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A B S T R A C T

Sampling from a given probability distribution is a key problem in many different

disciplines. Markov chain Monte Carlo (mcmc) algorithms approach this problem

by constructing a random walk governed by a specially constructed transition prob-

ability distribution. As the random walk progresses, the distribution of its states

converges to the required target distribution. The Metropolis-Hastings (mh) algo-

rithm is a generally applicable mcmc method which, given a proposal distribution,

modifies it by adding an accept/reject step: it proposes a new state based on the

proposal distribution and the existing state of the random walk, then either accepts

or rejects it with a certain probability; if it is rejected, the old state is retained. The

mh algorithm is most effective when the proposal distribution closely matches the

target distribution: otherwise most proposals will be rejected and convergence to

the target distribution will be slow. The proposal distribution should therefore be

designed to take advantage of any known structure in the target distribution.

A particular kind of structure that arises in some probabilistic inference prob-

lems is that of symmetry: the problem (or its sub-problems) remains unchanged

under certain transformations. A simple kind of symmetry is the choice of a coor-

dinate system in a geometric problem; translating and rotating the origin of a plane

does not affect the relative positions of any points on it. The field of group theory

has a rich and fertile history of being used to characterize such symmetries; in par-

ticular, topological group theory has been applied to the study of both continuous

and discrete symmetries. Symmetries are described by a group that acts on the

state space of a problem, transforming it in such a way that the problem remains
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unchanged. We consider problems in which the target distribution has factors,

each of which has a symmetry group; each factor’s value does not change when

the space is transformed by an element of its corresponding symmetry group.

This thesis proposes a variation of the mh algorithm where each step first chooses

a random transformation of the state space and then applies it to the current state;

these transformations are elements of suitable symmetry groups. The main result

of this thesis extends the acceptance probability formula of the textbook mh algo-

rithm to this case under mild conditions, adding much-needed flexibility to the

mh algorithm. The new algorithm is also demonstrated in the Simultaneous Lo-

calization and Mapping (slam) problem in robotics, in which a robot traverses an

unknown environment, and its trajectory and a map of the environment must be

recovered from sensor observations and known control signals. Here the group

moves are chosen to exploit the slam problem’s natural geometric symmetries, ob-

taining the first fully rigorous justification of a previous mcmc-based slam method.

New experimental results comparing this method to existing state-of-the-art spe-

cialized methods on a standard range-only slam benchmark problem validate the

strength of the approach.
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I N T R O D U C T I O N

Symmetry is what we see at a glance;
based on the fact that there is no

reason for any difference . . .

— Blaise Pascal, Pensées

Probabilistic reasoning plays a major role in many disciplines. Many state-of-
the-art artificial intelligence (ai) approaches to major challenges depend on the
manipulation of probability distributions (Korb and Nicholson, 2003; Russel and
Norvig, 2009; Poole and Mackworth, 2010). In particular, probabilistic graphical
models are widely used in computer vision (Prince, 2012), robotics (Thrun et al.,
2005; Ferreira and Dias, 2014), speech and natural language processing (Manning
and Schuetze, 1999), machine learning (Bishop, 2006; Murphy, 2012) and agent
research (Xiang, 2002). A key step of working with probabilistic graphical models
is inference: the computation of a posterior distribution given the model and some
data. As the posterior can rarely be expressed in a closed form amenable to direct
evaluation by a computer, one often must resort to approximate inference methods
(Pearl, 1988; Darwiche, 2009; Koller and Friedman, 2009); Markov chain Monte
Carl (mcmc) methods are often ideal for the task (Tierney, 1994). Many inference
problems have a certain type of symmetry structure which manifests in the posterior
distribution. In this thesis, we focus on a particular mcmc method, the Metropolis-
Hastings (mh) algorithm, describing a version of it that is able to benefit from
known (but possibly approximate) symmetries of the posterior.

The mh algorithm takes a target distribution and a user-chosen “proposal” ker-
nel and transforms the latter into a new Markov transition kernel; the resulting
Markov chain will have a limiting distribution equal to the target under mild con-
ditions on the proposal (Metropolis et al., 1953; Hastings, 1970). While the mh

algorithm gives substantial flexibility in choosing the proposal kernel, the calcula-
tions needed to implement the mh algorithm are simple only when it has certain
special forms, such as the textbook case when the target and proposal measures
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have densities with respect to a common “reference” measure1 (Tierney, 1994). In
this thesis we describe two new classes of proposal kernels, based on group trans-
formations of the state space and give the corresponding mh algorithms in closed
form. The algorithms require basically the same amount of computation as the
textbook mh algorithm, while we will argue that they significantly expand the
scope of the mh algorithm. In particular, we will show that they allow us to exploit
known symmetries in factors of the target distribution, which does indeed speed
up computation; we will argue that this also improves the rate of convergence. We
illustrate the results by specializing the algorithm to the simultaneous localization
and mapping (slam) problem in robotics (Thrun et al., 2005) and argue that the
algorithm essentially recovers the mcmc-slam method of Torma et al. (2010), pro-
viding much needed insight into the behavior of this method as well as the first
fully rigorous proof of its correctness.2 In fact, it was this method that served as
the inspiration for the present thesis. In a new set of experiments, we demonstrate
that this algorithm is competitive with state-of-the-art methods of robotics.

The thesis is organized as follows: In Chapter 1 we use an example to motivate
our approach. Chapter 2 (which may be passed over on a first reading) sets up the
mathematical background. The main contributions of this thesis lie in Chapter 3,
wherein our approach is described and proved correct. Chapter 4 expands upon
the example to illustrate how our approach can exploit symmetries. Chapter 5

is devoted to describing the slam problem, its symmetries, and how the general
construction of Chapter 3 can be instantiated in this setting to recover the mcmc-
slam algorithm. We close the thesis by providing experimental results on range-
only slam (Chapter 6) followed by our conclusions (Chapter 7).

1 This restriction disallows even Gibbs sampling, since the target distribution typically has a den-
sity with respect to the Lebesgue measure on Rn, which however is zero on the one-dimensional
subspaces on which proposals are made (see Section 3.2). The target distribution must therefore
be conditioned on the space of proposals, which is straightforward for Lebesgue measures and
linear subspaces but requires the machinery of measure theory to be correct in general (Chang and
Pollard, 1997).

2 Theorem 2 of Torma et al. (2010) is not correct when, in the notation of Section 3.1, ∆G
r 6= 1 or χ 6= 1.

However, this does not affect the special case of slam.
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1
M O T I VAT I O N A N D P R O B L E M S TAT E M E N T

Suppose we want to draw samples from the simple two-dimensional probability
distribution P of Fig. 1. Its density p(x, y) has two factors: p1(x, y) and p2(x, y),
which need not be probability densities themselves (e.g., p2 is not integrable):

p1(x, y) = c p1(x, y) p2(x, y) .

The mcmc approach is to construct a transition probability distribution that in-
duces a random walk over R2, the distribution of which converges to P in the
steady state. The Metropolis-Hastings (mh) algorithm allows us to specify a pro-
posal distribution, and under mild conditions, constructs a suitable mcmc transition
kernel by proposing a new state but rejecting it with some probability. With some
no-reject proposal kernels the rejection probability is zero, which means the pro-
posal kernel is itself suitable as a transition kernel. The mcmc algorithm will be
efficient if the proposal kernel does not often propose low-probability states (which
would increase the rejection rate) and quickly explores the high-probability states
(speeding up convergence to the steady state).

Figure 1: A probability density p on R2 (center) with factors p1 (left) and p2 (right).
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Often, a proposal kernel updates the state by modifying one variable at a time
(the canonical example is Gibbs sampling; some multivariate “slice sampling” ker-
nels also do this). However, it is immediately apparent that such an update would
be problematic for our example: it would be impossible to move between the ±X
and ±Y modes of the distribution without transiting through a low-probability re-
gion. Another common approach is to change all the variables by a small delta,
perhaps drawn from a multivariate normal distribution. However, the variance of
this proposal kernel must be carefully tuned for each variable: too small and it will
be confined to one mode in a multi-modal distribution like ours; too large and it
will often propose points in the low-probability regions. In general, this idea does
not work well with multi-modal distributions.

One might argue that we have overstated the difficulty of the problem. One
sees at a glance that p1 is radially symmetric and p2 is scale invariant: we can
make sampling much easier simply by re-parametrizing the state space using polar
coordinates (r, θ) instead of Cartesian coordinates (x, y). Updating one variable at
a time is then very effective: one can draw an independent sample from P just by
sampling r according to p1 and θ according to p2. Indeed, our difficulties were
simply because the Cartesian representation of the state space is mismatched with
the independence and symmetry structure of the problem, whereas in the polar
representation the r and θ variables are independent with distributions derived
from p1 and p2, respectively.

In general, however, it is not always possible to come up with a parametrization
that reflects so cleanly the symmetries of the factors. Instead, since the symme-
tries are more readily apparent than a suitable parametrization, we can sidestep
the problem of re-parametrizing the state space and instead work directly with the
known symmetries. To do this, we will use the mathematical tools of topological
group theory, which have been extremely fertile in the study of continuous sym-
metries. As an ancillary advantage, the family of algorithms we describe will be
independent of the representation of the state space, by construction. This avoids
the problems noted above with algorithms that depend crucially on a favorable
choice of parametrization.

The idea of using groups has been intensely studied in statistics (Eaton, 1989;
Wijsman, 1990; Diaconis, 1988) and groups have also found their way to machine
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learning (Smola and Kondor, 2003; Kondor, 2008). Model symmetries are also
exploited in the body of work on “lifted” probabilistic inference; these symmetries
can be encoded by groups (Niepert, 2012a) and the problem has been approached
with mcmc techniques (Niepert, 2012b). The focus of that work is on performing
inference on a reduced space that collapses equivalence classes. Thus “lifting” is
not applicable when the symmetries are approximate or when different symmetries
apply to each sub-problem: then the representation cannot be reduced and states
must be explored that are symmetric for one sub-problem but not for another. To
the best of our knowledge the closest work to ours is that of Liu and colleagues
(Liu and Wu, 1999; Liu and Sabatti, 2000; Liu, 2004), where the primary concern is
generalizing Gibbs sampling so that it can work with group transformations (the
main problem being the derivation of the right “conditional” distribution over the
set of transformations considered). However, as in general in Gibbs sampling, it is
left to the user to implement sampling from the derived distribution. In the present
thesis, however, we start from the mh algorithm, giving the user the freedom to
choose an easy to sample distribution over the transformations.
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2
G R O U P S A N D H O M O G E N E O U S S PA C E S

To reason about the symmetries of an object, we must first consider the set of
transformations that leave it unchanged. We will find it natural to organize these
transformations into a mathematical group:

definition 1: A group G is a set of elements along with an associative binary
operation on them (which is not necessarily commutative). The group operation
is conventionally written as multiplication or by juxtaposition: for any a, b ∈ G we
write a · b or ab ∈ G. Moreover, a group must have a unit element e ∈ G such that
eg = ge = g for all g ∈ G. Each element g ∈ G must also have a corresponding
inverse element g−1 ∈ G such that g−1g = gg−1 = e.

