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Abstract

Remote sensing is an effective tool to monitor and assess the dynamics across

the Earth’s surface. Despite significant technological advancements, there re-

mains a constant demand for high-resolution remote sensing data in spatial,

spectral, and temporal contexts. Such high-resolution data is crucial for accu-

rate analysis in diverse fields including agriculture, environmental monitoring,

disaster mapping, and many more. However, acquiring such high-resolution

remote sensing data is often expensive, with limited geographic coverage and

restricted accessibility for general researchers. To address these challenges,

our study leverages the power of convolutional neural networks (CNNs) to en-

hance the resolution of open-source satellite images. We introduce E-SSRAN

(Extended Spatial-Spectral Residual Attention Network), an algorithm that

integrates the complementary spatial and spectral characteristics of multispec-

tral images (MSIs) and hyperspectral images (HSIs). Our approach consists

of two key modules: Spectral-Enhancement and Spatial-Enhancement. The

Spectral-Enhancement module uses E-SSRAN to enhance the spectral res-

olution of MSI by learning the mapping between MSI and HSI, while the

Spatial-Enhancement module uses E-SSRAN to improve the spatial resolution

of MSI by mapping low-resolution MSI to high-resolution MSI. Additionally,

we proposed a comprehensive pipeline to merge the outputs of the Spatial- and

Spectral-Enhancement modules, resulting in satellite images with enhanced

spatial and spectral resolution. We evaluated the performance of E-SSRAN

using MSI and HSI data acquired from Sentinel-2B and DESIS (DLR Earth
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Sensing Imaging Spectrometer), respectively, focusing on agricultural areas in

Central Alberta. Both qualitative and quantitative assessments demonstrate

the effectiveness of E-SSRAN in enhancing the spatial and spectral resolution

of low-resolution satellite images. The Spectral-Enhancement module achieved

a mean absolute error (MAE) of 0.014, a root mean squared error (RMSE)

of 0.018, a spectral angle mapper (SAM) score of 0.144, a universal image

quality index (UIQI) score of 0.96, a peak signal-to-noise ratio (PSNR) of 37

dB, and a structural similarity index measure (SSIM) of 0.95. The Spatial-

Enhancement module successfully improved the spatial resolution of the 20 m

and 60 m ground sampling distance (GSD) Sentinel-2B bands to 10 m GSD.

Furthermore, the 10 m GSD MSI produced by the Spatial-Enhancement mod-

ule was subsequently processed through the Spectral-Enhancement module,

generating 10 m GSD HSI. This integrated approach produces satellite images

with high spatial and spectral resolution, demonstrating that E-SSRAN sig-

nificantly improves the quality of satellite images by optimizing the trade-off

between spatial and spectral resolutions. Our method has the potential to

add substantial value to various applications in agriculture and beyond, by

providing more detailed and accurate insights for satellite data analysis.

iii



Preface

Parts of this thesis have been submitted and are under review for publication

in the Springer Advances in Science, Technology and Innovation (ASTI) series,

managed by the IEREK Interdisciplinary Series for Sustainable Development.

iv



Hard work, willpower and dedication.

For a person with these qualities, the sky is the limit.

– Milkha Singh, Indian track and field sprinter.

v



Acknowledgements

Completing this thesis marks a significant milestone in my master’s studies

at the University of Alberta. This achievement would not have been possible

without the support and belief of many individuals, to whom I am deeply

grateful.

I express my deepest gratitude to my supervisor, Dr. Irene Cheng, for her

exemplary guidance and invaluable suggestions. Her trust and support were

crucial in guiding me through pivotal moments and making the right decisions.

It has been an honor to work under her mentorship.

I am also grateful for the financial support provided by the University of

Alberta and the Mitacs Globalink Graduate Fellowship, which enabled me to

pursue my research without interruption.

I extend my sincere thanks to my thesis examination committee, Dr. Anup

Basu and Dr. Jun Jin for their insightful feedback and encouragement, which

played a key role in the successful completion of my thesis.

A heartfelt thank you goes to my friends and colleagues for all the engag-

ing and thought-provoking discussions we shared, which inspired me to think

beyond the obvious.

I am profoundly grateful to my parents for their constant support, love,

and encouragement throughout this journey.

Lastly, I would like to thank everyone who has, directly or indirectly, con-

tributed to this endeavor. Your support and contributions have been invalu-

able.

Sincerely yours,

Karansinh Atulsinh Padhiar

vi



Contents

1 Introduction 1
1.1 Multispectral and Hyperspectral Imaging . . . . . . . . . . . . 1
1.2 Types of Resolution in Remote Sensing . . . . . . . . . . . . . 3

1.2.1 Radiometric Resolution . . . . . . . . . . . . . . . . . . 3
1.2.2 Spectral Resolution . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Spatial Resolution . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Temporal Resolution . . . . . . . . . . . . . . . . . . . 5

1.3 Trade-offs in Resolution . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Spatial-Temporal Trade-off . . . . . . . . . . . . . . . . 6
1.3.2 Spectral-Temporal Trade-off . . . . . . . . . . . . . . . 6
1.3.3 Spatial-Spectral Trade-off . . . . . . . . . . . . . . . . 7

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 12

3 Dataset Description 17
3.1 Multispectral Images: Sentinel-2B . . . . . . . . . . . . . . . . 17
3.2 Hyperspectral Images: DESIS . . . . . . . . . . . . . . . . . . 19
3.3 Area of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Spectral-Enhancement Module 21
4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Results and Description . . . . . . . . . . . . . . . . . . . . . 29

4.4.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.2 Patch Size . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Number of Spatial-Spectral Residual Blocks . . . . . . 32
4.4.4 Number of Neighboring Spectral Bands . . . . . . . . . 33
4.4.5 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.6 Comparing the performance of E-SSRAN with SSRAN 34

vii



5 Spatial-Enhancement module 38
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 E-SSRAN Architecture Updates for Spatial Enhancement . . 43
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Network Ψ2×: 20 m → 10 m Spatial Enhancement . . . 44
5.3.2 Network Ψ6×: 60 m → 10 m spatial enhancement . . . 46

6 Merging the Spatial- and Spectral-Enhancement Modules 52

7 Conclusion and Future Directions 57

References 59

viii



List of Tables

3.1 Sentinel-2B bands used for this study. . . . . . . . . . . . . . . 18

4.1 Quantitative comparison of E-SSRAN in terms of MAE and
MSE loss functions for training the Spectral-Enhancement model. 31

4.2 Quantitative comparison of different patch sizes for training the
E-SSRAN architecture. . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Quantitative comparison of different numbers of spatial-spectral
residual blocks in the nonlinear mapping component of E-SSRAN
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Quantitative comparison of different number of spatial-spectral
residual blocks in the nonlinear mapping component of E-SSRAN
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Quantitative comparison of different base learning rates for train-
ing the E-SSRAN architecture in the Spectral-Enhancement
module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Comparing the quantitative performance of SSRAN [87] and
E-SSRAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Sentinel-2B bands categorized into three sets based on their GSD. 41
5.2 Comparing the quantitative performance of DSen2 [31] and E-

SSRAN for the 40 m → 20 m spatial enhancement using network
Ψ2×. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Quantitative performance of network Ψ6× for the 360 m → 60
m spatial enhancement. . . . . . . . . . . . . . . . . . . . . . . 49

ix



List of Figures

1.1 Types of resolution in remote sensing. . . . . . . . . . . . . . . 3
1.2 A panchromatic (single band) image, a multispectral image, a

hyperspectral cube over the same region, and their correspond-
ing spectral signatures . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Images captured at different spatial resolutions (30 m, 100 m,
300 m). Landsat-8 image capturing Reykjavik, Iceland (date:
July 7, 2019) (Credit: NASA Earth Observatory). . . . . . . . 5

1.4 Comparing the temporal resolution of EO-1 Hyperion and Landsat-
8 satellites over Central Alberta between January 01, 2005, and
December 31, 2023 (Credit: USGS EarthExplorer). . . . . . . 7

1.5 Spatial-spectral trade-off between Hyperspectral Image (HSI)
and Multispectral Image (MSI) . . . . . . . . . . . . . . . . . 8

4.1 True color (RGB) image of Sentinel-2B MSI (R- Band4, G-
Band3, B- Band2) and DESIS HSI (R- Band90, G- Band52, B-
Band25) attained after data preprocessing. . . . . . . . . . . . 23

4.2 Overview of the steps involved in the Spectral-Enhancement
module for enhancing the spectral resolution of MSI using E-
SSRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Visual representation of the E-SSRAN architecture. . . . . . . 27
4.4 Variation in training and validation losses during the training

of the E-SSRAN architecture for spectral enhancement of MSI
using network ΨSpectral. . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Visual representation of different patch sizes: 4 × 4, 20 × 20,
40 × 40, 50 × 50, and 100 × 100 pixels. . . . . . . . . . . . . 32

4.6 Comparing spectral signatures of the predicted HSI using SS-
RAN and E-SSRAN. . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Visual comparison of original DESIS HSI and the HSI pre-
dicted in the Spectral-Enhancement module over different spec-
tral bands (Band-50, Band-100, Band-150, Band-200, and Band-
250). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Sample images from Sentinel-2B satellite at 10 m, 20 m, and 60
m GSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



5.2 Downsampling the original 10 m and 20 m Sentinel-2B bands
by a scale factor of f = 2 . . . . . . . . . . . . . . . . . . . . . 42

5.3 An overview of the method used for training the network Ψ2× 42
5.4 Variation in training and validation losses while training net-

work Ψ2× for 40 m → 20 m spatial enhancement. . . . . . . . 45
5.5 Qualitative comparison of the 40 m “low-resolution” band (Band-

B8a) input, the 20 m “high-resolution” band (Band-B8a) pre-
dicted by network (Ψ2×), and the original 20 m band (Band-
B8a) from Sentinet-2B for the 40 m → 20 m spatial enhancement. 47

5.6 Qualitative comparison of the original 20 m Sentinel-2B band
(Band-B8a) input and its corresponding spatially enhanced 10
m band (Band-B8a) predicted by network Ψ2×for the 20 m →
10 m spatial enhancement. . . . . . . . . . . . . . . . . . . . . 48

5.7 Variation in training and validation losses while training net-
work Ψ6× for the 360 m → 60 m spatial enhancement. . . . . 49

5.8 Qualitative comparison of the 360 m “low-resolution” band (Band-
B9) input to the network, the 60 m “high-resolution” band
(Band-B9) predicted by the network Ψ6×, and the original 60
m band (Band-B9) from Sentinet-2B for the 360 m → 60 m
spatial enhancement. . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Qualitative comparison of the original 60 m Sentinel-2B band
(Band-B9) input to the network and the corresponding spatially
enhanced 10 m band (Band-B9) predicted by network Ψ6× for
the 60 m → 10 m spatial enhancement. . . . . . . . . . . . . . 51

6.1 Merging the outputs of the Spatial- and Spectral-Enhancement
modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 True color (RGB) images comparing the original 30 m GSD HSI
obtained from DESIS and the spatially enhanced 10 m GSD HSI
predicted by the ΨSpectral network. . . . . . . . . . . . . . . . . 55

