
Privacy and Optimization for Distributed Machine Learning and Storage

by

Yaochen Hu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

c© Yaochen Hu, 2019

Abstract

We study the problem of applying optimization methods under realistic and challenging

constraints such as privacy, efficiency, etc., and demonstrate our design over two different

cases: distributed machine learning with distributed features and load balancing for erasure-

coded cloud storage systems.

First, we study an important distributed machine learning problem where features are

inherently distributed or vertically partitioned among multiple parties, and sharing of raw

data or model parameters among parties is prohibited due to privacy concerns. We propose

an asynchronous stochastic gradient descent (SGD) algorithm for such a feature distributed

machine learning (FDML) problem, with theoretical convergence guarantees under bounded

asynchrony. We also propose an alternating direction method of multipliers (ADMM) shar-

ing framework, a more robust approach over SGD method especially for data set with high

dimensional feature spaces and establish convergence and iteration complexity results under

non-convex loss. Besides, we introduce a novel technique from differential privacy for both

algorithms to further protect the data privacy.

Second, we study the load balancing and tail latency reduction problem for erasure

coded cloud storage systems, which lacks the flexibility of load balancing. We provide a

new perspective by proactively and intelligently launching degraded reads and propose a

variety of strategies on when and where to launch the degraded reads. We also solve the

load balancing problem by block migration for statistical load balancing and propose a local

block migration scheme with theoretical approximation ratio.

ii

To my parents and Tong Li.

iii

“Everything with form is unreal.”
Shakyamuni

“Do or do not, there is no try.”
Master Yoda

iv

Acknowledgements

First of all, I would like to thank Professor Di Niu, my PhD supervisor for the last 6 years and

a half. He is sharp on finding cutting edge research topics and efficient in bringing ideas into

works. I was deeply affected by his passion and perfection towards the writing in every paper

and I have learned valuable knowledge on how to be professional as a researcher. Besides, he

is also a good mentor for developing a professional career and gave me valuable suggestions

on how to be successful in lifetime. He provided lots of opportunities to collaborate with

industry from which I gained valuable experience on how to apply theory to solve real world

problems.

I would like to thank the colleagues in DSC, MIG, Tencent. Specifically, I am especially

grateful to Jianming Yang and Gang Luo. They raised interesting industry problems, from

which I came up with several ideas that contributed significantly to my research works. I

would like to thank Jianchao Tu, who provided help in constructing the prototype system

in my research work. I would like to thank Dong Wu, who was a very productive person and

helped me on collecting and preprocessing the data. Besides I would like to thank Tengjiao

Guo, Feiquan Huang and Shan Zhu for their support on my research. I would like to thank

Zheng Cai, Lei Chen, Xue Chen, Xiawei Duan, Tengjiao Guo, Feiquan Huang, Beibei Kong,

Gang Luo, Chi Ma, Zhiwei Shen, Lianzhi Tan, Dong Wu, Boyi Yang, Chao Yang, Dan Yi,

Liting Zhang, Zhaoyong Zhang and Shan Zhu for our precious friendship and their support

to my internship in Tencent. I would also like thank Jianming Yang, Yiwei Pan, Shengping

Zhou, Jian Xiong and Lin Nie for their kind support.

I would like to thank Professor Zongpeng Li for his supervising in one of my early

works. I was impressed by his enthusiasm and agile mind to research. I would like to thank

Professor Linglong Kong and Peng Liu from mathematical department, they are professional

mathematician who gave me important support in one of my theoretical research works. I

would like to thank Dr. Cheng Huang from Microsoft reach for his valuable suggestions in

my work on load balancing problem. Moreover, I would like to thank Dr. Majid Khabbazian

and Dr. Marek Reformat for being the member in my PhD supervisor committee.

I would like to thank the members I have met in Professor Niu’s group for our precious

friendship and collaborations. These include Haolan chen, Fred X Han, Chenglin Li, Bang

Liu, Yan Liu, Qikai Lu, Keith Mills, Dashun Wang, Shuopeng Zhang, Ting Zhang, Xv

Zhang, Mingjun Zhao and Rui Zhu. They are excellent and intelligent people and I have

v

gained much knowledge and wonderful ideas from the discussion with them. Specifically, I

have collaborated with Bang Liu, Shuopeng Zhang and Rui Zhu, who have provided precious

suggestions and insights to our works. I enjoyed discussing interesting math problems that

yields contra-intuitive results with Xv Zhang. I learned a lot from the conversation with

Haolan Chen.

Lastly, I would like to thank my family for their love, support and encouragement to

me.

vi

Contents

1 Introduction 1

1.1 Privacy and Distributed Machine Learning 1

1.2 Load Balancing in Erasure Coded Storage Systems 2

1.3 Thesis Organization and Contributions . 4

2 SGD Based Method to Distributed Machine Learning over Distributed

Features 6

2.1 Introduction . 6

2.2 Problem Formulation . 8

2.3 Asynchronous SGD for FDML . 10

2.3.1 The Synchronous Algorithm . 10

2.3.2 The Asynchronous Algorithm . 11

2.4 Distributed Implementation . 11

2.4.1 Implementation . 11

2.4.2 Privacy . 13

2.5 Convergence Analysis . 14

2.6 Experiments . 15

2.7 Related Work . 19

2.8 Summary . 21

3 ADMM Sharing Based Method to Distributed Machine Learning over

Distriubted Features 22

3.1 Introduction . 22

3.2 Empirical Risk Minimization over Distributed Features 23

3.3 The ADMM Sharing Algorithm . 24

3.3.1 Convergence Analysis . 25

3.3.2 Iteration Complexity Analysis . 27

3.4 Differentially Private ADMM Sharing . 27

3.5 Experiments . 29

3.6 Related Work . 33

3.7 Summary . 34

vii

4 Efficient Load Direction Method to Erasure Coded Storage System 35

4.1 Introduction . 35

4.2 Load Balancing in Coded Storage . 37

4.2.1 Terminology and System Model . 38

4.2.2 Proactive Degraded Reads . 39

4.2.3 Statistical Optimization . 40

4.2.4 Per-Request Optimal Decisions . 41

4.2.5 Distributed Power-of-Two Sampling 44

4.2.6 Summary . 44

4.3 Implementation and Experiment Setup . 44

4.3.1 The Controller and Logging . 46

4.4 Experimental Results . 48

4.4.1 Performance in the LRC-based System 50

4.4.2 Performance in the RS-coded System 51

4.5 Related Work . 53

4.6 Summary . 55

5 Efficient Block Placement Method to Erasure Coded Storage System 56

5.1 Introduction . 56

5.2 System Model and Problem Formulation . 57

5.3 Local Block Migration Algorithm . 59

5.3.1 Problem Reduction . 59

5.3.2 Local Block Migration Algorithm . 60

5.3.3 Feasibility and Worst-Case Approximation Ratio 61

5.3.4 Further Reducing Migration Overhead 62

5.3.5 Time Complexity and the Breakout Method 63

5.4 Simulation . 64

5.4.1 Performance of the LBM Optimization Algorithm 65

5.4.2 Queuing Simulation with Trace Replay 65

5.5 Related Work . 67

5.6 Summary . 68

6 Conclusion Remarks 70

6.1 Conclusion . 70

6.2 Future Directions . 71

6.2.1 Privacy and Distributed Machine Learning 71

6.2.2 Load Balancing in Erasure Coded Storage Systems 72

viii

7 Proofs 74

7.1 Supplementary Materials for Chapter 2 . 74

7.1.1 Proof of Proposition 1 . 74

7.2 Supplementary Materials for Chapter 3 . 77

7.2.1 Proof of Theorem 2 . 77

7.2.2 Proof of Theorem 3 . 82

7.2.3 Proof of Lemma 6 . 84

7.2.4 Proof of Theorem 7 . 87

7.3 Suplementary Materials for Chapter 5 . 89

7.3.1 Proof of Proposition 9 . 89

7.3.2 Proof of Theorem 10 . 89

7.3.3 Proof of Theorem 11 . 90

7.3.4 Proof of Theorem 13 . 92

Bibliography 93

ix

List of Tables

2.1 The performance on Tencent MyApp data. 17

2.2 The performance on a9a data. 18

4.1 Overall request latencies (seconds) and probing overhead (# probes/s) for

the LRC-based system. 53

4.2 Overall request latencies (seconds) and probing overhead (# probes/s) for

the RS coded system. 53

x

List of Figures

2.1 Illustrating FDML model (2.2), where the local predictions, each depending

on the local model on a party, are aggregated into a final output using linear

and nonlinear transformations (2.1). 8

2.2 A comparison between the three model training schemes for the LR model.

All curves are plotted for epochs 1–40, including the time curve in (d). . . . 15

2.3 A comparison between the three model training schemes for the NN model.

All curves are plotted for epochs 1–40, including the time curve in (d). . . . 16

2.4 Testing AUC under different levels of added noise during training for a9a

data set . 17

3.1 Performance over the a9a data set with 32561 training samples, 16281 testing

samples and 123 features. 30

3.2 Performance over the gisette data set with 6000 training samples, 1000 testing

samples and 5000 features. 31

3.3 Test performance for ADMM under different levels of added noise. 32

4.1 Illustration on why carefully triggered degraded reads may help balance the

loads. 39

4.2 The properties of the trace data collected from Windows Azure Storage (WAS). 45

4.3 System architecture with per-request optimal decisions based on instanta-

neous probing. 46

4.4 System architecture with statistical optimization based on lazy queue status

updates. 47

4.5 The CDFs of different latency metrics for the storage system based on a

(6,2,2) LRC. 48

4.6 Box plots for different latency metrics for the storage system based on a

(6,2,2) LRC. 49

4.7 CDFs of different latency metrics for the storage system based on a (6,3) RS

code. 51

4.8 Box plots of different latency metrics for the storage system based on a (6,3)

RS code. 52

xi

5.1 The properties of the trace data collected from Windows Azure Storage (WAS). 64

5.2 The performance of the Local Block Migration Algorithm with breakout ex-

tension. The horizontal lines in Fig. 5.2(a) indicate the reference performance

of the best of 1000 random placement and the decreasing curves indicate the

performance from the LBM. For each sample, the performance without break-

out extension can be spot on iterations before the “sudden” rise of the moves

in Fig. 5.2(b). 66

5.3 Performance of LBM, Best Random (the best out of 1000 random place-

ments), and Random placement in the round-based trace replay. 67

5.4 The simulated queue lengths in each time slot (second). 68

xii

Chapter 1

Introduction

Optimization methods have been widely studied since most modern applications or some

of their submodules can be modeled and improved as an optimization problem. However,

there are usually some critical gaps between theory and application to apply the optimiza-

tion methods in real problems. In this dissertation, we study two different problems with

challenging optimization constraints. The first one is to train a machine learning model over

distributed features while keeping the features local and confidential. Unlike most existing

distributed machine learning works that focuses on speeding up the training by parallel

computing, we design the distributed system and algorithm to utilize the distributed fea-

tures which is not sharable due to privacy issue. The second one is to reduce the tail latency

and balance the load for erasure coded cloud storage system, which is lack of flexible load

direction means. We provide several different optimization approaches in order to deal

with the challenging constraints, such as computation overhead, probing overhead, content

placement feasibility, content migration overhead, etc.

1.1 Privacy and Distributed Machine Learning

Machine learning is one of the most popular topics as it has been proved to be a power-

ful method to extract useful information from vast data. Most machine learning methods

rely on minimizing some loss or cost functions, which is essentially optimization problems.

The effectiveness of a machine learning model highly depends on availability of data, es-

pecially high-quality features. However, vast amount of data is naturally distributed and

cannot be shared due to privacy issues or regulation. Examples include a user’s behavioural

data logged by multiple apps, a patient’s record stored at different hospitals and clinics, a

user’s investment behavior logged by multiple financial institutions and government agen-

cies and so forth. To fully extract the value of those distributed data, we need to find some

method which keeps the locality of data and minimize the information leakage other than

those directly correlated to target applications. The major challenge here is to solve the

optimization problem during training while maintaining the privacy of the data.

To solve the above challenges, we design, implement and extensively evaluate a practical

1

Feature Distributed Machine Learning (FDML) system based on real-world datasets. For

any supervised learning task, e.g., classification, our system enables each party to use an

arbitrary model (e.g., logistic regression, factorization machine, SVM, and deep neural

networks) to map its local feature set to a local prediction, while different local predictions

are aggregated into a final prediction for classification via a “hyper-linear structure”, which

is similar to softmax.

We propose two different algorithms to train model in FDML. One is a mini-batched

stochastic gradient descent (SGD) algorithm performed in the sense of stale synchronous

parallel (SSP) [Ho et al., 2013], i.e., different parties are allowed to be at different iterations

of parameter updates up to a bounded delay. We theoretically establish a convergence rate of

O(1√
T
) for the proposed asynchronous FDML algorithm under certain assumptions (includ-

ing the bounded delay assumption[Ho et al., 2013]), where T is the number of iterations

on (the slowest) party, which matches the standard convergence rate of fully centralized

synchronous SGD training with a convex loss as well as that known for asynchronously

distributed data-parallel SGD in SSP[Ho et al., 2013]. The other algorithm is alternating

direction method of multipliers (ADMM) sharing based algorithm. We establish theoreti-

cal convergence guarantees and iteration complexity results under the non-convex loss in a

fully parallel setting, whereas previously, the convergence of ADMM sharing algorithm for

non-convex losses is only known for the case of sequential (Gauss-Seidel) execution[Hong et

al., 2016]. Experiment results shows the effectiveness of both algorithms. Specifically, the

SGD-based algorithm is more versatile to different local models while the ADMM-based

algorithm is more robust and scalable to large number of features.

A highlight of our FDML system is that during each training iteration, every party is

solely responsible for updating its own local model parameters (local net) using its local

feature sets, and for each record, only needs to share its local prediction to the central

server (or to other parties directly in a fully decentralized scenario). Since neither the

original features nor the local model parameters of a party are transferred to any external

sites, the FDML system preserves data locality and is much less vulnerable to model in-

version attacks[Hitaj et al., 2017] targeting other collaborative learning algorithms[Shokri

and Shmatikov, 2015; Zhou et al., 2016] that share model parameters between parties.

Moreover, we further enhance the data privacy by adopting a differential-privacy-based

method[Dwork, 2008; Dwork et al., 2014; Shokri and Shmatikov, 2015] by adding some

perturbations to the shared local predictions.

1.2 Load Balancing in Erasure Coded Storage Systems

Cloud storage systems, such as Hadoop Distributed File System (HDFS)[Borthakur, 2008],

Google File System (GFS)[Ghemawat et al., 2003] andWindows Azure Storage (WAS)[Calder

et al., 2011], store large amounts of enterprise-level and personal data. Since these systems

rely on commodity servers in datacenters, content must be replicated (e.g., for 3 times in

2

HDFS) for fault-tolerance. Erasure coding, e.g., an (k, r) systematic Reed-Solomon (RS)

code, is further adopted in many production systems, e.g., Windows Azure Storage[Huang

et al., 2012], Google’s ColossusFS, Facebook’s HDFS, to offer significantly higher relia-

bility than data replication at a much lower storage cost[Weatherspoon and Kubiatow-

icz, 2002; Khan et al., 2012]. In these system, the uncoded block is stored on only one

server and reading requests are directed to those blocks primarily unless the data block is

unavailable due to server congestion or server failure. Degraded reads that reconstruct the

content by retrieving information from several coded blocks will be launched for unavailable

data. Unlike the traditional 3-replica system that has convenient ad-hoc means to balance

the load, the unbalanced load and long tail latency is more likely to happen in a erasure

coded system.

The problem of latency reduction and load balancing problem can be modeled as op-

timization problem in both the request direction phase and the content placement phase.

The challenges lies in several aspects. In the load direction phase, the time complexity is

critical for decision making since it may eventually increase the latency. Moreover, different

strategies incur different levels of probing overhead that measures the queuing status of

candidate servers. Therefore the balance between the accuracy and efficiency of the opti-

mization methods is critical. In the content placement phase, the solution to the related

optimization problem will influence the placement of content, and the overhead of migrating

content blocks cannot be ignored. Therefore we need to find the solution efficiently in terms

of time complexity and/or the overhead imposed to the real system.

For load direction, we propose to proactively and intelligently launch degraded reads in

order to shift loads away from hotspots and prevent potential congestion early. Intuitively

speaking, if a hot object is attracting a large number of requests which may potentially con-

gest its original storage node, we may serve some of these requests through degraded reads

in the first place, without waiting for normal read timeouts. Although proactive degraded

reads may reduce the longest queues, they may flood the system with more reading tasks

and affect the service latencies for other requests in general. Therefore, we must carefully

decide: 1) for which request a degraded read should be performed, and 2) should a degraded

read be used, from which storage nodes the degraded read should be served. Toward these

objectives, we propose a variety of load balancing approaches to reduce latencies in era-

sure coded storage systems, including statistical optimization that can globally coordinate

different requests and per-request optimal decisions. A first approach is an efficient opti-

mization framework that intelligently maintains a load direction table between all requests

and storage nodes, based on periodically sampled demand and queue statistics. This ap-

proach is sub-optimal since it only updates direction decisions periodically, failing to utilize

instantaneous load information. We then naturally turn to per-request optimal decisions,

one of which is least latency first, that is to serve each request with the normal read or a

degraded read, whichever minimizes the current request latency. However, this may lead to

3

an excessive number of degraded reads and increase overall system burden, affecting future

requests. To solve this issue, we introduce the key notion of marginal load and propose a

novel least-marginal-load-first policy which judiciously and lazily launches degraded reads

for load balancing based on server queue length statistics, without flooding the system. To

reduce the server queue length probing overhead, we further adapt the power-of-two sam-

pling idea to our per-request optimal load balancing in coded storage systems. We show

that the per-request optimal decision is essentially the optimal solution to the statistical

optimization problem for each single request with a specific objective function.

For content placement, we place blocks with anti-correlated demands on a same server

to benefit from statistical multiplexing and prevent certain hot blocks from congesting a

specific server. We formulate the content placement optimization to minimize the expected

average waiting time of all incoming requests, based on the mean and covariance of demands

for different blocks, which can be readily measured according to recent request history.

To avoid globally shuffling blocks across the system, we require all block migration to be

local, and move as few blocks as possible with respect to the current placement to reduce

the migration overhead. Our statistical content placement problem is similar to the Min-

k-Partition problem, a well-known NP-complete problem[Kann et al., 1997; Karp, 1972],

which aims to divide a graph into k partitions to minimize the sum of all intra-partition

edge weights. Yet, our problem turns out to be even more challenging, since we also need

to handle an additional constraint that no blocks from the same coded group can be placed

on the same server, which is needed to maintain the promised reliability of an (k, r) RS

code. We introduce a novel technique to convert this constraint into carefully designed

weights in the objective function and propose a time-efficient local search algorithm which

only moves the block that reduces the latency objective the most at a time. We prove that

our algorithm always produces a feasible solution that satisfies the special constraint and

theoretically derive the worst-case approximation ratio of our algorithm with respect to the

global optimality. We characterize such a ratio as a function of demand statistics; the larger

the demand variation among blocks, the better the approximation.

1.3 Thesis Organization and Contributions

We first introduce feature distributed machine learning problem and the SGD based method

to train the machine learning model in Chapter 2 [Hu et al., 2019]. Our contributions are

• Proposing an effective feature distributed machine learning (FDML) model that utilize

the distributed features while keeping them local and confidential. (Sec. 2.2)

• Proposing a stale synchronized SGD based training algorithm. (Sec. 2.3, Sec. 2.4)

• Theoretically deriving the convergence rate of O(1/
√
T), T being the number of train-

ing iterations. (Sec. 2.5)

4

We introduce the ADMM based method to train the FDML model in Chapter 3 and our

contributions are

• Proposing a parallel ADMM sharing algorithm to train the FDML model. (Sec. 3.3)

• Deriving the convergence of the proposed algorithm as well as the iteration complex-

ity for non-convex loss functions, where the existing work only analyzes the case of

sequential (Gauss-Seidel) update. (Sec. 3.3)

• Combining technique from differential privacy into the proposed algorithm and derived

the privacy loss. (Sec. 3.4)

We introduce the tail latency reduction problem for erasure coded cloud storage system and

our proposed efficient optimization method in Chapter 4 [Hu et al., 2017]. Our contributions

are

• Proposing proactive degraded reading approach to shift loads away from hotspots and

prevent potential congestion early. (Sec. 4.2)

• Proposing varieties of proactive degraded reading strategies including statistical op-

timization, per-request optimization by least loaded first or least marginal load first

and power-of-two sampling. (Sec. 4.2)

• Implementing a prototype system and verifying our strategies over a real data trace

collected from Windows Azure Storage. (Sec. 4.3, Sec. 4.4)

In Chapter 5, we introduce another optimization method to the load balancing problem via

a local block migration algorithm [Hu and Niu, 2016]. Our contributions are

• Proposing to reduce the access latency in coded storage systems through a new ap-

proach of block placement adjustment and controlled block migration. (Sec. 5.2)

• Modeling the problem statistically and transforming the problem into min-k-partition

problem by eliminating the challenging constraints of placement feasibility with a

penalty term. (Sec. 5.2)

• Proposing the local block migration algorithm with theoretical guarantee of feasibility

and approximation ratio. (Sec. 5.3)

Chapter 6 concludes the dissertation and proposes promising future directions.

5

Chapter 2

SGD Based Method to Distributed
Machine Learning over Distributed
Features

2.1 Introduction

While the success of modern machine learning lays the foundation of many intelligent ser-

vices, the performance of a model often depends on the availability of data. In most appli-

cations, however, a large quantity of useful data may be generated on and held by multiple

parties. Collecting such data to a central site for training incurs extra management and

business compliance overhead, privacy concerns, or even regulation and judicial issues. As

a result, a number of distributed machine learning techniques have been proposed to col-

laboratively train a model by letting each party perform local model updates and exchange

locally computed gradients [Shokri and Shmatikov, 2015] or model parameters[McMahan et

al., 2016] with the central server to iteratively improve model accuracy. Most of the exist-

ing schemes, however, fall into the range of data parallel computation, where the training

samples are located on different parties. For example, different users hold different images

to jointly train a classifier. Different organizations may contribute their individual corpora

to learn a joint language model.

We study distributed machine learning based on another motivation, where different

features of a same sample are held by different parties. The question is—can we improve

the predictive power at one party by leveraging additional features from another domain

or party, yet without requiring any party to share its features? This is a real problem

we are solving at Tencent MyApp, one of the largest Android app stores in China, with a

market share of 24.7% in China in 2017. Tencent MyApp performs app recommendation and

activation rate prediction based on the user and app features logged in its own platform.

However, it turns out other Tencent apps including Tencent QQ Browser and Tencent

Mobile Safeguard share a large number of common users with MyApp. Since these apps may

have complementary information about a user, such cross-domain knowledge from another

6

app, if utilized, may help to train a joint model that can improve app recommendation and

customer behavior preference prediction in MyApp. However, due to privacy and customer

protection regulations, raw customer data are not to be shared across apps that belong to

different departments.

A natural question is—how can we train a joint machine learning model if the features

of each training sample are located on multiple distributed parties? To make the solu-

tion practical with the most conservative assumption on information sharing, we bear the

following goals:

• To minimize information leakage, no party should share its feature set. Neither should

any of its local model parameters be communicated to other parties.

• The prediction made by the joint model should outperform the prediction made by

each isolated model trained only with a single party’s feature set, provided that such

improvement from joint features also exists in centralized training.

• The joint model produced should approach the model trained in a centralized manner

if all the features were collected centrally.

• The system should be efficient in the presence of both large numbers of features and

samples.

To solve the above challenges, in this chapter, we design, implement and extensively

evaluate a practical Feature Distributed Machine Learning (FDML) system based on real-

world datasets. For any supervised learning task, e.g., classification, our system enables

each party to use an arbitrary model (e.g., logistic regression, factorization machine, SVM,

and deep neural networks) to map its local feature set to a local prediction, while different

local predictions are aggregated into a final prediction for classification via a “hyper-linear

structure,” which is similar to softmax. The entire model is trained end-to-end using a

mini-batched stochastic gradient descent (SGD) algorithm performed in the sense of stale

synchronous parallel (SSP)[Ho et al., 2013], i.e., different parties are allowed to be at dif-

ferent iterations of parameter updates up to a bounded delay.

A highlight of our system is that during each training iteration, every party is solely

responsible for updating its own local model parameters (local net) using its own mini-

batch of local feature sets, and for each record, only needs to share its local prediction

to the central server (or to other parties directly in a fully decentralized scenario). Since

neither the original features nor the local model parameters of a party are transferred to any

external sites, the FDML system preserves data locality and is much less vulnerable to model

inversion attacks[Hitaj et al., 2017] targeting other collaborative learning algorithms[Shokri

and Shmatikov, 2015; Zhou et al., 2016] that share model parameters between parties.

Moreover, we further enhance the data privacy by adopting a differential-privacy-based

method[Dwork, 2008; Dwork et al., 2014; Shokri and Shmatikov, 2015]. by adding some

perturbations to the shared local predictions.

7

Figure 2.1: Illustrating FDML model (2.2), where the local predictions, each depending on
the local model on a party, are aggregated into a final output using linear and nonlinear
transformations (2.1).

We theoretically establish a convergence rate of O(1√
T
) for the proposed asynchronous

FDML algorithm under certain assumptions (including the bounded delay assumption[Ho

et al., 2013]), where T is the number of iterations on (the slowest) party, which matches

the standard convergence rate of fully centralized synchronous SGD training with a convex

loss as well as that known for asynchronously distributed data-parallel SGD in SSP[Ho et

al., 2013].

We developed a distributed implementation of FDML in a parameter server architecture,

and conducted experiments based on both a public data set a9a[Dheeru and Karra Taniski-

dou, 2017], and a large dataset of 5, 000, 000 samples and 8700 decentralized features col-

lected from three popular Tencent Apps, including Tencent MyApp, Tencent QQ Browser

and Tencent Mobile Safeguard. Extensive experimental results have demonstrated that

FDML can even closely approach centralized learning in terms of testing errors, without vi-

olating data locality constraints, although centralized learning can use a more sophisticated

model, since all features are collected centrally. In the meantime, FDML significantly out-

performs models trained only based on the local features of each single app, demonstrating

its advantage in harvesting insights from additional cross-domain features.

2.2 Problem Formulation

Consider a system of m different parties, each party holding different aspects about the

same training samples. Let {(ξ1i , ξ2i , . . . , ξmi), yi}ni=1 represent the set of n training samples,

where the vector ξji ∈ R
dj denotes the features of the ith sample located on jth party, and

yi is the label of sample i. Let ξi ∈ R
d be the overall feature vector of sample i, which

is a concatenation of the vectors ξ1i , ξ
2
i , . . . , ξ

m
i , with d =

∑
j dj . Suppose the parties are

not allowed to transfer their respective feature vector to each other out of regulatory and

privacy reasons as has been mentioned above. In our problem, the feature vectors on two

8

parties may or may not contain overlapped features. The goal of machine learning is to

find a model p(x, ξ) with parameters x that given an input ξ, can predict its label y, by

minimizing the loss between the model prediction p(x, ξi) and its corresponding label yi

over all training samples i.

We propose a Feature Distributed Machine Learning (FDML) algorithm that can train

a joint model by utilizing all the distributed features while keeping the raw features at each

party unrevealed to other parties. To achieve this goal, we adopt a specific class of model

that has the form

p(x, ξ) = σ

(m∑
j=1

ajα
j(xj , ξj)

)
, (2.1)

where αj : R
Dj × R

dj → R, j = 1, . . . ,m, is a sub-model on party j with parameters

xj ∈ R
Dj

, which can be a general function that maps the local features ξj on each party

j to a local prediction. In addition, σ : R → R is a continuously differentiable function to

aggregate local intermediate predictions αj(xj , ξj) weighted by aj . Note that x ∈ R
D, with

D =
∑

j Dj , is a concatenation of the local model parameters xj over all parties j.

