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Abstract

Towards Prosthetic Arms as Wearable Intelligent Robots

Craig Sherstan

The control of powered prosthetic arms has been researched for over 50 years, yet prosthetic

control remains an open problem, not just from a research perspective, but from a clinical

perspective as well. Significant advances have been made in the manufacture of highly

functional prosthetic limbs, yet the control of such limbs remains largely impractical. The

core issue is that there is a significant mismatch between the number of functions available

in modern powered prosthetic arms and the number of functions an amputee can actively

attend to at any given moment.

One approach to addressing this mismatch is the idea of treating the arm as an intelligent,

goal-seeking agent — such an agent can learn from its experience and adapt its actions to

improve its ability to accomplish a goal. It is hypothesized that such intelligent agents will

be able to compensate for the existing limitations in the communication bandwidth between

a powered prosthetic arm and an amputee. The work of this thesis looks at several steps

towards building such agency into a prosthetic arm, including pattern recognition methods,

compound predictions, and collaborative control between the arm and the user. Essentially,

this body of work looks at ways of understanding the user’s desires, as measured in various

ways, such as desired movements, or expected future joint angles, and controlling the arm

so as to achieve those desires.

The first contribution of this thesis is the identification of a scenario under which current

pattern recognition approaches to prosthetic control do not generalize well. The second
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contribution is the demonstration that it is possible to layer predictors, known as general

value functions, and that such layering can improve feature representation and predictive

power. Finally, this thesis demonstrates a method for improving the control of a prosthetic

arm using a collaborative control method that learns predictions of user behavior which are

then used to assist in controlling the arm.

In the long term, the methods and philosophy to prosthetic control explored in this

thesis may greatly improve an amputee’s ability to control their prosthesis. Further, this

approach may be extended to other domains of human-machine interaction where there is a

mismatch between the number of functions in a system and the user’s ability to attend to

those functions, such as smart phones, computers and teleoperated robots.
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Chapter 3 of this thesis is based on a report submitted for credit during this MSc for CMPUT
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Chapter 4 is based on work which was published and presented as Sherstan, C., Pilarski,
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2014 Workshop on AI and Robotics, IEEE/RSJ International Conference on Intelligent

Robots and Systems, Chicago, Illinois, September 14-18, 2014. I was responsible for all
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this MSc for CMPUT 656 in 2014. I was the primary author and presenter of the manuscript.

Pilarski contributed to the manuscript and was the supervising author.

A version of Chapter 5 has been accepted for publication and presentation as Sherstan,

C., Modayil, J., and Pilarski, P. M., “A Collaborative Approach to Effecting Simultane-

ous Multi-joint Control of a Prosthetic Arm”, International Conference on Rehabilitation

Robotics (ICORR), Singapore, August 2015. An extended abstract of this paper was also

presented as a poster and podium talk at the Multidisciplinary Conference on Reinforcement

Learning and Decision Making (RLDM), Edmonton, Alberta, June 7-10, 2015. I proposed

the approach and was responsible for experimental design, implementation, execution, and

analysis. I was responsible for the bulk of manuscript composition. Modayil contributed

helpful implementation discussions and was involved in manuscript editing. Pilarski was the

supervisory author and contributed to the manuscript and provided implementation feedback

and insights throughout.

Appendix A is related to the development of control code for the Bento Arm, a custom

built robot arm used in the experiments of Chapter 5. A technical paper was presented on

the Bento Arm as Dawson, M.R., Sherstan, C., Carey, J.P., Hebert, J.S., Pilarski, P.M.,

“Development of the Bento Arm: An Improved Robotic Arm For Myoelectric Training and
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18-22, 2014, pp. 60-64. I was responsible for developing all control software for the arm and
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Chapter 1

Increasingly Intelligent Prosthetics

The overarching goal of this thesis is to develop control frameworks for assistive robots.

Here I define assistive robots to be ones that directly and physically interact with humans

to help them in achieving their goals. In particular, I focus on the control of prosthetic

arms using reinforcement learning (RL) techniques. This imposes certain constraints on the

system, which are sometimes in conflict with one another. Specifically, there is a need to

balance the desire to engineer the best solution with the desire to create solutions general

enough that they can be applied to other assistive domains as well. Practically, this means

that at times it may seem most appropriate to use a heuristic approach to solving a par-

ticular problem. However, I have chosen to look at how the problem might be solved using

reinforcement learning techniques instead, as, in the long run, I believe these will provide

more mature and robust solutions that need not be domain specific.

The word intelligent, as used in the title of this thesis, has many meanings to many

different people. In this thesis the word is used to mean a system, or agent, which is able

to learn about its environment and adapt its actions to improve its ability to accomplish a

goal. Intelligence should be viewed as a scalar value rather than a binary one, with agents

having levels of intelligence. There are several key verbs in this definition: learn, adapt, act,

and improve, all of which are directed towards accomplishing a goal. This thesis focuses

primarily on the actions of learning and adapting. It is my hope that by the end of this

thesis, the reader will be persuaded to think of prosthetic devices as platforms for intelligent
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agents, rather than simply electro-mechanical tools.

With this definition in mind, typical commercial prosthetics are dumb, they do not un-

derstand the user, the environment or the current situation, they simply respond to a user’s

commands. They are therefore limited by the command interface itself, i.e., the arm cannot

do anything more than what the user can directly tell it to do. In fact, one of the main

problems with current prosthesis control is that the number of controllable functions far

exceeds the number of functions that the amputee can attend to at any given time. This

is a common problem, not just in prosthetics, but in human-machine interfaces in general.

One of our goals in the Bionic Limbs for Improved Natural Control (BLINC) lab is to create

intelligent systems that bridge this gap in control; we want to develop prosthetic arms that

understand an amputee’s needs, anticipating them and taking appropriate action to assist

the amputee. Such arms must adapt to changes in the user’s behavior, in their environment,

and their own capabilities. Ultimately, we strive to build a highly intelligent robot that hap-

pens to be worn as an amputee’s arm. This thesis describes early work on developing such

robots. Viewing devices as intelligent agents may provide powerful insights and approaches

to many domains beyond prosthetics.

However, the improvement of prosthetic control is itself a valuable goal. It is estimated

that in 2005 there were 1.6 million persons living with amputations in the United States,

8% of which are consider major upper limb. This number is predicted to double by 2050

(Ziegler-Graham et al., 2008). Additionally, one study indicates that during US military

operations in the Middle East from 2001 to 2011, 1573 service persons received major ampu-

tations (Fischer, 2014). Another study tells us that nearly 14% of those amputations were

upper limb (Krueger et al., 2012). Beyond the immediate physical and emotional trauma

endured by those who lose a limb, there are the obvious long-term consequences: loss of

functionality, social stigma, and loss of independence. Addressing these needs would have

incredible benefits to the individuals and their families. Congenital amputees, those missing

a limb since birth, may also benefit from technologies developed to address these issues.
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1.1 Outline

This thesis is written in amixed format, incorporating previously published work and consist-

ing of three main investigations, all of which are directly related to the control of prosthetic

arms.

Chapter 2 will first provide background on current methods used for prosthetic control

as well as present the reinforcement learning techniques that are used in Chapters 4 and 5.

Chapter 3 presents a study highlighting some of the limitations of current pattern recogni-

tion methods used for prosthetic control. The experiment described involves the recognition

of hand motions amidst concurrent contractions of the forearm muscles. This is used as

an analogy for concurrent contractions of host muscle used in targeted muscle reinnervation

surgery, which is described in 2.2.4.

Chapter 4 is the first presentation of reinforcement learning methods as applied to con-

trolling a prosthetic arm. Additionally, this chapter discusses the control of prosthetic arms

as a domain for research in artificial intelligence (AI). Specifically, this chapter looks at how

predictive knowledge can be layered to form higher level predictions for robot control and

proposes several ways in which this might be applied to the control of prosthetic arms.

Finally, in Chapter 5, a novel control algorithm, Direct Predictive Collaborative Control

(DPCC), is evaluated using a robotic arm in two different demonstrations. In this control

algorithm the arm learns to make predictions about target joint angles directly from user

behavior and then assists the user in completing tasks by moving towards those targets

before the user is able to do so themselves. These demonstrations show that the control

algorithm can improve user task performance and reduce burden on the user. This chapter

should be considered the most significant contribution of this thesis.

Lastly, Chapter 6 presents future directions of research, some of which are taken from

the previous chapters. This chapter is useful for seeing how many different approaches

from prosthetic control, pattern recognition, and reinforcement learning might be brought

together.
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1.2 Contributions

The contributions of this thesis are summarized as follows:

1. Contribution (Chapter 3): The identification of a scenario under which current

state-of-the-art pattern recognition methods used in EMG based control of prosthetic

arms do not generalize well.

Significance: This finding highlights a realistic failing of the pattern recognition

methods that are presently being used and treated as state of the art. In fact, this

raises concerns over whether or not a current commercially available pattern recognition

system might also suffer from the same problem. Further, this finding suggests that

additional evaluation criteria or environments should be used when evaluating the

performance of pattern recognition systems. In fact, this may signify the need to

rerun numerous studies which compared recognition accuracy of various features and

classifiers.

2. Contribution (Chapter 4): The demonstration that layers of predictors, known as

general value functions, can be used to produce compound predictions.

Significance: The ability to produce compound predictions, that is, predictions based

on other predictions, holds significant value in the field of artificial intelligence as it

provides a way of representing knowledge of a robot, its environment, and the inter-

action between the two. General value functions have the added benefit of being able

to produce temporally extended predictions in a way that is computationally efficient

and performed in real time. Being able to create compound predictions allow us to

build more complex representations and to do so in ways that are efficient.

3. Contribution (Chapter 4): The demonstration that using such layers of general

value functions can produce a boosting like effect whereby a secondary layer predictor

can produce more accurate predictions than the primary layer predictors which are

input to it.

Significance: This observation demonstrates additional benefits to the concept of
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layering general value functions and may suggest a method by which other problems

in robotics might be addressed, such as the integration of multiple sensors, or transfer

learning.

4. Contribution (Chapter 5): The introduction of the Direct Predictive Collaborative

Control method and the demonstration that it can be used to assist a user, who is

bound to controlling only a single joint at a time, in completing tasks quicker and with

less effort.

Significance: Using this control method demonstrates the ability to achieve useful

simultaneous multi-joint control of a robot arm, which is key for producing smooth,

natural motions. This is something that is currently not even possible for most powered

prosthesis users and has the potential to significantly improve their control of their

arms. Additionally, the concepts demonstrated here, if not the exact implementation,

have the potential to be used in many other settings in which the number of controllable

functions surpass a user’s ability to attend to them at any instant in time.

5. Contribution (Appendix A): Development of the control software for the Bento

Arm.

Significance: While not a main part of my thesis, the software developed for the

Bento Arm was a significant measurable output of the work of my MSc degree. The

Bento Arm is an important piece of our lab infrastructure and is and will be used for

many research projects other than my own.
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Chapter 2

Background

This chapter will cover the requisite background for the rest of the thesis. It will start off

by describing the key problem with prosthetic arm control and presenting current approaches

to solving this problem. I will look at methods for collecting control signals from an amputee,

methods for processing those signals, and even a surgical method, known as targeted muscle

reinnervation used to make more of those signals available.

The chapter then introduces a branch of artificial intelligence known as reinforcement

learning (RL). A predictive RL method, known as general value functions (GVFs), is de-

scribed in detail. Finally, a method of creating features from real-valued signals, known as

tile coding, is explained. Both GVFs and tile coding are key methods used extensively in

this thesis.

2.1 Degrees of Control

Degrees of freedom (DOF) of a system refer to the number of functions that can be operated

independently. In physical systems, this is the number of independent movements a system

can make. Degrees of control (DOC) are the number of controllable functions actually

available to the user, which may be a subset of a systems DOF or aggregations of multiple

DOF. That is, the DOC can be less than, equal to, or greater than the DOF of a system.
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Take, for example, a hand, which has 27 DOF, if all a user can control is an open/close

function, then the hand has only 1 DOC.

There are many domains in which the DOC are significantly more than what the user can

attend to at any given moment. Clear examples include using a computer, a smartphone, or

any system which requires a menu to operate. Aggregating many DOF into fewer controllable

functions is often an effective approach in many domains. However, there are many for which

this aggregation is not desirable.

2.2 Prosthetic Arm Control

The control of powered prosthetic arms is one such domain where the DOC can greatly

outnumber the number of input channels the user has available, with disparity increasing

as level of amputation increases, e.g., those with transhumeral amputations can provide

even fewer control signals than those with hand amputations. Unfortunately, this mismatch

makes the control of powered prosthetic arms difficult and tedious. In fact, many amputees

will reject prostheses outright, while others will eschew electrically powered prostheses for

mechanical, body-powered ones. Biddiss and Chau (2007) looked at 22 studies ranging over

25 years, which list rejection rates of upper limb myoelectric prosthesis anywhere from 0 to

75 %. While these figures are not overly helpful, other studies have indicated that of those

who reject prosthesis, control and limited functionality were cited as two of the chief causes

(Biddiss and Chau, 2007; Peerdeman et al., 2011; Scheme and Englehart, 2011; Resnik,

Meucci, et al., 2012). While many other issues for powered prosthetic usage have been

identified such as noise, weight, comfort and lack of sensory feedback, the focus of this thesis

is on improving control.

Since the 1960s the most common way to control a powered prostheses has been through

the use of surface myoelectric control or electromyography (sEMG), which involves measuring

muscle contractions by the electrical signals they produce as read by sensors worn on the

skin. The magnitude of a muscle contraction is used to drive a function or joint of the

prosthetic using proportional control; the stronger the contraction the faster or stronger the
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Figure 2.1: The Modular Prosthetic Limb developed by Johns Hopkins University as part of the
Revolutionize Prosthetics project funded by DARPA

movement. This method thus requires two contraction sites to control a single joint; one

site (e.g., biceps) is used to move the joint in one direction and another site (e.g., triceps)

is used to move the joint in the other direction. When more than one joint is available for

control a third signal of some kind is used to toggle between joints, using a fixed joint order.

This signal might be provided in the form of a third EMG site, a co-contraction of the two

existing sites, or through a physical switch the user must press. For brevity, let us refer to

this form of control as toggling proportional control (TPC).

For a prosthetic with only one or two DOC this can be an effective control system.

However, such prostheses are of limited functional use. In recent years the capabilities of

prosthetic arms have been greatly increasing due to advances in technology, enabling arms

with nearly the same number of DOF as natural human arms. This is in large part due to

an initiative of the Revolutionizing Prosthetics project of the Defense Advanced Research

Projects Agency (DARPA). This project produced two state-of-the-art prosthetic arms, each

with approximately 20 DOC: the Modular Prosthetic Limb (Johns Hopkins University) (see

Figure 2.1) and the DEKA arm (DEKA Research & Development Corporation).
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As one can imagine, using TPC to control large numbers of DOC, as are available in

these arms, creates a staggered approach to movement without the natural synergies an

able-bodied person would produce. This is discussed in greater detail in Chapter 5. New

strategies are needed in order to improve amputee control. The following sections describe

several approaches in development.

2.2.1 Alternative Control Signals

Given that the main issue with controlling prosthetic arms via EMG is the limited number

of signals it is natural to wonder what other signals might be available. It is my opinion

that the ideal interface for restoring arm function would use a bi-directional neural interface,

such that natural control and sensation occur between the amputee and the prosthetic in the

same way as would have occurred in the natural arm prior to amputation. Work in the area

of brain computer interfaces (BCIs) includes: implantation of microelectrode arrays in the

cortex, peripheral nerve cuffs, and electrocorticography ECoG, in which an array of sensors

are draped over the cortex. While there has been notable success with using these approaches

for control (Ohnishi et al., 2007; Wang et al., 2013; Collinger et al., 2013), significant technical

and regulatory hurdles remain to be overcome and seeing such approaches in common clinical

practice is unlikely in the near future. It should be noted that DARPA funded efforts

to develop BCIs for prosthetic control through the Reliable Neural Interface Technology

program are expected to conclude in 2015 (Miranda et al., 2015).

Such methods are not without their drawbacks. The biggest being that they are invasive,

which increases the risks of their use and makes them more costly to develop, implement,

and deploy. Some amputees may also find such methods objectionable for various other

personal reasons. An alternative, non-invasive approach is the use of electroencephalogram

(EEG), which measures the electrical activity of the brain transmitted through the skull,

requiring users to wear a grid of sensors on their head. While significant work has been

performed in this area, EEG faces several key difficulties including low signal to noise ratio

(SNR), and low spatial resolution. Additionally, while it may never be possible to use EEG

to directly control a prosthetic arm with the desired accuracy, it still may offer other useful

9



signals, such as a user’s satisfaction with a behavior (Esfahani and Sundararajan, 2011).

Such signals may serve to complement other approaches. Specifically, they may be of use as

a reward signal for reinforcement learning systems like those described in Chapter 2.3.

While working on DARPA’s Revolutionizing Prosthetics project, DEKA also developed

a novel control interface consisting of inertial measurement units (IMUs) worn in shoes in

conjunction with torso worn bump switches (Resnik, Lieberman Klinger, et al., 2014). Am-

putees operated the arm by shifting pressure on their feet. This approach was evaluated over

three different generations of the device with 36 subjects having different levels of amputa-

tion. By the third iteration, feedback was generally positive from users. Nonetheless, users

required a significant training period, with those users having higher levels of amputation

requiring more training time. To be effective at using this system, users had to become

proficient at pre-planning their motions, requiring significant cognitive load. Perhaps the

biggest drawback to this method is that users had to give up some degree of mobility.

2.2.2 Alternative Ways of Reading Muscle Contractions

As has been mentioned, surface EMG reads muscle contractions through electrical signals

measured by electrodes in contact with the surface of the skin. However, it is prone to

numerous difficulties with SNR caused by: sensor slippage, sensor alignment, changes in

conductivity due to perspiration, degradation of signals due to fatigue, orientation dependent

signal modification, cross-talk from other muscles and interference from underlying muscle

contractions as discussed in Chapter 3. Alternative methods of detecting muscle contractions

are being investigated such as topographic force mapping, where high density arrays of

force sensors line the socket, and ultrasound imaging (Castellini, Artemiadis, et al., 2014).

Topographic force mapping is an interesting approach that seems to be within the realm

of clinical feasibility, while ultrasound imaging still requires some technical hurdles to be

overcome, such as the miniaturization of the ultrasound sensors. Regardless, both techniques

would still be subject to the same data processing approaches currently used.

Yet another approach is the use of implanted myoelectric sensors (IMES), in which mi-
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crosensors are directly implanted in the muscle tissue (Hargrove, Englehart, et al., 2007;

McDonnall et al., 2012). Such sensors have been developed in conjunction with DARPA and

are undergoing clinical evaluation and FDA approval. One study indicated no significant

benefit in classification accuracy of IMES over sEMG (Hargrove, Englehart, et al., 2007).

However, the study did not look at classification accuracy in respect to the previously men-

tioned causes of poor signal quality, which are precisely the areas where IMES offer potential

benefit. It is my opinion that, in the long run, IMES hold great promise for improving the

reliability of EMG signals. IMES is more invasive than sEMG, but certainly less invasive

than brain implants. While IMES is of great interest it is not explored further in this the-

sis and the reader should assume that surface based methods are used wherever EMG is

mentioned.

2.2.3 Pattern Recognition

Pattern recognition, or classification, is a common supervised machine-learning technique in

which a mapping from input signals to output class is learned. In pattern recognition, a

sample data set is first provided in which all the inputs are labeled with a corresponding

output class, selected from a pre-specified set of possible classes. The inputs in this training

set are converted to some representation, known as features, meant to extract the important

information available in the raw data. Using this training data, the pattern recognition

algorithms then learn how to map input features to the specified input classes in order to

reduce classification error. This learned mapping is then used with new, incoming signals,

to determine the most likely output class.

Pattern recognition of EMG signals is quite possibly the most studied alternative to

the standard toggling proportional control. Typically, a number of predefined movements

are specified, such as: wrist extension/flexion, wrist pronation/supination, radial deviation,

ulnar deviation, hand open/close, elbow flexion/extension and rest. The amputee then

performs a series of training movements that are matched to the classes. These labeled

samples are then used to train the classification system. After training, the system classifies

incoming signals in real time. Common approaches to pattern recognition with EMG use
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standard classification methods such as support vector machines (SVM), linear discriminant

analysis (LDA), and linear regression to make live classification decisions at intervals around

250 ms (Smith et al., 2011).

Pattern recognition certainly offers tremendous improvement over TPC, and has just

recently become commercially available through the Coapt system (Coapt LLC) for use

with prosthetics. However, there are numerous issues with this approach that have yet to be

fully addressed, some of which have to do with the nature of the algorithms, while others are

limitations of sEMG. As was mentioned, there are numerous causes of signal degradation

when using sEMG. Many, of these issues present problems for classification algorithms.

Specifically, the most common approaches to pattern recognition use a combination of time

domain features and autoregressive features (Scheme and Englehart, 2011). Unfortunately,

either these features or the pattern recognition algorithms themselves do not generalize well

to states that have never been seen before. An example of this, which will be discussed

in more detail in Chapter 3, is that when a classifier is trained in unloaded conditions

to recognize a hand movement, that is, the muscles are not supporting any weight, the

classifier has incredible difficulty making accurate classifications when the user makes the

same motions while supporting weight.