6.3 Comparing the spectral signatures of the original 30 m GSD HSI
obtained from DESIS and the spatially enhanced 10 m GSD HSI
predicted by the ΨSpectral network. . . . . . . . . . . . . . . . . 56

xi



Acronyms

2D 2-Dimensional

ALI Advanced Land Imager

CNN Convolutional Neural Network

DESIS DLR Earth Sensing Imaging Spectrometer

DLR German Aerospace Center

DN Digital Number

E-SSRAN Extended Spatial-Spectral Residual Attention Network

EM Electromagnetic

EO-1 Earth Observing One

EOS Earth Observing System

ESA European Space Agency

GAN Generative Adversarial Network

GB Gigabyte

GPU Graphics Processing Unit

GSD Ground Sampling Distance

HSI Hyperspectral Image

ISS International Space Station

LLE Locally Linear Embedding

LR Learning Rate

MAE Mean Absolute Error

MAP Maximum a Posteriori

xii



MB Megabyte

ML Machine Learning

MODIS Moderate Resolution Imaging Spectroradiometer

MSE Mean Squared Error

MSI Multispectral Image

MTF Modulation Transfer Function

MUSES Multi-User System for Earth Sensing

OLI Operational Land Imager

PCA Principal Component Analysis

PSNR Peak Signal-to-Noise Ratio

ReLU Rectified Linear Unit

RGB Red-Green-Blue

RMSE Root Mean Squared Error

SAM Spectral Angle Mapper

SGD Stochastic Gradient Descent

SSIM Structural Similarity Index Measure

SSRAN Spatial-Spectral Residual Attention Network

SWIR Shortwave Infrared

TBE Teledyne Brown Engineering

TIR Thermal Infrared

TIRS Thermal Infrared Sensor

UIQI Universal Image Quality Index

VNIR Visible and Near-Infrared

xiii



Chapter 1

Introduction

Satellite-based remote sensing has become an indispensable tool for monitoring

and assessing the Earth’s surface and atmosphere on regional, continental, and

global scales [62]. Traditional in situ techniques for monitoring the Earth’s

surface are often labor-intensive, time-consuming, expensive, and sometimes

infeasible due to the poor accessibility of certain regions [48]. In contrast,

remote sensing technology has garnered significant interest in recent decades

due to its ability to provide detailed information about the Earth’s surface

across the Electromagnetic (EM) spectrum, covering large geographic areas

in a cost-effective manner. This capability supports a wide range of appli-

cations, including environmental monitoring, agricultural planning, forestry

management, water resources assessment, snow and glacier monitoring, urban

development, and disaster monitoring and mitigation.

1.1 Multispectral and Hyperspectral Imaging

Multispectral and hyperspectral imaging are two prevalent types of remote

sensing data. Multispectral sensors capture data in several discrete, broad

wavelength bands, typically ranging from 3 to 36 bands, across the EM spec-

trum. Examples include the Operational Land Imager (OLI) and the Thermal

Infrared Sensor (TIRS) instruments onboard Landsat-8, which collectively

record 11 spectral bands in the Visible and Near-Infrared (VNIR), Thermal

Infrared (TIR), and Shortwave Infrared (SWIR) portions of the EM spec-

trum. The Sentinel-2 mission, consisting of Sentinel-2A and Sentinel-2B
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satellites, captures 13 spectral bands in the VNIR and SWIR spectral ranges.

Other multispectral instruments include the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) on the Terra platform of

NASA’s (National Aeronautics and Space Administration) Earth Observ-

ing System (EOS) that captures 14 spectral bands, and the Moderate

Resolution Imaging Spectroradiometer (MODIS) instrument aboard the

Terra and Aqua satellites capturing 36 spectral bands. Multispectral sen-

sors are relatively cost-effective, making them suitable for a wide variety of

applications, including land cover classification [56], [40], vegetation moni-

toring [1], precision agriculture [25], [81], water quality assessment [2], [77],

soil moisture content monitoring [36] and many others.

Hyperspectral sensors, in contrast, record data in hundreds of narrow, con-

tiguous wavelength bands across the EM spectrum [32]. This finer spec-

tral resolution enables the identification of materials and substances based

on their unique biochemical and biophysical characteristics, which otherwise

are indistinguishable from multispectral sensors [58], [41]. For instance,

the Hyperion instrument onboard the Earth Observing One (EO-1) satel-

lite collects 220 spectral channels ranging from 357 nm to 2576 nm at a

bandwidth of 10 nm. Other hyperspectral instruments include the DLR

Earth Sensing Imaging Spectrometer (DESIS) capturing 235 spectral bands,

the Earth surface Mineral dust source InvesTigation (EMIT) instru-

ment onboard the International Space Station (ISS) that records 285 bands,

and the Environmental Mapping and Analysis Program (EnMAP) instru-

ment that captures 228 spectral bands. Due to the abundant spectral informa-

tion that it offers, hyperspectral imaging is widely used for various applications

including mineral mapping and exploration [6], environmental geology [50],

vegetation monitoring and mapping [64], [65], [1] and environmental moni-

toring [52]. However, it often requires domain expertise and greater storage

and processing capabilities.
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Figure 1.1: Types of resolution in remote sensing.

1.2 Types of Resolution in Remote Sensing

The resolution of satellite images plays a crucial role in determining their appli-

cations. It varies based on the satellite’s orbit, primary objective, and sensor

design. The four primary types of resolution (Figure 1.1) are: radiometric,

spectral, spatial, and temporal resolutions [44].

1.2.1 Radiometric Resolution

Radiometric resolution refers to the amount of information each pixel can

store, measured in bits. For example, an 8-bit resolution allows each pixel to

store up to 256 intensity levels.

1.2.2 Spectral Resolution

Spectral resolution describes a sensor’s ability to capture data at finer wave-

length bandwidths across the EM spectrum. It determines the number of spec-

tral bands and their width. The narrower the wavelength range (bandwidth)

for each band, the higher the spectral resolution. Higher spectral resolution

allows for the detection of minor spectral changes, such as vegetation stress

or molecular absorption [51]. For instance, panchromatic images consist of

a single, broad band of wavelength spanning across a wide range of the EM

spectrum. Multispectral sensors typically record data in a limited number of

3



Figure 1.2: A panchromatic (single band) image, a multispectral image, a
hyperspectral cube over the same region, and their corresponding spectral
signatures (Source).

bands (3-36 bands), whereas hyperspectral sensors capture data across hun-

dreds of spectral bands, together forming a hyperspectral cube, thus offering

a higher spectral resolution compared to the panchromatic and multispectral

images. Figure 1.2 illustrates a panchromatic image, a multispectral image,

and a hyperspectral cube over the same region, along with their correspond-

ing spectral signatures. Since panchromatic and multispectral images have a

limited number of bands, their spectral signatures are discrete. In contrast, a

hyperspectral cube consists of hundreds of spectral bands, therefore, its spec-

tral signature is a continuous curve offering relatively more information about

the observed region. This detailed spectral information can be used to distin-

guish between different entities including vegetation, water bodies, soil types,

minerals, land cover, etc.

4
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Figure 1.3: Images captured at different spatial resolutions (30 m, 100 m,
300 m). Landsat-8 image capturing Reykjavik, Iceland (date: July 7, 2019)
(Credit: NASA Earth Observatory).

1.2.3 Spatial Resolution

Spatial resolution defines the geographic area represented by each pixel in an

image. For example, Sentinel-2B and Landsat-8 capture images at a spatial

resolution of 30 m, meaning each pixel corresponds to a 30 m × 30 m geo-

graphic area on the ground. Sensors with high spatial resolution can capture

finer details of the Earth’s surface such as roads, vehicles, small water bodies,

etc. [51]. Figure 1.3 compares images captured at different spatial resolu-

tions: 30 m, 100 m, and 300 m. It can be noticed that the image with high

spatial resolution (30 m/pixel) contains more details compared to the other

counterparts (100 m/pixel and 300 m/pixel).

1.2.4 Temporal Resolution

Temporal resolution refers to the frequency at which a satellite revisits the

same location on the Earth’s surface. The temporal resolution of a satellite

can be influenced by its orbit, swath width, and sensor characteristics. Higher

temporal resolution means more frequent revisits. Geostationary satellites,

such as the Sentinel-2 series, have a high temporal resolution with a revisit
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period of around five days, while polar-orbiting satellites like Landsat-8 have

a revisit period of 16 days, resulting in a lower temporal resolution. High tem-

poral resolution (frequent revisit period) is essential for monitoring dynamic

changes and short-term phenomena, such as vegetation growth, weather pat-

terns, and natural disasters.

1.3 Trade-offs in Resolution

While it would be preferable to have satellites that capture data with high

radiometric, spatial, spectral, and temporal resolutions simultaneously, it is

practically challenging due to several constraints. These include limitations in

sensor technology, orbital parameters such as satellite altitude and inclination,

data processing and transmission constraints, and application-specific require-

ments. Enhancing one type of resolution often compromises another, leading

to various trade-offs.

1.3.1 Spatial-Temporal Trade-off

Acquiring data with high spatial resolution requires a narrower swath width.

This, in turn, can increase the satellite’s revisit time, resulting in lower tem-

poral resolution. We refer to this as the spatial-temporal trade-off where an

increase in the spatial resolution may lead to a decrease in the temporal res-

olution and vice-versa. For example, the Moderate Resolution Imaging Spec-

troradiometer (MODIS) sensor captures images of the entire Earth every 1-2

days, but at coarser spatial resolutions (250 m to 1000 m Ground Sampling

Distance (GSD)). In contrast, Landsat-8 records data at 30 m spatial resolu-

tion but with a revisit period of 16 days.

1.3.2 Spectral-Temporal Trade-off

Recording images at higher spectral resolution generates larger volumes of

data, which requires more processing power and bandwidth for transmission,

potentially reducing the frequency of data capture (temporal resolution). Hy-

perspectral sensors like DESIS and EO-1 Hyperion provide detailed spectral

6



Figure 1.4: Comparing the temporal resolution of EO-1 Hyperion and Landsat-
8 satellites over Central Alberta between January 01, 2005, and December 31,
2023 (Credit: USGS EarthExplorer).

information but typically have longer revisit times due to the complexity and

volume of data they collect. Conversely, multispectral sensors such as those

on Sentinel-2 or the Landsat series offer more frequent revisits (higher tempo-

ral resolution) but with fewer and broader spectral bands relative to hyper-

spectral sensors. This allows multispectral sensors to monitor changes more

frequently but with less spectral detail. Figure 1.4 compares the number of

Hyperspectral Image (HSI) and Multispectral Image (MSI) recorded by EO-1

Hyperion and Landsat-8 satellites, respectively, over Central Alberta, Canada,

between January 01, 2005, and December 31, 2023. The EO-1 Hyperion sensor

captured 57 HSI, while the Landsat-8 sensor captured 6,922 MSI during the

same period over the same geographic region. This comparison highlights the

spectral-temporal trade-off between hyperspectral and multispectral sensors.

1.3.3 Spatial-Spectral Trade-off

Sensors that capture data at high spatial resolution require larger apertures to

gather more amount of light and record finer details, whereas the sensors cap-

turing detailed spectral information (high spectral resolution) need complex

optics capable of focusing light across a broad range of narrow wavelengths.

Multispectral sensors can record data at higher spatial resolution but often suf-
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Figure 1.5: Spatial-spectral trade-off between HSI and MSI (Source).

fer from lower spectral resolution as they capture a limited number of spectral

bands (3 – 36 bands). In contrast, hyperspectral sensors offer higher spectral

resolution, capturing hundreds of spectral bands, but often at lower spatial

resolution [72], [38]. This spatial-spectral trade-off between HSI and MSI

is illustrated in Figure 1.5. Designing sensors that balance high spatial and

spectral resolution is complex and expensive, leading to trade-offs between

spatial and spectral resolution while balancing the sensor performance with

cost-effectiveness and reliability.