As illustrated by Fig. 2.1, the model adopted here is essentially a composite model, where

each sub-model αj on party j with parameters xj could be an arbitrary model, e.g., logistic

regression, SVM, deep neural networks, factorization machines, etc. Each sub-model xj on

party j is only concerned with the local features ξj . The final prediction is made by merging

the local intermediate results through a linear followed by nonlinear transformations, e.g., a

softmax function. Note that in (2.1), all aj can be eliminated by scaling some corresponding

parameters in α(xj , ξj) by 1/aj . Without loss of generality, we simplify the model to the

following:

p(x, ξ) = σ

(m∑
j=1

αj(xj , ξj)

)
. (2.2)

Apparently, in this model, both the local features ξj and the sub-model parameters xj

are stored and processed locally within party j, while only the local predictions αj(xj , ξj)

need be shared to produce the final prediction. Therefore, the raw features as well as

all sub-model parameters are kept private. In Sec. 2.3, we propose an asynchronous SGD

algorithm that also preserves the non-sharing properties for all the local features as well as all

sub-model parameters even during the model training phase, with theoretical convergence

guarantees.

In general, the model is trained by solving the following problem:

minimizex
1

n

n∑
i=1

L(x; ξi, yi) + λ
m∑
j=1

zj(xj), (2.3)

where L
(
p(x, ξ); y

)
is the loss function, indicating the gap between the predicted value and

the true label for each sample. z(xj) is the regularizer for sub-model xj .

9

2.3 Asynchronous SGD for FDML

In this chapter, we describe our asynchronous and distributed stochastic gradient descent

(SGD) algorithm specifically designed to solve the optimization problem (2.3) in FDML,

with theoretical convergence guarantees.

Since we consider a stochastic algorithm, let i(t) be the index of the sample ξi(t) presented

to the training algorithm in iteration t. We denote the regularized loss of sample i(t) by

Ft(x) := L(x; ξi(t), yi(t)) + λ
m∑
j=1

zj(xj). (2.4)

In stochastic optimization, minimizing the loss in (2.3) over the entire training set is equiv-

alently to solving the following problem[Ho et al., 2013]:

minimizexF (x) :=
1

T

∑
t

Ft(x), (2.5)

where T is the total number of iterations. Let ∇F (x) ∈ R
D be the gradient of F . Let

∇jF (x) ∈ R
Dj

be the partial gradient of F with respect to the sub-model parameters

xj ∈ R
Dj

, i.e., ∇jF (x) := ∂F (x)
∂xj . Clearly, ∇F (x) is the concatenation of all the partial

gradients ∇1F (x),∇2F (x), . . . ,∇mF (x).

2.3.1 The Synchronous Algorithm

In a synchronous setting, we can simply parallelizing a SGD algorithm by updating each

parameter block xj concurrently for all j = 1, . . . ,m, given a coming sample i(t), i.e.,

xjt+1 := xjt − ηt∇jFt(x
1
t , . . . , x

m
t), where ηt is a predefined learning rate scheme. Specifically

for model (2.2), according to (2.4), we can obtain the partial gradient ∇jFt(x) for j =

1, . . . ,m as

∇jFt(x) = λ
∂zj(xj)

∂xj
+

L′
(
σ

(m∑
k=1

αk(xk, ξki(t))

))
σ′(m∑

k=1

αk(xk, ξki(t))
)∂αj(xj , ξji(t))

∂xj
(2.6)

:= H

(m∑
k=1

αk(xk, ξki(t))

)∂αj(xj , ξji(t))

∂xj
+ λ

∂zj(xj)

∂xj
, (2.7)

where we simplify the notation of the first few terms related to
∑m

k=1 α
k(xk, ξki(t)) by a

function H(·). In practice, zj could be non-smooth. This setting is usually handled by

proximal methods. In this work, we are only focused on the smooth case.

This indicates that for the class of models in (2.2) adopted by FDML, each party j does

not even need other parties’ models xk, where k �= j, to compute its partial gradient ∇jFt.

Instead, to compute ∇jFt in (2.7), each party j only needs one term,
∑m

k=1 α
k(xk, ξki(t)),

which is the aggregation of the local prediction results from all parties at iteration t, while

10

the remaining terms in (2.7) is only concerned with party j’s local model xj and local

features ξji(t). Therefore, this specific property enables a parallel algorithm with minimum

sharing among parties, where neither local features nor local model parameters need be

passed among parties.

2.3.2 The Asynchronous Algorithm

The asynchronous implementation of this idea in a distributed setting of multiple parties,

with theoretical convergence guarantees, is significantly more challenging than it seems. As

our proposed algorithm is closely related to asynchronous SGD, yet extends it from the

data-parallel setting[Ho et al., 2013] to a block-wise model parallel setting, we would call

our algorithm Asynchronous SGD for FDML.

Note that in an asynchronous setting, each party j will update its own parameters xjt
asynchronously and two parties may be in different iterations. However, we assume different

parties go through the samples ξi(t) in the same order, although asynchronously, i.e., all the

parties share the randomly generated sample index sequence {i(t)|t = 1, . . . , T}, which can

easily be realized by sharing the seed of a pseudo random number generator.

When each party j has its own iteration t, the local model parameters xjt on party j is
updated by

xj
t+1 = xj

t − ηt

(
H

(m∑
k=1

αk(xk
t−τj

t (k)
, ξki(t))

)
∂αj(xj

t , ξ
j
i(t))

∂xj
+ λ

∂zj(xj
t)

∂xj

)
, (2.8)

where the requested aggregation of local predictions for sample ξi(t) may be computed from

possibly stale versions of model parameters, xk
t−τ jt (k)

on other parties k �= j, where τ jt (k)

represents how many iterations of a “lag” there are from party k to party j at the tth

iteration of party j. We abuse the word “lag” here since party k could be faster than party

j. We overflow the notation for that case by assigning negative value to τ jt (k). We give a

convergence speed guarantee of the proposed algorithm under certain assumptions, when

the lag τ jt (k) is bounded.

2.4 Distributed Implementation

2.4.1 Implementation

We present a distributed implementation of the proposed asynchronous SGD algorithm

for FDML. Our implementation is inspired by the Parameter Server architecture[Li et al.,

2014b; Li et al., 2014a; Chilimbi et al., 2014]. In a typical Parameter Server system, the

workers compute gradients while the server updates the model parameters with the gradients

computed by workers. Yet, in our implementation, as described in Algorithm 1, the only

job of the server is to maintain and update a matrix Ai,j , i = 1, . . . , n, j = 1, . . . ,m, which

is introduced to hold the latest m local predictions for each sample i. We call [Ai,j]n×m

the local prediction matrix. On the other hand, unlike servers, the workers in our system

11

each represent a participating party. They do not only compute gradients, but also need to

update their respective local model parameters with SGD.

Furthermore, since each worker performs local updates individually, each worker can

even further employ a parameter server cluster or a shared-memory system, e.g., a CPU/GPU

workstation, to scale up and parallelize the computation workload related to any local model

it adopts, e.g., a DNN or FM. A similar hierarchical cluster is considered in Gaia[Hsieh et

al., 2017], though for data-parallel machine learning among multiple data centers.

Algorithm 1 A Distributed Implementation of FDML

Require: each worker j holds the local feature set {ξji , yi}ni=1, j = 1, . . . ,m; a sample
presentation schedule i(t), t = 1, . . . , T , is pre-generated randomly and shared among
workers.

Ensure: model parameters xT = (x1T , . . . , x
m
T).

1: Server: .
2: Initialize the local prediction matrix [Ai,j]n×m.
3: while True do
4: if Pull request (worker: j, iteration: t) received then
5: if t is not τ iterations ahead of the slowest worker then
6: Send

∑m
k=1Ai(t),k to Worker j

7: else
8: Reject the Pull request

9: if Push request (worker: j, iteration: t, value: c) received then
10: Ai(t),j := c.

11: Worker j (j = 1, . . . ,m) asynchronously performs: .
12: for t = 1, . . . , T do
13: Push c := αj(xjt , ξ

j
i(t)) to Server

14: while Pull not successful do
15: Pull

∑m
k=1Ai(t),k from Server

16: ∇jFt :=

(
H(

∑m
k=1Ai(t),k) ·

∂αj(xj
t ,ξ

j
i(t)

)

∂xj + λ
∂zj(xj

t)
∂xj

)
17: Update the local weights as

xj
t+1 := xj

t − ηt∇jFt. (2.9)

First, we describe how the input data should be prepared for the FDML system. Before

the training task, for consistency and efficiency, a sample coordinator will first randomly

shuffle the sample indices and generate the sample presentation schedule i(t), which dictates

the order in which samples should be presented to the training algorithm. However, since

features of a same sample are located on multiple parties, we need to find all the local

features ξ1i , ξ
2
i , . . . , ξ

m
i as well as the label yi associated with sample i. This can be done by

using some common identifiers that are present in all local features of a sample, like user IDs,

phone numbers, data of birth plus name, item IDs, etc. Finally, the labels yi will be sent

to all workers (parties) so that they can compute error gradients locally. Therefore, before

12

the algorithm starts, each worker j holds a local dataset {ξji , yi}ni=1, for all j = 1, . . . ,m.

Let us explain Algorithm 1 from a worker’s perspective.

To solve for x collaboratively, each worker j goes through the iterations t = 1, . . . , T

individually and asynchronously in parallel, according to the (same) predefined sample

presentation schedule i(t) and updates its local model xj according to (2.9). In a particular

iteration t, when worker j updates xjt with the current local features ξji(t), it first sends

its updated local prediction about sample i(t) to the server in order to update Ai(t),j , i.e.,

Ai(t),j := αj(xjt , ξ
j
i(t)). And this update is done through the value c uploaded to the server

in a Push request from worker j with iteration index t and value c. After this update, it

pulls the latest
∑m

k=1Ai(t),k from the server based on the latest versions of local predictions,

Ai(t),k, maintained on the server for all the workers k = 1, . . . ,m. Then xjt is updated into

xjt+1 locally by (2.9).

Since the workers perform local model updates asynchronously, at a certain point, dif-

ferent workers might be in different iterations, and a faster worker may be using the stale

local predictions from other workers. We adopt a stale synchronous protocol to strike a

balance between the evaluation time for each iteration and the total number of iterations

to converge—a fully synchronous algorithm takes the least number of iterations to converge

yet incurs large waiting time per iteration due to straggler workers, while on the other hand,

an asynchronous algorithm reduced the per iteration evaluation time, at the possible cost

of more iterations to converge. In order to reduce the overall training time, we require that

the iteration of the fastest party should not exceed the iteration of the slowest party by τ ,

i.e., the server will reject a pull request if the t from the Pull request(worker: j, iteration: t)

is τ iterations ahead of the slowest worker in the system. A similar bounded delay condition

is enforced in most Parameter-Server-like systems[Li et al., 2014b; Chilimbi et al., 2014; Li

et al., 2016; Abadi et al., 2016b; Hsieh et al., 2017] to ensure convergence and avoid chaotic

behavior of a completely asynchronous system.

In real applications, the SGD algorithm can easily be replaced with the mini-batched

SGD, by replacing the sample presentation schedule i(t) with a set I(t) representing the

indices of a mini-batch of samples to be used iteration t, and replacing the partial gradient

in (2.8) with the sum of partial gradients over the mini-batch I(t).

2.4.2 Privacy

In FDML, one of the primary concerns is to preserve the privacy of the local feature data.

Due to the specific model structure and the well designed algorithm, no model weights or

features are uploaded from any parties. The only shared information is the intermediate

local prediction results for each training or testing sample, which is some comprehensive

function over both the local features and model weights. Therefore, there is little chance to

leak the original features to honest servers or other parties.

To further protect the feature data at each party from malicious servers and par-

13

ties, we apply differential privacy based methods by perturbing the local predictions to

be uploaded[Dwork, 2008; Dwork et al., 2014; Shokri and Shmatikov, 2015]. In particular,

we add some noise to the local prediction result αj(xjt , ξ
j
i(t)) at party j to protect the privacy

of all the input features at party j.

2.5 Convergence Analysis

Inspired by a series of studies[Langford et al., 2009; Ho et al., 2013; Hsieh et al., 2017] on the

convergence behavior of convex objective functions, we analyze the convergence property

of the proposed asynchronous algorithm by evaluating a regret function R, which is the

difference between the aggregated training loss and the loss of the optimal solution, defined

as

R =
1

T

∑
t

Ft(xt)− F (x∗), (2.10)

where x∗ is the optimal solution for F (x), such that x∗ = argminxF (x). During training,

the same set of data will be looped through for several epochs. This is as if a very large

dataset is gone through till T th iteration. We will prove convergence by showing that R

will decrease to 0 with regard to T . Before presenting the main result, we introduce several

notations and assumptions. We use Dt to denote the distance measure from xt to x∗, i.e.,
Dt := 1

2 ‖xt − x∗‖22. We make the following common assumptions on the loss function,

which are used in many related studies as well.

Assumption 1 1. The function Ft is differentiable and the partial gradient ∇jf are

Lipschitz continuous with Lj, namely,

‖∇jFt(x1)−∇jFt(x2)‖ ≤ Lj‖x1 − x2‖, (2.11)

for ∀x1, x2 ∈ R
D. We denote Lmax as the maximum among the Lj for ∀j.

2. Convexity of the loss function Ft(x).

3. Bounded solution space. There exists a D > 0, s.t., Dt ≤ 1
2D

2 for ∀t.

As a consequence of the assumptions, the gradients are bounded, i.e., ∃G > 0, s.t., ‖∇F (x)‖22 ≤
G2. for ∀x ∈ R

D With these assumptions, we come to our main result on the convergence

rate of the proposed SGD algorithm.

Proposition 1 Under circumstances of the assumptions in Assumption 1, with a learning

rate of ηt =
η√
t
, and a bounded staleness of τ , the regret R given by the updates (2.8) for

the FDML problem is R = O(1√
T
).

Proof. Please refer to Appendix for the proof.

14

0 20 40
Epochs

0.100

0.110

0.120

0.130

0.140

0.150

O
b
je
ct
iv
e

LR local

LR centralized

LR FDML

(a) Training objective vs. epoch

0 20 40
Epochs

0.118

0.120

0.122

L
og

L
os
s LR local

LR centralized

LR FDML

(b) Tesiting log loss vs. epoch

0 20 40
Epochs

0.660

0.680

0.700

A
U
C

LR local

LR centralized

LR FDML

(c) Tesiting AUC vs. epoch

0 100 200
Time (min)

0.100

0.110

0.120

0.130

0.140

O
b
je
ct
iv
e

LR local

LR centralized

LR FDML

(d) Training objective vs. time

Figure 2.2: A comparison between the three model training schemes for the LR model. All
curves are plotted for epochs 1–40, including the time curve in (d).

2.6 Experiments

We are testing the application of the proposed FDML system in an app recommendation

task at Tencent MyApp, which is a major Android market with an extremely large body of

users in China. In this task, user features, including the past download activities in MyApp,

are recorded. In the meantime, the task can also benefit from cross-domain features about

the same users logged in two other apps (run by different departments of the same company),

including QQ Browser that tracks user interests based on their content viewing history, as

well as Tencent Mobile Safeguard, which records the app invoking and usage history of

users.

The goal here is to leverage the additional user features available from the other domains

to improve the app recommendation in MyApp, yet without having to download the raw

user features from other apps to avoid regulatory issues, as customer data in different

15

0 20 40
Epochs

0.080

0.100

0.120

O
b
je
ct
iv
e

NN local

NN centralized

NN FDML

(a) Training objective vs. epoch

0 20 40
Epochs

0.120

0.140

0.160

0.180

L
og

L
os
s

NN local

NN centralized

NN FDML

(b) Tesiting log loss vs. epoch

0 20 40
Epochs

0.600

0.650

0.700

A
U
C

NN local

NN centralized

NN FDML

(c) Tesiting AUC vs. epoch

0 200 400
Time (min)

0.090

0.100

0.110

0.120

O
b
je
ct
iv
e

NN local

NN centralized

NN FDML

(d) Training objective vs. time

Figure 2.3: A comparison between the three model training schemes for the NN model. All
curves are plotted for epochs 1–40, including the time curve in (d).

departments are protected under different security levels and even under different customer

agreements. Some sensitive features under strong protection are prohibited to be moved to

other parties, including other departments.

The dataset we use contains 5, 000, 000 labeled samples indicating whether a user will

download an app or not. Each sample is a user-app pair, which contains around 8, 700

(sparse) features in total, among which around 7, 000 features come from Tencent MyApp

itself, while the remaining 1, 700 features are from the other two apps. We randomly shuffle

the data and split it into a 4.5 million training set and a 0.5 million testing set.

We also evaluate FDML on another public data set a9a[Dheeru and Karra Taniskidou,

2017], a classical census dataset, where the prediction task is to determine whether a person

makes over $50K a year. There are 48, 842 samples, each with 124 features. 32, 661 samples

are training data and 16, 281 samples are testing data. We split the 124 features into two

sets of 67 and 57. We run both a logistic regression (LR) and a two layered fully connected

16

0.1 0.3 1 3 10 30
Noise Level

0.800

0.850

0.900

A
U
C

LR FDML

LR local

LR centralized

(a) Test AUC vs. added noise for LR

0.1 0.3 1 3 10 30
Noise Level

0.700

0.750

0.800

0.850

0.900

A
U
C

NN FDML

NN local

NN centralized

(b) Test AUC vs. added noise for NN

Figure 2.4: Testing AUC under different levels of added noise during training for a9a data
set

Table 2.1: The performance on Tencent MyApp data.
Algorithm Train loss Test loss Test AUC Time(s)

LR local 0.1183 0.1220 0.6573 546
LR centralized 0.1159 0.1187 0.7037 1063
LR FDML 0.1143 0.1191 0.6971 3530

NN local 0.1130 0.1193 0.6830 784
NN centralized 0.1083 0.1170 0.7284 8051
NN FDML 0.1101 0.1167 0.7203 4369

neural network (NN) under three different training schemes for both data sets:

• Local : only use the 7, 000 local features from MyApp or the 67 features of a9a to train

a model.

• Centralized : collect all the 8, 700 features from all three apps to a central server or

using all the 124 features in a9a and train the model using the standard mini-batched

SGD.

• FDML: use FDML system to train a joint model for app recommendation based on

all 8, 700 features distributed in three apps or train the a9a classification model on all

124 features from two different parties, without centrally collecting data.

For FDML, there is a single server with several workers, each of which equipped with

an Intel Xeon CPU E5-2670 v3 @ 2.30GHz. Each worker handles the features from one

party. The system will be asynchronous as the lengths of features handled by each worker

are different. The FDML NN only considers a fully connected NN within each party while

merging the three local predictions in a composite model, whereas the Centralized NN uses

a fully connected neural network over all the 8, 700124 features, thus leading to a more

17

Table 2.2: The performance on a9a data.
Algorithm Train loss Test loss Test AUC Time(s)

LR local 0.3625 0.3509 0.8850 41
LR centralized 0.3359 0.3247 0.9025 45
LR FDML 0.3352 0.3246 0.9026 99

NN local 0.3652 0.3484 0.8864 53
NN centralized 0.4008 0.3235 0.9042 57
NN FDML 0.4170 0.3272 0.9035 110

complex model (with interactions between the local features of different departments) than

FDML NN.

For all training schemes, a mini-batched SGD is used with a batch size of 100. For each

epoch, we keep track of the optimization objective value for training data, the log loss, the

AUC for testing data and the elapsed time. Fig. 2.2 and Fig. 2.3 present the major statistics

of the models during the training procedure for LR and NN for Tencent MyApp dataset,

respectively. Table 2.1 presents the detailed statistics at the epoch when all the algorithms

yield a stable and good performance on the testing data. Table 2.2 presents the performance

for a9a dataset. The results show that FDML outperforms the corresponding Local scheme

with only local features, and even approaches the performance of the Centralized scheme,

while keeping the feature sets local to their respective workers.

For LR, as shown by Fig. 2.2, Table 2.1 and Table 2.2, we can see that Centralized LR

and FDML LR both achieve a smaller training objective value as well as significantly better

performance on the testing set than Local LR. As we have expected, additional features

recorded by other related services could indeed help improve the app recommendation per-

formance. Furthermore, Centralizd LR and FDML LR have very close performance, since

these two methods use the essentially the same model for LR, though with different training

algorithms.

For NN shown in Fig. 2.3, Table 2.1 and Table 2.2, by leveraging additional features, both

FDML NN and Centralized NN substantially outperform Local NN. Meanwhile, Centralized

NN is slightly better than FDML NN, since Centralized NN has essentially adopted a more

complex model, enabling feature interaction between different parties directly through fully

connected neural networks.

Fig. 2.2(d) and Fig. 2.3(d) compare the training time and speed among the three learning

schemes for Tencent MyApp dataset. Without surprise, for both the LR and NN model,

the Local scheme is the fastest since it uses the smallest amount of features and has no

communication or synchronization overhead. For LR in Fig. 2.2(d), FDML LR is slower

than Centralized LR since the computation load is relatively smaller in this LR model

and thus the communication overhead dominates. On the contrary, for NN, as shown in

Fig. 2.3(d), the Centralized NN is slower than FDML NN. This is because Centralized NN

has much more inner connections and hence much more model parameters to train. Another

18

reason is that FDML distributes the heavy computation load in this NN scenario to three

different workers, which in fact speeds up training. Interestingly, for the smaller dataset

a9a, in Table 2.2, the NN FDML is slower than the centralized one since in this case, the

model is small and the communication overhead dominate the processing time in FDML.

Fig. 2.4 shows the performance when different levels of noise is added according to the

differential privacy mechanism during the training procedure for a9a dataset. Conforming

to the intuition, we can see that a higher level of noise will bring worse results. However,

for a noise level no more than 3, we can still expect a performance improvement over

learning only based on local data, while achieving stronger privacy guarantee due to the

perturbations introduced to the shared local prediction results.

2.7 Related Work

Distributed Machine Learning. Distributed machine learning algorithms and systems

have been extensively studied in recent years to scale up machine learning in the presence

of big data and big models. Existing work focuses either on the theoretical convergence

speed of proposed algorithms, or on the practical system aspects to reduce the overall

model training time[Xing et al., 2016]. Bulk synchronous parallel algorithms (BSP)[Dekel et

al., 2012; Zinkevich et al., 2010] are among the first distributed machine learning algorithms.

Due to the hash constraints on the computation and communication procedures, these

schemes share a convergence speed that is similar to traditional synchronous and centralized

gradient-like algorithms. Stale synchronous parallel (SSP) algorithms[Ho et al., 2013] are

a more practical alternative that abandons strict iteration barriers, and allows the workers

to be off synchrony up to a certain bounded delay. The convergence results have been

developed for both gradient descent and SGD[Recht et al., 2011; Ho et al., 2013; Lian et

al., 2015] as well as proximal gradient methods[Li et al., 2014a] under different assumptions

of the loss functions. In fact, SSP has become central to various types of current distributed

Parameter Server architectures[Li et al., 2014b; Chilimbi et al., 2014; Li et al., 2016; Abadi

et al., 2016b; Hsieh et al., 2017].

Depending on how the computation workload is partitioned[Xing et al., 2016], dis-

tributed machine learning systems can be categorized into data parallel and model parallel

systems. Most of existing distributed machine learning systems[Li et al., 2014b; Chilimbi et

al., 2014; Li et al., 2016; Abadi et al., 2016b; Hsieh et al., 2017] fall into the range of data

parallel, where different workers hold different training samples.

Model Parallelism. There are only a couple of studies on model parallel systems,

i.e., DistBelief[Dean et al., 2012] and STRADS[Lee et al., 2014], which aims to train a

big model by letting each worker be responsible for updating a subset of model parameters.

However, both DistBelief and STRADS, require collaborating workers to transmit their local

model parameters to each other (or to a server), which violates our non-leakage require-

ment for models and inevitably incurs more transmission overhead. Furthermore, nearly all

19

recent advances on model parallel neural networks (e.g., DistBelief[Dean et al., 2012] and

AMPNet[Ben-Nun and Hoefler, 2018]) mainly partition the network horizontally according

to neural network layers with motivation to scale up computation to big models. In con-

trast, we study a completely vertical partition strategy based strictly on features, which is

motivated by the cooperation between multiple businesses/organizations that hold different

aspects of information about the same samples. Another difference is that we do not require

transmitting the model parameters; nor any raw feature data between parties.

On a theoretical perspective of model parallel algorithm analysis,[Zhou et al., 2016]

has proposed and analyzed the convergence of a model parallel yet non-stochastic proximal

gradient algorithm that requires passing model parameters between workers under the SSP

setting. Parallel coordinate descent algorithms have been analyzed recently in[Bradley et

al., 2011; Scherrer et al., 2012]. Yet, these studies focus on randomized coordinate selection

in a synchronous setting, which is different from our setting where multiple nodes can update

disjoint model blocks asynchronously. Although Stochastic gradient descent (SGD) is the

most popular optimization method extensively used for modern distributed data analytics

and machine learning, to the best of our knowledge, there is still no convergence result of

(asynchronous) SGD in a model parallel setting to date. Our convergence rate of FDML

offers the first analysis of asynchronous model parallel SGD, which matches the standard

convergence rate of the original SSP algorithm[Ho et al., 2013] for data parallel SGD.

Learning Privately. A variant of distributed SGD with a filter to suppress insignificant

updates has recently been applied to collaborative deep learning among multiple parties in

a data parallel fashion[Shokri and Shmatikov, 2015]. Although raw data are not transferred

by the distributed SGD in[Shokri and Shmatikov, 2015], a recent study[Hitaj et al., 2017]

points out that an algorithm that passes model parameters may be vulnerable to model

inversion attacks based on generative adversarial networks (GANs). In contrast, we do not

let parties transfer local model parameters to server or any other party.

Aside from the distributed optimization approach mentioned above, another approach to

privacy preserving machine learning is through encryption, e.g., via homomorphic encryption[Gilad-

Bachrach et al., 2016; Takabi et al., 2016] or secret sharing[Mohassel and Zhang, 2017; Wan

et al., 2007; Bonte and Vercauteren, 2018]. Models are then trained on encrypted data.

However, this approach cannot be flexibly generalized to all algorithms and operations,

and incurs additional computation and design cost. Relatively earlier, differential privacy

has also been applied to collaborative machine learning[Pathak et al., 2010; Rajkumar and

Agarwal, 2012], with an inherent tradeoff between privacy and utility of the trained model.

To the best of our knowledge, none of the previous work addressed the problem of col-

laborative learning when the features of each training sample are distributed on multiple

participants.

20

2.8 Summary

We study a feature distributed machine learning (FDML) problem motivated by real-world

recommender applications at Tencent MyApp, where the features about the same training

sample can be found at three different apps. However, the features of one app should

be kept confidential to other parties due to regulatory constraints. This motivation is in

contrast to most existing literature on collaborative and distributed machine learning which

assumes the data samples (but not the features) are distributed and works in a data-parallel

fashion. We propose an asynchronous SGD algorithm to solve the new FDML scenario,

with a convergence rate of O(1/
√
T), T being the total number of iterations, matching

the existing convergence rate known for data-parallel SGD in a stale synchronous parallel

setting[Ho et al., 2013].

