser distance measurement, 
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assuming that the terrain is flat as described by Culvenor et al. (2014). With an estimate of 

the probability of gap, leaf area profile can be calculated and thus the PAVD which is the 

derivative of the leaf area profile (Lovell et al., 2011). Plant area density is calculated as the 

cumulative of PAVD for each scan to determine the LAI.  

The LAI, Cx, Cy and RG from TLS data are further spatially interpolated to extract the 

spatial information of forest structure in the study area, using the Kriging method (Kiš, 2016) 

in Surfer® from Golden Software, LLC (Software, 2021). Kriging is a geostatistical approach 

that depends on expressing the spatial variation of the property in terms of its variogram. It 

considers that the originated data process has a deterministic trend and an autocorrelated error 

(Oliver and Webster, 1990). The variogram is a discrete function computed through a 

measure of the variability between pairs of points at different distances (Said and Yurtal, 

2019). The model's graph type, sill, nugget, and range are changed based on the distribution 

of points (Franklin, 2014). A Block Kriging technique was used over Point Kriging since it 

can estimate the average value of the rectangular blocks centred on the grid nodes (Oliver and 

Webster, 1990). In addition, this technique provides better variance estimates and has the 

effect of smoothing interpolated results (Franklin, 2014). The block size (cell size) is set to 1 

m *1 m to present the most spatial detail for analysis and to capture the spatial variations. The 

spatial information of LAI and shape-metrics are used to describe the vertical structure of the 

Graswang site. 

A total of 16 Digital Hemispherical Photographs were taken on the WSN site and analyzed 

using GLA. Images are registered in GLA so that both the orientation and circular extent of 

the exposure are known (Frazer et al., 1999). A threshold is chosen for each image to 

accurately classify the sky (white) and non-sky (black) pixels. The estimation of LAI at each 

node can be calculated. 

2.2.4 Wireless Sensor Networks for Permanent PAR Observation 

Graswang has been equipped with a WSN for continuous PAR ground observations since 

2015 (Putzenlechner et al., 2019b). The experimental setup for the fPAR measurements 
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consisted of self-powered nodes (model ENV-Link-Mini-LXRS, LORD MicroStrain, Cary, 

NC, USA) equipped with quantum PAR sensors (Model SQ-110, Apogee, Logan, UT, USA; 

field of view 180
o
; uncertainty estimates: cosine response ± 5% at 75

o
 solar zenith angle, 

temperature response 0.06 ± 0.06% per 
o
C, calibration uncertainty ± 5% and long-term drift < 

2% y
-1

). Additional information can be found in Putzenlechner et al. (2020). Sensors are 

mounted at 1.3m from the ground and deployed in a hexagonal topology (Figure 3). This 

sampling scheme maximizes the sensing area covered by a given number of sensors while 

ensuring signal quality and connectivity, and provides the least error compared with other 

localization algorithms for WSNs (García et al., 2007; Mortazavi et al., 2014; Younis and 

Akkaya, 2008). At Graswang, the incoming PAR is measured approximately 300 m from the 

forest edge. The final configuration consists of 16 PAR nodes spaced 10 m apart and covers a 

site area of 35 m *43.3 m (Figure 3).  

PAR data was downloaded using a portable aggregator with frequencies ranging from 2.4 

GHz to 2.5 GHz and equipped with a USB interface (model WSDA-Base-104 USB Base 

Station, MicroStrain, Cary, NC, USA). The aggregator is connected to a portable computer 

for data download and is equipped with the software "Node Commander" (version 2.17.0, 

LORD MicroStrain, Cary, NC, USA) (Putzenlechner et al., 2020). The WSN nodes are 

configured to measure the instantaneous PAR every 10 min synchronously (∼1 ns).  

2.2.5 Processing of PAR Data and Calculation of FPAR Estimates 

The PAR data was uploaded to "Enviro-Net" (Pastorello et al., 2011), a web platform for 

sensor data management, near real-time visualization and analysis (Pastorello et al. 2011). 

The sensors have been operational at the study site since 2015 and experience both random 

and systematic bias problems. Many studies assume that PAR sensor calibration is valid 

during the setup of PAR sensors (Li and Fang, 2015; Majasalmi, 2015; Majasalmi et al., 

2014), but even when the sensors are calibrated at their deployment, they develop drift in 

their records, leading to erroneous inferences being made by the network (Takruri et al., 

2008). The drift in this context is a slow, directional, long-term change in the sensor 

measurements (Takruri et al., 2008). The manufacturer states 5% radiometric uncertainty with 
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approximately 2% drift per year (Apogee Instrument, 2003). Therefore, a drift term of 2% per 

year is applied to calibrated PAR sensors for 2016, 2017, 2018 and 2019 analyses. To 

eliminate the influence of high wind speed conditions on the bias of fPAR estimation, we 

removed the PAR data in which the wind speed is greater than 5 m/s based on Putzenlechner 

et al. (2020) study. The wind speed records on open grassland are from the TERENO 

meteorological station (model WXT520, Vaisala, Vantaa, Finland).  

At the sub-alpine site Graswang, topographic shadowing periodically affects the WSNs 

(Putzenlechner et al., 2020). A digital elevation model (DEM 5 m, Free State of 

Bavaria, https://www.ldbv.bayern.de) and the solar position were used to determine the PAR 

data affected by topographic shadowing and excluded them from dataset. Sensors for 

incoming PAR (PARin) and transmitted PAR (PARtrans) are separated by 300 m in the site 

(Putzenlechner et al., 2019a). Considering the shadowing effect of moving clouds, we 

excluded data where PARtrans exceeded PARin to eliminate the impact of cloud shadows for 

sensors outside the forest, and data acquired during mixed illumination conditions for sensors 

in the forest (Putzenlechner et al., 2019b). 