1.4 Contributions

For decades, multispectral and hyperspectral sensors have provided valuable

data in spectral, spatial, radiometric, and temporal contexts, significantly en-

hancing our understanding of surface and atmospheric changes [62]. However,

there remains a need for data with enhanced spatial, spectral, and temporal

resolutions to deepen our knowledge and explore new applications. A 2019

survey by Wu et al. [72] indicates that improving the spectral, spatial, and

temporal capabilities of the Landsat sensor would greatly benefit numerous

areas, including ecosystems, agriculture, forestry, disaster response, human

health, climate, and water resources monitoring. The users expressed a desire

for weekly to sub-weekly cloud-free observations, enhanced spatial resolution

(around 10 m GSD), and additional narrow spectral bands at 10 nm band-
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width in the VNIR and TIR regions (400–2500 nm), essential for applications

in agriculture, forestry, mineral resources, and human health. Ideally, users

seek sub-weekly to daily cloud-free observations, a higher spatial resolution

of 5 m GSD, and a continuous 10 nm width spectral capability (hyperspec-

tral imaging) over the solar reflective region (400–2500 nm) for applications in

geoscience, natural hazards, vegetation characterization, water resource mon-

itoring, cryosphere studies, and land cover mapping.

Moreover, for various applications, it would be beneficial to have remote

sensing data at consistent resolutions. However, due to sensor limitations and

application-specific requirements, several multispectral satellites record data

at different spatial resolutions. For instance, Sentinel-2B records bands at 10

m, 20 m, and 60 m GSD. Similarly, the MODIS instruments capture data in

three native spatial resolutions: 250 m, 500 m, and 1000 m GSD; Landsat-8

acquires data at 15 m, 30 m, and 100 m spatial resolutions.

The contributions of this thesis are summarized below.

• We introduce the Extended Spatial-Spectral Residual Attention Network

(E-SSRAN) to address the challenges arising from the trade-off between

spatial and spectral resolution in satellite images.

• The E-SSRAN architecture effectively integrates the spatial details from

MSIs with the rich spectral information from HSIs, resulting in satellite

images with both high spatial and spectral resolution.

• Our method consists of two modules:

1. Spectral-Enhancement module: This module employs E-

SSRAN to enhance the spectral resolution of MSI by mapping MSI

to HSI, resulting in a spectrally enhanced MSI that is equivalent to

an HSI.

2. Spatial-Enhancement module: This module uses E-SSRAN to

improve the spatial resolution of MSI by mapping low-resolution

MSI to high-resolution MSI. Specifically, the network enhances the
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20 m and 60 m GSD bands of Sentinel-2B to 10 m GSD, thus

providing all 12 Sentinel-2B bands at a uniform 10 m GSD.

• Integrated Processing Pipeline: We propose a comprehensive

pipeline to merge the outputs of the Spectral- and Spatial-Enhancement

modules. In this process, the 10 m GSD MSI generated by the

Spatial-Enhancement module is further processed through the Spectral-

Enhancement module to produce 10 m GSD HSI. This pipeline ensures

the creation of satellite images with both high spatial and spectral res-

olution.

• Performance Evaluation: The proposed E-SSRAN algorithm is evalu-

ated using MSI and HSI data from the Sentinel-2B and DESIS satellites,

with a focus on agricultural areas in Central Alberta. The evaluation

process includes both qualitative and quantitative assessments:

– Quantitative evaluation: Six widely recognized metrics are used

to measure performance: Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), Spectral Angle Mapper (SAM), Universal

Image Quality Index (UIQI), Peak Signal-to-Noise Ratio (PSNR),

and Structural Similarity Index Measure (SSIM).

– Qualitative Evaluation: This involves visually inspecting and

comparing the spectral signatures of the predicted satellite images

with original satellite images from Sentinel-2B and DESIS.

These contributions demonstrate the potential of E-SSRAN and the pro-

posed pipeline to significantly enhance the spatial and spectral resolution of

satellite images, thereby providing valuable improvements for various remote

sensing applications.

1.5 Organization of the Thesis

The remainder of the thesis is organized as follows:
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• Chapter 2: Literature Review – This chapter provides a review of previ-

ous studies, highlighting their advantages and limitations.

• Chapter 3: Dataset Description – This chapter describes the Sentinel-

2B MSI and DESIS HSI datasets used for this study and provides an

overview of the study area.

• Chapter 4: Spectral-Enhancement module – This chapter focuses on the

Spectral-Enhancement module, detailing the data preprocessing steps

and the proposed E-SSRAN architecture, along with evaluation metrics

and the results.

• Chapter 5: Spatial-Enhancement module – This chapter describes

the proposed Spatial-Enhancement module, including the preprocessing

steps involved in the pipeline followed by the results.

• Chapter 6: Merging the Spatial- and Spectra-Enhancement modules –

This chapter proposes a pipeline to merge the outputs of the Spectral-

Enhancement and the Spatial-Enhancement modules to generate satel-

lite images with enhanced spatial and spectral resolution.

• Chapter 7: Conclusion and Future Directions – This chapter presents

the conclusions of the study and outlines future research directions.

• Chapter 8: References – This chapter lists the articles, research papers,

books, and blogs referenced during the study.
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Chapter 2

Literature Review

For understanding the semantics of real-world images, it is crucial to have

high-resolution images characterized by sharp, clear boundaries and rich visual

descriptions of the observed scene. However, acquiring such images through

hardware-based techniques, such as reducing pixel size or increasing sensor

size, is often impractical and expensive [46]. Consequently, most of the studies

have focused on applying algorithm-based approaches to enhance the resolu-

tion of low-resolution images. These methods, commonly referred to as super-

resolution techniques, aim to produce high-resolution images from one or more

low-resolution observations of the same scene [33]. Prior studies [43], [47]

have demonstrated that improving image resolution through super-resolution

methods enhances the accuracy and robustness of vision-based applications

across various domains, including medical imaging [24], [69], action recogni-

tion [45], [57], gait recognition [3], [84], and aerial imaging [82], [83].

Super-resolution methods are traditionally categorized based on the num-

ber of low-resolution images used: single-image super-resolution and image fu-

sion techniques [33], [46]. Early single-image super-resolution methods relied

on interpolation approaches such as linear, bicubic, and cubic splines interpo-

lation. Although these methods are simple and quick, they tend to produce

overly smooth and blurry images as they add little to no additional informa-

tion. To address this, more advanced reconstruction-based and learning-based

methods have been developed. Reconstruction-based approaches utilize cer-

tain priors or constraints, such as distributions or energy functions to improve
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image quality [13], [4], [26]. On the other hand, learning-based methods use

Machine Learning (ML) algorithms to establish relationships between low-

resolution and high-resolution patches, which have shown promising results

due to their ability to learn from large datasets. However, excessive data can

introduce noise and blurring, therefore, it is necessary to maintain a balance

between training data size and reconstruction quality.

With the advancements in ML, numerous learning-based models have

emerged to tackle the super-resolution problem. These methods are further

classified into five categories [33]: neighbor embedding methods [7], sparse

coding methods [9], self-exemplar methods [23], locally linear regression meth-

ods [76], and deep learning methods [63], [28].

Neighbor embedding methods leverage the similarity in the local geometries

between low-resolution and high-resolution patches, computing high-resolution

patches as weighted averages of local neighbors. For example, Chang et al.

[10] applied Locally Linear Embedding (LLE) [55] to weight learning, by

assuming that each sample and its neighbors lie on or near a locally linear

patch of the manifold. This idea significantly influenced early coding-based

methods.

Sparse coding methods represent image patches as sparse linear combina-

tions of elements from a pre-constructed sparse dictionary. Yang et al. [78],

for instance, trained a joint dictionary to find a sparse, over-complete coef-

ficient matrix that clearly described the relationship between low-resolution

and high-resolution patches. However, these methods are generally slow due

to increased memory usage.

Natural images often exhibit self-similarity, which inspired self-exemplar

methods. Glasner et al. [16] proposed a scale space pyramid trained with

internal data to map low-resolution pairs to high-resolution. Despite their

potential, high computational costs limit the widespread use of these methods.

Locally linear regression methods, introduced by Timofte et al. [66],

address the computational speed issues of sparse coding by using multiple

lightweight dictionaries instead of a single complex one. Consequently, multi-

ple studies have used supervised ML approaches [59], [49] to replace heavy
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sparse coding dictionaries for effectively mapping low-resolution images to

high-resolution and reducing computational costs.

Deep learning-based methods can be categorized into Convolutional Neu-

ral Network (CNN)-based and Generative Adversarial Network (GAN)-based

approaches. These methods use deep neural network architectures to learn

the mapping between low-resolution and high-resolution images. With the

development of CNNs, super-resolution techniques have become very popular

in signal and image processing. This has led to an increase in the develop-

ment of deep learning-based single-image super-resolution techniques in the

remote sensing domain, focusing on the spectral or spatial statistical distribu-

tions of a low-resolution image to generate a high-resolution image [26], [35],

[68]. For instance, Lanaras et al. [31] proposed DSen2, a network architec-

ture designed to effectively super-resolve the lower-resolution (20 m and 60 m

GSD) Sentinel-2B bands to 10 m GSD. Zheng et al. [87] proposed a novel

network architecture named Spatial-Spectral Residual Attention Network (SS-

RAN) that simultaneously explored the spatial and spectral characteristics of

MSI to reconstruct an HSI.

Compared to single-image super-resolution techniques, the increased avail-

ability of satellite images from multiple Earth observation satellites over the

last few decades has led to an increase in the development of image fusion tech-

niques for image enhancement. For instance, HSIs have been widely used for

various applications in the remote sensing domain for accurate identification

and classification of ground-based objects owing to their ability to capture

abundant spectral information. However, they often suffer from low spatial

resolution compared to multispectral and panchromatic images. Therefore,

various studies have focused on enhancing the spatial resolution of HSIs using

image fusion techniques.

Image fusion has emerged as a valuable method for combining the distinct

characteristics of high spectral and spatial resolutions of hyperspectral and

multispectral/panchromatic images. Hyperspectral image super-resolution us-

ing an auxiliary image has gained significant interest in the remote sensing

community [37]. One of the commonly addressed techniques, namely, hyper-
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sharpening, involves the fusion of hyperspectral and high-resolution multi-

spectral images to enhance the spatial resolution of HSI [60]. Maximum a

Posteriori (MAP) estimation [19], one of the earliest hyper-sharpening tech-

niques, is a Bayesian model-based algorithm that can work with any number

of spectral bands in the primary hyperspectral and auxiliary (multispectral or

panchromatic) images. For example, Yang et al. [79] propose a method to

fuse HSI and MSI using a deep CNN with two branches for extracting spec-

tral and spatial features. Dian et al. [14] introduced a deep CNN-based

residual learning approach to learn the image priors essential for estimating a

high-resolution HSI. Zheng et al. [86] presented an unsupervised CNN-based

fusion approach with three coupled autoencoder networks for spectral unmix-

ing. Qu et al. [54] and Xie et al. [73] performed hyperspectral-multispectral

fusion using networks based on a spectral mixture model.