We have developed a distributed implementation of the FDML system in a parameter

server architecture and performed extensive evaluation based on both a public data set

and a large dataset of 5, 000, 000 records and 8, 700 decentralized features from Tencent

MyApp, Tencent QQ Browser and Tencent Mobile Safeguard for a realistic app recommen-

dation task. Results have shown that FDML can closely approximate centralized training

(the latter collecting all data centrally and using a more complex model allowing more in-

teractions among cross-domain features) in terms of the testing AUC, while significantly

outperforming the models trained only based on the local features of MyApp. Currently, we

are deploying the FDML system at Tencent MyApp and improving the robustness of the

system by adding momentum based techniques. We are also developing schemes that can

support more sophisicated models, taking more interactions between cross-party features

into account.

21

Chapter 3

ADMM Sharing Based Method to
Distributed Machine Learning over
Distriubted Features

3.1 Introduction

In Chapter 2, we study the FDML problem, a collaborative machine learning problem for

distributed features, where multiple parties may possess different features about a same

sample, yet do not wish to share these features with each other. An SGD based algorithm

is proposed to train a special family of composition models. However, as we will show in

the experiment in this chapter, the convergence rate is limited for SGD based algorithm

when the number of features is relatively large. What’s more, larger number of epochs

may dramatically increase the risk of leaking sensitive information since more intermediate

results have to be transmitted in this situation.

In this chapter, we propose an ADMM algorithm to solve the empirical risk mini-

mization (ERM) problem, a general optimization formulation of many machine learning

models visited by a number of recent studies on distributed machine learning [Ying et

al., 2018; Chaudhuri et al., 2011], which is a special case for FDML problem. We propose

an ADMM-sharing-based distributed algorithm to solve ERM, in which each participant

does not need to share any raw features or local model parameters to other parties. In-

stead, each party only transmits a single value for each sample to other parties, thus largely

preventing the local features from being disclosed. We establish theoretical convergence

guarantees and iteration complexity results under the non-convex loss in a fully parallel

setting, whereas previously, the convergence of ADMM sharing algorithm for non-convex

losses is only known for the case of sequential (Gauss-Seidel) execution [Hong et al., 2016].

To further provide privacy guarantees, we present a privacy-preserving version of the

ADMM sharing algorithm, in which the transmitted value from each party is perturbed

by a carefully designed Gaussian noise to achieve the notion of ε, δ-differential privacy

[Dwork, 2008; Dwork et al., 2014]. For distributed features, the perturbed algorithm ensures

22

that the probability distribution of the values shared is relatively insensitive to any change

to a single feature in a party’s local dataset.

Experimental results on two realistic datasets suggest that our proposed ADMM sharing

algorithm can converge efficiently. Compared to the gradient-based method, our method can

scale as the number of features increases and yields robust convergence. The algorithm can

also converge with moderate amounts of Gaussian perturbation added, therefore enabling

the utilization of features from other parties to improve the local machine learning task.

3.2 Empirical Risk Minimization over Distributed Features

Consider N samples, each with d features distributed on M parties, which do not wish to

share data with each other. The entire dataset D ∈ R
N × R

d can be viewed as M vertical

partitions D1, . . . ,DM , where Dm ∈ R
N ×R

dm denotes the data possessed by the mth party

and dm is the dimension of features on party m. Clearly, d =
∑M

m=1 dm. Let Di denote the

ith row of D, and Di
m be the ith row of Dm (k = 1, · · · , N). Then, we have

D =

⎡
⎢⎢⎢⎣

D1
1 D1

2 · · · D1
M

D2
1 D2

2 · · · D2
M

...
...

. . .
...

DN
1 DN

2 · · · DN
M

⎤
⎥⎥⎥⎦ ,

where Di
m ∈ Am ⊂ R

dm , (i = 1, · · · , N,m = 1, · · · ,M). Let Yi ∈ {−1, 1}N be the label of

sample i.

Let x = (x�1 , · · · , x�m, · · · , x�M)� represent the model parameters, where xm ∈ R
dm are

the local parameters associated with themth party. The objective is to find a model f(Di;x)

with parameters x to minimize the regularized empirical risk, i.e.,

minimize
x∈X

1

N

N∑
i=1

li(f(Di;x), Yi) + λR(x),

where X ⊂ R
d is a closed convex set and the regularizer R(·) prevents overfitting.

Similar to recent literature on distributed machine learning[Ying et al., 2018; Zhou et

al., 2016], ADMM[Zhang and Zhu, 2016; Zhang et al., 2018], and privacy-preserving machine

learning[Chaudhuri et al., 2011; Hamm et al., 2016], we assume the loss has a form

N∑
i=1

li(f(Di;x), Yi) =

N∑
i=1

li(Dix, Yi) = l

(
M∑

m=1

Di
mxm

)
,

where we have abused the notation of l and in the second equality absorbed the label Yi

into the loss l, which is possibly a non-convex function. This framework incorporates a

wide range of commonly used models including support vector machines, Lasso, logistic

regression, boosting, etc.

23

Therefore, the risk minimization over distributed features, or vertically partitioned

datasets D1, . . . ,DM , can be written in the following compact form:

minimize
x

l

(
M∑

m=1

Dmxm

)
+ λ

M∑
m=1

Rm(xm), (3.1)

subject to xm ∈ Xm,m = 1, . . . ,M, (3.2)

where Xm ⊂ R
dm is a closed convex set for all m.

We have further assumed the regularizer is separable such that R(x) =
∑M

m=1Rm(xm).

This assumption is consistent with our algorithm design philosophy—under vertically par-

titioned data, we require each party focus on training and regularizing its local model xm,

without sharing any local model parameters or raw features to other parties at all.

3.3 The ADMM Sharing Algorithm

We present an ADMM sharing algorithm[Boyd et al., 2011; Hong et al., 2016] to solve

Problem (3.1) and establish a convergence guarantee for the algorithm. Our algorithm

requires each party only share a single value to other parties in each iteration, thus requiring

the minimum message passing. In particular, Problem (3.1) is equivalent to

minimize
x

l (z) + λ

M∑
m=1

Rm(xm), (3.3)

s.t.

M∑
m=1

Dmxm − z = 0, xm ∈ XM ,m = 1, . . . ,M, (3.4)

where z is an auxiliary variable. The corresponding augmented Lagrangian is given by

L({x}, z; y) = l(z) + λ

M∑
m=1

Rm(xm) + 〈y,
M∑

m=1

Dmxm − z〉+ ρ

2
‖

M∑
m=1

Dmxm − z‖2, (3.5)

where y is the dual variable and ρ is the penalty factor. In the tth iteration of the algorithm,

variables are updated according to

xt+1
m := argmin

xm∈Xm

λRm(xm) + 〈yt,Dmxm〉+ ρ

2

∥∥ M∑
k=1, k �=m

Dkx
t
k +Dmxm − zt

∥∥2,
m = 1, · · · ,M (3.6)

zt+1 := argmin
z

l(z)− 〈yt, z〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − z

∥∥2 (3.7)

yt+1 := yt + ρ
(M∑
m=1

Dmxt+1
m − zt+1

)
. (3.8)

24

Algorithm 2 The ADMM Sharing Algorithm

1: —–Each party m performs in parallel: .
2: for t in 1, . . . , T do
3: Pull

∑
k Dkx

t
k − zt and yt from central node

4: Obtain
∑

k �=mDkx
t
k − zt by subtracting the locally cached Dmxtm from the pulled

value
∑

k Dkx
t
k − zt

5: Compute xt+1
m according to (3.6)

6: Push Dmxt+1
m to the central node

7: —–Central node: .
8: for t in 1, . . . , T do
9: Collect Dmxt+1

m for all m = 1, . . . ,M
10: Compute zt+1 according to (3.7)
11: Compute yt+1 according to (3.8)
12: Distribute

∑
k Dkx

t+1
k − zt+1 and yt+1 to all the parties.

Formally, in a distributed and fully parallel manner, the algorithm is described in Algo-

rithm 2. Note that each party m needs the value
∑

k �=mDkx
t
k − zt to complete the update,

and Lines 3, 4 and 12 in Algorithm 2 present a trick to reduce communication overhead.

On each local party , (3.6) is computed where a proper xm is derived to simultaneously

minimize the regularizer and bring the global prediction close to zt, given the local predic-

tions from other parties. When Rm(·) is l2 norm, (3.6) becomes a trivial quadratic program

which can be efficiently solved. On the central node, the global prediction z is found in

(3.7) by minimizing the loss l(·) while bringing z close to the aggregated local predictions

from all local parties. Therefore, the computational complexity of (3.7) is independent of

the number of features, thus making the proposed algorithm scalable to a large number of

features, as compared to SGD or Frank-Wolfe algorithms.

3.3.1 Convergence Analysis

We follow Hong et al.[Hong et al., 2016] to establish the convergence guarantee of the pro-

posed algorithm under mild assumptions. Note that[Hong et al., 2016] provides convergence

analysis for the Gauss-Seidel version of the ADMM sharing, where x1, . . . , xM are updated

sequentially, which is not naturally suitable to parallel implementation. In (3.6) of our al-

gorithm, xm’s can be updated by different parties in parallel in each iteration. We establish

convergence as well as iteration complexity results for this parallel scenario, which is more

realistic in distributed learning. We need the following set of common assumptions.

Assumption 2 1. There exists a positive constant L > 0 such that

‖∇l(x)−∇l(z)‖ ≤ L‖x− z‖ ∀x, z.

Moreover, for all m ∈ {1, 2, · · · ,M}, Xm’s are closed convex sets; each Dm is of

full column rank so that the minimum eigenvalue σmin(D�
mDm) of matrix D�

mDm is

positive.

25

2. The penalty parameter ρ is chosen large enough such that

(a) each xm subproblem (3.6) as well as the z subproblem (3.7) is strongly convex,

with modulus {γm(ρ)}Mm=1 and γ(ρ), respectively.

(b) γm(ρ) ≥ 2σmax(D�
mDm), ∀m, where σmax(D�

mDm) is the maximum eigenvalue for

matrix D�
mDm.

(c) ργ(ρ) > 2L2 and ρ ≥ L.

3. The objective function l
(∑M

m=1Dmxm

)
+ λ

∑M
m=1Rm(xm) in Problem 3.1 is lower

bounded over ΠM
m=1Xm and we denote the lower bound as f .

4. Rm is either smooth nonconvex or convex (possibly nonsmooth). For the former case,

there exists Lm > 0 such that ‖∇Rm(xm) − ∇Rm(zm)‖ ≤ Lm‖xm − zm‖ for all

xm, zm ∈ Xm.

Specifically, 1, 3 and 4 in Assumptions 2 are common settings in the literature. Assump-

tions 2.2 is achievable if the ρ is chosen large enough.

Denote M ⊂ {1, 2, . . . ,M} as the index set, such that when m ∈ M, Rm is convex,

otherwise, Rm is nonconvex but smooth. Our convergence results show that under mild

assumptions, the iteratively updated variables eventually converge to the set of primal-dual

stationary solutions. Theorem 2 formally states this result.

Theorem 2 Suppose Assumption 2 holds true, we have the following results:

1. limt→∞ ‖∑M
m=1Dmxt+1

m − zt+1‖=0.

2. Any limit point {{x∗}, z∗; y∗} of the sequence {{xt+1}, zt+1; yt+1} is a stationary so-

lution of problem (3.1) in the sense that

x∗m ∈ argmin
xm∈Xm

λRm(xm) + 〈y∗,Dmxm〉,m ∈ M, (3.9)

〈xm − x∗m, λ∇l(x∗m)−DT
my∗〉 ≤ 0 ∀xm ∈ Xm,m �∈ M, (3.10)

∇l(z∗)− y∗ = 0, (3.11)

M∑
m=1

Dmx∗m = z∗. (3.12)

3. If Dm is a compact set for all m, then {{xtm}, zt; yt} converges to the set of stationary

solutions of problem (3.1), i.e.,

lim
t→∞ dist

(
({xt}, zt; yt);Z∗) = 0,

where Z∗ is the set of primal-dual stationary solutions for problem (3.1).

26

3.3.2 Iteration Complexity Analysis

We evaluate the iteration complexity over a Lyapunov function. More specifically, we define

V t as

V t :=
M∑

m=1

‖∇̃xmL({xtm}, zt; yt)‖2 + ‖∇zL({xtm}, zt; yt)‖2 + ‖
M∑

m=1

Dmxtm − zt‖2, (3.13)

where

∇̃xmL({xtm}, zt; yt) = ∇xmL({xtm}, zt; yt) when m �∈ M,

∇̃xmL({xtm}, zt; yt) = xtm − proxλRm

[
xtm −∇xm

(L({xtm}, zt; yt)− λ

M∑
m=1

Rm(xtm)
)]

when m ∈ M,

with proxh[z] := argminxh(x)+
1
2‖x−z‖2. It is easy to verify that when V t → 0, a stationary

solution is achieved due to the properties. The result for the iteration complexity is stated in

the following theorem, which provides a quantification of how fast our algorithm converges.

Theorem 3 shows that the algorithm converges in the sense that the Lyapunov function V t

will be less than any ε > 0 within O(1/ε) iterations.

Theorem 3 Suppose Assumption 2 holds. Let T (ε) denote the iteration index in which:

T (ε) := min{t|V t ≤ ε, t ≥ 0},

for any ε > 0. Then there exists a constant C > 0, such that

T (ε)ε ≤ C(L({x1}, z1; y1 − f), (3.14)

where f is the lower bound defined in Assumption 2.

3.4 Differentially Private ADMM Sharing

Differential privacy[Dwork et al., 2014; Zhou et al., 2010] is a notion that ensures a strong

guarantee for data privacy. The intuition is to keep the query results from a dataset rel-

atively close if one of the entries in the dataset changes, by adding some well designed

random noise into the query, so that little information on the raw data can be inferred from

the query. Formally, the definition of differential privacy is given in Definition 4.

Definition 4 A randomized algorithm M is (ε, δ)−differentially private if for all S ⊆
range(M), and for all x and y, such that |x− y|1 ≤ 1, we have

Pr(M(x) ∈ S) ≤ exp(ε)Pr(M(y) ∈ S) + δ. (3.15)

27

Definition 4 provides a strong guarantee for privacy, where even if most entries of a

dataset are leaked, little information about the remaining data can be inferred from the

randomized output. Specifically, when ε is small, exp(ε) is approximately 1+ε. Here x and

y denote two possible instances of some dataset. |x−y|1 ≤ 1 means that even if most of the

data entries but one are leaked, the difference between the randomized outputs of x and y is

at most ε no matter what value the remaining single entry takes, preventing any adversary

from inferring the value of that remaining entry. Moreover, δ allows the possibility that the

above ε-guarantee may fail with probability δ.

In our ADMM algorithm, the shared messages {Dmxt+1
m }t=0,1,··· ,T−1 may reveal sensitive

information from the data entry in Dm of Party m. We perturb the shared value Dmxt+1
m

in Algorithm 2 with a carefully designed random noise to provide differential privacy. The

resulted perturbed ADMM sharing algorithm is the following updates:

xt+1
m := argmin

xm∈Xm

λRm(xm) + 〈yt,Dmxm〉+ ρ

2

∥∥ M∑
k=1, k �=m

Dkx̃
t
k +Dmxm − zt

∥∥2,

ξt+1
m := N (0, σ2

m,t+1(D�
mDm)−1)

x̃t+1
m := xt+1

m + ξt+1
m (3.16)

zt+1 := argmin
z

l(z)− 〈yt, z〉+ ρ

2

∥∥ M∑
m=1

Dmx̃t+1
m − z

∥∥2

yt+1 := yt + ρ
(M∑
m=1

Dmx̃t+1
m − zt+1

)
.

In the remaining part of this section, we demonstrate that (3.16) guarantees (ε, δ) differ-

ential privacy with outputs {Dmx̃t+1
m }t=0,1,··· ,T−1 for some carefully selected σm,t+1. Beside

Assumption 2, we introduce another set of assumptions widely used by the literature.

Assumption 3 1. The feasible set {x, y} and the dual variable z are bounded; their l2

norms have an upper bound b1.

2. The regularizer Rm(·) is doubly differentiable with |R′′
m(·)| ≤ c1, where c1 is a finite

constant.

3. Each row of Dm is normalized and has an l2 norm of 1.

Note that Assumption 3.1 is adopted in[Sarwate and Chaudhuri, 2013] and[Wang et al.,

2019]. Assumption 3.2 comes from[Zhang and Zhu, 2017] and Assumption 3.3 comes

from[Zhang and Zhu, 2017] and[Sarwate and Chaudhuri, 2013]. As a typical method in

differential privacy analysis, we first study the l2 sensitivity of Dmxt+1
m , which is defined by:

Definition 5 The l2-norm sensitivity of Dmxt+1
m is defined by:

Δm,2 = max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m
‖.

28

where Dm and D′
m are two neighbouring datasets differing in only one feature column, and

xt+1
m,Dm

is the xt+1
m derived from the first line of equation (3.16) under dataset Dm.

We have Lemma 6 to state the upper bound of the l2-norm sensitivity of Dmxt+1
m .

Lemma 6 Assume that Assumption 2 and Assumption 3 hold. Then the l2-norm sensitivity

of Dmxt+1
m,Dm

is upper bounded by C = 3
dmρ [λc1 + (1 +Mρ)b1].

We have Theorem 7 for differential privacy guarantee in each iteration.

Theorem 7 Assume assumptions 3.1-3.3 hold and C is the upper bound of Δm,2. Let

ε ∈ (0, 1] be an arbitrary constant and let Dmξt+1
m be sampled from zero-mean Gaussian

distribution with variance σ2
m,t+1, where

σm,t+1 =

√
2ln(1.25/δ)C

ε
.

Then each iteration guarantees (ε, δ)-differential privacy. Specifically, for any neighboring

datasets Dm and D′
m, for any output Dmx̃t+1

m,Dm
and D′

mx̃t+1
m,D′

m
, the following inequality

always holds:

P (Dmx̃t+1
m,Dm

|Dm) ≤ eεP (D′
mx̃t+1

m,D′
m
|D′

m) + δ.

With an application of the composition theory in[Dwork et al., 2014], we come to a

result stating the overall privacy guarantee for the whole training procedure.

Corollary 8 For any δ′ > 0, the algorithm described in (3.16) satisfies (ε′, T δ+δ′)−differential

privacy within T epochs of updates, where

ε′ =
√

2T ln(1/δ′)ε+ Tε(eε− 1). (3.17)

Without surprise, the overall differential privacy guarantee may drop dramatically if

the number of epochs T grows to a large value, since the number of exposed results grows

linearly in T . However, as we will show in the experiments, the ADMM-sharing algorithm

converges fast, taking much fewer epochs to converge than SGD when the number of features

is relatively large. Therefore, it is of great advantage to use ADMM sharing for wide features

as compared to SGD or Frank-Wolfe algorithms. When T is confined to less than 20, the

risk of privacy loss is also confined.

3.5 Experiments

We test our algorithm by training l2-norm regularized logistic regression on two popular

public datasets, namely, a9a from UCI[Dua and Graff, 2017] and giette[Guyon et al., 2005].

We get the datasets from[LIBSVM Data: Classification (Binary Class), n.d.] so that we

follow the same preprocessing procedure listed there. a9a dataset is 4 MB and contains

29

10 20 30 40
Epoch

0.32

0.34

0.36

0.38

0.40

L
os
s

ADMM Train Logloss+Regularizer

ADMM Test Logloss

SGD Train Logloss+Regularizer

SGD Test Logloss

(a) Loss vs. epoch

0 10 20 30 40 50
Epoch

0.32

0.34

0.36

0.38

0.40

T
es
ti
ng

lo
ss

Standard deviation 0.0

Standard deviation 0.3

Standard deviation 1.0

(b) Test log loss under different noise levels

Figure 3.1: Performance over the a9a data set with 32561 training samples, 16281 testing
samples and 123 features.

32561 training samples, 16281 testing samples and 123 features. We divide the dataset into

two parts, with the first part containing the first 66 features and the second part remaining

57 features. The first part is regarded as the local party who wishes to improve its prediction

model with the help of data from the other party. On the other hand, gisette dataset is 297

MB and contains 6000 training samples, 1000 testing samples and 5000 features. Similarly,

we divide the features into 3 parts, the first 2000 features being the first part regarded as

the local data, the next 2000 features being the second part, and the remaining 1000 as

the third part. Note that a9a is small in terms of the number of features and gisette has a

relatively higher dimensional feature space.

A prototype system is implemented in Python to verify our proposed algorithm. Specif-

ically, we use optimization library from scipy to handle the optimization subproblems. We

apply L-BFGS-B algorithm to do the x update in (3.6) and entry-wise optimization for z

in (3.7). We run the experiment on a machine equipped with Intel(R) Core(TM) i9-9900X

CPU @ 3.50GHz and 128 GB of memory.

We compare our algorithm against an SGD based algorithm proposed in[Hu et al., 2019].

30

0 10 20 30 40 50 60 70 80 90
Epoch

0.00

0.20

0.40

0.60

0.80

1.00

L
os
s

ADMM Train Logloss
+Regularizer

ADMM Test Logloss

SGD Train Logloss
+Regularizer

SGD Test Logloss

(a) Loss vs. epoch

0 20 40 60 80
Epoch

0.00

0.20

0.40

0.60

0.80

T
es
ti
ng

lo
ss

Standard Deviation 0.0

Standard Deviation 1.0

Standard Deviation 3.0

(b) Test log loss under different noise levels

Figure 3.2: Performance over the gisette data set with 6000 training samples, 1000 testing
samples and 5000 features.

We keep track of the training objective value (log loss plus the l2 regularizer), the testing log

loss for each epoch for different datasets and parameter settings. We also test our algorithm

with different levels of Gaussian noise added. In the training procedure, we initialize the

elements in x, y and z with 0 while we initialize the parameter for the SGD-based algorithm

with random numbers.

Fig. 3.1 and Fig. 3.2 show a typical trace of the training objective and testing log loss

against epochs for a9a and gisette, respectively. On a9a, the ADMM algorithm is slightly

slower than the SGD based algorithm, while they reach the same testing log loss in the

end. On gisette, the SGD based algorithm converges slowly while the ADMM algorithm is

efficient and robust. The testing log loss from the ADMM algorithm quickly converges to

0.08 after a few epochs, but the SGD based algorithm converges to only 0.1 with much more

epochs. This shows that the ADMM algorithm is superior when the number of features is

large. In fact, for each epoch, the x update is a trivial quadratic program and can be

efficiently solved numerically. The z update contains optimization over computationally

expensive functions, but for each sample, it is always an optimization over a single scalar

31

0.0 0.03 0.1 0.3 1.0 3.0
Standard deviation of added Gaussian noise

0.35

0.40

0.45

L
os
s

Full features (centralized training)

Local features only

ADMM with Noise

(a) a9a data set

0.0 0.1 0.3 1.0 3.0 10.0
Standard deviation of added Gaussian noise

0.20

0.40

0.60

L
os
s

Full features (centralized training)

Local features only

ADMM with Noise

(b) gisette data set

Figure 3.3: Test performance for ADMM under different levels of added noise.

so that it can be solved efficiently via scalar optimization and scales with the number of

features.

Moreover, Corollary 8 implies that the total differential privacy guarantee will be stronger

if the number of epochs required for convergence is less. The fast convergence rate of the

ADMM sharing algorithm also makes it more appealing to achieve differential privacy guar-

antees than SGD, especially in the case of wide features (gisette).

Fig. 3.3 shows the testing loss for ADMM with different levels of Gaussian noise added.

The other two baselines are the logistic regression model trained over all the features (in

a centralized way) and that trained over only the local features in the first party. The

baselines are trained with the built-in logistic regression function from sklearn library. We

can see that there is a significant performance boost if we employ more features to help

training the model on Party 1. Interestingly, in Fig. 3.3(b), the ADMM sharing has even

better performance than the baseline trained with all features with sklearn. It further shows

that the ADMM sharing is better at datasets with a large number of features.

Moreover, after applying moderate random perturbations, the proposed algorithm can

still converge in a relatively small number of epochs, as Fig. 3.1(b) and Fig. 3.2(b) suggest,

32

although too much noise may ruin the model. Therefore, ADMM sharing algorithm under

moderate perturbation can improve the local model and the privacy cost is well contained

as the algorithm converges in a few epochs.

3.6 Related Work

Machine Learning Algorithms and Privacy. [Chaudhuri and Monteleoni, 2009] is one

of the first studies combing machine learning and differential privacy (DP), focusing on

logistic regression. [Shokri and Shmatikov, 2015] applies a variant of SGD to collaborative

deep learning in a data-parallel fashion and introduces its variant with DP. [Abadi et al.,

2016a] provides a stronger differential privacy guarantee for training deep neural networks

using a momentum accountant method. [Pathak et al., 2010; Rajkumar and Agarwal, 2012]

apply DP to collaborative machine learning, with an inherent tradeoff between the privacy

cost and utility achieved by the trained model. Recently, DP has been applied to ADMM

algorithms to solve multi-party machine learning problems [Zhang et al., 2018; Zhang and

Zhu, 2016; Zhang et al., 2019; Zhang and Zhu, 2017].

However, all the work above is targeting the data-parallel scenario, where samples are

distributed among nodes. The uniqueness of our work is to enable privacy-preserving ma-

chine learning among nodes with vertically partitioned features, or in other words, the

feature-parallel setting, which is equally important and is yet to be explored.

Another approach to privacy-preserving machine learning is through encryption [Gilad-

Bachrach et al., 2016; Takabi et al., 2016; Kikuchi et al., 2018] or secret sharing [Mohassel

and Zhang, 2017; Wan et al., 2007; Bonte and Vercauteren, 2018], so that models are

trained on encrypted data. However, encryption cannot be generalized to all algorithms or

operations, and incurs additional computational cost.

Learning over Distributed Features. [Gratton et al., 2018] applies ADMM to solve

ridge regression. [Ying et al., 2018] proposes a stochastic learning method via variance

reduction. [Zhou et al., 2016] proposes a proximal gradient method and mainly focuses

on speeding up training in a model-parallel scenario. These studies do not consider the

privacy issue. [Hu et al., 2019] proposes a composite model structure that can jointly

learn from distributed features via a SGD-based algorithm and its DP-enabled version,

yet without offering theoretical privacy guarantees. Our work establishes (ε, δ)-differential

privacy guarantee result for learning over distributed features. Experimental results further

suggest that our ADMM sharing method converges in fewer epochs than gradient methods

in the case of high dimensional features. This is critical to preserving privacy in machine

learning since the privacy loss increases as the number of epochs increases [Dwork et al.,

2014]. Another closely related work is based on the Frank-Wolfe algorithm [Bellet et al.,

2015; Lou and Cheung, 2018], which is shown to be efficient for sparse features. In contrast,

our ADMM sharing approach is more efficient for dense features and scales much better as

the number of features grows, as will be explained in Sec. 3.3.

33

Querying Vertically Partitioned Data Privately. [Vaidya and Clifton, 2002;

Dwork and Nissim, 2004] are among the early studies that investigate the privacy issue

of querying vertically partitioned data. [Kenthapadi et al., 2013] adopts a random-kernel-

based method to mine vertically partitioned data privately. These studies provide privacy

guarantees for simpler static queries, while we focus on machine learning jobs, where the

risk comes from the shared values in the optimization algorithm. Our design simultaneously

achieves minimum message passing, fast convergence, and a theoretically bounded privacy

cost under the DP framework.

3.7 Summary

We study learning over distributed features (vertically partitioned data) where none of the

parties shall share the local data. We propose the parallel ADMM sharing algorithm to

solve this challenging problem where only intermediate values are shared, without even

sharing model parameters. We have shown the convergence for convex and non-convex loss

functions. To further protect the data privacy, we apply the differential privacy technique

in the training procedure to derive a privacy guarantee within T epochs. We implement a

prototype system and evaluate the proposed algorithm on two representative datasets in risk

minimization. The result shows that the ADMM sharing algorithm converges efficiently,

especially on dataset with large number of features. Furthermore, the differentially private

ADMM algorithm yields better prediction accuracy than model trained from only local

features while ensuring a certain level of differential privacy guarantee.