Every group has a unique unit and every element has a unique inverse, so the
notation is not ambiguous. For our purposes, the groups will comprise transfor-
mations of the state space of the Markov chain, with the unit being the identity
transformation and the group operation being the composition of transformations.
We then say that a group acts on the state space:

definition 2: The action of a group G on a set W is a function T : G×W → W
that has the following properties: T(e, w) = w and T(gh, w) = T(g, T(h, w)) where
w ∈W, g, h ∈ G, and e is the unit of G.1

As a notational convenience, we will often write gw := T(g, w) in any context
where the group action is specified and it is clear that g ∈ G and w ∈ W. We can
even write ghw where g, h ∈ G and w ∈ W, knowing that (gh)w = g(hw) by the
definition of an action.

1 These are left group actions; we can analogously define right group actions having the property
T(gh, w) = T(h, T(g, w)) instead. We will only consider left group actions unless otherwise stated.
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2.1 continuous group actions

We will assume that the state space W is a topological space2 and that the group
action respects the topology: for all g ∈ G, the transformations of the state space
Tg := T(g, · ) are continuous3 functions. By the properties of group actions, Te

is the identity function and Tg ◦ Tg−1 = Tgg−1 = Te for all g ∈ G, so each Tg

has the continuous inverse Tg−1 : it is a homeomorphism4 from W to itself (a self-
homeomorphism). The set of self-homeomorphisms of W forms the homeomorphism
group Homeo(W) under composition. The property of being a group action is then
equivalent to T being a group homomorphism from G to Homeo(W):

definition 3: A homomorphism5 from group G to group H is a function f : G →
H that preserves units and respects the group operation: f (eG) = eH and f (ab) =
f (a) f (b) for any a, b ∈ G, where eG and eH are the units of G and H, respectively.
It follows that f preserves inverses: f (g−1) = f (g)−1.

The group action T can be considered a way to use the elements of G to in-
dex those self-homeomorphisms of W that we are interested in, with the group
structure of G reflecting the composition of homeomorphisms.

To accommodate continuous symmetries (like rotation and scaling in R2), we
will assume that G is also equipped with a topology that is respected by its group
structure:

definition 4: A topological group is a group that is also a topological space, with
the group operation ( · ) : G × G → G and inversion (g 7→ g−1) : G → G being
continuous functions.6

The group action must simultaneously respect the topologies of G and W:

2 A topological space is a set of points equipped with a topology: a class of subsets, called open sets,
which includes the empty set and the space itself, and is closed under unions and finite intersections.
The complements of open sets are called closed sets. A metric space like Rn is usually equipped
with the metric topology, in which the open sets are the unions of open balls.

3 A function f : A → B between topological spaces is continuous if f−1(E) ⊂ A is open whenever
E ⊂ B is open, or equivalently if f−1(E) is closed whenever E is closed.

4 A homeomorphism between topological spaces A and B is a continuous function f : A → B that
has a continuous inverse f−1 : B→ A.

5 Not to be confused with homeomorphism.
6 The Cartesian product A× B of two topological spaces is usually equipped with the product topology,

with the open sets being unions of products of the open sets of A and B.
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definition 5: A continuous group action of the topological group G on the topo-
logical space W is a group action T : G×W →W that is also a continuous function.
Then we say that W is a G-space under T.

Note that since T(g, w) is continuous in both g and w simultaneously, Tg must be
continuous for all g ∈ G; the converse is not necessarily true: for T to be continuous
it is not sufficient for Tg to be continuous for all g. Intuitively, “small” changes to
g must produce “similar” continuous transformations Tg.

2.2 orbits and transitive actions

For any point w ∈ W, the image of G under the function Uw := T( · , w) is the
region of the state space that is accessible from w under the action of elements of
G:

definition 6: The orbit of any point w ∈ W under the action of a group G is the
set Gw := {gw ∈W | g ∈ G}.

Claim 1. The state space is partitioned by the orbits of the points in it, so that any
two points are in the same partition when some group element transforms one to
the other.

Proof. Every point w ∈W belongs to its own orbit Gw, since ew = w. Suppose two
orbits overlap and u ∈ Gv∩Gw for some u, v, w ∈W. In other words, u = gv = hw
for some g, h ∈ G, and so Gu = Ggv = Gv; at the same time, Gu = Ghw = Gw, so
Gv = Gw. We have therefore shown that the orbits cover W and are either disjoint
or equal, making them a partition of W.

If the structure of G is rich enough, then any point of the state space can be
transformed to any other by the action of some group element. Then all the points
in the state space belong to the same orbit:

definition 7: The action T of group G on space W is transitive if for every v, w ∈
W there is some g ∈ G such that T(g, v) = w.

Claim 2. T is transitive if and only if the function Uw := T( · , w) is surjective on W
for some w ∈W (and hence for all w′ ∈W).
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Proof. If Uw is surjective, then for any w′, v ∈ W there are some g, h ∈ G such that
gw = w′ and hw = v. Then hg−1w′ = hg−1gw = hw = v, so Uw′ is surjective for
all w′ ∈ W. It follows from the definition that T is transitive, as does the converse
result.

Even if G does not act transitively on W, it does on each of the orbits Gw: they
satisfy the requirements of the following claim (since GGw = Gw) and the transi-
tivity holds by definition.

Claim 3. T is a group action of G by restriction on any V ⊂ W that is stable under
G (which means that it satisfies T(G, V) = V). Moreover, if T is continuous and V
has the subspace topology7 then V is a G-space under T.

Proof. The group action axioms are satisfied trivially. To show that V is a G-space
under T|G×V , suppose U ⊂ V is open. Since V has the subspace topology, U =

V ∩U′ for some open U′ ⊂ W. It follows that T|−1
G×V(U) = (G× V) ∩ T−1(U′) is

open in the subspace topology of G×V because, since T is continuous, T−1(U′) is
open as a subset of G×W. Thus T|G×V is continuous as a function with co-domain
V.

2.3 isomorphisms of groups and G -spaces

Recall that a group homomorphism is a function between groups that preserves their
structure; if it is invertible, then it sets up a one-to-one correspondence between
their elements: both groups must then have essentially the same structure.

definition 8: An isomorphism between groups G and H is a homomorphism
f : G → H that has an inverse f −1 : H → G, which is then also a homomorphism.
If the groups are topological, then an isomorphism between them is additionally
required to be a homeomorphism: f and f −1 must be continuous.

An automorphism is an isomorphism between a group G and itself; these form
the group Aut(G) under composition.

7 A subset V of a topological space W has the relative or subspace topology if U ⊂ V is open just
when U = U′ ∩ V for some open U′ ⊂ W; this will be our presumed topology for all subsets of
topological spaces.
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We will find use for automorphisms of G of the form g 7→ gh := h−1 gh, where
h ∈ H . These are indeed automorphisms: they are continuous and satisfy eh = e
and (ab)h = ah bh , and have continuous inverses g 7→ gh−1 := h gh−1.

definition 9: An automorphism of G the form g 7→ gh := h−1 gh with h ∈ G
is called an inner automorphism or conjugation by h.

We now turn from groups to G-spaces, whose structure comes from the action
of G upon them. Thus, to identify two G-spaces with each other, there must be
continuous maps between them that preserve this structure:

definition 10: Let V and W be G-spaces under the actions S and T respectively.
An isomorphism of G-spaces from V to W is a homeomorphism f : V → W that
satisfies f (gv) = g f (v) (i.e. f (S(g , v)) = T (g , f (v))) for any g ∈ G and v ∈ V .
It follows that f −1 (gw) = g f −1 (w) for any w ∈ W .

We can verify that G itself is a transitive G-space under group multiplication
on the left (i.e. under the canonical action (g , h) 7→ gh). A natural question is
whether every other transitive G-space W can be identified with G as such, by
constructing an isomorphism between them.

For instance, we can fix some w ∈ W as the “origin” and consider the map
Uw := T ( · , w) from G to W , which associates each transformation g ∈ G with
the image gw ∈ W of the origin under it. It inherits continuity from T and it is
surjective because we assumed that T is transitive (for every v ∈ W there is some
g ∈ G such that Uw (g) = gw = v).

In general, however, Uw may not be injective: there may be several elements
of G that map w to any given v. If we assume for a moment that Uw is indeed
injective, then it is a continuous bijection from G to W . If we also assume that Uw

is an open8 map, then U−1
w is continuous and so Uw is a homeomorphism from G

to W. Additionally, we can verify that it respects the G-space structure of G and W
by being an isomorphism of G-spaces.

Thus any transitive G-space W can indeed be identified with G itself as a G-space
in the special case when Uw is injective and open. In the following sections, we will
attempt to construct a similar isomorphism when Uw is not necessarily injective.

8 A function f : A → B is open if f (E) ⊂ B is open whenever E ⊂ A is open. Closed functions are
defined analogously.

10



2.4 stabilizer subgroups

We observed in the previous section that in general, for any given v, w ∈ W, there
may be several elements g ∈ G satisfying gw = v: the map Uw := T( · , w) may
not be injective from G to W. As we did there, we will fix some w ∈ W as the
“origin” and characterize the non-injectivity of Uw by first studying the set of group
elements that map w to itself:

definition 11: Given a group G that acts on a set W, the stabilizer of any w ∈W
is defined as Gw := {g ∈ G | gw = w}.

Gw contains the unit of G (since ew = w) and is closed under inversion (if gw = w
then g−1w = w) and multiplication (if gw = hw = w then ghw = w). In other
words, any stabilizer Gw is a subgroup of G.

definition 12: A subgroup H of a group G is a subset that is itself a group under
the same operation as G. If G is a topological group and H has the subspace
topology then it is a topological subgroup.

Now select any g ∈ G that transforms w to v := gw. Then any element of the set
gGw := {gh | h ∈ Gw} also transforms w to v, since ghw = gw = v for any h ∈ Gw.
The converse is also true:

Claim 4. Any element a ∈ G that transforms w to v can be written as gh for some
h ∈ Gw and therefore belongs to the set gGw.

Proof. We see that gw = aw if and only if g−1aw = w. We can take h := g−1a ∈ Gw

so that gh = gg−1a = a.

To summarize, the set U−1
w (v) (consisting of elements of G that transform w to

v) is exactly gGw for any g ∈ U−1
w (v). Thus Uw(a) = Uw(b) if and only if b ∈ aGw,

which is to say, just when a−1b ∈ Gw. In other words, the stabilizer subgroup Gw

measures the non-injectivity of Uw: it is injective if and only if Gw is the trivial
subgroup containing only the unit element.

Remark 1. Varying w ∈ W results in different Gw. However, points in the same
orbit have stabilizer subgroups with essentially the same structure (i.e., they are
isomorphic groups; see Section 2.3). Indeed, the operation of conjugation (Defini-
tion 9 on page 10) transforms one to the other: if h ∈ Ggw for some g ∈ G, then
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g−1hgw = g−1gw = w, so hg := g−1hg ∈ Gw; the map h 7→ hg := g−1hg is an
isomorphism of topological groups from Ggw to Gw. All topological and group
properties of Ggw can thereby be transferred to Gw using conjugation by g.

2.5 cosets and quotient spaces

In the previous section, we made use of sets of the form gGw, where Gw is the
stabilizer subgroup of w in G. We will now explore some properties of these sets
for any arbitrary subgroup H of G.

definition 13: Given a group G, a left coset of any subgroup H is a set gH :=
{gh | h ∈ H}, where the element g ∈ G is called a coset representative. A right coset
is a set Hg.