Compared to multispectral and hyperspectral images, panchromatic im-

ages offer much higher spatial resolution, capturing more details of the ground

objects. For instance, panchromatic sensors like the Advanced Land Imager

(ALI) and the Landsat Enhanced Thematic Mapper record panchromatic im-

ages at a pixel resolution of 15 m GSD, whereas WorldView and QuickBird

achieve sub-meter spatial resolutions. As a result, the fusion of hyperspectral

and panchromatic images, known as hyperspectral pan-sharpening, has shown

significant performance for various remote sensing applications. Several recent

studies have focused on hyperspectral pan-sharpening. For instance, Qu et al.

[53] proposed a detail-injection network combined with a guided filter. Li et

al. [34] proposed a hyperspectral pan-sharpening algorithm employing im-

proved Principal Component Analysis (PCA) and an optimal weighted fusion

strategy. He et al. conducted two notable studies related to hyperspectral

pan-sharpening and produced remarkable results: (1) HyPNN [22], a spec-

trally predictive CNN, and (2) HSpeNet [21], a spectral fidelity CNN with

multiple skip connections. Xie et al. [75] proposed a CNN performing deep

residual mapping based on the idea of deep priors. Zheng et al. [89] adopted a

deep prior and dual attention residual network for adaptively learning spectral

and spatial features simultaneously.
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Despite capturing images at higher spatial resolution, panchromatic sensors

often contain limited spectral information, making it challenging to estimate

the spectra of HSIs. Additionally, HSIs sometimes have spectral bands in

wavelength ranges that are not commonly covered by panchromatic sensors.

These issues have restricted the direct fusion of low-resolution HSIs with high-

resolution panchromatic images. To overcome these limitations, recent studies

employed a method that synthesizes an intermediate, latent MSI from the hy-

perspectral data cube rather than directly fusing hyperspectral and panchro-

matic images. For instance, Xie et al. [74] propose a 3-D generative adversarial

network-based hyperspectral pan-sharpening framework. Lu et al. [38] intro-

duced a novel technique named CCNNF, that combines hyper-sharpening and

multispectral image pan-sharpening based on a two-stage cascaded CNN.

Overall, research in satellite image enhancement has largely focused on

improving either the spectral or spatial resolution independently. For instance,

previous work has often concentrated on improving the spatial resolution of

HSIs or enhancing the spectral resolution of MSIs. However, attempts to

simultaneously improve both spatial and spectral resolution have been limited,

primarily due to the unavailability of suitable data.

Our study is motivated by the growing need for remote sensing data with

both high spatial and spectral resolution. Such data can offer substantial value

to various remote sensing applications by providing more detailed and accurate

insights for satellite data analysis [17]. In this article, we aim to develop a

method to effectively enhance both spatial and spectral resolution of satellite

images.

Our work is inspired by the SSRAN architecture [87] because of its ability

to exploit both spatial and spectral characteristics of satellite images. Al-

though SSRAN was designed for enhancing the spectral resolution of MSIs,

we extend its capabilities towards enhancing both spatial and spectral resolu-

tion of satellite images.
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Chapter 3

Dataset Description

3.1 Multispectral Images: Sentinel-2B

The Sentinel-2 mission, managed by the European Space Agency (ESA) in col-

laboration with the European Commission’s Copernicus Programme, encom-

passes two satellites: Sentinel-2A and Sentinel-2B, launched on June 23, 2015,

and March 7, 2017, respectively. These satellites operate in a sun-synchronous

orbit, each at a 180◦ phase offset from the other, resulting in a five-day revisit

interval at the equator. Covering all terrestrial areas except Antarctica, the

Sentinel-2 mission has rapidly gained prominence due to its superior spatial,

spectral, radiometric, and temporal resolutions, revolutionizing Earth obser-

vation across multiple disciplines. Applications of Sentinel-2 data range from

conventional land-cover mapping to advanced hydrological and environmental

studies including hydrology, water resource management, and monitoring dy-

namic geophysical variables. The high quality, widespread accessibility, and

global coverage of Sentinel-2 make it a pivotal tool for present and future Earth

observation endeavors, serving as the driving force behind this research.

For our study, we leverage MSIs from Sentinel-2B, comprising 13 spectral

bands, each characterized by distinct spectral properties and offering spatial

resolutions of 10 m, 20 m, or 60 m GSD as detailed in Table 3.1. These

spectral bands support various applications including land-cover monitoring,

agriculture, forestry, biophysical variable mapping, water resource mapping,

and disaster mapping. Notably, the 10 m and 20 m bands are crucial for high-

resolution applications, while the 60 m bands serve specific purposes such as
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atmospheric correction and cloud estimation. In practice, these bands are

initially captured at 20 m GSD and then downsampled to 60 m to enhance

the signal-to-noise ratio [31].

The registration errors between the Sentinel-2B bands are minimal and

generally ignored in previous studies [12]. Moreover, Band B10, intended for

cirrus cloud detection, often exhibits inferior radiometric quality and is prone

to striping artifacts. As a result, it is omitted from various quality control

processes, hence we exclude it.

Sentinel-2 data can be downloaded for free from the Copernicus Services

Data Hub. For processing, we use the Level-2A product, which provides at-

mospherically corrected surface reflectance images. Atmospheric correction

addresses the correction of Rayleigh scattering, the absorption and scattering

effects of atmospheric gases (ozone, oxygen, and water vapor), and aerosol

particles. Each Level-2A product consists of 110 × 110 km2 size tiles in

UTM/WGS84 projection. Further preprocessing details are discussed in Sec-

tion 4.1.

Spectral Bands Spectral Range
(nm)

Spatial Resolution
(m)

Band 1 –
(Coastal/Aerosol)

433 – 453 60

Band 2 – (Blue) 458 – 523 10
Band 3 – (Green) 543 – 578 10
Band 4 – (Red) 650 – 680 10
Band 5 – (Red edge 1) 698 – 713 20
Band 6 – (Red edge 2) 733 – 748 20
Band 7 – (Red edge 3) 773 – 793 20
Band 8 – (NIR) 785 – 900 10
Band 8A – (NIRn) 855 – 875 20
Band 9 – (WV) 935 – 955 60
Band 11 – (SWIR-1) 1565 – 1655 20
Band 12 – (SWIR-2) 2100 – 2280 20

Table 3.1: Sentinel-2B bands used for this study.
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3.2 Hyperspectral Images: DESIS

The DLR Earth Sensing Imaging Spectrometer (DESIS) [30] is a push broom

hyperspectral imaging spectrometer stationed on the Multi-User System for

Earth Sensing (MUSES) platform aboard the ISS. Developed collaboratively

by the German Aerospace Center (DLR) and Teledyne Brown Engineering

(TBE), DESIS was launched on June 29, 2018, to provide detailed images of

the Earth’s surface for various applications including fire detection, change

detection, maritime domain awareness, and atmospheric research.

DESIS operates within the VNIR spectral range (400 nm to 1000 nm),

capturing 235 channels with a minimum spectral resolution of approximately

2.55 nm and a signal-to-noise ratio of 195 dB. At the nadir view and a reference

altitude of 400 km, DESIS acquires imagery at a GSD of ∼30 m, delivered in

the form of tiles measuring around 1024 × 1024 pixels (30 × 30 km2 geographic

area). This translates to a swath width of 30 km. Operating within the ISS

orbit inclination of 51.6◦, DESIS scans approximately 90% of the inhabited

Earth every 3-5 days.

DESIS data is available free of cost for scientific purposes and can be

downloaded from the EOWEB GeoPortal (EGP) data hub. For our study, we

use the Level-2A Surface Reflectance product that offers high-quality, analysis-

ready atmospherically corrected surface reflectance images.

3.3 Area of Study

Our study area encompasses the town of Olds, located in the Mountain View

County of central Alberta, Canada. Olds is a key agriculture hub, known for

its fertile soils and rich agricultural heritage. The landscape includes open

prairies, river valleys, and cultivated farmland, supporting a diverse range of

crops.

Olds and its surrounding area feature a spectrum of soil types, including

the nutrient-rich Chernozem and clay-rich Luvisol. These soil compositions of-

fer optimal conditions for agriculture, facilitating the growth of various crops
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vital to the region’s agricultural output. Favorable weather conditions, includ-

ing ample sunshine and adequate precipitation, further enhance agricultural

productivity. As a result, a variety of staple crops are grown in the region.

Wheat and barley serve as primary cereal crops, while canola, renowned for its

oil content, occupies a prominent position in the region’s oilseed production.

Oats, valued for their versatility in both human consumption and livestock

feed, also feature prominently in the agricultural landscape of Olds. This

diverse agricultural setting provides an ideal context for our study, allowing

us to leverage the capabilities of multispectral and hyperspectral imagery to

monitor and analyze agricultural activities in this region.
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Chapter 4

Spectral-Enhancement Module

The primary objective of the Spectral-Enhancement module is to improve the

spectral resolution of MSI such that the output of this module is a spectrally

enhanced MSI that is equivalent to an HSI. In Section 4.1, we briefly describe

the data used in this study and outline the preprocessing steps involved in

preparing the data for the Spectral-Enhancement module. In Section 4.2, we

propose the network architecture used for enhancing the spectral resolution of

MSIs. Finally, Section 4.3 explains the evaluation metrics used in the study,

while Section 4.4 presents the results achieved by our approach.

4.1 Data Preprocessing

Data preprocessing is a very crucial step in any remote sensing application. It

ensures the dataset is free from any kind of noise, anomalies or missing values.

Preprocessing is particularly essential because satellite data often suffer from

various challenges, such as atmospheric interference, sensor noise, and inconsis-

tent lighting conditions, which can degrade image quality and compromise the

accuracy of subsequent analysis. Moreover, raw satellite images may contain

missing or corrupted data, which need to be addressed to avoid incorrect re-

sults. Therefore, preprocessing is necessary to standardize the data, eliminate

inconsistencies, and enhance the overall quality of remote sensing data.

For enhancing the spectral resolution of MSI, we utilized HSI and MSI

obtained from DESIS and Sentinel-2B satellites, respectively, captured on Au-

gust 4, 2020, and covering the same geographic region centered on the town
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of Olds. This alignment was crucial to minimize atmospheric discrepancies

and ensure consistency in the dataset. The images contained a variety of

landscapes including vegetation, bare soil, water bodies, and build-up areas.

Atmospheric correction is a crucial preprocessing step for remote sensing

data, aimed at removing atmospheric interferences, such as scattering and ab-

sorption of light, to reveal surface features accurately. However, since both

DESIS and Sentinel-2B images were Level-2A atmospherically corrected prod-

ucts, this step was omitted. Further, the DESIS HSI was converted from the

Digital Number (DN) to surface reflectance values using Equation (4.1).

Li,j,B = GB ∗DNi,j,B +OB (4.1)

where Li,j,B denotes the surface reflectance value for the pixel (i, j) in the

band B; GB is the band-specific multiplicative factor; DNi,j,B represents the

DN value; and OB is the band-specific offset value. The surface reflectance val-

ues represent the amount of light reflected by the Earth’s surface without any

interference from the atmosphere. Following this, a visual inspection was con-

ducted to identify and exclude regions affected by noise, cloud cover, shadows,

and snow, thus, ensuring data integrity and reliability. Furthermore, regions

characterized by undefined pixels (black background) were excluded from the

study to maintain analytical precision.

