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Abstract

The use of multiple antennas in wireless systems is a key technology to meet the demand 

for high-speed data transmission with better quality of service (QoS). Unlike wired envi­

ronments, wireless channels constitute a hostile propagation medium suffering from fading 

and interference. Spatial diversity employing independent multiple antennas can combat 

fading and interference effectively. However, in practice, the signals at antennas are often 

correlated, which influences system performance and cannot be ignored in many situations. 

In this dissertation, we provide insights into the effects of antenna correlation on the perfor­

mance of various multiple receiver antenna systems through extensive theoretic analyses.

An exact and unified performance analysis framework for threshold-based hybrid se­

lection/ maximal-ratio combining (T-HS/MRC) over generalized fading channels is pre­

sented. The average symbol error rate (SER) and outage probability in independent fading 

are obtained through the total probability theorem and moment generating function (MGF) 

method.

The exact SER and outage probability for selection combining (SC), hybrid selection/ 

maximal-ratio combining (H-S/MRC), and T-HS/MRC in Nakagami-m fading with a spe­

cific correlation structure are studied by transforming the correlated fading amplitudes into 

a set of independent Gaussian random variables (RVs).

Based on a Green’s approximation method, an efficient approximate error rate analysis 

of H-S/MRC and T-HS/MRC in arbitrarily correlated Nakagami-m fading is proposed for 

positive integer values of fading parameter m. This method allows for different linear 

modulation schemes.

The outage and error rate of cellular systems with maximal ratio combining (MRC) in
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cochannel interference (CCI) and correlated Rayleigh fading are provided when the cor­

relation matrix is equally correlated or has different eigenvalues. The effect of channel 

estimation error on the system performance is examined rigorously.

The maximum number of receiver antennas that can be usefully deployed in a MRC 

diversity system with CCI and correlated Ricean fading is investigated. Three long-term 

output measures and the average bit error rate (BER) are evaluated. A widely applicable 

general rule of thumb, that the performance of a fixed-size antenna array containing the 

maximum number of independent antennas cannot be significantly improved by adding 

more than one additional antenna, is developed.
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SISO Single input single output

SNR Signal-to-noise ratio

sw Switch diversity

T-HS/MRC Threshold-based hybrid selection/maximal-ratio combining

WAN Wide area network

UWB Ultra-wideband

2D Two-dimensional

3D Three-dimensional
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List of Symbols

Symbol Definition

Xn{0, o 2) Central chi-square distribution with n degrees of freedom and

common Gaussian variance o 2 

Xn(s, cr2) Noncentral chi-square distribution with n degrees of freedom,

noncentrality parameter s2 and common Gaussian variance cr2 

<5 (x) Kronecker delta funcion
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y( a , x) Incomplete gamma function

Ye g c  Instantaneous EGC output SNR
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Tnj Ratio of the desired user signal power to the nth interfering
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A Diagonal matrix composed of matrix eigenvalues
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Q, Average power of the fading envelope
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£  Covariance matrix
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[A]T Transpose of matrix A

c„ Complex channel gain vector of the nth user

cb Estimate of the channel gain vector for the desired user Co

C Green’s matrix

C(jU, a 2) Complex Gaussian distribution with mean fi and variance a 2

dn Information bits of the nth user signal

D  Decision variable

Dm, Transmitted data set {d \ ,d 2 , • • • id^,}

ei one specific permutation of the integers {1, ■ • •, N}

Es Transmitted signal energy per symbol

E(y) Expectation of RV y

fy{x) P D F o fR V y

Fy{x) CDF of RV y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



¥(x) Fourier transform of x

hk Complex channel gain of the M i diversity branch

I Identity matrix

Im{z} Imaginary part of z

Iv{x) The vth-order modified Bessel function of the first kind

Jo(x) The zeroth-order Bessel function of the first kind

K Ricean factor

Lc Number of branches to be combined

Lc Average number of branches combined of T-HS/MRC

L ~ \ s ) Inverse Laplace transform

m Nakagami-m fading parameter

N Number of diversity branches available

N0 Power spectral density of AWGN

N, Number of interfering users

N ( n , o 2) Gaussian distribution with mean ju and variance a 2

Po Desired user signal power

Pi Total interference power

Pn Signal power of the nth user signal
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Poutage Outage probability

P (e ,L c =  L) SER of T-HS/MRC when L branches are combined

P{7th,Lc — L) Outage probability of T-HS/MRC when L  branches are combined

G M Q function

Q v f a b ) The vth-order Marcum (^-function

r  Received baseband signal vector

rk Received baseband signal RV of the kih diversity branch

after match-filtering and sampling 

rkit) Received basedband signal of the kth diversity branch

tegc EGC combiner output
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tmrc MRC combiner output

rsc SC combiner output

RCa Correlation matrix of the channel gain vector of the nth user signal

Re{z}  Real part of z

s(t) Complex baseband transmitted signal

Sk Baseband transmitted signal RV of the £th diversity branch

Sn A set of all permutations of the integers {1, • • •, N}

T  Number of the primary antennas

7]y,L A subset of S/y with element e,- satisfying e,-[2] <  e;-[3] <  • • • <  e, [L]

and et[L+ 1] <  ei[L + 2] <  ■ • • <  et[N) 

tr(A) Trace of matrix A

Var(y) Variance of RV y

Wm,lc A subset of S,y with element e,- satisfying e,-[ 1] <  e,[2] <  • ■ • <  e, [Lc

and ei[Lc +  1] <  <?/[Lc +  2] <  • • • <  e,-[V] 

zq Complex AWGN vector

Zk Complex AWGN RV of the &th diversity branch

after match-filtering and sampling 

Zk{t) Baseband additive white Gaussian noise process

of the &th diversity branch
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Chapter 1

Introduction

1.1 Multiple Antenna Systems

Over one hundred years ago, Guglielmo Marconi invented the radiotelegraphy, and the 

radio age began. Today, the rapid progress in radio technology is creating new and im­

proved services at lower cost, which results in increases in air-time usage and the number 

of subscribers, and wireless industry has become a dominant force. From broadcast ra­

dio stations to cellular telephones to wireless Internet, there are more wireless applications 

than ever before. Wireless revenues are currently growing between 20% and 30% each 

year. On the other hand, wireless industry is faced with a number of challenges including 

the limited availability of radio frequency spectrum and a complex time varying wireless 

environment (fading and interference). In addition, the increasing demand for seamless, 

high-speed applications with better quality of service (QoS), such as multimedia wireless 

transmission, etc., requires larger capacity, greater user coverage and lower transmission 

error rate. This makes higher spectral efficiency and better link reliability become two ma­

jor concerns for future broadband wireless systems. As a break-through technique, the use 

of multiple antennas at the receiver and/or the transmitter in the system, namely, multiple 

antenna systems, can achieve significant improvements in these measures by employing 

spatial multiplexing and diversity schemes [1]. Some aspects of this technology have al-

1
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ready been incorporated into 3G mobile and fixed wireless standards. As a core technique 

for future mobile networks (Beyond 3G or 4G), wireless LANs and WANs, multiple an­

tenna system attracts lots of interest both from academia and industry.

As shown in Fig. 1.1, there are different antenna configurations for multiple antenna 

systems. The SISO (single input single output) system is the familiar wireless configu­

ration; SIMO (single input multiple output) has a single transmitter antenna and multiple 

receiver antennas; MISO (multiple input single output) has multiple transmitter antennas 

and a single receiver antenna; and MIMO (multiple input multiple output) has multiple 

transmitter antennas and multiple receiver antennas. The MIMO-MU (MIMO multiuser) 

configuration refers to the case where a base-station with multiple antennas communicates 

with N[ users each with one or more antennas.

Tx

Tx/Rx

SISO

SIMO

MISO

MIMO

MIMO-MU

Rx

Rx/Tx

Fig. 1.1. Antenna configurations in multiple antenna systems.

2
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In the field of multiple antenna systems, there are mainly three study areas :

1) the electromagnetic design of the antennas and antenna arrays is involved in de­

signing antennas to meet requirements for gain, polarization, beamwidth, sidelobe level, 

efficiency and radiation pattern, etc.;

2) the angle-of-arrival (AOA) estimation focuses on estimating arrival angles of wave­

fronts impinging on the antenna array with minimum error and high resolution;

3) the use of antenna arrays improves spectral efficiency, coverage and quality of wire­

less links [1]. In this dissertation, we mainly focus on the third area. Concretely, we study 

the performance of multiple antenna systems with various receiver diversity combining 

schemes in the presence of correlated fading and cochannel interference (CCI). The results 

will be useful for better system design.

1.2 Wireless Transmission Environment

In this section, we first briefly describe fading and interference, which are two main sources 

deteriorating wireless system performance. Then we introduce fading correlation, an im­

portant factor which cannot be ignored in many situations. In Section 1.2.1, three basic 

types of fading channels studied in this thesis are presented. In Section 1.2.2, the basic 

concepts of cellular systems and cochannel interference are introduced. In Section 1.2.3, 

fading correlation among antenna signals in practical systems is emphasized.

1.2.1 Multipath Fading

Radiowave propagation through wireless channels is complicated and characterized by 

various effects such as multipath fading and shadowing. Multipath fading is due to the 

constructive and destructive combination of randomly delayed, reflected, scattered, and 

diffracted signal components. This type of fading is responsible for the short-term signal 

variations, where both of the signal envelope and signal phase fluctuate over time.

Depending on the relative relation between the symbol period of the transmitted signal

3
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and the coherence time of fading channels, fading is classified into slow fading and fast 

fading [2], [3], Coherence time is the period of time over which the fading process is corre­

lated. Coherence time Tc is approximated by the inverse of the channel Doppler spread fd,  

namely, Tc «  I /fd-  When the symbol time duration Ts is smaller than the channel’s coher­

ence time Tc, the fading is considered as slow fading; otherwise, the fading is fast fading. 

Similarly, according to the relative relation between the transmitted signal bandwidth and 

the channel coherence bandwidth, fading is classified into frequency-nonselective fading 

and frequency-selective fading. Coherence bandwidth measures the frequency range over 

which the fading process is correlated. The channel’s coherence bandwidth f c is related to 

the maximum delay spread xmax by f c «  1 j x max. When the bandwidth of the transmitter 

signal is much smaller than the channel’s coherence bandwidth, the fading is frequency- 

nonselective or equivalently frequency-flat; otherwise, the fading is frequency-selective. In 

this thesis, we mainly focus on slow and frequency-nonselective fading channels.

Depending on the nature of the radio propagation environment, there are different mod­

els describing the statistical behavior of the multipath fading envelope. In the following, 

we introduce three fading envelope models [2] used in our work.

Rayleigh Fading

In mobile radio channels without a direct line-of-sight (LOS) path, the Rayleigh distribution 

is commonly used to describe the statistical time varying nature of the received envelope of 

a flat fading signal, or the envelope of an individual multipath component. It is well known 

that the envelope of the sum of two independent, identically distributed (i. i. d.) Gaussian 

signals with zero mean and variance o 2 obeys a Rayleigh distribution. The probability 

density function (PDF) of Rayleigh distribution is given by

( 1. 1)

4
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where Q  =  E ( a 2) =  2 a 2, is the average power of the received signal envelope. The corre­

sponding squared envelope a 2 is exponentially distributed with distribution given by

f a 2(x ) =  ^ exP ( - ^ )  > x - 0, (L2)

Ricean Fading

Where there is a dominant stationary (no fading) signal component, such as a LOS propaga­

tion path, arriving with many weaker random multipath signal components, the small-scale 

fading envelope distribution is Ricean given by

/a W  =  ^ e x p ( - ^ - ) / o ( ^ ) ,  x > 0  (1.3)

where A denotes the peak amplitude of the dominant signal and Iv(x) denotes the vth-order 

modified Bessel function of the first kind given at [4, eq. (2-1-120)]. As the strength of the 

dominant signal diminishes, the Ricean distribution degenerates to a Rayleigh distribution. 

As the strength of the dominant signal becomes large relative to the strength of the scatter­

ing component, the channel does not exhibit any fading at all. The Ricean distribution can 

also be rewritten using the Ricean factor as follows

, > 0 (1.4,

where K  = A 2/ (2 a 2) is the Ricean factor defined as the ratio of the specular power A 2 to 

the scattered power 2 a 2, and the average envelope power Q, =  E ( a 2) =  A2 -f- 2 a 2. Note 

that A2 =  K Q / ( K  +  1) and 2 a 2 =  £ 2 / ( K+  1). The squared envelope has a non-central 

chi-square distribution with two degrees of freedom given by

,  ^  v  ( K + l ) x \ r  ( , . [ K ( K ^ \
f a 2(x ) ~~ q  exP ( ^  J  I V £1 / ^ — (1-5)

Nakagami-m Fading

Introduced by Nakagami in the early 1940’s [5], the Nakagami-m distribution is frequently 

used to characterize the statistics of signals transmitted through multipath fading chan­

nels. Empirical data show that the Nakagami fading model fits observed data better than

5
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Rayleigh, Ricean or log-normal distributions. The Nakagami-m faded signal envelope has 

a PDF as

where £1 = E (a2), m is the fading parameter defined as m — £l2/ E[(a2 — D )2], and F(x) is 

the gamma function given at [6, eq. (8.310.1)]. The corresponding squared envelope has a 

Gamma distribution as

The Nakagami-m distribution can be used to model fading conditions more or less severe 

than Rayleigh fading. When m = 1, the Nakagami-m distribution becomes the Rayleigh 

distribution. When m =  0.5, it becomes a one-sided Gaussian distribution, and when m —> 

°°, the distribution becomes an impulse (no fading). In addition, the Ricean distribution can

and m =  (K +  l ) 2/ ( 2 K  +  1), for m >  1 [2].

1.2.2 Cochannel Interference

Spectrum resource is limited. To achieve a high spectral efficiency to accommodate more 

and more users while maintaining a certain QoS, the cellular concept is introduced in solv­

ing the spectral congestion problem and the user capacity problem [7]. The basic idea of 

cellular communications is first to divide the target coverage area into cells. Each cell is 

allocated a portion of the total number of channels available to the entire system. Different 

sets of channels are assigned to adjacent cells and the same set of channels is reused in 

different cells that are separated sufficiently apart, as illustrated in Fig. 1.2, where the cells 

labeled with the same letters use the same set of frequencies (channels). These cells are 

called cochannel cells. Therefore, the desired mobile user signal is subject to the corrup­

tion of the interference generated by other user signals in the cochannel cells operating at 

the same carrier frequency. This kind of interference is called cochannel interference. To 

accommodate increasing number of users, the cell sizes are often reduced (a microcellular

(1.6)

(1.7)

be closely approximated by the Nakagami distribution with IK =  Vm2 — m /(m  — \/m 2 — m)

6
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environment) in order to meet this capacity demand. As a result, the radio link performance 

in a microcellular system is limited dominantly by CCI rather than thermal noise.

Fig. 1.2. A two-tier cellular system layout with hexagon cell shape.

1.2.3 Fading Correlation

When all of the antennas are independent, using multiple antennas improves system per­

formance greatly [8], [9]. However, in practice, there are often exist applications where 

independent antenna signals are not available. For example, in compact antenna systems, 

such as small-size mobile handsets [10], the antenna fadings are correlated due to space 

limitations. It is indicated that the capacity of a fixed-volume multiple antenna system ap­

proaches a finite limit, which is independent of the number of antennas placed into this 

fixed-space antenna array due to antenna correlation [11], For multipath diversity over 

frequency-selective channels, correlation coefficients up to 0.6 between adjacent and sec­

ond adjacent paths in the channel impulse response of frequency-selective channels were 

observed in [12] and [13]. These early observations were confirmed by the propagation

7
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campaign of Patenaude et al. [14], [15]. Based on a thorough statistical analysis of sev­

eral macrocellular, microcellular, and indoor wideband channel impulse response measure­

ments, they reported correlation coefficients sometimes higher than 0.8 with no significant 

reduction in the correlation even for large path delay differences. As a result, the maxi­

mum theoretical diversity gain promised by RAKE reception cannot be achieved [3], On 

the other hand, some papers suggest that substantial benefits can be obtained from adding 

additional, correlated antennas [16-19]. For example, in the case of space diversity where 

the correlation depends on the distance between the antennas, expressed in terms of wave­

length, the results in [16] show that when the separation between two adjacent antennas 

is greater than one fifth of the wavelength, most of the diversity gain is still obtained and 

the penalty due to the residual correlation is on the order of 1-2 dB. Reference [17] indi­

cates that the spatial diversity gain of combating multipath fading for the desired signal is 

reduced due to the correlation of the received signal among the antenna branches. How­

ever, the degradation in performance can be small even for correlations as high as 0.7 [19]. 

From the foregoing discussions, we note that fading correlation has significant impact on 

the system performance and cannot be ignored in many practical systems. Motivated by 

this, we explore the effects of antenna correlation on the performance of multiple antenna 

systems in this thesis.

1.3 Receiver Diversity

Unlike stationary and more predictable wired environments, a wireless channel constitutes 

a hostile propagation medium, which typically suffers from the extremely random fading 

and interference from other users. To combat multipath fading and cochannel interference, 

many of the current and emerging wireless systems use one form or another of diversity. 

The use of multiple receiver antennas for diversity goes back to Marconi and the early radio 

pioneers, and leads to a considerable performance gain, both in terms of a better link budget 

and in terms of tolerance to CCI [20-22]. In the following, we introduce the basic concept 

of diversity and then describe various diversity combining schemes studied in this thesis.

8
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1.3.1 Diversity Concept

The principle of diversity is that, if a number of copies of the same information bearing 

signal are available, and they all experience independent fading, then the probability that all 

copies are in deep fades simultaneously, is small. If signal copies are properly combined at 

the receiver end, one can reduce the effect of channel fading and improve the performance 

of communication systems.

Fig. 1.3 shows a diagram of a linear diversity combiner structure. Assume that there are 

N  available diversity branches experiencing slow and flat fading. The received baseband 

signal at the M i diversity branch, r*(f), is given by

n ( t )  = h ks ( t ) + Z k { t ) ,  k = l , - - - , N  (1.8)

where s(t) is the baseband transmitted signal with average signal energy per symbol Es, 

hk  is the complex channel gain for the M i diversity branch, and Zk( t )  is a zero-mean com­

plex additive white Gaussian noise (AWGN) process with power spectral density (PSD) No 

Watt/Hz. After match-filtering and sampling at the M i branch receiver, the received branch 

signal variable rk is given by

rk = hks k +  Zk, k = l , - - - , N  (1.9)

where Sk is the transmitted signal random variable (RV), and Zk is a complex AWGN RV 

with zero mean and variance N§. Then the instantaneous signal-to-noise ratio (SNR) for 

the kth diversity branch is given by [23-25]

7k = \hk\2^ ,  k = l , - - , N .  (1.10)
No

All of the received variables rk (k =  1, • • • ,N)  are then linearly combined as the combiner 

output represented by [22]
N

r = Y < akrk (1-11)
jfc=l

where the combining coefficient ak (k — 1, ■ • • ,N)  is proportional to the channel gain and 

may be allowed to vary with the fluctuating local statistics of r*. In our work, we take cik to 

be locally constant or at least approximately so.

9
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■s ( t )

linear combiner 
out put
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branchsignal

.  signals

branch 
receiver N

branch 
receiver 2

branch 
receiver 1

Fig. 1.3. A diagram of a linear diversity combiner structure.

There are several known methods to obtain the independent copies of the signal [22], 

[26]. Space diversity, most commonly used and preferred for mobile communication engi­

neering, places antennas far enough apart to achieve independent fading signals. Frequency 

diversity transmits the same information on two or more carrier frequencies. If these are 

sufficiently separated, the fading on the different frequency channels is approximately in­

dependent, as in the case of space diversity. Time diversity transmits the same information 

at two or more distinct times to obtain independent fading signals in the time domain. 

Multipath diversity, or the RAKE technique, can be achieved in multipath situations when 

wideband signals are transmitted. The multipath ray reception is obtained by resolving 

multipath components at different delays [4,27,28]. In addition, polarization diversity, 

feedback diversity, and diversity reception of signals arriving with different angles, have 

also been developed. In this thesis, w e mainly focus on space diversity.

10
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1.3.2 Classic Diversity Combining Methods

Various diversity combining schemes have been developed to capitalize on the uncorrelated 

fading signals. The following are three classic types of linear combining schemes that have 

been widely used in practice.

Maximal Ratio Combining

First proposed by Kahn [21], a maximal ratio combining (MRC) scheme co-phases, weights 

and combines the received signals from multiple branches. In the absence of interference, 

MRC is the optimum combining scheme to maximize the combiner output SNR when 

local noise is Gaussian [22]. However, MRC is also considered as the most complicated

to implement due to the fact that phase-lock and amplitude weighting must be performed.

Assuming the noise components of the input branches are mutually independent, the MRC 

combiner output signal is obtained by replacing the combining coefficient a* in (1.11) with 

the conjugate of the complex branch gain hk

N N

rMRC =  Y  h*k r k =  Y  \ h \ 2Sk +  h*kZk (1 .1 2 )
k= 1 k= 1

where {•}* denotes complex conjugation. Then the instantaneous MRC output SNR, Ymrc, 

is given by
CEjLi \hk\2) 2E s " \ h k \>E, "

JMRC — , - N  | ,  ,2x . .  -  L — Tj  -  L , J k  (1 - ld )(E*Li N 2)W0 £ 1  W0 £ i

where — \hk\2Es/No denotes the instantaneous SNR of the &th diversity branch as defined 

previously.

Equal Gain Combining

It may not always be convenient or desirable to provide the variable weighting capability 

required for true maximal ratio combining. Instead, the weights may all be set equal to a 

constant amplitude value resulting in equal gain combining (EGC). Concretely, EGC sets 

the weights in (1.11) as h*k/\hic\, namely, just co-phases the branch signals with equal

11
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weights. Assuming equal noise powers in all the branches, the instantaneous output signal 

of EGC is given by

The instantaneous EGC output SNR, Je g c > is given by

Selection Combining

For selection combining (SC), the system just picks the best out of the N  noisy signals 

rk (k =  1, • • ■, N ) . Let Cfy (k =  1, • • •, N) represent the received noiseless signal envelope 

at the £th branch, and assume all of the N  branches have the same noise power spectral 

density No. Then the output of SC can be expressed as

rSC ~  rindex(max{ Cfy }£L,) (1-16)

where index(xic) denotes the index k corresponding to x^. Then the instantaneous output 

SNR of SC is given by

Ysc = max{Yk}k=v (1-17)

Selection combining is the simplest method of all, and can be applied for noncoherent 

detection where no phase information is required. However, since SC ignores information 

provided by other diversity branches, its performance is poorer than other schemes.

1.3.3 Hybrid Selection/Maximal-Ratio Combining

From the previous discussion, we know that SC is the simplest combining scheme by using 

only one of the N  available branch signals, and hence does not fully exploit the amount 

of diversity offered by the fading channel. MRC is the optimal combining scheme imple­

mented by weighting and combining the received signals to maximize the instantaneous 

SNR at the combiner output. However, MRC is complicated and sensitive to channel esti­

mation errors when the instantaneous SNR is low. On the other hand, though a high diver­

sity order is possible in many situations, it may not be feasible to utilize all of the available

12
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branches. For example, the main limitation for a handset is typically the power consump­

tion and the cost of the radio frequency (RF) electronics in each diversity branch. For 

spread spectrum receivers operating in dense multipath environments, such as a wideband 

receiver, the available correlator resources limit the number of paths that can be utilized in 

a Rake receiver. This has motivated studies of diversity combining techniques that process 

only a subset of the available diversity branches with limited resources, less complexity but 

good performance close to MRC. Proposed by Eng et al. as SC2 and SC3 in [29], hybrid 

selection/maximal-ratio combining (H-S/MRC) is such a combining scheme to achieve a 

good compromise between system performance and system complexity by first selecting a 

subset of the best branch signals and then combining these branch signals using MRC. Con­

cretely, H-S/MRC chooses from N  received branch signals the Lc best ones and optimally 

weights and sums the Lc best signal replicas to produce the receiver decision statistics. The 

output instantaneous SNR of a H-S/MRC combiner is given by [23]

Jh - s / m r c  — Lc = l , - - -  ,N  (1-18)
k= 1

where =  1 , " '  -,N) are the descending-ordered instantaneous branch SNRs, % (k =

1, • • • ,N),  satisfying y(1) >  y(2) >  • • • >  yw  >  0.

1.3.4 Threshold-Based Hybrid Selection/Maximal-Ratio Combining

Since, in conventional H-S/MRC, the number of selected diversity branches, Lc, is prede­

termined, this scheme has a fixed complexity; however, at times of deep fade, the combiner 

may potentially include branches whose instantaneous SNRs may be small and could be 

discarded, or alternatively, discard many branches whose instantaneous SNRs may be close 

in value to those of the branches selected and could contribute to the performance improve­

ment in good channel conditions [30], This makes H-S/MRC not very suitable for use in 

a channel that improves or degrades from time to time, as is the case in mobile communi­

cations channels. For example,in ultra-wideband (UWB) systems, the power delay profile 

(PDP) depends on the severity of scattering and usually differs from one fading environ­

ment to another [31].
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To alleviate the above-mentioned problem associated with conventional H-S/MRC, a 

new diversity combining scheme was proposed in [30]. This new method allows the num­

ber of combined branches to be a variable whose value is determined in accordance with 

the instantaneous SNR of each branch and a predetermined normalized threshold. Here 

we call this combining scheme threshold-based hybrid selection/maximal-ratio combining 

(T-HS/MRC). Concretely, at the front end of a T-HS/MRC receiver, the ratio of the instan­

taneous SNR of each branch to that of the best branch with the largest instantaneous SNR 

is first tested against a fixed normalized threshold /i whose value is chosen in the interval 

[0, 1]. Then, MRC is applied only to those diversity branches whose ratio values equal or 

exceed the value of }l. Then the instantaneous output SNR of a T-HS/MRC combiner is 

given by
Lc

Y t - h s / m r c ( l c )  — X! ^ ) ’ Lc = h - - , N  (1-19)
k= 1

where Lc is an integer RV that represents the number of branches being combined in or­

der of decreasing instantaneous SNR starting with the one having the largest instantaneous 

SNR. The event that Lc diversity branches are selected, means that the ordered instan­

taneous branch SNRs, at the selection time, satisfy >  7(2) >  • "  >  Y{l c) > M7(i) > 

7(lc+i) >  Y(lc+2) >  •■• >  Y(n )- Therefore, a T-HS/MRC combiner can be viewed as a 

conventional H-S/MRC combiner whose number of combined diversity branches, Lc, is 

a RV related to the normalized threshold jU and the ordered instantaneous branch SNRs 

y ^ ( k =  l ,---  ,N),  rather than a fixed number. Particularly, when the value of the normal­

ized threshold jU equals 0 and 1, T-HS/MRC becomes MRC and SC, respectively.

1.4 Thesis Outline and Contributions

In this thesis, we mainly focus on the performance analysis of multiple antenna systems us­

ing various diversity schemes with CCI in various fading channels. The effects of antenna 

correlation on system performance and system design are studied. This thesis consists of 

five major chapters. Each chapter corresponds to one major contribution. At the begin-
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ning of each chapter, we review, in detail, some background and literature which are most 

relevant to the subject of that chapter.

In Chapter 2, we present an exact and unified performance analysis framework for T- 

HS/MRC systems over generalized fading channels. We first review the previous works on 

T-HS/MRC, which give an inaccurate performance evaluation of this scheme. Then using 

the total probability theorem and moment generating function (MGF) method, the exact av­

erage symbol error rate (SER) and outage probability of T-HS/MRC in generalized fading 

channels are derived. This theoretical analysis applies for different M -ary linear modula­

tion schemes in various fading models. For the case of independent fading, we simplify 

the MGF of T-HS/MRC output SNR and obtain exact expressions for the average SER 

and outage probability. Both independent, identically distributed case and independent, 

nonidentically distributed (i. n. d.) case are considered. In particular, closed-form SER 

and outage probability in independent Rayleigh fading are obtained. In addition, we com­

pare our theory, the previous inaccurate analysis, and Monte Carlo simulations for different 

fading models with different numbers of diversity branches. The effect of the normalized 

threshold jU on the system performance is also investigated.

In Chapter 3, we study the performances of SC, H-S/MRC and T-HS/MRC in corre­

lated Nakagami-m fading when the fading parameter m is a positive integer value. Since 

all of the three combining methods are involved in order statistics, we call them here gen­

eralized selection combining (GSC). The exact average SER and outage probability of the 

three combining schemes in Nakagami-m fading with a particular correlation structure are 

presented. This correlation model though not general, is much more general than the equal 

correlation case and includes equal correlation as a special case. Based on a representation 

of correlated Nakagami-m fading amplitudes with multivariate Gaussian RVs, we simplify 

the performance analysis by first transforming the correlated branch gains into a set of 

conditionally independent branch gains, then averaging the conditional SER and outage 

probability to obtain the final results. The numerical and simulation results show that our 

theory is in excellent agreement with the Monte Carlo simulations.

Due to the very complicated nature of order statistics involved in analyzing GSC, cur-
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rently there are no exactly theoretical works on GSC in arbitrarily correlated fading chan­

nels. In Chapter 4, we propose an approximate SER analysis of H-S/MRC and T-HS/MRC 

in arbitrarily correlated Nakagami-m fading with positive integer values of fading param­

eter m. We first approximate the covariance matrix of the channel fadings to a Green’s 

matrix, whose inverse is tridiagonal. The elements of the approximate Green’s matrix are 

found using nonlinear approximation methods. Then the approximate SER of H-S/MRC 

and T-HS/MRC is derived through the MGF method. The approximate analysis allows for 

different M-ary linear modulation schemes. The efficiency of this approximate analysis are 

examined through different correlation models.

In Chapter 5, explicit expressions for outage probability of MRC with an arbitrary num­

ber of antennas in the presence of an arbitrary number of cochannel interferers and thermal 

noise are first derived when the branch gains of the desired user signal and interfering 

signals experience correlated Rayleigh fading and have the same correlation matrix. Two 

special cases, when the correlation matrix is equi-correlated and when the correlation ma­

trix has different eigenvalues, are considered. The results apply to both the equal-power 

cochannel interferers case and the unequal-power cochannel interferers case. We also ob­

tain a closed-form outage probability expression for MRC in CCI-limited environments. 

Further, the average bit error rate (BER) of a coherent binary phase-shift keying (BPSK) 

modulated cellular system using MRC in the presence of CCI and correlated Rayleigh fad­

ing is presented in closed-form for both of the two correlation structures. Different from 

the outage probability, the average BER in Rayleigh fading depends on the total interfering 

power instead of the individual interfering user powers. Besides, the case when the channel 

estimation is not perfect is also studied. Closed-form BERs of BPSK with a special channel 

estimator are provided. The effect of channel estimation error on the BER performance is 

examined.

The question of how many receiver antennas to employ effectively in a diversity system 

operating in CCI and fading is studied in Chapter 6. Three output measures and the aver­

age BER of a MRC diversity system in the presence of an arbitrary number of cochannel 

interferers are evaluated when the desired user signal and the interfering user signals are
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independent, and each of them experiences arbitrarily correlated Ricean fading at the re­

ceiver antennas. Our goal is to investigate the best number of antennas required for a fixed- 

size antenna array to achieve a good compromise between system performance and system 

cost. To illustrate the problem clearly, we first consider a system model for CCI-limited 

environments, then the more practical model including the effect of noise is examined. For 

the CCI-limited case, a widely applicable general rule of thumb that the performance of 

a fixed-size antenna array containing the maximum number of independent antennas can­

not be significantly improved by adding more than one additional antenna is developed. 

Some special cases where particular gains can be achieved by adding additional correlated 

antennas are also discussed. Further, the results show that this rule still applies when the in­

terference dominates the noise. In addition, the asymptotic limits for the long-term output 

measures are unchanged when noise is neglected.

Finally, we summarize the contributions of this thesis and suggest future work in Chap­

ter 7.

17
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Chapter 2 

Unified Performance Analysis of 

T-HS/MRC over Generalized Fading 

Channels

2.1 Introduction

As discussed in Chapter 1, H-S/MRC first ranks the instantaneous branch output SNRs, 

then selects a subset of these with the largest values, and finally combines them in the fash­

ion of MRC. Since in H-S/MRC, the number of selected branches is predetermined, the 

scheme has a fixed processing complexity. However, it suffers from the fact that it poten­

tially discards many branches whose SNRs might be close in value to the ones selected, 

or alternatively, includes the branches whose SNRs might be low. In 2000, Sulyman and 

Kousa proposed a new combining scheme, namely, T-HS/MRC, to alleviate this problem 

associated with H-S/MRC by allowing the number of combined branches to be a variable 

whose value is determined in accordance with the instantaneous SNR of each branch and 

a predetermined normalized threshold [30]. The average BER of a particular embodiment 

of this scheme in a Nakagami-m fading channel was presented and compared with that of 

H-S/MRC by simulation in their paper. The results show that T-HS/MRC gives a BER per-

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



formance close to the optimum performance at a threshold jj, around 0.25. This indicates 

that other diversity branches left uncombined at this level render no appreciable degradation 

compared to the optimum performance regardless of the type of channels involved.

The performance analysis of T-HS/MRC systems was first studied for the case of inde­

pendent Nakagami-m diversity branches in [32,33], and was later extended to generalized 

independent fading environments in [34], In these works, a T-HS/MRC combiner is viewed 

as a conventional H-S/MRC combiner whose number of branches being combined, Lc, is 

random rather than fixed. Since the T-HS/MRC combiner outputs corresponding to each 

integer value of Lc represent disjoint events and form a partition of the probability space, 

the average SER and outage probability of T-HS/MRC are calculated using the total prob­

ability theorem [35]. Specifically, the average SER and outage probability conditioned 

on the number of combined diversity branches, Lc, are weighted by the probability of oc­

currence of the corresponding value of Lc. However, in the analyses of [32-34] , when 

calculating the average SER and outage probability conditioned on Lc, the corresponding 

results for conventional H-S/MRC are directly used by ignoring the fact that in T-HS/MRC 

systems, the number of combined branches, Lc, is actually a function of the ordered instan­

taneous branch SNRs and the normalized threshold. Thus, the joint PDF of the ordered 

instantaneous branch SNRs conditioned on Lc may change and is not the same as that of 

conventional H-S/MRC where the number of selected branches, Lc, is a fixed number inde­

pendent of the ordered instantaneous branch SNRs. Therefore, the results for T-HS/MRC 

in [32-34] are inaccurate except for two special cases, namely, conventional MRC and SC, 

corresponding to the value of the normalized threshold equaling 0 and 1, respectively.

In this chapter, we present an exact and unified analysis framework for T-HS/MRC 

over generalized fading environments [36,37]. The average SER and outage probability 

with i.i.d. and i.n.d. diversity branches are derived using the total probability theorem and 

MGF method. Our analytical method can be applied to generalized slow and frequency- 

nonselective fading channels including Rayleigh fading, Nakagami-m fading and Ricean 

fading, as well as different M-ary linear modulation schemes. For the purpose of illus­

tration, we consider the performance of coherent M-ary phase-shift keying (MPSK) with
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T-HS/MRC in Nakagami-m fading as an example.

The remainder chapter is organized as follows. The system model is described in Sec­

tion 2.2. In Section 2.3, a unified analysis of the average SER and outage probability of 

T-HS/MRC in generalized fading environments is performed. Explicit expressions for the 

two performance measures in the cases of i.i.d. and i.n.d. diversity branches are derived in 

Section 2.4. Numerical results and discussion are presented in Section 2.5. In Section 2.6, 

we summarize the chapter results.