The set of all left cosets of H is called its left quotient space and written G/H. Its
right quotient space is defined analogously and written H\G.

The left cosets of any subgroup H form a partition of the group G. Each element
g ∈ G belongs to the coset gH, because e ∈ H. Given two cosets aH and bH, they
are either disjoint or identical9; in the latter case, it is necessary and sufficient that
a−1b ∈ H. Corresponding properties hold for right cosets, but we will only use left
cosets and left quotient spaces unless otherwise stated.

It follows that the condition a−1b ∈ H is an equivalence relation on the elements
of G, written a ≡ b (mod H), whereby two elements are equivalent if they belong
to the same coset. The quotient space G/H of cosets can be seen as a set of equiva-
lence classes under this relation and equipped with the quotient topology, which is
obtained from the topology of G by “collapsing” equivalent points.

definition 14: The canonical quotient map of any quotient space G/H is the sur-
jective map q : G → G/H defined by g 7→ gH, which assigns every element of G
to its containing coset.

The quotient topology is the “finest” topology on G/H that makes q continuous: a
subset V ⊂ G/H is considered open if and only if q−1(V) is open in the topology
of G.

9 The left cosets gH are the orbits of the elements of G with H acting on them by right multiplication
(under the map (h, g) 7→ gh). These properties therefore follow from our earlier discussion of orbits
in Section 2.2.
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Apart from being continuous, a quotient map has the following universal property:
a function f : G/H → X from the quotient space to any topological space is
continuous if and only if f ◦ q : G → X is continuous. Corollary 2.5.2 strengthens
this property using the topological group structure of G.

2.5.1 proposition: Let G be a topological group and H a topological subgroup. Then the
canonical quotient map q : G → G/H defined by g 7→ gH is an open map under the
quotient topology on G/H.

Proof. Given an open subset E ⊂ G, we must prove that q(E) is open. By the
definition of the quotient topology, a subset of G/H is open if and only if its pre-
image under q is open in G. Therefore, if we show that q−1(q(E)) is open in G,
then it will follow that q(E) is open in G/H.

q maps each element g ∈ G to its coset gH ∈ G/H, so the pre-image of any
coset is q−1(gH) = gH (where gH := {gh ∈ G | h ∈ H} is considered a subset of
G as well as an element of G/H). The image of E under q is q(E) = {gH ∈ G/H |
g ∈ E} and so q−1(q(E)) =

⋃
g∈E gH = EH. It only remains to show that EH is

open.
EH can also be decomposed into a union as EH =

⋃
h∈H Eh. The set Eg is open

for any g ∈ G because it is the pre-image of the open set E under the continuous
map h 7→ hg−1. Thus EH is open as we wanted, being a union of open sets.

2.5.2 corollary: A function f : G/H → X from a quotient space to any topological space
is open (respectively, continuous) if and only if f ◦ q : G → X is open (respectively,
continuous).

Proof. The claim about continuity is the previously stated universal property of
the quotient map for any space with a quotient topology. We need only prove the
claim about openness, which relies on G being a topological group.

If f is open, then f ◦ q is open because we showed that q is also open. Conversely,
suppose f ◦ q is open and V is an open subset of G/H. Since q is surjective, it has a
right inverse and q(q−1(V)) = V. Since q is continuous, q−1(V) is an open subset
of G. Thus f (V) = ( f ◦ q)(q−1(V)) is an open subset of X when f ◦ q is an open
map.
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2.5.3 corollary: The quotient space G/H is a transitive G-space under the canonical action
T(g, aH) = gaH.

Proof. G itself is a transitive G-space under the group multiplication map (g, a) 7→
ga, and ga ≡ gb (mod H) if and only if a ≡ b (mod H). The G-space structure of
G can therefore be “lifted” to the quotient space G/H. We will use the fact that
G × G/H is homeomorphic to the quotient of the product group10 G × G by the
subgroup {e} × H, so that

r : G× G → G× G/H ∼= (G× G)/({e} × H)

(g, a) 7→ (g, aH) ≡ {g} × aH

is a quotient map.
Take S(g, a) := ga, so that the map (g, a) 7→ gaH from G × G to G/H can be

written either as q ◦ S or as T ◦ r. It follows that T is well-defined11 (since r is a
quotient map and q ◦ S is well-defined) and that it is continuous (from the universal
quotient property of r because q ◦ S is continuous).

T is also a group action: T(ab, gH) = abgH = T(a, T(b, gH)) and T(e, gH) =

egH = gH. Since S is transitive (for every a, b ∈ G there is ba−1 ∈ G such that
(ba−1)a = b) it follows that T is transitive (since (ba−1)aH = bH for any cosets
aH, bH ∈ G/H).

2.6 homogeneous spaces

In Section 2.3 we showed that when W is a transitive G-space under the action
T, the map Uw := T( · , w) is an isomorphism of G-spaces from G to W if it is
injective and open. In Section 2.4 we characterized the non-injectivity of Uw by the
stabiliser subgroup Gw := {g ∈ G | gw = w}. In Section 2.5 we “collapsed” cosets
of subgroups to form quotient spaces, which were themselves transitive G-spaces
under a canonical action (Corollary 2.5.3). We will now continue to characterize

10 The product of two (topological) groups G × H is itself a (topological) group with the operation
being element-wise: (g, h) · (g′, h′) = (g · g′, h · h′) with (g, h)−1 = (g−1, h−1).

11 A function on cosets f (. . . , gH, . . . ) is said to be well-defined if its value depends only on the coset
gH and not on the particular choice of representative g.
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the structure of G-spaces by finding conditions under which they are isomorphic
to appropriate quotient spaces:

definition 15: A G-space is homogeneous if it is isomorphic to a quotient space
G/H with the canonical action (g, aH) 7→ gaH, where H is a topological subgroup
of G.

Our isomorphisms will be the maps φw : G/Gw →W defined by gGw 7→ gw.

2.6.1 lemma: If W is a transitive G-space, then φw is a well-defined continuous bijection from
G/Gw to W. Additionally, it is a homeomorphism if and only if Uw is an open map.

Proof. We showed that aw = bw if and only if a−1b ∈ Gw, or equivalently, Uw(a) =
Uw(b) if and only if a ≡ b (mod Gw). Since φw(gGw) := Uw(g), it follows that φw

is well-defined (since Uw is constant on each coset of Gw) and injective (since Uw is
distinct on different cosets of Gw).

By the transitivity property, Uw is surjective. Since Uw = φw ◦ q, its surjectivity
is inherited by φw. From Corollary 2.5.2 we see that the continuity of Uw is also
inherited by φw and, additionally, that φw is open (which is necessary and sufficient
for it to be a homeomorphism) if and only if Uw is open.

It is important to note that the bijection φw depends on the choice of the origin
w ∈W. The requirement that Uw be open for φw to be a homeomorphism does not
limit the choice of w:

Claim 5. If Uw is an open map for some w ∈ W then it is also open for any other
w′ ∈W.

Proof. Since W is a transitive G-space, there is some g ∈ G such that gw = w′.
Suppose V ⊂ G is open and Uw′(V) = Vw′ = Vgw. Now Vg is open because it
is the inverse image of the open set V under the continuous map h 7→ hg−1. Thus
Uw(Vg) = Vgw is an open set if Uw is open.

This claim, combined with Claim 2 on page 8, means that if W is a G-space
under T and if T( · , w) is surjective and open for some w ∈W, then it is surjective
and open for any other w′ ∈W. This is, in fact, all that is required for a G-space to
be homogeneous:
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2.6.2 proposition: A G-space W is homogeneous if and only if it is transitive and Uw is an
open map. Then φw is an isomorphism of G-spaces.

Proof. To show the necessity of the condition, let W be a homogeneous G-space
and identify it with the quotient space G/H under the canonical action for some
subgroup H ⊂ G. Then W is transitive by Corollary 2.5.3 and the map T( · , eH)

(given by g 7→ gH) is open by Proposition 2.5.1; it follows from Claim 5 on page 15

that T( · , aH) is open for all aH ∈ G/H.
Conversely, if W is a G-space and Uw is open, then φw is a well-defined continu-

ous bijection by Lemma 2.6.1; it is also an isomorphism of G-spaces: hφw(gGw) =

φw(hgGw) = hgw.

2.7 some topological consequences

The topology of a topological group, since it is interwoven with its group structure,
gains several strong topological properties. We will describe some of the more use-
ful ones in this section. Recall some preliminary definitions from topology: A
neighborhood of a point in a topological space is any set with an open subset con-
taining the point. A subset of a topological space is compact if every collection of
open sets whose union contains that set (an open cover) has a finite sub-collection
that is also an open cover. If the whole topological space is compact, it is called
a compact space. On the other hand, a space may be only locally compact, if every
point has a compact neighborhood. A topological space may satisfy several sepa-
ration axioms: It is a T0 (Kolmogorov) space if, given any two distinct points, there
is a neighborhood of one that doesn’t include the other (i.e., all points are topo-
logically distinguishable). A space is T1 (Fréchet) if any set containing only a single
point is closed. A space is T2 (Hausdorff ) if any two distinct points have disjoint
neighborhoods.

2.7.1 lemma: Let G be a topological group and U an open neighborhood of the unit element e.
Then U contains an open neighborhood V that includes e and satisfies V−1V ⊂ U, where
V−1V := {v−1v′ | v, v′ ∈ V}.

Proof. Let E be the pre-image of U under the continuous map (g, h) 7→ g−1h :
G× G → G, so that (e, e) ∈ E maps to e ∈ U; since U is open, E must also be open.
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The product topology on G × G is generated by basis sets of the form V0 × V1,
where V0 and V1 are open subsets of G. Thus there must be some open V0 and V1

such that (e, e) ∈ V0 ×V1 ⊂ E. We can now take V := V0 ∩V1; it is open, contains
e, and has the property that V ×V ⊂ V0 ×V1 ⊂ E, so V−1V ⊂ U.

2.7.2 proposition: Let G be a topological group and H a subgroup. Then the quotient space
G/H is Hausdorff if and only if H is closed.

Proof. If the quotient space is Hausdorff, it is also T1: regarding H as a point in
G/H, the set {H} ⊂ G/H is a singleton and thus closed, and its pre-image under
the quotient map is H ⊂ G, which must therefore also be closed. Conversely,
suppose H is closed and aH and bH are distinct, so that e /∈ aHb−1 (because
a−1b /∈ H) and aHb−1 is closed (being the pre-image of H under g 7→ a−1gb).
Applying Lemma 2.7.1 gives us an open neighborhood V containing e such that
V−1V is disjoint from aHb−1. Then VaH and VbH are disjoint open neighborhoods
in G/H of aH and bH, respectively: G/H is thus Hausdorff.

2.7.3 proposition: For topological groups, the T0, T1, and T2 conditions are equivalent.

Proof. Suppose G is a T0 topological group and g ∈ G. If e 6= g, there must be an
open set Ug containing g but not e. Indeed, otherwise, by the T0 property there is
an open set Vg containing e but not g. Then take Ug = gV−1

g := {gv−1 | v ∈ Vg}:
it is open, since it is the pre-image of Vg under the continuous map h 7→ h−1g,
and it doesn’t contain e since that would imply g ∈ Vg; then Ug is the required
neighborhood of g. Thus every point in G \ {e} has an open neighborhood, making
{e} closed; indeed, any singleton {g} is closed, being the pre-image of {e} under
h 7→ g−1h. In other words, G is T1.

