.*' of Canada du

nationale

Canadian Theses Service Service des thises canadiennes

Otawa, Canada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the
g:ality of the original thesis submitted for microfilming.
very efiort has been made to ensure the highest quality of

reproduction possible.

g\e are missing, contact the university which granted
ee.

SOm:araoes may have indistinct print especially i the
orig: pages were typed with a poor typewriter nor
it the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-330 . 0000 ¢

AVIS

La Tnalité de cette microforme dépend grandement de la

qualité de la thése soumise au microfilmage. Nous avons
:901 fait pour assurer une qualité supérieure de reproduc-
ion.

S'l manque des pages, veuillez communiquer avec
runivers’i‘t? Qui a contéré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylogra-
phiées a 'aide d'un ruban usé ou si funiversité nous a fait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise A la Loi canadienne sur le droit d’auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canadia

The University of Alberta

MANAGING DESIGN INTERACTIONS
WITH CONSTRAINT PROPAGATION
IN AN OBJECT-ORIENTED IC DESIGN ENVIRONMENT

by

Tai A. Ly

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Master of Science

Department of Electrical Engineering

Edmonton, Alberta
Spring, 1989

Bel St B Ganada” " one
Cenadian Theses Service Service des thdses canadiennes

Ottawa, Cansda
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous queique forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L’auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

18BN 0-315-52842-7

Canadi

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Tai A. Ly

TITLE OF THESIS:
Mana%ing Design Interactions With Constraint Propagation
in an Object-Onented IC Design Environment

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science
YEAR THIS DEGREE GRANTED: 1988

Permission is hereby granted to The University of Alberta Library
to reproduce single copies of this thesis and to lend or sell such copies
for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis
nor extensive extracts from it may be printed or otherwise reproduced
without the author’'s written permission.

Signed) ..« 7. e
ermanent A :
2023 - 52 Street
Edmonton, Alberta
Canada T6L 2G9

Dated 6 April 1989

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to
the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled
Managing Design Interactions with Constraint Propagation in an Object-
Oriented IC Design Environment submitted by Tal A. Ly in partial fulfillment

of the requirements for the degree of Master ot Science.

.......... El ..

Supervisor

/;}avk))%v-“wh/w

Date
Aoril €,1987

ABSTRACT

in IC designs, hierarchical design techniques are widely used to manage
the complexity of the design tasks. However, purely top-down or bottom-up
design approaches often lead to poor designs because low-level characteristics
and high-leve! specifications do not interact. Better designs are achieved if the
bottom-up characteristics of critical components of a design are used to guide
the top-down specifications of the other components in the design. This has
been referred to as the "least-commitment” strategy of design. To support
least-commitment designs, an IC design environment must manage complex
interactions among different components in a design.

This thesis investigates constraint propagation as a mechanism for manag-
ing such design interactions. Specifically, an object-oriented framework of con-
straint propagation which manages arbitrary design interactions and supports a
least-commitment IC design is presented.

There are two major contributions in this constraint propagation framework.
First, it is hierarchical. Constraint networks are organized in hierarchies that
paraliel the design hierarchies to take advantage of inherent structures in IC
designs. As soon as design characteristics become available, they are pro-
pagated up the design hierarchy and compared with specifications at various
levels. This provides design checking in a global context. Second, this con-
straint propagation framework is object-oriented. Propagation knowledge is
encoded in procedures of abstract data types and inherited by other types in
the system. New kinds of constraints are easily added to this framework and
arbitrary propagation behavior can be defined by redefining the default pro-
cedures.

This framework has been implemented in an integrated design environment
named STEM (SmaliTalk Environment for Module design) which was developed
under a related project. Three sample applications making use of constraint pro-
pagation have also been implemented. These are presented in t.is thesis to
demonstrate that constraint propagation is a powerful mechanism for managing
arbitrary design interactions in an object-oriented IC design environment.

iv

Acknowledgements

| would like to thank my supervisor, Emil Girczyc, for his guidance and sup-
port, and for his heroic work on STEM that provided the platform for this
research. | would like to thank Ron Miller, who implemented the Spice interface
in STEM and cleaned up a lot of code in the system, and Kent Richardson, who
helped implement the initial version of STEM. Last but not least, | thank my
wife Christina for her love and support through my graduate school years.

Table of Contents

Chapter
Chapter 1. INrOQUCHONccceicveicriiisssnnsssnnisssansssssenssssssssssessosssscasensessanaesens

1.1. The Least-Commitment Strategy of Designc.ccceeeverreiecruncncranens
1.2. integrated IC Design Environmentsccccceecrecnseccsansssansansessennssas
1.3. Constraint Propagationcccceceeicrcsniessansinsnnessnssssssescnsssssnssssnsens
1.4. Overview of Thesiscceevveeeee .. . © eeeseeresensseeesseasaenns srenes
Chapter 2. Rel&ted WOTKcccccceeerieerersrrnneereieccecsssnseneneersessan: vees.

2.1. Constraints in IC DBSIGNScccceeerereicrrrnecsereeccsseneesseseessnsrsnsnsessssessns

2.1.1, BIOCIET ..ccoeiiiiriesiiniciiinnnnisnnctiessesesessssnsssessassssaessssssnesssssonanssssssnsas

2.1.2. VEXEDucociiiiriccisneninetinnicsnisnssnsssnsessisssanssssessassosssssassasassssessssssnse

2.2.3. THINQGLAD ..coucrverereescessiessesssessssasesssssssessssssssssssssssssssessossssssssssnoses
2.2.4, CONSTRAINTSoorcriiirnrrncnnencnsnnssasssesssssssssssssssanssosessasssansssas
Chapter 3. STEM: an Object-Oriented IC Design Environment
3.1, INMPOTUCHIONccueeeiiinniiriniisninecisincanesansssnssanssseessssssessaesesssanssnassanosassns
3.2. ROLAtOd WOTKccoconiiennnrcnnreseninssnnecssessssesssnesassssasnsssacssssssssssasssssnsas
B.3. STEM ..aaeeiircenennicnniescssissasassssssssassasssssissassssesssessesssessassnsasssassssesseses
3.3.1. Mod@I-VIeW-CONIONENcccvnermrncerccrsscrcsissnssssssarsensossnssssssssessssnns
3.3.2. Design Representation in STEMc.ccovceicncnnnsecsennscnsecssncseesuenes
Chapter 4. Constraint Propagationc..ccceeerereeene e

vi

4.1. ConStraint NGIWOTIKScccevieecnnnennncntensntnsicssansssncssnossssssassssacsaness 19

4.1.1. Variable ODJOCEScccviniicniicsisnncsnsnnreesineninissunsnsersssnssnossesssssees 19
4.1.2. CCIBITRIN ODJOCISecerrerrrrernressnasssessenssssessssnsessssssssnsssassssansnes 22
4.2. Constraint PrOPAGELIONcccccvrvensecreessnsanssnessureessesnsancsnsssssnssscssssas ne 24
4.2.1. Propagation SChedulingc...cccevervennnnniniees sesneessinssnncsenssacsaneas 26
4.2.2. Tormination Criteniacccoceevemiineisennsneensnnnnicrnnsssrsscssssnessanssannes 29
4.2.3. CONSraint VIOIBHONccccceviceeenisniesrunneeseessessnnessnnsnnssissonsssssssssssaces 31
4.2.4. Justification for Variable VaIUBScouievverinrniiicceiisienicsecaen 32
4.2.5. Addition and Deletion of CONstraintsccccceciinicnnrisenicennnne 35
Chapter 5. Integration of Constraints in STEMc.ccccovrnivicnnicniinnnnnne 38
5.1. Hierarchical Constraint Propagationccccceceeerercinieercceissscessnsssannes 39
5.1.1. Implicit Constraint Vanablesccceeueneenrecnresinsecnsscsiscseenen 42
5.1.2. Scheduling of implicit Constraint Variablesc.cccvcrevucuncene. 44
5.2. Violation HaNAUNGcccovceririniineecnencsisinrennensiessssssssssanisssansscssssosses o 45
5.3. Constraint Cre@tioncccoceeecenrininniesenssiissnisesssesanssnssenssssssasasssssass 46
5.4. Constraint EQIOrcccccveeineerininnuiiniiiieninicsenissssissssessssessaessssseses 47
Chapter 6. ConsistenCy MaiNtBNANCEc..coeeureeeieesenrssnnscarsesscssnessssessens 49
6.1, INIPOTUCHIONccecccccsencnerercocsesrenaesesassssneeressssssnsaresessansssnssaessassssasassesssanss 49
6.2. Application Interface: Related WOrKcienicninnniinnciinsacsnnannne 50
6.3. STEM's Approach to Application Interfacecccceivrccnriensccneacee. 51
6.4. Apphcation INtBrfACEcceeireerenrnccnnnencninsineinessecsnsessscsssissnessnsnnens 83
6.4.1. Internal AppHCation Programsccceeeeeinenecrncienonecssnssencsssssncens 54
6.4.2. External Application Programsccccceeeienninessecssnnsssnrcsecncssnecanees 56

vii

6.5.1. Internal Consistency MaIMONANCEceieeereereansnnssaessessnsansss 59
6.5.2. External Consistency MaIMENANCE ccccerveerrinniccenaensessnniasen 61
6.6. SUMMABIY ...cccvueermnserscstmessssssssesssssnmassssessasssssasisssossonsssssestsssasestassssassess 62
Chapter 7. incremental Design ChecKingccccivicecinsnnisnncsnniecsenienee, 63
7.1. SIGNAI TYPESooevevernercnisuinsussenisessssssssassssessassnsasassassassasssstsssnssssssssonses 64
7.2. BOUNGING BOX ..v..cveenvccssannssssssssssssssesesssssssassssssnssssssssssssssssssssssssssasissss 70
7.3. DOIRY .ccounriunnn crerenssessssnssssasssssssssssasssssssssenssssssssecsrmasssssssissaes s s s Res 74
7.4, SUMMBLY ...cooveecercacssrsnccssississesmsnssesssnssssssssssssssssarassassasensassssssssassssssisssnes 78
Chapter 8. MOGUIR VERARIIONcccumsmesenereussmsssnssssssssssssnssssssssssens s 80
8.1. Module Selection by Generate and Testcccveveeriesencnrisisnsenen 82
8.2. Techniques for Efficiency Improvementccccveecrvccsrecnssensnanes 83
8.3, SUMMALY ...ccccoivunmrencsmsessissnsasssasssentsnsnssessssssassssssarsssaassssssossasssssisassssasens 87
Chapter 9. CONCIUSIONcceceeevvurserunsrsssessssssnsssnnsssnsrsssssassnssnsssssstssssasasseses 88
0.1, SUMMANYccuceirenceniriniesinissnsisseimsssssssnssssssssassissssmasssasstonssssssssessssnsassnses 8h
9.2. DISCUSSIONSc.cereereneerscssassserssssscsssessnessasssesssssssnssssssnsasassssssnsssasssssnonaess 89
9.2.1. Distinctions from Previous WOrKc.ccoeervecniesssisisscssecsnssensionnes 91
9.2.2. COMMONTS ON STEMccciverrcineccrnsnnnsnnssusansaesansansasssssanssssasssassssens 92
9.2.3. Limitations of STEM's Constraint Propagationc..cccecceeccrcneeen. 93
9.3. Suggestions for FUtUN® WOTKcccccenereriisisessnisnssnsaensanenssnsssansans 94
ROTOIONCEScooceiciernirircsniisnnisssnsessssssasssnssansnssssassansssnssssssntsssasesassssnssanses 97

viii

List of Figures

Figure Page
3.1 The Model-View-Controller CONCOPRcccieeinranicsennenssnnnssannsenersesanee 15
3.2 STEM's two-level model of the design hiGrarshycccccecncccnsencae 17
3.3 Dual instance variables in cell classes and cell instances 18
4.1 VEAADI® STUCIUIEcccccorimenniirninenniitniinesersiessnssniessssssssssosssssssarssssess 20
4.2 Code segments for setTOJUSHACEHION:cccoverveereiniciccnnneriiieniisnnens 21
4.3 Code segment for setTo:constraint justification:cccccceeniennciannne 22
4.4 Propagation and satistaction methods for EqualityConstraint 23
4.5 Constraint propagation in 8 SiMple NBIWOIKcccceeeicnenennesnneinesens 25
4.6 Code segment of constraint checking for visited constraints 26
4.7 Scheduling of functional CONSIFRINSccocerrerceerescrssasensicsssssssacens 27
4.8 Code segment for propagating scheduled constraintsc...... 28
4.9 Cyclic constraints and their propagationcceceectniccscnnenncesesneene 30
4.10 Code segments for the default violation handlerccccccecrivnnnecnen 32
4.11 Code segments for antecedentscccceueeenieiiiiceninecnsenenaninnsaas M
4.12 Code segments fOr CONSBQUBNCESccceeeeciserisnsisestasssssarssansans 35
4.13 Code segment for adding & CONSrAINEcccorveoneretsssnriasssuisesscans 36
4.14 Code segment for removing & CONSIraINtcceceetiniscnessncaccsensens 37
5.1 Two level hierarchical constraint NEIWOIKScccccevemmecnicsicesencees 39
5.2 Example of a hierarchical constraint NEtWOrKcccccvuvernissniecannees 41
5.3 Code segments for implicit CONStraints propagationcoeevueeeenes 44
5.4 Screendump of Constraint EGHOMSccooememvnsnnicnnicreniisencuiencnnen 48

ix

6.1 Declaration and methods for PropentyVanadleccecemeeersccnnnnes 52

6.2 Buiiding a 5-bit Adder with a GraphCompliercoceveeenssnnssssiconnns 85
6.3 SpiceNet, SpiceSimulation and SPICOPIOLc...ceuuecuerussiaissnssseas: 58
6.4 User-specified EqualityConstraint in initialization methodc.cccceeennce 60
7.1 Exampie of bit width constraint VIOIBHONcccvreimiicsicnsesiicsisesannses 86
7.2 SIGNAI yP® IOTRICHIEScureeeesseemssssssssssumsssssssssssssssssssmsssssssssssssssssssnses 66
7.3 Type iOrarchy 108t MEINODS «..........ccocumsmmmmmssmssssmsnssssessessssssssmsssnssssssssaes 67
7.4 Code segments showing signal variable overwrite rule 68
7.5 Signal type constraints due 1o different coll INSIANCESccceecuveuenune: 69
7.6 Screendump showing stretching of io-pins 10 bounding DOX 70
7.7 Code segments f0r DOUNDING DOXcccceeerermmeranenssemsnsnsasistsssnsasainansees "
7.8 Subcell bounding box updates parent bouNding BOXce.ccuseesessseuees 72
7.9 ASpectRatioPredicate DefIItIoNccceiieniuniccssscnsnssnsassssnscnsennes 73
7.10 T GORY MOOB! .ovv.evveerseeresessenscssesssssssmsssesssssssssssssssssasessssssssssesssness 74
7.11 Dual delay variables in cell class and inStANCESccccevcecrumisernine 75
7.12 Hierarchical delay paths and delay CONSIFRIMSccoeeueeensccsnaens 77
8.1 Example of MOduI SRIBCHONcccceceurminiccnsmsrenessmssasusasnsssasasasacnans 81
8.2 TSt MBLAOGASccoeereerenecrisansnmssnsasuessessesaenssssssssassssnssssssssnssasssasssasssnssusass 84
8.3 Code 10r MOTUI® SOIBCHONccceeeeircueraissnecsicssssssssisonsessansssassssasssons 85
8.4 Generic class with properties for S8Arch pruniNgceeeeeeeenccsncsneees 86
9.1 Two level higrarchical CONSIraint NEIWOIKScccccieeiiennirncascnnconiaces 91

Chapter 1. introduction

In integrated circuit (IC) designs, hierarchical design techniques are widely
used 1o partition a design task into several smaller tasks, each of which is simi-
larly partitioned in turn. In a purely top-down approach, designers start with ini-
tial cell specifications, successively decompose the oell into smalier cells and
define their interfaces by additional specifications, until the leal celis of the
design hierarchy consist of simple components which can either be designed
<irsctly or implemented using fibrary celis. In a purely bottom-up approach,
small celis are successively combined into larger celis, whose characteristics
are functions of their ccmponent celis and interconnects, until a cell which
satisfies a!l design specifications is obtained. These hierarchical design tech-
niques reduce the compiexity of design tasks by limiting the interactions among
componerds in the design. This trades off design quality against design time.

With the advent of design environments and efficient design tools, it is fas-
ter and easier 10 iterate the design process and explore different design alterna-
tives. This in turn increases the demand for design environments to do more
than traditional design management tasks and provide more methodology sup-
port. Most design environments support and encourage hierarchical design
methodologies, especially top-down hierarchical design, which offers fiexibility
in high-level design decisions and is therefore advantageous for design expiora-
tions. Unfortunately, these high level decisions are often poorly evaluated
because hierarchical designs lmit interactions among design components.
Specifically, low level design characteristics o components are not considered
in higher level specifications of interacting components. This increases the
number of design iterations, in which design characteristics are used to corect
previous high-level decisions, resulting in new specifications that often require

2

major redesigns. A better design process wouid use low-leve! design charac-
teristics much earfier in the design cycle.