34

Chapter 4

Efficient Load Direction Method to
Erasure Coded Storage System

4.1 Introduction

Cloud storage systems, such as Hadoop Distributed File System (HDFS)[Borthakur, 2008],

Google File System (GFS)[Ghemawat et al., 2003], Windows Azure Storage (WAS)[Calder

et al., 2011] store huge amounts of data that are regularly accessed by personal users and

enterprises. Built upon commodity hardware in datacenters, these systems may suffer from

frequent data unavailability due to hardware failure, software glitches, I/O hotspots or

local congestions. While the first generation of cloud storage systems rely on replication,

e.g., 3-way replication in HDFS, for fault tolerance, many current production systems, e.g.,

Windows Azure Storage (WAS), Google’s ColossusFS, Facebook ’s HDFS, have adopted

erasure coding, e.g., a (k, r) Reed-Solomon (RS) code, to offer much higher reliability than

replication at a lower storage cost[Weatherspoon and Kubiatowicz, 2002; Khan et al., 2012].

Local Reconstruction Codes (LRC)[Huang et al., 2012; Sathiamoorthy et al., 2013; Tamo

and Barg, 2014] can further reduce the recovery cost, while still maintaining a low storage

overhead.

However, the superior durability of erasure coded storage does not come without any

tradeoff; it has been widely reported that coded storage suffers from long access latencies[Huang

et al., 2012; Rashmi et al., 2014; Chen et al., 2012; Ren et al., 2013; Xia et al., 2015]. Major

cloud providers including Amazon, Microsoft and Google have made a common observation

that a slight increase in overall data access latency (e.g., by only 400 ms) may lead to

observable fewer accesses from users and thus significant potential revenue loss[Schurman

and Brutlag, 2009]. Due to the latency issue, coded storage is only limited to storing

data that are seldom accessed, and may suffer from long tail latencies. Most prior studies

have attributed the cause of latency tails to degraded reads, defined as the passive action

to read multiple (coded) objects from other storage nodes to reconstruct the unavailable

object when the original object is temporarily unavailable. Therefore, most studies have

focused on inventing new coding schemes to reduce the reconstruction cost, i.e., the number

35

of reads required during degraded reads[Huang et al., 2012; Xia et al., 2015; Rashmi et

al., 2014; Sathiamoorthy et al., 2013; Tamo and Barg, 2014; Khan et al., 2012].

In spite of the efforts to reduce recovery cost following data unavailability events, an

equally important yet largely overlooked question is—what is the most significant triggering

factor of degraded reads in the first place? To answer this question, it is worth noting

that most storage systems based on erasure codes today, including Google’s ColossusFS

and WAS, adopt systematic codes, which place each original uncoded object on a single

node[Khan et al., 2012]. A request for an object is first served by the normal read from

its single original copy, while a timeout can trigger the degraded read. Although such

a design choice attempts to avoid degraded reads as much as possible, yet it may not

fulfill its intention; by presumably serving every request with the single original object,

this design may greatly increase the risk of a storage node becoming congested, forcing

degraded reads to be triggered involuntarily[Khan et al., 2012; Huang et al., 2012]. The

local congestion issue is further exacerbated by the fact that most real-world demands are

highly skewed[Chen et al., 2012; Ren et al., 2013; Xia et al., 2015]. In this case, some node

hosting hot data may become a hotspot and there is little chance of load balancing in the

current system design, since the original copy of each object is stored only on a single node.

In contrast, 3-way replication is unlikely to suffer from the same congestion issue, since it

can always direct a request to a least loaded node out of the three nodes, each storing a

copy of the requested object.

In this chapter, we take a radically different approach to latency reduction in coded

storage systems. Instead of triggering degraded reads passively following normal read time-

outs, we propose to proactively and intelligently launch degraded reads in order to shift

loads away from hotspots and prevent potential congestion early. Note that we do not con-

sider object write/update, since many big data stores today are append-only, in which each

object is immutable and any changes are recorded as separate timestamped objects that

get stored on new nodes. Intuitively speaking, if a hot object is attracting a large number

of requests which may potentially congest its original storage node, we may serve some of

these requests through degraded reads in the first place, without waiting for normal read

timeouts. Although proactive degraded reads may reduce the longest queues, they may

flood the system with more reading tasks and affect the service latencies for other requests

in general. Therefore, we must carefully decide: 1) for which request a degraded read

should be performed, and 2) should a degraded read be used, from which storage nodes the

degraded read should be served.

Toward these objectives, we propose a variety of load balancing approaches to reduce

latencies in erasure coded storage systems, including statistical optimization that can glob-

ally coordinate different requests and per-request optimal decisions. A first approach is an

efficient optimization framework that intelligently maintains a load direction table between

all requests and storage nodes, based on periodically sampled demand and queue statistics.

36

This approach is sub-optimal since it only updates direction decisions periodically, failing

to utilize instantaneous load information. We then naturally turn to per-request optimal

decisions, one of which is least latency first, that is to serve each request with the normal

read or a degraded read, whichever minimizes the current request latency. However, this

may lead to an excessive number of degraded reads and increase overall system burden,

affecting future requests. To solve this issue, we introduce the key notion of marginal load

and propose a novel least-marginal-load-first policy which judiciously and lazily launches

degraded reads for load balancing based on server queue length statistics, without flooding

the system. To reduce the server queue length probing overhead, we further adapt the

power-of-two sampling idea to our per-request optimal load balancing in coded storage sys-

tems. We show that the per-request optimal decision is essentially the optimal solution to

the statistical optimization problem for each single request with a specific objective func-

tion. Note that per-request optimal decisions have an inherent probing overhead that scales

with the demand, such that a large number of concurrent controllers must be used for heavy

workloads. In contrast, the statistical optimization, though being a sub-optimal approach,

is scalable since it only needs to make a small fixed amount of probes in each period.

We deployed a coded storage testbed on 98 machines to evaluate the performance of

the proposed schemes by replaying a large amount of real request traces collected from

Windows Azure Storage. Results suggest that the proposed schemes based on proactive

degraded reads can reduce the median latency by more than 40% and the 95-percentile

tail latency by more than 75% in RS-coded systems and LRC-based systems, as compared

to the current approach of normal read with timeouts. We show that least marginal load

first can achieve supreme latency reduction when there is an enough number of controllers

and the network I/O is not a bottleneck, whereas the statistical optimization can yield a

latency close to least marginal load first with inertia probing, yet achieving a higher request

processing throughput when the number of controllers is limited.

4.2 Load Balancing in Coded Storage

In the traditional design of erasure coded storage systems, degraded reads are triggered

passively to serve a request when the storage node (server) storing the original requested

object is temporarily unavailable or to restore a failed server. We take a radically different

approach, by letting the system intentionally and intelligently perform degraded reads based

on demand information and load statistics in the system to direct requests away from hot

servers. Bearing request latencies, server load balancing and network I/O overhead in

mind, we present several approaches to decide for which request a degraded read should be

launched and from which servers the degraded read should be served.

37

4.2.1 Terminology and System Model

A cloud storage cluster makes redundant copies of each single logic unit of data in order

to maintain the availability of highly demanded data. In such systems, a large number of

small objects are grouped to form relatively larger partitions (or blocks), typically each of

size 64 MB to several GBs. In a replication-based system, these partitions are replicated

and placed on several different storage nodes. Each incoming request is served by one of

the replicas[Mitzenmacher, 2001] chosen either randomly or according to more sophisticated

load balancing schemes. Such systems suffer from a high storage overhead. For the typical

3-replica, there is a 3× storage overhead.

Erasure coded systems are now widely adopted to reduce storage overhead while achiev-

ing high reliability and availability. Partitions form coding groups (or stripes). In each

group, parity partitions are generated from the original partitions. The original and parity

partitions are spread across different storage nodes. For instance, with a typical (6, 3) RS

code, in each coding group, 3 parity partitions are generated from 6 original partitions. Each

of the 9 partitions can be recovered from any other 6 partitions in the same coding group.

A (6, 3) RS code can reduce the storage overhead down to 1.5× with a higher reliability

than 3-replica.

Each request is usually directed to the node that stores the original partition containing

the requested object. We call this storage node the original node for the object and a read

from the original node a normal read. When the normal read has a large delay due to

temporal unavailability of the corresponding storage node, the request will be served by a

degraded read, that is to read any 6 other partitions in the same coding group. In both

a normal read and a degraded read, we do not need to read the entire partition(s); only

the offset corresponding to the requested object needs to be read from each partition. A

common problem of RS coded storage is that the system will suffer from high recovery cost

defined as the number reads that must be performed to recover an unavailable object. Other

codes have been proposed to further reduce the recovery cost, e.g., the Local Reconstruction

Code (LRC)[Huang et al., 2012] optimizes the recovery cost for the failure or unavailability

of a single node, which is a common case in practice. Specifically, for a (6, 2, 2) LRC, every

6 original partitions form a coding group, divided into two subgroups. One local parity

partition is generated for each subgroup and there are two global parity partitions. Every

single node failure can be recovered from 3 partitions in the local subgroup. The failure of

3 partitions in the same subgroup and some failures of 4 partitions can be recovered with

the help of global parity partitions.

For a typical cloud storage system, such as WAS, client requests first arrive at certain

frontend servers or gateways. The frontend servers direct the incoming requests to different

storage nodes subject to content placement constraints and certain load balancing policies.

Requests are then directly served by the selected storage node(s) to the clients. We use

request latency to describe the time gap from the arrival of a request at the frontend server

38

Figure 4.1: Illustration on why carefully triggered degraded reads may help balance the
loads.

until the request is fully served, and use task latency to describe the time that it takes to

perform a read task for a particular single object (coded or uncoded) being assigned to

some storage node. For example, in a (6, 3) RS coded system, the request latency for a

normal read is just the queuing time of the request at the frontend server plus the task

latency of a single read. In contrast, a degraded read will launch 6 read tasks on 6 different

storage nodes. In this case, the request latency will be the longest read task latency plus

the queuing time of the request at the frontend server (gateway).

We can assume that the storage nodes are homogeneous in terms of network configu-

ration and task processing speeds, which is common in pratice. However, our ideas can

easily be generalized to heterogeneous storage nodes by considering the processing speeds

of servers.

4.2.2 Proactive Degraded Reads

In a replication-based system, each request can be directed to the least loaded storage node

storing the requested object. However, for an erasure coded system, the original object is

stored on only one storage node with little opportunities for load balancing. Therefore, tra-

ditionally, degraded reads are launched only when the normal read has timed out. However,

in this chapter, we show that launching degraded reads proactively for carefully selected

requests can in fact reduce access latencies and improve the overall system efficiency.

From the request traces of WAS, we found that the requests are highly skewed: most

requests are for a small portion of partitions. Consider a toy example of (6,2,2) LRC code

in Fig. 4.1, where 3 original partitions placed on servers S1, S2 and S3 form a subgroup,

with a local parity partition stored on server L1. Suppose that server S1 is already heavily

loaded with requests, while S2, S3 and L1 are relatively less loaded. When a request for

an object on sever S1 comes, the traditional scheme still directs the request to S1, since

S1 is still available although heavily loaded. In contrast, if we have proactively launched a

degraded read (on servers S2, S3 and L1 together) to reconstruct the requested object in

39

the first place, both the request latency and the load of server S1 can be reduced.

4.2.3 Statistical Optimization

To answer the question whether to serve a request with a normal read or a degraded read

and which servers to serve the degraded read, we first inspect the problem in an optimization

point of view. Other approaches are inspired and justified by the optimization framework.

We adopt a statistical optimization approach based on the queue status refreshed pe-

riodically as well as the request history in near past. Specifically, we keep a load direction

table computed periodically by solving an optimization problem to be described soon, based

on the latest storage node queue status and request statistics measured within a certain

window. The table specifies optimized proportions at which the requests for an object in

each partition should be served by the normal read or each degraded read combination.

For each non-splittable request that arrives at a frontend server, load direction is made

at random according to the probabilities derived from the proportions given in the load

direction table.

Although we direct the load via the optimal solution, the result is still sub-optimal since

the table is only updated periodically, failing to utilize the instantaneous load information.

However, this approach only needs a fixed amount of probes in each period and thus is

scalable to the number of requests. We present the details of the statistical optimization

model in the remaining subsection.

Suppose that n partitions are placed on m storage nodes. To take into account the

pending tasks on each node, let �Q = (Q1, . . . , Qm) represent the existing queue sizes (in

bytes) on m storage nodes. Denote by s(i) the original node of partition i. Let the k-tuple

c = (sj1 , ...sjk) denote a combination of k storage nodes, and Ci be the set of all k-node

combinations c which can serve degraded reads for objects in partition i. Note that for an

RS code, k is fixed. For an LRC, k could take several values depending on whether a local

or global recovery is triggered[Calder et al., 2011].

Suppose Di is the instantaneous total request size per second for objects in partition i,

i = 1, . . . , n. For each request for an object in partition i, we use xi ∈ [0, 1] to denote the

probability of serving it with the normal read and yic ∈ [0, 1] to denote the probability of

serving it with a degraded read through the combination c ∈ Ci. Apparently, we must have

xi+
∑

c∈Ci yic = 1. Let �L = (L1, . . . , Lm), where Lj is the expected load of storage node j as

a result of load direction. Then, due to the linearity of expectations, the expected load Lj is

a weighted sum of all the demands D1, . . . , Dn weighted by the load direction probabilities

xi and {yic|c ∈ Ci}, i = 1, . . . , n.

Let F (·) be a load balancing metric defined as a function of �L + �Q, i.e., the expected

loads �L on all storage nodes plus the existing queues pending on them. Therefore, the

40

optimal load direction probabilities are the solution to the following problem:

minimize
{xi},{yic}

F (�L+ �Q) (4.1)

subject to Lj =
∑

{i:s(i)=j}
Dixi +

∑
{(i,c):j∈c,c∈Ci}

Diyic,

j = 1, . . . ,m, (4.2)

xi +
∑
c∈Ci

yic = 1, i = 1, . . . , n. (4.3)

yic ≥ 0, ∀c ∈ Ci, i = 1, . . . , n, (4.4)

xi ≥ 0, i = 1, . . . , n, (4.5)

where load Lj directed to storage node j is given by (4.2). The first term in (4.2) is the

sum of all normal reads Dixi with the storage node j being the original node, while the

second term is the sum of all degraded reads Diyic that may incur loads on node j, i.e.,

j ∈ c, c ∈ Ci.
Several load balancing metrics can be used, for example, the �∞ norm: F (�L + �Q) =

‖�L + �Q‖∞ = maxj=1,...,m(Lj + Qj), which models the longest expected queue length after

load direction, and the �2 norm: F (�L+ �Q) = 1
2‖�L+ �Q‖22 = 1

2

∑m
j=1(Lj+Qj)

2, which models

the aggregated per-byte processing latency in the system, assuming a similar processing

rate across storage nodes in a homogeneous system. The metric can easily accommodate

the case of heterogeneous systems where storage node j has a data processing rate of Sj ;

in this case, F (�L+ �Q) = 1
2

∑m
j=1(Lj +Qj)

2/Sj . If the �∞ norm is used, problem (4.1) is a

linear program, and if the �2 norm is used, problem (4.1) is a quadratic program. In our

experiment, we adopt the �2 norm. Standard tools like MOSEK[ApS, 2017] can solve it

efficiently with worst-case time complexity of O(n3).

4.2.4 Per-Request Optimal Decisions

With the statistical optimization approach, the load direction table is updated in a syn-

chronized manner and is not changed within each cycle, leading to a sub-optimal result. A

more direct approach is to instantaneously probe the queue status of related data nodes and

to make an optimal decision for each request. In this case, we need a criterion to measure

how good a load direction choice is. Optimal policies can be derived by adapting problem

(4.1) to per-request decisions under different load balancing metrics.

Least Latency First. We first introduce the least latency first policy, which corre-

sponds to the per-request minimization of the �∞ norm of storage node queue sizes (or the

maximum queue size). Consider a single request for an object of size D in partition i0. In

this case, the optimal policy comes from a solution to a special case of problem (4.1), with

Di0 = D > 0 andDi = 0, ∀i �= i0, that is to solve problem (4.1) for this single request. Every

single non-splittable request will be served by either the normal read or one of the degraded

41

combinations. The optimal choice will be the one that leads to the smallest objective value

in problem (4.1).

To find out the optimal decision, we can choose either the normal read or a degraded

read that results in the lowest estimated request latency for the current request. For the

normal read, the request latency almost equals to the corresponding task latency, which can

be estimated by the total size of all queued requests at the storage node plus the requested

object size, divided by the average node processing rate. For a degraded read served by k

other storage nodes, the request latency can be estimated by the longest task latency among

the k nodes. Note that in problem (4.1), different servers are assumed to have the same

processing rate. Thus, the processing rate is omitted in the objective function.

For example, the least-latency-first policy can be performed in a (6, 3) RS coded system

in the following way: Upon the arrival of a request, the queue sizes at the 9 storage nodes

that can serve this request are probed, including the original node and 8 other nodes, any 6

of which can serve the request via a degraded read. Then, we will compare the task latency

of the normal read with the longest task latency among the 6 least loaded nodes out of the

other 8 nodes, and pick whichever is smaller to serve the request.

However, the least-latency-first policy may not perform the best in the long term since

it only optimizes the latency of the current request in question regardless of future requests.

In fact, for a request for a hot object, the least-latency-first policy tends to shift load away

from the original node, whenever there are at least 6 other nodes in the same coding group

with a queue size smaller than that of the original node. Although such a “water-filling”

approach will help to balance server loads, the drawback is that it encourages degraded

reads too much and increases the overall number of read tasks launched in the system,

which may prolong the service latencies of future requests, as their original nodes have been

used to perform degraded reads for earlier requests. Therefore, we need a load direction

policy to reduce the burden of heavily loaded storage nodes, while still penalizing degraded

reads.

Least Marginal Load First. To strike a balance between reducing the current request

latency and minimizing the overall system load, we propose a different metric to measure

different load direction choices. We introduce the least-marginal-load-first policy. Similar

to the case of LLF, this policy is essentially an optimal solution to problem (4.1), but with

an �2 objective function. Let us consider the special case of problem (4.1) again, with

Di0 = D > 0 and Di = 0, ∀i �= i0, which is to solve problem (4.1) for this single request.

Comparing the �2 objective function values before and after the request is directed, each

direction decision will increase the objective by a certain amount. Specifically, for the

42

normal read, the increase is

ΔFs(i0) =
1

2

∑
j �=s(i0)

Q2
j +

1

2
(Qs(i0) +Di0)

2 − 1

2

∑
j

Q2
j

= Di0(Qs(i0) +
1

2
Di0) = D(Qs(i0) +

1

2
D), (4.6)

and for a degraded read with c ∈ C(i0), the increase is

ΔFc =
1

2

∑
j /∈c

Q2
j +

1

2

∑
j∈c

(Qj +Di0)
2 − 1

2

∑
j

Q2
j

=
∑
j∈c

Di0(Qj +
1

2
Di0) =

∑
j∈c

D(Qj +
1

2
D). (4.7)

The optimal choice would be the one that leads to the minimum increase of the objective

function. We can pick it out by computing the value of (4.6) for the normal read and the

values of (4.7) for all degraded reads and selecting the one with the minimum value.

Intuitively speaking, consider assigning a read task of size D on a storage node with

existing queue size Q. With a similar processing rate across servers, Q+D/2 can be regarded

as the per-byte average processing time. D ·(Q+D/2) is the summation of processing times

per byte in this read task. We call this value the marginal load of the read task of size D.

Let us now define the marginal load of a normal read and that of a degraded read. The

marginal load of a normal read is just the marginal load of the corresponding single read

task, whereas the marginal load of a degraded read is the summation of all the marginal

loads of the associated read tasks. We define the least-marginal-load-first (LMLF) policy as

choosing the normal read or a degraded read that achieves the least marginal load, which

is naturally an optimal solution to problem (4.1) for a single request with an �2 objective

function.

For example, in a (6, 3) RS coded system, for an object request, least marginal load first

will compare the marginal load DQ0+D2/2, where Q0 is the original node queue size, with∑6
i=1(DQi+D2/2), where Q1, . . . , Q6 are the queue sizes of the 6 least loaded nodes out of

the other 8 nodes, and pick whichever is smaller to serve the request.

LMLF strikes a balance between reducing the current request latency and minimizing

the overall system load. On one hand, storage nodes with a large Q incur a larger marginal

load and are less likely to be selected. On the other hand, the marginal load of a degraded

read is the summation of the marginal loads on all associated nodes, penalizing degraded

reads from flooding the system. Moreover, objects with a larger size D are less likely to

be served by degraded reads due to their higher marginal loads, attributed to the additive

term D2/2 in the marginal load of each associated task. In other words, LMLF launches

degraded reads lazily and saves the system resources for future requests.

43

4.2.5 Distributed Power-of-Two Sampling

The per-request optimal decisions above rely on instantaneously probed queue sizes for each

request, incurring much probing overhead at the frontend (gateway) servers. For a (k, r)

RS code, k + r storage nodes need to be probed for each request.

To save the probing overhead, we exploit an idea similar to the Power of Two in job

scheduling for load direction in coded storage systems. Specifically, we can just pick a

random degraded read and only probe the k storage nodes related to this degraded read

and compare its marginal load with that of the normal read. Taking the (6, 3) RS code

as an example, instead of having 9 probes for each request, in the sampled solution, we

only need to probe the original node and a set of randomly chosen 6 storage nodes in the

same coding group as the requested object, and use whichever achieves a lower marginal

load, which saves the probing overhead by 22.2%. In particular, codes that are designed

to optimize the recovery cost for single node failures will benefit the most from sampling.

In a typical (6, 2, 2) LRC, if only the local recovery combination and the normal read are

considered, we only need to probe 4 storage nodes for each request, which saves the probing

overhead by 60%, compared to the full probing of 10 storage nodes.

Theoretical results[Mitzenmacher, 2001] on Power-of-Two load balancing in traditional

queuing systems have shown that the expected performance will not drop too much as

compared to full probing. We will verify the effectiveness of our version of distributed

power-of-two sampling with experiments.

4.2.6 Summary

We propose different methods to help making the optimal decision for the proactive degraded

reads. There is a tradeoff in each method. Least latency first probes queue status and

optimizes for each request instantaneously. But it does not coordinate different requests

and incurs larger probing overhead. Least marginal load first not only optimizes for each

request with instantaneous probing, but also saves system resources for future requests by

penalizing degraded reads. The distributed power-of-two sampling can alleviate the probing

burden at the cost of a slight deviation from the optimal solution. Finally, in the case that

probing overhead could form a bottleneck, statistical optimization can be used to jointly

direct the loads for all requests taking advantage of joint statistics of different requests,

although the solution is only an approximation to the optimality due to the lazily updated

demands and queue table.

4.3 Implementation and Experiment Setup

We implemented and deployed a prototype coded storage testbed to evaluate the perfor-

mance the proposed load balancing mechanisms on a cluster of 98 Amazon EC2 virtual

machines (which do not use SSD) by replaying the request traces we have collected from

44

Ojbects (sorted) ×10
6

2 4 6 8 10 12

T
o

ta
l
R

e
q

u
e

s
t

N
u

m
b

e
r

10
0

10
2

10
4

10
6

10
8

(a) Distribution of aggregatedrequest number

Ojbects (sorted) ×10
6

2 4 6 8 10 12

T
o

ta
l
R

e
q

u
e

s
t

S
iz

e

10
0

10
5

10
10

10
15

(b) Distribution of aggregated
request size (bytes)

Figure 4.2: The properties of the trace data collected from Windows Azure Storage (WAS).

Windows Azure Storage (WAS), containing the request logs for 12 million objects over a

one-day period. The objects are randomly grouped into 2004 partitions of an equal size.

Fig. 5.1(a) plots the distribution of the aggregated demands in terms of request number and

request file size for different objects in the trace. We can see that they are highly skewed:

a small number of hot objects attract a large amount of requests, while most objects are

cold. We use a randomized partition placement strategy, typically adopted in WAS: when

a (k, r) RS code is applied, each coding group has k original and r parity partitions. These

k+r partitions are placed on k+r random storage nodes such that the storage cost at each

node is balanced; when a (k, l, r) LRC is used, a coding group of k + l + r original/parity

partitions are placed on k + l + r random nodes in a similar way.

Our testbed has an architecture shown in Fig. 4.3 and Fig. 4.4, consisting of two major

parts: frontend servers and storage nodes. Each frontend server works in a decentralized

way, and can receive requests and direct them to storage nodes according to a load balanc-

ing policy. Each frontend has access to the content placement map that indicates which

partition is stored on which storage nodes, as well as the offsets of each object in its parti-

tion. For each request, we just need to read from the specified offset in the corresponding

partition for the object size. In our experiments, the requests in the traces (each in a form

of <time>, <object id>, <size requested>) are fed to one frontend server at random to

mimic the way that requests arrive at frontend servers from the clients in a balanced way.

We do not consider more sophisticated frontend load balancing, since the focus is on the

load balancing of storage nodes.

The read tasks on each storage node are executed sequentially in a first-come-first-

service (FCFS) queue. Each storage node keeps track its queue size. Since the read tasks

are different in sizes (due to different object sizes), the number of tasks on a storage node is

not a good estimate of its real load[Ousterhout et al., 2013]. Our system uses the aggregated

size of read tasks on each storage node to estimate its queue size, which is also easy to keep

track of. We do not consider object write/update, since many big data stores today are

45

Figure 4.3: System architecture with per-request optimal decisions based on instantaneous
probing.

append-only, in which each object is immutable and any changes are recorded as separate

timestamped objects that get stored on new nodes. Hence, write requests are unlikely to

create a hotspot on a single node and our focus here is on enabling faster reads.

4.3.1 The Controller and Logging

Each frontend server has a controller to execute load direction policies. In this work, we

evaluate the performance of the following polices:

1) Normal: normal read with degraded read triggered upon timeout (a common existing

solution);

2) LLF: least latency first with per-request full probing of all related storage nodes;

3) LMLF: least marginal load first with per-request full probing of all related storage

nodes;

4) LLF PW2: least latency first with per-request power-of-two probing on sampled

nodes;

5) LMLF PW2: least marginal load first with per-request power-of-two probing on

sampled nodes;

6) LMLF Lazy: least marginal load first with periodic updates of storage node queue

status;

46

Figure 4.4: System architecture with statistical optimization based on lazy queue status
updates.

7) Opt Lazy: statistical optimization of �2 norm with periodic updates of storage node

queue status.

For LLF and LMLF as shown in Fig. 4.3, the controller probes all the related nodes

for each request, e.g., 9 nodes for a (6, 3), for their current queue sizes and make per-

request decisions based on LLF or LMLF. For LLF PW2 and LMLF PW2, only the original

node and the nodes for one degraded read combination are probed: for RS, it is a random

degraded read, and for LRC, it is the local recovery combination. Thus, LLF PW2 and

LMLF PW2 have lower probing overhead. For LMLF Lazy, one separate thread probes all

queue status periodically and updates the queue table on all controllers every T seconds,

while each controller makes an LMLF decision for each incoming request based on the lazily

updated queue table.

For Opt Lazy as shown in Fig. 4.4, besides the queue table updated every T seconds,

the aggregate request rate for each partition is also recorded from the previous T seconds.

