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Abstract

Non-commutative geometries motivated by string theory have enabled calculations

of black hole properties distinctly di↵erent from those of classical gravity, such as

a finite maximum temperature and a minimum mass, and horizon radius at which

Hawking evaporation may terminate. In this thesis, we investigate the greybody

factors arising from higher dimensional spherically symmetric and static black holes

in non-commutative geometry inspired space-times.

Greybody factors are computed for massless fields of spin 0, 1/2, 1 and 2 on

the brane, and spin 0 and 2 in the bulk emitted from higher dimensional non-

commutative geometry inspired black holes. The results are compared to the com-

mutative cases. The Teukolsky equation describing the various field perturbations is

decoupled into angular and radial parts. The radial equation is cast into the form

of a one-dimensional Schrödinger-like equation with an e↵ective short-ranged poten-

tial barrier. We use the product calculus formalism of path-ordered exponentials

to numerically compute the transmission coe�cients. The corresponding absorption

cross sections and emission spectra are also presented. The results presented here

will be useful in Monte Carlo simulations required for searches of microscopic non-

commutative black holes produced in proton-proton collisions, such as those with the

ATLAS and CMS experiments at the Large Hadron Collider.
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Chapter 1

Introduction

1.1 Black Holes

A black hole is a region of space characterized by an event horizon, beyond which

nothing can escape due to the extreme curvature of the space-time. Laplace was one

of the first to predict the concept of a black hole in the eighteenth century using only

Newtonian mechanics [2]. Laplace used the term non-luminous bodies, referring to

the idea that gravity could prevent light from escaping an object su�ciently dense

such that the escape velocity at its surface exceeds the speed of light [2]. In 1915

Albert Einstein published his theory of general relativity which transformed our un-

derstanding of gravity. In 1916, Karl Schwarzschild found the first vacuum solution

to the Einstein field equations describing the space-time surrounding a spherically

symmetric and static point-like mass, now commonly referred to as the Schwarzschild

solution [3]. The Schwarzschild solution predicts the existence of a black hole for ob-

jects whose radius is smaller than some critical radius known as the horizon radius.

Remarkably, the definition given by Laplace for the radius of his non-luminous bod-

ies is the same as that found by Schwarzschild for a static and spherically symmetric

black hole.

In four dimensions, it is well known that the space-time surrounding a black hole

according to general relativity is uniquely defined in terms of its mass M , charge

Q, and angular momentum J . This is referred to as the no hair theorem, with

1



the hair being other independent characteristics [4]. The Schwarzschild solution is

the case for Q = J = 0. A black hole with charge Q is defined by the Reissner-

Nordström solution and a black hole with angular momentum J is described by the

Kerr solution. The Kerr-Newman solution describes a black hole with both charge

and angular momentum.

The Schwarzschild solution contains two singularities, with one being a coordinate

singularity at the horizon which can be removed through a change of coordinates.

The second singularity is a true singularity at the centre of the black hole where

the curvature, or Ricci scalar goes to infinity. According to general relativity, this

singularity is also thought to contain the entire mass of the black hole. In a static

black hole, the singularity is a point singularity, while the singularity of a rotating back

hole is smeared out to form a ring singularity which lies in the plane of rotation. The

appearance of these singularities is often interpreted as indicators of the breakdown

of the theory. This breakdown is indeed expected, since it occurs in regions where the

energy density approaches the Planck density and a quantum mechanical description

is required. The singularity is really just a region where the radius of curvature is

of the order of the Planck length [5]. Hawking theorized that the matter that enters

this region might reemerge in another universe [5]. To date, there is no such theory

capable of unifying quantum mechanics with a theory of gravity, though a complete

theory of quantum gravity is not expected to contain singularities. Among others,

two major areas of research which attempt to resolve this problem are string theories

which incorporate extra spatial dimensions, and loop quantum gravity. Both are

rooted in the idea that there exists a minimum length scale. While such theories are

mathematically very rich, direct experimental support has proven di�cult to obtain.

This is due to the fact that we don’t yet have the means to peer into the high energy

scales at which quantum gravity e↵ects start to become significant. The revival of

the idea of the existence of extra space-like dimensions at the turn of the twenty-

first century allows for the possibility to significantly lower the fundamental scale of
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quantum gravity. This led to the idea that microscopic black holes could be produced

in high energy particle collisions at the Large Hadron Collider (LHC) or in the Earth’s

atmosphere [6].

1.2 Gravity in Higher Dimensions

One of the motivations for considering models which incorporate extra spatial di-

mensions is the hierarchy problem. The hierarchy problem is an underlying question

with regard to our modern understanding of physics, reflective of the idea that a

complete model of particle physics should have a common energy scale. There are

di↵erent versions of the hierarchy problem, however perhaps most relevant to us is the

so-called aesthetic hierarchy problem which compares two fundamental energy scales:

the Planck scale and the electroweak scale. It is not understood why the Planck scale

MP ⇠ 1016 TeV, the scale at which gravitational interactions become strong, is so

many orders of magnitude higher than the electroweak scale ⇠ 0.1 TeV [7].

Models of higher dimensions attempt to resolve this matter by postulating that

the apparent weakness of gravity is due to the presence of extra spatial dimensions.

In such models, the hypothetical graviton is generally allowed to propagate in the

full (4 + n)-dimensional space-time, otherwise known as the bulk, where n is the

number of extra spatial dimensions. All standard model fields are constrained to the

4-dimensional brane which avoids contradictions with precise particle physics mea-

surements. Since the gravitational force may propagate in the full higher dimensional

space-time, its strength is e↵ectively diluted on the brane, resulting in gravity ap-

pearing weaker than the other standard model forces which only propagate on the

brane. In this thesis, we will focus on the Arkani-Dimopoulos-Dvali (ADD) model of

large extra dimensions [8], in which the extra dimensions are flat and toroidally com-

pactified with a compactification radius R. The compactification radius is typically

considered to be large when compared to the Planck length but small enough such

that it agrees with limits from searches for deviations from Newton’s law.
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In the context of higher dimensions, the Planck scale becomes an e↵ective scale

as seen on the brane, and is related to the higher D-dimensional Planck scale, MD,

which is defined by the Particle Data Group as [9]

M
2

P
= M

n+2

D
R

n
. (1.1)

Here, and throughout the remainder of this thesis, a system of units will be used such

that ~ = c = kB = G = 1, as well as the metric signature (�+++) unless otherwise

specified. We use the Particle Data Group definition of the higher dimensional Planck

scale since this is usually the quantity that high energy particle physics experiments

set limits on [9]. We note thatMn+2

⇤ = 8⇡/(2⇡)nMn+2

D
is sometimes used in literature.

The particular choice of convention used to define the higher dimensional Planck scale

can have a significant impact on computations. For example, it was shown in Ref. [10]

that the choice of definition of the higher dimensional Planck scale leads to di↵erent n-

dependencies of the proton-proton black hole production cross section. Therefore we

expect that some results presented in this thesis may be dependent on our particular

choice of convention for the higher dimensional Planck scale MD.

Setting MD near the electroweak scale at around ⇠ 1 TeV allows us to make

predictions for R using Eq. (1.1) as shown in Table 1.1.

Table 1.1: Estimation of the compactification radii R versus the number of extra
dimensions n for MD ⇠ 1 TeV.

n R [m]

1 1011

2 10�3

3 10�8

4 10�11

5 10�12

6 10�13

7 10�14

The possibility of a single extra dimension is ruled out based on the grounds that

the compactification radius is on the order of the distance from the Earth to the Sun
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which would lead to observable modifications of Newtons law [9]. For n � 2 we find

that R < 1 mm and thus are not ruled out [9]. Evidence of extra dimensions of space

can be obtained by looking for events with missing energy arising from gravitons es-

caping into the bulk. Results from accelerator experiments and searches for deviations

from Newton’s law have set lower bounds on MD [9]. Nevertheless, the possibility of

a lower fundamental energy scale in the ADD model provides the possibility to probe

the quantum nature of black holes at energies accessible to current particle physics

experiments. As a result, the possible production and decay of microscopic black

holes at the LHC or in the Earth’s atmosphere would o↵er insight into the nature

of a quantum theory of gravity. Such black holes are expected to decay through the

emission of Hawking radiation which may be detected by particle detectors at the

LHC or the Fermi Gamma-ray Space Telescope [11]. We will describe in detail the

Hawking radiation process in the next section.

In this thesis we will assume that the black hole horizon radius is much smaller than

the compactification radius so that the physics is not sensitive to the finite size of the

compactified dimensions [12]. In addition we use the probe-brane approximation [6]

where we neglect the gravitational field produced by the brane. In this case, the only

e↵ect of the brane field is to bind the black hole to the brane, and the black hole may

be treated as an isolated object where the centre of the black hole coincides with the

world sheet of the brane and extends into the higher dimensions [13, 14]. A schematic

of this scenario is shown in Figure 1.1 which is reproduced from Ref. [6].

We note that we also ignore the possibility for the black hole to escape the brane

via the recoil e↵ect [15]. The emission of gravitons into the bulk may cause the black

hole to recoil into the bulk if there is no symmetry which suppresses the recoil [15].

By making the probe-brane approximation we ignore the possibility for the black hole

to recoil into the bulk. In summary, we are interested in black holes with mass greater

than the Planck mass but with a horizon radius smaller than the compactification

radius. These conditions are generally satisfied when considering black holes produced
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Figure 1.1: Schematic of aD-dimensional black hole bound to the 4-dimensional brane
and extending into the higher dimensions. Standard model fields (solid lines) are
restricted to propagate on the brane while the graviton (dashed line) may propagate
in the full higher dimensional bulk. Image reproduced from Ref. [6].

at the LHC [6].

In general, the horizons of black holes in extra dimensional space-times do not need

to be spherical, and thus more complicated black hole like objects may arise [16]. In

this thesis, we consider only black holes with a spherical event horizon topology.

1.3 Hawking Radiation

A consequence of applying quantum mechanics to a static black hole background is

that black holes may emit thermal radiation like a blackbody. The idea that black

holes emit radiation was first proposed by Stephen Hawking in 1974 [17]. Hawking

showed through a series of papers [5, 17] that black holes behave as thermal systems,

with a characteristic temperature, TH proportional to their surface gravity. The

explicit definition of this temperature will be provided in later sections.

Treating black holes as thermal systems, Hawking proposed that black holes should

emit radiation with a characteristic blackbody spectrum dependent on their temper-

ature. This is counter-intuitive, since using the argument that nothing, not even

light can escape black holes might suggest that black holes should only grow as mat-

ter falls into their event horizon. However, Hawking showed that such radiation is
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possible by taking into account quantum mechanical e↵ects at the horizon. In Hawk-

ing’s analogy [17], the mechanism by which this occurs is through the production

of particle/anti-particle pairs by the gravitational field at the horizon. Due to the

geometry of space-time near the horizon, these particle pairs can become separated

with one falling into the black hole and one escaping from it, leading to a net de-

crease in mass [7]. This phenomenon is now known as Hawking radiation. Hawking

radiation may also be described as a tunneling process, for which we refer the reader

to Ref. [18] for further details. For an observer at the event horizon, Hawking showed

that the emission spectrum of a static, uncharged and spherically symmetric black

hole is that of a blackbody.

The space-time surrounding a black hole acts as a potential barrier which e↵ectively

filters the radiation escaping from the black hole. A fraction will penetrate through

the barrier and escape to infinity which will constitute the thermal emission seen by

an observer at spatial infinity [5]. The remaining particles will be reflected by the

potential barrier and cross the horizon. Consequently, an observer at spatial infinity

from the black hole will measure a di↵erent emission spectrum than one at the horizon

by a factor �s,` (M ;!) called the greybody factor. The greybody factor for a given

spin s and angular momentum quantum number `, is in general dependent on the

frequency !, and represents the probability of a particle to escape from the horizon

to spatial infinity. As such, the blackbody spectrum of the black hole is modified by

the greybody factor.

The flux of radiation leaving the black hole will cause a net decrease in the mass

of the black hole, and so the black hole will not be a stationary state. Hawking

addresses this by considering a quasi-stationary approach where after the emission

of a particle, the black hole is allowed to reach equilibrium at a new temperature

before the emission of subsequent particles [5]. Hawking argued that as long as the

mass of the black hole is large in comparison to the Planck mass, the rate of particle

emission will be slow such that it is reasonable to approximate the black hole to be in
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a quasi-stationary state when performing calculations. When the mass of the black

hole is near the Planck mass, the quasi-stationary approximation will break down and

one cannot use the classical arguments of general relativity [5]. This is due to the fact

we are using a semi-classical description of gravity. The description of the spacetime

surrounding the black hole is a classical theory as described by Einsteins theory of

general relativity. However the process of Hawking radiation considers quantum fields

propagating on a static black hole background. Therefore any dynamical changes in

the metric due to the propagation of quantum fields is not taken into consideration.

Hence we are ignoring the back reaction of the quantum fields on the space-time.

A complete theory of quantum gravity would be necessary to consider the complete

dynamical system.

Detection of Hawking radiation is of considerable interest as it may carry infor-

mation about the nature of quantum gravity. Unfortunately, detection of Hawking

radiation from astronomical black holes, such as Sagittarius A⇤ at the centre of the

Milky Way has proven di�cult since black holes of astronomical scale are relatively

cold. Indeed the emitted radiation is found to increase with a rise in temperature,

or as we will show in later sections a decrease in mass. As a result, Hawking radi-

ation from astronomical black holes is negligible when compared to the background

radiation such as that coming from their accretion discs [19].

Primordial black holes (PBHs) are black holes theorized to have formed in the early

stages of the universe at the end of the inflation era [20]. Unlike stellar black holes

which form from the collapse of stars, PBHs may exist which are smaller, hotter and

thus may prove more promising candidates for emitting detectable Hawking radiation.

In addition, PBHs have attracted considerable interest as dark matter candidates as

their mass density can contribute to the missing dark matter energy density of the

universe [20]. Still, the detection of such black holes has not been possible, and the

lack of evidence has placed constraints on the lower mass range. For example, isolated

PBHs with an initial mass of an asteroid would be currently nearing the end of their
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life, evaporating away through Hawking radiation, while smaller PBHs would have

already evaporated away [19]. A thorough investigation of the evaporation of PBHs

through Hawking radiation is presented in Ref. [19].

The LHC, which began operation in 2008, has provided the exciting possibility of

producing microscopic black holes from high energy proton collisions. For a black

hole to be produced at the LHC, the impact parameter of a collision between two

particles with centre of mass energy
p
s must be smaller than the horizon radius [7].

If the fundamental Planck scale is on the order of ⇠ 1 TeV, which is allowed in

some theories incorporating extra spatial dimensions as discussed in Section 1.2, the

centre of mass energy reached at the LHC of
p
s = 14 TeV would be large enough

to produce classical black holes [6]. The decay of classical black holes produced at

the LHC would be governed by the emission of Hawking radiation which is generally

described by the following process [6]. The first stage after the formation of the black

hole is the balding phase, in which the black hole emits mostly gravitational radiation,

while shedding any asymmetries inherited during the production process [7]. It then

enters a spin-down phase where the black hole loses angular momentum, mass and

charge through Hawking radiation. After losing most of its angular momentum and

charge, the black hole enters the Schwarzschild phase where it loses mass through

Hawking radiation. The Schwarzschild phase continues until the mass of the black

hole approaches the Planck mass. At this point, a theory of quantum gravity is

needed to explain the final stage of the black hole.

Although a complete theory of quantum gravity has not yet been realized, we may

be able to probe some phenomenological aspects by postulating a non-commutative

geometry.