PAR data were further processed and analyzed using the statistical programming language R 

to calculate the fPAR. Measurements of PARin and PARtrans carried out at 10 min temporal 

resolution were processed to fPAR estimates and calculated individually at each (i) of the 16 

(n) sensor locations in the forest following equation (Putzenlechner et al., 2019a): 

fPAR = 1 −
PARtrans

PARin
 

The resulting daily fPAR at noontime was used for fPAR analysis. The variation of the mean 

fPAR value in the growing season (June, July and August) of Graswang forest during 2016 to 

2019 is then plotted and interpolated using the Kriging interpolation algorithm method to 

represent the spatial distribution of fPAR using Surfer® from Golden Software, LLC 

(Software, 2021). Spatiotemporal variability of the fPAR was compared using the resulting 

interpolations for 2016, 2017, 2018 and 2019. A raster calculation was performed to 

determine the spatiotemporal change of fPAR in the WSN site between each year. 

https://www.ldbv.bayern.de/
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2.2.6 Relationship between Vertical Forest Structure, Tree Inventory, and FPAR  

To better understand the vertical forest structure in the study site, raster correlation was used 

to determine the spatiotemporal relationship between each factor's interpolation map (LAI, 

Cx, Cy, and RG). Three scans with different RG level (high, medium and low) are selected 

and their waveforms are compared to determine the difference of vertical profile.  

The DHPs were taken in September 2019. The resulting LAI values and the mean daily fPAR 

over this period are calculated and were used for the analysis. Both LAI and fPAR are 

interpolated for spatial analysis using the Kriging interpolation (cell size of 1m) in Surfer. 

Montgomery et al. (2001) found that light transmission becomes independent when the lag 

distance between two points increases to approximate 5 m. To determine the factors of the 

fPAR value, a 5m buffer is applied at each node in ArcGIS software and the number of 

healthy and unhealthy trees (damaged/sick and dying/dead) are counted within each buffer. A 

Pearson correlation analysis is performed between LAI from DHP, tree mortality, tree species 

and fPAR (mean value of September 2019 for each node). 

2.2.7 Statistical Analysis 

The chi-squared test is a non-parametric statistical test to analyze group difference when the 

dependent variable is measured at a nominal level (Mchugh, 2013). This statistical test was 

used to determine whether there is a significant temporal change of fPAR between years in 

the study area. This test was performed in RStudio with a 5% significance level. The mean 

values of fPAR for each node from June to August on a yearly basis are used in the test. 

2.3 Results 

2.3.1 Forest Inventory  

The WSN site comprises 84% Norway spruce and 16% European beech (Figure 4a) of which 

84% of the trees have a DBH less than 20 cm, 13% have a DBH between 20 cm to 30 cm, 

and 3% have a DBH greater than 30 cm (Figure 4e). Spruce has a DBH range from 0 cm to 



33 
 

45 cm with a median of 8cm, whereas beech has a DBH range from 2 cm to 26 cm with a 

median of 7 cm (Figure 4c). Both species have the most DBH distribution between 0 cm and 

10 cm (Figure 4c). 

In this mixed coniferous forest, 53% of trees were healthy, 11% were damaged or sick, and 

36% were dying or dead when the inventory was gathered in 2017 (Figure 4b,d). The 

medians are 13 cm, 8 cm, and 5 cm, respectively. Norway spruce was 49% healthy, 11% sick, 

and 40% dead; European beech had 73% healthy and 27% unhealthy (Figure 4f). The healthy 

trees had a DBH range from 0 cm to 45 cm and were well distributed along the range with a 

median of 13 cm, and unhealthy trees had a DBH maximum at 20 cm and were concentrated 

below 10 cm (Figure 4d). The median of DBH for unhealthy trees was 6 cm. 

2.3.2 Spatial Variation of Vertical Forest Structure  

A combination of all resulting waveforms from TLS data is presented in Figure 5. The 

waveform includes the probability of gap (Pgap), PAVD, and plant area density. LAI presents 

as the value at maximum height in plant area density. The centroid (Cx, Cy) and radius of 

gyration (RG) can be extracted from the PAVD profile. Figure 6 presents the spatial variation 

of the vertical forest structure (LAI, centroid and RG) in the study site in 2018. Information 

shows LAI ranges from 0.8 to 4.2 with a median of 2.1 and a standard deviation of 1.0 

(Figure 6a). High LAI (LAI>2.8) is mainly concentrated in the WSN covered area, and varies 

between 0.8-4.2 with a median of 2.6. Cx varies between 0.01 and 0.18 with a median 0.06 

and a standard deviation of 0.01 (Figure 6b). Cy fluctuates from 3.9 to 20.6 with a median of 

11.6 and a standard deviation of 0.5 (Figure 6c). The WSN covered area experienced mostly 

high Cy with two low Cy spots. RG ranges from 5.7 to 22.4 with a median value of 8.1 and a 

standard deviation of 0.3 (Figure 6d). The forest has relative low RG except for Scan 21 

where the RG is around 20. Scan 6 (medium RG) and Scan 64 (low RG) are selected to 

compare with Scan 21 (high RG) to explore the profile of vertical forest structure at locations 

with different RG levels (Figure 7). In the PAVD profile, the biomass in Scan 64 is mostly 

distributed at the bottom and at relatively higher heights for Scans 6 and 21. However, Scan 6 

has more biomass than Scan 21 in general. Among three scans, Scan 6 showed the highest 
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LAI and Scan 21 showed the lowest LAI. 

The relationship between centroid, RG and LAI is presented in Figure 8. The scatterplot 

shows that LAI has a significant positive correlation with Cx and Cy, but is negatively 

correlated with RG (Figure 8). The grey area presents the 95% confidence interval for the 

linear regression. Data are mostly concentrated between 0.05-0.12 Cx, 10-13 Cy, and 1-3 LAI 

in the Graswang forest site (Figure 8). 

2.3.3 FPAR Ground Observations 

Seasonal changes of mean fPAR among 16 sensors at noontime are depicted on a yearly basis 

in Figure 9. The period from April to September has the most complete continuous PAR data 

recorded for all 16 sensors from 2016 to 2019. Therefore, the fPAR data in this period was 

used for the analysis. During these four years, the mean fPAR for 16 nodes in the summer 

varied between 0.89 (+/- 1 STD) to 0.99 (+/- 1 STD) (Figure 9). Relatively lower fPAR 

values are observed in April, and higher fPAR values occur between June to September 

(Figure 9). The growing season (June, July, and August) is highlighted for each year where 

fPAR has the least fluctuation through the year (Figure 9). The 7-day moving average shows 

an increasing trend from April to May and then becomes relatively steady in June, July, and 

August except for 2017, where fPAR shows a gradual decrease in September (Figure 9).  