Since the main objective of the Spectral-Enhancement module is to en-

hance the spectral resolution of MSI, both MSI and HSI must have the same

geographic extent and GSD. Therefore, we performed geographic alignment,

region clipping, and spatial resampling on the images to ensure a pixel-to-

pixel correspondence between the MSI and HSI. This was necessary as MSI

and HSI were gathered from two different satellite systems. Geographic align-

ment ensured that both datasets contained the same geographic region and

followed the same coordinate reference system. Region clipping retained only

the overlapping areas between the MSI and HSI, and spatial resampling was

performed to maintain a uniform spatial resolution across the datasets.

As discussed in Section 3.1, Sentinel-2B bands have a varying GSD – 10 m,
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Figure 4.1: True color (RGB) image of Sentinel-2B MSI (R- Band4, G- Band3,
B- Band2) and DESIS HSI (R- Band90, G- Band52, B- Band25) attained after
data preprocessing.

20 m, and 60 m. To match with the 30 m GSD of DESIS data, the 10 m and

20 m GSD bands of Sentinel-2B were downsampled, and the 60 m GSD bands

were upsampled to 30 m GSD using bilinear interpolation. The resultant HSI

and MSI had a dimension of 1000 × 800 pixels each, containing 235 and 12

bands, respectively. The true color images of the resultant MSI and HSI are

shown in Figure 4.1.

An entire satellite image is usually very large to fit into computer memory

for training and testing purposes. Therefore, the HSI and MSI pair were

divided into non-overlapping tiles of size 200 × 200 pixels. Then, the HSI-

MSI tiles were split randomly into training and testing sets at a 70:30 ratio,

with 10% of the training set designated for validation. Following this, the

tiles in the training and the validation sets were separately subdivided into

overlapping patches of size 50 × 50 pixels with a stride length of 25 × 25

pixels, resulting in a 50% overlap. The tiles in the testing set were subdivided

into non-overlapping patches of size 50 × 50 pixels. This strategic approach

ensured that there was no geographic overlap between the training, validation,

and testing sets, thus enhancing the robustness and generalizability of the

analysis. Further detailed explanations regarding the patch size rationale, loss
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function, etc. are provided in Section 4.4.

4.2 Method

Inspired by Zheng et al. [87], we introduce E-SSRAN (Extended Spatial-

Spectral Residual Attention Network) to effectively integrate the spatial and

spectral characteristics of MSI and HSI. While the architecture design of E-

SSRAN shares similarities with SSRAN [87], key modifications have been

made to the loss function and the patch size during training (explained in

Section 4.4). Additionally, although SSRAN was initially developed to en-

hance the spectral resolution of MSI to reconstruct an HSI, E-SSRAN extends

these capabilities by enhancing both spatial and spectral resolution of satellite

images.

In the Spectral-Enhancement module, E-SSRAN learns the mapping be-

tween MSI and HSI by exploiting the spatial and spectral details of the two

image modalities and uses this information to reconstruct a spectrally en-

hanced MSI that is equivalent to an HSI.

Let Xpatch ∈ IR p× p×BM and ypatch ∈ IR p× p×BH , respectively, represent

the MSI and HSI patches with the same GSD. p × p denotes the patch size;

BM and BH are the number of bands in MSI and HSI, respectively, such that

BH >> BM . The MSI patches, Xpatch, are fed into the E-SSRAN architecture

for training, while the HSI patches, ypatch, serve as the ground truth.

The E-SSRAN architecture consists of three main components – feature

extraction, nonlinear mapping, and reconstruction – capable of exploiting both

spatial and spectral information of MSI for reconstructing the HSI. During the

training phase, E-SSRAN learns the mapping, ΨSpectral, between the MSI and

HSI data, where

ΨSpectral : IR p× p×BM → IR p× p×BM . (4.2)

During the testing phase, the trained model uses the learned MSI-to-HSI map-

ping to generate a spectrally enhanced MSI that is equivalent to an HSI. Since

the primary objective is to enhance the spectral resolution of MSI, the GSD
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Figure 4.2: Overview of the steps involved in the Spectral-Enhancement mod-
ule for enhancing the spectral resolution of MSI using E-SSRAN.

and the spatial size of the spectrally enhanced MSI predicted by the model are

the same as that of the input MSI patches. Figure 4.2 provides an overview

of the steps involved in the Spectral-Enhancement module.

The feature extraction component of the E-SSRAN architecture consists of

an input layer that takes the MSI patches (Xpatch) as input. This is followed by

a 2-Dimensional (2D) convolution layer, and a Rectified Linear Unit (ReLU)

layer used to extract multispectral features from the input MSI patches. The

kernel size of the 2D convolution layer is set to 1 × 1 for specifically extract-

ing the spectral features. Employing multiple convolutions in this phase, as

suggested by Zheng et al. [87], was deemed unnecessary, given the numerous

convolutions applied in the subsequent nonlinear mapping component. There-

fore, the feature extraction component extracts multispectral features from

the input MSI patches.

The nonlinear mapping component aims to map the multispectral features
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of the input MSI to hyperspectral features. It consists of several spatial-

spectral residual blocks for simultaneously exploiting the spatial and spectral

information to learn the MSI-to-HSI feature mapping. Each spatial-spectral

residual block consists of a spatial branch and a spectral branch attached in

parallel, followed by a concatenation layer and a set of 2D convolution layers

with 1 × 1 kernels and a ReLU layer. The spatial branch extracts spatial fea-

tures using two 2D convolution layers with 3 × 3 kernels, each followed by a

ReLU layer. The 2D convolution layers with 3 × 3 kernels offer computational

efficiency and have demonstrated effective spatial feature extraction [5], [15].

The spectral branch, on the other hand, focuses exclusively on learning spec-

tral features and consists of two 2D convolution layers with 1 × 1 kernels, each

followed by a ReLU layer. Employing 1 × 1 kernels in the spectral branch en-

sures that the 2D convolution layers do not incorporate spatial details from the

neighboring pixels. Next, a concatenation layer combines the spatial features

from the spatial branch and the spectral features from the spectral branch

across the channel dimension. An additional 2D convolution layer with 1 ×

1 kernels and a ReLU layer is added following this to generate the spatial-

spectral features. Moreover, a long, additive skip connection is introduced at

this point from the beginning of the spatial-spectral residual block. Multiple

such spatial-spectral residual blocks are joined in series within the nonlinear

mapping component to enhance the nonlinearity of the model.

Lastly, the reconstruction component reconstructs the target HSI patch

from the hyperspectral features learned in the nonlinear mapping component.

It consists of a 2D convolution layer with 1 × 1 kernels; the number of kernels

in this convolution layer is set to BH , the desired number of bands in the tar-

get HSI output. However, solely relying on a 2D convolution layer for the HSI

reconstruction may not entirely preserve the neighboring spectral correlation

prior [18], [85] of the resulting HSI patch. The neighboring spectral cor-

relation prior is defined as the high correlation between the adjacent spectral

bands in an [39], [88]. Preserving the neighboring spectral correlation prior is

essential for enhancing the quality of the reconstructed HSI patch. To address

this, a neighboring spectral attention module [87] is introduced in the recon-
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Figure 4.3: Visual representation of the E-SSRAN architecture.

struction component, consisting of a global average pooling operation followed

by a 1D convolution layer and a sigmoid activation layer.

Additionally, a neighboring spectral attention module is also integrated

into the spatial-spectral residual block of the nonlinear mapping component,

after the last set of 1 × 1 kernel 2D convolution and ReLU layer, to fur-

ther improve the neighboring spectral band correlation. The reconstruction

component outputs spectrally enhanced MSI patches that are equivalent to

HSI, ŷpatch ∈ IR p× p×BH . ypatch has the same GSD as that of the input MSI

patches, Xpatch, but with a spectral resolution of BH bands. These predicted

patches, ŷpatch, are then compared with the ground-truth HSI patches, ypatch,

during model evaluation. Figure 4.3 provides a visual representation of the

components of the E-SSRAN architecture, inspired by Zheng et al. [87].

4.3 Evaluation Metrics

We carried out an extensive evaluation of the Spectral-Enhancement module

proposed for enhancing the spectral resolution of MSI. The quantitative as-

sessment was performed using a combination of six widely used evaluation

metrics [8]: MAE, RMSE, SAM [80], UIQI [70], PSNR [27], and SSIM

[71]. MAE measures the average absolute differences between predicted and

actual image patches. RMSE computes the square root of the average squared

differences between predicted and actual patches. A lower value of MAE and

RMSE signifies better performance. SAM quantifies the spectral similarity

between the predicted and the actual spectra. Each element of the SAM score
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is a spectral angle measured in radians within the range [0, 3.142], where a

smaller SAM score indicates a strong match between the predicted and actual

spectral signatures [42]. UIQI assesses the overall image quality on a scale of

[0, 1], where a UIQI score of 1 indicates a perfect match between the predicted

and actual images. PSNR evaluates the peak signal quality relative to the

noise level with higher values indicating better quality. SSIM measures the

structural similarity between images, ranging from 0 to 1, with 1 representing

exact structural similarity.

MAE and RMSE are calculated as:

MAE =
1

n

n∑︂
i=1

⃓⃓⃓
Yi − Ŷ i

⃓⃓⃓
(4.3)

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(︂
Yi − Ŷ i

)︂2

(4.4)

where n is the total number of bands in the image; Yi represents the pixel value

in the ground truth image Y for the band i; Ŷ i denotes the predicted image

pixel value for the band i; and |.| signifies the absolute difference between the

ground truth and predicted pixel values.

SAM score (α) can be calculated as:

α = cos−1

[︄ ∑︁n
i=1 tiri√︁∑︁n

i=1 t
2
i

√︁∑︁n
i=1 r

2
i

]︄
(4.5)

where t and r are the test spectra and reflectance spectra, respectively, and n

is the number of bands in the image.

UIQI score can be computed using [70].

PSNR score is calculated as:

PSNR = 10log10

(︃
R2

MSE

)︃
(4.6)

where R is the maximum fluctuation in the input image data type. For exam-

ple, if it is an 8-bit unsigned integer data type, R is 255. And Mean Squared

Error (MSE) is given by:

MSE =
1

n

n∑︂
i=1

(︂
Yi − Ŷ i

)︂2

(4.7)
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where n is the number of bands in the image; Yi represents the pixel value in

the ground truth Y for the band i; Ŷ i denotes the predicted image pixel value

for the band i.

SSIM is calculated based on three characteristics of an image: luminance,

contrast, and structure.

Luminance, l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.8)

Contrast, c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.9)

Structure, s(x, y) =
σxy + C3

σxσy + C3

(4.10)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and

cross-covariance, respectively, for the images x, y; C1, C2, and C3 are the regu-

larization constants for luminance, contrast, and structure terms, respectively.

Then, the SSIM score is calculated as:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (4.11)

Furthermore, qualitative evaluation is performed by comparing the spectral

signatures of the reconstructed HSI (ŷpatch) with the ground-truth HSI (ypatch),

and by visual examination of the images.

4.4 Results and Description

This section provides a comprehensive analysis of the parameters used to train

the E-SSRAN architecture and evaluates their impact on the spectral enhance-

ment of MSI.