1.4 Arrangement of Thesis

The aim of this thesis will be to extend the results of Ref. [11] to calculate the greybody

factors for all spin fields from higher dimensional non-commutative black holes. The
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results presented here may be of use in Monte Carlo simulations at the LHC or

future colliders in searches for microscopic non-commutative geometry inspired black

holes. Chapter 2 introduces some of the aspects of non-commutative geometries

relevant for the computation of greybody factors. In Chapter 3, we give an overview

of the theoretical framework required to compute greybody factors, as well as the

numerical techniques. In Chapter 4 we present the greybody factors, absorption cross

sections, and emission spectra for various massless spin fields on the brane from higher

dimensional non-commutative geometry inspired black holes. Much of the work in

Chapter 4 has been published in Ref. [1] in collaboration with Doug Gingrich. In

Chapter 5 we present the greybody factors, absorption cross sections, and emission

spectra for spin 0 and 2 massless fields in the bulk from higher dimensional non-

commutative inspired black holes for the first time. In Chapter 6 we summarize our

key results and provide some possible directions for future work.
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Chapter 2

Aspects of Non-commutative
Geometry

In this section we will introduce the formalism of non-commutative geometry, and

briefly introduce some of the developments of non-commutative geometry in general

relativity. There is a vast amount of literature concerning non-commutative geometry,

however it is still a developing field. We do not hope to provide a complete overview

of the literature, only to introduce the basic relations necessary to compute black hole

greybody factors. To do so, we would ideally like to construct a non-commutative

equivalent of general relativity, however no such theory exists as of yet. As we will

show below, we can approximate the e↵ect of non-commutativity by considering the

average e↵ect of non-commutative fluctuations and the corresponding modifications

to the metric [11]. We will begin by introducing some basic commutation relations,

and describe how non-commutative geometry is implemented in quantum field theory.

Then we will cover some of the developments of non-commutative geometry as ap-

plied to general relativity and discuss some properties of non-commutative geometry

inspired black holes.

2.1 Incompatible Observables

It is important that we understand some basic properties of commutative operations

before we dive in to the properties of non-commutative geometries. In mathematics,

11



an operation is said to be commutative if the order of the operands does not matter.

Addition and multiplication of two numbers are perhaps some of the most elementary

examples of commutative operations. Multiplication of two numbers say A and B,

gives the same results no matter the order in which you multiply them. Thus multi-

plication of two numbers is said to be a commutative operation. However the same

cannot be said about division, A/B is in general not equal to B/A. Thus we conclude

that division is not a commutative operation. Another example of a non-commutative

operation are rotations in three or higher dimensional space.

In quantum mechanics, physical observables A,B become operators Â, B̂. An ob-

servable Â in some state has an associated expectation (mean) value hÂi. Attempting

to measure two physical observables in a state simultaneously leads to a generalized

uncertainty principle given in terms of the commutator
h
Â, B̂

i
= ÂB̂ � B̂Â and

�A�B �

����
1

2i
h[Â, B̂]i

���� , (2.1)

where �A =

q
hÂ

2

i � hÂ
2

i2 is the standard deviation which is a measure of the

uncertainty, or lack of knowledge about a particular quantity. If two observables

commute, then they are said to be compatible variables, which means they can be

measured simultaneously. If two observables do not commute, they are said to be

incompatible or conjugate variables. Incompatible observables cannot be measured

simultaneously with certainty as described by the uncertainty principle. The classic

example of two such observables are position, x̂ and momentum, p̂, which leads to

the canonical commutation relation

[xî, pĵ] = i�ij. (2.2)

It has been argued that at the Planck scale, the fundamental assumption of locality

may not hold, and a similar commutation relation between the position operators

may arise [21]. The momentum and energy required to make a measurement near

the Planck scale would itself modify the geometry, and one might expect there to
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be a commutation relation preventing measurements of position to accuracy’s better

than the Planck length [22]. In both general relativity and quantum field theories,

space is defined to be commutative. Theories of quantum gravity, such as string

theory and loop quantum gravity propose the idea of a quantized space-time. Non-

commutative geometries were first investigated by Snyder [23] in 1947, concerning

the quantization of space-time. This idea was for the most part set aside until the

mathematics community developed the idea of non-commutative geometry in the 80’s

as a generalization of di↵erential geometry [22, 24], and became of particular interest

to physicists after Seiberg and Witten showed that string theory reduces to a quantum

field theory on a non-commutative space [25]. In particular, the coordinate endpoints

of open strings ending on D-branes become non-commutative [26].

2.2 Non-commutativity in Quantum Field Theory

The general idea in non-commutative quantum field theory is that the space-time

coordinates, which are now thought of as operators, fail to commute [27]. There

are di↵erent representations of non-commutativity used throughout literature [28].

Here we introduce the simplest type: canonical non-commutativity by imposing the

following commutation relation in D-dimensional space-time

[x̂A
, x̂

B] = i✓
AB

, (2.3)

where ✓AB is a real anti-symmetric D ⇥ D matrix (not a tensor). To avoid issues

with causality and unitarity we only consider non-commutativity between spatial

coordinates, hence the elements corresponding to time are set to zero [29]. It is

convenient to write ✓AB in the following form

✓
AB =

✏
AB

⇤2

NC

, (2.4)

to separate the mass scale ⇤NC which has units of inverse length from the dimension-

less matrix ✏AB. Here we have taken ⇤�2

NC
to be an average magnitude of the elements
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of ✓AB and thus assume that elements of ✏AB are of O(1) [27]. We further define the

non-commutative parameter ✓ = ⇤�2

NC
which has units of length squared.

We can think of the above commutation relation as introducing a fuzziness into

our coordinates. The matrix ✓AB represents the fundamental discretization of space-

time, similar to how ~ represents the discretization of phase-space in quantum me-

chanics [22]. The notion of a point in non-commutative space is no longer meaningful

as there is an inherent uncertainty in the position with respect to more than one

coordinate. In analogy to how the position-momentum commutator in Eq. (2.2)

leads to the canonical uncertainty principle, we can write a similar relation for the

coordinate-coordinate uncertainty [22]

�x̂A
�x̂B

�
1

2
|✓AB|. (2.5)

It is argued that the loss of resolution described by the above relation can be inter-

preted as an e↵ective ultraviolet cuto↵ [30].

Intuitively, one may associate the non-commutative scale with the Planck scale,

however we stress here that the the non-commutative scale is not the Planck scale.

The idea is that ⇤NC is a new scale that may be greater than the Planck scale where

one may observe the e↵ects of non-commutativity [11, 27]. However throughout the

remainder of this thesis and to allow comparisons with literature, we will take the

common values MD ⇠
p
✓
�1

⇠ 1. For n = 0, the units are MD ⇠ 1016 TeV and
p
✓ ⇠ 10�35 m. For n > 0, units can be chosen as MD ⇠ 1 TeV and

p
✓ ⇠ 10�4 fm.

It has been shown to be rather di�cult to perform explicit computations when

working directly with non-commutative coordinates [31]. For quantum mechanical

computations, one can usually define new commuting coordinates in terms of a com-

bination of phase-space coordinates. In this scenario, non-commutativity can be

thought of physically as an external magnetic field (see Refs. [32, 33] for further de-

tails). This procedure does not translate to the Lagrangian formalism of quantum

field theory. Instead, non-commutative quantum field theories are formulated with
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ordinary commuting coordinates, and the non-commutativity enters through a Moyal

⇤-product multiplication law [30]. However it has been argued that the ⇤-product pre-

scription of non-commutative quantum field theory does not cure the UV-divergences

that one would expect from a successful theory of non-commutative geometry and

also leads to violations of Lorentz invariance and unitarity [30, 31].

An alternative approach to non-commutative quantum field theory was introduced

in Ref. [30] based on a coherent state formalism. The coherent state approach in-

troduces a natural cuto↵ in the propagator for a free particle as determined by the

non-commutative parameter ✓ which leads to a theory that is UV finite [31]. The

result is that point-like structures represented by Dirac-delta functions of positions

are eliminated in favour of Gaussian smeared matter distributions of width
p
2✓ [34].

Non-commutativity is intrinsic to the manifold, rather than some superimposed ge-

ometrical structure, so we would expect not to just extend classical concepts, but

rather to obtain entirely new phenomenon [34]. Indeed this is the case as we will

show in subsequent sections.

2.3 Non-commutative Black Holes

One method in which we might observe the e↵ects of a non-commutative geometry

are through the properties of black holes. We may anticipate that the fuzziness of

spacetime introduced by non-commutativity of the spatial coordinates may lead to de-

viations from standard general relativity. Given that non-commutative geometry has

been shown to cure the bad short-distance behaviour in quantum field theory [30],

we might hope that non-commutativity would cure the divergence that appears in

general relativity, particularly the curvature singularity at the centre of a black hole.

To investigate this scenario, we would ideally like to construct a full non-commutative

equivalent of general relativity. Despite numerous studies in the field, no such com-

plete formulation exists at the present time. Nevertheless we can still study non-

commutative e↵ects on the properties of black holes through modifications to typical
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black hole metrics. A nice review of the developments of non-commutative inspired

black holes is given by [22]. The non-commutative inspired Schwarzschild black hole

was first introduced by Nicolini [34], and extended to the case of higher dimensional

black holes by Rizzo [12], and later to charged black holes by Ansoldi [35]. A charged

rotating solution was developed by applying the Newman-Janis algorithm in Ref. [36].

The Hawking e↵ect and other thermodynamical aspects have been studied in Ref. [37–

39]. Quasi-normal modes were calculated for massless scalar fields in Refs. [40, 41].

Tunneling of massive scalar fields was considered in Ref. [42]. A Monte Carlo event

generator for the LHC was implemented in Ref. [27]. The discovery potential at the

LHC with the ATLAS experiment was studied in Ref. [43]. Greybody factors were

calculated for massless spin 0 fields in Ref. [11].

Since a full theory of non-commutative (NC) general relativity has not as of yet

been worked out, the best we can do is leave the standard form of the Einstein tensor

unchanged, and only consider NC e↵ects on the matter source [34]. As stated above,

the e↵ect of non-commutativity is that the point like sources typically represented by

Dirac delta functions of position are replaced with Gaussian smeared matter distri-

butions of width
p
2✓ [34]. The mass density of a static spherically symmetric source

can then be represented as

⇢(r) =
M

(4⇡✓)(n+3)/2
e
� r

2

4✓ . (2.6)

In principle, one is not restricted to use a Gaussian, and could instead use another

form of smeared matter distribution, see for example Ref. [44]. The goal is then to

find the higher dimensional NC modified metric that is spherically symmetric and

exhibits the Schwarzschild-like property that �gtt = g
�1

rr
. This was first derived

in four dimensions by Nicolini [34] and extended to the higher dimensional case by

Rizzo [12], by using Eq. (2.6) with the additional condition of covariant conservation

of the energy momentum tensor which generates the following solution

ds
2 = �h(r)dt2 + h(r)�1

dr
2 + r

2
d⌦2

n+2
, (2.7)
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where d⌦2

n+2
is the metric of (n+ 2)-dimensional unit sphere

d⌦2

n+2
= d✓

2

n+1
+ sin2

✓n+1

�
d✓

2

n
+ sin2

✓
2

n

�
· · ·+ sin2

✓2

�
d✓

2

1
+ sin2

✓1d�
2
���

. (2.8)

The metric function h(r) is defined as

hNC = 1�
1

kn

M

MD

1

(MDr)n+1
P

✓
n+ 3

2
,
r
2

4✓

◆
, (2.9)

where

kn =
n+ 2

2n⇡(n�3)/2�
�
n+3

2

� , (2.10)

and P is the normalized lower incomplete gamma function �

P

✓
n+ 3

2
,
r
2

4✓

◆
=

1

�
�
n+3

2

��
✓
n+ 3

2
,
r
2

4✓

◆
=

1

�
�
n+3

2

�
Z r

2

4✓

0

dte
�t
t
n+3

2
�1
. (2.11)

In the limit of ✓ ! 0 or P ! 1, we recover the higher dimensional commutative

metric, also known as the Schwarzschild-Tangherlini (ST) solution [45]. In Figure 2.1

we plot the metric function against the radial coordinate r for di↵erent black hole

masses. For large r, or more specifically r �
p
✓, the metric function has asymptotic

behaviour which approaches the usual ST case. In the vicinity of r = 0, the metric

function remains finite which as we will show later is a signature of the regularity of

the manifold at short scales [11].

Depending on the mass of the black hole, there can be no horizon, a single degen-

erate horizon, or two horizons. A novel feature of NC black holes is the existence of a

minimum mass below which a horizon will not form. The horizon radius rH is defined

by g
rr(rH) = 0, which for ✓ 6= 0 leads to the transcendental equation

rH =
1

MD


M

knMD

P

✓
n+ 3

2
,
r
2

H

4✓

◆� 1

n+1

. (2.12)

We are unaware of a closed from solution to this equation and so have solved it

numerically for rH. In the commutative limit of ✓ = 0, the horizon reduces to the

usual higher dimensional ST case

rH|✓=0
=

1

MD


M

knMD

� 1

n+1

. (2.13)
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Figure 2.1: The metric function h(r) for various black hole masses in n = 7 extra
dimensions and MD =

p
✓ = 1. The solid curves are for non-commutative cases

depicting the possibility of 0, 1, or 2 horizons with masses corresponding to 30MD,
20.4MD and 10MD, respectively. The dashed curve represents the Schwarzschild-
Tangherlini case with a mass of 30MD for comparison.
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The di↵erence between the NC and ST horizon radius for a given mass is maximum

at the NC minimum mass. This is clearly seen for n = 7 case in Figure 2.1. In

Table 2.1 we give the NC minimum mass Mmin and corresponding horizon radius rH

for each number of extra dimensions n with MD =
p
✓ = 1.

Table 2.1: Non-commutative inspired black hole minimum mass Mmin for which
there exists a single degenerate horizon, as well as the horizon radius rH for di↵erent
number of extra dimensions n with MD =

p
✓ = 1.

n

0 1 2 3 4 5 6 7

Mmin/MD 47.9 63.2 65.3 58.9 48.7 37.9 28.3 20.4
rHMD 3.05 2.71 2.52 2.43 2.35 2.32 2.29 2.26

For masses greater than the minimum mass, we observe in addition to the outer

event horizon, the existence of an inner Cauchy horizon. The existence of a Cauchy

horizon potentially leads to instabilities similar to those found in the Reissner-Nordstrom

or Kerr metrics, though further investigation into this instability is required before a

definite conclusion can be made [46, 47].

