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Abstract

The Hare Indian and Canol Formations, making up part of the Horn River
Group (HRG) in the Northwest Territories, primarily consist of organic-rich
mudstones deposited during the Middle to Late Devonian. The formations
were previously considered to represent marine basin fill accumulated in an
oxygen starved distal shelf setting, evidenced by the organic-rich character,
pyrite content, and lack of macro-scale bioturbation. The depositional
model, paleo-oxygenation interpretations, and methods of organic carbon
preservation presented in this study are in contrast to previous assumptions
of the Horn River Group mudstones. Detailed petrographic sedimentological
and ichnological analyses were carried out on thin sections taken from
several cored HRG intervals. These organic-rich mudstones contain eight
distinct microfacies representing four main sedimentation processes: (1)
pelagic suspension settling, (2) plug-like sediment gravity flows, (3) surge and
surge-like low density turbidity currents, and (4) debrites. Pelagic suspension
settling dominated in distal quiet waters out of the reach of persistent storm
influence. Debrites, plug-like flows, and low density turbidite processes
represent a continuum, where storm influence is the dominant driver in

sediment delivery.

Several morphologically distinct microscopic biogenic-sedimentary
structures (z.e. ichnofossils) have been identified throughout the HRG
mudstones, indicative of sediment pore waters that were at least periodically

partially oxygenated. Evaluation of total organic carbon (TOC) content
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against bioturbation and microfacies interpretation suggest that persistent
anoxia was not the dominant factor in organic carbon preservation but is
rather a result of a combination of heightened sedimentation and burial rates

and possible amplified rates of primary production.
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"Possibly many may think that the deposition and consolidation of
fine-grained mud must be a very simple matter, and the results of little
interest. However, when carefully studied experimentally it is soon found to
be so complex a question, and the results dependent on so many variable
conditions, that one might feel inclined to abandon the inquiry, were it
not that so much of the history of our rocks appears to be written in this

language."

-Henry Clifton Sorby, 1908
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Chapter1

Introduction

1.1 General Overview

The Middle to Late Devonian of North America was characterized by
widespread deposition of organic-rich mud, resulting in units such as the
well-known Eagleford Shale, Bakken Formation, and the Western Canadian
Sedimentary Basin’s Duvernay Formation. Perhaps lesser known is the
Horn River Group (HRG) in the Northern Canadian Mainland Sedimentary
Basin. The HRG spans the length of the NW to SE trending Mackenzie
Mountains and Mackenzie Plain in the Northwest Territories, and is split into
the basal Hare Indian Formation, then locally the Ramparts Formation, and

the uppermost Canol Formation.

Initial interest in the HRG stemmed from the discovery of a conventional oil
field within the Kee Scarp Reef Member of the Ramparts Formation, as a result
of oil prospecting during the second world war (Tassonyi, 1969). Imperial oil
Corp. developed this northern oilfield at what was to become the community
of Norman Wells. The organic rich fine-grained Canol Formation is younger
and locally age-equivalent to the Ramparts Formation (Kabanov & Gouwy,
2017), and has been identified as the source rock for the Norman Wells oil field

(Snowdon, Brooks, Williams, & Goodarzi, 1987). Recent renewed interest in



explorations of the HRG came about with the advent of horizontal drilling and
the potential use of the organic rich Canol Formation and Bluefish Member

of the Hare Indian Formation as unconventional reservoirs.

1.2 Significance and Rational

Physico-chemical depositional conditions of organic-rich fine-grained
sedimentary successions have in the last several decades become a popular
topic of detailed petrographic analyses. This is owing to the various roles they
play in petroleum systems (z.e. variously as sources, and/or unconventional
reservoirs). Despite their importance in the petroleum system, mudrocks are

still relatively poorly understood.

Conventional interpretations of mudrock depositional settings are typically
limited to slow hemipelagic suspension settling in anoxic or euxinic bottom
waters. More recent studies have identified small scale (petrographic)
primary sedimentary structures in mudstone units that appear plane parallel
laminated in hand sample and outcrop (e.g. Schieber, 1994, 1998; Abbott,
2000; Schieber, 2007; Macquaker, Bentley, & Bohacs, 2010; Schieber,
Southard, & Schimmelmann, 2010). Microbioturbation has also been
identified in organic-rich mudstone units (e.g. Macquaker & Taylor, 1996;
Schieber, 2003; Egenhoff & Fishman, 2013) that were previously thought
to preclude burrowing organisms. These findings have revealed that
fine-grained deposits are more depositionally dynamic than previously
understood, with more complex paleoredox conditions than persistent and

pervasive anoxia.

Both the Hare Indian and Canol Formations have not previously



been evaluated at the petrographic level, and existing interpretations
of paleo-depositional conditions at the sediment-water interface are
generalized, even as recent as 2020, into broad categories of stagnant
water anoxia/euxinia (Tassonyi, 1969; Kabanov et al.,, 2020). A lack of
heterogeneity at the lithofacies (macroscopic) scale does little to aid in
fine-detail interpretations of physico-chemical stresses present at and just
below the sediment water interface. The availability of high-quality cored
data from Hare Indian and Canol Formations presents a great opportunity
to re-evaluate the physico-chemical depositional conditions of these organic
rich mudstone units using a contemporary point of view. The wealth of data
also allows us to study how trace fossil morphology, abundance, diversity,
and other associated characteristics reflect low-oxygen depositional settings,
and how these oxygen-related traits can be applied to other fine-grained

reservoirs in hopes of estimating extents of depositional oxygenation.

The main goal of this study was to identify small scale fluctuations in both
physical and chemical stresses affecting the sediment-water interface at the
time of deposition, using petrographic fabric analysis (e.g. microscopic
ichnological and sedimentological characteristics) in conjunction with
existing geochemical proxies. A secondary goal was to further develop criteria
for the identification and interpretation of bioturbation in the context of
associated physical sedimentary structures, and chemical proxies for seafloor

redox conditions.

1.3 Geologic Background

Deposition of Early to Middle Devonian aged strata in the present-day

Mackenzie Mountains and Mackenzie Plain occurred on the Western margin



of Devonian North America. During this time the area surrounding and
including the Mackenzie Plain was split into the northeast Peel Shelf (present
day Peel Plain and Peel Plateau), southeast Mackenzie Platform or Mackenzie
Shelf (present day Mackenzie Mountains and Mackenzie Plain), northwestern
Porcupine Platform (present day Eagle Plain), and southwest Selwyn Basin
(present day Slewn Mountains) (Morrow, 2018). The Porcupine platform was
separated from the eastern shelves by the N-S trending Richardson Trough
(present day Richardson Mountains, along the northern Northwest Territories
— Yukon boarder) (Figure 1.1) (Morrow, 2018; Pugh, 1983). The Early to Middle
Devonian was characterized by extensive platform reef growth in the shallow
warm-water areas of the Mackenzie and Porcupine shelves, with siliciclastic
(mainly mudstone) deposition in the deeper Richardson Trough (Morrow,
2018). Middle Devonian strata reflect a shift from this carbonate-dominated
stable passive margin deposition and carbonate platform growth on the
Mackenzie Shelf, to siliciclastic deposition of the Horn River Group (Tassonyi,
1969; Bassett & Stout, 1967; Morrow, 2018; Muir, 1988; Pugh, 1983; Uyeno,
1979).

The Hume Formation was the final carbonate platform to develop on the
Mackenzie Shelf before the onset of deposition of the Horn River Group,
and represents what has been interpreted as normal marine platform growth
along a low profile shallow water setting (Tassonyi, 1969). Deposition of the
HRG began with the Givetian aged Hare Indian Formation, which onlaps
the extensive shallow-water platform carbonates of the underlying Hume
Formation (Tassonyi, 1969; Bassett & Stout, 1967; Morrow, 2018; Pugh,
1983; Uyeno, 1979). The Hare Indian Formation represents aggradation and
westward progradation of a clastic wedge, and is subdivided into the lower

organic rich mudstone Bluefish Member and upper argillaceous mudstone
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Bell Creek Member. The Hare Indian has previously been described as
an extensive mud-delta with thickening mudbanks and shallowing waters
northward (Tassonyi, 1969; Kabanov, Fallas, & Deblonde, 2016). Tassonyi
(1969) postulated that the relatively thin organic rich unit (Bluefish Member)
represented deposition and thinning along the flanks of the mudbanks
into deeper poorly oxygenated waters with reduced sedimentation, whereas
the calcareous grey mudstone unit (Bell Creek Member) represents thick
mud accumulations in more oxygenated waters. Progradation and thick
accumulations of Bell Creek mudstone above the Bluefish Member in the
Norman Wells area resulted in a shallow water subaqueous high upon
which growth of the Late Givetian — Early Frasnian Ramparts carbonate
platform initiated (Kabanov & Gouwy, 2017). The Ramparts Formation
is subdivided into the lower limestone Ramparts carbonate platform, the
middle argillaceous and bituminous Carcajou Member, and the upper
limestone Kee Scarp Member (sometimes referred to as the Reef Member)
(Dixon, 1984; Kabanov & Gouwy, 2017). Bell Creek sediments thin to the South
and West of the Norman Wells area. Contemporaneously with the Ramparts,
organic-rich fine-grained Canol Formation accumulated conformably above
the thinner Bell Creek Member in areas to the south and west where the
Ramparts Formation is non-existent. Continued transgression lead to the
Canol Formation onlapping and eventually capping the Kee Scarp reef (and
the Carcajou marker in more northern areas where the Kee Scarp was not
developed) (Bassett & Stout, 1967; Dixon, 1984; Kabanov & Gouwy, 2017; Muir,
1988; Pyle & Gal, 2016). Late Frasnian progradation of the Imperial Formation
siltstones indicate the end of HRG deposition. The units were subsequently
deformed during the Late Cretaceous-Paleocene Laramide orogeny (Norris

& Yorath, 1981).



1.4 Study Area

The study area for this project is restricted to the southern portion of the
Central Mackenzie Valley (also referred to as the Mackenzie Plain) (Figure
1.1) and is bordered by the Franklin Mountains to the East and Mackenzie
Mountains to the West. In the Central Mackenzie Valley area are five wells
with cored intervals that were used for this study. From NW to SE the wells are
ConocoPhillips Loon Creek O-06, ConocoPhillips Mirror Lake N-20, Husky
Little Bear N-09, Husky Little Bear H-64, and MGM Shell East Mackay I-78.
The southeast corner of the study area is at 64°47" N, 125°43'W (MGM Shell
East Mackay I-78 core) and the northwest corner is at 65°05’N, 127°00'W
(ConocoPhillips Loon Creek O-06 core).

1.5 Previous Work

1.5.1 Mudstone Petrography

Historical petrographic analyses of mudstone units, or intercalated mudstone
beds within coarser-grained units, were commonly confined to crude
grainsize and mineralogic composition estimates (Folk, 1960, 1962; Schieber
& Zimmerle, 1998). This was owing to the difficulty associated with producing
high quality thin sections from such fine-grained rock samples, which easily
disaggregated in the preparation process and resultant thin sections generally
appeared quite dark due to high clay and organic matter content; and,
probably even more so, because of a general lack of interest in these rock
types as the focus was on understanding their coarser-grained carbonate
and sandstone counterparts (Schieber & Zimmerle, 1998; Schieber, 1989).

Since then, preparation techniques of mudstone thin sections have improved
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significantly and understanding the intricacies of mudstone units has become
an economic necessity (e.g. owing to the advent of horizontal drilling and
their housing of economic metal deposits), leading to a proliferation of

petrographic mudstone studies.

Some of the first studies that included a focus on the petrography of
previously ignored mudstone units were completed by Folk in 1960 and
1962, where he described in detail the characteristics of the mudstone beds
within the Appalachian Tuscarora, Rochester, and McKenzie Formations.
In his studies he described the Rochester Shale and “shaley” interbedded
intervals in the other formations in terms of grainsize, textural maturity,
and mineral composition. Although petrographic analysis of fine-grained
rocks has been in use since Folk’s work, the use of mudstone microfacies in
the same fashion of sandstone lithofacies had lagged behind. The concept
of petrographic microfacies was introduced by Brown in 1943 and was
first applied to mudstone units by Schieber in 1989 and 1994, where he
integrated thin section scale observations of paleontological, sedimentologic
and other petrographic features to classify several different facies in seemingly
compositionally homogeneous mudstone units. Since then petrographic
analysis has become a popular method of mudstone investigation (e.g. Cuomo
& Bartholomew, 1991; Dawson, 2000; Hart, Macquaker, & Taylor, 2013;
Hickey & Henk, 2007; Knapp, McMillan, & Harris, 2017; Konitzer, Davies,
Stephenson, & Leng, 2014; Lazar, Bohacs, Macquaker, Schieber, & Demko,
2015; Milliken & Olson, 2017; Newport, Jerrett, Taylor, Hough, & Worden,
2018; Plint, Macquaker, & Varban, 2012; Schieber, 1999, 2001, 1989, 1998,
2007; Soyinka & Slatt, 2008; Wignall, 1989).

The growing popularity of petrographic mudstone analysis has also sparked



debate on how to best classify these fine-grained rocks. Conventionally the
term “shale” has been employed for most fine-grained outcrops and cores
that showed any fissility, while “mudstone” was reserved for more blocky
units. However, upon detailed petrographic inspection these units can be
quite heterogeneous. The dichotomy between macroscale homogeneity
and microscale heterogeneity makes naming of such units tricky. Earlier
petrographic studies used compositional variation as the main variable to
categorize fine-grained rocks. Schieber (1989) proposed assessing texture
and fabric characteristics in conjunction with compositional variation to
differentiate between compositionally identical units, similar to how textural
and fabric classifications are critical in carbonate units (compositionally
homogenous). More recent proposals on mudstone nomenclature suggest
using a root term based on grain size, and modified by variety of
petrographically identifiable features such as bedding character, mineralogic
composition, biogenic components, and alteration features (Lazar et al., 2015;
Macquaker & Adams, 2008). This is in contrast to macroscale mudstone
naming schemes that may employ colour, organic content, mechanical
properties, silt content, carbonate content, and visible sedimentary structures
(Schieber, 1989). If conventional naming schemes were to be employed, most

individual microfacies would be classified into the same broad lithofacies (e.g.

Schieber, 1989).

1.5.2 Mudstone Depositional Processes

The conditions leading to accumulation of fine-grained sediments are
conventionally understood to be deposition in quiescent or low energy
settings. The limited depth of wave penetration in deep marine waters, such

as those in distal shelf positions, has led to the generally accepted assumption



that ancient shelfal sediments were deposited in such quiescent low energy
settings. The parallel laminated nature of such mudstone units at macroscales

seemingly confirmed this assumption.

Advancements in analytical techniques (e.g. high-powered slow-motion
cameras used to capture results of flume experiments, SEM imaging
for analysis of matrix compositions) have sparked a re-thinking of the
depositional processes responsible for such marine fine-grained mudstone
units. Flume experiments have led to the identification of unidirectional
ripples forming from homogenous kaolinite clay suspensions (Schieber,
Southard, & Thaisen, 2007), micro-scale rip-up clasts forming from
semi-consolidated clay (Schieber et al., 2010), and several types of low-density
sediment gravity flows forming thin beds composed of clay and silt (Baas,
Best, Peakall, & Wang, 2009; Sumner, Talling, & Amy, 2009). Petrographic
analysis of several mudstone units has revealed the presence of seemingly
plane parallel laminae that thin and swell - interpreted as the result of variable
bed load deposition under bottom currents (Schieber, 2009), lenticular fabrics
identical to the rip-up clasts described in flume experiments (Plint et al.,
2012; Schieber et al., 2010; Ulmer-Scholle, Scholle, Schieber, & Raine, 2014),
scour surfaces and normally graded beds indicating increased bottom current
energies and waning flow deposition (e.g. Ulmer-Scholle et al., 2014), and
micro-scale lag deposits (Egenhoff & Fishman, 2013; Schieber & Zimmerle,
1998; Schieber, 1994), wave-enhanced sediment gravity flows (Macquaker,
Bentley, & Bohacs, 2010), and tempestites (Abbott, 2000). All of these
features seemingly contradict previous notions of shelfal muds forming form

quiescent suspension settling depositional processes.



1.5.3 Low Oxygen Ichnology and Paleoredox Proxies

Previous attempts to define paleo-oxygenation levels have employed
sediment colour to mark oxidation boundaries (Lyle, 1983), foraminifera
characteristics (Harman, 1964), and geochemical analyses including:
carbon-sulfur ratios (Berner & Raiswell, 1983), sulfur isotopes (Gautier, 1986),
and rare element concentrations (Anderson, Lehuray, Fleisher, & Murray,
1989). Although each of these methods have their strengths, ichnological
analysis, as a proxy for paleo-oxygenation, is one of the most accurate ways
to define both relative magnitudes and temporal extents of oxygenation
events. This is because benthic organisms act as in situ records of basin

conditions.

Previous well-cited studies evaluating the employment of ichnological
characteristics as paleoredox proxies have resulted in the identification of four
separate biofacies that are inherently linked to dissolved oxygen content of the
bottom waters (aerobic, dysaerobic, anaerobic, and anoxic) (Rhoads & Morse,
1971; Byers, 1977). The quantitative boundaries of available dissolved oxygen
(DO2) for each biofacies are as follows: >1.0 mL/L = aerobic (oxic), 0.1 — 1.0
mL/L = dysaerobic (dysoxic), 0.0 - 0.1 mL/L = anerobic (dysoxic), and 0.0
mL/L anoxic (Byers, 1977; Rhoads & Morse, 1971). The general consensus is
that with declining rates of DOZ2, infaunal organism body size, ichnogenera
diversity, depth of burrow penetration, and bioturbation intensity all decline
(Rhoads & Morse, 1971; Rhoads, 1975; Byers, 1977; Bromley & Ekdale, 1984;
Savrda & Bottjer, 1984, 1986, 1987; Bottjer & Savrda, 1990; Bromley, 1996;
Gingras, MacEachern, & Dashtgard, 2011). No bioturbation is present under
anoxic and/or euxinic conditions, due to the respiratory requirements of the

burrowing organisms. These previous studies have utilized tiering or burrow

10



cross cutting relationships, depth of burrow penetration, and burrow size to
elucidate relative paleo-oxygenation (Ekdale, Muller, & Novak, 1984; Savrda
& Bottjer, 1986, 1987).

