
OPERATOR SPLITTING FOR TWO-PHASE FLOW

IN POROUS MEDIA

by

Maryam Khajeh Alijani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Applied Mathematics

Department of Mathematical and Statistical Sciences

University of Alberta

c© Maryam Khajeh Alijani, 2017



Abstract

This thesis studies operator splitting for flow equation coupled to a trans-

port equation arising from two-phase (water-oil) model in reservoir simulation.

We apply two different types of operator splittings and compare their accura-

cies. Summarized scheme and alternating triangle method (ATM) in iterative

fashion are used in the time discretization. Both schemes are unconditionally

stable but the latter is only conditionally consistent. We propose two types

of ATM scheme, modified ATM iterative scheme and preconditioned iterative

ATM. In the former, we modify the method by adding a correction term to

improve the convergence of the modified ATM iterative scheme and the nu-

merical results show that the order of convergence is increased by one. The

methods are validated by reporting experimental results for a benchmark data

model. Numerical results indicate better accuracy and more reliable solution

using summarized scheme compared to ATM schemes.
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Chapter 1

Introduction

The main focus of this thesis is to study operator splitting for flow equation,

a parabolic equation arising from governing equations of two-phase model in

porous media.

The objective of reservoir engineering is to optimize the recovery of oil.

To achieve this, one should predict the performance of reservoir under various

exploitation schemes, especially when enhanced oil recovery or recovery from

heavy oil is considered. This requires the use of numerical techniques to solve

the mathematical equations of flows in oil reservoirs. Also, simulation tech-

nology has undergone dramatic development due to availability of computing

power and sophistication of simulation techniques such as the rapid advance

of parallel computers and algorithms corresponding to them. This availability

will let fast and efficient approximation of the solution of complex nonlinear

system of partial differential equations (PDEs) involved in the modelling of oil

reservoir to be possible.

There are several challenges to an efficient scalable reservoir simulator.

Firstly, the governing PDEs are coupled hyperbolic-parabolic equations due
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to coupling between the flow (pressure) and the transport (phase saturations)

problems. Secondly, the rock properties such as porosity and permeability

exhibit high spatial variation of scales in heavy and extra heavy oil field in

Alberta which affects oil production significantly [8]. This leads to a huge

computational problem and its solution is infeasible even on large parallel

computers. Finally, fluid velocities vary rapidly over the domain, with near

well regions having fast flows and far away regions almost no flow [10].

Since easy-to-produce oil fields are gone and there are lots of bitumen

resources, oil industry has been motivated to do innovation and integrated

approaches to produce oil from the existing reservoirs (deep-water offshore, oil

sands and heavy oil). Examples of those innovations in enhanced oil recovery

are: 1) chemical injection, 2) thermal recovery (Cyclic Steam Stimulation

(CSS), Steam Flooding, Steam Assisted Gravity Drainage (SAGD), and in-situ

combustion). To optimize the production and minimize the risk of associated

recovery methods, the oil industry use numerical simulations which is relatively

inexpensive and the simulation results become as an indispensable tool in

nearly all major reservoir development decisions [10].

1.1 Thesis Outline

The thesis is formed of seven chapters.

Chapter one provides a brief introduction regarding reservoir simulation

and its numerical challenges.

In chapter two, we have a literature review on reservoir simulation and

explain the impact of this thesis. We then introduce governing equation for

a compositional model for three components and three phases together with
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well equations. Then, we reduce that model into a two-phase (water-oil) model

and discuss its nondimensionalization.

Chapter three deals with time and space approximation. For temporal dis-

cretization, we discuss linearization approach, explicit approach and two dif-

ferent types of operator splitting schemes, summarized scheme and alternating

triangle method will be introduced. To improve the accuracy, we propose a

preconditioned iterative scheme based on summarized scheme. We also devise

two variants of alternating triangle method, modified iterative alternating tri-

angle method and preconditioned iterative alternating triangle method. Then,

depending on the well constraint we show how the well equations will be cou-

pled to the splitting schemes. Next, spatial discretization is presented in which

we use finite volume discretization. We also explain the first order single-point

upstream approximation for discretization of relative permeability.

We focus on the stability of both proposed splitting schemes in chapter

four. We show that summarized scheme is unconditionally stable for non-

negative directional operators following the work of Vabishchevich in [23]. The

unconditionally stability of alternating triangle method will be shown in the

framework of Vabishchevich in [24].

Chapter five presents the error analysis. This is done in the framework of

Vabishchevich in [23, 24]. By applying the stability results in chapter four, it

follows the convergence estimates.

Numerical results are illustrated in chapter six. We compare the accuracy

of the schemes and their order of convergence. Time history of the numerical

solutions for the splitting schemes is also presented in which the numerical

results of the schemes are compared to a reference solution.

In chapter seven, we propose next phase of our work. We introduce a new
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splitting scheme proposed by Vabishchevich in [22]. This splitting scheme is

obtained naturally from the flow equation by taking flux as a new variable. A

detailed discussion of this scheme including temporal and spatial discretization

will be presented.
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Chapter 2

Governing Equations

In general, governing equations of a mathematical model of a reservoir can-

not be solved by analytical methods. Instead, a numerical method may be

produced to approximate the solution by computers [2]. The books by [14]

and [1] gave detailed information on the use of finite difference methods as

applied to the porous media flow. Compared with finite difference methods,

finite element methods when applied to petroleum reservoir simulation have

the following features: such as in the reduction of grid orientation effect, in the

treatment of local grid refinement, horizontal and slanted wells, in the simu-

lation of faults and fractures and in the requirement of high-order accuracy of

numerical solutions [2].

Two variations of finite element methods, Control volume finite element

methods and discontinuous finite element methods posses a local mass con-

servation property on each control volume. The finite difference methods are

also locally conservative [2].

A basic scheme for solving multiphase flow equations is simultaneous solu-

tion (SS) method. It solves all of the coupled nonlinear equations simultane-
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ously and implicitly. This method is stable and for the black oil and thermal

models with a few components is a good choice. However, for compositional

and chemical compositional flow problems with many compositional compo-

nents the size of system matrices is too large that even with today’s computing

power it becomes computationally expensive [2]. A variation without suffering

too much in computation with less stability is the Implicit Pressure Explicit

Saturation (IMPES) scheme. This scheme works well for problems of interme-

diate difficulty and nonlinearity e.g. two-phase incompressible flow. However,

it is not sufficient for problems with strong nonlinearity, especially for problems

with more than two phases. Different sequential methods for solving equations

in an implicit fashion without a full coupling have been developed. They are

more computationally efficient but less stable than SS method and more stable

but less efficient than IMPES scheme. They are suitable for compositional and

chemical compositional flow problems with many chemical components. The

last method which can be used in reservoir simulation is an adaptive implicit

scheme. The idea of this scheme is to find an efficient middle method between

the IMPES or sequential and SS schemes. That means it only apply the ex-

pensive SS scheme to those gridblocks that require it and on the remaining

gridblocks the IMPES scheme is applied [2].

In this thesis, our reservoir model is a two-phase incompressible flow so we

implement our simulation using IMPES scheme. However, this scheme still

suffer computationally from implicit discretization of pressure equation espe-

cially on large grids for 3D problems. To overcome this problem, we decompose

the spatial operator in pressure equation while stability is maintained. The

main contribution of this thesis is that we develop a stable, efficient, robust

and accurate solution technique based on direction splitting method that ad-
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dresses the first challenge in chapter 1. To address the second challenge, we

propose an innovative algorithm in section 7.2 to handle the dramatic changes

appeared in permeability data. The algorithm uses flux-splitting scheme which

leads to a construction of multi-sale method.

In the following, we introduce the governing equations. Compositional

models of reservoir assume at most three phases (water, oil, and gas) and

several hydrocarbon components while diffusive effects are neglected. In the

SAGD model, we consider three components: H2O (i = 1), Bitumen (i = 2),

Methane (i = 3).

Let φ and K denote the porosity and permeability of the porous medium

Ω ⊂ R
3, and let Sα, μα, uα, krα, and ρα to be the saturation, viscosity of

fluid, volumetric velocity, relative permeability and density of phase α for

α ∈ {water, oil, gas} denoted as w, o, g respectively. Also, ciα is the mass

fraction of the ith component in phase α and qα is the flow rate of phase α.

The governing equations for multiphase compositional flow are based on

the conservation of mass for each component. We assume that the water

component can exist in both aqueous (water) phase and vapour (gas) phase

and the oil component exist only in the liquid hydrocarbon (oil) phase and the

gas component can exist in both the liquid and vapour hydrocarbon (oil and

gas) phases. For the sake of simplicity, we also assume that all phases have the

same pressure so capillary pressure does not exist. With these assumptions

the mass balance equations take the following form [9]:

∂

∂t

(
φ

g∑
α=w

Sαραciα

)
= −∇.

(
g∑

α=w

uαραciα

)
+

g∑
α=w

ciαραqα, i = 1, 2, 3,

(2.1)

where the superficial velocity uα is given by momentum conservation per phase
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α in the form of Darcy’s law as:

uα = − 1

μα

(K krα∇Φα) , α = w, o, g, (2.2)

Φα stands for potential of phase α with ∇Φα = ∇P + ℘ρα∇z in which P is

pressure, ℘ is gravitational acceleration, and z is depth.

In the case of non-isothermal flows, an energy conservation equation is

supplemented which takes the following form [2]:

∂

∂t

(
φ

g∑
α=w

SαραUα + (1− φ)ρ Cp T

)
= ∇. (kt ∇T )−∇.

(
g∑

α=w

uαραHα

)

+ qc − qL

(2.3)

where Uα is internal energy of fluid in phase α, ρ is constant density at reference

condition, Cp is heat capacity of solid, T is temperature, kt is average thermal

conductivity, Hα is enthalpy of phase α, qc denotes the heat source item, and

qL indicates the heat loss to overburden and underburden.

In addition to differential equations (2.1) and (2.3), there are the following

algebraic constraints. Since the pore space is saturated, we have saturation

constraint:
g∑

α=w

Sα = 1, α = w, o, g, (2.4)

and the mole fraction balance implies that [2]:

x1w = 1, (2.5)

x2o + x3o = 1, (2.6)
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x1g + x3g = 1, (2.7)

where xiα, is mole fraction of the ith component in the phase α.

One of the mathematical techniques to handle the distribution of chemical

components among phases is Equilibrium K-values. Since mass interchange

between phases occurs much faster than the flow of porous media fluids, it is

physically reasonable to assume that the phases to be in the phase equilibrium

state. The equilibrium ratio for component i = 1 and i = 3 are defined as [4]:

K1(P, T ) =
x1g

x1w

, (2.8)

K3(P, T ) =
x3g

x3o

. (2.9)

In practical simulations, we rewrite PDEs in terms of a set of indepen-

dent primary variables. For example, one can choose P , So, Sg, and T as

primary variables and then use the algebraic equations (2.4)-(2.9) to calculate

the remaining variables.

The system of PDEs is supplemented with zero flux boundary conditions:

(
g∑

α=w

uαραciα

)
.n = 0, on ∂Ω for i=1, 2, 3,

where n denotes the outward normal unit vector to the boundary. The initial
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conditions are

P (x, 0) = P0(x),

Sw(x, 0) = Sw0(x),

Sg(x, 0) = Sg0(x),

T (x, 0) = T0(x).