The finite behaviour of the metric function in Eq. (2.9) as r ! 0 is a particularly

interesting result arising from the NC geometry. To further investigate the regularity

of the metric, it is of interest to compute the Kretschmann scalar which is defined as

K = RabcdR
abcd

, (2.14)

where here we make use of the Einstein summation convention, and Rabcd = gaeR
e
bcd

where R
e
bcd is the Riemann curvature tensor. The Kretschmann scalar is useful for

determining the regularity of the metric as well as distinguishing real singularities from

coordinate singularities. For a static and spherically symmetric space-time defined

in terms of a single metric function h(r) as described by Eq. (2.7), the Kretschmann

scalar simplifies to the following general form

K = (h00)2 + 4
(h0)2

r2
+ 4

(h� 1)2

r4
, (2.15)
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where a prime denotes a derivative with respect to r. For this we require the first

derivative of the metric function with respect r

h
0(r) =

M

kn�
�
n+3

2

�
M

n+2

D

"
(n+ 1)

1

rn+2
�

✓
n+ 3

2
,
r
2

4✓

◆
�

2r

(4✓)
n+3

2

e
� r

2

4✓

#
, (2.16)

where we used the definition

�
0
✓
n+ 3

2
,
r
2

4✓

◆
= 2

r
n+2

(4✓)
n+3

2

e
� r

2

4✓ . (2.17)

We also require the second derivative of the metric function with respect to r

h
00(r) =

M

kn�
�
n+3

2

�
M

n+2

D
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�(n+ 1)(n+ 2)

1

rn+3
�
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2
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4✓

◆

+
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2

(4✓)
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2

e
� r

2
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✓
(n+ 2)�

r
2

2✓

◆#
. (2.18)

We find that in the NC case, the Kretschmann scalar remains finite over all r for

n  7 and for the case of 0, 1 and 2 horizons thus verifying the regularity of the

metric described by Eq. (2.9). As a representative example, we plot the Kretschmann

scalar for the case of n = 7 with MD =
p
✓ = 1 for each of the possible horizon

scenarios in Figure 2.2. In contrast to the ST case which diverges as r ! 0, the NC

case remains finite.

As shown in Figure 2.2, the Kretschmann scalar in the NC case approaches a finite

value as r ! 0. It may be interesting to derive the analytic form the Kretschmann

scalar in the limiting case of r ! 0. Using the series representation of the lower

incomplete gamma function

�(s, z) = z
s�(s)e�z

1X

k=0

z
k

�(s+ k + 1)
, (2.19)

which for z ! 0 behaves like

�(s, z)
z!0
= z

s
�(s)

�(s+ 1)
=

z
s

s
, (2.20)

we find that the Kretschmann scalar for the NC metric takes on the following finite

value for r ! 0

K|
r!0

=

 
M

kn�
�
n+3

2

�
M

n+2

D

!2

1

(4✓)n+3

96

(n+ 3)2
. (2.21)
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Figure 2.2: Kretschmann scalar versus the radial coordinate for n = 7 extra dimen-
sions and with MD =

p
✓ = 1. The solid lines depict the finite behaviour of the non-

commutative metric as r ! 0 increasing from bottom to top with masses of 10MD,
20.4MD and 30MD corresponding to geometries with no horizon, one degenerate
horizon and two horizons, respectively. The dashed line represents the Schwarzschild-
Tangherlini metric for a mass of 30MD which diverges as r ! 0.
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For completeness, we also give the analytic form of the Kretschmann scalar for the

ST case

K =

 
M

kn�
�
n+3

2

�
M

n+2

D

!2

1

r2n+6

⇥
(n+ 1)2(n+ 2)2 + 4(n+ 1)2 + 4

⇤
. (2.22)

Perhaps the most striking feature of NC black holes are their thermodynamic

properties. The Hawking temperature for a higher dimensional NC black hole is

given by [34]

TH =

✓
1

4⇡

dg00

dr

◆����
r=rH

=
n+ 1

4⇡rH

2

41� 2

n+ 1

✓
r
2

H

4✓

◆n+3

2 e
�r

2

H

4✓

�

⇣
n+3

2
,
r
2

H

4✓

⌘

3

5 . (2.23)

We note that the temperature is dependent on the mass through the horizon radius

as described in Eq. (2.12). The quantity in square brackets modifies the usual higher

dimensional commutative form of the temperature. In Figure 2.3 we plot the tem-

perature against the horizon radius with MD =
p
✓ = 1. We observe that in contrast

to the ST case, there exists a maximum temperature, and also that the temperature

vanishes at the minimum mass.

In later sections when computing the greybody factors and comparing the emission

to the ST case, of interest to us will be the NC black hole maximum temperature

Tmax and mass MeM at which the maximum temperature occurs. To separate the

e↵ect of temperature on the emission spectra from the non-commutative e↵ects, we

will also use values of the ST black hole mass at equal temperature to the NC black

hole maximum temperature MeT . These values are shown in Table 2.2.

To give us a better understanding of the unique thermodynamical characteristics

of NC black holes, we study the heat capacity (at constant pressure) C, which is

defined as [12]

C =
@M

@TH

=
@M

@rH

✓
@TH

@rH

◆�1

. (2.24)

For NC black holes, the heat capacity takes on the following form

C = �
4⇡kn (MDrH)

n+2
�
1� 2

n+1
un(rH)

�

P

⇣
n+3

2
,
r
2

H

4✓

⌘ h
1 + 2

n+1
un(rH)

⇣
n+ 2�

2r
2

H

4✓
� 2un(rH)

⌘i , (2.25)
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Figure 2.3: Black hole temperature versus the horizon radius for a di↵erent number
of extra dimensions with MD =

p
✓ = 1. The solid lines are for non-commutative

black holes and the dashed lines are for Schwarzschild-Tangherlini black holes.
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Table 2.2: Non-commutative inspired black hole maximum temperature Tmax, mass
at which the maximum temperature occurs MeM , and mass MeT of a Schwarzschild-
Tangherlini black hole that has temperature equal to the NC black hole maximum
temperature Tmax, for di↵erent number of extra dimensions n with MD =

p
✓ = 1.

n

0 1 2 3 4 5 6 7

Tmax[r
�1

H
] 0.015 0.030 0.043 0.056 0.067 0.078 0.089 0.098

MeM/MD 60.47 108.3 157.5 204.9 249.1 289.4 325.6 357.7
MeT/MD 66.95 136.0 224.8 332.0 456.4 597.0 753.0 923.7

where for convenience we have defined

un(rH) =

✓
r
2

H

4✓

◆n+3

2

e
� r

2

H

4✓


�

✓
n+ 3

2
,
r
2

H

4✓

◆��1

. (2.26)

When ✓ ! 0, we recover the commutative form of CST = �4⇡kn (MDrH)
n+2. In

Figure 2.4 we plot the heat capacity versus the horizon radius with MD =
p
✓ = 1.

For large rH we find that C is negative and asymptotes to the commutative value.

At rH corresponding to the maximum temperature, there is a phase transition and

C changes sign. This means that for NC black holes with a horizon radius less than

the maximum temperature horizon radius, we find that C > 0 and the system is

thermodynamically stable. The heat capacity vanishes as the temperature goes to

zero corresponding to the minimum mass.

For a NC black hole evaporating via Hawking radiation, as the mass approaches

the minimum mass, the temperature approaches zero and the heat capacity vanishes

which may terminate Hawking radiation leaving behind a remnant mass [34]. These

properties are in clear contradistinction to the classical black hole with temperature

becoming infinite as the black hole approaches zero mass and horizon radius. The

emergence of a remnant mass has appeared in other quantum gravity motivated

theories such as in loop quantum gravity [48], and the thermodynamical stability

near the end of the black hole evaporation has been argued to be a general property

of quantum gravity inspired black holes [11, 49]. A unique feature of NC black holes

is that the minimum mass remains above the Planck scale [22].

24



Figure 2.4: Black hole heat capacity at constant pressure versus the horizon radius
for a di↵erent number of extra dimensions with MD =

p
✓ = 1. The solid lines are for

non-commutative black holes and the dashed lines are for Schwarzschild-Tangherlini
black holes.
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To conclude our analysis of the thermodynamic properties of NC black holes, we

may also consider the entropy which is defined as [12]

S =

Z
1

TH

@M

@rH
drH. (2.27)

For NC black holes it is natural to define the lower limit of integration such that

the entropy vanishes at the horizon radius corresponding to the minimum mass. In

Figure 2.5 we plot the black hole entropy versus the horizon radiusMD =
p
✓ = 1. For

large horizon radii we recover the commutative limit of S = 4⇡knM
n+2

D
r
n+2

H
/(n+ 2).

Figure 2.5: Black hole entropy versus the horizon radius for a di↵erent number of
extra dimensions with MD =

p
✓ = 1. The solid lines are for non-commutative black

holes and the dashed lines are for Schwarzschild-Tangherlini black holes. The number
of dimensions increases from bottom to top at large horizon radii.
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Chapter 3

Theoretical Overview

In order to compute the Hawking radiation emitted from black holes, one needs to

compute the relevant greybody factors. Black hole greybody factors are typically

studied in the context of a perturbation problem by examining the response to per-

turbations of various spin fields. For a treatment of the problem in the context of

tunneling through a potential barrier, we refer the reader to [18]. Physically, the

greybody factors represent the transmission coe�cients between the ingoing and out-

going waves at the horizon as viewed by an observer at spatial infinity. Gravitational

perturbations of a black hole were first studied by Regge and Wheeler for the ax-

ial or odd parity modes of a Schwarzschild black hole [50]. The polar or even parity

modes were later derived by Zerilli [51]. Bardeen and Press used the Newman-Penrose

formalism to derive the perturbations of Schwarzschild black hole which can be trans-

formed to either the axial or polar equations [52]. Teukolsky and Press applied similar

concepts to the Kerr geometry to derive a master equation for spin 0, 1/2, 1 and 2

perturbations of a rotating black hole [53–55]. Teukolsky’s formalism has since been

applied to a number of di↵erent black hole metrics, such as the Myers-Perry metric for

higher dimensional rotating black holes with a single angular momentum parameter

by Kanti [56].

In this section, we will introduce the relevant mathematical tools necessary to com-

pute greybody factors for massless spin fields from spherically symmetric metrics on
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the brane and in the bulk. Throughout, we will keep our derivation as general as

possible to allow for the possible extension to other spherically symmetric metrics.

We will separate the Teukolsky equation into angular and radial parts. We solve

for the eigenvalues of the angular equation and insert them into the radial equation.

The radial equation turns out be a second order di↵erential equation which we cast

into the form of a one-dimensional Schrödinger equation with the appropriate Chan-

drasekhar transformation. Finally we introduce the transfer matrix formalism with

which we numerically compute the greybody factors. Since a metric describing a ro-

tating black hole in a NC geometry does not yet exist, we will restrict our attention

to NC black holes only in the non-rotating case. For an outline of the procedure for

higher dimensional rotating black holes, see Appendix A.

3.1 Black Hole Perturbation Theory

The computation of both greybody factors and quasi-normal modes is rooted within

the framework of black hole perturbation theory. Black hole perturbation theory

governs the propagation of fields in the background space-time of the black hole

background. Generally one considers external perturbations by adding a test field

to the black hole background space-time and determining the resulting equation of

motion [57]. For gravitational perturbations, one could also perturb the metric itself

and proceed with linearizing the Einstein equations. In four dimensions there are

two types of gravitational perturbations, scalar perturbations (also known as polar or

even) and vector perturbations (also known as axial or odd). Scalar perturbations are

invariant under a reversal of the azimuthal direction whereas vector perturbations are

not [58]. In the case of Schwarzschild black holes, the scalar and vector perturbations

give rise to the same greybody factors and quasi-normal modes, a property known as

isospectrality. This was first discovered by Chandrasekhar and Detweiler who related

the two types of perturbations through a transformation [59]. Isospectrality is not

guaranteed for all metrics, and analytical proof is di�cult to obtain [60]. In higher
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dimensions, a third kind of gravitational perturbation arises which is called a tensor

perturbation [61].

3.1.1 Spherically Symmetric Metrics

Let us begin by considering a general spherically symmetric and static metric in a

(4 + n)-dimensional space-time

ds
2 = �G(r)dt2 +

1

F (r)
dr

2 +H(r)d⌦2

n+2
. (3.1)

Further, we are interested in asymptotically flat space-times such that at spatial

infinity r ! 1 we have

G(r) ! 1, F (r) ! 1, and H(r) ! r
2
. (3.2)

For the non-commutative and Schwarzschild-Tangherlini black holes for which we are

interested in, the metrics exhibit time-radial symmetry such that F (r) = G(r) = h(r)

and H(r) = r
2. Ordinary matter is restricted to propagate on the brane, while scalars

and gravitons may propagate in the full higher dimensional bulk. The 4-dimensional

brane can be represented as a slice of the higher dimensional space-time [11]. The

metric for brane-localized modes can be obtained by fixing the values of the extra

angular coordinates, ✓i for i > 1

ds
2 = �G(r)dt2 +

1

F (r)
dr

2 +H(r)d⌦2
, (3.3)

where now d⌦2 = (d✓2 + sin ✓d�2) is the metric of the 2-dimensional unit sphere.

For scalar fields, it is straightforward to write the Klein-Gordon equation in curved

space-time [62, 63]. The Klein-Gordon equation for a massive scalar field � is

�
⇤�m

2

�

�
� =

1
p
�g

@µ

�
g
µ⌫
p
�g@⌫�

�
�m

2

�
= 0, and

p
�g =

r
G

F
H sin ✓, (3.4)
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where m� is the mass of the field. Evaluating each of the components gives
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The equations of motion become
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For higher spin fields it is di�cult to work directly with the metric due to the mul-

tiplicity of the components [63]. Instead, the Newman-Penrose formalism is often

used, which relies on a reformulation of the equations of motion using a null tetrad

field [64]. This approach was popularized by Teukolsky as applied to the study of

perturbations of the Kerr metric [53]. The Newman-Penrose formalism has been well

studied in the literature, and we only present the resulting equations of motion here.

For a spherically symmetric and static metric, the equations of motion for a massless

field  s with spin s reads [63]
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where a prime denotes a derivative with respect to the radial coordinate r. The
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equations are separable into radial and angular parts by writing the ansatz

 s = e
�i!t

e
im�

sY
m

`
(✓)Rs(r), (3.11)

where sY
m

`
(✓) are the spin-weighted spherical harmonics with eigenvalues s�` = `(`+

1)� s(s+ 1). The resulting radial equation reads
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3.2 Short-ranged Potentials

The radial equation contains information about the transmission and reflection coef-

ficients, and hence the greybody factors. The radial equation is a second order ODE

for which there is no known analytic solution.

The trouble with the radial equation in the context of a scattering problem is that

the first order radial derivatives create complex is! terms which have a 1/r behaviour

at infinity [65]. This eventually leads to problems in the numerical computations and

introduces round-o↵ errors and instability. In four dimensions, Chandrasekhar [66]

found that the radial Teukolsky equation can be transformed into a one dimensional

Schrödinger-like wave equation with an e↵ective short-ranged potential


d
2

dr2⇤
+ !

2

�
Z(r⇤)� V (r(r⇤))Z(r⇤) = 0, (3.13)

where r⇤ is a generalized tortoise coordinate. Similar transformations can be made for

di↵erent types of metrics. The purpose of this transformation is that the potentials

V (r(r⇤)) are short-ranged, that is they die away faster than 1/r proving advantageous

for numerical computations [65].
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3.2.1 Short-ranged Potentials on the Brane

Short-ranged potentials for a general static and spherically symmetric metric on the

brane were derived for massless spin 1 and 1/2 fields in Ref. [63] and for massless

vector spin 2 fields in Ref. [67]. The scalar spin 2 potential was derived in Ref. [60].

The short-range potentials for a general spherically symmetric and static metric on

the brane are

V0 =0�`
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where for the scalar spin 2 potential we have defined

U =
2

H
+

1

4H2

�
(FG)0 H 0

� 3F (H 0)2 + 2FHH
00�

. (3.15)

The potentials are defined as functions of r, and the derivatives are with respect to

r⇤. Here, the tortoise coordinate is defined as

dr⇤

dr
=

1
p
FG

, (3.16)

such that r⇤ �! +1 as r �! +1 and r⇤ �! �1 as r �! rH. In some cases

such as for the Schwarzschild-Tangherlini case, analytic expressions exist for r⇤(r).

However in general and for the NC case, Eq. (3.16) must be numerically integrated.