If G is T1, then the trivial subgroup {e} is closed: G ∼= G/{e} must therefore
be Hausdorff by Proposition 2.7.2. Finally, any Hausdorff space is T0 by definition.
We have therefore shown the required equivalence.

2.8 invariant and relatively invariant measures

The Lebesgue measure on Rn has the defining property that it is invariant under
translation: if E ⊂ Rn, c ∈ Rn, and λ is the Lebesgue measure, then λ(E) =
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λ(E + c), where E + c denotes {e + c | e ∈ E}. The Lebesgue measure is, in fact, a
special case of invariant measures on more general topological groups:

definition 16: A measure µ on a group G is called left invariant or a left Haar
measure if it is invariant under the operation of left multiplication:

µ(gH) := µ({gh | h ∈ H}) = µ(H)

for any g ∈ G and measurable H ⊂ G. Right invariant or right Haar measures are
defined analogously.

Just as the Lebesgue measure is a natural choice as a reference measure for
probability distributions on Rn, we will use distributions on topological groups
that have densities with respect to Haar measures. This section sketches the major
results we will need for the rest of this thesis; a more complete development may
be found in Nachbin (1965); Wijsman (1990); Bourbaki (2004).

2.8.1 proposition (Haar, 1933; Weil, 1940; Cartan, 1940): On every locally compact Haus-
dorff12 topological group G (equipped with the Borel σ-algebra13) there exists a left invari-
ant measure µ 6= 0 satisfying:

(i) µ(K) < ∞ for any compact K ⊂ G,

and for any measurable H ⊂ G

(ii) outer regularity: µ(H) = inf{µ(U) | open U ⊃ H},

(iii) inner regularity: µ(H) = sup{µ(K) | compact K ⊂ H}.

Such a measure is unique except for a strictly positive factor of proportionality; that is, if
ν 6= 0 is another left invariant measure on G satisfying these conditions, there exists a real
number c > 0 such that ν = cµ.

An analogous proposition holds for right Haar measures; if µ is a left Haar
measure, then ν(H) := µ(H−1) is a right Haar measure, where H−1 := {h−1 |
h ∈ H}: indeed, ν(Hg) = µ(g−1H−1) = µ(H−1) = ν(H) for any g ∈ G and

12 A topological group need not be Hausdorff, but many authors define it to be: this gives the Haar
measure its extra properties beyond left invariance; it is a mild condition (Proposition 2.7.3).

13 The Borel σ-algebra on a topological space contains exactly those sets that can be formed from open
(equivalently, closed) sets by complements and countable unions and intersections.
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measurable H ⊂ G. While we will not explicitly need right Haar measures, we
will find use for the Radon-Nikodym derivative dµ/dν. Before we proceed, note
that E 7→ µ(Eg) is another left Haar measure (since hE 7→ µ(hEg) = µ(Eg)); it is
therefore proportional to µ:

definition 17: The right-hand modulus ∆G
r : G → R+ of a topological group G is

defined by
µ(Hg) = ∆G

r (g) µ(H)

for any left Haar measure µ and measurable H ⊂ G. The left-hand modulus ∆G
l is

defined analogously.

One can show that the left- and right-hand moduli are continuous group homo-
morphisms from G to R×+, the group of positive real numbers under multiplication:
∆G

r (gh) = ∆G
r (g) · ∆G

r (h) and ∆G
r (g−1) = 1/∆G

r (g) for any g, h ∈ G; the same holds
for ∆G

l . In fact, ∆G
r is the Radon-Nikodym derivative dµ/dν (see Nachbin, 1965,

Chapter 2, Propositions 7 and 8) and thus (dν/dµ)(g) = 1/∆G
r (g) = ∆G

r (g−1):∫
f dν :=

∫
f (g−1) µ(dg) =

∫
f (g)∆G

r (g−1) µ(dg) . (2.8.1)

It is now clear that ∆G
r · ∆G

l = 1 identically and that ∆G
r and ∆G

l do not depend on
the choice of the left Haar measure µ; indeed, choosing any cµ instead would pro-
duce the corresponding right Haar measure cν and the Radon-Nikodym derivative
would remain unchanged. The left- and right-hand moduli are therefore unique
and characteristic of a topological group. In many cases ∆G

r = ∆G
l = 1 identically:

if G is discrete, or commutative (abelian), or its topology is compact, for example;
then G is said to be unimodular and the left and right Haar measures coincide.

Proposition 2.6.2 showed us that the G-space structure of a group could be car-
ried over to any homogeneous space acted upon by the group; the next step is to
carry over the Haar measure on G to give an “invariant” measure on W. We will,
however, be satisfied with a weaker notion of invariance:

definition 18: If a group G acts on a set W, then a measure λ on W is said to be
χ-relatively invariant for χ : G → R×+ if

λ(gV) = χ(g) λ(V)
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for any measurable V ⊂ W and g ∈ G; then χ is called the modulus of λ and is a
continuous group homomorphism.14

Note that an invariant measure is a special case of a relatively invariant measure
with modulus χ = 1 identically. One may view the left Haar measure on G as being
invariant under the action of left multiplication and ∆G

r -relatively invariant under
the action of right multiplication (which is, of course, a right group action). The
following result gives conditions for the existence of relatively invariant measures:

2.8.2 proposition (Weil, 1940): Let G be a locally compact Hausdorff topological group, H
a subgroup, and χ : G → R×+ a continuous group homomorphism. In order that there exist
a χ-relatively invariant measure λ on the homogeneous space G/H under the action of G
to the left, it is necessary and sufficient that ∆H

r (h) = χ(h)∆G
r (h) for every h ∈ H. Then

λ is unique up to a strictly positive factor of proportionality.

The relatively invariant measure on G/H is constructed as a quotient measure of
the Haar measures on G and H; while we do not present the details here, we do
use the quotient measure construction in the proof of Lemma 3.4.4.

We will henceforth assume that the state space of our Markov chain possesses
a measure that is relatively invariant under the action of one or more groups,
possibly with different moduli. We will not, however, explicitly assume that it
is a homogeneous space; the preceding proposition shows when such relatively
invariant measures may be constructed on homogeneous spaces. In our proofs,
the chief manifestation of the χ-relative invariance of a measure λ on W under the
action of G will be in simplifying the integral of a function f : W → R as follows:∫

f (gw) λ(dw) = χ(g−1)
∫

f (w) λ(dw), g ∈ G. (2.8.2)

One can verify this result when f (w) is the characteristic function 1{w ∈ V}
of some measurable V ⊂ W; then the characteristic function of g−1V is 1{w ∈
g−1V} = 1{gw ∈ V} = f (gw).

Remark 2. We close this section with an observation about continuous group ho-
momorphisms φ : G → R×+ such as the moduli of (relatively) invariant measures.

14 That the modulus is a homomorphism follows from a simple computation; that it is continuous is
the subject of Proposition 7.2.2 of Wijsman (1990).
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In particular, if H is a compact subgroup of G, then φ(H) must be a compact sub-
group of R×+. The only compact subgroup of R×+, however, is the trivial subgroup
{1}: indeed, if 1 6= x ∈ φ(H), then without loss of generality x > 1 (otherwise take
1/x) and xn ∈ φ(H) for all n ∈ N, so φ(H) is unbounded; the compact sets in R+,
however, are exactly those that are closed and bounded. In other words, φ|H = 1.

Since the left- and right-hand moduli of Haar measures are just such continuous
group homomorphisms, this observation justifies our earlier statement that all com-
pact groups are unimodular. We also see that any homogeneous space G/H with
compact H must necessarily have a relatively invariant measure: ∆H

r = ∆G
r = χ = 1

identically on H, so the requirement of Proposition 2.8.2 is trivially satisfied.
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3
M E T R O P O L I S - H A S T I N G S W I T H G R O U P T R A N S F O R M AT I O N S

A Markov Chain Monte Carlo (mcmc) algorithm to sample from a probability dis-
tribution P over a state space W is specified by a transition kernel Q(dw′ |w), which
gives rise to a Markov chain U0, U1, U2, . . . where U0 is sampled according to some
initial distribution P0 and each Ui after that is sampled according to Q( · |Ui−1).
Under appropriate conditions on Q, the random variables Un converge in distribu-
tion to P as n→ ∞; P is then called a steady state distribution of the Markov chain.
A convenient condition to force P to be a steady state distribution of Q is detailed
balance:

P(du) Q(dv | u) = P(dv) Q(du | v); (3.0.1)

the Markov chain is then said to be reversible. Indeed, the meaning of (3.0.1) is that
if (U, V) is sampled from the joint in (3.0.1) then we cannot tell whether (U, V)

was generated by first choosing U from P and then following Q to generate V,
or whether it was generated by first choosing V from P and then following Q to
generate U. Under additional conditions on Q, such as Q being φ-irreducible and
aperiodic, P is the unique steady state distribution of Q and the Markov chain (Ui)

sampled from Q will indeed converge in distribution to P regardless of P0 (see,
e.g., Roberts and Rosenthal, 2004, Theorem 4).

The mh algorithm is one way to construct reversible transition kernels: given a
proposal kernel Q′(dw′ |w), the mh kernel first samples U′n+1 according to Q′( · |Un)

and then accepts U′n+1 as Un+1 with probability α(Un, U′n+1); otherwise Un+1 is
taken to be Un. With an appropriate choice of the acceptance probability function α :
W ×W → [0, 1], the mh transition kernel satisfies detailed balance (Tierney, 1998).
However, we will call any transition kernel obtained via the above procedure an
mh transition kernel regardless of whether it satisfies detailed balance or whether
its stationary distribution matches the target distribution.

Building upon the mathematical setting outlined in Chapter 2, we will take W to
be a topological space and G a topological group acting continuously upon it (i.e.,
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W is a G-space). The mh proposal kernel Q′ will sample an element according to a
distribution over G and propose the state that results from its action on the current
state of the chain. The group structure of G will ensure that the composition of
transformations of the state space is expressible as the action of an element of G,
as is the inverse of any transformation: this latter property will allow us to reason
about the reversibility of the Markov chain. The topologies of W and G will reflect
the continuity of the state space and its transformations; the discrete topology may
be used when suitable.

Working in this general setting will allow our algorithm and its correctness re-
sults to rely only on the operational notion of transforming the state space in
certain ways, and the resulting algorithms will remain unchanged under different
parametrizations of the state space. The state representation can be chosen freely,
guided only by practical implementation concerns. However, as a guide to intu-
ition, the reader can imagine the state space W to be a subset of the Euclidean
space Rn using an arbitrary choice of parametrization. The group G can be taken
to be the invertible continuous maps, or even just the invertible affine transforma-
tions. One must only keep in mind that an algorithm constructed under these
restrictions must be explicitly proven to be invariant under re-parametrization; it
is not automatically invariant by construction as in the general setting we adopt.