Additionally, the typical algorithms used (e.g., LDA, SVM, linear regression) are offline

algorithms, which means the collection of samples is separated from the learning from those

samples, i.e., a system first collects a set of labeled data samples and then learns from

them before being deployed on live data. This is in contrast to online learning algorithms

which learn from each data sample as it arrives. Offline methods do not allow for continual

adaptation, while online ones do. Practically, this means that throughout the day, the

classifier will lose accuracy as muscles fatigue, sockets shift, and perspiration increases. Users

must then retrain their system as it loses accuracy. We should expect many of these specific

issues to disappear with the use of IMES.

Also, typical classifiers, including the current Coapt system, only predict a single move-

ment class at a given instant, which makes movement somewhat unnatural. However, sev-

eral approaches are being researched in order to provide multi-class predictions (Hargrove,
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Scheme, et al., 2010; Young et al., 2012; Yatsenko et al., 2007; Ameri et al., 2013; Castellini

and Nowak, 2014). Another issue, is that straight classification methods do not provide a

measure of how fast or how strong a motion class should be performed. Again, a number

of approaches have also sought to address this (Castellini and Nowak, 2014; Amsuss et al.,

2014; Yatsenko et al., 2007).

All of these issues aside, the use of pattern recognition is a promising approach. However,

this approach only works if there are enough muscle sites that can contract to provide a

pattern for detection in the first place. For many transradial and hand amputees, this is

a viable option. For transhumeral and shoulder level amputations the number of available

signals is significantly reduced. This can be addressed through the use of targeted muscle

reinnervation (TMR) as described in the next section.

2.2.4 Targeted Muscle Reinnervation

Targeted muscle reinnervation (TMR) is a surgical technique where nerves that would have

gone to the amputated limb are transplanted to new host muscle, possibly in the residual

limb, or the chest (Dumanian et al., 2009; Hebert et al., 2014). These transplanted nerves

are then able to cause contraction in the new host tissue, providing access, through sEMG,

to additional control signals, which can then be used to control additional prosthetic DOC

or to provide the necessary information for a pattern recognition based controller.

Further, a related technique, known as targeted sensory reinnervation (TSR) transplants

the severed sensory nerves, which would have gone to the intact limb, into new subcutaneous

host tissue (Hebert et al., 2014). This creates a pathway for providing sensory feedback to

an amputee. For example, by pressing against a reinnervated sensory nerve on the chest an

amputee may experience the sensation of having their thumb pressed.

Taken together, TMR and TSR provide an enhanced bi-directional pathway for interfac-

ing an amputee with a prosthetic limb.
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Figure 2.2: Textbook Reinforcement Learning diagram. Recreated from Sutton and Barto (1998).

2.3 Reinforcement Learning and General Value Func-

tions

Reinforcement learning (RL) can be described as an agent learning how best to behave by

interacting with its environment, where best is defined to mean the maximization of some

reward over time. An agent is defined as an entity which learns and takes actions, and

the environment as anything outside of that agent (in truth, this boundary is fuzzy). The

textbook representation for RL is show in Figure 2.2. The agent receives information about

the state of the environment, S, at time t. State is the condition of the agent’s universe. In

real-world settings the state is effectively infinite and only a subset of states is available or

perceivable to an agent. Based on St, the agent takes action At, which results in a new state,

St+1 and a reward signal Rt+1. The term policy is used to describe how an agent decides

which action to take in each state. A policy is a deterministic or stochastic mapping from a

state to an action. The agent’s job is to learn the best policy so as to maximize its reward

in the long term.
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Figure 2.3: Discounted Return

2.3.1 Making Predictions

One of the key components in the RL problem is the estimation of value. That is, in order for

the agent to improve its policy it must have some way to estimate the value of a particular

action from a given state. Typically, we look to estimate the sum of discounted future rewards

as shown in (2.1), where 0 ≤ γ ≤ 1 is a discounting factor, allowing temporal emphasis to

be shifted between immediate rewards (γ = 0) and rewards in the infinite future (γ = 1).

This can be viewed as applying a filter over future rewards as shown in Figure 2.3.

Gt =
∞
i=1

γi−1Rt+i (2.1)

Sutton (1988) defined a class of algorithms known as temporal-difference (TD) algo-

rithms. These were a significant advancement to the field of prediction as they allowed

predictions to be incrementally updated in an online setting, using function approximation

and bootstrapping.

Function approximation is the technique of representing a complex or unknown function
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using an known, and often simpler, function. Function approximation is a powerful technique

in machine learning for representing state. It allows an agent to compress a large or even

infinite number of states into a finite set of parameters. While compressing state in this way

can result in the loss of information, it is often the only way to make problems tractable and

computationally efficient. Further, function approximation has the advantage of creating

generalization across states, which can accelerate learning. The use of function approxima-

tion stands in contrast to tabular methods where each state is uniquely represented in some

form of a lookup table. Such tabular methods are not used in this thesis, but are discussed

in detail in Sutton and Barto (1998).

While the term bootstrapping has many meanings across different fields, it is used here in

the same sense as in dynamic programming, that is, we leverage existing predictions to update

other predictions. Effectively, this means that updates to predictions can be made before the

predicted outcome has been seen. Bootstrapping is an efficient way to update predictions,

however, it can have high bias — errors from inaccurate estimates. On the opposite end

of the spectrum, Monte Carlo updates are only performed at the end of an episode, once

the final state has been reached. Monte Carlo methods can have high variance in stochastic

domains — they are sensitive to variations in the return. The TD(λ) algorithm, shown in

(2.2), (2.3), and (2.4), uses the parameter 0 ≤ λ ≤ 1 to allow us to take an intermediate

approach lying somewhere between full bootstrapping (λ = 0) and Monte Carlo (λ = 1)

updates. The result is that we are able to balance the trade off between variance and bias.

The TD algorithms are conceptualized and derived using the concept of forward and

backward views through time. The forward view asks “what should the incremental updates

for this state’s value prediction be if we could see all the way into the future.” Obviously,

this is not possible to implement, given that one cannot know the future. The backward view

looks back in time and says what the estimate updates should have been at each timestep

given the actual observed samples. For algorithmic purposes, it is the backward view that

is implemented and made possible by the inclusion of traces, vector e ∈ IRn, such as the

accumulating traces equation shown (2.3), or replacing traces, often used with binary feature

vectors, as shown in (2.5).
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δt =Rt+1 + γw⊤
t ϕt+1 −w⊤

t ϕt (2.2)

et =λγet−1 + αϕt (2.3)

wt+1 =wt + δtet (2.4)

et(s) =

λγet−1(s) if s ̸= St

1 if s = St

(2.5)

The equations shown have thus far used a linear function approximator for value esti-

mation. The goal of this algorithm is to learn the weight vector w ∈ IRn such that a value

can be estimated for a given state S using the feature vector ϕ(S) ∈ IRn via a simple inner

product as shown in (2.6) (the transpose operator is denoted as ⊤). Linear approximators

are not the only option, however, they are extremely computationally efficient and I will

solely use linear approximators throughout this thesis.

V (S) = w⊤ϕ(S) (2.6)

The term δ in (2.2) is known as the temporal-difference error or TD error. It describes the

difference between the target we are trying to predict (the bootstrap estimated discounted

sum of future rewards, Rt+1 + γw⊤
t ϕt+1) and our current prediction w⊤

t ϕt. If the algorithm

was making perfect predictions, the TD error would be zero.

The weight update in (2.4) is derived from the usual gradient descent algorithm. As such,

the term α, which appears in the traces equations, is in fact the usual step size parameter

used in gradient descent and is subject to the same convergence constraints. That is, for

a deterministic environment, a decaying α is required in order to converge on the solution

with the smallest error. In practice, a small fixed value for α is commonly used, which allows

predictions to adapt to changing conditions.

17



2.3.2 True Online TD(λ)

The forward view of the original TD(λ) algorithm makes the assumption that state estimates

remain constant through to the end of an episode. That is, the forward view is derived for

the offline case. Despite this, TD(λ) has been practically effective over the years, even in the

online case, given that a good choice of parameters, α, and λ, are made. However, recent

work by van Seijen and Sutton (2014) has derived a new temporal difference algorithm,

known as True Online TD(λ), which does not make the same assumption about static state

estimates, but rather accounts for the fact that the value estimates may change at every

timestep. This is a significant advancement as it means that, for both the offline and online

case, the forward and backward views are equivalent. In practice what has been shown is

that True Online TD(λ) can produce better results than TD(λ), with lower error, faster

learning rates, and stability over larger ranges of parameters α, and λ. Additionally, True

Online TD(λ) eliminates the need to select between accumulating (see (2.3)) and replacing

traces (see (2.5)).

Algorithm 1 True Online TD(λ)

initialize w arbitrarily
loop {over episodes}
initialize e = 0
initialize S
v̂Sold

← w⊤ϕ(S)
repeat {for each step in the episode}
generate reward R and next state S ′ for S
update γ if needed (if S ′ is terminal: γ ← 0)
∆v̂S ← w⊤ϕ(S)− v̂Sold

v̂Sold
← w⊤ϕ(S ′) (S ′ is used here, because S ′ becomes S in the next iteration)

δ ← R + γw⊤ϕ(S ′)−w⊤ϕ(S)
e← e+ α


1− e⊤ϕ(S)


ϕ(S)

w ← w + δe+∆v̂S(e− αϕ(S))
e← γλe
S ← S ′

until S is terminal
end loop

The True Online TD(λ) algorithm is shown in Algorithm 1. The key differences are in

the calculation of traces, (2.7) and (2.9), and weight updates, (2.8).
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êt =et−1 + α

1− et−1

⊤ϕt


ϕt (2.7)

wt+1 =wt + δtêt + (wt −wt−1)
⊤ϕt(êt − αϕt) (2.8)

et =γλêt (2.9)

2.3.3 General Value Functions

The TD algorithms are typically associated with estimating value, specifically, the discounted

sum of reward, R. However, they can also be used in a broader sense to predict any mea-

surable signal. This is done by replacing R, in the TD error equation, with the signal of

interest (Sutton, 1988). Let us refer to this term as the cumulant, of which reward is a

specific instance (White, 2015). When the algorithms are used in this way they are called

general value functions (GVFs). GVFs allow us to represent knowledge about an agent,

its environment and the interaction between the two using temporally extended predictions

(Sutton, Modayil, et al., 2011).

In GVFs, knowledge is represented as the answer to a computationally specified question

about a policy, or way of behaving. The GVF question is programmatically described by (2.2)

and parameterized by three functions: the cumulant (R), γ, and the policy. For example,

with a GVF one can ask, “How much current will the left motor draw over the next 2 s if the

robot drives straight?” One way of representing the answer is through standard TD value

functions. The answer is then approximated by the value function with the parameters λ

and the weight vector w.

In order to learn as much about the world in as short a time as possible an agent must

be able to learn many things in parallel. Off-policy learning plays this role, allowing learning

about one policy, the target policy, while following another policy, the behavior policy. In

the simplest setting the behavior policy and the target policy are the same. This is referred

to as on-policy learning. While off-policy learning is of significant interest for developing real

world robots, it is not used directly in this thesis and will not be explained further in this
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Figure 2.4: Expected timesteps to termination

introduction. For a more detailed discussion of off-policy learning with GVFs see Sutton,

Modayil, et al. (2011), Modayil, White, and Sutton (2014) and White (2015).

GVFs allow us to make temporally extended predictions. That is, they allow us to make

a prediction for some timescale in the future. The γ term determines how far into the future

the prediction is made, with γ = 0 looking only one step ahead and γ = 1 looking to infinity.

The γ function can be thought of as the probability of continuing past the current state, and

1− γ is therefore the probability of terminating at the current state. With this in mind the

expected number of timesteps until termination can be derived by considering the trajectory

shown in Figure 2.4.

To calculate the expected number of timesteps, τ , simply consider the length of the

trajectory along each path and the probability of taking each path (This is nothing more

than the standard calculation of expectation E[X] =


i xipi, where p is probability).

τ = Length of Terminating Trajectory · Probability of Terminating +

Length of Continuing Trajectory · Probability of Continuing
(2.10)
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τ =1(1− γ) + (τ + 1)γ (2.11)

τ =1− γ + τγ + γ (2.12)

τ =1 + τγ (2.13)

τ(1− γ) =1 (2.14)

τ =
1

1− γ
(2.15)

Thus, by rearranging (2.15), we can say that in expectation γ is related to the number

of prediction timesteps as

γ = 1− 1

τ
. (2.16)

Both γ and the cumulant can be state dependent, which allows an agent to ask more

complicated questions. For example, an agent could ask, “How long until I collide with a

wall if I go straight?” To ask this question set γ = 1 and R = 1 for all states in which the

robot has not collided with the wall and γ = 0 and R = 0 when the robot does collide with

the wall (Sutton, Modayil, et al., 2011). While state based γ and cumulant functions are

very powerful, they are not used in this thesis and are therefore not described further.

The experiments in Chapters 4 and 5 use fixed γ values. Using a fixed γ has several

implications. First, the value computed in (2.6) is an estimate of the multiplication of

Figure 2.3 and the target signal over the future timesteps. This assumes that the value at

some time τ is related to the values before and after. Essentially, everything in the full

trajectory of the target signal is compressed down to a single number to give us a prediction

for a specific point in time, in expectation. As one would expect, the prediction is not

unique and does not capture the behavior of a signal in time. For example, Figure 2.5 shows

a signal which is always 1.0 except around the 20 timestep mark, which happens to be where

we want to predict. If our predictor were exact it would predict a value of 0.0. However,

our GVF based predictor gives a value that is nearly 1.0 as all the other values around this
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notch weights the signal towards 1.0. For the purposes of this thesis this is a benefit in that

it generalizes and smooths out predictions. In other scenarios where an exact prediction is

required this would not be desirable.

In Figure 2.6 we see two different signals, shown in blue and green. Again, we want to

make a prediction for 20 timesteps in the future. Signal 1 is a small, brief signal that occurs

very soon, while Signal 2 is a large, long signal which occurs much later. However, for both

of these signals our GVF predictor would give similar values. Again, in some situations this

sort of generalization is desirable, while in others it may be detrimental.

The equations described thus far have predicted the cumulative discounted sum of a

signal; instantaneous values of signals can be predicted by prefixing the cumulant with

(1 − γ). This is simply a matter of dividing the target signal by the expected number of

timesteps as given in (2.15). In this way the GVF predicts the cumulative sum of R
τ
, or

a per-timestep measure of the signal, which, when summed, produces an estimate of the

instantaneous signal. This scaling can also be applied to the output prediction of the GVF

itself, rather than the target signal directly.

Further, if the target signal is a binary event and this signal is scaled as described in the
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Figure 2.6: Dual signal

previous paragraph, then prediction of the GVF can be thought of as giving the pseudo-

probability of the event occurring over some time scale, e.g., “If the robot drives forward,

what is the probability of colliding with the wall in the next 3 s?”

The use of GVFs is fairly new but already several promising applications have been

demonstrated with robots. Several authors have demonstrated that GVFs could be used to

efficiently learn to predict large numbers of sensorimotor signals, simultaneously, in real time

on a mobile robot (Sutton, Modayil, et al., 2011; Modayil, White, Pilarski, et al., 2012).

Additionally, GVFs have been used in order to predict various signals used in prosthetic

arms, such as joint positions, user EMG signals, joint movement and joint selection (Pilarski,

Dawson, Degris, Carey, Chan, et al., 2013; Edwards et al., 2014).

How such predictions should be used in control is an open research question, with some

recent investigations. Modayil and Sutton (2014) have used prediction to control a simple

mobile robot, such that when a prediction exceeds a threshold the robot will activate and

follow a fixed, hand-coded behavior, producing Pavlovian-like responses. Specifically, when

their mobile robot predicted a future over-current condition it would shut off its motors. This

approach is similar to many prediction-based reflexive reactions found in humans and other

animals (Redish, 2013; Linden, 2003). Additionally, Pilarski, Dick, et al. (2013), performed
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a comparative study of various techniques by which GVF based predictions could be used

in order to generate target commands for the control of a prosthetic arm joint. This study

is the basis for the work in Chapter 5 and will be discussed later in further detail.

2.3.4 Tile Coding

Tile coding is a common, non-linear approach used for creating sparse binary features from

real-valued signals and is well suited to the online learning of RL. Tile coding forms a tiling by

taking a sensor space and partitioning it into non-overlapping regions called tiles as shown in

Figure 2.7. The left side of the figure shows a 2 dimensional tiling for a hypothetical sensor

space, which has been normalized and scaled between [0,1] and partitioned into uniform

widths of 0.5. Tilings need not be square in shape and need not have the same resolution

across all sensors as is shown. Further, they can be used with any number of dimensions. For

any given vector in sensor space there will be exactly one active tile with the value 1 with all

other tiles set to 0. Adding offset tilings, as shown in the right side of the figure, increases

resolution, but unlike simply using a single tiling with higher resolution, this approach allows

broad generalizations to be rapidly learned, i.e., data points are not isolated from one another

and a learner is able to apply what was learned in nearby regions. It should be noted that

tile coding can also be used with hashing, which is an effective way to limit the resulting

feature size and memory footprint. For further discussion on tilecoding refer to Sutton and

Barto (1998). Tile coding is used in Chapters 4 and 5 in order to represent various signals

as features for the learning agents.
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Figure 2.7: Tile coding - left) A normalized continuous 2D sensor space is tiled using 3 tiles per
dimension with a bin width of 0.5. right) Three offset tilings are made over the same sensor space,
producing 27 features with 3 active at any given instant.
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Chapter 3

Classification of Embedded EMG

Signals Amidst Concurrent

Contraction1

Pattern recognition is currently considered the state of the art for EMG based control of

prosthetics. However, despite the significant potential for improving control, this approach

has limitations. Here a particular scenario is identified under which the standard pattern

recognition features and classifiers does not generalize well. Further, these findings highlight

current problems in the way that pattern recognition methods are evaluated in the prosthetics

domain.

This chapter is arguably the smallest contribution to this thesis. This chapter relies on

offline methods, which are not adaptive. However, in Section 6.2 I propose one way in which

offline pattern recognition methods might be combined with the online learning method of

general value functions to produce an adaptive system. While this chapter focuses on the use

of offline methods, it does show the limitations of such an approach and further motivates

the work in Chapters 4 and 5.

1This chapter is based on a project submitted for course credit in CMPUT 551 during my MSc in Com-
puting Science. It was submitted as Sherstan, C., Ramirez, O., Ahmad, Z. F., and Zhang, H., “Classification
of Embedded EMG Signals Amidst Concurrent Contractions”. I have since reevaluated the work and rerun
the experiments for inclusion in this thesis. While some of the text and figures of this chapter are taken from
that original report, it has largely been rewritten and incorporates updated results and additional analysis.
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Further, one of the key functions of an intelligent arm is the ability to understand the

user and their environment. This is a recurring theme throughout this thesis and is explored

in more detail in the following chapters using general value functions. Pattern recognition

is one alternative approach to making predictions about a user’s intentions and therefore

serves as a comparative and likely compatible methodology.

3.1 Overview

Pattern recognition of EMG signals offers to significantly improve the control of prosthetic

limbs, particularly prosthetic arms, by allowing amputees to move beyond controlling a

single degree of freedom at a time. Additionally, the control provided is more natural for the

amputee, e.g., when the amputee thinks to open or close their hand, the nerves that would

have performed those activities in the intact limb fire in a specific pattern which can be

directly translated to opening and closing the prosthetic hand. This approach is particularly

useful when muscles are still available and innervated, as may be the case for transradial,

hand, and partial-hand amputees, providing a wealth of natural muscle signals. A surgical

technique, known as targeted muscle reinnervation (TMR) may extend these benefits to other

amputees as well, by providing access to nerve signals that would have controlled the intact

limb. Here we demonstrate one scenario under which the most common methods of pattern

recognition with EMG, specifically time-domain and autoregressive features (TD/AR) with

a linear discriminant analysis classifier (LDA), do not generalize well to the case where host

muscle is undergoing concurrent contraction when trained with only unloaded movement

samples, causing accuracy levels to drop well below usable levels. An example of this might

be when an amputee is holding a heavy object. This is demonstrated using a single able-

bodied subject in an experimental setting meant to replicate the concurrent contractions

mentioned. These results indicate that additional approaches may be required in order for

classification systems to be useful in real-world scenarios.

It should be noted that the acronym TD, used in this chapter, refers to time domain fea-

tures as opposed to temporal difference algorithms as in the rest of this thesis. Unfortunately,
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this is the accepted acronym used to refer to each in their respective fields

3.2 Introduction

The use of pattern recognition with EMG signals has been explored since the late 60s and

early 70s (Finley and Wirta, 1967; Lyman et al., 1976; Lawrence et al., 1972). The basic

premise involves recording EMG samples while a user makes prescribed motions. The sam-

ples are labeled with the corresponding movement class and converted to some representation

or features, which are then used to train a mapping from a set of features to a corresponding

class using a supervised machine-learning classification algorithm. After training, the system

then records live signals from the user, converts them to features, and passes the features

through the mapping to get the predicted movement class, which is then converted to the

corresponding motion of the prosthetic arm. Significant improvements in algorithms and in

computational power now make such approaches potentially clinically viable. In fact, the

past year, 2014, saw the release of the first commercial pattern recognition system for use in

controlling a prosthetic limb via EMG by Coapt LLC.