To solve for r⇤(r) numerically for NC black holes, we integrate Eq. (3.16) over the

range r/rH = [✏, 350]. We take as an initial condition r⇤(r) = r⇤,ST (r) for a large value

of r/rH = 350 approximating +1. Here we define r⇤,ST (r) as the tortoise coordinate

for the ST case for which analytical solutions exist for any number of extra dimensions
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and are given in Appendix B. In this way, the constant of integration is e↵ectively

chosen to be zero so that we asymptotically approach the ST case for r ! 1. We

then integrate backwards towards the horizon using a variable step size to a value of

rH + ✏ with ✏ ⇡ 10�16 . This allows us to obtain r⇤(r) as close to r⇤ ! �1 as our

machine precision will allow.

Figure 3.1: E↵ective potentials for non-commutative black holes versus the radial
coordinate r for spin 0, 1/2, 1 and 2 massless fields and n = 7. A black hole mass
of M = 358MD has been used corresponding to the non-commutative maximum
temperature. MD =

p
✓ = 1 has been taken.

In Figures 3.1 and 3.2 we show the behaviour of the potentials against r and

r⇤, respectively, for a NC black hole at the maximum temperature with n = 7 and

MD =
p
✓ = 1. For the spin 1/2 potential, one must take the positive sign in

Eq. (3.14b) to get a positive potential for all r, although both potentials lead to
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Figure 3.2: E↵ective potentials for non-commutative black holes versus the tortoise
coordinate r⇤ for spin 0, 1/2, 1 and 2 massless fields and n = 7. A black hole mass
of M = 358MD has been used corresponding to the non-commutative maximum
temperature M = 358MD. MD =

p
✓ = 1 has been taken.
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the same transmission coe�cients. For the spin-2 case, it is possible for the vector

potential to become negative. This was first discussed in Ref. [67] for the ST case.

For the ST case, for the potential to become negative we find that

n+ 3 > `(`+ 1). (3.17)

Since we consider values of n  7, we find that the potential only becomes negative

when ` = 2 and for n > 3. This condition is di↵erent than the one given in Ref. [67]

as we use a di↵erent form of the potential. For the NC case, the condition for the

potential to go negative is

n+ 3� 2
M

kn�
�
n+3

2

�
(MD)n+2

r
2

H

(4✓)
n+3

2

e

�r
2

H

4✓ > `(`+ 1). (3.18)

We only get a negative potential when ` = 2 and M > 181.9MD for n = 4, M >

120.4MD for n = 5, M > 83.1MD for n = 6, M > 57.3MD for n = 7. We will discuss

the e↵ect of the negative potential in further detail in later sections when describing

the absorption cross section results. In Figure 3.3 we compare the behaviour of the

vector and scalar spin 2 potentials against r⇤ for a NC black hole at the maximum

temperature with n = 7 and MD =
p
✓ = 1. We note that while the vector potential

may go negative, the scalar potential is always positive.

3.2.2 Short-ranged Potentials in the Bulk

Emission of massless spin 0 and 2 fields in the bulk can be studied by finding the

equation of motion on the full higher dimensional space-time given by Eq. (3.1). In

the bulk we only present results for static and spherically symmetric metrics which

exhibit time-radial symmetry with F (r) = G(r) = h(r) and H(r) = r
2. In this case,

spin 2 perturbations in the bulk decompose into three types: scalar, vector and tensor.

In the bulk, it was found that the master equation for each type of perturbation is

separable with [61]

 
bulk

s
= e

�i! t
R

bulk

s
(r)sY`,j (✓1, ..., ✓n+1,�) , (3.19)
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Figure 3.3: Scalar and vector spin 2 e↵ective potentials for non-commutative black
holes versus the tortoise coordinate r⇤ and for n = 7. A black hole mass of M =
358MD has been used corresponding to the non-commutative maximum temperature
M = 358MD. MD =

p
✓ = 1 has been taken.

whereRbulk

s
(r) is the bulk radial function and sY`,j (✓1, ..., ✓n+1,�) are the spin-weighted

hyper-spherical harmonics which are a generalization of the spin-weighted spherical

harmonics for higher dimensions of space [11, 68]. For each `, there are N` hyper-

spherical harmonics represented by the index j. The multiplicities for scalar N
S

`
,

vector NV

`
and tensor NT

`
are

N
S

`
=

(2`+ n+ 1)(`+ n)!

`!(n+ 1)!
,

N
V

`
=

`(`+ n+ 1)(2`+ n+ 1)(`+ n� 1)!

n!(`+ 1)!
,

N
T

`
=

n(n+ 3)(`+ n+ 2)(`� 1)(2`+ n+ 1)(`+ n� 1)!

2(`+ 1)!(n+ 1)!
. (3.20)

The scalar multiplicity N
S

`
reduces to the well known 2` + 1 for n = 0. Using the

tortoise coordinate defined in Eq. (3.16), the bulk radial equation for massless spin 0

fields takes the form of that in Eq. (3.13) with the following short-ranged potential [69]

V
bulk

0
= h

✓
`(`+ n+ 1)

r2
+

(n+ 2)

2r
h
0 +

n(n+ 2)

4r2
h

◆
. (3.21)

The bulk spin 0 potential Eq. 3.21 reduces to the spin 0 potential on the brane for
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n = 0. For massless spin 2 fields, short-ranged potentials for the scalar V bulk,S

2
, vector

V
bulk,V

2
and tensor V bulk,T

2
modes are [61]

V
bulk,S

2
= h

U

16r2
⇥
`(`+ n+ 1)� (n+ 2) + 1

2
(n+ 2)(n+ 3)(1� h)

⇤2 , (3.22a)

V
bulk,V

2
= h

✓
`(`+ n+ 1)� 1� (n+ 1)

r2
�

(n+ 2)

2r
h
0 +

(n+ 2)(n+ 4)

4r2
h

◆
, (3.22b)

V
bulk,T

2
= h

✓
`(`+ n+ 1)

r2
+

(n+ 2)

2r
h
0 +

n(n+ 2)

4r2
h

◆
, (3.22c)

where for the scalar spin 2 potential we define

U =(n+ 2)4(n+ 3)2(1� h)3 + (n+ 2)(n+ 3)
⇥
4(2(n+ 2)2

� 3(n+ 2) + 4)⌫ + n(n+ 2)(n� 2)(n+ 3)
⇤
(1� h)2

� 12(n+ 2) [(n� 2)⌫ + n(n+ 2)(n+ 3)] ⌫(1� h) + 16⌫3

+ 4(n+ 2)(n+ 4)⌫2, (3.23)

with ⌫ = `(`+n+1)� (n+2). We note that the scalar potential given by Eq. (3.22a)

is only applicable for the ST case and is not valid for a general metric function h(r).

Thus we cannot use Eq. (3.22a) to compute the emission of spin 2 scalar modes

from NC black holes, nor are we aware of the general form of the potential. In four

dimensions and for the ST case only, the scalar spin 2 potential reduces to the scalar

spin 2 potential on the brane given in Eq. (3.14e). In four dimensions, the vector spin

2 potential reduces to the vector spin 2 potential on the brane given in Eq. (3.14d).

There is no equivalent in four dimensions for the tensor spin 2 potential given in

Eq. (3.22c). We note that the tensor spin 2 potential Eq. (3.22c) is identical to bulk

spin 0 potential Eq. (3.14a). In Figures 3.4 and 3.5 we plot the spin 0 and vector

and tensor spin 2 potentials for n = 7 and for various ` modes from a NC black hole.

Black hole masses at the NC black hole maximum temperature are used.
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Figure 3.4: E↵ective potentials for non-commutative black holes in the bulk versus
the radial coordinate for massless spin 0 and 2 fields versus the radial coordinate r

and for n = 7. A black hole mass of M = 358MD has been used corresponding to the
non-commutative maximum temperature. The peak of the potentials increases with
increasing values of ` beginning at ` = s. MD =

p
✓ = 1 has been taken.
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Figure 3.5: E↵ective potentials for non-commutative black holes in the bulk versus
the tortoise coordinate r⇤ for massless spin 0 and 2 fields and for n = 7. A black
hole mass of M = 358MD has been used corresponding to the non-commutative
maximum temperature. The peak of the potentials increases with increasing values
of ` beginning at ` = s. MD =

p
✓ = 1 has been taken.
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3.3 Path-ordered Exponentials

Most attempts to solve the radial equation in the literature are done by using asymp-

totic matching with the appropriate boundary conditions. The boundary conditions

on Eq. (3.13) for a spherically symmetric and static black hole are

Z(r⇤) = Aine
�i! r⇤ for r �! rrH , (3.24)

and

Z(r⇤) = Bine
�i! r⇤ +Boute

i! r⇤ for r �! 1, (3.25)

where at the horizon we consider only in-going modes to enforce that nothing can

escape the black hole. Taking the normalization Ain = 1 without loss of generality,

we may start with the solution at the horizon Eq. (3.24) and integrate Eq. (3.13) out

to infinity where the transmission coe�cient �(!) is computed as

�(!) = 1�

����
Bout

Bin

����
2

. (3.26)

Further details of this computation are given in Appendix A.

Alternatively, Gray and Visser [70] proposed a method which involves extract-

ing the transmission coe�cients directly via path-ordered exponentials. This is the

method we will adopt here and extend it to the geometry of the ST and NC metrics.

Gray et al. showed that the Bogoliubov coe�cients relating the incoming and

outgoing waves can be directly obtained by the following path-ordered exponential [70]


↵ �

⇤

� ↵
⇤

�
= Pexp

✓
�

i

2!

Z
+1

�1
Vs(r⇤)


1 e

�2i! r⇤

�e
2i! r⇤ �1

�
dr⇤

◆
, (3.27)

where P is a path ordering operator. Using the product calculus definition of path-

ordered integrals, we may compute the Bogoliubov coe�cients via the following prod-

uct integral [70] 
↵ �

⇤

� ↵
⇤

�
=

+1Y

�1
(I + A(r⇤)dr⇤), (3.28)
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where I is the identity matrix and A(r⇤) is called the transfer matrix given by

A(r⇤) = �
i

2!
V (r⇤)


1 e

�2i! r⇤

�e
2i! r⇤ �1

�
. (3.29)

The path ordering operator P requires that the product integral be calculated such

that

PA(x1)A(x2)... = A(x�(1))A(x�(2))..., (3.30)

where x�(1) � x�(2) � ..., i.e. the order in which to multiply is such that the argument

of A must be decreasing. The product integral can be approximated numerically by

↵ �

⇤

� ↵
⇤

�
= lim

N!1
[(I + A(r⇤N�1)h)...(I + A(r⇤1)h)] , (3.31)

where r⇤i > r⇤i�1 and h = (r⇤N�1 � r⇤1)/(N � 1) is the step size. While this ex-

pression is straightforward to compute numerically, convergence can sometimes be

slow. To improve convergence, we note that Gray [71] recommends using a fifth order

approximation from Helton and Stuckwisch

↵ �

⇤

� ↵
⇤

�
=

NY

k=1

(I + (28K1 + 32K2 + 6K3 + 4K4 +K5)/360)) , (3.32)

where

K1 = hA4, (3.33a)

K2 = hA3 (4I +K1)) , (3.33b)

K3 = hA2 (8(I �K1) + 3K2)) , (3.33c)

K4 = hA1(32I + 18K1 + 3hA2(6I �K1 +K2)� 3K2), (3.33d)

K5 = hA0(28(I �K1)� 3hA2(16I + 4K1 +K2) +K4 + 18K2). (3.33e)

The transmission probabilities �(!), are related to the Bogoliubov coe�cients by

�(!) =
1

|↵(!)|2
. (3.34)

Here we emphasize that through this procedure, one does not actually solve numer-

ically a di↵erential equation. Instead, the problem now becomes one of perform-

ing a single numerical product integral using finite di↵erences, either Eq. (3.31) or
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Eq. (3.32). Numerically for N = 104 we find that the convergence of Eq. (3.31) is

su�cient and we do not require the higher order approximation of Eq. (3.32). We

will give more detail on the convergence in later sections.
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Chapter 4

Greybody Factors on the Brane

In this section we present the calculations of transmission coe�cients, absorption

cross sections, and spectra for spin 0, 1/2, 1, and 2 massless fields on the brane. The

work in this section has previously been published in Ref. [1] in collaboration with

Doug Gingrich. We have validated the method by comparing with well known results

for four dimensional Schwarzschild and Kerr black holes, as well as the ST black

holes [67, 69] that we use for comparison with the NC results. As noted in previous

sections, there are both vector and scalar modes for spin 2 fields which must be

treated separately. To allow for comparisons with literature, we only present results

for the vector modes for spin 2 fields unless otherwise stated. We provide results for

the scalar modes for spin 2 fields in our discussion of isospectrality.

For the NC results, we acknowledge that Ref. [11] inserts a damping factor of e�
1

2
✓ !

2

in the equations for the emission rate Eq. (4.6) and number flux Eq. (4.5) as a way

to model the e↵ect of an ultra-violet cuto↵ in the frequency !. Including this factor

gives a subdominant e↵ect [11] and is not particularly relevant to our discussions and

will be ignored.

4.1 Parameter Selection

The model of NC geometry inspired black holes in higher dimensions has three un-

known parameters n, MD, and
p
✓. Typically we present results for each extra dimen-
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sion n. Usually it is necessary to fix the other two parameters. One possibility for

fixing the parameters is to be guided by experimental constraints. Updating the ap-

proach taken in Ref. [27] (see Appendix C) restricts the values of
p
✓MD that can be

probed from 0.25 to 0.98, di↵erent for each number of extra dimensions. The allowed

range in
p
✓MD for any given number of extra dimensions is severely restricted. Cal-

culations using values of
p
✓MD < 1 begin to probe the details of the matter smearing

distribution and become model dependent. However, the primary goal in this thesis

is to study the di↵erences in Hawking emission from NC and ST black holes so we

choose the usual condition MD =
p
✓ = 1. This implies that our phenomenological

predictions will not have particular consequence for the physics at the LHC.

We run into some complications when trying to choose dimensionless quantities

due to the two scales MD and
p
✓ that appear in models of higher dimensional NC

geometry inspired black holes. We note that the units in the following plots are not

dimensionless and depend on our choice of mass. In general, we plot our results

against the frequency ! with ! rH being the dimensionless quantity.

4.2 Transmission Coe�cients

The fundamental calculated quantity is the transmission coe�cient as a function of

frequency for di↵erent black hole masses, number of extra dimensions, spin, and `

modes. The transmission coe�cients are computed numerically using Eq. (3.31) with

N = 104. For numerical stability, the lowest frequency we consider is ! = 0.001,

and we consider frequencies up to and including ! = 1. In Figure 4.1 we plot the

convergence of the transmission coe�cients at various values of ! from NC black holes

for the s = ` modes and for n = 7 extra dimensions. A black hole mass of 358MD is

used corresponding to the NC black hole maximum temperature. We have followed

the procedure of Gray [70] by defining the relative error of the N th approximation as

��s,`(!) =

���N

s,`
(!)� �N+1

s,`
(!)
��

�N

s,`
(!)

. (4.1)
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Figure 4.1: Relative error ��N

s,`
(!) of theN th approximation for the s = ` = 0, 1/2, 1, 2

modes on the brane as a function of N for various values of the frequency !. A black
hole mass of 358MD has been used corresponding to the non-commutative maximum
temperature. MD =

p
✓ = 1 has been taken.

Numerically for N = 104, we find that we introduce an error of at worst ⇠ 10�8 for

the s = ` modes. The convergence generally improves with increasing values of !. For

the lowest frequency that we consider of ! = 0.001, we observe that the convergence

for the spin 1 and 2 cases temporarily worsens past a certain value of N , and then

continues to improve. This behaviour does not exist for the spin 0 and 1/2 cases.