2.2 System Model

We assume that there are N  available diversity branches experiencing slow and frequency- 

nonselective fading. The channel gains and the noise processes are assumed independent. 

Recall in Chapter 1 that y. =  \h^\2Es/No denotes the instantaneous SNR per symbol of the 

kth diversity branch defined by (1.10), and (k — 1, • ■ • ,N) represent the instantaneous 

branch SNRs in descending order, that is, y^) >  y(2) >  • • • >  Y(n )- A T-HS/MRC combiner 

coherently combines the branches whose instantaneous SNRs equal or exceed the product 

of the normalized threshold jl and the largest instantaneous branch SNR y^). Then the 

output instantaneous SNR of a T-HS/MRC combiner is given by (1.19) [32-34,36]

Lc
Yt - hs/mrc(lc) = ^  Y(k) = Lc =  1, • • •, N  (2.1)

k= 1

where Lc is an integer random variable that represents the number of branches being com­

bined in order of decreasing instantaneous SNR starting with the one having the largest 

instantaneous SNR. The event that Lc diversity branches are selected, means that the or­

dered instantaneous branch SNRs, at the selection time, satisfy y(i) >  Y{i) > ■ ■ > Y(lc) — 

M7(l) >  Y{lc+l) >  Y{lc+2) >  ’ ‘ >  Y(N)- Therefore, a T-HS/MRC combiner can be viewed 

as a conventional H-S/MRC combiner whose number of combined diversity branches, Lc, 

is a RV related to the normalized threshold jU and the ordered instantaneous branch SNRs 

y ^  (k, =  1, • • • ,N),  rather than a fixed number. Specifically, when the value of the normal­

ized threshold n  equals 0 and 1, T-HS/MRC becomes MRC and SC, respectively.
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2.3 Unified Performance Analysis of T-HS/MRC

2.3.1 Average SER

Since the T-HS/MRC combiner outputs corresponding to each integer value of Lc repre­

sent disjoint events [33] and form a partition of probability space, the average SER of 

T-HS/MRC, Pe, can be calculated using the total probability theorem [35] according to

N
Pe =  £ /> (e ,L c =  L) (2.2)

L= 1

where P(e,Lc =  L) is the average SER of T-HS/MRC corresponding to the joint event that 

L  branches are selected and that they satisfy 7(i) >  7(2) >  •• • >  Y(l) >  M7(i) >  7(l+ i) > 

7(l+2) >  • • ■ >  Y(n )• The probability, P(e,Lc = L ), can be calculated using the MGF method 

for different linearly modulated signals [38]. Here we just consider coherent MPSK as an 

example; results for other modulation formats can be derived similarly. The probability 

P(e,Lc = L) for coherent MPSK is given by [24]

where c m p s k  =  sin2(7r/M ), 0  =  n { M — 1 )/M , <pr (s) =  E(esr) is the MGF of the random 

variable 7, and Y t - h s / m r c ( l ) =  L*=i 7(*)» is defined by (2 .1), where the ordered instanta­

neous branch SNRs satisfy 7(1) >  7(2) >  ' ' '  >  7(z.) >  M7(i) >  7 ( l + i )  > 7(l+2) >  • • ■ >  7(v)-

2.3.2 Outage Probability

Similar to the previous analysis of the average SER of T-HS/MRC, since the T-HS/MRC 

combiner outputs corresponding to each integer value of Lc represent disjoint events [33] 

and form a partition of probability space, the outage probability of T-HS/MRC, P0utage(Yth), 

can be calculated as [3]

Pontage (Yh) = P{Yt ~HS/MRC(Lc) < Yth)
N

— 52 P(Yt - hs/mrc(l) < Yth-, Lc = L) (2.4)
L=  1
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where Yth is the specified threshold of the combiner output instantaneous SNR, Y t - h s / m r c { l c)» 

and P { Y t - h s / m r c ( l )  < Y t h , L c — L) is the outage probability of T-HS/MRC corresponding 

to the joint event that L branches are selected and that they satisfy 7(i ) >  7(2) >  • ■ • >  Y(L) > 

M7(l) >  7 ( l+ i)  > Y ( l + 2) >  ' "  >  7(/v)• For notational convenience, denote P { Y t - h s / m r c ( l )  < 

YthiPc = L )  by P(Yth,Lc —L)‘ According to [3, eqs. (1.5), (1.6) and (9B.5)], the probability, 

P(Yth,Lc =  L), can be calculated as

P(YthiLc — L) — f
2 n j  7 7i

7 1 + 7 0 0  ^ y r -HS/MRC(L)( S \ sy/ h d s

s

^ Y r  -HS/MRC(L) [ - (r i+ j®)}
cos (®Yth)dG> (2.5)

71 + j C Q

where Yth and (t,yT_lls/MRCILj(■?) were defined previously, Re{-} denotes the real part of a 

complex number, and rj is chosen in the region of convergence of the integral of (2.5) in 

the complex 5-plane.

2.3.3 MGF

According to (2.1), the MGF of Yt - h s / m r c {l ) is given by

h r - m m Y ' !  =  E  (* ■ * -»  W > )

fY( t) rY{L-1) rW( l) fY(L+1)
=  L  d r m J m i d Y i2 r " l m dY(L,l  d Y i M ) L  d y ^ >

' "  * J o e ‘ l i "  r'*'/r(,) ,- .% ,( /( i ) , ' ■ •, Y w ) d y w  (2.6)

where fyw ,--- ,y^(Y( i)>' ' '  i Y(n)) is the joint PDF of the ordered instantaneous branch SNRs. 

If the joint PDF, fym ,-,y{N)(Y{i ) i" '  j 7 ( jv ) )>  is known, we can obtain the average SER and 

outage probability of T-HS/MRC by calculating the MGF of Yt - h s / m r c {l ) ar|d then sub­

stituting the result into (2.3), (2.2) and (2.5), (2.4) respectively. So far we have developed 

a general analysis framework for T-HS/MRC, which can be applied for arbitrary fading 

models and various modulation schemes.
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2.4 Independent Fading Channels

When the space among the antennas is large enough, the fadings among the antennas can 

be taken as independent. In the following, we analyze the performance of T-HS/MRC for 

the cases of i.i.d. diversity branches and i.n.d. diversity branches, respectively.

2.4.1 1.1. D. Case

Assume there are N  independent and identically distributed diversity branches available. 

Let T =  E (yk) (k — 1, • • •, N )  represent the average branch SNR. Then the joint PDF of the 

ordered instantaneous branch SNRs is given by [23-25,39]

f  v  ̂_ I  MnJLi/rtyn) . r<n > r(2) > • • ■ > rOT
A u . - W r o K ' - ' W - i  „ , . (2 J )I 0 , otherwise

where f y ( - )  is the common PDF of the instantaneous branch SNR, % (k =  1, • ■ •, N ) .  

Substituting (2.7) into (2.6), the MGF of Yt - hs/mrc{l) becomes

l) rl{L-1) l)
dY{2) ■ - - /

^7(1) ■'hY(i)

[ ni+l) dY(L+2) -- -  [ 7{N l) y(k)N'-Y\fy( .Y{k))d Y{,
JO JO fc—i

r°° rl(  i) [Y(l-  i) rhJ(\)
hr-HS/MRCi,:^) = L d n  1) /  d Y{2) I d Y{L) ^7(7+1)Jo J uYid JuYtu Jo

N\ [  esrm f y(Y(i))dY(i) / 7(1) es7W fy{y{2))dY{2) ' 
JO JWYtu

x [  {L l) esyVfy(Y{L))dY{L) [  W MY(L+\))dY(L+i)
JfXJ{ 1) Jo

fY(L+1) / ‘7(w-i)
X MY(L+2))dY(L+2)--- MY(N))dY(N)- (2.8)

J  0 d  0

Using [40, eq. (3)], (2.8) can be further simplified as

NS)  lo (2.9)

where (^) =  N \ J (L! (N — L ) !), <j)Y(s,x) and Fy(x) are the incomplete MGF and the cumula­

tive distribution function (CDF) of random variable y, respectively given by
roo

(j)y(s,x)= /  eslfy( t)dt  (2.10)
Jx
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TABLE 2.1

PDF and incomplete MGF of instantaneous SNR for the fcth diversity branch 

Fading Channel PDF f y(x) (jc >  0) incomplete MGF §y{s,x) (x > 0)

Rayleigh ^exp(—x/T) exp[—jc ( l / r —j )1 
i - j r

Nakagami-m f f e ( r ) " V n 1e x p ( - f^ )  ~ s))

Ricean ±± iexp - K -
1 + K  PYn  r j K r  1 i + K - j r  e x P  L i + K - ^ r J

x l 0 K(K+l)x Yf l |  / 2K(K+1) /  2(l+K-5r)x
{ v  i + K - j r  ’ V  r

and

H x ) =  f 7 y ( 0 *  =  1 -  < h M -  (2. i i)
J  0

Expressions for the PDF and the incomplete MGF of the instantaneous branch SNR y*, (k =  

1, • • •, N) for various channel fadings, based on the results in [41] are listed in Table 2.1.

Substituting (2.9) into (2.3) and (2.2), the average SER of coherent MPSK with T- 

HS/MRC in the case of i.i.d. diversity branches becomes

N

L =  1

. , , y  . , - - v -  ! CMPSK t

p e  =  - E  L( J /0 d e j 0 e  ^  f y { t ) [ P y m ]

N - L

sin 0 /  7 V sin 0
CMPSK 

2 ^ ’

L- 1
dt. (2 .12)

Similarly, substituting (2.9) into (2.5) and (2.4), the outage probability of T-HS/MRC
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in the case of i.i.d. diversity branches becomes

N

P outageiJth) =  —  X > ( LJ / 0 d (O j 0 g_T?Vr(0[^r(M0] “ c o s (<°Yth) 

x R e ( e~jm [<l>Y(-(ri +ja>),nt) - 0 y(-(r? +y<o),Q]L~1)
r\+ja>

(2.13)

To illustrate (2.9), (2.12) and (2.13), let us consider the case that there are N  available 

diversity branches experiencing i.i.d. Rayleigh fading. Results for other channel fading 

can be derived similarly by using corresponding fading statistics. Then for each branch in 

Rayleigh fading, the instantaneous branch SNR, Yk(k =  1, ■ ■ • ,N),  follows an exponential 

distribution with
/

A e x p ( - f )  , t >  0 
= { r  r  (2-14)

0  , t  <  0

where F — E(y) is the average SNR for each diversity branch as defined previously. The 

incomplete MGF and CDF of y are given, respectively, by

poo
Q y ( s , x )  =  /  e s t f y ( t ) d t

J X

* > 0  (2.15)
1 — sF

and

F y ( x )  =  1 — 0y(O,x)

=  l - e ~ r x, x > 0 .  (2.16)

Substituting (2.14), (2.15) and (2.16) into (2.9) gives the MGF of Yt - h s / m r c (l )> 0yt- hs/mrcw * 

in closed-form as

i
(1 - s r ) L[l +  (1 - n ) p  + f i ( L -  1)] + q n ( l - s r )L~ ' '

(2.17)
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Substituting (2.17) into (2.3) and (2.2), the average SER of coherent MPSK with T- 

HS/MRC in i.i.d. Rayleigh fading, becomes in closed form

sin2L 6
--------------------------------7----------------------------------------------- ■-------------------------------------------------- j —r d Q .
(sin2 0 +  cmpskF) [l + ( l - l i ) p  + n ( L - l ) ] + q n  sin2 0 (sin2 0 +  cMpskP)

(2.18)

Similarly, the outage probability of T-HS/MRC in i.i.d. Rayleigh fading is obtained by 

substituting (2.17) into (2.5) and (2.4) to give

, , 2*™* £  V  r f N \  f N  — L \  ( L — \ \  ,
W r,*) -   ̂ E L E l {l ) (  9 ) (  P )( » x

/ ;  c o s ( ^ ) x f e ( (i).r .o)jii +(1i ) + .m)rlL- 1x

[1 +  (JJ + 7’0j)r ][l -4- (1 — P )p + fx(L— 1)] + q P }

Alternatively, the outage probability of T-HS/MRC in i.i.d. Rayleigh fading can be 

derived in closed form as follows.

Rewrite (2.4) as

Poutage{Yth) =  ^  P ( Y t ~HS/MRC(L) <  Yth,Lc =  L)
L=  1

N rYth
=  I  L  fyT-HS/MRC{L)  ( y ) d y  (2.20)

L —l 1/0

where f y T _ HS/MRC(L){ y ) denotes the PDF of Yt - h s / m r c {l )> which can be calculated by [3]

f y T - H S / m C ( L ) ( y )  =  ^  { $ Y t - H S / M R C { L ) ( ~ ~ (2.21)

where L r 1 (■) denotes the inverse Laplace transform. Substituting (2.17) into (2.21), the 

PDF, fyT_„s/MRC{L)(y) (r > o), in i.i.d. Rayleigh fading, is given by

fYT-HS/MRC(L)(y) U—0 *
0 , L =  1, ■ • • ,/V— 1

y v - ie- 7 / r  ( 2 .2 2 a )

k (N -1 ) \T n  ’ /v
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N

f aT —HS/MRC(L) (r)U=i
r r / r f i - e - r / r ) N - l

L =  1

0 , L = 2, - ■ ■ ,N
(2.22b)

f aT - H S / M R C ( L )
p = 0 TLcp{ L - \ ) \

N \  f N - L \  ( L  — 1 \ ( - l ) p+*+z'“ 1c£I I
q —0 p = 0

X

<7 /  V P
, L - 2

L- 1

c - ^ r  ( - w ) Y
S  'Krc„)<

r ( w )

L = \ , - - - , N  (2.22c)

where =  [1 +  (1 -  p ) p  + p ( L -  1)].

Substituting (2.22) into (2.20), the outage probability of T-HS/MRC in i.i.d. Rayleigh 

fading is obtained in closed form as

N 1 Jtl[_ 
j!Pi=0

rout age \ i t h ) \ p

(2.23a)

(2.23b)

/* f r l l  f  I
PoutageiYth) I0<M<1 -  ^ 1LV L jpt '0 p !( L - 1 - p ) !Cp +

N V - L L - l  ^ L _  ^  ( _ 1 ) p + 9 + L - 1 cX - 1

, L ,£ L U ) ^ ^ v  <1=1 \* v  9=0 P=0 \  q P (qp)L~ l

 I i ^ r r ( . + i . W r )
«=0

(2.23c)

where y(n,x) is the incomplete Gamma function given by

/•* , /  ”" 1 r<? \
y(n,x) = J ^ t n e ‘dt = ( n -  1)! ( 1 - e  * £  — J  , x >  0, n — 1,2,- • ■ . (2.24)

Eqs. (2.23a) and (2.23b) correspond to the outage probability of MRC and SC [3, eq. 

(9.322)], respectively, which verifies this special case of T-HS/MRC.
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2.4.2 I. N. D. Case

In some situations, the statistics of the N  independent diversity branches are not the same. 

For example, based on IMT-2000 channel models [42] and JTC channel models [43], the 

channel multipath intensity profile (MIP) is variable, namely, the average SNR of each 

diversity branch is different [44]. In this section, the performance of T-HS/MRC with N  

independent but nonidentically distributed diversity branches is analyzed.

The joint PDF of the ordered instantaneous branch SNRs of i.n.d. diversity branches is 

given by [34], [45]

f  l v  „  ) _  /  , ( / ( * ) )  . T (1 )  >  7 ( 2 )  >  • ■ • >  T ( « )

I 0 , o th erw ise

(2.25)

where /%(■) is the PDF of the instantaneous SNR of the M i branch, Yk{k— 1, • • • ,N).  All 

of these PDFs are not necessarily identical; Sn  is the set of all permutations of the integers 

{1, • • • ,N}  and <?,• e  Sn denotes <?,- — (e,-[ 1], <?,-[2], • • •, ei[N]}, one specific permutation of the 

integers {1, ■ • • ,N}.

Substituting (2.25) into (2.6), the MGF of Y t ~ h s / m r c ( l )  f°r i-n-d. diversity branches, 

becomes

- 0° r j ( L - 1) /•M7( l)

= L J 0 * n i )  j n ) ) d y m - j n n  <%)/„ ^ + »

x J * L*" dy(L+2) ■ ■ ■ r“> n/r.,w ( r n W r m

poo py< jx

= E  L ^ f r e ^ M ^ d Y d ) - - -
ei£SNJ0

x r i" f r , !lu,l (7(L+,))dyi M )
JHY{1) ,l 20
/*7(L+1) [Y(N-1)

X JQ fYeiiL+2](Y(L+2))d Y(L+2) - - - J q f y ei[N](Y(N))d Y(N)-

(2 .26)
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Using [41, eqs. (11), (12) and (A .l)], (2.26) can be further simplified as

noo L  r

^ Y t - H S / M R C ( L ) ( S )  ~  E e  W o n  ,̂-[4] 0̂ — ̂ y ei[k](S ^ )
ei£TNtLJ v k = 2

N

x 0  Fye{k](nt )dt  (2.27)
k = L + 1

where (j)-ye^(s ,x)  and Fye^{x)  are respectively the incomplete MGF and CDF of ye.^  as 

defined at (2.10) and (2.11); and 7]v,l is a subset of Sn , whose element e, satisfies e,-[2] <  

e{[3] <  <  et[L] and e,-[L+ 1] <  ei[L + 2} < ■ ■ ■ < [2V].

Substituting (2.27) into (2.3) and (2.2), the average SER of coherent MPSK with T- 

HS/MRC in the case of i. n. d. diversity branches becomes

N r n { M - \ ) / M  r  _ c _m p s k , J L1 r 7 C{ M— \ ) / M  /*<» CMPSK 4

ft = jE E jf ** L W n
n  L = l e i e T NtLJ0  k = L + 1

fr L ( - c “ ™ , w )

I I  ^  sin 0 )  r"'1*1 V sin 0 j
X 

k=2
dt. (2.28)

The outage probability of T-HS/MRC in the case of i.n.d. diversity branches is obtained by 

substituting (2.27) into (2.5) and (2.4) to give

2erVY<h N p°° r°° N
Foutage{Yth)  — v~E E L d(0 L e 71 cos(wrrt)/rei[1,(0 n

w  L = l e i e T NtLJ 0 J0  k—L + l

( g J-1 1
x R e \ x n [ ^ iW(-(T?+7«)>M 0-^iW(-(^+7'w)»0] >dt-

(2.29)

Consider the case that N  diversity branches experience i.n.d. Rayleigh fading with 

different average branch SNRs, f^  =  E(y^) (k =  1 ,N).  We shall need the following

result given in (2.30):

n o - « )  =  i +  E  ( - i ) p I  A m ,) <2-30>
* = 1  P = 1  v e 5( { l , - , V } , p )?=1

where Sqi,... ,n } , p ) denotes the set of total combinations of the integers {1, • • ■,N}  taken 

p ( l  <  p  <  N) numbers at a time, and v =  (v(l) ,  • • •, v(p)} €  denotes a specific
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combination of the integers {1, • • ■ ,N}  taken p  (1 <  p  < N)  numbers at a time. Eq. (2.30) 

is derived in Appendix A.

Substituting (2.14), (2.15) and (2.16) into (2.27) and using (2.30), the MGF of Yt - hs/mrc{l)

becomes

/ T - H S / M R C ( L )

1

T ei[ 1] n^=2(! -  s r ei[k})

1

- 5) + / i I *=2 ( r i [  ~ s)

N- 1
x

P=l

v es({2,../r}lp) ( r ^  -  s )  +  M Efc=2 ( r ^  -  J)  +  E J =  l a v(<?) M

(2.31)

where /i is the normalized threshold, 7 ^  and <?,■ were defined previously, and ak(s) (Ic — 

2, • • ■ , N)  is defined by

Ojfe(s)
2 <  k <  L

J * -  , L + 1 < k < N .
ei\k] ~  ~

(2.32)

Combining (2.31) with (2.3) and (2.2) gives the average SER of coherent MPSK sub­

jected to i.n.d. Rayleigh fading in closed form as

N rz(M-l)/M1 N fT

E l i71 L^UieTN,LJ0

1
X

N- 1
 ------------- 7 ---------------- 7 +  E  t " 1) ' *
J  L. cm p s k  )  I I ,  y L  f 1 I C M M  )
;,.[!] +  H ? e )  +  »  ^ = 2  )  p- 1

veV, f  1 _ l_  £m p sk . \  i , ,  (  1 _ i_  c m p s k  \  i ,  ( _ £ mpsjl  i( { 2 , ^ r e;[1] +  —5g-J +PLk=2  ^ re.w +  TiiPT)  +  a^ )  V )
dd.  

(2.33)

Substituting (2.31) into (2.5) and (2.4) gives the outage probability of T-HS/MRC in
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i.n.d. Rayleigh fading as

2e™h N
Pout age (Yth) — e e  r

*  k l

' C O S {(OJth)

Re
1

■x
(77 + ;o ) )n * = 2 [l +  (V + 7(0 ) r e,.[fc]] 

_________________ I__________________

■ S  +  n  +  j o ) ) + ^ S r f ( I4 s  +  rl +7<»

N -  1

K - i ) '  E
p - 1 v e ,S ({ 2 ,- ,J V } ,p )

( r ^ i  +  77 +  J(0) + P ^ = 2 ( r ^  + rl +  ■Z®) +  ̂ J= i (_77 -  ;,£°)
rfco.

(2.34)

2.5 Numerical Results

In this section, some examples of the average symbol error rate and outage probability of 

T-HS/MRC for the cases of i.i.d and i.n.d. diversity branches in Nakagami-m fading, are 

given. Results computed using our theoretical analysis, the theoretical analysis of [32- 

34] and Monte Carlo simulation are compared. In particular, the effect of the normalized 

threshold /i on the performance of T-HS/MRC is examined. In the following figures, the 

notation T-HS/MRC denotes the results of our theory and S-TGSC represents the analytical 

results of [32-34].

Fig. 2.1 shows the average SER of coherent QPSK using T-HS/MRC versus the average 

branch SNR with N  =  5 diversity branches experiencing i.i.d. Nakagami-m fading with 

fading parameter m =  3 and normalized threshold fi =0.0, 0.25, 0.5, 0.S and 1.0. The 

diamonds denote the average SER obtained using Monte Carlo simulation. As a special 

case of T-HS/MRC, MRC and SC correspond to (i =0.0 and 1.0 respectively. It is seen 

that our analytical results and the simulation results are in excellent agreement, but there
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QPSK, N=5, m=3

T - H S /M R C  n » 1 .0  

T - H S /M R C  n = 0  

T - H S /M R C  ji= 0 .5  

T - H S /M R C  n = 0 .2 5  

T - H S /M R C  ^ = 0 .0  

S - T G S C  j i - 1 .0  

S - T G S C  n = 0  

S - T G S C  [1= 0.5  

S - T G S C  h » 0 .2 5  

S - T G S C  M - 0  
S im u la t io n

- 4  - 2  0  2  4
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  r  (dB )

Fig. 2.1. The average SER of coherent QPSK with T-HS/MRC versus the average branch 

SNR T with N=5 diversity branches in i.i.d. Nakagami-m fading with fading parame­

ter m =  3 and normalized threshold ju=0.0, 0.25, 0.5, 0.8 and 1.0.

are significant differences between the simulation results and the results of [32-34] (except 

for MRC and SC) when the average branch SNR, T, becomes large. For example, when 

the normalized threshold fi = 0.5 and the average branch SNR T  =  8 dB, the difference 

between the correct result and the result of [32-34] is about 1.3 dB. The differences show 

that the analyses of average SER of T-HS/MRC for the case of i.i.d. diversity branches 

in [32-34] are not correct.

Fig. 2.2 shows the average BER of coherent BPSK using T-HS/MRC versus the average 

branch SNR per bit with N  = 6 diversity branches in i.i.d. Rayleigh fading for various val­

ues of the average number of branches combined, Lc =  E(LC), defined in [33, eq. (44)]. For 

convenience of comparison with the results in [33], the same values of normalized thresh­

old, /i, corresponding to the average number of branches combined, Lc, are used according 

to [33, Table II]. The cases of SC and MRC correspond to Lc — 1 and Lc — 6, respectively.
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Fig. 2.2. The average BER of coherent BPSK with T-HS/MRC versus the average branch 

SNR per bit T with N=6 diversity branches in i.i.d. Rayleigh fading and average 

number of combined branches Lc =1, 2, 3, 4, 5 and 6.

From Fig. 2.2, one can observe that for a fixed number of available diversity branches, N, 

the gain obtained from increasing Lc by decreasing the normalized threshold /i, increases, 

but the benefit is subject to diminishing returns as Lc increases. In addition, one can see 

that (except for MRC and SC) there are significant differences between the results of our 

analysis and those of [33]. For example, when the average number of branches combined 

Lc equals 3, for large average branch SNR T, the difference in the results obtained from the 

two methods is about 1.1 dB to 1.6 dB.

To examine the effect of the normalized threshold, /i, on the performance of T-HS/MRC, 

the average BER of coherent BPSK versus the normalized threshold /u for i.i.d. Nakagami- 

m fading with fading parameter tn =  2 and average branch SNR per bit T — 6 dB is shown 

in Fig. 2.3. One can see that the BER increases with increasing jU due to fewer diversity 

branches satisfying the condition of T-HS/MRC and being excluded from the combining. 

Also, the incremental benefit of decreasing the value of /1 decreases as /l decreases. This is
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BPSK, N=6, m=
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BPSK, m=2, average branch SNR per bit r= 6  dB

tr
LU
CD

-B»- N=1 
N = 2  

- 0 -  N = 3  
- © -  N = 4
—I— N = 5

0.2 0 .3 0 .4  
N o rm a liz e d

0 .5  0 .6
N o rm a liz e d  t h r e s h o ld  p

0 .7 0 .9

Fig. 2.3. The average BER of coherent BPSK versus the normalized threshold jit for i.i.d. 

Nakagami-m fading with fading parameter m =  2, average branch SNR per bit T =  6 

dB and N  =1, 2, 3, 4, and 5 available diversity branches.

because the BER of MRC is achieved when /I =  0 and represents an ultimate lower bound 

below which the BER cannot be reduced.

Fig. 2.4 shows the average SER of coherent QPSK using T-HS/MRC versus the average 

branch SNR for i.i.d. Nakagami-m fading with fading parameter m =  2 and normalized 

threshold ju. = 0 .3 . Different numbers of available diversity branches, N,  are considered. 

From this figure, we note the substantial benefits of increasing N  for fixed normalized 

threshold, ji, as expected.

Fig. 2.5 shows the outage probability of T-HS/MRC versus the average branch SNR 

with N  — 4 diversity branches for i.i.d. Nakagami-m fading with fading parameter m =  2 

and normalized threshold values, ju =0.0, 0.3, 0.6, 0.9 and 1.0. The diamonds denote 

the outage probability obtained using Monte Carlo simulation. As a special case o f T- 

HS/MRC, MRC and SC correspond to jU =0.0 and 1.0, respectively. It is seen that our 

analytical results and the simulation results are in excellent agreement, but there are signif-
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Q P S K ,  n = 0 .3 ,  m = 2

  N =1
- 0 -  N = 2  
- B -  N = 3  
- e -  n = 4  

N = 5

u j  1 0 '

- 5
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  V (dB )

Fig. 2.4. The average SER of coherent QPSK using T-HS/MRC versus the average branch 

SNR r  for i.i.d. Nakagami-m fading with fading parameter m — 2, normalized thresh­

old jU =  0.3 and N  =1, 2, 3, 4, 5, 6, 7 and 8 available diversity branches.

icant differences (except for MRC and SC) between the simulation results and the analytical 

results of [32-34] when the average branch SNR, T, becomes large . For example, when 

the normalized threshold /x =  0.6 and the average branch SNR T =  4 dB, the difference 

between the correct result and the result of [32-34] is more than 1.0 dB. When /X — 0.3 and 

r  =  2 dB, the difference is more than 1.5 dB. Hence, the outage probability of T-HS/MRC 

for the case of i.i.d. diversity branches in [32-34] is not correct.

Fig. 2.6 shows the outage probability of T-HS/MRC versus the average branch SNR 

with N  =  6 diversity branches in i.i.d. Rayleigh fading for different values of average 

number of combined branches, Lc. The corresponding values of normalized threshold, ju, 

are the same as those of Fig. 2.2. It is seen that for a fixed number of available diversity 

branches, N, the gain obtained from increasing Lc by decreasing the normalized threshold 

/X , increases, but the benefit is subject to diminishing returns as Lc increases. Again, one can 

see that (except for MRC and SC), the differences between the results of our analysis and
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MPSK, N=4, m=2

- © -  T - H S /M R C  |i= 1 .0  

T - H S /M R C  n = 0 .9  

—1— T - H S /M R C  n = 0 .6  

T - H S /M R C  n = 0 .3  

T - H S /M R C  n = 0 .0  

- O -  S - T G S C  [ i= 1 .0  

S - T G S C  n = 0 .9  

H - -  S - T G S C  p = 0 .6  

S - T G S C  n = 0 .3  

- x -  S - T G S C  [ t = 0 0  
0  S im u la t io n£  1 0 '

o  10'

-1 0 -8 •6 - 4  - 2  0  2  4
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  f  (d B )

6 8 10

Fig. 2.5. The outage probability of T-HS/MRC versus the average branch SNR r  with 

N=4 diversity branches in i.i.d. Nakagami-m fading with fading parameter m =  2 and 

normalized threshold ji =0.0, 0.3, 0.6, 0.9 and 1.0.

those of [33] are significant. For example, when the average number of branches combined 

Lc equals 3, for large average branch SNR T, the difference in the results obtained using 

the two methods is about 1.6 dB to 1.9 dB.

As two examples of the case of i.n.d. diversity branches, Fig. 2.7 and Fig. 2.8 examine 

the performances of T-HS/MRC in Rayleigh fading with exponentially decaying average 

branch SNR, namely, T* =  E (%) =  T iexpf—T]{k — 1)] (k =  l,---  ,N ), as defined in [45, 

eq. (23)]. The number of available diversity branches, N,  equals 4 for both of the two 

figures. Fig. 2.7 shows the average SER of coherent QPSK versus the largest average 

branch SNR, Tj, with normalized threshold, ju =0.25, and the average fading power decay 

factor values, rj =0.0, 0.3, 0.7 and 1.0. Fig. 8 shows the outage probability of T-HS/MRC 

versus the largest average branch SNR, Ti, with normalized threshold, ju =0.2, and the 

average fading power decay factor values, rj =0.0, 0.2, 0.5 and 1.0. The case of i.i.d. 

diversity branches corresponds to 7] =  0.0. It is seen that the results obtained using our
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M P S K , N = 6 , m =1
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Fig. 2.6. The outage probability of T-HS/MRC versus the average branch SNR T with 

N=6 diversity branches in i.i.d. Rayleigh fading and average number of combined 

branches Lc =  1, 2, 3, 4, 5 and 6 .

theory are in excellent agreement with results obtained using Monte Carlo simulation. The 

results show, for example, that the performance deteriorates with increasing 77, as expected. 

Fig. 2.7 and 2.8 can be used to accurately assess the amount of the degradation. However, 

there are significant differences between the correct results and the results obtained using 

the analyses in [32-34] when the largest average branch SNR, T 1, becomes large. Thus, the 

analyses of T-HS/MRC for the case of i.n.d. diversity branches in [32-34] are not correct.

2.6 Summary

In this chapter, the exact average symbol error rate and outage probability of threshold- 

based hybrid selection/maximal-ratio combining in generalized fading environments were 

analyzed. Using the total probability theorem and moment generating function method, a 

unified analysis framework of T-HS/MRC was developed. Explicit expressions of SER and
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Fig. 2.7. The average SER of coherent QPSK using T-HS/MRC versus the largest aver­

age branch SNR Ti for N=4 diversity branches with exponentially decaying average 

branch SNRs in Rayleigh fading, normalized threshold jU=0.25 and average fading 

power decay factor 77 =0.0, 0.3, 0.7 and 1.0.

outage probability for the cases of independent, identically distributed and independent, 

nonidentically, distributed diversity branches were presented. The derivation accommo­

dates different M -ary linear modulation schemes and various slow and flat fading channels. 

For independent Rayleigh fading, closed-form expressions for SER and outage probability 

were obtained. The results show that previous published results are inaccurate.
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O utage Probability, N=4, m =1, p=0.2
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Fig. 2.8. The outage probability of T-HS/MRC versus the largest average branch SNR 

Ti for N=4 diversity branches with exponentially decaying average branch SNRs in 

Rayleigh fading, normalized threshold fJ. =  0.2 and average fading power decay factor 

T7=0.0, 0.2, 0.5 and 1.0.
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Chapter 3 

Performance Analysis of Generalized 

Selection Combining in Correlated 

Nakagami-m Fading

3.1 Introduction

Diversity combining is an effective technique for combatting signal fading in wireless com­

munications. Various combining schemes representing different levels of performance and 

different cost are used. As one of the classic combining methods, selection combining has 

been widely used in practice due to its simplicity which entails choosing a best branch 

signal from N  available diversity branches, such as choosing the branch with the largest 

instantaneous SNR. However, its performance is poorer than some other schemes since it 

ignores the information provided by the remaining branch signals. The performance of 

SC in independent fading has been studied in [22], [46]. Most of the available results on 

SC in correlated fading focus on two or three branches [47-51]. A general approach for 

studying TV-branch SC in correlated fading was proposed in [52]. However, it requires N-  

dimensional integration and the computation complexity increases exponentially with N. 

In [53], an expression for the joint PDF of multivariate Nakagami-m random variables with

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exponential correlation was derived and applied to the theoretical analysis of SC.

Hybrid selection/maximal-ratio combining is considered as an effective combining tech­

nique for achieving a good compromise between system performance and complexity by 

coherently combining Lc largest signals from N  available diversity branches. In the litera­

ture, the performance of H-S/MRC has been extensively studied when the diversity branch 

gains are independent. Based on the assumption of independent Rayleigh fading with equal 

branch average SNR, Win and Winters analyzed H-S/MRC using a novel technique named 

“virtual branch”, which results in a simple derivation and formula for the mean, variance of 

the combiner output SNR and SER for arbitrary values of Lc and N  in [23], [24], The “vir­

tual branch” method transforms the ordered branch SNRs into a new set of conditionally 

independent virtual branches and expresses the ordered branch SNRs as a linear function 

of the unordered virtual branch SNRs. This method permits the combiner output SNR to 

be represented in terms of the conditional independent virtual branch SNRs. Therefore, 

the derivations of the analysis involving in the evaluation of nested Lc-fold integrals, es­

sentially reduce to the evaluation of a single integral. Concurrent and independent work 

on the performance analysis of H-S/MRC was done in [54]. Starting with the MGF of 

the H-S/MRC output SNR, Alouini and Simon provided a general analytical framework 

for the performance evaluation of H-S/MRC in terms of the output average SNR, outage 

probability and average error probability for a wide variety of modulation schemes over 

independent Rayleigh fading. According to their method, a simple closed-form expression 

for the MGF of the H-S/MRC output SNR was obtained. By taking inverse Laplace trans­

form on the MGF, one can get the PDF of the H-S/MRC output SNR. In [25,55,56], the 

performance of H-S/MRC over independent Nakagami-m fading was analyzed. Two differ­

ent methods were developed to derive the MGF expressions for H-S/MRC output SNR in 

generalized Nakagami fading channels with distinct and noninteger fading severity param­

eters, as well as different average branch SNRs. More recently, unified approaches were 

presented for H-S/MRC over generalized fading channels, where the channel statistics in 

different branches are independent but may be nonidentical, or even distributed according 

to different distribution families in [40,41,57,58]. All of the previous works of H-S/MRC
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focus on independent fading. There are very few works for the case of correlated fading. 