The main motivation behind this research is to provide design environment
support for an alternative design methodology, the "least-commitment” strategy
of design, in which low-level design characteristics interact with higher level
design specifications. In order to do this, the design environment must manage
complex interactions among characteristics and specifications of different design
components. Towards this end, this thesis investigates a framework of con-
straint propagation for managing such design interactions in an object-oriented
IC design environment.

The following sections provide background information on the least-
commitment design strategy, IC design environments and constraint propaga-

tion.

1.1. The Least-Commitment Strategy of Design

Mixing top-down specifications with bottom-up design uses low-level
characteristics early in the ‘esign cycle to guide high-level design decisions.
The critical parts of a cell are designed first in considerable detail, which then
guide the refinement of design specifications for the rest of the cell. This stra-
tegy of deferring design decisions for as long as possible has been referred to
as the "least commitment"” strategy of design ([Stef81] [Mitc85]).

For example, if the critical delay path of a cell has two subcells, top-down
design would assign estimated delay specifications to each of the two subcells
such that their sum satisfies the overall delay specification. The two subcells
are then designed independently. The fact that the delay of one subcell may be
less than its specified delay is r-ot used to relax the delay specification for the

3

other subcell until design backtracking, when some specifications cannot be
1vet. On the other hand, the "least-commitment” strategy of des.gn would only
require that the sum of delays of these subcelis satisty the overall delay
specification. The delay specification of each subcell is not "committed” until
the characteristic delay of the other subcell is known. The bottom-up charac-
teristics of a subcell are used as soon as they become available to refine (impli-
cit) specifications of other, related subcelis.

1.2. Integrated IC Design Environments

integrated IC design environments aim to provide systems in which design
tools can be easily integrated. Most design environments manage a central
design database, from which different tools obtain their required data. Due to
the diffsrent design representations required by different design tools, multiple
views of a design must be provided by the environment. For exampie, while a
design rule check (DRC) tool views a design as a set of rectangles in different
layers, an electrical simulation tool views a design as a set of interconnected
electrical components (e.g., transistors, capacitors, resistors). The interface
between the design database and design tools must maintain data consistency
among different representations of a design, allow concurrent execution of
design tools in the environment (e.g., concurrent editing of a design in two
separate windows), and facilitate the development and integration of new
design tools.

In order to support a least-commitment design strategy, an integrated IC
design environment must manage interactions among specifications and
characteristics of different designs. One approach to managing these interac-

tions is to declare explicit constraints among cells, and use propagation of con-

straints to resolve design interactions.

1.3. Constraint Propagation

Constraints are representations of relations that must be true. The power
of constraints lies in their capacity to specify consistent value sets for variables.
For example, while one equality-constraint can specify that three variables have
equal values, the procedural representation of the same relationship is more
involved (e.g., checking for equality in the access functions for each variabie).
Whenevar values are assigned to variables, constraints on these variables are
checked to ensure that these value assignments maintain a consistent set of
variable values. Inconsistent variable values manifest themselives as constraint
violations, which require either constraint satisfaction routines, or user interven-

tion, to restore consistency in these variable values.

Constraint propagation is a process in which knowledge about a constraint
is used to infer variable values from the values of other variables in the con-
straint. For example, in order to maintain an equality constraint among a set of
variables when a value is assigned to one of these variables, one can simply
set all other variables to the same value. These value assignments in tum
trigger further value assignments by other constraints, anc. the effects of the ini-
tial value assignment may be propagated to arbitrary distance. This propaga-
tion of constraints is inherently an incremental process, in the sense that only
those parts of the constraint networks that are affected participate in the propa-
gation. This data directed computation is an important property in an interactive
design environment, in which design feedback and system response are both
important.

1.4. Overview of Thesis

This thesis presents an objuct-oriented, hierarchical framework of con-
straint propagation in an integrated IC design environment. The framework
manages arbitrary design constraints, and supports a least-commitment strategy
of IC design. I is implemented in STEM (SmaliTalk Environment for Module
design) [Girc87] using Smalitalk-80 [Goid83]. Sample applications of constraint
propagation have been implemented to demonstrate the feasibility of the propa-

gation framework.

The organization of this thesis is as follows. Chapter 2 surveys related
work in the fields of integrated design environments and artificial intelligence.
Chapter 3 presents a background overview of STEM, with emphasis on STEM's
model-view-controller construct and its two level model of the design hierarchy.
Chapter 4 describes the details of the constraint propagation framework.
Chapter § discusses STEM's integration of this propagation framework and the
hierarchical implementation of constraint propagation. Chapters 6, 7 and 8
each present a different type of sample application that makes use of constraint
propagation in STEM. Finally, chapter 9 summarizes this thesis and concludes

with suggestions for future research.

Chapter 2. Related Work

This chapter discusses past research in two major areas related to this
thesis. Section 2.1 surveys the use of constraints in IC designs. Section 2.2
surveys constraint propagation systems in artificial intelligence (Al) research.

2.1. Constraints in IC Designs

Many design problems can be formulated as constraint satisfaction prob-
lems. Low-level IC designs routinely use linear inequality constraints on posi-
tions of layout objects. For example, graph-based compaction aigorithms build
vertical and horizontal constraint graphs, soive for the maximally constrained
paths in the graphs, and then assign node positions to satisfy all constraints in
the graphs. Constraint layout languages like Igloo [Pulv87] also incorporate
similar linear inequality constraints in procedural layout languages to facilitate
the definition of technology independent, parameterizable layouts. Two notable
IC design systems that make use of constraints are Electric [Rubi87] and
VEXED [Mitc85).

2.1.1. Electric

Electric [Rubi87] is an integrated IC design environment which incorporates
many tools for (primarily) layout design. Electric contains a hierarchical, linear
inequality constraint system that supports manual design layout. In this system,
the user textually or graphically enters linear relations for X, Y coordinates of
different geometric objects in the layout. For example, to keep center points of
two rectangles at the same "height" in a layout, an equality constraint can be
specified on the Y coordinates of these two points. These constraints are
treated as properties of wires in the layout, and are stored in the design

7

database as design data. As the layout is manipulated, a constraint satistaction
routine incrementally solves the constraint networks in a hierarchical manner,
performing compaction or decompaction of cells to satisfy connectivity con-
straints, layout design rules, and layout constraints specified by the designer. A
textual report of the constraints on selected objects and the present values that
satisfy these constraints is generated on demand. This combines quick, graphi-
cal layout entry with flexible, textual parameterization of these layouts using
constraints.

However, while layout constraints involving only linear inequalities can be
solved with constraint satisfaction, constraints in general include many other
types of relations that are not easily solved by any single satisfaction algorithm.
For example, the constraint that a component must be centered between two
others cannot be expressed in terms of linear inequality constraints in Electric’s
constraint system [Rubi87].

Electric also provides a Prolog language interface through which users can
access a Prolog interpreter. While this provides a gateway for user defined
constraints and (Prolog) propagation of these constraints, it does not provide a
system wide support for integrating constraint propagation into other design

tools in the environment.

2.1.2. VEXED

VEXED [Mitc85] is a knowledge-based consultant for VLS| design. The
system makes recommendations for design refinements based on functional
specifications. VEXED embodies three categories of knowledge: implementa-
tion, control, and causal knowiedge. Implementation knowiedge encodes the

legal implementations for typical design specifications, and control knowledge

guides the design process by ranking the merits of alternative design steps at
any given stage. The causal knowiedge is used to propagate information about
circuit behavior and design constraints from one parn of the circuit to another.
This causal knowledge is embodied in CRITTER [Kell84), which propagates and

checks constraints on value, encoding, and timing of signals.

The CRITTER system is a knowledge-based system for automated critiqu-
ing of digital circuit designs. The system works with signal specifications and
behaviors that are represented by functional mappings on data-streams.
CRITTER analyzes only functional correctness, timing robustness, and speed of
a circuit. The input/output mappings of circuit modules are represented as
explicit equations for each "feature”, and propagation of signal behaviors is
accomplished by substitution operations with aigebraic simplification. Signal
behaviors are propagated forward, while specifications can be propagated back-
ward, by the equation substitution process. The signal behaviors are compared

with their specifications and a critique of the circuit is generated.

Besides incorporating CRITTER for managing signal constraints, VEXED
also incorporates the BULLDOG [Roac84] system to manage constraints on
design layouts. VEXED supports a least-commitment strategy of design by pro-
pagating design specifications and behaviors. However, it does not appear to
have a unified framework of constraint propagation by which arbitrary exten-
sions to the constraint system may be easily implemented. As a result, each
separate subsystem in VEXED would have to replicate general knowledge
about constraint propagation, and interactions among different subsystems
would require additional knowledge about different constraint systems in these
subsystems.

2.2. Constraint Propagation in Al

Propagation of constraints as a general analysis method has been used in
both analysis programs (EL [Suss 75, Stali77]) and synthesis programs (SYN
[Klee78), MOLGEN [Stef81]). ThingLab [Born77) uses constraint propagation in
interactive, graphical simulations of systems. Constraint-based programming
languages like CONSTRAINTS [Suss80] facilitate the explicit modeling of

interactions among components in "nearly-decomposable” systems.

2.21. EL

EL [Stall77)] is a knowledge-based system for analysis of electronic circuits.
It solves the voltage and current values of electrical nodes in a circuit by the
method of constraint propagation. Initially, the system picks a node and intro-
duces variables to be the node’s voltage and current. Forward chaining of rules
determines the voltages and currents of some other nodes in the circuit in terms
of these variables. Whenever there is no more applicable rules, the system
picks another "unknown" node and introduces new variables. A "coincidence"”
occurs when a node which already has a voltage (current) is assigned a new
voltage (current). The equation involved in a coincidence can be a tautology, a
contradiction, or neither. If it is a tautology, nothing is done; if it is a contradic-
tion, backtracking is invoked to change some assumed states of non-linear dev-
ices; if it is neither a tautology nor a contradiction, the system solves for one
variable, possibly in terms of other variables, and eliminates this variable
throughout the circuit.

Constraint propagation in EL involves the derivation of algebraic expres-
sions for e.ectrical voltages and currents across circuit elements. By propagat-
ing expressions with variables, solving local systems of equations, and then

10

eliminating solved variables throughout the circuit, the system imitates the way
human experts analyze electrical circuits without being bogged down by an
intractable system of algebraic equations. Furthermore, EL stores dependen-
cies of propagated values for the purpose of explanation as well as
dependency-directed backtracking.

2.2.2. MOLGEN

MOLGEN [Stef81] is a hierarchical planner that plans experiments in
molecular genetics. It uses constraint posting to manage the interactions
among its nearly independent subproblems during the planning process. Con-
straint posting involves three major operations on constraints: constraint formu-
lation, constraint propagation and constraint satistaction. MOLGEN dynamically
formulates constraints as commitments of the design process. These con-
straints are propagated by the creation of new constraints. Constraint satisfac-
tion in MOLGEN is achieved either by searching its database for an object that
satisfies the constraints, or by solving a subproblem of building such an object.

MOLGEN's constraint propagation operators rely on syntactic matching of
the constraints, which leads to its inability to handle constraints other than those
in its limited vocabulary. Again, general propagation knowledge is buried in
knowledge about specific constraints, making it difficult to incorporate new types

of constraints in the system.

1

22.3. ThingLab

ThingLab [Born77) is an interactive system, written in Smalitak-72
[Gold76], that provides an environment for constructing simulation systems.
Each ThingLab object has a list of properties, which describe both the object’s
intemmal state and its protocols for sending and receiving messages. Constraint
properties of a ThingLab object restrict the behavior of the object. The con-
straints of an object, like all other properties, are i:h:erited by descendents of
the object. When a constraint is added or ~dited. Thinglab finds those con-
straints that may be affected, and sends niessages to them requesting methods
for satisfying them. The system chooses and sets up these methods, and ord-
ers the constraints and the objects to which they apply in such a way that each
object can be updated in turn to satisfy its constraints in one pass (the "one-
pass method") [Born77]). For more complex constraints not directly solvable
with this method, the method of assumed states and the relaxation method are
tried.

ThingLab provides facilities for incrementally compiling constraints, and a
graphic interface controlled by the constraint network. However, since
ThingLab does not distinguish between classes and instances, it apparently
does not permit the abstraction of constraint networks. Although ThingLab
objects inherit properties in an arbitrary abstraction hierarchy, the constraint net-
works in ThingLab are fiat.

12

2.24. CONSTRAINTS

CONSTRAINTS [Suss80) is a language for expressing aimost-hierarchical
descriptions. It is an interactive system organized around hierarchical networks
of constraints. Constraint propagation invoives the propagation of values in the
constraint networks. The system provides a set of primitive constraints from
which compound constraints can be constructed. Each compound constraint
then serve as a syntactic abstraction of its corresponding network of con-
straints. Dependency information is kept with propagated values so that depen-
dency analysis can be used to track down all antecedents of a propagated
vaiue as well as all consequences of a value. When simple constraint propaga-
tion fails, algebraic manipulation and the method of multiple redundant
viewpoints (the slices) [Suss80] are used to resoive the networks of constraints.

However, CONSTRAINTS does not allow definition of new primitive con-
straints, thus seriously limiting the kinds of constraint networks that can be con-
structed in the system. Furthermore, while compound constraints provide a
concise notation for complex constraint networks, they do not really reduce the
computational complexity of the underlying networks. Just before propagation,
each compound constraint is dynamically expanded to its component networks

of primitive constraints.

Chapter 3. STEM: an Object-Oriented IC Design Environment

This chapter! gives an overview of STEM (SmaliTak Environment for
Module design) [Girc87), which serves as the platiorm for this research. STEM
is an on-going project at the Electrical Engineering Department in the University
of Alberta directec bv Dr. Emil F. Girczyc. Hts goal is to integrate design toois
with manual IC designs using the object-oriented programming paradigm.
Interested readers should refer to [Girc87) for additional details on STEM.

3.1. Introduction

IC design environments [Brow83, Girc87] integrate design tools in a uni-
form and flexible framework for IC design as well as the development of new
design tools. Object-oriented programming {Gold83] paradigms are well suited
to the development of such design environments because of their abstract data
typing and hierarchical inheritance facilities. Abstract data types allow grouping
related data and operations on these data into logical entities (classes). This
offers a high degree of program modularity, and is well suited to rapid prototyp-
ing of software systems. Abstract data types are often organized in a hierarchy
of inheritance, by which data and routines may be shared among similar data
types. This encourages incremental refinement of abstract data types and facil-
itates code reuse.

1 This chapter is taken out of the paper on STEM [Girc87)

13

14
3.2. Reisted Work

Typically, an object-oriented IC design envionment represents the library
version of a cell ag a "class” object, which encapsulates all information about
the cell such as its characteristics, simulation files, and layout. Individual place-
ments of the cell are represented by instances of this class, and contain fields
to represent only that information which differs for each placement of the cell
(e.g., location, orientation, and connectivity).

One of the early work in integrated environments, Palladio [Brow83) is an
wntegrated environment that supports different programming paradigms for the
devslopment of IC CAD tools. Palladio allows the definition and refinement of
"perspectives”, which are explicit design representations for different sets of
tools. Perspectives are independent design data in the sense that designs in
Palladio are defined by a (consistent) set of perspectives, and that each per-
spective can be part of more than one design.

Fred [Wolt86) is an object-oriented, procedural database designed for the
support of VLS| designs. Fred accommodates incomplete modules by storing
default values, approximate functions, and dynamic calculations of module pro-
perties. Relations are provided as a means to group modules that satisfy cer-
tain properties. For example, generic relations specify different implementations
of a generic module. Fred also features user defined "dependency”, which exe-
cutes a method whenever a particular message is sent to some modules.

18

3.3. STEM

STEM (SmailTak Environment for Module design) [Girc87) is written in
Smalitak-80 [Goid83], and differs from other object-oriented environments pri-
marily in its emphasis on integrating calculated views with user entered views.

3.3.1. Model-View-Controlier

STEM is based on the Smaltalk Mode!-View-Controlier (MVC' construct
(see Fig. 3.1). A cell in STEM is represented by a single Smalltak class, which
encapsuiates all the essential information about the cell. This serves as the
model. In order to conserve database storage, it is desirable to have as com-
pact a representation of the model as possible. Views and controliers are uni-
directional paths implementing the interface between the user and the model.

YIEW Q‘
USER_or a® €.
APPLICATION ;T
~a /'
CONTROLLER

—& indicates message (direction) of requests for
service or information
©-& indicates data or status information
--> indicates message notifying view of change in model

Figure 3.1 The Modei-View-Controlier Concept

Controliers manage user input. A controlier determines the appropriate
response 1o keyboard or mouse input given the current states of the controlier,

16

the model and the connected view. Due to the object-oriented nature of
Smalitaik, context dependent response to user input is easily achieved. For
example, when the user selects a menu item, the system response is context
dependent in two ways: the associations between messages and menu items in
the controller and between methods and messages in the model.