2.1 Sink/Source well model

Well controls or operation constraints are the values used to determine oper-

ation of the wells [5]. There are several well constraints to be considered in

injector and producer wells. For injection well, there are usually two kinds

of constraints, either maximum wellbore pressure (known as well bottom hole

pressure, Pbh) is given or an injection rate is known. For production well, there

are three kinds of well constraints. Minimum bottom hole pressure, constant

total liquid (water and oil) production rate, and a constant total rate [2].

The flow rates at the wells are given by [2, 15]:

qα =
Nw∑
j=1

Mwj∑
m=1

WI(j,m)λα

[
P

(j)
bh − P − ρα℘

(
z
(j)
bh − z

)]
δ(x− x(j,m)), (2.10)

where δ(x) is the Dirac-delta function, Nw is the total number of wells, Mwj

is the total number of perforated zones of the jth well, and x(j,m) is central

location of the mth perforated zone of the jth well, P j
bh is the bottom hole

pressure of the jth well at the well datum zbh, WI(j,m) denotes well index and
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has the form:

WI(j,m) =
2πK̄ΔL(j,m)

ln
(
r
(j,m)
e /rjw

)
+ S

, (2.11)

in which ΔL(j,m) is the grid length, K̄ is an average of K at the wells, rjw

denotes the wellbore radius of the jth well, r
(j,m)
e is the drainage radius of the

jth well at the gridblock in which x(j,m) is located, and S is skin factor.

2.2 Two-phase (water-oil) model

Depending on the stage of oil recovery, the fluids filling a reservoir will change.

At primary stage, the reservoir mainly consists of single fluid such as gas

or oil. At this stage, oil or gas production is done through simple natural

decompression at the wells. This stage is called primary recovery and it can

recover 20–30% of hydrocarbons from the oil field. In order to recover the rest

of remaining oil, a fluid (usually water) is injected into the injector well and oil

is produced from the producer well. This process keeps the reservoir pressure

and flow rates high resulting in displacement of some of the oil toward the

production well. This stage is known as secondary recovery or water flooding

stage. At this stage, if reservoir pressure is greater than the bubble point

pressure (pressure at which the flow of fluids consists of only water and oil and

no free gas is present meaning all the gas is in solution) then there is two-phase

immiscible flow. The water phase that wets the porous medium more than the

other phase i.e. oil is called wetting phase and oil phase is called non-wetting

phase. There is no mass interchange between these two phases [2].

We describe the governing differential equations for two-phase incompress-

ible immiscible flow in a porous medium Ω. The mass conservation law for
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each phase α = w, o using (2.1) is:

∂

∂t
(φ(P ) Sα(t) ρα(P )) = ∇.

(
K(x)

krα(Sα(t))

μα

∇Φα(P ) ρα(P )

)

+ ρα(P ) qα(P, Sα), α = w, o,

(2.12)

where ∇Φα = ∇P + ℘ρα∇z, for α = w, o. Filling the void spaces by the two

fluids implies that

Sw + So = 1. (2.13)

With incompressibility assumption densities and porosity are constant [2].

We divide each equation in (2.12) by ρα and add them up to derive pressure

equation:

φ
∂

∂t
(Sw + So) = ∇.

(
K

krw
μw

∇Φw +K
kro
μo

∇Φo

)
+ qw + qo, (2.14)

using (2.13), we get a stationary equation (elliptic equation) for pressure:

0 = ∇.

(
K

krw
μw

∇Φw +K
kro
μo

∇Φo

)
+ qw + qo. (2.15)

In order to get a parabolic equation for pressure, we assume slight com-

pressibility for porosity i.e. φ = φ(P ) while densities are still constant. Divid-

ing each equation in (2.12) by ρα and adding them up yields:

φ
∂

∂t
(Sw + So) +

∂φ

∂t
(Sw + So) = ∇.

(
K

krw
μw

∇Φw +K
kro
μo

∇Φo

)
+ qw + qo,

(2.16)
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applying (2.13), we get a parabolic equation for pressure:

∂φ

∂P

∂P

∂t
= ∇.

(
K

krw
μw

∇Φw +K
kro
μo

∇Φo

)
+ qw + qo. (2.17)

We set C =
∂φ

∂P
where C corresponds to the compressibility of the rock.

Thus, pressure equation reads as the following:

C
∂P

∂t
= ∇.

(
K

krw
μw

∇Φw +K
kro
μo

∇Φo

)
+ qw + qo. (2.18)

Saturation equation for water phase is obtained from (2.12) by diving it

by ρw:

φ
∂Sw

∂t
= ∇.

(
K

krw
μw

∇Φw

)
+ qw. (2.19)

Equations (2.13), (2.18), and (2.19) provide three equations for three un-

known P , Sw, and So. We choose to solve for primary unknowns P and Sw.

We present the unit of all variables and parameters appearing in the two-

phase mass balance equations, Darcy’s law and well equation in table 2.1 before

we discuss nondimensionalization in the next section.
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Table 2.1: Variables and parameters used in two-phase model mass balance
equations, Darcy’s law and well equation

Symbol Quantity Metric Unit

x, y, z Length m

K Permeability μm2

P Pressure kPa

Pbh Bottom hole pressure kPa

Φα Phase potential kPa

μα Phase viscosity Pa.s

ρα Phase density Kg
m3

uα Phase velocity m
s

qw Water flow rate 1
day

qo Oil flow rate 1
day

℘ Gravitational acceleration m
s2

C Compressibility kPa−1

krα Phase relative permeability dimensionless(fraction)

φ Porosity dimensionless(fraction)

Sα Phase saturation dimensionless(fraction)

t Time day

WI Well index m3

re Effective block radius m

rw Wellbore radius m

S Skin factor dimensionless

CC Geometric factor dimensionless

f Well fraction dimensionless
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2.3 Nondimensionalization

Using mathematical symbols when dealing with differential equations with pen

and paper, it does not matter what units and numerical values we use for a

physical parameter. However, units become important while doing numerical

simulations, hence dealing with approximations and errors. Nondimension-

alization of mathematical models is a very useful technique which has great

practical benefits relating to running numerical simulations. There are three

main purposes for scaling. First, instead of letting very small or very large

input quantities enter the computations, scaling makes the size of independent

and dependent variables of unit size. Second, in the scaled model the inde-

pendent and dependent variables are dimensionless and the final purpose is

that the number of parameters in the scaled model are less than the number

of physical parameters in the original model [11]. All of these benefits moti-

vate us to do nondimensionalization. We introduce the following dimensionless

fractions of water and oil fluid properties [11]:

ρ = ρw, ρo = ρα, α =
ρo
ρw

,

μ = μw, μo = μβ, β =
μo

μw

,

q = qw, qo = qω, ω =
qo
qw

.

We also make the following quantities dimensionless by choosing new vari-

ables. Dimensionless variables are indicated by bar:
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K̄ =
K(x)

Kc

, Kc = max
x

K(x),

Λw = K
krw
μw

= ΛcΛ̄w, Λc =
Kc

μ
, Λ̄w = K̄krw,

Λo = K
kro
μo

= Λcβ
−1Λ̄o, Λ̄o = K̄kro,

Λt = Λw + Λo = ΛcΛ̄t, Λ̄t = Λ̄w + β−1Λ̄o,

x̄ =
x

Lc

, P̄ =
P

Pc

, v̄ =
v

vc
,

tc =
Lc

vc
, t̄ =

t

tc
.

We choose a characteristic length Lc while natural velocity scale is obtained

by pressure term in Darcy’s law with vc =
KcPc

μLc

=
ΛcPc

Lc

and Pc represents

characteristic pressure. The derivative relations are,

∂

∂t
=

1

tc

∂

∂t̄
and ∇ :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

1

Lc

(
∂

∂x̄
,
∂

∂ȳ
,
∂

∂z̄

)
=

1

Lc

∇̄.

Sw, So, krw, kro, and φ are non-dimensional quantities. We insert the above

scaled quantities in (2.18) and (2.19) to get:

∂P̄

∂t̄
=

1

CPc

∇̄.
(
Λ̄t∇̄P̄

)
+

ρ℘Lc

P 2
c C

∇̄.
(
(Λ̄w + β−1αΛ̄o)∇̄z̄

)
+

tc
CPc

(q + qω) ,

(2.20)

φ
∂Sw

∂t̄
= ∇̄.

(
Λ̄w∇̄P̄

)
+

tcΛcρ℘

Lc

∇̄.
(
Λ̄w∇̄z̄

)
+ tcq. (2.21)

Introducing other dimensionless numbers η =
ρ℘Lc

Pc

=
tcΛcρ℘

Lc

, and ζ = tcq,

we can rewrite (2.20) and (2.21) in the following final dimensionless equations:

∂P̄

∂t̄
=

1

CPc

∇̄.
(
Λ̄t∇̄P̄

)
+

η

CPc

∇̄.
(
(Λ̄w + β−1αΛ̄o)∇̄z̄

)
+

ζ(1 + ω)

CPc

, (2.22)
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φ
∂Sw

∂t̄
= ∇̄.

(
Λ̄w∇̄P̄

)
+ η∇̄.

(
Λ̄w∇̄z̄

)
+ ζ. (2.23)

By doing the nondimensionalization, we reduce eight parameters Lc, qw, qo,

μw, μo, ρw, ρo, andK to five dimensionless parameters α, β, ω, η, and ζ. We now

drop the bar from the nondimensionalized variables for the sake of simplicity

to get the nondimensionalized equations that we will solve:

∂P

∂t
=

1

CPc

∇. (Λt∇P ) +
η

CPc

∇.
(
(Λw + β−1αΛo)∇z

)
+

ζ(1 + ω)

CPc

, (2.24)

φ
∂Sw

∂t
= ∇. (Λw∇P ) + η∇. (Λw∇z) + ζ. (2.25)

Water rate, qw, for two-phase model for single point well located at i-th

perforated grid in the vertical direction from (2.10) is defined as:

qw = WI
krw
μw

(Pbh − P )
1

Δx Δy Δz
δ(x− xi), (2.26)

with anisotropic permeability K = diag(K11, K22, K33), (2.11) reduces to

WI =
2π

√
K11K22 Δz

ln (re/rw) + S
,

where Δz is the grid length and effective block radius, re, is given by:

re =
2 CC

√√
K22/K11Δx2 +

√
K11/K22Δy2

((K22/K11)0.25 + (K11/K22)0.25)
√
πf

,

in which CC denotes geometric factor. The geometric factor depends on the

geometry of the problem. f is well fraction that will be 1 for a well going

approximately through the centre of a grid block,
1

2
for a half well on a grid

block boundary, and
1

4
for a quarter well at the corner of a grid block [4].
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Inserting scaled quantities into (2.26) we get:

q̄w = W̄ I
krw
μ

Pc (P̄bh − P̄ )
1

L3
c

δ(x̄− x̄i). (2.27)

We denote,

P̄bh =
Pbh

Pc

,

W̄ I =
2π KcLc

√
K̄11K̄22 Δ̄z

ln(r̄e/rw) + S
,

r̄e =
2 CC Lc

√√
K̄22/K̄11Δ̄x

2
+
√
K̄11/K̄22Δ̄y

2(
(K̄22/K̄11)0.25 + (K̄11/K̄22)0.25)

√
πf

,

Δ̄x =
Δx

Lc

, Δ̄y =
Δy

Lc

, Δ̄z =
Δz

Lc

,

K̄ii =
Kii

Kc

, i = 1, 2, 3.