The average SER of H-S/MRC in equally correlated Nakagami-m fading, where the corre­

lation between any pair of the branch powers is the same, was analyzed in [39]. The average 

SER of triple H-S/MRC in exponentially correlated Rayleigh fading was given in [59].

As discussed in detail in Chapter 2, since the number of selected branches L c is fixed, H- 

S/MRC may potentially discard many branches whose instantaneous SNRs may be close in 

value to those of the branches selected, or alternatively, potentially include branches whose 

SNRs may be small. To alleviate this problem, threshold-based hybrid selection/maximal- 

ratio combining was proposed in [30], which allows the number of the combined branches 

to be a variable whose value is determined in accordance with the instantaneous SNR of 

each branch and a predetermined normalized threshold JLI (0 < ju < 1). The performance 

of T-HS/MRC with independent diversity branches has been studied in [32-34], An exact 

analysis of T-HS/MRC over generalized fading channels was presented in [36]. When the 

fading is equally correlated Nakagami-m distributed, the average SER of T-HS/MRC was 

given in [60].

Since the performance analyses for SC, H-S/MRC and T-HS/MRC are involved in the 

very complicated nature of order statistics, there are very few works that study the three 

generalized selection combining schemes with arbitrary number of branches in arbitrarily 

correlated fading channels. Recently, a novel approach for deriving the CDFs of the N-  

branch SC output in equally correlated fading was proposed in [61], where the problem of 

deriving the SC output CDF in equally correlated fading is transformed into the problem 

of deriving the SC output CDF in conditionally independent fading by noting that a set 

of equally correlated complex Gaussian RVs can be obtained by linearly combining a set 

of independent Gaussian RVs. The analysis of SC in equally correlated fading including 

Rayleigh, Nakagami-m and Ricean channels is simplified substantially with this method 

in [61].

In this chapter, w e extend the approach in [61] to a more general correlated case, where 

the correlation coefficient matrix is determined by N  real numbers whose values are be­

tween 0 and 1. This particular correlation structure is examined in [62, eqs. (8.1.5) and
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(8.1.6)], and includes equal correlation studied in [61] as a special case [62, eq. (8.1.4)]. 

The exact average SER and outage probability of SC, H-S/MRC and T-HS/MRC in Nakagami- 

m fading for positive integer values of m, are obtained for this correlation structure [63].

The remainder of this chapter is organized as follows. The system model is described in 

Section 3.2. Representations of Rayleigh fading amplitudes and Nakagami-m fading am­

plitudes with the particular correlation structure are presented in Section 3.3.1 and Section 

3.3.2, respectively. The performances of SC, H-S/MRC and T-HS/MRC are analyzed in 

Section 3.4. Numerical results and discussion are provided in Section 3.5. Finally, we give 

our conclusions in Section 3.6.

3.2 System Model

Assume that there are N  available diversity branches experiencing slow and flat Nakagami- 

m fading with the same positive integer values of fading parameter m. The instantaneous 

SNR of the Mi diversity branch, y ,̂ is defined as (1.10)

% =  \hk\2W> k = l , - - - , N  (3.1)N o

where Es is the average symbol energy, is the instantaneous branch gain, and Nq is the 

power spectral density of complex white Gaussian noise on the &th branch. Further, we 

assume that all of the branches have the same average branch SNR, namely, T =  E(%) =  

E(\hk\2)Es/ N 0 {k=  1, ■ ■ • ,N).
k /Let £ r  denote the branch power covariance coefficient matrix, whose element Ey {k, j  — 

1, ■ • ■ ,N) satisfies [62, eq. (8.1.5)]

kJ _E(Wi)-E(li)EM J  p t Pl  0 * j )  k J  =  u . . . t N  (3.2)
7 y/Var(yk)Var(Yj) |  l {k = j)

where 0 <  P k  <  1 (k =  1, • • • , N ) ,  and V a r ( - )  is the variance o f  a random variable. Obvi­

ously, when all of (jfc =  1, • • •, N) are equal to p , the covariance matrix becomes equally 

correlated as studied in [61].
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Recall in Chapter 1 that for SC, the branch with the largest instantaneous SNR is se­

lected as the combiner output given by (1.17)

ys c =  max (%). (3.3)
k = l , — ,N

For H-S/MRC, assume that the Lc (1 <  Lc <  N)  branches having the largest values of 

instantaneous SNR are chosen at the selection time. Then the output instantaneous SNR of 

a H-S/MRC combiner is given by (1.18)

Lc
Jh - s / m r c  =  7(fc)> Lc = l , - , N  (3.4)

fc=i

where (k — 1, • • • ,N) are the descending-ordered instantaneous branch SNRs, satisfying

7(1) > 7(2) >  • • • >  7(iv) > 0.

For T-HS/MRC, denote the predetermined normalized threshold by fi (0 <  /i <  1). The 

branches whose instantaneous SNRs exceed or equal the multiplication of the normalized 

threshold /l and the largest instantaneous branch SNR y ^ ,  are combined at the receiver 

end. Then the output instantaneous SNR of a T-HS/MRC combiner is given by (1.19)

Lc
7t - h s / m r c (l c) =  ]£  7(fc)> Lc — I , - ■■ ,N  (3.5)

k= 1

where Lc is an integer RV that represents the number of branches being combined in order 

of decreasing instantaneous SNR starting with the one having the largest SNR. The event 

Lc diversity branches are selected, means that the ordered instantaneous branch SNRs, at 

the selecting time, satisfy y(i) >  y(2) >  • • • >  y(ic) >  M7(i) >  7(lc+i) >  7(lc+2) > ■ ••> % )■

3.3 Representation of Correlated Branch Gain Amplitudes

In this section, we extend the representation in [61] of equally correlated Nakagami-m fad­

ing by a set of independent Gaussian RVs to a more general case, where the covariance 

coefficient matrix satisfies (3.2). First, we introduce some notations used in the follow­

ing. N (n ,  ( J 2 )  denotes a Gaussian distribution with mean fi and variance <J2, C(ju, a 2) de­

notes a complex Gaussian distribution with mean ju =  E(z) and variance cr2 =  (l/2 )E [(z  —
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ju)(z  — ju)*], Xn(0, c 2) denotes a central chi-square distribution with n degrees of freedom

and the common variance of the corresponding Gaussian components o 2 given at [4, eq. 

(2-1-110)], %n( s ,o 2) denotes a noncentral chi-square distribution with n degrees of free­

dom, noncentrality parameter s2 and the common variance of the corresponding Gaussian 

components a 2 given at [4, eq. (2-1-118)], and Qv(a,b) denotes the vth-order Marcum 

Q-function given at [4, eq. (2-1-122)]

where Iv(-) is the vth-order modified Bessel function of the first kind given at [4, eq. (2-1- 

120)]. For brevity, we write Q(a,b) to denote Q\{a,b).

3.3.1 Correlated Rayleigh Fading Amplitudes

Similar to [61, eq.(2)], the channel gain of the kth branch in Rayleigh fading can be repre­

sented by extending [62, eq. (8.1.6)] to the complex plane

Gk =  ( y/1 -  pkXk +  V » ) )  +  K > /l -  PkYk + V frYo) , k = l , - - - , N  (3.7)

where i =  \ / —I, 0 < Pk < 1, and Xk, Yk {k =  0, • • • ,N)  are independent Gaussian RVs 

with distribution N (0,1 /2 ), and for any k , j  G {0, • • • ,N},  E (XkYj) =  0, and E (X^Xj) = 

E (JkYj) — (1 / 2 ) 8i<j , where is the Kronecker delta with

Since Gk is zero-mean complex Gaussian distributed with distribution C (0 ,1 /2 ), \Gk\ (k = 

1, • • • , N)  is a set of Rayleigh RVs with mean-square value E(|G ^|2) =  1. The correlation 

coefficient between any Gk and Gj (k ^  j )  can be derived as

(3.6)

E(GkG * ) - E ( G k)E(G*) 

y/V ar(Gk)Var(Gj)
v m n x j + Y 2)

v/E (|G ,|2 )E (|G ;f )

— V  PkPj- (3.8)
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Combining (3.7) and (3.1) with the definition of the branch power covariance coefficient
k iY,y in (3.2), one can show that

kJ _  E(\Gk\2\Gj\2) - E ( \ G k\2)E(\Gj\2)
E

' 2 l x

^ V a r ( \G k\2)Var(\Gj\2)

=  E | [ ( \ / l  — pkXk +  \ fp iX o ) 2 +  ( \ / 1 — p kYk +  \ZpkYo)

[ { y / U T j X j  +  y/pJXo ) 2 +  ( y / T T j Y j  +  ^p]Yo)2} }  -  1

=  ( 1 -  pk) ( i  -  Pi)  +  p k( i  -  p i ) + p j ( i  -  p k ) + p k pM (X o  +  Jo2 ) 2] - 1 
/

PkPj =  Pkj  (k i  j ) (3.9)
1 (k =  j ) .

Therefore, the correlated A^-branch Rayleigh fadings with power covariance matrix 

given by (3.2) can be represented by a set of complex Gaussian RVs given by (3.7). When 

pk (k = 1, • • •, N)  are all equal to p , the branch fadings become equally correlated N-branch 

Rayleigh fadings.

3.3.2 Correlated Nakagami-m Fading Amplitudes

Similar to [61, eq. (5)], we can express the N  Nakagami-m fading amplitudes with positive 

integer values of m by a set of Nm  zero-mean complex Gaussian RVs

Gki =  (y / 1 -  pkXki + y/pkXoi) +  i (  y / l -  pkYki + y/PkY0i),

k =  1, • • • ,V, I = 1, • • • ,m (3.10)

where Xki and Yki (k =  0, • • •, N, I — 1, • • •, m) are independent Gaussian RVs with distribu­

tion N ( 0 , 1/2). For any k , j  e  {0,1, • • • ,N},  l ,n €  {1, • • • ,m}, E(Xu Yjn) =  0, E (Xk[Xjn) = 

E (YhiYjn) =  ( 1 /2 ) 4 ,A „ .  Then the correlation coefficient between any Gki and Gjn (k ^  j ) 

can be derived as

e (g u g ; j - e (g h )E (g *„)
P k l, jn  —

^ E ( \ G k i m \ G jn\2) 

yfPkPj (k ^  j  a n d  I =  n) 

0 { J i n ) .
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Let Rk denote the summation of the squared magnitudes of Gki, namely,

m
** =  L lC * /!2. (3.12)

l=i

Then Rk (k =  1, • • • ,N)  is the sum of squares of m independent Rayleigh envelopes with 

distribution X2m(0,1/2) [61]. One can show that the cross-covariance coefficient between 

Rk and Rj  (k ^  j )  is given by

E(RkR j ) - E ( R k)E(Rj)
V Var(Rk)Var(Rj)

Er=iIn=liE(l̂ /l2lg/n|2) - ^ 2
\fnP

, v m  x^m i
n£V

PRk,Rj

s y . i  E(iG„!2iG,d2) + r r . , r : = i  ,„u E (|gh |2ig,„i2) - ™ 2

m
m
2( \ + p kP j ) + m { m  — \ )  —m 

m

=  PkPj> (& 7̂  j)- (3.13)

Note that \ /R l  (k = 1, • • ■ ,1V) is a set of correlated Nakagami-m fading amplitudes with 

mean-square value E(Rk) =  m. Combining (3.10) and (3.12) with the definition of the 

branch power correlation coefficient in (3.2), we have

L kJ _
7 1

-kj

p R k,Rj =  PkPj (k ±  j ) ^

i (* =  ./')•

The branch power covariance coefficient is the square of the complex gain correla­

tion coefficient pkijn when k ^  j  and I = n in (3.11). Therefore, the correlated N  branch 

Nakagami-m fading amplitudes with positive integer values of m and power covariance 

matrix given by (3.2) can be represented by the set of complex Gaussian RVs in (3.10). 

Again, when pk (k =  1, • • • ,N)  are equal, the fadings become equally correlated TV-branch 

Nakagami-m fadings. Eq. (3.14) specializes to (3.9) when the fading is Rayleigh with 

m =  1.
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3.4 Performance Analysis

In this section, we analyze the performance of SC, H-S/MRC and T-HS/MRC in correlated 

Rayleigh and Nakagami-m fading with the power covariance structure given in (3.2). Using 

the representations of Rayleigh and Nakagami-m amplitudes in Section 3.3, our analysis is 

simplified greatly.

3.4.1 SER and Outage Probability of SC 

CDF of SC Output SNR in Rayleigh Fading

Assume that the branches experience Rayleigh fading with covariance matrix given by 

(3.2). Let SY =  Xq +  F02. When Xo =  *o and Yq — yo are fixed, |G&|2 {k =  1, • ■ • ,N)  are 

independent with noncentral chi-square distribution X l i y  Pk(xo+yo)-> (1 — Pk)/2 ), whose

where (/(•, •) denotes Q \ (■. •), the first order Marcum (/-function. Then the CDF of the SC 

output for fixed Xq +  Y{f  = t, can be calculated as [61, eq. (13)]

F»ci^CylO = Pr(ri <x---,7iv <ylO

Observing that 2Y =  Xq -f 702 follows a central chi-square distribution # 2 (0 ,1 /2 ), the PDF 

of SY is given by [61, eq.(14)]

CDF is given by [61, eq.(12)]

F\Gk\ ^ ( y \ t )  =  M \G k \2 <y\t)

P r ( |G 1|2 < ^ , . - - , |G Af|2 < ^ | t )

(3.16)

(3.17)
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Averaging the conditional CDF in (3.16) across the PDF of ST in (3.17), the CDF of the SC 

output in correlated Rayleigh fading is given by

Ysc

poo
(y ) =  J 0 FJSC\ A y \ t ) M t ) d t

poo N

- i n
1 - Q

2y e ldt. (3.18)
1 ~Pk  Y r ( l  - p k )

When pk = p {k =  1, • • ■ ,N),  (3.18) becomes [61, eq. (15)], corresponding to A-branch 

equally correlated Rayleigh fading.

CDF of SC Output SNR in Nakagami-m Fading

For Nakagami-m fading with positive integer values of m, similar derivations can be done.

Let 3? = Y!!Li (Xq1 + Yqi). For fixed values of X o/=  xo; and 7o/=  yo/ (/ =  1, • — , m), the

branch powers Rk are independent and follow a noncentral chi-square distribution denoted

by %2m(yjPkE t l (xh  + yo i)’( 1 - P k ) / 2)- Observing that ^  =  Y ! ! L \ +  Y0l)» follows a 

central chi-square distribution X2m(0,1 /2 ), the PDF of is given by

tm - ie-t

( m — 1)! ’

The conditional CDF of the SC output becomes

t >  0. (3.19)

N

F7t!c\Ay\t) = n
k = \

1 Qn
2-Pkt 2 my

(3.20)
l - p t ’V F(l-pjk)

Averaging the conditional CDF of the SC output over 8F, the CDF of the SC output in 

correlated Nakagami-m fading, is given by

N

Fr s c (y )
1

(m — 1)

poo IV

d n 1 ~ Q n
2pkt 2 my

r - ' e ^ d t .  (3.21)
j  \ - Pk’ ] j r ( \ - p k)

Again, when Pk = P (k =  1, • • • ,N),  (3.21) becomes [61, eq. (22)], namely the CDF of 

A-branch SC output in equally correlated Nakagami-m fading. For numerical computation 

in (3.21), we use the function NCX2CDF provided by Matlab to compute the CDF of a 

noncentral chi-square distributed RV, which is in form of the mth-order Marcum Q-function 

in (3.21) [61].
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Performance Analysis of SC

The outage probability of SC is defined by [3]

Poutage — P {0 5; YSC ^  Yth) ~  PysciYth) (3.22)

where yth is the threshold of the SC output SNR. When the channel experiences Rayleigh 

or Nakagami-m fading with power covariance matrix in (3.2), the outage probability of 

SC can be calculated by (3.18) and (3.21), respectively.

The average SER of SC for different modulation formats in Nakagami-m fading with 

covariance matrix Y,y 'n (3-2), can be obtained by combining [61, eqs. (31)-(42)] with 

(3.18) and (3.21), respectively. For example, for BPSK, the average BER of SC in Rayleigh 

fading is given by substituting (3.18) and [61, eq. (33)] into [61, eq. (32)] to obtain

1 f°° f C
2 \p K  Jo Jo

■ e - 7 - t  Nn 1 - Q
2 pkt 2 y

dtdy. (3.23)
V f  L \  '  ~  I V  1 -p J t’ V r (!-pjfc)

Similarly, when the branches are subject to Nakagami-m fading, the average BER of 

BPSK with SC is given by

f t n — X g — y —t  N

Pe =
1 r°° r ° ° t n
m — \ ) \ J o  Jo2 y/n(m — 1) i-e„ 2 Pkt 2 my

i - p * ’V r ( i - p * )
dtdy.  

(3.24)

For noncoherent M -ary frequency-shift keying (MFSK), the average BER using SC in 

correlated Nakagami-m fading, is given by substituting (3.21) and [4, eqs. (5-4-46) and 

(5-4-48)] into [61, eq. (32)] to obtain

2iog 2m—
P e  = (m — 1)! (2lo§2 m 

N

*n
k= 1

1 My  ( - i r +1n(log2M ) / M - l \  /'“  [°° x »
M - \ )  “ i (n + 1 )2 V n J  Jo Jo

( \ o % jM ) y
~H+\

l - Q m

2 Pkt / 2 my
T ^ ’ V r ( i  - p k)

dtdy. (3.25)

For M -ary quadrature-amplitude modulation (MQAM), such as 16-QAM and 64-QAM 

adopted in the IEEE 802.11a standard, the average SER using SC in correlated Nakagami-
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A n i l  2Pkt I 2mYA “  \Jm

m  fading, is given by substituting (3.21) and [4, eq. (5-2-79)] into [61, eq. (32)] to obtain

1 „ M/rh n \ l  dtd,y 3̂-26̂l - p f c  y r ( i - p jk )  j

where (a,b,c) =  (4(\/M  — l)/-\/M ,31og2M /(M  — l),4(v^M  — 1)2/M ), and Q(-) is the Q 

function, denoting the area under the tail of the Gaussian PDF given at [4, eq. (2-1-97)].

3.4.2 SER of H-S/MRC

In this part, we will use the MGF method to study the average SER of H-S/MRC in corre­

lated iV-branch Nakagami-m fading for positive integer values of fading parameter m and 

the power covariance matrix given by (3.2).

As mentioned previously, for fixed &  =  +  i)> branch powers Rk are

independent and follow a noncentral chi-square distribution %2m{y PkY/iLi (xh  +  >'o/) 1 0  — 

P k ) / 2). Thus, one can show that the branch SNRs Yk conditioned on ,T,  are independent 

with distribution X2m( \ / P k T t / m , r ( l  -  pk)/{2m))

h \ r < y \ »  = ^  ( I ) '̂  «p ( - ^ r ) '»-! ( |  V̂ ) (3-27)
where c2 =  pkTt/m,  a 2 =  T(1 — p^)/(2m ), and /„(•) is the vth-order modified Bessel func­

tion of the first kind. The PDF in (3.27) can be computed using the function NCX2PDF 

provided in Matlab.

Since the branch SNRs Yk conditioned on ST are independent, the joint PDF of the 

ordered branch SNRs Y(k) (k = I-, - ■ • ,N)  conditioned on SF can be calculated according 

to [58, eq. (3)]
N

ei&S^k=\
7(1) >  7(2) >  • • ■ >  7(v) >  0 (3-28)

where Sn is the set of all permutations of the integers {1,2, ■ ,2V}, and e,- E S n =  {ei[l],e/[2], 

• • • ,e»[/V]} denotes the specific permutation of the integers {1,2, • • ■, N}.
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Then the MGF of J h -s /m rc  conditioned on 22 is given by

=  E t e sEfe 'r( * ) |^

h x y  , y ( N ) \ s r ^ 2  ’ ’ ’ > r (N ) \ t )d Y (N )

= I  [ d̂ )[ {')“ym -r~')e ^ ^
e/GSN J0 ,/0 1/0

n / r , [ ^ ( r W I O ^ ) .  (3.29)
*=1

Using [58, eq. (6)], the conditional MGF of Yh s /mrc can be simplified as

poo Lc—1 Af
K - S / M R c l ? ^ ^  E  L n  n

ei£WN,Lc k=  1 fc=Lc+ l

(3.30)

where WW,lc is a subset of S^,  whose element e,- satisfies e, [l] <  e,[2] <  • • • <  e,[Lc — 1] and 

ei[Lc +  1] <  <?/[Lc +  2] <  • • • <  e,[TV]. Fjê \*?{x\t) and Qyê \y ( s , x \ t ) ,  are the CDF and the 

incomplete MGF of Yei[k] conditioned on 2 2 , respectively, given by

2Pe;[/c]f / 2 mx
* W W '>  =  * -  a .  <3-31)

and
p o o

v - 2 a l\k)s)x

0 l { k ]

m ■
jh  )  exp ( x

r s ( i - p e;W)y  \ m - r 5 ( i - p e.w)

/  I 2mpe.[k]t 2 ( m - r s ( l - p e.[k]) ) x \
( i - p e i [ k ] ) ( m - r s ( i - p e i [ k ] ) y \ j  r ( \ - p e . [ k ] )  )  ■

(3.32)
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Substituting (3.31) and (3.32) into (3.30), and averaging (3.30) over the MGF of 

J h - s / m r c  becomes

^7h-S/MRc(S) - Jo

1 Lc- 1

( m -  1)1 e, e n m

eiSWjv ic k= 1 ^ (1  Pei[k])m

m —l —t I XT' ^ P e i [ k ] ^t e x  exp > ------— -fl J
0 \  j~[ m - T s ( \

X

Lc- 1
2m

k= 1 
N

n
k=Lc+\

2mpe.[k]t l 2 { m - T s { \ - p e.[k]))Y

1 - 2

(1 Pej[k]){m r j ( l  Pei[k])) y ^Xl Pei[k\) J

dydt  (3.33)2 Pei[k]t 2 my

y 1 Pei[k] y ^(1 Pei[k\)  ̂

where / r c;l,]!^ (-) is given by (3-27)-

When all of pk — p (k — 1, • • •, N)  , the MGF of Yh - s / m r c  1° equally correlated Nakagami- 

m fading becomes

^Yh- s/mrc^  -  Lc
N \  1 m
LCJ ( m — 1)! \m  —r.s(l — p)

<LC- 1)

poo
yo ^ 7/y ^ ( r lO X

Qn

1 - 2 »

2 mpt I2(m — r ^ ( l  — p ) ) y
( i _ P )(OT_ r 5( i - p ) ) ’ y  r ( i - p )

. N - L c

2 p t  I 2 m y  .
' 1 d y

L,  1

(3.34)i - p ’V r(i-p)
where / ^ ( t I O  is given by (3.27) with c2 — p T t /m  and a 2 — T(1 — p)/(2m ). This result 

is new and not available in [61].

The average SER can be calculated using the MGF method for different linearly mod­

ulated signals [38]. Here we consider coherent MPSK as an example; results for other 

modulation formats can be derived similarly. The average SER of coherent MPSK, P e , is 

given by
1 ' e  < c^ ) dB (3.35)
t ,0  

P e  — — I  (j)yH
n  Jo sin2 e  J
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where cMp s k  =  sm2(n /M) ,  0  =  n{M — 1 ) /M,  and <t>yH_s/MRC(■?) =  E is the

MGF of Yh - s / m r c  as given by (3-33).

3.4.3 SER of T-HS/MRC

Recall in Chapter 2 that since the T-HS/MRC combiner outputs corresponding to each 

integer value of Lc represent disjoint events and form a partition of probability space, the 

average SER of T-HS/MRC can be calculate using the total probability theorem (2.2)

where P{e,Lc — L) is the average SER of T-HS/MRC corresponding to the joint event that 

L  branches are selected and they satisfy y^) >  7(2) >■■■ >  d7(i) >  Y(l+\) >  ■ • • > Y(n )- 

The probability P(e,Lc =  L) can be calculated using the MGF method for different linearly 

modulated signals. Here we just consider coherent MPSK as an example. The probability 

P(e,Lc = L ) of coherent MPSK is given by (2.3)

MGF of Y t - h s / m r c ( l )  defined by (3.5), where the ordered instantaneous branch SNRs 

satisfy y (1) >  y (2) >  • • • >  M 7 ( i )  >  7 (l + i ) >'■•■> Y(n)-

Since the branch SNRs conditioned on ?? — Y![Li(Xoi +  *o2/) are independent, the con­

ditional MGF of Yt - h s / m r c {l ) defined in (3.5) can be calcuated as [36, eqs. (25) and (26)]

N
Pe =  £ P ( e ,L c =  L) (3.36)

L= 1

P(e,Lc =  L) = l J % rT H S /M R C (L )
CMPSK (3.37)

where c m p s k  and © were defined previously, and (j)yT-H S /M R C ( L ) is the

' T - H S /M R C ( L ) \$ -

=  e  L e' % [i ) i ^ ( 7 i o n K . wi^ ( j ^ 7 i o - ^ , . wi^ (^ 7 io
ei&TN.L k=2ei&TN̂L

N

x  I I
k=L+1

(3.38)
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where e,- and S/v were defined previously, 7}y,L is a subset of Sn , whose element e,- satisfies 

e{[2] <  e,-[3] <  • • • <  e,-[L] and e ;[L + 1] <  e/[L +  2] <  • • • <  e,-[AT]. The functions

(x|f) and (j)ye ^*?(s,x\t),  are the PDF, CDF and the incomplete MGF of Yei[k] condi­

tioned on 3T, respectively, given by (3.27), (3.31) and (3.32).

Averaging (3.38) over 2 F , the MGF of Yt - h s / m r c (l ) is given by

07r-.HS/M RC(L ) (,5) =
L

l n m

( m - i y .  ei£yNLL 2 \ m ~  n ' ( ’ -  Pem),

Jo
x l  t ^ e - ' e x p l Y ------

/o \ ^ 2m - T s { \ - p t5 ) )
Ln

k= 2
Qn

___________________________  j 2 { m - T s { \ -  pet[k]))HY\
{ l - P e i{ k ] ) { m - r s ( l - p ei[k})), \ l  T(1 - p et[k]) )

2 mpe.[k]t

Qm ^ '
N

x n
k = L + 1

2mpe.[k]t

{l-Peil^im-rsil-PeAk}))’

1 — 2m
Im p Y2PeiW  ___________

i — Pei[k] y r ( l  — Pg;[£])

/2(m-ry(l - p e.[A:]))yN
r ( i — p«i [fc]) j

dY- (3.39)

When all of pk = p (k =  1 , N ) ,  the MGF of Yt - h s / m r c {l ) i° equally correlated

Nakgami-m fading becomes

m \(L-l)m

( m — 1)! \ m  — r j ( l — p) J  Jow-^5Lxh r  —HS/M RC(L)

(.l — i ) r p t s

tm~ le

x exp

Q n

m — T5'(l —p)
dt

noa

I  esyfy\sr(Y\t) x l - G » 2 pt Im p Y
l - p ’V r ( i - p )

N - L

2mpt l2(m — Ts(l  —p ) )p Y
— p) (m  — r s ( l  — p ) ) ’ r(i-p)

-G» 2mpt I2(m — Ts(l  — p ))y
(1 - p ) ( m - r s ( l  - p ) ) ’ r(i-p)

L-l

r/y. (3.40)

Substituting (3.39) into (3.37) and (3.36), one can obtain the average SER of coherent 

MPSK with T-HS/MRC in correlated Nakagami-m fading for positive integer values of m 

and power covariance matrix (3.2).
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3.5 Numerical Results

In this section, some numerical examples and simulation results for SC, H-S/MRC and 

T-HS/MRC in correlated Nakagami-m fading with positive integer values of m and power 

covariance matrix (3.2), are provided. In the examples, we use p =  [p i,p 2, ••• , P/v] to 

denote a vector whose elements 0 <  pk <  1 (k =  1, • ■ • ,N)  comprise the covariance matrix 

Ly in (3.2).

N=5 Lc =1
,010'

-  Numerical results m=1
- m =2
-  m=3 

m=4
-  m=5 

Simulation results

1
10

2
10

O)
3

10

4
10

20 15 10
Normalized

5
Normalized branch SNR ./  (dB)

0
(dB)

5 10

Fig. 3.1. The outage probability versus the normalized branch SNR threshold y ^ /T  of SC 

with N  =  5 for different values of fading parameter m.

Fig. 3.1 shows the outage probability of SC in Nakagami-m fading versus the normal­

ized SNR threshold yth/  r.  The number of diversity branches N  =  5. The covariance matrix 

is constituted by the vector p =  [0.9 0.3 0.7 0.6 0.1]. The diamonds denote the outage prob­

ability estimated using Monte Carlo simulation. One can see that our theoretical results 

are in excellent agreement with the simulation results. Observe that when the normalized 

branch SNR threshold yr/,/T  < 1 . 1  dB, the outage probability decreases with increasing 

fading parameter m; however, when y ^ /T  > 1 . 1  dB, the outage probability increases with
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increasing fading parameter m.

BPSK N=4 Lc =1

Numerical results m=1
— ©—  m=2
 * ----- m=3

■: m=4
 «----- m=5

Simulation results

cc
LUm

2 6 8 10 12 
Average branch SNR (dB)

14 16 200 4 18

Fig. 3.2. The average BER versus the average branch SNR T of coherent BPSK using SC 

with N  =  4 for different values of fading parameter m.

Fig. 3.2 shows the average BER versus the average branch SNR, T, of a coherent BPSK 

system with SC in correlated Nakagami-m fading with N  =  4 and p  =  [0.95 0.9 0.95 0.9]. 

Different values of fading parameter m are considered. The diamonds denote the aver­

age BER obtained using Monte Carlo simulation. One can again see that the theoretical 

results are in excellent agreement with the simulation results. High-order coherent mod­

ulation formats can be accommodated by the analysis. Fig. 3.3 shows the average SER 

versus the average branch SNR, T, of a coherent 16-QAM system with SC in correlated 

Nakagami-m fading with N  =  4 and p =  [0.745 0.913 0.884 0.721]. The analysis and re­

sults apply equally to noncoherent reception. Fig. 3.4 shows the average BER versus the 

average branch SNR per bit, T, of a noncoherent MFSK system with SC in N  =  4 correlated 

Nakagami fading with m — 2 and p =  [0.95 0.9 0.95 0.9].

Fig. 3.5 shows an example of a H-S/MRC system, where the average SER versus the av­

erage branch SNR, T, of a coherent QPSK system with H-S/MRC in correlated Nakagami-
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16 QAM N=4 Lc «1

N u m e r i c a l  r e s u l t s  m = 1

m =2
m = 3

Simulation results
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Fig. 3.3. The average SER versus the average branch SNR T of coherent 16-QAM using 

SC with N  =  4 for different values of fading parameter m.

m fading is considered. The Lc =  2 best branch signals out of N  =  4 available branches are 

selected. The corresponding vector p =  [0.745 0.913 0.884 0.721], Again, the simulation 

results denoted by the diamonds support our theoretical results for different values of fad­

ing parameter m. One sees that a more lightly faded environment, represented by m =  3 

offers better performance than a Rayleigh faded environment, represented by m =  1, by 

about 4.6 dB in SNR at SER=10~4.

The amount of performance gain that can be achieved by adding an additional branch 

is of interest. Fig. 3.6 shows the average SER versus the average branch SNR, T, of 

a coherent QPSK system with H-S/MRC in correlated Rayleigh fading with N  — 4 and 

p  — [0.9 0.3 0.7 0.6]. Different numbers of the selected branches L c are considered. As 

expected, the SER decreases when more branches are selected. However, the benefit from 

choosing one more branch decreases with increasing Lc. For example, when the SER is 

10”4, about 2 dB gain in SNR is obtained in going from Lc =  1 to Lc =  2, while only 0.3 

dB in SNR is gained in going from Lc = 3 to  Lc — 4.
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MFSK N=4 Lc =1 m=2

N u m e r i c a l  r e s u l t s  M = 2

M = 4

M =8
S i m u l a t i o n  r e s u l t s

ccHIm
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A v e r a g e  b r a n c h  S N R  p e r  b i t  ( d B )
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Fig. 3.4. The average BER versus the average branch SNR per bit T of coherent MFSK 

using SC with N  =  4 for different values of modulation order M.

The effect of the normalized threshold, p,  on the SER of T-HS/MRC in correlated 

Nakagami-m fading can be investigated using our theoretical results. Fig. 3.7 shows the av­

erage SER versus the average branch SNR, T, of a coherent QPSK system with T-HS/MRC 

in correlated Nakagami-m fading with /V =  4, m =  2, and p  — [0.745 0.913 0.884 0.721]. 

Different values of normalized threshold p  are considered. One can see that our numer­

ical results are in excellent agreement with the simulation results. Observe that the SER 

decreases when p  decreases, as expected.

To further examine the effect of the normalized threshold p  on the performance of 

T-HS/MRC, the average BER of coherent BPSK versus the normalized threshold p  for 

correlated Nakagami-m fading with/V =  5 and p =  [0.90.3 0.7 0.60.1] is shown in Fig. 3.8. 

The average branch SNR T =  10 dB. One can see that the BER increases with increasing p  

due to fewer diversity branches satisfying the condition of T-HS/MRC and being excluded 

from the combining. Also, the incremental benefit of decreasing the value of p  decreases 

as p  decreases. This is because the BER of MRC is achieved when p  =  0, and represents
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N u m e r i c a l  r e s u l t s  m =1
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Fig. 3.5. The average SER versus the average branch SNR T  of coherent QPSK using 

H-S/MRC with N  = 4 and Lc =  2 for different values of fading parameter m.

an ultimate lower bound below which the BER cannot be reduced.

3.6 Summary

In this chapter, exact performance analyses of selection combining, hybrid selection/maximal- 

ratio combining, and threshold-based hybrid selection/maximal-ratio combining operating 

in correlated Nakagami-m branch fading with positive integer values of fading parameter 

m, were derived for a particular correlation structure. This correlation model includes equal 

correlation as a special case. The theoretical analyses are performed possible by transform­

ing the correlated branch gains into a set of conditionally independent complex Gaussian 

random variables. Our analyses are simplified compared to other analyses for special cases 

of branch correlation and accommodate different M-ary linear modulation schemes. Nu­

merical and simulation results show excellent agreement with theoretical results.
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QPSK N=4 m=1

N u m e r i c a l  r e s u l t s  L =1c
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Fig. 3.6. The average SER versus the average branch SNR T of coherent QPSK using 

H-S/MRC in Rayleigh fading with /V =  4 for different values of active branches Lc.

Q P S K  N = 4  m = 2

N u m e r i c a l  r e s u l t s  j i = 0 .2

S i m u l a t i o n  r e s u l t s

a :
UJ
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Fig. 3.7. The average SER versus the average branch SNR T  of coherent QPSK using 

T-HS/MRC with N  — 4 and m =  2 for different values of normalized threshold jU.
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Fig. 3.8. The average BER versus the normalized threshold /i, of coherent BPSK using 

T-HS/MRC with N  = 5, and the average branch SNR T =  10 dB for different values 

of fading parameter m.
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Chapter 4 

Approximate SER of H-S/MRC and 

T-HS/MRC in Arbitrarily Correlated 

Nakagami-m Fading

4.1 Introduction

The performance analyses of H-S/MRC and T-HS/MRC in independent fading environ­

ments have been extensively studied. However, in practice, there often exist applications 

where independent diversity branches are not available. For example, in compact antenna 

systems, such as employed in handsets, the diversity branch fadings are correlated due 

to space limitations. However, currently, there are no works providing exact theoretical 

results of H-S/MRC and T-HS/MRC with arbitrary number of diversity branches in arbi­

trarily correlated fading due to the very complicated nature of the order statistics involved 

in performance analysis. Recently, combining the results for the generalized Rayleigh dis­

tribution in [64] and the approximate correlation matrix with a Green’s matrix in [65], 

Karagiannidis, et al. proposed a useful approach to evaluate the multivariate Nakagami-m 

PDF and CDF using a Green’s approximation method in [66 ]. The main idea of their work 

is as follows. Recall that when the fading parameter m is a positive integer, a Nakagami-m
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random variable can be considered as the square root of the sum of squares of m inde­

pendent Rayleigh or 2m independent Gaussian random variables [5]. When the inverse of 

the covariance matrix is a tridiagonal matrix with nonzero elements only on the diagonal 

and slots horizontally or vertically adjacent the diagonal (i.e. along the subdiagonal and 

superdiagonal), the joint PDF of multivariate Nakagami-m RVs can be derived from the 

joint PDF of multivariate Gaussian RVs [64], However, in general cases, the inverse of the 

covariance matrix does not have the tridiagonal property. In this case, [66] approximates 

the covariance matrix with a Green’s matrix whose elements are the closest to the entries 

of the covariance matrix by observing that the inverse of a Green’s matrix is tridiagonal. 

