Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials

Valery Ripariab, Michael G. Gänzleb*, Enrico Berardia

aUniversità Politecnica delle Marche, Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Ancona, 62010, Italy

bUniversity of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, AB, Canada, T6G 2P5

*, corresponding author

Michael Gänzle
University of Alberta
Dept. of Agricultural, Food and Nutritional Science,
4-10 Ag/For Centre
Edmonton, AB
Canada, T6G 2P5
tel: + 1 780 492 0774
e-mail: mgaenzle@ualberta.ca
Abstract

The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by L. sanfranciscensis, L. plantarum, L. graminis, or L. rossiae, and S. cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material.

Keywords: selection, dispersal, yeast, Lactobacillus sanfranciscensis, High-resolution melting quantitative PCR.
1. Introduction

Sourdough is employed in production of baked cereal products to achieve leavening, to improve bread quality, or to replace additives by “clean label” ingredients (Hammes and Gänzle, 1998; Brandt, 2007). Sourdough microbiota comprise lactic acid bacteria and yeasts (De Vuyst et al., 2014); their composition and activity determines the influence of sourdough on bread quality (Gänzle, 2014). Starter cultures for direct use in baking remain largely unavailable (Brandt, 2007); bakeries therefore typically maintain sourdoughs by continuous propagation using the previous batch as inoculum. Fermentation control is achieved by selection of raw materials for fermentation (Meroth et al., 2003; Vogelmann et al., 2009) and by selection of fermentation parameters (Di Cagno et al., 2014; Meroth et al., 2003; Stolz et al., 1999; Vrancken et al., 2011). Empirical control of fermentation, however, often fails to achieve consistent fermentation microbiota and product quality (Brandt, 2007). The control of sourdough fermentations thus necessitates an improved knowledge of the community assembly in sourdoughs.

The assembly of microbial communities is shaped by selection, dispersal, drift, and speciation (Nemergut et al., 2013; Vellend, 2010). Evidence for drift and speciation on assembly of sourdough microbiota is inconclusive. The role of selection for the assembly of sourdough microbiota is increasingly understood. Indeed, the competitiveness of lactobacilli in sourdough is strain- and species-specific (Siragusa et al., 2009), and depends on the process conditions (Meroth et al., 2003). The growth rate in specific fermentation substrates and the effect of pH and temperature on growth account for the effect of process conditions (Gänzle et al., 1998; Lin and Gänzle, 2014a; Meroth et al., 2003). Metabolic properties known to contribute to competitiveness of lactobacilli in sourdough include effective utilization of maltose and sucrose,
the use of additional electron acceptors, and acid resistance (Gänzle et al., 2007; Lin and Gänzle, 2014b).

The term “dispersal” describes the spatial movement of organisms (Vellend, 2010); the role of dispersal on community assembly of sourdough microbiota is less well understood. De novo fermentation of sourdoughs under dispersal-limited laboratory conditions results in sourdough microbiota that differ from microbiota of sourdoughs in bakeries (De Vuyst et al., 2014; Minervini et al., 2012; Van der Meulen et al., 2007). Lactobacillus plantarum and other lactobacilli may originate from plant microbiota (Minervini et al., 2015) while sourdough strains of Lactobacillus reuteri are of human and animal intestinal origin (Su et al., 2012; Zheng et al., 2015a). The origin of Lactobacillus sanfranciscensis and other key sourdough lactobacilli, however, remains unknown (De Vuyst et al., 2014).

Analyses of laboratory-made de novo sourdoughs have focused on the development of microbiota in sourdoughs started with flour as the only non-sterile ingredient (De Vuyst et al., 2014). De novo preparation of sourdoughs in bakeries, however, may involve the use of inoculum to accelerate the establishment of suitable fermentation microbiota (De Vuyst et al., 2014). Fruits, vegetables, yoghurt, rumen cuts and even manure were reportedly used to start sourdough. The effect of these inocula on the development of de novo sourdoughs, however, has not been described. It was therefore the aim of this study to characterize the microbiota of sourdoughs started with different inocula. Our experimental approach included analysis of sourdoughs that were started with different inocula in bakeries, followed by propagation over several months or years; the analysis of laboratory-prepared sourdoughs inoculated with different plant materials, and competition experiments with selected isolates. Sourdough microbiota were
analysed by culture, and by high resolution melting curve quantitative PCR (HRM-qPCR), a recently developed method (Lin and Gänzle, 2014a) that was extended to allow identification of sourdough yeasts.

2.1. Collection of traditional sourdoughs.

Sourdoughs were collected from bakeries of the Marche region in Italy which initiated, propagated, and used these sourdoughs in a traditional manner to produce bread without addition of baker’s yeast. At sampling, it was inquired whether or not material other than flour and water was used to start the sourdoughs. At the time of sampling the age of these sourdoughs ranged from 2 months to one hundred years. The composition of microbiota in these sourdoughs was evaluated as outlined below.