Over the course of four years, the observations of fPAR consist of 92 sampling days in the 

growing season (June, July and August) at the Graswang study site, where 16 point 

measurements were continuously collected on a daily basis, resulting in a total of 4351 PAR 

measurements (Table 1). In the growing season, fPAR varies between 0.83 and 1.0, and the 

minimum value increased from 0.85 to 0.89 then decreased to 0.83 (Table 1). They are mostly 

distributed in the range of 0.95 to 0.99 in the first three years and 0.96 to 1.0 in 2019, where 

the frequency is over 100 (Figure 10). The highest frequency of fPAR appears between 0.96 

and 0.97 in 2016, 0.97 and 0.98 in 2017, 0.98 and 0.99 in 2018 and 2019 (Figure 10). The 

summary of the descriptive statistics of fPAR for all sampling days in the growing season is 

presented in Table 1. The fPAR data are all follow a negatively skewed distribution over four 
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years and have a Platykurtic distribution in the first three years and a Leptokurtic distribution 

in the last year (Table 1). The average fPAR is estimated to be 0.96, 0.97, 0.97 and 0.97, 

respectively, and the standard deviation is 0.02 for all four years (Table 1).  

2.3.4 Spatiotemporal Variability of FPAR 

The spatial distributions of fPAR from 2016 to 2019 are shown in Figure 11, respectively. 

The map shows that the majority of the fPAR in the WSN covered area is above 0.96 in all 

four years. In 2016, the center (Node 4 and Node 10) and bottom (Node 15) regions of the 

WSN site experienced a high fPAR where the value was over 0.98 (Figure 11a). Node 1, 

Node 9, and Node 13 are within the low-value region where fPAR is below 0.95. In 2017, the 

locations of two high and two low areas stayed the same as 2016. Nodes 3 and 14 are 

included in the high fPAR region, and Node 16 is added as one of the low fPAR sensors 

(Figure 11b). The range of high fPAR, from 2017 to 2018, only included Node 4, and fPAR at 

Node 14 and 15 was classified as moderate (0.95-0.98) (Figure 11c). Node 9 also experienced 

an increase in fPAR since 2017. In 2019, two high fPAR regions appeared in the WSN site 

around Node 4 and Node 15, and two low fPAR areas were located around Node 1 and 13 

(Figure 11d). Overall, high fPAR distributes into two regions, and low fPAR is concentrated 

in three regions and their locations have not been distinctly relocated spatially (Figure 11). 

From 2016 to 2019, fPAR varied between 0.90 and 1.0, increasing skewness towards 1.0 

(Table 1). As for 2017, the fPAR in the Node 9 area and central regions increased in value, 

but fPAR around Node 1 remained constant (Figure 11). FPAR at Node 15 decreased before 

increasing since 2017.  

Figure 12 presents the spatial change of mean fPAR in the growing season between years. 

Through the years, the mean fPAR varied between -0.019 to 0.011. From 2016 to 2017, the 

WSN-covered area mainly experienced increasing fPAR except for the regions around Node 

14 and Nodes 4, 5, 6, 7, and 10 (Figure 12a). In 2018, most areas experienced an increasing 

fPAR except for the areas around Nodes 1 and 2 (Figure 12b). Since 2018, the WSN area has 

shown a declining fPAR, except for Nodes 2, 9, 11, and 15, where fPAR rose more than 0.005 

(Figure 12c). Since 2017, Node 9 has been one of the cold spots over the years and has been 
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growing, as well as Node 15 and Node 4 which are the hot spots of fPAR.  

Table 2 shows the chi-squared test result of fPAR temporal variability between 2016 and 

2019. The change of fPAR is significant from 2016 to 2019 (p<0.05) (Table 2). From 2017 to 

2019, the daily mean fPAR at noontime in June, July, and August significantly changed the 

WSN-covered area (p<0.05). 

2.3.5 Relationship between FPAR and LAI 

The spatial information of LAI and mean fPAR in 2018 are presented in Figure 13. The LAI 

is derived from DHPs, and the fPAR is the mean value of September 2019 for each node. The 

spatial LAI map shows that Nodes 10 and Node 15 experienced high LAI (LAI> 3.3), and 

Nodes 1, 9 and 16 were located in low LAI regions (LAI<2.3) (Figure 13a). During these 

days, fPAR varied between 0.94 and 1.0 (Figure 13b). Three low fPAR regions were found 

(fPAR <0.96): Nodes 1 and 2, Node 9, and Node 13. Two high fPAR areas were present: 

Nodes 3 and 4, Nodes 14, 15, and 16 (fPAR>0.98).  

To analyze the relationship of various factors with fPAR, a correlation between every pair of 

factors is presented in Figure 13. LAI and beech amount, in the correlation matrix, show a 

significant positive correlation with fPAR, whereas mortality rate suggests a minor and 

insignificant relationship to fPAR (Figure 14).  

2.4 Discussion 

2.4.1 Forest Inventory  

Graswang forest is a temperate mixed coniferous forest site composed of Norway spruce and 

European beech and dominated by spruce (Fig. 4a). The trees' DBHs range from 0 cm to 45 

cm at this site, with the most distributed at below 10 cm (Fig. 4c). Spruce has a broader range 

of DBHs and a larger mean DBH than beech (Fig. 4c). This stand DBH characteristic is 

consistent with a previous study in the spruce-dominated forest (Bolte et al., 2010; Hans 

Pretzsch et al., 2020; Rötzer et al., 2017b). Our beech trees have a relatively smaller median 

than Spruce. Furthermore, other studies present a larger median of mature beech than our 
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result. Therefore, this observation suggests a younger age of beech than spruce in our forest. 

The forest consisted of 47% unhealthy trees with the most DBH between 0 cm and 10 cm. 

This result is similar to Orman and Dobrowolska's (2017) conclusion, where a DBH of 15 cm 

is the line of demarcation for living and dead trees. In 2017, 40% were recorded as dead, 51% 

of spruce were recorded as unhealthy (Fig. 4f).   

In 2017, Norway spruce had a higher amount and proportion of unhealthy trees than 

European beech in the Graswang forest site (Fig. 4f). Half of the spruce in the forest were 

recorded as unhealthy at that time. Previous studies have found that both species show high 

mortality under severe intraspecific competition such as drought; however, beech is more 

resistant and stabilizing than spruce under climate stress and therefore is less affected (H. 