Then the approximate joint PDF and CDF of multivariate Nakagami-m RVs with an arbi­

trary covariance matrix can be obtained by applying the results in [64], Using this method, 

an efficient approximate analysis of SC in arbitrarily correlated Nakagami-m fading with 

positive integer values of fading parameter m was given in [66]. The applicability and the 

usefulness of the proposed analysis was examined by numerical examples and simulation 

results for various correlation models well known in practical diversity systems in [66 ].

Based on the Green’s matrix approximation approach in [66 ], an approximate SER 

analysis of H-S/MRC and T-HS/MRC in arbitrarily correlated Nakagami-m fading when 

the fading parameter m is positive integer, is developed in this chapter [67,68]. Further, an 

exact solution for the average SER of T-HS/MRC in correlated Nakagami-m fading when 

the inverse of the covariance matrix is tridiagonal, is also given.

The remainder of this chapter is organized as follows. The system model is described 

in Section 4.2. In Section 4.3, an approximation to the joint PDF of the branch SNRs is 

developed using the Green’s matrix method. The approximate SER analysis of H-S/MRC 

and T-HS/MRC is presented in Section 4.4. Some numerical results are shown in Section 

4.5 and finally, we conclude this chapter in Section 4.6.
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4.2 System Model

Based on the system model in [66], we assume that there are N  diversity branches experi­

encing slow and flat Nakagami-m fading, and the branch fadings are arbitrarily correlated. 

The fading parameter, m, is assumed a positive integer. Let Yk =  \hk\2Es/No denote the 

instantaneous SNR of the kth diversity branch, as defined in (1.10). Further we assume that 

the branch SNRs, fk (k — 1, - • • ,N),  have the same average SNR, i.e., F  =  E(%). Then, 

the amplitudes of the branch gains, (k =  1, • • • ,N),  can be equivalently obtained from 

2m independent Gaussian distributed iV-dimensional column vectors Yi (I =  1, • • •, 2m) 

with zero mean and power covariance coefficient matrix £ .  The entries of the matrix £ , 

(h j  =  1, • • • ,N),  are defined by [66]

„  =  E ( |r / |2 |y / |2) -E ( |K / |2)E ( |y / |2)
j

P i  i 7 ^  j )H i J  \  1 - J )  ( 4 1 )

i 0' =  ;)-\ J  Var(\ Yf\2)Var( \ Yj  |2) 

where 0 <  Pij < 1, and T/ denotes the the ith element of the Gaussian vector Y[ .

4.3 Joint PDF of Branch SNRs

4.3.1 Exact Joint PDF of Branch SNRs

According to [66 ], let W =  denote the inverse of the power covariance coefficient 

matrix of the /V-dimensional Gaussian RVs as defined in (4.1). When W  is tridiagonal, the 

elements of W  satisfy

P h i P i , 2 0 0 • 0 0 0

P 2 ,l P i , 2 P i , 3 0 . 0 0 0

0 P3,2 P3,3 P3,4 . 0 0 0

0 0 0 0 • P N - \ , N - 2 P n - \ , n - i P N - l , N

0 0 0 0 ■ 0 P N , N - l P N , N
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Then the exact joint PDF of branch SNRs, Yk {k — 1>' •' iN) in correlated Nakagami-m 

fading with the inverse of the covariance matrix, W, can be derived using [66 , eq. (2)] as

(4 3 )

where /( • )  is the joint PDF of the V-dimensional Nakagami-m RVs given by [66 , eq. (2)]

I W W - ' & e - P w * * / 2
/ ( * ,  , * 2 ,  ■ ■ ■ , « )  =    X

I !  \PtJi+l\~{m~ ' )xke~n **‘/2,n-l( \Pl‘M l \ xl!xl!+l) <4'4>
k= 1

where | W  | is the determinant of W  and p t j  (i, j  =  1, • • •, N)  are the elements of W, and 7V (•) 

is the vth-order modified Bessel function of the first kind [4], [69].

When m is a positive integer, one can expand the modified Bessel functions in (4.4) into 

an infinite series following [69], and (4.3) becomes

\ W \ m n N - 1 1 i) I o o  o o  O O  \ m - \ + 2 v k
,  , v v n F i  i \Pk,k+\ i v  v  v  n k=i \Pk,k+u________

•/r i- - 'A' (71" "  A0 (m — 1)! v̂ oV ^O ' ’ ’v J r = 0 n * “i‘ [vjfc!(/n +  vjfc -  1)!]

X V (Dvi+m ) X V ( £ r i+m J
N -l  /  yn - \+ vk+ m - \e _ ^ A n \

x 0  ( f r \ vk-i+n+m j 
*=2 V (rn) /
|w \m ^ ^ ^ N̂ ( v k +  vk + l + m - l

Yilc=\Pk,k vi=0v2=0 vpf-i=0 k=l ^ Vk

x[w - n  V‘
VN - 1 /  kJ[  \Pk,kPk+l,k+l J

x g  ( 7i;vi + m  — 1,
P\,\m

r
x g  Y n W n - i + m -  1 ,----

PN,Nm y
N - l  /  p

x T l s  rk- ,vk - i + v k + m - l ,  ) (4.5)
kJ z  V P k,km J
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where g(x', n, a) is given by

g(x;n,a)
xne~
n\an+l’

For the purpose of brevity, rewrite (4.5) as

\ W \ m

x  >  0, Re{a}  >  0. (4.6)

oo oo NIE'" E AUs(Yk-Jk,ak) (4.7)n / v  n  m  “
k=lPk,k v\— 0v2=0 va?_i=0 k=l

where = V/ ip^^m) (k — 1, • • •, N),  A  and /* are given, respectively, by

A  =
V / V - l + W  1 ^  f v q  +  V ^ + i  +1 7 1  1 ^  (  P q , q + l

VN- 1 q =  1 = 1 \Pq,qPq+l,q+l

and

Ik — <

v \ + m  — 1 , k — 1

v n + v t + m - 1  , fc =  2, • • • ,iV — 1 

V iv - i+ w —1 , k — N

4.3.2 Approximate Joint PDF of Branch SNRs

In the general case, the inverse of the covariance matrix £ ,  W, does not have a tridiagonal 

structure. In this case, we approximate £  with a Green’s matrix, C, whose elements are 

the closest possible values to the entries of £ . Note that the inverse of a Green’s matrix is 

tridiagonal. Then the approximate matrix C is in format as [66 , eq. (9)]

U \ W \ U \ W 2 U \ W 3 U \ W 4  ■ ■ U\Wjq

U \ W 2 U2 W 2 U2 W 3 U2 W 4  ■ ■ U2 WN

c - U \ W 3 U2 W 3 U3 W 3 U3 W 4  ■ ■ u 3 w N

U \ W N U2 WN U3 WN U4 WN ■ ■ UN WN

(4.8)

where w, and w, (z =  l,-- - ,N)  are two sequences of real numbers and iz,-w; =  1 (z =  

1, • • • , N)  due to the form of £ . Equating £  with C, a linear system equation is produced as
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shown in [66, eq. (10)]

W2 =  E 2 , l  W\

^ 3 =  £3,1^1 W 3 = £ 3)2W2

W4 =  £ 4j1 W i W4 =  £ 4)2 W2 W4 =  £ 4,3 W3 (4.9)

W n  — £yv , 1 w l WN — £ /v ,2  w 2 WiV — £ n , 3  w 3 

Eq. (4.9) can be rewritten in matrix format as follows

w n  — £ w  j v -  1 w n -  1

Aw =

---
--

1
M js> - 1 0 • 0 0

£ 3,1 0 - 1  • • 0 0

0 £ 3,2 - 1  • • 0 0

£ a u 0 0 ■ 0 -1

0 £ tv ,  2 0 ■ 0 -1
0 0

w 
..

• 0 -1

0 0 0 • H n ,n -  1 -1

Wl

W2

W 3

WN

(4.10)

Note that to satisfy the definitions of the normalized covariance matrix and the Green’s 

matrix, all of w* should be non-zero values with the same sign. Therefore, it becomes a 

linear system of equations with constraints that either all of w, >  0 (i =  1, ■ • • ,N)  or all 

of Wj <  0 (i =  1, • • • ,N). This constrained system equation can be solved for w,- using 

well-known methods such as Levenberg-Marquards, quasi-Newton, or conjugate gradient 

methods, available in most mathematical software packages such as Mathematica, Matlab, 

Maple, etc. [66 ], In our examples, we use Levenberg-Marquards method, which finds 

the optimal solutions for w,' to minimize the Euclidean norm of the vector (Aw), namely 

min f  =  ||Aw||2, where llvlU denotes the Euclidean norm of the vector v. This
( w > 0 ) u ( w < 0 )  "

problem is a convex optimization problem and hence the global optimum exists. Since 

ui =  1 jwu C can be obtained.

Substituting C for £  in (4.7), one can obtain an approximate joint PDF for arbitrarily
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correlated branch SNRs, which can be used to make an approximate analysis of H-S/MRC 

and T-HS/MRC in Nakagmi-m fading with arbitrary covariance matrix. In the following, 

we will use W  to represent a matrix possessing the tridiagonal structure; thus, W  represents 

the inverse of £  with tridiagonal property, and represents the inverse of the corresponding 

Green’s matrix approximation, C, as indicated by the context.

4.4 SER of H-S/MRC and T-HS/MRC

Appendix B gives a general result for expressing the joint PDF of ordered random variables 

in terms of the joint PDF of the unordered random variables. From Appendix B, one can 

obtain the joint PDF of the ordered branch SNRs /(i), • • •, Y(n )> as

' ’ ' > Y(,n)) — E " '  >7(e;[iv]))
e/GSjv

|T ^ |m  °° °° °° N

~  Tfiv ~ m E E "• E ^  E I I #  (7W’ ;̂[/:]>fle;[fc])
l l k = l ” k,k v i=0v2=0 v/y_]=0 eie.Sffk=\

7(1) >  7(2) >  ' ’ ’ >  Y(n) >  0 ( 4 - 1 1 )

where e, € S/v denotes e,- =  {e,-[l], e,-[2], • • • ,e,•[//]}, one specific permutation of the integers

{l,--- ,N},  and W, A, a^, h  and #(•;•,•) were defined previously. With this joint PDF,

the average SER of H-S/MRC and T-HS/MRC can be calculated using the MGF method 

for different linearly modulated signals [38] as done in Chapter 3. Here, we take coherent 

MPSK as an example; results for other modulation formats can be derived similarly.

4.4.1 Approximate SER of H-S/MRC

Substituting (4.11) into (3.29), one obtains

r  , HW , /•%-!) sYLc y
K - s/mJ a ) =  J o d Y(\) J o d Y(2y j o

/ r ( i) .- .7 (A 0  ( ? ( ! ) ’ ■■■ ’ Y( N) ) d Y(N)
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/7(Lc_t)
x • ■ ■ yo c g  { y ( l c ) ; , «e,[Lc]) ^ r(Lc)rfr(Lc) 

JQ 8 (Y{Lc+ \ ) 'M L c+ \ ] ,a ei{Lc+ \})  d Y(Lc+ 1)1

^ /  « (/(« ); [iV])^7(W)- (4.12)

Using [34, eqs. (11), (12) and (A.l)], (4.12) can be further simplified as

|T I / 'lm  oo oo oo poo

$Yh - S / m r c ( S) = 77]v I  m  52 22 22 ̂  12 J  8  {Y{Lc) ’ hi [Lc] i a ei[Lc\ )  e  7{Lc)
l l k = \ P k , k  Vl=0v2=0 vw_i=0  eie\VN,LcJ 0  

Lc- \  N
n ^ ;W x n  F^](7(L C)M7(LC) (4.13)X

it=l &=LC+1

where W/v,lc is a subset of S^f, whose element ei satisfies e,-[ 1] <  e,[2] <  • • ■ <  e,-[Lc — 1] and 

ei[Lc +1] <  e,-[Lc +  2] <  ■ • • <  ei{N], as defined previously. (j)ei^  (s,x) and Fe.^j (x) are given 

respectively by

/•oo
<t>e ,[k] (s ,x )  =  /  e"rg (y ;^ [* ],ae,-[fc]V7

Jx

e aeilk} SJ X leAk\ 7T 5 I x%[k\
(1 - a ei[k]s ) l^ + \ ^ 0 q\

r ( 1 + / ^ l> • J X
#]____

1+4, K

and

Fe,

*«,■[*] K1 ~ aei[k}s ) e‘lk]

/[fe]W =  J  8{Y’ êi[k]iaei[k])d Y 

~  1 0e,-[fc] (!!>■*•)
 x _  l ei\k\ n

=  i — g +#i y
4=0 ^ [ k f

V { 1 + l eilk},a*[k]

(4.14)

(4.15)
hi[k)'

where r(oc,x) and y(a ,x ) are incomplete Gamma functions given by [6 , eq. (8.352.1)] 

and [6 , eq. (8.352.2)], respectively.
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Substituting (4.14), (4.15) and (4.12) into (3.35), an approximate average SER of co­

herent MPSK in arbitrarily correlated Nakagami-m fading for positive integer values of m 

is obtained as

p  _  | W\m y  y i y  /VjV_ 1 +  t i l  — 1 \  ^r-y /  V£ +  Vfc-f1 +  Aft ~  1

n L lP M mv1=0v2=0 V ^ 1=0\ VN-! /  *=1 \

x n (D " I  \ [@de f’sk=\ \Pk,kPk+\,k+l J  eieWNtLc 71

xfi M(-S;fe)x n ŵCr̂ ))̂ )- (4'16>
k= 1 Sln 0  fc=Lc+l

Since &,.[*] (-cm p sk /s in 2 0;y(Z/c)) <  1 and Fe.^(Y(Lc)) < k  then the SER in (4.16) sat­

isfies

P  <  Lc / N \  1 W\m y  y  y  /v N_ J +  Aft ~  1\  f v k +  V*+ j +  Aft -  1

n \ L c ) n t i P k,km v h v h  vN̂ = o \  vN - l  J  L A  vk
N- i /  „2 \  v&

x l i f f  p2kf+l I . (4.17)
fc=l y P W P / f + U + l  /

Empirically, using Matlab, we numerically testified the infinite series K =  £ ~ =0 • • • L ^ _ I=o

( 2 \ vk
^ t k r )  to converge for all tested values of

N  and correlation models we use. Observe that p ^ +i/(pk,kPk+i,k+i) <  1/2 (k =  l , --- , N — 

1), which aids the convergence of the infinite series. However, the convergence becomes 

slow when N  is large and/or the values of p \  k+l / (pk,kPk+i,k+i) (& =  1, • • •, At — 1) are close 

to 1/2. Then, for larger values of At, the convergence of (4.16) is slow and the computa­

tion time of (4.16) is much longer. For the examples in the next section, we truncate each 

vk (k — 1, • • • , At — 1) at 10 to achieve a relative error tolerance less than 5%.
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4.4.2 SER of T-HS/MRC

Substituting (4.11) into (2.6), the MGF of Yt - hs /mrc(l) can be derived as

O O  oo
■■■ E  ̂E

vi=0 V2=0 va)„i=0
poo

Jo g { y { \ y M \ ] , a ei[l]) e s^ ) d y {ly

/  5 (y(L);^[L]>«ei[L]) esy{l-)dy(V)
J P7[i)

Jo { )  g ( Y ( L + i y l e i { l + l ]  >a e ; [ L + l ] ) ^ 7 ( L + l ) ' - -

g { Y { N y i ei [N]ia ej[N}) d y ( N ) -  (4.18)
«/ 0

With [34, eqs. (11), (12) and (A. 1)], (4.18) can be further simplified as
| T l f | m  o o  o o  o o  /.OO

=  n v m E  E  • £  A L  J  g { y { i ) ' M ^ aei[y)esym
l i k = \ P k , k  v j = 0 v 2 = 0  vjv—l = 0  eiG T jv .i,

L Nxn̂ w(̂ ^̂ i))-̂ ;w(̂r(i))]x n (̂ /(l)vr(i) (4-19)
*=2 *=L+1

where is a subset of Sjv, whose element e,- satisfies e,-[2] <  e,-[3] <  ■■■ <  e,-[L] and

e;[L+ 1] <  e,-[L +  2] <  • • • <  e,-[iV], as defined previously. <j>e.^ (s,x) and Fe.^  (x) were given

respectively by (4.14) and (4.15).

Substituting (4.14), (4.15) and (4.19) into (2.3) and (2.2), the average SER of coherent

MPSK using T-HS/MRC in correlated Nakagami-m fading, is given by
\ U / \ m  o o  o o  ■ o o  N  r Q

ft -  - J 3— E E  - E A E l L  d «v,— n-., n i/.. n *..e7\r, r—1^ Y i k = l P k , k  vi=0v2=0 V;v_i=0 e,G7V^L=l
P O O  CM PSK ^

I  g { y ( i y l e i [ \ y a ei [ l ] ) e ~ ^ Y{') X n  F et [ k M { l ) )
J{) k = L + 1

F T  L  (  CMPSK  \  , A  C M PS /T

D  . ‘H  sin2 0 (1} J sin2 6 ’ dy(i) (4.20)X

k= 2

where c m p s k  — sin2(n /M) ,  and 0  =  z ( M  — 1)/M, as defined previously. When the inverse 

of the covariance matrix is tridiagonal, (4.20) gives the exact average SER of coherent 

MPSK with T-HS/MRC in correlated Nakagami-m fading.
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4.5 Numerical Results

In this section, some examples of the average SERs of coherent MPSK with H-S/MRC and 

T-HS/MRC in Nakagami-m fading with positive integer values of m are given. The accu­

racy of the SER analyses of H-S/MRC and T-HS/MRC using the Green’s matrix approxi­

mation is also examined. In the following examples, we truncate each v* ( k — 1, • • • , N — 1) 

at 10 to achieve a relative error tolerance less than 5%.

Fig. 4.1 shows the average SER versus the average branch SNR, T, of a coherent QPSK 

system with H-S/MRC in correlated Nakagami-m fading with N  =  3 and fading parameter 

m =  2. The linearly arbitrary model, £ 3  j jn and the corresponding approximate matrix C3 jj„ 

in [66] are used. Different values of the number of the selected diversity branches, Lc, are 

considered. The dashed curves denote exact average SERs obtained using Monte Carlo 

simulation. One can see that the approximate SERs using Green’s matrix are very close to 

the simulation results.
1.000 0.795 0.605

IIaCO* 0.795 1.000 0.795

0.605 0.795 1.000

1.000 0.786 0.617

C 3lin = 0.786 1.000 0.786

0.617 0.786 1.000

Fig. 4.2 shows the average SER versus the average branch SNR, T, of a coherent QPSK 

system with H-S/MRC in correlated Rayleigh fading with N  = 4. The linearly arbitrary 

model, XUjin in [66] (XU_im(3,1) should be 0.617 instead of 0.620.), is considered here. 

The dashed curves denote the exact average SER obtained using Monte Carlo simulation. 

One can see that the approximate SERs obtained using Green’s matrix are close to the 

simulation results. For example, when Lc =  3 and T =  6 dB, the difference between the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



QPSK, N=3, m=2

l u  10

3_____a p p r o x i m a t i o n  l c = i

^ _____a p p r o x i m a t i o n  L = 2

a p p r o x i m a t i o n  L c = 3

e x a c t  s i m u l a t i o n  L  =1 
c

e x a c t  s i m u l a t i o n  L  =
C

e x a c t  s i m u l a t i o n  L  =2

0  2  4  6
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  T  (d B )

Fig. 4.1. The approximate average SER versus the average branch SNR F of coher­

ent QPSK with H-S/MRC in a linearly arbitrary model with the number of diversity 

branches N  =  3 and Nakagami-m fading parameter m =  2.

approximate SER and the exact SER is about 0.22 dB.

1.000 0.786 0.617 0.450 

0.786 1.000 0.750 0.620 

0.617 0.750 1.000 0.750 

0.450 0.620 0.750 1.000

C 4li„ =

1.000 0.700 0.538 0.377 

0.700 1.000 0.769 0.538 

0.538 0.769 1.000 0.700 

0.377 0.538 0.700 1.000

Fig. 4.3 shows the average SER versus the average branch SNR, T, of a coherent 

QPSK system with H-S/MRC in correlated Rayleigh fading with N  =  5. The linearly
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QPSK, N=4, m=1

------ — a p p r o x i m a t i o n  L  =1

a p p r o x i m a t i o n  L  * 2

— I— a p p r o x i m a t i o n  L  = 3

.......<3......
a p p r o x i m a t i o n  L  = 4

— -B  - e x a c t  s i m u l a t i o n  L  = 1  
c

......... H ... e x a c t  s i m u l a t i o n  L  = 2

-  € > - e x a c t  s i m u l a t i o n  L  = 3  
c

-  - e x a c t  s i m u l a t i o n  L  = 4
c

-8 -6 - 4 0  2  4

A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  r  ( d B )

Fig. 4.2. The approximate average SER versus the average branch SNR T of coherent 

QPSK with H-S/MRC in Rayleigh fading with the linearly arbitrary model when the 

number of diversity branches N  — 4.

arbitrary model, Rr in [70, eq. (40)], is considered here. We approximate R r with Cr, as 

given below. The dashed curves denote the exact average SER obtained using Monte Carlo 

simulation. One can see that the approximate SERs obtained using the Green’s matrix are 

close to the simulation results with the discrepancies being less than 0.48 dB in SNR. For 

example, when Lc — 2 and F  =  8 dB, the difference between the approximate SER and the 

exact SER is about 0.28 dB.

1.000 0.795 0.605 0.375 0.283

0.795 1.000 0.795 0.605 0.375

0.605 0.795 1.000 0.795 0.605

0.375 0.605 0.795 1.000 0.795

0.283 0.375 0.605 0.795 1.000
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1.000 0.764 0.587 0.434 0.318

0.764 1.000 0.769 0.568 0.417

0.587 0.769 1.000 0.740 0.542

0.434 0.568 0.740 1.000 0.733

0.318 0.417 0.542 0.733 1.000

Q P S K ,  N = 5 ,  m = 1

10°

10

oc
LU 10 w

10

10
-4  -2  0 2 4 6 8 10

A v e r a g e  b r a n c h  SNR p e r  s y m b o l  r  (dB)

Fig. 4.3. The approximate average SER versus the average branch SNR T of coherent 

QPSK with H-S/MRC in Rayleigh fading with the linearly arbitrary model when the 

number of diversity branches N  = 5.

Similar observations can also be drawn from Fig. 4.4, which shows the average SER 

versus the average branch SNR, T, of a coherent QPSK system with H-S/MRC in Nakagami 

fading with N  =  4 and Lc =  2 for different values of fading parameter m. The constant 

model L 4_con ar>d the corresponding approximate matrix C4_Con in [66] are considered here. 

The dashed curves denote exact average SERs obtained using Monte Carlo simulation. 

When T — 8 dB and m =  1, the difference between the approximate SER and the exact 

SER computed with the constant model is less than 0.24 dB. In addition, for the larger
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 a p p r o x i m a t i o n  Lc=1
 a p p r o x i m a t i o n  Lc=2

_ g ___ a p p r o x i m a t i o n  L ,= 3

<4....... a p p r o x i m a t i o n  L  = 4

H____ a p p r o x i m a t i o n  L c = 5

e x a c t  s i m u l a t i o n  L  =1 c
^  _  e x a c t  s i m u l a t i o n  Lc=2 
0 _  e x a c t  s i m u l a t i o n  Lc = c  

<5 _  e x a c t  s i m u l a t i o n  

_4_ „  e x a c t  s i m u l a t i o n  L  ■£
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values of average branch SNR, the approximation with m =  2 and m =  3 is better than the 

approximation with m =  1, namely, Rayleigh fading. Therefore, the approximate analysis 

with Green’s matrix can be used to effectively evaluate H-S/MRC in arbitrarily correlated 

Nakagami-m fading for positive integer values of m.

1.000 0.500 0.500 0.500

0.500 1.000 0.500 0.500

0.500 0.500 1.000 0.500

0.500 0.500 0.500 1.000

1.000 0.641 0.434 0.278

0.641 1.000 0.676 0.434

0.434 0.676 1.000 0.641

0.278 0.434 0.641 1.000

Fig. 4.5 shows the exact average SER versus the average branch SNR, T, of a coherent 

QPSK system using T-HS/MRC with N  =  3 in exponentially correlated Nakagami-m fading 

with fading parameter m =  2 and correlation coefficient p  — 0.5. The exponential model, 

whose inverse of covariance matrix is tridiagonal, is given in [66 ]. Different values of 

normalized threshold, p , are considered. The diamonds denote the average SERs obtained 

using Monte Carlo simulation. As a special case of T-HS/MRC, MRC and SC corresponds 

to p  =0.0 and 1.0 respectively. From Fig. 4.5, one can see that our analytical results are in 

excellent agreement with the simulation results. The performance of T-HS/MRC degrades 

with increasing p  as expected.

To examine the accuracy of the approximate analysis of T-HS/MRC in arbitrarily cor­

related Nakagami-m fading, Fig. 4.6 shows the average SER versus the average branch 

SNR, r, of a coherent QPSK system using T-HS/MRC in a linearly arbitrary Nakagami-m 

correlation model with fading parameter m  —  2  and N  =  3. The linearly arbitrary model 

E 3 iin used in Fig. 4.1 is considered here. Different values of normalized threshold p  are 

considered. The dashed curves with diamonds denote the exact average SERs obtained
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Q P S K ,  N - 4 ,  L = 2  c

-210'
a :
LUW

-310'
— 0—  a p p r o x i m a t e  c o n s t a n t  m o d e l  m =1 
— <3—  a p p r o x i m a t e  c o n s t a n t  m o d e l  m =2 
— 0 —  a p p r o x i m a t e  c o n s t a n t  m o d e l  m = 3  

o  e x a c t  s im u la t io n  c o n s t a n t  m o d e l  m =1 
-  < -  e x a c t  s im u la t io n  c o n s t a n t  m o d e l  m =2 

v  e x a c t  s im u la t io n  c o n s t a n t  m o d e l  m=C

- 4 -2 0
A v e r a g e

2  4  6
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  f  (d B )

8 10

Fig. 4.4. The approximate average SER versus the average branch SNR T of coherent 

QPSK with H-S/MRC in Nakagami fading with fading parameter m =  1, 2 and 3, and 

the number of diversity branches N  — 4 for the constant model.

using Monte Carlo simulation. One can see that the approximate SERs using the Green’s 

matrix are very close to the simulation results.

Fig. 4.7 shows the average SER versus the average branch SNR, T, of a coherent 

QPSK system using T-HS/MRC in correlated Nakagami fading with the number of diver­

sity branches N  =  4 for different values of Nakagami fading parameter m. The constant 

model, L 4_con. and the circular model, L 4.circ [66], are considered. The dashed curves 

denote the exact average SERs obtained using Monte Carlo simulation. It is seen that the 

approximate SERs calculated using Green’s matrix are close to the simulation results. For 

example, when T =  14 dB and m =  1, the difference between the approximate SER and 

the exact SER for the two models is less than 0.45 dB in SNR. The approximation accu­

racy is affected by the approximation accuracy o f the closest possible Green’s matrix and 

the values of fading parameter m. Further, this apparent greatest discrepancy occurs for 

m — 1. When m = 2 and 3, much better accuracy is achieved for both of the two models
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QPSK, N=3, m=2, p=0.5
o'

10‘ 1

-210'

-3
1 0 '

10'4

- 2  0  2  4  6 8 1 0  1 2  1 4  1 6  1 8  20
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  r  ( d B )

Fig. 4.5. The average SER versus the average branch SNR T of coherent QPSK using T- 

HS/MRC with the number of diversity branches N  = 3, Nakagami-m fading parameter 

m — 2, exponential correlation coefficient p =  0.5, and normalized threshold jx =0.0, 

0.3, 0.5, 0.7 and 1.0.

as observed in Fig. 4.4. Therefore, this approximation method using the Green’s matrix 

is effective in evaluating the performance of T-HS/MRC with diversity branches having 

arbitrary Nakagami-m correlations.

1.000 0.700 0.500 0.700

0.700 1.000 0.700 0.500

0.500 0.700 1.000 0.700

0.700 0.500 0.700 1.000

1.000 0.786 0.572 0.453

0.786 1.000 0.732 0.576

0.572 0.732 1.000 0.786

0.453 0.576 0.786 1.000
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QPSK, N=3, m=2

CC
UU
CO

1Cf4

6 8 10 
A v e ra g e  b ra n c h  S N R  p e r  s y m b o l r  (dB)

12 14 16 18 20-2 0 2 4

Fig. 4.6. The approximate average SER versus the average branch SNR r  of coher­

ent QPSK using T-HS/MRC in a linearly arbitrary model with the number of diver­

sity branches N  =  3, Nakagami-m fading parameter m =  2, and normalized threshold 

/z=0.0,  0.3, 0.5, 0.7 and 1.0.

4.6 Summary

In this chapter, an efficient approximate symbol error rate analysis of H-S/MRC and T- 

HS/MRC in arbitrarily correlated Nakagami-m fading channels with positive integer values 

of fading parameter m was developed using a Green’s matrix approximation. This method 

is suitable for arbitrary number of branches and accommodates various linear modulation 

schemes.
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QPSK, N=4, p=0.5

a p p ro x im a te  c irc u la r  m o d e l 
-Q- a p p ro x im a te  c o n s t a n t  m o d e l 
- 0 -  e x a c t  s im u la tio n  c irc u la r  m o d e l 
H — e x a c t  s im u la tio n  c o n s t a n t  m o d e l

cc
HIco

m=1

m = 2

6 8 10 12 
A v e r a g e  b r a n c h  S N R  p e r  s y m b o l  r  ( d B )

1 4 1 6 1 8 20-2 0 2 4

Fig. 4.7. The approximate average SER versus the average branch SNR T of coherent 

QPSK using T-HS/MRC in Nakagami fading with fading parameter m =  1 ,2  and 3, 

the number of diversity branches N  = 4, and normalized threshold ji =  0.5 for the 

constant model and circular model.
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Chapter 5 

Outage and Error Rate of MRC Cellular 

Systems in Multiple Interferers and 

Correlated Rayleigh Fading

5.1 Introduction

In wireless cellular systems, data transmission is mainly limited by fading and cochannel 

interference. Fading is due to multipath propagation and cochannel interference is due 

to frequency reuse in different cells. There are several techniques proposed to mitigate 

the effects of fading and CCI, and improve the system performance. Among them, diver­

sity reception using multiple antennas at the receiver has been recognized as an effective 

method. When the noise is additive white Gaussian, MRC is an optimal combining scheme 

that maximizes the output SNR by coherently combining all of the branch signals [22]. 

However, this combining scheme is suboptimal when non-Gaussian interference is present, 

such as CCI [71]. Therefore, it is of interest to analyze the performance of MRC diversity 

systems in the presence of fading and CCI.

In the literature, the outage probabilities of cellular systems using SC, EGC and switched 

diversity (SW) with CCI in independent Nakagami fading were analyzed in [72]. The out-
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age probability of MRC in CCI for the case of independent fading diversity branches has 

been extensively studied in [73-77]. However, in practice, there often exist applications 

where fading correlation has significant impact on the system performance and cannot be 

ignored. In this area, a performance analysis assuming that either only the desired user di­

versity branch signals, or only the interfering diversity branch signals experience correlated 

fading was presented in [78]. Recently, dual-branch MRC in a CCI-limited environment 

where both the desired user signal and the interfering user signals experience correlated 

Rayleigh fading was considered in [79]. Based on [79] and using a joint characteristic 

function method, more general results for an arbitrary number of antennas with equal- 

power cochannel interferers and unequal-power cochannel interferers were given in [80] 

and [81], respectively. However, these results ignore the effect of noise and only apply for 

CCI-limited environments. Moreover, only outage probability is considered in [79-81].

The average error rate of digital modulations in fading and CCI is another important per­

formance measure of cellular systems. In [82], approximations for the average BER of both 

coherent BPSK and noncoherent binary frequency-shift keying (BFSK) in an interference- 

limited system were derived for i.i.d. Nakagami interferers. Exact solutions for the aver­

age BER of a single branch receiver system with CCI in Nakagami-m fading were given 

in [83]. The performance of diversity receiver systems with CCI in independent Nakagami 

fading was studied in [84,85]. The average BER of coherent BPSK and binary differential 

phase-shift keying (DPSK) in correlated Ricean fading channels with multiple cochannel 

interferers was studied by expressing the decision variables as Gaussian quadratic forms 

and using the MGF approach in [86]. However, the BER calculation requires recursively 

finding the saddle points and no explicit closed-from BER expression was given for the 

case of Rayleigh fading. Different from the method used in [86], in our work, an exact 

and closed-form BER expression for coherent BPSK in correlated Rayleigh fading and 

cochannel interferers is provided [87].

All of the above-mentioned works assume perfect channel estimation for MRC diver­

sity systems. However, in practical systems, the branch gains estimated at the receiver 

are often imperfect, which degrades the system performance. The performance of MRC
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with channel estimation error in noise-limited environments has been extensively analyzed 

in [88-93]. The effect of interference was taken into account in [94], where a multicarrier 

code-division multiple-access (MC-CDMA) BPSK system is studied. In [95], the outage 

probability of MRC with Gaussian channel estimation error in independent Rayleigh fad­

ing and equal-power interferers was considered. Their result was extended to the case of 

unequal-power cochannel interferers in [96]. Here, we investigate the effect of imperfect 

channel estimation on the BER performance when the branch gains of the desired user 

signal and interfering signals experience correlated Rayleigh fading.

In this chapter, the outage probability of MRC diversity with an arbitrary number 

of branches is presented when the branch gains of the desired user signal and interfer­

ing signals experience correlated Rayleigh fading and have the same correlation matrix. 

Two cases, when the correlation matrix is equi-correlated and when the correlation matrix 

has different eigenvalues, are considered. Equi-correlation corresponds to the situation of 

closely packed and symmetrically placed diversity antennas [39]. The correlation matrix 

with different eigenvalues includes more general correlation models, such as the model 

used in [18] with different correlation eigenvalues, exponential correlation with different 

correlation eigenvalues, etc.. On the other hand, closed-form BER expressions of a coher­

ent BPSK system using MRC with CCI in correlated Rayleigh fading are derived. Further, 

the effect of imperfect channel estimation on the BER performance in correlated Rayleigh 

fading and CCI is investigated where a special channel estimator is applied.

The remainder of this chapter is organized as follows. The system model is described 

in Section 5.2. In Section 5.3, the outage probability of the MRC combiner output is 

presented. The average BER of coherent BPSK using MRC with perfect channel estimation 

is analyzed in Section 5.4. The effect of imperfect channel estimation on the error rate 

of BPSK using MRC in CCI and correlated Rayleigh fading is examined in Section 5.5. 