Pattern recognition offers significant benefit over traditional proportional control methods

in that they give the the user greater access to the functions of their prosthetic. While most

classification approaches are limited to classes of motions which can be held statically, those

classes might include single DOF activations or synergies of DOF, thereby allowing control

of more than one joint at a time.

Although typical classification approaches produce only a class label, at least one study

has looked at combining classification with proportional control to allow the user to also

control the speed with which motions are performed (Scheme, Lock, et al., 2013).

One of the key benefits to pattern classification is that it may be possible, depending

on each amputee of course, that prosthetic control can be performed intuitively, e.g., the

user thinks to open their hand and the hand opens. This is because the amputee’s thoughts

are translated directly to patterns of muscle contractions. These patterns of contractions,

whatever they might be, are learned by the classifier. While it is reasonable to expect that
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users adapt to the system, pattern recognition methods bring control closer to what a user

might be used to, thereby lowering the barrier to use.

Pattern recognition assumes that an amputee has sufficient muscle signals to record from,

which is a realistic scenario in transradial, hand or partial-hand amputees, where the muscles

used for hand and wrist control are often still intact and functional. For amputees lacking the

muscle signals needed for pattern recognition there is a surgical method, known as targeted

muscle reinnervation (TMR), which can make those signals available. TMR transplants the

nerves that would have gone to control the hand and wrist into new host muscle such as the

biceps, triceps, and pectorals. The new host muscle then responds to these nerve signals

by contracting, providing a way to record the nerve signals through EMG, and thus making

pattern recognition a viable option for higher-level amputees.

3.2.1 The Problem of Generalization

A common problem faced by all forms of machine learning is the problem of generalization.

That is, does the knowledge learned from training transfer well across samples that have

never been seen? This is a problem because it is typically impractical to provide training

data from all possible scenarios. This is certainly the case in training a pattern recognition

classifier for EMG based prosthetic control where numerous factors can cause variation in

the signals. The experiment of this chapter explores this issue — do the common approaches

used for classification of EMG signals generalize well?

Often, in EMG pattern recognition studies, the experiments only consider classification

accuracy for movements made in unloaded conditions where the subject is relaxed, sitting

down and not holding anything in their hand (Hudgins et al., 1993; Hargrove, Englehart,

et al., 2007), or, in the case of an amputee, not wearing the prosthesis (Zardoshti-Kermani

et al., 1995; Boostani and Moradi, 2003). One can imagine that host muscles used in the

TMR surgery may still be used for regular functions. For example, imagine an upper-limb

amputee opening a door by its handle. The prosthesis is receiving signals to grasp the handle

and turn. Additionally, the non-reinnervated pectoral muscle is contracting to push the door
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Figure 3.1: Classification System - Training samples are recorded from movements made while the
user is empty handed (blue). Evaluation is then performed on motions recorded with the user
holding different objects (green).

open. The control system needs to distinguish the activation pattern used to control gripping

and turning amidst the background contraction of the host pectoral. This is what we refer

to as concurrent contraction. Here we look at whether or not a classifier trained in unloaded

conditions generalizes to the case where the muscles are undergoing concurrent contraction.

An ideal control system would able to accurately classify signals amidst concurrent con-

tractions having been trained only in unloaded conditions but still able to classify accurately

under loaded ones (See Figure 3.1). This is desirable as it is not feasible to have a user

train the system on all possible loads. A usable system should have a target accuracy (the

percentage of correctly classified decisions) above 90% (Scheme and Englehart, 2011) and a

response time under 200 ms (Smith et al., 2011).

Many features and many classifiers have been evaluated over the years (Scheme and

Englehart, 2011). The most common choice, at this time, is the use of time domain (TD)

and autoregressive (AR) features with a linear discriminant analysis (LDA) classifier, similar

to what is used by the approach taken by the Coapt system already mentioned.

Here we evaluate classification accuracy, when muscles are experiencing concurrent con-

traction, using several common features and classifiers including the TD/AR features with

an LDA classifier, trained only with unloaded data samples. Our results indicate that these

approaches do not generalize well in the case of concurrent contractions.
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Related Studies

Cipriani et al. performed a similar study looking at the effects of motion and loading on

classification accuracy caused by the muscular contraction needed to stabilize the prosthetic

itself and showed that there is significant degradation of classification accuracy (Cipriani,

Sassu, et al., 2011). However, they only looked at a single classifier, K-nearest neighbors

(KNN), and a single feature, mean absolute value. Unfortunately, this is a limited evaluation

and the choice of classifier and feature are arguably not the most common or likely to

generalize. We would expect the mean absolute value to vary widely between various states

of prosthetic stabilization and concurrent contraction.

Another study was performed by Tkach et al. in which they examined the robustness of

TD features with an LDA classifier to three types of perturbations: electrode shift, variability

of contraction effort, and fatigue (Tkach et al., 2010). They found that there was significant

reduction of classification accuracy caused by these perturbations, with fatigue having the

smallest effect. However, it is debatable whether or not their method of inducing fatigue was

a good analogue for what might be seen in the real world. While the studies look at similar

perturbations, they are not identical. Specifically, in our study we expect more bias to be

present in one or two channels due to having to hold objects against gravity. Additionally,

our study looks at a wider range of classifiers, and also introduces a novel feature, which

attempts to capture the relationship between the channels.

3.3 Methods

3.3.1 Signal Processing

A common step in processing incoming EMG signals is to use a sliding window like the one

shown in Figure 3.2; incoming samples are buffered up to the size of the window and then

that window is passed through the classification system (Scheme and Englehart, 2011). The

window is then shifted over slightly and new incoming samples are appended to the buffer.
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Figure 3.2: Windowing Data - sliding windows of 150 ms with an offset of 50 ms were used for
classification

In order for EMG to be used effectively as a means of control it must be both accurate

and relatively fast. Two studies showed significantly different estimations of the maximum

allowable delay for a usable controller, ranging from 50 ms (Childress and Weir, 2004) to

400 ms (Hefftner et al., 1988), but others have suggested a middle-of-the-road value with

the optimal window length for pattern recognition control being between 150 and 250 ms

(Smith et al., 2011). We therefore chose a data window of 150 ms and window shift of 50 ms,

resulting in a new decision every 50 ms based on a 150 ms window that had begun 200 ms

before.

Features

Studies have indicated that, of the methods tested, feature selection is more important

than classifier selection when classifying EMG signals (Hargrove, Losier, et al., 2007). A

common approach when creating features for a data-window is to split up the window into

smaller segments. For some features this produces better classification results. The features

considered in this experiment are listed below and include the common TD features as well

as several other common features and a novel feature, Channel Ratios, introduced in this
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work.

1. Time-domain (TD) - TD features are possibly the most commonly used for EMG

processing and are described by Hudgins et al. (1993). They are simple and fast to

compute, producing high accuracy in many of the cases studied in the literature. These

are described below for completeness:

(a) Mean Absolute Value (MAV) - The mean absolute value of the signal is taken on

a segment. This feature is also referred to as the Integrated Absolute Value by

Zardoshti-Kermani et al. (1995).

X̄i =
1

N

N
k=1

|xk| for i = 1, · · · , I (3.1)

(b) Mean Absolute Value Slope (MAVS) - This feature takes the difference between

adjacent segments.

∆X̄i = X̄i+1 − X̄i for i = 1, · · · , I (3.2)

(c) Zero Crossings - This provides a simple frequency measure by counting how many

times the waveform crosses 0. A threshold is applied such that a zero crossing is

only counted if the absolute difference between two consecutive samples exceeds

the threshold.

(d) Slope Sign Change - This feature is believed to provide another measure of fre-

quency. It counts how many times the slope of the waveform changes sign. Like

Zero Crossings, the absolute difference between two consecutive samples must

exceed a threshold to be counted.

(e) Waveform Length - This feature simply calculates the length of the waveform.

It is intended that this feature provide information about the complexity of the

waveform.

li =
N
k−1

|∆xk| (3.3)
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2. Variance - Variance is a measure of a signal’s power (Zardoshti-Kermani et al., 1995).

V AR =
1

N − 1

N
i=1

x2
i (3.4)

3. Histogram - The EMG histogram was introduced by Zardoshti-Kermani et al. (1995),

it breaks the absolute signal voltage range into bins and then counts the number of

samples in a segment which fall into each bin.

4. Autoregressive (AR) Coefficients - In an AR model, a sample Xt is assumed to be

related to N previous samples by (3.5), where ai are called the AR coefficients, which

say how the current sample is related to previous samples. The ϵ term is a Gaussian

noise term centered at the origin. AR coefficients have been shown to add slightly

better accuracy when combined with TD features (Hargrove, Englehart, et al., 2007),

at the cost of increased computational complexity. AR features were implemented

using the NiTime library (Nitime 2015).

Xt =
N
i=1

aiXt−i + ϵt (3.5)

5. Cepstral Coefficients - can be interpreted as the rate of change in the different spectrum

bands (Scheme and Englehart, 2011). Cepstral Coefficients, ci, can be calculated from

the AR Coefficients, ai, as follows (Pattichis and Elia, 1999):

c1 =− a1 (3.6)

cn =− an −
n−1
k=1

(1− k/n)akcn−k for 1 < n ≤ p (3.7)

cn =−
n−1
k=1

(1− k/n)akcn−k for n < p (3.8)

6. Channel Ratios - Finally, we introduce a novel feature of our own, which is the ratio

of the mean absolute value, X̄, between each unique pairs of channels. Thus, for four
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Table 3.1: Feature parameter sweeps
Feature Parameter Evaluations
Mean Absolute Value (MAV) Segments 1 to 10, step 1
Zero Cross Segments 1 to 10, step 1

Threshold 0.1 to 0.2 V, step 0.1
Slope Sign Segments 1 to 10, step 1

Threshold 0.1 to 0.2 V, step 0.1
Wavelength Segments 1 to 10, step 1
Variance Segments 1 to 10, step 1
Mean Absolute Value Slope (MAVS) Segments 1 to 10, step 1
Histogram Segments 1 to 10, step 1

Bin Count 10 to 70, step 10
Ratios Segments 1 to 10, step 1
Cepstral Coefficients Segments 1 to 3, step 1

Order 1 to 10, step 1
Autoregressive Segments 1 to 10, step 1

Order 1 to 10, step 1

channels six ratios are calculated as follows:

Ratioi:j =
X̄ch=i − X̄ch=j

X̄ch=i + X̄ch=j

where i > j (3.9)

While all other features tested looked only at single channels in isolation, Channel

Ratios explicitly considers the relationship between pairs of channels.

Each feature vector for a window also included a bias feature. Parameter sweeps were

performed for all the features implemented as per Table 3.1 using four classifiers: K-nearest

neighbors (KNN) (Bishop, 2006), linear discriminant analysis (LDA) (Bishop, 2006), Ran-

dom Forests (Breiman, 2001), and support vector machine (SVM) (Bishop, 2006). The same

set of parameters was used for all classifiers. However, the sweeps revealed that the same

parameters did not necessarily perform equally well across all classifiers. Thus, it was neces-

sary to choose features that compromised between all the classifiers. The first criteria used

to select parameters was to find values which did reasonably well across all of the classifiers.

The second criteria, all other things being equal, was to choose the simplest and smallest

representation. Table 3.2 shows the parameters selected.
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Table 3.2: Feature parameters
Feature Segment Count Parameters
Mean Absolute Value (MAV) 10
Zero Cross 1 Threshold: 0.1 V
Slope Sign 1 Threshold: 0.1 V
Wavelength 5
Variance 6
Mean Absolute Value Slope (MAVS) 5
Histogram 1 Bin Count: 70
Ratios 5
Cepstral Coefficients 1 Order: 2
Autoregressive 1 Order: 2

3.4 Experimentation

In order to simulate the conditions of TMR under unloaded and loaded conditions we mea-

sured the forearm EMG signals of a single able-bodied subject performing several hand

motions under various degrees of loading including unloaded (empty-handed), holding 5 lb

and 15 lb weights, and holding a hammer. Holding these objects allowed us to simulate

concurrent contractions with different contraction levels and biases.

EMG data was collected using 4 double-differential surface electrodes placed equidistantly

about the circumference of the subject’s forearm approximately two-thirds up from the wrist.

Previous work has shown that 4 electrodes in such a configuration produce similar levels

of accuracy to placing three electrodes at optimal positions and minimal gains are seen

by adding additional electrodes (Hargrove, Englehart, et al., 2007; Scheme and Englehart,

2011). The signals were recorded using a Delsys Bagnoli 8 EMG and read into the computer

via a National Instruments USB-6216 digital acquisition unit (DAQ). Signals were recorded

at 1 kHz and bandpass filtered between 20 and 450 Hz internally by the Delsys system.

The implementation for these experiments was done mostly in Python using the sci-kit

learn library (Pedregosa et al., 2011) for the classifiers. The Robot Operating System (ROS)

(Quigley et al., 2009) was used to facilitate data recording and analysis.

Resting and the six movement classes shown in Figure 3.3 were chosen for these experi-

36



ments, giving seven different classes. While seated and with the arm in a relaxed, downward

position, the subject was prompted to randomly perform one of the movement classes. Each

motion was held for 3 s followed by a 3 s rest. Separate datasets were recorded where the

subject held nothing (unloaded), 5 and 15 lb weights, and a hammer held by the end of

its handle. Samples were labeled with the corresponding desired movement as they were

recorded. Resting samples were labeled as such. Delays in the subject’s response resulted in

the need for labels to be aligned with signals by hand during post-processing.

Radial Deviation Ulnar Deviation Pronation Supination

Extension Flexion

Figure 3.3: Different motions of the wrist

3.5 Results

The classification system was first evaluated against the unloaded dataset alone. Training

was performed using 80% of the samples, selected randomly, with the other 20% used for

testing. This splitting and testing was performed 30 times and the average accuracy was

recorded and can be seen in Figure 3.4 along with the standard error of the mean. We

achieved high levels of accuracy using the standard TD features consistent with results

reported by Hargrove, Englehart, et al. (2007). However, we did not observe equal accuracy

across all classifiers for the TD set as they did, which could be because we evaluated different
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Figure 3.4: Classification accuracy of unloaded dataset averaged over 30 cross validations, with
80% of the unloaded samples randomly chosen for use in training, and the additional 20% held out
for testing. Error bars indicate the standard error of the mean.

classifiers. It can be seen from this plot that different features can produce very different

results depending on which classifier is used. These results even suggest that Random Forests

might be a better choice of classifier than LDA.

To evaluate the performance during concurrent contraction the classifiers were first

trained using the entire unloaded training set. Loaded datasets were then windowed and

featurized and those features were passed through the pretrained classifiers. As the results

are from a single subject confidence measures are not available. It can be clearly seen from

Figure 3.5a that the most common methods of EMG pattern recognition do not generalize

under concurrent contractions. While addition of the remaining features described in Sec-

tion 3.3.1 showed slight improvement for the 5 lb dataset it is still well below the usable

threshold (see Figure 3.5b). The other datasets did not see any improvement. It should be

noted that given 7 classes, picking randomly across a uniform distribution should produce

14% accuracy. We can see that some of the features chosen perform even worse than random.
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(a)

(b)

Figure 3.5: Primary Result a) The typical TD/AR feature set does not generalize well for
concurrent contractions. b) Addition of the remaining features described in Section 3.3.1 does
little to improve accuracy. It should be noted that the Unloaded dataset is an average of 30 cross-
validations with error bars indicating the standard error of the mean, while the other datasets show
a single run as was previously described.
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Figure 3.6 shows the performance of each individual feature across the various classi-

fiers. What is clear from these figures is that classification drops off with increasing load or

increasing bias. Additionally, we see that some features do better than others, but which

features do better depends on the choice of classifier. In general though, we see that the

novel Channel Ratios feature performs best or at least near the top.

3.6 Discussion and Future Work

Hudgins et al. showed that the onset of contractions displayed “significant nonrandom

components” (Hudgins et al., 1993). That is, when transitioning from rest to one of the

movement classes, consistent waveforms in the EMG signal could be seen within the first 300

ms. The development of their TD feature set was inspired by this and meant to capture more

than just a crude mean absolute value, which we would not expect to generalize well, but to

also capture aspects of the frequency response of the muscles. It is therefore surprising that

the TD features do not generalize well. One might hypothesize that while levels of signals

might shift in magnitude certain synergy signatures would still be present. However, we do

not yet know the behavior of these synergy signatures when under concurrent contractions or

when transitioning from one movement to another; they may not even be present. A crucial

next-step in searching for features, that address the problem at hand, is to first study the

signals themselves to better understand what is happening under concurrent contraction.

There are numerous features that have been proposed over the years for classifying EMG

signals. Perhaps some among these sets might generalize better. In particular, if the synergy

signatures are in fact present we might expect time-frequency features, such as wavelets, to

perform better (Englehart et al., 1999).

As was previously mentioned, all of the standard features explored in this study looked

only at single channel behavior. The novel Channel Ratios feature we developed was the only

one to explicitly look at the interaction between the various channels. Looking at Figure 3.6

we see, that in general, this feature generalized the best. This feature not only looks at the

interaction between the channels, but performs a normalization between the channels. It is
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(c)

(d)

Figure 3.6: Individual Feature Generalization. Here we see the performance of each individual
feature across the various datasets. It should be noted that the Unloaded dataset is an average
of 30 cross-validations with error bars indicating the standard error of the mean, while the other
datasets show a single run as was previously described.
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therefore worth exploring additional features that would capture the relationships between

channels as well as looking at normalization techniques.

While the performance of the Channel Ratios feature implies that exploring the relation-

ship between channels may be beneficial, it is thus surprising to see that the KNN classifier

appeared to generalize the best, with the LDA classifier doing the worst, since the LDA is

able to take into account some of the interaction between features, while the KNN does not.

Often, the details of an implementation make all the difference. It is interesting to see

that performance with all the features, or even just the TD/AR set, was often worse than the

performance of the individual features making up those sets. This should not be that surpris-

ing as this runs into the typical curse of dimensionality issue often seen in machine learning,

which might be overcome with more training samples. Feature reduction techniques, such

as principal component analysis, which is often used in EMG classification experiments,

may be of benefit here. Additionally, the features implemented in this experiment were not

scaled relative to one another. It is known that scaling features such that they are all in

approximately the same range can improve classification accuracy (Bishop, 2006).

One of the ways we might get around the issue of generalization is by simply ignoring it

– that is, if we provided training samples that included biases and offsets this may serve to

significantly improve online accuracy. While it is not possible to train for all scenarios, it is

conceivable that only a few training samples with variations of loading might be sufficient

to allow the classifier to interpolate and extrapolate between these samples. In fact, this

is what the Coapt systems does; when an amputee finds that the classification accuracy is

falling too low, they simply press a button, and the arm goes into a training phase where

it collects new samples from the user and integrates these into its existing learned model.

Another approach could be to create simulated signals that are then used for training. If the

signal behavior during concurrent contractions can be understood it may be clear what sorts

of effects are to be expected. These might then be used to generate new, artificial signals,

by modifying the user generated signals, which could then be included in the training set.

The Coapt system was not commercially available at the time this study was performed.

Now that it is, it would be valuable to evaluate the system under the same conditions
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explored in our experiments.

A clear limitation of this study is that only a single, able-bodied subject was used. A

larger population would be useful in determining the robustness of the classifiers. Addition-

ally, it has thus far been assumed that the experimental scenario explored here is a good

analogue for the situation faced when classifying signals from an amputee with TMR surgery.

This assumption would be greatly bolstered by actual experiments with TMR patients.

3.6.1 Functional tasks

After reviewing the literature on EMG classification systems and the results of this exper-

iment, it is increasingly clear that EMG classification studies need to be carried out using

amputee subjects, with mounted prosthetics, performing real-life tasks.

Hargrove, Losier, et al. (2007) say “Pattern recognition based myoelectric control systems

have been well researched; however very few systems have been implemented in a clinical

environment. Although classification accuracy or classification error is the metric most often

reported to describe how well these control systems perform, very little work research [sic]

has been conducted to relate this measure to the usability of the system.” Unfortunately, in

this same paper they themselves continue evaluating their system in a virtual environment

without any of the real effects that are seen in an actual worn prosthesis.

It seems clear that the evaluation of classification systems must move beyond sterile,

controlled evaluations and on to real-world clinical tests. An evaluation method for upper-

arm prosthesis, known as the Southampton Hand Assessment Procedure or SHAP test, is

intended to provide many real-world outcome measures (Light et al., 2002). It includes

tests such as lifting heavy objects, carton pouring, and handle turning. However, this is still

performed in a controlled way, with subjects often seated performing a single movement task

at a time. I do not believe that the example motivation given in this chapter, where a TMR

patient might need to turn a handle while pushing the door, would be captured by this test,

although similar issues with concurrent contractions might be.
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3.7 Conclusion

In this study we looked at the generalization of typical pattern recognition implementations

for classification of EMG signals. Specifically, we looked at whether a classifier, trained

only with unloaded movement samples, could accurately classify movements made while the

user was holding various objects. While the experiment performed was limited to a single

user, the results suggest that the most common approach, TD/AR features with an LDA

classifier, does not generalize amidst concurrent contractions. This is significant as it is seems

reasonable that concurrent contractions could arise commonly for amputees, either from the

need for surrounding muscle to perform active functions, or simply the need to support the

prosthetic socket itself. There is a clear need to design more robust classifier systems and to

evaluate such systems in more varied conditions under actual usage scenarios.
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Chapter 4

Multilayer General Value Functions

for Robotic Prediction and Control1

While Chapter 3 focused on the use of offline pattern recognition methods, this chapter is

the first time in this thesis where online methods, using the reinforcement learning technique

known as general value functions, are introduced.