Pretzsch et al., 2020; Pretzsch et al., 2018; Rötzer et al., 2017a). Due to the severe European 

drought event in 2018 (de Brito et al., 2020), a rise in the forest's mortality rate is expected 

(Senf et al., 2020) and a greater mortality rate of spruce compared with beech is also expected. 

Other studies examine the mortality of both species in monocultures and mixed culture and 

conclude that European beech is more resilient and resistant to climate stress in monocultures, 

while spruce acclimatized faster and was more resilient to climatic stress in an admixture 

with beech (Pretzsch et al., 2020; Pretzsch et al., 2014; Rukh et al., 2020; Schäfer et al., 2017; 

Vacek et al., 2019). In this context, the observed smaller DBH of beech could indicate a 

spruce-dominated forest transitioning towards a mixed beech and spruce environment. 

Because of the frequent severe drought events in 2003, 2015 and 2018 (Büntgen et al., 2021), 

forest management has gradually shifted from a coniferous monoculture preference to a 

preference for mixed and structurally diversified stands (Vacek et al., 2019) to restore and 

protect forest sustainability.  

2.4.2 Forest Structure 

TLS data were collected in September 2018 in the Graswang forest site. The results show that 

LAI ranges from 0.8 to 4.2, with a median of 2.1 (Fig. 6a). Spatially, the high value of LAI 

and shape-metrics (Cx, Cy, and RG) are mostly distributed within the WSN site, indicating 

more terrestrial vegetation biomass in the WSN site than outside. In the study site, LAI shows 
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a significant positive linear relationship with Cx and Cy (Fig. 8), indicating the forest has more 

plant area volume at the canopy layer than the understory, specifically at 11.6 m height. 

The LAI value from DHPs in the WSN site ranges between 1.8 and 4.2, which is within the 

range of the TLS result. Previous studies suggest that the LAI of Norway spruce varies from 1 

to 5 in the growing season (Schlerf et al., 2005; Solberg et al., 2009) and a maximum of 3 to 4 

in September for European beech (Černý et al., 2020). As for a mixed spruce-dominated forest, 

the LAI is expected to vary between 3 and 5 during the growing season. However, our LAI 

range from both DHPs and TLS appears lower than the hypothesis based on previous studies 

and may be caused by several factors.  

Firstly, spruce LAI estimations tend to decrease with forest stand age (Pokorný and Stojnič, 

2012; Schlerf et al., 2005). As our spruce has a wide DBH range from 0 cm to 45 cm, the oldest 

stands are expected to be up to 144 years old (Bolte et al., 2010) and the corresponding LAI is 

between 2 and 4.5 (Pokorný and Stojnič, 2012; Schlerf et al., 2005). Environmental conditions, 

such as soil temperature (Öztürk et al., 2015), air temperature (Öztürk et al., 2015), and 

humidity index also have an effect LAI estimation. The forest tends to have a high value of LAI 

in a young forest with a high soil temperature and a high mean air temperature during the 

growing season. The humidity index based on the ground vegetation affects the LAI spatially, 

where the dry site has shorter trees and fewer open canopies than the wet site (Schleppi et al., 

2011). In addition, Germany experienced a heatwave in 2018, resulting in unusually hot 

weather that led to record-breaking temperatures and a severe drought year (de Brito et al., 

2020). This drought event limited water availability potentially causing the observed low LAI. 

Research also suggests that LAI is sensitive to drought stress (Kim et al., 2017) and tends to 

decrease at the end of the growing period (Baghalian et al., 2011; Schleppi et al., 2011; Süßel 

and Brüggemann, 2021). As our TLS data was collected in September, the LAI value could be 

lower due to drought effect. Intense disturbances, such as drought, often increase tree mortality 

(Brienen et al., 2015; Hubau et al., 2020) and elevated tree mortality can influence forest 

dynamics by altering the succession pattern of the forests in favor of fast-growing species 

(Hiltner et al., 2020). Additionally, the functional species composition and tree size 
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distribution are also affected by tree mortality intensity, resulting in lower LAI values (Hiltner 

et al., 2020; Ogaya et al., 2015). Unfortunately, a general dearth of field reporting of mortality 

and LAI means that it is unclear whether tree mortality intensity and LAI decline are 

significantly impacted by drought.  

Another possible cause of the low LAI estimation seen in our analysis comes from the method 

used. Compared with direct methods, the indirect method, involving technologies such as TLS 

and DHP, underestimated LAI on average by 15.1% (Breda, 2003; Černý et al., 2020; Mussche 

et al., 2001; Yan et al., 2019). The reason for the underestimation is widely accepted as the 

non-random distribution of foliar elements within the canopy, also known as the clumping 

factor (Breda, 2003). TLS can effectively estimate LAI, but the measurement is affected by 

clumping, occlusion, voxel size, and woody material (Ma et al., 2017; Wang and Fang, 2020; 

Yan et al., 2019). Compare with deciduous forest, coniferous forests have a lower clumping 

index and are more affected by it in LAI estimation (Zhu et al., 2018). It has been suggested 

that a mixed stands of coniferous and deciduous tends to have a relatively high clumping index 

and TLS tends to underestimated LAI in mixed wood forest (Zhu et al., 2018). Study found that 

the estimation of LAI varies based on the instruments and methods used, but neither DHP nor 

TLS are seen to be superior over the other (Kuusk et al., 2018).  

2.4.3 Spatiotemporal Variability of FPAR 

We presented a time series of fPAR measurements for the vegetation period of 2016 to 2019 

using WSNs in the temperate mixed coniferous forest site in Graswang, Germany. All fPAR 

estimates reflect the seasonal increase and decrease of fPAR values and show relatively high 

and steady fPAR above 0.80 during the growing season (Figure 9). This result is consistent 

with previous research on fPAR temporal variation over the course of a year (Nestola et al., 

2017; Putzenlechner et al., 2020). The frequency of fPAR between 0.99-1.0 in 2019 is twice 

the frequency seen in 2016 (Fig. 10). Frequency rises indicate an increase of APAR over the 

years. Both of them can be consequent of changes in forest structure. Besides natural forest 

dynamics, tree mortality can also alter canopy structure. Based on the forest inventory 

collected in 2017, 11% of the trees were considered damaged or sick, and 36% were recorded 
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as dying or dead. By 2019 when TLS data was collected, the damaged/sick trees were 

expected to be dying/dead. In addition, drought is an essential driver of tree mortality (Senf et 

al., 2020), and the severe drought event happened in 2018 may have also aggravated the 

mortality rate. Since fPAR depends on the total amount of leaves in the canopies, increasing 

tree mortality potentially leads to decreasing LAI and thus causes a decline of fPAR (Ogaya 

et al., 2015).   