These particular studies have been widely cited and used to interpret the
paleoredox conditions of many clastic rocks. However, these studies only
take into account identified macroscopic burrows. A gap in knowledge
currently exists between these paleoredox interpretations associated with
such macroscopic burrows, and paleoredox conditions associated with

burrows constructed by microscopic organisms.
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Chapter 2

A Fine Detail Physiochemical Depositional Model for Devo-
nian Organic-Rich Mudstones: A Petrographic Study of the
Hare Indian and Canol Formations, Central Mackenzie Valley,

Northwest Territories

2.1 Introduction

Physio-chemical depositional conditions of ancient marine organic-rich
fine-grained sedimentary successions have in the last several decades
become a popular topic of detailed petrographic analyses, owing to the
various roles they play in petroleum systems (z.e. variously as sources,
and/or unconventional reservoirs) (Macquaker, Taylor, & Gawthorpe, 2007;
Macquaker, Bentley, & Bohacs, 2010; Aplin & Macquaker, 2011; Ghadeer &
Macquaker, 2011; Schieber, 2011; Plint et al., 2012; Egenhoff & Fishman, 2013).
This stems from their inherent small-scale (millimeter to sub-millimeter)
variability associated with being thin bedded, laminated, and altered by
bioturbation and diagenesis. Despite their importance in the petroleum
system mudrocks are still relatively poorly understood. Conventional
interpretations are typically limited to slow hemipelagic suspension settling
in oxygen depleted bottom waters. More recent studies have identified

small scale (petrographic) primary sedimentary structures and features
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in mudstones that appear plane parallel laminated in hand sample and
outcrop, including low-angle ripple foresets (Schieber, Southard, & Thaisen,
2007), intrabasinal rip-up clasts (Schieber et al., 2010), sub-millimeter
thick scour and lag deposits (Schieber, 1994; Schieber & Zimmerle, 1998),
wave-enhanced sediment gravity flows (Macquaker, Bentley, & Bohacs,
2010), intercalated clay-dominated and silt-dominated ripple features (Yawar
& Schieber, 2017), normally graded sub-centimeter laminae (Ghadeer &
Macquaker, 2011), and tempestites (Abbott, 2000). Such findings have
revealed that fine-grained deposits are more depositionally dynamic than
previously understood. As well, microbioturbation has been identified in
organic-rich mudstones (e.g. Macquaker & Taylor, 1996; Egenhoff & Fishman,
2013) that were previously thought to preclude endobenthic animals, and
Dashtgard et al. (2015) and Dashtgard and MacEachern (2016) found a
lack of macrobenthic organisms in modern-day shelfal muds with only
slightly reduced oxygenation. Together these findings indicate more complex
paleoredox conditions than persistent and pervasive anoxia for the deposition

of seemingly unbioturbated organic-rich mudstone units.

The identification of bioturbation in mudrocks is exceedingly important.
In marine settings, penetrative bioturbation is only produced by animals.
There are other organisms that can move on top of sediments, such as
motile protists (Matz, Frank, Marshall, Widder, & Johnsen, 2008), but
they lack the musculature to move through sediment. So, bioturbation
can be taken as direct evidence of the presence dissolved oxygen in the
bottom waters. In other words, the presence or absence of bioturbation
and the size of the trace makers should provide a very useful proxy for
identifying the lowermost limits of oxygenation at the sea floor. A significant

problem in identifying bioturbation is discriminating bioturbate texture from
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other types of soft-sediment deformation. Using petrographic observations
from the mudstone-dominated Hare Indian and Canol formations, in the
Northwest Territories of Canada, this paper aims to further develop criteria
for the identification and interpretation of bioturbation in the context
of associated physical sedimentary structures. Additionally, comparisons
between identified biogenic characteristics, geochemical proxies, and total
organic carbon contents are analysed for potential merit in elucidating
seafloor paleoredox conditions and estimating TOC trends. This paper
identifies the physical and biogenic structures for which the highest degree
of confidence is associated (.e. examples where an interpretation of a
sedimentary feature as a trace fossil is parsimonious). Using the ichnological
dataset, we thereby identify small-scale fluctuations in both the physical and
chemical conditions at and just below the sediment-water interface during the
deposition of organic-rich mudstones in the Middle to Late Devonian Canol

and Hare Indian Formations.

Some of the largest oil and gas producing zones in North America are
fine-grained organic-rich mudstones (e.g. the Eagle Ford Shale in Texas and
the Niobrara Formation in Colorado). Both the Canol Formation and the
Bluefish Member of the Hare Indian Formation are organic-rich siliceous
mudstones that have the potential to be economically viable unconventional
reservoirs (e.g. Fraser, Allen, Lane, & Reyes, 2011). Current oil-in-place
estimates for the Canol Formation and Bluefish Member are 144.825 and
46.346 billion barrels respectively (NTGS and NEB, 2015). Because of their
economic significance, it is important to understand the nuances of these

fine-grained hydrocarbon resources and how they form.
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2.2 Geological Background

The Horn River Group (HRG) in the Central Mackenzie Valley of the
Northwest Territories (Canada) represents late Givetian to early Frasnian
deposition (Uyeno, 1979), and includes the Hare Indian, Ramparts, and
Canol Formations (Figure 2.1). The Hare Indian and Canol Formations
are organic-rich mudstones, whereas the Ramparts Formation consists
predominantly of limestone. All three formations are considered to represent
deposition along a passive continental margin distal shelf (shelf-slope
transition), atop the Mackenzie Platform (Bassett & Stout, 1967; Pugh,
1983; Muir, 1988), and were subsequently deformed during the Late

Cretaceous-Paleocene Laramide orogeny (Norris & Yorath, 1981).

The Hare Indian Formation, which represents westward progradation and
aggradation of a clastic wedge, is subdivided into the lower dark grey
mudstone Bluefish Member and upper gray mudstone Bell Creek Member. A
drowning unconformity separates the Bluefish Member from the underlying
Hume Formation, a limestone unit comprising carbonate platform deposits
(Muir, Wong, & Wendte, 1985). The Bell Creek Member is thought to
represent deltaic influence, resulting in thickening mudbanks and shallowing
waters northward (e.g. Kabanov, Fallas, & Deblonde, 2016). The overlying
lower Ramparts Formation consists of limestone and is interpreted to be
carbonate platform deposits. The platform developed above the Bell Creek
sediments under localized shallow-water. The upper Ramparts comprises
patch reef complexes, and is known as the Kee Scarp Reef complex (Dixon,
1984). Limestones of the Ramparts Formation are not present in the study
area. The lower Canol Formation mudstones are coeval with the Ramparts

carbonates, representing fine-grained basinal deposition (Pyle & Gal, 2016).
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Continued transgression lead to the Canol Formation sediments onlapping
and eventually overlying the Ramparts Formation (Muir, 1988; Dixon, 1984).
Late Frasnian progradation of the Imperial Formation siltstones indicate the

end of HRG deposition.

The Ramparts carbonate platform and overlying Kee Scarp Reef act as the
reservoir in the conventional Normal Wells oil pool. The organic-rich
mudstones of the Canol Formation are thought to be the source of oil for

the pool (Snowdon et al., 1987).

2.3 Study Area

The study area for this project is restricted to the southern portion of the
Central Mackenzie Valley (also referred to as the Mackenzie Plain) (Figure
2.2) and is bordered by the Franklin Mountains to the East and Mackenzie
Mountains to the West. In the Central Mackenzie Valley area are five wells
with cored intervals that were used for this study. From NW to SE the wells are
ConocoPhillips Loon Creek O-06, ConocoPhillips Mirror Lake N-20, Husky
Little Bear N-09, Husky Little Bear H-64, and MGM Shell East Mackay I-78.
The southeast corner of the study area is at 64°47" N, 125°43'W (MGM Shell
East Mackay I-78 core) and the northwest corner is at 65°05N, 127°00'W
(ConocoPhillips Loon Creek O-06 core).

2.4 Methods

The descriptions and interpretations for the Horn River Group depositional
model presented herein are the result of detailed ichnological and

sedimentological petrographic analyses. Petrographic analysis is one of
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the best methods to study organic rich mudstones, which owing to their
very fine grain size (<62.5 um), absence of lithologic contrast, and dark
colour, inherently lack macroscopically discernible sedimentological features
and bioturbation. Analysis was carried out on 243 thin sections taken
from five drill cores made available by Husky Energy (Little Bear N-09
and H-64), ConocoPhillips (Mirror Lake N-20 and Loon Creek O-06), and
Paramount Energy (MGM Shell East MacKay I-78). Thin sections were cut
extra-thin (approximately 20 pm thickness), to best show the sedimentary
fabric of fine-grained organic-rich samples. Some thin sections from the
N-09 and H-64 (Husky Little Bear cores) were cut as wedges, thinning
from 80 ym to O pm laterally; a choice made by Husky to best show fine
detail sedimentary fabrics, without being obscured completely by opaque
organic matter. Textural attributes of the thin sections at 20x, 100x,
and 600x were described and photographed using a Nikon Eclipse 50i
POL microscope and Nikon DS Fil camera. Sedimentological structures
such as mineralogy, grain-size distribution, small-scale sedimentary features
such as bedding and laminae, and early diagenetic features such as pyrite
habit and carbonate character were noted. Percentage comparison tables
were used to visually estimate the percentages of sand, silt, and clay.
Biogenic features such as bioturbation intensities (measured as percentage of
sediment that has been biogenically reworked, e.g. 0-100%) (A. M. Taylor &
Goldring, 19938), ichnofossil morphotypes present (diversity), and burrow size
(diameter), as well as microfossil elements including type, composition, and
abundance were also noted. The microfacies present were described using the

nomenclature scheme of Lazar et al., (2015).

A Zeiss Sigma 300 VP-FESEM scanning electron microscope (SEM) was used

on both polished and unpolished uncovered thin sections and core fragment
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samples, to observe variations in microfacies microtextural elements and
grain relationships (e.g. clay platelet arrangements). Molybdenum and
vanadium concentration data were collected at 10 cm intervals (where
possible) using a Niton XL3t portable x-ray fluorescence (XRF) analyzer gun,
with analysis times of 180 seconds. Three standards (USGS brush creek
shale, an in-house standard for the Canol Formation, and SiO2) were run
every 10th sample during XRF data collection for quality control. Prior to
XRF data collection, the cores were cleaned with water to remove surface
residue. Total organic carbon data for the N-09 and I-78 cores were
collected by Core Laboratories using the GRI (Gas Research Institute) crushed
shale method and by Weatherford Laboratories using Rock-eval pyrolysis,
respectively. Ichnological data in the form of bioturbation intensity (in
percent), burrow diameter size, trace fossil diversity, and size-diversity index
(SDI), was compared to both molybdenum and vanadium bulk composition
(ppm) and enrichment factors (EFX = (X/Al) sample /(X/Al) average shale). In
this study, the Post-Archean Australian Average Shale (PASS) (S. R. Taylor &
McLennan, 1985) was used as the average sample in EF calculations because
the HRG intervals in question are mudstone units. Enrichment factors
>] represent samples enriched relative to the average, and <l represents

elemental depletion (Tribovillard, Algeo, Lyons, & Riboulleau, 2006).

2.5 Results

2.5.1 Ichnology

Earlier works on the HRG wunits have reported limited instances of
bioturbation (e.g. Kabanov, Fallas, & Deblonde, 2016; Kabanov, Gouwy,
Lawrence, Weleschuk, & Chan, 2016). It was previously thought that the
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mudstones only yield pelagic fauna, and are devoid of epi- and in-faunal
trace fossils (Williams, 1983). Inspection of available thin sections shows
biogenic reworking, with varying trace fossil morphology, abundance, and
diversity. All burrows described in this study were first and foremost identified
in the thin sections during petrographic analysis, however, photographic
enhancement of the darker colored clay-rich lithosomes does show enhanced
evidence for biogenic reworking in some thin sections (e.g. Figures 9B, C).
Burrow outlines in all figures (e.g. Figures 4, 5, 9, 11) were done with the intent
to be as objective as possible, only outlining and counting the most obvious

features as potential burrows.

Identifying microbioturbation in organic-rich fine-grained sediments has
several challenges. Defects during the manufacturing of thin sections
(scratches, grain-plucking, and bubbles within the epoxy), differential
compaction of the sedimentary rock (around micro-concretions, fecal pellets,
and intraclastic aggregates), and dewatering structures could all be wrongly
interpreted as microscopic trace fossils. A lack of lithologic contrast within
the sediments, substantial compaction volumes of water-rich muds (up to
90%) and significant diagenetic alteration may act to obscure any existing
micro-burrows. Despite these challenges, five morphologically distinct
micro-burrow types are identified in the HRG sediments and are classified
by their morphological attributes (i.e. burrow orientation, fill type, presence
or absence of burrow linings). Methods of micro-tracefossil identification are
outlined in Figure 2.3. A morphological classification scheme is presented
herein, as the identified traces do not fit in to any accepted trace fossil

classification schemes.
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Figure 2.1: Chronostratigraphic cross-section of the Middle to Late Devonian Horn
River Group running west to east through the Norman Wells area (modified from
LaGrange et al., 2019).
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tions within the Central Mackenzie Valley/along the Mackenzie Plain. Images modi-
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Sedimentary Feature Interpretation

Vertical or horizontal Discontinuous horizontal homogenization
1 structures that disrupt along bedding planes, representing sinuosity
laminae or oblique cuts through horizontal trace fossils
Pseudo-linings created by grain-selective
2 Paired parallel strings feeding or migration of coarse-grained
of aligned grains fraction to burrow margins during burrow
construction
Circular, sinuous, or Biogenic homogenization of ingested
3 punctuated lighter- sediment and preferential removal of darker-
colored zones colored organic matter
Focussed authigenic Selective or preferential pyritization or
4 : SR
alteration calcification of tubes/burrow structures

100 pm
—
Wefnegls Pyrite

Organic aggregates

Organic-poor clay
Organic-bearing clay

Silt-bearing clay
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Figure 2.3: Table of sedimentary characteristics used to identify microburrows in
thin section and block diagram illustration of recognition characteristics of meio-
faunal microburrows in fine-grained clay-dominated ancient sediments. Labels 1-4
correspond to the listed identification features.

Bioturbated sediments in thin section are recognized by disturbances of the
laminated sediment, including vertical interruptions in horizontal laminae
(where the disturbances can be traced as continuous vertical features below,
through, and above the laminae; Figures 2.4A, B; 2.5B, C), discontinuous
horizontal homogenization along bedding planes (representing sinuosity or
oblique cuts through horizontal trace fossils) (Figure 2.4G, H), vertically
or horizontally aligned outsized grains, paired parallel strings of grains
interpreted as linings (Figure 2.5E, F), and general sediment homogenization.
Most putative trace fossils are more easily identified in silt-rich sediments,
where there is enhanced lithologic contrast between undisturbed matrix
sediments containing relatively high proportions of silt-sized grains and
burrow fills which are generally devoid of silt-sized grains (i.e. contain a

preferential clay fill).

Two vertical and inclined burrow types were identified (Figure 2.4). The first
is classified as inclined-to-vertical unlined meniscate backfilled trace fossils,
with diameters ranging from 20 — 60 ym m (Figure 2.4A, B). These burrows
display inclined or vertical orientations with respect to bedding and show an
organized meniscate backfill. They are distinguished from matrix sediments
by vertical interruptions of horizontal lamination, and by the concave nature
of the meniscate backfill. The second vertical trace fossil type is an escape
trace (fugichnia) (Figure 2.4C, D), resulting from the upward movement of an

organism in response to rapid sedimentation (Bromley, 1996). Fugichnia is
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the only burrow type classified by ethological nomenclature and is identified
by the downward warping laminae in otherwise undisturbed sediments.
Fugichnia range from 50 — 100 ym m in diameter. Both vertical trace fossil

types are rare, and only identified in a handful of samples.

Two burrow types are horizontal burrows and are classified as (1) lined burrows
(Figure 24E, F) and (2) unlined burrows (Figure 2.4G, H). Both horizontal
burrow types have the same diameter range of 50 — 120 ym. In the lined
variants, linings are thin (<10 wm thick) and dark in colour. Linings are
composed of tangentially aligned and compressed clays and organic matter
originating from the host sediment and are often pyritized. In some cases,
concentric linings are preserved (Figure 2.4E, F). Both burrow types appear to
be unbranching, have homogenized fill, and are characteristically lighter in

colour than the host sediment.
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Figure 2.4: Photomicrographs of micro-trace fossils identified in HRG mudstones.
All photomicrographs are perpendicular to bedding. (A) inclined-to-vertical unlined
meniscate backfilled trace (white arrow) (N-09 1692.58 m). (B) Tracing of the burrow
in (A). (C) Fugichnia (white arrow) next to a conodont fragment (black arrow) (N-09
1692.58 m). (D) Tracing of fugichnia in (C). (E) Cross section of a concentrically lined
horizontal burrow (white arrow) (N-09 1703.54 m). (F) Tracing of the concentric lin-
ings in (E). (G) Longitudinal slice (upper white arrow) and cross section (lower white
arrow) through two unlined burrows. Sinuous shafts are dictated by black arrows (N-
09 1670.87 m). (H) Tracings of burrows in (G).