Finally, we give our conclusions in Section 5.6.
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5.2 System Model

Assume that a receiver with an A-element antenna array operates in Ni cochannel interfer­

ing users [79]. Further, assume that the desired user signal and the interfering user signals 

are independent and experience slow and flat Rayleigh fading. However, the fadings for 

each user at the N  receiver antennas are assumed correlated with the same correlation co­

efficient matrix. Then the received signal vector consists of components from the desired

user and the Ni interfering users, and is given by [3, eq. (11.1)], [96]
Ni

r =  v ^ c o d o  +  £  VKcndn  +  z0 (5.1)
n= 1

where Pq and Pn (n =  1, • • • ,N[) represent the powers of the desired user and the nth in­

terfering user, respectively. The powers of the N[ interfering users may not be equal. The 

symbols do and dn { n — 1, ■ • • , Nj), denote the information bits of the desired user signal 

and the nth interfering user signal, respectively, and have zero mean and unit variance. 

The normalized circularly complex Gaussian vectors Co and c„ (n =  1, • • • ,/V/) represent 

the channel gains experiencing Rayleigh fading for the desired user and the nth interfer­

ing user, respectively. Further, the fadings for each user are assumed correlated with the 

same covariance matrix E(cncnw) =  L  (n “  0, • • ■ >77/), where [A]H denotes the transpose 

and conjugate of matrix A. The noise vector z<> is complex white (both temporally and spa­

tially) Gaussian with zero mean and variance matrix Nol, where I  is the identity matrix. 

Then the output of a MRC combiner with weighting vector wq is given by
N,

r =  W0Wr  =  y % ( w 0HCQ)d0 +  Y  VK(yfOH*n)dn +  (wo^zo)- (5.2)
n= 1

When the channel estimation is perfect, namely, wo =  Co, (5.2) becomes
N,

r  =  c0wr =  ^Po(coHco)dQ + \ZFn(c0Hcn)dn +  (c0Hz0). (5.3)
n—l

The interference plus noise covariance of the MRC output conditioned on the fading gains 

is given by [3]

£ ™ = E
/  Ni \  (  N,  x n

Y ,  VPn(COHCn)dn + (coHZo) Y  VK{coHCn)dn + { c0HZq) > . (5.4)
\n— 1 7 \n=l
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The instantaneous output signal-to-interference-plus-noise ratio (SINR) after the MRC

combiner, Ysinr* is defined as the ratio of the signal power to the interference plus noise

covariance conditioned on fading gains cn (n — 0,1, • • • ,/V/) given by [3,73,79]

^ ( c o ^ c o V o l 2
Ysinr =  ---------- ^ ---------------• (5.5)

L in

Since the information bits of the users are assumed independent with zero mean and 

unit variance, and are independent of noise, (5.4) becomes

! N, N, N1

Y J Pn\ ^ Hcn\2\dn\1 +  £  £  ^/PJPqdndHCoHcncqHc0+

n— 1 n=\q=\,q^n

 ̂E ^ (C o ^ C n ) d n̂  (C0WZ0) +  ̂E V K ( c O H C n ) d ^ j  (c0WZ0)H 

+co//z0zo//c0}
N,

=  2 P „ |c 0ffcn|2 +  A'o(coHco) (5.6)
n~ 1

where the terms E { ^ P nPgdnd^CoHcncqHco} =  0 for n ^ q ,  ^ {^ /Fn{c^Hcn)dn(c^H'L̂ )H} =  

0, and E { v /̂ ( c n//c0) ^ ( c 0wzo)} =  0.

Substituting (5.6) into (5.5), the instantaneous SINR becomes

^olco^col2
Ysinr — —rr----  — - — ----------—- —-. p .  /)

'EsnLl ^n|co C„| +  A^)(c0 C0)

5.3 Outage Probability

Then the outage probability of the SINR, Ysinr> is defined by [3]

Fysinr (Yth) =  P*(Ysinr <  Yth)i Yth > 0 (5-8)

where Yth is the output SINR threshold. Substituting (5.7) into (5.8) and combining with 

CoH £  Co >  0, one obtains

Y th )  =  P r (  p I ,  H , -\In ilP«lC0 Cn| + N 0 (C(,HC0) J  

f  ^ \ c o h co\2 - N 0(c0h co) \
=  Pr ^  < K  (5.9)

\  Co^Lco j
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(cowcn)

where
N,  • "  2

K = £ P n
n= 1

(5.10)
v V 'L c o

Since cn (n =  0,1, • • • ,Nj) are independent zero-mean complex Gaussian random vectors,

conditioned on Co, the random variable (coWcn)/  v  Co £ co is complex Gaussian with zero 

mean and unit variance, and hence is independent of the fading vector Co- Therefore, the 

summation of the squares of these RVs, K, is independent of Co [79]. Assume that the 

Ni interferers can be divided into p  groups, each of them having the same power Pn and 

£ n = ltn ~  Ni. Then the PDF of K  can be represented by [77, eqs. (13), (14)]

P  J L  (X i p ~ k j P n

h W =  £ £ ( , : » ,  p,. . * 2 °  <5-u >
n=l/„ = l \ ln l ) •

where tn denotes the number of interfering users with the same power Pn, and a„in is given 

by
p Cqi i ^ X '

e n X L  (5-i2)
r(n,ln)i=l,i^n M —

where Cfr =  n\/ ( ln\(n — /„)!) and T(n,l„) denotes a set of p-tuples such that T(n,ln) = 

{(<7l r  • • i Qp)  • <li S  N 0 , q„  =  0, £ f =1 <H =  tn ~  ln } ,  with N 0 signifying the set of nonnegative 

integers [77].

Let A denote a diagonal matrix composed of the eigenvalues of the correlation matrix 

£ , A; ( i  =  1, • • ■, N)  such that £  =  UAUH, where U is the corresponding eigenvector matrix 

with UHU = UUH =  I. Further, let u — vHA \ ,  and w =  \ HA2\ ,  where v =  A ~ 1/2Uh Cq is a 

N  x  1 complex Gaussian vector with zero mean and unit variance matrix I. Then (5.9) can 

be rewritten as

W o t * )  =  P r | r,‘ ... ~ < K

=  k w - ^ “ 2 “ k “ ) -  < 5 ' 1 3 )

Since K  is independent of c<>, and hence independent of v, the CDF of the SINR, Ys i n r > 

conditioned on K  can be expressed as

F7s,NR\K{Yth\k) =  Pr (w  >  X X u 2 -  ^ - u \ X j  . (5.14)
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If the conditional CDF in (5.14) is known, the outage probability of SINR can be obtained 

by averaging (5.14) over K.

5.3.1 Joint PDF of u  and w

Note that due to the fading correlation, the random variables u and w are correlated. To 

obtain the conditional outage probability given in (5.14), one has to get the joint PDF of

i.i.d. chi-square distributed with two degrees of freedom [79], the joint CF of u and w is 

given by [35]

According to the relation between the CF and the Fourier transform, one has §x{—j(o) — 

F ( x ) ,  where <t>x(j(o) denotes the CF of x, and ¥(x)  denotes taking Fourier transform on 

x  [35]. Then, the joint PDF of u and w can be derived by taking the two-dimensional 

inverse Fourier transform on 0M,W(— i, — jo>i) [91]. In the following, the joint PDF of u 

and w will be considered for the case that the correlation matrix has different eigenvalues 

and the case that the correlation matrix is equi-correlated, respectively.

Case I: Correlation Matrix With Different Eigenvalues

Assume all of the eigenvalues A,- are not equal, and satisfy X\ >  A2 >  ■ • • >  Xn > 0. Then, 

the joint PDF of u and w can be derived by taking the two-dimensional inverse Fourier

u and w first. Since u — A,jv;j 2, and w =  ^/2|v(j 2, where 21v,-12 ( / = ! , - • • , N)  are

0u,w( M » M )  =  E { e jC0lU+ja>2W}

{j(0lk+j<02tf)\Vi[

Ar 1 (5.15)
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transform on <$>u,w{-jG>\,-jG>i) resulting in

_  ( liXj)N- 3e ~ \ Ti" Ti
/u,vv(w,w) —

— I T7 + T7 I

i,je{l,-,N},i<j (^' % ) r i / L i h ){X j  Xt) 

x  \U (A,w — w) — U(XjU — w) +  — w )] ,

u > 0  (5.16)

where 8 (x) is the Kronecker delta function, and U (x) is defined by

( 1, x > 0
U(x) = {

 ̂ 0, x  <  0.

The detailed derivation from (5.15) to (5.16) is given in Appendix C.

Case II: Equi-Correlated Correlation Matrix

When all of the users experience equi-correlated Rayleigh fading with correlation coeffi­

cient p (0 <  p <  1), the elements of correlation matrix satisfy £,-j =  p (i, j  =  1, ■ • • N, i ^  j ) 

and =  1 (i — 1, • • • ,N).  Since the eigenvalues of matrix £  are X\ =  1 +  (N — l)p  and 

Xi =  1 — p (i =  2, • • • ,N)  [3, eq.(9.172)], (5.15) becomes

1 1__________  X_____________
(1 -  jXi(Oi -  jX^Oi)  ( i  -  jX2(0\ -  j X ^ a ^ y

According to the definitions of the two-dimensional Fourier transform and two-dimensional 

convolution [97], for N  >  2, we have

— /1 ^  ;1 2 „  ^ xN—\ '

uN 2e *u8(w — Xu) I 1
F \  ( jv - 2 ) a * - >  /  “ - 0' < 5 ' 1 8 )

Taking the two-dimensional inverse Fourier transform of <j*u,w(— , — jofy) given in 

(5.17) and combining with (5.18) and (C.3), the joint PDF of u and w in equi-correlated 

Rayleigh fading is derived as

(XlU- w f - 2e * fc - (* [ +£ ) 1'

( N - 2 ) ! X 1X2/v~ l (X1- X 2y
f ( uiw) = TZ— , ~v. T/ 0----- r 7 ]v'-T ’ 0 < X 2u < w < X xu. (5.19)
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In the following, we use the joint PDF of u and w obtained for the case that the correla­

tion matrix has different eigenvalues and for the case that the correlation matrix is equi- 

correlated to derive the outage probability of MRC in the presence of CCI and correlated 

Rayleigh fading.

5.3.2 Case I: Correlation Matrix With Different Eigenvalues

When the correlation matrix has different eigenvalues, substituting (5.16) into (5.14) and 

combining with (C.6) in Appendix C, the conditional CDF of the SINR, Ys i n r > c a n  be 

derived as

FysiNRlK̂ Jthlk)

*/)(* / */)

g-ky.h/Pa y  ( M / ) ^  2 ( V  No7il

X

I ______________
\N n .

(JG{ 1 ,-A}, i<j
j'(kXi+N0)'Ylh/Po

(kXj+No)yth/Po

ik*i+N0)Y,h/Pb

(klj+No)Y,h/Po

i „ e-kY,h/Po y  ^
,N},  i < j  -  ^ j )

{XiXj)N- 2{Xie-N̂ l ^  -  Xje-NM k / W I))) 

— ( ^  -  Xj) n t  i ,¥ i J (Xi -  m x j  -  Xi) 

{ X i X j f - 2_ _ _ _ _ _ _ _

Yth > 0. (5.20)
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Averaging (5.20) on K,  the outage probability of the SINR becomes

Ys in r (7th) =
1 £  A  a„in y  _  X j e - t o l W o))

n = l / „ = l  i j e { l , - , y v } ,  i '</  ( ^ '  ~  — ^ / ) ( %  — ^ / )

V  ___________ ( ^ f - 2 £  £

ij'e{l,-,/V},!<) ^yOri/Ll,/^*,/^/ 2/)(Aj h )  n=nn=\ ttn *)*

r~ dk  f {k̂ )7‘h k l̂  exp ( J j * -  -  u ( X-  + 1  +  -  A  d«
3 \ W j k Y t h  U  +  A; + w r 0j  T “

(5.21)

where T” =  Po/Pn (n =  1, • • •, A/), is the ratio of the desired user signal power to the nth 

interfering user signal power, and To =  Po/N q is the ratio of the desired user signal power 

to the noise power, namely, the average power SNR. Eq. (5.21) is a new result for outage 

probability of MRC with unequal-power CCI and thermal noise in correlated Rayleigh 

fading, and requires a double numerical integration.

When To =  °°, namely, the noise is negligible, (5.21) becomes the outage probability 

of the signal-to-interference ratio (SIR) in CCI-limited correlated Rayleigh fading given 

by [81, eq. (8)]

FrsMth) —

, £  £  «»/. V’ ( W " -2
2-, h ,  / .. \l„ 2-i n . o m -tN
«=i/„=i ( l  +  ] y ) " U6{i,-A},i<y (^' k j ) U l=ll^i j(Xi  Xi)(Xj Xi)

y  y  a '%ln r dk  [ kXiy,hlT' k l n - \exp (  m2F/ _  (■Xi + Xj)u _  
h \ /„=1 ( I n - i y .  Jo JkXjrth/ri  v XiXjkjth XiXj

(5.22)

Letting u = kx, using [98, eq. (1) and (3)], (5.22) can be further simplified in closed form
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as

Fr„(r,h)  =  . -  ±  I  ^  ^
i / „=i ^ l  +  M ^ "  i j£{\ , - ,N} , i<j(^  h ) { ^ j  A,)

TT ^  a nL f Xiyth,V< , r , l  (  kx2T" (Xi + XAkx \  ,X V  V  - ■■ /  d x  /  exp ( 1 -  K 1 JJ jfcUjfc
n = l / „ = l  ( / « - 1 ) ! V /r; JO \ X i X j Y t h  X i X j  J  

_  ̂_ y  y  _ y  _________ (A»Aj)̂  _________
- l A  ( l  +  ^ ) /n '<7 (A<- -  Ay) nf-K /z /./A / -  * )(A , -  A,)

X L  E  [ j l  ( l + A ^ x - A ' ^ ’V )  "dx
n = l / „ = l  ^ 3  V 7

_  i _  ^  a "Z" ^
n=un=i +  j£_yn ije{i,--,N},i<y ^ ) n f = i l W (A,- A,)(A, A;)

X t  t  ln t t n i ASln( A if ) - S ln( A i ’n)} (5 .23)
rc=l /„ = 1

where =  ry /(A i X j Y t h ) , ^  =  (1/A< +  I/Ay), A f  =  A ^ / r ? ,  A f  =  A ^ / r ? ,  and

1
s U x ) =  j -

(1 +  A^X — A,1J ’”x2)/'!+1 

S/„(x) can be calculated in closed form by [6, eq. (2.171.4) and (2.172)] 

dx r l

dx. (5.24)

[  dx  _  fJ ~ J -dx
(a +  bx +  cx2)n+l 

2cx + b"^} 2k(2n + 1)(2n — l)(2n  — 3) • ■ • (2n — 2k+  1 )c* 

+  n (n ~  1) ’ ‘ - (n ~  k)Ak+lRn~-k

+2
„(2n — l)!!c” f  dx

n\An l i  (5-25)

and

/
1 i -\/-A -(i>+2c;t) . _

T ^ A  (W -2 c * )+ v ^ = A  ’ A < 0dx
T  = \  s r f e -  A =  0 <5'26)I

where A =  4ac — &2.

^ . a r c t a n ^ ,  A >  0
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When all interfering signals have equal powers, that is, Pn =  Pi/Nr ( n  — 1, • • • ,Ni), 

where Pj =  Pn is the total interfering power, one has T" =  TV/I"/, and T/ =  Pq/Pi is the 

ratio of the desired user signal power to the total interference power. Then (5.21) becomes

^  (XiXj)N- 2( X i e - ^ ^  -  V W ( W )
PjSINR (Yth) 1

\ N - 2

■ fJ o

/■(ft+^)rM ( N^m2 ^ 1 , 1 , A^r/  ̂ 1\ J
cxpl w i “ “ U + A;+ w ^ J _ J

(5.27)

Further, when To =  °°, (5.27) becomes the outage probability corresponding to the case of 

equal-power CCI-limited correlated Rayleigh fading given by [80, eq. (10)], and can be 

further calculated in closed form as

PysmiYth)

1 Y ‘ ^  (XiXj)Ni „ \ZV—2

1 -

N i T , Jr V  i , j < = { l , - , N } , i < j  (N I Y ) U l = l l ¥ i j ( ^ i  h ) ( X j  Xi )

x r *  r w w r v - - > = x P ( ^ - t ^ h - t ) ^
70 JkljYth/(NiT,) \XiXjkjth XiXj )

.  (  1 Y '  y  N , ( l , X j f - 2

\Yth/(Ni^i)  +  1 /  i,je{i,-,N}, i<j ~  ^7') n f = i,/^j(A ,' — X/){Xj — X{)
r k y , h / ( N i r , )  i

x  /   M~nrdx
W r f) ( i  +  ( ,  +  '+

1 V '  ^
7?/i/(Ar/r/) + iy  i,y'e{i,-,zv},i<7 W U t i M j f a  h)(hj-X{)

c ( X i j t h \  c f  X j Y t h \

Sr , ' { w , ) ~ SN' { w ; )
(5.28)

where Sn,(x) can be calculated in closed form as done in (5.24). Eq. (5.28) is a new 

result for the outage probability in CCI-limited correlated Rayleigh fading with different 

eigenvalues for the correlation matrix when the interfering users have equal signal powers.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.3 Case II: Equi-Correlated Correlation Matrix

When all of the users experience equi-correlated Rayleigh fading with correlation coeffi­

cient p (0 <  p <  1), the CDF of the SINR conditioned on K  becomes by substituting (5.19) 

into (5.14)

( kYth , ^ 0 YthW  ,
q = 0  1=0

h  \ N~ ^ q 1 (kYth , Noyth\ l (  (kYth , NoYth \
h - h )  / !  V Po hPo J C X P V V Po h P o)

N —2 N - 2 i r a iV,h+N0Vth /  A r e l . . 2  \  9A i"~z Nf 2 1 Nqu Pqu2 V
(Ai -  A2)Af~ 1 gt o  q[ J kh7<hp " m  V^2 h f a k  l \ h . k y th )

xexp( ® “ (^  + i  + !& )" )* '  ( 5 ' 2 9 )

Averaging (5.29) over AT, the outage probability of the SINR is given by

U s )  = 1 -  { i t t ) " ' 1 e ~ y‘l , l ( l 'V° ) 1 1  +\ M ~ h J  „=1/b=1 ( i  + ^ ) n

A2e-W (A2ro)^V-2 9 /  A \  W-l-g p 'tn
E E E I9 = o  ; = o  V ^ 1 ^ 2 /  w = i / „ = i

V  1 Z' (  1^!l\ ( i - L

2 _ , n , + ; - i  r /  ,-\i I Q „ r n i n  n
i = 0 ( / - / ) !  V ^ r v  V r " y  V r ?

i  Af—2  N —2  i  p  /„ -y  , 0 0

( X \ - k i ) N  1 q=0 y ' n = l  l„ = l ( ln 1 ) 1 7 0

/  m «r" T"m2
+ \^ 2  ^ 1 ^ 2 ^  M ^ Y t h )

xexp( i ^ - ( ^ + i + w ^ ) “ “ ‘) ' <“' (5 '30)
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Similarly, when To =  °°, namely the noise is negligible, (5.30) becomes [81, eq. (13)]

r  . (  h  \ N- '  £  £  0,1,
FySmiYth) -  1 ( »  , I £  LA.-W  (, + m)'-

i  / V - 2  <7 /  i  \  / V - l - 9  p  /„

+ r £ £ ( ; r Y )  E E C . “*A 1 9=0 /to V 'tl-'W  /„=!
x y 7  M  _  a^ 2 y i

■17 A

£  £  «n/„ r Jf f  r > 2 / 1  , 1 '
,£ i  d k j ^  »p ( i s s  -  U + h .

u r > 2 \ q , ,

^ - x ^ r - du- (53,)X  —

Letting u =  fcr, (5.31) can be further simplified in closed form as

*1 £  « Affato,) -  i ( , v j  E  E  , r v .
n=l/„ = l (̂ 1 + j |

1 / V - 2  q  /  l  \  A / - 1 - ?  p  tn

+ £ e e ( s ^ )  E E d s V *
A1 9=0 /=0 \ Al 2 /  «=1/„=1

x V ^  _  A *~2 y 21
U ? A  r 7 /

V  Y  ( l n  +  q ) ' . a n i n f B4 ( B 5 x - B l x 2 y

Ai \ yv_1 £  ^  a„/„
( i + f t )

l „ / V - 2  q /  \  A / - 1 - 9  p  r„

+^ ^ ( â )  E  E d ; ; ,
A 1 9 = 0 / = 0 V A i  A 2 /  n = l / „  =  l

/ v  \ 4 /  V  \  3 , ^ - 2  ^ - 2  1

x( if )  ( 1 + F*) “

E  E  V r f f i f tW f l i ) - r,,,.+,(fll)l (5.32)
n=l/„ = l I4" L -

where Bnx =  ^ / ( A ^ a ) ,  fl2 =  (1/Ai +  1/A2), ^  =  A ^ / r ? ,  5^ -  A i ^ / r ? ,  and fl5 =
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1 jX2. The integration term Yqj n+q(x) — J(B$x — B"x2)q/ ( I  +  B2x — B"x2)ln+q+ldx  can be 

calculated by [6, eqs. (2.171.3), (2.172), (2.18.3)].

When all interfering signals have equal powers, namely T" =  NjF/, (5.30) becomes

F r s , M  =

X \ \ N ~ X g " *  X2e ~ ^ Ny 2 q [  X\  \ N ~ l ~ q
+  5,  2 *M  ~ X 2 )  +  h  q—Q l—Q V^i ^2

f  ( j u _  V  ( ,  , it* A - N' - ‘ x , N- 2 Nf 2 1

S V - O t W o )  \ N , r , J  \  N , r , J  (A ,- tw " - 1 ,<?=

r J; ^ / r /M2 ^ 1  , 1 , iV/r/ ^  ,

7o exp U i ^ a  U i  *2 ^  W o  J M

x (  ^ 1 7  _  NjTlU2 \ q x ^ i
A i^rbfc XiX2kyth )

Further, when To =  °°, (5.33) becomes [81, eq. (14)] corresponding to the equal-power 

CCI-limited case, which can be further simplified in closed form as

, (  h  \ N~' 1
> W m )  -  ( A i _ J  /  y *  +  A , E

,  \  N - l - q  /  \  / /  , ,  \  - l - N ,\ I Yth \ , Yth
(=0v i . - W  c ^ + /- l U / r J  \ l + NIr I

N —2 N - 2  i  , 0V y  i  r , ,  f w

_1 1)! Jo J ‘-&}{ h - h f - ' p ,  l W -  1 ) ! A  ^

exp ( S "  ( x i + i ) ' 11) x f e '" S T x

/ _ 1  “ 0  7 N l + q J h u / ( N , r , )  ( i , (  i  , h v _ i ^ f , + , + 1(Ai -  A2)w 1 “o */+* J h u M r , )  (! + f j_ + m ^ 2Y /+g+1
(5.34)
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5.3.4 Numerical Results

In this section, some numerical examples of the outage probability of MRC in CCI and 

correlated Rayleigh fading are given. In our examples, we assume that the channel gain 

vector c„ =  [xn>1 +  j'yn., • • -x^N + jy n>N}T in =  0, • ■ • ,N,) satisfies E[xnjxnJ] =  E [ynyynj] 

and E[xntiynj] =  E[ynjxnj] —0 ( i j =  1, • • • ,N)  where [A)r  denotes the transpose of matrix 

A. For the outage probability, a wireless cellular system in which the desired signal is 

corrupted by Ni =  6 cochannel interferers in correlated Rayleigh fading with outage SINR 

threshold Yth =  12 dB, is considered. Given the total interference power P[ =  Y%L\ Pn> the 

average power SIR is defined as SIR= Po/Pi, and the average power SNR is defined as 

SNR= Pq/Nq. Two cases are considered: 1) all interfering users have the same powers; 2) 

the powers of the interfering users are unequal with Pn — P (n = 1, ■ • •, 5) and Pg =  5P.

Fig. 5.1 shows the outage probability of MRC with unequal-power interferers as a func­

tion of the power SIR using the channel model from [18] with A =  n  , where E [xnyxnj \  =  

E[ynyynj] =  0.5Jo(2n(i — j )d) ,  and d is the ratio of the spacing to the wavelength between 

two adjacent antennas. Here, we consider d — 0.382, which represents the minimum nor­

malized spacing between any two adjacent antenna elements yielding zero correlation. Dif­

ferent values of average power SNR are considered, among which, average power SNR= °o 

corresponds to the CCI-limited case. In this figure, the diamond markers denote the outage 

probability obtained using Monte Carlo simulation. It is seen that the analytical results and 

the simulation results are in excellent agreement. Observe that an outage floor appears for 

a fixed value of SNR when the power SIR is large. This is because the outage probability 

at large values of average power SIR is mainly affected by the fixed value of average power 

SNR when the noise dominates the cochannel interference. As expected, the outage floor 

decreases with increasing average power SNR.

Fig. 5.2 shows the outage probability of MRC as a function of the average SNR in equi- 

correlated Rayleigh fading with N\ = 6 unequal-power interferers, N  — 4 receiver antennas 

and correlation coefficient p =  0.5. Different values of average power SIR are considered. 

In this figure, one sees that when the interference dominates the noise, an outage floor is

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d = 0 . 3 8 2 ,  N = 4 ,  N .=6 a n d  y u = 1 2  d B’ 'tn
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A v e r a g e  S I R  (d B )

Fig. 5.1. The outage probability of MRC versus the average power SIR with N  =  4, 

d — 0.382, y,h — 12 dB, and Nj = 6 unequal-power interferers for different values of 

average power SNR.

established by the value of the SIR. The floor can be reduced by increasing the power SIR, 

as expected.

The effect of the normalized spacing between two adjacent antennas, d, on the outage 

probability is examined in Fig. 5.3. The channel model from [18] with A =  n  is considered 

for Nj — 6 equal-power interferers with average power SIR=20 dB. From this figure, one 

can see that the outage probabilities when d — 0.382 and d = 0.4 are close to the globally 

minimum outage probability at d — 0.9. From the viewpoint of system design, Fig. 5.3 

indicates that one may set d — 0.382 or 0.4 to achieve a good compromise between outage 

performance and space limitations.

Fig. 5.4 shows the outage probability versus the average power SNR in equi-correlated 

Rayleigh fading with N  =  4 receiver antennas, and TV) =  6 equal-power interferers. Dif­

ferent values of correlation coefficient p are considered. It is seen that the outage floors 

when the SIR= 10 dB are much greater than those when the SIR= 20 dB. Further, while

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 5.2. The outage probability of MRC versus the average power SNR in equi-correlated 

Rayleigh fading with N  =  4, p =  0.5, Yth — 12 dB, and Ni = 6 unequal-power inter­

ferers for different values of average power SIR.

the performance generally improves with decreasing correlation coefficient p , as expected, 

it is seen that a large value of correlation coefficient causes significantly more performance 

degradation at large values of SIR than at small values of SIR.

5.4 BER of BPSK with Perfect Channel Estimation

In this section, the average BER of a coherent BPSK system using MRC diversity in the 

presence of multiple interferers and correlated Rayleigh fading is studied. We assume that 

all of the user signals are BPSK modulated, namely, the information bits of the desired user 

signal,do, and the nth interfering user signal, dn (n =].■■■, Nj), take values from { + 1 ,-1 }  

with equal probability. Then the decision variable after the MRC combiner is given by

N ,

D = Re{r)  =  V ^ ( c o % H +  £  v ^ ^ K c o ^ K  +  ̂ ^ z o ) } .  (5-35)
n = 1
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Fig. 5.3. The outage probability of MRC versus the normalized spacing between two 

adjacent antennas, d, with N  =  4, yth =  12 dB, Nj =  6 equal-power interferers, and 

average power SIR=20 dB for different values of average power SNR.

Without loss of generality, assume that do — +1 is transmitted, then the average BER con­

ditioned on cq for the desired user, is given by

Pe|Co =  P r(D < 0 |d o  =  +l,Co)

=  Pr ^ V ^ ) (coHc0) +  \ /KRe{(coHcn)}dn + R e{ (c0Hz0)} <  0|c0^  .

(5.36)

Since the quadratic form CoW£ co >  0, the error probability of (5.36) can be rewritten as

Pe|co =  Pr (  +  £  VFngndn + no <  0|c0)  (5.37)
V V C0 E c0 n=1 j

whereg„ = R e |( c 0//cn) / v /Co^Xc0|  (n =  l , --- ,Nt ) and n0 =  Re { (c0" z 0) / ^ c 0H £ c 0 j . 

Since cn (n =  0, • ■ • ,Nj) are independent zero-mean complex Gaussian vectors, one can 

show that (coWcn) /  a/cowL co (n =  1, ■ • •, AT/) are independent complex Gaussian distributed
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Fig. 5.4. The outage probability of MRC versus the average power SNR in equi-correlated 

Rayleigh fading with N  — 4, yth — 12 dB, and TV/ =  6 equal-power interferers for 

different values of correlation coefficient p =  0.3, 0.5 and 0.8.

with zero mean and unit variance [79], and independent of Co- Therefore, gn (n =  1, • • • ,7V/) 

are independent Gaussian distributed with zero mean and variance =  1/2, and indepen­

dent of Co- In addition, hq conditioned on Co can be shown to be Gaussian distributed with 

zero mean and variance o%0 = No(cqHc$)/ (2(cqH Y<co))■

Let Y = Y^L\ 'fPngndn +  n0 - Since gn (n =  1, • • • ,Ni) and hq conditioned on Co are 

independent, the CF of Y  conditioned on Co is calculated by [35]

M j < 0 ) =  H e j0)Y) = M J < 0 ) K U ( 0 )  (5.38)

where 3£ =  'ZnLi h  =  L ^ li \fPngndn, and (j)y(j(Q) denotes the CF of the random variable

y. Noting the fact that gn and dn (n =  1, • • • ,7V/) are independent, one obtains the CF of

by

N,

t a r u ® )  =  (5-39)
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Since dn is independent of gn and takes values from { + 1 ,-1 }  with equal probability, the 

CF of In conditioned on gn, is given by

ej<*>VKgn e~j®\fKgn
fonlgnti®) =  -----2-----+ ------ 2-----  =  COS(^ "S n (0 ) .  (5.40)

Averaging (5.40) over gn and combining with [6, eq. (3.896.2)], the CF of /„ becomes

1 2 
fanU03) = —j= I c o s ( y ^ g nCO)e~Sndgn

y/n

=  exp • (5-41)

Substituting (5.41) into (5.39), one can obtain the CF of by

<t>3rU<°) =  FI ^O'®) =  exP E  = exp (5'42)

where Pi =  Y^L \ Pn is the total interference power, as defined previously. Note that the 

interference term 3C is actually a Gaussian RV with zero mean and variance P\ j2 [35], 

and is determined by only the total interfering power and is independent of the number of 

interfering users Nj and the individual interfering user powers.

Since no conditioned on Co is Gaussian with zero mean and variance o ^ , the CF of no 

is given by [35]
a / (  0)2 w M)(coHco) ^
K O « ’) = « P ( - T X 2(c / f j ;co) ) -  ( 5 ' 4 3 >

Then the CF of Y conditioned on cq is given by

A (  (O2 f p j , Ao(cohco)
(;<•>) =  “ P ( - T ( T  +  2 S Hf t i )

= « p ( - ^ )  (5-44)

where Oy — F //2  +  iVo(coHCo)/(2(co/ / £co)). Again, the random variable Y conditioned 

on Co is a Gaussian RV with zero mean and variance a 2 [35].
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Thus, the conditional error probability Pe|c# in (5.37) can be calculated by

= Q { y / l Y b e r ) (5.45)

where Q{x) — (1 /y /2n)  f ™ e  ,2l 2d t  is the Q function, and Je e r  is given by

F o (co % )2 (5.46)
P l ( c OH H c o )  + N o (CqH Cq)

Averaging (5.45) over Yb e r , the average BER of coherent BPSK using MRC in the presence 

of interferers and correlated Rayleigh fading is given by

where f y BER{ t) and F rBER( t ) are the PDF and CDF of Je e r , respectively. If the PDF or the 

CDF of Je e r  is known, the BER of coherent BPSK can be obtained using (5.47).

Rewrite Je e r  in (5.46) as

where u — \ HAv, w = \ HA 2\ ,  v =  A-1/2[ /wCo, and A is the diagonal matrix composed 

of the eigenvalues of the correlation matrix £ ,  A; (i — 1, • ■ •, N),  as defined in Section 5.3. 

Then, the CDF of Je e r  is given by

poo
Pe =  Q(V2t ) f rBFR(t)dt

J  0

(5.47)

F tBER<y) =  H i r e r  < y )

Piw + Nqu 
Pq 2 M) 
Ply Pi

(5.49)
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where To = Pq/Nq is the average power SNR and T/ =  Po/Pi is the average power SIR as 

defined in Section 5.3. In the following, the CDF of Jb e r  for the two cases that the correla­

tion matrix has different eigenvalues and that the correlation matrix is equi-correlated will 

be studied respectively.

5.4.1 Case I: Correlation Matrix With Different Eigenvalues

Substituting the joint PDF of u and w in (5.16) into (5.49) and combining with (C.6) in 

Appendix C, the CDF of Jb e r  becomes

W > 0
i < j

Jo JXjU
dw+

(rt + ro)^ , f X‘u du
17+ r^ )y

r ,u 2 v ,u
y r0

ev r ‘ \ k +T,) i w

=  i -  £
i < j

( X i k j f - 2 -  A/ e - ( ^ ^ / ( ^ r o)))

i b - b ) n  l h ^ u ( b - b ) ( b - b )

( W N - 2

i , j e { i , - , N } , i < j ( b  b ) H i = i , i ^ i , j ( b  A / )  ( A  

2
du.

_______  A ro r
,j -  A/) J ( ^ + Tj

( W
eXpU-A;y U \ X lX j r Q 1 A,- 1 Ay (5.50)

Substituting (5.50) into (5.47), the average BER of BPSK in correlated Rayleigh fading 

and CCI is derived as

\ N - 2
( W- - -  y  _________

2 2 ■ 'e{i,--,N}, i<j ( b  -  b )  n JL i, lyt i j ib ~~ b ) ( b  -  b )  ^ a/ i  +  47 +  x i

Xj

•••,«), k j  v-‘ --1/K--J --n \  y  i-T f7 ■f'Ijfo

1 _  ( b X j f - 2

v /T + f + ^  J  2V ^  i j £ { \ , - , N } , i < j  ( b  -  Xj)U^Li, -  b ) ( X j  -  A,

r , f \ ro+T

d y k ^
_i /  T/m2 

/  e x p U A 7y “ \ b X j T o  ' Xi ' XjF/ + v  +  T " ) - y ) du- (5-5i)
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Letting u — yx, (5.51) can be further simplified in closed form as

i i v. (M ,/-2 (  x t

2  2  i , j e { i , - , N } , i < j  X j ) U l h ¥ i j ( h  h ) ( X j  h )  I  / i  +  i +  1

Xj \  1 r-i (XjXj)

r ,  t  a,t 0 

N - 2

l  +  Tj +  J ^ J  4 i , j e { h ~ , N } , i < j ( ?ii ^ ) n ^ i  Xi ) ( Xj  Xi)

rc4 1
/  -------- ^ ^  dx (5.52)

M  ( l + C ' ^ x - C ^ x 2)3/2

where C\ j  = Tl l{XiX-), C j  = (l/A* + 1/Xj +  r I/ {XiXj T0)), c {  = { \ / r 0 + X j / r , ) ,  and 

C\ = (1 / r 0 + XifTi) , and the integration term f Cf  1 / ( 1 +  C^x — C\’2x2)2!2dx can be calcu-
C 3

lated by [6, eq. (2.264.5)]

[ - £ = = [ ,  dX =  <5-53)
J V r 2 J  a/ (a + bx + cx2)3 A \/a  +  bx +  cx2

where A — 4ac — b2. Eq. (5.52) is a new closed-form expression for the BER of coherent 

BPSK using MRC in CCI and correlated Rayleigh fading for the case when the correlation 

matrix has different eigenvalues.