Views are representations of the model calculated from data contained in
the model. Views translate a portion of the data contained in a model to a for-
mat suitable for further processing or display to the user. To accommodate
different representations, different views can be employed to format the informa-
tion contained in a model in different ways. This separation of data (model) and
representation (view) allows new views to be added independent of existing
views. The model needs to be changed to accommodate a new view only if
new data is required to caiculate the view.

Views and controliers are linked to the model and to each other through
instance variables. This allows views and controllers to obtain data from their
model, and context information from each other.

3.3.2. Design Representation in STEM

Viewed from a higher level in the design hierarchy, a cell in STEM is a
black box which performs a particular function with a certain interface. The cell
interface is defined by a dual declaration of instance variables for each signal,
parameter and property defined for the cell. The first variable is declared as an
instance variable of instances of the cell class. The value of these variables
represent the net connected to a signal or the value of a parameter or property
for a particular cell instance used as a component in a larger design. The
second instance varable is an instance variable of the class object. This is

17

Cilass

instance

Class

Instance

Figure 3.2 STEM's two-level model of the design hierarchy

used to store generic information defining the characteristic limitations of the
variable in this cell. For each parameter, this instance variable contains con-
straints on the range of the parameter, and possibly the default value for that
parameter. For each signal, this instance variable contains the data type,
electrical type, bit width, and intemal connectivities of the signal. This dual
declaration of instance variables allows checking to insure that a cell is correctly
used within larger designs, and plays an important role in STEM's implementa-
tion of hierarchical constraint propagation (Chapter 5).

The Smalttalk inheritance hierarchy is used in STEM to define specialized
versions of a cell as subclasses of the cell (e.g., a ciass ADDER may have
many subc'asses, each of which being an adder design with a different carry
propagation scheme). A subclass inherits all instance variables and methods of

18

Cell Class inst Vars

documentation of
ect containin —> cell creation,
obl functional 9 Documentation editing, authorship,
“”"P'::”‘ of function etc.
ce
structure/ | object containing
dictionary of _Javout list of subcells,
views stored stored views connections
to reduce and layout
recaiculation in1
in2 instance of
10Signal defining
out properties of
cell interface

Structure of Cell Class

cell class
parentCell [~ containing this Instance

transtormation [placement of object

space instance Is to fill
boundingBox =% (,4ed for stretching 10

In1 and compaction)
In2 Net to which signal
is connected
out
Cell Instance

Figure 3.3 Dual instance variables in cell class and cell instances

its superclass (STEM does not use multipie inheritance), and may declare addi-
tional instance variables and/or overwrite inherited methods with specialized
routines. By using instance variables of classes instead of class variables,
values of the inherited variables can be different among different subclasses

and their parent class.

Chapter 4. Constraint Propagation

The constraint propagation system incorporated in STEM is organized
around constraint and variable objects. The system is designed to provide
background coordination for high-level design interactions such as changes in
delay, area and signal types among related cells. At present no facility is pro-
vided for constraint satisfaction if simple propagation fails. Constraints can be
used by both designers and design tools to evaluate alternatives and make
design decisions. This chapter describes a general framework for non-
hierarchical constraint propagation. While this is developed with STEM in mind,
it is general enough to be implemented in any object-oriented integrated design
environment. The next chapter describes STEM specific extensions to this gen-

eral framework that implement hierarchical constraint propagation.

4.1. Constraint Networks

A constraint network is a directed graph in which the nodes consist of
"variable" objects and the edges consist of "constraint” objects. Throughout
this thesis, "variables” will be depicted with oval shapes and "constraints” will
be depected as rectangles with possibly arrowed lines connected to other "vari-
able" objects.

4.1.1. Variable Objecss

A "variable” object (from now on simply "variables") implements an active
storage, or “handie”, for data so that constraints may be specified on variables
independent of their values. Each variable object has a parent field, a name
field, a value field, a constraints field, and a lastSetBy field (Fig. 4.1). The
parent field of a variable points to the object that contains the variable, and the

19

20

name of the variable identifies the field (instance variable) of its parent that
points to the variable. For example, the variable representing the boundingBox
(an instance variable) of the class ADDER has ADDER as its parent and "boun-
dingBox" as its name. The parent field and the name field of a variable provide
a unique path for identification of the variable object.

VARIABLE Object

parent —& object containing this variable

varName |—— name of this variable

value ——p value last assigned to this variable

constraints|—® a list of constraints containing
this variable

lastSetBy [—® justification of this variable's value

Figure 4.1 Variable struc «

The value field of a variable provides storage for the value (or a pointer to
the value) of the variable; the constraints field of a variable lists all constraints
that reference the variable object; and the lastSetBy field of a variable records
the source and possibly dependencies of the current vaiue of the variable (see
Section 4.2.4). Variable objects are instantiated during the initialization of their
parent objects, and are only removed when their parent objects are removed
from the system.

Two basic messages assign values to a variable object:
"setTojustification:"2 (Fig. 4.2) and "setTo:constraint:justification:” (Fig. 4.3).

2 this is a message denotation of Smaltalk's. The colons in the message indicates
the insertion of arguments. "setTo:justification:”" accepts two arguments, one following

21

The #irst messRge is used by every object in the system that is not a constraint.
The intemal Mmethod corresponding to this message checks whether constraint
propAgaton is @nabled in the system. If it isn't, the method simply sets the vari-
able vAlye to the new value. On the other hand, if constraint propagation is
enatpled, the Method initializes data structures, sets the variable value to the
new valye, and triggers constraint propagation. A variable propagates by send-
ing the messaQe "propagateVariable:" (using itself as the argument) to all con-
straints in itS cOnstraints field.

Varigple mathodFOr " assignment’
setTey vAIye jusiification:justification

seX 1asSetBy ustiication.
sell provyaiue valke,

stay, 8 ~ seif pORagate.

Varigpie methodFOr-propagation scheduling’

propggste
sell alConstrainS do:[:constraint
stagus + Consifaint propagateVariable:self.

Figure 4.2 Code segments for setTo:justification:

“The seCoNd message, "setTo:constraint;justification:" is used by constraint
objects 10 assiQn propagated values 1o variables during constraint propagation.
The intemal Mmethod corresponding to this message first checks whether any of
the terMinatioN criteria (see Section 4.2.2) is met. If it is, control is returned;
otherwiSe the Mmethod sets the variable value to the new (propagated) value,

"sette:, and Another following “justification:”.

22

and triggers further propagation by sending the message "propagateVariable:"
to all its constraints except that constraint which propagated the vaiue to the
variable in the first place (Fig 4.3).

Variable methodFor: assignment’
setTo:value constraint:aConstraint justification:justification
... "check for termination criteria” ...

self lastSe1By:(Association key:aConstraint value:justification).

self prevValue:value.

self aliConstraints do:[:constraint |
constraint == aConstraint
WFaise [status « constraint propagateVariable:self.

T selt

Figure 4.3 Code segment for setTo:constraint:justification:

4.1.2. Constraint Objects

The "constraint” objects (from now on simply "constraints") specify asser-
tions on variable objects. Each constraint has an "arguments” field, which lists
at least one argument which is a variable object. The semantics of a constraint
are collectively defined by two methods: "immediateinferenceByChanging" and
"isSatisfied". The first method takes the changed variable that activated the
constraint as the argument. Generally, this method examines the changed vari-
able and assigns inferred values to other variable arguments in the constraint.
The second method tests if a constraint is satisfied by the values of its argu-
ments. For example, for an equality-constraint (Fig. 4.4), the "isSatisfied"
method tests that all non-NIL argument values are equal, and the "immediatein-
ferenceByChanging:" method sets all arguments in the constraint (except the

source variable) to the value of the source variable.

23

When the message "propagateVariable:" is sent to a constraint, the con-
straint is activated. An activated constraint propagates by sending itself the
message "immediateinferenceByChanging:" with the changed variable as the
argument. Subclasses of constraints customize propagation behavior primarily
by redefining the methods "immediateinterenceByChanging:" and "isSatisfied".

Constraint methodFor:'propagate’

propagateVariable:aVariable
T self immediateinferenceByChanging:aVariable

EqualityConstraint methodFor:test’

immediateinferenceByChanging:aVariable

| newValue |

newValue « aVariable value.

self arguments do{ :arg |

arg == aVariable
itFaise:[status « arg setTo:newValue
constraint:self
justification:aVariable.
status isNil ¥True:{ T nil J]).

isSatisfied

| oldValue |

"check all argument values are equal”

oldValue « arguments first value.

2 to:arguments size do{ :index |
newValue « (arguments at:index) value.

TnewValue = oldValkse ifFaise:| T faise]).
true

Figure 4.4 Propagation and satisfaction methods for EqualityConstraint

24

4.2. Constraint Propagation

Constraint propagation is actually the propagation of value changes
through a constraint network. The value changes occur when a constraint exe-
cutes a propagation method (procedure) that assigns values to the constraint’s
argument variables (based on the values of other arguments in the constraint).
The propagation comes about when an active variable activates its connected
constraints and these active constraints in tumn activate their argument vari-
ables. Through constraint propagation, the value change in one variable can
cause changes in remote parts of the constraint network containing the variable.

For example, Fig. 4.5(a) shows a constraint network containing the vari-
ables V1, V2, V3, V4, an equality-contraint and a maximum-constraint. In this
diagram, variables are represented by circles and constraints are represented
by rectangles. The arrows in the edges indicate directionality of propagation.
In this constraint network, the value of V1 must be equal to that of V2, and the
value of V4 must equal the maximum of the values of V2 and V3. In the
diagram, all variable values satisfy their constraints.

In Fig. 4.5(b), user changes the value of V1 to 9. This triggers constraint
propagation (indicated by thick arrow). The variable V1 activates the equality-
constraint, which propagates by assigning V2 the value 9. This activates V2,
which in turn propagates by activating the maximum-constraint. Finally, the
maximum-constraint recalculates the maximum of V3 and V2 and assigns V4

the value 9.

The basic process of constraint propagation implemented in this thesis can
be characterized as a depth-first traversal of a constraint network. Depth-first
traversal is used instead of breadth-first to reduce the amount of intermediate
state information that must be kept during the traversal. The traversal stars

®_ Maxof

v4
(a) 7
v2
s 9
)
@-— MaxOf
)

(b)

Figure 4.5 Constraint propagation in a simple network

with the (external) assignment of a variable by the message
"setTo:justification:", and successively spreads to all constraints of the variable.
Each of these constraints in turn performs its inferences ("immediateinference-
ByChanging:"), and assigns values to additional variables by the message
"setTo:constraint:justification:". Each of these value assignments may trigger

further constraint propagation. Throughout the propagation process, control

altemnates between variables responding to the message
“setTo:constraint:justification”, and constraints responding to the message "pro-
pagateVariable:". All visited variables and constraints are recorded during pro-
pagation. When propagation ends without error, all visited constraints are
checked for constraint violations by sending the message "isSatisfied" to each
visited constraint (Fig. 4.6).

Variable methodFor: assignment’
setTo:value justhication:justification

viskedConstraints do:{ -conetraint |
constraint isSatisfied #Faise{ T sel viskedConstraintViolation J.

Figure 4.6 Code segment of constraint checking for visited constraints

4.2.1. Propagation Scheduling

When a changed variable sends the message "propagateVariable:" t0 a
constraint, the constraint usually propagates inferred values of other argument
variables as soon as possible. This is because the direction of propagation is
dependent on the changed variable that initiated this propagation. Iin an
equality-constraint involving A and B, for example, the value of the changed
variable is propagated to the other variable. If A changes, B is set to A's new
value; if B changes, A is set to B's new vaiue. Propagation is performed in the
first-come-first-served manner, in order that the directionality of constraint pro-
pagation be correct.

However, there are constraints whose direction of propagation is indepen-
dent of the variable that changed. These are the functional-constraints, 0
named because they can often be expressed as a mapping of a tuple of

27

varisbles onto another tuple of variables. For exampie, a unidirectional, arith-
metic constraint expresses one variable (the functional variable) as an arith-
metic function of other variables or constants. The inference method of the
constraint caiculates the functional value from values of the argument variables,
and assigns the resulting value to the functional variable in the constraint. For
these constraints, propagation can be delayed until all argument variables have
had a chance to change. This reduces redundant calculations of transient

results.

An agenda object schedules the propagation of these constraints. In
response to the message "propagateVariable:", a functional constraint
schedules itself for propagation by adding itself to an agenda named #unc-
tionalConstraints (Fig. 4.7).

FunctionalConstraint methodFor:‘propagate’

propagateVariable :aVariable
viskedConstraints add:sell.
(se¥ permitChangesByVariable :aVariable)
MTrue]
agendaScheduler scheduleConstraint:self
variable:nil
onAgendaNamed:#functionalConstraints)

FunctionaiConstraint methodFor:test’

permitChangesByVariabie:aVarisble
“returns false Nf aVariable is my result variable”
T (aVariable == se¥f resultVariable) not

Figure 4.7 Scheduling of functional constraints

An agenda is implemented as a first-in-first-out queue that does not have
duplicate 3lements. New entries are added to the end of an agenda provided

similar entries are not already in the queus.

in general, there may be more than one agenda in the system, each with a
different, fixed priority. Constraints scheduled in agendas are propagated one
at a time, according to the priorities of the agenda they are scheduled in. This
multi-queue, fixed priority scheduling is implemented in the variable method
"setTo:justification.”, which, after initial propagation of un-scheduled constraints,
iteratively selects a scheduled constraint from the highest-priority agenda that is
not empty and propagates it, until all agendas are empty (Fig. 4.8). Each pro-
pagation of a scheduled constraint may trigger additional propagation and
schedule more constraints in the agenda. With this additional degree of control,
propagation can be made more efficient by assigning higher priorities to critical
constraint types such as equality-constraints and update-constraints.

Variable methodFor:propagation scheduling’

propagate

self aliConstraints do :constraint
status «— constraint propagateVariable:sell.
v

[scheduledEntry « agendaScheduler removeHighestPriorityScheduledEntry.
scheduledEntry isNil)
whileFalse{
status « (scheduledEntry key)
propagateScheduledVariable:(scheduledEntry value).
)

AgendaScheduler methodFor:'access’

removeHighestPriorityScheduledEntry

|agenda |

“retumns first entry of the highest priority non-empty agenda”
(se¥ priorityList) do{ :agendaNa.ne |

agenda « self agendaNamed:agendaName.
MBEM iFaise]{ T agenda removeFirst]].

Figure 4.8 Code segment for propagating scheduled constraints

4.2.2. Termination Criterle

The wavefront of constraint propagation may stop at one of two Cases:

1. The propagation method of a constraint does not assign values to any
variable,

2. "'\ ne current vaiue of a variable agrees with the propagated value of the
variable,

Constraint propagation terminates as soon as a constraint violation is
detected. A constraint violation is detected during propagation in one of two
cases:

1. The variable to be assigned a value has aiready been visited in the

current propagation, but has a different vaiue than the propagated value,

2. The current value is user-specified and cannot be modified by con-
straint propagation, but has a different value than the propagated value.

if no violation is detected during constraint propagation, then the process of
constraint propagation terminates when the non-functional constraint propaga-
tion is exhausted and the agenda is empty. This termination is guaranteed in
STEM by requiring that no variable be allowed to change its value twice during
propagation. With this rule, STEM prohibits cyclic propagation of constraints
but not the use of cyclic constraints. For example, in Fig 4.9, three addition
constraints form a cyclic constraint network which cannot be satisfied. Suppose
V1 is assigned a value of 10, constraint propagation (indicated by boid arrows)
assigns a value of 11 to V2 and then a value of 14 to V3, and tries 10 assign a
value of 16 to V1. However, since V1 has already changed its value once dur-
ing this round of constraint propagation, this triggers a constraint violation.

This one-value-change rule is enforced with a global dictionary, VisitedCon-

10

/

16

O variable [J constraint

-’ value propagation

Figure 4.9 Cyclic constraints and their propagation

straintsAndVariables, of all visited constraints and variables during the propaga-
tion. This global dictionary is emptied in the initialization phase of the method
"setTo:justification:". Subsequently, every time a constraint propagates a value
to a variable with a value different than the propagated value, the variable
checks in the dictionary to see if the variable has been visited previously. If it
has, a constraint violation is detected, and propagation is terminated. On the
other hand, if :he variable has not been visited previously, the variable adds its
current state to the dictionary of visited variables, changes its value, and ini-
tiates further constraint propagation. The global dictionary records the previous
state of all visited variables so that these variables can be restored to their ori-
ginal states if a constraint violation is detected in the new variable values.

31

4.2.3. Constraint Violation

Although propagation methods in the constraints generally maintain con-
sistency of the constraints, constraint violations are inevitable because only
local information (in the constraint arguments) is considered in constraint propa-
gation, and because invalid user-assigned variable values manifest themseives
as constraint inconsistencies. Properly managed, constraint violations provide
valuable feedback to the designers, not only on the presenc- of design viola-

tions, but on the causes of these violations as well.