In the WSN site, the change of fPAR is significant between years according to the 

Chi-squared test (Table 2), especially after 2017. This suggests that the forest structure has 

experienced a considerable amount of change since 2017. In the time series, the hotspots and 

coldspots of fPAR have remained in a similar position in the site (Fig. 11). This observation 

suggests that the spatial distribution of fPAR in the study site varies over the year, but no 

strong alteration has occurred. Among three fPAR coldspots, Node 13 has missing data in 

2016, 2017, and 2018 and is assumed to be the same as 2019, which leads to an unchanged 

low fPAR region. Node 9 has the complete data recorded for all four years and experiences an 

increasing trend of fPAR through the year (Fig. 11). This change could be natural or 

anthropogenic since it has an equal variation between years (±0.01). The third low fPAR 

region is around Node 1, which increased in 2017 and then decreased. Since 2018, this region 

has experienced a decreasing trend of fPAR indicating that this could be the region where 

forest structure alters the most. 

Temporally, fPAR distribution's skewness has shifted towards positive in 2017 and then 

negative in the following years (Table 1). The site map shows that fPAR values have been 

mainly rising from 2016 to 2018 before experiencing a decline in the years since then (Fig. 

12). In the context of the drought event in 2018, we treat 2017 and 2019 as pre- and 

post-drought years and find the change of fPAR has varied between -0.01 and 0.02 (Fig. 12d). 

Studies on fPAR responses to drought conclude that drought causes significant negative 

trends in fPAR, especially in open forests where fPAR has severe declines over 0.2 (Jiao et al., 

2020; Turco et al., 2017; Yoshida et al., 2015). These conclusions are consistent with our 

results, where most areas experienced a declination of fPAR since the drought year. Although 
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our fPAR changes in a small range, the declination is considerable in our site.  

2.4.4 Influence Variables on FPAR 

In our analysis, the spatial distribution of LAI from DHPs and fPAR are significantly 

positively correlated (Fig. 13, Fig. 14). This result is consistent with several studies where the 

LAI has a strong positive effect on fPAR when it is less than three and less effective when it 

is more than three (Dawson et al., 2003; Hu et al., 2020; Mukherjee and Sarkar, 2016; Ogaya 

et al., 2015). Since the estimation of fPAR can be affected by solar zenith angle 

(Putzenlechner et al., 2019b), the study also examined its impact on the relationship between 

fPAR and LAI and found that when LAI was high, there was less of an effect from solar 

zenith angle on fPAR (Wang et al., 2016).  

In the correlation analysis, fPAR shows a statically significant positive relationship with 

beech proportion but not mortality rate (Fig. 14). This indicates that the tree species can 

influence fPAR and coniferous and deciduous tree types have different effects on fPAR. 

European beech (deciduous tree) has broad, flat leaves, whereas Norway spruce (a coniferous 

tree) has small, needle-like leaves. The coniferous tree is more clumped than the deciduous 

tree and its leaves have a higher angle than a deciduous tree (Zhu et al., 2018); therefore, 

deciduous trees absorbed more PAR than coniferous trees for the same LAI (Chen et al., 

2005). Hence, the proportion of beech is positively correlated with fPAR. Tree mortality does 

not show a significant strong impact on fPAR in our analysis. Our result contradicts previous 

studies where fPAR is negatively influenced by mortality (Jiao et al., 2020; Ogaya et al., 

2015). As for now, the species ratio and tree mortality are expected to be different in the 

forest site. An additional inventory may help to understand the impact of altering the 

proportion of two species and their mortality on fPAR. 

2.4.5 Strength and Shortcoming 

Previous studies have mainly used indirect instrument such as LAI-2000 Plant Canopy 

Analyzer and DHP to estimate LAI (Cutini et al., 1998; Pokorný and Marek, 2000; Solberg et 

al., 2009) and find that they generally underestimates LAI more than the direct methods 
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(Černý et al., 2020). Among all commonly used indirect methods, DHPs have been tested to 

be the most robust technique in estimating LAI in a large range of canopy structure and 

environmental conditions (Garrigues et al., 2008). Therefore, the performance of other 

indirect methods are often compared with DHP (Jonckheere et al., 2004; Schleppi et al., 

2007). In our study, both Terrestrial LiDAR (TLS) and DHPs are used to estimated LAI. 

Results show that the LAI from DHPs is within the TLS LAI range. Since DHPs have less 

data than TLS and the collection date were earlier than TLS, the LAI range from DHPs is in 

the upper range of LAI acquired from TLS. Previous study conducted in similar forest 

suggests a good accordance of LAI estimated from DHP and TLS and stated the difference 

between two techniques does not indicate one is more accurate than the other (Zhu et al., 

2018). Further investigation on TLS performance can be done by correlation analysis with 

more DHPs data in the study site. 

The influence of LAI on fPAR has been previously studied in the boreal forest (Dawson et al., 

2003) and mainly uses satellite data, such as MODIS (Ranga B Myneni et al., 2002; Y Tian et 

al., 2004; Yang et al., 2006). The relationship between LAI and fPAR shows a steep incline 

which becomes gradual after fPAR reaches 0.8. Instead of Landsat, our research uses 

ground-based LiDAR data (TLS), which provide valuable measurements of forest canopy 

structure in a smaller spatial coverage in a temperate forest. Hence, our study focuses on the 

impact of LAI on fPAR in a more confined range and presents a more detailed relationship 

between the two variables. 