One reason as to which we may attribute this behaviour is due to the fact that the

s = ` modes at ! = 0 are non-zero for the spin 0 and 1/2 cases while they are zero for

the spin 1 and 2 cases. Since the spin 1 and 2 cases are e↵ectively zero, truncation

errors may become more prominent in the product integral, leading to a temporary
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reduction in the convergence.

Figure 4.2 shows transmission coe�cients for n = 7 and s = 0, 1/2, 1, 2 as a function

of frequency for di↵erent ` modes. The solid lines are for NC black holes and dashed

lines for ST black holes. The quantum number ` increases from ` = s going from left

to right. A black hole mass of 358MD is used and corresponds to the NC black hole

maximum temperature. We observe that the NC and ST black hole transmissions

coe�cients at this mass are very similar, di↵ering slightly for higher `. This is because

they have a similar horizon radius at this mass of 5.68 for NC black holes and 5.76

for ST black holes.

If the horizon radius di↵erence between NC and ST black holes is significantly

di↵erent, the comparison changes. Figure 4.3 shows transmission coe�cients for

n = 7 and s = 0, 1/2, 1, 2 as a function of frequency for di↵erent ` modes. A black

hole mass of 358MD and 924MD are used for the NC black hole and ST black hole,

respectively, corresponding to the NC black hole maximum temperature. In this case,

significant di↵erences are observed for a horizon radius of 5.68 for NC black holes and

6.48 for ST black holes.

To examine more significant di↵erences in transmission coe�cients, a value for

the black holes mass at the minimum NC black hole mass can be chosen and is

shown in Figure 4.4. The horizon radius of the NC black hole is 2.32 and that of

the ST black hole 4.02. We observe significant di↵erences between NC and ST black

hole transmission coe�cients with increasing `. The NC black hole transmission

probabilities begin to rise at higher frequencies but rise more steeply than the ST

transmission probabilities. This behaviour was first observed for spin 0 in Ref. [11].

The number of e↵ective ` modes used in the calculations can vary. The total

number of ` modes considered are 15, 15, 14, 13 for s = 0, 1/2, 1, 2, respectively.

The number of e↵ective ` modes giving a non-negligible contribution in the frequency

range 0.001  !  1 is di↵erent depending on M , n, and s. Typically, s = 0 and

1/2 have the same number of e↵ective modes, while s = 1 has one less and s = 2 has
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Figure 4.2: Transmission coe�cients �s,`(!) on the brane for s = 0, 1/2, 1, 2 as a
function of frequency !. The quantum number ` increases from ` = s going from left
to right. The red solid lines are for non-commutative black holes and the black dashed
lines for Schwarzschild-Tangherlini black holes. A black hole mass of 358MD has been
used corresponding to the non-commutative maximum temperature. MD =

p
✓ = 1

has been taken.

two less modes. The s = 1 and 2 cases have transmission coe�cients that turn-on at

higher frequencies relative to the s = 0 and 1/2 cases, i.e. because of ` � s, the higher

spins are missing the lower ` modes. As n increases, the transmission coe�cients

become more spread out, and thus less modes will contribute to the given frequency

range. The n = 0 case has about four more modes than n = 7. The lowest masses

we consider will have about three less e↵ective modes than the highest masses we

consider. The number of e↵ective modes that will fit into the frequency range is

largely determined by the spacing of the transmission coe�cients in frequency.
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Figure 4.3: Transmission coe�cients �s,`(!) on the brane for s = 0, 1/2, 1, 2 as a func-
tion of frequency !. The quantum number ` increases from l = s going from left to
right. The red solid lines are for non-commutative black holes with M = 358MD cor-
responding to the non-commutative maximum temperature. The black dashed lines
are for Schwarzschild-Tangherlini black holes with M = 924MD corresponding to a
black hole with a temperature equal to the non-commutative maximum temperature.
A black hole temperature of 0.098MD has been used and MD =

p
✓ = 1 taken.

Another important characteristic of the transmission coe�cients is how steeply they

rise with increasing frequency. In general, the turn-on steepness is largely independent

of spin except for the ` = 0 and 1 modes. The more e↵ective number of modes, the

steeper the turn-on. Visually, the turn-on is most steep for s = 1 and less step for

s = 2.

The di↵erences in transmission coe�cients between NC and ST black holes depend

significantly on their relative horizon radii. Typically a bigger horizon radius will give

48



Figure 4.4: Transmission coe�cients �s,`(!) on the brane for s = 0, 1/2, 1, 2 as a
function of frequency !. The quantum number ` increases from ` = s going from left
to right. The red solid lines are for non-commutative black holes and black dashed
lines for Schwarzschild-Tangherlini black holes. A black hole mass of 20.4MD has been
used corresponding to the non-commutative minimum temperature. MD =

p
✓ = 1

has been taken.

transmission coe�cients that turn-on lower in frequency; the di↵erence becoming

more pronounced as ` increases. In addition, it is observed that at lower masses

although the ST black hole transmission coe�cients turn-on sooner, the NC black

hole coe�cients rise steeper and become higher before plateauing to unity, especially

for s = 1/2.
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4.3 Absorption Cross Sections

Another physically important quantity concerning Hawking evaporation is the absorp-

tion cross section �(!), which represents an e↵ective area embodying the likelihood

of a particle to be scattered by the black hole [71]. On the brane, the absorption cross

section depends on the weighted sum over ` of transmission coe�cients and inversely

as 1/!2

�(!) =
⇡

!2

X

`�s

(2`+ 1)�s,`(M ;!). (4.2)

Figure 4.5 shows cross sections versus frequency for s = 0, 1/2, 1, 2. The solid lines

are for NC black holes and dashed lines for ST black holes. Black hole masses cor-

responding to the NC black hole maximum temperature have been used; equal NC

and ST black hole masses, MeM in Table 2.2. Di↵erences in cross sections are ob-

served at low frequencies. These di↵erences are most significant for s = 1/2 and less

pronounced for s = 2.

Hawking radiation for spin-2 fields in the ST metric was first discussed by Park [67].

Direct comparison is not possible since we use a di↵erent e↵ective potential which is

taken from Ref. [63] but originally came from Ref. [72]. The di↵erence in the general

form of the potential appears significant but when substituting the particular ST

metric, the di↵erence is replacing the �1 coe�cient of the second term in Eq. (3.14d)

by �(n+1). Noteworthy in Ref. [67] is the acknowledgement that the spin-2 potential

can become negative – potential well – for some masses (or radii), number of extra

dimensions, and ` modes. The potential well can occur in the region r⇤ ⇠ 0. For the

ST metric, the condition for non-negative potential is n  3. If 4  n  7, the ` = 2

mode feel a potential well. The depth of the potential well, and height of the barrier,

increase with increasing number of extra dimensions. A trade-o↵ can occur between

barrier suppression and well enhancement. For the ST case, this causes the n = 5–7

spin-2 cross sections to rise slightly faster at low-frequency than the n = 0–4 cross

sections. The same observations are made for the NC case. However, the e↵ect is
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Figure 4.5: Absorption cross sections on the brane versus frequency ! for s =
0, 1/2, 1, 2. The solid lines are for non-commutative black holes and dashed lines
for Schwarzschild-Tangherlini black holes. The number of extra dimensions increases
from 0 to 7 as the curves moved from top to bottom at high !. Black hole masses
corresponding to the non-commutative black hole maximum temperature have been
used. MD =

p
✓ = 1 has been taken.
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small and will not concern use for the remainder of this thesis.

The di↵erences in Figure 4.5 at low frequency are predominately due to di↵erences

in horizon area. It is enlightening to e↵ectively remove these by scaling the cross

sections by 4⇡r2
H
as shown in Figure 4.6. The cross sections are now in better agree-

ment for ! . 0.25 but have almost constant residual di↵erences for ! & 0.25. These

di↵erences are due to the universal nature of the cross section – to be discussed later.

Figure 4.6: Normalized absorption cross sections on the brane versus frequency ! for
s = 0, 1/2, 1, 2. The solid lines are for non-commutative black holes and dashed lines
for Schwarzschild-Tangherlini black holes. The number of extra dimensions increases
from 0 to 7 as the curves moved from top to bottom at high !. Black hole masses
corresponding to the non-commutative black hole maximum temperature have been
used. MD =

p
✓ = 1 has been taken.

At the mass giving maximum NC black hole temperature, the horizon radius of

the NC and ST black holes are similar. To examine larger di↵erences due to the
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transmission coe�cients, we take masses near the minimum NC back hole horizon

as shown in Table 2.1. Figure 4.7 shows significant di↵erences for all but the low n

cases.

Figure 4.7: Absorption cross sections on the brane versus frequency ! for s =
0, 1/2, 1, 2. The solid lines are for non-commutative black holes and dashed lines
for Schwarzschild-Tangherlini black holes. The number of extra dimensions increases
from 0 to 7 as the curves moved from top to bottom at high !. Black hole masses
corresponding to the non-commutative black hole minimum mass Mmin have been
used. MD =

p
✓ = 1 has been taken.

For ST black holes, the absorption cross section results are the same as Ref. [69].

Although the absorption cross section results for NC black holes and s = 0 agree

qualitatively with Ref. [11], they are quantitatively di↵erent due to di↵erent units.

The transmission coe�cients for spin 0 and 1/2 turn on immediately for low fre-

quencies, leading to finite absorption cross sections at zero frequency. Transmission
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coe�cients for spin 1 and 2 are essentially zero at ! = 0, leading to an absorption

cross section of zero at zero frequency. The usual oscillations are seen and the number

of peaks correspond to the number of ` modes. The oscillation are more predominate

at low n where the transmission coe�cients rise the steepest. After normalizing by

the horizon radius, the absorption cross sections for NC black holes are higher than

the ST back hole at high frequencies.

For spin 0, the low-frequency limit should correspond to the area of the black hole

for both ST and NC black holes: �0(0) = 4⇡r2
H
. Numerically, for ! = 0.001, we obtain

the black hole area to better than 0.9% for both ST and NC black holes for high and

low mass and for all number of dimensions and spins; except for n = 0 for which it

agrees to 1.7% for ST black holes of mass MeT . For spin 1/2, the low-frequency limit

for ST black holes is given by [73]

�(1/2)(0) = 2
n�3

n+1 4⇡r2
H,ST

, (4.3)

where rH,ST is the ST horizon radius. We are able to reproduce �(1/2)(0) numerically to

better than 0.4%, except for the n = 0 case in which we obtain 2% agreement. In the

high-frequency limit, it has been shown that the absorption cross section approaches

a universal geometrical optics limit of �1 = ⇡b
2

c
, where bc = rc/

p
h(rc) and rc is the

radius of the photon sphere given by the solution to rch
0(rc)� 2h(rc) = 0 [74]. Using

the ST metric, one obtains

�1 =

✓
n+ 3

2

◆ 2

n+1 n+ 3

n+ 1
⇡r

2

H,ST
. (4.4)

This result was first obtained in Ref. [75]. In the case of the NC metric, we have

calculated �1 numerically. For ! = 1, we obtain the optical cross section for ST

and NC black holes to better than 3% for high mass, all number dimensions, and

all spins. For low mass, the NC accuracy remains but the ST n = 7 and s = 1

case worsens by up to 5%. Visually, we already approach the geometrical limit for

! & 0.25. Reproducing these known analytical values is a good test of the numerical
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validity of our calculations.

4.4 Particle Spectra

The particle spectra, or number of particles N emitted per unit time and per unit

frequency on the brane is

d
2
N

dtd!
=

1

2⇡

1

e
!

TH � (�1)2s

X

`�s

(2`+ 1)�s,`(M ;!). (4.5)

The particle spectra have an additional dependence on temperature and the depen-

dence on frequency is only indirectly through the sum of transmission coe�cients and

the statistical factor. This time it is not possible to take the minimum NC black hole

mass (zero temperature) as the spectra will vanish due to the statistical factor. An

interesting choice is to take the NC black hole mass at its maximum temperature.

For the ST black hole comparison, logical choices are to take the same mass or the

mass that gives the same temperature. If the same temperature is taken, the sta-

tistical factor in the particle spectra will be identical and the only di↵erence will be

the transmission coe�cient sum part of the formula. First, we consider the case of

equal mass which means the temperature of the ST black hole will be hotter, and

hence lead to significantly more particle flux. Figure 4.8 shows particle spectra versus

frequency for s = 0, 1/2, 1, and 2. The solid lines are for NC black holes and dashed

lines for ST black holes. The number of extra dimensions increases from 0 to 7 as the

curves move from bottom to top. Black hole masses MeM corresponding to the NC

black hole maximum temperature have been used, as shown in Table 2.2.

To remove the temperature dependence, di↵erent mass NC and ST black holes are

compared. Figure 4.9 shows particle spectra versus frequency. Black hole masses

MeM for NC black holes and MeT for ST black holes corresponding to the NC black

hole maximum temperature have been used, as shown in Table 2.2.
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Figure 4.8: Particle spectra on the brane versus frequency ! for s = 0, 1/2, 1, 2. The
solid lines are for non-commutative black holes and dashed lines for Schwarzschild-
Tangherlini black holes. The number of extra dimensions increases from 0 to 7 as
the curves move from bottom to top. Black hole masses corresponding to the non-
commutative black hole maximum temperature have been used. MD =

p
✓ = 1 has

been taken.
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Figure 4.9: Particle spectra on the brane versus frequency ! for s = 0, 1/2, 1, 2. The
solid lines are for non-commutative black holes and dashed lines for Schwarzschild-
Tangherlini black holes. The number of extra dimensions increases from 0 to 7 as
the curves move from bottom to top. Black hole masses corresponding the same
temperature as the non-commutative black hole maximum temperature have been
used. MD =

p
✓ = 1 has been taken.
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4.5 Energy Spectra

The energy E spectra are similar to the particle spectra but include a multiplicative

frequency factor

d
2
E

dtd!
=

!

2⇡

1

e
!

TH � (�1)2s

X

`�s

(2`+ 1)�s,`(M ;!). (4.6)

Figure 4.10 shows energy spectra versus frequency for s = 0, 1/2, 1 and 2. The solid

lines are for NC black holes and dashed lines for ST black holes. The number of extra

dimensions increases from 0 to 7 as the curves move from bottom to top. Black hole

masses MeM corresponding to the NC black hole maximum temperature have been

used, as shown in Table 2.2.

To remove the temperature dependence, di↵erent mass NC and ST black holes are

compared. Figure 4.11 shows energy spectra versus frequency. Black hole masses

MeM for NC black holes and MeT for ST black holes corresponding to the NC black

hole maximum temperature have been used, as shown in Table 2.2.

4.6 Particle Flux and Total Power

To make the comparison quantitative, we integrate the particle spectra and energy

spectra over frequency out to ! = 1 to obtain the particle flux and power, respectively.

Table 4.1 and Table 4.2 show the NC to ST particle flux ratios for the cases of equal

mass and equal temperature, respectively. We observe the ratio of spin 0 and 1 fields

are not very sensitive to number of extra dimensions for n > 0. The biggest change

in particle flux ratio with number of dimensions is for spin 2.

Table 4.3 and Table 4.4 show the NC to ST power ratios for the cases of equal

mass and equal temperature, respectively. The same observations can be made as for

the particle fluxes.