Constraint violation may be detected in the course of propagation, as soon
as a propagated value disagrees with a variable value and an overwrite is not
possible (either because the propagated value has no overwrite privilege over
the existing value, or because the variable has been visited eariier in the propa-
gation). Even if constraint propagation finishes without any violation, constraint
violations can still exist. As a final check, the message "isSatisfied" is sent to
all visited constraints to detect violations.

When a constraint violation is detected, the violation handier of the con-
straint is executed. The default (inherited) handler issues warning messages in
a default text window, and restores the constraint networks to their onginal
states (i.e., before constraint propagation) by restoring the states of all visited
variables (Fig 4.10). However, different types of constraints may replace this
with different violation handlers. For exampie, a constraint editor in STEM may
be invoked to help designers examine and debug the constraint networks.

Variable methodFor:'violation handiing’
vioistion

“restore prev values”
sell restore.

restore
“restores prev values for all variables”
visledVariables associationDo{ :assoc |
Var « &ssoc key.
var lastSetBy:assoc value key.
var prevValue:assoc value value).

Figure 4.10 Code segments for the default violation handier

4.2.4. Justification for Variable Values

When variables are assigned values, the justification of these values are
recorded in the "lastSetBy" field of the variables. The justification of a value
assignment is formulated by the sender of the assignment message and is
passed to the variable as one of the arguments in the assignment message
(i.e., the argument following "justification:" in both "setTo:justification:" and
"setTo:constraint:justification:"). A justification can either be a symbol indicating
a source extemal to the constraint networks or a key-value pair for a pro-
pagated value. The symbols #USER and #APPLICATION are currently used as
justifications for user specified and calculated values respectively. The
justification of a -uriable’s value determines if constraint propagation can
overwrite the variable with a different propagated vaiue. The default overwrite
rule in the system is that user specified values have higher priority over pro-
pagated and calculated values. However, subclasses of variables can redefine
this rule of precedence. For example, variables can recognize different
strengths of constraints, and allow one type of constraints 1o overwrite values

33

from another type of constraints, but not the other way around. This is not

done currently.

For propagated values, the justification is a key-value pair of two elements.
The first element is the source constraint which propagated the value to this
variable. The second element is a dependency record for this propagated
value. This dependency record is formulated by the source constraint during
propagation and analyzed by the same constraint during dependency analysis.
Each dependency record contains data that enable the source constraint to
trace all variable values that are responsible for the propagated value. Since
dependency records are only interpreted by the constraints that formulate them,
they vary greatly among different types of constraints. For example, an
equality-constraint sets up a dependency record containing only the single vari-
able that activated the constraint, but a functional constraint sets up a null
dependency record since it is implicitly understood that the functional variable

depends on every arguments of the . ional constraint.

With source constraints and dependency records, dependency graphs in
the constraint networks can be constructed for dependency analysis. Depen-
dency analysis can be used to search for all variables and constraints responsi-
ble for a propagated value. This is achieved primarily with two methods:
"antecedents:" in variables, and "antecedents:ofVariable:" in constraints
(Fig. 4.11). These two routines recursively call each other, performing a back-
ward traversal of the dependency graphs, until all antecedent variables and
constraints of a variable are found.

Denendency analysis can also be used to search for all variables that
depend un a specific variable value. This is achieved with two similar methods:

"consequences:” in variables, and "consequences:ofVariable:" in constraints

Variable methodFor:'dependency analysis’
antecedents:aSet
(aSet inciudes:self) ¥True: T aSet).
aSet add:seflf.
se¥f isDependent ¥True{
aConstraint « sell lastSetBy key.
aConstraint antecedents:aSet ofVariable:sel).
T aSet
Constraint methodFor:'dependency analysis’
antecedents:sSet ofVariable:aVariable
aSet add:self.
"default method will just test all arguments one by one”
dependencyRecord « aVariable lastSetBy value.
self aliConstraintVariables do{ :arg |
arg == aVar KFaise|
(self testMembershipOf.arg inDependency:dependencyRecord)
¥True] arg antecedents:aSet JJ).
T aSet
testMembershipOf:aVar inDependency :dependencyRecord

"each subclass redefines its own"
se¥ subclassResponsibility

Figure 4.11 Code segments for antecedents

(Fig. 4.12). These two routines aiso recursively call each other, performing a
forward traversal of the dependency graphs, until all consequences of a

variable's value are found.

While dependency analysis is useful in examining the constraint networks,
it is essential in erasing inferences invalidated by deletion of constraints in the
networks. When a constraint (variable) is removed from a network, all variable
values dependent on the constraint (variable) become unjustified, and should be
erased. This erasure is facilitated by dependency analysis, which finds all con-
sequent variables of the constraint (variable). In an interactive design environ-
ment, constraint networks are frequently edited. The efficiency with which con-
straint (variable) removals can be accomplished with dependency analysis

justifies the storage overhead for dependency records in variables.

Variable methodFor:'dependency analysis’
consequences:aSet
(aSet includes:sel) ¥True{ T aSet].
aSet add:sell.
sell constraints do:[:aConstraint |
aConstraint consequences:aSet ofVariable:sel).
T aSet
Constraint methodFor:'dependency analysis’
consequences:aSet ofVariable:aVariable
sell aliConstraintVariables do{ :arg |
arg == aVariable ¥Faise]
arg lastSetBy key == sell "arg is set by me”
True] "then test ¥ avar is in dependencyRecord of arg”
Record « arg lastSetBy value.

dependency
(sel testMembershipOf:aVar inDependency:dependencyRecord)
¥True:[arg consequences:aSet I]II

Figure 4.12 Code segments for consequences

4.2.5. Addition and Deletion of Constraints

When constrain networks are edited (i.e., when constraints or variables
are added to or removed from the networks), constraint propagation must be
performed to adjust variable values to changes in the networks. However,
since no variable has changed value by network editing, the normal propagation
trigger is not activated. Therefore, a separate triggering mechanism is
developed for constraint editing.

When a constraint is added to a variable, the constraint re-initializes its
variable arguments (Fig. 4.13). The argument variables are grouped into three
lists: “"usorSpecified”, "constraintDependent”, and "otherindependents”. The

first and second lists contain variables whose justifications are #USER and a

Variable methodFor:'add-remove constraints’
addConstraint:aConstraint

se¥f consiraints add:aConstraint.
aConstraint basicAddArgument:self.
status « aConstraint reinktializeVariables.

Constraint methodFor:'add-remove arguments’
reinktializeVariables
;iatus « self rePropagate.

rePropagate
... ofganize argument variables into three lists ...
list addAll: userSpecified.
list addAll: dependents.
list addAll: otherinDependents.
list dof :arg |
keyAbsent « viskedVariables at:arg
putifAbsent:(Association key:arg lastSetBy
value: arg prevValue).
keyAbsent ifTrue] status « arg propagateAlongConstraint:self.
status isNil ¥True{ T nil]J)

Variable methodFor:'propagaticn scheduling’

propagateAlongConstraint:aConstraint
status « aConstraint propagateVariable:self.
status isNil ¥True:{ T sell inPropagationViolation).
[scheduledEntry « agendaScheduler removeHighestPriorityScheduledEntry.
scheduledEntry isNil}
whileFalse{
status « (scheduledEntry key)
propagateScheduledVariable:(scheduledEntry vakue).
Tstatus isNil iiTrue] T se inPropagationViolation]).
self

Figure 4.13 Code segment for adding a constraint

constraint object, respectively, while the third list contains variables with other
types of justifications (e.g., #APPLICATION). Beginning with "userSpecified"
and ending with "otherindependents”, these argument variables are succes-
sively sent the message "propagateAlongConstraint:" with the edited constraint

37

as the argument. In response to this message, each variable propagates its
value to the edited constraint. This gives a chance to all variable arguments in
the edited constraint to assert and propagate their values, in order of their pre-
cedence. If constraint propagation finishes without violations, all visited vari-
ables are explicitly checked for constraint violation by sending the message
"isSatisfied” to them.

When a constraint is removed from a variable, all propagated values that
depend on this constraint/variable pair are reset to NIL. This is accomplished
by dependency analysis (Fig. 4.14). If the variable's value is changed by
removing the constraint, then all consequences of the variable have to be reset.
If the variable’s value does not change when the constraint is removed, then all
consequences of the constraint that depend on this variable have to be reset.
in either case, the removed constraint then re-initializes its remaining argument

variables.

Variable methodFor:'add-remove constraints’

removeConstraint:aConstraint
self constraints remove:aConstraint.
aConstraint basicRemoveArgument:self.
self lastSetBy key == aConstraint
Mrue |
"my value is last set by aConstraint,
reset me and all my consequences”
seolf reset.
seif variableConsequences do:[:avar | aVar reset]}
iFaise:{
"reset all variables that are consequences of me
propagating through aConstraint”
sét « Set new.
aConstraint consequences:set ofVariable:self.
set gof :avar | aVar reset].
"rePropagate aConstraint"
aConstrairt reinitiakizeVariables

Figure 4.14 Code segment for removing a constraint

Chapter 5. integration of Constraints in STEM

This chapter presents the way in which the constraint propagation frame-
work is integrated with design objects in STEM. In order to take full advantage
of inherent structures in these design objects, STEM specific extensions are
added which implement hierarchical constraint propagation. With hierarchical
constraint propagation, constraint networks in each cell class are separate from
those in other cell classes, and yet constraint propagation can spread from one
network to another up and down a hierarchy which parallels tﬁat of the design
objects. Basically, hierarchical constraint propagation occurs when propagation
in the constraint network of one cell activates additional propagation in con-
straint networks of celis containing instances of the original cell or cells whose

instances are part of the original cell.

Hierarchical constraint propagation is achieved with STEM's dual instance
variables in the class and instance definitions of cells. These dual variables
provide the implicit propagation links between otherwise isolated constraint net-
works at the cell class level and cell instance levels. Hierarchical constraint
propagation reduces the amount of redundant computation in composite net-
works. For example, Fig 5.1 shows three isolated constraint networks that are
linked by implicit constraints (indicated by the bold dotted arrows) between dual
instance variables in the cell class and cell instances. When constraint propa-
gation in the lower network changes the value of the variable in the cell class,
hierarchical propagation changes the variable values in the two cell instances
and triggers additional propagation in the two upper level networks. Without
hierarchical constraint propagation, the lower level constraints in Fig. 5.1 would
be propagated twice: once for each of the two upper level networks containing
them.

external networks

= =/
%%o/

internal network

Figure 5.1 Two level hierarchical constraint networks

Iin order to incorporate constraint propagation in STEM cells, all instance
variables of cell classes and instances are initialized to appropriate variable
objects on instantiation and all access methods of instance variables are
modified accordingly. Constraint creation and violation handiing are aiso
modified for STEM, and a simple constraint editor is added to improve the user

interface.

§.1. Hierarchical Constraint Propagation

Constraint networks in STEM are organized around the design hierarchy to
take advantage of STEM's power of abstraction. The dual declaration of
instance variables in STEM forms the basis of hierarchical constraint networks.
The values assigned to variables of a cell class represent the characteristics of
the internal structure of the cell. The constraints on these variables represent
conditions imposed by designers and the cell's internal structure on the
corresponding characteristics of the cell. On the other hand, constraints on

40

variables of the cell instances represent conditions on the cell imposea oy the
environments in which these cell instances are used.

For example (Fig. 5.2) when a designer first designs an eight-bit ADDER, a
delay constraint of "120ns or less" may be specified on the appropriate delay
variable of the cell class. As the internal structure of the ADDER is designed,
constraint violation is triggered if a delay value greater than 120ns is pro-
pagated to this delay variable. The delay constraint at the class level therefore
constrains the internal design of this cell. Subsequently, an instance of the
ADDER cel! may be used in an ACCUMULATOR cell, built by cascading an 8-
bit REGISTER to an ADDER, which has a overall delay constraint of "160ns or
less”. From the interconnects of the ADDER instance, a constraint network
involving the delay variable of the ADDER instance is instantiated. If the
characteristic delay of the REGISTER instance is 60ns and that of the ADDER
instance is 110ns (after adjustment for loading), then a constraint violation is
triggered.

There are therefore two levels of constraint networks for a cell: the internal
and external constraint networks (Fig 5.1). These correspond to the internal
and external views of a cell. Internal constraint networks of a cell involve vari-
ables of the cell class, and represent conditions that the cell's intemal structure
must satisfy. The external constraint networks of a cell generally involve vari-
ables of cell instances, and represent (indirectly) conditions which the instances
must satisfy to be used in their respective environments. Whenever design
characteristics become available in a cell class, they are checked with internal
constraint networks of the cell and then propagated to the instances and their
corresponding external constraint networks. This updates characteristics of
larger designs and triggers further constraint propagation. Hierarchical con-

41

ADDER network

Figure 5.2 Example of a hierarchical constraint network

straint propagation reduces the amount of computation since intemal constraint
networks are propagated only once even though there may be a large number
of cell instances. This takes advantage of the hierarchical structures of IC
designs in STEM.

To implement this hierarchical constraint propagation, the concept of an
implicit constraint is introduced. An implicit constraint is a procedural implemen-
tation of a constraint, or a "hard coded" constraint. For the purpose of hierarch-
ical constraint propagation, implicit constraints are embedded in the dua! vari-
ables of cell classes and cell instances. These variables respond 1o propaga-
tion messages as if they were constraint objects. This is implemented in a sub-
class of Variable named "ImplicitConstraintVariable". Two subclasses of Impli-
citConstraintVariable are defined for use as instance variables of STEM objects.

42

Instances of class "instanceinstVar" are used for instance variables of cell
instances, and those of the class "ClassinstVar" are used for instance variables
of cell classes. In addition, a new agenda named #implicitConstraints is added
to schedule these variable-constraints for hierarchical constraint propagation.
The next two sections describe implicit constraint variables and the scheduling
of their propagation.

5.1.1. implicit Constraint Variables

A constraint can be made implicit if the links between the constraint and its
argument variables are sufficiently well defined that these links can be pro-
ceduralized. Due to the dual declaration of instance variables in STEM cells,
an instance of "Instanceinstvar" is an implicit constraint on its corresponding
instance of "ClassinstVar"; and an instance of "ClassinstVar" is an implicit con-
straint on all of its corresponding instances of "InstanceinstvVar". These
variable-constraints play the roles of both variable and constraint, by being the
descendents of "Variable” and responding to propagation messages like
"isSatisfied” and "propagateVariable:" that constraint objects respond to.

Whenever a value assignment is made to an instance of "instanceinstVar"
or "Classinstvar”, the variable object sends the message "propagateVariable:"
to all of its explicit constraints (i.e., constraint objects in its list of constraints), as
well as all of its implicit constraints (as returned by the method “implicitCon-
straints”). All visited constraints, including the implicit constraints, are then sent
the message “isSatisfied" to check for constraint violation. Descendents of
"ClassinstVar" and "instanceiny ¥ar" may or may not propagate to their implicit
constraints. Two categories of descendents of these variables can be
identified: parameters and properties.

43

For parameters in a cell, the instance variables in the cell class character-
ize the range of the parameter values that can be handied by the cell. The
corresponding instance variables in the cell instances specify the actual param-
eter values in each use of the cell. Whenever a parameter variable in a cell
instance is assigned a new value, it checks with its corresponding variable in
the cell class that the value is valid for that parameter of this cell. On the other
hand, whenever a parameter variable in a cell class is assigned a new range, it
checks with all of its corresponding parameter values in the cell instances that
these values satisty the new range for this parameter. Except for default values
of parameters that may be propagated from class parameter variables to
instance parameter variables, no constraint propagation is performed between
corresponding ;. 2 ‘ameter variables.

For pro.- .~ ¢ of a cell, the instance variables in the cell class characterize
the nominal va.ues of these properties. Their dual variables in the cell
instances specify the values for these properties adjusted 0 the contexts of
each cell instance. Whenever a new value is assigned to a property variable of
a cell instance, the variable must check with its corresponding variable in the
cell class that the new value is consistent with the cell property (e.g., the
bounding-box of a cell instance must not be smalier than that of the cell ciass).
On the other hand, whenever a new value is assigned to a property variable of
a cell class, the variable must check with all of its corresponding variables in
the cell instances that their values are consistent with the new property vaive.
Property vaiues may propagate from classes to instances, perhaps with some
adjustments, but never from instances to classes. For example, the delay pro-
perty vaiues of a class are propagated to corresponding delay variables in the
cell instances after adjustments for local loading conditions. However, delay
variables in the cell instances do not propagate 1o their dual delay variables in

the cell class (see Chapter?).