3.1 metropolis-hastings based on group moves

The proposal kernel can be defined in terms of a conditional distribution QG(dg |w)

over the group G; it samples g ∼ QG( · |w) and proposes the new state gw. We
will assume that the proposal distribution QG has the density q with respect to the
Haar measure µ on G and that the target distribution has a density p with respect
to a measure λ on W which is χ-relatively invariant under the action of G (see
Section 2.8):

P(dw) = p(w) λ(dw), QG(dg |w) = q(g |w) µ(dg) .

We will also assume that the initial state of the Markov chain lies within the sup-
port of P. Our mh transition kernel Q based on QG is defined (for w in the support
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of P) by the following procedure; that it is “correct” (in the sense that it is in
detailed balance with P) will be the subject of Theorem 3.3.3.

procedure 1: Given the current state w ∈ W, sample the new state w′ as
follows:

1. Sample g ∼ QG( · |w).

2. Calculate α :=
χ(g) p(gw) q′(g−1 | gw)

∆G
r (g) p(w) q′(g |w)

.

3. Accept w′ = gw with probability min{1, α}.

In the procedure we use the function q′ (derived from q) to account for the
possibility that many different moves g ∈ G may result in the same w′. In particular,
q′ is defined as follows: Recall from Section 2.4 that for w ∈ W, the stabilizer
subgroup Gw := {g ∈ G | gw = w} measures the injectivity of the map g 7→ gw: for
any g ∈ G, the set of all g′ that also satisfy g′w = gw is exactly gGw. Under mild
conditions on the action of G on W, Gw will be seen to be compact, implying that
there exists a unique Haar measure βw on Gw with βw(Gw) = 1. Then

q′(g |w) =
∫

Gw
q(gh |w) βw(dh) .

Remark 3. It follows from this definition that q′( · |w) is constant on each gGw.
Moreover, if q itself has this property then q′ = q.

We note, in closing, that Procedure 1 encompasses the standard mh algorithm
defined for Euclidean spaces. Indeed, if the state space W and group G are both
Rn with gw = g + w, without loss of generality one can rewrite the proposal in
terms of the move g = w′−w. Then the Lebesgue measure m serves as both λ and
µ. Since m is invariant, χ = 1. Furthermore, since vector addition is commutative,
∆G

r = 1. Finally, for any x, y ∈ Rn there is a unique g = y− x such that x + g = y,
so q′ = q and

α =
p(w′) q(w− w′|w′)
p(w) q(w′ − w|w)

.
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3.2 mixtures of group moves

The proposal kernel described above is often too restrictive, in that QG may not
have a density with respect to the Haar measure µ on G. For example, the Gibbs
sampler on Rn updates the state space by modifying one coordinate at a time. Its
proposal distribution is therefore concentrated on the coordinate axes (which have
zero Lebesgue measure on Rn) and so does not have a density with respect to that
measure.

One way to increase flexibility is to allow several different groups G1, G2, . . . , Gn

to act on the state space W, each associated with a kernel Qi(dgi |w) (i = 1, . . . , n).
Each Qi will be assumed to have a density qi w.r.t. the Haar measure µi on Gi. We
will choose λ to be a measure on W that is simultaneously relatively invariant un-
der all the groups: χi-relatively invariant under each Gi, respectively. The proposal
kernel Q′ will be a mixture of the Qi with coefficients a(i |w) > 0, i = 1, . . . , n, with

∑n
i=1 a(i |w) = 1 for all w ∈W. The mh transition kernel based on Q′ is defined by

the following procedure; that it is in detailed balance with P will be the subject of
Theorem 3.3.5.

procedure 2: Given the current state w ∈ W, sample the new state w′ as
follows:

1. Sample i ∼ a( · |w) and g ∼ Qi( · |w).

2. Calculate α :=
χi(g) a(i | gw) p(gw) q′i(g−1 | gw)

∆Gi
r (g) a(i |w) p(w) q′i(g |w)

.

3. Accept w′ = gw with probability min{1, α}.

3.3 correctness

We will assume that the proposals are chosen in such a way that φ-irreducibility
holds: in particular, this is easy to verify in the case of slam below. To prove
that the mcmc transition kernels described in Procedures 1 and 2 satisfy detailed
balance, we will require some technical conditions on the space W and the groups
G or Gi.
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3.3.1 assumption: The state space W and the groups G and Gi (for Procedures 1 and 2,
respectively) are locally compact and Hausdorff.1

The local compactness condition on the groups G and Gi guarantees the exis-
tence of the Haar measures on them. The Hausdorff property implies that every
compact set in a space is also closed, and thus singleton sets are also closed.

The second assumption is designed to exclude certain pathological examples of
group actions:

3.3.2 assumption: The actions of the groups G and Gi (for Procedures 1 and 2, respectively)
on the state space W are proper: the map θ : W × G → W ×W defined by (w, g) 7→
(w, gw) preserves compactness of pre-images, so θ−1(K) is compact in W × G for every
compact K ⊂W ×W.2

A group G acting properly on the space W has several desirable properties. Most
importantly for our immediate purposes, the stabilizer subgroups Gw of G at w ∈
W are compact and thus also locally compact. Thus there is a finite Haar measure
βw on each Gw which, without loss of generality, is normalized: βw(Gw) = 1.

As noted earlier, for any g ∈ G, the set of all g′ that also satisfy g′w = gw is
exactly gGw. Thus, if the action of G on W is proper, we are assured that the
structure of G is not too rich in relation to the space it acts upon: gGw is compact
and thus not too “large”. With this, we can state our first main result:

3.3.3 theorem: If the state space W and group G satisfy Assumptions 3.3.1 and 3.3.2, then
the Markov transition kernel defined by Procedure 1 satisfies detailed balance (3.0.1).

To show the correctness of Procedure 2, we will need to assume that the image of
w under any two Gi, Gj overlap only negligibly. To do this, we will assume that all
the Gi are, in fact, subgroups of some overarching group K, so that we can define
intersections of the Gi:

1 See Section 2.7; in particular Proposition 2.7.3 shows that the Hausdorff condition is very mild for
topological groups.

2 Alternatively, f : X → Y is said to be proper if it is universally closed: f ⊗ idZ : X × Z → Y × Z is
closed for every topological space Z, on which idZ is the identity function. Our definition coincides
with this one when Assumption 3.3.1 holds.
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3.3.4 assumption: For every 1 ≤ i, j ≤ n with i 6= j, the condition

p(w)
∫
1{g ∈ (Gi ∩ Gj)Gk,w} q′(g |w) µk(dg) = 0, w ∈W

is satisfied with either k = i or k = j, where Gk,w is the stabilizer subgroup of Gk at
w ∈W.

3.3.5 theorem: If the state space W and each Gi (1 ≤ i ≤ n) satisfy Assumptions 3.3.1,
3.3.2 and 3.3.4, then the Markov transition kernel defined by Procedure 2 satisfies detailed
balance (3.0.1).

3.4 proofs

We will begin by restating some results of Tierney (1998) for our own use.

3.4.1 proposition (Tierney, 1998, Proposition 1): Let µ(dx, dy) be a sigma-finite measure
on the product space (E× E, E⊗ E) and let µT(dx, dy) = µ(dy, dx). Then there exists
a symmetric set R ∈ E⊗ E such that µ and µT are mutually absolutely continuous on R
and mutually singular on the complement of R, RC. The set R is unique up to sets that
are null for both µ and µT. Let µR and µT

R be the restrictions of µ and µT to R. Then there
exists a version of the density

r(x, y) =
µR(dx, dy)
µT

R(dx, dy)

such that 0 < r(x, y) < ∞ and r(x, y) = 1/r(y, x) for all x, y ∈ E.

3.4.2 proposition (Tierney, 1998, Theorem 2): A Metropolis-Hastings transition kernel
satisfies the detailed balance condition (3.0.1) if and only if the following two conditions
hold.

(i) The function α is µ-almost everywhere zero on RC.

(ii) The function α satisfies α(x, y)r(x, y) = α(y, x) µ-almost everywhere on R.
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The Metropolis-Hastings acceptance probability

α(x, y) =

min{1, r(y, x)}, if (x, y) ∈ R,

0, if (x, y) /∈ R.

satisfies these conditions by construction.
The image of W × G under the map θ : (w, g) 7→ (w, gw) (see Assumption 3.3.2)

is the set E := {(w, gw) | w ∈ W, g ∈ G}, which is closed in W ×W because θ is
a proper (hence closed) map and W × G is closed. If we restrict the co-domain
of θ to E, it becomes a surjective, continuous, and closed map: it is a quotient
map. In other words, any set U ⊂ E is open in the subspace topology inherited
by E from W ×W if and only if θ−1(U) is open in W × G. Furthermore, θ has the
following universal property: if Z is any topological space and f : W × G → Z is
a continuous function satisfying f (w, g) = f (w′, g′) whenever θ(w, g) = θ(w′, g′),
then there is a unique continuous function f̄ : E → Z such that f = f̄ ◦ θ. We see
that θ(w, g) = θ(w′, g′) if and only if w = w′ and g′ ∈ gGw (i.e., gw = g′w). The
equivalence classes under θ are therefore sets of the form {w}× gGw. Our strategy
will be to use θ to work in the space W × G as a proxy for E ⊂W ×W, taking care
to account for the non-injectivity of θ.

definition 19: Given a measurable function f : A → B and a measure ρ on A,
the push-forward measure f (ρ) is a measure on B defined by f (ρ)(E) = ρ( f−1(E))
for any measurable E ⊂ B. Equivalently, for integrals,

∫
g d f (ρ) =

∫
g ◦ f dρ for

any integrable g : B→ R.

Note. From now on, the notation f (ρ) always means the push-forward of ρ under
f , as long as f is an A → B map and ρ is a measure on A. In particular, the
parentheses in a setting like this will never be used for grouping. To help in
parsing the formulas, we will also occasionally write g · ρ to denote the measure
whose density w.r.t. ρ is g, where ρ is a measure on A and g : A → [0, ∞) is
ρ-integrable.
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Given a topological subgroup H ⊂ G, let β be a left Haar measure on it and
π : G → G/H the canonical quotient map. Consider the following construction
with f : G → R: let f ′(g) :=

∫
H f (gh) β(dh) so that for any g′ ∈ gH

f ′(g′) =
∫

H
f (gg−1g′h) β(dh) =

∫
H

f ′(gh) β(dh) = f ′(g),

since β is invariant under left-translation by g−1g′ ∈ H. Thus f ′ is constant on
each coset gH and there is a unique f̃ : G/H → R such that f ′ = f̃ ◦ π (defined by
gH 7→ f ′(g)).

definition 20: ν is a quotient measure µ/β on G/H if µ( f ) = ν( f̃ ) for f : G → R.

The existence and uniqueness of quotient measures in general is the subject of
Theorem 7.3.3 of Wijsman (1990). We need only consider the case of compact H:

3.4.3 proposition (Wijsman, 1990, Proposition 7.3.5): Let the compact group H act con-
tinuously on the right of a l.c. space X and let β be normalized Haar measure on H, i.e.,
β(H) = 1. If the measure µ on X is invariant, then the quotient measure µ/β coincides
with the induced measure π(µ), where π is the orbit projection X → X/H.