Concentrating on NC geometry inspired black holes, we calculate the particle flux

and total power for each number of extra dimensions and compare it to the n = 0
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Figure 4.10: Energy spectra on the brane versus frequency ! for s = 0, 1/2, 1, 2. The
solid lines are for non-commutative black holes and dashed lines for Schwarzschild-
Tangherlini black holes. The number of extra dimensions increases from 0 to 7 as
the curves move from bottom to top. Black hole masses corresponding to the non-
commutative black hole maximum temperature have been used. MD =

p
✓ = 1 has

been taken.
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Figure 4.11: Energy spectra on the brane versus frequency ! for s = 0, 1/2, 1, 2. The
solid lines are for non-commutative black holes and dashed lines for Schwarzschild-
Tangherlini black holes. The number of extra dimensions increases from 0 to 7 as
the curves move from bottom to top. Black hole masses corresponding to the same
temperature as the non-commutative black hole maximum temperature have been
used. MD =

p
✓ = 1 has been taken.
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Table 4.1: Ratio of particle flux from non-commutative to Schwarzschild-Tangherlini
black holes on the brane versus spin s and number of extra dimensions n at the mass
of the non-commutative black hole of maximum temperature, MeM .

n

s 0 1 2 3 4 5 6 7

0 0.73 0.71 0.70 0.70 0.70 0.70 0.70 0.71
1/2 0.65 0.69 0.70 0.71 0.71 0.72 0.72 0.72
1 0.54 0.60 0.63 0.65 0.67 0.68 0.69 0.69
2 0.40 0.49 0.53 0.57 0.59 0.61 0.63 0.64

Table 4.2: Ratio of particle flux from non-commutative to Schwarzschild-Tangherlini
black holes on the brane versus spin s and number of extra dimensions n at masses
corresponding to the non-commutative black hole maximum temperature: MeM for
non-commutative and MeT for Schwarzschild-Tangherlini black holes.

n

s 0 1 2 3 4 5 6 7

0 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79
1/2 0.71 0.77 0.79 0.80 0.80 0.81 0.81 0.81
1 0.59 0.67 0.71 0.74 0.75 0.76 0.77 0.78
2 0.44 0.54 0.60 0.64 0.67 0.69 0.71 0.72

Table 4.3: Ratio of power emitted from non-commutative to Schwarzschild-
Tangherlini black holes on the brane versus spin s and number of extra dimensions n
at the mass of the non-commutative black hole of maximum temperature, MeM .

n

s 0 1 2 3 4 5 6 7

0 0.67 0.64 0.62 0.62 0.62 0.62 0.63 0.63
1/2 0.61 0.63 0.63 0.63 0.63 0.63 0.64 0.64
1 0.51 0.57 0.59 0.60 0.61 0.62 0.63 0.63
2 0.39 0.46 0.50 0.53 0.55 0.57 0.59 0.60

case shown in Table 4.5 and Table 4.6, respectively. Direct comparison with Ref. [69]

of the results for ST black holes (not shown) is not possible since the black hole mass

used is not stated. The results are however, similar.

Shown in Table 4.7 and Table 4.8 are the case of particle flux and power for each

spin compared to the spin-0 case. Direct comparison with Ref. [69] of the results

for ST black holes (not shown) is not possible since the black hole mass used is not
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Table 4.4: Ratio of power emitted from non-commutative to Schwarzschild-
Tangherlini black holes on the brane versus spin s and number of extra dimensions n
at masses corresponding to the non-commutative black hole maximum temperature:
MeM for non-commutative and MeT for Schwarzschild-Tangherlini black holes.

n

s 0 1 2 3 4 5 6 7

0 0.82 0.80 0.79 0.79 0.79 0.79 0.79 0.80
1/2 0.74 0.79 0.80 0.80 0.80 0.80 0.81 0.81
1 0.63 0.71 0.75 0.77 0.78 0.79 0.79 0.80
2 0.47 0.58 0.64 0.68 0.70 0.72 0.74 0.75

Table 4.5: Particle flux ratios on the brane for di↵erent number of extra dimensions
n relative to n = 0 versus spin s for non-commutative black holes with the maximum
temperature.

n

s 0 1 2 3 4 5 6 7

0 1 5 12 25 44 69 101 141
1/2 1 10 29 61 104 160 230 312
1 1 22 93 235 459 772 1179 1685
2 1 59 406 1354 3189 6149 10412 16131

Table 4.6: Power emission ratios on the brane for di↵erent number of extra dimensions
n relative to n = 0 versus spin s for non-commutative black holes with the maximum
temperature.

n

s 0 1 2 3 4 5 6 7

0 1 9 32 84 174 316 519 794
1/2 1 15 60 153 311 551 887 1334
1 1 30 160 469 1031 1916 3187 4899
2 1 82 668 2512 6494 13504 24379 39872

stated. However, the results are the same as Ref. [69] for most cases, except for a

di↵erence of 1% for some n = 7 spins.
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Table 4.7: Particle flux ratios on the brane for di↵erent spin s relative to s = 0 versus
number of extra dimensions n for non-commutative black holes with the maximum
temperature.

n s = 0 s = 1/2 s = 1 s = 2

0 1 0.33 0.08 0.005
1 1 0.68 0.38 0.06
2 1 0.78 0.62 0.15
3 1 0.79 0.77 0.25
4 1 0.78 0.87 0.33
5 1 0.76 0.93 0.41
6 1 0.74 0.97 0.47
7 1 0.73 0.99 0.53

Table 4.8: Power emission ratios on the brane for di↵erent spin s relative to s =
0 versus number of extra dimensions n for non-commutative black holes with the
maximum temperature.

n s = 0 s = 1/2 s = 1 s = 2

0 1 0.50 0.17 0.01
1 1 0.86 0.61 0.14
2 1 0.92 0.86 0.30
3 1 0.91 0.97 0.44
4 1 0.89 1.03 0.55
5 1 0.87 1.05 0.63
6 1 0.85 1.06 0.69
7 1 0.84 1.07 0.74

4.7 Isospectrality

Now we turn our attention to the matter of isospectrality for NC black holes. In four

dimensions for Schwarzschild black holes, it is well known that the the scalar and

vector perturbations for massless spin 2 fields produce the same emission spectra and

quasi-normal modes [76]. Isospectrality does not generally hold for other metrics,

such as for the higher dimensional ST case [61], and thus we would not expect it to

hold for the higher-dimensional NC case. We are not aware of any literature that

has reported on the isospectrality of NC black holes. In Figure 4.12, we plot the

transmission coe�cients in the NC case for scalar and vector spin 2 modes for n = 0
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and n = 7 as a function of frequency for di↵erent ` modes. The solid lines are

for vector spin 2 modes and the dashed lines for scalar spin 2 modes The quantum

number ` increases from ` = s going from left to right. A black hole mass of 358MD

is used and corresponds to the NC black hole maximum temperature. We observe

that in four dimensions, the transmissions coe�cients for scalar and vector modes

lie nearly on top of each other. In higher dimensions, we observe di↵erences in the

scalar and vector modes, particularly for the s = ` = 2 mode. For n > 3, this

may be explained by the appearance of the potential well in the potential for vector

modes which causes the transmission coe�cients to turn on sooner as compared to

the scalar modes. Scalar modes do not feel a potential well in any mass or number

of extra dimensions.

Figure 4.12: Transmission coe�cients �s,`(!) for spin 2 scalar and vector modes on
the brane from non-commutative black holes as a function of frequency ! for n = 0
(left) and n = 7 (right) extra dimensions. The quantum number ` increases from
` = s going from left to right. The red solid lines are for vector modes and the
black dashed lines for scalar modes. A black hole mass of 358MD has been used
corresponding to the non-commutative maximum temperature. MD =

p
✓ = 1 has

been taken.

The absorption cross sections versus frequency for scalar and vector modes are

shown in Figure 4.13. The solid lines are for vector modes and dashed lines for scalar

modes. Black hole masses corresponding to the NC black hole maximum temperature

have been used. In four dimensions, the cross sections appear to be exactly on top
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of each other. In higher dimensions, di↵erences in cross sections are observed at

low frequencies. The high frequency behaviour is similar for both vector and scalar

modes. At ! = 1, we observe that the agreement between vector and scalar modes is

better than 6⇥ 10�9 for n = 0 and 5⇥ 10�6 for 1  n  7.

Figure 4.13: Absorption cross sections versus frequency ! for spin 2 scalar and vec-
tor modes on the brane from non-commutative black holes. The solid lines are for
vector modes and the dashed lines for scalar modes. The number of extra dimensions
increases from 0 to 7 as the curves moved from top to bottom at high !. Black hole
masses corresponding to the non-commutative black hole maximum temperature have
been used. MD =

p
✓ = 1 has been taken.

Figures 4.14 and 4.15 shows particle spectra and emission spectra, respectively,

versus frequency for s = 2 scalar and vector modes from NC black holes. The solid

lines are for vector modes and the dashed lines for scalar modes. The number of extra

dimensions increases from 0 to 7 as the curves moved from bottom to top at high !.

Black hole masses corresponding to the NC black hole maximum temperature have

been used. MD =
p
✓ = 1 has been taken. Black hole masses MeM corresponding to

the NC black hole maximum temperature have been used, as shown in Table 2.2.

We find that for both the particle and energy spectra, the scalar and vector modes

lie nearly exactly on top of each other in four dimensions. In higher dimensions, there
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Figure 4.14: Particle spectra on the brane versus frequency ! for s = 2 scalar and
vector modes. The solid lines are for vector modes and the dashed lines for scalar
modes. The number of extra dimensions increases from 0 to 7 as the curves move
from bottom to top. Black hole masses corresponding to the non-commutative black
hole maximum temperature have been used. MD =

p
✓ = 1 has been taken.

are di↵erences between the scalar and vector modes at low frequencies, while the high

frequency behaviour is similar. To make the comparison quantitative, we integrate the

particle spectra over frequency out to ! = 1 to obtain the particle flux and power,

respectively. Table 4.9 shows the power emission ratios of spin 2 vector to scalar

modes for the cases of equal mass from both ST and NC black holes. We observe

that the ratio of vector to scalar modes for n = 0 is 1.0001 for ST black holes and

1.0004 for NC black holes. In higher dimensions, the ratios deviate slightly from unity

with vector modes becoming slightly more dominant. It has been shown analytically

that ST black holes are isospectral for n = 0, thus the precision on our numerical

calculation is 1 ⇥ 10�4. Given this precision, we conclude that the isospectrality of

NC black holes may be broken for n = 0.

In four dimensions for n = 0, our numerical analysis hints that in contrast to the

ST case, isospectrality may be broken for NC black holes. Similar to the ST case, we

find that isospectrality is broken for n > 0. Further analytical work is required to
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Figure 4.15: Energy spectra on the brane versus frequency ! for s = 2 scalar and
vector modes. The solid lines are for vector modes and the dashed lines for scalar
modes. The number of extra dimensions increases from 0 to 7 as the curves move
from bottom to top. Black hole masses corresponding to the non-commutative black
hole maximum temperature have been used. MD =

p
✓ = 1 has been taken.

prove or disprove the isospectrality of NC black holes in four dimensions. A study of

the isospectrality of quasi-normal modes for NC black holes may also be of interest.

Table 4.9: Power emission ratios on the brane of spin 2 vector to scalar modes for non-
commutative (NC) and Schwarzschild Tangherlini (ST) black holes versus number of
extra dimensions n at the mass of the non-commutative black hole of maximum
temperature, MeM .

n

0 1 2 3 4 5 6 7

RatioST 1.0001 1.010 1.028 1.038 1.042 1.043 1.043 1.042
RatioNC 1.0004 1.016 1.037 1.048 1.052 1.053 1.052 1.050
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Chapter 5

Greybody Factors in the Bulk

In this section we present the calculations of transmission coe�cients, absorption

cross sections, and spectra for massless fields of spin 0, and spin 2 vector and tensor

modes in the bulk. We note that there is no spin 2 tensor mode for n = 0. We leave

out the results for scalar spin 2 modes due to the lack of a short-ranged potential for

the NC case. We note however that Refs. [77, 78] found that the scalar spin 2 modes

are the subdominant mode for higher values of n for the ST case. We have validated

the method by comparing with the results for ST black holes [69, 77, 78] that we use

for comparison with the NC results. We also compare our results for spin 0 emission

from NC black holes with Ref. [11]. Throughout this section we consider black hole

masses corresponding to the NC maximum temperature MeM as shown in Table 2.2.

5.1 Transmission Coe�cients

The fundamental calculated quantity is the transmission coe�cient as a function

of frequency for di↵erent black hole masses, number of extra dimensions, spin, and

` modes. Figure 5.1 shows transmission coe�cients for n = 7 and s = 0, 2 as a

function of frequency for di↵erent ` modes. The solid lines are for NC black holes

and dashed lines for ST black holes. The quantum number ` increases from ` = s

going from left to right. A black hole mass of 358MD is used and corresponds to the

NC black hole maximum temperature. The transmission coe�cients in the bulk are
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shifted significantly towards higher frequencies compared to those on the brane for

the same ` mode. This is due to the increased height of the potential for bulk modes

as compared to brane modes, which require higher frequencies to escape the potential

barrier. Similar to results on the brane, we observe that the NC and ST black hole

transmissions coe�cients at this mass are very similar, di↵ering slightly for higher `.

Figure 5.1: Transmission coe�cients �s,`(!) in the bulk for s = 0 and s = 2 vector
and tensor modes as a function of frequency !. The quantum number ` increases
from ` = s going from left to right. The red solid lines are for non-commutative
black holes and black dashed lines for Schwarzschild-Tangherlini black holes. A black
hole mass of 358MD has been used corresponding to the non-commutative maximum
temperature. MD =

p
✓ = 1 has been taken.
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5.2 Absorption Cross Sections

The absorption cross section in the bulk takes on a di↵erent form than the one on

the brane as [77]

�
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X

`�s

N
P

s,`
�s,`(M ;!), (5.1)

where C(!) is a normalization factor defined by
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where we used the definition of the solid angle of the unit (n+ 2)-sphere
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and � is the gamma function. We may explicitly write the bulk absorption cross

section as
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Most notably, there is now a dependence on !�(n+2) rather than !�2. In addition, we

must normalize the spin 2 cross sections by a factor of 2/[(n+ 4)(n+ 1)] to account

for the number of helicities in n extra dimensions [77].

Figure 5.2 shows cross sections versus frequency for s = 0 and the vector and tensor

s = 2 modes. The solid lines are for NC black holes and dashed lines for ST black

holes. Black hole masses corresponding to the NC black hole maximum temperature

have been used, as shown in Table 2.2.

In contrast to the absorption cross sections on the brane, the absorption cross

sections in the bulk increase with increasing number of extra dimensions. For ST black

holes, the absorption cross section results are the same as Ref. [69]. The absorption

cross section results for NC black holes and s = 0 agree qualitatively with Ref. [11],

they are quantitatively di↵erent due to the use of di↵erent units. For spin 0, the

low-frequency limit should correspond to the area of the higher dimensional black

hole for both ST and NC black holes [11]
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Figure 5.2: Absorption cross sections in the bulk versus frequency ! for s = 0 and the
vector and tensor s = 2 modes. The solid lines are for non-commutative black holes
and dashed lines for Schwarzschild-Tangherlini black holes. The number of extra
dimensions increases from 0 to 7 as the curves moved from bottom to top at high
!. Black hole masses corresponding to the non-commutative black hole maximum
temperature have been used. MD =

p
✓ = 1 has been taken.