5.1.2. Scheduling of implicit Constraint Variables

In order to accommodate hierarchical constraint propagation, an agenda
named #implicitConstraints is used to schedule propagation of implicit con-
straints (Fig. 5.3). The objective is to delay propagation of implicit constraints
up (or down) the design hierarchy as much as possible so as to take advantage
of the locality constraints in designs. This is achieved by assigning the lowest
priority to the #implicitConstraints agenda. The end result is that hierarchical
constraint propagation tends to completely propagate constraint networks in one
level of the hierarchy before propagating constraint networks in another level of

the hierarchy.

ImplickConstraints methodFor:'propagate’
propagateVariable:aVariable
viskedConstraints add:sell.

self permitChangesByimplick Propagation
HTrue:{
agendaScheduler
scheduleConstraint:sel
variable:avar

onAgendaNamed:#implickConstraints)

implickConstraints methodFor:test’

permitChangesByimplicitPropegstion
“defauls to true”
T true

Figure 5.3 Code segments for implicit constraints propagation

5.2. Violation Handling

When a constraint violation occurs in STEM, it is not sufficient to just
restore all variables to their original values, since eliminating the violation
involves reversing the design step that has led to the violation in the first place.
This design step may be as simple as a value assignment to a variable, or as
complicated as the compilation of a parameterized module. In order for design
tools to take advantage of the background checking offered by constraint propa-
gation, the validity of a value assignment is returned by the variable assignment
methods "setTo:justification:" and "setTo:constraint:justification:”. If a value
assignment is invalid, NIL is returned by these methods; otherwise, a non-NIL
value is retumed. This validity feedback enables design tools to detect con-
straint violations caused by value assignments, so that appropriate steps may
be taken to remove these violations. Similary, the access methods that intro-
duce constraints return NIL if constraint violations occur as a result of the new

constraints, hence providing validity feedback to design tools.

When a constraint violation occurs, the violation handier of the constraint is
invoked. A common violation handler in STEM prompts the user for one of two
alternative actions: "debug” or "proceed". |f "debug" is selected, a constraint
debugger associated with the violated constraint is invoked. The default con-
straint debugger is a constraint editor, although different constraints may use
different, specialized debuggers. If the designer selects the "proceed" option, a
warning message is printed and all changed variables are restored to their origi-
nal states before continuing constraint propagation.

5.3. Constraint Creation

Constraints in STEM are added and removed either by the access
methods in cell objects, or by designers through a constraint editor. For exam-
ple, before a cell is designed, a designer can specify the io-signals of the cell,
and place delay constraints between pairs of io-signals (e.g., delay from A to B
must not be longer than 100ns). As the internal cell design progresses, delay
constraints are instantiated when subcells are added and removed when sub-
cells are removed by the "addCell" and "removeCell" methods, respectively.
Constraint violation occurs if the intemal delay network produces a delay time
longer than the user-specified delay constraint, and the designer is warned. To
continue the design, the designer can either disable constraint propagation,
change the internal cell design to achieve a shorter delay, or relax the violated

delay constraint on the cell.

Constraint propagation can be disabled in STEM by setting a giobal disable
flag, "CPSwitch". This status flag is checked by the "setTo:justification:"
methods of all variables. These methods perform simple value assignments
without initiating constraint propagation or constraint checking when the flag is
set to #On. Constraints are still added and removed by access methods and
constraint editors when the fiag is set. However, the local constraint propaga-
tions associated with new constraints are disabled when constraint propagation
is disabled. This ability to disable constraint propagation is desirable if
Jesigners embark on extensive design revisions which, while producing mas-
sive design violations in the process, would eventually lead to a correct design
satisfying all constraints. However, no support is provided at present for
recovery from constraint inconsistency when constraint propagation is switched
back on.

47

5.4. Constraint Editor

The constraint editor is a user interface for inspection and manipulation of
constraints and variables. The editor provides a convenient user interface
through which a user can walk through a network of constraints, and make any
changes to the network which are necessary to remove a constraint violation.
Besides being used as a debugger for constraint violation, constraint editors are
useful tor user entry of design specifications, and user inspection of existing

design constraints. Fig. 5.4 shows a screendump of a constraint editor.

The editor provides special functions associated with manipulation of con-
straints and variables. The user can examine all variables associated with a
constraint, or all constraints associated with a variable. The user can trace all
variables which are consequences of a variable value or of a constraint and
trace all variables which are antecedents of a variable value. Ttie user can also
instantiate or remove a constraint or a variable through the constraint editor.
Finally, the user can make value assignments to variables through the con-
straint editor, turn off or on constraint propagation in the system, and restore all

visited variables in the last propagation to their original states.

Yostvarkoslboiay
Testvers (a Toestvar).susOsliDelay
Teotvar. 1 (& TestvarisusOsiiDeley

Testvar2 (a TestVer).sudCeliDelay
Teostvar.1 (s Testvari.suwwOeliDelay

ecccsceamne

TostvarkoeiDetay = (+ ‘1

netanseDetay mstanseDeley
nowfrom:Testvar2 (s Testvar) newfeam:Testvar.1 (a Testver)
varame:# subColiDels y
® prevvaie:S.0e-9 *
° 1stBetB:APPLICATION °

Figure 5.4 Screendump of Constraint Editors

Chapter 6. Consistency Maintenance

Sample applications have been implemented to demonstrate the useful-
ness of constraint propagation in STEM. These are consistency maintenance
for tool integration, incremental design checking for interactive designs, and
module validation in automated module selection. This chapter presents
STEM's approach to application interface and consistency maintenance in
which constraint propagation is used to facilitate tool integration.3 The next two
chapters present the second and third sample applications respectively.

6.1. Introduction

In an integrated design environment, multiple representations of a single
design are required in order to interface the design database to a variety of
tools. For example, while a layout tool views a design as a set of geometries, a
schematic editor views the same design as a collection of transistors and nets.
In order to integrate these tools in the design environment, both of these design
representations must be accommodated by the environment. Consequently,
when a design is modified, all representations of the design must be updated,
otherwise inconsistency may exist among different design representations.
Consistency maintenance in integrated environments refers 1o the data
management of different design representations to prevent inconsistencies in

the environment.
In STEM, consistency maintenance is achieved by the way application pro-
grams interface to the design database. The following sections present STEM's

approach to application interface, and discusses the way consistency is main-

3 The content of this chapter has been published in [Ly87). .

49

tained in the environment.

6.2. Application Interface: Related Work

Engineering environments which deal with multiple design representations
by explicitly storing separate copies of the representations in the database allow
inconsistencies of design data. For example, Palladio [Brow83] allows the
definition of multiple perspectives of a cell. Perspectives are explicit data
representations manipulated by different design tools. Perspectives are
independent of one another, and different combinations of perspectives collec-
tively define different designs. In general, information in different perspectives
may overlap, resulting in the need to maintain consistency ard to conserve
database storage. Design validity in such sys*'~ms is often enforced by execut-
ing consistency checking programs upon check-in of a design representation
[Katz83]. This increases the complexity of the task of tool integration, because
it is not always easy to check the consistency between two different representa-

tions of a design.

The Fred database [Wolf86], on the other hand, incorporates procedural
knowledge to support engineering designs. Access functions (methods) in an
object-oriented, hierarchical database implement algorithms that calculate pro-
perties of designs. Users may specify default values or approximation functions
to speed up calculations. Fred also features "dependency”, which executes a
method whenever a perticular message is sent to particular module(s). Calcula-
tion results apparently are not automatically stored in the database, so there are
few consistency problems, although inconsistencies involving (user specified)

default values can exist.

Wiederhold [Wied86] proposed the use of view-objects as an interface

51

between application programs and an engineering information system (EIS)
database. View-objects are dynamically generated from the data in the
engineering database. The view-object generators hide the implementation
details (e.g. the relational organization) of the database, and generate objects
as required by the applications. However, the interface does not maintain con-

sistency among the database and view-objects in different applications.

6.3. STEM's Approach to Application Interface

in STEM, calculated views are used to interface application programs to
the object-oriented database. The database objects contain only essential
design information, from which different design representations are calculated
and presented to applications through different views. Views implement
abstractions of the design objects, and are optimized for their corresponding
applications. The derived data in views are erased (reset to NIL) whenever any
data they depend on changes. Recalculation of erased data is delayed until the
next time they are needed by applications or the designer. This maintains data
consistency among views and the database without a severe penalty on data-
base updates.

Application programs in STEM can be invoked explicitly through controliers
by the user or implicitly by the database objects when the results of the applica-
tions are needed. When the user selects a menu item, for example, the associ-
ated controller invokes the corresponding application by sending a message to
the model. Implicit invocation of applications is achieved by associating invoca-
tion messages with property variables (i.e., STEM variables whose values are
calculated results of specific applica® v» programs). Property variables are
implemented like special daemon objects (Fig. 6.1). When a property variable

52

is accessed (read), the variable object checks if its value is NIL. If it is, the
associated invocation message is sent, invoking the appropriate application pro-
gram which updates the value of the variable.
Varisbie subclass:#PropertyVariable

instanceVariableNames: reCaiculateMessage arguments evaiFiag’

cisssVariableNames:”
pooiDictionaries:ViskedConstraintsAndVariables ConstraimScheduler’

category:'Variable-Hierarchy'
PropertyVariable class methodFor:'instance creation’
newfrom:parent reCaiculateMessage:symbol withArguments:args
temp « sei new.
temp parent:parent; reCaiculateMessage:symbol; arguments:args.
temp inlialize
T temp
PropertyVariable methodFor:'evaluate’

value
"evalFlag is essential in preventing infinite loops of evaluation calis”

prevValue isNil
#True|
evalFlag isNil isTrue[

evalFlag « #evaluating.
self reCalculate.
evalFlag « nil]].

T prevvalue

reCaicuiste
T selt parent perform:reCalculateMessage withArguments:arguments asArray

Figure 6.1 Declaration and methods for PropertyVariable

Implicit invocation is combined with constraint propagation to form parnt of
the consistency maintenance facility of the database. An "update-constraint”
specifies dependencies of a (set of) property variable(s) on certain data. When-
ever any of these data change, constraint propagation across the update-
constraint erases (i.e., resets to NiL) all property vériables in the constraint.

53

Implicit invocation then receiculates these erased property variables the next
time they are accessed. This combination of constraint propagation and
delayed recalculation ensures the internal data consistency of the database and
reduces recaiculation of data.

STEM's approach to tool integration improves upon past research in two
ways. First, a view is depsndent on a single database object (model) from
which the view's data are calculated, so consistency among different represen-
tations can be maintained by recaicuiation of the view data whenever neces-
sary. The results of database updates by one too! are immediately apparent to
other tools, without a severe penalty on database updates. Second, tools are
integrated into the database maintenance support by implicit invocation and
constraint propagation. By embedding constraint propagation in the database
maintenance mechanisms, changes in the database can be propagated along
variable dependencies declared by tool designers and/or users, and trigger
delayed recalculation of internal data to maintain consistency of the database.

6.4. Application Interface

There are two classes of application programs integrated into STEM. Inter-
nal application programs written within STEM are Smalitalkk object-oriented pro-
grams that have direct access 10 objects in the environment. External applica-
tion programs written independently of STEM are any UNIX executable files and
do not have direct access to STEM objects.

6.4.1. Internal Application Programs

STEM buikds on top of Smalitalk. Users can write applications in Smalttalk,
which then become part of STEM. These internal applications have to be inter-
faced to the STEM design database. Each of these applications may require
data structures other than those found in the database. Instead of modifying
the application to use an inflexible database organization, views are used to
customize the database to suit the application. Associated with each applica-
tion is a view definition, which maps database objects t0 view objects, with
internal variables and methods that facilitate the application. Views 'calize and
hide implementation details of the database, and are shared among applications
with similar data requirements. This use of views is illustrated by the four tile-
based module compilers [Law85] implemented in STEM.

Instances of module compilers generate a compiled cell's internal structure
based on the placement, orientation and size parameters specified in the com-
pilers. A VectorCompiler builds a linear array of subcells (instances of cells), a
WordCompiler builds a vector of subcells with special end-cells, and a Matrix-
Compiler generates a two-dimensional array of subcells. A GraphCompiler
allows the user to graphically specify moduie builders that are able to generate
more complicated structures [Mayo86).

When defining a compiled cell, the cell designer specifies the kind of
module compiler to be used for the cell, and an instance of that compiler class
is created and assigned to the cell as its structureLayout instance variable
[Girc87]. The designer then proceeds to specify the placements and orienta-
tions of the compiler. All butting io-pins establish connections between their
respective signals. However, the designer can disallow connections between
two signals in a GraphCompiler, which withdraws the non-connecting io-pins

from the boundary of a cell. Fig. 6.2 is a screendump showing (from bottom-left
to right) the specification of a 2-bit adder slice, its use in a 5-bit (GraphCom-
piler) adder, and the structure and layout of the compiled 5-bit adder.

° S00iere SROWRING: rOpeLtumber o (/2 * (BRWISW - 1)) .

AgditionO: int wiohi itlossOne angArgumEntsy Arvey withn bleWigth withet=1)) .

MMMMMMme)M).
NippleCanyAduer bitWigeix §
o 8 oit 8 bt adser loyowt
vee [g—— Iucur.un ™
G v - L]
vl vowdsd ong ong ot | o
:" rAgerd - l |
PAdger. 1 outt owtowt FAgSer.1 (o P4
1 owinl [l »__w u |molme
owynl
A\l ot haad o ewte vé
I r I FAGSNr.2 (2 PAGIM
H [() Pepest L] L]
oo M2 ovt2 vervwer ,'" 8 bt glise :“
2 for 2 times -
diragtionshotion
PAdSr2 L‘ spasinge0 l PASSer4 (a Po
l oo L 1L]
19 n
[l l connest)
on owdnput
I I l s [raseer.s (o racim
—_ e vt [~ "
| e

Figure 6.2 Building a 5-bit Adder with a GraphCompiler

The compilation routines treat subcells as black boxes, and instances of
CompilerView are used 10 interface the actual subcells (in the database) to
these routines. Only the bounding box and the io-pins of a subcell are visible
through its compiler view. Moreover, the compiler views organize the io-pins of
their models in four lists (top, bottom, left and right), sorted according to their
locations (increasing x, y coordinates), to suit the access pattern of the compiler
routines (the primary operation is butting io-pins of adjacent subcells). On the
other hand, database subcells do not explicitly store any io-pin, and the data-

base cells store their io-pins unsorted and grouped according to their respective
signals. Subcell io-pins are caiculated from cell io-pins by applying the subcell's

placement transformation to copies of the cell io-pins.

Without using compiler views, the module compilers would either trigger
recalculation of io-pin transformations and sorting of io-pins on every subcell io-
pin query, or store all transformed and sorted subcell io-pins as temporary vari-
ables inside a global compilation routine. The first approach sacrifices
efficiency, and the second deviates from sound object-oriented programming.
Using compiler views avoids unnecessary recalculations while retaining the logi-
cal integrity of the subcells. The compiler routines rotate, transiate, and assign
signal connectivities to instances of compiler views as if they were the actual
subcells. The views in turn carry out these operations by sending their models
the appropriate messages. Data in views are erased whenever their models
change, and recalculation is triggered the next time the compilation routines

access the views for data.

6.4.2. External Application Programs

External application programs differ from internal applications in that they
interface to STEM through textual data-streams (UNIX files and pipes), and they
have predefined input and output formats. This requires special internal rou-
tines for parsing and formatting of the input and output texts. An external appli-
cation is integrated in STEM through a corresponding internai application which
serves as an abstract mode! of the external process. The internal application is
responsible for file-out (pipe-out) of formatted data, initiation of the extemal
(background) process, and file-in (pipe-in) of the results. Using this approach,
the external implementation of an application is hidqon from the database, and

57

views still serve as the interface between the application and the database.
The implementation of a SPICE interface lliustrates this.

The internal interface to SPICE consists of three user intrtaces: SpiceNet
handles extraction and editing of SPICE net-lists, SpiceSimulation handies edit-
ing of simulation commands and viewing of SPICE output file, and SpicePlot
handles graphical display and measurement of SPICE output waveforms. Fig-
ure 6.3 is a screendump showing (clockwise from the top-left comer) a cell of
three cascaded inverters, its SpiceNet window, its SpiceSimulation window and
the SpicePlot window of the simulation results.

SpiceNet maintains correspondence pointers between words in a SPICE
net-list and the actual subcells and nets, abstracting a database cell into a para-
graph of text. It implements a view through which a text editor can manipulate
the database object, allowing the user to edit the database cell through editing
its SPICE net-list. A SpiceNet is updated whenever its model (a cell) changes.
When the user selects the "simulate spice” menu option, a SpiceSimulz:ion

user interface opens up on the screen.