When Tq =  °°, namely the noise is negligible, (5.52) becomes

Pe
i i n r ~  i v- ( X i X j f - 2
2  l y i + T j  ^ i J e { l ^ N U < j (Xi - X j ) Y ^ = h ¥ i J (Xi - X l ) ( X j - X l )

17 ( l + ( h  + x ] ) x - { t j x2)

When T/ =  t», namely the interference is negligible, (5.52) becomes the average BER 

for coherent BPSK using MRC in additive white Gaussian noise and correlated Rayleigh 

fading, namely,

l _ l  v  ___________ ( M j f - 2_
2  2  i , j £ { l , . : , N } , i < j  — i j t i j ( X i  -  X i ) ( X j  -  X i )

dx. (5.54)

<5-55)
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Eq. (5.55) is a new closed-form expression for the average BER of coherent BPSK us­

ing MRC in correlated Rayleigh fading valid for the case when the correlation matrix has 

different eigenvalues.

5.4.2 Case II: Equi-Correlated Correlation Matrix

Substituting (5.19) into (5.49), the CDF of Jb e r  is given by

1 f { ^ +r-0)y du />Al“ e x ^ - ( i r + 4 ) Mx
JO Jfau

(Xlu - w ) N~2dw + t ^ ,+T^ y du [ Xl“ e ^ ~ ^ +^ ) u{Xxu - W)N- 2dw  
J { ^ +r-o)y J ^ r - $

- J O N~le < ^ m ) y  O  E  E 1  f W
A1 -A 2 /  Ai “ qP'qV. \A i - X 2 J \ T j  r0A2

fo+rfcV Ai'V~2 y 2 1 M + ^ ) y (  u , r/“ 2 V
(Ai - X2)N~~l “ 0 q \  \A2 AiA2ro AiA2yy

- r: +
x e

x e x p f y~ T— M f ' r  +  i _ +  T T T _N) V M- 5̂-56^\ A iA 2y \ A i  A2 A iA 2 l 0 /  /

Substituting (5.56) into (5.47) and combining with [6, eqs. (3.381.4), (8.339.2)], the 

average BER of coherent BPSK in equi-correlated Rayleigh fading and CCI is derived as

1 (  h  \ N ~ l 1 X 2 Ny 2 « 1 (  X X \ N - l - q

2 \ h - l 2 )  2^/1-F^ + j ^  Ai ?=o/=o/! \ Ai “ A2 /

y . l l V  (2/ — 1)!! < ~ 2 V  1
1 -  J / . . n/+i/2 r f f n . _ i . W - i Lr, r„hj 2,+ , Cj j_ _ i_ y + '/2 2 ^ 1  -  a* )* -1 ,to

\  r, r0A2 /

r  r ( ^ ) y - \ ( u r/“ r^ 2 V
Jo y J ^ + ^ y  ^ U2 W o  AiA2yy

x e x p f  r y ~ ~ M( ~ r  +  F  +  a r f ~ )  ~ y ) du (5-57)VAiA2y \  Ai A2 AiA2r0y

where (2/ — 1)!! =  1 • 3 —  (2/ — 1) [6].
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Similarly, letting u =  yx, eq. (5.57) can be further simplified in closed form as 

P  =  1 (  X ,  V " ‘ 1 * 2  1 (  * 1

2 \ A i —^ 2 /  2 y j l  +  i  +  —L- ?=o/=o^'

1 1 V  (21 — 1)!! A f -2

o + w  2l+, ( ' 1 + _L+ _ ! _ y + i / 2 “ ^ i - ^ ) ,v- 1
V f /  r 0A2 /

" y 2 (2g + i ) n  r°> ( D j x - p ^ y
k >  «!2* h  ( l + D w - D i x ^ + W  ( 5 ' 5 8 )

where D\ = Tj / (X\X2) , D 2 — (1/Ai +  l/A 2 + £ > i/ro ),£>3 =  ( l / r o + A 2/ r / ) , D 4 =  (1/ro-t- 

A iA U  and D5 =  ( I /A2 -h-Di/To). The integration term Jq*(Dsx — D\x2)q/ ( l  +  D2X — 

D lX2)q+V2dx  can be iteratively calculated in closed form by [6, eqs. (2.263) and (2.264)]. 

Eq. (5.58) is a new closed-form expression for BER of coherent BPSK using MRC in CCI 

and equi-correlated Rayleigh fading.

When To =  °o, namely the noise is negligible, (5.58) becomes

1 1 (  Ai \ N~ l I T/ A 2 ^ ;2 ^  1 (  Ai
2 2 \ A i  —A2 J \  l + T j  Aj VAi — A2

(21 — l)!!y T / A ^"2 y (2g + 1 ) !!
X 2l+l (l  +  r 7)/+1/2 4(Ai -  A2)n_1 9t o  q\2q

x, ( _x r  ix1 \ q
r t ,  \ a2 i ^ J

y k  T T T T ^ J W 5̂  ( ’
' ( ' +  xr +  5  _  i s )

When r 7 =  00, (5.58) becomes the average BER for coherent BPSK using MRC in 

additive Gaussian noise and equi-correlated Rayleigh fading given by

1 U  Ai \ N~ l / r0A! 1 (  At \ N- {- q

2 2 \ X x - X 2)  y 1 + r oAi Ai “ q^ q V. \A i — A2 /

X  ( 5 . 6 0 )

2l+l (1 + r 0A2)/+1/2

Eq. (5.60) is a new closed-form expression for BER of coherent BPSK using MRC in 

equi-correlated Rayleigh fading.
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5.4.3 Numerical Results

In this section, some numerical examples of the average BER of coherent BPSK in CCI and 

correlated Rayleigh fading are given. In our examples, we assume that the channel gain 

vector cn =  [x„,i + j y n,\ • • ■ xn,N + j y n,N]T (« =  0, ■ • • ,Nr) satisfies E[xnjxn j \ = E[ynjyn j \ 

and E[xnjynj] -  E \yn,ixnj] =  0 ( i j  = 1, • • • ,N),  as used previously. The average power 

SIR Tf = Po/Pi, and the average power SNR To =  Pq/N q, as defined previously. Since the 

average BER depends only on the total interference power Pj, and is independent of the 

number of interfering users, N/ =  6 interfering users with equal powers are used for the 

average BER examples.

B P S K ,  d = 0 . 3 8 2 ,  N - 4 ,  N .=6

S N R = 0  d B  

S N R = 5  d B  

S N R = 1 0  d B  

S N R = 2 0  d B

 S N R = <

s i m u l a t i o n  r e s u l t s

-10
A v e r a g e  S I R  ( d B )

Fig. 5.5. The BER versus the average power SIR of BPSK using MRC diversity with 

N  =  4, d  =  0.382, and Nj = 6 equal-power interferers for different values of average 

power SNR.

Fig. 5.5 shows the average BER versus the average power SIR, F /, o f  coherent BPSK  

using MRC for the channel model from [18] with A — 7C, N  — 4, for normalized spacing 

between any two adjacent antenna elements, d  =  0.382. Different values of average power
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SNR are considered, among which average power SNR= °° corresponds to the CCI-limited 

case. It is seen that the analytical results and the simulation results denoted by the diamond 

markers are in excellent agreement. Observe that an error rate floor appears for a fixed 

value of SNR when the average power SIR is large. This is because the average BER at 

large values of SIR is mainly affected by the fixed value of average power SNR when the 

noise dominates the cochannel interference. As expected, the error rate floor decreases with 

increasing average power SNR.

B P S K ,  p = 0 . 5 ,  N = 4 ,  N  = 6

10°

10

10

10 >

10

10
- 1 0  - 5  0  5  1 0  1 5  2 0

A v e r a g e  S N R  ( d B )

Fig. 5.6. The BER versus the average power SNR of BPSK using MRC diversity in equi- 

correlated Rayleigh fading with N  — 4, p =  0.5, and Nj — 6 equal-power interferers 

for different values of average power SIR.

Fig. 5.6 shows the average BER as a function of the average power SNR of BPSK 

using MRC in equi-correlated Rayleigh fading with N  = 4 receiver antennas and correlation 

coefficient p =  0.5 for different values of average power SIR, where average power SIR= °° 

corresponds to the noise-limited case. In this figure, one sees that when the interference 

dominates the noise, an error rate floor is established by the value of the SIR. The floor can 

be reduced by increasing the SIR, as expected.
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Fig. 5.7. The BER versus the normalized spacing between two adjacent antennas, d, of 

BPSK using MRC diversity with N  — 4, Ni =  6 equal-power interferers, and average 

power SIR=10 dB for different values of average power SNR.

The effect of the normalized spacing between two adjacent antennas, d, on the average 

BER of BPSK is examined in Fig. 5.7. The channel model from [18] with A =  n  is 

considered for Ni =  6 equal-power interferers with average power SIR=10 dB. It is seen 

that the BERs when d  =  0.382 and 0.4 are very close to the globally minimum BER at 

d  =  0.9. Combining with the result from Fig. 5.3, d  =  0.382 or 0.4 is an optimal choice to 

achieve a good compromise between the system performance and space limitations.

Fig. 5.8 shows the average BER versus the number of antennas, N,  for BPSK with MRC 

when the total length of the antenna array is fixed to one-wavelength. Different values of 

average power SNR are considered. From this figure, one can see that the BER decreases 

with N. However the incremental benefit from increasing N  decreases, especially when 

the average power SNR is large. Fig. 5.8 indicates a suitable number of antennas for the 

system design. For example, when SNR=20 dB, one may set N  =  6 or 7 to achieve a good 

compromise between system performance and system cost for an antenna array of length
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B P S K , N =6 , a n d  S I R - 1 0  dB
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S N R = 5 d B  
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S N R - 2 0  d B
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N u m b e r  o f  a n t e n n a s  in  o n e - w a v e l e n g t h  l o n g  a n t e n n a  a r r a y  N

Fig. 5.8. The BER versus the total number of antennas, N, of BPSK using MRC diversity 

for a one-wavelength antenna array, with Nj  =  6 equal-power interferers, and average 

power SIR=10 dB for different values of average power SNR.

one wavelength.

Fig. 5.9 shows the average BER versus the correlation coefficient, p , for coherent 

BPSK in equi-correlated Rayleigh fading with the average power SNR=10 dB for different 

values of average power SIR. It is seen that the BER generally increases with correlation 

coefficient p , as expected. Further, the performance degrades more significantly at large 

values of correlation coefficient p.

5.5 BER of BPSK with Imperfect Channel Estimation

In the following, we examine the effect of imperfect channel estimation on the BER perfor­

mance. First we describe the channel estimation model. Then two cases that the correlation 

matrix has different eigenvalues and that the correlation matrix is equi-correlated, are stud­

ied and presented with some numerical results.

I l l
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B P S K , N =4, N.=6 , a n d  S N R =10  dB

S I R = 0  d B  
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S I R = 2 0  d B

i r
UJca
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E q u i - c o r r e l a t e d  c o e f f i c i e n t  p

0.6 0 . 7 0 . 90.2 0 . 3

Fig. 5.9. The BER versus the correlation coefficient, p , of BPSK using MRC in equi- 

correlated Rayleigh fading with N  = 4 and Ni — 6  equal-power interferers for different 

values of average power SIR.

5.5.1 Channel Estimation Model

Let Co denote the estimate of the branch gain vector for the desired user Co, assumed to be 

zero-mean complex Gaussian with covariance matrix £ c~ . Then the output after the MRC 

combiner is obtained by replacing wo in (5.2) with c~o

N,

r =  CqHT =  V ^ c V 'c o H  +  J2  V ^ (c b Hcn)dn +  (cb^Zo). (5.61)
n— 1

We assume that even in the presence of interferers, the Gaussian approximation of the 

channel estimation error is still valid as discussed in [96] and that the relationship between 

the branch gain vector Co and its estimate c~o satisfies [92], [99]

co =  occo +  e (5.62)

where cb and e are independent complex Gaussian vectors with zero mean and covariance 

matrices £ c- and £ e, respectively, a  is a complex number representing the normalized
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correlation between the elements of Co and c~o. Note that the analysis in this paper can 

be easily extended to the situation where the covariance matrices E  and Ec0 satisfy E  =  

aZco + bl  for non-negative real values of a and b. For simplicity, we assume here that the 

branch gain vector Co and its estimate Co have the same covariance matrix, namely, Ec0 =  E- 

Then, the covariance matrix of e is given by

E e  =  (1 - | a |2) L  l«l <  i- (5-63)

From (5.62) and (5.63), one can see that \a\ =  1 corresponds to the case that the channel 

estimation error is a phase error on the channel gain, and there is no Gaussian error, namely, 

Co =  e-^co, where 0 is a phase difference between Co and Co. Specially, a  =  1 corresponds 

to perfect channel estimation.

5.5.2 Average BER of BPSK

At the receiver, the decision variable after the MRC combiner is given by

N,
D =  Re{r} =  y ^ R e { { c Q Hc0)}d0 +  £  VKRe{(coHcn)}dn + Re{{c0Hzo)}. (5.64)

n~ 1

Without loss of generality, assume that do =  +1 is transmitted. Since cn (n =  1, • ■ • ,Nj) 

and zo are independent zero-mean Gaussian distributed, and independent of Co and c~q, the 

average BER for the desired user conditioned on c©, cb> and the interfering information bits 

dn (n =  1, • • • ,N[) denoted by Dn, =  {d \ ,d2 , • • • ,^ /} »  is given by

êlcojC-),Djv/ Pr(Z) <  0|co,Co,Z)W/)

= Pr ̂  A 'ci,} }-r £  , /P „ K e { ic 0" c„  I\ d n + K t {  !c„"z0 i} < o j

=  Q (  )  (5.65)
V V A(cbw £co) + N 0 {c0Hc0) J

where P[ =  E ^ ii^ n  is the total interference power, as defined previously. From (5.65), 

one can see that the conditional BER is independent of the interfering information bits
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dn (n — 1, • • • ,Nj) as well as the individual interference powers, Pn (n — 1, • • • ,Nj), and 

only depends on the total interference power Pj.

Substituting (5.62) into (5.65), the conditional BER becomes

/  v/2^(flg{a}(c~o//c~o) + j?g{c~0He})
^ |c 0,e = Q  l 1 • (5-66)

\  V^Vo^co) +P/(c0//Ic~o)

Since e is a zero-mean complex Gaussian vector with covariance matrix (1 — \oc\2) £ , and is 

independent of c0, averaging (5.66) over e and combining with [91, eq. (18)], one obtains

ê|<?o =  ®e(^e|cb,e)

(  r r 11 I 2 (Re{a}) 2PQ(c0Hc0) 2 \
-  e ^ { « « { a } } y No(c. Hc.o ) + ( P ( + f t ( 1 _ | a R ) ( .o» Ec. ) J

=  (5-67)

where j3 — Re {a} ,  j3 =  sign{ j3} denotes the signum function of the real number j3, and 

Ji c e  is given by

v _  ____________ /32P0(cA q)2____________
ICE 7Vo(c~o//c0) +  (P[ + Pq(] -  | a |2))(cV/ £ c o ) '

Let u = yh Ay,  and w — yh A 2y, where A is the diagonal matrix composed of the eigen­

values of covariance matrix £ , as defined in Section 5.3, and v =  A ~ ]/2Uh Cq is a complex 

Gaussian vector with zero mean and unit variance I. Then (5.68) becomes

_  _________j32PpM2_________
YlCE ~  Nou + i V  + P o i l - l a l 2))™

Paii2
Nqu + PjW

(5.69)

where Pq =  P 2Po, and Pj =  Pi +  (1 — |a |2)Po-

Averaging (5.67) over Jice, the BER of BPSK is given by

Pe =  [  Q( pV2t ) f yiCE(t)dt
J  0

=  Q(j3 X  o o )  +  f Q t ~ l / 2 e ~ t F r,C E ( t ) d t

r X / 2e~tFy,cEi.t )dt , P  =  + 1

1 ~  2̂  Jo r X l 2 e ~ t p yicE(t ) d t  > P  =  - 1
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where the functions f y lCE (■) and FyICE (•) represent the PDF and the CDF of the random 

variable Yi c e , respectively.

Since (5.69) has a similar expression as (5.48), one can use the results in Section 5.4 to 

calculate the CDF of Yice in (5.69) by replacing Pq and Pi in Section 5.4 with PQ and Pj for 

the two cases that the correlation matrix has different eigenvalues and that the correlation 

matrix is equi-correlated.

5.5.3 Case I: Correlation Matrix With Different Eigenvalues

Assume all of the eigenvalues A,- are not equal, and satisfy X\ >  A2 >  • • • >  A,v >  0. The 

CDF of Yi c e  can be obtained from (5.50)

I2 '
W  )

( X i X j f - 2 ( l i e - y / M 2̂  -  X j e - y / w 2̂ )

,  ^  , (  y { i - | a |2 +  i / T /A
Fi,cE(y) =  1 -  e x p ------------- ^ ------------) x

A/) (Ay A/)

- exp

r 7 1 1

X

(r^ + r> + M H « l2) ) ^  /  j32r i u 2

( r ^ + ^ ( H « l 2) ) £  ^  W M 1 +  (! -  M 2)r /)

H —̂F I I du■̂A;r0(i + ( i - | a | 2)r/) Xi Xj
(5.71)

where To =  Pq/N q is the average power SNR, and Tj — Pq/P[ is the average power SIR as 

defined previously.

Substituting (5.71) into (5.70), the average BER of BPSK in correlated Rayleigh fading
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and cochannel interference is derived as

I _ £
2 2 . .

(A,-Ay)N - 2

Ue{l

x

A}, K / n /= i , ¥ u ( ^  A/) (A;- A/)

A*

V

J8

1 —loel214- 1 i 1. i 1- 1°
1 +  p r ,  +  I ^ r 0 +  - p 1 +  ftTFT +

( W JV-2

2 V/^ i’,y6{i,...yv},(<y (A' ^ ) I l S L i l W ( ^  A/)(Ay A/)

f 00 j  f {^o+ ^i+Xi^~  !“ l2) ) ^  _ i  / _ _ _ _ _ _ j8 2r 7n2_ _ _ _ _ _
Jo y J ^ + ^ + l j { GXP \A»Ay(l +  (1 -  | a | 2) r 7)y

“ ( ^ r 0(i + (1 -  M 2)r,) +  h  +  T j ) ~ y ) du-

Using [98, eq. (3)], (5.72) is further simplified in closed-form as

(5.72)

p  =  y ____  i W j ) " - 2_________
2 2 ,yci.~v}, i< j (A; -  Ay) Y l U ^ j i h  ~  A/)(Ay -  A,)

(
A,-

1 4- 1 I 1 I H « l2
i +  ^  +F t/ /

l - | a | 2 
TT

(AfAy)A1-2

4 . .<je{i

rEi
JE{

-(Ar (5.73)
( l + 4 J x - ^ x 2)3/2

where e ; j  -  j32r 7/[A;-Ay(l +  (1 -  | a |2) r 7)], E ^  =  1/A7 +  1/Ay +  r 7/(A/Ayr0(l +  (1 -  

\a\2)Ti)) , e {  =  ( l / r 0 +  A y/r7 +A y(l -  | a |2)) //32, and£^ =  ( l / r 0 + A i / r 7 +  A,-(l -  | a |2)) //32. 

When a  =  1, (5.73) becomes (5.52) corresponding to the case of perfect channel estima­

tion.
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When To =  namely the noise is negligible, (5.73) becomes

1 P /32r7 p

2 2 V l + (/32 + l - | a | 2)r/ 4 .

(' M j )
N - 2

i +  i 1 x  — E \'2x 2

- 3 / 2

dx (5.74)
,A' Xj

where Fj — Xj ( l / F / + 1  — jce|2) //32 and =  A; ( 1 / 0  + 1  — |a |2) /jS2.

When T/ =  oo, namely the interference is negligible, (5.73) becomes the average BER 

for coherent BPSK using MRC in AWGN and correlated Rayleigh fading

1 p  „  { X i X j f - 2
Pe = 2 2 i J e { l , - , N } , i < j  (̂ ' 7̂)ri/=i,/7iij(̂ ' A/)(A;- A/) 

/  \

X
A,' A#

$
4 .

( W j )

i j p r0̂  J32 y
N - 2

X

L

i , j € { l , - , N } ,  i < j  

G‘a i

^1 +  G /x  — G\2x“
3 /2

dx (5.75)

where G '/  =  J32/(A;A/1 -  |ce|2)), G ^  =  l / (A ^ r 0(l -  | a |2)) +  1/A,- +  1/Ay, and G{ 

( l /r 0 + Ay(l -  |« |2)) JP2, and G\ = ( l / r 0 + A/1 -  |a|2)) /j32.
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5.5.4 Case II: Equi-Correlated Correlation Matrix

When all of the users experience equi-correlated Rayleigh fading with correlation coeffi­

cient p (0 <  p <  1), the CDF of Yi c e  is derived from (5.56)

f 7 (y) =  i ~ (  Al V  1e~ ( ^ +r^ r +1~ |0!|2) ^ + — y ;2 y - (    x N 1 q
,CE \  Ai — A2 /  Ai q=Ql==Ql\ \A i — A2

x ( Z . \ l ( —  _|— L _ -f  1 — |a |2V e _ ( i^+iw +1_|C!|2) ^ ______________ y f i
\ p 2)  \ r ; t 0a2 1 1 J ( A i - A ^ - i^ o ? !

/  m T/n j8 2r /M2

X + AiA2r0(l + (1 -  |a |2)r7) " AlAayCl + (1 -  |«|2)F, ) )

( r/j3V ( l 1 1 1 F/ ^
xexpU i^ y ( i  + ( i - | a | 2)r/) ^2 A1A2r0(i + ( i - | « | 2)r/) ^

(5.76)

Substituting (5.76) into (5.70) and combining with [6 , eqs. (3.381.4) and (8.339.2)], the 

average BER of coherent BPSK in equi-correlated Rayleigh fading and CCI is derived as

1 p  f  Ai \ N~ l 1 pX2 N- 2 v (2 / - 1)!!p  _____    [   I   L _L___ X " 1 X ™1

2  2 U 1 - W  , / 1 +  1 +  i _  +  i d ^  *1 9= o / = o  n 2 l + 1

x
Ai V P 2ror/A2(A2r0 + (1 -  |a |2)r0r7A2+ rv)'

*1 -  W  (j32r0r/A2+ r 0A2+ r0r/A2( 1 - 1 a\ 2) + r7)/+1/2
jSAf-2  ^ 2 1 r°° r { r^+r}+Ai(H « l2) ) ^  _i

2 0 r ( A i  -  A 2 ) ^ - 1 ?t o  9 !  i o  y J ^ + ^ + x 2( i - \ « p ) ) ^  y

^  M T /W  P 2 TjU 2

A2 A!A2r 0(l + (1 -  I«|2)r7) A!A2y(l + (1 -  |a|2)r7)

/  J32^ 2 Z 1 , 1 , r '  ^  ^
x exp VAiA2y(l + (1 -  |a|2)r7) “ U i  *2 + A ^ O  + (1 -  |a |2)r/)J y)  U

(5.77)

where (2/ — 1)!! =  1-3 —  (2/ — 1) [6].
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Eq. (5.77) is further simplified in closed-form as

1 [ i f  X\ \ N~ l 1 f5X2 Ny 2 A  (2/ — 1)!!
+  a, L  L2 2 \A i — A2 J [7~. l | 1 | i - |a |2 Ai i_nl_o (!2/+1

y l + w , + w ^ + ~ w '  q- l~°
, h  \ N~l~q +  (i -  |a|2)r0r7A2 + r7)'

X

Ai -  a2y (j32r0r/A2+ r0A2+ r0r/A2(i -  |a|2) + r 7)/+1/2
^ ; 2 (2 tf+ l)!!  rH4 {H^x — H\x2)qy (2g + r)\\  r*

1 “ n  < ? !2 9  JH-
dx  (5.78)

4(Ai — A2)a,_1 —Jj q\2 q Jh3 ( l + H z x - H x x 2) ^ / 1

where Hi =  j32r7/(AiA2(l + (1 -  |a|2)r7)), H2 =  1/Ai + 1/A2 + r//(AiA2r0(l + (1 -  

|a |2)r7)), h 3 = ( i / r 0+ A2/ r 7+ a2(i -  |a|2)) /j32, h 4 = ( i /r 0+ Ai/r7+ Ai (i - 1«|2)) //32,

H5 — (H2 — 1/Ai). Similarly, when a  =  1, (5.78) becomes (5.58) for the case of perfect 

channel estimation.

When To =  namely the noise is negligible, (5.78) becomes

p  _  1 $ (  A!________ 1________+  /3A2 ^ ; 2^  (2 / - 1)!! ______  r  r
2 2 V Ai — A2 y  ̂/ i  _ [ _  i _  +  H ”!?. Ai q = o i = o  ^ 2 /+1

Ai y - 1-^ v ^ r > ( i  +  (1 -  l « l 2) r 7) ;
A i - A 2;  ( i + ^  + r ^ . j a ^ + i / a  

^ A f - 2 ^ 2 (2^ +  l)!! r 14 (x/A2 - H ! x 2)^
4 t A , - W * - '4 4  , ! *  k  +  +  "

(5.79)

where / 3 =  A2 ( l /r 7 +  1 — |a|2) //32 and I4 = X\ ( l /r 7 +  l — |a |2) / /3 2.

When r7 =  oo, (5.78) becomes the average BER for coherent BPSK using MRC in 

additive Gaussian noise and equi-correlated Rayleigh fading given by

p _  1 A1 V -1 1 j A 2 y f  ( 2 / - 1 ) ! !
e O O I 2. _  2_ / r~  7 1 _ lr/|2 2 , 2—2 ^1 + ̂  + id ^  Ai /!2/+i

Ai x/j32r0A2( ( i - i « i 2)r0A2 + i)/ _
Ai -  Az/ (jS^oAs + roAaCl -  |a|2) + 1)/+1/2 

M r 2 Nf 2 (2 q + ')'■'■ [ J< (J5x - A x 2)q
q M  JJ3 ( \ + J 2 X - J i X 2 ) q + 3 / 2  ( *
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where J x =  j82/(AiA2(l -  | a |2)), h  = 1A  + 1/A2 + l/(AiA2r0(l -  | a |2)), 73 =  ( V r o+ 

A2(l -  | a |2) ) / /3 2,7 4 =  ( l /r 0 + Ai(l -  | a |2)) /j82, and 75 =  (72 - 1/Ai).

5.5.5 Numerical Results

In this section, some numerical examples of the average BER of coherent BPSK using 

MRC with imperfect MMSE channel estimation in CCI and correlated Rayleigh fading are 

given. Noting that the average BER depends only on the total interference power Pi, and 

is independent of the number of interfering users, the examples use Nf  =  6 equal-power 

interfering users for the average BER examples.

d = 0 . 3 8 2 ,  N = 4 ,  ^ = 6, r  = 1 5  d B

—  a = 0 . 9  

- 9 —  a = 0 . 9 5

—  a = 0 . 9 8  

a=1.0
0 s i m u l a t i o n  r e s u l t s

cc
LU
CO

-10
A v e r a g e  S I R  (d B )

Fig. 5.10. The BER versus the average power SIR of BPSK using MRC diversity with 

N  =  4, d =  0.382, To =  15 dB, and N[ =  6 equal-power interferers for different real 

values of a.

Fig. 5.10 shows the average BER versus the average power SIR, F /, o f  coherent BPSK  

using MRC for the channel model from [18] with A =  n, N  =  4, and To =  15 dB, for 

normalized spacing between any two adjacent antenna elements, d =  0.382. Different real

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



values of a  are considered, among which a  =  1.0 corresponds to the perfect channel esti­

mation case. It is seen that the analytical results and the simulation results denoted by the 

diamond markers are in excellent agreement. In a combined CCI plus AWGN environment, 

an error rate floor must occur for large values of SIR due to the AWGN. However, the chan­

nel estimation error also contributes to the error floor. Observe that the error rate floor with 

imperfect channel estimation is much greater than that for the case with perfect channel 

estimation. As expected, the error rate floor decreases as the magnitude of a  increases.

N = 4 ,  N .= 6, r.=10 d B

10"2 -

cc
u j
CO

-6—  p = 0 . 2  a = 0 . 9 5  

—  a = 0 . 9 8

-0— a=1.0
O  p = 0 . 5  a = 0 . 9 5  

a = 0 . 9 8  

> a-1.0

5

A v e r a g e  S N R  ( d B )

10 1 5 20-1 0 -5 0

Fig. 5.11. The BER versus the average power SNR of BPSK using MRC diversity in 

equi-correlated Rayleigh fading with N  =  4, T/ =  10 dB, and N/ = 6  equal-power 

interferers for different values of a  and p.

Fig. 5.11 shows the average BER as a function of the average power SNR, To, of BPSK 

using MRC in equi-correlated Rayleigh fading with N  =  4 receiver antennas, and T/ =  10 

dB, for different values of a  and correlation coefficient p. In this figure, one sees that 

the error rate floor can be reduced by increasing the magnitude of a  or decreasing p , as 

expected.

Fig. 5.12 shows the average BER versus the number of antennas, N,  for BPSK with
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N(=6, r 0=10 dB , a n d  ^ = 1 0  dB

l=0°

1=1 o' 
1= 20 ' 

1=30'

10 >e

cc
LU
CO

- W-"
:Q=95

N u m b e r  o f  a n t e n n a s  in  o n e - w a v e l e n g t h  l o n g  a n t e n n a  a r r a y  N

Fig. 5.12. The BER versus the total number of antennas, N,  of BPSK using MRC diversity 

for a one-wavelength antenna array, with Nr = 6  equal-power interferers, To =  10 dB, 

and Ti — 10 dB for different complex values of a.

MRC using the channel model from [18] when the total length of the antenna array is fixed 

at one-wavelength. Different complex values of a,  where a  =  \oc\e-’6, are considered. 

From this figure, one can see that the BER decreases with N. However the incremental 

benefit from increasing N  decreases, especially when |a |  is small. In addition, for a fixed 

value of | a  |, the BER increases with 0. Further, the degradation of BER from increasing 6  

increases with 0 , as well.

5.6 Summary

In this chapter, explicit expressions for the outage probability of MRC output and closed- 

form expressions for the average BER of a coherent BPSK system with CCI and thermal 

noise in correlated Rayleigh fading were derived through the CDF of the MRC output 

SINR. Correlation matrices with different eigenvalues and with equi-correlated coefficients
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were studied respectively. Further, closed-form expressions for the average BER of a coher­

ent BPSK system with imperfect channel estimation in the presence of CCI and correlated 

Rayleigh fading were obtained. The effect of channel estimation error on the BER perfor­

mance was examined for a special channel estimator. In contrast to previous results, these 

expressions do not require iterative numerical procedures for evaluation, although some 

well-behaved numerical integrations are required in the general cases for outage probabil­

ity. The effects of average power SIR and average power SNR on the performances were 

examined through the numerical examples. In addition, new closed-form results for the 

BER of coherent BPSK in AWGN and correlated Rayleigh fading were also presented.
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Chapter 6

Maximum Effective Number of MRC 

Receiver Antennas in Cochannel 

Interference and Correlated Ricean 

Fading

6.1 Introduction

Wireless antenna systems using multiple antennas at the receiver and/or the transmitter have 

attracted significant interest in recent years. Fundamental works [8], [9] show that the ca­

pacity of multiple antenna systems in independent Rayleigh fading grows linearly with the 

minimum number of transmitter antennas and receiver antennas. However, in practice, the 

assumption of independent fading can often be violated due to either insufficient spacing 

of antennas or the absence of a rich scattering environment around the transmitter and/or 

the receiver. In such situations, the correlation among the antennas influences the system 

capacity greatly [100], [101]. Several works suggest that there are fundamental physical 

limits to the capacity growth for fixed-size multiple antenna systems, independent of the 

number of antennas [11,102-108]. These works touch on an interesting and practical ques-
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tion; that is, from the viewpoint of system design, given a multiple antenna system with 

size constraints, how many antennas are needed to achieve a good compromise between 

system performance and system cost. All of the previous works except [104] [105] assume 

noise-limited environments. However, in cellular systems, cochannel interference is an im­

portant factor and cannot be ignored. Therefore, it is interesting to study the performance 

limits of a fixed-size multiple antenna system in the presence of interference. The study 

gives invaluable insights into the theory and practice of multiple antenna systems for CCI 

environments. For example, an important question is, how many antennas can be used in a 

given space (area or volume) before diminishing returns vitiate any worthwhile additional 

benefits to be achieved by adding additional antennas.

In this chapter, we examine how many receiver antennas should be employed in a given 

region of space in a receiver diversity system; in particular, we seek the performance limits 

and the optimal number of antennas. Our focus here is on the performance of economi­

cal MRC receiver diversity systems operating with a fixed-size antenna array in correlated 

Rayleigh and Ricean fading corrupted by cochannel interference. We do not consider the 

application of adaptive antenna arrays and interference nulling receivers, for which the 

reader is referred to references [18,109,110]. To illustrate this research topic clearly, we 

first consider the CCI-limited case. To conduct the investigations, we must find perfor­

mance measures that will both be analytically tractable and meaningful practically. In 

order to test the consistency of the results and obtain broad perspectives, we employ four 

different measures, the long term output signal-power-to-interference-power ratio (SIRP), 

the long term signal amplitude to the square root of the interference power ratio (SAPR), 

the average instantaneous output signal-to-interference ratio (AISIR), and the average bit 

error rate. The use of SIRP and SAPR measures is motivated by analytical tractability, 

which permits obtaining analytical solutions for the present problems. The AISIR and the 

average BER measures are of greater interest in wireless system study and design, but do 

not lend themselves to tractable analytical solutions for the problems examined in our work, 

especially when the number of cochannel interferers in Ricean fading is large. Results in 

the sequel indicate that the tractable alternative measures can be used with small inaccuracy
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in place of the clearly-motivated metrics to find the optimal number of antennas. Exam­

ples of linear antenna arrays [26] and circular antenna arrays [111] show that, in general, 

the four performance criteria when used to study the choice of the number of antennas for 

correlated Ricean fading have similar behaviors under the assumptions that the fadings of 

the desired user signal and the interfering signals have the same covariance matrix, and 

that the thermal noise is negligible. This means that one can use the easily obtained SIRP 

and SAPR measures to determine the optimal number of antennas for a fixed-size MRC 

diversity system, or as an excellent starting point for a search for the optimal number. Al­

ternatively, the optimal number of antennas in the SIRP or SAPR sense can be used to 

achieve good BER and SIR performance at the same time, while being somewhat subop- 

timal in the average BER sense. Importantly, the results show that the performance of a 

fixed-size antenna array containing the maximum number of independent antennas in CCI- 

limited correlated Ricean fading cannot be significantly improved by adding more than one 

additional antenna [112], [113].