The final and most abundant burrow type is classified as small sinuous
burrows (Figure 2.5). These burrows can be vertical (Figure 2.5A -
D) or horizontal (Figure 2.5E - H) and are characterized by sinuous
unbranching burrows (primarily horizontal) and shafts (primarily vertical)
with a preferential clay infill or backfill (silt-sized detrital grains or aggregates
are selectively omitted). Burrow diameters range from 15 - 50 um.
These sinuous burrows are most easily recognized in sediment with higher
concentrations of detrital silt grains, where the silt-sized particles are shunted
toward the outer margins of the burrow creating the illusion of a silt lining.
These burrows are generally darker than the surrounding matrix due to an
increase in the concentration of pyrite within the trace. These burrows are
similar to, if not the same, as the Phycosiphon incertum type B burrows
identified by Egenhoff and Fishman (2013), and are similar to the “pyritic
trails” described by Schieber (2003, pg. 5).
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Figure 2.5: Photomicrographs of sinuous burrows within HRG mudstones. (A) Well-
defined sinuous shaft (white arrow) with clear clay fill (N-09 1701.91 m). (B) Outline
of the burrow in (A). (C) Several horisontal and vertical sinuous burrows within a silt-
bearing claystone (one such trace denoted by arrow) (H-64 1229.84 m). (D) Outline of
traces in (C). (E) Sinuous burrows along a bedding plane in a silt-bearing claystone.
Arrow points to an obvious relatively straight burrow (H-64 1232.84 m). (F) Outline
of the burrows in (E). (G) Sinuous burrow (arrow) cross cutting an intraclast (lighter
coloured diffuse structure) along a bedding plane (I-78 1846.00 m). (H) outline of
burrows in (G).

Sediments of the HRG exhibit a range of bioturbation intensities, with degrees
of biogenic reworking fluctuating between different microfacies, within the
same microfacies at different elevations, and even at the millimeter scale
within individual microfacies occurrences (as observed in individual sections).
Bioturbation intensities range from 0% to 100% and are relatively the highest
in the Canol Formation when compared to the Hare Indian Formation and,

where data is available, the overlying Imperial Formation.

2.5.2 Microfacies

Eight distinct microfacies have been defined based on a variety of
petrographic parameters, including grain size distribution, composition,
bedding characteristics and bioturbation intensities. = The microfacies
are: (1) Homogenous-looking radiolarian-rich siliceous fine mudstone, (2)
homogeneous dolomitized argillaceous fine mudstone, (3) discontinuous
wavy-parallel to homogenous-looking argillaceous fine mudstone, (4) rarely
bioturbated discontinuous wavy-parallel silt-bearing fine mudstone, (5)
bioturbated discontinuous wavy-parallel to homogenous-looking silt-bearing
fine mudstone, (6) bioturbated discontinuous planar parallel to continuous
wavy non-parallel laminated argillaceous-siliceous medium mudstone, (7)

fossiliferous discontinuous to continuous wavy-parallel argillaceous fine
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mudstone, and (8) intraclast rich discontinuous planar parallel argillaceous
fine mudstone. Microfacies characteristics are outlined in Table 2.1,
microfossil data is outlined in Figure 2.6, and core photographs of each
microfacies are shown in Figure 2.7. The microfacies naming scheme was
developed from the terminology and classification nomenclature outlined
by Lazar et al., (2015) (Figure 2.8), with a continuum classification ranging
from fine mudstone (fMs), through medium mudstone (mMs), to coarse
mudstone (cMs). Terms “dominated” refers to sediments composed of <90%
of a constituent, “rich” refers to sediments containing 50-907% of a constituent,
“bearing” refers to sediments having 10-50% of a constituent, and “poor”

referring to <10% (following Macquaker & Adams, 2003).
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Table 2.1: Microfacies identified in the Horn River Group mudstones.

PRIMARY
SEDIMENTAION

MECHANISM

MICROFACIES

Homogenous-looking
radiolarian-rich
siliceous
fMs

Homogenous-looking
dolomitized
argillaceous

fMs

Discontinuous wavy
parallel to
homogenous-looking

argillaceous
fMs

Rarely bioturbated

discontinuous wavy

parallel silt-bearing
fMs

Bioturbated
discontinuous wavy
parallel silt-bearing

fMs

MF5

Bioturbated
discontinuous planar

(s3) parallel to continuous
Combined wavy non-parallel
surge/surge-like argillaceous—
turbidity siliceous
currents, plug- mMs
like flows, and
debrites
Fossiliferous

discontinuous to
continuous wavy
parallel argillaceous
fMs

Intraclast-rich
discontinuous planar

parallel argillaceous
fMs

No Data

Range:
2.2-47
Median:

243

1.4-57
4.20

2.9-6.8
4.10

3.8-87
5.42

4.8-77
5.48

53-7.7
5.50

3.3-42
4.10

3l

DESCRIPTION

>70% siliceous radiolarian tests and spines
Commonly intercalated with thin microbial
mats and argillaceous fMs beds (MF3)

Bl: 0%

Can be recrystalized to carbonate or partially
pyritized

>20% early diagenetic dolomite, most
commonly ferroan rhombic dolomite
<5% detrital silt

Sedimentary structures and bioturbation
cannot be identified due to pervasive
dolomitization

Rare tentaculitid fossils

<5% detrital silt

Wavy-crenulated fabric
Rare intraclasts

Bl: 0-40%

Body fossils: radiolarians, conodonts,
tentaculitids

Diagenetic dolomite and rare euhedral pyrite

5 = 30% detrital silt

Unlaminated to weakly plane parallel
laminated

Absent to common intraclasts

rare microbial mats

Bl: <10%

Body fossils: conodonts, agglutinated
foraminifers, radiolarians, tentaculitids
Commeon diagenetic dolomite and calcite

5 - 30% detrital silt

Rare to common intraclasts

Planar to wavy laminated

Bl: 10-100%

Body fossils: conodonts, radiolarians
Diagenetic dolomite

>30% detrital silt grains

Common intraclasts

Detrital clay deposited as silt-sized clay
aggregates

Primary sedimentary features: undulatory
scour surfaces, detrital silt and intraclast lags,
normally graded silt-to-clay beds, low
amplitude current ripples

BI: 20-100%

Body fossils: conodonts, radiolarians,
agglutinated foraminifers, tentaculitids

10 - 100% tentaculitid fossil shells

Shells are generally intact, some are
fragmented

Fossils are sporadic throughout (matrix
supported) and/or concentrated along
isolated bedding planes (grain supported)
Contains bioclastic graded bedding (coarse
fossil beds fining upwards to detrital clay
beds)

BI: 0-20%

>30% Intraclasts

0 - 30% detrital silt

Graded bedding, thin distal low density
turbidites, and rare soft sediment deformation
Bl: 0-20%

Body fossils: conodonts, radiolarians

INTERPRETATION

Pelagic suspension settling in
quiescent oxygen starved
bottom waters during
proliferation pulses

Rare laminar plug-like sedimen
gravity flows with long residen
times, associated with poorly
oxygenated sediment pore
waters

Sedimentation is dominated by
plug-like flows with some low
density surge and surge-like
turbidity flows, associated with
poorly oxygenated pore waters

A mix of plug-like flows and lov
density turbidity flows with
poorly oxygenated sediment
pore waters

A mix of plug-like flows and lov
density turbidity flows with
increased carrying capacity,
associated with partially
oxygenated pore waters

Sedimentation dominated by
surge and surge-like low densit
turbidity flows, with intermitte
plug-like flows, and partially
oxygenated pore waters

Sedimentation represented by
mixture of debrites, plug-like
flows, and surge-like turbidity
currents, with an oxygenated
overlying water column, and
subject to intense storm
reworking

Persistent plug-like flows
occurring in a proximal setting
where intraclasts are
continuously generated



Body Fossil Type
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Figure 2.6: Heat map showing microfossils present within the individual microfacies.
Expressed as percent of thin sections within a given microfacies found to contain at
least 1 microfossil of a particular type. Map only shows if a particular microfossil was
identified in a thin section, and its corresponding microfacies; not the actual abun-
dance of each particular microfossil type within each microfacies.

MF7

MF8

Homogenous-Looking Radiolarian-Rich Siliceous Fine Mudstone (MF1)

The homogenous-looking radiolarian-rich siliceous fine mudstone
microfacies (also referred to as radiolarites) (Figure 2.9) is characterized
by beds and laminae made of up of >70% radiolarian tests in a sparse detrital
clay matrix. Detrital silt-sized grains are absent. Individual radiolarian tests
range from 50-100 pm in diameter and are generally partially compacted
(ovate shape as opposed to retaining original sphericity), dissolved (have
diffuse margins), and recrystallized. Tests can also be partially pyritized.

Unfortunately, there was no available TOC data for this microfacies.

Radiolarian-rich bed thicknesses range from 250 um to >3 cm (greater
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than the size of the thin section). Primary sedimentary features are
difficult to identify due to partial dissolution and recrystallization. Remnant
bedding planes can be identified in some radiolarian-rich beds (Figure
2.9A). Some radiolarian-rich deposits may be microstylolized or have thin
crenulated microbial mat features within the radiolarian-rich beds/laminae
or at microfacies contacts. Relatively large allochthonous radiolarian-rich
deposit rip-up clasts can be seen in the N-09 core, held together by microbial

mat fragments (Figure 2.9E).

Bioturbation is difficult to recognize due to the alteration of the dominant
siliceous component, however some micro-burrows are obvious (arrows
Figure 2.9B). Bioturbation intensities based on identified micro-burrows

appear to be <10%.

Radiolarian-rich fMs is the least common microfacies throughout the Canol
and are absent in the Hare Indian formation intervals. They occur only in
conjunction with the homogenous-looking fine mudstones (MF3) with sharp

contacts (Figure 2.9E).

Homogenous-Looking Dolomitic Argillaceous Fine Mudstone (MF2)

The homogenous-looking dolomitic argillaceous fine mudstone microfacies
(Figure 2.10) is characterized by a high degree of dolomitization, ranging from
20% to 907% alteration, within a clay dominated matrix. Detrital quartz silt is
present throughout the matrix in trace concentrations (<5%). Dolomite crystal
sizes range from <10 pum to 150 pm, and crystals are mainly rhombic. Potassium
ferricyanide stanning (blue stain) confirms that it is most commonly ferroan
dolomite. Dolomite generally occurs in uniform concentrations, but some

instances of this microfacies show gradation from minor dolomitization to
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pervasive dolomitization over several millimeters of elevation change. The
colour of this microfacies under plane polarized light ranges depending on
the type of stain used (potassium ferricyanide or alizarin red), the thickness of
the thin section (thick cut thin sections appear darker) and the TOC content
(ranges from 2.2 to 4.7%). Overall the argillaceous matrix appears moderate
reddish-brown to very dusky red (dark-brown), while dolomite appears either
transparent or light-blue, with colours based on the Munsell rock-colour

classifications (Geological Rock Color Chart, 2009).

Primary sedimentary and biogenetic features are obscured by dolomitization.
Remnant intraclasts can be seen in some cases (e.g. arrow in Figure 2.10D). This
microfacies can be associated with fossiliferous zones, but bioclastic debris is
mostly sparse. In some instances fossil fragments are pyritized and exhibit
bedding-oblique or bedding-perpendicular orientations within the sediments

(Figure 2.10D).

Discontinuous Wavy Parallel to Homogenous-Looking Argillaceous Fine Mudstone

(MF3)

The discontinuous wavy parallel to homogenous-looking argillaceous fine
mudstone microfacies (Figure 2.11) is unbedded to weakly-bedded at the
petrographic level. In hand sample and at low magnification (20x) this
microfacies appears planar parallel laminated. The wavy appearance is only
visible at high powered magnifications (100x) and is best seen in instances
with abundant elongate organic matter (Figure 2.11D). This microfacies is
dominantly argillaceous, with rare detrital silt-sized quartz grains (<5%). The
elongate organic matter is oriented parallel to bedding and is common to
abundant throughout, and intraclasts are rare. Siliceous radiolarian tests

are common throughout, while other micro-organism body fossils are rare
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(e.g. calcite tentaculitids and phosphatic conodonts). Micro-organism body
fossils can be partially to entirely pyritized (Figure 2.11D). Framboidal pyrite
is disseminated throughout the matrix but authigenic large (<100 pm) crystals
of pyrite are rare throughout the microfacies. Horizontal discontinuous
pyritized laminae are also present in some instances. In rare instances
sand-sized carbonate nodules and irregular carbonate growths are present.
This microfacies appears reddish-brown to very dusky red (dark brown)
depending on the thickness of the thin section and TOC content (ranges from

1.4 - 5.7%).

Primary sedimentary structures are subtle owing to the fine grain size and
lack of lithologic contrast. Bedding contacts are difficult to identify. Laminae
are thin (<1 mm) and composed of a random (homogenous-appearing)
distribution of clay and silt grains. Biogenic reworking can be hard to
distinguish, again due to the clay-rich matrix and lack of lithologic contrast.
However, burrows are most easily identified through the alignment of
detrital silt along the burrow margins. Bioturbation intensities are less than
40%. Identified ichnofossil morphotypes include sinuous dark trails, tubular

unlined and tubular lined burrows.

This microfacies was found to occur intercalated with the radiolarian-rich fMs
(MF1), the dolomitized fMs (MF2), the silt-bearing fMs (MF4 and 5), and the
fossiliferous fMs (MF?7).

Rarely Bioturbated Discontinuous Wavy-Parallel Argillaceous Fine Mudstone

(MF4)

The rarely bioturbated discontinuous wavy-parallel argillaceous fine

mudstone microfacies (Figure 2.12) has a slight wavy appearance at high
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magnification (10x) and appears unbedded to weakly planar parallel bedded
at low magnification (2x) and in hand sample. These mudstones contain
between 5% to 30% silt-sized detrital grains (mainly quartz and some micas).
The silt-sized grains are randomly distributed throughout the individual
laminae. Intraclast are absent to common. Fossil fragments are rare
throughout, and include calcite tentaculitids, phosphatic conodonts, and
siliceous radiolarians. This microfacies can be partially dolomitized, where
alteration is limited to about 10% of the surface area of thin sections. This
microfacies appears reddish-brown to very dusky red (dark brown) depending
on the thickness of the thin section and TOC content (ranges from 2.9 —

6.8%).

The lack of lithologic contrast in these clay-dominated thin sections makes
identification of primary structures difficult. Bedding orientation is clearly
denoted by preferential orientation of the elongate intraclasts (Figure 2.12A),
organic matter, detrital micas, and the presence of horizontal preferentially
framboidally pyritized discontinuous horizons. Bedding/laminae contacts
are not always obvious, but in some cases normal grading can be identified
(Figure 2.12F). Less than 30% of the sediment has been biogenically reworked
in this microfacies. Elongate organic matter, when present, appears generally
undisturbed (e.g. horizontal whispy black stringers in Figure 2.12B). The
absence of lithologic contrast and poorly defined bedding contacts may play

a role in obscuring true intensities of biogenic reworking.

This rarely bioturbated fMs microfacies occurs in conjunction with other

microfacies of similar or slightly variable composition (MF2, 3 and 5).
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Figure 2.7 Core photographs of each microfacies. @A) Homogenous-looking
dolomitic argillaceous fine mudstone (MF2). N-09 1754.68 m. B) Discontinuous wavy
parallel to homogenous looking fine mudstone (MF3). I-78 1841.17 m. C) Rarely
bioturbated discontinuous wavy parallel argillaceous fine mudstone (MF4). N-09
1736.63 m. D) Bioturbated discontinuous to wavy parallel argillaceous fine mudstone
(MF5).H-64 1294.23 m. E) Bioturbated discontinuous planar parallel to conttinuous
wavy non-parallel argillaceous-siliceous medium mudstone (MF6). 1-78 1822.40 m.
F) Fossiliferous discontinuous to continuous wavy parallel argillaceous fine mudstone
(MF7). N-09 1777.43 m. G) Intraclast rich discontinuous planar parallel argillaceous
fine mudstone. 1-78 1812.42 m. All core diameters are 7 cm across. No photographs of
the homogenous-looking radiolarian-rich siliceous fine mudstone (MF1) were taken
(all core elevations of MF1 identified in thin section were missing).
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Figure 2.8: Nomenclature of fine-grained rocks. Red dots indicate samples in this
study. Figure modified from (Lazar et al., 2015).
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Figure 2.9: Photomicrographs of radiolarian-rich deposits (MF1). (A) Recrystallized
and partially dissolved radiolarian-rich deposit. Faint bedding planes can be seen
throughout (arrows) possibly representing thin microbial mat features. A sinuous
vertical burrow is right-side lined (dashed with line) (H-64 1186.69 m). (B) Silicified
radiolarian-rich bed with a singular partially pyritized test in the center (H-64 1186.69
m). (C) Contact between an overlying radiolarian-rich bed and underlying fine mud-
stone. The unique structure of this contact may represent a stylolitized surface or
a thin microbial mat (thin black structure, arrow) between the two lithologies (N-20
1998.78 m). (D) Thin radiolarian-rich deposit (R) overlying a cohesive microbial mat
(MM) and capped by a carbonaceous-argillaceous laminae (CA) (N-09 1725.83 m). (E)
Radiolarian-rich deposit encased between two microbial mat layers. The variable
thickness of the encased radiolarian-rich deposit, and the identical thicknesses of the
upper and lower microbial mats may indicate that this feature represents a ripped-up
and folded over mat encasing a pre-erosional overlying radiolarian-rich unit. Similar
features are described and illustrated in Schieber (1999).
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Figure 2.10: Photomicrographs of homogenous-looking dolomitic argillaceous fine
mudstones. A) Heavily dolomitized claystone, with ferroan dolomite (blue staining).
No primary sedimentary features are preserved (N-09 1754.68 m). B) Clay dominated
matrix with some detrital silt (bright spots). Rhombic dolomitization is represented
by the blue-stained crystals (N-09 1754.68 m). C) Microcrystalline dolomite (blue
stained) within a clay dominated matrix. A possible dolomite replaced microfossil
test may be present in the lower right corner (relatively large lenticular dolomite crys-
tal) (N-09 1749.21 m). D) Partially pyritized tentaculitid fragment infilled with ferroan
dolomite, within a dolomitized claystone. Can see remnant intraclasts (arrow). Image
is half stained with potassium ferricyanide (left hand side) (N-09 1816.92 m).
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Figure 2.11: Photomicrographs of the radiolarian-rich microfacies (MF3). (A) Thin
section scan showing an erosional contact (yellow dashed line) between a lower
radiolarian-rich unit (below contact) and MF3 above. An undulatory erosion-resistant
microbial mat (arrow) underlies the radiolarian-rich layer in areas where radiolar-
ian tests have not been eroded (black undulatory feature). Close-up image of the
same area is shown in Figure 6D (N-09 1725.883m). (B) Thin section photo showing
the unbedded character of the microfacies, with radiolarians dispersed throughout
(arrows) (N-09 1728.62 m). (C) Same photo as B, with brightness enhanced to better
see bioturbation. Apparent burrows are right-side outlined (white dashed outlines).
Several un-outlined burrows are present as well. (D) Claystone with 3 well preserved
radiolarian tests. Phytodetritus is abundant in the background (arrows) (N-20 1966.16
m). (E) Partially homogenized claystone with burrows (white arrows). Black arrow
points towards phytodetritus (N-09 1734.54 m). (F) Intraclast (center) with elongate
stringers of phytodetritus throughout (N-09 1724.50 m).
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Figure 2.12: Photomicrographs of rarely bioturbated silt-bearing fine mudstone (A, B)
and bioturbated silt-bearing fine mudstone (C, D). (A) Poorly bioturbated silty mud-
stone with an intraclast rich laminae (center). Sinuous shafts in lower left corner are
dictated by arrows (N-09 1736.63 m). (B) Silty mudstone with abundant phytodetri-
tus and common ferroan dolomite (blue). Intraclast lag near center. Sinuous shaft
interrupting intraclast lag is shown by arrow (N-09 1699.77 m). (C) Biogenically ho-
mogenized silty mudstone. No primary sedimentary features remain (H-64 1294.23
m). (D) Biogenically homogenized silty claystone with some diffuse sinuous burrows
preserved (arrows) (N-09 1747.35 m). (E) Photomicrograph showing a thin low den-
sity turbidite layer (MF4) punctuating intraclast-rich laminae (MF8) (N-09 1706.58 m).
(F) Stacked normally graded laminae (double ended arrows) with phytodetritus, silt,
and intraclast-bearing bases fining upwards into clay tops (N-20 1978.32 m). (H) Clay-
dominated massive appearing laminae with a microbial mat rip-up fragment (arrow)
(N-20 1710.08 m).