Then, a separate thread, implemented with MOSEK[ApS, 2017] in Python, computes a

load direction table with the statistical optimization method in Sec. 4.2.3, and obtains the

optimal probabilities that a request for an object in each partition will be served by the

normal read or certain degraded reads. Note that the same load direction probabilities

are applied to all the objects in a same partition, thus limiting the load direction table to

a practical size. We do not differentiate between the objects in a partition, since overly

fine-grained load direction increases overhead and partition-level load balancing is sufficient

47

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.25

0.50

0.75

1.00

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(a) CDF of request latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.25

0.50

0.75

1.00

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(b) CDF of task latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.4

0.6

0.8

1.0

C
D
F

LMLF PW2

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(c) CDF of task waiting times

Figure 4.5: The CDFs of different latency metrics for the storage system based on a (6,2,2)
LRC.

in our experiments. Each controller then probabilistically directs each incoming request

based on the current load direction table.

Note that Opt Lazy only solves problem (4.1) between the normal read and a single

degraded read: for RS, it is a random degraded read, and for LRC, it is the local recovery

combination. This simplification significantly reduces the optimization computation time

to around 0.1 second for our problem sizes yet achieving similar objective values to full op-

timization according to simulations. To simplify the synchronization issue among frontend

servers, we let each controller compute a separate (yet nearly identical) load direction table

every T seconds based on the current queue status and collected demand information. And

there are two separate concurrent threads for computing the load direction table and for

directing each incoming request based on the current table.

We record the following real timestamps for each request: A) the time that the request

arrived at the frontend server, B) the time that the frontend server sent the read task(s) of

this request to storage nodes, C) the time that each task entered the queue at the designated

storage node, D) the time that the task processing started, E) the time that the request

processing finished.

4.4 Experimental Results

Our evaluation is based on replaying a large amount of traces collected from the Windows

Azure Storage (WAS), containing the request logs for 12 million objects over a one-day

48

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.1

0.2

0.3

T
im
e
(s
)

(a) Box plot of request latencies

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.1

0.2

0.3

T
im
e
(s
)

(b) Box plot of task latencies

LMLF
PW2

LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0000

0.0025

0.0050

0.0075

0.0100

T
im
e
(s
)

(c) Box plot of controller processing times

Figure 4.6: Box plots for different latency metrics for the storage system based on a (6,2,2)
LRC.

period. We randomly group them into 2004 partitions of an equal size and import them

into the coded storage testbed deployed on a 98-machine cluster, including 90 Amazon EC2

t2.nano instances (which are not based on SSD to mimic commodity hardware used in

practice), which serve as the storage nodes, and 3 or 8 quad-core Amazon EC2 m4.xlarge

instances, which serve as the front-end servers. Fig. 5.1(a) shows the aggregated request

numbers and sizes for different objects. The requests are highly skewed in that a few objects

have contributed a considerable portion of the total workload to the system.

We replayed the traces in a typical peak hour under different load direction polices

listed in Sec.4.3, respectively, in the testbed for both a (6, 3) RS coded storage system and

a (6, 2, 2) LRC-based storage system, and record the timestamps we mentioned in Sec. 4.3.1.

For the LRC system, we evaluated the following 5 polices: Normal, LLF PW2, LMLF PW2,

LMLF Lazy and Opt Lazy, since in LRC probing all the degraded read combinations will

incur an overly high cost. For the (6, 3) RS coded system, we evaluated all the polices listed

in Sec. 4.3.1. In our experiment, we set the queue status probing frequency to once per 4

seconds for Opt Lazy and once per second for LMLF Lazy. We use 8 front-end servers for the

LLF, LMLF, LLF PW2, LMLF PW2 policies to support a high capability for instantaneous

probing and 3 front-end servers for the Normal, Opt Lazy and LMLF Lazy policies, which

have much lower probing overhead.

49

4.4.1 Performance in the LRC-based System

For an LRC-based system, Fig. 4.5(a) and Fig. 4.6(a) show the request latencies under

different policies. The request latency is the actual latency each request encounters including

the controller processing time (the delay at the controller before read tasks are launched)

and the maximum of related task latencies. Fig. 4.5(b) and Fig. 4.6(b) show the task

latencies under different policies. The task latency is the time gap between the time a task

is inserted into the queue of a storage node and the completion of the task. Fig. 4.5(c) shows

the task waiting time which is the time between a task entering a storage node and the

beginning of its processing. Fig. 4.6(c) shows the controller processing time, which is the

delay each request experiences at the controller of the front-end server, including queuing

and decision-making. Table 4.1 further shows the overall statistics of the performance of

different polices.

First, we can see that all the polices with judiciously launched proactive degraded reads

can improve the access latency compared to the traditional policy Normal that triggers

degraded reads following the timeouts of normal reads. Specifically, LMLF PW2, using the

marginal load and power-of-two sampled probes for optimal per-request decisions, reduces

the mean latency by 44.7% and the 95th-percentile by 77.8% with respect to Normal.

Least Marginal Load First vs Least Latency First. Fig. 4.5(b) and Fig. 4.6(b)

show the task latencies for different policies. LMLF PW2 is considerably better than the

LLF PW2 by using the marginal load as a load balancing criterion. As we have analyzed,

LMLF PW2 tries to strike a balance between the reduced individual request latency and the

overall system load while LLF PW2 only makes decisions to optimize the current request

latency, thus launching degraded reads too aggressively. Although LMLF PW2 does not

optimize the current request latency directly, it is essentially a per-request optimization for

the aggregated task latencies in the long run as we have shown in Sec. 4.2. In Fig. 4.5(a) and

Fig. 4.6(a), the advantage of LMLF PW2 over LLF PW2 in terms of the request latency is

not as obvious as it is in terms of the task latency. This is due to a higher decision-making

complexity on the front-end servers for LMLF PW2 as shown in Fig. 4.6(c) and the fact

that the request latency for the degraded read is dominated by the maximum of all the

related task latencies. In general, LMLF PW2 outperforms LLF PW2 with better request

latency performance and much better task latency performance.

Opt Lazy vs. LMLF PW2. In terms of the request latency and task latency as shown

in Fig. 4.5(a) and Fig. 4.5(b), LMLF PW2 outperforms the optimization scheme Opt Lazy.

However, Opt Lazy needs much fewer probes than the LMLF as is shown in Table 4.1. In

fact, the probing overhead of LMLF PW2 scales linearly as the number of requests increases

while for Opt Lazy, the probing overhead is linearly related to the number of storage nodes,

thanks to the use of periodic lazy updates. Therefore, Opt Lazy may potentially be able

to handle a much larger amount of requests than the LMLF PW2 especially when the

number controllers is limited. Moreover, the controller processing time of LMLF PW2

50

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.25

0.50

0.75

1.00

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(a) CDF of request latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.25

0.50

0.75

1.00

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(b) CDF of task latencies

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.2

0.4

0.6

0.8

1.0

C
D
F

LMLF

LMLF PW2

LLF

LLF PW2

Opt Lazy

LMLF Lazy

Normal

(c) CDF of task waiting times

Figure 4.7: CDFs of different latency metrics for the storage system based on a (6,3) RS
code.

shown in Fig. 4.6(c) is much larger than that of Opt Lazy. Opt Lazy can efficiently assign

the requests to the storage nodes based on the statistical optimization results calculated by

another thread while LMLF PW2 might suffer from a possibly long probing delay or even

timeout when the demand is too high as compared to the available network bandwidth.

This phenomenon is not obvious in our system since the network environment was very

stable when the experiments were conducted.

Opt Lazy vs. LMLF Lazy. Both of the two approaches only need to acquire the

queue status of the storage node periodically, thus with low probing overhead. However,

Opt Lazy outperforms LMLF lazy significantly since LMLF Lazy usually suffers from race

conditions since queue status is not up-to-date. The optimization method makes decisions

based on both the periodically updated queue status and request statistics, which help

to make a better decisions by jointly consider and coordinate the requests for objects in

different partitions.

4.4.2 Performance in the RS-coded System

Fig. 4.7(a) and Fig. 4.8(a) plot the request latencies under different load direction policies in

a (6,3) RS coded system. Fig. 4.7(b) and Fig. 4.8(b) plot the task latencies, while Fig. 4.5(c)

shows the task waiting times. Fig. 4.8(c) shows the box plot for task waiting times and

controller processing times. Table 4.2 further shows the overall statistics of the performance

of different polices. For the RS code, the performance demonstrates a similar overall trend

51

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.2

0.4

0.6

T
im
e
(s
)

(a) Box plot of request latencies

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.0

0.2

0.4

0.6

T
im
e
(s
)

(b) Box plot of task latencies

LMLF LMLF
PW2

LLF LLF
PW2

Opt
Lazy

LMLF
Lazy

Normal
0.000

0.005

0.010

0.015

0.020
T
im
e
(s
)

(c) Box plot of controller processing times

Figure 4.8: Box plots of different latency metrics for the storage system based on a (6,3)
RS code.

as that for the LRC system: we can reduce the request latency significantly by judiciously

launching proactive degraded reads.

LMLF PW2 vs. LMLF. As shown in Fig. 4.7(a) and Fig. 4.7(b), LMLF is better than

LMLF PW2 since it makes per-request optimal choices based on full probing. However, the

improvement is limited, since the requests are highly skewed and most of the time, the

decision between whether to trigger a degraded read or not has a more significant impact to

the performance while selecting which recovery combination for a degraded read is relatively

less important. There is a similar trend between LLF PW2 and LLF. Therefore, there is

a high motivation to use the LMLF PW2 and LLF PW2 instead of LMLF and LLF with

full probing to save the probing cost. Note that in a (6,3) RS coded system, the saving of

probes is 1/3. This amount varies among different erasure coded schemes depending on the

total number of partitions in a coded group and how many partitions are needed to recover

a single partition.

LMLF vs. LLF. As shown in Fig. 4.7(a), the performance of LMLF seems to be

slightly worse than LLF. Similar to the case in LRC system, LMLF has higher controller

processing time. Also, LMLF tries to keep the overall workload of the storage nodes to a

lower level and only reduce the request latency tail. On the other hand, LLF searches for a

decision with minimum per-request latency directly and thus gets a better request latency.

But as is shown in Fig. 4.7(b), LMLF has much better task latencies so that it incurs a

much lower overall task workload on the storage system and has the potential to serve more

52

Table 4.1: Overall request latencies (seconds) and probing overhead (# probes/s) for the
LRC-based system.

Policy mean var median 95th min max # probs per second

Normal 0.114 0.022 0.047 0.424 0.003 1.244 0
LMLF Lazy 0.087 0.013 0.037 0.324 0.003 1.197 270
Opt Lazy 0.048 0.005 0.025 0.177 0.003 1.038 67.5
LMLF PW2 0.033 0.001 0.026 0.080 0.008 1.038 888.9
LLF PW2 0.036 0.001 0.027 0.094 0.008 1.040 888.9

Table 4.2: Overall request latencies (seconds) and probing overhead (# probes/s) for the
RS coded system.

Policy mean var median 95th min max # probs per second

Normal 0.207 0.056 0.105 0.695 0.003 1.951 0
LMLF Lazy 0.180 0.041 0.094 0.607 0.003 1.331 270
Opt Lazy 0.148 0.031 0.069 0.520 0.003 1.420 67.5
LMLF PW2 0.073 0.005 0.054 0.196 0.012 3.043 784.5
LLF PW2 0.076 0.004 0.058 0.203 0.012 0.684 784.5
LMLF 0.070 0.003 0.055 0.174 0.014 1.016 1008.7
LLF 0.069 0.002 0.057 0.166 0.015 1.053 1008.7

demands.

4.5 Related Work

Most prior work has attributed the long latency tails in coded storage to degraded reads. A

large amount of research has focused on reducing the recovery cost during degraded reads.

Local Reconstruction Code (LRC)[Huang et al., 2012] is proposed to reduce the IOs required

for reconstruction over Reed-Solomon (RS) codes, while still achieving significant reduction

in storage overhead as compared to 3-way replication. Similar locally recoverable codes have

been presented in[Sathiamoorthy et al., 2013; Tamo and Barg, 2014]. HitchHiker[Rashmi et

al., 2014] is another erasure-coded storage system that reduces both network traffic and disk

I/O during reconstruction, residing on top of RS codes based on new encoding/decoding

techniques. HACFS[Xia et al., 2015] uses two different erasure codes, i.e., a fast code for

frequently accessed data to lower the recovery cost, and a compact code for the majority of

data to maintain a low overall storage overhead.[Zhu et al., n.d.] presents an algorithm that

finds the optimal number of codeword symbols needed for recovery with any XOR-based

erasure code and produces recovery schedules to use a minimum amount of data. [Khan et

al., 2012] proposes FastDR, a system that addresses node heterogeneity and exploits I/O

parallelism to enhance degraded read performance.

However, another important question is: what is the cause of degraded reads in coded

storage in the first place? In fact, aside from node failures, the majority of degraded

reads are passively triggered during temporary unavailability of the original node[Huang

et al., 2012; Xia et al., 2015; Rashmi et al., 2014]. For example, Over 98% of all failure

53

modes in Facebook’s data-warehouse and other production HDFS clusters require recovery

of a single temporary block failure[Rashmi et al., 2013] instead of node failures. And only

less than 0.05% of all failures involve three or more blocks simultaneously. Furthermore,

a major reason underlying such temporary node unavailability is that under skewed real-

world demands[Abad et al., 2012; Chen et al., 2012; Ren et al., 2013; Xia et al., 2015], there

is a high risk that a few nodes storing hot data may become hotspots while other nodes

are relatively idle. In this chapter, we argue that rigid load balancing schemes, i.e., passive

recovery after timeout, is a major cause for long latency tails in coded storage, especially in

the presence of skewed demands. In this case, we can actually reduce latency by proactively

launching degraded reads for some requests to shift loads away from hotspots early.

Recently, there have been other studies to reduce download latency from coded storage

systems, mainly leveraging redundant downloads[Chen et al., 2014; Liang and Kozat, 2014;

Sun et al., 2015; Shah et al., 2016; Joshi et al., 2015; Shah et al., 2014]. The idea is to

download more than k coded blocks in a (k, r) RS-coded system to exploit a queueing-

theoretical gain: as soon as the first k blocks are obtained, the remaining downloads can

be stopped. However, such a scheme mainly benefits non-systematic codes, where there is

no original copies of objects in each coding group. A latency optimization model has been

proposed in[Xiang et al., 2014] to jointly perform erasure code selection, content placement,

and scheduling policy optimization, also for non-systematic codes. In contrast, we focus

on systematic codes (where for each object, there is a single node storing its original copy)

that are commonplace in production environments to allow normal reads. With systematic

codes, always downloading k or more blocks is not efficient. Besides, we mainly focus on disk

I/O bottlenecks due to queued read tasks instead of variable network latencies of downloads.

The power-of-two-choices algorithm[Mitzenmacher, 2001; Mitzenmacher, 1996] is a clas-

sical randomized load balancing scheme with theoretical guarantees and wide applications[Richa

et al., 2001]. Recently, there have been renewed interests to generate power-of-two load

balancing to low-latency scheduling of batched tasks. Sparrow[Ousterhout et al., 2013] pro-

poses to schedule a batch of m tasks in a Spark job to multiple workers by selecting the

lead loaded m out of dm probed workers. Later, it is theoretically shown [Ying et al., 2015]

that a similar batch sampling technique maintains the same asymptotic performance as the

power-of-two-choices algorithm while reducing the number of probes. Our per-request op-

timal decisions generalize the power-of-two idea to the load balancing between the normal

read and different degraded reads in a erasure coded storage system, where the objective

for comparison is not so obvious as in prior job scheduling literature. We propose the least-

marginal-load-first policy can judiciously trades between current request latency and overall

system efficiency. Moreover, we unify the proposed schemes in an optimization framework

that can be executed lazily to further save probing overhead.

Many prior efforts have been devoted to reducing tail latencies in replication-based

systems. Specifically, the C3 system in[Ganjam et al., 2015] presents a distributed approach

54

to reducing the tail latency, stabilizing the behavior via a server ranking function that

considers concurrent requests on the fly and penalizes those servers with long queue sizes.

Tiny-Tail Flash[Yan et al., 2017] eliminates tail latencies induced by garbage collection by

circumventing GC-blocked I/Os with four novel strategies proposed. One of such strategies

is to proactively generate content of read I/Os that are blocked by ongoing GCs. In this

work, we focus on reducing tail latencies in storage systems that are based on systematic

erasure codes, by leveraging proactively launched degraded reads. Furthermore, we address

the request concurrency issue in a much more complex situation with theoretically inspired

methods.

4.6 Summary

Erasure-coding-based storage systems often suffer from long access latency tails. Prior

studies have attributed this to the presence of degraded reads when the original data is un-

available and mainly aimed at improving coding structures to reduce degraded read costs.

We take a radically different approach to tail latency reduction in coded storage systems

and launch degraded reads intentionally and judiciously to balance the loads. Specifically,

we propose a variety of schemes to direct loads based on either per-request decisions made

from instantaneously probed storage node queue status or an optimized load direction ta-

ble computed by statistical optimization with lazy queue status probes. We implemented

a prototype system and deployed it on a cluster of 98 machines to evaluate the perfor-

mance based on a large amount of real-world traces. Results suggest that the proposed

least-marginal-load-first policy based on instantaneous sampled queue status can reduce

the median request latency by more than 40% and the 95-percentile tail latency by more

than 75% in both RS-coded systems and LRC-based systems, as compared to the existing

approach of normal reads followed by passive degraded reads upon timeouts. The statistical

optimization approach with lazy queue probing can also significantly reduce request and

task latencies with a much lower system probing overhead.

55

Chapter 5

Efficient Block Placement Method
to Erasure Coded Storage System

5.1 Introduction

In Chapter 4, we study the latency reduction problem in systematic erasure coded storage

systems. We propose to proactively and intelligently launch degraded reads to shift loads

away from hotspots and prevent congestion. In this chapter, we propose to reduce the access

latency in coded storage systems through a new approach of block placement adjustment

and controlled block migration. Although there is little chance to choose servers during

normal reads, we may place blocks with anti-correlated demands on a same server to benefit

from statistical multiplexing and prevent certain hot blocks from congesting a specific server.

We formulate the content placement optimization to minimize the expected average waiting

time of all incoming requests, based on the mean and covariance of demands for different

blocks, which can be readily measured according to recent request history. To avoid globally

shuffling blocks across the system, we require all block migration to be local, and move as few

blocks as possible with respect to the current placement to reduce the migration overhead.

Our statistical content placement problem is similar to the Min-k-Partition problem, a

well-known NP-complete problem[Kann et al., 1997; Karp, 1972], which aims to divide a

graph into k partitions to minimize the sum of all intra-partition edge weights. Yet, our

problem turns out to be even more challenging, since we also need to handle an additional

constraint that no blocks from the same coded group can be placed on the same server,

which is needed to maintain the promised reliability of an (k, r) RS code. We introduce a

novel technique to convert this constraint into carefully designed weights in the objective

function and propose a time-efficient local search algorithm which only moves the block

that reduces the latency objective the most at a time. We prove that our algorithm always

produces a feasible solution that satisfies the special constraint and theoretically derive the

worst-case approximation ratio of our algorithm with respect to the global optimality. We

characterize such a ratio as a function of demand statistics; the larger the demand variation

among blocks, the better the approximation.

56

Through simulations based on real request traces collected from the Windows Azure

Storage system, we show that our local block migration scheme can greatly reduce the

overall access latency by only moving a small portion of all the blocks, and outperforms

a best randomized content placement that requires global shuffling. In the meantime, our

scheme does not affect storage overhead, reliability or repair cost. It turns out that the real

request pattern exhibits high skewness and variation, which can significantly benefit from

our local block migration with only a few necessary moves.

5.2 System Model and Problem Formulation

The content in a typical cloud storage system is stored in data blocks. When an erasure

code is used, e.g., a systematic (k, r) RS code, every k original uncoded data blocks are

grouped in a coded group and another r parity blocks are generated. In order to maintain

a high availability, all these k + r blocks are placed on different server nodes. We will call

them “coded blocks” in general with respect to the k original blocks. In a normal read, any

access request will be directed to the server containing the original block. If the server is

unavailable, a degraded read is performed by reading any other k blocks in the same coded

group, requiring k server accesses. Suppose the system has a total number of n coded blocks

placed on m servers.

In a small unit of time, which we call time slot (e.g., a second), we denote the number

of requests for each coded block i by a random variable Di. Let �D := {D1, D2, . . . , Dn}.
With request rates represented by random variables, we can model demand fluctuation in

different time slots. We use �μ := E(�D) to denote the mean of �D, and Σ := COV(�D) the

covariance matrix of �D. We can assume that within a certain measurement period, �μ and

Σ remain unchanged.

Note that the mean and covariance of �D can be readily measured or estimated from

system traces. For example, the system can keep track of the number of requests per second

or per minute for each original content block at a frontend gateway[Calder et al., 2011] to

calculate the empirical mean and covariances of request rates for original content in the

measurement period. It can also easily record the rate of degraded reads (due to node

failures or temporary unavailability) and convert the request rate statistics for original

content blocks to those for all the coded blocks, assuming degraded reads are randomly

directed to k other coded blocks. Alternatively, the access statistics for all the coded blocks

can even be measured directly in the backend storage system. This way, �μ and Σ for all

coded blocks are directly computed.

We use an integer variable yi, i = 1, . . . , n to represent the index of the server on which

the ith coded block is placed. Denote {L1, . . . , Lm} the server loads, where Li =
∑

j:yj=iDj

represents the amount of requests directed to server i in the time slot of interest. Let

α := k + r denote the total number of coded blocks in each coded group. Furthermore, we

use Gi, i = 1, . . . , n, to denote the index of the coded group to which the ith coded block

57

belongs; two blocks are in the same coded group if and only if they have the same group

index.

Considering a specific time slot, we formulate the optimal content placement (CP) prob-

lem as

(CP) minimize
y1,y2,...,yn

E

(m∑
i=1

1

2
L2
i

)
(5.1)

subject to Li =
∑

j:yj=i

Dj , ∀i, (5.2)

yi �= yj , if Gi = Gj , ∀i �= j, (5.3)

yi = {1, 2, . . . ,m}, ∀i, (5.4)

Problem (CP) minimizes the expected squared l2-norm of server loads, which represents

the expected sum of waiting times of all the requests in this time slot. We assume that

the request processing speed of servers are homogeneous[Li et al., 2014c], which is common

for storage servers in the same rack in a datacenter. The purpose of (5.1) is to distribute

random loads �D across different servers in a statistically balanced manner. Constraint (5.2)

is the mapping from request rates to server loads according to content placement y1, . . . , yn.

Constraint (5.3) requires that the coded blocks from the same coded group must be placed

on different servers to guarantee the promised reliability of an RS (k, r) code. We do not

consider queue accumulation along multiple time slots in our model and focus on solving the

single period problem (CP). Note that server processing capacity is usually over-provisioned

in production systems, and once server loads are balanced, queues will vanish fast in a stable

system.

We now convert Problem (CP) to an equivalent form similar to the well-known Min-k-

Partition Problem in graph theory yet with one additional constraint. We define a weight

matrix W by

W := E(�D · �DT) = �μ · �μT +Σ, (5.5)

Clearly, all the elements in W are nonnegative. Consider the following problem, which

we call Constrained Min-k-Partition Problem (CMKP+):

(CMKP+) minimize
y1,y2,...,yn

∑
i<j

W ijδ(yi − yj) +
1

2

∑
i

W ii, (5.6)

subject to yi �= yj , if Gi = Gj , ∀i �= j, (5.7)

yi = {1, 2, . . . ,m}, ∀i, (5.8)

where δ(·) is an indicator function, i.e.,

δ(x) :=

{
1, if x = 0,
0, otherwise.

Note that we use CMKP to represent the problem with the constant term 1
2

∑
iW ii removed

from (5.6).

58

Proposition 9 Problem (CP) is equivalent to Problem (CMKP+).

Proof. Please refer to the Appendix for the proof.

Therefore, we can consider the (CMKP+) problem instead of the original (CP) problem.

In fact, (CMKP+) is a partition problem in graph, where all the coded blocks can be deemed

as nodes, with W representing edge weights between every pair of nodes. The objective

is to divide nodes into k partitions to minimize the sum of intra-partition edge weights,

subject to constraint (5.7), that is, no coded blocks from the same coded group appear

in the same partition. Without constraint (5.7), the (CMKP+) problem can be converted

to Min-k-Partition (MKP) and Max-k-Cut (MKC), which are well-known NP-complete

problems[Kann et al., 1997; Karp, 1972]. However, our problem (CMKP+) is even more

challenging due to the additional constraint (5.7) to maintain the promised reliability offered

by erasure coding.

5.3 Local Block Migration Algorithm

We present the local block migration (LBM) algorithm to solve (CMKP+) with theoretical

worst-case approximation guarantees, which equivalently solves the optimal content place-

ment problem (CP). We first present our technique to handle the special constraint (5.7)

before presenting the algorithm.

5.3.1 Problem Reduction

First, we reduce (CMKP+) to a form without constraint (5.7). Our idea is to solve the

problem with constraint (5.7) removed, while setting a sufficiently large weight for each pair

of coded blocks in the same coded group to prevent them from being placed on the same

server. Define W ′ as
W ′

ij =

{
fij(W) , if Gi = Gj , i �= j,
W ij , otherwise,

(5.9)

where fij(W) is a penalty function to be defined later. Replacing W by W ′ and removing

constraint (5.7) in (CMKP+), we obtain

(MKP+) minimize
y1,y2,...,yn

∑
i<j

W ′
ijδ(yi − yj) +

1

2

∑
i

W ′
ii, (5.10)

subject to yi = {1, 2, . . . ,m}, for ∀i. (5.11)

Note that the term 1
2

∑
iW

′
ii in (5.10) is a constant. Hence, (MKP+) is equivalent to

Min-k-Partition Problem (MKP):

(MKP) minimize
y1,y2,...,yn

∑
i<j

W ′
ijδ(yi − yj), (5.12)

subject to yi = {1, 2, . . . ,m}, for ∀i, (5.13)

59

whose dual problem is the famous Max-k-Cut (MKC) problem:

(MKC) maximize
y1,y2,...,yn

∑
i<j

W ′
ij(1− δ(yi − yj)), (5.14)

subject to yi = {1, 2, . . . ,m}, for ∀i. (5.15)

Furthermore, (MKC) and (MKP) also have the same optimal solution(s). The reason is

that the sum of the objective values of the two problems is∑
i<j

W ′
ijδ(yi − yj) +

∑
i<j

W ′
ij(1− δ(yi − yj)) =

∑
i<j

W ′
ij , (5.16)

which is a constant. Since they are minimization and maximization problems, respectively,

they will have the same optimal solution(s).

In the following, to solve (CMKP+), we carefully design a penalty function f , such

that we always get a feasible solution to the original problem (CMKP+) by solving (MKC)

with a new W ′ yet without constraint (5.7). We propose an algorithm to solve (CMKP+)

and thus the original (CP) problem, by approximately solving (MKC) using a classical

local search heuristic[Kernighan and Lin, 1970; Fiduccia and Mattheyses, 1982; Zhu et al.,

2013]. We are able to theoretically derive a worst-case approximation ratio of the proposed

solution to our problem (CMKP+), which did not appear in prior literature[Kernighan and

Lin, 1970; Fiduccia and Mattheyses, 1982; Zhu et al., 2013], by leveraging a unique problem

structure in our objective function.

5.3.2 Local Block Migration Algorithm

Considering the influence of every single move on the objective, we define the gain of moving

block i to server j as

gj(i) :=
∑

k:yk=yi;k �=i

W ′
ik −

∑
k:yk=j;k �=i

W ′
ik, ∀i, j : j �= yi, (5.17)

which is the reduction of the objective of (MKP) if this move is carried out. For consistency,

let gj(i) = −∞ for j = yi. Define f l
ij(W) as

f l
ij(W) :=ε+

1

m− α+ 1
min

{ ∑
k:k �=i;Gk �=Gi

W ik,
∑

k:k �=j;Gk �=Gj

W kj

}
, (5.18)

where ε is an arbitrary positive constant.