In our fPAR data set, most WSN nodes have complete continuous data recorded in the 

growing season. However, a few nodes were missing data in the growing season and were 

assumed for these periods in the analysis, such as Node 13. Incomplete data sets would affect 

the spatial analysis of fPAR in the interpolation process. Therefore, continuous data collection 

remains the main issue for long-term fPAR research. The spatiotemporal change of fPAR 

after forest inventory data was collected is significant. However, a comparison over a more 

extended period of fPAR would be more valuable to explore the effect of forest structure 

change and climate stress (drought). 
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2.5 Conclusion 

This study was designed to explore the influence of LAI on fPAR and the spatiotemporal 

variability of fPAR in a mixed coniferous temperate forest. To approach this objective, the 

ground-based LiDAR TLS is used to collect the 3D point clouds of the vertical forest 

structure in the Graswang forest site. The daily continuous photosynthetically active radiation 

(PAR) is recorded by wireless sensor networks (WSNs) and further calculated to fPAR for 

analysis. External variables, such as wind speed, topographic shadows, and cloud effects, 

were considered for the long-term fPAR analysis.  

This study has found that fPAR has a natural temporal variation yearly in the mixed wood 

forest, and the spatial distribution remains similar from 2016 to 2019. The spatiotemporal 

changes of fPAR were seen to be caused due to forest structure changes induced by natural 

dynamics, tree mortality, and climate stress. To further explore the cause of fPAR variability, 

we investigate several factors' impacts on fPAR, including LAI, tree species, and mortality 

rate. The investigation of LAI impacts on fPAR has shown a consistent result with previous 

studies in boreal forests, where LAI positively correlated to fPAR. Multiple correlation 

analyses revealed that the type of tree species presents a positive correlation with fPAR, but 

the impact of mortality is insignificant and minimal. Limited mortality data may cause the 

contrary result to previous studies.  

Our study considered the sensor calibration when employing WSNs over the long term and 

provided a more accurate fPAR estimation. Prior to this study, satellite-derived data are 

commonly used in the study of LAI and fPAR interaction on a large spatial scale. This work 

provides insight into the use of in situ data to analyze LAI's influence on fPAR. The 

consistent results demonstrate the performance of TLS and WSN in estimating LAI and fPAR 

in the temperate forest. 

A limitation of this study is the incomplete data. In the study, fPAR in the growing season is 

selected in the analysis; however, the daily PAR data are not completely recorded for every 

node. Some nodes have missing data in the analysis period, such as Node 13. Lacking 
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information on LAI, tree species, and mortality in the later year constrain the discovery of 

fPAR temporal variability. Since the estimation of fPAR can be affected by solar zenith angle 

(Putzenlechner et al., 2019b), some studies examined its impact on the relationship between 

fPAR and LAI and found that when LAI was high, there was less of an effect from solar 

zenith angle on fPAR (Wang et al., 2016). As our study concluded a strong influence of tree 

species on fPAR, further investigation on how deciduous and coniferous affect LAI and 

fPAR relationship are suggested. Our results suggested differently to previous studies in 

mortality effects on fPAR, and further work needs to be carried out in order to validate their 

interaction and provide a deeper insight into the long-term impacts of climate stress on fPAR 

in mixed coniferous forests.  

The present study contributes to our understanding of fPAR variation in the mixed wood 

forest. The result of LAI effects on fPAR provided a deeper insight into the implication of in 

situ WSN on monitoring forest dynamics and further suggested the connection between LAI 

and fPAR and their importance. The potential transition from spruce forest to spuce and 

beech mixed forest is an indication of the realization of restoring and sustaining the forest 

ecosystem. Greater efforts are needed in understanding the role of fPAR in a mixed 

coniferous forest. Sufficient and suitable forest policy should therefore be plan for the 

long-term care of forest functions in climate mitigation while maintaining its productivity. 
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2.6 Tables 

Table 1 Descriptive statistics of the fraction of photosynthetically active radiation (fPAR) 

values for all 16 wireless sensor network (WSN) nodes in June, July, and August from 2016 

to 2019. 

 Statistics 2016 2017 2018 2019 

Mean 0.96 0.97 0.97 0.97 

Median 0.97 0.97 0.97 0.98 

Standard Deviation 0.02 0.02 0.02 0.02 

Kurtosis 2.08 1.54 2.56 6.52 

Skewness -1.35 -1.26 -1.45 -1.93 

Range 0.15 0.12 0.11 0.17 

Minimum 0.85 0.87 0.89 0.83 

Maximum 1.00 0.99 1.00 1.00 

Count 1176 1066 1018 1091 
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Table 2 Pearson's Chi-squared test of the fraction of photosynthetically active radiation (fPAR) 

from June to August between each year from 2016 to 2019. The daily mean fPAR of 16 nodes 

is used in the analysis. 

Year P value Significance 

2016-2017 0.0093 Significant 

2017-2018 0.0053 Significant 

2018-2019 0.0024 Significant 

2017-2019 0.034 Significant 
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2.7 Figures 

 

Figure 1 Locations of the Graswang Terrestrial Environmental Observatories (TERENO) 

experimental site and the reference photosynthetically active radiation (PAR) sensor located 

on grassland outside the forest, Southern Bavaria, Germany. 
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Figure 2 Top view of the 69 scans' location in Graswang forest collected by Riegl terrestrial 

laser scanner (TLS) during September 11th and 13th, 2018. Each position has two scans, one 

vertical and one horizontal, to avoid blind spots of the instrument and are shown in ETRS 

1989 UTM Zone 32N Projection with latitude and longitude in meters. 
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Figure 3 Experimental setup for photosynthetically active radiation (PAR) observations in the 

forest. Each of the 16 nodes was equipped with a PAR sensor pointed upward at 1.3 m height 

to perform synchronized measurements of transmitted PAR every 10 min. Viewing direction 

of the automated camera (Putzenlechner et al., 2019b). 

 

 

 



50 
 

 

Figure 4 Position of trees categorized by (a) tree species and (b) vitality in 2017. The trees are 

plotted in the study site using ETRS 1989 UTM Projection. Violin plots of Tree diameter 

breast height (DBH) for (c) tree species and (d) vitality include the distribution of DBH and 
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summary statistics. The colored area presents the probability density of the DBH and the 

boxplot shows the median weight and interquartile ranges. (e) Tree DBH frequency 

distribution and normalized density curve. (f) Vitality histogram of spruce and beech: 49% of 

Norway spruce were healthy and 39% were dead; 73% of European beech were healthy and 

20% were dead. 
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Figure 5 Waveforms for all 69 terrestrial laser scanner (TLS) scans at Graswang forest study 

site. The resulting waveform shows the information of probability of gap (Pgap), plant area 

volume density (PAVD), and plant area density. The dashed black line in each subfigure is of 

the average for the corresponding 69 curves. 
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Figure 6 Spatial distribution of vertical forest structure parameters (a) leaf area index (LAI), 

(b) Cx, (c) Cy and (d) radius of gyration (RG) in the Graswang site on September 11st and 

13rd, 2018. Contours are shown for each map. Cross indicates the terrestrial laser scanner 

(TLS) scans position, and dot indicates the wireless sensor network (WSN) nodes. 
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Figure 7 Waveform comparison for locations with three different radius of gyration (RG) 

levels in the spatial map: high RG (Scan 21), medium RG (Scan 6), and low RG (Scan 64). 
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Figure 8 Density scatter plot and linear regression between leaf area index (LAI) and centroid 

(Cx, Cy), and radius of gyration (RG) with a 95% confidence interval present as grey area. 