Bioturbated Discontinuous Wavy Parallel to Homogenous-Looking Argillaceous Fine

Mudstone (MF5)

The bioturbated discontinuous wavy parallel to homogenous-looking
argillaceous fine mudstone microfacies (Figure 2.12C and D) is nearly
compositionally identical to the rarely bioturbated variant (MF4). This
bioturbated silt-bearing fMs is composed of 5-30% detrital silt grains
(typically quartz), rare to common intraclasts, and rare elongate organic
detritus. Preferentially framboidally pyritized horizons are less common,
less continuous, and thinner than in the unbioturbated counterpart. These
mudstones can be partially dolomitized, with alteration up to 10% of thin
section surface areas. This microfacies appears reddish-brown to (very dusky
red (dark brown) in colour depending on the thickness of the thin section and

TOC content (which ranges between 3.8 — 8.7%).

The general lack of lithological contrast, especially when paired with biogenic
homogenization, makes accurate identification of primary sedimentary

structures incredibly difficult. Faint remnant bedding planes of thin (< 1
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mm) plane parallel laminae can be seen in some instances (Figure 2.12C). Silt
grains are randomly dispersed throughout individual laminae. Bioturbation
intensities range from 30% to 100%, with the most common trace belonging

to the sinuous burrows.

This microfacies is most often associated with the lesser bioturbated
variant (MF4) but has been identified as discrete layers within the medium
mudstone microfacies (MF6) and the intraclast-rich microfacies (MF8) (Figure

2.12E).

Bioturbated Discontinuous Planar Parallel to Continuous Wavy Non-Parallel

Argillaceous-siliceous Medium Mudstone (MF6)

The bioturbated discontinuous planar parallel to continuous wavy
non-parallel argillaceous-siliceous medium mudstone microfacies (Figure
2.13) consists of >30% detrital fine- and medium-silt-sized grains, and has the
coarsest-grained detrital fraction of all identified microfacies. Silt is typically
quartz but in rare instances can be mica (Figure 2.13F) and carbonate (Figure
2.13A). Intraclasts are rare to common throughout and can consist entirely
of clay, or be silt dominated (Figure 2.13A). Calcite tentaculitid fossil shell
material, phosphatic fragments (likely conodonts), and radiolarians are rare to
common and can be partially pyritized. This microfacies is characteristically
very dusky red (dark brown) in colour owing to a high organic content, with

TOC’s ranging from 4.8 to 7.7%.

The medium mudstone microfacies displays several primary sedimentary
bedforms including undulatory scour surfaces, detrital silt and intraclastic
lags (Figure 2.13B), and graded bedding (typically normally graded but in rare

instances inverse grading is present).
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Bioturbation intensities range from 20% to 80% reworking by area. Sinuous
dark trails with detrital silt bordering their margins are easy to spot
throughout this microfacies (Figure 2.13B, C). Detrital silt lags show vertical
disruptions attributed to the burrowing of organism redistributing the coarser

fraction (Figure 2.13B, C). Tubular unlined burrows were also identified.

The medium mudstone microfacies can be found intercalated with other

compositionally similar silt-bearing microfacies (MF4 and 5).
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Figure 2.13: Photomicrographs (A — E) and scanning electron microprobe (SEM) pho-
tos (F and G) of the mudstone microfacies (MF6). (A) Photomicrograph showing
coarse-silt-composition of a medium mudstone with abundant silt-rich intraclasts
and a relatively large calcified microfossil (center) (I-78 1822.40 m). (B) Thin discon-
tinuous silt lags spanning the width of the thin section (arrows). Discontinuities are
the result of biogenic reworking (N-09 1785.74 m). (C) Outlined sinuous shaft burrows
in A. (D) Thin detrital silt laminae showing sub-angular roundness and poor sorting of
grains. Calcite fragment (pink) and transported pyrite clasts (arrow) are also present.
Poor sorting and diverse composition of laminae suggests a thin sediment gravity
flow (N-09 1785.74 m). (E) Image in (C) under cross polars (XPL) showing variable
grain composition (N-09 1785.74 m). (F) SEM photograph of a mudstone showing de-
trital quartz (QQ) and micas (M), with pyrite framboids (Py). Detrital clays are present
as clay aggregates (arrows) (I-78 1827.40 m). (G) SEM close up photographs of a clay
aggregate (arrows) surrounded by detrital quartz (Q) (I-78 1827.40 m).

Fossiliferous Discontinuous to Continuous Wavy Parallel Argillaceous Fine Mudstone

(MF7)

The fossiliferous discontinuous to continuous wavy parallel argillaceous
fine mudstone microfacies (Figure 2.14) is characterized by compositionally
homogenous skeletal assemblages of calcite tentaculitid fossils, comprising
10 — 100% of the sediment fraction, in a clay matrix. This includes
intact, reworked, and/or fragmented fossil shell material. The fossiliferous
mudstones can be 1) matrix supported with fossil fragments sporadically
distributed throughout the sediments (Figure 2.14A-C) or 2) allochem
supported (matrix-poor) with tentaculitids concentrated within individual
fossil-rich bioclastic beds/laminae and along bed planes (Figure 2.14D, E).
Tentaculitid shells are composed of calcite (pink when stained with alizarin
red, Figure 2.14A-C). Dolomitization and pyritization of calcite shells and
shell interiors is common (Figure 2.14A-C). Intragranular fill in matrix-poor
layers is typically calcite cement (Figure 2.14E), with some diagenetic kaolinite
and pyrite. The fossiliferous microfacies ranges in colour depending on the

amount of argillaceous matrix (the more matrix the darker the colour), the
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type of carbonate stain used, thickness of the thin section (thicker cut thin
sections appear darker), and TOC content (ranges between 5.3 — 7.7%). The
argillaceous matrix is generally very dusk red (dark brown) and the carbonated

components are either transparent, light blue, or pink.

Fossil fragments in matrix-supported layers are oriented parallel to bedding
(Figure 2.14A), whereas allochem-supported layers have a random orientation
of fossils (parallel, inclined, and oblique to bedding) (Figure 2.14E). Normal
grading is common of allochem-supported layers, where large randomly
oriented fossil fragments layers grade upwards into clay matrix supported
fossiliferous claystones with small bedding parallel oriented fossil fragments
(Figure 2.14E). Allochem-supported layers can also be structureless and
composed of fragmented or crushed shell debris (Figure 2.14D). Such
beds/laminae have undulatory bases and commonly occur in stacked
successions of variable thickness. Some heavily calcified fossiliferous beds and
laminae are associated with cone-in-come structures. Bioturbation intensities

are low within this microfacies, ranging from 0-20%.

Fossiliferous mudstones occur seldom throughout the Canol Formation but
dominate in the Bluefish Member. They can be found in conjunction with the

dolomitized fMs (MF2) and the silt-poor fMs (MF3).
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Figure 2.14: Photomicrographs of the fossiliferous mudstone microfacies (MF7). (A)
Photomicrograph of a matrix supported fossiliferous mudstone with calcite (pink)
tentaculitid shells and early diagenetic dolomitization (unstained) of fossil chamber
interiors (pre-compactional). Clay matrix has undergone significant dolomitization
(N-09 1777.48 m). (B) Close up photo of calcite tentaculitid fossils and dolomitized
interiors in (A) (N-09 177748 m). (C) Photograph in (B) under crossed polars (XPL)
(N-09 1777.48 m). (D) Stacked winnowed tentaculitid fossil lags punctuated by clay-
stones (N-20 2092.95 m). (E) Normally graded matrix poor tentaculitid layer. Fossils
likely underwent pre-compactional dolomitization of shell interiors prior to being
re-mobilized (I-78 1953.30 m).

Intraclast-Rich  Discontinuous Planar Parallel Argillaceous Fine Mudstone

(MF8)

The intraclast-rich discontinuous planar parallel argillaceous fine mudstone
microfacies (Figure 2.15) consists of sediments made up of more than 30%
intraclasts by area, with both clay-dominated and silt-bearing intraclast
compositions. This microfacies has detrital quartz silt content ranging from O
to 40%. In mudstones where the matrix is clay-dominated, clay intraclasts are
the dominant type; whereas mudstones with increased silt content support
silt-bearing intraclasts. Elongate organic matter is common to abundant
(Figure 2.15D). Fossil shell material is rare within this microfacies; only
a handful of conodonts and tentaculitid fragments were identified. This
microfacies has a range of diagenetic alterations. Framboidal pyrite can be
prevalent throughout (Figure 2.15D), and it is common for this microfacies to
be moderately dolomitized (Figure 2.15A, B, D, E). Intraclast-rich mudstones
range in colour from light brown to very dusky red (dark brown) depending
on intraclast abundance (the more intraclasts the lighter the colour), thickness

of the cut thin section, and TOC content (ranges from 3.3 — 4.2%).

The intraclast rich microfacies shows planar parallel bedding at both low (20x)

50



and high (100x) magnifications (Figure 2.15A and E). Individual laminae are
comprised of an unsorted homogenous-appearing distribution of intraclasts
throughout an argillaceous matrix. Some normally graded laminae with
intraclastic bases fining upwards to clay drapes (Figure 2.15E) have been
identified. This microfacies is the only microfacies identified as having
soft sediment deformation (Figure 2.15B). Intraclast-rich mudstones are
poorly bioturbated with bioturbation intensities ranging from 0-20%. When
bioturbated, organisms appear to avoid burrowing into or through individual

clasts, tending to travel along clast margins (Figure 2.15H).

Clay-dominated intraclast-rich mudstones are present throughout the Horn
River Group, but almost totally define the Bell Creek Member. Silt-bearing
intraclast-rich mudstones are exclusive to the upper portion of the Canol

Formation.
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Figure 2.15: Photomicrographs of intraclast-rich mudstones (MF8). (A) Photomicro-
graph showing variable intraclast abundance within individual laminae. Diagenetic
ferroan dolomite is present throughout (blue) (H-64 1273.90 m). (B) Synsedimentary
recumbent folding of an intraclast-rich claystone. Diagenetic dolomite is present
throughout (sand-sized crystals) (H-64 1275.38 m). (C) Oblique bedding plane view
of an intraclast covered surface. Intraclasts show the compacted remnants of their
original spherical morphology (I-78 1846.00 m). (D) Stacked intraclast-rich normally
graded laminae. laminae have intraclast rich bases fining up to clay dominated tops.
Photo shows 4 laminae (arrows) with bedding planes outlined by punctuated lines
(N-09 1807.35 m).

2.6 Discussion and Interpretation

2.6.1 Micro-bioturbation

The small sinuous burrows and both lined and unlined burrows are
interpreted to be the result of migrating deposit feeding organisms
(fodinichnia). This is consistent with the sinuous unbranching burrow
morphologies and lack of sufficiently thick and ridged burrow linings. Thick
and ridged burrow linings are typically found in dwelling structures to prevent
sediment collapse, but are unnecessary in deposit feeding structures and
are therefore poorly developed (Bromley, 1996). The apparent silt linings
associated with these burrow morphologies (such as those seen in Figure 2.5E
and F) is a relict of grains concentrating at the burrow margin as the animal
moves through the sediment, or the result of grain-selective feeding, where
clay particles and organic matter are preferentially ingested. The concentric
linings that can be seen in some lined burrows (Figure 2.4E, F) are interpreted
to be the result of continuous compaction of the surrounding sediment
perpendicular to the length of the burrow as the burrowing organism moved

and fed (Bromley, 1996). The lighter colour and homogenous infill of both
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tubular burrow trace fossil types stems from the mining of host sediment
and digestion of organic matter by the organisms, as well as differential
diagenetic mineralization of burrow infills as a product of organic matter

removal (Savrda, 2007).

Trace fossils in the silt-poor and silt-bearing fine mudstone microfacies
(MF3, 4 and 5) can be difficult to identify through conventional petrographic
techniques.  This is likely in-part because burrowing in soft, soupy
substrates, results in poorly defined burrow margins that subsequently
undergo intense compaction (e.gc Lobza & Schieber, 1999). However,
photographic enhancement of the darker coloured clay-rich lithosomes does

show increased evidence for biogenic reworking (e.g. Figure 2.11B and C).

The preservation of burrow morphologies in silt-bearing sediments (MF4 — 8)
without the presence of burrow linings is attributed to deposit feeding within
semi-consolidated muds rather than soft soup ground muds (Schieber, 2003;
Gingras et al., 2011). As well, the detrital silt-grain fraction of the sediments
may act to increase sedimentary resistance to compaction. This enhanced
cohesiveness associated with higher concentrations of silt may also enhance

the preservation of burrow morphology.

The preferential pyritization of thin burrow linings and burrow fills is
interpreted to stem from pre-compaction early diagenetic pyritization of
the organic mucus sheaths associated with the burrow margins and linings
(Bromley, 1996; Savrda & Bottjer, 1984; Thomsen & Vorren, 1984; Schieber,
2002; Macquaker & Taylor, 1996). Such early diagenetic pyritization of
organic linings and burrow fills promoted the preservation of the burrows,
making them resistant to compaction and significant deformation. This

preservation via pyritization mechanism has been noted in several previous
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studies of macro-scale burrows (e.g. Baird, 1978; Yeun Ahn & Babcock, 2012).
Although it is likely that Fe-rich burrow linings are the result of amorphous
iron oxide precipitation at the burrow margin (¢.f Gingras, Zonneveld, &
Konhauser, 2014), the precipitate may act as a permeability barrier that buffers

H2S diffusing from the sediment.

The very low diversity and exceptionally small size of the identified trace
fossils (Figures 2.4 and 2.5) likely reflects the lowest limit of sustainable
body size for the trace making organisms in response to severely low
dissolved oxygen concentrations in pore waters. Such organism body size is
interpreted as facultative diminution, whereby for the organism to survive
in such an oxygen stressed environment they require large surface area
to volume ratios, achieved by decreasing overall body size in order to
diffuse the maximum amount of oxygen across their membranes (Gingras
et al., 2011). When looking at trace fossil statistics at the petrographic
level, especially in mudstones, measured burrow diameters will reflect some
level of compactional deformation (e.g. Lobza & Schieber, 1999). As well,
the orientation of the slice through the burrow may result in incorrect
measurements. Just as with trace fossil diversity counts, the burrow size
statistics from this study are based on the most obvious (best preserved)
burrows that happen to be present in the small thin section sample area, which
likely does not capture the full diversity and size range of all trace fossil types.
Due of the aforementioned difficulties associated with evaluating burrow size
and diversity, size-diversity indexes (SDI) (c.f. Gingras et al., 2011) have no

sound statistical value.

The identification of bioturbation within the Horn River Group sediments

indicates that persistent bottom water anoxia was at the very best,
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episodic during deposition of these organic-rich mudstones. However, the
microscopic burrow sizes (maximum diameters of 150 um) coupled with the
low diversity suite of morphotypes (a maximum of five trace fossil types) also
indicate that bottom waters and sediment pore waters were not sufficiently
oxygenated to support and sustain a range of benthic deposit feeders that
could achieve macro-scale body sizes (Gingras et al., 2011; Bromley & Ekdale,
1984; Savrda & Bottjer, 1987; Wignall, 1991). The presence of bioturbation with
a microscopic low diversity suite signifies extreme dysoxia, likely at the lower

limit of hospitable conditions (approaching 0.0 mL/L O2).

It is also possible that the amount of identified bioturbation in these
mudstones is only a fraction of that actually present. As previously
mentioned, a lack of lithologic contrast, especially within the darker clay-rich
lithosomes, makes confident identification of micro-burrows difficult (e.g.
Figure 2.11B, C). Furthermore, evidence of near-surface early diagenetic
cementation of the highly reactive argillaceous HRG sediments, in the form
of well-preserved uncompacted radiolaria tests (Figure 2.11C), uncompacted
clay floccules, and differential compaction around larger carbonate nodules
and minus-porosity cement (porosity present prior to cementation, visible
as irregular cementation throughout clay matrix or intergranular between
intraclasts (Milliken & Olson, 2017)), may have influenced meiofaunal

organism’s ability to penetrate the sediments.