Dropping the bar, we get:

qw = WI
krw
μ

Pc (Pbh − P )
1

L3
c

δ(x− xi). (2.28)

In the same way as explained above, the scaled volumetric rate, qo, for oil

phase can be obtained:

qo = WI
kro
μβ

Pc (Pbh − P )
1

L3
c

δ(x− xi). (2.29)
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Chapter 3

Discrete Approximation

Majority of reservoir simulators used (and still use) finite volume methods of

discretization for the multiphase flow equations and this choice is motivated

by the need for exact local conservation [10]. The system of PDEs are quite

large and nonlinear with coupled parabolic and hyperbolic equations. Thus,

the choice of solution technique is a major issue. Fully implicit simultaneous

solution technique (SS) together with finite volume/finite element yields a

nonlinear system that is linearized with Newton-Raphson method but the

resulting spatial discretization is very expensive to be solved for compositional

type of flow due to the number of chemical component. IMPES and sequential

techniques are widely used in petroleum industry [2]. An IMPES method

was originally developed by Sheldon et al. [17] and Stone and Garder [21].

The basic idea of this classical method for solving (2.12) is to separate the

computation of pressure from that of saturation. That is, the coupled system

is split into a pressure equation (2.24) and a saturation equation (2.25), and

the pressure and saturation equations are solved using implicit and explicit

time approximation approaches, respectively. This method is simple to set
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up and efficient in implementation, and requires less computer memory than

other methods such as the SS method (Douglas et al. [6]). Although explicit

treatment of saturation requires small time steps for the saturation equation

to be stable, IMPES is still popular in the petroleum industry and a very

powerful method for solving two-phase flow particularly for incompressible or

slightly compressible fluids [2].

3.1 Temporal Discretization

3.1.1 Linearization Approach

We will discretize equations (2.24) and (2.25) in time. We divide the time

interval [0, T ] into N equidistance time step τ and let tn = nτ, n = 0, 1, · · ·N
and denote approximation of P(tn), Sw(t

n) and So(t
n) by P n, Sn

w, and Sn
o

respectively. We rewrite equation (2.24) as:

∂P

∂t
=

1

CPc

∇. (Λt∇P) + f, (x, t) ∈ Ω× R
+ (3.1)

where

f =
η

CPc

∇.
(
(Λw + β−1αΛo)∇z

)
+

ζ(1 + ω)

CPc

.

In the linearization approach for equation (3.1), we use explicit treatment

for saturation dependent variables while evaluating pressure at the current

time level as follows:

P n+1 − P n

τ
=

1

CPc

∇.
(
Λt(S

n
w, S

n
o ) ∇P n+1

)
+ fn+1, (3.2)
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where

fn+1 =
η

CPc

∇.
(
(Λn

w + β−1αΛn
o )∇z

)
+

ζn+1(1 + ωn+1)

CPc

, (3.3)

is an approximation to f(P(tn+1), Sw(t
n), So(t

n)). The source/sink term which

appears in f needs spacial consideration due to the type of the constraint of

well and we will discuss it in details later. The problem (3.2) reduces to solving

the implicit reaction-diffusion equation:

(
I − τ

CPc

∇.(Λn
t ∇)

) P n+1

τ
=

P n

τ
+ fn+1. (3.4)

Implicit approximation (3.4) is unconditionally stable but requires comput-

ing

(
I − τ

CPc

∇. (Λn
t ∇)

)−1 (
P n

τ
+ fn+1

)
, which is computationally expen-

sive for three-dimensional problems on very large grids, and hence iterative

solvers for sparse matrices need to be used. To reduce computational cost for

parabolic equations of second order, explicit schemes or different variant of

operator-splitting schemes are employed [12, 25].

3.1.2 Explicit-time Integration

Explicit schemes have implementation advantages over implicit schemes. How-

ever they have the severe restrictions on time step sizes. For the parabolic

equations, the stability restriction is τ < O(h2), where h denotes grid size

[19, 20].

Explicit discretization of saturation equation (2.25), which is also called
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the forward difference scheme, when P n+1 is known, results in:

φ
Sn+1
w − Sn

w

τ
= ∇.

(
Λw(S

n
w)∇P n+1

)
+ η∇.

(
Λw(S

n
w)∇z

)
+ ζ

(
P n+1, Sn

w

)
.

(3.5)

This scheme is only conditionally stable, that is, the time step must satisfy

the stability condition. We derive the stability condition in section 3.3.

3.1.3 Operator Splitting Methods

Since most of computational time in IMPES method is spent on the implemen-

tation of implicit calculation of pressure, it is reasonable to find an alterna-

tive way which is computationally cheaper while having unconditionally stable

property. In direction splitting methods, a spatial operator is represented as

sum of one-dimensional operators so the original problem is decomposed into

a sequence of one-dimensional implicit discrete problems. Time discretization

of the one-dimensional problem leads to a tridiagonal matrix in which direct

solver can be applied. Let us decompose the spatial operator A from the

equation (3.1),

A = − ∂

∂x

(Λt(x, t)

CPc

∂

∂x

)
− ∂

∂y

(Λt(x, t)

CPc

∂

∂y

)
,

into the sum of two operators in 2D (and into the sum of three operators in

3D):

A1 = − ∂

∂x

(Λt(x, t)

CPc

∂

∂x

)
,

A2 = − ∂

∂y

(Λt(x, t)

CPc

∂

∂y

)
,
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so that

A = A1 + A2.

We substittute the introduced operators into (3.1) and we obtain the

Cauchy problem of finding P(t) such that,

∂P

∂t
+ AP = f, t > 0

P(0) = P0.

(3.6)

We rewrite equation (3.2) as:

P n+1 − P n

τ
+ A P n+1 = fn+1, (3.7)

which can be written as operator equation:

(I + τA)P n+1 = P n + τfn+1. (3.8)

There is a variety of schemes that can be used to approximate the solution

of a parabolic problem by first decomposing the elliptic operator into a sum of

positive operators and then solving a set of parabolic subproblems. Here, we

consider an easy scheme that is unconditionally stable for non-commutative

decomposition and it is only first order accurate in time. We consider the

so-called “summarized approximation” that is known as “Marchuk-Yanenko

splitting”. The summarized scheme in 2D is defined by the two-component

additive splitting A = A1+A2 ≥ 0 with A1 and A2 to be defined as above [23].

The splitting scheme reads as follows: starting from P 0 = P0, we solve the

following set of d subproblems (supposedly easier problems) for intermediate
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unknowns P n+α/d, α = 1, · · · , d such that after d sub-steps, we get P n+1, an

approximated solution to the problem (3.6),

P n+α/d − P n+(α−1)/d

τ
+ Aα(σαP

n+α/d + (1− σα)P
n+(α−1)/d) = qn+1,α.

Here
d∑

α=1

qn+1,α = fn+1 is some approximation to f(tn+1,x). In our model,

d = 2 and we set σα =1 which results in the implicit scheme for each subprob-

lem as:

P n+1/2 − P n

τ
+ An

1P
n+1/2 = qn+1,1,

P n+1 − P n+1/2

τ
+ An

2P
n+1 = qn+1,2.

(3.9)

If we set qn+1,1 = fn+1 and qn+1,2 = 0, still qn+1,1 + qn+1,2 = fn+1 holds.

This helps eliminate P n+1/2 from (3.9) and rewrite it in the factorized form:

(I + τA1)(I + τA2)P
n+1 = P n + τfn+1. (3.10)

We devise a preconditioned iterative method for equation (3.8) based on

the summarized scheme (3.10) as follows:

(I + τA1)(I + τA2)(P
n+1,k+1 − P n+1,k) = (P n + τf(P n+1,k, Sn

w, S
n
o ))

− (I + τA)P n+1,k.

(3.11)

For the design of the preconditioner (I + τA1)(I + τA2), we take into

account two main requirements: the preconditioner is chosen so as to be

easily invertible on one hand, and on the other hand, to “resemble” the
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problem operator (I + τA). This means we can expect that the operator

((I + τA1)(I + τA2))
−1 (I + τA) will “resemble” the unit operator I, and the

boundaries of its spectrum λmin and λmax, as well as the condition number,

will all be “close” to one. We note that the right-hand side of (3.11) is the

residual of (3.8) and k denotes the iteration parameter.

In the following, we discuss other splitting method that employ splitting

into lower and upper triangular discrete operators.

The Alternating Triangle Method (ATM) as presented by Smarskii in [18,

19] is defined by the two-component additive splitting,

A = A1 +A2 ≥ 0,

where A is the discrete operator for the operator A and the two operators A1

and A2 are adjoint to each other, i.e.,

A∗
1 = A2.

The elements of the matrices Aα = {aαij}, α = 1, 2, using the notation in

[23], are as follows,

a1ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if i < j,

1

2
aij, if i = j,

aij, if i > j,

a2ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aij, if i < j,

1

2
aij, if i = j,

0, if i > j.
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In fact, the discretized spatial problem operator (discretized matrix) is split

into the lower and upper triangular matrices that are adjoint to each other.

To solve the problem (3.6) using the above two-component splitting, we have

the following factorized scheme written in a canonical form [19, 23, 24]:

(I + στA1)(I + στA2)
P n+1 − P n

τ
+AP n = φn, n = 0, 1, · · · , N, (3.12)

in which σ is a weight parameter and φn = f(x, σtn+1 + (1− σ)tn).

Taking σ = 0.5 corresponds to the classical Peaceman-Rachford scheme

[16], while σ = 1 will result in Douglas-Rachford scheme [7]. Here, we take

σ = 1 so (3.12) reduces to:

(I + τA1)(I + τA2)
P n+1 − P n

τ
+AP n = fn+1, n = 0, 1, · · · , N. (3.13)

The implementation of the ATM is based on the successive inversion of the

operators (I + τA1) and (I + τA2). The scheme of ATM is unconditionally

stable, but it has a restriction on a time step due to conditionally convergent

since it has a term O(τ 2h−2) in the truncation error [24] and we will discuss

it in section 5.2.

In the following, we propose two iterative modifications of the ATM scheme

first by adding a correction term with the time derivative which is taken from

the previous iteration level and second by introducing an iterative precondi-

tioned method.

We first rewrite (3.13) as:

(I + τA1)(I + τA2) δP
n+1 = fn+1 −AP n, n = 0, 1, · · · , N, (3.14)
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where

δP n+1 =
P n+1 − P n

τ
.

The modified ATM iterative scheme is presented by adding a correction

term with the time derivative which is taken from the previous iteration level,

reads as:

(I + τA1)(I + τA2) δP
n+1,k+1 = fn+1 −AP n + τ 2A1 A2 δP n+1,k. (3.15)

The other variation of ATM scheme is preconditioned iterative method.

We design a preconditioned iterative method for equation (3.8) based on the

two-component splitting introduced for the ATM scheme as follows:

(I + τA1)(I + τA2)(P
n+1,k+1 − P n+1,k) = (P n + τf(P n+1,k, Sn

w, S
n
o ))

− (I + τA) P n+1,k.

(3.16)

3.2 Coupling of Well and Flow Equation

Two types of well constraints need to be taken into account: either the well

bottom hole pressure is given, i.e. the well is pressure-specified or a flow

(production or injection) rate is given, i.e. the well is rate-specified. We assume

that the minimum well bottom hole pressure is given for the producer and the

rate is fixed for the injector. Therefore, for the producer the flow rates qw and

qo are unknown and for the injector the well bottom hole pressure is unknown.

The solution for either qw and qo or Pbh depends on the discretization technique

for the flow equation (2.24). Different techniques for numerical solution of

(2.24) are available, for instance, explicit, linearization, or fully implicit. Here
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we focus on the linearization approach. The linearization of the well equations

(2.28) and (2.29) results in the following equations:

qn+1
w = WI

kn
rw

μ
Pc (P

n+1
bh − P n+1)

1

L3
c

δ(x− xi), (3.17)

qn+1
o = WI

kn
ro

μβ
Pc (P

n+1
bh − P n+1)

1

L3
c

δ(x− xi). (3.18)

Equations (3.17) and (3.18) should be coupled to the flow equation (3.2)

for the solution of the primary unknowns P and either Pbh or qw and qo.