We set the number of kernels to 64 for all 2D convolution layers, except

in the reconstruction component where BH kernels were used in the final 2D

convolution layer to reconstruct the spectrally enhanced MSI, transforming

it into an HSI. The network weights were initialized using the Xavier weight

initialization technique [20] with L2 kernel regularization. MAE (L1 norm)

was used as the loss function, and the Adam optimizer [29] was employed to
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Figure 4.4: Variation in training and validation losses during the training of
the E-SSRAN architecture for spectral enhancement of MSI using network
ΨSpectral.

minimize the loss. The batch size was set to 64. Both training and validation

losses were monitored throughout the training process. Figure 4.4 shows the

variation in training and validation losses during the training of the E-SSRAN

architecture for spectral enhancement of MSI using network ΨSpectral. The

minimal gap between training and validation losses suggested that the model

did not overfit.

The base learning rate was initially set to 0.01. If the validation loss did

not decrease over eight consecutive epochs, the learning rate was reduced by

a factor of 0.1 to aid model convergence. The maximum number of epochs

was set to 200, with an early stopping callback to terminate training if no

improvement in validation loss was observed over fifteen consecutive epochs.

All analyses were conducted using Python 3 [67] and the Keras deep learning

API [11]. The model was trained on an NVIDIA GeForce RTX 2080 SUPER

Graphics Processing Unit (GPU) with 8 Gigabyte (GB) dedicated memory.

We analyzed various hyperparameters to understand their effects on the

performance of the Spectral-Enhancement module. This included different

loss functions, patch sizes, the number of spatial-spectral residual blocks in

the nonlinear mapping component, the number of neighboring spectral bands
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in the neighboring spectral attention module of the reconstruction component,

and different base learning rates.

4.4.1 Loss Function

We used MAE (L1 norm) as the loss function:

LossMAE =
1

n

n∑︂
i=1

|Yi − Mi(X, θ) | (4.12)

where n is the total number of bands in the HSI, Yi represents the pixel value

in the ground truth image Y for the band i, Mi(X, θ) denotes the predicted

HSI pixel value for the band i, and |.| signifies the absolute difference between

the ground truth and predicted pixel values.

We compared the performance of MAE with the MSE loss function (L2

norm) used in previous studies [87]. Results (Table 4.1) indicated that the L1

norm converged faster and yielded superior results compared to the L2 norm

(MSE), likely because the L1 norm is more robust to outliers. Hence, MAE

(L1 norm) was chosen as the loss function for all the subsequent analyses.

Loss Function MAE RMSE SAM UIQI PSNR SSIM
MAE 0.014 0.018 0.144 0.959 37.00 0.955
MSE 0.022 0.028 0.260 0.906 32.44 0.908

Table 4.1: Quantitative comparison of E-SSRAN in terms of MAE and MSE
loss functions for training the Spectral-Enhancement model.

4.4.2 Patch Size

The spatial dimensions of the MSI and HSI patches were set to 50 × 50

pixels, corresponding to a receptive field of several hundred meters on the

ground. This size was sufficient for capturing local low-level texture features

and small semantic structures, such as individual farms or small water bodies.

In contrast, Zheng et al. [87] proposed a patch size of 4 × 4 pixels for training

the SSRAN model, which was considered too small for our study as it limited

the CNN’s ability to learn spatial details from neighboring pixels.

We conducted a quantitative comparison of various patch sizes: 4 × 4, 20

× 20, 40 × 40, 50 × 50, and 100 × 100 pixels. Figure 4.5 provides a visual
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Figure 4.5: Visual representation of different patch sizes: 4 × 4, 20 × 20, 40
× 40, 50 × 50, and 100 × 100 pixels.

representation of different patch sizes. Patch sizes of 4 × 4, 20 × 20 pixels

provide very blurry images as compared to the other larger patch sizes. Table

4.2 presents the performance metrics of training the Spectral-Enhancement

module for each patch size keeping other parameter choices consistent. The

model performance improved with an increase in patch size up to a certain

limit, with 50 × 50 pixels demonstrating the best performance for learning

spatial and spectral details for spectral enhancement, followed by the 100 ×

100 pixels patch size. Thus, our further analysis was conducted using a patch

size of 50 × 50 pixels.

Patch Size Stride MAE RMSE SAM UIQI PSNR SSIM
4 × 4 4 0.016 0.019 0.095 - 38.35 -
20 × 20 10 0.016 0.021 0.151 0.952 36.61 0.938
40 × 40 20 0.016 0.022 0.173 0.952 35.92 0.938
50 × 50 25 0.014 0.018 0.144 0.959 37.00 0.955
100 × 100 50 0.013 0.018 0.151 0.956 36.82 0.952

Table 4.2: Quantitative comparison of different patch sizes for training the
E-SSRAN architecture.

4.4.3 Number of Spatial-Spectral Residual Blocks

Spatial-spectral residual blocks in the nonlinear mapping component of E-

SSRAN are used to introduce nonlinearity in the MSI-to-HSI mapping. Too

many blocks can increase the number of weight parameters, while too few

can result in underfitting. Multiple experiments (reported in Table 4.3) with
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different numbers of spatial-spectral residual blocks suggested that five spatial-

spectral residual blocks provided the best performance for spectral enhance-

ment. Consequently, we set the number of spatial-spectral residual blocks to

five in subsequent experiments.

Num. of Blocks MAE RMSE SAM UIQI PSNR SSIM
1 0.016 0.021 0.168 0.953 35.76 0.940
2 0.016 0.021 0.164 0.953 35.85 0.942
3 0.016 0.022 0.176 0.952 35.56 0.941
4 0.015 0.021 0.163 0.956 36.36 0.944
5 0.014 0.018 0.144 0.959 37.00 0.955
6 0.015 0.021 0.172 0.953 36.21 0.944
7 0.015 0.020 0.159 0.955 36.45 0.946

Table 4.3: Quantitative comparison of different numbers of spatial-spectral
residual blocks in the nonlinear mapping component of E-SSRAN architecture.

4.4.4 Number of Neighboring Spectral Bands

Adjacent bands of an HSI are highly correlated. The primary objective of the

neighboring spectral attention module in the reconstruction component of the

E-SSRAN architecture is to maintain this high spectral correlation between

adjacent bands in the reconstructed HSI. Table 4.4 compares the performance

with different number of neighboring spectral bands in the neighboring spectral

attention module, indicating that five neighboring bands provided optimal

results.

Num. of Bands MAE RMSE SAM UIQI PSNR SSIM
1 0.017 0.022 0.173 0.953 35.62 0.935
3 0.015 0.020 0.160 0.955 36.48 0.947
5 0.014 0.018 0.144 0.959 37.00 0.955
7 0.015 0.020 0.157 0.954 36.43 0.946
9 0.014 0.020 0.155 0.957 36.76 0.948

Table 4.4: Quantitative comparison of different number of spatial-spectral
residual blocks in the nonlinear mapping component of E-SSRAN architecture.
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4.4.5 Learning Rate

The Learning Rate (LR) is a critical hyperparameter in training neural net-

works. A low learning rate may result in a very slow training process, while a

high learning rate could prevent convergence. Therefore, choosing an optimal

learning rate value is very important. For training the E-SSRAN architec-

ture in the Spectral-Enhancement module, we experimented with various base

learning rates and listed the quantitative results in Table 4.5. A base learning

rate of 0.01 provided the best performance in terms of enhancing the spectral

resolution of MSI. Consequently, all subsequent analyses were performed using

this base learning rate.

Base LR MAE RMSE SAM UIQI PSNR SSIM
0.1 0.018 0.025 0.184 0.946 34.60 0.927
0.07 0.017 0.023 0.181 0.950 35.20 0.932
0.01 0.014 0.018 0.144 0.959 37.00 0.955
0.007 0.015 0.020 0.155 0.957 36.72 0.948
0.001 0.014 0.018 0.156 0.958 37.04 0.952

Table 4.5: Quantitative comparison of different base learning rates for training
the E-SSRAN architecture in the Spectral-Enhancement module.

4.4.6 Comparing the performance of E-SSRAN with
SSRAN

The E-SSRAN model extends the capabilities of the original SSRAN model

[87] by addressing both spectral and spatial enhancement of MSI. Table 4.6

provides a quantitative performance comparison between E-SSRAN and SS-

RAN.

For training the SSRAN model, we followed the exact configuration de-

scribed in the original study, including a patch size of 4 × 4 pixels and three

spatial-spectral residual blocks in the nonlinear mapping component of the

architecture. The model was trained using the MSE loss function and the

Stochastic Gradient Descent (SGD) optimizer. The initial learning rate was

set to 0.01 with a decay factor of 0.1 after every fifty epochs. A batch size of

100 was used, and the model was trained for a total of 200 epochs.
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In contrast, the E-SSRAN model was trained using a larger patch size of

50 × 50 pixels and incorporated five spatial-spectral residual blocks in the

nonlinear mapping component of the architecture. Increasing the patch size

allowed the model to learn features at a larger spatial extent, improving its

ability to capture spatial dependencies. Additionally, increasing the number

of spatial-spectral residual blocks in the nonlinear mapping component of the

architecture enhanced the model’s complexity and its ability to learn nonlinear

dependencies. The MAE loss function, along with the Adam optimizer, was

used for training. Compared to MSE, MAE is less sensitive to outliers and

typically converges faster. The initial learning rate was set to 0.01, with a

decay factor of 0.1 applied when the validation loss plateaued. A batch size of

64 was used, and the model was trained for 100 epochs.

The SSRAN model required a total training time of 48.48 minutes, averag-

ing to 14.5 seconds per epoch. Conversely, the E-SSRAN model required only

5.47 minutes, averaging less than 5 seconds per epoch. The SSRAN archi-

tecture consisted of approximately 0.29 million trainable parameters (∼1.10

Megabyte (MB) size), whereas the E-SSRAN architecture consisted of approx-

imately 0.47 million trainable parameters (1.79 MB size). Despite the smaller

model size, SSRAN took longer to train compared to E-SSRAN, likely due to

the smaller patch size, which increased the number of training samples.

Algorithm MAE RMSE SAM UIQI PSNR SSIM
SSRAN [87] 0.016 0.018 0.123 - 37.44 -
E-SSRAN 0.014 0.018 0.144 0.959 37.00 0.955

Table 4.6: Comparing the quantitative performance of SSRAN [87] and E-
SSRAN.

Furthermore, Figure 4.6 provides a qualitative evaluation between SSRAN

and E-SSRAN by comparing the spectral signatures of the predicted HSI gen-

erated by both models. The spectral signatures of the HSI predicted by the

SSRAN model were non-uniform and noisy compared to those predicted by

the E-SSRAN model. This discrepancy is likely due to the small patch size

used for training the SSRAN model, which can disturb the spectral correlation

between neighboring bands, resulting in non-uniform and noisy spectral signa-
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Figure 4.6: Comparing spectral signatures of the predicted HSI using SSRAN
and E-SSRAN.

tures. The larger patch size (50 × 50 pixels) used for training the E-SSRAN

model ensured better preservation of the spectral correlation.