The SpiceSimulation user interface is a restricted text editor. It contains a
text view of a database cell (i.e., the expanded SPICE net-list of the cell), and
(default) simulation parameters and options. The extracted net-list, displayed in
normal font in the SpiceSimulation window, is not editable. Editable text,
displayed in bold in the window, includes simulation circuit, parameters, com-
mands and options. When the user selects the "run spice” menu option, the
simulation text is filed out, and the SPICE process is run in the background.
Control is retumed to the user as soon as the external process is initiated.
When SPICE terminates, its output is filed in and listed in the simulation output
window, and the user is informed of the termination. The user then has the

ardngiutter

SUBOKT tvertingButier 1 8 3 4
Chet o1 Mt

® et 28 s M2
SNt o9 W
CNut 24 s 00
St S5 4 8
“hee S0 0 e
vt 188 4 swerver
AwE 126 8 bwerter
AvE 12 9 ¢ twerter

SUDOKT twerser 29 1 &
L ITY 1)
* Nes o2 0 2

‘et 900

“Not S s e

WET.10 108 MT wo thum s Wum

WEYTR 4 12 2PRY w e Dagnic W
2908

SR YN0 V(B) V(1)
E

TEMIRATURE « 27980 DEQ C

AA0DEL SFET FA00 ASVELSS VTO--08

SO000=08 * 10 RENGP.D C» 1.5 ~¢ M0 6
Cibwes gt~

SMIPWBS JPe 451 -E TORLN D
L L AL 17]

SRIsABE -7 (DB -7 YO-BE0
VisA N7 S0RS)

° MOT GVEN YO «8.841 ¢ LENND. 199
ABC=0.0)

SAO0LL MPTT M08 ALVELSD VT0eR.7

-%
10003 Mo 1.00 -5 YONHOL-0
pe1.2¢ 96 v00e 10
je0.82-7 LD-8.02-7 YO-TP¢
Ne WRGL4)
DT GVEN +UCRITeE.0814 UTINO. 139

Figure 6.3 SpiceNet, SpiceSimulation and SpicePlot

option of plotting the output waveforms using a SpicePiot, which allows a host

of graphical manipulations (display options and point-to-point measurements) on

the waveforms.

SpicePlots are associated with the SpiceSimulations from which their

waveforms are generated. This aliows comparison among piots from different

simulation parameters. In order to avoid misleading the user, all SpiceSimula-
tion and SpicePlot windows on a cell are marked outdated (in the label field of

the windows) when the cell's net-list is changed.

6.5. Change Management

Change management ‘'« ~ . J involves the maintenance of both intemnal
and external consistencies. ..amal consistency (consistency among related
variables within the design database) is maintained by delayed updates of
related variables whenever variables are changed in the database. External
consistency (consistency among calculated views and the design database) is
maintained by delayed updates of relevant data in the views whenever a data-
base object changes.

6.5.1. Internal Consistency Maintenance

In order to reduce the overhead of unnecessary calculations, derived data
that are expensive to compute or frequently accessed are stored with the data-
base objects as collections of property variables (storedViews). Associated with
each property variable is a message which, when sent to the database object,
invokes a tool that calculates the current value of the property variable. The
tool is invoked whenever the property variable is queried and is NIL. This is
achieved simply with a condition check in the variable’s query method. Pro-
perty variables are reset to NIL when they are out of date by update-constraints
which specify validity dependencies of property variables on other variables.
Update-constraints are declared by tool designers when integrating the tools
into the database.

Update-constraint and implicit invocation provide a convenient way in which
new tools can be easily integrated into STEM without disrupting the consistency
of the environment. Instead of modifying many access routines in a cell to
ensure data consistency when introducing a new tool, tool integrators can
specify a set of equivalent update-constraints in the initialization routines of the

60

cell. This simplifies tool integration, localizes dependency information, and facil-
itates maintenance of tools. Since update-constraints are coded in the initializa-
tion routines, inheritance of these constraints is simply achieved with Smalitalk’s
inheritance of the initialization routines. Update-constraints are instantiated
whenever a cell (instance or class) is initialized, and discarded only when the

cell is discarded from the system.

Other than update-constraints, many different types of constraints may be
instantiated in the design process to maintain arbitrary relationships among vari-
ables and parameters in a cell. This use of constraint propagation maintains
dependencies among localized groups of variables, provides documentation for
design intentions, and reduces the amount of data the designers must specify.
For example, if a designer intends to maintain an equality relationship between
two parameter values for all instances of a cell, then an equality constraint on
these parameter variables can be created for each cell instance during its initial-
ization (Fig. 6.4). This constraint then maintains the equality relationship by
updating the value of one parameter whenever the other parameter changes
value, and vice versa. Moreover, this constraint documents the equality
between these two parame:c-s as a design intention, as opposed 10 an inciden-

tal design characteristic.

GraphCompiierTestCell methodFor:‘inltialize’

initialize
super inktialize.
EqualityConstraint with:(self instvVarNamed:#p1)
" with:(self instvVarNamed:#p2).
soif

Figure 6.4 User-specified EqualityConstraint in initialization method

61

6.5.2. External Consistency Maintenance

Views are dependents of their models. Whenever an object changes a
database object (a model), it must send the database object the message
"#changed”. The model in turn broadcasts the same message to its dependent
views to inform them of the change. The views respond to the message by
erasing their calculated data. Selective erasure of views can be achieved by
the alternate message, "#changed:key”, where key is a symbol indicating the
nature of the changes. For example, the key "layout” signifies that only the lay-
out of @ model is changed and no electrical connectivity has been modified.
Thus, a SpiceNet view of the model does not have to erase its data (unless it

contains extracted parasitics).

Besides its dependent views, a changed cell also broadcasts the changes
to those cells containing it (i.e., cells containing instances of the changed cali).
This propagation of changes up the design hierarchy terminates at those cells
whose external properties (e.g., bounding box, io-pin locations, io-signal types)
are not affected by the change. This maintains the external consistency of the
database.

The mechanism of change broadcast is basically the procedural equivalent
of the update-constraint and its associated propagation mechanism. The rea-
son for the procedural implementation is that, since views are external to the
database, view designers shouid not have to know the internal variables of the
database objects. Also, the dependencies among views and models are
sufficiently well dei.ned that the propagation can be proceduralized for security
and performance. This examplifies a tradeoff between flexibility and explicity of
declarative constraints and the efficiency and rigidity of procedural constraints.

6.6. Summary

in this chapter, the way application programs are integrated in STEM has
been described. Calculated views are used to implement a data interface
between applications and the object-oriented database. The derived data in
views are dependent on their models, and are erased whenever necessary to
maintain external data consistency of the database. Applications can be expii-
citly invoked through the controllers, or implicitly invoked through property vari-
ables. Update-constraints are used to specify dependency among caiculated
variables and other data, and constraint propagation removes potential incon-
sistencies by erasing property variables whenever the data they depend on
changes. Implicit invocation and constraint propagation integrate tools into the

environment as part of the consistency maintenance facility of the database.

Chapter 7. Incremental Design Checking

The second sample application of constraint propagation is incremental
checking in interactive design. Design checking verifies the correctness of a
design. This involves extracting design characteristics and comparing them
against circuit specifications and design constraints. Traditional design check-
ing programs are run in batch mode over large portions of a design at a time.
This postpones detection of design errors, often requiring major redesign to
undo consequences of these errors. However, with integrated environments,
design checking programs can perform incremental checking. For example,
layout systems like Magic [Oust85] incorporate incremental layout design rule
checkers which warn designers about design rule violations as the layout is
edited. By checking only those portions of the design which have changed,
incremental design checking can achieve fast enough response times to be run
concurrently with design editing. This gives designers immediate feed back on
design errors and helps reduce major redesigns and futile design explorations
in blind alleys.

Incremental checking of design entry usually requires the maintenance of a
global data structure and a program that maintains this structure. Instead of
using a number of different data structures and programs that implement
different kinds of design checking, STEM uses constraint networks and con-
straint propagation to implement incremental checking of designs. Constraints
capture both design specifications and dependencies of design characteristics.
Propagation of constraints provides the engine for incremental checking of
specifications as well as incremental derivation of design characteristics. Since
constraint propagation is hierarchical in STEM, design characteristics in low lev-

els of the design hierarchy can be propagated up the hierarchy and checked

63

64

against design specifications at higher levels. Furthermore, constraint propaga-
tion implements an open-ended framework for incremental design checking:
arbitrary design checking can be added to the system by introducing additional
typas of constraints.

incremental checking for signal types, bounding box and delays of designs
have been integrated into STEM. These constraints may be instantiated expli-
citly by designers, or implicitly by STEM as designs are entered. For example,
the designer can specify the maximum delay between two signals of a cell with
a "less-than" constraint on the appropriate delay variable. When the delay
value is eventually calculated, it is checked against this user-specified con-
straint. On the other hand, whenever two signals are connected by a net,
STEM adds appropriate signal typing constraints which ensure that connected
signals have compatible types and equal bit-widths. Whenever a signal type is
specified by the designer, the signal types of other unspecified signals on the
same net are inferred and propagated. This reduces the amount of data entry

and facilitates design changes.

The following sections discuss the instantiation, propagation and testing of
the different types of constraints used to check signal types, bounding box and
delays of designs.

7.1. Signal Types

Each io-signal and net in STEM has three properties: bitWidth, dataType
and electricalType. The bitWidth of a signal is simply the number of bits of the
signal. The dataType of a signal indicates the type of data (e.g., integer,
boolean, re:; that are carriea by the signal. The electricalType of a signal indi-
cates the elactrical properties of the signal (e.g., DIGITAI . N0 TTL).

65

Signal typing cc .lraints are implied by nets. A net electrically connects signal
variables in subcells to one another, and possibly to signal variables in the cell
containing these subcells. The signal types of a net depend on those of the
signals connected to that net. Signal typing constraints check for incorrect con-
nectivities among signals, prevent improper uses of cells and infer unspecified
signal types from signal connections. Three kinds of signal typing constraints
currently implemented are equality-constraint on bitWidths, and compatible-
constraints on dataTypes and electricalTypes.

Equality-constraints on bitWidths simply check that bit widths of connected
signal variables are the same. The propagation method of an equality-
constraint tries to set all of its argument variables to the same value as that of
the variable which changed value. A propagated bitWidth value is rejected by a
signal variable if the signal has a constrained bitWidth that has a different value
than the propagated value. A constrained bit-width usually results from realiza-
tions of other nets connected to the signal, or from designer's specification of
the signal's bit width. For example (Fig. 7.1), if the internal structure of a cell
connects an 8-bit net to an input signal, then this signal is constrained to be 8
bits wide. Alternately, the designer can assign a bit width of eight to this input
signal before designing the internal structure of the cell. In either case, when a
4-bit net is connected to the corresponding signal variable in an instance of the

cell, constraint violation warns the designer of the incompatible bitWidths.

Compatible-constraints check that their argument variables are compatible.
For each net, there are two compatible-constraints relating all signals connected
by the net: one for the dataType variables of these signals, another for the elec-
tricalType variables of these signals. The data and electrical types of signals

are defined hierarchically, with . .e most abstract types at the roots of the hierar-

chies and least abstract types at the leaves of the hierarchies. These are sim-
ply implemented with Smalltalk’s class hierarchy (Fig. 7.2).

New Cell Ciass
(bit widith constraint violated)
i B
instance A
Class A Class B
L8 L
|| -
}__

Figure 7.1 Example of bit width constraint violation

SmoduleSignalType ()
DstaType ()
Bit ()
FloatSignal ()
integerSignal ()
A2CintSignal ()
BCDSignal ()
SignedMagintSignal ()
WholeSignal ()
ElectricalType ()
Analog ()
Digital ()
BIPOLAR ()
TTL ()
CMOS ()

Figure 7.2 Signal type hierarchies

Compatibiiity of signal types is defined by their relative positions in the type
hierarchy. Basically, two types are compatible if and only if one is a sub-type of

67

the other. Provided that two types are compatible, one type is more abstract
than another if its type is an ancestor of the second type. These tests are
easily implemented using Smalltalk’s method for subclass enumeration (Fig.
7.3).

SmoduleSignalType class methodsFor:test’
isCompatibleWith:anObject
"I am compatible with anObject f | am a subclass of anObject
or anObject is a subclass of me"
sell == anObject ¥True: T true).
(self aliSubciasses includes:anObject) ¥True:| T true |.
(anObject aliSubciasses includes self) ¥True: | T true |.
7T taise.
isLessAbstractThan:anObject

"I am more abstract than anObject #f anObject is a descendent of me"
T self alt'Subclasses includes:anObject

Figure 7.3 Type hierarchy test methods

Each compatible-constraint has two instance variables: "netVariabie" and
"arguments”. The first variable contains the type variable of a net and the
second variable is a list containing the type variables of all signals connected by
the net. Assuming that all signals in a net are compatible, the signal type of the
net is then the least abstract type of all signals in the net. Similarly, provided
that all signals connected to an untyped signal are compatible, the signa! type
of the signal is then the least abstract type of all of these signals. This is
achieved with the overwrite rule of propagated values in the typing variabies: a
propagated type value can only overwrite a previously propagated value if the
new value is the less abstract type of the two (Fig. 7.4).

Every time a signal is added to a net, signal typing constraints of the net
are updated. The signal's bitWidth variable is added to the equality-constraint
of the net's DbitWidth variable. Similarly, the signal's dataType and

SignalVariable methodFor:'assignment’
setTo:anObject constraint:aConstraint justification:justification
(se¥ canChangeVaueTo:anObject)
¥True T super setTo:anObject
constraint:aConstraint
justification justification }
SignalVariable methodFor:'test’
canChangeValueTo:anObject
"I can change value to or from NIL freely”
(prevValue isNil or: anObject isNil) fTrue{ T true .

"otherwise, can only change {0 more abstract value”
T prevValue isLessAbstractThan:anObject

Figure 7.4 Code segments showing signal variable overwrite rule

electricalType variables are also added to the compatible-constraints of the
net's dataType and electricalType variables, respectively. On the other hand,
every time a signal is disconnected from a net, the signal’s bitWidth, dataType
and electricalType are removed from the appropriate constraints of the net's

variables.

The data type and electrical type of a signal are properties of the cell class
and do not vary among different cell instances. As a result, the dataType and
electricalType variables of a cell instance’s signals are those of the correspond-
ing io-signals in the cell class. This is also true for bitWidth variables of signals
in composite cells where signal bit widths are the same for all instances of a
cell. As a result, a type variable for a cell class signal can have a large number
of signal typing constraints, each due to a net connected to the corresponding
signal in a cell instance and representing requirements imposed by a different
environment in which the cell is used. In Fig. 7.5, a signal type variable in class
A is constrained to be compatible (indicated by constraint "C") with signal types
in class C and B through two different instances of A.

inst B

Class A

_inst A
A.2

inst C

Class B

Figure 7.5 Signal type constraints due to different cell instances

(b)

Class C

Compiled cell instances of the same class may have different bit widths, so

signals for these cell instances may have their own bitWidth variables. How-

ever, dataType and electricalType variables remain properties of signals in cell

classes.

With explicit constraints, incremental checking of signal types can be per-

formed whenever a net is connected to or disconnected from a signal, and

whenever a new signal type is assigned to a signal. The type specifications of

a cell's signals can be incrementally refined by different uses (instances) of the

70
cell, and can subsequently be used to guide the internal design of the cell.
7.2. Bounding Box

The bounding box of a cell class is the smaliest rectangular box tnat con-
tains the internal structure of the cell. The bounding box of a cell instance is a
rectangular area in which the cell instance is placed. While a cell instance can-
not be placed in an area smalier than its class bounding box, it can be placed
in an area equal 1o or larger than its class bounding box. The mapping of a
cell's internal structure into the bounding box area of a cell instance is
described by the transformation matrix of the cell instance. For cell instances
whose bounding boxes are larger than those of their class bounding boxes,
STEM provides stretching routines that extend signal ports to the perimeter of
the bounding box (Fig. 7.6).

Figure 7.6 Screendump showing stretching of io-pins to bounding box

n

Bounding boxes of cell classes are implemented with "ClassBBox" vari-
ables, whila those of cell | itances are implemented with "InstanceBBox" vari-
ables. Whenever a bounding box of a cell class is assigned a new value, it
propagates this new vaiue to the bounding box of all ingtances of the cell. This
defaults all instance bounding boxes to be the same as that of the new class
bounding box (with appropriate transformations), and checks that no instance
bounding box is larger than the class bounding box. On the other hand, when
an instance bounding box is assigned a new value, it is checked with the
corresponding class bounding box to make sure that it is not smaller than the
class bounding box. However, no propagation is performed from instance
bounding boxes to class bounding box (Fig. 7.7).

instanceBBox methodFor:test’

ImmedisteinierenceByChanging :aClassBBox
"if | am nil, or a propagated value from aClassBBox,
then update mysell”
(sek value notNil and{ self lastSetBy key = #USER]) ¥True:[T se¥).

sek setTo:(self parent sTransform applyTo:aClassBBox parent boundingBox)
constraint:aClassBBox
justification:nil
ClassBBox methodFor:'test’
isSatisfiedBy:instanceBBox
"returns true ¥f instanceBBox can contain my transiormed value”
bBox « instanceBBox value.
bBox isNil ¥True] T true).

seitBBox « instanceBBox parent sTransiorm applyTo:sell parent boundingBox.
T bBox extent > selfBBox extent

Figure 7.7 Code segments for bounding box

The minimum bounding box of a cell class is a function of the internal
structure of the cell. An inherited cell class routine, "calculateBoundingBox",
calculates the class bounding box from the nets and subcells in the cell.