Algorithm 3 describes our Local Block Migration (LBM) algorithm to solve (CMKP+).

In every iteration, we execute the move of block i to server j who achieves the largest gain

gj(i), until no move can reduce the objective any more, as shown in Lines 6-9.

To pick the best move argmax{i,j}gj(i), in Line 8 of Algorithm 3, we do not need to

recalculate all the m × n gj(i) by (5.17) in every iteration. Instead, since there is only

one move in each iteration, we only need to update the gains gj(i) affected by the move.

60

Algorithm 3 Local Block Migration

1: Input initial placement {y1, y2, . . . , yn}, W .
2: Output migrated placement {y1, y2, . . . , yn}.
3: Calculate W ′ by (5.9) and (5.18)
4: Calculate gj(i) for ∀i, j by (5.17)
5: procedure Local Block Migration
6: while max{i,j}gj(i) > 0 do
7: Find the best move: im, jm ← argmax{i,j}gj(i)
8: Update all the affected gj(i) entries by Algorithm 4
9: Execute the move: yim ← jm

Moreover, even the affected gains gj(i) do not need to be recalculated by (5.17), and can be

updated by incrementally. The details of our efficient procedure to update the gains gj(i)

is described in Algorithm 4.

Note that LBM is a “local” algorithm that performs one best move at a time to improve

the latency performance. In real systems, since it is impractical to globally shuffle all

the block placement to optimize load balancing, we can use the proposed LBM to locally

improve an existing arbitrary placement at some frequency, e.g., every hour or every day.

Moreover, we do not actually carry out all the moves yim ← jm computed by Algorithm 3.

Instead, we only make the moves to change the initial placement to the LBM outcome. In

Sec. 5.4, we show that only a few moves will achieve the most latency reduction.

5.3.3 Feasibility and Worst-Case Approximation Ratio

We first show Algorithm 3 yields a feasible solution to our problem with the special con-

straint (5.7).

Theorem 10 If W ′ in (5.9) is defined with fij(W) given by fij(W) = f l
ij(W) in (5.18),

any solution given by Algorithm 3 will satisfy (5.7), and thus will be a feasible solution to

(CMKP+) and (CP).

Proof. Please refer to the Appendix for the proof.

Note that we do not necessarily have fij(W) > W ij . However, Theorem 10 guarantees

that if fij(W) = f l
ij(W), LBM always produces a feasible solution that no two blocks from

the same coded group are placed on the same server. Theorem 11 provides a worst case

approximation for our Local Block Migration with respect to the globally optimal solution

to (CP).

Theorem 11 Suppose fij(W) in (5.9) is given by f l
ij(W) in (5.18). Then, the worst-case

approximation ratio of Algorithm 3 with respect to the optimal solution of (CMKP+) and

(CP) is given by

1 +
1

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D

2
i)

− 1

)
. (5.19)

61

Proof. Please refer to the Appendix for the proof.

Furthermore, since we have

E
((∑

iDi

)2)∑
i E(D

2
i)

≤max
D

{(∑
i

Di

)2/∑
i

D2
i

} ≤ n,

where the equality holds if and only if D1 = D2 = . . . = Dn, we can derive the worst-case

ratio among all the distributions of �D.

Corollary 12 For any �D, the approximation ratio given by Theorem 11 is at most 1 +
n−1

m−α+1 .

Remarks: the approximation ratio provided by Theorem 11 is dependent on the distri-

bution of the requests �D. In the extreme case when requests for different coded blocks are

identical, i.e., D1 = D2 = . . . = Dn, the offered approximation ratio (5.19) is large as shown

in Corollary 12. In fact, the ratio of E(|| �D||21)/
∑

i E(D
2
i) characterizes the demand variation

among different blocks. When this variation is large, the approximation ratio (5.19) is small

and our algorithm is guaranteed to yield a good result even in the worst case.

On the other hand, when the demand variation is small, although the offered theoretical

worst-case performance bound (5.19) is large, LBM can actually still generate a load bal-

anced solution. In fact, in this case, Di behaves uniformly cross different blocks and simple

randomized or round robin placement can already achieve load balancing, so can LBM. In a

nutshell, LBM provides good solutions for most situations and is especially beneficial when

the requests for different blocks have a large variation and are highly skewed. In Sec. 5.4,

we show that our request traces in the real world usually have a small
E(||
D||21)∑

i E(D
2
i)
, in which

case LBM will have a large benefit.

5.3.4 Further Reducing Migration Overhead

Although Theorem 10 guarantees the feasibility of the final converged solution from Algo-

rithm 3, in reality, we may want to stop looping after a fixed number of iterations to limit

the number of moves produced by LBM. In this case, the solution may not be feasible to

(CP) in theory with the fij(W) definition in (5.18). In order to propose an alternative

scheme, we let fij(W) in (5.9) be given by

f r
ij(W) :=ε+

1

m− α
max

{ ∑
k:k �=i;Gk �=Gi

W ik,
∑

k:k �=j;Gk �=Gj

W kj

}
, (5.20)

where ε is an arbitrary positive constant.

Theorem 13 If the W ′ in (5.9) is defined with fij(W) given by fij(W) = f r
ij(W) in

(5.20), and the initial content placement satisfies (5.7), the solution after any iteration in

Algorithm 3 will always satisfy (5.7).

62

Algorithm 4 Gain Update Algorithm

Require: the current gj(i), ∀i, j, the current moving block index im and its destination
server jm.

Ensure: the updated gj(i), ∀i, j.
1: procedure g Update
2: for ∀i �= im, such that yi = yim do
3: for ∀j �= yim do
4: gj(i) ← gj(i)−W ′

iim

5: for ∀i �= im, such that yi = jm do
6: for ∀j �= jm do
7: gj(i) ← gj(i) +W ′

iim

8: for ∀i �= im, yi �= yim do
9: gyim (i) ← gyim (i) +W ′

iim

10: for ∀i �= im, yi �= jm do
11: gjm(i) ← gjm(i)−W ′

iim

12: for ∀j, j �= yim and j �= jm do
13: gj(im) ← gj(im) +

∑
i:i �=im;yi=jm

W ′
imi −

∑
i:i �=im;yi=yim

W ′
imi

14: Calculate gyim (im) by (5.17)
15: gjm(im) ← −∞.

Proof. Please refer to the Appendix for the proof.

Remarks: Theorem 13 implies that as long as we start from a valid placement, we

can put a maximum iteration number in LBM and can always get feasible solutions in any

iteration. This way, we can stop the loop in Algorithm 3 when the maximum iteration

number is reached and still get a feasible solution that satisfies constraint (5.7). In other

words, f r
ij(W) allows us to trade the latency reduction off for fewer block moves, according

to a budget on migration overhead.

5.3.5 Time Complexity and the Breakout Method

Algorithm 3 runs in linear time with respect to the number of coded blocks in each iteration

and is very efficient. In the main loop from Line 6 to Line 9 in Algorithm 3, it only contains a

finding max operation and an updating operation. The finding max runs in linear time with

respect to the searching space and it is O(mn) since we have mn gain entries. For the gain

updating procedure described in Algorithm 4, Line 2 to Line 7 has only O(2nm ·m) = O(2n)

additions or subtractions. Line 8 to Line 11 also has O(2n) additions or subtractions.

Line 12 to Line 15 has two updating entries with O(2nm) basic calculations. Therefore, our

Local Block Migration can finish each iteration with O(mn) basic calculations.

The LBM is a local heuristic search and may get trapped into some local optimum. In

order to reach the global optimum, some breakout method[Morris, 1993] can be engaged.

Similar techniques in[Kernighan and Lin, 1970; Fiduccia and Mattheyses, 1982] can be used

to even improve over the local optimum. The idea is that when a local optimum is reached,

63

0 5 10 15 20
0

2

4

6

Time Index (hour)

A
v
e
ra

g
e
 R

e
q
u
e
s
t

(a) Average requests per block

50 100 150 200 250
10

5

10
6

10
7

Block Index (sorted)

T
o
ta

l
R

e
q
u
e
s
t

(b) Distribution of total requests per block

0 5 10 15 20
10

20

30

40

50

Time Period Index (hour)

R
a
ti
o

(c) E
((∑

i Di

)2)/∑
i E(D

2
i) over time

Figure 5.1: The properties of the trace data collected from Windows Azure Storage (WAS).

we may keep looping in Algorithm 3 even if the max value of gj(i) is negative. To avoid

infinite loops, the blocks that have been moved are locked. When all the blocks are moved

for once, the history of all the moves are inspected and the placement in the history with

best performance is picked. If it is better than the former converged local solution, a better

solution is produced and a new round of the local search in Algorithm 3 is started from the

new solution.

The time complexity of the escaping method is O(mn2). Although it will usually come

to a better solution, it needs lots of block moves, which results in high system overhead.

Moreover, as we will show in Sec. 5.4, the improvement of the breakout extension is limited.

Therefore, our proposed LBM is enough to produce good solutions without the breakout

method.

5.4 Simulation

We conduct simulations driven by real workload traces collected from a production cluster

in the Windows Azure Storage (WAS) system. It contains the request traces of 252 equal-

sized original data blocks in every second for a 22-hour period. We adopt a systematic

(6, 3) RS code, and the blocks will be placed on 20 server nodes. We assume that 5% of

all requests may encounter block unavailability events, which happen randomly. During

degraded read when the original block is unavailable, the requests are randomly directed to

the combinations of nodes that can reconstruct the original block.

64

The properties of the data are demonstrated in Fig. 5.1. Fig. 5.1(a) is the average

request per block at different times. Fig. 5.1(b) shows the distribution of the total number

of requests for each block. Fig. 5.1(c) is the statistical value of E((
∑

iDi)
2)/

∑
i E(D

2
i) for

each 2-hour measurement period, which will influence the worst-case performance of our

algorithm according to Theorem 11. We can see that it is no greater than 50 and leads to

an approximation ratio of 5.08.

We first evaluate our Local Block Migration algorithm in terms of the reduction on

the objective function in different measurement periods. To mimic the behavior in real

systems, we have also conducted a round-based simulation to replay the real request traces,

considering queue accumulation over different time periods.

5.4.1 Performance of the LBM Optimization Algorithm

We test our algorithm in each 2-hour measurement period and present results from 3 typical

sample periods in Fig. 5.2. Assuming a 5% block unavailability rate and random load

direction for degraded reads, we can get the empirical mean and covariance matrix of all

the 378 coded blocks in each 2-hour period. We perform Local Block Migration (LBM)

to find the optimal block placement in each sample period, and also adopt the breakout

method after the LBM algorithm converges. We compare our algorithm to choosing the

best out of 1000 random placements (which requires shuffling and thus lots of block moves).

Fig. 5.2 shows how the LBM reduces the objective function in (5.1) from a random initial

placement as well as the number of block moves incurred. In Fig. 5.2(a), the decreasing

curves indicate the performance of the LBM while the horizontal lines are the reference

performance of the best out of 1000 random placement. For each 2-hour sample period, the

breakout takes place at the iteration where there is a sudden increase of moves in Fig. 5.2(b).

We can see that LBM can effectively reduce the optimization objective and clearly

outperforms the global optimal approximation provided by the best out of 1000 random

placements. More importantly, in LBM, most of the reduction on the objective is achieved

within 30 iterations (thus 30 block moves) while choosing the best out of 1000 random

placements will typically incur a large overhead of more than 350 moves. Furthermore,

although the breakout can further reduce the objective, such further reduction is limited.

Given that the breakout will incur a large number of additional moves, we can gain most of

the benefit from LBM by running up to a certain number of iterations without the breakout

extension.

5.4.2 Queuing Simulation with Trace Replay

Now we replay the request traces in a round-based simulator (each round being one second)

and simulate the queuing effect of the system under different placement strategies. Again,

we divide the 22-hour trace into 11 2-hour measurement periods. For each measurement

period, we adjust the block placement by LBM with the maximum iteration set to 20, using

65

0 30 60 90 120 150
0.85

0.9

0.95

1

Iteration

R
e

la
ti
v
e

 O
b

je
c
ti
v
e

Sample1
Sample2
Sample3

(a) Objective v.s. Iteration

0 30 60 90 120 150
0

100

200

300

400

Iteration

M
o

v
e

s

Sample1
Sample2
Sample3

(b) Necessary Moves v.s. Iteration

Figure 5.2: The performance of the Local Block Migration Algorithm with breakout exten-
sion. The horizontal lines in Fig. 5.2(a) indicate the reference performance of the best of
1000 random placement and the decreasing curves indicate the performance from the LBM.
For each sample, the performance without breakout extension can be spot on iterations
before the “sudden” rise of the moves in Fig. 5.2(b).

the request statistics from the previous 2-hour measurement period as the prediction of the

request rates in the current measurement period. We feed the requests per second into the

simulator assuming block unavailability happens randomly with a ratio of 5%. The request

processing rate of each server is set such that the peak demand will utilize 70% of server

capacity.

We initialize the placement by applying LBM to the statistics of the first 2-hour mea-

surement period and evaluate the queuing performance in the remaining 10 measurement

periods, where LBM is applied at the beginning of each 2-hour measurement period. We

compare LBM to two schemes. One is the pure fixed random placement, which is a typical

method adopted in industry today[Borthakur, 2008]. The other is dynamically adjusting

the placement in each 2-hour measurement period by picking the best out of 1000 random

placements, which we call the Best Random.

Fig. 5.3(a) plots the distribution of the average request delay, while Fig. 5.3(b) shows

the number of block moves during each 2-hour measurement period. We can see that LBM

can greatly reduce the access delay over the typical random placement. LBM can even

beat the Best Random with only a small number of block moves in each measurement

period, while the Best Random always needs lots of global shuffling to keep the placement

optimal, bringing about high migration overhead, and is thus impractical. Fig. 5.3(c) shows

the performance of LBM under different server processing rates, characterized by different

levels of peak demand utilization.

Fig. 5.4 shows the average queue length of all the servers as time goes. We can see that

with LBM, the queues will generally be stable, while the random placement will suffer under

peak demands due to unbalanced server loads and poor utilization of server capacities.

66

0 500 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average Delay (ms)

C
D

F

LBM
Best Random
Random

(a) Average request delay distribution

4 6 8 10 12 14 16 18 20
0

100

200

300

400

Time Index (hour)

N
u
m

b
e
r

o
f
M

o
v
e
s

LBM

Best Random

(b) Number of block moves over time

0 500 1000 1500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average Delay (ms)

C
D

F

Utilization=0.6
Utilization=0.7
Utilization=0.8
Utilization=0.9

(c) Average delay (ms) under different utilization

Figure 5.3: Performance of LBM, Best Random (the best out of 1000 random placements),
and Random placement in the round-based trace replay.

5.5 Related Work

Abundant works are on enhancing the storage overhead and reducing the recover cost for

the degraded reads. In[Huang et al., 2012], Local Reconstruction Code (LRC) is proposed

to reduce the storage overhead. The works in[Zhu et al., n.d.; Khan et al., 2012] focus the

optimization of the degraded reads and better load direction scheme to boost the perfor-

mance of the degraded reads was presented. M. Xia et al. in[Xia et al., 2015] use two

different erasure codes that dynamically adapt to system load to achieve both the overall

low storage overhead and low recovery cost. HitchHiker[Rashmi et al., 2014] propose a new

encoding technique to improve recovery performance.

There are extensive works around the content placement problem in replication based

systems with different desired QoS. In[Rochman et al., 2013], Rochman et al. propose

the strategies of placing the resources to distributed regions to serve more requests locally.

In[Xu and Li, 2013], Xu et al. propose a reasonable request mapping and response routing

scheme to maximize the total utility of serving requests minus the cost. Bonvin et al.[Bonvin

et al., 2010] propose a distributed scheme to dynamically allocate the resources of a data

cloud based on net benefit maximization regarding the utility offered by the partition and

its storage and maintenance cost. In[Agarwal et al., 2010], the automatic data placement

across geo-distributed datacenters is presented, which iteratively moves a data item closer

to both clients and the other data items that it communicates with. B. Yang et al.[Yu

67

0 5 10 15 20
0

500

1000

Time Index (hour)

A
v
e
ra

g
e
 Q

u
e
u
e

(a) Local Block Migration

0 5 10 15 20
0

500

1000

Time Index (hour)

A
v
e
ra

g
e
 Q

u
e
u
e

(b) Random

0 50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Queue Length

C
D

F

LBM
Random

(c) Distribution of queue lengths

Figure 5.4: The simulated queue lengths in each time slot (second).

and Pan, 2015] study the content placement problem for systems when multiple items are

needed in each request and the item size is small. They try to maximize the correlation of

the contents stored on the same server to reduce the IO and the CPU overhead to fulfill a

request at a time. On the contrary, our work focus on the applications in which the size of

content block is large and each request only relates to one block. And we study the content

placement for erasure coded systems.

In[Liang and Kozat, 2014; Sun et al., 2015] new parallel download scheme to optimize

the delay performance of coded storage are proposed. Their work rely on parallel downloads

to leverage a queueing-theoretical gain, where each request must access k or more servers,

and abort the remaining download threads when k blocks are obtained.

In the line of the mathematical technique, the local search idea to solve the Max-2-Cut

Problem is first proposed in[Kernighan and Lin, 1970] . It is improved with better efficiency

in[Fiduccia and Mattheyses, 1982]. W. Zhu et al.[Zhu et al., 2013] extend it to solve the

mathematical Max-k-Cut Problem. In our work, we take the local search idea to solve the

problem with challenging special constraints related to the real application and we provide

a linear time searching scheme.

5.6 Summary

In this chapter, we study the problem of reducing access latency in erasure coded storage

systems through block migration and content placement optimization. Based on request

68

rate statistics, we have built a model to minimize the expected request waiting times, which

is similar to the NP-Complete Min-k-Partition problem with a special additional constraint.

We propose Local Block Migration which moves the block that reduces the latency objective

the most at a time. We theoretically characterize the algorithm’s worst-case approximation

ratio, which depends on a demand variation measure across blocks. Through trace-driven

simulations based on request traces from Windows Azure Storage, we show that in the

presence of skewed demands, Local Block Migration can significantly reduce the access

latency in erasure coded storage by only moving a few blocks once in a while, without

global shuffling. Furthermore, the computation of such desired moves can be done within 1

second for 252 original blocks stored with a (6, 3) RS code on tens of servers.

69

Chapter 6

Conclusion Remarks

6.1 Conclusion

In this dissertation, we demonstrate our strategy of applying optimization methods with

privacy and efficiency concerns in two different cases.

Firstly, we study machine learning over distributed features (vertically partitioned data)

where none of the parties shall share the local data. We propose the feature distributed

machine learning (FDML) to handle this problem. We propose an asynchronous SGD

algorithm to solve the new FDML scenario, with a convergence rate of O(1/
√
T), T being

the total number of iterations, matching the existing convergence rate known for data-

parallel SGD in a stale synchronous parallel setting[Ho et al., 2013]. We also propose the

parallel ADMM sharing algorithm, which is more robust during training and scalable to

the number of features. We have shown the convergence for convex and non-convex loss

functions. To further protect the data privacy, we apply the differential privacy technique

in the training procedure. Extensive experiments conducted over real data trace from

Tencent and public source on prototype systems show that our proposed method yields

better prediction accuracy than model trained from only local features while ensuring a

certain level of differential privacy guarantee.

Secondly, we study the tail latency reduction and load balancing problem for erasure

coded cloud storage systems, which often suffers from long access latency tails. We propose

several schemes to direct loads based on either per-request decisions made from instanta-

neously probed storage node queue status or an optimized load direction table computed by

statistical optimization with lazy queue status probes. We implemented a prototype system

and deployed it on a cluster of 98 machines to evaluate the performance based on a large

amount of real-world traces. Results suggest that the proposed least-marginal-load-first

policy based on instantaneous sampled queue status can reduce the median request latency

by more than 40% and the 95-percentile tail latency by more than 75% in both RS-coded

systems and LRC-based systems, as compared to the existing approach of normal reads

followed by passive degraded reads upon timeouts. The statistical optimization approach

with lazy queue probing can also significantly reduce request and task latencies with a much

70

lower system probing overhead. We also study the problem of reducing access latency in

erasure coded storage systems through block migration and content placement optimiza-

tion. Based on request rate statistics, we have built a model to minimize the expected

request waiting times, which is similar to the NP-Complete Min-k-Partition problem with

a special additional constraint. We propose Local Block Migration which moves the block

that reduces the latency objective the most at a time. We theoretically characterize the

algorithm’s worst-case approximation ratio, which depends on a demand variation measure

across blocks. Through trace-driven simulations based on request traces from Windows

Azure Storage, we show that in the presence of skewed demands, Local Block Migration

can significantly reduce the access latency in erasure coded storage by only moving a few

blocks once in a while, without global shuffling. Furthermore, the computation of such

desired moves can be done within 1 second for 252 original blocks stored with a (6, 3) RS

code on tens of servers.

6.2 Future Directions

6.2.1 Privacy and Distributed Machine Learning

Insuring privacy in a distributed machine learning system is an important direction to fully

utilize the power of data and still needs development in the current stage, especially for the

case with distributed features we study in this dissertation.

The first concern is how to incorporate more interaction between features from different

parties into the prediction model. In this dissertation, our proposed FDML only combined

the local intermediate predictions in the final stage, but little interaction between the fea-

tures from different parties is extracted, which limits the potential power of the rich features

from other parties. However, to incorporate more interaction, we have to transmit more

intermediate results, which makes it more challenging to ensure the privacy. Some naive

solutions could be to generate some intermediate local results with more dimensions rather

than only a single local prediction. For example, each party could generate a vector of local

predictions and on the central server, we can apply several layers of networks to combine

those results. In this way, the SGD based algorithm still work. Moreover, the widely used

factorization machine model might also be trained here by maintaining and transmitting a

vector of local predictions and utilizing some algebraic tricks.

The second concern is how to reduce the communication overhead. Nowadays, the

bandwidth within a cluster of data server are more than enough to carry heavy machine

learning tasks. However, bandwidth between data centers across the WAN could be limited.

Moreover, bandwidth will always be an issue when collaborating with increasing amount of

personal devices with unstable network connections. One direction is to follow the existing

common approaches and adapt them to the feature distributed machine learning setting.

These include thresholding (only transmit the value exceeding given value and transmit the

71

vectors in sparse key value pair form), clipping and quantization (use less precision floating

point data or apply some coding technique to code the more frequent values into shorter

length). The other direction is to explore the special model structure in this problem.

Specifically, we can explicitly model and monitor the influence of different intermediate

values to the final loss, make a local cache to the past values and only update the impor-

tant values more frequently while lazily transmitting the remaining ones. There could be

abundant of approaches to explore the appropriate strategy to monitor the influence and

optimize the updating frequency for different values.

The third concern is theoretical research, especially on the tight relation among the

privacy guarantee, the model accuracy and convergence rate. In this dissertation, we have

not pulled out a complete analysis combining all those factors. Instead, we have only

derived partial results where some factors are ignored. Specifically, in SGD based method,

we only derived the convergence rate but we missed the privacy guarantee. In ADMM

sharing based method, we derived the convergence result and the pure privacy guarantee

separately, without a complete analysis combining both factors. Although the proposed

methods seem to work in the experiments, it is still worth studying the tight theoretical

bound in order to convince the people about the privacy guarantee and motivate them to

share data.

6.2.2 Load Balancing in Erasure Coded Storage Systems

Our work is only the first step of applying the optimization technique in tail reduction

and load balancing problem in the erasure coded storage systems. We can envision a few

important directions that further improve our work.

One of the possible important directions is to incorporate data driven methods and

combine the load prediction with optimization for the load direction problem and the content

placement problem. For load direction, we only explored a varieties of methods to strike

a balance among the optimization accuracy, computation complexity and system overhead

due to probing. We were directing the load solely based on the current queuing and request

status, without considering the future load. And due to the probing overhead, we were

doing a caching approach or sampling approach to make it scalable to request number,

which adds more inaccuracy to the results. For future work, instead of the probing and

optimization, we can collect the request statistics and other context information like time,

request information, server cpu and memory status, etc. to predict both the request and

queuing status in the near future. With those prediction model, we could expect a more

intelligent load direction strategy and such prediction might also release the burden of

frequent probing overhead. For the content placing problem, our method only considered

the past statistics and used it as the estimation for the future. However, we can collect more

context information and keep a load prediction model to predict the future requests. With

such information, we can expect the optimization solution to yield better results. Besides,

72

since the migration itself incurs extra reading and writing overhead, we can wisely schedule

the execution of migration in the predicted request valley time.

73

Chapter 7

Proofs

7.1 Supplementary Materials for Chapter 2

7.1.1 Proof of Proposition 1

By the proposed algorithm and from (2.8), we havexjt+1 = xjt − ηt∇jF (x̃t(j)), where x̃t(j)

is the concatenated model parameters with staleness in which x̃it(j) = xi
t−τ j(i)

. Note that

we always have τ j(i) ≤ τ, ∀i, j. To help proving the proposition, we first prove a lemma.

Lemma 14

< xt − x∗,∇Ft(xt) >=
1

2
ηt

m∑
j=1

‖∇jF (x̃t(j))‖2 − Dt+1 −Dt

ηt

+
m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) > . (7.1)

Proof. Dt+1 −Dt

=
1

2

m∑
j=1

(‖xjt − ηt∇jF (x̃t(j))− xj∗‖2 − ‖xjt − xj∗‖2
)

=

m∑
j=1

(1
2
‖ηt∇jF (x̃t(j))‖2 − ηt < xjt − xj∗,∇jF (x̃t(j)) >

)

=
1

2
η2t

m∑
j=1

‖∇jF (x̃t(j))‖2 − ηt < xt − x∗,∇F (xt) >

+ ηt

m∑
j=1

〈
xjt − xj∗,∇jF (xt)−∇jF (x̃t(j)) > . (7.2)

Dividing the above equation by ηt, we can get the lemma. �

Another important fact for our analysis is

b∑
t=a

1√
t
≤

∫ b

a−1

1√
t
dt = 2(

√
b−√

a− 1). (7.3)

74

We now come to evaluate the regret R up to iteration T . By the definition in (2.10)

and, we have

R =
1

T

∑
t

Ft(xt)− F (x∗) =
1

T

T∑
t=1

Ft(xt)− 1

T

T∑
t=1

Ft(x∗) (7.4)

=
1

T

T∑
t=1

(
Ft(xt)− Ft(x∗)

) ≤ 1

T

T∑
t=1

< xt − x∗,∇Ft(xt) > (7.5)

where (7.5) follows from the convexity of the loss functions. Inserting the result from

lemma 14, we can get

T ·R ≤
T∑
t=1

(1
2
ηt

m∑
j=1

‖∇jF (x̃t(j))‖2 − Dt+1 −Dt

ηt

+

m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) >
)

=
T∑
t=1

1

2
ηt

m∑
j=1

‖∇jF (x̃t(j))‖2 −
T∑
t=1

Dt+1 −Dt

ηt

+

T∑
t=1

m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) > . (7.6)

We look into the three terms of (7.6) and bound them.