We will apply this proposition taking X to be G and H to be the stabilizer sub-
groups Gw (w ∈ W), which indeed act upon G to the right by (h, g) 7→ gh (g ∈ G,
h ∈ Gw). Moreover, Gw is compact as a consequence of Assumption 3.3.2, so
∆G

r |Gw = 1 (by Remark 2) and µ is thus invariant under right-translation by Gw.
For the same reason βw (which we defined to be the normalized left Haar measure
on Gw) is also a right Haar measure. Finally, the orbit projection is πw : G → G/Gw,
the canonical quotient map g 7→ gGw.

Now consider a measure Γ on W×G having density γ with respect to λ⊗ µ. We
will calculate the densities of various measures induced from Γ.

3.4.4 lemma: The density of the push-forward measure θ(Γ) with respect to θ(λ⊗ µ) is

γ̃(θ(w, g)) :=
∫

Gw
γ(w, gh) βw(dh).
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Proof. For any f : W ×W → R,∫
f dθ(Γ) =

∫
f ◦ θ dΓ

=
∫

W
λ(dw)

∫
G

µ(dg) γ(w, g) f (θ(w, g))

Let νw := µ/βw be the quotient measure, so that by definition:

=
∫

W
λ(dw)

∫
G/Gw

νw(dg)
∫

Gw
βw(dh) γ(w, gh) f (θ(w, gh))

We can take f ◦ θ out of the innermost integral because θ(w, gh) = θ(w, g) for any
h ∈ Gw:

=
∫

W
λ(dw)

∫
G/Gw

νw(dg) f (θ(w, g))
∫

Gw
βw(dh) γ(w, gh)

We define γ′(w, g) :=
∫

Gw
βw(dh) γ(w, gh), so that γ′(w, · ) is constant on each

coset gGw and there is some γ̃ : E→ R such that γ′ = γ̃ ◦ θ:

=
∫

W
λ(dw)

∫
G/Gw

νw(dg) f (θ(w, g)) γ̃(θ(w, g))

The inner integrand is well-defined because it depends on g only through its coset
πw(g) = gGw. By Proposition 3.4.3, νw = πw(µ), so we can replace νw by µ:

=
∫

f (θ(w, g)) γ̃(θ(w, g)) λ(dw) µ(dg)

=
∫

f γ̃ dθ(λ⊗ µ) .

Reversing a Markov chain corresponds to the operation of transposition on W ×
W, defined by the map T : (w, w′) 7→ (w′, w) and occasionally written as (w, w′)T.
We note that T is continuous and is its own inverse. Furthermore, T maps the set
E to itself: for any (w, gw) ∈ E we have T(w, gw) = (gw, w) = (gw, g−1gw) ∈ E.
We can define an analogous operation on W × G under the correspondence with
E provided by θ: the continuous map t : (w, g) 7→ (gw, g−1); it is also its own in-
verse: t(t(w, g)) = t(gw, g−1) = (g−1gw, g) = (w, g). The following commutative
diagram illustrates the relationship between t, T, and θ:
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W × G E W ×W

W × G E W ×W

t

θ

T|E T

θ

Indeed, if θ(w, g) = θ(w, g′) (i.e., gw = g′w) then t(w, g) = (gw, g−1) and t(w, g′) =
(g′w, g′−1), where g′−1g′w = w = g−1gw and thus θ(t(w, g′)) = θ(t(w, g)). Con-
versely, if θ(t(w, g)) = θ(t(w′, g′)) then by the previous result θ(t(t(w, g))) =

θ(t(t(w′, g′))), and since t is its own inverse, we have shown that θ(t(w, g)) =

θ(t(w′, g′)) ⇐⇒ θ(w, g) = θ(w′, g′). In other words, θ ◦ t : W × G → E is constant
on the equivalence classes of θ, so there is some continuous τ : E → E such that
θ ◦ t = τ ◦ θ; we can verify that τ is simply T restricted to E.

3.4.5 lemma: The density of the push-forward measure t(Γ) with respect to λ⊗ µ is

γt(w, g) := ϕ(g) γ(t(w, g)) , where ϕ(g) = χ(g)/∆G
r (g) .

Proof. For any f : W × G → R,∫
f dt(Γ) =

∫
f ◦ t dΓ

=
∫

f (gw, g−1) γ(w, g) λ(dw) µ(dg)

changing g−1 to g using (2.8.1)

=
∫

f (g−1w, g)∆G
r (g−1) γ(w, g−1) λ(dw) µ(dg)

changing g−1w to w using (2.8.2)

=
∫

f (w, g) χ(g)∆G
r (g−1) γ(gw, g−1) λ(dw) µ(dg)

using the definition of t

=
∫

f (w, g) χ(g)∆G
r (g−1) γ(t(w, g)) λ(dw) µ(dg) .

3.4.6 theorem: Let W, G, λ, µ, (βw)w∈W be as stated in this chapter. Then, for any measure
Γ on W × G having density γ w.r.t. λ⊗ µ,

dθ(Γ)
dT(θ(Γ))

(w, gw) =
∆G

r (g) γ̃(w, gw)

χ(g) γ̃(gw, w)
, w ∈W, g ∈ G,
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where θ(w, g) = (w, gw) and T(w, w′) = (w′, w) for any w, w′ ∈W, g ∈ G and

γ̃(w, gw) =
∫

Gw
γ(w, gh) βw(dh), w ∈W, g ∈ G.

Proof. We apply Lemma 3.4.4 to the density for t(Γ) from Lemma 3.4.5 to get a
density for θ(t(Γ)) with respect to θ(λ⊗ µ):

θ(t(Γ)) = θ(γt · (λ⊗ µ)) = γ̃t · θ(λ⊗ µ) ,

where

γ̃t(θ(w, g)) :=
∫

Gw
γt(w, gh) βw(dh)

(a)
=
∫

Gw
ϕ(gh)γ(t(w, gh)) βw(dh)

(b)
= ϕ(g)

∫
Gw

γ(ghw, h−1g−1) βw(dh)

(c)
= ϕ(g)

∫
Gw

γ(gw, g−1gh−1g−1) βw(dh)

(d)
= ϕ(g)

∫
Ggw

γ(gw, g−1h−1) βgw(dh)

(e)
= ϕ(g)

∫
Ggw

γ(gw, g−1h) βgw(dh)

(f)
= ϕ(g)γ̃(θ(gw, g−1)) = ϕ(g)γ̃(T(θ(w, g))) .

Here, the various equalities hold for the following reasons: (a) Definition of γt;
(b) Since ϕ is a continuous group homomorphism, φ(gh) = φ(g)φ(h), and since
Gw is compact, ϕ|Gw = 1 identically by Remark 2 on page 20; (c) hw = w since
h ∈ Gw; (d) By Remark 1 on page 11, cg(h) = hg := g−1hg is a Ggw → Gw group
isomorphism: cg(βgw) is thus the unique normalized Haar measure on Gw, so it
must be equal to βw; (e) Since Ggw is compact, βgw remains unchanged under the
change of variables h 7→ h−1; (f) Definition of γ̃.

Thus ϕ(g) γ̃(T(θ(w, g))) is a density for θ(t(Γ)) (and hence for T(θ(Γ)), since
T ◦ θ = θ ◦ t) with respect to θ(λ⊗ µ). Since, by Lemma 3.4.4, the density for θ(Γ)
with respect to the same measure is γ̃, we see that the Radon-Nikodym derivative
dθ(Γ)/dT(θ(Γ)) is γ̃(w, gw)/ϕ(g)γ̃(gw, w) at (w, gw) ∈ E.
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Proof of Theorem 3.3.3. Procedure 1 describes an mh kernel based on the proposal
Q′(dw′ |w) that, given a state w, samples g ∼ QG( · |w) and proposes gw. In other
words, Q′( · |w) is the push-forward of QG( · |w) under the map g 7→ gw, making
P(dw) Q′(dw′ |w) the push-forward of P(dw) QG(dg |w) under the map θ(w, g) =
(w, gw). We can now apply Theorem 3.4.6 by taking Γ(dw, dg) := P(dw) QG(dg |w)

with density γ(w, g) = p(w) q(g |w), so that P(dw) Q′(dw′ |w) = θ(Γ) and

r(w, gw) :=
dθ(P(dw) QG(dg |w))

dT(θ(P(dw) QG(dg |w)))
(w, gw)

=
∆G

r (g) γ̃(w, gw)

χ(g) γ̃(gw, w)
w ∈W, g ∈ G

where

γ̃(w, gw) =
∫

Gw
p(w) q(gh |w) βw(dh)

= p(w)
∫

Gw
q(gh |w) βw(dh)

= p(w) q′(g |w).

Define

R :=
{
(w, gw) ∈ E

∣∣ p(w) q′(g |w) > 0 and p(gw) q′(g−1 | gw) > 0
}

.

The image of θ is E, so both θ(Γ) and T(θ(Γ)) are zero outside E. Thus they
are mutually singular outside R ⊂ E and mutually absolutely continuous on
R. We can define r(w, w′) = 1 outside R, and by inspection we can verify that
r(w′, w) = 1/r(w, w′). Thus we have satisfied all the conditions for Proposi-
tion 3.4.1 and by Proposition 3.4.2 the mh kernel with acceptance probability
α(w, w′) := min{1, r(w′, w)} on R satisfies detailed balance. Since we assume that
the initial state is within the support of P, and the acceptance probability is always
zero for proposals outside the support, α will never be evaluated outside the set
R.
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Proof of Theorem 3.3.5. Procedure 2 describes an mh kernel based on a proposal Q′

which is a mixture of the types of proposals seen in Procedure 1:

Q′(dw′ |w) =
n

∑
i=1

a(i |w)Q′i(dw′ |w)

P(dw) Q′(dw′ |w) =
n

∑
i=1

a(i |w) P(dw) Q′i(dw′ |w).

Now define Γi(dw, dg) = a(i |w) P(dw) Qi(dg |w). By a similar argument to the
previous proof it follows that P(dw) Q′(dw′ |w) = ∑n

i=1 θ(Γi). As before, we can
define a function ri that is the Radon-Nikodym derivative dθ(Γi)/dT(θ(Γi)) re-
stricted to a set Ri where both those measures are mutually absolutely continuous,
and mutually singular outside it. Since θ(Γi) is zero outside the set Ei := θ(W, Gi),
we see that Ri ⊂ Ei. Now the problem arises that the Ei may not be disjoint; how-
ever, we will show that we can take the Ri to be disjoint without loss of generality.

For each 1 ≤ i ≤ n, define Vi to contain all the 1 ≤ j ≤ n such that Assump-
tion 3.3.4 is satisfied for i and j with k = i. Now for any j ∈ Vi the pre-image
of Ei ∩ Ej under θ is {(w, g) | w ∈ W, g ∈ Gi,jGi,w}. Applying the assumption,
this set has zero measure under Γi so Ei ∩ Ej has zero measure under θ(Γi). Then⋃

j∈Vi
Ei ∩ Ej has zero measure under θ(Γi) and is symmetric, so it has zero measure

under T(θ(Γi)) as well. Thus, without loss of generality, we can take Ri to be a
subset of Ei \

⋃
j∈Vi

Ej since it is only unique up to θ(Γi)-null sets. By the assump-
tion, for any i 6= j either i ∈ Vj or j ∈ Vi, so the Ri are disjoint. We have found a
collection of disjoint sets Ri such that each θ(Γi) is mutually absolutely continuous
on Ri and mutually singular outside Ri, with dθ(Γi)/d(T(θ(Γi))) = ri restricted to
Ri. We can now define r so that it takes on the value ri on Ei, with R :=

⋃n
i=1 Ri.