For the injector, qn+1
w = qspec is specified and qn+1

o = 0 at i-th grid block.

Thus, after substituting qn+1
w to the right hand side of pressure equation (3.2)

and solving for P n+1 we compute P n+1
bh for the the injector well from (3.17).

For the producer, P n+1
bh is specified at central location of the single perfora-

tion point at j-th grid block and qn+1
w , and qn+1

o are unknowns. We note that

P n+1
bh is the same for both phases. When P ≥ Pbh at j-th grid block, equa-

tions (3.17) and (3.18) need to be coupled to the flow equation (3.2). Also, as

P ≥ Pbh oil and water will begin to produce (the production rates qo and qw

are some negative values). Thus, after solving for P n+1 we calculate unknowns

qn+1
w , and qn+1

o , from (3.17) and (3.18).

We represent f in (3.3) as:

f = fg + fr, (3.19)

where

fg(Sw, So) =
η

CPc

∇.
(
(Λw + β−1αΛo)∇z

)
, (3.20)
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corresponds to the gravity term and,

fr(P, Sw, So) =
ζ(1 + ω)

CPc

, (3.21)

corresponds to sink/source flow rate.

In the injector grid, qn+1
w = qspec and we have:

fr =
tc

CPc

qspec δ(x− xi),

and we represent it as:

fr = αw δ(x− xi), (3.22)

where

αw =
tc

CPc

qspec.

In the producer grid, as P ≥ Pbh we substitute water and oil rates produced

(3.17) and (3.18) into (3.21) at the location x = xj to get:

fr =
tc

CPc

Pc
1

L3
c

WI
(kn

rw

μ
+

kn
ro

μβ

)
(P n+1

bh − P n+1) δ(x− xj),

and this can be represented as:

fr = αt (P
n+1
bh − P n+1) δ(x− xj), (3.23)

where

αt =
tc

CPc

Pc
1

L3
c

WI
(kn

rw

μ
+

kn
ro

μβ

)
.
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We note that in the producer as P < Pbh water and oil will not be produced

i.e. qw = qo = 0. Thus, in this case we obtain:

fr = 0. (3.24)

Combining (3.19), (3.20), (3.22), and (3.23) into (3.8) for the case P ≥ Pbh,

we get:

(
I + τ(An + αn

t W )
)
P n+1 = P n + τ

(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

)
,

(3.25)

where W is a zero matrix with entry 1 on the diagonal at j-th row and j-th

column corresponding to the producer well location.

W =

j-th⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 · · · 0 0 · · · 0

...
...

. . . . . .
...

...
...

0 0 · · · 0 0 · · · 0

0 0 · · · 1 0
. . . 0 j-th

0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 0 0

Combining (3.19), (3.20), (3.22), and (3.24) into (3.8) for the case P < Pbh,

we get: (
I + τAn

)
P n+1 = P n + τ

(
fn
g + αw δ(x− xi)

)
. (3.26)

In the following subsections, we demonstrate the well equation coupling to

the above splitting schemes for flow equation.
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3.2.1 Well Coupling to the Summarized Scheme

The summarized scheme (3.10) for equation (3.25) with the well equation

coupling for the case P ≥ Pbh reads as the following factorized form:

(
I + τ(An

1 + αn
t W )

)
W̃

(
I + τ(An

2 + αn
t W )

)
P n+1

= P n + τ
(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

)
,

(3.27)

in which W̃ = (I + ταtW )−1. The splitting scheme corresponding to (3.27)

solves the following set of two subproblems for the intermediate unknowns

P n+α/2, α = 1, 2, in 2D:

(
I + τ(An

1 + αn
t W )

)
P n+1/2 = P n + τqn+1,1,

(
I + τ(An

2 + αn
t W )

)
P n+1 = W̃−1P n+1/2 + τqn+1,2,

(3.28)

Or equivalently:

P n+1/2 − P n

τ
+ (An

1 + αn
t W )P n+1/2 = qn+1,1,

P n+1 − P n+1/2

τ
+ (An

2 + αn
t W )P n+1 = (αn

t W )P n+1/2 + qn+1,2.

(3.29)

Here, fn+1 = qn+1,1 + qn+1,2 is an approximation to f(P(tn+1), Sw(t
n), So(t

n)).

We also represent qn+1,α = q̄n+1,α + q̃n+1,α, for α = 1, 2, where
2∑

α=1

q̄n+1,α = 0.

We need this representation to show the stability of the scheme in section

4.1. Similarly, the summarized scheme (3.10) for equation (3.26) with the well
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equation coupling for the case P < Pbh is:

(
I + τAn

1

)(
I + τAn

2

)
P n+1 = P n + τ

(
fn
g + αw δ(x− xi)

)
, (3.30)

and in the form of individual equations we have:

P n+1/2 − P n

τ
+ An

1P
n+1/2 = qn+1,1,

P n+1 − P n+1/2

τ
+ An

2P
n+1 = qn+1,2.

(3.31)

The same representation for qn+1,1, and qn+1,2 is applied for this scheme as

mentioned above. We separate the two cases in (3.29) and (3.31) as we discuss

their stability differently.

The iterative preconditioned scheme (3.11) for equation (3.25) with the

well equation coupling for the case P ≥ Pbh becomes:

(
W̃−1 + τAn

1

)
W̃

(
W̃−1 + τAn

2

) (
P n+1,k+1 − P n+1,k

)
=

(
P n + τ

(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

))

−
(
I + τ(An + αn

t W )
)
P n+1,k.

(3.32)

For the case P < Pbh, the iterative preconditioned scheme (3.11) for equation

(3.26) reads as:

(
I + τAn

1

)(
I + τAn

2

) (
P n+1,k+1 − P n+1,k

)
=

(
P n + τ

(
fn
g + αw δ(x− xi)

))
−

(
I + τAn

)
P n+1,k.

(3.33)
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3.2.2 Well Coupling to the ATM Scheme

The ATM scheme (3.13) with the well equation coupling for the case P ≥ Pbh

becomes: (
W̃−1 + τAn

1

)
W̃

(
W̃−1 + τAn

2

)
δP n+1 =

(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

)

−
(
An + αn

t W
)
P n,

(3.34)

and for the case P < Pbh, it becomes:

(
I + τAn

1

)(
I + τAn

2

)
δP n+1 =

(
fn
g + αw δ(x− xi)

)
−AnP n. (3.35)

Modified ATM iterative scheme (3.15) with the well equation coupling for

the case P ≥ Pbh has the following form:

(
W̃−1 + τAn

1

)
W̃

(
W̃−1 + τAn

2

)
δP n+1,k+1 =

(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

)

−
(
An + αn

t W
)
P n + τ 2An

1 W̃An
2 δP n+1,k,

(3.36)

and for the case P < Pbh, it is:

(
I + τAn

1

)(
I + τAn

2

)
δP n+1,k+1 =

(
fn
g + αw δ(x− xi)

)
−AnP n

+ τ 2An
1 An

2 δP n+1,k.

(3.37)

The ATM preconditioned scheme (3.16) with coupling of the well equations

is exactly the same scheme as the summarized preconditioned scheme with
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coupled wells (3.32) and (3.33) with Aα to be replaced with discrete operators

Aα, for α = 1, 2, respectively. Thus, ATM preconditioned scheme (3.16) for

the case P ≥ Pbh is:

(
W̃−1 + τAn

1

)
W̃

(
W̃−1 + τAn

2

) (
P n+1,k+1 − P n+1,k

)
=

(
P n + τ

(
fn
g + αn

t P n+1
bh δ(x− xj) + αw δ(x− xi)

))

−
(
I + τ(An + αn

t W )
)
P n+1,k,

(3.38)

and for the case P < Pbh, the ATM preconditioned scheme (3.16) becomes:

(
I + τAn

1

)(
I + τAn

2

) (
P n+1,k+1 − P n+1,k

)
=

(
P n + τ

(
fn
g + αw δ(x− xi)

))
−

(
I + τAn

)
P n+1,k.

(3.39)

3.3 Spatial Discretization

C ew

n

s

EW

N

S

δxeδxw

Δx xexw

δx−
e δx+

e

Δz

δzn

δzs

zn

zs

Figure 3.1: The MAC grid with geometric variables for a typical control-
volume in 2D

34



For spatial discretization, in 2D, we assume that Ω = (0, L1) × (0, L2) is

partitioned into N1N2 rectangles of size Δx = L1/N1, Δz = L2/N2. The

cell centres of these subdomains have coordinates (xC , zC) with xC = (i −
1/2) Δx, zC = (j−1/2) Δz, i = 1, . . . , N1; j = 1, . . . , N2. We denote Ωij to be

the volume corresponding to a cell with centers at (xi, zj), i = 1, . . . , N1; j =

1, . . . , N2. An additional notation based on the direction on map is used to

simplify the algebra. Figure 3.1 is a detailed sketch of one of the control

volumes and its neighbours in the domain. The right and the left neighbours

of C are called E for east and W for west and top and bottom neighbours of

C are referred to as N and S for north and south, respectively. In general,

the width of a control volume, Δx, will not be equal to the distance between

C and its west and east neighbours, that is δxw and δxe. Also, the height of a

control volume, Δz, will not be equal to the distance between C and its north

and south neighbours, that is δzn and δzs. Regardless of the grid spacing, C

is always located in the geometric centre of the its cell. Lower case subscripts

refers to the location of the finite volume faces while upper case subscripts

refers to the location of the nodes. The pressure and saturations are stored

at the centroid of each cell. We integrate equations (3.7) and (3.5) over each

Ωij cell and then apply the Gauss divergence theorem to simplify the terms

containing second-order derivatives. We explain the spatial discretization for

the flow equation (3.2) using a linearization approach. Spatial discretization

for splitting scheme can be done in the same fashion as explain below. The

only difference is that we have the spatial discretization only in one direction, x

or z, depending on either A1 or A2 appears on each subproblem of the splitting
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scheme.

∫
Ωij

P n+1 − P n

τ
dΩ =

∫ zn

zs

(( Λn
t

CPc

∂P n+1

∂x

)
e
−

( Λn
t

CPc

∂P n+1

∂x

)
w

)
dz

+

∫ xw

xe

(( Λn
t

CPc

∂P n+1

∂z

)
n
−

( Λn
t

CPc

∂P n+1

∂z

)
s

)
dx+

∫
Ωij

fn+1 dΩ

≈
(( Λn

t

CPc

∂P n+1

∂x

)
e
−

( Λn
t

CPc

∂P n+1

∂x

)
w

)
Δz

+

(( Λn
t

CPc

∂P n+1

∂z

)
n
−

( Λn
t

CPc

∂P n+1

∂z

)
s

)
Δx+

∫
Ωij

fn+1 dΩ

≈ 1

CPc

(
(Λn

t )e
P n+1
E − P n+1

C

δxe

− (Λn
t )w

P n+1
C − P n+1

W

δxw

)
Δz

+
1

CPc

(
(Λn

t )n
P n+1
N − P n+1

C

δzn
− (Λn

t )s
P n+1
C − P n+1

S

δzs

)
Δx

+

∫
Ωij

fn+1 dΩ.