72

Whenever a subcell changes its bounding box ("InstanceBBox"), the class
bounding box has to be updated. There is thereiore an update-constraint from
bounding box variables of all subcells and nets to the bounding box variable of
the cell classes containing them. Instead of maintaining one update-constraint
for every instance of "ClassBBox" in the system, STEM implements the update
of class bounding boxes procedurally. When an "InstanceBBox" is changed, it
resets the bounding box variable of the parent cell of its cell instance (Fig. 7.8).
Similarly, when a net changes its connections, it resets the bounding box of its
parent cell. The procedural implementation of this update-constraint is war-
ranted because the operations are localized, well defined and are performed
very ‘-aquently. The flexibility of a declarative constraint is not needed.

InstanceBBox methodsFor:'assignment’
setTo:anObject justification:justification
;-ell parent parentCell notNil
#True|

(self parent parentCel parent instVarNamed:#boundingBox)
setTo:nil justification:#UPDATE).

setTo:anObject constraint:aConstraint justification:justification
self parent parentCell noINil
True|

(self parent parentCell parent instVarNamed:#boundingBox)
setTo:nil justification:#UPDATE).

Figure 7.8 Subcell bounding box updates parent bounding box

Other constraints on bounding box variables can be declared by designers.
Area, pitch-matching and aspect ratio constraints can be specified. Fig. 7.9
shows the definitions required to define a new aspect ratio constraint type to the

system. Once this is defined, user can constrain any boundingBox variable to a

73

specified aspect ratio by instances of AspectRatioPredicate. Whenever a cell
changes its bounding box, constraint propagation adjusts default bounding
boxes of cell instances, checks if any instance bounding boxes are too small for
their class bounding box, and checks if other, user-specified constraints are
violated.

PredicateConstraint subclass:#AspectRatioPredicate
instanceVariableNames: 'xYRatlo’
ciassVariableNames:' '
pooiDictionaries: VisitedConstraintsAndVariaties 'Con#*-ain:Scheduler’
category:'Constraint-Predicates’

AspectRatioPredicate methodFor:test’

isSatisfied
self arguments do :arg |
arg value isNil ifFaise[
(arg value x) / (arg value y) = xYRatio
itFaise; T talse]).
T true

AspectRatioPredicate class methodFor:‘instance creation’

LrRatiovziuc \vaBoxVar:var
| temp |
temp « self *
temp xYRatio: _.e.
!remp addArguments:(OrderedCollection with:var).
temp

Figure 7.9 AspectRatioPredicate Definition

74

7.3. Delay

Delay constraints incrementally compute the worst case delay estimates
between input and output signals of cells by searching for the longest paths in
the delay networks. A simple delay mode! similar to that of CRYSTAL [Oust83]
is used (Fig. 7.10), and the assumption is made that delays of cascaded com-

ponents are additive.

vdd
R
®S— > - ®—c
I I
= vss =~ vss

=g internal delay

- transient delay = RC

Figure 7.10 The delay model

The RC modei is used for adjusting delay estimates with respect to the output
resistance of output signals and the loading capacitance of input signals.
Default values for delay variables can be specified to speed up delay calcula-
tion. Different delay models and algorithms can be specified in subclasses of
del!ay constraints and variables to overwrite the default mode! and aigorithm.
While delay constraints provide quick estimates of signal delays based on nomi-
nal delay characteristics of component cells, accurate timing measurements
must still be obtained through simulation with external applications like SPICE
[Sale84] and SPLICE [VICP74).

There are two types of delay variables: "ClassDelay" and "InstanceDelay".

75

instances of "ClassDelay” are used as delay variables between io-signals of
cell classes, while those of “instanceDelay" are used as delay variables
between signals of cell instances. For each delay from an input signal to an
output signal in a cell class, there is a corresponding instance delay variable
from the corresponding input to the corresponding output in each instance of
the cell (Fig. 7.11).

cell instance

b
a d(a,b)
c

cell class

=

0e

Figure 7.11 Dual delay variables in cell clats and instances

When the value of a class delay variable changes, it propagates the new value
to all of its corresponding instance dela; variables, each of which adjusts its
value according to the new cell delay value, the output resistance on its input
net, and the total load capacitance on its output net. When these instance
cdslay variables change their values, they trigger recalculation of all delay paths
containing any of them. If such a delay path happens to be a critical path in a
cell class, then a new value propagates to a class delay variables, and triggers
further delay value adjustments. Delay characteristics are therefore incremen-
tally calculated, propagated up the design hierarchy as soon as they are avail-

able, and checked with delay specifications at every leval in the hierarchy.

76

Instances of "UniMaximumConstraint" and "UniAdditionConstraint" form the
constraint networks that relate class delay variables of a cell to instance delay
variables of subcells in the cell. An UniAdditionConstraint is a functional con-
straint which computes the sum of its arguments and is used to compute the
total delay of a delay path from all component instance delays of the path. An
UniMaximumConstraint is a functional constraint which computes the maximum
of its arguments and is used to compute the longest delay of a class delay vari-
able from all delay paths connecting the input and output signals of the class
delay. These constraints it. . .ement delay networks that incrementally compute

the delay characteristics of a « Il from those of its subcells in STEM.

For example, Fig. 7.12(a) shows the structures and delay paths of two cells
X and A The corresponding delay constraint nc:i-vorks are shown in Fig.
7.12(b). The class delay A.D(X,Y) implicitly propagates to its dual variables
A.2.d(x.y) and A 1.d(x.y).

When input and output signals of a ce!! have heen def.ned, the designer
can specify the critical class delay variables of the cell, declare value con-
straints on these variables, and specify estimated delay values. Thareafter,
other cell classes containing instances of this cell would be able {0 corstruct
delay networks containing instance delays that correspond to these class
delays. At this point, delay values computed by these constraint networks are
based on user-specified delay estimates in this cell. After entering the internal
structure of this c~ll, the designer can remove these delay estimates. STEM
then constructs delay networks for this cell, calculates the values for class delay
variables in the cell, and propagates these delay values to other cells containing

instances of this cell.

Delay networks are constructed by enumerating all delay paths connecting

é o ”
X y

inst B

x L B.3 FURFNR
out
: ~— Class X network
MAX
@@
+ *
B.1.d(in,out) A.2.d(x,y) A.1.d(x,y)

———

by

+

Class A network

(b)

Figure 7.12 Hierarchical delay paths and delay constraints

78

the source and destination signals for each class delay variable in a cell, and
then instantiating constraints that equate each class delay variable as the max-
imum of sums of instance delay variables in the delay paths. The delay path
generation routines only consider those subcell delays that have corresponding
user-specified delay variables in their cell classes. This ~ives cell designers the
ability to focus STEM's attention to the critical delay paths in ce'ls and reduces

the extent of cc 1binatorial explosion in delay path generation.

in order to maintain consistency, the delay networks of a ce!l are erased
whenever the internal structure of the cell changes, and recalculated only when
delay values are requestec. incremental editing of delay networks is not imple-
mented due to efficiency . onsiderations. Propagation of deiay constraints is
most useful in top-down dasigns, in which a cell is designed using subcells
whose intermnal structures are yet to be designed. The incremental evaluation
and checking of delay characteristics provide feedback on the impact of
different internal designs of a cell on the d. -~ characteristics of other cells con-

taining this cell, and guide designers in exploration of the design space.

7.4. Summary

In this chapter, the way STEM implemer:s incremental design checking
using constraint propagation has been described. Constraints capture design
specifications as weil as dependencies of design properties so that design
characteristics can be derived and checked incrementally. Hierarchical con-
straint propagation enables the system to check a design in the environments in
which it is used. Incremental design checking provides an zarly feedback of

design errors and helps prevent major redesigns.

Constraint propagation implements a very extensible framework for incre-

79

mental design checking. Additional design checks can be easily integrated into
the existing system with new types of constraints. Designers can specify
default values for design properties, and overwrite default algorithms and
models with different property estimators in subclasses of constraints or vari-

ables.

The speed performance of constraint propagation is acceptable for interac-
tive design checking provided that the constraint networks are sparse. Low-
ievel design checks, such as layout design rule checking, are not suitable can-
didate applications for this approach because more specialized data structures
(e.g., corner stitching) ana cunstraint satisfaction aigorithms (e.g., shortest-path
algorithms on graphs) are necassary t0 achieve adequate speed and storage
performance. Hcwever, higher-level constraint networks (e.g., delay, bounding
box and signal types) tend to be sparse, and as such are good candidates for

incremental design checking based on constraint propagation.

Chapter 8. Module Validation

in STEM, similar cells can be made subclasses of a "generic cell". Com-
mon properties of these cells can then be specified in the generic cell, and
inherited by all descendent classes of the cell. Generic cells do not ha .. physi-
cal realizations. However, they can be used in other designs in much the same
ways as any other cell. The use of generic cells in a design facilitates design
space exploration. The designer can specify generic cells with partial default
characteristics for parts of a design and concentrate n the more critical parts of
the design. Generic cells provide the general characteristics of their descen-
dent cells and allow partial design checking before deciding on specific realiz.-
tions. By deferring implementation decisions, generic cells allow a least com-
mitment strategy of design. For example, a designer can instantia’s a generic
adder cell in a circuit, and decide on a specific realization (e.g., a ripple-carmry
adder) of this adder later. in the mean time, the rest of the circuit can be
designed and checked against general characteristics of an adder. Subse-
quently, a suitable implementation of the adder can be selected to suit its sur-
rounding circuitry.

Module selection is the task of selecting a valid realization of a generic cell
instance in the context of a larger design. Automated module selection is an
important step towards macro-cell designs that adapt to varying constraints in
different contexts. Fig 8.1 shows a simple example of module selection. ADD8
is a generic, 8-bit adder cell with two subclasses: ADD8.RC, which uses a
ripple-carry scheme, and ADDB8.CS, which uses a carry-select scheme (Fig 8.1
(a)). ALU is designed with an instance of LUS8, a logic unit of 8-bit, and an
instance of ADDS8, the generic adder. Given two different sets of design con-
straints of ALU, one with a tight area specification (Fig 8.1(b)) and the other

80

81

with a tight delay specification (Fig 8.1(c)), two different ALU implementations

could result from module selection.

delay = 8D

delay = 5D
ares = A ADDS8.RC ADD8.CS

(2) area = 2.2A

deiay = 3D + ADDS8.delay
ares = 2A + ADDB.area

delay <= 8D
area <= 4.2A

!
.

LU8 ADDS8.RC LU8 | ADD8S.CS

LUS ADDS

delay <= 11D
area <= 3A

v

(b) (c)
———{@ SUBCLASS (____D SPECIFICATION

Fig. 8.1: (a) ADD8 has two subclasses;
(b) tight area spec: use ADD8.RC;
(c) tight delay spec: use ADD8.CS

A simple module selection routine has been implemented in STEM. It is
based on the "generate and test" search algorithm and depends on constraint
propagation to check for valid realizations of a generic cell. In the following
sections, the algorithm, implementation and examples of module selection are

presented.

82

8.1. Module Selection by Generate and Test

The "generate and test” search algorithm, augmented with selective testing
and tree pruning, is used in moduie selection. The algorithm successively tests
candidate realizations of the generic cell until all valid realizations are found.
This algorithm is easy to implement for module selection in STEM because the
candidate realizations of a generic cell consists of all descendent classes of the
generic cell. Constraint propagation provides the test for feasible realizations of
a generic cell instance. Since hierarchical constraint propagation is used as the
test, the validity of a candidate redlization depends on the environment of the

generic cell instance.

A depth first traversal of the class hierarchy rooted at the generic cell class
enumerates all candidate cell classes. For each of these candidate cells, tests
are performed to determine its .. s the realization for the generic cell
instance. (ne tests consist of setting different types of variablas of the generic
cell instance to values consistent with those for an instance of the candidate
cell and checking for constraint violations. A valid realization is a cell whose
instance variable values can be assigned to varables of the generic cell
instance without violating constraints.

Module selection is implemented as a menu action in the Cell Browser
[Girc87]). The user can select a generic cell instance in a cell, and invoke
module selection through the menu. A list of all cell classes that can realize
this generic cell instance is returned. However, no automatic replacement of

the cell instance is attempted.

8.2. Techniques for Efficiency improvement

Two techniques are used to improve the efficiency of generate and test,
namely solective testing and tree pruning. Selective testing invoives propagat-
ing and testing for selective types of property variables, starting with the most
critical type. Presently, three types of properties are tested: delay, bounding
box and signal types. Users can specify an ordered subset of these three types
of properties and restrict the testing to the selected types and in the specified
sequence (Fig. 8.2). For example, if the bounding box is the most constrained
property in a design, followed by delay, and if signal compatibility is guaranteed
(e.g., by the fact that no subclasses redefine signal properties), then the user
can specify #(#bBox #delays) to module selection when prompted for selective
properties to test. Using selective testing, the designer can direct the system's
attention to focus on only the relevant properties, and to apply the more critical
tests first. This decreases the amount of constraint propagation for unsuccess-

ful realization candidates, thereby improving the efficiency of the search.

CellWithvarAndConstraints class methodsFor:‘testing’

isValidRealizationFor:aninstance priorities:priorityList
priorityList do:{ :symbol |
symbol = #bBox
ifTrue:[(sek validBBoxFor:aninstance) ifFalse{ T faise]).
symbol = #signals
ifTrue:{ (self validSignalsFor:aninstance) #Faise:[T false]).
symbol = #delays
. True:[(self validDelaysFor.aninstance) UFaise: T false]]].
true

validBBoxFor:aninstance
| bBoxVar v |
bBoxVar « aninstance boundingBoxVar.
Vv « bBoxVar prevValug.
v isNil :
#True[
"it instanceBBox is nil, then check if it can be set to my default”
v « aninstance sTransform applyTo:self boundingBox.
T bBox canBeSetTo:v |

Faise{
T sell boundingBoxVar isSatisfiedBy:bBoxVar |

validDelaysFor:aninstance
| s d newDelay |
aninstance delayVariables do{ var |
$ « var source sName asSymbol.
d « var destination sName asSymbol.
newDelay « sell delayFrom:(self instVarNamed:s)
10:(sell instVarNamed:d)
outputNets:(OrderedCollection with:var destination net:
T(var canBeSetTo:newDelay) ifFaise:| T faise]).
true

validSignaisFor:aninstance
| mySignais bitWidthvar net |
" test signal dataTypes, electricalTypes, and bitWidths"
mySignals « self aliSignals.
aninstance alSignais do:{ :subCellSignalVar |
bRWidthVar « subCeliSignalVar bitWidthVar.
net « subCeliSignaiVar net.
net isNil & (bRWidthVar isKindOf:ClassBWidth) #Faise{
mySignals do{ :ioSignal |
ioSignal sName asSymbol = subCeliSignaiVar varName asSymbol
True{
" instance has user assigned bitWidth, check with my bitwidth"
((bitWidith isKindOf:instanceBWidth)
and:{(ioSigna! bitWidthVar isSatisfiedBy :bWidthVar) not])
WTrue T taise).
" net is not NIL, check signal types with net"
net NotNil KTrue{
((net electricalTypeVar canBeSetTo:ioSignal electricalTyr)
and;[net datatypeVar canBeSetTo:ioSignal datatype))
. itFaise T taise]I
true

Variable methodFor:'test’

canBeSetTo:anObject
"set my value 1o anObject, propagate, then restore prev values.
retums true If no violation, faise otherwise”

so¥f lasiSetBy #TENTATIVE.

sell prevVaiue:anObject.

status « self propagate.

status isNil #True{ self restore. T faise).

sel restore.
T true

Figure 8.2 Test methcds

Pruning the search tree is achieved by associating the "ideal" characteris-
tics of subclasses with their (parent) generic cell ciass. The generic cells then
represent the best case estimates of what their descendents can attain.
instead of testing every leaf cell (i.e., non-generic cell) in the class hierarchy,
the search process does a pre-order traversal of the search tree, testing each
generic cell to determine if its descendents should be tested. If a generic cell
fails the tests, then there is no need 1o test its descendents (Fig. 8.3).

CellWithVarAndConstraints class methodsFor:'module selection’

selectRealizationsFor:myinstance priorities:priorityList
|aList|
sell isGeneric
NTrue
aList « OrderedColiection new.
self subclasses do:{ :subciass |
alist addAll:(subclass validRelaizationsFor:myinstance
priorities priorityL.ist)].
T alist)

Faise{ T OrderedCollection with:self)

validRealizationsFor:aninstance priorities:priorityList
"this selects a valid realization for an instance of my ancestor”
self isGeneric
True |
"prune the search tree by testing generic cells as well"
(self isValidRealkizationFor:aninstance priorities:priorityL.ist)
Truei T sell selectReslizationsFor:aninstance
priorities priorityList)
Faise{ T OrderedCollection new])
UFaise:[
(self isValidRealizationFor:aninstance priorities priorityList)
¥True{ T OrderedCoNection with:self |
MFaise{ T OrderedCollection new])

Figure 8.3 Code for Module Selection

For example (Fig 8.4), a generic RippleCarryAdder8, a subclass of Adder8,
may have an bounding box area equal to that of its smallest subclass
(RCAdd8S) and delay values equal to those of its fastest subclass (RCAJd8F).