This r is the Radon-Nikodym derivative for Proposition 3.4.1.
It only remains to note that by Assumption 3.3.4 for any w in the support of

P and w′ = gw sampled according to Qi( · |w), (w, gw) ∈ Ri with probability 1.
Thus if the algorithm samples from some Qi then the probability that r is evaluated
outside Ei is zero.
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4
E X P L O I T I N G S Y M M E T R I E S

Judiciously choosing the groups Gi and proposal kernels Qi allows the mh kernel
with group transformations (Procedure 2) to take advantage of symmetries of the
target distribution. Consider a distribution P with a density that can be factored
as follows:

p(w) =
m

∏
i=1

pi(w), where pi(hw) = pi(w) for all h ∈ Hi;

we say that each group Hi is a symmetry of the factor pi, or that pi is invariant
under the action of Hi. For concreteness, we present a variation on the example
of Chapter 1: p is a density with respect to the Lebesgue measure λ on W =

R2 \ {(0, 0)} with m = 3 factors, p1 and p2 are as described earlier, and we add
another factor p3 with no useful symmetries; thus H1 and H2 are, respectively,
the groups that rotate and scale R2 around its origin, and H3 is the trivial group
(containing only the identity transformation).

To apply Procedure 2 to this example, take n = 2, G1 = H2, G2 = H1, and
a(i |w) = 1/2 for i = 1, 2 and all w. In this example, for i = 1, 2, ∆Gi

r = 1 identically
(since both groups are commutative) and q′i = qi (by Remark 3 on page 24, since
the isotropy subgroups are trivial). The proposed state is w′ = gw for some g ∈ Gi,
so we see immediately that pj(w′) 6= pj(w) is only possible for j ∈ {i, 3}. Thus, in
the i = 1 case, the p2 factor cancels out of the acceptance probability:

α|i=1 =
χ1(g) p1(gw)����p2(gw) p3(gw) q1(g−1 | gw)

p1(w)
�
���p2(w) p3(w) q1(g |w)

. (4.0.1)

Next we choose q1, attempting to cancel the χ1 and p1 factors as well. Since G1

acts by scaling R2, we can identify it with R×+: the group of positive real numbers
under multiplication (i.e., composition of scaling factors). Then g ∈ R×+ acts on
R2 by (x, y) 7→ (gx, gy), the corresponding effect on the Lebesgue measure (area)
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on the plane is described by χ1(g) = g2, and µ1(dg) = g−1dg is a Haar measure
on R×+. The obvious choice is to set q1(g |w) ∝ χ1(g) p1(gw) with a normalizing
constant c1(w); then for any w ∈ W, since q1 must be a probability kernel, we use
the definitions of µ1 and χ1 to get∫ ∞

0
q1(g |w) g−1dg = c1(w)

∫ ∞

0
p1(gw) g dg = 1. (4.0.2)

A simple calculation using (4.0.2) yields c1(gw) = g2c1(w) = χ1(g) c1(w), which
we substitute into (4.0.1):

α|i=1 = ��
��χ1(g)����p1(gw) p3(gw)��

��χ1(g)����c1(w)�����χ1(g−1)
�

���p1(w)

�
���p1(w) p3(w)����c1(w)��

��χ1(g)����p1(gw)
.

An analogous derivation can be carried out for the i = 2 case, identifying G2

with [0, 2π) as the set of rotation angles under the operation of addition (mod 2π).
Then χ2 = 1 and µ2 is just the Lebesgue measure on G2; again we get α|i=2 =

p3(gw)/p3(w). In fact, the same technique works in general for any target distri-
bution P, even if ∆Gi

r 6= 1, as long as χi(g) pi(gw) is µi-integrable:

4.0.1 proposition: Suppose qi(g |w) := ci(w) χi(g) pi(gw) (g ∈ Gi, w ∈W) is a probabil-
ity kernel density for some appropriately chosen normalizer ci. Then q′i = qi and

χi(g) pi(gw) qi(g−1 | gw)

∆Gi
r (g) pi(w) qi(g |w)

= 1.

Proof. If qi(h | gw) := ci(gw) χi(h) pi(hgw) is a probability kernel density for any
g ∈ Gi and w ∈W, then

1 = ci(gw)
∫

Gi

χi(h) pi(hgw) µi(dh)

= ci(gw)
∫

Gi

χi(hgg−1) pi(hgw) µi(dh)
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µi, being a left Haar measure, is ∆Gi
r -relatively invariant under right multiplication:

since f (hg) is the right-translation of f (h) by g−1 (see (2.8.2) and ensuing discus-
sion), it satisfies

∫
Gi

f (hg) µi(dh) = ∆Gi
r (g−1)

∫
Gi

f (h) µi(dh); we therefore replace
hg with h in the integrand

= ci(gw)∆Gi
r (g−1)

∫
Gi

χi(hg−1) pi(hw) µi(dh)

and since χi : Gi → R×+ is a group homomorphism, χi(hg−1) = χi(h) χi(g−1)

= ci(gw)∆Gi
r (g−1) χi(g−1)

∫
Gi

χi(h) pi(hw) µi(dh)

=
ci(gw) χi(g−1)

ci(w)∆Gi
r (g)

.

It follows that

χi(g) pi(gw) qi(g−1 | gw)

∆Gi
r (g) pi(w) qi(g |w)

=
χi(g) pi(gw)����ci(gw)�����χi(g−1) pi(g−1gw)

�
���∆Gi
r (g) pi(w)���ci(w) χi(g) pi(gw)

= ���χi(g)����pi(gw)��
��pi(w)

�
���pi(w)���χi(g)����pi(gw)

.

To show that q′i = qi, suppose w ∈ W and g′ ∈ gGi,w, so that g′ = gh for some
h ∈ Gi,w and qi(g′ |w) = ci(w) χi(gh) pi(ghw). Now χi(gh) = χi(g) χi(h) and
χi(h) = 1 for all h in the compact subgroup Gi,w (see Remark 2 on page 20), so
χi(g′) = χi(g). Similarly, ghw = gw by the definition of the stabilizer subgroup,
so pi(g′w) = pi(gw). Thus qi( · |w) is constant on the cosets of Gi,w, and the result
follows by Remark 3 on page 24.

We conclude that when Procedure 2 is applied to a target distribution having
factors pi invariant under Hi, the proposals in the mixture should be chosen so
that (a) Gi ⊂ Hj for as many j 6= i as possible, eliminating the pj terms from the
acceptance probability, and (b) qi(g |w) ∝ χi(g) pi(gw) to eliminate the χi, ∆Gi

r , and
pi terms; the constraint is that the Gi transformations sampled according to Qi

must collectively be rich enough to be able to explore the support of P. Indeed,
ideally only the non-symmetric factors of p appear in the acceptance probability,
as we saw in the example. If we had p3 = 1 as in Chapter 1, we would recover
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the no-reject algorithm that produces independent samples every time it performs
a rotation and a scaling. The simpler acceptance probability also means that only
the non-symmetric factors contribute to the time required to compute it.

Note. The preceding discussion remains valid when the target distribution con-
forms only approximately to the structure described in this chapter. For example,
the factorization may be approximate, so that p(w) ≈ ∏ pi(w); the symmetries
Hi may also be approximate, so that pi(w) ≈ pi(hw). The mh algorithm grace-
fully handles such imperfectly symmetric target distributions: the calculation of
the acceptance probability accounts for them. Although the computational advan-
tages are then lost, we expect exploiting even approximate symmetries to improve
convergence rates.
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5
T H E S L A M P R O B L E M

The slam problem is concerned with a robot navigating an unknown environment
under the effect of sensor and control noise. The goal is to determine the robot’s
trajectory as well as the map of the environment based on the robot’s observations.
The environment comprises N landmarks; the position of each is denoted by a
variable Yi (i = 1, . . . , N) taking values in a space Y . Let Xt (t = 0, . . . , T) denote
the pose (typically, position and orientation) of the robot at time step t and take
values in space X . At every time step the robot can observe the landmarks, and
at time step t the observation of landmark i is denoted by Zi

t taking values in Z .
For simplicity, we assume that all landmarks can always be observed and the robot
can distinguish the landmarks. The goal of the slam problem is to estimate the
trajectory X = (X0, . . . , XT) and the landmark positions Y = (Y1, . . . , YN) based
on the observations Z = (Zi

t)0≤t≤T,1≤i≤N (our notation consistently refers to time
steps and landmarks with subscripted and superscripted indices, respectively).

We use the Bayesian formulation of slam, in which the robot’s trajectory, envi-
ronment, and observations are random variables and are assumed to evolve ac-
cording to the following dynamical system: (a) X0 and Y are independent with
known densities; (b) at each time step t = 0, 1, 2, . . . , each observation Zi

t depends
only on Xt and Yi via the conditional density pZi

t|Xt,Yi
, and (c) the pose of the robot

Xt depends only on Xt−1 and the previous observations Z<t := (Z0, . . . , Zt−1) via
the conditional density pXt|Xt−1,Z<t (where Zt = (Z1

t , . . . , ZN
t )). That is, we make

the following Markov assumptions: (a) Zi
t is conditionally independent of X<t and

Yj (j 6= i) given Xt and Yi, and (b) Xt is conditionally independent of X<t−1 and Y
given Xt−1 and Z<t. Also, we assume throughout that conditional densities exist
relative to some dominating measure, usually an appropriate Lebesgue or Haar
measure.
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The slam posterior is the conditional density pX,Y|Z( · | z) over trajectories and
environments given observations Z = z. We first factor the joint density pX,Y,Z as
pY(y) pX,Z|Y(x, z | y). Then, under the above Markov assumptions, we obtain

pX,Z|Y(x, z | y) =
T

∏
t=0

pXt|Xt−1,Z<t(xt | xt−1, z<t) · pZt|Xt,Y(zt | xt, y)

pX,Y|Z(x, y | z) =
pY(y)pX,Z|Y(x, z | y)

pZ(z)
.

(5.0.1)

We consider the slam problem in which the robot moves on a two-dimensional
plane. Then its position and orientation are fully specified by the rigid (i.e., distance-
preserving and non-reflecting) transformation of R2 from the robot’s body-local
coordinate system to the global coordinates. Any rigid transformation can be de-
composed into a rotation around the origin followed by a translation; the set of
such transformations under composition forms the special Euclidean group SE(2).
The space of poses is therefore X := SE(2). The landmarks are specified by their
positions on the plane, so Y := R2.

5.1 symmetries of slam

We assume that, apart from the landmarks, the environment is essentially homoge-
neous (we will elaborate upon what this means), giving rise to certain symmetries
in the factors of the slam posterior distribution. If a robot has pose x ∈ X , in
its body-local frame the coordinates of another pose x′ ∈ X are x−1x′ and those
of a landmark y ∈ Y are x−1y. One can verify that these local coordinates do not
change if x, x′, and y are all transformed by some g ∈ G := SE(2) to gx, gx′, and gy,
respectively. The assumption that the environment is homogeneous means, firstly,
that the motion of the robot is not affected by its location in a way undetectable
to its sensors. In particular, for a given value of Z<t, the motion model pXt|Xt−1,Z<t

depends only on the relative movement X−1
t−1Xt and not on the global coordinates.