The first and probably most significant contribution of this chapter is a detailed discussion

of the problem of prosthetic control and how we might go about making the arms more

intelligent.

Further, this chapter shows that layers of general value functions (i.e., the output of

one or more predictor is used as input to another predictor) are indeed possible and that

such configurations may improve accuracy of the resulting predictions by improving the

representation of the data. While experiments are conducted on a mobile robot and in

simulation they are still applicable to the control of a prosthetic arm as they focus on

establishing complex predictions about sensori-motor data. Such predictions should allow a

system to better understand the user, the robot, and the environment and therefore make

1This chapter is based on a paper presented at the Workshop on AI and Robotics at the International
Conference on Intelligent Robots and Systems, 2014. The original experiments were performed as part of a
research project completed for credit in CMPUT 656, during my MSc in Computing Science. This version
includes some updated experiments. The paper originally appeared as Sherstan, C. and Pilarski, P. M.,
“Multilayer General Value Functions for Robotic Prediction and Control”, in IROS 2014 Workshop on AI
and Robotics, IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, Illinois,
September 14-18, 2014.
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better informed decisions.

4.1 Overview

Predictions are a key component to intelligence and necessary for accurate motor control.

In reinforcement learning, such predictions can be made through general value functions

(GVFs). This chapter introduces prosthetic arms as a domain for artificial intelligence and

discusses the role that predictions play in prosthetic limb control. We explore the use of

multilayer predictions, that is, predictions based on predictions, using robotic and simulation

experiments. From these experiments two observations are made. The first is that compound

predictions based on GVFs are possible in a robotic setting. The second, is that strong GVF

predictors can be built from weaker ones with different input and target signals, similar to

boosting. Finally, we theorize how such topologies might be used in transfer learning and

in the simultaneous control of multiple actuators. Our approach to integrating machine

intelligence with robotics has the potential to directly improve the real-world performance

of bionic limbs.

4.2 Gentle Integration

When combining machine intelligence systems with electromechanical devices such as mo-

bile or mounted robots, it is natural to think of the machine intelligence as providing most

or all of the key aspects of the robot’s control system. Integration of this kind is often

challenging—it simultaneously addresses many important barriers faced by our computing

technology—but is incredibly fruitful for both the fields of robotics and artificial intelligence.

Another, complementary approach is the use of machine intelligence to supplement an ex-

isting control system or sensorimotor interface. Machine learning and artificial intelligence

(AI) can augment the capacity of existing systems in small but important ways. While more

modest in its aims, this kind of staged deployment is well suited to the refined study of

individual machine learning methods as they impact real-world domains of use. It further
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provides a smooth pathway to machine intelligence seeing practical use within complete,

deployed systems.

In this chapter we look specifically at the second, more gentle approach to integrating

machine intelligence within a robotic device. In particular, we highlight one area where

our group has made recent progress: improving robotic artificial limbs (Figure 4.1) through

real time learning and utilization of temporally extended predictions. This setting lends

itself well to translating algorithmic and conceptual advances into tangible benefit within a

deployed environment; machine learning can improve the ability of people with amputations

to control their bionic limbs. Sharing the challenges and opportunities of prosthetics as a

domain for AI Robotics is the first contribution of this chapter. We present a brief overview

of our machine learning work within the prosthetic domain, and follow on this overview

with a concrete example on a simple robotic platform of how real time predictions can be

beneficially combined into a learning hierarchy. Lastly, we discuss how multilayer predictions

can be integrated back into prosthetic control approaches to further extend their practical

reach.

4.3 Bionic Limbs

Bionic limbs are robotic devices fixed directly to the body of someone with a motor impair-

ment or complication (e.g, someone with an amputation), or for the purposes of extending or

augmenting the abilities of healthy individuals. These devices have multiple actuators and

sensors, both on and off the human body, and use this sensorimotor information to interpret

a user’s intent and actuate the joints of the robot limb accordingly. Despite the growing

availability of dexterous robotic prosthetic arms, amputees often reject these arms due to

the difficulty they find in their control (Peerdeman et al., 2011; Scheme and Englehart,

2011; Resnik, Meucci, et al., 2012). The most common approach to controlling such arms

is the use of electromyographic signals (EMG), which are the electrical activities of muscles.

Unfortunately, the number of control signals available from EMG is much lower than the

control space of the robot arms, creating a large gap between user intent and achievable
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Figure 4.1: Augmentative and restorative prosthetics are of specific interest for incrementally in-
tegrating AI into a robotic setting. Top: commercial limb system prescribed to an amputee for
use during daily life. Bottom: research robot limb system with direct access to a rich sensorimotor
stream (Dawson et al., 2014).

motor outcomes. There are a number of techniques people have tried to address this gap, as

noted in Chapters 2 and 3 some on the software side, such as pattern recognition (Scheme

and Englehart, 2011), and some on the clinical side, such as targeted muscle reinnervation

(Hebert et al., 2014). However, control remains difficult and indeed, there will almost always

be a disparity between signal and control spaces.

Our goal is to apply artificial intelligence to the control of these arms, in such a way as

to make using them more intuitive and functional for the users (Pilarski, Dick, et al., 2013;

Pilarski, Dawson, Degris, Carey, Chan, et al., 2013; Edwards et al., 2014; Pilarski, Dawson,

Degris, Carey, and Sutton, 2012). We propose that a more complete way to think about

the prosthetic control problem is that we are looking to create an assistive, context aware

robot, which happens to be a prosthetic arm. The techniques we are developing here are also
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applicable beyond the scope of prosthetic arms. Our approach has been to incrementally

apply AI techniques to existing control schemes for other assistive and augmentative devices.

One of the great benefits of working with prosthetic devices is that the users of these devices

have clear objectives that they need the prostheses to address, and concrete measures for

the success of the system. Additionally, there is a clear path to commercial and clinical use.

4.4 Improvement from Ongoing Experience

Making forward predictions is believed to be a key component in making accurate motor

commands (Wolpert et al., 2001; Redish, 2013; Linden, 2003). Furthermore, predictions

have been shown to be an important way to think about and formalize the state information

being provided to a learner (for example, predictive representations of state (Littman et al.,

2002)). By learning and maintaining predictions in real time, it is possible for a robotic

system to acquire and self-verify small pieces of knowledge in an autonomous fashion as it

interacts with the world (Sutton, Modayil, et al., 2011; Modayil and Sutton, 2014; Modayil,

White, and Sutton, 2014; White, Modayil, et al., 2014).

Incremental, ongoing knowledge can be acquired using techniques known as general value

functions (GVFs), as introduced in Chapter 2, are a generalization of the reward-based value

functions common in reinforcement learning (RL) (Sutton, Modayil, et al., 2011). While

other forms of machine learning might be used for prediction, GVFs are somewhat unique in

their ability to learn online and continuously in a computationally efficient manner. In GVFs,

replacing reward with a target signal allows a system to learn either cumulative, (4.1), or

instantaneous, (4.2), predictions for any scalar signal. For example, we can ask “How much

total current will the shoulder servo use in the next 10s?” or “What will the light sensor

read in 3s?” GVFs can also be used to give the probability of a binary event occurring, e.g.,

“What is the probability of colliding with the wall in the next 5s?” GVFs can be thought

of as representing temporally extended knowledge about a robot, its environment, and the

interaction between the two.
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δt+1 = Rt+1 + γϕT
t+1wt − ϕT

t wt (4.1)

δt+1 = βRt+1 + γϕT
t+1wt − ϕT

t wt (4.2)

where

δ – temporal difference error

R – in GVFs this represents the target signal to be predicted

γ – continuation probability, # timesteps lookahead= 1/(1− γ)

ϕ – input feature vector

w – learned weight vector

β – termination probability = 1− γ

The GVF algorithm is composed of three main steps: calculation of the temporal differ-

ence (TD) error ((4.1), (4.2)), calculation of traces, and weight vector update. Equations

(4.3) and (4.4) show the traces and weight update used in TD(λ) with replacing traces,

which are employed in Section 4.5.2.

et+1 = λγet +
αϕt

max(1, ||ϕt||0)
(4.3)

where

e – is the eligibility trace

λ – trace decay rate (amount of bootstrapping)

α – step size

wt+1 = wt + δt+1et (4.4)
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The True Online TD(λ) algorithm is a more recent development with better performance

and stability guarantees (van Seijen and Sutton, 2014). Equations (4.5) and (4.6) show the

newer traces and weight updates, which are employed in the Create robot experiments in

Section 4.5.1.

et = γλet−1 + αtϕt − αtγλ[e
T
t−1ϕt]ϕt (4.5)

wt+1 = wt + δtet + αt[w
T
t−1ϕt −wT

t ϕt]ϕt (4.6)

GVFs have seen some promising application with robots. Sutton, Modayil, et al. (2011)

and Modayil, White, Pilarski, et al. (2012) demonstrated that GVFs were able to simultane-

ously learn to predict large numbers of sensorimotor signals in an online fashion on a mobile

robot. Some studies have also looked at using GVFs in control. In particular, Modayil and

Sutton (2014) have used prediction with a nexting approach to control a simple mobile robot,

such that, when a prediction exceeds a threshold the robot will activate and follow a fixed,

hand-coded behavior. Specifically, when their mobile robot predicted a future over-current

condition it would shut off the motors. This approach is similar to many prediction-based

reflexive reactions found in humans and other animals (Redish, 2013; Linden, 2003).

The idea to make a predictive link to known control behaviors also fits well within the

domain of artificial limbs. A typical control setup for using EMG to control a prosthetic arm

is to use two EMG signals to proportionally control the velocity of one joint at a time. Active

joint selection is performed by toggling through a fixed joint list via another EMG signal or a

mechanical switch. As one can imagine, this is a tedious way to control an arm. Edwards et

al. (2014) have demonstrated improved task performance using an adaptive switching order

based on learned predictions. When an amputee user begins a toggle sequence, the joints

are selected in the order that the learner predicts will be most likely needed at the moment;

this was found to reduce the number of voluntary switching interactions needed to complete

a simple manipulation task, and thus also the time needed to complete the task. Users

appeared to be happy with the improvement and to develop increased trust in the system.
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Additionally, Pilarski, Dick, et al. (2013) controlled the wrist joint of a 3 DOF robot arm

where the objective was to have the controller place the wrist in the position it predicted it

should go in the near future, given the current state. This study demonstrated the ability

to use GVF predictions as direct target signals for control as well as in combination with

actor-critic RL agents (e.g., as predictive state information).

As has already been discussed, GVFs can be thought of as representing temporally ex-

tended knowledge about an agent, its environment and the interaction between the two.

Thus far, they have been presented as only answering simple primary questions. However,

they can certainly be used for more complex questions as well. Imagine that we have two

predictors: 1. “Is a Tiger nearby?”, 2. “Will I have an asthma attack in the near future?” An

important prediction to make is, “Am I in danger?”, for which the previous two predictions

might be valuable. In the context of a robotic arm we can imagine the usefulness of such

compound questions. For example, in a prosthetic task we could structure a set of GVF

predictions as follows:

• Where is the elbow moving to? Where is the shoulder moving to? → Where should

the wrist move to?

• Where is my hand moving to? Does Joe want coffee? Is there coffee in front of Joe?

→ Should I open my hand?

The work presented in this chapter explores such compound questions using layers of

predictions. That is, the output of one or more predictors is used as input for another

predictor as shown in Figure 4.2. We first demonstrate that GVFs can be used in this way

to produce compound predictions and secondly investigate some properties

4.5 Experiments

To examine the feasibility of multilayer GVF predictions in prosthesis use, we first performed

a set of preliminary tests on a more controlled experimental setting. Architectures like those
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Figure 4.2: Topology. From bottom up: ϕ1 and ϕ2 are primary layer feature vectors, which may
or may not be the same, depending on the experiment. Primary layer GVFs are grouped by the
target signal, with one or more lookahead values (γ). The output of the primary layers are then
used as input, possibly with other inputs, as features to a secondary layer GVF.

shown in Figure 4.2 were tested both in simulation, using simple square wave trains, and on

an iRobot Create mobile robot (Figure 4.3). GVF learning was conducted as described in

prior work (Modayil and Sutton, 2014; Modayil, White, and Sutton, 2014; Pilarski, Dawson,

Degris, Carey, Chan, et al., 2013).

4.5.1 Create Robot

The Create robot (iRobot, Inc.) is a simple mobile robot with a limited number of sensors,

similar to a Roomba vacuum. The sensors used in this experiment are listed below.

• 4 downward facing cliff sensors along the front edge. Thresholded to a binary on/off

signal.

• 1 forward facing wall sensor. Thresholded to a binary on/off signal.
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Figure 4.3: Create recording session.

The goal for this experiment was to accurately predict the turning on and off of three of

the cliff sensors (Left, Front-Left, Front-right) at the primary layer and then make predictions

about the fourth cliff sensor (Right) based only on the outputs of the primary layer. The

Create rotated counter-clockwise for 20 minutes, randomly changing speed every 2 minutes.

As the Create spun it passed over various surfaces: black tape, blue tape, beige tiles, and

black tiles. Additionally, objects were placed around the Create, which gave readings for

the forward facing wall sensor. Under this behavior the Right cliff sensor would be the last

sensor in the sequence to pass over a given surface. Figure 4.3 shows the experimental setup.

Control and data recording was performed at 30 Hz on a Raspberry Pi running the

Robot Operating System (ROS) (Quigley et al., 2009). Prediction was performed offline

after recording.

Cliff and wall sensor values were converted to binary values by using a threshold. Signals

above the threshold were given a binary value of 1.0, and those below it were given the value

0.0. As each sensor had slightly different sensitivities different threshold values were used

for each. History traces of each of these values were made using (4.7), with decay rates 0.8
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and 0.98, for a total of 10 traces.

Ht+1 = (1− ξ) ∗X + ξ ∗Ht (4.7)

where

H – the history trace

X – the target signal being tracked

0 ≤ ξ ≤ 1 – a decay rate

These traces were then used in a 10 dimensional tile-coding using Sutton’s library (Sutton,

2005) to produce 100 tilings. The bin width along each dimension was 1.0 and the results

were hashed to a size of 2048. Combined with a bias feature this produced a feature vector

of 2049.

The secondary layer took the output of the the primary layer GVFs for Left, Front Left

and Front Right cliff sensors. Traces of these signals were made using (4.7), with decay rates

0.8 and 0.98, producing 6 traces. These traces were then used in a 6 dimensional tile-coding

to produce 100 tilings, with each dimension having a bin width of 1.0. The results were

hashed to a size of 2048 and a bias feature was added for a total feature vector size of 2049.

The GVFs used in this experiment were computed using the True Online TD(λ) algorithm

with α = 1.0/(# Tilings + 1) and λ = 0.95 (van Seijen and Sutton, 2014).

In Figure 4.4 we see that very good predictions were made for the Left, Front Left, and

Front Right cliff sensors at the primary layer.

As can be seen in Figure 4.5, it was indeed possible to learn to make predictions for

the Right cliff sensor using the outputs of the primary layer GVFs. While these results are

expected, it is important to establish the validity of the topology and implementation used.
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Figure 4.4: Primary layer predictions of Create cliff sensors. The target signal (blue) is predicted
at 30 timesteps (red). The ideal prediction is shown with the dotted green line

4.5.2 Combining Weak Predictors to Produce a Stronger Predic-

tor

We also examined whether combining weak predictors could produce a stronger predictor,

akin to the concept of boosting in machine learning (Schapire, 1990). This scenario was tested

using three square pulses (X1, X2, X3) of the same size, but different temporal offsets, as

input signals. Three GVF layers were created, with each attempting to predict the third

square wave, X3. In this setting GV F1 (Target=X3, timescales=2,4,8,10 timesteps) and

GV F2 (Target=X3, timescales=2,4,8,10 timesteps) used an impoverished feature space that

was not sufficient to predict the signal. The primary layer features, ϕ1 and ϕ2, contained

only a bias feature, the target signal (X), and 1-X, for a total of 3 features.

The 8 predictions from the primary layer GVFs (4 predictions from each of the 2 GVF

groups) were then tile coded individually and in pairs. Each tile coding consisted of 3 tilings

with bin widths of 0.5 and 6 tilings with bin widths of 0.17. For each individual signal this
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Figure 4.5: Key Result: Successfully predicting the Right Cliff sensor at the secondary layer GVF.
A 30 timestep (1 s) prediction (red) is compared against the ideal prediction (dashed green) for the
target signal (blue).

produced 51 features. For each of the 28 pairs of signals this produced 321 features. In

total the feature vector for the secondary layer was 9397 features long, including the bias

feature. GV F3’s target was the third square pulse, X3, and was predicted at a lookahead of

4 timesteps. GVFs were implemented using TD(λ) using (4.2),(4.3),(4.4). Additionally, tile

coding was performed using a custom written library without the use of hashing.

The best that the primary layer GVFs could do with such an inadequate state space

was to chase the signal, as shown in Figure 4.6. Despite this, GV F3 was able to learn to

accurately predict X3 as shown in Figure 4.7.

Essentially, the output of the primary GVFs served as a form of history for the two

signals, providing more information about the signals than was directly available from the

representation used. It seems reasonable to conclude that we should expect this sort of

boosting behavior as long as the primary GVFs are at least somewhat temporally correlated

with that secondary layer target.
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(a) GV F1.

Target, X3

Ideal Prediction (4 ts) GVF Prediction (4 ts)

(b) GV F2

Figure 4.6: Weak primary layer GVFs. The GVF prediction (red) can only track the target signal
(blue), unlike the ideal prediction (green), which anticipates the target signal by 4 ts.

4.6 Moving Forward: Opportunities for Integration

We believe that the use of GVFs and layers of GVFs will prove beneficial to the simultaneous

multi-joint control of prosthetic arms. In particular, we propose two applications that go

beyond what has already been demonstrated with the adaptive switching work demonstrated

by Edwards et al. (2014).
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Figure 4.7: Strong secondary layer GVF. The GVF prediction (red) matches the ideal prediction
(green) of the target signal (blue) at 4 ts.

4.6.1 Transfer Learning between Simulation and Real-world

Learning on a robot is expensive in terms of time and risk to biological and mechanical

hardware. For these reasons it is desirable to be able to train in simulation and then transfer

what is learned to the real world. One approach in RL is to learn a policy in simulation and

then use that learned policy in the real world, although this has had limited success (Kormu-

shev et al., 2013). The topologies of GVFs presented in this paper suggest an approach like

the one shown in Figure 4.8. In this scenario, a GVF learns to predict some signal, such as

joint angle, in simulation. In the real world, another GVF learns to predict the same signal,

using the output of the simulation learned GVF as an adviser, in coordination with other

input data. In theory, this should allow for more rapid learning in the real world, with GVFs

that are already partially learned. In reality, we do not expect that the transferred GVF

should predict that well, given the difficulty of accurately simulating. However, the results

presented in this paper, where a strong predictor was based on weak ones, lead us to believe

that we should still see some benefit using this technique. Our hope is that this will greatly

reduce the amount of time needed for an amputee to train their prosthetic. Additionally,
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Figure 4.8: Transfer learning using a multilayer topology of GVFs.

this technique could also be used with aggregated learning where the adviser is a GVF rep-

resenting the cumulative predictive advice learned by many robots or from interactions with

many users.

4.6.2 Predictions for Simultaneous Multi-joint Control

Ultimately, our aim is to use predictions for control (Figure 4.9). One particular challenge of

interest is the simultaneous control of multiple joints of a prosthetic limb via limited input

channels—an open issue in the prosthetic domain (Scheme and Englehart, 2011).

As was mentioned, prior studies have shown clear, task specific ways of basing control

on predictions (Modayil and Sutton, 2014; Edwards et al., 2014; Pilarski, Dawson, Degris,

Carey, and Sutton, 2012; Pilarski, Dawson, Degris, Carey, Chan, et al., 2013). Predictions

represent a type of temporal forward model, which are useful to thinking agents, be they

biological or mechanical, and are a necessary component in developing good motor control,

asking questions like, “Where is my hand moving?”, “Am I going to collide with something?”,
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Figure 4.9: Integration approach: machine intelligence and automatically acquired knowledge—in
this case a multilayer topology of predictions—is used to extend the capacity of conventional control
systems within an artificial limb.

and “What direction will I be heading 3 s from now?” They are also important for higher

levels of intelligence and control. For an intelligent assistive robot, such as the prosthetics

we are creating, understanding a user, their environment and the current situation are long

term goals. In order to do this, higher level predictions are necessary, such as, “Is the user

upset?”, “Is the user hungry?”, “Is the user in danger?”, “Which object might the user

want to grab?”. At both levels predictions are useful and understanding them at the more

primitive level is an incremental step towards understanding the more complicated types of

predictions needed for the higher level.

For low-level control there are specific ways in which we might leverage layers of pre-

dictors. For example, it may be useful to make a prediction about the target position of

the wrist given predictions about the target positions of all the other joints in a robot arm.