Then we extend our CCI-limited theory to a more practical system model in the pres­

ence of noise. We investigate the effect of noise on the determination of the maximum 

number of receiver antennas that can be usefully deployed in a MRC receiver diversity 

system with a fixed-size antenna array operating in correlated Ricean fading corrupted by 

CCI. Similar to the CCI-limited case, four different measures, the long term output signal- 

power-to-interference-plus-noise-power ratio (SINRP), the long term signal amplitude to 

the square root of interference plus noise power ratio (SAINPR), the average instantaneous 

output signal-to-interference-plus-noise ratio (AISINR), and the average BER are evaluated 

here. Examples in the sequel of linear antenna arrays and circular antenna arrays indicate 

that, in general, the four performance criteria have similar behaviors when used to study the 

choice of the number of antennas under the assumptions that the fadings of the desired user 

signal and the interfering signals have the same covariance matrix. This means that one can 

use the easily obtained SINRP and SAINPR measures to determine the maximum effective 

number of antennas for a fixed-size MRC diversity system, or as an excellent starting point 

for a search for the maximum effective number. Importantly, the results show that the previ-
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ous design rule discovered for the case of CCI-limited environments that the performance 

of a fixed-size antenna array containing the maximum number of independent antennas 

cannot be significantly improved by adding more than one additional antenna, still applies 

for moderate and large values of interference-power-to-noise-power ratio (INRP). Further, 

for Rayleigh fading, the performance limits in the presence of noise when the number of 

antennas grows without bound are the same as the limits derived for the case of CCI-limited 

operation in Rayleigh fading without noise [112], [113].

The remainder of this chapter is organized as follows. The system model is described 

in Section 6.2. In Section 6.3, the long-term MRC output measures are presented. The 

average BER of coherent BPSK in the presence of arbitrary number of interfering users 

and arbitrarily correlated Ricean fading is analyzed in Section 6.4. Numerical results and 

discussion are given in Section 6.5. Finally, we give our conclusions in Section 6 .6 .

6.2 System Model

Assume that there are N  antennas and Nj cochannel interfering user signals at the receiver 

with a fixed-size antenna array. Assume that the desired user signal and the interfering user 

signals are independent and experience slow and flat Ricean fadings. However, the fadings 

for each user at the N  receiver antennas are correlated. Then, the received signal vector, r, 

of length N  consisting of components from the desired user and the Nj  interfering users, 

has a baseband model representation given by

N,
r  =  y/PbC0do +  £  \ / K c ndn +  Z0 (6 .1)

n— 1

where Pn (n =  0,1, • • •, Nj) represents the transmitter power of the nth user signal, and the 

index 0 corresponds to the desired user signal. The symbol dn, denotes the information 

bit of the nth user signal, and has zero mean and unit variance. The complex vector cn 

of length N  represents the channel gains experienced by the nth user signal. Further, the 

fadings for each user are assumed to be correlated Ricean fadings with mean vector jUCn 

and covariance matrix £ Cn =  E{(cn — jUc„)(cn — lk„)H}- In this work, we assume that
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all of the interfering signals have the same mean vector jUCn =  jUc, and covariance matrix 

£ Cn =  Ec, (n =  1, • "  i^ i) .  The noise vector zq is complex white (both temporally and 

spatially) Gaussian with zero mean and variance matrix Nol, where I  is a N  x  N  identity 

matrix. Then the output signal after the MRC combiner is given by

In this study, uniform linear arrays and uniform circular arrays with a two-dimensional 

(2D) omnidirectional scattering channel model and a three-dimensional (3D) omnidirec­

tional scattering channel model are examined in the examples. In a 2D omnidirectional 

scattering environment, the correlation between two antennas is Jo(2 nl/Xw) [26], where I 

is the distance between the two antennas, Xw is the wavelength, and Jq(-) is the zeroth - 

order Bessel function of the first kind [26], [18]. For the case of 3D omnidirectional 

scattering environments, the correlation between two antennas is sinc{2 n l / X w), where 

sinc(x) — sin(x)/x, I is the distance between the two antennas and Xw is the wavelength 

[114], [115],

6.3 Output Measures

In this section, we study three simple long-term MRC output measures. First we consider 

the CCI-limited case. Then we extend the results to include the effect of noise.

6.3.1 CCI-Limited Output Measures 

SIRP

The long term output signal-power-to-interference-power ratio or SIRP is defined as the 

ratio of the average received desired signal power to the average received interfering signal 

power at the MRC combiner output given by

r =  Co^r -  v ^ (c o " c o M  +  £  V K f a HVn)d„ + (c0ffz0). (6 .2)

rs,RF E { |E » ilv ^ ( c 0« cnK p } '
EjPolco^col2^ }

(6.3)
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Note that the expectations in (6.3) are over the data symbols, dn, as well as the fading gains, 

cn. In the case where the data symbols and the fading gains are uncorrelated and all of the 

data symbols are uncorrelated with zero mean and unit variance, (6.3) becomes

PoE{|c0«co|2} E{(eo«c)2}
E * i,W {|co ''cnp} i tE { |c « c p }

where T" = Po/Pn (n =  1, • • • ,Ni) is the ratio of the desired user transmitter signal power 

to the nth interfering user transmitter signal power, as defined in Chapter 5.

The long term SIRP in (6.4) can be calculated by

?r(Lco) +2()tco ^ 0 ^ 0) + ^  (*«*) c\
T SIR P  =  ---------------------- Y N i  1 t r ( R  R  1 "  (  }L n=i F} y cQ cn)

where RCn =  E{cncnH }, is the correlation matrix of the fading vector for the nth user signal 

cn (n =  0,1, ■ • • ,Nj), and tr(-) denotes the trace of a matrix. The detailed derivation of (6.5) 

from (6.4) is given in Appendix D .l. From (6.5), one can see that the SIRP depends only on 

the user signal powers and the statistics of the user channel fadings, that is, the covariance 

matrices £ Cn and the mean vectors jUCn (n =  0, • • •, Ni).

Since we assume that £ Cn =  ar)d jUc„ =  ftCr for the interfering user signals, (6.5) 

becomes

+ 2(jUc,ff EcoMco)+"-20 M  7s,RF =  ( }

where RCl is the correlation matrix for the interfering signals, and Tj — Pq/Pi is the ratio of 

the desired user signal power to the total interference power with Pj =  Y!^L\ Pn, as defined 

previously.

When RCo =  Rci =  Ro and £ C() =  £ Cl =  £ 0, namely, all of the user signals have the same 

fading statistics, (6 .6) becomes

75/*p = r(, (McoV,)2 . ^ (R 0) \
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When the channel experiences Rayleigh fading with jUCn =  0 (n — 0, • ■ •, Afy), (6.7) can be 

further simplified to

rs"",=r' ( 1+^ ) =r' ( 1+^ )  <s'8) 

where Ao is the diagonal matrix composed of the eigenvalues of £ 0 with Lo =  Q^oQH, as 

is defined in Appendix D. For correlated Rayleigh fading, one can see that the SIRP only 

depends on the eigenvalues of the correlation matrix £o and the SIR power ratio T /.

SAPR

Another useful and interesting measure is called here the long term average signal ampli­

tude to the square root of interference power ratio or SAPR defined by

E { |\ /^ (c o wc o H |}  E{c0Hc0} /£ns
jsapr =  ■,   =  • , - • = •  (6.9)

/E{| t l u  v^(eaHc„)d„p} ^ J lX U  lVE{|co"c„p}
The use of the SAPR measure is motivated by the fact that in a BPSK system disturbed by 

additive Gaussian noise, the probability of error is given by Q (A/a )  where A  is the signal 

amplitude, <7 is the square root of the noise power and Q(x) =  e ~ t2/ 2d t / y /2 n \  that is,

the argument of the g-function is the SAPR.

From Appendix D .l, we have that E{«} =  E{coHCo} =  tr(RCo) and E{|coHc„|2} =  

tr(RCf)RCl). Thus the SAPR in (6.9) becomes

»■(*«,) r
Js a p r  =  , ••   — \  t , u  „  >. • (6 .1 U )

Compared with the SIRP in (6 .6), the expression for J s a p r  in (6.10) is simpler. When 

7?co =  7?Cl =  Ro, (6.10) becomes

rsAPK = \ l T,ti $ § '  (6-U )

Comparing the expression for the SAPR in (6.11) with the expression for the SIRP in (6 .8), 

one sees that they are very similar in the case of Rayleigh fading; we will see in the sequel 

that these two measures give consistent results.
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AISIR

The instantaneous output signal-to-interference ratio or SIR is defined by

_ Polc0tfCo|2 _ [Cq̂CqI2
YSIR yN, p \ c Hc 12 yNi _L|c 12' ( • )

L n = i r n\^0 cn| L n = \ ry IM) (-n|

The average instantaneous output SIR or AISIR is calculated by averaging (6.12) over

cn (n =  0, • • • ,Ni) to give

Ja i s i r  =  E{y5/«} =  E
I co c0

• (6.13)

From (6.13), the AISIR measure is an expectation averaging over all of the user fadings. 

Owing to the correlation between the numerator and the denominator in the expression 

for 7sir, we were unable to derive an analytical result for the AISIR in generally correlated 

Ricean fading. In the sequel, we will use Monte Carlo simulation to assess the AISIR when 

both the desired user and the CCI are subjected to correlated Rayleigh and Ricean fading.

Limits of SIRP and SAPR in Correlated Rayleigh Fading

In this subsection, we will show that the SIRP and the SAPR reach a limit asymptotically 

as the number of antennas N  increases without bound for the fixed-length uniform linear 

antenna array and the fixed-radius uniform circular antenna array when both the desired 

user signal and the interfering signals experience correlated Rayleigh fading with the same 

covariance matrix £ 0.

We consider linear antenna arrays first. Assume that the antennas are uniformly placed 

in a linear array with length L. Further assume that the correlation between the ith antenna 

and the ;th  antenna, p, j  =  — j\d),  where d  is the distance between two adjacent anten­

nas, and represents a correlation function. Then, the limits of the SIRP and the SAPR 

for a linear antenna array are given, respectively, by

/  l 2 \

2 /q ( L  — x)\ff2 (x)dx
lim YsiRP =  T/ ( 1 +  — ; - 0; -\  ] (6.14)
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and

lim Js a p r  — L a — j----- ——  . (6.15)
N~*°° y 2 / 0 (L — x) \j/ 2 (x)dx

The detailed derivations of (6.14) and (6.15) are given in Appendix D.2. Eqs. (6.14) 

and (6.15) indicate that there exist limits for the SIRP and the SAPR for linear antenna 

arrays, and hence the performance improves little by adding more antennas when N  is large 

enough. Examples discussed in the sequel indicate that little performance enhancement is 

achieved by using more than the maximum number of independent antennas that can be 

accommodated in a region of space.

For example, for a linear antenna array in 2D omnidirectional scattering, the limits of 

the SIRP and the SAPR are given, respectively, by

(  LV 2 ^
=  r T  +  j f ( L - * y 2 (2 * , / j u * J

=  +   )  (6.16)
\  f 0 ° ( L o -  x)J l  (2 7tx)dx J

and

N - I J ^ L - x y l i l n x I K ^ d x

=  Lox — r---------------  (6.17)
Y 2 Jg (Eo — x)Jq{2kx)cIx

where Lq is the ratio of the array length L  to the wavelength Xw.

Similar results can be derived for circular antenna arrays with a fixed radius L. Assume

that the correlation between the ith antenna and the yth antenna, Pij  = v (d i j )  — (p(\i — j \ 6 ),

where dij = L-y/ 2  —2 cos(|i — j \ 6 ) is the distance between the /th and the yth antennas, 6  is

the angle between two adjacent antennas, and yr(-) represents a correlation function. Then

the limits of the SIRP and the SAPR for a circular antenna array are given, respectively, by

lim Y s i r p  — O  [ 1 4— -------------- ---------- ) (6.18)
V  S ^ ( 27t - 9 )cpHd)dQj

and ___________________
/ 2 Ti

lim Y s a p r  =   • (6.19)Y /olK(2 n - 6 )(p2 ( e )d 6
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For example, the limits of the SIRP and the SAPR for a circular antenna array in 3D 

omnidirectional scattering are given by

lim Js i r p  =  F/ | 1 H— t z --------------------------------------  — -------  | (6.20)
\  Jo ~  0)sinc2 (2nL0 y/2 -  2 cos Q)d6  J

and

/ 2Ti
lim Js a p r  =        . (6.21)

N~*°° y /o ( 2 n  — 6 ) s i n c 2( 2 7 i L o V 2 ^ 2 c o s O ) d G

We will see in the sequel that the SIRP and the SAPR approach their limiting values very 

quickly as N  increases beyond the maximum number of independent antennas.

6.3.2 The Effect of Noise

Now let us consider the effect of noise on the long-term MRC output measures.

SINRP

The long term output signal-power-to-interference-plus-noise-power ratio or SINRP is de­

fined as the ratio of the average received desired signal power to the average received 

interference-power-plus-noise-power at the combiner output given by

E IP o lc /'c lM * }
r s m r  E {| ^  +  (C|)»z„)P }

P« E {<co"c«)2} (6 2 2 )
i n i ,  f l . E { | c 0 ' ' c . P }  + E { |c „ « Z„|2} '

The long term SINRP of the MRC system in correlated Ricean fading can be derived 

from Appendix D as

"•(Ic„) +  2( ^ h  Ec« a O  + tr2 (Rco)

ys,NRF =

where To =  Po/No, denotes the ratio of the desired signal power to the noise power as 

defined previously. Since we assume that £ Cn =  £ c, and /ic„ =  Aki for the interfering user
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r-CQj I * '  ^  o c \

Ysinrp =  -------------------------,„ /o ” ------- • (6-25)

signals, (6.23) becomes

t r (Ec0) +  2 (/J.c# Lc0Mco)+^r (*c„)
< « ■ * >

where RCl is the correlation matrix for the interfering signals, and T/ =  Po/Pi is the ratio of 

the desired user signal power to the total interfering power as defined previously.

When i?c# =  jRCi =  R q and =  ]TC[ =  £ 0, namely, all of the user signals have the same 

fading statistics, (6.24) becomes

tr (Rl) ~  (Mc0HMcq)2 + tr2 (R0)

r i t r (R o) + r 0t r (R o)

When the channel experiences Rayleigh fading with /iCn =  0 [n =  0, • • • ,N[), (6.25) can be 

further simplified to

_  ^ (E o) +  ^ 2(Lo) _  t r ( A l ) + t r 2(A 0)

S1NRP j^tr(Eo) +  j^ K E o ) r , t r (A l)  +  I^?r(Ao)

where A() is the diagonal matrix composed of the eigenvalues of £ 0> as defined in Appendix 

D. For correlated Rayleigh fading, one can see that the SINRP only depends on the eigen­

values of the correlation matrix £ 0, the average power SIR F/, and the average power SNR

r 0 .

SAINPR

The long term average signal amplitude to the square root of interference power plus noise 

power ratio or SAINPR is defined by

E { |v ^ ( c 0% M o |}
Ys a i n p r  =

' L NnLyPnE{\coHcn\ i } + E { \ C(> V }  

The SAINPR in (6.27) can be calculated by

\ / E { \ L n U  V P n ( c 0H Cn) d n +  (Co^Zo)|2} 
v ^ E ic o ^ c o }

(6.27)

Ys a i n p r

\
tr2 (RcJ

E„Li p«tr(RCoRC[) +  p()tr(RCo) 
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When R Co — R Cl =  Rq, (6.28) becomes

/ fr2(i?o)
Ys a i n p r  =  * /  -]— . 2. ,— 7—  • (6.29)

V ly r(^o) + iy  r(^o)

Comparing the expression for the SAINPR in (6.29) with the expression for the SINRP in 

(6.26), one sees that they are very similar in the case of Rayleigh fading.

AISINR

The instantaneous output signal-to-interference-plus-noise ratio or SINR is given by

PolcoHco|2
< 6 ' 3 0 )

Averaging (6.30) over cn (n =  0, • • • , N[) gives the average instantaneous output SINR or 

AISINR as

Y a is in r  =  ^ { Y s i n r }  =  E j N °[° °| 1. (6.31)
(L„ii^ |cowc„|2 + |c0Hz0|2J

From (6.31), the AISINR measure is an expectation averaging over all of the user fadings. 

Owing to the correlation between the numerator and the denominator in the expression for 

Ys i n r , we were unable to derive an analytical result for the AISINR in generally correlated 

Ricean fading. In the sequel, we will use Monte Carlo simulation to assess the AISINR 

when both the desired user and the CCI are subjected to correlated Ricean fading.

Limits of SINRP and SAINPR in Correlated Rayleigh Fading

In Section 6.3.1, it was shown that the SIRP and the SAPR attain limits asymptotically as 

the number of correlated antennas grows without bound. These results were derived there, 

however, under a noiseless assumption. It may not be clear whether the limits exist, or if the 

limits exist whether the limits are the same for the noiseless case and when noise is present. 

In this part, we will show that when additive noise is present, the SINRP and the SAINPR 

reach a limit asymptotically as the number of antennas N  increases without bound for the 

fixed-length linear antenna array and the fixed-radius circular antenna array when both the
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desired user signal and the interfering signals experience correlated Rayleigh fading with 

the same covariance matrix £ 0.

We consider linear antenna arrays first. Assume that the antennas are uniformly placed 

in a linear array with length L. Then, the SINRP in (6.26) can be rewritten as

{L + d ) 2 + d{L + d ) + 2 d Z - l dl d\j/2 (id) + 2 Z - l dl {L-id)xi /2 {id)d ^
Ys i n r p  = -------------------:--------;------- —— T i i -------- ; ----------- -— TTj----------------- : ----------  (6.32)

d(L + d ) ( ±  +  i )  + ^ L Z didW 2 (id) + £ l t l di ( L - i d t y 2 (id)d

where L — (N — \)d.  When N  —> °°, and d —> 0, the limit of Ys i n r p  for a linear antenna 

array is given by

lim Ys i n r p  =  T/ (1  +  ; —  ■ J • (6.33)
N-̂ °° \  2 / q  { L - x ) y 2 (x)dx J

Similarly, the limit of Ys a i n p r  f°r a linear antenna array is given by

lim Ys a i n p r  — L\  /  — ?-------- -—;-------- • (6.34)
N~*°° v 2/o (L — x)y/2 (x)dx

Note that the limits of the long term SINRP and SAINPR in (6.33) and (6.34) are indepen­

dent of the noise power, and are the same as the limits of Ys i r p  and Ys a p r  for fixed-length 

linear antenna arrays in CCI-limited Rayleigh fading given in (6.14) and (6.15) in Section 

6.3.1. That is, the effect of noise on the SINRP and the SAINPR in Rayleigh fading can be 

ignored when the number of antennas N  is large enough.

Similar results can be derived for circular antenna arrays with a fixed radius L. The 

limits of the SINRP and the SAINPR for a circular antenna array are given, respectively, 

by
(  2 tt2 \

lim Ys i n r p  — T / 1 1 H— az--------------------------------  I (6.35)
w-*°° \  / 0 { i n -  e)<p2 (Q )de)

and ___________________

H m  Ys a i n p r  =  K \ /  TC"T777T ^  • (6.36)
217

"Y  jQ7t (2 n - G ) ( p 2 ( e )de  

Again, the limits of the long term SINRP and SAINPR for fixed-radius circular antenna 

arrays in (6.35) and (6.36) are the same as the limits of Ys i r p  an<f Ys a p r  derived for fixed- 

radius circular antenna arrays in CCI-limited Rayleigh fading given in (6.18) and (6.19) in 

Section 6.3.1.
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6.4 Average BER of BPSK in Correlated Ricean Fading

In this section, we assume that all of the user signals are BPSK modulated, namely, the 

information bit of the nth user signal, dn (n =  0, • • • ,Ni), takes values from { + 1 ,-1 }  with 

equal probabilities. Further, we assume that both the covariance matrix of the desired 

signal, £ C(), and that of the interfering signals, £ C[, have the same eigenvector matrix Q, 

namely, the covariance matrices satisfy £ c# =  QAqQh and £ c, =  QAjQh , where QQH — 

Qh Q = I, and Ao and A/ are the diagonal matrices composed of the eigenvalues of the 

corresponding covariance matrices. Then the decision variable after the MRC combiner is 

given by

N,
D = Re{r}  =  \/A)(coHCo)do +  £  VKRe{(coHcn)}dn + Re{c0HZo} (6.37)

n — 1

where Re{z}  denotes the real part operation on the complex number z. Without loss of 

generality, assume that do =  +1 is transmitted, then the average BER conditioned on c0 

and the data set Dm, = {d\. - ■ ■ ,<^v,} for the desired user, is given by

P e \ c 0,D N i =  P r i D  <  °Mo =  + l , C o , D t y )

(  Nl d 1 \
=  Pr l ( c 0Hc0) +  ~^J^Re{(coH cn)} + —f=Re{coHzo} <  OJ . (6.38)

One can show that Y = (cqh Co) +  Y%Li dnRe{{coHC n ) } / + R e { C qh zo} / m%  condi­

tioned on Co and Dm,, is a Gaussian RV with mean fly =  (coHCo) +'L„L\dnRe{co^jUq} / \A Y  

and variance Oy =  (co^L q co)/(2fV) +  (co//co)/(2Fo). Then the MGF of Y conditioned 

on Co and Dn, is given by [35]

fo'Ic.DtyC*) =  E Y\c0,DN, { eSY} = em + (s arV2

=  exp (s(c0Hc0) + ^ ( c 0/ / jtiCi +  ittCiHc0) +  A ^ c o ^ ^ c o )  +  A 2(coHc0))

(6.39)

where a\ -  1 /(4F /), a2 =  l / ( 4 r 0), and b = Y ^ L \ < V (2 -\AT)- Note that the random vari­

able b is a function of the data set Dm,', therefore, the MGF of Y conditioned on Dm, is
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equivalent to the MGF of Y  conditioned on b. Substituting v0 =  A0 ^ 2Qh c0 into (6.39), 

the conditional MGF of Y  becomes

<l>Y\co,DNr(s) -  ^Y\co,b(S)

=  exp ({s + a2s2)( \oHAo\o) + sb ( \0HHi +  JUiffv0) + a i / ( v 0HAoA/v0))

=  n exP ( W  +  a i52W  +  a252Ao)lvol2 +  fo5(M/(vo)// +  (M/)Wvi)))
1 —  1

(6.40)

where jUi = A^/2QHjUCl, v '0 and fi) denote the ith elements of the vectors Vo and jU\ re­

spectively, and Xq and X\ denote the eigenvalues of the covariance matrix £ c# and £ C], 

respectively.

Averaging ^>Y\co,b(s) over co> namely, over Vo, and setting s =  j(0 , the CF of Y  condi­

tioned on b is obtained as

N j

^Y\b(j ) r i  I _  _|_ a 2[a iX^Xj +  02Aq)

f y  \lio\2 {jcoXl) - a ) 2 (aiX^X,I -ha2X l ) ) - b 2 (0 2 \idiI \2 + j(o2 bRe{ni)(fii1)H} \
6XP \p{  1 -  + Q}2(aiX̂ X} + a2Xl) J '

(6.41)

The detailed derivation of (6.41) from (6.40) is given in Appendix D.3. Then the average 

BER conditioned on b can be calculated according to [116, eq. (9)]

Pe]b =  Pr{T <  0|£>}

1 1 [ ” Im{fa \b(jco)}1 r
it Jo dm  (6.42)

2 7t Jo (0

where Im{z}  denotes the imaginary part operation on the complex number z. Averaging

(6.42) on b for the whole data set D^n  the average BER of BPSK in the presence of CCI 

and noise over correlated Ricean fading is given by

«. =  E  x Pr 6 . =  A , )  (6.43)
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where Pr{b =  Y.„L\ ^ / ( ^ x A T )  is the probability for b = Y !̂ L\ < 4 /(2 y /T^) over the whole 

data set Dn,.

When all of the interfering users have the same transmitter power, namely, T" =  A/F/, 

the probability mass function of the random variable b is given by [113, eq. (29)]

Prffe =  ^ S V = ^ ,  * =  0 ,1 , - . . ,W/. (6.44)
2^/Nf^I J 2N>

Then the average BER for equal-power cochannel interferers and AWGN becomes

N/ Qk

<6'45)k=0 z 1 Y/nJF,

Particularly, when the fading is Rayleigh, namely, jUCn =  0  (n =  0, • • •, A/), the condi­

tional CF of Y in (6.41) can be further simplified to

<k\b(ja>) =  n  J _  j (oXi +  (0 2 ^ 1/ r j + A ' / r 0) / 4 ’ ( 6 -46)

Since (6.46) is independent of b and the number of interfering users, the average BER in

correlated Rayleigh fading becomes

1 1 / -  1 \ N  j 1

P e = 2  ~ n h  a Im ( n  i _  j (oXi +  coi(X‘X i / r I +  X l / r 0) / 4  j  dC°' ( 6 '4?)

When the AWGN is ignorable, To =  °°, namely, a.2 =  0 in (6.41). Then the CF of Y  in 

CCI-limited correlated Ricean fading is obtained from (6.41) as

<k\b(jG>) =  n 1 _ 7-a)A«+ G ) 2a i A /A / x

ex ( y  \l4i\2U ® ^ -  - b2®2\r i \2 +  j ® 2bRe { t 4 ) ^ \ ) H} \

exp 1 -  j< ° K + ®2ai K M  )
(6.48)

When the fading is Rayleigh,the conditional CF of Y  in (6.48) can be further simplified to 

<h\b(j(o) =  (6,49)
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Since (6.49) is independent of b and the number of interfering users, the average BER in 

correlated Rayleigh fading becomes

1 1 r°° 1 f N 1 1
P e = ~ - ~  - I m { Y [  ^ -;r—T—r—   Wffl. (6.50)

2 n J o  ( o  1 -  j ( o X ^  +  a>2A^A//(4r7) j

Eq. (6.50) can be further derived in closed form as follows. The MGF of Y in CCI- 

limited Rayleigh fading is obtained from (6.49) as

N i
(1 - v ;s )( l + w ts)

' n i i r n i
n ^ _  - (6.51)

where v; =  (kfr +  (X lQ) 2 + X lQXlj / T ^  / 2  and w,- =  (-A ^  +  ■\/(^o) 2 +  ^o^/7r / )  / 2- As­

suming that there are Pv different non-zero values of v, and Pw different non-zero values of

Wi, namely, Y!iL\ ?v,- =  iV, and fw, =  (V, (6.51) becomes

<M5) = T7  ___
; = { ( ! -  v is ) ‘Vi

X n  (i (6.52)

Using [77, eq. (11)], one has

f t  1  Pv tvt

n 7 i r 7 ^  = E I1=1 V1 viU i=i/v=i H )
(6.53)

and
* rv

n
Pw tw j  f i  . ,  

Pj, lw
=  1 1

where and j3j j w are respectively given by

(6.54)

1 \ fV; ft (v*)
y ” )  H  n  ^ t v k+ q k- V /  V \ t v k+ q k 
V</ r(i l..\k=\±M l l - Y k )x(i,lv) k = l ; k ^ i

and
1 -'Ik

w ."*j — "^4 + ^-1 ,
WJ x(j,lw)k^V,k^j ( 1

vi J  

( - W k)qk

WjJ
‘wk+ q k

(6.55)

(6.56)
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where %(i, lv) =  { ( ^ ,  • • • ,qPv) : g* e  N0, -  0 , eJL j qk =  rv/- /v} and x(j,  lw) = {{q \ , • ■ ■ ,qPJ

qk e  No, =  0 , E £ 1^  =  rw^-Zw}.

Then (6.52) becomes

M s) =
^  Pv tV i ( A V M )

\
M v

Pv twi
E E

\
Ww

(ai,ly)(Pj,lW)
P v  fV / P w  tWj

=  E  L  E  E  v  \ « /  NlW (6.57)

Taking the inverse Laplace transform on (6.57), the PDF of y  can be calculated by

Pv Pvv twjfrit) = 1 1  I  E  (<*,<.)(&,UKtM*>W,(<)]
i—1 /y— 1 j —1 /yy— 1

where xUv(t) and yj,iw(t) are given by

(6.58)

and

* a 0 )

yy,/*(*) =

( - i ) /v
( / v - l ) !

lv 1 l̂ i f > 0

(_ 1  Vw-1I J t lw- \ et/wj^ f < 0 .
( / w - 1)!

Then the BER of BPSK in (6.38) can be calculated as

,°
Pe =  /  f y { t ) d t

J  —oo
tVĵ  Pw tw j ( _  1 )/vvvL /w- l

(6.59)

(6.60)

= I E E E
i—1 P—1 y—1 Z,v—1

X L Cq lv+q~ 1
I — +  — 1 9=0Vv«- wi )

(6.61)

Eq. (6.61) is a closed-form expression for the BER of BPSK using MRC in CCI and 

correlated Rayleigh fading. When all of v,- and wj are not equal, (6.61) can be further 

simplified as

ft = E E
N  N

X
1

X
1

(6.62)
t p t \ ( r t + » i )  n E ^ i t v i - v t )  n

Observe that the BER in (6.61) and (6.62) depends, through the v,-, wj, a , i/v and J3jjw, only 

on the eigenvalues of the correlation matrix and not on the elements of the correlation ma­

trix. This is a consequence of the fact that the same MRC diversity structure with the same
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branch weights is an optimal, maximum likelihood (ML) structure, both for independent 

branches and for correlated branches [117].

6.5 Numerical Results

In this section, some examples using linear antenna arrays and circular antenna arrays with 

a 2D omnidirectional scattering channel model and a 3D omnidirectional scattering chan­

nel model are given. We assume that the antennas are uniformly placed in a fixed-length 

linear antenna array or a fixed-radius circular antenna array. The length of the linear an­

tenna array is assumed the minimum required to accommodate T  independent antennas. 

That is, the ratio of the linear antenna array length to the wavelength, L q , is only deter­

mined by the number of independent antennas T. Observe from Fig 6.1 that for the 3D 

case, one can neatly place the antennas at the zero-crossings of the correlation function, 

which are uniformly spaced, and the antennas will be independent. In contrast, for the 

2D case, the zero-crossings of the correlation function are not uniformly spaced. Mo­

tivated by practical considerations, we space the T antennas uniformly across the total 

length of the array. The correlation between the T antennas, while not zero, is extremely 

small, so small that the antennas are virtually independent. The independent and vir­

tually independent antennas will be referred to as the “primary” antennas, as shown in 

Fig. 6.2, where the diagrams of uniform linear antenna array and uniform circular an­

tenna array are given. The normalized array length L q  for the 2D channel model is de­

termined by the (T — 1) zero-crossing of J q ( 2 k x )  [6 , eq. (8.548)] and L q  = (T — l) /2  

for the 3D channel model. For the case of circular antenna arrays, we assume that the 

normalized radius, L q , is determined by the minimum distance between two adjacent pri­

mary antennas, namely, L q  = 0.382/ y /2 — 2cos(2n/T) for the 2D channel model, and 

L q  =  0 .5 /y/2 — 2cos(2n/T)  for the 3D channel model. Further, we assume that the chan­

nel gains cntp = xn>p + j y n,p +  p CnjP (n =  0, • ■ • ,Nt ,p =  1, • • • ,N)  at the receiver satisfy 

xn,pxn,q] =  ^{ynjpyntf]’ and E \xn)Pyn,q\ — E \yn,px n,q\ =  0 (p,q  =  1, • • • , Â ). For our ex­

amples, we assume that the covariance matrix for the desired user signal and that of the
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interfering signals are equal, that is, £ Cl =  £ q), and all of the interfering signals in corre­

lated Ricean fading have the same average power.

2D a n d  3D A n ten n a  C orrela tion  Function

_l 2D c hannel m odel J Q(2jtx)

-*—  3D ch an n el m odel sin(rtx)/(7t x'

0 .5C0>‘oa=Q)oOco
to0)oO

-0 .5
0 .5 2 .5

N orm alized s p a c e  b e tw e en  two a n te n n a s  x

Fig. 6 .1. The correlation coefficient of two antennas versus the normalized antenna spac­

ing.

6.5.1 CCI-Limited Case

Let us first consider the CCI-limited case. Fig. 6.3 shows the SIRP, the SAPR, the AISIR, 

and the average BER versus the number of antennas, N ,  in correlated Rayleigh fading with 

Ni =  2 equal-power interferers and T/ =  5 dB for a linear antenna array using the channel 

model in [18] with A =  it. Different numbers of primary antennas T  are considered. In 

Figs. 6.3(a) to 6.3(c), one can see that for all the values of T except T — 2, the values of 

Ys i r p , Ys a p r  and Ya i s i r  reach the maximum at N  =  T  + 1  and the curves become flat or even 

deteriorate when N  is larger than T +  1, which indicates that adding more antennas cannot 

always increase the values of Ys i r p , Ys a p r  and Ya i s i r \ namely, there exists a saturation point
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Uniform Linear Antenna Array

Normalized Radius LO

(c) ( d )

Uniform Circular Antenna Array 

Fig. 6.2. The diagram of uniform linear antenna array and uniform circular antenna array.

at N  =  T  +  1, beyond which little benefit can be achieved from adding more antennas. 

Similar observations can be drawn from Fig. 6.3(d). In Fig. 6.3(d), the diamond markers 

denote the BERs obtained using Monte Carlo simulation. It is seen that the analytical 

results are in excellent agreement with the simulation results. Importantly and usefully, for 

all of the values of T, the average BER becomes best at N  =  T  +  1. In addition, the SIRP 

and the SAPR are very close to the corresponding limits denoted by the dashed curves in 

Figs. 6.3(a) and 6.3(b), when N  > 10.

Fig. 6.4 shows the SIRP, the SAPR, the AISIR, and the average BER versus N  with Ni =  

2 equal-power interferers and T/ =  5 dB for a linear antenna array in correlated Rayleigh 

fading. A 3D channel model is considered for different numbers of primary antennas T.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)

.^^©©©oeegeeeeom 25CO
73

0 .OC
c/3 ^  20

22
■ir

20
N N

35
T=2
T=3
T=4DC 1 Q - 2

LU
CQ
“> -in-3g> 1 0
03

9< in-4

30

25

20
5 15 200 10 20

N

Fig. 6.3. The Jsirp ,  the Jsapr> the Yaisir, and the average BER of a linear antenna array 

versus the number of antennas, N, in correlated Rayleigh fading described by the 2D 

omnidirectional scattering model with Nj = 2 equal-power interferers and T/ =  5 dB 

for different values of T.

Observe that except for the case of T  =  2, Jsirp  and Jsapr  indicate an optimal number of 

antennas at N  = T  +  1 for the system design that is the same as the number indicated by 

the AISIR and the average BER performance measures.

The case that both the desired user signal and the interfering user signals experience 

correlated Ricean fading is presented in Figs. 6.5 and 6 .6 , where all of the branches of 

the nth user signal have the same LOS component denoted by s/E^ej9n (n =  0 , • • • ,Ni), 

where K n = \/j.‘Cn\2 /var(c‘n) and 6n is the phase of the LOS component. In the examples, 

the LOS component for the desired user signal is Ko =  10 dB and Go =  n/4 ,  and the LOS 

component for each of the interfering user signals is K / =  3 dB and 0j = n / 6 . The 2D and 

3D channel model with T/ =  0 dB and Nj = 2 equal-power interfering signals are used for
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Fig. 6.4. The ys/«p, the Ys a p r , the Ja i s i r , and the average BER of a linear antenna array 

versus the number of antennas, N,  in correlated Rayleigh fading described by the 3D 

omnidirectional scattering model with Nj — 2 equal-power interferers and T/ =  5 dB 

for different values of T.

different values of T  in Fig. 6.5 and Fig. 6 .6 , respectively. The diamond markers in Fig. 

6.5(d) and 6 .6 (d) denote the BERs obtained using Monte Carlo simulation. It is seen that 

the theoretical results are in good agreement with the simulation results. Observe in Fig. 