2.2. De novo sourdough preparation and sampling.

To prepare de novo sourdoughs, Malus domestica (apple) flowers, Sinapis alba (mustard) flowers, Veronica persica (speedwell) flowers, Crataegus monogyna (hawthorn) berries, Myrtus communis (murtle) berries, Punica granatum (pomegranate) fruits, and mother of vinegar were used as inoculum in addition to wheat flour. The 1st batch of dough was prepared using water, white wheat flour and 20% of the inoculum to a final dough yield of 200. The doughs were incubated for 48h without temperature control at ambient temperature (20-25°C). Sourdoughs were refreshed every 48h with wheat flour, 20% of the previous batch of sourdough as inoculum, and sterile water added to achieve a dough yield of 200. Fermentations were carried out in sterile containers. Fresh samples were analysed by culture-dependent methods after the 1st, 4th, and 10th
fermentation cycles. Samples taken after each fermentation cycle were conserved at -80°C for culture-independent analysis by HRM-qPCR.

2.3. Isolation of bacteria and yeasts.

Isolation of bacteria and yeast populations was carried out for both traditional samples and de novo sourdoughs. Bacteria in de novo sourdoughs were isolated and identified after the 1st, 4th, and 10th fermentation cycle; sourdough yeasts were isolated and identified after the 4th fermentation cycle. Sourdough samples were diluted in peptone water, appropriate dilutions were plated on modified de Man, Rogosa, Sharpe medium (Minervini et al., 2012) or on acidified yeast extract peptone dextrose (1% yeast extract, 2% peptone, 2% dextrose, pH 4.5) agar for isolation bacteria and yeasts. About 10 colonies per sample were selected to represent different colony morphologies, and purified by repetitive dilution streaks and maintained at -80°C with glycerol as cryoprotectant.

2.4. Competition in experimental sourdoughs.

Overnight cultures of L. rossiae apple3B, L. plantarum appleB, L. sanfranciscensis AM10PSB, and L. graminis SA1PSA in mMRS broth were washed with sterile tap water and re-suspended in an equal volume of sterile tap water. Doughs were prepared with sterile tap water and flour to obtain a dough yield of 200 and inoculated with the bacterial cultures to a cell count of approximately 10^7 cfu / g of each of the four species. Three different sourdoughs were prepared with material differing in buffering capacity and enzymatic activity. One sourdough was prepared with white wheat flour, a second with whole wheat flour, and a third with rye malt flour. The doughs were incubated at ambient temperature (20°C) for 48 h and propagated with
20% inoculum for four fermentation cycles. Competition experiments with the three different flours were carried out in duplicate independent experiments analysed in duplicate.

2.5. DNA extraction

DNA was isolated from LAB and yeasts using the DNeasy Blood & Tissue kit (Qiagen, Toronto, Canada) with the automated extractor QIAcube (Qiagen). To enable DNA extraction from doughs samples, dough solids were removed by centrifugation at 500 x g prior to extraction with the DNeasy Blood & Tissue kit.

2.6. RAPD-PCR analysis

Isolates from sourdough were analysed by RAPD–PCR using M13-5’-GAGGGTGCGGTTCT-3’(Huey & Hall, 1989) to eliminate clonal isolates from the same sample. PCR reactions were performed with 200 μM dNTP, 1 μM of M13 primer, 1x buffer, 3.5 mM MgCl₂, 1 U of Taq polymerase, 3 μl of DNA, and sterile water in a final volume to 25 μl. Each amplification consisted of an initial denaturation time of 5 min at 94 °C followed by 40 cycles of amplification comprising a denaturation step at 94 °C for 60 s, annealing at 45 °C for 20 s, and extension at 72 °C for 2 min. Reactions were completed with 5 min elongation at 72 °C followed by cooling to 10 °C. The amplification products were separated by electrophoresis on 2.5% (w/v) agarose gel in TAE buffer, stained with SYBR®Safe DNA gel stain, and visualized by UV transillumination.

2.7. Molecular identification

Bacterial isolates were identified by partial sequencing of genes coding for 16S rRNA. PCR amplification was performed using primers P0 (59-GAGAGTTTGATCCTGGCTCAG) and P6 (59-CTACGGCTACCTTGTTACGA) according to Di Cello et al (1999). Yeasts were identified
by partial sequencing of 28S rRNA genes after PCR amplification with primers P1 (ATCAATAAGCGGAGGAAAAG) and P2 (CTCTGGCTTCACCCTATTC) (Sandhu et al., 1995). PCR amplicons were purified with High Pure PCR Product Purification kit (Qiagen) and sent to Macrogen (USA) for sequencing. The identification of bacterial isolates was based on comparison to sequences of bacterial type strains deposited in the ribosomal database project (http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp); yeast isolates were identified by nucleotide BLAST with sequences deposited in the GenBank database (http://www.ncbi.nlm.nih.gov/).

2.8. High resolution melting– quantitative PCR (HRM-qPCR)

HRM-qPCR was used as described (Lin and Gänzle, 2014a) to achieve the culture-independent detection of bacterial species with DNA isolated from sourdough as template. The HRM-qPCR was performed on a Rotor Gene-Q (Qiagen, USA) using Type-it HRM PCR Kit (Qiagen, USA). Bacterial DNA was amplified with primers 5’-TCC TAC GGG AGG CAG CAG T-3’ and 5’-GGA CTA CCA GGG TAT CTA ATC CTG TT-3’ targeting all bacterial 16S rRNA genes. The assay was calibrated by amplification of DNA isolated from defined bacterial strains. The HRM-qPCR methodology was extended to analyse yeast populations in sourdough. Yeast DNA was amplified with Yeast-r/Yeast-f primers (Park et al., 2009) and NL1/LS2 primers (O’Donnell, 1993).