Additionally, by using layers of predictions we have the potential benefit of speeding learn-

ing, where, under certain circumstances, we can imagine a reduction in state space at the

secondary or higher levels of predictors. Finally, under certain circumstances, we would ex-

pect to see a gain computationally where a particular prediction might be leveraged in many

layers. This would be more efficient than having each of the secondary layers calculating
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predictions directly from the data themselves, each performing the same calculations.

4.7 Conclusion

As a first contribution of this work, we identified one domain—that of robotic artificial

limbs—where the integration of machine intelligence with robotic systems has both clear

utility and immediate areas for incremental progress. The second contribution of this work

was to examine the use of multilayer topologies of prediction learners, particularly as they

would apply to robots. Two main results were observed from these experiments. The first

is that it is possible to learn a reliable prediction during robot operation when using the

output of other predictors as input. To our knowledge, this is the first example of multilayer

GVFs being applied during robot control. The second result is that it is possible to combine

the output of weak GVF predictors with different target signals and input spaces to create a

strong predictor of a third target signal. These two results will be useful in developing robust

control methods for prosthetic robots; as a final contribution of this chapter, we suggested

two ways that multilayer predictions could be beneficially deployed within bionic limbs and

other robotic applications. Future work in this area promises to benefit both the users of

human-machine interfaces and researchers seeking to better understand the links that can

be made between robot control and advances in machine intelligence.
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Chapter 5

A Collaborative Approach to the

Simultaneous Multi-joint Control of a

Prosthetic Arm1

This chapter presents the most significant contribution of this thesis. While the previous

chapter focused on prediction using general value functions, this chapter now incorporates

such predictions in real-time control. The chapter introduces a new collaborative control

method whereby a user and a robot arm control the arm together to achieve the user’s goals.

While the evaluation of the method was limited to a single user and a single task, the positive

results suggest the potential to improve control of a prosthetic arm.

As is discussed in subsequent sections of this thesis, there are many ways in which

collaborative control might be implemented. This chapter has focused on one particular

approach. The real take away message is that collaborative control, in general, offers a way

of improving prosthetic control.

1This chapter is largely based on a paper submitted for publication as Sherstan, C., Modayil, J., and
Pilarski, P. M., “A Collaborative Approach to Effecting Simultaneous Multi-joint Control of a Prosthetic
Arm”, International Conference on Rehabilitation Robotics (ICORR), Singapore, August 2015. The paper
has been accepted and will be given as a podium presentation. An extended abstract of this paper was also
presented as both a podium and poster presentation at the Multidisciplinary Conference on Reinforcement
Learning and Decision Making (RLDM), Edmonton, Alberta, June 7-10, 2015.
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5.1 Overview

We have developed a real-time machine learning approach for the collaborative control of a

prosthetic arm. Upper-limb amputees are often extremely limited in the number of inputs

they can provide to their prosthetic device, typically controlling only one joint at a time with

the ability to toggle their control between the different joints of their prosthesis. Many users

therefore consider the control of modern prostheses to be laborious and non-intuitive. To

address these difficulties, we have developed a method called Direct Predictive Collaborative

Control that uses a reinforcement learning technique known as general value functions to

make temporally extended predictions about a user’s behavior. These predictions are di-

rectly mapped to the control of unattended actuators to produce movement synergies. We

evaluate our method with a single, able-bodied subject (the author) during the myoelectric

control of a multi-joint robot arm and show that it improves the user’s ability to perform

a coordinated movement task. Additionally, we show that this method learns directly from

the user’s behavior and can be used without the need for a separate or pre-specified training

environment. Our approach learns coordinated movements in real time, during a user’s on-

going, uninterrupted use of a device. While this paper is specifically focused on the control

of prosthetic arms, there are many human-machine interface problems where the number

of controllable functions exceeds the number of functions a user can attend to at any given

moment. Our approach may therefore benefit other domains where a human and an assistive

device must coordinate their efforts to achieve a goal.

5.2 Introduction

The control of powered prosthetic arms is at times difficult and tedious. In fact, many

amputees will eschew their powered arms for mechanical ones because of the difficulty of

control (Peerdeman et al., 2011; Scheme and Englehart, 2011; Resnik, Meucci, et al., 2012).

Those amputees that have adopted powered prosthetic arms typically control their device us-

ing electrical signals produced by muscle contraction in their residual limb, which is known
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as electromyography (EMG) or myoelectric control. While many EMG-based control ap-

proaches have been explored since initial work in the 1960s, in myoelectric control two

contraction sites are still typically needed to control a single joint (Parker et al., 2006). One

site (e.g., biceps) is used to move the prosthetic joint in one direction and another site (e.g.,

triceps) is used to move the joint in the other direction. When more than one prosthetic

joint is available, a third signal or combination of signals is used to toggle between joints. We

will refer to this form of control as toggling proportional control (TPC). As can be expected,

controlling robotic arms using TPC becomes increasingly difficult as the number of joints

increases. With the recent development of arms with high degrees of freedom, such as the

Modular Prosthetic Limb (Johns Hopkins University) and the DEKA arm (DEKA Research

& Development Corporation), there is increasing need for control systems that reduce the

burden of control on amputees while accommodating increased prosthesis complexity. Fur-

thermore, the inability to control more than one joint at a time rules out natural synergies

(coordinated multi-joint actions) that are available to non-amputees.

Assistive rehabilitation robotics, and prosthetics specifically, are technologies where func-

tions — also called degrees of control (DOC) — often significantly outnumber the control

inputs that can be provided by their user. As such, managing and coordinating multiple

DOC simultaneously is crucial to the use of more advanced assistive technology. Automation

is one approach to managing multiple simultaneous operations that is commonly applied in

engineering and industrial settings. Users of next-generation artificial limbs may therefore

also benefit from a mixture of autonomous control and user control that helps them better

utilize the multiple DOC provided by their prostheses. Previous explorations of the ap-

plication of autonomy to assistive devices indicate that users prefer to have some degree

of direct involvement rather than having their assistive device behave fully autonomously

(Viswanathan et al., 2014; Cipriani, Zaccone, et al., 2008). However, it is still not clear what

form of partial autonomy would be preferred by amputees, and in fact it may be different

for each person and change depending on the situation.

In this work we explore how machine learning of predictions may help manage the inte-

gration of user and automatic control. Research suggests that prediction is a key component
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in movement planning and that anticipatory action plays a role in producing coordinated

movements, or synergies (Wolpert et al., 2001). With this in mind, recent work by our group

explored several methods for producing synergies using anticipatory movements of unat-

tended joints in a prosthetic arm based on predictions made about a target angle (Pilarski,

Dick, et al., 2013). In this work, a user controlled the elbow and gripper of a three-DOC

arm, while automation controlled wrist rotation with the goal of moving the wrist joint to

an anticipated target angle based on the current state. Put differently, a prediction about

the target angle, some time in the future, was used to direct the movement of the wrist

joint. This target angle was programmatically provided to the system in some way. To make

predictions about the target wrist angle, Pilarski et al. used a generalization of the reward-

based value functions used in reinforcement learning (RL), known as general value functions

(GVFs), which are capable of learning multi-step predictions about any measurable signal

(Sutton, Modayil, et al., 2011). GVFs incrementally learn predictions in an online setting,

with linear computation. One particular control policy explored by Pilarski et al. was called

Direct Predictive Control, which directly maps predictions about target angles into control

commands (Pilarski, Dick, et al., 2013). It was shown to be effective in quickly learning a

good control policy given a provided target angle.

Our first contribution in the present work is the description and evaluation of an ex-

tension of this method, which we term Direct Predictive Collaborative Control (DPCC). In

order to compare the performance of our method against TPC we adopt the commonly

held perspective that it is better to complete a manipulation task faster, and that manual

interactions with the system (toggles) places a burden on the user. We show that DPCC

achieves movement synergies and improves user performance by reducing task time and the

number of toggles. As a second contribution, we demonstrate, that unlike previous work, it

is possible to learn target angles without the need to programmatically provide these target

angles to the system. Rather, they can be learned directly by observing the user’s behavior.

One of the goals of the present work was to develop technology that could be readily

translatable to clinical application. As such, our work respects constraints inherent in con-

ventional myoelectric control under what is arguably the most limited case, i.e., where the
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Figure 5.1: The collaborative control scheme used in this paper. The user (blue) can control only
one joint at a time, while the robot (red), in our case the machine learner, controls all the other
joints. Joints are indicated by the gears and active control is indicated by solid lines. Dashed lines
indicate inactive control pathways available to either the human or the robot.

user can only produce a scalar signal and a toggle signal, as might be the case with a tran-

shumeral amputee. Additionally, we sought to work within the input and output constraints

of conventional prosthetic hardware. As such, we were interested in ways to improve con-

trol without adding extra user interface channels or additional sensor modalities like those

described in Novak and Riener, 2014.

5.3 Direct Predictive Collaborative Control

In what follows, we use the term collaborative control to mean two or more agents working

together towards a common goal, with only one agent acting on any one DOC at a time.

Our proposed approach, Direct Predictive Collaborative Control (DPCC), is defined by
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two concepts: directly using predictions of future actions as present action targets, and

collaborative control where a user can choose to attend to any controllable function, but is

limited to attending to only a subset at a given time. Unattended DOC are then controlled by

automation (see Figure 5.1). As noted, DPCC extends the direct predictive control method

of Pilarski, Dick, et al. (2013). The term DPCC should be thought of as a descriptor

rather than a particular algorithm. Thus, the experiments described here should only be

considered an implementation of Direct Predictive Collaborative Control, rather than its

definition. We employ DPCC in prosthetic control with the user controlling one joint at a

time while automation controls the other joints. Predictions about future joint angles are

used to generate velocity commands for a given joint according to (5.1).

Vt+1 = (P
(τ)
t+1 − θt+1) · f · k (5.1)

Here the difference between the current position, θt+1 and the predicted position, Pt+1

(looking τ timesteps in expectation into the future), is used with the update rate, f , given

in Hz, to calculate the velocity needed to achieve that position in one timestep. This value

is then scaled by 0 < k < 1. For the experiments described in this chapter, the selection of k

is somewhat hand tuned. Unattended joints only move when the user is moving an attended

joint and after each joint toggle the system reverts to manual control for 0.5 s during which

unattended joints are held still. For clarity, note that a single update is equivalent to one

timestep, i.e., for an update rate of 30 Hz there are 30 timesteps per second.

Temporally extended predictions of joint angles (θ) are made using GVFs that are learned

using the True Online TD(λ) algorithm (van Seijen and Sutton, 2014), as defined by three

update equations below (shown for a single joint θ).

δt = Rt+1 + γwT
t ϕt+1 −wT

t−1ϕt (5.2)

et = γλet−1 + αtϕt − αtγλ[e
T
t−1ϕt]ϕt (5.3)

wt+1 = wt + δtet + αt[w
T
t−1ϕt −wT

t ϕt]ϕt (5.4)
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Figure 5.2: The Bento Arm (Dawson et al., 2014), shown configured for the Angle Maze experiment
with a conductive rod attached to the gripper.

This algorithm learns a weight vector, w, that is used to make the prediction Pt+1 about

the future of the pseudo-reward signalR, where the ideal prediction is the scaled sum of future

rewards
∞

i=1 γ
i−1Rt+i. In our experiments, the cumulant is defined as Rt+1 = (1 − γ)θt+1,

where the (1− γ) factor is used to select the instantaneous angle at the pseudo-termination

of the prediction. The γ term specifies how much weighting is given to future rewards and, in

expectation, is related to the number of timesteps (ts) used for prediction by γ = 1− 1
timesteps

;

γ = 1 looks to infinity and γ = 0 looks one timestep. At each timestep a feature vector,

ϕ, is used to calculate the temporal-difference error in (5.2). The trace vector in (5.3)

assigns credit to various features, with a decay factor λ specifying how far into the past to

assign credit (λ = 1 is fully Monte Carlo, λ = 0 is full bootstrapping), and α specifying a

per-timestep learning rate. Finally, (5.4) updates our weight vector, w. Predictions, Pt+1,

are made for a given joint, θ, in expectation, looking τ timesteps in the future, using an

inner product P
(τ)
t+1 = wt+1

Tϕt+1. GVFs were initialized to predict the minimum angle

values for each joint (w[:] = min angle/num active features), and a fixed step size was used,

α = 0.3/num active features, and λ = 0.95. Each predictor used the same fixed-length binary

feature representation, ϕ, as input, consisting of a single bias unit and a 4-dimensional tile-

coding (Sutton and Barto, 1998) of normalized shoulder angle (θS), normalized elbow angle
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(θE), and history traces of the same, as shown in (5.5), with a decay rate, ξ, of 0.99. Angles

were normalized over the effective joint range. To balance generalization and accuracy, 100

coarse tilings with width 1 were hashed to a memory size of 2048, for a total feature vector

size of 2049 with 101 active features per step.

Ht+1 = (1− ξ)θt+1 + ξHt (5.5)

where

H – the decaying history trace on the normalized joint angle

ξ – decay rate

θ – normalized joint angle

Each experiment consisted of a TPC training phase (i.e., no automated joint control)

followed by DPCC, with learning kept on during all phases to allow for continued adaptation

and user correction. Experiments were conducted by a non-amputee subject using the Bento

Arm (Figure 5.2), a non-compliant robot arm developed in our lab (Dawson et al., 2014). For

these experiments, only shoulder rotation and elbow flexion were used, with all other joints

held rigid via motor commands. The words “shoulder” and “elbow” were audibly played to

inform the user about the outcome of their toggling action. Joint angles were constrained to

limit joint action to a range covering the effective workspace of each experiment by a small

margin. The Bento Arm was desk mounted and fixed in place. Control software for the

Bento Arm and all experiments ran on the Robot Operating System (Quigley et al., 2009).

Sensory updates, motor commands and real time learning of the GVFs were all performed

at 30 Hz. It is important to note that while the current experiments were limited to only 2

DOC, the methods employed are theoretically applicable to any number of DOC.
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Figure 5.3: real time visualization of the waypoint navigation task. Joint bounds are shown by the
green box. The current joint angle position is indicated by the black circle, while the yellow circle
indicates the current prediction. Waypoints are indicated by red circles, and when the black circle
is within a waypoint it turns bright green indicating the joints are within the specified tolerance.
The purple strip indicates the direction the user can move. Circuit number is indicated at the top
along with a task-state indicator. The path taken in this task (white arrows) starts at 1, proceeds
up and right to 2, then up to 3, down to 2 and finally down and left to 1.

5.4 Experiment 1: Navigating Waypoints

The purpose of our first experiment was to investigate the behavior of DPCC during ongoing

human-robot interaction. Here the user operated a joystick to move the robot arm through

a series of waypoints, while also observing a visualization, as shown in Figure 5.3, which

translated the joint space of the shoulder and elbow into horizontal and vertical components.

Waypoints were indicated by red markers. When joints were within 0.0175 rads (1 degree) of

a waypoint center, the marker would turn green, a sound was played and the user attempted

to hold the joints within the marker until a second sound played three seconds later. The

circuit started at the lower-left waypoint, 1, moved up and then right to the midpoint, 2, up

to the top-right waypoint, 3, down to the midpoint, 2, and finally down and then left to the

start point, 1. These waypoints are symbolic for places in joint space where the amputee

would complete another task before moving on, such as grasping or releasing an object. In

72
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4 s Ideal Outcome 
Stops Here

0.7 s Ideal 
Outcome

4 s Ideal 
Outcome

(a) Ideal task outcomes

Solo Control Path

1

2

3

0.7 s Ideal 
Outcome

DPCC Path

(b) DPCC performance

Figure 5.4: a) The path of a single training circuit (blue), and predicted ideal outcomes for 0.7 s or 20
timesteps (solid green) and 4 s or 120 timesteps (dashed green). b) Direct Predictive Collaborative
Control. Compare a circuit made in training (blue) and its ideal outcome (green) against the path
taken during a DPCC circuit (magenta and black). Magenta and black indicate user control of the
shoulder and elbow, respectively.

typical operation of a prosthesis, an amputee may not have any conscious recognition of these

waypoints and they may change over time. Joystick control mimicked the signals produced

by an EMG-based TPC system (i.e., a single joystick provided a scalar signal [-1,1]) and a

button press allowed the user to toggle between joints.

Figure 5.4a shows a sample circuit made during training alongside ideal outcomes. Ideal

outcomes are the ideal path we would expect to follow when using GVF predictions as

control actions when looking ahead at a specific timescale. In this case, the ideal outcomes

are defined to be the ideal predictions made by the GVFs (i.e., the computed temporally

extended predictions for the observed data). Outcomes for 0.667 s or 20 timesteps (γ = 1− 1
20
)

are shown (solid green) as well as outcomes for 4 s or 120 timesteps (γ = 1 − 1
120

, dashed

green). We see that these predictions produce a rounding of the upper-left and lower-right

73



Angle

Trace

Ideal Prediction Actual Prediction

Ideal Prediction

Angle

Trace

Actual Prediction

Simulataneous Control

Shaded pink when user moves shoulder

Shaded gray when user moves elbow

Figure 5.5: Simultaneous control of multiple prosthetic joints though a single control channel is
made possible by our proposed automation. Shoulder : normalized angle (solid magenta), nor-
malized angle trace (dashed magenta), ideal outcome (blue), actual prediction (green). Elbow :
normalized angle (solid black), normalized angle trace (dashed black), ideal outcome (blue), actual
prediction (green). Pink shading indicates the user was actively moving the shoulder, and gray
shading indicates the user was actively moving the elbow. The strip at the bottom indicates the
user had selected the shoulder (magenta) or elbow (black). Areas of simultaneous joint activation
are shown inside the black circles. It may be helpful to note that a positive movement in the
shoulder corresponds to a movement to the right in joint space.

corners of the circuit. It is this rounding that we exploit in order to preemptively activate

joints and achieve desired joint angles. As would be expected, the rounding of the corners

for 4 s predictions is much more pronounced and it looks past the 3 s pause at the waypoints.

Training lasted 29 circuits (≈11 min), followed by 50 circuits of DPCC. Predictions

of 0.667 s (20 timesteps) were used, with a scaling factor k of 0.5/#timesteps = 0.025.

Figure 5.4b compares the path taken in the final DPCC circuit against a typical circuit

taken from the training set. We can see that the DPCC follows a similar path to the ideal

outcome for the training circuit, albeit not as pronounced. Figure 5.5 shows the temporal
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Figure 5.6: Predictions made over all DPCC circuits. The first circuit is shown in green and the
last is shown in blue. Circuits in between are scaled light to dark, with earlier circuits being lighter.

behavior of the final DPCC circuit. In the gray shaded regions of this example the shoulder

was moved by the system while the user controlled the elbow, as highlighted by the change

in the solid magenta line in each of the two black circles. In the first circle we clearly see

that the shoulder joint angle (solid magenta) is increasing (moving right) as the elbow joint

(solid black) increases (moves upward). In the second circle we see that shoulder joint angle

is decreasing (moving downward) as the elbow joint decreases (moves left).

These results demonstrate that our approach was able to learn target angles for each

joint without explicitly providing them to the system. Simple, but potentially beneficial,

joint synergies were learned in real time purely by observing ongoing user behavior, and

75



Figure 5.7: Paths taken over all DPCC circuits. The first circuit is shown in green and the last is
shown in blue. Circuits in between are scaled light to dark, with earlier circuits being lighter.

effected by a direct mapping of predictions to control commands for the unattended joint.

As has been stated, learning was ongoing for all joints during the entire experiment,

regardless of whether the human or the robot controlled the joints. As the arm follows the

predictions, those predictions are in turn being updated to reflect the new trajectory. This

creates a positive feedback loop. This feedback is tempered by the use of the variable k in

(5.1). Figure 5.6 shows the predictions made for all the collaborative control circuits and

Figure 5.7 shows the trajectories taken over those same circuits. The first circuit is indicated

in green and the final circuit is indicated in blue. The in-between circuits are shown in shades

of gray, with lighter circuits being earlier and darker circuits being later. From these, we can

see that despite the positive feedback loop, the resulting prediction paths and trajectories

are generally stable. This is caused by the interaction between k in (5.1) and the step size
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α in (5.3); when using a small k value the velocity calculation takes only a fraction of the

step towards the ideal outcome, at the same time, a small α means that we only move our

predictions a small step towards the new trajectories. While it cannot be said that the path

has converged, the trajectory appears stable within the life of the current experiment.

Further, as can be seen in Figure 5.6, the predictions made for the elbow are noisy. The

use of the scaling factor k helps reduce the effects of this noise. That is not to say that k is

the best way to deal with the noise, but simply an observation on the current experiment. In

future experiments it would be preferable to first improve the predictions and then smooth

the resulting commands using a windowed average.

5.5 Experiment 2: Navigating an Angle Maze

As one example of the need for simultaneous multi-joint prosthetic motion, amputees operat-

ing one joint at a time must use compensatory body motions to create diagonal (off-joint-axis)

movements. We expect diagonal (off-joint-axis) movements and related motions should be

straightforward to perform using DPCC. We conducted a limited test of this hypothesis by

navigating an angled portion of a wire maze with the robot arm.

A metal rod was attached to the gripper of the Bento Arm as shown in Figure 5.2. A

green barrier marked the start of a circuit and a yellow barrier marked the turn-around point.