(3.40)

The first term in the first row of (3.40) can be approximated by the mid-

point quadrature rule as:

∫
Ωij

P n+1 − P n

τ
dΩ ≈ ΔxΔz

P n+1
C − P n

C

τ
.

Also, we write the last term in the second row of (3.40) as:

∫
Ωij

fn+1 dΩ =

∫
Ωij

fn
g dΩ +

∫
Ωij

fn+1
r dΩ,

36



and we approximate

∫
Ωij

fn
g dΩ applying the Gauss divergence theorem:

∫
Ωij

fn
g dΩ =

∫
Ωij

η

CPc

∇.
(
(Λn

w + β−1αΛn
o )∇z

)
dΩ

≈ η

CPc

(
(Λn

w + β−1αΛn
o )e

zE − zC
δxe

− (Λn
w + β−1αΛn

o )w
zC − zW
δxw

)
Δz

+
η

CPc

(
(Λn

w + β−1αΛn
o )n

zN − zC
δzn

− (Λn
w + β−1αΛn

o )s
zC − zS
δzs

)
Δx,

(3.41)

and approximating by the midpoint rule for

∫
Ωij

fn+1
r dΩ is:

∫
Ωij

fn+1
r dΩ ≈ ΔxΔz (fn+1

r )C .

Equations (3.40) and (3.41) require the computation of Λw,Λo, Λt, α, and

β at the interfaces of the control volumes. They contain the rock property

which is K, fluid property (density and viscosity) denoted as α and β and the

rock/fluid property which is krw and kro. The weighted harmonic averaging,

arithmetic averaging, and single-point upstream weighting are appropriate ap-

proximations, respectively. For example, for the value of K at the interface e,

continuity at the interface requires,

KC (
∂P

∂x
)x−

e
= KE (

∂P

∂x
)x+

e
= Ke (

∂P

∂x
)xe .
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With central difference approximation to the above relation we get:

Ke =
KEKC

γKE + (1− γ)KC

,

where

γ =
δxe−

δxe

=
xe − xC

xE − xC

.

For the case of equally distant grids, γ =
1

2
and Ke =

2KEKC

KE +KC

. Similar

formulation can be derived for Kw, Kn, and Ks.

From equation (2.25), the water phase potential difference at the interface

n for instance is given by:

(ΔΦw)n = (PN − PC) + η (zN − zC).

The upstream weighting value of krw at interface n is:

(krw)n =

⎧⎪⎨
⎪⎩
(krw)N , if (ΔΦw)n > 0,

(krw)C , if (ΔΦw)n < 0.

When (ΔΦw)n > 0, the flow of water is from block N to block C and

as (ΔΦw)n < 0, the flow of water is from block C to block N . For the oil

phase and other interface similar formulation can be driven. We note that this

approximation is only first order accurate.

It is easy to see that applying the above approximations to (3.40) leads to

standard five-points stencil scheme for the pressure equation in 2D.

The space discretization for explicit scheme of (3.5) for the saturation
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equation is as follows:

∫
Ωij

φ
Sn+1
w − Sn

w

τ
dΩ =

∫ zn

zs

((
Λn

w

∂P n+1

∂x

)
e
−

(
Λn

w

∂P n+1

∂x

)
w

)
dz

+

∫ xw

xe

((
Λn

w

∂P n+1

∂z

)
n
−

(
Λn

w

∂P n+1

∂z

)
s

)
dx

+ η

∫ zn

zs

((
Λn

w

∂z

∂x

)
e
−

(
Λn

w

∂z

∂x

)
w

)
dz

+ η

∫ xw

xe

((
Λn

w

∂z

∂x

)
n
−

(
Λn

w

∂z

∂x

)
s

)
dx

+

∫
Ωij

ζn+1 dΩ

≈
(
(Λn

w)e
P n+1
E − P n+1

C

δxe

− (Λn
w)w

P n+1
C − P n+1

W

δxw

)
Δz

+

(
(Λn

w)n
P n+1
N − P n+1

C

δzn
− (Λn

w)s
P n+1
C − P n+1

S

δzs

)
Δx

+ η

(
(Λn

w)e
zE − zC
δxe

− (Λn
w)w

zC − zW
δxw

)
Δz

+ η

(
(Λn

w)n
zN − zC

δzn
− (Λn

w)s
zC − zS
δzs

)
Δx

+

∫
Ωij

ζn+1 dΩ.

(3.42)

The first term in the first row of (3.42) can be approximated by the mid-

point quadrature rule as:

∫
Ωij

φ
Sn+1
w − Sn

w

τ
dΩ ≈ ΔxΔz

(Sn+1
w − Sn

w)C
τ

,
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and again we use the midpoint rule for

∫
Ωij

ζn+1 dΩ to get:

∫
Ωij

ζn+1
r dΩ ≈ ΔxΔz (ζn+1)C .

The explicit discretization (3.42) is only conditionally stable. That is, the

time step must satisfy the following stability condition,

τ ≤ min
i,j

(
1

Vx

Δx
+ Vz

Δz

)
i,j

,

where the minimum is taken over all gridblocks. We denote velocity in x and

z direction by Vx and Vz. They are derived from the water saturation equation

(2.25) as follows:

Vx =
K

φ

∂krw
∂Sw

∂P

∂x
,

Vz =
K

φ

∂krw
∂Sw

(
∂P

∂z
+ η

)
.

We note that Vx and Vz are obtained by expanding the divergent operators

in equation (2.25). Coefficients of
1

φ

∂Sw

∂x
and

1

φ

∂Sw

∂z
represent Vx and Vz

respectively.
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Chapter 4

Stability Analysis

In order to prove unconditional stability of the summarized scheme, the oper-

ators A1 and A2 should be positive semidefinite. First, we show the stability

for the summarized scheme following the book of [23]. Next, the stability for

the alternating triangle method will be discussed using [24].

4.1 Stability of the Summarized Scheme

Assume H is a Hilbert space with an inner product (., .) and ‖ . ‖ is the norm

generated in H by the inner product. Operators A,A1, and A2 as defined in

3.1.3 are linear, symmetric and positive semidefinite. We note that for the case

P < Pbh which is the scheme (3.31) we refer to the proof of stability which is

theorem 5.2 of [23]. We write it in this thesis in theorem 4.1 without rewriting

the detail of the proof. For the case P ≥ Pbh which is the scheme (3.28), the

proof of stability is done by the author of this thesis by first proving lemma

4.1 similar to lemma 5.1 in the book [23] and then stability will be shown in

theorem 4.2.
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Theorem 4.1. Assume that 0.5 ≤ σα ≤ 2 for α = 1, · · · , d. Then the solution

to the following scheme

P n+α/d − P n+(α−1)/d

τ
+ Aα(σαP

n+α/d + (1− σα)P
n+(α−1)/d) = qn+1,α

which solves the Cauchy problem (3.6) of finding P(t) for t > 0 satisfies the a

priori estimate for any τ > 0:

∥∥P n+1
∥∥ ≤ ‖P 0‖+

n∑
k=0

τ
d∑

α=1

(∥∥q̃k,α∥∥+ τ

∥∥∥∥∥Aα

d∑
β=α

q̄k,β

∥∥∥∥∥
)
,

where fn+1 =
d∑

α=1

qn+1,α is some approximation to f(tn+1,x). With the repre-

sentation of qn+1,α = q̄n+1,α + q̃n+1,α, for α = 1, 2, · · · , d,
d∑

α=1

q̄n+1,α = 0.

Proof. Since (AαP, P ) ≥ 0 for P ∈ H, and for α = 1, · · · , d, then by theorem

5.2 of [23] the estimate is immediate.

Remark 4.1.1. Theorem 4.1 also remains valid in the case of a variable op-

erator Aα = Aα(t). From the proof of the theorem this is obvious.

Remark 4.1.2. In our work d = 2, and we set σα = 1 which results in the

implicit scheme (3.31) for the case P < Pbh.

To prove the stability for the scheme (3.28) for P ≥ Pbh, we need the

following lemma similar to lemma 5.1 in [23].

Lemma 4.1. Let C = τ(I + τ(A1 + αtW ))−1(A1 + αtW ), where I is identity

operator and (A1 + αtW ) ≥ 0. Then, the following estimate holds:

‖I − C‖ ≤ 1.
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Proof. We have ‖I − C‖ = ‖I − C∗‖, where C∗ denotes the adjoint operator

of C. Also, we have the following:

‖I − C‖ ≤ 1 ⇐⇒ ‖I − C∗‖ ≤ 1,

and,

‖I − C∗‖2 = ‖(I − C)(I − C∗)‖.

Therefore,

‖I − C∗‖ ≤ 1 ⇐⇒ ‖(I − C)(I − C∗)‖ ≤ ‖I‖

⇐⇒ I − C∗ − C + CC∗ ≤ I

⇐⇒ CC∗ ≤ C + C∗.

To show ‖I−C‖ ≤ 1 we equivalently need to show CC∗ ≤ C+C∗. Substituting

C and C∗, we get:

τ(I + τ(A1 + αtW ))−1(A1 + αtW ) τ (A1 + αtW )∗(I + τ(A∗
1 + αtW

∗))−1

≤ τ(I + τ(A1 + αtW ))−1(A1 + αtW ) + τ (A1 + αtW )∗(I + τ(A∗
1 + αtW

∗))−1,

multiplying both side from the right by (I + τ(A∗
1 + αtW

∗)), we get:

τ(I + τ(A1 + αtW ))−1(A1 + αtW ) (A1 + αtW )∗

≤ (I + τ(A1 + αtW ))−1(A1 + αtW )(I + τ(A∗
1 + αtW

∗)) + (A1 + αtW )∗,
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multiplying both side from the left by (I + τ(A1 + αtW )) yields:

τ(A1 + αtW ) (A1 + αtW )∗

≤ (A1 + αtW ) (I + τ(A∗
1 + αtW

∗)) + (I + τ(A1 + αtW )) (A1 + αtW )∗

≤ (A1 + αtW ) + τ(A1 + αtW )(A1 + αtW )∗ + (A1 + αtW )∗

+ τ(A1 + αtW )(A1 + αtW )∗.

Therefore, we get:

τ(A1 + αtW )(A1 + αtW )∗ + (A1 + αtW ) + (A1 + αtW )∗ ≥ 0

⇐⇒ (A1 + αtW ) ≥ 0, (A1 + αtW )∗ ≥ 0.

From the assumption of the lemma, (A1+αtW ) ≥ 0, and (A1+αtW )∗ ≥ 0

are satisfied, therefore CC∗ ≤ C+C∗, and then equivalently ‖I−C∗‖ ≤ 1.

We rewrite each subproblem (3.28) as:

P n+1/2 =
(
(W̃−1)n + τAn

1

)−1

P n + τ
(
(W̃−1)n + τAn

1

)−1

qn+1,1,

P n+1 =
(
(W̃−1)n + τAn

2

)−1 (
W̃−1

)n

P n+1/2 + τ
(
(W̃−1)n + τAn

2

)−1

qn+1,2.

(4.1)

From the definition (W̃−1 + τA1)
−1 = (I + τ(A1 + αtW ))−1. Since

(I + τ(A1 + αtW ))− τ(A1 + αtW ) = I,
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we multiply (I + τ(A1 + αtW ))−1 from the left to get:

I − τ (I + τ(A1 + αtW ))−1(A1 + αtW ) = (I + τ(A1 + αtW ))−1.

We call C = τ(I+τ(A1+αtW ))−1(A1+αtW ), because A1 ≥ 0, and αt ≥ 0

then (A1 + αtW ) ≥ 0. It follows from Lemma 4.1 ‖I − C‖ ≤ 1 which results

in ‖(I + τ(A1 + αtW ))−1‖ ≤ 1. A similar approach can be taken to show that

‖(I + τ(A2 + αtW ))−1‖ ≤ 1.