Figure 4.7 provides a visual comparison of the original DESIS HSI and the

HSI predicted by the E-SSRAN model in the Spectral-Enhancement module

over different spectral bands (Band-50, Band-100, Band-150, Band-200, and

Band-250). It can be observed that the predicted HSI is very close to the

original HSI, further justifying the performance of E-SSRAN for enhancing

the spectral resolution of MSI.
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Figure 4.7: Visual comparison of original DESIS HSI and the HSI predicted
in the Spectral-Enhancement module over different spectral bands (Band-50,
Band-100, Band-150, Band-200, and Band-250).
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Chapter 5

Spatial-Enhancement module

As discussed in Section 3.1, the Sentinel-2B satellite provides imagery in bands

with varying GSDs of 10 m, 20 m, and 60 m. These differences arise due to

limitations in storage and transmission bandwidth, enhanced signal-to-noise

ratios, and other application-specific requirements. Figure 5.1 illustrates three

sample images captured by the Sentinel-2B satellite at 10 m (left column), 20

m (middle column), and 60 m (right column) GSD. The images with lower

resolutions (20 m and 60 m) show significantly fewer spatial details compared

to the 10 m band, with the 60 m band being the most affected. This reduction

in spatial resolution can restrict the utility of satellite images across various

domains. Therefore, it is often desirable to have a uniform high resolution (10

m GSD) across all bands.

Basic methods such as bilinear or bicubic interpolation can increase the spa-

tial resolution of low-resolution images quickly, but they often tend to produce

blurry outputs with minimal additional information. In contrast, advanced

techniques utilizing CNNs [31] aim to provide superior results by smartly up-

sampling the images. These methods use the available high-resolution bands

to recover spatial details in low-resolution bands while preserving spectral in-

formation. The Spatial-Enhancement module seeks to enhance the spatial

resolution of the 20 m and 60 m bands to 10 m GSD, maintaining spectral

integrity across the bands.

CNNs, as a supervised learning technique, require abundant training data

where both multi-resolution inputs and corresponding high-resolution outputs
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Figure 5.1: Sample images from Sentinel-2B satellite at 10 m (left column),
20 m (middle column), and 60 m (right column) GSD.
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are available. A major challenge in CNN-based spatial enhancement is con-

structing training, validation, and test sets due to the unavailability of ground

truth data at 10 m GSD for the 20 m and 60 m bands. Despite considerable

efforts, such as using aerial hyperspectral data and advanced simulation tech-

nology, synthesizing realistic high-resolution data remains challenging. Conse-

quently, prior studies [31] have relied on the assumption that the transfer of

spatial details from high-resolution to low-resolution bands is scale-invariant,

relying solely on the relative resolution difference rather than the absolute

GSD of the images. This implies that the relationships between bands of dif-

ferent resolutions exhibit self-similarity within a relevant scale range, a concept

supported by existing literature on self-similarity in image analysis [61], [16].

For our purposes, this assumption needs to hold only within a limited range

of up to a 6× resolution difference, which is less than one order of magnitude.

Scale-invariance implies that the relationships between, for example, 20 m

→ 10 m and 40 m → 20 m spatial enhancements are approximately similar.

Therefore, a CNN-based algorithm can be trained for 40 m → 20 m spatial

enhancement and then used for 20 m → 10 m enhancement. The same logic

applies to 60 m → 10 m and 360 m → 60 m enhancements – a CNN-based

algorithm trained for 360 m → 60 m spatial enhancement and then used for

60 m → 10 m enhancement. Due to the absence of 10 m ground truth data

for the 20 m and 60 m bands, quantitative assessment must be performed at

reduced resolutions, specifically 40 m → 20 m and 360 m → 60 m. This way,

the 2× spatial enhancement from 20 m to 10 m GSD can be learned from

ground truth images at lower resolutions: 40 m and 20 m GSD. Similarly, the

6× spatial enhancement from 60 m to 10 m GSD can be learned from ground

truth images at lower resolutions: 360 m and 60 m GSD. If this invariance

holds, the learned spatial-spectral correlations will be accurate. Following this

premise, virtually limitless training data can be generated by synthetically

downsampling raw Sentinel-2 images.
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5.1 Method

To enhance the spatial resolution of Sentinel-2B images, we used the MSI

captured on August 4, 2020, centered on the town of Olds. Similar to Sec-

tion 4.1, the preprocessing steps in the Spatial-Enhancement module included

atmospheric correction and visual inspection to exclude noise, cloud cover,

shadows, and snow regions. Regions with undefined pixels (black background)

were removed from the images. This resulted in a total of 12 Sentinel-2B

bands, further categorized based on their GSD into three sets as detailed in

Table 5.1.

Set GSD Sentinel-2B Bands
A 10 m B2, B3, B4, B8
B 20 m B5, B6, B7, B8a, B11, B12
C 60 m B1, B9

Table 5.1: Sentinel-2B bands categorized into three sets based on their GSD.

To generate training data, we downsampled the original Sentinel-2B bands

at a desired scale factor f . This was achieved by blurring the bands with

a Gaussian filter at a standard deviation of σ = 1/f pixels, mimicking the

Modulation Transfer Function (MTF) of Sentinel-2. Subsequently, the bands

were downsampled by averaging over f × f windows, with f = 2 and f = 6.

Thus, two distinct datasets were generated for 20 m → 10 m and 60 m →

10 m spatial enhancement. Following this, the MSIs were divided into non-

overlapping tiles of size 200 × 200 pixels and split randomly into training and

testing sets at a ratio of 70:30, with an additional 10% of the training set

allocated for validation. To ensure geographically distinct regions, the tiles in

each of the training, validation, and testing sets were separately subdivided

into overlapping patches of size 50 × 50 pixels, with an overlap of 50%.

The first dataset was derived by downsampling the original 10 m and 20

m bands at a scale factor f = 2, resulting in “high-resolution” images at 20 m

GSD and “low-resolution” images at 40 m GSD (Figure 5.2). Subsequently, the

40 m bands were upsampled using bilinear interpolation to match the target

resolution (20 m) before being passed into the network for training. This
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Figure 5.2: Downsampling the original 10 m and 20 m Sentinel-2B bands by
a scale factor of f = 2

Figure 5.3: An overview of the method used for training the network Ψ2×

dataset, consisting of 20 m and 40 m bands, was used to train the network,

Ψ2× : IRW ×H × 4 × IRW/2×H/2× 6 → IRW ×H × 6, (5.1)

for 2× spatial enhancement (40 m → 20 m). Once trained, the network Ψ2×

was applied to the original 20 m bands (set B) to obtain spatially enhanced

bands with 10 m GSD (20 m → 10 m). Figure 5.3 provides a pictorial repre-

sentation of this approach.

Similarly, the second dataset included images at 60 m, 120 m, and 360 m

GSD, generated by downsampling the original 10 m, 20 m, and 60 m bands,

respectively, at a scale factor f = 6. The 120 m and 360 m bands were then

upsampled using bilinear interpolation to match the target resolution (60 m)

before being fed into the network for training. Thus, the 60 m, 120 m, and

360 m bands were used to train the network,

Ψ6× : IRW ×H × 4 × IRW/2×H/2× 6 × IRW/6×H/6× 2 → IRW ×H × 2, (5.2)
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for 6× spatial enhancement (360 m → 60 m). Once trained, the network Ψ6×

was applied to the original 60 m bands (set C) to generate spatially enhanced

data with 10 m GSD (60 m → 10 m).

5.2 E-SSRAN Architecture Updates for Spa-

tial Enhancement

To enhance the spatial resolution of Sentinel-2B MSI, we utilized the same E-

SSRAN architecture described in Section 4.2. This architecture is effective in

mapping low spatial resolution bands to high spatial resolution, making it suit-

able for both the Spectral-Enhancement and Spatial-Enhancement modules.

The E-SSRAN architecture features separate spatial and spectral branches in

the nonlinear mapping component, allowing it to learn the mapping between

low-resolution and high-resolution MSI. Additionally, the neighboring spectral

attention module in the reconstruction component of the E-SSRAN architec-

ture helps preserve the spectral correlation between bands. However, for the

Spatial-Enhancement module, minor modifications were made to the input

layer and the final 2D convolution layer, while the rest of the architecture

remained unchanged.

Let the spatial dimensions of the bands in the set A be denoted by W ×H,

and the intensities of the bands in sets A, B, and C be represented as XA ∈

IRW ×H × 4, XB ∈ IRW/2×H/2× 6, and XC ∈ IRW/6×H/6× 2, respectively. The

network Ψ2× takes two inputs, XA and X̄B, where X̄B ∈ IRW ×H × 6 is the

bilinearly interpolated version of XB to match the spatial size of XA. The

final 2D convolution layer in the reconstruction component of Ψ2× contains

six kernels to match the number of bands in the set B. The output of the

network is the predicted “high-resolution” MSI patches ȳB ∈ IRW ×H × 6, with

a spatial resolution of 20 m GSD. These are compared with the ground truth

MSI patches yB ∈ IRW ×H × 6 during model evaluation.

Similarly, the network Ψ6× takes three inputs, XA, X̄B, and X̄C . Here,

X̄B ∈ IRW ×H × 6 and X̄C ∈ IRW ×H × 2 are the bilinearly interpolated ver-

sions of XB and XC , respectively, to match the spatial size of XA. The final

43



2D convolution layer in the reconstruction component of Ψ6× contains two ker-

nels to match the number of bands in the set C. The output is the predicted

“high-resolution” MSI patches ȳC ∈ IRW ×H × 2, with a spatial resolution of

60 m GSD, which are further compared with the ground truth MSI patches

yC ∈ IRW ×H × 2 during evaluation.

Once trained and evaluated on the spatially downsampled counterparts,

the network Ψ2× is used for 20 m → 10 m spatial enhancement, while the

network Ψ6× is used for 60 m → 10 m spatial enhancement, producing spatially

enhanced bands at 10 m GSD. Therefore, the Spatial-Enhancement module

employs two networks: Ψ2× for enhancing spatial resolution of the 20 m bands

to 10 m GSD, and Ψ6× for improving the 60 m bands to 10 m GSD. The

resultant 10 m bands can only be assessed through visual examination.

5.3 Results and Discussion

This section presents the quantitative and qualitative results of the Spatial-

Enhancement module designed to improve the spatial resolution of Sentinel-2B

MSI. The results are divided based on the two networks used in the Spatial-

Enhancement module: 1) network Ψ2×, used for the 20 m → 10 m enhance-

ment, and 2) network Ψ6×, used for the 60 m → 10 m spatial enhancement. The

model configurations defined in Section 4.4 for the Spectral-Enhancement mod-

ule remain consistent for training the two networks in the Spatial-Enhancement

module. We used the MAE (Equation 4.12) as the loss function along with the

Adam optimizer [29]. The base learning rate was set to 0.01, with a batch size

of 64. The training was conducted for a maximum of 200 epochs, with early

stopping if the validation loss did not decrease for fifteen consecutive epochs.

5.3.1 Network Ψ2×: 20 m → 10 m Spatial Enhancement

Due to the absence of 10 m ground truth data for the 20 m Sentinel-2B bands,

network Ψ2× was trained at a lower resolution, specifically 40 m → 20 m.

Figure 5.4 illustrates the variation in training and validation losses for the

E-SSRAN architecture during this spatial enhancement. The minimal gap
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Figure 5.4: Variation in training and validation losses while training network
Ψ2× for 40 m → 20 m spatial enhancement.

between training and validation losses indicated that the model did not over-

fit. The network Ψ2× successfully learned the mapping between the “low-

resolution” 40 m bands and the “high-resolution” 20 m bands for 2× spatial

enhancement.

Table 5.2 presents the quantitative results of network Ψ2×, comparing its

performance with the DSen2 network architecture proposed by Lanaras et al.