Contact with each barrier was detected by electrical connection between the rod and a 2-cm-

long exposed metal region at the center of each barrier. A circuit consisted of contacting the

green barrier, moving to the yellow barrier, then returning to the green barrier. The system

played a sound when either barrier was contacted. The user would then try to hold position

on the exposed portion of the barrier until a second sound was played 5 s later. The user

was to avoid contacting the walls, but they were not penalized in any way for doing so.

This demonstration was conducted with a single able-bodied subject (the author). The

user controlled the arm using proportional EMG signals (TPC) (see Figure 5.8), which were

read using a Delsys Bagnoli 8 and a National Instruments USB-6216 digital acquisition

unit. The proportional signal was generated using EMG recorded from two sites on the
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Toggle signal

Differential signals 
for joint control

Figure 5.8: Two double-differential electrodes were used on the right forearm to proportionally
control the selected joint. A third double-differential electrode was used on the left forearm to
produce the toggle signal used for switching between joints. Reference ground (not shown here)
was placed on the back of the right hand.

user’s forearms (each thresholded and normalized) at 200 Hz, calculating the mean absolute

value of those signals over a 10-sample sliding window and then taking the difference. The

toggle signal was produced using a third EMG signal on the user’s other forearm; if the

signal exceeded a configurable threshold the toggle was triggered. User controlled joint

speed was limited to 0.2 rad/s for ease of control, while no limitation was placed on those

controlled by automation. This task was designed to reflect real-life precision movement

tasks in a constrained environment, and was inspired by a similar challenge in an upcoming

competition for parathletes (Cybathlon 2016).

TPC training lasted for 30 circuits (≈16 min), followed by 53 circuits of DPCC. As

expected, when the user controlled the arm alone, the path was noticeably stepped as shown

in Figure 5.9 (blue). However, with DPCC based on predictions made for 20 timesteps, or

0.667 s (γ = 1− 1
20
) in the future, the achieved trajectory was considerably smoothed due to

the learned, simultaneous joint actuation (dashed magenta indicates user was controlling the

shoulder, and solid black indicates user was controlling the elbow). A value of 0.1 was used

for k. This figure overlays the 46th circuit of DPCC, a particularly good circuit, where we
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Solo Control

Collaborative Control – 
Returning to Green

Collaborative Control – 
Moving to Yellow

Collision

Yellow Barrier

Green Barrier

Figure 5.9: Key result: Comparison of solo and collaborative control through the angle maze.
While not perfect, we see clearly that DPCC enables the user to achieve an angled trajectory not
possible for a user on their own.

see the path of the rod move along at an angle without the stepped behavior characteristic of

TPC. One point of contact with the walls occurs on the return portion of the circuit near the

lower bend in the maze near the yellow barrier. The user corrected by switching to elbow,

moving up and then switching back to shoulder and moving the rest of the way to the right.

While angled movement was evident in most DPCC circuits, not all had so few collisions

with the bounds. To accommodate the resulting slight shifts to the maze during operation,

the lines in Figure 5.9 denoting the DPCC circuit were registered to the maze starting point

for accurate visual comparison.

Figure 5.10 compares performance between TPC and DPCC phases, using two metrics:

the number of joint toggles, and task time. The number of toggles is taken to indicate the

amount of effort the user is making in controlling the system, i.e., the more effort, the more

toggles. Further, for this task, shorter circuit times are desired. Ideally a circuit could be

completed with no joint toggles in 12.8 s. In our experiments the user’s speed is limited, but

the automation speed is not, therefore the fastest time will occur when the user controls the

joint that must move the shortest distance. The shortest distance is moving the shoulder
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0.28 rad up and down at a max speed of 0.2 rad/s giving a value of 2.8 s travel time plus

10 s of waiting. The fastest time achieved by DPCC was 14.9 s with a single toggle. DPCC

performance showed significant improvement over solo control, with average circuit time

falling by 19% from 32.3 s to 26.3 s, and average toggle counts falling nearly 50% from 15.1

to 7.83. Improvement was not due to human learning; the user had prior experience with

the system and task.

Figure 5.11 shows several circuits made during DPCC, where we see that angled trajecto-

ries were generally achieved. However, we can also see that the behavior is still suboptimal;

many of the circuits required numerous corrections, predictions could vary wildly, and con-

tact with the maze was a common occurrence. Recall that avoiding contact with the maze

was not a part of the task design, however, it should be considered for future experiments.

Figure 5.12 shows temporal representations of the circuit with the fewest switches (see Fig-

ure 5.11d) and the circuit with the most switches (see Figure 5.11e) respectively. These

figures are useful for understanding the behavior of the system. However, they are quite

complex, so we will describe them in detail in the following paragraph.

Each of the different plots is a representation in time, sharing the same axis (i.e., taking

a vertical line through all of them indexes the same point in time). The top two plots

are for the shoulder joint, with the top-most showing the TD error for the shoulder GVF.

The second plot shows the normalized shoulder angle (solid magenta) and the trace on the

normalized shoulder angle (dashed magenta), along with the predicted shoulder angle at a

timescale of 0.7 s or 20 ts. Recall that the input to the tile coding is the normalized shoulder

and elbow angles and traces on both. The shaded regions indicate that the user was actively

moving either the shoulder joint (magenta) or the elbow joint (gray) at that time. It may be

helpful to note that a positive motion corresponds to moving the arm to the right. The next

plot, Contacts, indicates the times when the metal rod was in contact with the green barrier

(green), yellow barrier (yellow), or the maze itself (red). The plot below this, Attended,

shows which joint the user was attending (i.e., which joint was selected for control by the

user) with elbow indicated in black and shoulder indicated in magenta. The next two plots

are for the elbow. The first shows the normalized elbow angle (solid black), the trace of the
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AVG=15.1
STDERR=0.70

AVG=7.83
STDERR=0.54MIN=10

MIN=1

(a) Reduced toggles

AVG=32.3 s
STDERR=1.48 s

AVG=26.3 s
STDERR=0.84 s

Fastest=21.9 s

Fastest=14.9 s

Fastest Possible=12.8 s

(b) Reduced task time

Figure 5.10: Results for the angle maze demonstration from a single able-bodied participant. a)
With DPCC enabled, the number of toggles required to complete a circuit was significantly reduced.
b) With DPCC enabled, the time to complete a circuit was significantly reduced. Error bars indicate
the standard error of the mean.

normalized elbow angle (dashed black), and the predicted elbow angle at a timescale of 0.7 s

or 20 ts. Again, the shaded regions indicate that the user was actively moving the shoulder

joint (magenta) or the elbow joint (gray). The next plot indicates the TD error for the elbow
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(a) First DPCC circuit (1st cct)
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(b) DPCC final circuit (53rd cct)
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(c) DPCC fewest switches (3rd cct)
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(d) DPCC fastest circuit (4th cct)
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(e) DPCC most switches (11th cct)

0.4 0.2 0.0
Shoulder Rotation (rads)

3.2

3.4

3.6

El
bo

w
 F

le
xi

on
 (r

ad
s)

(f) DPCC slowest circuit (34th cct)

Figure 5.11: DPCC – several circuits. Circuit trajectories are shown in solid black and dashed
magenta. Black is used when the user is in control of the elbow and magenta indicates the user was
controlling the shoulder. Contact with the green barrier is indicated by the green dots, and yellow
dots show contact with the yellow barrier. Red dots show contact with maze boundary. Predictions
are shown in green. Note that the x-axis has been registered such that all the circuits start at 0.0
rads.
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GVF. The final three plots display information about the binary features used. In the first

of these, Feature Counts, we see a plot of the feature counts. This is an implementation of

the naive approach to state counting described in Section 6.1. Essentially we keep a count of

how many times each feature has been observed. For a given timestep we then simply add all

the counts from the currently active features, excluding the bias unit. The numbers given are

in millions. The second plot, Min Counts, gives the smallest count of all the active features

in thousands. If this value is very low, say around zero, then the current state is novel for

at least one of the tilings. The final plot, Feature Indices, provides a visual representation of

the values of the feature indices at each timestep. There are 101 rows corresponding to the

100 tilings produced by tilecoding and the single bias unit. Each of these tilings can have a

value from 0 to 2049, which is indicated by the color. While this plot does not allow us to

make a detailed analysis it does provide a way to observe changes in the representation.

Figure 5.12a shows the temporal representation of the DPCC circuit with the fewest

switches, while Figure 5.11c shows the same circuit in joint space. In joint space the pre-

dictions seem to plot a reasonable path through the maze. However, there is noise around

the barriers. This noise can also be seen in the temporal representation in the shoulder and

elbow feature plots (around 0–150 ts and 180–360 ts). This noise is caused by the angle

traces used to produce the feature representation. These traces continue to decay causing

changes in the state space, which can be observed by changes in the Feature Indices plot. In

the feature plots we also see that the system moved its joints to track the predictions quite

well. This can be seen in the shoulder feature plot in the shaded area around 150 ts and

in the elbow feature plot in the shaded area around 360 ts. That being said, tracking these

predictions often caused the rod to skim along the lower rail during the return portion of

the circuit. Using a smaller timescale may improve behavior here by pursuing more gentle

predictions. While the GVFs are indeed predicting, they are not predicting as early as the

ideal predictions indicate that they should and do not appear to predict movement until the

user has actually begun moving. This evidence suggests that the feature representation used

is insufficient to differentiate these states.

Figure 5.12b shows the temporal representation of the DPCC circuit with the most
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(a) Temporal view of circuit with fewest switches (see Figure 5.11c)
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(b) Temporal view of maze circuit with the most switches (see Figure 5.11e)

Figure 5.12: Temporal circuit view. From Top to Bottom: Shoulder TD Err, Shoulder Features
— shoulder angle (solid magenta), shoulder angle trace (dashed magenta), ideal prediction (blue),
actual prediction (green) with shaded areas indicating the user was actively moving the shoulder
(pink) or elbow (gray), Contacts — rod contacts with the green barrier (green), maze (red), and
yellow barrier (yellow), Attended — the joint currently selected by the user, black for elbow and
magenta for shoulder, Elbow Features — elbow angle (solid black), elbow angle trace (dashed black),
ideal prediction (blue), actual prediction (green), with shaded areas the same as for the shoulder
features, Elbow TD error, Feature Counts — a summation of all the times the current features have
been observed, in the millions, Min Counts — for each observation, the smallest feature count of
all active features, Feature Indices — an image representing the current index of each of the 101
binary features. See Section 5.5 for detailed explanation.
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switches, while Figure 5.11e shows the same circuit in joint space. This circuit had many

collisions with the maze when moving from the green barrier to the yellow one, but only

skimmed along the maze on the return trip. Note that as the circuit starts out the traces

for both joints are much further from converging on the resting point than they were in

Figure 5.12a. This appears to have a significant effect on the early predictions. Right away

this results in a collision with the inner portion of the maze around 180 ts. As the user

corrects this action the arm is returned to the starting point (around 180 ts) as the system

now thinks that the user is moving from the left towards the green barrier. Throughout the

trip from the green barrier to the yellow barrier the user makes many fast switches. Recall

that after a switch there is a 0.5 s or 15 ts period during which the system returns to manual

mode before reengaging DPCC. Often we can see that the user made a switch and began

moving their joint before DPCC had turned back on. This is the expected way to make

corrections. However, the user may have been expecting DPCC to reactivate sooner than

it did as we see three spikes in Figure 5.11e where the user appears to have driven the arm

straight up into the top of the maze, as if they were anticipating the system moving the arm

to the left. Much of the prediction error observed in this circuit can be accounted for by

the fact that the system has simply never seen a circuit that looked quite like this before.

This can be seen by the many regions of low Min Count. The behavior of the predictions is

discussed further in Section 5.6.1.

It was common to see the rod slide along the lower bound of the maze on the return

portion of the circuit. The Bento Arm is not compliant, however, there is a bit of play

in the linkages and in the mounting of the rod. If the rod were to press hard against a

barrier the rod would deflect and we would see points of contact with the maze (red dots)

with deviation from the maze bounds, like the downward spike shown in Figure 5.11e and

the return trajectory in Figure 5.11d. On the other hand, if the rod just brushes the maze

then we would see points of contact, but a trajectory which continues to follow the shape

of the maze. Often, the touch was very light as in the return portions of the circuits shown

in Figures 5.11b, 5.11c, and 5.11e. As we have seen in the temporal plots in Figure 5.12,

DPCC control of joints tended to do well in following the predictions. This suggests that

if the predictions had been less aggressive collisions may have been reduced. This could be
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accomplished by using a shorter timescale (i.e., smaller γ).

See Appendix B for supplemental experimental recordings.

5.6 Discussion and Future Work

Several studies have shown users are willing to accept a degree of automation from assistive

devices. As examples, one study examined the use of intelligent wheelchairs (Viswanathan

et al., 2014) and another examined able-bodied use of prosthetic hands (Cipriani, Zaccone,

et al., 2008) in a shared control system. However, it is not clear to what degree actual

amputees will accept automatic control of prosthetic movements. Amputees have an intimate

relationship with their artificial limbs; arm motions not felt to be self-initiated by the user

may be difficult to accept, or may undermine the illusion of ownership created by a user with

respect to their prosthesis. It is important that these interactions between automation and

ownership be investigated and that potential methods be compared in terms of effectiveness

and amputee acceptance.

5.6.1 Improved Predictions

The predictions plotted for both the waypoint experiments (see Figure 5.6) and the maze

experiments (see Figures 5.11 and 5.12) clearly show us that predictions were noisy and

at times quite wrong. Improving these predictions is an important next step in evaluating

the use of predictions in controlling a prosthetic arm. Predictive accuracy is dependent on

the featurization of the sensor data. The predictions shown for the waypoint experiments

(Figure 5.6) show considerable noise in the elbow, but not much in the shoulder. This

is perhaps not surprising as the elbow undergoes a more complex trajectory. The elbow

predictions appear to jump up and down, which likely corresponds to switches in tile coding

bins, i.e., as the angles and angle traces are changing, the active feature indices produced by

tile coding are changing, resulting in non-linear changes in prediction output. Further, the

predictions for the maze experiment (Figure 5.11) seem rather consistent except for at the
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barriers or when the trajectory undergoes significant deviation from the norm as in 5.11e

and Figure 5.11f.

A feature representation allows a predictor to capture a sense of the state of the world. In

most real-world domains it is impossible to accurately capture all the states and we therefore

rely on function approximation to give us a coarser view of the world. On one hand this is

a loss of information, producing conflation of states where the representation used cannot

distinguish between one or more states. This can certainly be seen as one of the causes for

predictive error in the current implementation of DPCC. However, on the other hand, this

coarseness prevents overfitting and creates the ability to generalize, which enables an agent

to learn much more rapidly than if it had to treat each new sample as being a completely

new state. Additionally, this generalization smooths out predictions and allows the GVF to

capture the gist of things.

A further source of predictive error is simply that when the observed representation is

new or somewhat new there is still learning to be done. This can be observed in the dips in

the Feature Counts and Min Counts plots of Figure 5.12.

The use of angle traces in the representation used by these experiments is one cause for

much of the predictive error. These traces are meant to encode both joint speed and a sense

of where the joint is coming from. However, they are a crude way to do so; for this particular

task what we really want is to know which barrier the user is moving towards. However, we

do not want to explicitly specify this information for the learner as this would only solve for

this specific task and not allow the system to be a general solver. On the other hand, if the

system had a way of building its own representations capable of expressing such task specific

features, this would greatly improve its abilities. At this time the automatic construction of

such features is still an open research question.

The use of a single trace for each joint, as is done here, means that there are many ways

to arrive at the same position; a given position in joint angle space may correspond to many

different states. If those states have not been trained before, then we expect their predictions

to be very inaccurate.
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As we have discussed, the GVFs are only able to make accurate predictions if they know

what state they are in. In the case of the circuit with the fewest switches, Figure 5.12a,

we observed that at the end of the rest time on each barrier, the traces had converged or

nearly converged to the target signal and thus offered no new information to discriminate

state. Thus, the predictors were not able to anticipate movement until the user had begun

to move.

Finally, the representation used in these experiments consisted of 100 coarse tilings.

Coarse tilings provide broad generalizations which smooth out the predictions, removing a

good deal of spiking behavior. By including many such tilings we maintain good general-

ization while providing resolution to discriminate many different states. However, having

higher resolution encodings, at least in specific regions of the state space may be beneficial

to the accuracy of the system.

Identifying improved feature representations for use with controlling a prosthetic arm is

a necessary step for future research.

5.6.2 Reinforcement and Learning

Assuming that some form of blended autonomy is beneficial, there are many ways that

one might approach multi-joint coordination during the use of a robotic arm. The DPCC

approach is a fairly straightforward one—given predictions about where a joint angle will be

in the future we simply move toward that angle. One potential benefit of the DPCC method,

as compared to others we might imagine, is that the user operates the arm in the same way

regardless of whether or not they receive automation assistance. Further, by keeping learning

on during all phases of operation the system is able to continually update predictions based

on user behavior and adapt to user correction. It effectively demonstrates that use can be

its own form of reinforcement. However, it should be noted that the present approach has

the potential to reinforce both good and bad behavior, as has been observed in biological

learning (Jang, 2013).

In terms of limitations, DPCC makes the assumption that it is beneficial to move towards
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where the system predicts the user will be, with predictions being made at a single level of

temporal abstraction (i.e., one time scale). We can easily identify situations where a single

time scale is not the best basis for control. A chosen time scale may be a strong choice for

some aspect of a task, as in the diagonal portion of the angle maze experiment. However,

looking a fixed distance into the future can also lead to collisions with objects from cutting

a corner (we see this in Figure 5.11), or bypassing important locations in space, as was

demonstrated in the 4 s predictions in our first experiment (see Figure 5.4a). One potential

solution is to choose the predictive distance based on some aspect of the system’s state,

allowing us to look anywhere from immediate to remote predictions. This state-dependent

behavior seems desirable in general. However, it is non-trivial to select or learn the correct

temporal distance to use in each state.

While typical RL methods involve the more complex process of learning a policy based

on a reward signal, we have first explored what can be achieved with the simpler direct

method described here. In our scheme, system and user behavior reinforce the predictions

and behavior without the use of a reward signal. However, a reward signal would open up

additional options for control improvement, one of which might be a mechanism for learning

how far in the future to look at any given instant. Reinforcement might be used to select

from a list of predictors at different timescales, to blend predictions from multiple timescales,

or to select a state-dependent γ value for a single GVF. One reward signal already present

in the system is the toggle event. A reinforcement learning algorithm could seek to minimize

the number of toggle signals required from the user to complete a task. This is an interesting

area for future work.

5.6.3 Confidence

A measure of confidence in the system’s ability to behave appropriately would address many

issues in the current work. Confidence might consist of several measures including: accuracy

of recent predictions (White, Modayil, et al., 2014), how often the system has seen the current

state before, accuracy of past predictions when in the current state, predictive convergence

(White and White, 2010), risk level of the current situation, and a measure of the user’s
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confidence in the system.

First, confidence could remove the need for the user to explicitly turn DPCC on and off.

If the system gave a high enough confidence value then it could gradually engage in DPCC;

if confidence drops it would return to TPC.

Second, being able to automatically move in and out of DPCC could further improve

the system when it encounters previously unseen states. While the trajectories shown by

the ideal prediction lines in Figure5.4a appear straightforward for us to follow, in reality,

once the system begins to follow these trajectories it moves the arm out of state spaces it

has seen before and its predictions suffer as a result. Some of this can be accounted for by

choosing a representation that generalizes well, which is the reason why many very coarse

tilings were used in these experiments. However, this is not always sufficient. When using

confidence measures, the system could disengage from DPCC when it encounters a new state

and simply watch the user in order to build up its predictive certainty until its confidence is

restored.

5.6.4 Time and State-Space

The results achieved here should be reproducible on any commercial prostheses that provides

joint angle feedback. This is possible because, unlike many alternative approaches, GVFs

allow us to effectively use time as a signal. The temporal nature of GVF predictions enables

automation to recognize and leverage patterns of usage, adapt to changing conditions, and

capture how joints are temporally related to one another. It seems appropriate to design

control systems that do not waste the user’s time. While our results do not depend on

modifying existing hardware, improvements should be possible by increasing the amount

of information available to the machine learner from the user, from the system, and from

the environment. Our methods are ideally suited to efficient implementation in the face of

increasing state-space size, being linear in computation and memory (something of great

importance for learning on devices intended for wearable operation).
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5.6.5 Predicting EMG Signals Instead of Joint Angles

The control schemes described in Section 5.3 assumed that predicting the output of user

interaction, that is the joint angles, was the right approach. Alternatively, one could instead

predict the expected EMG signals from the user. This has the benefit of using the same

mapping from input to output as the user’s own signals. This may in fact be a viable ap-

proach to take and warrants comparison against the DPCC approach taken here. However,

in the broader context of robotic control, in which we are interested, it should be clear that

such an approach is tied to the problem of prosthetic control with EMG input and would

not lend itself well to other teaching approaches which may be desirable. Such alterna-

tives could include kinesthetic teaching, where the user physically moves the arm through

the desired trajectory, or training through pre-programmed trajectories, or by observing

movement demonstrations. In short, predicting the outputs rather than inputs allows us to

develop systems which are much more flexible with broader applications.