�
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2
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This is significantly larger in higher dimensions leading to larger absorption cross

sections in the bulk as compared to the brane. Numerically, for ! = 0.001, we

obtain the black hole area to better than 1.7% for both ST and NC black holes for

0  n  4 and to within 4.3% for 5  n  7. The worse agreement for the n � 5

cases is likely due to round o↵ errors arising from the machine precision since the

cross section scales as !�(n+2). In the high frequency limit, it can be shown that the
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absorption cross section approaches the projected area of an absorptive body with

e↵ective radius bc [69]. The e↵ective radius bc is the same for both bulk and brane

modes and is described in Section 4.3. Using the ST metric, the projected area in the

bulk gives [69]
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In the case of the NC metric, we have calculated �bulk

1 numerically. For ! = 3, we

obtain the expected high frequency behaviour of the spin 0 absorption cross section

for ST and NC black holes to better than 1.2% for all number of dimensions. The

spin 2 cross section requires the sum of scalar, vector and tensor modes to compare to

the high frequency limit, however we are missing the scalar mode. However for high

n where the scalar mode is the subdominant mode [77], we obtain the expected high

frequency behaviour of the spin 2 absorption cross section by only accounting for the

vector and tensor modes for ST and NC black holes to better than 5% for n � 5.

5.3 Particle Spectra

We compute the rate of particle emission per unit time and per unit frequency in the

bulk as
d
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We consider the case of equal mass which means the temperature of the ST black hole

will be hotter, and hence lead to significantly more particle flux. Figure 5.3 shows

particle spectra versus frequency for s = 0 and the vector and tensor s = 2 modes.

The solid lines are for NC black holes and dashed lines for ST black holes. The

number of extra dimensions increases from 0 to 7 as the curves move from bottom to

top for the spin 2 cases. Black hole masses MeM corresponding to the NC black hole

maximum temperature have been used, as shown in Table 2.2.
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Figure 5.3: Particle spectra in the bulk versus frequency ! for s = 0 and the vector and
tensor s = 2 modes. The solid lines are for non-commutative black holes and dashed
lines for Schwarzschild-Tangherlini black holes. The number of extra dimensions
increases from 0 to 7 as the curves move from bottom to top for the spin 2 cases. Black
hole masses corresponding to the non-commutative black hole maximum temperature
have been used. MD =

p
✓ = 1 has been taken.
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For the s = 0 case, an interesting phenomenon occurs for both the ST and NC

case where the peak of the particle spectra decrease as n increases from 0 to 3, and

then increases as n increases from 3 to 7. This is not seen in the results of Ref. [11],

although a di↵erent definition of the higher dimensional Planck scale MD is used.

5.4 Energy Spectra

As is the case for the brane, the energy spectra are similar to the particle spectra but

include a multiplicative frequency factor
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Figure 5.4 shows particle spectra versus frequency for s = 0 and the vector and tensor

s = 2 modes. The solid lines are for NC black holes and dashed lines for ST black

holes. The number of extra dimensions increases from 0 to 7 as the curves move from

bottom to top. Black hole masses MeM corresponding to the NC black hole maximum

temperature have been used, as shown in Table 2.2. For the spin 0 case, in contrast

to the particle spectra the energy spectra increase with increasing n.
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Figure 5.4: Energy spectra in the bulk versus frequency ! for s = 0 and the vector and
tensor s = 2 modes. The solid lines are for non-commutative black holes and dashed
lines for Schwarzschild-Tangherlini black holes. The number of extra dimensions
increases from 0 to 7 as the curves move from bottom to top. Black hole masses
corresponding to the non-commutative black hole maximum temperature have been
used. MD =

p
✓ = 1 has been taken.
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5.5 Particle Flux and Total Power

To make the comparison quantitative, we integrate the particle spectra and energy

spectra over frequency out to ! = 3 to obtain the particle flux and power, respectively.

Table 5.1 show the NC to ST particle flux ratios for the cases of equal mass at the

NC maximum temperature. For all spins, the the NC particle flux is suppressed

as compared to the ST particle flux and the suppression is enhanced for increasing

number of extra dimensions.

Table 5.1: Ratio of particle flux from non-commutative to Schwarzschild-Tangherlini
black holes in the bulk versus spin s and number of extra dimensions n at the mass
of the non-commutative black hole of maximum temperature, MeM .

n

s 0 1 2 3 4 5 6 7

0 0.73 0.62 0.54 0.47 0.42 0.37 0.33 0.30
2 (vector) 0.40 0.43 0.42 0.41 0.39 0.37 0.34 0.31
2 (tensor) 0.34 0.33 0.33 0.31 0.30 0.28 0.26

Table 5.2 shows the NC to ST power ratios for the cases of equal mass. The same

observations can be made as for the particle fluxes.

Table 5.2: Ratio of power emitted from non-commutative to Schwarzschild-
Tangherlini black holes in the bulk versus spin s and number of extra dimensions
n at the mass of the non-commutative black hole of maximum temperature, MeM .

n

s 0 1 2 3 4 5 6 7

0 0.67 0.56 0.48 0.42 0.37 0.33 0.29 0.26
2 (vector) 0.38 0.41 0.40 0.38 0.36 0.34 0.31 0.29
2 (tensor) 0.32 0.32 0.30 0.29 0.27 0.26 0.24

Concentrating on NC geometry inspired black holes, we calculate the particle flux

and total power for each number of extra dimensions and compare it to the n = 0 case

shown in Table 5.3 and Table 5.4, respectively. For the spin 2 case there is no n = 0

tensor mode so we can compare it to the n = 0 vector mode. Direct comparison with
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Ref. [69] of the results for ST black holes in the spin 0 case (not shown) is not possible

since the black hole mass used is not stated. The results are however, similar.

Table 5.3: Particle flux ratios in the bulk for di↵erent number of extra dimensions n
relative to n = 0 versus spin s for non-commutative black holes with the maximum
temperature. The spin 2 tensor modes are compared to the n = 0 vector mode.

n

s 0 1 2 3 4 5 6 7

0 1 1.08 1.22 1.56 2.27 3.72 6.82 13.83
2 (vector) 1 54 364 1288 3525 8662 20569 49199
2 (tensor) 3.41 52 332 1472 5461 18555 60759

Table 5.4: Power emission ratios in the bulk for di↵erent number of extra dimensions
n relative to n = 0 versus spin s for non-commutative black holes with the maximum
temperature. The spin 2 tensor modes are compared to the n = 0 vector mode.

n

s 0 1 2 3 4 5 6 7

0 1 3.00 6.25 12 26 56 129 323
2 (vector) 1 88 834 3885 13475 40952 118183 339146
2 (tensor) 7.11 153 1268 7010 31548 127641 491101

Shown in Table 5.5 and Table 5.6 are the case of particle flux and power for the

vector and tensor spin 2 modes compared to the spin 0 case. Direct comparison with

Ref. [78] of the results for ST black holes (not shown) is not possible since the black

hole mass used is not stated. The results are however, similar.

Shown in Table 5.7 and Table 5.8 are the case of particle flux and power for tensor

spin 2 modes relative to vector spin 2 modes. For a small number of extra dimensions

the vector modes dominate. As n increases the tensor modes become comparable to

the vector modes and dominate for the n = 7 case.
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Table 5.5: Particle flux ratios in the bulk for vector and tensor spin 2 modes relative
to s = 0 mode versus number of extra dimensions n for non-commutative black holes
with the maximum temperature.

n s = 0 s = 2 (vector) s = 2 (tensor)

0 1 0.005
1 1 0.23 0.01
2 1 1.36 0.19
3 1 3.77 0.97
4 1 7.10 2.96
5 1 10.63 6.70
6 1 13.77 12.42
7 1 16.25 20.06

Table 5.6: Power emission ratios in the bulk for vector and tensor spin 2 modes
relative to s = 0 mode versus number of extra dimensions n for non-commutative
black holes with the maximum temperature.

n s = 0 s = 2 (vector) s = 2 (tensor)

0 1 0.01
1 1 0.43 0.03
2 1 1.96 0.36
3 1 4.59 1.50
4 1 7.75 4.03
5 1 10.82 8.34
6 1 13.42 14.50
7 1 15.44 22.35

Table 5.7: Particle flux ratios in the bulk for di↵erent number of extra dimensions
n of tensor spin 2 modes relative to vector spin 2 modes for non-commutative black
holes with the maximum temperature.

n

s 1 2 3 4 5 6 7

Ratio (T/V) 0.06 0.14 0.26 0.42 0.63 0.90 1.23

Table 5.8: Power emission ratios in the bulk for di↵erent number of extra dimensions n
of tensor spin 2 modes relative to vector spin 2 modes for non-commutative black holes
with the maximum temperature.

n

s 1 2 3 4 5 6 7

Ratio (T/V) 0.08 0.18 0.33 0.52 0.77 1.08 1.45
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5.6 Bulk-to-brane Emission Ratios

It is of interest to compare the relative emission of fields in the bulk to those on the

brane. Energy emitted into the bulk would be interpreted as missing energy by an

observer on the brane. Therefore in Figure 5.5 we plot the ratios of particle flux and

energy emission, respectively of bulk to brane modes for spin 0 and spin 2 fields from

a NC black hole at the maximum temperature. For the spin 2 case we consider the

ratios of vector spin 2 modes in the bulk to vector spin 2 modes on the brane, and

tensor spin 2 modes in the bulk to vector spin 2 modes on the brane. The number of

extra dimensions increases from top to bottom at low frequencies.

The plots for the scalar case agree qualitatively with Ref. [11, 69], despite the dif-

ference in definition of the higher dimensional Planck scale MD. In the low frequency

regime, the bulk modes are suppressed compared to the modes on the brane. This is

due to the brane modes turning on at lower frequencies as compared to the bulk lead-

ing to higher emission rates of brane modes for lower frequencies. The suppression at

low frequencies is larger for increasing number of dimensions. In the high frequency

regime, the bulk modes dominate in all cases with the relative emission increasing

with each number of extra dimension. For high frequencies, Figures 4.10 and 5.4

show that the emission is significantly suppressed on the brane for ! > 1 and in the

bulk for ! > 3. Thus even though the bulk modes dominate for higher frequencies,

the overall emission at these frequencies is suppressed for both spectra. To make

the comparison quantitative, we integrate the emission spectra over frequency out to

! = 3 to obtain the total ratio of bulk to brane emission for each number of extra

dimensions n. Table 5.9 shows relative bulk to brane emission ratios for spin 0 and 2

fields from a NC black hole at the maximum temperature.
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Figure 5.5: Ratios of bulk to brane emission versus frequency ! for di↵erent number
of extra dimension n and for spin 0 and vector and tensor spin 2 modes. The number
of extra dimensions increases from 0 to 7 as the curves move from top to bottom at
low frequencies. There is no tensor mode for n = 0. Black hole masses corresponding
to the non-commutative black hole maximum temperature have been used. MD =
p
✓ = 1 has been taken.

Table 5.9: Ratios of bulk to brane power emission for di↵erent number of extra
dimension n and for spin 0 and vector and tensor spin 2 modes. We compare the
spin 2 tensor mode in the bulk to the spin 2 vector mode on the brane. Black hole
masses corresponding to the non-commutative black hole maximum temperature have
been used. MD =

p
✓ = 1 has been taken.

n

s 0 1 2 3 4 5 6 7

0 1 0.35 0.19 0.15 0.14 0.18 0.24 0.40
2 (vector) 1 1.08 1.25 1.54 2.07 3.03 4.82 8.42
2 (tensor) 0.09 0.23 0.50 1.08 2.33 5.21 12.19
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5.7 Relative Emissivities

It has long been argued that black holes will radiate mainly on the brane [75]. This

claim is largely due to the fact that only the graviton is emitted in the bulk (ignoring

the emission of a possible massless scalar field in the bulk), while all of the Standard

model fields may be emitted on the brane. This claim has been supported for the ST

case in Refs. [77], however it was noted that graviton emission is significant in the

presence of extra dimensions. Here we will investigate the emission probabilities into

the various channels for Standard Model fields plus the graviton for the NC case.

We consider the minimal U(1)⇥SU(2)⇥SU(3) standard model with three families

and one Higgs field. For temperatures above the spontaneous symmetry breaking scale

⇠ 100 GeV, all Standard Model fields may be treated as massless fields [6, 77]. In

Figure 2.3, we observe that NC black holes are generally below 100 GeV. The highest

temperature is ⇠ 98 GeV for the n = 7 case at the maximum temperature. Therefore

we note that the following analysis may overestimate the available degrees of freedom

on the brane using our choice of parameters of MD =
p
✓ = 1. However we add that

it has been shown that the main e↵ect of mass on the emission spectra is to add a cut

into the frequency range below which the emission spectra is significantly damped

[79]. Higher temperatures may be achieved by choosing
p
✓ < 1. The number of

degrees of freedom (dof) for each field is [15]

dof = nQ ⇥ nS ⇥ nF ⇥ nC , (5.9)

where nQ is the number of charge states, nS is the number of spin polarizations, nF is

the number of flavours, and nC is the number of colours. For spin 0 fields on the brane

there are 4 degrees of freedom arising from the complex Higgs doublet [77]. For spin

1/2 fields on the brane there are 90 degrees of freedom arising from quarks, charged

leptons and neutrinos. For spin 1 fields on the brane there are 24 degrees of freedom

from massless gauge bosons. For the bulk graviton the number of degrees of freedom

(helicities) depends on the number of dimensions and is equal to (n+4)(n+1)/2 [77].
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The probabilities of emission for di↵erent spin fields are [15]

Pi =
✏i ⇥ dofiP
j
✏j ⇥ dofj

, (5.10)

where ✏i and dofi are the particle fluxes and degrees of freedom of field i. Table 5.10

shows the probabilities of emission for the di↵erent spin fields from a NC black hole at

the maximum temperature. We also plot the probabilities of emission for the di↵erent

spin fields from a NC black hole at the maximum temperature against the number

of extra dimensions in Figure 5.6. For spin 2 modes in the bulk we only account for

the vector and tensor modes. We find that for both the ST (not shown) and the NC

case, the spin 2 emission into the bulk is the dominant channel for n � 5. These

results disagree with those from Ref. [77], however agree with Ref. [80]. A detailed

study which includes the e↵ect of spin 2 scalar modes from NC black holes is required

before a conclusive statement can be made.

Table 5.10: Probability of emission for di↵erent spin fields from a non-commutative
black hole at the maximum temperature. MD =

p
✓ = 1 has been taken.

n

s 0 1 2 3 4 5 6 7

0 0.08 0.04 0.04 0.03 0.03 0.02 0.01 0.01
1/2 0.84 0.80 0.74 0.67 0.55 0.39 0.22 0.10
1 0.08 0.15 0.18 0.19 0.17 0.13 0.07 0.03

2 (brane) 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00
2 (bulk) 0.00 0.00 0.03 0.10 0.24 0.45 0.70 0.86
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Figure 5.6: Probability of emission for di↵erent spin fields from a non-commutative
black hole at the maximum temperature against the number of extra dimensions n.
MD =

p
✓ = 1 has been taken.
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Chapter 6

Conclusion

In this thesis we have investigated the e↵ect of non-commutativity on Hawking evap-

oration from higher dimensional spherically symmetric and static black holes both

on the brane and in the bulk. We have presented greybody factors, absorption cross

sections, and particle and energy spectra for massless fields of spin 0, 1/2, 1, and

2 from higher dimensional NC geometry inspired black holes. The calculations are

numerical and thus valid over the entire frequency range.

The NC black hole transmission coe�cients are similar to the ST black hole trans-

mission coe�cients when their horizon radius are similar. However, there are major

di↵erences when the black hole masses are similar but the horizon radius are sig-

nificantly di↵erent. The major di↵erence in transmission coe�cients is that the NC

black hole transmission coe�cients turn-on at slightly higher frequency.