Results shows LAI is positively correlated with Cx (correlation = 0.66, p-value <0.05) and 

Cy (correlation = 0.33, p-value <0.05) and negatively correlated with RG (correlation = -0.33, 

p-value <0.05). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 9 Seasonal changes of daily aggregated mean two-flux 10-min fraction of 

photosynthetically active radiation (fPAR) estimates at Graswang study site for 2016, 2017, 

2018 and 2019. The blue line indicates the recorded fPAR from April to September, and the 

green line highlights June, July, and August. The red line 7-day moving average presents an 

average line over time and identifies a trend direction of fPAR for each year. 
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Figure 10 Frequency distribution of the fraction of photosynthetically active radiation (fPAR) 

with normalized density curve for each year from 2016 to 2019. FPAR values for all 16 nodes 

from June to August are used. 
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Figure 11 Spatial distribution and seasonal difference in mean fraction of photosynthetically 

active radiation (fPAR) in June, July, and August in 16 wireless sensor network (WSN) 

stations during 2016-2019. Maps are presented in ETRS 1989 UTM Zone 32N in 1x1 cell 

size. High fPAR values are shown in red and low fPAR values are shown in blue. Contours 

are also shown for each year. The crosses represent the locations of the 16 WSN nodes in the 

study area. 
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Figure 12 Spatial and temporal variation of the fraction of photosynthetically active radiation 

(fPAR) from 2016-2019. The mean fPAR for each nodes in June, July, and August is used in 

the analysis. Positive value indicates an increasing fPAR and is shown in red, and the 

negative value indicates a decreasing fPAR and is shown in blue. Contours are also shown for 

each map. The cross represents the position of 16 wireless sensor networkd (WSN) nodes in 

the study area. 
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Figure 13 Spatial distribution of (a) digital hemispherical photographs (DHPs) leaf area index 

(LAI) and (b) the mean fraction of photosynthetically active radiation (fPAR) of each nodes 

in September 2019 using Kriging interpolation. The crosses indicate the node positions. The 

map is presented in ETRS 1989 UTM meters. 
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Figure 14 Correlation matrix between the fraction of photosynthetically active radiation 

(fPAR) and each factor (leaf area index (LAI), percentage of unhealthy and healthy trees, 

spruce, and beech), and between each pair of elements. Stronger correlations are denoted with 

darker blue and red. 
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Chapter 3 – Conclusions 

The objective of this thesis was to explore the spatiotemporal variability of the fraction of 

photosynthetically active radiation (fPAR) in a mixed coniferous temperate forest and better 

understand the influence of forest structure on fPAR using a ground-based terrestrial laser 

scanner (TLS) and in situ wireless sensor networks (WSNs). While the long-term fPAR 

variability has been studied, the data were often derived from satellite data (Fensholt et al., 

2004; Liu et al., 2019; Putzenlechner et al., 2020), and research was focused on the boreal 

forest (Serbin et al., 2013; Tao et al., 2016; J.-L. Widlowski, 2010). The Graswang forest is 

part of the Terrestrial Environmental Observatories (TERENO) project investigating the 

long-term observation studies of climate change and global change impacts on terrestrial 

ecosystems across Germany (Zacharias et al., 2011). The site is already equipped with a 

long-term measurement system for existing research (Bogena, 2016) that offers continuous 

PAR data at the high spatial and temporal resolution we were interested in. In this thesis, a 

four-year fPAR dataset was processed using PAR data obtained from WSNs. The 

spatiotemporal variability of fPAR was analyzed and explored using a Kriging interpolation. 

Forest structure was described by LAI, centroid and radius of gyration acquired from 69 TLS 

scans. Information such as tree species and mortality rate were extracted from the forest 

inventory documented in 2017 and were correlated with fPAR to determine the influence 

level. Leaf area index (LAI) extracted from digital hemispherical photographs (DHPs) was 

examined for correlation with fPAR to study their interaction. These correlation analyses help 

improve the understanding of impacts of LAI, species, and mortality on fPAR.  

3.1 Significance of Findings 

The objectives of this thesis were to: 

1. Explore the fPAR variability in a spatiotemporal scale in a temperate forest using 

wireless sensor networks (WSNs). 

2. Study the influence of various factors in the forest on fPAR, including LAI, tree 

species, and tree mortality rate. 
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To address the first objective, the spatiotemporal variability of fPAR in a four-year time 

period was analyzed and compared year to year. Results showed that fPAR had a natural 

variation pattern through a year as expected (Nestola et al., 2017; Putzenlechner et al., 2020). 

The distribution of fPAR was left-skewed and was shifting towards 1.0 from 2016 to 2019. 

The continued rising of fPAR could be the dynamic change of forest structure, an indication 

of increasing tree mortality, and effects of climate stress. Spatially, two high and three low 

fPAR areas were discovered and remained in a similar position throughout the length of the 

study. During 2016 and 2019, fPAR changed in a small range but was significant between 

each year. The WSN site experienced its main increasing of fPAR before 2018 after which 

fPAR decreased. This finding indicated a disturbance event that happened in 2018 which 

largely altered fPAR. Due to the severe drought event discovered in 2018, this fPAR pattern 

can be explained by climate stress and high mortality as both factors are found to have an 

influence on fPAR (Jiao et al., 2020; Turco et al., 2017; Yoshida et al., 2015). 

Exploring the second objective requires an illustration of the study site. According to 

documented forest inventory, the Graswang forest is composed of Norway spruce and 

European beech and is highly dominated by spruce. The DBH of beech are generally small 

indicating their immature stage compared with even-aged spruce. The relatively high 

mortality rate of spruce suggests it is susceptible characteristic when it is facing climate stress. 