The most common criticism of petrographic microbioturbation studies is
why, definitively, these microscopic features are meiofaunal trace fossils and
not some form of soft sediment deformation or defects within the thin
section (z.e. Schieber, 2014 on Egenhoff and Fishman, 2013). Perhaps the

best argument in favour of a biogenic origin is the nature of the burrow
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fill. Burrow fills differ not only in composition, where preferential clay fills
reflect particular meiofaunal feeding strategies, but also in colour. Burrows
are generally lighter in colour than the surrounding matrix, reflecting
consumption and removal of available organic matter and variable diagenetic
mineralization within burrow structures (Savrda, 2007). In contrast, burrow
infills can appear darker in colour than the surrounding matrix when mucus
sheaths of burrow linings and margins have been preferentially pyritized
(Bromley, 1996; Savrda & Bottjer, 1984; Thomsen & Vorren, 1984; Schieber,
2002). Removal of organic matter and preferential pyritization of soft
sediment deformation structures is not as likely. Although de-watering can
result in preferential removal of certain hydraulically equivalent grains (e.g.
larger organic grains and smaller lithic grains), which in turn can lead to
preferential fill compositions, recognition of the sinuosity of these structures
is key. The sinuosity argument in favour of trace fossils over soft sediment
deformation is especially evident in plan view. Soft sediment deformation
structures, such as dewatering structures, are expected to take the path of least
resistance (i.e. approximately straight vertical paths). The proposed biogenic
features documented in both bedding perpendicular and bedding parallel
thin sections show that these features are almost always sinuous (excluding the
inclined to vertical unlined meniscate backfilled burrows). In some instances,
we observed trace fossils that double-back on themselves, and others are
n-shaped (e.g. Figure 2.5D) — morphologies unexpected with soft sediment
deformation structures. As well, the unlined circular to elliptical cross sections
in elevation views with infill differing from the matrix (Figure 2.4G, H) are
difficult to reconcile with most mechanical deformation processes and are best

ascribed to bioturbation or at the very least peloidal features.

The argument has been made that similar burrow features (e.g. those
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described by Egenhoff and Fishman, 2018) are the result of defects produced
during thin section preparation: i.e. the reported clay infill of micro-burrows
may actually result from grain plucking during preparation of petrographic
sections (Schieber, 2014). The HRG thin sections show these burrow types
over a range of thin section thicknesses and matrix compositions. Although
burrows are best seen in siltier sediments with greater lithologic contrast (e.g.
Figure 2.5A-F), they are also present in wedge-cut (30 yum — O pm) silt-poor
claystone thin sections (e.g. Figure 2.5G, H) where such grain plucking can be
readily identified. Furthermore, during SEM analysis no evidence of grain

plucking from the upper surface of thin sections was identified.

Potential organisms responsible for the micro-burrows identified in this
study include polychaetes, copepods, benthic foraminifera, and nematodes.
Small (150 - 800 um) surface deposit feeding polychaetes have been
identified in modern-day severely dysoxic (<0.2 mL/L O2) marine settings
(Cuomo & Bartholomew, 1991; Levin, 2003), and benthic meiofaunal
copepods have been noted, although rarely, in modern oxygen depleted
sediments (Giere, 2009; Lohr & Kennedy, 2015). Small (<500 um) benthic
burrowing agglutinated foraminifers have been found in modern dysoxic
marine bottom waters (Bernhard et al., 2003), and have been identified in
other North American Devonian organic-rich mudstones (Schieber, 1999).
Sulfide-adapted meiofaunal (560 — 75 xm) nematodes have also been cited as
potential trace-makers in poorly oxygenated and partially sulfidic sediments
(Schieber, 2014; Giere, 2009; Lohr & Kennedy, 2015; Pike, Bernhard,
Moreton, & Butler, 2001).
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2.6.2 Microfacies Depositional Environments

Homogenous-looking radiolarian-rich siliceous fine mudstone (MF1)

Geologists, e.g. Bohacs et al.,, (2005) and Egenhoff and Fishman (2013),
commonly argue that radiolarian-rich mudstones (sometimes referred to
as radiolarites) (Figure 2.9A - D) are deposited typically in depositional
settings away from the effects of clastic dilution commonly towards the
end of sediment transport paths. The dominance of biogenic-derived
radiolarian tests over detrital sediment fraction indicates a paucity in input of
allochthonous material to the depositional setting (Aplin & Macquaker, 2011;
Egenhoff & Fishman, 2013).

The lack of primary sedimentary features and structures in radiolarian-rich
deposits that would indicate bedload sediment transport processes (e.g.
ripple laminae) likely reflects mass suspension settling of radiolaria from
proliferation pulses in response to planktonic blooms (¢.f Egenhoff &
Fishman, 2018). Such blooms may be associated with increased nutrient
influx accompanying seasonality and/or upwelling (Aplin & Macquaker, 2011;
Racki & Cordey, 2000; Jonk, Potma, Bohacs, Advocate, & Starich, 2014).
Although there is evidence for some bioturbation within the radiolarian-rich
microfacies (Figure 2.9A), there is not enough to attribute the structureless
nature of the radiolairites to complete biogenic homogenization. For example
opal-A dissolution and associated dewatering and compaction may contribute

to the homogenous appearance.

The radiolarian-rich microfacies is the only microfacies associated with
benthic microbial mats (cohesive carbonaceous interbeds, e.g. Figure 2.9A,

C, D and Figure 2.11A). Evidence of the distinctive cohesive behaviour of
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microbial mats is revealed as microbial-mat encased radiolarian-rich fMs
clasts; reflected as a carbonaceous units (presumed microbial mat) of uniform
thickness completely encasing a radiolarian-rich deposit of variable thickness.
The mechanisms behind formation of such a clast are interpreted as similar to
the “rolled up mat” features illustrated by Schieber (1999, Fig. 3). In the HRG
case, erosion of an overlying radiolarian-rich fMs and underlying microbial
mat caused the mat to lift and flip over on itself (encasing the overlying
radiolarian-rich deposit), eventually tearing away from the remainder of
the original mat structure, and thus allowing it to be transported as a
single clast. Evidence of microbial mat sediment stabilization is shown in
Figure 8A, where a microbial mat of uniform thickness (dark carbonaceous
layer) has ‘captured’ the overlying radiolarian-rich fMs deposit, preventing
the individual radiolaria from settling into the presumed water-rich muds
below. Differential loading of the radiolarian-rich deposit is obvious when
looking at the thickness of the deposit, as the thicker sections have sunken
further into the underlying muds. Without the mat stabilization, settling
radiolarians would have sunken into the water rich muds until reaching a
semi-consolidated depth, where they would then begin to concentrate, or
potentially even form ball and pillow structures (Schieber, 2007; Schieber,
Bose, et al., 2007). Similar mat features have been interpreted to have formed
in relatively quiet settings with absent to episodic sedimentation (Schieber,
1986). Preservation of microbial mat features requires low dissolved oxygen
concentrations, which inhibits both oxidative break-down of organic matter
and limits degrees of bioturbation which would otherwise destroy mat
features (Schieber, 1986). Microbial mats can also be sites of significant sulfur
cycling, which can lead to calcium phosphate precipitation in the presence

of free hydrogen sulfide (K. G. Taylor & Macquaker, 2011; Macquaker, Taylor,
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Keller, & Polya, 2014); another process which may be acting to preserve these

mat features.

Radiolarian-bearing argillaceous fMs laminae (MF3) that alternate with
radiolarian-rich fMs (MF1) show erosive scour at their base (e.g. Figure 2.9E,
2.11A), and microbial mat colonization at their tops (Figure 2.9D). These
two features indicate elevated depositional energies of these argillaceous
laminae (with bottom current velocities high enough to erode coarse-silt to
fine-grained sand sized radiolarian tests), followed by prolonged periods of
non-deposition allowing for mat colonization. The erosive nature of these
units indicate that they are event deposits, while the radiolarian-rich deposits

are likely events in and of themselves in response to proliferation pulses.

The generally uncompacted nature of the radiolarians (e.g. Figure 2.9B
and 2.11D) indicates that recrystallization and infilling of radiolarian tests to
chert, or in rare instances calcite, occurred prior to compaction during early
diagenesis (Hart et al.,, 2013; Milliken & Olson, 2017; Fishman, Egenhoff,
Boehlke, & Lowers, 2015). The absence of significant bioturbation, the
preservation of carbonaceous microbial mat structures, and the inferred early
diagenetic cementation in the radiolarian-rich microfacies are all indicators
of still bottom waters with low dissolved oxygen concentrations (Egenhoff &

Fishman, 2013).

Homogenous-looking Dolomitized Argillaceous Fine Mudstone (MF2)

Dolomite within the dolomitized fine mudstone microfacies is interpreted as
post-depositional (diagenetic) on the basis of clear alteration of previously
deposited detrital elements, such as intraclastic aggregates (Figure 2.10D),

remnant bedding planes, and the presence of some well-formed microscopic
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ferroan dolomite rhombs. As well, dolomite rich layers have diffuse upper
and lower margins as opposed to the discrete bedding planes that would be
expected to be present in allochthonous carbonate silt beds (Schieber, 2007).
An early diagenetic origin (pre-compactional) is interpreted for the dolomite
in this microfacies, as it forms minus-cement porosity within rare fossil
fragments which otherwise would have been crushed during compaction (e.g.

Figure 2.10D) (Pyle, Gal, & Fiess, 2014).

Diagenetic dolomite, both as rhombs and microcrystals, is associated with
post-depositional alteration of organic-rich mudstones via microbial sulfate
reduction at or near the sediment surface (e.g. Baumgartner et al., 2006;
Hickey & Henk, 2007; Macquaker et al., 2007). Ferroan dolomite, when
it forms in early diagenesis, is considered to be an anoxic mineral that
forms under strongly reducing conditions (Schieber, 1999; Macquaker et
al., 2007) commonly in association with methanogenesis (e.g. Irwin, Curtis,
& Coleman, 1977). Therefore, organic-rich heavily dolomitized sediments
are interpreted to represent slow sediment accumulation rates under poorly
oxygenated regimes combined with long residence times at the sea floor
(Aplin & Macquaker, 2011; Hickey & Henk, 2007; Raiswell, 1971), conditions
that allow for the byproducts of anaerobic bacterial reactions to accumulate

and form early diagenetic iron-bearing dolomite (Hickey & Henk, 2007).

Discontinuous Wavy Parallel to Homogenous-looking Argillaceous Fine Mudstone

(MF3)

This argillaceous fine mudstone microfacies contains only rare and
sporadically distributed fine-silt grains (Figure 2.11), likely indicating
deposition near the end of the sediment transport path. Similar to the

detrital silt grains, radiolarian and conodont microfossils occur dispersed
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throughout the sediments as opposed to concentrated along specific bedding
planes (e.g. Figure 2.11B vs. Figure 2.14D). The apparent structureless nature
and random distribution of coarser-grained components may indicate that
these sub-millimeter clay-dominated laminae represent short-lived sediment
gravity flows. Such flows result in a massive-appearing mix of clay, clay
aggregates, silt grains, and microfossils; similar to the laminar flow plug-like
beds described by Baas et al., (2009) and Sumner et al., (2009). In these
flows, larger grains are kept in suspension due to incorporation into relatively
large clay floccules (Yawar & Schieber, 2017), and/or due to hindered settling
mechanisms as a result of increased grain-grain interaction and cohesion
(Baas et al., 2009; Sumner et al., 2009). It is likely that these plug-like flows
originated from re-suspension of unconsolidated water-rich shelfal muds
in response to wave agitation during storms (Prior et al.,, 1989; Plint et al.,
2012), forming flows that can travel along shallow slope gradients (Mulder &
Alexander, 2001). These plug-like flows can develop from pre-curser turbidity
currents, if the concentration of suspended sediment is increased as the flow

travels (Baas et al., 2009; Sumner et al., 2009).

The lack of significant lithologic contrast and obvious bedding planes
within this microfacies makes accurate identification of physical sedimentary
structures, just as with biogenic structures, difficult. Instances where
significant lithologic contrast exists, erosive bedding contacts are obvious
(e.g. radiolarian-rich fMs interlaminated with MF3, Figure 2.11A) — providing
evidence for possible erosive sediment gravity flow heads and subsequent

sediment deposition from an associated plug flow.

The amorphous organic matter in this microfacies (Figure 2.11D) is

interpreted to be phytodetritus (aggregates of organic matter, detrital
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sediment, and micro-organism tests). In modern settings, phytodetritus
is delivered to the sediment surface through suspension settling processes
(Macquaker, Keller, & Davies, 2010). Phytodetritus was likely incorporated
into the low-density turbidity flows and subsequently compacted forming
elongate stringers (e.g.  Figure 2.11E). The wavy appearance of these
argillaceous fine mudstones at high magnifications (10x) may reflect
differential compaction of this phytodetritus around silt-sized quartz grains,
pre-compaction cemented silt-sized clay aggregates (e.g. Figure 2.13F and G),
or compacted burrow infills. Biogenic pelagic elements such as radiolarians,
conodonts, and carbonate fossils indicate the presence of an overlying
oxygenated water column (Dawson, 2000), whereas rare and difficult to
see micro-burrows (Figure 2.11B and C) indicate partial oxygenation of the

sediments.

Rarely Bioturbated Discontinuous Wavy Parallel Silt-bearing Fine Mudstones (MF4)
and Bioturbated Discontinuous Wavy Parallel to Homogenous-looking Silt-bearing

Fine Mudstones (MF5)

The two silt-bearing fine mudstone microfacies (rarely bioturbated and
bioturbated) (Figure 2.12A, B) have similar depositional process indicators as
the argillaceous fine mudstone microfacies (MF3). The increase in detrital
silt content is interpreted to indicate increased proximity to the sediment
input source or an increase in flow competency associated with a steepening
basin floor gradient (Mulder & Alexander, 2001; Borcovsky et al.,, 2017).
The random dispersal of detrital quartz silt, radiolarian tests, and other rare
microfossil debris within the clay-dominated matrix is interpreted to be the
result of the same plug-like flows discussed for MF3. In conjunction with

this, MF4 and MF5 also occurs as discrete homogenous-looking laminae
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in other microfacies (Figure 2.12E). Similar discrete beds/laminae in other
mudstones have been interpreted as storm deposits (Egenhoff & Fishman,
2018). Sub-millimeter stacked graded laminae can be seen in some cases
(Figure 2.12F), fining upwards from phytodetritus and intraclast rich bases
to homogenized clay tops, indicating deposition from waning flow. These
thin fine-grained graded laminae are interpreted to be the result of surge and
surge-like turbidity currents, where flow is turbulent throughout the thickness
of the flow, and grain to grain interaction is rare (Mulder & Alexander, 2001).
Mulder and Alexander (2001) described these surge and surge-like turbidity
flows as fine-grained (typically not transporting grain sizes larger than sand)
where particles are kept in suspension from the upward component of fluid
turbulence, forming normally graded beds as sediment settles gently as a

result of flow cessation.

The rare to common sub-millimeter sized intraclasts (Figure 2.12A and B,
black arrows) throughout signify proximal erosion of previously deposited
sediments, induced by increased bottom-current energies (Schieber et al.,
2010). These small intraclasts were likely entrained in the suspension of
the plug-like flows that dominated the deposition of this microfacies. The
intraclasts were then transported within the flow to a more distal basin
position. Microbial mat rip-up fragments (Figure 2.15G) are also incorporated
into some laminae, another indication of erosive bottom currents and

relatively high competency flows along the sediment water interface.

Common diagenetic dolomitization indicates intermittent sedimentation,
allowing the same anaerobic byproducts to build up that characterize the
heavily dolomitized microfacies (Schieber, 1999; Aplin & Macquaker, 2011;
Hickey & Henk, 2007; Macquaker et al., 2007). Low intensities or absence of
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biogenic reworking, and low diversity and occurrence of benthic microfossils
(agglutinated foraminifers) in the rarely burrowed microfacies are consistent
with deposition under severely dysoxic to anoxic bottom waters. The
interpreted laminar plug-like flow and turbidity surge flow sedimentation
processes for this microfacies may lead to the idea that low degrees of
biogenic reworking is the result of increased rates of sediment accumulation,
however the pervasive bioturbation of similar laminae in MF5 (discussed
below) strengthen the interpretation that the rarely bioturbated laminae
are rather the result of poor oxygenation. Overall, the rarely bioturbated
silt-bearing fine mudstone microfacies represents repeated laminar and/or
turbid sediment gravity flows, resulting in thin deposits accumulating under

oxygen-starved bottom waters.

The bioturbated silt-bearing fine mudstone microfacies (MF5) (Figure 2.12C,
D) is interpreted to be the more proximal expression of MF4. Enhanced
water mixing from strong bottom currents is interpreted to have facilitated
more intense biogenic reworking, due to increased concentrations of
dissolved oxygen brought in by the flows, when compared to the flow
strength interpreted for MF4. Stronger bottom currents and associated
carrying capacity is interpreted to stem from increased shoreline proximity
and enhanced storm influence when compared to the rarely bioturbated

microfacies.

Bioturbated discontinuous Planar Parallel to Continuous Wavy Non-parallel

Argillaceous-siliceous Medium Mudstones (MF6)

The argillaceous-siliceous medium mudstones microfacies (Figure 2.13) is
the coarsest grained of all microfacies identified in the Hare Indian and

Canol Formations within the study area. The increase in detrital silt content
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reflects deposition in a proximal high energy setting associated with increased
volumes of coarse-grained detrital material. Although a large fraction of the
detrital sediment occurs as clay, its presence predominantly as clay-aggregate
grains (identified through SEM analysis of both fractured core rock samples
and thin sections; Figure 2.13F and G) with hydrodynamic properties similar
to that of individual detrital silt grains indicates that deposition of such clays
likely occurred under heightened depositional energy and sediment input

(Aplin & Macquaker, 2011; Plint et al., 2012).