For the first term, we have

T∑
t=1

1

2
ηt

m∑
j=1

‖∇jF (x̃t(j))‖2 ≤
T∑
t=1

1

2
ηtmG2 =

T∑
t=1

1

2

η√
t
mG2 ≤ ηmG2

√
T . (7.7)

For the second term, we have

−
T∑
t=1

Dt+1 −Dt

ηt
=

D1

η1
− Dt+1

ηt
+

T∑
t=2

Dt

(
1

ηt
− 1

ηt−1

)
(7.8)

≤D2

η
− 0 +

T∑
t=2

D2

η

(√
t−√

t− 1
)
=

D2
√
T

η
. (7.9)

Finally we come to the third term. We have

75

T∑
t=1

m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) >

≤
T∑
t=1

m∑
j=1

‖xjt − xj∗‖ · ‖∇jFt(xt)−∇jFt(x̃t(j))‖ (7.10)

≤
T∑
t=1

m∑
j=1

‖xjt − xj∗‖ · Lj‖xt − x̃t(j)‖ (7.11)

≤
T∑
t=1

m∑
j=1

Lj‖xjt − xj∗‖ ·
m∑
i=1

‖xit − xit−τ j(i)‖. (7.12)

If τ j(i) ≥ 0, we have

‖xit − xit−τ j(i)‖ =
∥∥ t−1∑
q=t−τ j(i)

(xiq+1 − xiq)
∥∥ ≤

t−1∑
q=t−τ j(i)

‖ηq∇iFq(x̃q(i))‖

≤
t−1∑

q=t−τ j(i)

ηqG. (7.13)

If τ j(i) < 0, by similar technique, we can also get (7.13). Inserting (7.13) into (7.12), we

have

T∑
t=1

m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) >

≤Gm

T∑
t=1

m∑
j=1

Lj‖xjt − xj∗‖ ·
t−1∑

q=t−τ

ηq (7.14)

≤GmLmax

T∑
t=1

t−1∑
q=t−τ

ηq

m∑
j=1

‖xjt − xj∗‖ (7.15)

≤Gm
3
2Lmax

T∑
t=1

t−1∑
q=t−τ

ηq‖xt − x∗‖ (7.16)

≤GDm
3
2Lmax

T∑
t=1

t−1∑
q=t−τ

ηq. (7.17)

(7.10) is from triangle inequality. (7.11) comes from the Assumption 1’s blockwise Lipschitz

continuity. (7.16) comes from the fact

1

m

m∑
j=1

‖xjt − xj∗‖ ≤ 1√
m

√√√√ m∑
j=1

‖xjt − xj∗‖2 = 1√
m
‖xt − x∗‖. (7.18)

76

For the last parts of (7.17), we have

T∑
t=1

t−1∑
q=t−τ

ηq ≤
∑
t=1

τη1t+

T∑
t=τ+1

t−1∑
q=t−τ

ηq ≤ ητ(τ + 1)

2
+

T∑
t=τ+1

τη√
t− τ

(7.19)

≤ητ(τ + 1)

2
+ 2τη

√
T − τ (7.20)

=
ητ

2
(τ + 1 + 4

√
T), (7.21)

where (7.20) is from the fact (7.3). Combining (7.17) and (7.21), we get

T∑
t=1

m∑
j=1

< xjt − xj∗,∇jFt(xt)−∇jFt(x̃t(j)) >

≤1

2
GDm

3
2Lmaxητ(τ + 1 + 4

√
T) (7.22)

Combining (7.6), (7.7), (7.9) and (7.22), and dividing by T , we have

R ≤ηmG2

√
T

+
D2

η
√
T

+
1

2
GDm

3
2Lmaxητ

1√
T
(
τ + 1√

T
+ 4) = O(

1√
T
).

�

7.2 Supplementary Materials for Chapter 3

7.2.1 Proof of Theorem 2

To help theoretical analysis, we denote the objective functions in (3.6) and (3.7) as

gm(xm) = λRm(xm) + 〈yt,Dmxm〉+ ρ

2

∥∥ M∑
k=1
k �=m

Dkx
t
k +Dmxm − zt

∥∥2,

h(z) = l(z)− 〈yt, z〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − z

∥∥2, (7.23)

correspondingly. We prove the following four lemmas to help prove the theorem.

Lemma 15 Under Assumption 2, we have

∇l(zt+1) = yt+1,

and

‖yt+1 − yt‖2 ≤ L2‖zt+1 − zt‖2.

Proof. By the optimality in (3.7), we have

∇l(zt+1)− yt + ρ
(
zt+1 −

M∑
m=1

Dmxt+1
m

)
= 0.

77

Combined with (3.8), we can get

∇l(zt+1) = yt+1. (7.24)

Combined with Assumption 2.1, we have

‖yt+1 − yt‖2 = ‖∇l(zt+1)−∇l(zt)‖2 ≤ L2‖zt+1 − zt‖2. (7.25)

�

Lemma 16 We have

(‖ M∑
m=1

xt+1
m − z‖2 − ‖

M∑
m=1

xtm − z‖2)− M∑
m=1

(‖ M∑
k=1
k �=m

xtk + xt+1
m − z‖2 − ‖

M∑
m=1

xtm − z‖2)

≤
M∑

m=1

‖xt+1
m − xtm‖2. (7.26)

Proof.

LHS =
(M∑
m=1

(xt+1
m + xtm)− 2z

)�(

M∑
m=1

xt+1
m −

M∑
m=1

xtm)−
M∑

m=1

(M∑
k=1
k �=m

2xtk + xtm + xt+1
m − 2z

)�(xt+1
m − xtm)

=−
M∑

m=1

M∑
k=1
k �=m

(xt+1
k − xtk)�(xt+1

m − xtm)

=− ‖
M∑

m=1

(xt+1
m − xtm)‖2 +

M∑
m=1

‖xt+1
m − xtm‖2

≤
M∑

m=1

‖xt+1
m − xtm‖2.

�

Lemma 17 Suppose Assumption 2 holds. We have

L({xt+1
m }, zt+1; yt+1)− L({xtm}, zt; yt)

≤
M∑

m=1

−
(
γm(ρ)

2
− σmax(D�

mDm)

)
‖xt+1

m − xtm‖2 −
(
γ(ρ)

2
− L2

ρ

)
‖zt+1 − zt‖2.

Proof. The LFH can be decomposed into two parts as

L({xt+1
m }, zt+1; yt+1)− L({xtm}, zt; yt)

=
(L({xt+1

m }, zt+1; yt+1)− L({xt+1
m }, zt+1; yt)

)
+

(L({xt+1
m }, zt+1; yt)− L({xtm}, zt; yt)). (7.27)

78

For the first term, we have

L({xt+1
j }, zt+1; yt+1)− L({xt+1

j }, zt+1; yt)

=〈yt+1 − yt,
∑
j

Djx
t+1
j − zt+1〉

=
1

ρ
‖yt+1 − yt‖2 (by (3.8))

=
L2

ρ
‖zt+1 − zt‖2 (by Lemma 15). (7.28)

For the second term, we have

L({xt+1
m }, zt+1; yt)− L({xtm}, zt; yt)

=L({xt+1
m }, zt+1; yt)− L({xtm}, zt+1; yt) + L({xtm}, zt+1; yt)− L({xtm}, zt; yt)

≤
((

λ

M∑
m=1

Rm(xt+1
m) + 〈yt,

M∑
m=1

Dmxt+1
m 〉+ ρ

2

∥∥ M∑
k=1

Dkx
t+1
k − zt+1

∥∥2)

− (
λ

M∑
m=1

Rm(xtm) + 〈yt,
M∑

m=1

Dmxtm〉+ ρ

2

∥∥ M∑
k=1

Dkx
t
k − zt+1

∥∥2))

+

((
l(zt+1)− 〈yt, zt+1〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − zt+1

∥∥2)− (
l(zt)− 〈yt, zt〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − zt

∥∥2))

≤
M∑

m=1

((
λRm(xt+1

m) + 〈yt,Dmxt+1
m 〉+ ρ

2

∥∥ M∑
k=1
k �=m

Dkx
t
k +Dmxt+1

m − zt+1
∥∥2)

− (
λRm(xtm) + 〈yt,Dmxtm〉+ ρ

2

∥∥ M∑
k=1

Dkx
t
k − zt+1

∥∥2))+

M∑
m=1

‖Dm(xt+1
m − xtm)‖2

+

((
l(zt+1)− 〈yt, zt+1〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − zt+1

∥∥2)

− (
l(zt)− 〈yt, zt〉+ ρ

2

∥∥ M∑
m=1

Dmxt+1
m − zt

∥∥2)) (by Lemma 16)

=
M∑

m=1

(
gm(xt+1

m)− gm(xtm)
)
+ (h(zt+1)− h(zT))) +

M∑
m=1

‖Dm(xt+1
m − xtm)‖2

≤
M∑

m=1

(〈∇gm(xt+1
m), xt+1

m − xtm〉 − γm(ρ)

2
‖xt+1

m − xtm‖2)+ 〈∇h(zt+1), zt+1 − zt〉 − γ(ρ)

2
‖zt+1 − zt‖2

+
M∑

m=1

‖Dm(xt+1
m − xtm)‖2 (by strongly convexity from Assumption 2.2)

79

≤−
M∑

m=1

γm(ρ)

2
‖xt+1

m − xtm‖2 − γ(ρ)

2
‖zt+1 − zt‖2 +

M∑
m=1

‖Dm(xt+1
m − xtm)‖2

(by optimality condition for subproblem in (3.6) and (3.7))

≤
M∑

m=1

−
(
γm(ρ)

2
− σmax(D�

mDm)

)
‖xt+1

m − xtm‖2 − γ(ρ)

2
‖zt+1 − zt‖2. (7.29)

Note that we have abused the notation ∇gm(xm) and denote it as the subgradient when g

is non-smooth but convex. Combining (7.27), (7.28) and (7.29), the lemma is proved. �

Lemma 18 Suppose Assumption 2 holds. Then the following limit exists and is bounded

from below:

lim
t→∞L({xt+1}, zt+1; yt+1). (7.30)

Proof.

L({xt+1}, zt+1; yt+1)

=l(zt+1) + λ

M∑
m=1

Rm(xt+1
m) + 〈yt+1,

M∑
m=1

Dmxt+1
m − zt+1〉+ ρ

2
‖Dmxt+1

m − zt+1‖2

=λ

M∑
m=1

Rm(xt+1
m) + l(zt+1) + 〈∇l(zt+1),

M∑
m=1

Dmxt+1
m − zt+1〉+ ρ

2
‖Dmxt+1

m − zt+1‖2 (by Lemma 15)

≥λ
M∑

m=1

Rm(xt+1
m) + l(

M∑
m=1

Dmxt+1
m) +

ρ− L

2
‖Dmxt+1

m − zt+1‖2. (7.31)

Combined with Assumption 2.3, L({xt+1}, zt+1; yt+1) is lower bounded. Furthermore, by

Assumption 2.2 and Lemma 17, L({xt+1}, zt+1; yt+1) is decreasing. These complete the

proof. �
Now we are ready for the proof.

Part 1. By Assumption 2.2, Lemma 17 and Lemma 18, we have

‖xt+1
m − xtm‖ → 0 ∀m = 1, 2, . . . ,M,

‖zt+1 − zt‖ → 0.

Combined with Lemma 15, we have

‖yt+1 − yt‖2 → 0.

Combined with (3.8), we complete the proof for Part 1.

Part 2. Due to the fact that ‖yt+1 − yt‖2 → 0, by taking limit in (3.8), we can get

(3.12).

At each iteration t+ 1, by the optimality of the subproblem in (3.7), we have

∇l(zt+1)− yt + ρ(zt+1 −
M∑

m=1

Dmxt+1
m) = 0. (7.32)

80

Combined with (3.12) and taking the limit, we get (3.11).

Similarly, by the optimality of the subproblem in (3.6), for ∀m ∈ M there exists ηt+1
m ∈

∂Rm(xt+1
m), such that

〈
xm − xt+1

m , ληt+1
m +DT

myt + ρDT
m

(M∑
k=1
k≤m

Dkx
t+1
k +

M∑
k=1
k>j

Dkx
t
k − zt

)〉 ≥ 0 ∀xm ∈ Xm.

(7.33)

Since Rm is convex, we have

λRm(xm)− λRm(xt+1
m) +

〈
x− xt+1

m ,D�
myt + ρ

(M∑
k=1
k≤m

Dkx
t+1
k +

M∑
k=1
k>j

Dkx
t
k − zt

)TDj

〉 ≥ 0 ∀xm ∈ Xm.

(7.34)

Combined with (3.12) and the fact ‖xt+1
m − xtm‖ → 0, by taking the limit, we get

λRm(xm)− λRm(x∗m) +
〈
x− x∗m,D�

my∗
〉 ≥ 0 ∀xm ∈ Xm, ∀m, (7.35)

which is equivalent to

λRm(x) +
〈
y∗,Dmx

〉− λRm(x∗m)− 〈
y∗,Dmx∗m

〉 ≥ 0 ∀x ∈ Xm, ∀m. (7.36)

And we can get the result in (3.9).

When m �∈ M, we have

〈
xm − xt+1

m , λ∇Rm(xt+1
m) +D�

myt + ρ
(M∑

k=1
k≤m

Dkx
t+1
k +

M∑
k=1
k>j

Dkx
t
k − zt

)TDm

〉 ≥ 0 ∀xm ∈ Xm.

(7.37)

Taking the limit and we can get (3.10).

Part 3. We first show that there exists a limit point for each of the sequences {xtm},
{zt} and {yt}. Since Xm, ∀m is compact, {xtm} must have a limit point. With Theorem 2.1,

we can get that {zt} is also compact and has a limit point. Furthermore, with Lemma 15,

we can get {yt} is also compact and has a limit point.

We prove Part 3 by contradiction. Since {xtm}, {zt} and {yt} lie in some compact set,

there exists a subsequence {xtkm}, {ztk} and {ytk}, such that

({xtkm}, ztk ; ytk) → ({x̂m}, ẑ; ŷ), (7.38)

where ({x̂m}, ẑ; ŷ) is some limit point and by part 2, we have ({x̂m}, ẑ; ŷ) ∈ Z∗. Suppose

that {{xtm}, zt; yt} does not converge to Z∗, since ({xtkm}, ztk ; ytk) is a subsequence of it,

there exists some γ > 0, such that

lim
k→∞

dist
(
({xtkm}, ztk ; ytk);Z∗) = γ > 0. (7.39)

81

From (7.38), there exists some J(γ) > 0, such that

‖({xtkm}, ztk ; ytk)− ({x̂m}, ẑ; ŷ)‖ ≤ γ

2
, ∀k ≥ J(γ). (7.40)

Since ({x̂m}, ẑ; ŷ) ∈ Z∗, we have

dist
(
({xtkm}, ztk ; ytk);Z∗) ≤ dist

(
({xtkm}, ztk ; ytk); ({x̂m}, ẑ; ŷ)). (7.41)

From the above two inequalities, we must have

dist
(
({xtkm}, ztk ; ytk);Z∗) ≤ γ

2
, ∀k ≥ J(γ), (7.42)

which contradicts to (7.39), completing the proof. �

7.2.2 Proof of Theorem 3

We first show an upper bound for V t.

1. Bound for ∇̃xmL({xtm}, zt; yt). When m ∈ M, from the optimality condition in (3.6),

we have

0 ∈ λ∂xmRj(x
t+1
m) +D�yt + ρD�

j

(M∑
k=1
k �=j

Dkx
t
k +Dmxt+1

m − zt
)
.

By some rearrangement, we have

(
xt+1
m −D�yt − ρD�

m

(M∑
k=1
k �=j

Dkx
t
k +Dmxt+1

m − zt
))− xt+1

m ∈ λ∂xmRm(xt+1
m),

which is equivalent to

xt+1
m = proxλRm

[
xt+1
m −D�yt − ρD�

m

(M∑
k=1
k �=j

Dkx
t
k +Dmxt+1

m − zt
)]
. (7.43)

Therefore,

‖xtm − proxλRm

[
xtm −∇xm

(L({xtm}, zt; yt)− λ
M∑

m=1

Rm(xtm)
)]‖

=
∥∥xtm − xt+1

m + xt+1
m − proxλRm

[
xtm −D�yt − ρD�

m

(M∑
k=1

Dkx
t
k − zt

)]∥∥

≤‖xtm − xt+1
m ‖+ ∥∥proxλRm

[
xt+1
m −D�yt − ρDT

m

(M∑
k=1
k �=m

Dkx
t
k +Dmxt+1

m − zt
)]

− proxλRm

[
xtm −D�yt − ρDT

m

(M∑
k=1

Dkx
t
k − zt

)]∥∥
≤ 2‖xtm − xt+1

m ‖+ ρ‖D�
mDm(xt+1

m − xtm)‖. (7.44)

82

When m �∈ M, similarly, we have

λ∇xmRm(xt+1
m) +D�yt + ρD�

m

(M∑
k=1
k �=j

Dkx
t
k +Dmxt+1

m − zt
)
= 0. (7.45)

Therefore,

‖∇xmL({xtm}, zt; yt)‖

=‖λ∇xmRm(xtm) +D�yt + ρD�
m

(M∑
k=1

Dkx
t
k − zt

)‖
=‖λ∇xmRm(xtm) +D�yt + ρDT

m

(M∑
k=1

Dkx
t
k − zt

)

− (
λ∇xmRm(xt+1

m) +D�yt + ρDT
m

(M∑
k=1
k �=j

Dkx
t
k +Dmxt+1

m − zt
))‖

≤λ‖∇xmRm(xtm)−∇xmRm(xt+1
m)‖+ ρ‖D�

mDm(xt+1
m − xtm)‖

≤Lm‖xt+1
m − xtm‖+ ρ‖D�

mDm(xt+1
m − xtm)‖. (by Assumption 2.4) (7.46)

2. Bound for ‖∇zL({xtm}, zt; yt)‖. By optimality condition in (3.7), we have

∇l(zt+1)− yt + ρ
(
zt+1 −

M∑
m=1

Dmxt+1
m

)
= 0.

Therefore

‖∇zL({xtm}, zt; yt)‖

=‖l(zt)− yt + ρ
(
zt −

M∑
m=1

Dmxtm
)‖

=‖l(zt)− yt + ρ
(
zt −

M∑
m=1

Dmxtm
)− (

l(zt+1)− yt + ρ
(
zt+1 −

M∑
m=1

Dmxt+1
m

))‖
≤(L+ ρ)‖zt+1 − zt‖+ ρ

M∑
m=1

‖Dm(xt+1
m − xtm)‖. (7.47)

3. Bound for ‖∑M
m=1Dmxtm − zt‖. According to Lemma 15, we have

‖
M∑

m=1

Dmxtm − zt‖ =
1

ρ
‖yt+1 − yt‖ ≤ L

ρ
‖zt+1 − zt‖. (7.48)

Combining (7.44), (7.46), (7.47) and (7.48), we can conclude that there exists some

C1 > 0, such that

V t ≤ C1(‖zt+1 − zt‖2 +
M∑

m=1

‖xt+1
m − xtm‖2), (7.49)

83

By Lemma 17, there exists some constant C2 = min{∑M
m=1

γm(ρ)
2 , γ(ρ)2 − L2

ρ }, such that

L({xtm}, zt; yt)− L({xt+1
m }, zt+1; yt+1)

≥C2(‖zt+1 − zt‖2 +
M∑

m=1

‖xt+1
m − xtm‖2). (7.50)

By (7.49) and (7.50), we have

V t ≤ C1

C2
L({xtm}, zt; yt)− L({xt+1

m }, zt+1; yt+1). (7.51)

Taking the sum over t = 1, . . . , T , we have

T∑
t=1

V t ≤C1

C2
L({x1}, z1; y1)− L({xt+1}, zt+1; yt+1)

≤C1

C2
(L({x1}, z1; y1)− f). (7.52)

By the definition of T (ε), we have

T (ε)ε ≤ C1

C2
(L({x1}, z1; y1)− f). (7.53)

By taking C = C1
C2

, we complete the proof. �

7.2.3 Proof of Lemma 6

From the optimality condition of the x update procedure in (3.16), we can get

Dmxt+1
m,Dm

= −Dm(ρD�
mDm)−1

⎡
⎢⎢⎣λR′

m(xt+1
m,Dm

) +D�
myt + ρD�

m(

M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦ ,

D′
mxt+1

m,D′
m

= −D′
m(ρD′�

mD′
m)−1

⎡
⎢⎢⎣λR′

m(xt+1
m,D′

m
) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦ .

84

Therefore we have

Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m

= −Dm(ρD�
mDm)−1

⎡
⎢⎢⎣λR′

m(xt+1
m,Dm

) +D�
mytDm + ρD�

m(

M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦

+D′
m(ρD′�

mD′
m)−1

⎡
⎢⎢⎣λR′

m(xt+1
m,D′

m
) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦

= Dm(ρD�
mDm)−1

×

⎡
⎢⎢⎣λ(R′

m(xt+1
m,D′

m
)−R′

m(xt+1
m,Dm

)) + (D′
m −Dm)�yt + ρ(D′

m −Dm)�(
M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦

+ [D′
m(ρD′�

mD′
m)−1 −Dm(ρD�

mDm)−1]

×

⎛
⎜⎜⎝λR′

m(xt+1
m,D′

m
) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎞
⎟⎟⎠ .

Denote

Φ1 = Dm(ρD�
mDm)−1

×

⎡
⎢⎢⎣λ(R′

m(xt+1
m,D′

m
)−R′

m(xt+1
m,Dm

)) + (D′
m −Dm)�yt + ρ(D′

m −Dm)�(
M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦ ,

Φ2 = [D′
m(ρD′�

mD′
m)−1 −Dm(ρD�

mDm)−1]

×

⎛
⎜⎜⎝λR′

m(xt+1
m,D′

m
) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎞
⎟⎟⎠ .

As a result:

Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m
= Φ1 +Φ2. (7.54)

In the following, we will analyze the components in (7.54) term by term. The object is to

prove max Dm,D′
m

‖Dm−D′
m‖≤1

‖xt+1
m,Dm

− xt+1
m,D′

m
‖ is bounded. To see this, notice that

max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m
‖

≤ max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Φ1‖+ max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Φ2‖.

85

For max Dm,D′
m

‖Dm−D′
m‖≤1

‖Φ2‖, from assumption 3.3, we have

max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Φ2‖

≤

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

dmρ

⎛
⎜⎜⎝λR′

m(xt+1
m,D′

m
) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
.

By mean value theorem, we have∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

dmρ

⎛
⎜⎜⎝λD′�

mR′′
m(x∗) +D′�

m yt + ρD′�
m (

M∑
k=1
k �=m

Dkx̃k − z)

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
≤ 2

dmρ

⎡
⎢⎢⎣λ‖R′′

m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k �=m

Dkx̃k − z)‖

⎤
⎥⎥⎦ .

For max Dm,D′
m

‖Dm−D′
m‖≤1

‖Φ1‖, we have

max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Φ1‖ ≤
∣∣∣∣∣∣Dm(ρD�

mDm)−1

×

⎡
⎢⎢⎣λ(R′

m(xt+1
m,D′

m
)−R′

m(xt+1
m,Dm

)) + (D′
m −Dm)�yt + ρ(D′

m −Dm)�(
M∑
k=1
k �=m

Dkx̃k − z)

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
≤ ρ−1‖(D�

mDm)−1‖

⎡
⎢⎢⎣λ‖R′′

m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k �=m

Dkx̃k − z)�‖

⎤
⎥⎥⎦

=
1

dmρ

⎡
⎢⎢⎣λ‖R′′

m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k �=m

Dkx̃k − z)‖

⎤
⎥⎥⎦ .

86

Thus by assumption 3.1-3.2

max
Dm,D′

m
‖Dm−D′

m‖≤1

‖Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m
‖

≤ 3

dmρ

⎡
⎢⎢⎣λc1 + ‖yt‖+ ρ‖(

M∑
k=1
k �=m

Dkx̃k − z)�‖

⎤
⎥⎥⎦

≤ 3

dmρ

⎡
⎢⎢⎣λc1 + ‖yt‖+ ρ‖z‖+ ρ

M∑
k=1
k �=m

‖x̃k‖

⎤
⎥⎥⎦

≤ 3

dmρ
[λc1 + (1 +Mρ)b1]

is bounded. �

7.2.4 Proof of Theorem 7

Proof: The privacy loss from Dmx̃t+1
m is calculated by:

∣∣∣∣lnP (Dmx̃t+1
m |Dm)

P (D′
mx̃t+1

m |D′
m)

∣∣∣∣ =
∣∣∣∣∣ln P (Dmx̃t+1

m,Dm
+Dmξt+1

m)

P (D′
mx̃t+1

m,D′
m
+D′

mξ′,t+1
m)

∣∣∣∣∣ =
∣∣∣∣∣ln P (Dmξt+1

m)

P (D′
mξ′,t+1

m)

∣∣∣∣∣ .
Since Dmξt+1

m and D′
mξ′,t+1

m are sampled from N (0, σ2
m,t+1), combine with lemma 6, we

have ∣∣∣∣∣ln P (Dmξt+1
m)

P (D′
mξ′,t+1

m)

∣∣∣∣∣
=

∣∣∣∣∣
2ξt+1

m ‖Dmxt+1
m,Dm

−D′
mxt+1

m,D′
m
‖+ ‖Dmxt+1

m,Dm
−D′

mxt+1
m,D′

m
‖2

2σ2
m,t+1

∣∣∣∣∣
≤

∣∣∣∣∣2Dmξt+1
m C+ C

2

2C2·2ln(1.25/σ)
ε2

∣∣∣∣∣
=

∣∣∣∣(2Dmξt+1
m + C)ε2

4Cln(1.25/σ)

∣∣∣∣ .
In order to make

∣∣∣ (2Dmξt+1
m +C)ε2

4Cln(1.25/σ)

∣∣∣ ≤ ε, we need to make sure

∣∣Dmξt+1
m

∣∣ ≤ 2Cln(1.25/σ)

ε
− C

2
.

In the following, we need to proof

P (
∣∣Dmξt+1

m

∣∣ ≥ 2Cln(1.25/σ)

ε
− C

2
) ≤ δ (7.55)

87

holds. However, we will proof a stronger result that lead to (7.55). Which is

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
) ≤ δ

2
.

Since the tail bound of normal distribution N (0, σ2
m,t+1) is:

P (Dmξt+1
m > r) ≤ σm,t+1

r
√
2π

e
− r2

2σ2
m,t+1 .

Let r = 2Cln(1.25/σ)
ε − C

2 , we then have

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
)

≤ C
√

2ln(1.25/σ)

r
√
2πε

exp

[
− [4ln(1.25/σ)− ε]2

8ln(1.25/σ)

]
.

When δ is small and let ε ≤ 1, we then have√
2ln(1.25/σ)2

(4ln(1.25/σ)− ε)
√
2π

≤
√

2ln(1.25/σ)2

(4ln(1.25/σ)− 1)
√
2π

<
1√
2π

. (7.56)

As a result, we can proof that

− [4ln(1.25/σ)− ε]2

8ln(1.25/σ)
< ln(

√
2π

δ

2
)

by equation (7.56). Thus we have

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
) <

1√
2π

exp(ln(
√
2π

δ

2
) =

δ

2
.

Thus we proved (7.55) holds. Define

A1 = {Dmξt+1
m : |Dmξt+1

m | ≤ 1√
2π

exp(ln(
√
2π

δ

2
},

A2 = {Dmξt+1
m : |Dmξt+1

m | > 1√
2π

exp(ln(
√
2π

δ

2
}.

Thus we obtain the desired result:

P (D′
mx̃t+1

m |Dm)

= P (Dmxt+1
m,Dm

+Dmξt+1
m : Dmξt+1

m ∈ A1)

+P (Dmxt+1
m,Dm

+Dmξt+1
m : Dmξt+1

m ∈ A2)

< eεP (Dmxt+1
m,D′

m
+Dmξ′,t+1

m) + δ = eεP (Dmx̃t+1
m |D′

m) + δ.

�

88

7.3 Suplementary Materials for Chapter 5

7.3.1 Proof of Proposition 9

It is not hard to figure out that (CP) and (CMKP+) have the same region of feasible

solutions. We will show that every feasible solution achieves the same object value in both

problems to complete the proof.