This discovery supports previous studies on the responses of beech and spruce to climate 

change (H. Pretzsch et al., 2020; Pretzsch et al., 2014; Rukh et al., 2020; Schäfer et al., 2017; 

Vacek et al., 2019). As spruce presents better resilience and resistance in the admixture with 

beech, our results reveal a transition of our forest from a monoculture spruce forest to a 

mixed coniferous forest in order to restore and protect forest sustainability due to recent 

frequent climate stress in Europe. Norway spruce is considered as a native species in Europe 

and has experienced unprecedented declines in recent decades (Kolář et al., 2017). Beech 

belongs to the most socio-economically valuable European forest species and has become a 

forest management strategy to sustain the European forest ecosystem. In the current European 

forest ecosystem, even-aged spruce monocultures have been transformed into a more stable 

mixed coniferous and deciduous forest, where beech is the dominant species (Pretzsch et al., 
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2014). Mixed stands of Norway spruce and European beech have the potential to mitigate the 

economic effects of climate change (Paul et al., 2019). Moreover, mixed tree species are 

expected to diversify stand structure with higher species, spatial and age structures to mitigate 

climatic change's negative effect (Vacek et al., 2019).  

Forest structure metrics, leaf area index (LAI), centroid (Cx, Cy), and radius of gyration (RG) 

were used to describe and understand the Graswang forest vertical structure. The centroid and 

RG showed a statistically significant positive relationship with LAI, indicating the forest has 

more plant area volume at the canopy layer than the understory. This finding also supports the 

notion that the parameters of vertical forest structure are related to each other. The estimation 

of LAI is lower than the expected range. A possible explanation for this is the elder forest age, 

low water availability, high mortality rate and method instrument error (TLS). The bias of 

LAI estimation is mainly due to water limitation and tree mortality. The drought event has 

largely limited water availability in Europe (de Brito et al., 2020) and causes elevated tree 

mortality (Brienen et al., 2015; Hubau et al., 2020). Both consequences can lead to a decline 

of LAI in the forest growing season (Baghalian et al., 2011; Hiltner et al., 2020; Ogaya et al., 

2015; Schleppi et al., 2011; Süßel and Brüggemann, 2021).  

In order to understand the cause of fPAR variation, a multiple correlation analysis was 

conducted between LAI, tree species, mortality rate and fPAR. The statistical tests in Chapter 

2 revealed a significant positive correlation between LAI and fPAR and are consistent with 

previous studies (Dawson et al., 2003; Hu et al., 2020; Mukherjee and Sarkar, 2016; Ogaya et 

al., 2015). This finding is contrary to our hypothesis, where larger fPAR indicates canopy gap 

and thus higher LAI. Therefore, high fPAR cannot be conclusively kinked to a more 

significant canopy gap in the forest, and further analysis is required to confirm the gap 

existence, such as the canopy height model. The significance confirms the interaction 

between these two biophysical variables. Tree species also found an effect on fPAR, whereas 

mortality shows a minor influence on fPAR. Coniferous and deciduous trees have different 

clumping factors and leaf angle distribution thus the PAR absorption abilities are 

different(Chen et al., 2005; Zhu et al., 2018). As deciduous trees have higher clumping index 
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than coniferous trees, they absorb more PAR than their coniferous counterparts, resulting in 

higher fPAR. The result of minor influence or no influence of mortality on fPAR has differed 

from previous research where fPAR is strongly negatively influenced by tree mortality (Jiao 

et al., 2020; Ogaya et al., 2015). Both previous studies used satellite-derived fPAR data, and 

the analysis time periods were over a decade. The mortality rate was measured annually 

during the term. In Chapter 2, we used in situ fPAR data and the mortality data was only for 

one year. The contrary conclusion of mortality effect on fPAR could be due to the spatial 

scale extent, temporal length, the type of fPAR data sets, or the forest selection.  

3.2 Future Work 

This thesis is based on the foundation for many other studies. LAI has mainly been estimated 

through the indirect method as the traditional methods are labour intense and time-consuming 

regardless of their accuracy. Many indirect methods have proven their usefulness in 

measuring LAI and their accuracy has been widely studied (Černý et al., 2020; Goude et al., 

2019; Küßner and Mosandl, 2000; Yan et al., 2019). LAI-2000 and DHPs are the general 

ground-based methods used currently, and DHP has been used as a reference for determining 

other indirect methods' accuracy (Jonckheere et al., 2004; Zhu et al., 2018). In Chapter 2, we 

used both TLS and DHP and found the LAI result from DHP was within the TLS estimation. 

However, DHP presented a closer LAI range to the hypothetical forest LAI than TLS. Future 

works is needed to assess TLS performance for LAI estimation in a mixed coniferous forest.  

In the correlation analysis between LAI and fPAR, our results support previous studies and 

suggest the usefulness of in situ WSNs in PAR measurement. However, the PAR datasets 

from WSNs are not fully continuous. Incomplete data reveals the issues with the outdoor 

performance of WSNs. Hence, the outdoor implication of WSNs and their performance 

evaluation in collecting continuous data require further study. Although our analysis of the 

LAI effects on fPAR presents consistent results with previous studies, the sample size for 

both datasets is limited to 16 due to the number of WSN nodes. A more detailed relationship 

could be explored with larger sample size. As the estimation of LAI and fPAR are related to 

tree mortality, a yearly recorded mortality in the forest can be used to analyze whether tree 
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mortality can influence the relationship between LAI and fPAR. In addition to the response of 

tree mortality to climate stress, we could further investigate how fPAR and LAI response to 

severe climate stress thus provide a useful solution for mitigating climate issue. 

LAI describes forest structure through leaf area and fPAR quantifies the light absorption 

across an integrated plant canopy. Combine both biophysical variables, we can assess the 

forest function such as primary productivity and estimate the assimilation of carbon dioxide 

in vegetation using sufficient models. This thesis states the importance of LAI and fPAR and 

further investigated the interaction between each other. Chapter 2 suggested a coincident 

performance between satellite and in situ instrument in estimating biophysical variables in a 

mixed coniferous forest. The contrary result of mortality effect on fPAR brought the further 

investigation and experimentation into the role of tree mortality in climate mitigation. 
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