Taking the norm of the first subproblem in (4.1) and using lemma 4.1, we

get:

∥∥P n+1/2
∥∥ ≤

∥∥∥∥((W̃−1)n + τAn
1

)−1
∥∥∥∥ ‖P n‖+ τ

∥∥∥∥((W̃−1)n + τAn
1

)−1
∥∥∥∥ ∥∥qn+1,1

∥∥,
≤ ‖P n‖+ τ

∥∥qn+1,1
∥∥.

(4.2)

Taking the norm of the second subproblem in (4.1) and using lemma 4.1,

it yields:

∥∥P n+1
∥∥ ≤

∥∥∥∥((W̃−1)n + τAn
2

)−1
∥∥∥∥ ∥∥∥(W̃−1

)n∥∥∥ ∥∥P n+1/2
∥∥

+ τ

∥∥∥∥((W̃−1)n + τAn
2

)−1
∥∥∥∥ ∥∥qn+1,2

∥∥

≤
∥∥∥(W̃−1)n

∥∥∥ ∥∥P n+1/2
∥∥+ τ

∥∥qn+1,2
∥∥.

(4.3)

Substituting (4.2) into (4.3), yields the inequality:

∥∥P n+1
∥∥ ≤

∥∥∥(W̃−1)n
∥∥∥ (‖P n‖+ τ

∥∥qn+1,1
∥∥)+ τ

∥∥qn+1,2
∥∥. (4.4)
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The inequality (4.4) implies the desired estimate for stability with respect

to the initial data and the right hand side. We summarize the result in the

following theorem.

Theorem 4.2. The proposed scheme (3.28) is unconditionally stable and we

have the following estimate:

∥∥PN+1
∥∥ ≤

N∏
k=0

∥∥∥(W̃−1)k
∥∥∥ ∥∥P 0

∥∥

+ τ

N+1∑
k=1

(
N−k+2∏

l=1

∥∥∥(W̃−1)l
∥∥∥ ∥∥qk,1∥∥+

N−k+1∏
l=1

∥∥∥(W̃−1)l
∥∥∥ ∥∥qk,2∥∥

)
.

4.2 Stability of the ATM Scheme

We show unconditional stability of the ATM scheme following the idea of [24].

The proof demonstrated there is in HA, but we prove the unconditionally

stability in different space HCs due to semidefiniteness of A in our problem.

Theorem 4.3. The alternating triangle method (3.12) is unconditionally sta-

ble under the restriction σ ≥ 0.5 and the following a priori estimate holds:

N−1∑
k=0

τ

∥∥∥∥P k+1 − P k

τ

∥∥∥∥
2

Cs

+ |PN |2A ≤ |P 0|2A +

N−1∑
k=0

τ
∥∥φk

∥∥2

Cs
−1

Proof. The factorized operator,

B = (I + στA1)(I + στA2),
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is self-adjoint and positive definite for σ ≥ 0. That is,

B = B∗ = I + στA+ σ2τ 2A1A2 ≥ I + στA,

and for σ ≥ 0.5,

B − τ

2
A ≥ I > 0.

We denote C = B − τ

2
A. The operator C may be represented as the sum of

a self-adjoint operator and a skew-symmetric operator:

C = Cs + Ca,

where

Cs =
1

2
(C + C∗), Ca =

1

2
(C − C∗).

We can write scheme (3.12) in an equivalent form:

C
P n+1 − P n

τ
+AP n+1 + P n

2
= φn. (4.5)

Taking inner product of (4.5) by 2

(
P n+1 − P n

τ

)
yields:

2

(
Cs

P n+1 − P n

τ
,
P n+1 − P n

τ

)
+

1

τ
(AP n+1, P n+1)− 1

τ
(AP n, P n),

= 2

(
φn,

P n+1 − P n

τ

)
.

(4.6)

We note that C∗
a = −Ca, and (Cav, v) = 0 for all v ∈ H. Then (4.6) can be
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written as:

2

∥∥∥∥P n+1 − P n

τ

∥∥∥∥
2

Cs

+
1

τ
|P n+1|2A =

1

τ
|P n|2A + 2

(
φn,

P n+1 − P n

τ

)
, (4.7)

where |.|A denote seminorm generated by A. For the last term in (4.7) using

Cauchy-Schwarz inequality and then Young’s inequality we have:

(
φn,

P n+1 − P n

τ

)
≤ ‖φn‖Cs

−1

∥∥∥∥P n+1 − P n

τ

∥∥∥∥
Cs

≤ ‖φn‖2Cs
−1

2
+

∥∥∥Pn+1−Pn

τ

∥∥∥2

Cs

2
.

Substituting the above inequality into (4.7) yields:

∥∥∥∥P n+1 − P n

τ

∥∥∥∥
2

Cs

+
1

τ
|P n+1|2A ≤ 1

τ
|P n|2A + ‖φn‖2Cs

−1 . (4.8)

The summation over all k from 0 to N−1 and multiplying (4.8) by τ yields the

desired estimate for stability with respect to initial data and the right-hand

side,

N−1∑
k=0

τ

∥∥∥∥P k+1 − P k

τ

∥∥∥∥
2

Cs

+ |PN |2A ≤ |P 0|2A +

N−1∑
k=0

τ
∥∥φk

∥∥2

Cs
−1 .

Remark 4.3.1. Theorem 4.3 remains valid also in the case of a variable op-

erator B = B(t).

Remark 4.3.2. Theorem 4.3 with wells coupling for case P ≥ Pbh for scheme

(3.34) is still valid. The only difference is with σ = 1, B = I+τA+τ 2A1A2+

ταtW and still C = B − τ
2
A > 0 is true.
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Chapter 5

Convergence Analysis

We first investigate the convergence analysis for the summarized scheme. The

convergence analysis is done in the framework of the book [23]. The conver-

gence analysis for the alternating triangle method follows afterwards following

the work of [24].

5.1 Summarized Scheme

5.1.1 Truncation Error in Time

Let e = P − P, be the error between the discrete solution, P , and the exact

solution P. Let en+α/2 = P n+α/2−Pn+α/2, α = 1, 2. Now using this relation, we

substitute P into the scheme (3.31) to get the error equation as the following:

en+1/2 − en

τ
+ A1 en+1/2 = −Pn+1/2 − Pn

τ
− A1 Pn+1/2 + qn+1,1,

en+1 − en+1/2

τ
+ A2 en+1 = −Pn+1 − Pn+1/2

τ
− A2 Pn+1 + qn+1,2.

(5.1)
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The truncation error of the individual equations is as follows:

ψn+1,1 = −Pn+1/2 − Pn

τ
− A1 Pn+1/2 + qn+1,1,

ψn+1,2 = −Pn+1 − Pn+1/2

τ
− A2 Pn+1 + qn+1,2.

(5.2)

For the truncation error, we have the following form [23]:

ψn+1,α = ψ̄n+1,α + ψ̃n+1,α, α = 1, 2, ψ̄n+1,1 + ψ̄n+1,2 = 0. (5.3)

Also, we let,

ψ̄n+1,α = −1

2

∂P

∂t
− AαP(t) + fα, α = 1, 2, f1 + f2 = f. (5.4)

From (5.2)-(5.4), and due to Taylor’s expansion of P, we obtain an estimate

for ψ̃n+1,α:

ψ̃n+1,1 = ψn+1,1 − ψ̄n+1,1

=

[
−Pn+1/2 − Pn

τ
− A1 Pn+1/2 + qn+1,1

]

−
[
−1

2

∂P

∂t
− A1P(t) + f1

]tn+1/2

= O(τ),

(5.5)
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and similarly for the second subproblem,

ψ̃n+1,2 = ψn+1,2 − ψ̄n+1,2

=

[
−Pn+1 − Pn+1/2

τ
− A2 Pn+1 + qn+1,2

]

−
[
−1

2

∂P

∂t
− A2P(t) + f2

]tn+1

= O(τ).

(5.6)

Therefore, the truncation error in time for n = 0, 1, · · · is of O(τ).

5.1.2 Error Estimate

We recall from (5.1) that the error satisfies:

en+1/2 − en

τ
+ A1 en+1/2 = ψn+1,1,

en+1 − en+1/2

τ
+ A2 en+1 = ψn+1,2,

(5.7)

which is the scheme (3.31) with different right hand side. By applying theorem

4.1, the error of the approximated solution satisfies:

∥∥en+1
∥∥ ≤ ∥∥e0∥∥+

n∑
k=0

τ

2∑
α=1

⎛
⎝ ∥∥∥ψ̃k,α

∥∥∥+ τ

∥∥∥∥∥∥Aα

2∑
β=α

ψ̄k,β

∥∥∥∥∥∥
⎞
⎠.

Since e0 = 0, and using (5.3)-(5.6) we get the error estimate in time as:

τ

n∑
k=0

2∑
α=1

⎛
⎝ ∥∥∥ψ̃k,α

∥∥∥+ τ

∥∥∥∥∥∥Aα

2∑
β=α

ψ̄k,β

∥∥∥∥∥∥
⎞
⎠ = O(τ).
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The result is summarized in the following theorem:

Theorem 5.1. The proposed scheme (3.31) is convergent in time with con-

vergent rate O(τ), that is:

∥∥en+1
∥∥ ≤

n∑
k=0

τ

2∑
α=1

⎛
⎜⎝ ∥∥∥ψ̃k,α

∥∥∥+ τ

∥∥∥∥∥∥∥Aα

2∑
β=α

ψ̄k,β

∥∥∥∥∥∥∥
⎞
⎟⎠.

5.2 ATM Scheme

5.2.1 Truncation Error Estimate

By substituting P into the scheme (3.12) and using e = P −P, we can get the

error equation as follows:

B
en+1 − en

τ
+A en = ψn, (5.8)

where B = (I + στA1)(I + στA2) and ψn is the truncation error that has the

following form:

ψn = φn − B
Pn+1 − Pn

τ
−A Pn, (5.9)

in which φn = f(x, tn+1) and f satisfies the problem (3.6). From theorem 2 of

[24], the truncation error can be written as the following form:

ψn = ψn
σ + ψn

s , (5.10)

where

ψn
σ = (σ − 1

2
) τ

d2P

dt2
(tn+1/2) +O(τ 2),

ψn
s = −σ2 τ 2 A1A2

dP

dt
(tn+1/2) +O(τ 3).

(5.11)
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For the first part of the truncation error, we have ψn
σ = O(τ 2) for σ = 0.5,

and ψn
σ = O(τ) for σ = 0.5. For the second part of the truncation error,

taking into account the explicit representation for operators A1 and A2, we

have ψn
s = O(τ 2|h|−2).

5.2.2 Error Estimate

Application of theorem 4.3 to equation (5.8) results in:

N−1∑
k=0

τ

∥∥∥∥ek+1 − ek

τ

∥∥∥∥
2

Cs

+ |eN |2A ≤ |e0|2A +

N−1∑
k=0

τ
∥∥ψk

∥∥2

Cs
−1 .