Secondly, since the sensors are fixed to the robot’s body, the observation of a land-
mark depends only on its local coordinates in the robot’s frame: pZi

t|Xt,Yi
depends

only on Zi
t and X−1

t Yi. Thirdly, the landmarks and the robot’s initial pose are a
priori equally likely to be anywhere in the environment: pYi and pX0 are invari-
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ant under G. The homogeneity of the environment thus implies that no reference
frame is privileged, and that being transformed by G does not affect the likelihood
of a slam solution. To resolve the resulting ambiguity, without loss of generality
we work in the coordinate system whose origin is the robot’s initial pose (i.e., X0

is the identity transformation). Note that pYi must then be a distribution that is in-
variant under rigid transformations of the plane: the Lebesgue measure; however,
it is not a probability distribution. We may nevertheless use it for inference as a
so-called improper prior as long as the resulting posterior is indeed a probability
distribution.

Thus, for our purposes, the slam posterior is a distribution over the state space
W := X T × YN of all possible trajectories (that start at the origin) and environ-
ments. The group K := GT × GN acts on W, with the gt, gi ∈ G components
acting on wt ∈ X and wi ∈ Y , respectively (by our convention, the subscripts and
superscripts refer to the pose and landmark components, respectively). Using the
terminology of Chapter 4, the pXt|Xt−1,Z<t factors are invariant under the subgroups
Ht := {g ∈ K | gt−1 = gt} and the pZi

t|Xt,Yi
factors under Hi

t := {g ∈ K | gt = gi}.

5.2 the mcmc-slam algorithm

We now specify how Procedure 2 may be applied to the problem of sampling from
the slam posterior. First, we select a function b : {1, . . . , N} → {1, . . . , T}, which
“anchors” each landmark to one of the time steps at which it was observed. The
proposal is a mixture of T + N kernels, indexed with subscripts or superscripts
as before. The mixture component corresponding to time step t transforms W by
an element of Gt :=

(⋂
s 6=t Hs

)
∩
(⋂

i Hi
b(i)

)
, which is a symmetry of the pXs|Xs−1,Z<s

factors for s 6= t and of the pZi
s|Xs,Yi

factors for (s, i) /∈ Vt, where

Vt := {(s, i) | s < t ≤ b(i) or b(i) < t ≤ s}.

Indeed, this is a maximal set of factors for which Gt can be a symmetry without
being reduced to triviality. One can verify that an element of Gt is determined by
g ∈ G that acts on ws if s ≥ t and on wi if b(i) ≥ t; other components of w ∈W are
left unchanged. The mixture components corresponding to landmark i use Gi :=
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⋂
t
(

Ht ∩
(⋂

j 6=i H j
t
))

, which is a symmetry of all the pXt|Xt−1,Z<t factors and those
p

Zj
t |Xt,Yj

factors with j 6= i; again, this is a maximal invariant set. The corresponding

proposal kernel densities qt and qi are chosen to be proportional to pXt|Xt−1,Z<t and
pZi

b(i)|Xb(i),Yi
, respectively, following Chapter 4. Procedure 3 shows the resulting

algorithm1. Note that if the trajectory is stored in the tree structure of Fenwick
(1994), modified to support non-commutative operations, the state update can be
carried out in O(log T) time; the calculation of the acceptance probability then
dominates, thus scaling with the number of factors whose values have changed.

procedure 3: Given w ∈W consisting of a trajectory x1, . . . , xT and landmarks
y1, . . . , yN, propose w′:

(i) Sample either a time step t or a landmark i from a given discrete distri-
bution with probabilities at(w) and ai(w), respectively (i.e., ∑T

t=1 at(w) +

∑N
i=1 ai(w) = 1).

(ii) If the previous step sampled time step t:

1. Set x′t ∼ pXt|Xt−1,Z<t( · | xt−1, z<t).

2. Set x′s := x′txt
−1xs for s > t.

3. Set y′i := x′txt
−1yi for b(i) ≥ t.

4. Calculate α :=
at(w′)
at(w) ∏

(s,i)∈Vt

pZi
s|Xs,Yi

(zi
s | x′s, y′i)

pZi
s|Xs,Yi

(zi
s | xs, yi)

.

(iii) Otherwise, if it sampled landmark i:

1. Set y′i ∼ pZi
b(i)|Xb(i),Yi

(zi
b(i) | xb(i), · ).

2. Calculate α :=
ai(w′)
ai(w) ∏

t 6=b(i)

pZi
t|Xt,Yi

(zi
t | xt, y′i)

pZi
t|Xt,Yi

(zi
t | xt, yi)

.

(iv) Accept new state w′ with probability min{1, α}. All unmodified variables
keep their original values.

1 We use the notation x ∼ p( · ) with the assumption that p is integrable and implying an appropriate
normalizing constant.
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6
E X P E R I M E N T S

We applied the mcmc-slam algorithm to two publicly available data sets (Djugash,
2010) from an autonomous robot with sensors that measure range to radio beacons.
In the Plaza 1 data set, the robot traveled 1.9 km over 9,657 time steps and received
3,529 range observations of four landmarks. In the Plaza 2 data set, the robot
traveled 1.3 km over 4,091 time steps and received 1,816 range measurements, also
of four landmarks. Highly accurate ground truth trajectories were also recorded.
We compare the algorithm to the Spectral slam algorithm (Boots and Gordon,
2013). We found that exploiting symmetries as outlined in Chapter 4 was crucial:
the naive mcmc kernel that updated individual components of the trajectory or
environment did not make any progress in a reasonable amount of time.

Table 1 shows the rms distance of each robot pose from the ground truth for
each data set. It is averaged over 50 independent runs of the mcmc algorithm,
with the interval indicating one standard deviation. Since any slam solution is
only specified up to the choice of origin, we apply the best-fit rigid transformation
between the estimated and known maps (Boots and Gordon do the same).

The mcmc (r + s) algorithms incrementally extend the slam posterior by in-
troducing the factors coming from each time step, in turn. The chain takes r
steps after each extension, and s steps at the end. At each time step, newly in-
troduced variables are initialized by sampling from the corresponding proposal
kernel. mcmc (10+1000) took approximately 13.8 s on Plaza 1 and 2.8 s on Plaza 2;
mcmc (100+10000) took 131.1 s and 28.1 s, respectively. The larger number of steps
is required to achieve good accuracy on Plaza 2 because it is more challenging: the
robot consistently turns in one direction, making the control noise biased. In com-
parison, Spectral slam took 0.73 s and 0.51 s on a similar computer. The “Spectral +
Opt.” algorithm runs a final batch optimization pass and takes several thousands
of seconds.

Thus, even though the mcmc algorithm is computationally somewhat more ex-
pensive, we see that it performs competitively with Spectral slam and all the other
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Figure 2: An mcmc sampled trajectory and map (black) overlaid over the ground
truth (red) for the Plaza 1 (left) and Plaza 2 (right) data sets.

Table 1: Comparison of Trajectory rms Errors.

Algorithm Plaza 1 Plaza 2

Spectral 0.79m 0.35m
Spectral + Opt. 0.69m 0.30m

mcmc (10+1000) 0.32± 0.02m 0.54± 0.06m
mcmc (100+10000) 0.33± 0.04m 0.36± 0.03m

methods tested by Boots and Gordon (2013). In addition, it has the advantage of
easily handling missing observations, without a process of imputing them as is
done by Spectral slam. Finally, being a Bayesian algorithm, it produces the slam
posterior distribution rather than just a solution; we expect it to perform better if
the robot noise characteristics are faithfully modeled. Indeed, because the variance
of the rms error increases when the chain is allowed to run longer on Plaza 1, we
conclude that it is converging to an inaccurate slam posterior, which is probably a
symptom of poorly chosen priors.
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6.1 robot models and algorithm details

It remains to specify the probabilistic robot models used in the experiments, as
well as the landmark “anchoring” function b and the mixture coefficients at(w)

and ai(w) employed in the specification of Procedure 3. We adopted an extension
of the “velocity motion model” of Thrun et al. (2005). The control input is given as
a commanded velocity v̂ and steering rate ω̂. The model samples v ∼ N (v̂, σv) and
ω ∼ N (ω̂, σω) as being normally distributed. The robot is assumed to travel in a
circular arc with length d := v · ∆T and central angle α := ω · ∆T (unless ω = 0, in
which case it moves in a straight line). The final heading of the robot changes by
(ω + ρ) · ∆T, where ρ ∼ N (0, σρ) is a slippage angle. Explicitly, if the robot’s pose is
given by x = y = θ = 0 (i.e., it is at the origin, facing in the +X direction), its pose
at the next step is (if ω 6= 0)

x′ = d sin(α)/α

y′ = d(cos(α)− 1)/α

θ′ = α + ρ · ∆T.

If ω = 0 then x′ = d, y′ = 0, and θ′ = ρ · ∆T. For any other initial pose, the
effect of the same control input can be found by a rigid transformation (which
is a symmetry of the model). The standard deviations were chosen as follows:
σv := 0.1|v̂|, σω := (1.0 deg/m)|v̂|+ 0.1|ω̂|, and σρ := (0.1 deg/m)|v̂|+

√
0.001|ω̂|.

The observation model uses the sensor range reading ẑ, samples z ∼ N (ẑ, σz)

and θ ∼ U ([0, 2π)), and produces the landmark location x := z cos(θ) and y :=
z sin(θ) in the robot’s local coordinate system; we used σz = 1.0 m.

The function b was chosen as i 7→ arg mint zi
t, so each landmark would be

“anchored” to the time step at which the robot observed the closest range to it.
The mixture coefficients were chosen to be at(w) := κ3(pXt|Xt−1,Z<t) and ai(w) :=
κ2(pZi

b(i)|Xb(i),Yi
), where κγ(p) = γp−1/γ. The γ parameter is intended to represent

the degrees of freedom in the robot poses and landmark positions, respectively.
The variables are initialized as they are introduced into the state space, using

the maximum-likelihood estimates of Xt from the corresponding motion model
or of Yi from the first observation. With range-only slam, the maximum likeli-
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hood estimate of a landmark’s position is not unique: points equidistant from the
robot have equal likelihood: one of these points is chosen randomly following the
uniform distribution on the circle.
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7
C O N C L U S I O N S A N D F U T U R E W O R K

The Metropolis-Hastings (mh) algorithm is a widely used technique to implement
approximate probabilistic inference, but its “textbook version” is quite limited. To
build potentially faster mixing chains, in this thesis we explore the possibility of
proposals where the next state is based on transforming the current one using a
randomly chosen transformation. The main contribution of the thesis is a formula
that shows how the acceptance function can be calculated in closed form in this
case. This is shown both for a single kernel, and when a mixture kernel is used.
The strength of the approach is its generality: We derive the results without any
differentiability requirements, making them applicable to both continuous and dis-
crete domains. While the increased generality made the thesis more technical, to
enhance clarity, we used the slam problem to illustrate the ideas. On a challenging
domain, we obtained strong experimental evidence in favor of our new approach.
While it remains for future work to demonstrate the approach on a wider range
of problems, we believe that the approach proposed in the thesis, due to its gen-
erality and flexibility, will have a profound impact on how ai systems perform
approximate inference.
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