Discontinuous planar silt laminae (Figure 2.18B and C) are the result of
bedload transportation via traction currents. Some such features are the result
of recurrent increased bottom-current energies leading to a winnowing of
the clay fraction, leaving behind concentrations of detrital silt as thin lag
deposits (Schieber, Southard, & Thaisen, 2007; Schieber & Zimmerle, 1998;
Egenhoff & Fishman, 2013; Wignall, 1989; Konitzer et al., 2014). More recently,
Yawar and Schieber (2017) have experimentally shown that interlaminated
discontinuous silt and clay fabrics can result from concomitant migrating of
silt-dominated and clay-dominated ripples, where an interfingering of thin
veneers left behind during migration leads to intercalation of silt and clay
laminae. Furthermore, Schieber et al. (2007) suggested slightly inclined to
apparent plane parallel lamination may be the result of compacted migrating
floccule ripples deposited under steady-state flow, and therefore apparent
planar silt laminae represent flattened low-angle ripple foresets. In many
cases the differences between thin silt lags and possible ripple forests are
difficult to distinguish, and their presence is simply taken to represent
episodes of increased bottom-current energy. Clay and silt-bearing clay
intraclasts throughout the mudstone microfacies indicate up-dip erosion

and associated high-competency flows. Normally graded laminae are an
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indication of episodic waning flow, likely forming from surge and surge-like
flows linked to storm processes (Mulder & Alexander, 2001). Intercalated
thinly laminated (<0.5 mm) silt-poor layers therefore represent intermittent
lower-competency plug-like or surge-like flows resulting from smaller storms

than those responsible for the normally graded laminae.

Increased intensities of bioturbation and subsequent destruction of some
primary sedimentary structures (Figure 2.18B) stems from increased
oxygenation associated with enhanced water column mixing. Storm influence
is interpreted as intermittent, allowing enough time for sediment colonization
between events. Overall, the argillaceous-siliceous medium mudstone
microfacies is considered to be the result of episodic suspension settling
from low-density, surge and surge-like turbidity flows under heightened but
variable bottom-current energies. Such an increase in bottom current energy
is interpreted to stem from deposition in a more proximal setting relative to

the previously described microfacies.

Fossiliferous Discontinuous to Continuous Wavy Parallel Argillaceous Fine Mudstone

(MF?7)

The fossiliferous argillaceous fine mudstone microfacies (Figure 2.14) is
characterized by the presence of high volumes of tentaculitids; calcareous
conical pelagic organisms that were common throughout the Devonian
(Filipiak and Jarzynka, 2009). Sediments containing such compositionally
homogenous calcareous skeletal debris could be the result of (1) suspension
fallout in quiescent depositional settings with an overlying oxygenated water
column, or (2) re-sedimentation via storms, debris flows, and turbidites in
settings associated with increased bottom-current energy (Hickey & Henk,

2007). Two layer types dominated this microfacies: clay matrix supported
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layers and allochem supported layers.

The bimodal size contrast between the carbonate fossil shells and the
argillaceous clay matrix in matrix-supported fossil bearing layers (Figure
2.14A - C), coupled with the lack of any obvious primary sedimentary
structures, could be interpreted as a result of tentaculitid suspension fall-out,
where tests settled into argillaceous sea floor sediments (Egenhoff & Fishman,
2013; Konitzer et al., 2014). If these relatively large shells were to have
settled into the soupy water-rich fine-grained deposits you would expect
shells to concentrate more evenly along remnant bedding planes. However,
the random dispersal of tentaculitids throughout individual beds/laminae
and variable concentrations of tentaculitids between deposits (Figure 2.14A),
together coupled with the bedding parallel but random orientation of conical
tests rather suggests deposition from a high-competency collapsing plug flow
(Baas et al.,, 2009; Sumner et al., 2009). Such flows are likely distal storm
influence (Wignall, 1989; Konitzer et al., 2014).

The presence of tentaculitids suggests the existence of an overlying
oxygenated water column with sufficient dissolved oxygen to support a pelagic
biomass. Waters directly near the sediment-water interface were poorly
oxygenated, resulting in early diagenetic precipitation of ferroan dolomite
and an absence of high rates of biogenic sediment reworking. The absence
of microfossils (specifically benthic foraminifers) within the thin sections of
this facies, other than the obvious tentaculitids (Figure 2.6) further confirm

the interpretation of poorly oxygenated bottom-waters.

Allochem-supported fossiliferous deposits (Figure 2.14D and E) are composed
of relatively large tentaculitid shells when compared to tentaculitids of

matrix supported deposits (Figure 2.14A). These units signify increased
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competency of bottom-current activity. Matrix-poor ungraded and
fragmented fossiliferous layers (Figure 2.14D) are interpreted to be the result
of debrite deposition, where high-cohesion flows did not allow for suspension
settling, preferential orientation, or sorting of any kind (Sumner et al., 2009).
These layers may also represent post-depositional increased bottom-current
energies leading to winnowed shell lags overlying undulatory erosion/scour
surfaces (Figure 2.14D) (Egenhoff & Fishman, 2013; Knapp et al., 2017).
Normally graded bioclastic beds and laminae (Figure 2.14E) are interpreted
to represent waning current energies and suspension settling from surge
and/or surge-like low density turbidite flows (Muir, 1988; Baas et al., 2009;
Sumner et al., 2009; Konitzer et al., 2014; Knapp et al., 2017). The fossil
fraction of the allochem-supported deposits is more commonly intact as
opposed to fragmented, indicating very short transport paths (Egenhoff
& Fishman, 2013). Authigenic carbonates in the form of intergranular
and intragranular cements may be a testament to either intermittent slow
fair-weather suspension settling rates or long wait times between recurrent

storm activity.

Intraclastic-Rich Discontinuous Planar Parallel Argillaceous Fine Mudstone

(MF8)

Intraclast-rich argillaceous fine mudstone (MF8) (Figure 2.15) is interpreted
to be the most proximal microfacies and is the result of constant bed
load transport of silt and sand-sized intraclastic clay aggregates. A general
absence of incorporated organic matter and pyrite framboids in the intraclasts
is interpreted to reflect persistent bottom current energy that supplied a
constant source of intraclasts and clay floccules from more proximal and

oxygenated settings. Minimum bottom-current energies required to erode
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and transport such intraclasts are estimated at 16 cm/s (Schieber et al., 2010).
The consistent distribution of intraclasts throughout this microfacies suggests
that these relatively high-energy bottom currents were either; (1) temporally
and laterally consistent, or (2) intermittent with low energy suspension settled
material being re-transported upon resumption of current flow, likely linked

to storm processes.

These sediments dominate the Bell Creek Member of the Hare Indian
Formation and are interpreted to represent some extent of deltaic influence,
which would have provided the increase in slope gradient, constant
down-slope hyperpycnal bottom-current flow, and sediment input necessary
for such continuous intraclast generation. As well, proximity to a deltaic
setting would provide the depositional topography along the deltaic slope
to allow for localized sediment slippage and compaction resulting in the
synsedimentary recumbent micro-folding and faulting due to slope-toe
failure (Figure 2.15B) (Wignall, 1989; Tyson, 1986). Storm influence is
also reflected in low density turbidite laminae (MF3) and stacked graded
laminae (Figure 2.15D) produced from waning bottom-current flow (Wignall,
1989). Bottom waters were likely partially oxygenated due to constant
bottom-current flow, but bioturbation rates are low — possibly owing to rapid

sedimentation rates not allowing time for colonization.

2.6.3 Depositional Model

Petrographic analysis of the Horn River Group mudstones reveals a
physically dynamic depositional setting (Figure 12) that is in stark contrast
to the hemipelagic suspension settling in quiescent anoxic waters that were

previously proposed (Muir, 1988). Storm-generated laminar plug-like flows,
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surge and surge-like turbidity flows, and even small debrites dominated more
proximal settings rich in intraclastic aggregates and coarse-grained allochems.
Re-suspension of unconsolidated mud during storm-wave agitation lead to
the formation of low density turbidites and plug-like flows in distal settings,
recognized as thin (<1 mm thick) normally graded laminae and sharp based
and occasionally undulatory homogeneous deposits, respectively (Figure

2.11A, Figure 2.12E and F).

Four primary depositional mechanism associations have been identified
through the microfacies analysis, and in order of increasing proximity to
the paleo-shoreline they are: 1) pelagic suspension settling association (S1); 2)
plug-like flow-dominated association (S2); 3) combined proximal low-density
turbidite (surge and surge-like flows), plug-like flow, and debrite association

(S3); 4) and proximal plug-like flow association (S4) (Table 2.1).

The suspension settling association (S1, MF1) is the result of pelagic suspension
settling in distal shelf and further basinward (slope, deep basin floor) areas
with low detrital sediment input, reduced storm influence and few bottom
currents (Egenhoff & Fishman, 2013; Knapp et al., 2017; Faugeres & Mulder,
2011). Anoxic pore waters may have developed in radiolarian-rich fMs
deposits associated with proliferation events due to oxygen consumption
from degradation of high volumes of organic matter (Fishman et al,

2015).

The plug-like flow dominated association (S2, MF2-4) is the result
of sedimentation from fine-grained flows generated from storm-wave
re-suspension of unconsolidated water-rich muds also in relatively distal
shelf settings. Uncommon intraclasts and low amounts of detrital silt

point towards bottom current energies too low to generate flows with high
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enough competency to support a coarse-grained fraction. Sedimentation is
interpreted as episodic and infrequent, allowing the buildup of anaerobic
by-products and their resultant minerals (e.g. carbonate and pyrite). Sediment
pore waters are interpreted to straddle the dysoxic-anoxic transition, reflected
in low bioturbation intensities, low benthic microfossil abundance, and the

presence of diagenetic dolomite and common pyrite framboids.

The combined low density turbidite dominated association (S3, MF5 - 7) is
interpreted to be the result of storm reworking and subsequent turbulent
(surge/surge-like), laminar (plug-like), and cohesive (debrite) sediment
delivery in more proximal or more heavily storm influenced shelf settings
than that of S1 and S2. Intense storm activity is recorded in the relatively
thick fossil shell lags of MF7. Lower energy storms are recorded in laminae
with rare intraclasts (MF5), and the distal effects of storms are recorded
as low density turbidites fine mudstone laminae. The overlying water
column is interpreted to have been partially oxygenated, reflected in the
large carbonate fossil sizes, and sediment pore waters were likely partially
oxygenated, reflected as increased bioturbation intensities and increased

benthic microfossil abundance when compared to S1 and S2.

The proximal plug-like flow-dominated association (S4, MF8) is the result of
persistent, high-energy erosive bottom currents, in a proximal shelf setting
(generating large numbers of intraclasts), possibly associated with the distal

deposits of a delta.

Almost every microfacies identified shows some evidence of storm-generated
sediment delivery processes. Thus, sedimentation during the deposition of
the HRG mudstones is interpreted to be dominantly storm generated and

episodic along a proximal to distal continental shelf.
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Figure 2.16: Summary of microfacies and schematic depositional model block dia-
gram for the Horn River Group mudstones in the Central Mackenzie Valley. Relative
location, bioturbation intensity, and dominant transportation mechanism is identi-
fied for each microfacies in the schematic block diagram.

2.6.4 Comparison to Sequence Stratigraphic Interpreta-

tions

The microfacies stacking patterns in the N-09 core parallel the transgressive
and regressive cycles identified through geochemical analyses by (LaGrange
et al.,, 2019) (Figure 2.17). Transgressive-Regressive Sequences with Maximum
Regressive Surfaces as sequence boundaries are used herein because it
is not possible to distinguish forced regression from normal regression
with the datasets available to us (chemostratigraphic, petrophysical, and
sedimentological) and given the nature of the Horn River Group in the study

area.

No thin section data falls exactly on interpreted sequence stratigraphic
surfaces (maximum surfaces of regression and maximum flooding surfaces),
but the vertical microfacies trends reflect the progradation and subsequent
microfacies shallowing associated with regressive intervals and deepening
accompanying transgressive cycles. Maximum flooding surfaces in the
N-09 core are associated with distal detrital-derived microfacies (silt-poor
fine mudstones, MF3). Maximum regressive surfaces are associated with
intraclastic-rich mudstones (MF8) and fossiliferous mudstones (MF?7), as well
as occurring in close proximity to silt-rich medium mudstones (MF6); the

three most proximal (shallowest) microfacies identified.

Bioturbation intensities (% reworking, blue bars in Figure 2.17) appear highest
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in regressive cycles, and relatively low in transgressive cycles. However, there
is no obvious trends within transgressive or regressive cycles themselves.
Ichnofossil diversity also does not appear to have any significant trends

associated with T-R cycles (yellow dots, Figure 2.17).
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2.6.5 Mechanisms of Organic Carbon Preservation

Source rocks, such as the Canol Formation and Bluefish Member of the HRG,
are characterized by their elevated preserved total organic carbon content
(in these cases TOCs ranging from 1.5% to 9.2%) (Kabanov & Gouwy, 2017).
It is generally accepted that the high rates of organic matter preservation
in organic-rich mudstones are the result of slow hemipelagic suspension
settling paired with persistently anoxic/euxinic bottom waters (e.g. Katz,
2005; Ghadeer & Macquaker, 2012). Low sediment accumulation rates
prevent clastic dilution of organic matter and poorly oxygenated waters
inhibit oxidative decay of settling organic carbon. When combined, these
conditions create ideal settings for increased organic matter accumulation and

preservation within sediments.

Horn River Group source rocks are compositionally more heterogenous and
depositionally more dynamic than previously understood. It therefore stands
that the mechanisms of organic-matter preservation within the HRG may also
have been more dynamic than organic-matter simply accumulating under
poorly oxygenated stagnant bottom waters, with low rates of detrital sediment
input. In fact, TOC analyses of HRG microfacies reveals that the highest rates
of TOC preservation occur in the most proximal coarsest-grained microfacies
having the highest bioturbation intensities, and steadily decline basinward
(Figure 2.18 and 14). Although TOC values fluctuate within individual
microfacies, there is a clear trend between increasing TOC and increasing
proximity to the paleoshoreline. The very same trend was identified by
Borcovsky et al. (2017) in the organic-rich mudstone Bakken Formation.
The relationship between proximity and TOC in the Bakken Formation was

attributed, in part, to episodic sediment deposition acting to enhance organic
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matter preservation. The interpreted mechanisms behind the TOC trends in

the HRG are discussed hereunder.

Sedimentation in the HRG is interpreted to be dominated by episodic storm
generated sedimentation, where increased influx of detrital sediment and
organic matter leads to increased sediment accumulation and subsequent
burial. Many studies have suggested that increased sedimentation is one of the
key mechanisms in organic matter preservation, as it shelters organic carbon
from oxidants within the water column and pore waters, as well as from
bacterial degradation (Egenhoff & Fishman, 2013; Ghadeer & Macquaker,
2012; Coleman, Curtis, & Irwin, 1979; Ibach, 1982; Bohacs et al., 2005). This
process may also act to reduce the exposure time of organic matter to oxidants
(Coleman et al., 1979). Sedimentation rates up to 5-10 cm/1000 years have
been postulated to have the best ability to preserve organic matter, whereas
depositional rates >5-10 cm/1000 years have declining TOCs as a result of
clastic dilution (Katz, 2005; Betts & Holland, 1991). The sedimentation rate
for the proposed shelfal position of the HRG was likely lower, not exceeding
5 cm/1000 years (e.g. Lesueur, Jouanneau, Boust, Tastet, & Weber, 2001).
This would allow for increased organic matter preservation without clastic
dilution (Betts & Holland, 1991). The sediments of the Bell Creek Member
have the lowest TOC content, and are thought to have experienced increased
depositional rates around 15-23 cm/1000 years (Al-Aasm, Muir, & Morad,
1992). Increased sedimentation rates may have led to clastic dilution and lower
TOC values. In addition, the relatively low TOC values for the Bell Creek
Member may also be the result of the member being composed dominantly
of the intraclast-rich microfacies (MF8). Lower TOC values associated with
the intraclast-rich microfacies (MF8) is expected, as significant volumes of the

sediment are composed of organic-poor intraclasts (>30%) which would result
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in a 30% decline in TOCY% when compared to other microfacies.

Ichnological analyses reveal that many of the microfacies display
highly variable rates of biogenic reworking, ranging from 0 - 100%, by
deposit-feeding meiofauna. The presence of such burrowing indicates that
bottom waters were not fully anoxic, but rather intensely dysoxic (straddling
the anoxic-dysoxic boundary). Micropaleontologic observation showed
that the occurrence of benthic microfossils is seemingly low. These, when
combined, disprove persistent bottom water anoxia as the sole mechanism
for organic matter preservation within these organic rich rocks. Similar
conclusions have been reached by Egenhoff and Fishman (2013) and Ghadeer
and Macquaker (2012) regarding TOC preservation in other organic rich

mudstones.

2.6.6 Microbioturbation Potential as a Paleo-redox Proxy

The availability of high-quality cored data from Hare Indian and Canol
formations presents an opportunity to study how trace fossil morphology,
abundance, diversity, and other associated characteristics reflect low-oxygen
depositional settings, and how these oxygen-related traits can be applied to
other fine-grained reservoirs in hopes of estimating extents of depositional
oxygenation. Previous attempts at using ichnological characteristics as
paleoredox proxies have resulted in the identification of four separate
biofacies that are inherently linked to dissolved oxygen content of the bottom
waters (aerobic, dysaerobic, anaerobic, and anoxic) (Rhoads & Morse, 1971;
Byers, 1977). The quantitative boundaries of available dissolved oxygen
(DO2) for each biofacies are as follows: >1.0 mL/L = aerobic (oxic), 0.1 — 1.0
mL/L = dysaerobic (dysoxic), 0.0 - 0.1 mL/L = anerobic (dysoxic), and 0.0
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Figure 2.18: Distribution of TOCY% within each microfacies (MF). No TOC data avail-
able for MF1 (radiolarian-rich fMs).

mL/L anoxic (Rhoads & Morse, 1971; Byers, 1977). The general consensus is
that with declining rates of DOZ2, infaunal organism body size, ichnogenera
diversity, depth of burrow penetration, and bioturbation intensity all decline
(Bromley, 1996; Gingras et al., 2011; Savrda & Bottjer, 1984; Bromley & Ekdale,
1984; Savrda & Bottjer, 1987; Rhoads & Morse, 1971; Byers, 1977; Rhoads,
1975; Savrda & Bottjer, 1986; Bottjer & Savrda, 1990).These previous studies
were focused on macroscopic features (e.g. macrofauna and/or macroscopic
burrows), have utilized tiering or burrow cross cutting relationships, depth of

burrow penetration, and burrow size to elucidate relative paleo-oxygenation
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(Savrda & Bottjer, 1987, 1986; Ekdale et al., 1984). The smallest burrows
identified within those studies are millimeters to centimeters in diameter,
orders of magnitude larger than the micro-scale burrows identified herein
(maximum burrow diameters of 150 um). The substantial size difference
between the HRG burrows and those of previous studies, combined with the
lack of cross cutting relationships and the purely morphological classification
scheme used in this study makes applying previous ichnological paleoredox

proxies difficult.