Since e0 = 0, and using (5.10), and (5.11), we get:

N−1∑
k=0

τ

∥∥∥∥ek+1 − ek

τ

∥∥∥∥
2

Cs

+ |eN |2A ≤
N−1∑
k=0

τ
∥∥ψk

∥∥2

Cs
−1

≤ M

((
σ − 1

2

)
τ + τ 2|h|−2

)2

,

for someM > 0. This shows the conditionally convergent of the scheme (3.12).
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Chapter 6

Numerical Results

In these experiments, we use the first model data from the 10th SPE Com-

parative Solution Project [3] for two-phase (water-oil) model. The domain is

762×7.62×15.24 m3 with 100×1×2 cells. The bottom of the model is at the

origin with an initial pressure of 895 kPa at the first row of the discretized grid

blocks. Initially, we set Sw = 0.6 and So = 0.4. The relative permeabilities

are shown in table 6.1 and in figure 6.1. There is one injector in the top right

corner at cell (100, 1, 2) and one producer in the bottom left corner at cell

(1, 1, 1). The injection rate is set to be 200 kg/day and the producer is set

to produce at a constant bottom hole pressure (Pbh) 1345 kPa. Both wells

have a wellbore radius rw = 0.04 m with CC = 0.247, f = 1 and S = 0.

The initial properties are as follows: K = 5.9215398 × 10−6μm2, φ = 0.32,

μw = 0.00116 kg/(m.s), μo = 0.1211 kg/(m.s), ρw = 1001 kg/m3, ρo =

1015 kg/m3 and C = 4.8×10−6 kPa−1. We run the simulation until T = 5000

days. With nondimensionalization, we have K = 1, Δx = Δy = Δz = 0.01,

Ω = [0, 1]× [0, 0.01]× [0, 0.02] and t ∈ [0, 5].

We solve the problem using linearized scheme for the pressure and an ex-
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plicit scheme for the saturation (3.40) and (3.42) respectively. These solutions

are considered as reference solutions and we call them non-spilt solutions. The

splitting approximate solutions for pressure will be compared to the reference

solution.

In the following sections, P̄ and S̄w denote the non-split solutions and P

and Sw denote the split solutions.

Let ej ∈ R
n be the error at the j-th time level. We define the norm ‖.‖l2(Ω)

as follows:

∥∥ej∥∥
l2(Ω)

=

⎛
⎝ n∑

i=1

hxhz |eji |2
⎞
⎠

1
2

,

where hx and hz are the grid size in x and z direction, respectively.
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Figure 6.1: Relative permeabilities for water and oil
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Table 6.1: Relative permeability

Sw krw kro

0.000000 0.000000 1.000000

0.033333 0.000000 0.966667

0.066667 0.000000 0.933333

0.100000 0.000000 0.900000

0.140000 0.000112 0.812250

0.180000 0.000632 0.729000

0.220000 0.001743 0.650250

0.260000 0.003578 0.576000

0.300000 0.006250 0.506250

0.340000 0.009859 0.441000

0.380000 0.014494 0.380250

0.420000 0.020239 0.324000

0.460000 0.027168 0.272250

0.500000 0.035355 0.225000

0.540000 0.044868 0.182250

0.580000 0.055771 0.144000

0.620000 0.068126 0.110250

0.660000 0.081993 0.081000

0.700000 0.097428 0.056250

0.740000 0.114487 0.036000

0.780000 0.133222 0.020250

0.820000 0.153687 0.009000

0.860000 0.175930 0.002250

0.900000 0.200000 0.000000

0.933333 0.466667 0.000000

0.966667 0.733333 0.000000

1.000000 1.000000 0.000000

6.1 Summarized Preconditioned Scheme

We solve the pressure equation using the preconditioned schemes (3.32)-(3.33)

and couple the saturation equation using scheme (3.42) applying the algorithm

1:
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while TimeStep < Final TimeStep do

Initialize k := 0;P n+1,0 := P n;

while
∥∥∥Pn+1,k+1−Pn+1,k

Pn+1,k

∥∥∥
∞

> TolP do

if P < Pbh then

Solve for P n+1,k+1 using (3.33);

else

Solve for P n+1,k+1 using (3.32);

end

end

For some K, set P n+1 := P n+1,K ;

Solve for Sw using (3.42);

end

Algorithm 1: Summarized preconditioned scheme

To study the temporal convergence without grid refinement, we define [13]:

TCR(P, τ) = log2

(∥∥P τ − P
τ
2

∥∥
2∥∥P τ

2 − P
τ
4

∥∥
2

)
,

where P τ denotes the pressure obtained using a time step τ . Because of the

form of TCR, the spatial discretization error cancels and if the leading order

temporal truncation error in the scheme is of O(τ p) then for small τ , TCR will

equal p.

To show TCR for our numerical results, we run our program for the schemes

(3.32)-(3.33) using the algorithm 1, with TolP =1e-7, final time T = 5 and

different time steps τ . The reference solution was obtained with τ = 3.125e-
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5. The results are shown on the table 6.2. We can see better than first order

convergence for the pressure and the water saturation. In fact, the results show

better order of convergence in practice than the theory given in the section 5.1

for the pressure.

Table 6.2: Temporal convergence of the l2 norm of the error in the solution of
the schemes (3.32)-(3.33) as compared to the reference solution normalized by
the norm of the reference solution for the pressure at the final time T = 5.

τ
∥∥P̄ − P

∥∥
2
/
∥∥P̄∥∥

2
TCR

∥∥S̄w − Sw

∥∥
2

TCR

1e-3 6.0539e-7 2 9.2840e-5 1.89

5e-4 1.8006e-7 1.26 2.6444e-5 1.70

2.5e-4 7.4389e-8 1.33 8.5543e-6 1.27

1.25e-4 2.6855e-8 1.24 3.0628e-6 1.93

6.25e-5 8.1019e-9 – 7.9294e-7 –

3.125e-5 1.4647e-9 – 1.9897e-7 –

6.2 Alternating Triangle Scheme

We implement the modified ATM iterative schemes (3.36)-(3.37) applying the

algorithm 2:
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while TimeStep < Final TimeStep do

Initialize k := 0; δP n+1,0 := 0;

while
∥∥δP n+1,k+1 − δP n+1,k

∥∥ > Tolδ do

if P < Pbh then

Solve for P n+1,k+1 using (3.37);

else

Solve for P n+1,k+1 using (3.36);

end

end

For some K, set P n+1 := P n + τ δP n+1,K ;

Solve for Sw using (3.42);

end

Algorithm 2: Modified ATM iterative scheme

We present temporal convergence for the schemes (3.36)-(3.37) applying

the algorithm 2 with tolerance Tolδ =1e-4 at the final time T = 5 in the table

6.3. It shows the second order convergence for the pressure and better than

order one for the water saturation.

We also present temporal convergence for the ATM preconditioned schemes

(3.38)-(3.39) applying the algorithm 1 with the pressure tolerance TolP =1e-7

at the final time T = 5 as shown on the table 6.4. We can see better than

order one convergence for the pressure and the water saturation.

As we see, the summarized preconditioned scheme gives more accurate

results compare to the modified ATM iterative scheme and ATM precondi-

tioned scheme. The temporal convergence of the pressure for the summarized
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Table 6.3: Temporal convergence of the l2 norm of the error in the solution of
the schemes (3.36)-(3.37) as compared to the reference solution normalized by
the norm of the reference solution for the pressure at the final time T = 5.

τ
∥∥P̄ − P

∥∥
2
/
∥∥P̄∥∥

2
TCR

∥∥S̄w − Sw

∥∥
2

TCR

1e-3 4.4469e-3 2.92 2.9862e-3 2.37

5e-4 3.7743e-4 2.23 5.4237e-4 2.74

2.5e-4 1.5929e-4 1.73 9.4980e-5 1.99

1.25e-4 4.5242e-5 2.00 2.5589e-5 1.86

6.25e-5 1.0863e-5 – 6.9164e-6 –

3.125e-5 2.3202e-6 – 1.7692e-6 –

Table 6.4: Temporal convergence of the l2 norm of the error in the solution of
the schemes (3.38)-(3.39) as compared to the reference solution normalized by
the norm of the reference solution for the pressure at the final time T = 5.

τ
∥∥P̄ − P

∥∥
2
/
∥∥P̄∥∥

2
TCR

∥∥S̄w − Sw

∥∥
2

TCR

1e-3 4.2728e-3 0.62 2.7035e-3 1.03

5e-4 1.5733e-3 2.83 1.1511e-3 1.34

2.5e-4 1.8316e-4 1.12 3.6428e-4 2.33

1.25e-4 6.4429e-5 1.55 8.6785e-5 1.69

6.25e-5 4.9374e-5 – 2.7451e-5 –

3.125e-5 1.0856e-5 – 9.8235e-6 –

preconditioned scheme is approximately 1.2 order and for the modified ATM

iterative scheme is approximately 2 order and for ATM preconditioned scheme

is approximately 1.5 order.

In order to improve the convergence of the ATM scheme, we added a cor-

rection term τ 2A1A2δP
n+1,k to the right hand side of the scheme (3.15) and we

got the modified ATM iterative schemes (3.36)-(3.37). The numerical results

of the schemes (3.36)-(3.37) show that the order of convergence is increased

60



by one.

Due to the conditional consistency of the schemes (3.36)-(3.39), we cannot

choose τ = O(Δx), so we run simulations using τ = 1e-3. On the other hand,

for the summarized preconditioned scheme, there is no restriction on the time

step.

The time history of the numerical results for the pressure in the production

and the injection well are compared in figure 6.2. The figure shows that the

summarized preconditioned scheme matches with the non-split scheme while

the other two ATM methods, modified ATM iterative scheme and ATM pre-

conditioned, have delay to reach the minimum bottom hole pressure. We also

compare the time history of the numerical results for the water saturation in

the production and the injection well in figure 6.3. It shows that the sum-

marized preconditioned scheme matches with the non-split scheme while the

other two ATM schemes have some deviation. The time history of the nu-

merical results for oil and water produced are presented on figure 6.4. As a

consequence of the pressure delay mentioned above on figure 6.2, we expect to

have some delay for the production well to be open for the two ATM schemes.

Also, due to deviation of the water and oil saturation for the ATM schemes

compared to the reference solution, they all cause different amount of oil and

water to be produced using the ATM schemes and figure 6.4 confirms this. On

the other hand, figure 6.4 shows that the summarized preconditioned scheme

is in good agreement with the reference solution.
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Figure 6.2: Comparison of the pressure in the producer and injector well for
different schemes
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Figure 6.3: Comparison of the water saturation in the producer and injector
well for different schemes
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Figure 6.4: Comparison of oil and water production rate for different schemes
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Chapter 7

Conclusion

7.1 Conclusion

We derived a preconditioned iterative scheme based on a summarized scheme

which is unconditionally stable and first order accurate in time. We also de-

rived two schemes based on the alternating triangle method, modified ATM

iterative scheme and ATM preconditioned scheme, which are uncondition-

ally stable but conditionally convergent. We conducted a numerical experi-

ment to compare the two ATM schemes with the summarized preconditioned

scheme. Our results demonstrated order of 1.2 for the summarized precondi-

tioned scheme, order 2 for the modified ATM iterative scheme and order 1.5 for

the ATM preconditioned scheme for the convergence of the pressure in time.

They also showed that the summarized preconditioned iterative scheme per-

forms better in terms of accuracy and efficiency. Also, it provided more reliable

solutions than the solution from the ATM schemes. Both proposed schemes

of the summarized preconditioned iterative scheme and the ATM schemes can

be implemented on a parallel computer.
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7.2 Future Topics

There are several future topics regarding our current work. The next phase of

the project could be concentrated on flux-splitting schemes and upscaling.