6.5 that all of the four measures improve little, or even become worse, when N  is larger than 

T. This means that the saturation point of N  predicted by the SIRP and the SAPR indicates 

a threshold in the number of antennas beyond which the AISIR and the BER performance 

gain little by adding more antennas. Furthermore, the performance for T  =  4 becomes best 

at N  — 3, although the performance at N  = 4 is close to the best performance. Similar 

observations are made from Fig. 6 .6 , where all of the four measures improve little, or even 

become worse, when N  is larger than T.
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Fig. 6.5. The 75/^p, the Ys a p r , the Ya i s i r , and the average BER of a linear antenna array 

versus the number of antennas, N, in correlated Ricean fading described by the 2D 

omnidirectional scattering model with Ni =  2 equal-power interferers and T/ =  0 dB 

for different values of T.

Fig. 6.7 examines the effect of the number of equal-power interfering signals on the 

average BER for a fixed value of T/ =  0 dB. A linear antenna array with a 2D scattering 

model with T =  6 , K 0 =  10 dB, 0O =  tt/4 , K/ =  3 dB and 0/ =  7t / 6  is used here. It is 

seen that the BERs at N  =  6 are very close to the minimum BERs at N  — 7. Further the 

BER increases with the number of interferers although there is no difference for the Ys i r p  

measure. Significantly, from the viewpoint of system design, the SIRP measure indicates 

that N  =  6  is a good choice to achieve a good compromise between the BER performance 

and the system cost for all values of TV/ examined.

The performance of circular antenna arrays with a fixed radius in correlated Ricean 

fading using a 3D channel model is presented in Fig. 6.8 and using a 2D channel model

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)
17.5

15.5

N

-kirk iWHo

- t t - * - X - t t ^ ’

—  T=2
—  T=3 
'—  T=4 
 T -5

>-M 15

N

^©e©Se©©SS©e©©©S<rw v .. ir £
CQ0)O)

17.<

§ . 17.6 

|  17.4 2

17.2

20
N N

Fig. 6 .6 . The ys//?/>, the /sap/?, the Ya/sik, and the average BER of a linear antenna array 

versus the number of antennas, N,  in correlated Ricean fading described by the 3D 

omnidirectional scattering model with Ni — 2 equal-power interferers and T/ =  0 dB 

for different values of T.

in Fig. 6.9, respectively. In both of the figures, the desired user signal with Ko =  10 dB 

and 0o =  0 is disturbed by Ni =  4 equal-power interferers with Kj = 2 dB and 0/ =  0. The 

average SIR power ratio T/ is 0 dB for different values of T. It is seen that the SIRP and 

the SAPR indicate a saturation point of the number of antennas around N  = T  +  1, beyond 

which, the average BER and the AISIR become very flat.

Fig. 6.10 shows the SIRP and the average BER versus the number of antennas N  for a 

circular antenna array in correlated Rayleigh fading using a 3D channel model with T/ =  5 

dB and N[ = 1 interferers. The dashed curves in Fig. 6.10(a) represent the limits of the 

SIRP for different values of T . It is seen that the SIRP is very close to the corresponding 

limit for N  >  8 . In addition, the SIRP indicates a saturation point around N  =  T  +  3, beyond
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Fig. 6.7. The Js i r p  and the average BER of a linear antenna array versus the number of an­

tennas, N, in correlated Ricean fading described by the 2D omnidirectional scattering 

model with T  =  6 and T/ =  0 dB for different values of AT/.

which, the average BER decreases little by adding more antennas.

The effect of the LOS component in the Ricean fading on the BER performance is ex­

amined in Fig. 6.11, where different values of K / for the interfering signals are considered 

for a circular antenna array using a 2D scattering model with T  =  5, TV/ =  5 equal-power 

interferers, T/ =  3 dB, Ko =  10 dB, 6q =  0, and 0/ =  0. Observe that the two performance 

measures improve with decreasing K/. Further, the performance measures becomes flat 

after N  = 6 , and the performance at N  =  5 nearly equals that at N  =  6 .

The examples indicate that addition of more than one antenna beyond the number of 

independent antennas is not always worthwhile. This rule of thumb appears to be widely 

applicable, and is intuitive. If one considers the antennas as sampling points of the spatial 

signal field shown in Fig. 6.12, one expects from a sampling theorem viewpoint that using
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Fig. 6 .8 . The Ys i r p , the Js a p r , the Ja i s i r , and the average BER of a circular antenna array 

versus the number of antennas, N,  in correlated Ricean fading described by the 3D 

omnidirectional scattering model with N[ = 4 equal-power interferers and T/ =  0 dB 

for different values of T.

more than the maximum number of independent antennas should be unnecessary.

6.5.2 The Effect of Noise

In this part, the effect of noise on the maximum effective number of antennas is investi­

gated. Fig. 6.13 shows the SINRP, the SAINPR, the AISINR, and the average BER versus 

the number of antennas, N,  in correlated Ricean fading with Nj = 2 equal-power interfer­

ers, T/ =  0 dB, and To =  5 dB for a linear antenna array using the channel model in [18] 

with A =  7T. All of the branches of the nth user signal have the same LOS component 

\fK^lei®n (n =  0, • ■ • ,Ni). In the example, the LOS component for the desired user signal 

is 3Ko =  10 dB and 0q — n /4 ,  and the LOS component for each of the interfering user
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Fig. 6.9. The Ys i r p , the Js a p r , the Ja i s i r , and the average BER of a circular antenna array 

versus the number of antennas, N,  in correlated Ricean fading described by the 2D 

omnidirectional scattering model with Nj =  4 equal-power interferers and T/ =  0 dB 

for different values of T .

signals is K/ =  3 dB and Qj — n/6 .  Different numbers of primary antennas T  are consid­

ered. In Fig. 6.13(d), the diamond markers denote the BERs obtained using Monte Carlo 

simulation. It is seen that the analytical results are in excellent agreement with the simu­

lation results. Further, one can see that for all the values of T except T  =  2, the curves of 

the Js i n r p , the Ys a i n p r , the Ja i s i n r , and the average BER behavior similarly with N,  and 

become flat when N  is large enough, which indicates that adding more antennas cannot 

always increase the system performance usefully.

Similar observations can be drawn from Fig. 6.14, where a fixed-radius circular antenna 

array in correlated Ricean fading using a 3D channel model with T/ =  0 dB and To =  5 dB 

is considered for different values of T. Here, the desired user signal with Kq =  10 dB and
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Fig. 6.10. The ys//jp and the average BER of a circular antenna array versus the number 

of antennas, N,  in correlated Rayleigh fading described by the 3D omnidirectional 

scattering model with Nj =  7 equal-power interferers and T/ =  5 dB for different 

values of T.

0o =  0 is disturbed by Nj =  4 equal-power interferers with K/ =  2 dB and 0/ =  0. It is 

seen that the SINRP and the SAINPR indicate a saturation point of the number of antennas 

beyond which, the average BER and the AISINR improve very little. Comparing Fig. 6.13 

and Fig. 6.14 with Fig. 6.5 and Fig. 6 .8 , respectively, where the noise is ignored, one can 

see that the saturation point of the number of antennas when noise is present in addition to 

CCI is no longer closest to T  or T +  1, but rather shifts to larger values.

To further investigate the effect of noise on the maximum effective number of antennas, 

the SINRP, the SAINPR, the AISINR, and the average BER versus the number of antennas, 

N,  in correlated Ricean fading with T — 5, Nj =  2 equal-power interferers and T/ =  0 dB is 

considered in Fig. 6.15. The channel model in Fig. 6.13 is used for different values of SNR
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Fig. 6.11. The Js i r p  and the average BER of a circular antenna array versus the number 

of antennas, N,  in correlated Ricean fading described by the 2D omnidirectional scat­

tering model with T  =  5, IV/ =  5 equal-power interferers and F/ =  3 dB for different 

values of K/.

power ratio To with To =  °° corresponding to the CCI-limited case. It is seen that the system 

performances improve with increasing To, as expected. Further, the curves converge when 

To becomes large. For example, the performances with To =  10 dB and To =  15 dB are 

very close to the performance with To =  the CCI-limited case. In other words, one can 

still apply the design rule for the CCI-limited case to determine the maximum effective 

number of antennas for a fixed-size antenna array when the SNR power ratio To is large 

enough, say 5 dB or greater.

Fig. 6.16 shows the SINRP and the average BER versus the number of antennas N  

for a circular antenna array in correlated Rayleigh fading using a 3D channel model with 

T  =  4 and Nj =  7 interferers. Different values of the interference power to noise power
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Fig. 6.12. The diagram of CCI-sampling space

ratio T inrp =  Pi /N q are considered. The dash-dot curves in Fig. 6.16(a) represent the 

limits of the SINRP for different values of Tj. It is seen that the SINRP is very close to the 

corresponding limit when T inrp is equal to or larger than 10 dB for N  >  8 .

6.6 Summary

In this chapter, the performances of MRC receiver diversity systems with a fixed-length 

linear antenna array and a fixed-radius circular antenna array were analyzed. For the case 

of CCI-limited environment, examples show that, in general, the long term output SIRP, 

the long term SAPR, the average instantaneous output SIR, and the average BER versus 

the number of antennas for a fixed-size antenna array have similar behaviors in correlated 

Ricean fading. The optimal number o f antennas predicted by the SIRP or the SAPR can 

be used, or as an excellent starting search point, to achieve a good compromise between 

the system performance, such as the AISIR and the average BER, and system cost. A
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Fig. 6.13. The Ys i n r p , the Ys a i n p r »the Ya i s i n r . and the average BER of a linear antenna 

array versus the number of antennas, N ,  in correlated Ricean fading described by the 

2D omnidirectional scattering model with N [  =  2 equal-power interferers, T/ =  0 dB, 

and Fq =  5 dB for different values of T.

widely applicable general rule of thumb emerges which is that the performance of a fixed- 

size antenna array containing the maximum number of independent antennas cannot be 

significantly improved by adding more than one additional antenna. Special cases where 

particular performance gains can be achieved by adding additional correlated antennas were 

also discussed. When the noise is present, the results show that the design rule for the CCI- 

limited case, still applies for moderate and large values of interference-to-noise power ratio. 

In addition, for Rayleigh fading, the limits of the long term SINRP and the SAINPR in the 

presence of noise are the same as the limits for the CCI-limited case.
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Fig. 6.16. The Js i n r p  and the average BER of a circular antenna array versus the number 

of antennas, N, in correlated Rayleigh fading described by the 3D omnidirectional 

scattering model with T — 4 and Nj  =  7 equal-power interferers for different values 

of the INRP ratio Finrp — Pi/Nq.
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Chapter 7

Conclusions and Suggestions for Future 

Work

In this chapter, we first summarize the major contributions of this thesis and then suggest 

several topics for future research.

7.1 Conclusions

1. An exact and unified analysis framework for T-HS/MRC over generalized fading 

channels was developed using the total probability theorem and MGF method. This 

theory allows various fading models and different modulation schemes.

2. The previous published analytical results on T-HS/MRC were shown to be inaccu­

rate.

3. Explicit expressions for the average SER and outage probability of T-HS/MRC in 

i.i.d. diversity branches and i.n.d. diversity branches were obtained.

4. Closed-form expressions for SER and outage probability of T-HS/MRC in i.i.d. and

i.n.d. Rayleigh fadings were obtained.
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5. The performances of SC, H-S/MRC and T-HS/MRC in correlated Nakagami-m fad­

ing with a special correlation structure were analyzed when the fading parameter m 

is a positive integer. This correlation structure is more general than equal correlation 

and includes equal correlation as a special case.

6 . New representations of Rayleigh fading amplitudes and Nakagami-m fading ampli­

tudes with the special correlation structure were provided by linearly combining a 

set of independent Gaussian RVs. These representations greatly simplify the perfor­

mance analyses of SC, H-S/MRC, and T-HS/MRC in correlated Nakagami-m fading.

7. An approximate SER analysis of H-S/MRC and T-HS/MRC in arbitrarily correlated 

Nakagami-m fading with positive integer values of fading parameter m was proposed 

using a Green’s matrix method. Various correlation models in diversity systems were 

used to examine the efficiency of this approximate analysis.

8 . The exact SER of T-HS/MRC in correlated Nakagami-m fading when the inverse of 

the covariance matrix is tridiagonal, was obtained.

9. The outage probabilities of MRC diversity systems with an arbitrary number of an­

tennas in the presence of an arbitrary number of cochannel interferers and noise were 

derived when the branch gains of the desired user signal and interfering signals ex­

perience Rayleigh fading and have the same correlation matrix. Two cases that the 

correlation matrix has different eigenvalues and that the correlation matrix is equally 

correlated are considered. The results apply for both equal-power and unequal-power 

cochannel interferers.

10. Closed-form outage probabilities of MRC in CCI-limited Rayleigh fading were ob­

tained for the two correlation structures.

11. Closed-form SERs o f BPSK modulated cellular systems using MRC in the presence 

of CCI and correlated Rayleigh fading were derived for both the equi-correlated co- 

variance matrix and the covariance matrix with different eigenvalues.
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12. Closed-form BERs of BPSK using MRC with a special channel estimator were ob­

tained in the presence of CCI and correlated Rayleigh fading. The effect of imperfect 

channel estimation on the BER performance was examined.

13. The question of how many receiver antennas to employ in a diversity system oper­

ating in CCI and fading was investigated. Three long-term output measures and the 

average BER of a MRC diversity system with CCI and noise in arbitrarily correlated 

Ricean fading were analyzed.

14. For the CCI-limited case, a widely applicable general rule of thumb that the perfor­

mance of a fixed-size antenna array containing the maximum number of independent 

antennas cannot be significantly improved by adding more than one additional an­

tenna was developed.

15. Some special cases where particular gains can be achieved by adding additional cor­

related antennas were discussed.

16. When noise is present, results show that the rule for the CCI-limited case still applies 

when the interference dominates the noise.

17. It was shown that the long-term SINRP and SAINPR reach a limit asymptotically 

as the number of antennas increases without bound for the fixed-length uniform lin­

ear antenna array and the fixed-radius uniform circular antenna array when both the 

desired user signal and the interfering signals experience correlated Rayleigh fading 

with the same correlation matrix. Further, the asymptotic limits are unchanged when 

noise is neglected.

18. A closed-form BER expression for BPSK using MRC in CCI and arbitrarily corre­

lated Rayleigh fading was obtained.
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7.2 Future Work

1. In Chapter 3, we studied the performance of generalized selection combining in cor­

related Nakagami-m fading with a special correlation structure. However, an exact 

performance analysis of SC, EGC, H-S/MRC and T-HS/MRC in arbitrarily corre­

lated fadings is still an open problem. Further, the performance of diversity sys­

tems with unequal power branch signals over correlated fading channels has not been 

solved.

2. In general, diversity techniques rely, to a large extent, on accurate channel estima­

tion. In Chapters 2, 3 and 4, perfect channel estimation for H-S/MRC and T-HS/MRC 

systems are assumed. However, in practice, these estimates are obtained in the pres­

ence of noise and time delay. In the literature, the performance of H-S/MRC in i.i.d. 

Rayleigh fading with channel estimation error was analyzed in [118], [119]. It is 

of interest to study the effects of channel estimation error on the performance of 

H-S/MRC and T-HS/MRC in correlated fading channels.

3. In this thesis, we consider the performance of H-S/MRC and T-HS/MRC in slow 

and flat fading. However, in wideband systems, such as an UWB system, the fading 

is frequency-selective. Therefore, it is useful to extend the results and analyze the 

performance of a wideband receiver with H-S/MRC and T-HS/MRC in frequency- 

selective and correlated fading channels.

4. In Chapter 5, we assumed that the fadings of the desired user signal and the inter­

fering user signals were Rayleigh distributed and had the same correlation matrix. 

Two correlation structures were studied. The results may be extended to study the 

outage probability of MRC with CCI in arbitrarily correlated fading channels. Fur­

ther a more general case that the desired user signal and the interfering user signals 

experience different fadings with different correlation matrices may be considered in 

future work.

5. In Chapter 6 , we studied the maximum number of antennas that can be usefully
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employed in a MRC receiver diversity system over correlated Ricean fading. The 

case of Nakagami-m fading may be considered. Further, it is of interest to study 

the case of various antenna arrays in addition to uniform linear antenna arrays and 

circular antenna arrays.

6 . In Chapter 6 , MRC receiver diversity systems were studied. It is of interest to in­

vestigate the maximum effective number of antennas at the both of the transmitter 

end and the receiver end for MIMO systems. One can first consider the case that 

the transmitter has no knowledge of the channel status but the receiver has perfect 

knowledge of the channel information, and the total transmit power is constrained 

and divided equally among the transmitter antennas. Different correlation models 

can be examined. For example, only the fadings at the transmitter end, or at the re­

ceiver end, are correlated. That is, only the elements in each column or each row of 

the MIMO fading channel matrix, are correlated with the same correlation matrix, 

and all of the columns or the rows are independent. A more general case that the 

correlation of the MIMO fading channel is arbitrary may be also studied.
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Appendix A

A Useful Expression for the Product

In this appendix, we derive a useful expression for the product (1 — q ), namely

f l ( i - c i )  = i + £ ( - i y  £  n % )
<=1 P= 1 ve5({i,-,Ar},p)9=l

where denotes the set of total combinations of the integers {!,•■• , N}  taken

p  (1 <  P <  N)  numbers at a time, and v =  (v (l) , • • • , v(p)}  e  denotes a spe­

cific combination of the integers {1, • • •, N}  taken p  (1 <  p  < N)  numbers at a time. The 

following proof of eq. (A .l) is by induction.

Before the induction proof for (A .l), we first state and prove a lemma required for the 

induction proof of (A.l). The lemma is as follows:

Lemma\ For positive integer p  (2 <  p  <  L),

p  p  p -1

r i cv(9)=  n cv(?)+ n  c l+i n ^ o ? ) ’ ( a .2)
ve5({i,-,r+i},p) ve^({i,-,r},p) 9=1 ve,s'({i,-,i.},p-i) 9=1

where the set ,z.},p), v and ci (1 <  * <  A) were defined in (A.l).

Lemma Proof. The set of total combinations of the integers {1, • • • , L +  1} taken p  (2 < 

p  < L)  numbers at a time, S({i,...,l-i-i},p)’ can be divided into two complementary subsets. 

One is the set, ,z.},p), the other is the corresponding complementary set of
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denoted by £({1, . . Specifically, the complementary set, S({i,...,L},p), is the set of the 

combinations, in each of which, the integer L +  1 is taken and the other p  — 1 numbers are 

taken together from the integers {1, • • • ,L} [120, eq. (20)].

Then the left side of (A.2) becomes
p  p  p

e  r icv(?)= e  n cK4)+ e  n ô?)- 0̂ .3)

For each combination in the complementary set, the product, n £ =i c v{q)  =

c l +  i n j= J  cv(q) (v ^  ^({i, -,L},p-i))- Thus, the second term on the right side of (A.3), 

n j = i cv(,) becomes

p  p - 1

e  e  cz.+iiicv(?)- (A-4)

Substituting (A.4) into (A.3), (A.3) becomes (A.2).

Now consider the induction proof for the product expression given in (A.l).

Proof: First, when N =  1 and p — 1, the set, £({1}, ^  =  {[1]}, then the right side of (A. 1) 

becomes 1 +  ( —l)c i,  which equals the left side of (A.l).

When N  =  2, the product I lL l ( l  ~  c«) becomes 1 — c\ — C2 + c | C2 ■ The right side 

of (A .l) becomes 1 +  £ j =1 ( - l ) p I ves({li2}iP) I lJ = i cv{q). When p  =  1, the set S({1,2})1) =  

{[1], [2]}; when p  =  2, the set ^'({i,2},2) =  {[1,2]}. Then the right side of (A .l) becomes 

1 — ci — c2 +  c ic2, which equals the left side of (A.l).

Now assume that when N  — L, eq. (A .l) is valid. Then when N  =  L +  1, the product, 

n ^ ) 1 (1 ~~ q )  becomes using [121, eq. (1.5)]

L+ 1 L

n a - « ) =
( = 1  i =  1

=  ( i _ c t + 1) { i + £ ( - i ) f  £  n M ,,}
p = l  v e s ({ li...iL}ip )< ?= i

= 1 —cl+i+$2 (_i)p e  r icv(9)+
p =  1 v e S ( { l , - ,C } ,p ) 9 = l

p =  1 v £ S ( { i , -M , p )  q=1
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— i _ 5 I ci ~ cl+ i + e  r i cv(g)+
1=1 p = 2 v € S [ { l r . ! L } i p ) q = \

L - 1 p  L + l

K - i ) ^ 1 e  c1+, n M , ) + < - i ) i + i r h
p = i  vGS({ 1, - , i } ,p )  9 = 1  i = i

L + 1 L + l  L p

—  1 _ E c i +(_i)L+1 l l c«+E ( - i ) 13 E r i cv(<?)
<=i i = i  p = 2  veS({i i...]i,},p) ? = l

+  E ( _ 1 )/’ 52 ci + i r i cv(g)- (a .5)
p = 2  9 = 1

Using the lemma, one can combine the two terms in (A.5) into one term, namely,

E(_1)p E I K d  + K - 1)' E cL+iricv(9)
p = 2  v6 S ({1i...)L}]P)9 = 1  p = 2 ve5({ i i...)i,}ip _ 1) 9=1

=  £ ( - 1 ) "  £  n + ? ) -  <a -6>
p = 2  v e 5 ( { 1)...if,+ i } iP) 9 = 1

Thus (A.5) becomes

L + 1 1 Z/+1 L, p

n(i-c,o = i - E ci+(-i)L+1f l c‘+ E (_1)p E ITcv(9)
1=1 i = l  1=1 P= 2 vG5({1...]i+1}i/,) 9 = l

L + l p

=  ! + £ ( - ! ) ' '  £  n + , 1 -  (A-7>
p =  1 v e 5 ({1;...i t+i }ip ) 9 = l

Hence, (A .l) is valid for N  =  L +  1 when it is valid for N  — L. Therefore by induction, eq. 

(A .l) is proved. Eq. (A .l) is used to derive the M GF of Yt - h s / m r c ( s ) f° r i.n.d. Rayleigh 

fading in Section 2.4.2.
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Appendix B 

Joint PDF of the Ordered Random 

Variables

Let f n (7(, ■ ■ •, rn) denote the jo int PDF of the random variables, r \ , r2, ■ ■ ■ ,rn. Let 

r (i)) r (2) i "  ‘ > r(n) denote the order statistics of (k =  1, • • • , n) with > r^2) > • • •> r ^ . 

Then the joint PDF of the order statistics, (r (l)> r (2)>' ' '  : r(n))> is given by

) ’ r (2) i ' i r (n)) =  ^  f r i , r 2 ,---,r„(r (ei[l})ir (ei [2])^'  "  i r ei[n])
ei&Sn

r(l) > r (2) > > /•(„) (B.l)

where e,- €  Sn denotes <?,- =  {<?, [ 1 ], - • • , <?,- [n]}, one specific permutation of the integers {1, ■ • • ,«}.

Proof: The ordered statistics, r ^  (k =  1, • • • ,n),  are actually functions of n ,  ■ • ■ , rn 

expressed by = m™{r \ , • • • ,r„} , where m̂ x{•} denotes the kth maximal value of the 

set {r \ , • • • , rn}. The whole space of r \ , ■ ■ • , rn, S, can be divided into n! disjoint sub-spaces,

Sen each with Set = {re. ^  >  re.[2] >  ■ ■ >  re<[„]}, where et =  {e,-[ 1], • • • ,g,-[/x]}, one specific 

permutation of the integers {1, ■ • • ,n}. Since all of the RVs, r i, • ■ •, rn, are assumed not to 

be equal, one can show that for each sub-space Sei, there is one and only one solution to the 

functions (k  — 1, • ■ ■ , n ) , namely, — re. ^  {k =  1, • • • , n ) . Then, the joint PDF of the
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ordered f(i), • "  , r^)  can be derived using the Jacobian method [35] as

/r">'" (r<1)’r(2) ’ ’rw) "  k ,  \ U r u n , - , r n) |-----------

'■(l) >  r (2) >  >  /■(„) (B.2)

where Jei (r\ , r2, ■ ■ ■ , rn) is the Jacobian of the corresponding sub-space, Sei, and the absolute 

value of Jei( r \ ,r2, • ■ • ,r„), \Jei{r i ,r2, • • • , rn) I =  1- Therefore (B.2) becomes (B .l).
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Appendix C

Two-Dimensional Inverse Fourier
rNTransform of n*=i 1 + /A,0 [ +y A? o h

Let F (u,w)  denote the two-dimensional Fourier transform of u and w  given by

N  j

FM)VVC/(0i ,;(02) =  i 2f=i l+;A/(Oi+jA?o>2

where all of A, (i =  1, • ■ ■ , N)  have unequal values.

Using [77, eqs. (10), (11)], (C .l) can be represented by

1 N 1 
2) =  f a r r E '

1
x

( i ]  A- j'XiOh) +  7®i 

1 £  1
E

1

( 2; + j ^ a h j  +  j(0\ njfcLi,*# ( i f e  _  j ° ^

N  N  ( X i h f - 3

S  k=Tji î ( '̂ *̂) n j= l,^ ,fc(■Af A9) (Afc Aq,) 
 1_____________
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(C .l)



y  ( W N~3

i ,ke {  1 , -  ,N},  i <k  T l q = l , q y t i , k ( ^ i  ~  \ )  (Afc ~  A q )

1 x-7 -----------   7  (C.2)
i + A f t > 2 + M )  ( ^ + A f t ) 2  +  M )

According to the definitions of the two-dimensional Fourier transform and two-dimensional 

convolution [97], and assuming A,- >  Ay >  0, we have

w \e ~ k u8(w  — X u )U (u )\  =  ---------    (C.3)
f ' 4- 4- /A rm  4- /coi

and

F- l

X. +  jA, a>2 +  j'wi j  ^  +  j Â  cl>2 — M  j  

e — A;w)i7(w)  ̂** ^ m5(w — Â m)[/(m)

- ( ^ + 4 )m+W
, 0 <  Â w <  w <  Aiu (C.4)

A; A/j

where 8  (x) is Kronecker delta function and U (x) is given by

f , 1, * > 0 ;
U  W —

0, x  <  0.

F{•} and F~1 {•} denotes the two-dimensional Fourier transform and inverse Fourier trans­

form, respectively, and ** denotes the two-dimensional convolution.

Then, taking the two-dimensional inverse Fourier transform in (C.2) and combining 

with (C.3) and (C.4), the two-dimensional inverse Fourier transform o f (C .l) becomes

x [17 (Aiu — w) — U (AkU — w) +  8 (At« — w )] , u >  0. (C.5)

In the following, we prove a equality used in Section 5.3. Assume that A,- (i — 1, ■ ■ • ,N)  

satisfy Ai >  A2 >  • • • >  Aw >  0, then

v . ( W N- 2

i , k e { l , - , N } , i < k ^ X } = l , q ^ i , k ( ^ i  ^ q ) ( ^ k  A q )
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Proof: From (C .l) and (C.2), one obtains

f r  1 =  y

i =  1 1 +  +  J ^ i  M l  ,N} ,  i <k  1 1 ^ = 1  , q ^ i , k ( ^ i  ~  \ )  _  K )

(x) +j^i°h  + 7®i) + j^kOh + j(0\ ĵ

Let 0>i =  0 and o>i — 0, then the left side o f eq. {C.l)  equals 1. And the right side of eq. 

{C.l)  becomes

£  _ _ _ ( W W' 3 _ . . x  _ i _  x  J _
i,k&{\,-,N},i<kT[q=l,q̂ i,k( î ^q)(h K)

y  ( W * ~ 2
i , k<={ \ , - , N) ,  i < k  n ? = l ,  q j t i , k ( ^ i  ~  \ ) ( ^ k  ~  &q )

=  1. (C.8)

Thus (C.6) is proved.
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Appendix D

Some Derivations for Chapter 6

D.l Expectation Derivations

In this part, we derive solutions for the expectations in the numerator and the denominator 

of (6.4). Consider the numerator first. Let the matrix Ao denote a diagonal matrix composed 

of the eigenvalues of the covariance matrix for the desired user signal fadings £ c#, Aq (i =  

1, • • ■ ,N)  such that £ C() =  QAqQh  , where Q is the corresponding eigenvector matrix with 

Qh Q = QQh =  I, and where I  denotes the unit matrix. Further, let vo =  A q 1̂ 2Qh cq, 

which is a A  x  1 complex Gaussian vector with mean vector /lo =  Aq 1^2 Qh Hca and unit 

variance matrix 7. Let u =  Cqh Cq = \ q A q \ q  =  Y4 L 1 ^olvol2> where Vq (i — 1, • • ■, N)  are 

the elements of the vector Vo and are independent complex Gaussian random variables. 

Since |v|)|2 follows a noncentral chi-square distribution, %n{s1) o 2) with n =  2 degrees of 

freedom, noncentrality parameter s2 =  |E{vq}|2, and Gaussian variance cr2 =  1 /2  [4], the
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expectation E {u2} is derived as

E{w2} =  Var{u}  +  (E{«})2

=  £ ( ^ ) V a r { |v [ ) |2} +  (E { tr(c0Hc0)} )2 
1 =  1

=  t r {A l )  +  +  (t/-(E{c0C0H} ))2

= ^ { £ }  + 2( \ 1/2̂ „ ) ^ ( ^ 1/2̂ « )  +  ̂ (R c,)

= t r ( L l j + 2 ^ o H ' L c 0 ^ + t r 2 ^  t0 -1)

where Var{-}  is the variance operator, and =  EjcoCo^} =  Ec0 +(juc0;uco/ / )> is the 

correlation matrix of cq, and tr(-) denotes the trace of a matrix and has the property 

tr (AB ) =  tr(BA)  [122] and E { tr(-)}  =  fr(E{-}) because the trace is a linear operation.

Since (coHcn) is a scalar, (c0wcn) =  tr(coHcn). Then, the expectation terms in the sum 

of the denominator of (6.4) can be rewritten as

Edco^C nl2} =  E{tr(coHcncnHc<})} =  E{tr(coH(cncnH)co)}

= E{tr((coCoH)(cncnH))}

=  tr(E { (c0coH)(cI1Cn/ / )})

=  tr (RCoR Cn) n = I, - ■ ■ ,Ni  (D.2)

where RCn (n =  1, • • • , N[) is the fading correlation matrix for the nth interfering user sig­

nal, and where E{(coCoH)(cncnH)} =  E jcoC o^jE lcnC ,/2} because Co and cn are assumed 

independent. Substituting (D .l) and (D.2) into (6.4), the SIRP in (6.4) becomes (6.5).
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D.2 Limits of SIRP and SAPR in Rayleigh Fading

For linear antenna arrays, since the covariance matrix £o  is a real symmetric toeplitz matrix 

- o

N 2

with element Y!q =  V(\ i  ~  j \d )  and tr(Yo)  =  N,  the SIRP in (6.8) becomes

Ys i r p  =  F /  I 1 +

=  F /  1  +

L U L U  W2{ \ i ~ j \ d ) i

N 2

N  + 2 l ^ { N - i ) y / 2 ( i d) )

=  F /( l+ /( iS r )) .  (D.3)

Since the num ber of antennas N  and the array length L  satisfy L — ( N — ])d,  one has

f ( N ) = f ( \ + L / d )  =   ----------------i ^ + L )2
d 2  +  Ld + 2 Z j i i  (L  ~ id +  d ) y 2 (id)d  

0d +  L)2
-•(D.4)

lim f ( N )  =  l i m / ( I  + L / d )  — L ----- -—,,, N (D-5)

d 2 + Ld +  2 i f i f  (L -  id) vr2  (id)d  +  2d  i f i f  y 2 (id)d  

As N  becomes large, N  —> °o, and d  becomes very close to zero, d  —> 0. Then the limit of 

f ( N )  is given by

I 2!  2

n ^°° j v ' d-*oJ v 1 ' Jq (L — x ) y 2(x)dx

Combining (D.5) with (D.3) and (6.11), the limits of SIRP and SAPR for linear antenna

arrays in correlated Rayleigh fading are obtained as (6.14) and (6.15), respectively. 

Similarly, for circular antenna arrays, the SIRP in (6.8) becomes

r s m p = r '  ( ' + =  r , ( l + m > ) ' (D'6)

Since N  =  2 k / 9,  one has

/ (A )  =  f ( 2 n / Q )  = ----------   ■ ( ° - 7)
2 n 6  +  2 Z ^ {  (2 K - i 9 ) ( p 2 ( i d) e

As N  becomes large, N  —> oo, and 0 becomes very close to zero, 9 —► 0. Then the lim it of

f ( N ) is given by

2 k 2
lim f ( N )  =  lim f ( 2 n / 9 )  =  — ----------- . (D.8)

j 6 ^ 0 j y  ' ; J 27t ( 2 K - e ) ( p 2 ( 9 ) d9
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Combining (D.8) with (D.3) and (6.11), the limits of SIRP and SAPR for circular antenna 

arrays in correlated Rayleigh fading are obtained as (6.18) and (6.19), respectively.

D.3 CF of Y  Conditioned on b

Averaging </>r|co,b(-s') in (6.40) over vo, the conditional M GF on b is given by 

<k\b(s) =  r i Ev‘ {exP ((Aj + a\s2K M  + a2S2K ) \ vo\2 + bs( t i { vo)H + (l*i)Hvb))}

••

Rewrite v l0  =  Xq +  jy{} +  jU q  where /1q =  E { v q } ,  then x lQ and >q are independent zero-mean

Gaussian RVs with variance 1/2. Then can be calculated as

0  i =  E i  f e ( s ^ o + a i s 2 Xi)X j+ a 2 S 1Xl) ) { x ‘0 ) 2+ 2 { R e { n ,0 } ( s ? ^ + a i s 2 ^ X j + a 2 S Z? i l ) + b s R e { i l ll } ) x ' A  
v0 xo I J

X E  i | e W + a i 'r 2 ^ / + a 2'?2 A o ) ( } 'o ) 2 + 2 ( / m { ^ } ( ^ - | - a i 5 2 A l(A /‘ - l - a 2 i 2 ^ ) + f e / m { j U ; } ) ^ |

X e {skl+ a is1X ^ + a2S1) ^ ) \ ^ \ 2+2bsRe{{ill:j)Hllil }

=  ^ . x ^ x 4 j  A  (D'I0)

where Im{z}  is the imaginary part operation on the complex number z, and <px  ̂ and tpy are

given, respectively, by

<t>X‘ = — — -----------   XAq

1 — sXQ — CIiS^XqXj — Cl2S2X{

and

, (R e jn ^ jsX l +  a is2X{)X} +  a2s2X[*) +  bsR e{y ,\})2", 
 ̂ 1 — s X — a \s2X^X\ — 0 2 S2Xq

=  —f  — ------------ : xy 1 — s Xq — a i s 2XyXj — <12S2Xq

( {IrnM}(sXi) + als2X‘)Xj + a2S2Xl)+bsIm{iliI})2' 
\  1 — sXq — ciis2XqXj — a.2S2X^
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Substituting (D.l 1) and (D.12) into (D.10), 0V; can be simplified as
o

,  =   1____________________________

v° 1 — .s'Aq — a\ s2XqX\ — ci2 S2Xq

ex (  +  «2^ )  +  b 2 s21/ij |2 +  2b s R e i n ^ n } ) 11}
 ̂ \  1 — sXq — a \s2XqXj — ci2 S2Xq

(D .l 3)

where jUq and juj are the zth elements of the mean vector Uq — A0 l^2 QHfJ-co and /ij =  

Is}J2 QHiiZl, respectively. Then the conditional CF of Y  on b is obtained as (6.41) by sub­

stituting (D.13) into (D.9) and setting s =  j ( 0 .
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