These previous studies have also focused on identifying relative
paleo-oxygenation curves within the broad dysoxic realm (spanning from

aerobic to anerobic conditions). In this particular study we are focused
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on identifying DO2 contents under very poor oxygen regimes, within the
lower dysoxic realm. The mudstone intervals of the HRG are well-laminated,
pyritic, organic-rich, sparsely fossiliferous sediments that lack any macroscale
biogenic or sedimentary features; characteristics that have dubbed them
anoxic by conventional interpretation (Muir, 1988; Dixon, 1984; Pyle et
al., 2014; Kabanov et al,, 2020). As previously mentioned, microscopic
bioturbation in the HRG indicates at least some level of available dissolved
oxygen in bottom waters and sediment pore waters during most of the
mudstone deposition, but the low diversity suite and extremely small burrow
sizes indicate such oxygen levels were likely straddling the dysoxic-anoxic

transition zone.

The challenge lies in identifying the maximum DO2 concentrations available
during deposition. The lower limit of identified living infaunal metazoans
in modern day oxygen restricted basins (e.g. the Santa Barbra Basin) was
originally taken by Rhoads and Morse (1971) to fall at bottom water dissolved
oxygen levels of 1.0 mL/L, where concentrations <1.0 mL/L are devoid of
endobenthic organisms (Rhoads & Morse, 1971; Byers, 1977). However, several
authors (e.g. Savrda & Bottjer, 1984; Bottjer & Savrda, 1990) have described
benthic meiofauna below the 0.1 mL/L anaerobic-dysaerobic transition
zone. As well, the previous oxygenation studies have proposed several
lower limit values of DO2 necessary to support benthic carbonate shelled
organisms. Rhoads and Morse (1971) and Byers (1977) set this level at 1.0 mL/L,
Thompson et al., (1985) set it at 0.3 mL/L, and Savrda et al., (1984) noted
small shelly fauna down to the dysaerobic — anerobic transition zone of 0.1
mL/L. Considering these oxygen thresholds were identified for macroscopic
biota, the microscopic organisms in this study likely have lower DO2

thresholds. SMall macrofauna and meiofaunal organisms have lower oxygen
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requirements than larger macrofauna, owing to their small body size (Giere,
1993; Grego, Riedel, Stachowitsch, & De Troch, 2014). The smaller body size
leads to greater surface area to volume ratios (SA:V), allowing them to diffuse
more oxygen across their membranes, when compared to larger benthos with
significantly smaller SA:Vs (Giere, 1993). The lower oxygen requirements
for meiofauna and small macrofauna makes them more resilient to survival
in dysoxic sediments. However, the lack of any identified in-situ benthic
carbonate shelled organisms in the HRG (the identified tentaculitid shells are
interpreted to be pelagic) means that by conservative estimate, using the lower
limit put forth by Savrda et al., (1984), bottom water oxygen contents within
the HRG likely never exceeded 0.1 mL/L. Consequently, the range of bottom
water oxygenations during deposition of the HRG mudstones was constrained

to the anerobic biofacies (0.0 — 0.1 mL/L).

There is a limited assortment of microfossils identified within HRG intervals
(Fig. 5), and their size, abundance, and diversity are extremely low. The
four most prominent microfossils include phosphatic conodonts, calcite
tentaculitids, siliceous radiolarians, and siliceous agglutinated foraminifera.
As previously discussed, living organisms of the first three microfossils listed
are considered to be entirely pelagic, and thus may be taken as evidence of
(at the very least) a semi-oxygenated overlying water column (e.g. Rhoads &
Morse, 1971; Byers, 1977; Savrda & Bottjer, 1984; Thompson, Mullins, Newton,
& Vercoutere, 1985; Kaiho, 1994; Schieber, 2009). Agglutinated foraminifera,
however, are taken as benthic sediment dwelling organisms, and thus, provide
further insights into the bottom water chemistry during the deposition of
these units (Schieber, 2009). Again, Dashtgard et al. (2015) and Dashtgard
and MacEachern (2016) showed that modern-day and ancient unbioturbated

shelfal muds, which would by conventional interpretation be deemed anoxic,
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may actually record only slightly reduced oxygenation (70% DO2 saturation).
Hence, the identification of these benthic agglutinated foraminifera provide a
further constraint on the paleo-oxygenation window for the HRG sediments.
Under conditions of only slightly reduced oxygenation, which can preclude
sediment colonization by burrowing metazoan macrofauna, one would
expect to find a diverse assemblage of benthic foraminifera (Dashtgard &
MacEachern, 2016; Dashtgard, Snedden, & MacEachern, 2015). The low
diversity (only siliceous agglutinated benthic foraminifera were identified,
using the methodology put forth by Schieber (2009)) and occurrence (occur
as rare, isolated specimens, and are identified in a maximum of 26% of thin
sections from a single microfacies), strengthens the interpretation that the
bottom waters during the deposition of the HRG sediments were severely
dysoxic. In fact, benthic foraminifer trends parallel that of the oxygen
interpretations made for each microfacies, where identified foraminifers
increase in percent abundance from MF1 through MF6 (Fig. 5). No
agglutinated foraminifera tests were identified in MF7 and MF8, possibly a
consequence of heightened depositional energies, precluding the burrowing
of such organisms. Further constraints can be placed on paleo-bottom-water
oxygenation using foraminiferal micropaleontologic data, by employing
techniques put forth by Kaiho in 1994. Applying the ‘dysoxic indicators’
(thin walls, no ornamentation, sizes <500 pm) for calcareous foraminifera to
the siliceous agglutinated forms identified in the HRG intervals, pore water
dissolved oxygen contents can be constrained, again, to a maximum of 0.1-0.3

ml/1.

Looking at bioturbation intensities alone and considering that these
sediments represent rapid and episodic storm generated deposition, one

might feel that the low degrees of bioturbation reflect the frequency of
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sediment emplacement rather than an extremely low availability of dissolved
oxygen. To combat this notion, one must consider all biogenic attributes
together, such as the diminutive body size of the bioturbating organisms,
reduction in diversity and bioturbation intensity, and the interpreted trace
fossil ethology. Organism diminution is as a rule almost always associated with
enhanced chemical stress, be that salinity or oxygenation (Gingras et al., 2011;
Rhoads & Morse, 1971); in the case of the HRG mudstones this is oxygenation.
Both reduction in diversity and bioturbation intensity are also considered to
be good indicators of dysoxic marine conditions (Bromley, 1996; Gingras et
al., 2011; Savrda & Bottjer, 1984; Bromley & Ekdale, 1984; Savrda & Bottjer,
1987; Rhoads & Morse, 1971; Byers, 1977; Rhoads, 1975; Savrda & Bottjer,
1986; Bottjer & Savrda, 1990). Ethologically, the absence of fugichnia or
other equilibrichnia generally preclude rapid deposition rates as a cause
for the paucity of burrowing fauna (Gingras et al., 2011). Also, if the high
frequencies of sediment emplacement was the dominant dictator on burrow
attributes, one may expect to see a top-down or “lam-scram” style of bed
colonization, which again, is not the case with HRG mudstones. Furthermore,
considering that the diminutive trace fossils crosscut multiple bed boundaries
(e.g. Figure 2.13B and C), and being that these episodically deposited units
are sub-millimeter thicknesses, it is unlikely that these rapid sedimentation
events were able to stop even the most diminutive of burrowing organisms.
In addition, evidence for microbioturbation even in the most depositionally
energetic and thickest-bedded microfacies (MF6) disregards the notion that
high sedimentation rates were dominantly responsible for the low degrees of

bioturbation.
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Comparison to Geochemical Paleoredox Proxies

Bulk composition (ppm concentrations) and enrichment factors of the redox
sensitive trace metals vanadium (V) and molybdenum (Mo) are widely used
as geochemical proxies for anoxic and euxinic conditions during deposition
of organic rich mudstones, respectively (Tribovillard et al., 2006; Scott &
Lyons, 2012; Dahl et al., 2013; Tinnin & Darmaoen, 2016). The processes
that result in the enrichment of V within sediments occur primarily under
oxygen-depleted conditions, whereas Mo enrichment occurs in bottom
waters containing H2S. These trace metals are delivered to the sediments
in a reduced state through organic acid complexation, precipitated as
oxy-hydroxides, and solid-solution transformation via authigenic sulfides

(Algeo & Maynard, 2004).

Contrary to expectation, there is no strong relationship between bioturbation
(size diversity index and bioturbation intensity) and redox proxies (Figure 2.20
and 2.21). However, the absence of bioturbation and a paucity of benthic
foraminifera equivocally helps to identify sediments deposited in anoxic
bottom waters. The lack of correlation between the geochemical proxies
and trace fossil indicators may be due to the wealth of factors other than
available oxygen or the presence of H2S that act to influence V and Mo
concentrations within sediment during deposition (e.g. sedimentation rates,
position of the redox interface, and the presence of a depleted water column)
(Tribovillard et al., 2006; Scott & Lyons, 2012; Morford, Emerson, Breckel,
& Kim, 2005). As well, a temporal disconnect between the two data sets
may have obscured any expected relationship. Bioturbation represents in situ
instantaneous reflections of sediment and pore water chemistry at the time of

burrowing, whereas diffusion of elements through pore waters can affect the
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distributions of elements over time (Scott & Lyons, 2012).
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Figure 2.20: Trace fossil size-diversity index (SDI) vs Mo and V enrichment factors
(EF) and bulk compositions (ppm).

2.7 Conclusions

The organic-rich mudstone intervals of Middle to Late Devonian Hare Indian
and Canol formations contain eight distinct microfacies. These mudstone
units, which appear plane parallel laminated in hand sample, represent
dynamic sedimentation. Identified microfacies can be broken down into four
distinct distinct depositional mechanism associations: 1) pelagic suspension
settling, 2) plug-like dominated, 3) combined low density turbidites (surge
and surge-like flows), plug-like flows, and debrites, and 4) proximal plug-like

flows. Pelagic suspension settling dominated in distal quiet waters out of
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Figure 2.21: Bioturbation intensity (BI) vs Mo and V enrichment factors (EF) and bulk
compositions (ppm).

the reach of persistent storm influence. Debrites, plug-like flows, and low
density turbidite current processes represent a continuum, where storm
influence is the dominant driver in sediment delivery. The distribution of
organic matter suggests that persistent anoxia was not the dominant factor
in TOC preservation, but rather a combination of heightened sedimentation,
rapid burial, and possible elevated rates of primary production. Identified
endobenthic microbioturbation throughout the Horn River Group mudstone
successions indicates that sediment pore waters were at least periodically
partially oxygenated.  Petrographic ichnological and sedimentological
analysis integrated with molybdenum and vanadium paleoredox proxies

indicate that dissolved oxygen content of the sediment pore waters likely did
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not exceed 0.1 mL/L.

The depositional model, methods of TOC preservation, and
paleo-oxygenation interpretations presented in this study are in contrast
to previous assumptions of environmental conditions during accumulation
of the Horn River Group, and of organic-rich mudstones in general.
Discrepancies between the interpretations presented herein and conclusions
from past studies highlight the importance of a combined micro-ichnological,
sedimentological, and geochemical analysis of fine-grained organic rich
deposits lest they be mischaracterized. This may spark the need for
petrographic re-evaluation of the depositional mechanisms responsible for or

influencing the deposition of other organic rich mudstones successions.
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Chapter 3

Conclusions and Summary

This study has shed light on both the physical and chemical conditions
at and just below the sediment-water interface during deposition of the
organic-rich mudstones of the Horn River Group. Results of this study are
in-line with the modern view on depositional controls of marine fine-grained
sediments, resulting in a preferred interpretation of a partially oxygenated

and energetically dynamic depositional setting.

3.1 Ichnology and Paleo-oxygenation

Petrographic analysis of the organic-rich mudstones in this study have
revealed the existence of several credible morphologically distinct
microscopic ichnofossil types. Identification of microbioturbation in
these mudstones has an appreciable impact on the interpretations of the
physico-chemical stresses at play during deposition of these fine-grained
sediments. Sediment-penetrating (infaunal) organisms require dissolved
oxygen for respiration; therefore, their presence in sediments indicates some
level of available dissolved oxygen at the time of burrow construction. The
organic-rich mudstones of the Horn River Group have historically been
thought to represent deposition under anoxic and/or euxinic bottom waters

(Kabanov et al.,, 2020; Muir, 1988; Tassonyi, 1969). The identification of
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microbioturbation within these intervals is a direct contradiction to these
previous interpretations; and whereby the updated interpretation reflects
deposition under at least periodically partially oxygenated (severely dysoxic)
bottom waters. Petrographic ichnological and sedimentological analysis
integrated with molybdenum and vanadium paleoredox proxies indicate that
dissolved oxygen content of the sediment pore waters likely did not exceed

0.1mL/L.

Applying the proposed criteria for the identification of microbioturbation to
other “anoxic” organic-rich mudstones may spark similar re-evaluations of

depositional oxygenation interpretations.

3.2 Sediment Transport Mechanisms

The organic-rich mudstone intervals of Middle to Late Devonian Hare Indian
and Canol Formations contain eight distinct microfacies. These mudstone
units, which appear plane parallel laminated in hand sample, represent
dynamic sedimentation. Identified microfacies can be broken down into four
distinct primary sedimentation mechanisms: 1) pelagic suspension settling,
2) plug-like flow dominated, 3) combined low density turbidites (surge and
surge-like flows), plug-like flows, and debrites, and 4) proximal plug-like

flows.

Pelagic suspension settling is represented by siliceous radiolarian-rich
fine-grained mudstones and is interpreted to have dominated distal quiet
waters out of the reach of persistent storm influence. Plug-like flow
is represented by homogenous-looking thin (<mm) fine-grained beds,

interpreted to form from the distal ends of cohesive sediment-gravity
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flows, where grain-grain interaction prevented selective settling of larger
grains (Baas et al, 2009; Sumner et al., 2009). These plug-like flows
dominated in both proximal and distal settings, with proximal expressions
containing abundant intraclasts and distal expressions dominated by
dispersed clay with some incorporated detrital silt. Surge and surge-like
flows represent low-density-turbidite sediment transportation mechanisms,
whereby grain-grain interaction is nil and selective suspension settling of
larger grains leads to deposition of thin (<mm) normally graded beds
(Mulder & Alexander, 2001). Surge and surge-like flows are present in
almost all identified microfacies but dominated the intermediately located
fine mudstones. Debrites are represented by mass jumbles of randomly
oriented bi-modal coarse-grained allochems (tentaculitids) dispersed within
an argillaceous matrix. Debrites were only identified in proximal microfacies.
Nonetheless, debrites, plug-like flows, and low density turbidite processes
represent a continuum where storm influence is the dominant driver in

sediment delivery.

3.3 Organic Matter Preservation

Analysis of total organic carbon content against individual microfacies and
bioturbation intensities shows, contrary to expectation, that TOC values
increase with both increasing depositional proximity and bioturbation
intensity.  This relationship suggests that persistent anoxia was not
the dominant factor in TOC preservation, but rather a combination of
heightened sedimentation, rapid burial, and possible elevated rates of

primary production.
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3.4 Future Work

3.4.1 Suggested Improvements for Methods

The methods used in this study may be improved by 1) collecting thin section
samples at regular intervals, as opposed to only at areas of interest, 2) having
all thin sections prepared in the same style (thin sections in this study were
of variable thicknesses with some being wedge cut, and some were stained
while others were not), and 3) having geochemical analyses performed on the
rock samples cut for thin section preparation. Improving the vertical coverage
of thin sections and having direct comparisons to geochemical data would
allow for a more comprehensive analysis of microfacies changes through core
elevations, and how changes may be related to sea level or provenance trends

identified through geochemical analysis (e.g. chemostratigraphy).

3.4.2 Potential of Approach

The results of this study have shown that the Hare Indian and Canol
Formations have more complex depositional and oxygenation histories than
previously understood. The techniques and ideas presented herein may have
merit in future analysis of other fine-grained reservoirs, in helping to identify
subtle indicators of the physical and chemical conditions present during
deposition. However, this study opens up many more questions regarding

the validity and importance of petrographic microfacies analysis.

A comprehensive integration of the proposed microfacies depositional
settings with sequence stratigraphic interpretations and geochemical trends
may help to assess the legitimacy of the proximal to distal microfacies

relationships proposed herein. Future work may also entail comparisons
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of the microfacies identified within this study to those in other organic
rich mudstones, to see if such microfacies are common occurrences or
if they are localized to the Horn River Group. Neoichnological studies
of microbioturbation in fine-grained sediments with variable pore water
dissolved oxygen contents may be a valuable way to comprehensively assess
the potential of microbioturbation as a paleo-redox proxy in mudstones.
Future investigations of microbioturbation within organic rich mudstones
may evaluate how microscopic burrows alter the reservoir properties of
unconventional reservoirs. Potential studies may attempt answering such
question as: 1) can micro burrows act as fluid conduits or migration pathways
within fine-grained reservoirs, 2) how (if at all) does microbioturbation affect
fracture propagation within reservoirs, and how does this change with varying
bioturbation intensities (unbioturbated vs. biogenically homogenized), and
3) does the positive relationship between bioturbation intensity and TOC
preservation hold true in other organic-rich mudstone formations? If the
microfacies identified within this study are found to be common occurrences
in other organic rich mudstones, if their proximal to distal interpretations can
be validated by integration with other methods (e.g. sequence stratigraphy
and geochemical analysis), and if there is a recurring trend between increasing
proximity and increasing TOC, such microfacies analyses may have merit in
identifying potential “sweet spots” in other fine-grained reservoirs. Additional
future directions in the field mudstone microfacies analysis may include the
development of agreed upon microfacies standards and possible petrographic
facies models, similar to those for carbonates and coarse-grained clastic

deposits.