The variation of permeability (K) in the pressure equation and the thermal

conductivity (kt) in energy equation usually occur at a scale much smaller

than the physical domain of the problem. The ratio of scales is so small that

it is expensive to computationally obtain pressure with the same resolution

as what is given for the permeability. Thus, it becomes important to find

optimal approximations at a scale much coarser, while somehow upscaling

the given permeability information from the fine scale. Since pressure and

temperature are parabolic their resolution on fine-scale, resolving the variation

in the coefficient, is very time consuming. Thus, we have to apply a multi-scale

technique to the pressure and the temperature equation.

The goal will be to explore the idea proposed in [22] called flux-splitting

scheme. The scheme is based on an old but interesting idea for solving

parabolic problems with highly heterogeneous coefficients. In the scheme,

flux (directional derivatives) is considered as an independent variable. This

results in a system of PDEs that yields not only the solution to the parabolic

equation but also its flux. The flux-splitting scheme introduces a multi-scale

method while naturally split the PDE for the flux. After solving for the flux

directly, the desired solution to the parabolic equation is recovered knowing

the value of the flux.

To demonstrate how the flux-splitting scheme will lead to the construction

of the multi-scale method, we apply the scheme to the pressure equation (2.24)
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for two-phase flow in section 4.2. We rewrite (2.24) in the following form:

∂P

∂t
= ∇.

(
1

CPc

(
Λt∇P + η(Λw + β−1αΛo)∇z

))
+

ζ(1 + ω)

CPc

, ∀(x, t) ∈ Ω× R
+

P (x, 0) = P0(x)

(
1

CPc

(
Λt∇P + η(Λw + β−1αΛo)∇z

))
.n = 0, ∀x ∈ ∂Ω

(7.1)

where n denotes the (typically exterior) normal to the boundary ∂Ω. Hetero-

geneity of the permeability data on fine grid and time dependencies through

saturation are appeared through coefficients Λt, Λw, and Λo in the flux. We

consider the flux as an independent variable by setting,

1

CPc

(
Λt∇P + η(Λw + β−1αΛo)∇z

)
= v, (7.2)

in 2D, v = (v1, v2). We obtain a PDE governing the flux by substituting (7.2)

into (7.1) and taking the gradient of the equation (7.1):

∂

∂t

(
CPcv

Λt

)
− ∂

∂t

(
η (Λw + β−1αΛo)∇z

Λt

)
= ∇ (∇.v) +∇f, (7.3)

where f(P, Sw) =
ζ (1 + ω)

CPc

. Time derivative in first term of (7.3) can be

computed by chain rule as:

∂

∂t

(
CPcv

Λt

)
= CPc

(
1

Λt

∂v

∂t
+ v

∂

∂t

(
1

Λt

))
.

We denote F (Sw) =
1

Λt

, and G(Sw) =

(
η (Λw + β−1αΛo)∇z

Λt

)
then the PDE
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governing the flux in 2D becomes:

(
CPc

Λt

)
∂v1
∂t

+ CPc v1
∂F

∂t
− ∂G

∂t
=

∂2v1
∂x∂x

+
∂2v2
∂x∂y

+
∂f

∂x
,

(
CPc

Λt

)
∂v2
∂t

+ CPc v2
∂F

∂t
− ∂G

∂t
=

∂2v1
∂y∂x

+
∂2v2
∂y∂y

+
∂f

∂y
.

(7.4)

The novelty and main advantage of this formulation is that heterogeneous

coefficients Λt, Λw, and Λo which varies on the fine scale is no longer a challenge

since they are not acted on by a divergence operator which simplifies the

construction of the multi-scale spatial discretization. We substitute (7.2) into

the pressure equation (7.1) to get a pressure equation in terms of new variable,

v:

∂P

∂t
= ∇.(v) + f. (7.5)

We discretize equations (7.4) and (7.5) in time by introducing tn = nτ, n =

0, 1, ... and denote approximation of y(tn) by yn. Since F, and G are functions

of the unknown saturation from equation (2.25) and their time discretization

requires their evaluation at Sn+1
w , we must linearize the equations (7.4). We

do linearization by simple iteration treatment. For example in this treatment,

F (Sw) at tn+1 is evaluated one iteration behind the desire solution, that is

F n+1 ≈ F n+1,k = F (Sn+1,k
w ), where k denotes iteration level. This requires

coupling of saturation equation (2.25) with equations (7.4) and (7.5) as we

see below. Then temporal discretization of the equations reads as: start-

ing from a given (v01, v
0
2, P

0, S0
w), we solve for the following problems to get
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(
vn+1
1 , vn+1

2 , P n+1, Sn+1
w

)
for n = 1, 2, · · · .

(
CPc

Λn
t

)
vn+1,k+1
1 − vn1

τ
+ CPc v

n+1,k+1
1

F n+1,k − F n

τ
− ∂2vn+1,k+1

1

∂x∂x
=

Gn+1,k −Gn

τ
+

∂2vn+1,k
2

∂x∂y
+

∂fn+1,k

∂x
,

(7.6a)

(
CPc

Λn
t

)
vn+1,k+1
2 − vn2

τ
+ CPc v

n+1,k+1
2

F n+1,k − F n

τ
− ∂2vn+1,k+1

2

∂y∂y
=

Gn+1,k −Gn

τ
+

∂2vn+1,k
1

∂y∂x
+

∂fn+1,k

∂y
,

(7.6b)

P n+1,k+1 − P n

τ
=

∂vn+1,k+1
1

∂x
+

∂vn+1,k+1
2

∂y
+ fn+1,k+1, (7.6c)

φ
Sn+1,k+1
w − Sn

w

τ
=

∂vnw1

∂x
+

∂vnw2

∂y
+ gn+1,k+1, (7.6d)

where vw = (vw1 , vw2) is the flux of the saturation equation and it is related

to the flux v in (7.2) through the relation:

vw = Λw∇P + ηΛw∇z =
CPcv − η (Λw + β−1αΛo)∇z

Λt

Λw + ηΛw∇z, (7.7)

where

fn+1,k = f(P n+1,k, Sn
w),

fn+1,k+1 = f(P n+1,k+1, Sn
w),

gn+1,k+1 = ζ(P n+1,k+1, Sn
w).

For spatial discretization, in 2D, we assume that Ω = (0, L1) × (0, L2) is

partitioned into N1N2 squares of size H = L1/N1 = L2/N2. The cell centres

of these subdomains have coordinates (xc
I , y

c
J), with xc

I = (I − 1/2)H, ycJ =
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Ω1
IJ

Ω2
IJ

ΩIJ

Figure 7.1: The MAC grid demonstrating finite volume ΩIJ and co-volumes
Ω1

IJ and Ω2
IJ

(J − 1/2)H, I = 1, . . . , N1; J = 1, . . . , N2. (see figure 7.1 for staggered grid

representation). These cells denoted by ΩIJ construct the coarse partitioning

of the domain ΩH . The flux components v1 and v2 are collocated at the face-

centres (xf
I , y

c
J), with xf

I = (I − 1)H, ycJ = (J − 1/2)H, I = 1, . . . , N1 + 1; J =

1, . . . , N2 and (xc
I , y

f
J), with xc

I = (I−1/2)H, yfJ = (J−1)H, I = 1, . . . , N1; J =

1, . . . , N2 + 1 correspondingly.

Denote Ωi
IJ to be the co-volume corresponding to the flux component vi.

Ω1
IJ and Ω2

IJ will have sizes H ×H with centres at (xf
I , y

c
J), I = 2, . . . , N1; J =

1, . . . , N2 and (xc
I , y

f
J), I = 1, . . . , N1; J = 2, . . . , N2 respectively.

Denote fine scale partitioning Ωh by dividing each coarse-grid cell in ΩH

into 2n × 2n cells of size h = H/2n such that that the grid boundaries of

the co-volumes coincide with those of the fine scale partition. This fine-scale

partitioning is the scale that heterogeneity of the permeability occurs.

We can get the upscaled approximation on ΩH by integrating (7.6a), (7.6b)

and (7.6c) over Ω1
IJ , Ω

2
IJ and ΩIJ respectively. The saturation equation (7.6d)

is discretized in space on the fine grid by integrating it over Ωh after updating
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v from coarse-scale in (7.6a), and (7.6b). Then we interpolate to get v for the

underlying fine grid and then we obtain vw from (7.7) on the fine grid.

∫
Ω1

IJ

((
CPc

Λn
t

)
vn+1,k+1
1 − vn1

τ
+ CPc v

n+1,k+1
1

F n+1,k − F n

τ
− ∂2vn+1,k+1

1

∂x∂x

)
dΩ =

∫
Ω1

IJ

(
Gn+1,k −Gn

τ
+

∂2vn+1,k
2

∂x∂y
+

∂fn+1,k

∂x

)
dΩ,

(7.8a)∫
Ω2

IJ

((
CPc

Λn
t

)
vn+1,k+1
2 − vn2

τ
+ CPc v

n+1,k+1
2

F n+1,k − F n

τ
− ∂2vn+1,k+1

2

∂y∂y

)
dΩ =

∫
Ω2

IJ

(
Gn+1,k −Gn

τ
+

∂2vn+1,k
1

∂y∂x
+

∂fn+1,k

∂y

)
dΩ,

(7.8b)∫
ΩIJ

(
P n+1,k+1 − P n

τ

)
dΩ =

∫
ΩIJ

(
∂vn+1,k+1

1

∂x
+

∂vn+1,k+1
2

∂y
+ fn+1,k+1

)
dΩ,

(7.8c)∫
Ωh

(
φ
Sn+1,k+1
w − Sn

w

τ

)
dΩ =

∫
Ωh

(
∂vnw1

∂x
+

∂vnw2

∂y
+ gn+1,k+1

)
dΩ. (7.8d)

Applying the Gauss divergence theorem will simplify the terms containing

second-order derivatives.

We will use the mid-point rule to evaluate

∫
Ωi

IJ

(
CPc

Λn
t

)
vn+1,k+1
i − vni

τ
and

∫
Ωi

IJ

CPcv
n+1,k+1
i

F n+1,k − F n

τ
in which Λn

t and
F n+1,k − F n

τ
are evaluated by

the mid-point rule on the underlying fine grid in Ωi
IJ . Again, we use the
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mid-point rule on the underlying fine grid in Ωi
IJ to evaluate

∫
Ωi

IJ

Gn+1,k −Gn

τ
.

We sample the source fn+1,k+1 at the cell-centres of ΩIJ , while
∂fn+1,k

∂x
and

∂fn+1,k

∂y
are integrated by the mid-point rule after approximation by central

difference after integration by parts is applied. gn+1,k+1 is sampled at the

cell-centres of Ωh. In the x direction, a Dirichlet boundary condition v1 = 0,

and in the y direction, a Dirichlet boundary condition v2 = 0 are imposed

following from the homogeneous Neumann boundary condition in (7.1). The

spatial discretization (7.8a) and (7.8b) gives a tridiagonal system which in turn

is very easy to solve by a direct solver. After solving for v1 and v2, we solve

for P from (7.8c) then we interpolate to get v on the underlying fine grid and

then we obtain vw from (7.7) on the fine grid and we solve for Sw on the fine

grid from (7.8d) explicitly at each iteration within each time step.

We note that the main purpose of flux-splitting scheme is two-fold: first,

the heterogeneous coefficients which varies on a fine scale are no longer un-

der the divergent operator. Second, the scheme (7.8a)-(7.8b) requires only

solution of semi-discrete one-dimensional equations in each direction and this

simplifies the construction of the multi-scale spatial discretization. The gen-

eralization to higher-dimensional problems is straightforward. Thereafter the

above upscaling procedure in the framework of the compositional model can

be applied.
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