5.6.6 Disorientation and Feedback

Anecdotally, the operator for the experiments here reported that during collaborative control

they were at times confused about which joint they were in control of. This occurred when

the user and the arm were working together and the arm was following the user’s expected

trajectory, but then the user wanted to make a correction. At this point the operator reported

often not being sure about which joint they were controlling since they could no longer depend

on visual feedback to inform them. As a result, the user would often initiate joint toggles

that were unnecessary. These extra toggles are reflected in Figure 5.10a. Ongoing feedback,

as opposed to just providing feedback when a joint toggle is made, may provide a way to

correct this and further reduce the number of toggles required to complete the task. This

sense of disorientation echoes Parasuraman et al. (2000), “Humans tend to be less aware

of changes in environmental or system states when those changes are under the control of

another agent (whether that agent is automation or another human) than when they make

the changes themselves”. Improving feedback for the prosthetic user may remedy this, and

92



is an ongoing area of research.

5.7 Conclusion

We have described and tested a new collaborative control approach, denoted Direct Predic-

tive Collaborative Control, whereby a user, limited to controlling a single joint at a time, can

effect multi-joint synergies in conjunction with an intelligent prosthetic control system. The

control system used here learns predictions directly from user action, without the need for

predefined target angles to be specified, and maps these predictions directly into command

signals. Unlike many other approaches, the system’s predictions can be learned in real time

during ongoing, uninterrupted use of the device. Our preliminary results from a single able-

bodied participant on a simple angle-maze experiment demonstrate that our methods enable

coordinated multi-joint movements and are able to improve task performance by reducing

the number of switches and the time needed to complete the task. While our approach was

demonstrated for the control of a prosthetic arm, the same approach should be applicable

to many domains involving assistive devices where the numbers of functions exceed a user’s

ability to attend to them. To our knowledge, the present study is also the first demonstra-

tion of the combined use of the True Online TD(λ) with general value functions for online

control. While larger user studies are needed to confirm the improvements seen here, these

results support the continued exploration of our approach.
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Chapter 6

Extensions

While there are numerous extensions proposed in each of the chapters, here I focus on

those which either have not yet been discussed or are deemed to be most significant. I propose

four extensions to the work already described in this thesis. The first discusses how the Direct

Predictive Collaborative Control method described in Chapter 5 could be further improved

if a measure of the GVF’s predictive confidence were available. This section looks at several

existing confidence methods and proposes an additional one, which might be effective. The

second extension looks at how traditional pattern recognition, as described in Chapter 3

might be combined with the GVF based predictive approaches used in Chapters 4 and 5

in order to improve classifications during real-world use by learning to recognize patterns

of behavior and incorporate additional sensory streams. The third extension examines how

the DPCC method could be made applicable beyond the limited tasks already demonstrate

by using state-dependent predictions of varying timescales and proposes several methods by

which this might be accomplished. Finally, the fourth extension discusses alternative ways

of implementing collaborative control on a prosthetic arm.
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6.1 Confidence

The Direct Predictive Collaborative Control method, as implemented in Section 5, is either on

or off, which creates certain behavior complications. The GVFs predict certain trajectories

through the state-space. However, as soon as the arm starts to follow these trajectories it

moves into regions of state-space it has never seen before. This reduces predictive accuracy

and can result in undesired trajectories, negatively impacting task performance. The user

must then actively correct the system until predictions are sufficiently improved. I have

proposed, in Section 5.6.3, that having a measure of a GVF’s certainty or confidence in

the GVF’s predictions would provide a way to smoothly handle situations where previously

unseen states are encountered, or where the user’s behavior deviates from that predicted. If

confidence were to fall below a certain threshold DPCC could simply disengage control and

observe the user’s behavior until confidence once again exceeds this threshold.

The use of confidence measures in machine learning techniques is not new. Many clas-

sification methods inherently provide a measure of likelihood that a given sample is of a

particular class, which is then used to make the classification decision. This can be thought

of as one form of a confidence measure and can be used in control decisions. For example, in

pattern recognition with EMG, Hargrove, Scheme, et al. (2010) found that taking no action

is better than taking the wrong action. In their system a confidence threshold was placed

on each class in the classification scheme. If the threshold was exceeded then the class was

selected as the output. If multiple classes were selected then no action was taken. This was

shown to reduce classification accuracy, but improve actual prosthetic usage.

While there have been a number of approaches to identify confidence measures for GVFs,

at present there is no singular definition which is entirely satisfactory. This should not be

seen as a failure, but rather an indicator that the definition of such a measure is not clear.

Indeed, there are several aspects one might consider in a confidence measure for GVFs:

1. How accurate have predictions been lately?

2. Have the predictions of the GVF converged?

95



3. How often has the current state been visited?

4. How accurate were past predictions when in the current state?

5. How long has it been since this state was last visited?

These aspects include both time-dependent considerations, or recency, and state-dependent

ones. Explorations of the first two have been performed as follows.

How accurate have predictions been lately? White, Modayil, et al. (2014) developed

a measure, Z, shown in (6.1), which uses an exponentially weighted average of the TD error,

δ̄, to produce what is essentially a trace on the predictive error of a given GVF. If this

measure is high then it is said that the agent experiences “unexpected prediction error”

or surprise. This could also be thought of as a measure of how well the predictions have

been lately. If surprise is low then our recent experiences have matched our predictions

and confidence is thus higher. On the other hand, if surprise is high then the agent has

encountered something unexpected and is less confident or more uncertain. As it stands, the

approach taken is largely independent of state. However, modifying (6.1) to use a state-based

measure of variance may provide the desired state dependence. It should be noted that the

concept of surprise is closely related to the study of anomaly detection.

Zt =
δ̄

var[δ]
(6.1)

Have the predictions of the GVF converged? White and White (2010), proposed a

method for measuring confidence of GVF predictions using interval domains. Their method

involves keeping a memory of the last n weight vectors. These weight vectors, along with

the current state vector (note that their paper uses state-action vectors, but it is just as

relevant for state vectors), are then used to make predictions. This set of predictions is then

statistically evaluated to calculate the confidence interval, essentially calculating how much

the predictor has converged over the given sample memory. While this approach takes into

account recency and state-dependence, it assumes that the variation in the weight vectors
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over the window is indicative of the convergence of the weights for the current measured state,

i.e., the method assumes samples are dependent and that there is a reasonable amount of

crossover of features in the representation used. Both assumptions are reasonable in the

function approximation case for real-world applications. However, one limitation of the

method is that it does not account for history of predictions beyond the window. In the

implementation presented this information is lost. A further limitation of this method is

that it does not indicate whether or not what the GVF has converged to is good. Finally,

this method is computationally expensive and requires a large amount of memory.

6.1.1 Proposed Confidence Estimator

Beyond the two approaches discussed it would be beneficial to more explicitly incorporate

measures of confidence that are state dependent, capture past history, and are computation-

ally efficient. A first approach is to simply look at state visitation. If an agent has never

seen the current state before, then we should expect its confidence to be low in that state.

As the state is visited more we could expect the confidence to grow. This approach is fairly

straightforward in the tabular case. However, when using function approximation, as I have

throughout this thesis, instead of counting states, we count features. Some measure of the

visitations could then be made using an inner product between the feature counts vector

and the feature vector itself. However, care must be taken in the counting so as not to over

count features which do not contribute to state discrimination, such as the bias feature or

other static or slowly changing features. An appropriate normalization may be sufficient to

address this.

Simply counting state or feature visitations is a naive approach; what we really want is

to know how well our past predictions have been when in the current state, tempered by

how often the state has been observed. Gehring and Precup (2013) evaluated an approach to

“smart exploration” by using what amounts to a state based trace on the absolute TD error

to produce a measure of controllability. Here they defined states to be more controllable if

they are more predictable, which corresponds to lower absolute TD error. I propose that

using the absolute TD error in a similar way could be used to produce a confidence measure
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which captures state dependency and many of the other desirable aspects already discussed.

Equation (6.2) shows a proposed method for tracking the uncertainty of a GVF, as measured

by the absolute TD error, using gradient descent and a linear function approximator with

step size 0 < η < 1 and weight vector ζ ∈ IRn, which is the same length as the feature vector

ϕ ∈ IRn used by the GVF. Note that we could also choose to use δ2 as the target of our

estimate rather than the absolute value. Additionally, (6.2) can be produced using a GVF

with γ = 0. Uncertainty is then calculated using an inner product as shown in (6.3).

ζt+1 = ζt + η(|δ| − ζ⊤
t ϕt)ϕt (6.2)

U = ζ⊤ϕ (6.3)

When the GVF encounters a state for the first time its absolute TD error will be high

and as it improves its predictions the error will decrease. In practice this error will never

reduce to zero as our feature representation is unlikely to discriminate all states or because

of the use of fixed step size. If the range of the target signal being predicted is limited then

we have a practical normalizer on the TD error. In the case of the DPCC experiments, the

joint angle is bounded by a minimum and maximum angle, measured in radians. If we use

the range to normalize the TD error δ in (6.2) ( |δ|
Range

) then we can calculate confidence as

C = 1 − U with C <= 0 when there is no confidence and C = 1 when the predictor is

completely confident, i.e., confidence is effectively normalized. Further, if we initialize ζ as

in (6.4) then for all possible feature vectors, Ut=0 = 1 and therefore Ct=0 = 0.

ζ[:]t=0 =
1

# Active Features
(6.4)

It is also important that we consider how long it has been since the current state was
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observed. If it has been a long time since we last observed a state, then the confidence

of that state should be low, regardless of how confident the predictor was the last time it

observed that state. Thus, we might incrementally increase the uncertainty of non-active

states by modifying (6.2) according to (6.5), where ζ0 is the weight vector initialized as in

(6.4) and 0 < σ ≤ 1 is the rate of return to the initial uncertainty. It should be clear that

σ should be much smaller than η. Further, this increment would be applied to all elements

of the estimator, not just those which are not currently active in ϕ. Practically, this may

be acceptable, given the relationship between η and σ. However, it may be preferable to

selectively apply this decay to just those features which are not presently active.

ζt+1 = ζt + η(
|δ|

Range
− ζ⊤

t ϕt)ϕt + σ(ζ0 − ζt) (6.5)

The proposed approach to confidence has several benefits: it gives a state-based measure,

it captures a sense of state visitation and state recency, it captures a sense of convergence, it

uses function approximation, it has linear computational complexity and finally the measure

produced is useful for expressing whether or not the convergence values are accurate. That

is, as the predictions converge, they converge to a level of TD error, which tells us how good

the predictions are, not just that they converge. Combining this approach with the surprise

measure implemented by White, Modayil, et al. (2014) should allow us to capture all of the

desirable aspects for a predictive convergence measure as put forth in the beginning of this

section.

Thus far, I have only considered confidence measures for predictions, beyond this, we

may also want to combine measures of the agent’s confidence in its actions, not just its

predictions and temper actions based on these confidences by the level of perceived risk.

Further, I have only considered confidence measures from the agent’s perspective of itself.

An additional measure of the user’s confidence, or trust in the robot would be beneficial

for managing human/robot interactions. One can imagine that the agent could gradually

increase the amount of action it took on the system as the user’s trust in its abilities increases
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or back off if it senses that the user is not confident. The agent could use these measures to

tentatively explore its action space in conjunction with the user.

The case for using confidence measures for the DPCC method is just one example of how

control might be improved by their use. However, more generally, such confidence measures,

from all these different aspects, offer ways of managing the interaction between human and

robot, with potential benefits to increasing safety, effectiveness and user acceptance.

6.2 Time and Pattern Recognition

Most of the pattern recognition approaches used with EMG do not consider the effects of time

in their predictions. That is, they simply take in a window of data and make a classification

of it in isolation, with samples considered largely independent of one another. One approach

has included a running trace of classification decisions so as to smooth classification outputs

(Hargrove, Scheme, et al., 2010), but these methods are still ignorant to patterns of usage;

including time would allow us to leverage such patterns. Equation (6.6) proposes a method by

which predictions from a pattern recognition classifier, with likelihood L, might be combined

with the prediction from a GVF, P , at time t for class i to produce a weighted likelihood.

The scalar β is used to control weighting between the GVF and the pattern recognition

likelihood. The equation shown incorporates a measure of confidence in GVF prediction as

Ct, which is used to modify the weighting of the two different predictors; when confidence

is low little weighting would be given to the GVF prediction and more would be given as

confidence grows. A classification decision would then be made using a threshold on the

weighted likelihood. This approach allows us to use the offline trained classifier as a baseline

predictor while the output of the GVF is used to improve upon these predictions using

ongoing experience.

Likelihoodi;t = β ∗ Ct ∗ Pi;t + (1− β ∗ Ct) ∗ Li;t (6.6)

However it is not yet clear how errors in such a system could be identified in real time and
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how the GVF should be updated so as to appropriately capture those errors. Admittedly,

this is a recurring theme in much of the work that I have done when using GVFs within

positive feedback loops, for which I do not yet have a general solution.

6.3 Gamma selection

As described in Section 5.6.2 the Direct Predictive Collaborative Control method imple-

mented in Chapter 5 used only a single GVF with a fixed γ value for predicting the target

angle of each joint, meaning that the algorithm was always using predictions from a fixed

timescale. In practice this is not ideal and could in fact make task performance worse; in

some states the best behavior will come from looking only a short distance into the fu-

ture, while in others it is better to look far ahead. Thus, having the ability to look various

distances in the future and to learn which distance is appropriate for each state would be

extremely beneficial. I outline three possible methods for addressing this.

Picking from several GVFs. The simplest method might be to have several GVFs of

various γ ranging from 0 to 1. An algorithm such as Sarsa (Sutton and Barto, 1998) might

then be used with function approximation to select the most appropriate GVF for each state.

In order to have fine grained control it would be necessary to have large numbers of GVFs.

However, this would effectively increase the number of actions the agent could take and

therefore increase the difficulty of learning appropriate behavior as well as increase memory

and total computation per timestep.

GVF blending. An alternative method might be to use only a handful of GVFs with γ

ranging from 0 to 1 and weight the output of each to produce a final prediction. A possible

method for doing this is to use some parametric function applied as a filter across the range.

Figure 6.1 shows an example of this using a Gaussian weighting function. In this example

there are five evenly spaced GVFs with γ values [0, 0.25, 0.5, 0.75, 1.0]. A Gaussian function

is then used with these values to select the weights for each GVF, which are then normalized
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Figure 6.1: Weighting different GVFs. Five GVFs, with γ = [0, 0.25, 0.5, 0.75, 1.0] are weighted
using a Gaussian function.

by the total of all the values. In our example, the weight for the GVF with γ = 0.25 would

thus be 1.17
0.55+1.17+1.26+0.67+0.18

= 0.31. The final output would then be an inner product

between a vector of the weights and a vector of the GVF outputs. The parameters for the

weighting function, here the mean and standard deviation, might be learned by means of an

actor-critic algorithm (Sutton and Barto, 1998). This approach has the benefit of limiting

the number of GVFs being learned, while providing a way of increasing resolution of the

predictions of interest. However, there are several potential draw backs to this approach.

First, it must have an independent learner for each parameter of the blending function.

Second, while a Gaussian seems appropriate in that it is uni-modal, it is not clear what the

best blending function might be. Finally, this approach assumes that blending the outputs

of the various GVFs is a good thing, which is unknown.

State-dependent γ with a single GVF. Finally, a single GVF might be employed

which used state dependent γ values. The difficulty then comes in the form of selecting the

appropriate γ for each state. Again, we might imagine using an actor-critic algorithm for

selecting γ.

Another method might involve using an additional GVF to produce an estimate of the
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appropriate value of γ. The cumulant for this predictor would be some measure of how much

the system has achieved the desired output — essentially this is just the reward signal. The

output of this GVF could then be passed through a squashing function such as the logistic

function shown in (6.7), which will constrain output between [0,1]. Some consideration must

then be given to selecting the scaling value k and the offset x0. γ is then computed as

γ(s) = σ(ϕ(s)⊤w). If the system is performing worse than predicted then the GVF will

move towards predicting lower value, which will reduce γ. On the other hand, if it performs

better than predicted then the value of γ will increase. This approach may be the most

direct way to determining a state-based γ value, but requires that the desired output be

known and that it is possible to express a reward function relative to that output.

σ(x) =
1

1 + e−k(x−x0)
(6.7)

All of the methods described require some way of saying whether the choice of timescale

was good or not, which is where reward signals could play an important role. The most

obvious reward signal presently available in the toggling proportional control system is the

joint toggle itself. If the automated system worked perfectly, always predicting exactly what

the user wanted and behaving appropriately to complete the user’s goals, then we should

expect no joint toggles. On the other hand, if the system is behaving poorly we can expect

that the user will have to correct frequently, producing high rates of toggling. Thus, a toggle

or toggle rate could provide a negative reward.

Explicit negative or positive signals from the amputee might also be incorporated. A

user could provide feedback using a button push to indicate good or bad as done by Pilarski,

Dawson, Degris, Fahimi, et al. (2011), or by giving verbal feedback by saying “good”, or

“bad.”

Additionally, there are implicit signals that an amputee might give. These might include

verbal cues, such as grunting, sighing or cursing. Or, perhaps an electroencephalogram

(EEG) could be used to detect a persons sense of satisfaction with the arm’s behavior directly
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from their brain waves (Esfahani and Sundararajan, 2011). Facial expressions might also

offer clues as to the arm’s performance. Tension in the other muscles of the torso or the other

arm might indicate that the amputee is unhappy with the arm in general or is expecting to

have to compensate for it.

Finally, there are reward signals that might come from the environment itself. For ex-

ample, detecting collisions could be used to indicate poor performance. High overall current

draws across the whole arm might indicate that arm was behaving in ways that are not

energy efficient, providing yet another signal to use as feedback.

As the arm explores, using predictions at various timescales as target signals, it is im-

portant that it do so safely. One heuristic approach is to start out with γ = 0 and slowly

increase it as confidence grows. When a negative reward is encountered, the arm might then

retreat to smaller γ. As described in Section 6.1, Gehring and Precup (2013) implemented a

method of safe exploration based on the idea of controllability, that is, a state is said to be

more controllable if its predictive error is low. This approach may also be appropriate here.

6.4 Alternative Approaches to Collaborative Control

The main question explored in this research is “How can we make controlling prosthetic arms

easier and more functional for amputees?” In Chapter 5, we sought to do this in the context of

learning directly from user behavior and without modifying the existing hardware or adding

additional sensory or input modalities to the system. That is, we have limited ourselves

to two channels of information: a scalar channel, and a toggle channel. The following list

proposes several desirable attributes for an intelligent control system for a prosthetic arm.

• User behavior should inform system behavior. That is, there are numerous signals,

both explicit and implicit, coming from the user, which should inform the arm about

its behavior and a user’s intentions.

• The system should adapt to user behavior and changing circumstances.

• Control should be as natural and consistent as possible.
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• Smooth transitions between shared and solo control are desired, both from the perspec-

tive of the user’s experience as well as from the perspective of produced trajectories.

• The user must have a way to correct errors in learned behavior.

• The system should be easy to use, minimizing cognitive burden as much as possible.

• The user should maintain as much of a sense of control and embodiment over the arm

as possible, while maximizing the practical functionality of the arm.

• The system must behave safely and predictably.

There are several solutions I will consider to this problem. In all cases, the system will

attempt to predict what actions would be beneficial to the user and let us assume that

an amputee’s usage of the limb is informative to making those predictions. Further, let

us assume that these coordinated predictions can be represented as joint trajectories, i.e.,

temporally coordinated joint movements.

A first approach might be to simply have the arm memorize trajectories and add those

trajectories directly to the toggle list. Unfortunately, this actually has the potential to

increase the disparity between the user input signals and the DOC of the system by constantly

increasing the number of options the user has to toggle between. For this reason, this

approach is rejected.

Consider two views to cooperative control. In the first view, a user and their helper both

actively work together to accomplish the task. An example of this would be two people

moving a piece of plywood. Each person is responsible for their portion of the work load.

The helper takes cues from the leader, and likely has a good guess or explicit knowledge of

the goal. A second view would have a boss showing the workers what to do and then letting

them do it. The DPCC method in Chapter 5 takes the first view. It was my belief that this

would allow the user to maintain a greater sense of control and embodiment. However, the

delegation view, in which the arm would simply do what the user wanted, is a reasonable

alternative, presenting a clear picture for implementation.
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Control

Figure 6.2: Collaborative control added to the toggle list.

Here I discuss a possible implementation of the delegation view to collaborative control,

which I will call the trajectory approach. Rather than controlling individual joints, the user

pushes and pulls all joints of the arm along a learned trajectory. In this case the system

predicts the trajectory, and the user tells the system how fast and in what direction to

move along that trajectory. The user can still have a toggle list as before, with all joints

listed. Additionally, the option to enter collaborative control is added to the list as shown in

Figure 6.2. The user can then enter and exit collaborative control simply by toggling. This

provides a straight-forward way for the user to correct the system. Like the DPCC method,

the fallback behavior for such a system would be the usual toggling proportional control.

Therefore, the system only adds to performance.

Further, this approach can be readily combined with the adaptive switching work of

Edwards et al. (2014). Thus, the system could learn to predict which joint was most likely

needed when switching out of collaborative control, and conversely, when the user might

want to select collaborative control. This provides an indirect way for the user’s trust of

the system to be integrated into control; if the user does not trust the system they will not

select collaborative control.

Additionally, there is a role for predictive confidence, as described in Section 6.1, to play

in the system as well. First, if the system is not sufficiently confident it should simply not

offer the collaborative control option in the toggle list. Secondly, this confidence could be

combined with some sort of feedback to inform the user when the system is confident enough

that it can take over; essentially indicating to the user that the collaborative control option

was available.
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start

Figure 6.3: Two possible trajectories from the same starting position.