Overall, petrographic microfacies analysis is of great importance when

assessing fine grained deposits. Petrographic analysis sheds light on
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compositional, textural, and fabric characteristics that are very likely to go
unidentified during macro-scale assessment techniques, such as lithofacies
analysis and geochemical analysis. Although, there is no debate that the
integration of as many data sets as possible will ultimately lead to the most
complete interpretations of the depositional history and reservoir properties

of organic rich fine-grained rocks.

3.5 Summary

The paleo-oxygenation interpretations, depositional model, and methods
of TOC preservation presented in this study are in contrast to previous
assumptions of environmental conditions during accumulation of the Horn
River Group, and of organic-rich mudstones in general. Discrepancies
between the interpretations presented herein and conclusions from past
studies highlight the importance of a combined micro-ichnological,
sedimentological, and geochemical analysis of fine-grained organic rich
deposits lest they be mischaracterized. This may spark the need for
petrographic re-evaluation of the depositional mechanisms responsible for or

influencing the deposition of other organic rich mudstones successions.
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Husky Little Bear N-09 Core, Petrographic, and XRF Data
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Figure A1l: Digital log of microfacies and bioturbation data plotted along side | | g’
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Husky Little Bear H-64 Petrographic and

XRF Data
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Figure A3: Digital log of microfacies and bioturbation data
plotted along side geochemical paleoredox proxies for the H-64

core.
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MGM Shell East Mackay I-78 Core, Petrographic, and XRF

Data
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Figure A2: Digital log of microfacies and bioturbation data plotted alongside
Gamma ray, TOC, and geochemical paleoredox proxies for the I-78 core.
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ConocoPhillips Mirror Lake
N-20 Petrographic Data
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Figure A4: Digital log of microfacies and
bioturbation data for the N-20 core.
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Appendix B

Thin Section Descriptions

# of Thin Notes
Sections
Husky Little Bear 65 Most thin sections are wedge cut
N-09 (variable thickness)
Husky Little Bear 39
H-64
MGM Shell East 31
Mackay 1-78
ConocoPhillips 46 Thin sections are thick cut and appear
Mirror Lake N-20 quite dark — makes identification of
structures difficult
ConocoPhillips 45 Thin sections are thick cut and appear
Loon Creek 0-06 quite dark — makes identification of
structures difficult
Term Abbreviation
Thin Section TS
Microfacies MF
Ichnology Sinuous Tunnels ST
Tubular Unlined Tunnels TUL
Tubular Lined Tunnels TL
Sedimentology Organic Matter oM
Elongate Organic EOM/EOD
Matter/Detritus
Intraclast IC
Staining Alizarin Red AZR
Potassium Ferricyanide PF
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Appendix C

Petrographic Atlas - Sedimento-
logical and Ichnological Features

Present in the Horn River Group
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Bioturbation

Micro-burrows
Claystones and mudstones that appear unbioturbated at the macroscopic level can
(in the case of the Horn River Group) show evidence of microscopic bioturbation

ameter burrows <Imm).

-

(di

H-64 1214.64 m, Photomicrograph
of an intensely micro-burrowed
mudstone (BI% = >70). Traces are
dominated by sinuous tunnels..

¥ Outlined burrows from upper
photo.
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Ichnofossil Types

Inclined to vertical traces with straight walls and faint organized internal backfill

Inclined-to- * No apparent trace lining
Vertical Unlined | o Insediments with higher proportion ofsand-sized grains, the grains are shafted
Meniscate- towards the outer edges of the traces

Backfilled Trace | ® Often can be seen cross cutting horizontal laminae
Modal size: 20pum, maximum size: 60pum

(A) inclined-to-vertical unlined meniscate backfilled trace (white arrow) (N-09 1692.58 m). (B)
Tracing of the burrowin (A).

TRACE TYPE CHARACTERISTICS

Occur in thin lenticular fine-grained lighter-coloured laminae
Horizontal laminations disrupted and pulled downwards

No organized fill or burrow linings

Modal size: 50pum, Maximum size: 100um

fugichnia

(A) Fugichnia(white arrow) next to a conodont fragment (right) (N-09 1692.58 m). (B) Tracing of
fugichniain (A).
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TRACE TYPE CHARACTERISTICS

e Lined with thin dark layer of clay or compressed organic matter originating from the
host sediment

e Liningscan be preferentially pyritized
Tubular Lined ¢ Multi-linings are common
Tunnels ¢ Burrowsare actively filled
.

Tunnel fill is either uniform silt-sized grains OR homogenized clay, possibly
reflecting cuts through different portions of active meniscate backfill
e Modal size: 75pm, maximum size: 100um

(A) Cross section of a concentrically lined horizontal tunnel (white arrow) (N-09 1703.54 m). (B)
Tracing of the concentric linings in (A). (C) Cross section of a tubular lined burrow (white arrow)
(N-09 1703.54 m). (D) Tracing of burrow in (C).
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TRACE TYPE CHARACTERISTICS

o Fill differs from surrounding matrix in composition and colour, more homogenized
and finer-grained

e Can be either lighter or darker coloured than surrounding matrix

e Larger grains shafted to outer edges of traces

o Modalsize: 50pm, maximum size: 120pm

Tubular Unlined
Tunnels

8
=
2E
E
5]
&
=
80
g
=
=]
5]
aa]

Bedding Parallel

(A) Longitudinal slice (top arrow) and cross section (bottom arrow) through two unlined tunnel
burrows (N-09 1670.87 m). (B) Tracings of burrow in (A). (C) Longitudinal cut through a tubular
unlined tunnel (Bedding plane view) (H-64 1232.84 m). (D) Tracing of burrow in (C).

TRACE TYPE CHARACTERISTICS

e Uniform-diameter unbranching traces

e Most easily spotted in areas with higher silt-sized grains, where the grains become
vertically aligned along trace margins

e Often appear darker than surrounding sediment, and commonly contain fine-grained
framboidal pyrite

e Modal size: 20pm, maximum size: 50pm

Sinuous Tunnels

(Next Page) Photomicrographs of sinuous trails within HRG mudstones. (A) Well-defined sinuous
trail (white arrow) with clear clay fill. (B) Outline of the sinuous trace in (A). (C) Several sinuous
trails within a silt-bearing claystone. (D) Outline of traces in (C). (E) sinuous trails along a bedding
plane in a silt-bearing claystone. Arrow points to an obvious relatively straight trail. (F) outline of
the traces in (E). (G) Sinuous trail (arrow) cross cutting an intraclast (lighter coloured diffuse
structure) along a bedding plane. (H) outline of traces in (G).
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Bedding Perpendicular

Bedding Parallel
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Components

There are three components that make up fine-grained sedimentary rocks: detrital,
biogenic and diagenetic. A fourth component type are the “composite grains”,
which consist of two or more of the three dominant components.

Detrital

Clay Lithograins

Amalgamation of clay platelets through either flocculation in suspension or re-
suspension of previously deposited semi-consolidated clay.

1-78 1827.40 m, SEM BSE
photograph of a mudstone with
detrital clay lithograins (dashed
yellow outlines), detrital silt-sized
quartz (intermediate interference
colours (n), smooth appearance),
organic matter (black), and pyrite
(brightn).

[-78 1827.40 m, Close-up SEM
BSE photographofa clay
lithograins (CL) surrounded by
detrital quartz silt grains (Q).
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Biogenic

Biogenic components in the HRG are dominantly represented as body fossils of
micro-organisms.

145

Radiolarians

Siliceous zooplankton. Indicate the
presence of an overlying
oxygenated water column.

N-09 1966.16 m, Canol Formation,
elevation view thin section.

Tentaculitids

Conical pelagic calcite-shelled
organisms, especially common in
Devonian mudstones (Filipiak and
Jarzynka, 2009). Tentaculitids are
present throughout the entire HRG
elevation, but are especially
concentrated in the Bluefish
Member. Indicate the presence of
an overlying oxygenated water
column.

I-78 1838.00m, Bell Creek Member,
bedding plane thin section.

Conodonts

Phosphatic microfossils common
in the Canol Fm. Indicate an
overlying oxygenated water
column.

I-78 1858.00m, Canol Formation, bedding
plane thin section.



Microbial Mats

Variable thickness carbonaceous beds and fragments with varying amounts of
detrital grains (incorporated clay and silt). The presence of microbial mats
indicates a quiet energy depositional setting (no erosive bottom currents) and low
amounts of clastic dilution.

microbially stabilized

mud surface "

“tear in mat

WNM.
y mat

mat layer

— | claylsilt layers carbonaceous layers

with crinkly laminae

kN R e P S AR A N
A) Wispy accumulation of elongate organic matter. Represents possible sediment rich microbial mat
(N-09 1796.05 m). B) Carbonaceous laminae with detrital quartz silt inclusions, represents thin
microbial mat (N-09. 1725.83 m). C) Crenulated carbonaceous microbial mat (N-09 1768.93 m). D)
Microbial mat encased radiolarite deposit. Possibly representing a “rolled up” and transported mat
fragment encapsulating an overlying radiolarite deposit, that was re-suspended and transported during
erosive storm currents (N-09 1725.83 m). E) Microbial mat rip up fragment. Likely generated during
erosive bottom currents, and encased in a thin clay-dominated storm bed (N-09 1710.08 m). F)
Example diagram of microbial mat features. Shows a nice illustration of the “rolled up” mat feature
in (D) (Schieber, 1999).
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Diagenetic

Discontinuous Horizontal
Pyritization

Thin discontinuous horizontal
pyritization. Generally formed
from pyrite framboids, rarely made
up of euhedral pyrite.

These features may represent
diagenetic alteration of remnant
bedding surfaces under poorly
oxygenated waters, or pyritization
of thin microbial mats.

[-78 1860.16 m, Thin section scan showing
abundant discontinuous pyritization of
possible remnant bedding planes.

[-78 1945.69 m, Discontinuous pyrite
stringer in a fossiliferous matrix.
Deformation by fossil fragment suggests
very early diagenetic pyritization.

Zoomed in image of deformation in above
photo.
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Dolomitization

Diagenetic dolomitization can be thombic, microcrystalline, or replacement of
microbody fossils (e.g. replacement of siliceous radiolarians or intragranular
cementation of tentaculitid cavities). Ferroan dolomite, formed during early
diagenesis may be a good indicator of poorly oxygenated bottom waters (Raiswell,
1971; Schieber, 1999; Hickey and Henk, 2007; Macquacker et al., 2007; Aplin and
Macquaker, 2011)

N-09 1813.76 m, Abundant thombic
diagenetic dolomite. Ferroan composition
indicated by blue staining.

N-09 1749.21 m, Abundant
microcrystalline diagenetic dolomite.
Ferroan composition indicated by blue
staining.

H-64 1250.52 m, Calcite (pink) and
dolomite (blue) fracture infill ofa
brecciated rhombically dolomitized (silt-
LT, sized blue stained crystals) mudstone.
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Composite Grains

Composite grains represent the part of the matrix made up of aggregates of
detrital, biogenic and/or diagenetic components. Several composite grain types
exist within the HRG.

Phytodetritus

Aggregates of organic matter, detrital sediment, and micro-organism tests. Such
phytodetritus is generated in the overlying water column and delivered to the
sediment surface through suspension settling or re-transportation in low density
flows (e.g. surge-like flows).

N-09 1722.36 m, Elongate
phytodetritus (arrows) in clay and silt
matrix.

Rafted Silt Aggregates

Formed by entrapment of detrital silt within the EPS membranes of benthic
microbial mats or cyanobacteria, which subsequently detach from the seafloor
creating a buoyantsilt raft (Olsen et al., 1978; Schieber, 1999; Schieber, 2007).

50 pm

[-78 1835.00 m, Bedding plane N-09 1734.54 m, Cross section through asilt raft.
view of several rafted silt Shows amalgamation of distinctindividual quartz
aggregates. grains in an otherwise clay-rich matrix.
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Intrabasinal Rip-up Clasts

Intrabasinal rip-up clasts are horizontal elongate lenticular, generally lighter-in-
colour, coloured lenticular features composed of dominantly clay; in some
instances they are silt-bearing. Clasts are generally organic-poor and lack pyrite.
These clasts form through up-dip erosion and bed-load transport of previously
deposited semi-consolidated water-rich clay and mud clasts, and adopt their
lenticular shape as a result of compaction (Schieber et al., 2010).

N-09 1812.72 m, Abundant intraclasts
throughout matrix, showing clear
horizontal orientation. Dark horizontal
2 streaks are organic matter.

POl 8 N-09 1703.64 m, Close up image of a silt-
I bcaring intraclasts showing OM and pyrite
poor composition.

I-78 1822.00 m, Bedding plane view of a
silt-bearing intraclast (black arrow) and
# clay intraclast (white arrow).
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Scanning Electron Microprobe Back Scatter Electron (SEM BSE) photographs of intrabasinal rip
up clasts. A) Image showing a thing layer of intraclasts near center (intraclasts are outline in
dashed lines). Intraclasts show homogenized internal structure when compared to the clear
horizontal structure of the surrounding matrix and OM. Matrix is made up of clay (intermediate
interference colours - n), quartz silt (smooth intermediate n), organic matter (black) and pyrite
framboids (bright n). B) Image showing contact (dashed line) between an intraclast (below) and the
surrounding matrix (above). C) image showing internal homogenization of an intraclast. No
apparent internal structure or organization.
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Sedimentary Structures

There are a variety of sedimentary structures present in the HRG at the
petrographic level that have gone unnoticed at the macroscopic level. These
structures provide valuable evidence for the conditions during deposition of these
mudstones.

Depositional Structures

Unidirectional Current Ripples

Silt laminae show low angle inclines and downlap the lower beds. The very low
angle relief of the forsets can be attributed to post depositional dewatering and
compaction of the water-rich clay matrix portion (Schieber et al., 2007). These
structures are good evidence for bottom water currents and bedload traction
transport of detrital components.

A) Photomicrographshowing a cross section of a unidirectional current ripple (flow is from right to
left). B) Same photo as A), with forsets outlined in dashed yellow.
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Discontinuous Silt Laminae

Thin silt laminae may form from two different processes: 1) increased bottom
current energy resulting in deposits of coarser-grained silt, or 2) high energy
erosive bottom currents resulting in winnowing and deposition of thin silt
accumulations.

1000 pm:

Photomicrograph showing stacked winnowed shell lags (fossil shell material is made of calcite
tentaculitid shells). Clay beds (dark beds) represent a return to fair weather conditions.

Wave Enhanced Sediment Gravity Flows (WESGF)

Gravity-driven sediment flows where energy is provided by agitation from orbital
motion of surface waves (Maquaker et al., 2010). WESGF’s have a three-part
layering: A) erosion and deposition, B) laminar sediment gravity flow, C) waning
flow portion. Lack of soft sediment deformation beneath the bases of the A portion
(silt beds) indicates that the bottom current removed the upper water-rich portion
of the sediment and scoured into de-watered pre-compacted material. (also evident
by the truncation of thin silt beds below)

- 1000 pm -

A) Photomicrographofa ave enhance sediment gvi flow (WESGF). B) Same photo as ),
depositional surfaces have been outlined to show three-part layering (A, B, C described above).
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Plug-like Flows (Low Density Turbidites)

Plug-like flows represent deposition from fine-grained cohesive sediment gravity
flows travelling along the distal sediment-water interface (Baas et al., 2009). The
cohesive nature of the flows results in variable thickness (but thin, <1 mm)
massive-appearing accumulations of clay and silt matrix, as grain-grain interaction
is too high to allow preferential settling of the coarser grained fraction (e.g. silt).

-~ o

N-09 1706.58 m, Upper: Photomicrograph of massive-appearing plug-like flow deposit bound by
intraclast rich beds. Lower: zoomed in photo of above. Relatively large black feature is a pyrite
fragment.

154



Normal Grading

Normally graded beds are present through the HRG. They can be composed of
declining abundances of intraclasts, elongate organic matter (phytodetritus), silt, or
bioclastic debris. Such beds can be deposited from the low density turbidite surge
and surge-like flows. These flows are non-cohesive and the lack of grain-grain
contact allows for the preferentially settling of the coarser grained flow fraction
first (Mulder and Alexander, 2001).

* | N-09 1807.35m,
i Photomicrograph
showing stacked
normally graded beds,
fining upwards from
=" intraclastic rich bases
=2 | to clay rich tops.

¢ N-201710.08 m,

{ Photomicrograph

{ showing stacked
normally graded beds,
1 fining upwards from

! phytodetritus and silt
rich bases to clay rich
§ tops.
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Debrites

Variable thickness accumulations of fossil shell debris and clay matrix. The
random dispersal and orientation of fossil fragments within the clay matrix

indicates rapid deposition of a cohesive sediment. Such deposits are common of
debrites.

N-09 1777.48 m, variably dispersed and
oriented calcite-filled tentaculitid
fragments.

I-78 1945.00 m, Bedding plane thin section scan showing random orientation and accumulations of
tentaculitid shells.
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Intraclastic Lags

Thin continuous or discontinuous horizontal accumulations of intraclasts. Indicate
likely bedload traction transport of the more proximally generated intraclasts.

4 1-78 1846.00 m, an oblique-cut bedding
& plane photomicrographof an intraclastic

Photomicrograph showing intraclastic lags. Upper: undulating thickness continuous intraclastic lag
(N-09 1798.67 m). Lower: discontinuous intraclastic lag. Lag dictates an otherwise unidentifiable bed
contact (N-09 1699.77 m).
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Winnowed Shell Lags

Variable thickness accumulations of fossil shell debris. Fossils can be intact or
fragmented. The clay-poor nature of the beds indicates winnowing of the matrix

portion by erosive bottom currents.

158

N-202092.95m,

¢ Photomicrograph showing

stacked winnowed shell
lags (fossil shell material is
made of calcite tentaculitid
shells). Clay beds (dark
beds) represent a return to
fair weather conditions. In
this case the winnowed
beds may represent
winnowed debrites.



Deformation Structures

Soft Sediment Deformation

Soft sediment deformation in the Horn River group is restricted to the Bell Creek
member of the Hare Indian Formation. Deformation was only documented within
the Intraclastic rich claystone microfacies.

100 pm

T o i

H-64 1275.38 m, Photomicrographs showing soft sediment deformation. All photosare from the
same thin section.
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