For any solution {y1, y2, . . . , yn}, consider each particular k ∈ Z
+ with 0 < k ≤ m and

consider the corresponding group of coded blocks {i|yi = k}, the contribution of the group

to (5.1) is

1

2
E(Lk) =

1

2
E
((∑

j:yj=k

Dj

)2)

=
1

2

∑
i:yi=k

∑
j:yj=k;j �=i

E(Di ·Dj) +
1

2

∑
i:yi=k

E(D2
i)

=
∑

i<j:yi=yj=k

W ij +
1

2

∑
i:yi=k

W ii,

which is exactly the contribution in (5.6). After summing up over k, we can get that the

objective functions of (5.1) and (5.6) have the same value at the given feasible solution. �

7.3.2 Proof of Theorem 10

We will prove it by contradiction. Suppose {y1, y2, . . . , yn} is a converged solution, in which,

without loss of generality, there exists is and js such that yis = yjs and Gis = Gjs .

We only consider the case that∑
k:k �=is;Gk �=Gis

W isk ≤
∑

k:k �=js;Gk �=Gjs

W kjs ,

since the proof is similar for the other way around. For simplicity of presentation, we define

S(is) as the set of the indices of servers on which no block from the same group of im is

placed. Considering the sum of the gains by moving is to all the servers in S(is), we have∑
k∈S(is)

gk(is)

≥ (m− α+ 1)
∑

k:yk=yis ;k �=is

W ′
isk −

∑
k:Gk �=Gis

W ′
isk

≥ (m− α+ 1)W ′
isjs −

∑
k:Gk �=Gis

W isk

≥ (m− α+ 1)ε > 0,

which indicates that there exists a k ∈ S(is), such that gk(i) > 0. This contradicts the

assumption that {y1, y2, . . . , yn} is a solution from Algorithm 3 since the algorithm will

only terminate when there is no positive gj(i). �

89

7.3.3 Proof of Theorem 11

The proof will depend on the following lemma and properties:

Lemma 19 The solutions from the Local Block Migration Algorithm are solutions to (MKC)

with an approximation ratio of 1− 1/m.

Proof. Suppose that {y1, y2, . . . , yn} is a converged solution. Due to local optimality,

∀k′ �= k, we have ∑
i:yi=k

∑
j:yj=k′

W ′
ij ≥

∑
i:yi=k

∑
j:yj=k;j �=i

W ′
ij . (7.57)

Since there are m− 1 possible k′ values, by adding up (7.57) over all k′ �= k, we have

∑
i:yi=k

∑
j:yj �=k

W ′
ij ≥ (m− 1)

∑
i:yi=k

∑
j:yj=k;j �=i

W ′
ij . (7.58)

Dividing (7.58) by m− 1 and adding
∑

i:yi=k

∑
j:yj �=k W

′
ij on both sides, we have

m

m− 1

∑
i:yi=k

∑
j:yj �=k

W ′
ij ≥

∑
i:yi=k;j �=i

∑
j

W ′
ij . (7.59)

By summing up (7.59) over all k and dividing it by 2, we have

m

m− 1

∑
i<j

W ′
ij(1− δ(yi − yj)) ≥

∑
i<j

W ′
ij ≥ OPTC ,

where OPTC is the optimal value for the Max-k-Cut problem, completing the proof.

Lemma 20 Given fij(W) defined in (5.18), for any arbitrary positive ε, we have

∑
i �=j

W ′
ij ≤ ε+

m

m− α+ 1

∑
i �=j

W ij .

Proof. By (5.9) and (5.18), we have

∑
i �=j

W ′
ij ≤

∑
i �=j

W ij +
∑
i

∑
j:j �=i;Gj=Gi

W ′ij

≤
∑
i �=j

W ij +
∑
i

∑
j:j �=i;Gj=Gi

(
ε+

1

m− α+ 1

∑
k:k �=i;Gk �=Gi

W ik

)

≤
∑
i �=j

W ij +
α− 1

m− α+ 1

∑
i �=j

W ij + (α− 1)nε

=ε′ +
m

m− α+ 1

∑
i �=j

W ij ,

proving the lemma.

90

We have another property for the weight matrix W :∑
i �=j

W ij

/∑
i

W ii =
∑
i �=j

E(DiDj)
/∑

i

E(D2
i)

=
(
E
((∑

i

Di

)2)−∑
i

E(D2
i)
)/∑

i

E(D2
i)

=
E
((∑

iDi

)2)∑
i E(D

2
i)

− 1. (7.60)

We are now ready to prove Theorem 11. Let OPTP be the optimal value for (MKP).
By Lemma 19 and (5.16), we have

∑
i<j

W ′
ij −

∑
i<j

W ′
ijδ(yi − yj) ≥

(
1− 1

m

)(∑
i<j

W ′
ij −OPTP

)
. (7.61)

Reducing (7.61) and adding 1
2

∑
iW ii, we have

∑
i<j

W ′
ijδ(yi − yj) +

1

2

∑
i

W ii

≤
(
1− 1

m

)(
OPTP +

1

2

∑
i

W ii

)
+

1

m

(∑
i<j

W ′
ij +

1

2

∑
i

W ii

)
. (7.62)

By the property of W in (7.60) and Lemma 20, we have∑
i<j

W ′
ij +

1

2

∑
i

W ii

≤ε+
m

m− α+ 1

∑
i<j

W ij +
1

2

∑
i

W ii

≤ε+
m

m− α+ 1

(
E
((∑

i Di

)2)∑
i E(D

2
i)

− 1

)
· 1
2

∑
i

W ii +
1

2

∑
i

W ii

≤ε+

(
m

m− α+ 1

(
E
((∑

i Di

)2)∑
i E(D

2
i)

− 1

)
+ 1

)
· 1
2

∑
i

W ii. (7.63)

By the feasibility of the solution, we also have∑
i<j

W ′
ijδ(yi − yj) =

∑
i<j

W ijδ(yi − yj). (7.64)

From (7.62), (7.63) and (7.64), we have∑
i<j

W ijδ(yi − yj) +
1

2

∑
i

W ii

≤ε′ +
(
1 +

1

m− α+ 1

(
E
((∑

iDi

)2)∑
i E(D

2
i)

− 1

))
·
(
1

2

∑
i

W ii +OPTP

)
. (7.65)

With the current setting of W ′, the optimal solution to (MKP) is also a feasible solu-

tion to the corresponding (CMKP+) problem, and also an optimal solution to (CMKP+).

Combining it with the fact that ε is an arbitrary positive constant and the result in (7.65),

we have completed the proof. �

91

7.3.4 Proof of Theorem 13

We show that in every iteration, if the solution from the previous iteration satisfies (5.7),

in the current iteration, for every move that violates (5.7), there exists at least one other

move that achieves a larger gain and yet does not violate (5.7).

Without loss of generality, consider all the gains achieved by moving the block is to

other servers, respectively. There are two types of destination servers. One kind contains

the blocks within the same group of is and the other kind does not. For all the destination

servers not containing the blocks within the same group of is, denoted as S(is), we have

1

m− α

∑
k∈S(is)

gk(is)

≥ 1

m− α

(
(m− α)

∑
k:yk=yis ;k �=is

W ′
isk −

∑
k:Gk �=Gis

W ′
isk

)

=
∑

k:yk=yis ;k �=is

W ′
isk −

1

m− α

∑
k:Gk �=Gis

W ′
isk

=
∑

k:yk=yis ;k �=is

W ′
isk −

1

m− α

∑
k:Gk �=Gis

W isk.

By the definition of W ′ and (5.20), for any destination ks containing a block js within the

same group of is, we have

gks(is) =
∑

k:yk=yis ;k �=is

W ′
isk −

∑
k:yk=ks

W ′
isk

≤
∑

k:yk=yis ;k �=is

W ′
isk −W ′

isjs

≤
∑

k:yk=yi;k �=i

W ′
ik − ε− 1

m− α

∑
k:k �=is;Gk �=Gis

W isk.

Therefore, we have
1

m− α

∑
k∈S(is)

gk(i) > gks(i),

which indicates that there exists at least one move with a better gain and yet does not

violate the constraint, completing the proof. �

92

Bibliography

Abad, Cristina L, Nick Roberts, Yi Lu and Roy H Campbell (2012). A storage-centric analy-
sis of mapreduce workloads: File popularity, temporal locality and arrival patterns. In:
Workload Characterization (IISWC), 2012 IEEE International Symposium on. IEEE.
pp. 100–109.

Abadi, Martin, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar and Li Zhang (2016a). Deep learning with differential privacy. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM. pp. 308–318.

Abadi, Mart́ın, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard et al. (2016b). Ten-
sorflow: A System for Large-Scale Machine Learning. In: Proc. USENIX Symposium
on Operating System Design and Implementation (OSDI).

Agarwal, Sharad, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman and Harbinder
Bhogan (2010). Volley: Automated data placement for geo-distributed cloud services..
In: NSDI. pp. 17–32.

ApS, MOSEK (2017). The MOSEK Python optimizer API manual Version 7.1 (Revision
62).

Bellet, Aurélien, Yingyu Liang, Alireza Bagheri Garakani, Maria-Florina Balcan and Fei Sha
(2015). A distributed frank-wolfe algorithm for communication-efficient sparse learning.
In: Proceedings of the 2015 SIAM International Conference on Data Mining. SIAM.
pp. 478–486.

Ben-Nun, Tal and Torsten Hoefler (2018). Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis. arXiv preprint arXiv:1802.09941.

Bonte, Charlotte and Frederik Vercauteren (2018). Privacy-preserving logistic regression
training. Technical report. IACR Cryptology ePrint Archive 233.

Bonvin, Nicolas, Thanasis G Papaioannou and Karl Aberer (2010). A self-organized, fault-
tolerant and scalable replication scheme for cloud storage. In: Proceedings of the 1st
ACM symposium on Cloud computing. ACM. pp. 205–216.

Borthakur, Dhruba (2008). Hdfs architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf.

Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein et al. (2011).
Distributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine learning 3(1), 1–122.

Bradley, Joseph K, Aapo Kyrola, Danny Bickson and Carlos Guestrin (2011). Parallel co-
ordinate descent for l1-regularized loss minimization. arXiv preprint arXiv:1105.5379.

93

Calder, Brad, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie,
Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci et al. (2011). Windows
azure storage: a highly available cloud storage service with strong consistency. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM. pp. 143–157.

Chaudhuri, Kamalika and Claire Monteleoni (2009). Privacy-preserving logistic regression.
In: Advances in neural information processing systems. pp. 289–296.

Chaudhuri, Kamalika, Claire Monteleoni and Anand D Sarwate (2011). Differentially private
empirical risk minimization. Journal of Machine Learning Research 12(Mar), 1069–
1109.

Chen, Shengbo, Yin Sun, Longbo Huang, Prasun Sinha, Guanfeng Liang, Xin Liu, Ness B
Shroff et al. (2014). When queueing meets coding: Optimal-latency data retrieving
scheme in storage clouds. In: IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE. pp. 1042–1050.

Chen, Yanpei, Sara Alspaugh and Randy Katz (2012). Interactive analytical processing in
big data systems: A cross-industry study of mapreduce workloads. Proceedings of the
VLDB Endowment 5(12), 1802–1813.

Chilimbi, Trishul M, Yutaka Suzue, Johnson Apacible and Karthik Kalyanaraman (2014).
Project adam: Building an efficient and scalable deep learning training system.. In:
OSDI. Vol. 14. pp. 571–582.

Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew
Senior, Paul Tucker, Ke Yang, Quoc V Le et al. (2012). Large scale distributed deep
networks. In: Advances in neural information processing systems. pp. 1223–1231.

Dekel, Ofer, Ran Gilad-Bachrach, Ohad Shamir and Lin Xiao (2012). Optimal dis-
tributed online prediction using mini-batches. Journal of Machine Learning Research
13(Jan), 165–202.

Dheeru, Dua and Efi Karra Taniskidou (2017). UCI machine learning repository.

Dua, Dheeru and Casey Graff (2017). UCI machine learning repository.

Dwork, Cynthia (2008). Differential privacy: A survey of results. In: International Confer-
ence on Theory and Applications of Models of Computation. Springer. pp. 1–19.

Dwork, Cynthia, Aaron Roth et al. (2014). The algorithmic foundations of differential pri-
vacy. Foundations and Trends R© in Theoretical Computer Science 9(3–4), 211–407.

Dwork, Cynthia and Kobbi Nissim (2004). Privacy-preserving datamining on vertically par-
titioned databases. In: Annual International Cryptology Conference. Springer. pp. 528–
544.

Fiduccia, Charles M and Robert M Mattheyses (1982). A linear-time heuristic for improving
network partitions. In: Design Automation, 1982. 19th Conference on. IEEE. pp. 175–
181.

Ganjam, Aditya, Faisal Siddiqui, Jibin Zhan, Xi Liu, Ion Stoica, Junchen Jiang, Vyas Sekar
and Hui Zhang (2015). C3: Internet-scale control plane for video quality optimiza-
tion. In: 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association. Oakland, CA. pp. 131–144.

Ghemawat, Sanjay, Howard Gobioff and Shun-Tak Leung (2003). The google file system.
In: ACM SIGOPS operating systems review. Vol. 37. ACM. pp. 29–43.

94

Gilad-Bachrach, Ran, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig and
John Wernsing (2016). Cryptonets: Applying neural networks to encrypted data with
high throughput and accuracy. In: International Conference on Machine Learning.
pp. 201–210.

Gratton, Cristiano, Venkategowda Naveen KD, Reza Arablouei and Stefan Werner (2018).
Distributed ridge regression with feature partitioning. In: 2018 52nd Asilomar Con-
ference on Signals, Systems, and Computers. IEEE. pp. 1423–1427.

Guyon, Isabelle, Steve Gunn, Asa Ben-Hur and Gideon Dror (2005). Result analysis of the
nips 2003 feature selection challenge. In: Advances in neural information processing
systems. pp. 545–552.

Hamm, Jihun, Yingjun Cao and Mikhail Belkin (2016). Learning privately from multiparty
data. In: International Conference on Machine Learning. pp. 555–563.

Hitaj, Briland, Giuseppe Ateniese and Fernando Perez-Cruz (2017). Deep models under
the gan: information leakage from collaborative deep learning. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM.
pp. 603–618.

Ho, Qirong, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons,
Garth A Gibson, Greg Ganger and Eric P Xing (2013). More effective distributed ml
via a stale synchronous parallel parameter server. In: Advances in neural information
processing systems. pp. 1223–1231.

Hong, Mingyi, Zhi-Quan Luo and Meisam Razaviyayn (2016). Convergence analysis of
alternating direction method of multipliers for a family of nonconvex problems. SIAM
Journal on Optimization 26(1), 337–364.

Hsieh, Kevin, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R Ganger,
Phillip B Gibbons and Onur Mutlu (2017). Gaia: Geo-distributed machine learning
approaching lan speeds.. In: NSDI. pp. 629–647.

Hu, Yaochen and Di Niu (2016). Reducing access latency in erasure coded cloud storage with
local block migration. In: IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications. IEEE. pp. 1–9.

Hu, Yaochen, Di Niu, Jianming Yang and Shengping Zhou (2019). Fdml: A collaborative
machine learning framework for distributed features. In: Proceedings of KDD ’19.
ACM.

Hu, Yaochen, Yushi Wang, Bang Liu, Di Niu and Cheng Huang (2017). Latency reduction
and load balancing in coded storage systems. In: Proceedings of the 2017 Symposium
on Cloud Computing. ACM. pp. 365–377.

Huang, Cheng, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan,
Jin Li, Sergey Yekhanin et al. (2012). Erasure coding in windows azure storage.. In:
Usenix annual technical conference. Boston, MA. pp. 15–26.

Joshi, Gauri, Emina Soljanin and Gregory Wornell (2015). Efficient replication of queued
tasks to reduce latency in cloud systems. In: 53rd Annual Allerton Conference on
Communication, Control, and Computing.

Kann, Viggo, Sanjeev Khanna, Jens Lagergren and Alessandro Panconesi (1997). On the
hardness of approximating max k-cut and its dual. Chicago Journal of Theoretical
Computer Science 2, 1997.

Karp, Richard M (1972). Reducibility among combinatorial problems. Springer.

Kenthapadi, Krishnaram, Aleksandra Korolova, Ilya Mironov and Nina Mishra (2013). Pri-
vacy via the johnson-lindenstrauss transform. Journal of Privacy and Confidentiality.

95

Kernighan, Brian W and Shen Lin (1970). An efficient heuristic procedure for partitioning
graphs. Bell system technical journal 49(2), 291–307.

Khan, Osama, Randal C Burns, James S Plank, William Pierce and Cheng Huang (2012).
Rethinking erasure codes for cloud file systems: minimizing i/o for recovery and de-
graded reads.. In: FAST. p. 20.

Kikuchi, Hiroaki, Chika Hamanaga, Hideo Yasunaga, Hiroki Matsui, Hideki Hashimoto
and Chun-I Fan (2018). Privacy-preserving multiple linear regression of vertically par-
titioned real medical datasets. Journal of Information Processing 26, 638–647.

Langford, John, Alexander J Smola and Martin Zinkevich (2009). Slow learners are fast.
Advances in Neural Information Processing Systems 22, 2331–2339.

Lee, Seunghak, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson and Eric P Xing
(2014). On model parallelization and scheduling strategies for distributed machine
learning. In: Advances in neural information processing systems. pp. 2834–2842.

Li, Mu, David G Andersen, Alexander J Smola and Kai Yu (2014a). Communication effi-
cient distributed machine learning with the parameter server. In: Advances in Neural
Information Processing Systems. pp. 19–27.

Li, Mu, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-
fovski, James Long, Eugene J Shekita and Bor-Yiing Su (2014b). Scaling distributed
machine learning with the parameter server.. In: OSDI. Vol. 14. pp. 583–598.

Li, Mu, Ziqi Liu, Alexander J Smola and Yu-Xiang Wang (2016). Difacto: Distributed
factorization machines. In: Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining. ACM. pp. 377–386.

Li, VOK, Q SHUAI and Y Zhu (2014c). Performance models of access latency in cloud
storage systems. In: Proc. Fourth Workshop on Architectures and Systems for Big
Data.

Lian, Xiangru, Yijun Huang, Yuncheng Li and Ji Liu (2015). Asynchronous parallel stochas-
tic gradient for nonconvex optimization. In: Advances in Neural Information Processing
Systems. pp. 2737–2745.

Liang, Guozheng and Ulas C Kozat (2014). Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding. Networking, IEEE/ACM Transactions on
22(6), 2012–2025.

LIBSVM Data: Classification (Binary Class) (n.d.). https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/binary.html. Accessed: 2019-05-23.

Lou, Jian and Yiu-ming Cheung (2018). Uplink communication efficient differentially pri-
vate sparse optimization with feature-wise distributed data. In: Thirty-Second AAAI
Conference on Artificial Intelligence.

McMahan, H Brendan, Eider Moore, Daniel Ramage, Seth Hampson et al. (2016).
Communication-efficient learning of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629.

Mitzenmacher, Michael (2001). The power of two choices in randomized load balancing.
Parallel and Distributed Systems, IEEE Transactions on 12(10), 1094–1104.

Mitzenmacher, Michael David (1996). The Power of Two Choices in Randomized Load
Balancing. PhD thesis. UNIVERSITY of CALIFORNIA at BERKELEY.

Mohassel, Payman and Yupeng Zhang (2017). Secureml: A system for scalable privacy-
preserving machine learning. In: 2017 38th IEEE Symposium on Security and Privacy
(SP). IEEE. pp. 19–38.

96

Morris, Paul (1993). The breakout method for escaping from local minima. In: AAAI.
Vol. 93. pp. 40–45.

Ousterhout, Kay, Patrick Wendell, Matei Zaharia and Ion Stoica (2013). Sparrow: dis-
tributed, low latency scheduling. In: Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. ACM. pp. 69–84.

Pathak, Manas, Shantanu Rane and Bhiksha Raj (2010). Multiparty differential privacy via
aggregation of locally trained classifiers. In: Advances in Neural Information Processing
Systems. pp. 1876–1884.

Rajkumar, Arun and Shivani Agarwal (2012). A differentially private stochastic gradient
descent algorithm for multiparty classification. In: Artificial Intelligence and Statistics.
pp. 933–941.

Rashmi, KV, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur and Kannan
Ramchandran (2013). A solution to the network challenges of data recovery in erasure-
coded distributed storage systems: A study on the facebook warehouse cluster. Proc.
USENIX HotStorage.

Rashmi, KV, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur and Kannan
Ramchandran (2014). A hitchhiker’s guide to fast and efficient data reconstruction
in erasure-coded data centers. In: Proceedings of the 2014 ACM conference on SIG-
COMM. ACM. pp. 331–342.

Recht, Benjamin, Christopher Re, Stephen Wright and Feng Niu (2011). Hogwild: A lock-
free approach to parallelizing stochastic gradient descent. In: Advances in neural in-
formation processing systems. pp. 693–701.

Ren, Kai, YongChul Kwon, Magdalena Balazinska and Bill Howe (2013). Hadoop’s adoles-
cence: an analysis of hadoop usage in scientific workloads. Proceedings of the VLDB
Endowment 6(10), 853–864.

Richa, Andrea W, M Mitzenmacher and R Sitaraman (2001). The power of two random
choices: A survey of techniques and results. Combinatorial Optimization 9, 255–304.

Rochman, Yuval, Hanoch Levy and Eli Brosh (2013). Resource placement and assignment
in distributed network topologies. In: INFOCOM, 2013 Proceedings IEEE. IEEE.
pp. 1914–1922.

Sarwate, Anand D and Kamalika Chaudhuri (2013). Signal processing and machine learning
with differential privacy: Algorithms and challenges for continuous data. IEEE signal
processing magazine 30(5), 86–94.

Sathiamoorthy, Maheswaran, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G
Dimakis, Ramkumar Vadali, Scott Chen and Dhruba Borthakur (2013). Xoring ele-
phants: Novel erasure codes for big data. In: Proceedings of the VLDB Endowment.
Vol. 6. VLDB Endowment. pp. 325–336.

Scherrer, Chad, Ambuj Tewari, Mahantesh Halappanavar and David Haglin (2012). Fea-
ture clustering for accelerating parallel coordinate descent. In: Advances in Neural
Information Processing Systems. pp. 28–36.

Schurman, Eric and Jake Brutlag (2009). The user and business impact of server delays,
additional bytes, and http chunking in web search. In: Velocity Web Performance and
Operations Conference.

Shah, Nihar B, Kangwook Lee and Kannan Ramchandran (2014). The mds queue:
Analysing the latency performance of erasure codes. In: 2014 IEEE International
Symposium on Information Theory. IEEE. pp. 861–865.

Shah, Nihar B, Kangwook Lee and Kannan Ramchandran (2016). When do redundant
requests reduce latency?. IEEE Transactions on Communications 64(2), 715–722.

97

Shokri, Reza and Vitaly Shmatikov (2015). Privacy-preserving deep learning. In: Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications security.
ACM. pp. 1310–1321.

Sun, Yin, Zizhan Zheng, C Emre Koksal, Kyu-Han Kim and Ness B Shroff (2015). Provably
delay efficient data retrieving in storage clouds. arXiv preprint arXiv:1501.01661.

Takabi, Hassan, Ehsan Hesamifard and Mehdi Ghasemi (2016). Privacy preserving multi-
party machine learning with homomorphic encryption. In: 29th Annual Conference on
Neural Information Processing Systems (NIPS).

Tamo, Itzhak and Alexander Barg (2014). A family of optimal locally recoverable codes.
Information Theory, IEEE Transactions on 60(8), 4661–4676.

Vaidya, Jaideep and Chris Clifton (2002). Privacy preserving association rule mining in
vertically partitioned data. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. pp. 639–644.

Wan, Li, Wee Keong Ng, Shuguo Han and Vincent Lee (2007). Privacy-preservation for
gradient descent methods. In: Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. pp. 775–783.

Wang, Yu, Wotao Yin and Jinshan Zeng (2019). Global convergence of admm in nonconvex
nonsmooth optimization. Journal of Scientific Computing 78(1), 29–63.

Weatherspoon, Hakim and John D Kubiatowicz (2002). Erasure coding vs. replication: A
quantitative comparison. In: Peer-to-Peer Systems. pp. 328–337. Springer.

Xia, Mingyuan, Mohit Saxena, Mario Blaum and David A Pease (2015). A tale of two
erasure codes in hdfs. In: To appear in Proceedings of 13th Usenix Conference on File
and Storage Technologies.

Xiang, Yu, Tian Lan, Vaneet Aggarwal and Yih Farn R Chen (2014). Joint latency and cost
optimization for erasurecoded data center storage. ACM SIGMETRICS Performance
Evaluation Review 42(2), 3–14.

Xing, Eric P, Qirong Ho, Pengtao Xie and Dai Wei (2016). Strategies and principles of
distributed machine learning on big data. Engineering 2(2), 179–195.

Xu, Hong and Baochun Li (2013). Joint request mapping and response routing for geo-
distributed cloud services. In: INFOCOM, 2013 Proceedings IEEE. IEEE. pp. 854–862.

Yan, Shiqin, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,
Andrew A. Chien and Haryadi S. Gunawi (2017). Tiny-tail flash: Near-perfect elimi-
nation of garbage collection tail latencies in NAND ssds. In: 15th USENIX Conference
on File and Storage Technologies (FAST 17). USENIX Association. Santa Clara, CA.
pp. 15–28.

Ying, Bicheng, Kun Yuan and Ali H Sayed (2018). Supervised learning under distributed
features. IEEE Transactions on Signal Processing 67(4), 977–992.

Ying, Lei, R Srikant and Xiaohan Kang (2015). The power of slightly more than one sample
in randomized load balancing. In: 2015 IEEE Conference on Computer Communica-
tions (INFOCOM). IEEE. pp. 1131–1139.

Yu, Boyang and Jianping Pan (2015). Location-aware associated data placement for geo-
distributed data-intensive applications. In: Proc. of IEEE Infocom 2015.

Zhang, Chunlei, Muaz Ahmad and Yongqiang Wang (2019). Admm based privacy-
preserving decentralized optimization. IEEE Transactions on Information Forensics
and Security 14(3), 565–580.

98

Zhang, Tao and Quanyan Zhu (2016). A dual perturbation approach for differential private
admm-based distributed empirical risk minimization. In: Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security. ACM. pp. 129–137.

Zhang, Tao and Quanyan Zhu (2017). Dynamic differential privacy for admm-based dis-
tributed classification learning. IEEE Transactions on Information Forensics and Se-
curity 12(1), 172–187.

Zhang, Xueru, Mohammad Mahdi Khalili and Mingyan Liu (2018). Improving the privacy
and accuracy of admm-based distributed algorithms. In: International Conference on
Machine Learning. pp. 5791–5800.

Zhou, Minqi, Rong Zhang, Wei Xie, Weining Qian and Aoying Zhou (2010). Security and
privacy in cloud computing: A survey. In: 2010 Sixth International Conference on
Semantics, Knowledge and Grids. IEEE. pp. 105–112.

Zhou, Yi, Yaoliang Yu, Wei Dai, Yingbin Liang and Eric Xing (2016). On convergence of
model parallel proximal gradient algorithm for stale synchronous parallel system. In:
Artificial Intelligence and Statistics. pp. 713–722.

Zhu, Wenxing, Geng Lin and MM Ali (2013). Max-k-cut by the discrete dynamic convexized
method. INFORMS Journal on Computing 25(1), 27–40.

Zhu, Yujia, James Lin, Patrick PC Lee and Yan Xu (n.d.). Boosting degraded reads in
heterogeneous erasure-coded storage systems.

Zinkevich, Martin, Markus Weimer, Lihong Li and Alex J Smola (2010). Parallelized
stochastic gradient descent. In: Advances in neural information processing systems.
pp. 2595–2603.

99