We observe significant di↵erences in NC black hole and ST black hole absorption

cross sections occur at low frequencies while the cross sections at high frequencies

approach the geometrical optics limits. For masses near the minimum NC black

hole mass, the di↵erences are more apparent, particularly for higher dimensions. For

equal masses, the NC black hole spectra are significantly lower than for ST black

holes, mainly due to the lower temperature. However, at equal temperature the NC

black hole spectra are still significantly lower than for ST black hole spectra.

For n = 0, we find that NC black holes are not isospectral which is in contrast to
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the ST case. For NC black holes, we observe that isospectrality is broken in higher

dimensions, similar to the ST case. The bulk to brane emission ratios are similar to

those for the ST case, and spin 2 emission in the bulk becomes the dominant channel

for high n.

The emission of higher spin fields is useful for relating possible experimental ob-

servation of black hole radiation to theory. The reduction in emission due to the

greybody factors, not temperature, that we observe are hopefully independent of our

choice of parameters. The results presented here may be useful in Monte Carlo simu-

lations for searches of microscopic NC black holes at the Large Hadron Collider and

future colliders. Future work should investigate the greybody factors for the spin 2

scalar modes in the bulk for NC black holes. It would also be interesting to study the

e↵ect of rotation on the greybody factors for NC black holes, particularly the e↵ect of

super-radiance. This work represents another step towards possibly elucidating some

aspects of quantum gravity.
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Appendix A: Higher Dimensional
Rotating Black Holes

For a single angular momentum parameter a, the general Myers-Perry metric describ-

ing the space-time around a higher dimensional rotating black hole becomes [81]

ds
2 = �
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where � = r
2+a

2
�

µ

rn�1 , ⌃ = r
2+a

2 cos2 ✓, d⌦2

n
is the metric of the (n)-dimensional

unit sphere, and µ is a parameter related to the mass M of the black hole by

µ =
16⇡

(n+ 2)An+2

M, (A.2)

where An+2 is the area of the (n+ 2)-dimensional unit sphere defined by

An+2 =
2⇡(n+3)/2

�[(n+ 3)/2]
, (A.3)

and � is the gamma function. The horizon, rH of the black hole is found from

�(rH) = 0 and can be written as:

rH =
µ

(1 + a2⇤)
1/(n+1)

, (A.4)

where a⇤ = a/rH. The above metric reduces to the Schwarzschild-Tangherlini metric

for a = 0 which is itself the higher dimensional extension of the Schwarzschild metric.

For n = 0 we obtain the Kerr metric. To find the metric as seen by an observer on

the brane, we again fix the extra angular coordinates to obtain [16]

ds
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It is important to note that while the Myers-Perry metric is a vacuum solution to

the higher dimensional Einstein equations, the brane induced metric is not a solution

to the four-dimensional vacuum Einstein equations [82].

The fundamental equations for massless spin 0, 1/2, 1 and 2 perturbations of a

higher dimensional simply rotating black hole on the brane can be written as a single

master equation [56]
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Similar to the spherically symmetric case, Eq. (A.6) can be separated by writing the

ansatz

 s = e
�i! t

e
im�

sS
m

`
(✓)Rs(r), (A.7)

where sS
m

`
are the spin-weighted spheroidal harmonics [53]. We can now obtain a set

of decoupled radial and angular equations [53]
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where K = (r2 + a
2)!�am. The radial and angular equations are related by the

connection coe�cient s�
m

`
= sE

m

`
+ a

2
!
2
�2am! where sE

m

`
are the eigenvalues of

the spheroidal harmonics obtained from the angular equation. For a = 0, we have

sE
m

`
= `(`+ 1)� s(s+ 1). To calculate the greybody factors one needs to insert the

eigenvalues from the angular equation into the radial equation and use the appropriate
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boundary conditions to compute the transmission coe�cients of the wave propagating

from the horizon out to spatial infinity.

The angular equation can be written as an eigenvalue equation involving the sum

of two operators [54]

(H0 + H1)S = �ES, (A.10)

where
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H1 = a
2
!
2 cos2 ✓ � 2a! s cos ✓. (A.11b)

In the case that a! = 0, we find that H1 drops out and the solutions become the

spin-weighted spherical harmonics with eigenvalues sE
m

`
= `(`+1)�s(s+1) [54]. For

a! 6= 0, we can treat H1 as a perturbation operator which takes us from the spherical

harmonics to the spheroidal harmonics [54]. Here, the eigenvalues are a function of

a! for which we do not have explicit analytic representations. For small a!, we can

use perturbation theory to obtain

sE
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where we have

hs`
0
m|H1|s`mi =

Z
d⌦(sY

m

`
0 )⇤(sY

m

`
)H1, (A.13)

and sY
m

`
are the spin-weighted spherical harmonics which are related to the rotation

matrix elements of quantum mechanics by the following useful identities
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However we are mostly interested in arbitrarily large values of a! over which the

interesting physics occurs. For such cases, we employ the procedure introduced in

Ref. [83] to solve for the eigenvalues numerically using a continuation method which is
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an extension of the perturbation method for arbitrarily large values of a! [54]. This

is carried out by writing the spheroidal harmonics sS
m

`
in the basis of the spherical

harmonics sY
m

`
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`
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Di↵erentiating Eq. (A.10) by a! and applying techniques from perturbation theory,

we obtain the following set of coupled di↵erential equations:
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where h↵, �i is evaluated as
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and hj1m1j2m2|JMi is a Clebsch-Gordan coe�cient. This set of coupled di↵erential

equations can be solved for each mode s,m to obtain the eigenvalues as a function of

a! for arbitrary values of `. The initial conditions are

sA``
0 (0) = �

``
0 , (A.18a)

sE
m

`
(0) = `(`+ 1)� s(s+ 1). (A.18b)

We numerically integrate the system of coupled equations defined in Eq. (A.16) over

the range 0  a!  3 with a step-size of 10�2. The size of the system is N(N + 1)

where N = max(|m|, |s|) + `max and thus dependent on the number of modes of `

used. The system grows large very quickly, thus we truncate the summation over

↵, �, � at ` = 6 terms, at which point integration appeared to be stable.
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In Figure A.1 we plot the first few ` modes for s = 0 and m = 1. We find them to

be in good agreement with the sixth order polynomial expression given in Ref. [84]

over the range 0  a!  3. The polynomial expansion begins to show deviations

from our numerical results near a! = 3 and cannot be used with accuracy for a! > 3.

Our results also agree with those from Ref. [56].

Figure A.1: Results of the numerical integration for the eigenvalues of the spin-
weighted spheroidal harmonics for the first few ` modes for s = 0 and m = 1. The
dashed lines o↵er a comparison with the sixth order polynomial expansion from Ref.
[84].

In Figure A.2 we show the spheroidal harmonics for di↵erent values of a! with

s = ` = m = 0.

Short-ranged Potentials

Short-ranged potentials in the rotating case are only known to exist in four dimensions

and were found by Chandrasekhar [85–87]. The short-ranged potentials for spins 0,
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Figure A.2: Spheroidal harmonics for s = ` = m = 0 for di↵erent values of a!

1/2, 1 and 2 are given as

V0 =
�

⇢4

✓
0�

m

`
+

�+ 2r(r �M)

⇢2
�

3r2�

⇢4

◆
, (A.19a)

V1/2,± =
�

⇢4
(1/2�

m

`
+ 1)⌥

p
(1/2�`m + 1)�

⇢4

✓
(r �M)�

2r�

⇢2

◆
, (A.19b)

V1,± =
�

⇢4

✓
1�

m

`
+ 2� ↵

2
�

⇢4
⌥ i↵⇢

2
d

dr

✓
�

⇢4

◆◆
, (A.19c)

V2 =
�

⇢8

✓
q �

⇢
2

(q � ��)2
(q � ��)(⇢2�q

00
� 2⇢2q � 2r(q0���0

q))

+ ⇢
2(⇢2 � q

0 + ��0)(q0���0
q)
�◆

, (A.19d)

where q = ⌫2⇢
4 + 3⇢2(r2 � a

2)� 3r2�, �± = ±3↵2,

± = ±
p

36M2 � 2⌫2(↵2(5⌫2 + 6)� 12a2) + 2�⌫2(⌫2 + 2) and ⌫2 = 2�
m

`
+4. It should

be noted that these potentials contain a dependence on ! through the connection

coe�cient s�
m

`
. Here, the tortoise coordinate is defined as

dr⇤

dr
=
⇢
2

�
, (A.20)

98



where ⇢2 = r
2 + a

2
�

am

w
. These transformations do not easily extend to the higher

dimensional rotating case. As a result, Eq. (A.8) must be integrated directly for

n > 0. Details for dealing with such cases are given in Refs. [16, 88–90].

Numerical Methods

The transfer matrix method developed by Grey and Visser [70] cannot be used to

compute greybody factors for rotating black holes in the formulation that we described

in Chapter 3. Extending the method to the rotating case is non-trivial, for further

details see Ref. [91].

Here, we will adopt the approach described by Chandrasekhar [66]. The radial

equation given by Eq. (3.13) is a second order di↵erential equation which can be

broken up into a system of coupled first order di↵erential equations

dZ(r⇤)

dr⇤
= U(r⇤), (A.21)

and

dU(r⇤)

dr⇤
= (V (r(r⇤))� !

2)Z(r⇤). (A.22)

We start with a plane wave at the horizon of the form Z(r⇤(rH)) = e
�i! r⇤(rH), and

integrate Eqs (A.21) and (A.22) out to infinity where the solution has the form

Z(r⇤) = Bine
�i! r⇤ +Boute

i! r⇤ , (A.23)

and Bin and Bout are complex coe�cients. We solve for Bin and Bout in terms of the

solutions at infinity by

Bin =


1

2e�i! r⇤

✓
Z(r⇤)�

U(r⇤)

i!

◆�����
r⇤=1

, (A.24)

and

Bout =


1

2ei! r⇤

✓
Z(r⇤) +

U(r⇤)

i!

◆�����
r⇤=1

. (A.25)

The transmission coe�cient �s`m(!) is computed as

�s`m(!) = 1�

����
Bout

Bin

����
2

. (A.26)
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Results of Numerical Computations

The eigenvalues were interpolated by an interpolating polynomial of degree 6 and

inserted into the short ranged potentials in Eq. (A.19a). The transmission coe�cients

were obtained for various values of a⇤ by numerically integrating Eq. (3.13) for values

of 0.001  ! rH  1. We begin with the solution near the horizon at rH + ✏ where

✏ ⇠ 10�16 and integrate out to a large value of r⇤ = 350 approximating spatial

infinity. We achieve su�cient convergence using a step size of 0.01. As a representative

example, in Figure A.3 we show the spin 0 transmission coe�cients as a function of

frequency for di↵erent ` and m modes and for a⇤ = 0.5.

Figure A.3: Transmission coe�cients �s`m(!) as a function of the frequency ! for
s = 0 and a⇤ = 0.5 with rH = 1. For a given mode `, the quantum number m

increases from m = �` to m = ` moving from left to right.

Since rotating black holes lose their spherical symmetry and are only axially sym-

metric, the transmission coe�cients are di↵erent for each of the 2` + 1 values of m.

There is an observed spreading of the transmission coe�cients for di↵erent values of
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m centred around the transmission coe�cient corresponding to m = 0. For a given

value of `, the value of m increases from �` to ` moving from left to right.

An interesting property of rotating black holes is the e↵ect of superradiance, where

the transmission coe�cient becomes negative corresponding to the amplification of a

reflected wave [66]. Superradiance occurs for ! rH < m⌦H where ⌦H = a/(r2
H
+ a

2) is

the angular velocity of the horizon. In Figure A.4 we show a few of the superradiant

modes for s = 0 and a⇤ = 0.5 versus frequency normalized to the superradiant regime.

We compute the energy amplification as (1� �s`m(!))⇥ 100% [56].

Figure A.4: Superradiant amplification of some spin 0 modes for a⇤ = 0.5 and with
rH = 1.
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Appendix B: Tortoise Coordinate

For a spherically symmetric metric with time-radius symmetry, such as the one given

in Eq. (2.7), the tortoise coordinate is defined as

dr⇤

dr
=

1

h(r)
. (B.1)

It turns out the for the Schwarzschild Tangherlini case, with the metric function

hST (r) is defined as

hST (r) = 1�
1

kn

M

MD

1

(MDr)n+1
, (B.2)

Eq. (B.1) can be integrated analytically for any n. The form of r⇤ST,n(r) is given in

Ref. [92] for 0  n  6. The tortoise coordinate takes on the following form for which

we also provide the n = 7 case

r⇤ST,0

rH
= x+ ln x� 1, (B.3a)

rST,1

rH
= x+

1

2
ln

x� 1

x+ 1
, (B.3b)
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1

3
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1
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3
arctan

p
3

1 + 2x
�

1

6
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2
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1
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2 ln

x
2
�
p
2x+ 1

x2 +
p
2x+ 1

+ 2 ln
x� 1

x+ 1
� 4 arctan x

� 2
p
2 arctan

x
2
� 1

p
2x

�
, (B.3h)

where we defined x = r/rH with rH being the horizon radius of the ST black hole.
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Appendix C: Experimental
Constraints

The experimental lower bounds on MD and the maximum energy of the LHC will

restrict the values of
p
✓ that can be probed by experiments at the LHC. We do

not expect black holes to form for masses much less than MD. This gives a lower

bound on M . We will consider only the hard limits on the Planck scale set by

accelerator experiments [93, 94]: MD > 11.2 TeV for n = 2, MD > 8.5 TeV for n = 3,

MD > 7.1 TeV for n = 4, MD > 6.4 TeV for n = 5, MD > 5.9 TeV for n = 6, and

MD > 0.8 TeV for n = 7. The maximum mass of the black hole is likely to be limited

by the statistics of the maximum parton energies in a proton-proton interaction but

in no case can it be larger than the proton-proton centre-of-mass energy. Thus, we

will only be interested in the case where the minimum black hole mass is below the

LHC current maximum energy of 13.6 TeV and above the experimental lower bound

on the Planck scale.

We obtain a valid range of
p
✓MD for each number of extra dimensions by restrict-

ing the minimum black hole mass at the LHC to be in the range 1 < Mmin/MD <

13.6 TeV/MD, as discussed above. The results are given in Table C.1 and were com-

puted by Doug Gingrich. We see that
p
✓ is very restricted and there is no single

value of
p
✓ that lies in the allowed range for all number of extra dimensions.

To study the phenomenology of NC inspired black holes at the LHC experiments

one can take MD above the experimental limits and the following values
p
✓ = 0.3

for n = 2,
p
✓ = 0.4 for n = 3,

p
✓ = 0.5 for n = 4,

p
✓ = 0.6 for n = 5,

p
✓ = 0.7 for
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Table C.1: Values of minimum horizon radius (rH)min in units of
p
✓ and minimum

mass Mmin in units of MD(
p
✓MD)n+1. The last two columns show the range of

p
✓

in units of 1/MD that can be probed at the Large Hadron Collider.

n (rH)min/
p
✓

Mmin/MD

(

p
✓MD)n+1

p
✓minMD

p
✓maxMD

0 3.02 47.9
1 2.68 63.2
2 2.51 65.2 0.248 0.265
3 2.41 58.8 0.361 0.406
4 2.34 48.6 0.460 0.524
5 2.29 37.9 0.546 0.619
6 2.26 28.2 0.621 0.699
7 2.23 20.3 0.686 0.978

n = 6, and
p
✓ = 0.8 for n = 7.
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