In the search for an implementation of a generic Adde:§ instance, RippleCar-
ryAdder8 is tested for bounding box and delay properties. If the generic Rip-
pleCarryAdder8 is too slow or t00 big for the intended appiication, then none of
its descendent classes can possibly qualify. So none of the descendents of
RippleCarryAdder8 needs to be tested. On the other hand, if the generic class
passes the tests, then the search must extend into its subclasses to see if any
of them is a valid realization. Early cutoff of the search tree decreases the
number of unsuccessful candidates to be tested by testing the best properties
of a group of cells as a whole (as represented by the generic cells), thereby
increasing the efficiency of the search. However, effectiveness of tree pruning
depends heavily on the way cells are organized in the hierarchy and the dili-
gence of the designers to provide the "ideal" estimates for generic cell proper-

ties.

Adder8
/ ceoo
delay = 8D
area = 8A | RippleCarryAdders e o o

£\

RCAdd8S e RCAddS8F

delay = 16D delay = 8D
area = 8A area = 16A

Figure 8.4 Generic class with properties for search pruning

87

8.3. Summary

In this chapter, generic cells and module selection in STEM are presented.
Generic cells allow a least commitment strategy of design by deferring imple-
mentation decisions for less critical parts of designs. Combined with automated
module selection, generic cells can serve as a vehicle for specifying macro-cell
templates that generate custom realizations for different sets of constraints. In
STEM, module selection is implemented using the "generate and test" search
algorithm, with selective testing and tree pruning to improve the efficiency of the
search.

The selection aigorithm uses constraint propagation for module validation.
This way the validity of a realization depends on all of the constraints in the
context in which the generic cell instance is used. Unfortunately, while con-
straint propagation validates that the characteristics of a cell satisfy the design
constraints, it cannot measure how well these constraints are satisfied. A more
intelligent module selection algorithm is necessary to differentiate relative merits
among different valid realizations of a generic cell. However, this is beyond the

scope of this thesis.

Chapter 9. Conclusion

This chapter summarizes this thesis and presents discussions on the
features that distinguish STEM's constraint propagation from previous systems,
on STEM as a research vehicle for this work, and the limitations of STEM's
constraint propagation. Suggestions for future work conclude this thesis.

8.1. Summary

Least-commitment design strategy offers an alternative approach to the
traditional top-down and bottom-up hierarchical design styles. By delaying
design decisions as much as possible, and refining design specifications when-
ever characteristics of related designs become available, least-commitment
requires fewer design iterations and less redesign efforts in each iteration.
However, in order to support the least-commitment design strategy, a design
environment must manage interactions among characteristics and specifications
of different designs. Toward this goal, this thesis has presented a framework of
constraint propagation which manages design interactions in an integrated

design environment and supports the least-commitment strategy in IC design.

This framework of constraint propagation consists of a suite of constraint
and variable objects organized in an object-oriented type hierarchy. Constraint
propagation is triggered by value assignments of variable objects, and is
scheduled on fixed priority agendas which heip to reduce the amount of redun-
dant computations. Propagation ierminates whenever a constraint violation is
detected during propagation, or when there are no more active constraints to
propagate. Dependency records are kept with propagated values so that
dependancy analysis can trace all antecedents of a propagated value and all
consequences of a constraint or a variable value. New types of constraints and

88

89

variables can be easily added to the framework as subclasses of the existing
objects, with possibly new methods that specify different propagation behaviors
and satisfaction criteria.

This framework cf constraint propagation has besn integrated into STEM.
The dual variables in class and instances of design objects in STEM facilitate
the use of implicit constraint variables to link constraint networks in different
celis. The resulting system is a framework of hierarchical constraint networks
that are able to propagate values from cne constraint network to another con-
straint network, and from one level in the design hierarchy to another level in
the design hierarchy. Design characteristics are thereby propagated up the
design hierarchy and checked against specifications in other designs. This pro-
vides a mechanism for managing interactions among designs and for supporting
the least-commitnient strategy of IC design.

Constraint propagation has been used in three types of sample applica-
tions in STEM. These have been described in this thesis to illustrate different
ways constraint propagation can help designers and design tools in an

integrated IC design environment such as STEM.

9.2. Discussions

in STEM, a constraint embodies both procecural and declarative
knowledge which guides the propagation of variable values through the con-
straint. This contrasts with purely declarative constraints and purely procedural
constraints in other systems. In purely declarative constraints, the semantics of
constraints are specified by rules. This limits the semantics of constraints to
relationships that can be described by rules. In purely procedural constraints,
the context and scope of constraints are embedded in code. This makes

90

management of constraints very difficult when the number of constraints grow.

Using the object-oriented paradigm, STEM combines the best of both
approaches. The semantics of a constraint in STEM are procedurally defined
with methods in the constraint object, while the context and scope of the con-
straint is declared in the connectivities of the constraint to other objects. Propa-
gation of constraints proceeds by applying the procedural knowledge in various
constraints in arbitrary orders dictated by the declarative knowledge in these
constraints. This mixture of declarative and procedural knowledge representa-
tions in STEM’s constraints combine the power of procedural computation with
the flexibility of declarative dependencies. As a result arbitrary types of con-
straints can be easily defined, and complex networks of dependencies can be
easily added and deleted in STEM.

Constraints allow a user to specify the desired functionality without having
to know how it is actually achieved. This is important in an integrated environ-
ment in which there is a large number of design tools and a need for effective
presentation of these tools to their users, be it designers or other tools in the
environment. When used by a designer, constraints provide an explicit
representation for intentional design conditions. They allow the designer to
specify dependencies and help maintain design conditions. Constraint propaga-
tion provides early feedback of design errors so that less efforts are spent on

redesigns.

When used by tool developers, constraints hide implementation details of a
tool from other tools. The knowledge encoded in the constraints take care of
when and how each tool should be invoked so that independently developed
tools can make use of one another without really knowing how. This facilitates

reuse of tools in the environment, and reduces replication of functionality in

91

different tools.

9.2.1. Distinctions from Previous Work

The research reported in this thesis builds upon previous work on con-
straint propagation, especially ThingLab and CONSTRAINTS. However, while
the majority of past research has focused on pure constraint propagation sys-
tems, this thesis has focused on using constraint propagation as a support
mechanism in an integrated IC design environment. As a result, there are
major differences in the implementation between STEM's framework of con-
straint propagation and that of other constraint systems. in particular, two imple-
mentation details distinguish STEM's framework of constraint propagation. The
first is the way STEM uses dual variables and implicit constraint variables to
implement hierarchical constraint propagation. This leads o STEM's hierarchi-
cal constraint networks that paralle! the design hierarchies (Fig. 9.1). These
hierarchical networks take advantage of the inherent structures in STEM's
design hierarchy to reduce redundant propagation of constraints.

external networks

=

internal network

Figure 9.1 Two level hierarchical constraint networks

The second implementation detail that distinguishes STEM's constraint pro-
pagation framework is that propagation knowledge is encoded in methods of
constraint and variable objects and inherited by their subclasses. The frame-
work defines a protocol of messages that each constraint and variable respond
to, and abstracts common propagation knowledge to methods in a few primitive
classes of constraints and variables. This object-oriented implementation has
two advantages: new types of constraints and variables can be easily added to
the system as subclasses of the existing types, and arbitrarily complex con-
straint and variable behaviors can be specifiesi by overwriting the inherited

methods in these subclasses.

9.2.2. Comments on STEM

STEM has served well as a vehicle for this research. Its underlying
object-oriented programming environment, Smalitalk-80, is especially well suited
to rapid prototyping. Despite the initial leaming curve for the message-passing
programming paradigm, object-oriented programming provided high fiexibility
and efficiency in coding and debugging. Heavy reuse of code was encouraged
by protocol inheritance and greatly facilitated by Smalltalk’s browers and multi-
widow user interface. The interpretive debugger in Smalltalk also proved to be

an invaluable programming and debugging aid.

The organization of STEM's data structures was instrumental in the imple-
mentation of hierarchical constraint propagation. While the general framework
of constraint propagation presented in this thesis can be easily implemented in
other object-oriented design environments, it is more difficult to implement
STEM's hierarchical constraint propagation in other systems since it requires
dual declaration of instance variables in the class and instance definitions of

93
each design object.

9.23. Limitations of STEM's Constraint Propagation

There are inherent limitations to the capabilities of STEM's constraint pro-
pagation. First, activated constraints are not scheduled by dependencies due 10
performance co~~ems. This creates problems for reconvergent fanouts
because of the one-value-change rule for variable objects. If a constraint is
propagated after its dependent constraints are propayated . e variables
would likely have incorrect values. A quick fix is to relax the one-value-change
rule to allow N value changes in each propagation cycle, N being heuristically
determined from the network. The correct solution is to develop an efficient
algorithm that dynamically schedules activated constraints by dependencies.

Second, since each constraint propagates based entirely on localized data,
optimization type problems which require global considerations cannot be
solved by constraint propagation. Constraint satisfaction, which examines con-
straints on a global scale, is required for these problems. Even for problems
that can be solved by constraint propagation, there is the issue of applicability
due to performance concerns.

Currently, the size of manageable constraint networks in STEM is limited
by both speed and storage inefficiencies of Smalltalk. This is due largely to the
way Smalkalk is designed. Smalltalk execution is slowed by the overhead of
message passing, dynamic type checking, and run-time interpretation of "byte
codes” that are the primitive instructions for the Smallitalk virtual machine. The
storage inefficiency is due to the extremely fine granularity of Smalhalk’s
objects. Uniike other object-oriented programming environments, Smalktalk
implements almost everything in the envionment as an object and incurs

significant storage overhead.

Nevertheless, constraint propagation imposes performance penalties that
limit its applicability in an interactive environment. The time and storage com-
plexity of STEM's constraint propagation is of an order proportional to the sum-
mation of the number of constraints over all variables in the network.

complexity« Y numberOf ConstrainsOf v
v

Consequently, constraint networks should ba small and sparse. For large and
dense networks like layout constraints, specialized data structures, such as
corner stitching, and problem specific algorithms, such as graph based compac-
tion algorithms, are required to achieve the necessary performance. Constraint
propagation is best suited for deriving and checking higher level properties of
cells like delay, signal types and bounding box. These constraint networks tend
to be sparse and highly localized such that propagation of constraints can be
efficiently applied.

9.3. Suggestions for Future Work

Future research in constraint propagation in STEM can progress in several
directions. First, a good user interface for browsing, specifying and editing of
constraints is needed. The user interface may include a graphical display of
constraint networks, a text window that explains the semantics of selected con-
straints, and a form window for editing the connectivities of selected constraints.
This user interface can then be linked to the constraint debugger, and be
brought up whenever constraints are violated to provide diagnostic explanations
and recommended actions to the user.

95

Sucond, a higher degree of control can be implemented for enabling and
disabling constraint propagation. For example, disabling propagation and/or
checking of individual constraints, constraints in particular networks, specified
types of constraints, and constraints connected to specific sets of variables. A
sophisticated user interface may be needed to guide the selection of constraints
for enabling and disabling.

Third, constraint networks can be compiled to improve the efficiency of
constraint propagation. Compilation of constraint networks can take several
forms, ranging from simple topological sorts of the constraint networks to com-
plete proceduralization of the constraints. The difficult issues are deciding
which constraints should be compiled and what kind of compilation is most suit-
able. A comect mix of declarative and procedural implementation of constraints
must balance run-time efficiency with manageability of the networks.

Fourth, the natural extension to propagation of constraints is probably a
framework of constraint satistaction. Unlike constraint propagation which only
examines localized data when making each decision, constraint satisfaction
attempts to solve a constraint network by global considerations. While algo-
rithmic constraint satisfaction techniques are well known for well defined numer-
ical constraints, they do not seem readily extensible 1o handie arbitrary con-
straints such as those found in STEM. An object-oriented approach to con-
straint satistaction may just be the way to solve for networks of arbitrary con-
straints.

Finally, the example applications presented in this thesis can be greatly
improved. Since this research focused primarily on STEM's constraint propaga-
tion framework and only developed these applications to demonstrate this
framework, these applications did not receive the emphasis that they deserved.

in fact, each of the anplications can be a good research project. In particular,
module selection is becoming more and more important as the number of alter-
native designs in cell libraries grows and as the design space increases. More
intelugent and efficient module selection techniques are required tc help explore
larger design space more quickly in order to improve the quality of designs.

References

[Born77) A. Borning, "ThingLab - An Object-Oriented System fo- Building
Simulations Using Constreints”, Proceedings, Fifth International Joint
Conference on Arificial inteligence(lJCAI-S), MIT, Cambridge, Aug
1977, pp497-498.

[Brow83] H.Brown, C.Tong & G.Foyster, "Palladio: an Exploratory Environment
for Circuit Design”, IEEE Computer, Dec. 1983, pp41-56.

[Gari86) D.Garlan, "Views for Tools in Integrated Environments”, Advanced
Programming Environments, Lecture Notes in Computer Science 244,
Springer-Veriag, 1986.

[Girc87) E. F. Girczyc & T. A. Ly, "STEM: An IC Design Environment Based on
the Smalltalk Model-View-Controlier Construct”, Proceedings, 24th
Design Automation Conf., 1987.

[Goid83] A. Goldberg & D. Robson, Smalltak-80 The Language and Its Impie-
mentation, iddison-Wuby. Don Mills, Ontario, 1983.

Katz83; R.H.Katz, "Managing the Chip Design Database", IEEE Computer, Vol

[! 16, No. 12, Dec. 1383. pp26-35. 0 put

[Kellg4] V. E. Kelly, "The CRITTER System", Proceedings, 21st Design Auto-
mation Conference, 1984.

[Law8S] H-F.S.Law & J.D.Mosby, "An inteligent Composition Tool for Regular
an?sgan;i;nogular VLSI! Structures”, IEEE ICCAD 1985 Proceedings,
PP -

[Ly87] T.A. Ly, R. Miller & E. F. Girczyc, "Interfacing Application Programs 1o
an Obé'ocd-ommod Database Using Views and Controliers”, Proceed-
ings, CCVLSI-87, 1987, pp87-92.

[Mayo86)R.N.Mayo, "Mocha Chip: A System for the Graphical ign of VLSI
]Modulo Generators", IEEE ICCAD 1986 Proc»gi,ngs. pp74-77.
[Mitc85) T. M. Mitchell, L. |. Steinberg & J. S. Shuiman, "A Knowledge-Based
Approach to Dssign”, IEEE Transactions on Pattern Analysis and
gﬂ:bchino Intelligence, Vol. PAM1-7, No. 5, September 1985, pp502-

[Oust83] J. K. Ousterhout, "Crystal: A Timing Analyzer for NMOS VLSI Cir-
gupi;g".sg Proceedings of the Third Caltech VLS| Conference, 1983,

[Oust8S] J. K. dustorhout. ot ol, "The Magic VLS! Layout System", IEEE
Design & Test, February 1985, pp19-30. Yo

[Puiv87]) M. Pulver & M. |. Eimasry, "Using Igioco: A Constraint Based out
Language for VLSI", Proceedings, C('.PVLSI-BZ 1987, ppB81-86. Lay

Rubi87] S. Rubin, Computer Aids for VLSI Design, Addison-Wesley, Don Mills,
[7 Ontario, 1987. 0 siey

[Sale84]) R. Saieh, "lterated Timing Analysis and SPLICE1", Electronics
Research Laboratory, University of California, Berkely, Memo No.
UCB/ERL M84/2, January 1984,

[Stall77) R. M. Staliman & G. J. Sussman, "Forward Reasoning and
Dependency-Directed Backiracking in a System for Computer-Aided

Circuit Analysis”, Artificial inteligence 9, 1977, pp135-196.

97

(Stet81] M. Stefik, "Plannin? with Constraints (MOLGEN: Part 1)", Artificial
inteliigence, Artificial inteligence 16, 1981, pp111-140.

[Suss80] G. J. Sussman & G. L. Steele Jr., "CONSTRAINTS- A Language for
E:g(r’oning Almost-Hierarchical Descriptions”, Artificial intelligence 14,
1980, pp1-39.

[VICP74] A. Viadimirescu, E. Cohen, D. O. Pederson, "SPICE2 Users Guide",
prrﬁtqo;ﬁs Research Laboratory, University of California, Berkley,

[Wied86] G.Wiederhold, "Views, Objects, and Databases”, IEEE Computer,
Dec. 1986, pp37-44.

[Wolf86] W.Wolf, "An Object-Oriented, Procedural Database for VLS| Chip
Planning", Prceedings, 23rd Design Automation Conf., 1986.