In the case of DPCC, having the user control one of the joints provides the system with

information it needs to discriminate between available predictive options. This is important

for predicting what should be done in situations like the one shown in Figure 6.3. Here we

start in a position from which we have learned two trajectories, up and right, and left and up.

If the user controls one joint they can make motions in either direction, providing additional

state information to predict the appropriate trajectory. In the case where the user controls

movement along the trajectory, we do not have the information necessary to yet distinguish

the appropriate trajectory (assuming we do not add additional sensory modalities to our state

space which might give us sufficient information in other forms other than joint position).

This simply changes when the user has the option to switch to collaborative control; if the

user starts in manual control, they must first make motion towards one of the trajectories

before switching to collaborative control.

The trajectory approach is appealing as it is simpler than the DPCC method and presents

a somewhat clearer picture. However, the DPCC approach offers the theoretical advantage

of having the user’s behavior in manual or collaborative control modes be the same — they

simply control the joint they have selected. However, as alluded to by the discussion of

disorientation in Section 5.6.6, this may not actually be realized in the real system. Further,

the DPCC approach offers incremental assistance, which may be more beneficial than the

trajectory based approach. Finally, from a user’s perspective it is unclear which approach

would allow for the greatest sense of embodiment. In conclusion, the trajectory approach

presents an appealing picture and is worth investigating.
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Chapter 7

Conclusion

The overall goal of my research has been to improve the control of powered prosthetic

arms — increasing functionality and reducing the effort for amputees. I have pursued this

with the philosophy that treating prosthetic arms as intelligent agents will improve control

beyond what can be achieved by only thinking of them as electro-mechanical tools. I defined

an intelligent agent as one which is able to learn about itself, its environment and the

interaction between the two and adapt its behavior to improve its ability to accomplish a

goal. While my long-term goals include integrating all of these aspects of intelligence, this

thesis primarily focused on the use of predictions to control prosthetic arms.

Current methods of controlling prosthetic arms are tedious for amputees and many reject

prosthetic arms citing difficulty of control and lack of functionality as significant factors.

While mechanical functionality is rapidly increasing due to advances in hardware, control

interfaces have not managed to keep up. The key problem is the gap between the number

of available functions in the arm and the user’s ability to attend to all that are needed or

desired at any given instant, i.e., the communication interface between the user and the arm

is too limited. This deficit is not unique to the prosthetic domain but can be found in many

human-machine interfaces, including smart phones, computers and teleoperation of robots.

Prediction is believed to be a key component in making good control decisions for humans

and other animals (Wolpert et al., 2001). From this, one might theorize, as I do throughout
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this thesis, that prediction is a beneficial tool to intelligent agents in general and may be

useful in developing an intelligent prosthetic arm. This theory is bolstered by several demon-

strations showing the benefits of predictions in robotic control (Sutton, Modayil, et al., 2011;

Modayil, White, and Sutton, 2014; Edwards et al., 2014).

This thesis looked at several different aspects of prediction in prosthetic control. Chap-

ter 3, which is based on current predictive pattern recognition methods for EMG-based

prosthetic control, demonstrated one scenario where the methods do not generalize. This

experiment reinforces similar findings made by others in the field including Cipriani, Sassu,

et al. (2011) and Tkach et al. (2010). Further, this finding raises concern over the valid-

ity of evaluating pattern recognition methods without the use of actual amputees wearing

a prosthetic and performing real-world tasks, a concern that has been similarly expressed

by others in the field (Hargrove, Losier, et al., 2007). Chapters 4 and 5 employed a dif-

ferent type of predictor known as a general value function, which allows online learning of

any measurable signal. Chapter 4 demonstrated that it was possible to layer general value

functions such that the output of one or more could be used as input for another general

value function. Such an arrangement might allow us to make a great variety of compound

predictions and provide robust state representations. These experiments also showed that

arranging general value functions in layers could produce a boosting like behavior where the

secondary layer is able to make highly accurate predictions of its target signal even though

the primary layer is not. Such approaches may be of benefit in the combination of various

predictors and improve upon such things as transfer learning across domains. Chapter 5,

which is arguably the most important contribution of this thesis, used general value pre-

dictions in a novel control algorithm called Direct Predictive Collaborative Control, which

allowed the arm to move joints on its own, in collaboration with a user, so as to achieve the

user’s movement goals. The algorithm did this by learning predictions about intended joint

angles from observing the user’s behavior during toggling proportional control. When the

algorithm was then allowed to assist the user it did so by directing each joint towards the

predicted joint angles prior to the user’s own ability to execute those movements, effectively

achieving helpful simultaneous multi-joint control in conjunction with the user’s own direc-

tion. The method was demonstrated on a 2 DOC robot arm with a single, able-bodied user
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guiding the arm through an angled wire maze. This successfully demonstrated that Direct

Predictive Collaborative Control was able to improve the user’s performance on the task, by

reducing the time to complete the task, and reduce user effort, by reducing the number of

toggles required. These results would benefit from repeated experiments with more subjects.

Additionally, there are still many implementation details which can be improved, such as

the selection of the appropriate prediction timescale at each timestep. Nonetheless, these

early results are promising and warrant further investigation.

However, despite the functional improvements that might result from intelligent pros-

thetics, it is a big assumption to think that a prosthetic arm taking action on its own, as in

the work I have presented with the Direct Predictive Collaborative Control approach, will be

acceptable to prosthetic users at all. As has been mentioned, amputees have an intimate re-

lationship with their arm, and even slight motion or action not perceived to be self-initiated

by the user may be completely unacceptable to most amputees. This assumption needs to be

tested. Unfortunately, it will be difficult to test this assumption without first building the

control system. Wizard-of-Oz studies, like those performed with autonomous wheelchairs

(Viswanathan et al., 2014), would be incredibly helpful, but it is not clear how such studies

might be performed in a convincing way for amputees. Conducting such a study is a good

opportunity for future research.

Before closing, I would like to give my opinion on what I presently believe to be the best

approach to prosthetic arm control. First, the ultimate interface is a bi-directional neural

interface where motor commands come directly from the nervous system and sensor signals

return directly to the nervous system. This is an ongoing area of research and has been

heavily funded by DARPA (Miranda et al., 2015). In my opinion, this is now a technically

plausible approach within reach.

However, if instead we look only at what is clinically available today then the next best

approach would involve targeted muscle reinnervation in combination with improvements

on a pattern recognition methods. Admittedly, this does require additional surgery, which

may not be an option for some. However, such surgery need not be considered frivolous as

targeted muscle reinnervation has the added benefit of reducing issues with painful neuromas
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that can occur after amputation (Souza et al., 2014). Despite the shortcomings of the

pattern recognition techniques described in Chapter 3, the classifications they make are

valuable signals providing a great deal of very specific information about the user’s intent over

numerous joint synergies. Enhancing the use of these signals is a great place for reinforcement

learning techniques to step in. Reinforcement learning allows us to continually adapt as

the environment changes and to incorporate numerous sensory streams in ways that are

computationally tractable in real time. This is a key point; the inclusion of additional sensory

information such as gaze tracking, joint angles, tactile sensation, inertial measurement units,

etc., could greatly enhance the predictive ability of these systems immensely and could be

effectively integrated using reinforcement learning techniques.

Finally, viewing prosthetic arms as wearable intelligent robots implies that they have their

own sense of agency — their own ability to learn from the world, and adapt their actions so

as to improve their ability to meet goals. In this way, the arm becomes a partner or helper

and is not directly tied to the user’s commands, providing a flexibility that goes well beyond

hand-coded or static solutions. This is a natural way to compensate for the disparity in the

control interface which exists between the amputee and their arm. Indeed, we are rarely

aware of the minute details of the motor commands we give over our natural limbs. Rather,

our higher consciousness appears to delegate such details to lower level cognitive agents,

simply providing goals. An intelligent prosthetic arm simply seeks to replicate this situation

outside of the body. Ultimately, this is the largest contribution of this thesis: demonstrating

that it is possible to construct a system that learns about a user’s intentions and that such

a system can assist a user in achieving their goals.
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Appendix A

Bento Arm

The Bento Arm, which was used for the main body of research in Chapter 5, is a custom

arm designed and built in the Bionic Limbs for Improved Natural Control Lab (BLINC) as

part of a project by the Alberta Innovates Centre for Machine Learning (AICML). I have,

thus far, been solely responsible for developing and maintaining the control software used

for operating and interfacing with the Bento Arm. The Bento Arm has become a significant

piece of research equipment for our lab, not just for my own experiments, with several more

copies of the arm in production at this time.

All of the control software for the Bento Arm was implemented using the Robot Op-

erating System (ROS), an open source robotics platform. ROS is used widely in research

and is even moving into the industrial automation space with the ROS-Industrial initiative

(http://rosindustrial.org/). Despite the name, ROS is not an operating system, but rather

a meta-operating system, which runs, primarily, on Ubuntu, Linux. ROS facilitates com-

munication between various programmatic modules, called nodes, over standard network

communication channels, either locally or across multiple machines; it provides a common

communication infrastructure which allows code to be modular and reusable.

ROS uses three forms of communication between software components:

1. topics - Topics are asynchronous messages built on a publisher/subscriber model. They

are the primary way in which communication is done in ROS.

121



bento_controller

bento_audible

joy_to_bento

joy

dynamixelrqt_bento

rqt_bento_groups

adc_node

proportional_emg

rqt_proportional_emg

Figure A.1: Bento architecture

2. services - Services are synchronous, i.e., the caller of a service waits for a response from

the service being called. These are useful for making calls which must be completed

before other functions are performed, such as changing internal state of a particular

node. An example might be enabling torque control.

3. actions - Actions are long-running goals, which are not completed in a single call.

The caller of an action specifies the desired output, receives updates about progress,

and finally receives notification when the action has been completed. Actions can be

interrupted. An example of an action might be a command to go to home position.

This appendix will briefly describe the software, but is not a substitute or duplicate

for the actual documentation, which is currently available on corresponding wikis which are

presently private to the Pilarski lab. Figure A.1 presents a high level view of the architecture,

showing the various packages involved. The architecture is grouped by functionality and

explained in the following sections.
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A.1 Functionality

The central controller for the Bento arm is bento controller. This node is responsible for

facilitating all interactions with the arm. It is intended to allow the arm to be used with

various configurations of joints an motors, facilitated by the use of configuration files. It pro-

vides methods for moving each joint individually, either by position, velocity, or position and

velocity based commands. Additionally, joints can be grouped and controlled as described

in the next section. State information is published at regular intervals.

The bento controller also provides several service calls. The most important are shown

below (for a complete list see the source code repository).

• pause - Pause and unpause the arm. When the arm is paused it ignores all incoming

commands to move the arm. Each individual joint can be paused or the arm as a

whole.

• torque enable - Enables or disables torque. When torque is disabled the joint provides

no current and goes limp. Torque can be switched on the arm as a whole, or on

individual joints. A side effect of enabling or disabling torque is that the arm is

paused.

• go home - Pauses the arm and sends it to a home position. This is presently imple-

mented as a service call, but would be better implemented as an action.

• set meta - The state messages published by bento controller have a field called meta,

which allows an experimenter to add meta information to the messages. This service

call allows this value to be set.

A graphical interface called rqt bento, as shown in Figure A.2 allows the user to pause

the arm, toggle torque, send the arm home, and set the meta information of the state

messages.
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Figure A.2: rqt bento: basic GUI for controlling the Bento Arm

A.1.1 Joint Groups

Joint groups are implemented in order to facilitate control of the arm in the same way as

an amputee would control the arm using the standard toggled proportional control method.

Joint groups are simply lists of joints defined by the developer. For a given group there is

only ever one active joint in the list. Any movement commands that are given for the group

are routed only to the active joint. Specific joints can be set as the active joint. Additionally,

the group allows the active joint to be toggled forward or backward through the list one joint

at a time. Joint groups are presently implemented by the bento controller node. However,

it is my recommendation that this code be split off into its own package.

Control of joints in a joint group are based on velocity commands. Incoming commands

are in the range [-1,1]. The incoming value is then scaled across the max speed configured

for the currently active joint.

When the active joint of a group is changed a topic is published to alert subscribers of

the change. The bento audible node allows a developer to map those messages to play

audio files. For example, if a group is changed to use the elbow joint an audio file saying

“elbow” might be played.
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Figure A.3: rqt bento groups: Joint Groups Visualization

A graphical interface is provided for managing groups, through rqt bento groups as

shown in Figure A.3, which lists each group available, the list of joints in each group and the

currently active joint. It allows the user to manually set any joint active or toggle forward

or backward through the list.

A.1.2 Toggling Proportional EMG Control

Presently EMG signals are read in through a National Instruments NI USB-6216 data ac-

quisition device (DAQ). Unfortunately, this has presented several difficulties as the driver

availability for this device on Ubuntu based platforms is far behind the current long term

support kernels available. As a result, computers using this node must be running 32-bit

Ubuntu Raring, or Mint 15, which in turn means that these computers are limited to the

ROS Hydro release. Until now, no difficulty has been observed in connecting a Hydro based

computer with an Indigo (the subsequent release) based one.
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The adc node is responsible for reading in values from the DAQ and publishing them as

a ROS topic, which are then read by the proportional emg node. The proportional emg

node allows pairs of channels to be configured to send proportional control messages to a

single joint group. Individual channels can be configured to be used as toggle signals for a

group. At present, the use of cocontractions to toggle a joint group is not implemented.

EMG channel messages are first rectified. There are several online parameters that affect

each channel: gain, threshold, max. Gain adjusts the amplification on a particular channel.

The threshold allows an operator to adjust for noise; signals below this value are ignored.

Output of each channel is scaled from 0 to 1 across threshold andmax, i.e., threshold produces

a 0 value, while max produces 1, values higher or lower are capped. The max setting is used

for adjusting the sensitivity of the control signal to the magnitude of contraction, i.e., if max

is set higher then the user will need to produce a stronger contraction in order to send a 1.

One of the channels in a pair produces positive group commands, while the other produces

negative group commands. For a toggling channel, the threshold value is used as the point

at which a toggling command will be sent, and max is ignored.

The rqt proportional emg node provides a graphical interface for controlling the pro-

portional controller as shown in Figure A.4. It shows each of the channels available and the

signals coming in for that channel. The operator is able to directly adjust gain, threshold,

and max on the screen. The interface also provides a large pause/play button, which con-

trols whether or not the proportional emg node is currently sending group commands to

bento controller.

A.1.3 Joystick Control

Joystick control is accomplished through the use of the standard ROS joy node and a custom

joy to bento node. The joy to bento node listens for incoming messages from a joystick

and converts them into the correct commands for controlling the Bento arm. A joystick can

be used to send joint movement commands as well as joint group commands and allows the

user to make service calls to bento controller for toggling pausing, turning torque on and
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Figure A.4: rqt proportional emg: Proportional EMG GUI

off, and sending the arm to its home position. The joy to bento node is written in such

a way as to take in a configuration file which creates a mapping between buttons and axis

commands from the joystick and the desired Bento commands. The mappings can be con-

figured in many different ways. The joystick can be configured in such a way as to operate

the arm in the same was as the proportional EMG controller. Finally, it should be noted

that using the joystick and the proportional EMG controller at the same time causes inter-

ference. Therefore a button on the joystick should be configured to toggle joy to bento’s

own internal paused state, which enables and disables sending control messages.
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A.2 Dynamixel Control

While the bento controller node is written to allow many different configurations and

support various grippers, only support for Dynamixel servo motors has thus far been imple-

mented.

The existing Dynamixel package for ROS implements several different types of servo

motor control including position and torque based control. However, we desired both velocity

and position based control, which required that I write my own controller to support velocity.

Velocity based control on Dynamixel motor presents an awkward challenge. The Dy-

namixel API can operate in two modes (some servos can also operate in torque based control

modes, but these were not yet used): wheel mode, and joint mode. Wheel mode allows the

servo to spin continuously and uses velocity based control. Joint mode allows a developer

to set limits from 0 to 360 degrees. While joint mode operates using position based control,

it allows you to set a velocity to use to approach the target position. However, if you set

a zero velocity, it does not mean stop, instead it is interpreted as go as fast as possible.

While the joint limits control does not consider the whole kinematics of the arm only the

limits of a single joint, it is still desirable as a first level safety measure. Thus, the velocity

based controller I have implemented operates in joint mode, so as to maintain the internal

joint limit functionality of the servos. To send a velocity command, first the desired speed

is set on the servo and then the limit in the direction of desired travel is given as the target

position. This creates a bit of difficulty in stopping the arm as we cannot send a zero velocity

command, but must, instead, estimate where the joint will be at the time it actually stops.

The reason why we must estimate this is that there is delay in the state updates as well as

in the time it takes for the command to be executed. At present the estimation is overly

simplified, simply adding the difference between the current position and previous position

to the current position. The result is that when you try to stop when traveling at higher

speeds the arm bounces back as the stop target position is not far enough ahead.

Another downside to the current implementation is that it currently depends on a custom

fork I made of the official repository, which means that I must keep it up to date or fall behind.
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Figure A.5: RViz model of the Bento Arm

I consider improving the Dynamixel control to be the top priority for improvement.

Specifically, the stopping ability must be improved as well as reverting to the official repos-

itory so that we can stay in sync rather than maintaining a separate fork.

A.3 Visualization and Simulation

ROS provides a package for visualization called RViz, which provides a framework for viewing

a robot, and how the robot perceives the world. I have created an initial model, based on

the CAD drawings of the Bento Arm, for the RViz package, as shown in Figure A.5, which

simply allows the user to view the arm orientation in real time.

Additionally, ROS integrates with a simulation package called Gazebo, which allows the

simulation of environments, robots, objects, and sensors. I have also implemented a basic

simulation of the Bento Arm based on the CAD drawings. However, the correct inertial

values for each joint have not yet been specified. Additionally, the simulator is presently

limited to driving the RViz visualization as the bento controller node does not yet support

integration with the simulator. In order to do that, is my recommendation that the new

ros control design principles be evaluated.
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Appendix B

Supplemental Maze Data

Additional experiments were run with the wire maze setup described in Section 5.5.

However, users controlled the robot arm using a joystick, which was configured to provide

the same types of signals as the toggling proportional control EMG system. That is, a

single-axis joystick provided a differential signal that was used to move the selected joint

proportional to the strength of the signal, and a button press was used to toggle between

available joints.

Prior to recording, each subject completed 20 circuits of the task under solo control so as

to familiarize themselves with the task. Each recording session then consisted of 20 circuits

of solo control, during which time the GVFs built up their predictive knowledge. Following

this DPCC was enabled for 20 circuits. All experiment parameters were kept the same as

those described in Section 5.5 with the exception that the prediction timescale was varied

between recording sessions. The recorded data is summarized in Table B.1.

Table B.1: Supplemental maze recordings
Subject Timescale (ts) Solo DPCC

Toggle Count Time (s) Toggle Count Time (s)
avg (stdev) min (count) max avg (stdev) fastest slowest avg (stdev) min (count) max first cct avg (stdev) fastest slowest first cct

A 20 15.7 (1.45) 14 (7) 18 27.2 (2.32) 24.6 35.2 4.05 (3.73) 1 (5) 17 17 22.9 (6.47) 15.7 39.9 37.5
B 15 13.6 (2.37) 10 (1) 18 20.0 (1.68) 18.1 23.5 7.45 (3.71) 3 (1) 19 14 23.3 (8.46) 15.0 49.1 44.5
C 10 13.7 (2.25) 10 (2) 18 20.6 (1.93) 18.3 24.6 6.05 (4.85) 0 (2) 21 21 21.6 (6.61) 15.9 43.8 43.8
Author 10 11.9 (1.37) 10 (4) 14 19.8 (0.843) 18.7 22.4 2.2 (0.616) 1 (1) 4 4 16.7 (0.865) 15.6 18.9 18.9
Author 15 11 (1.03) 10 (9) 13 19.0 (0.573) 18.2 20.7 3.45 (1.96) 1 (3) 8 1 17.0 (1.99) 14.0 22.5 16.3

For all recordings we see a reduction in the average number of toggle counts when moving

from solo control to DPCC. However, for subjects B and C, we see an increase in the average
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task time. Although, for subjects A, B, and C, we see that their fastest circuit under DPCC

was faster than the fastest achieved during solo control.

Subjects A-C all exhibited initial confusion when DPCC was enabled for the first time.

This can be seen in the first circuit with high toggle counts and slow task times. This

confusion was not exhibited by the author, who already had significant experience performing

the task under DPCC. This would seem to suggest that additional training under DPCC

might improve the other subjects’ performance.

Paraphrased comments made by Subject A:

“It made things faster, but I was having to correct at the end of each run. I
wasn’t clear when to take over from the machine — it crashed into the barrier,
was it going to continue to do so, or back off?”

Paraphrased comments made by Subject B:

“It’s pretty cool. It has memory; I kept screwing up in one area and it kept
reproducing it. The tape on the barriers was really annoying, it got caught on
the clips.”

My own observations are that using a smaller timescale than the one used in the experi-

ment described in Section 5.5 (0.7 s, 20 ts) seemed to produce fewer collisions with the maze

and less need for correction on the endpoints, resulting in cleaner trajectories.
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