[31]. While DSen2 performs similarly to E-SSRAN in terms of quantitative

metrics, E-SSRAN shows slightly better performance. Additionally, E-SSRAN

is effective for both Spectral-Enhancement and Spatial-Enhancement modules,

unlike DSen2.

Algorithm MAE RMSE SAM UIQI PSNR SSIM
DSen2 [31] 0.005 0.007 0.038 0.982 43.89 0.953
E-SSRAN 0.004 0.006 0.033 0.998 44.67 0.964

Table 5.2: Comparing the quantitative performance of DSen2 [31] and E-
SSRAN for the 40 m → 20 m spatial enhancement using network Ψ2×.

Figure 5.5 compares the 20 m bands predicted by network Ψ2× for the

40 m → 20 m spatial enhancement. The left column shows the 40 m “low-

resolution” band input, the middle column shows the 20 m “high-resolution”
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band predicted by the network (the 40 m → 20 m spatial enhancement), and

the right column displays the original 20 m band from Sentinel-2B. The 20

m band predicted by the network contains more spatial details compared to

the 40 m GSD input and is very similar to the original 20 m Sentinel-2B

band. This demonstrates the network’s (Ψ2×) ability to enhance the spatial

resolution of low-resolution Sentinel-2B bands.

Once trained, the network Ψ2× can be used for 20 m → 10 m spatial

enhancement, generating spatially enhanced bands at 10 m GSD that can be

evaluated visually. The results are shown in Figure 5.6 compares the spatially

enhanced 10 m bands predicted by network Ψ2× for the 20 m → 10 m spatial

enhancement. The left column shows the original 20 m band from Sentinel-2B

input to the network, and the right column shows its corresponding spatially

enhanced 10 m band predicted by the network. The 10 m band predicted by the

network contains more spatial details compared to the original 20 m Sentinel-

2B band, proving the network’s capability to enhance the spatial resolution

from 20 m to 10 m GSD.

5.3.2 Network Ψ6×: 60 m → 10 m spatial enhancement

Due to the lack of 10 m ground truth data for the 60 m Sentinel-2B bands,

network Ψ6× was trained at lower resolutions, specifically 360 m → 60 m.

Figure 5.7 shows the variation in training and validation losses during the

training process for the E-SSRAN architecture aimed at the 360 m → 60 m

spatial enhancement using network Ψ6×. The network effectively learns the

mapping between the “high-resolution” 60 m bands and the “low-resolution”

360 m bands for 6× spatial enhancement.

Table 5.3 presents the quantitative performance of network Ψ6× for the

360 m → 60 m spatial enhancement. Additionally, Figure 5.8 provides a visual

comparison of the 60 m bands predicted by network Ψ6× for the 360 m → 60 m

spatial enhancement. The left column shows the 360 m “low-resolution” band

input to the network, the middle column displays the 60 m “high-resolution”

band predicted by the network, and the right column shows the original 60

m band from Sentinel-2B (set C). The 60 m band predicted by the network
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Figure 5.5: Qualitative comparison of the 40 m “low-resolution” band (Band-
B8a) input (left), the 20 m “high-resolution” band (Band-B8a) predicted by
network (Ψ2×) (middle), and the original 20 m band (Band-B8a) from Sentinet-
2B (right) for the 40 m → 20 m spatial enhancement.
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Figure 5.6: Qualitative comparison of the original 20 m Sentinel-2B band
(Band-B8a) input (left) and its corresponding spatially enhanced 10 m band
(Band-B8a) predicted by network Ψ2× (right) for the 20 m → 10 m spatial
enhancement.
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Figure 5.7: Variation in training and validation losses while training network
Ψ6× for the 360 m → 60 m spatial enhancement.

contains more spatial information compared to the 360 m GSD input and

closely resembles the original 60 m Sentinel-2B band. This demonstrates that

network Ψ6× can effectively enhance the spatial resolution of low-resolution

Sentinel-2B bands.

Algorithm MAE RMSE SAM UIQI PSNR SSIM
E-SSRAN 0.004 0.005 0.074 0.989 47.01 0.935

Table 5.3: Quantitative performance of network Ψ6× for the 360 m → 60 m
spatial enhancement.

Once trained, network Ψ6× can be used for 60 m → 10 m spatial enhance-

ment, generating spatially enhanced bands at 10 m GSD that can be evaluated

visually. The results are shown in Figure 5.9 compares the spatially enhanced

10 m bands predicted by network Ψ6× for the 60 m → 10 m spatial enhance-

ment. The left column shows the original 60 m band from Sentinel-2B (set C)

input to the network, and the right column displays the corresponding spa-

tially enhanced 10 m band predicted by the network. The 10 m band predicted

by the network contains more spatial details compared to the original 60 m

Sentinel-2B band demonstrating the network’s ability to enhance the spatial

resolution from 60 m to 10 m GSD.

49



Figure 5.8: Qualitative comparison of the 360 m “low-resolution” band (Band-
B9) input to the network (left), the 60 m “high-resolution” band (Band-B9)
predicted by the network Ψ6× (middle), and the original 60 m band (Band-B9)
from Sentinet-2B (right) for the 360 m → 60 m spatial enhancement.
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Figure 5.9: Qualitative comparison of the original 60 m Sentinel-2B band
(Band-B9) input to the network (left) and the corresponding spatially en-
hanced 10 m band (Band-B9) predicted by network Ψ6× (right) for the 60 m
→ 10 m spatial enhancement.
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Chapter 6

Merging the Spatial- and
Spectral-Enhancement Modules

In this section, we propose a pipeline to integrate the outputs of the Spatial-

and Spectral-Enhancement modules to obtain a satellite image with improved

spatial and spectral resolution (shown in Figure 6.1). Initially, we train the

model ΨSpectral using the E-SSRAN architecture to enhance the spectral res-

olution of MSI. For training ΨSpectral, we use MSI patches with a 30 m GSD,

enabling the model to learn the mapping between MSI and HSI. Once trained,

ΨSpectral generates a spectrally enhanced MSI (that is spectrally equivalent to

an HSI) at the same GSD as input MSI.

Following this, in the Spatial-Enhancement module, we train two separate

E-SSRAN models to improve the spatial resolution of Sentinel-2B MSI: The

first model, Ψ2×, is designed to enhance the spatial resolution of 20 m Sentinel-

2B bands to 10 m GSD, while the second model, Ψ6×, focuses on improving

the spatial resolution of 60 m Sentinel-2B bands to 10 m GSD. This results in

a spatially enhanced MSI with all 12 Sentinel-2B bands at 10 m GSD.

Finally, the spatially enhanced 10 m GSD Sentinel-2B MSI is fed into the

ΨSpectral model in the Spectral-Enhancement module, producing an HSI at

10 m GSD. Thus, the proposed pipeline can: 1) enhance the spatial resolu-

tion of all 12 Sentinel-2B bands to 10 m GSD using models Ψ2× and Ψ6×,

2) enhance the spectral resolution of MSI using the ΨSpectral model, and 3)

improve the spatial resolution of HSI from 30 m to 10 m GSD. In other words,

the pipeline enhances the spectral resolution of MSI by learning the MSI-to-
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Figure 6.1: Merging the outputs of the Spatial- and Spectral-Enhancement
modules

HSI mapping (as detailed in the Spectral-Enhancement module), improves the

spatial resolution of MSI by mapping low-resolution MSI to high-resolution

MSI (as explained in the Spatial-Enhancement module), and enhances the

spatial resolution of HSI by merging the outputs of the Spatial- and Spectral-

Enhancement modules. All this comprehensive enhancement is achieved using

the E-SSRAN architecture.

The 10 m GSD HSI generated by our pipeline can only be evaluated visually

since the original HSI is available only at 30 m GSD. Figure 6.2 provides

true-color images of the spatially enhanced 10 m GSD HSI generated by our

pipeline. The left column shows the original 30 m GSD HSI captured by

DESIS, and the right column displays the corresponding spatially enhanced

10 m GSD HSI predicted by the ΨSpectral network. It can be observed that

the 10 m GSD HSI predicted by the network contains more spatial details

compared to the original 30 m DESIS HSI, demonstrating the network’s ability

to enhance the spatial resolution of HSI from 30 m to 10 m GSD by merging

the outputs of the Spatial- and Spectral-Enhancement modules. Additionally,
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the spectral signatures of the 10 m GSD HSI predicted by the network are

very similar to that of the original 30 m HSI (Figure 6.3), indicating that

our algorithm preserves spectral integrity among the bands while enhancing

spatial resolution.
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Figure 6.2: True color (RGB) images comparing the original 30 m GSD HSI
obtained from DESIS (left) and the spatially enhanced 10 m GSD HSI pre-
dicted by the ΨSpectral network (right).
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Figure 6.3: Comparing the spectral signatures of the original 30 m GSD HSI
obtained from DESIS (blue color) and the spatially enhanced 10 m GSD HSI
predicted by the ΨSpectral network (orange color).

56



Chapter 7

Conclusion and Future
Directions

In this study, we presented Extended Spatial-Spectral Residual Attention Net-

work (E-SSRAN) to effectively integrate the spatial and spectral characteris-

tics of MSIs and HSIs, respectively, and address the challenges associated with

the trade-off between spatial and spectral resolution of satellite images. Our

method comprises two main modules: 1) the Spectral-Enhancement module,

which leverages E-SSRAN to enhance the spectral resolution of MSI by learn-

ing the MSI-to-HSI mapping, resulting in a spectrally enhanced MSI that is

equivalent to an HSI, and 2) the Spatial-Enhancement module, which uses E-

SSRAN to improve the spatial resolution of MSIs by mapping low-resolution

MSIs to high-resolution MSIs. Specifically, it enhances the 20 m and 60 m

GSD bands of Sentinel-2B to 10 m GSD, resulting in all 12 Sentinel-2B bands

at a uniform 10 m GSD. Furthermore, we developed a comprehensive pipeline

to merge the outputs from both modules. The 10 m GSD MSI generated by

the Spatial-Enhancement module is further processed through the Spectral-

Enhancement module, producing 10 m GSD HSI. This integrated approach

yields satellite images that exhibit high spatial and spectral resolution.

The performance of our proposed algorithm was evaluated using MSI and

HSI data from the Sentinel-2B and DESIS satellites, respectively, focusing

on agricultural regions in Central Alberta. The results were promising both

qualitatively and quantitatively. The Spectral-Enhancement module achieved

an RMSE of 0.018, a UIQI score of 0.96, a PSNR value of 37 dB, and an SSIM
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of 0.95. The Spatial-Enhancement module successfully improved the spatial

resolution of the 20 m and 60 m Sentinel-2B bands to 10 m GSD. These

findings indicate that E-SSRAN significantly enhances the quality of satellite

images by optimizing the balance between spatial and spectral resolutions.

Our method has the potential to offer substantial value to various appli-

cations in agriculture and beyond, by providing more detailed and accurate

insights for satellite data analysis. Future work will involve applying the pro-

posed algorithm to datasets from other satellites, such as Landsat-8 and EO-1

Hyperion, to further assess its performance. Furthermore, the high-resolution

data generated by our algorithm can be utilized in various applications, in-

cluding land cover classification, mineral mapping, etc. to determine how

effectively the enhanced data addresses real-world problems compared to ex-

isting low-resolution data. Additionally, future efforts will focus on reducing

noise in the last hundred bands of the HSI and enhancing spectral correlation

among the bands to further refine the performance of the algorithm.
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