The PCR conditions were: denaturation 5 min at 95°C, followed by 45 cycles of denaturation at 95°C for 10 sec, annealing at 60°C for 30 sec, and extension at 72°C for 10 sec. At the final HRM analysis was performed using a temperature increasing from 70°C to 90°C at 0.1°C/step
with 2 sec holding time at each step. All HRM-qPCR analyses were carried out in technical replicates.

3. Results.

3.1. Microbiota of traditional sourdoughs started with different inocula.

The assessment whether the use of inoculum of plant or animal origin influences sourdough microbiota was initially based on the identification of bacteria and yeasts from 19 sourdoughs (Table 1). The sourdoughs were initially started with flour and water only, or with flour, water and the single use of an initial starter as indicated in Table 1. Almost all of the isolated yeasts were strains of *Saccharomyces cerevisiae*. The composition of bacterial microbiota in the 19 sourdoughs did not correlate to the initial starter used (Table 1). However, the exceptional presence of *Acetobacter cerevisiae* was noted only in sourdoughs that were initially inoculated with apples, apple pulp, or fruits (Table 1).

3.2. Microbiota of *de novo* sourdoughs started with different inocula in the laboratory.

To further explore the use of plant inocula on the development of sourdough microbiota, *de novo* sourdoughs were inoculated with plant material as indicated in Table 2 and propagated over 10 fermentation cycles with wheat flour. All sourdoughs exhibited high cell counts of lactic acid bacteria and yeasts already after 4 fermentation cycles (Table 2). The ratio of lactic acid bacteria to yeasts after 4 refreshments was 100:1.

Identification of bacterial isolates was performed after 1, 4, and 10 fermentation cycles; yeasts were identified after 4 fermentation cycles only (Table 3). Generally, the diversity of species in the samples decreased with an increasing number of fermentation cycles (Table 3). After 10 fermentation cycles, only one or two bacterial species were isolated from each sourdough. In two
sourdoughs, *L. sanfranciscensis* was detected after only one fermentation cycle (Table 3). Remarkably, *Enterobacteriaceae*, bacilli, or staphylococci were not detected as dominant members of sourdough microbiota at any stage of development. After 10 fermentation cycles, sourdoughs contained *L. sanfranciscensis* (4 sourdoughs), organisms of the *L. plantarum* group (2 sourdoughs); *L. rossiae*, *L. graminis*, and *Gluconacetobacter cerinus* were identified in one sourdough each (Table 3). Yeasts isolated from sourdoughs were identified as *Wickerhamomyces anomalus*, *Saccharomyces cerevisiae* and *Aureobasidium proteae*.

3.3. Validation of HRM-qPCR assays for qualitative analysis of sourdough microbiota.

To achieve a more comprehensive analysis of the development of microbiota in *de novo* sourdoughs, a HRM-qPCR assay developed previously (Lin and Gänzle, 2014a) was validated for all bacterial species isolated in *de novo* sourdoughs (Table 4). The HRM-qPCR differentiated amplicons of bacterial 16S rDNA if the difference of the melting temperatures was greater than 0.1°C, and differentiated 9 of the 14 bacterial species (Table 4). With exception of *L. sakei*, *L. curvatus*, and *L. graminis*, all species occurring in the same sample were differentiated (Table 3 and Table 4).

Two primer pairs were evaluated to establish a HRM-qPCR assay for differentiation of yeasts isolated in this study (Table 5). The melting temperature of amplicons obtained with primers Yeast-r/Yeast-f differed only by 0.2°C; these primers were thus not suitable for the differentiation of yeasts in the *de novo* sourdoughs (Table 5). The melting temperatures of amplicons obtained with primers NLS1/LS2 ranged from 81°C to 82.7°C and differentiated between the three yeast species that were identified in the samples (Table 5).
3.4. Use of culture-independent HRM-qPCR to characterize the development of microbiota in *de novo* sourdoughs.

HRM-qPCR was employed to characterize the development of bacterial and yeast sourdough microbiota after each fermentation cycle (Figure 1 and 2). Comparable to culture-dependent analysis, which accounts for strains comprising at least 1% of the total bacterial and yeast microbiota, respectively, HRM-qPCR analysis detects organisms if they account for 0.1 – 1% of the bacterial and yeast population, respectively (Lin and Gänzle, 2014a). Melting temperatures of specific amplicons after amplification of DNA isolated from sourdough differed from melting temperatures of the same amplicon obtained from pure strains. The difference was up to 0.1°C for lactic acid bacteria, and up to 0.2°C for acetic acid bacteria (Compare Figure 1 and Table 4). This difference is explained by preferential binding of the dye to GC rich amplicons (Gudnason et al., 2007).

To facilitate display of the experimental results, HRM-qPCR melting curves are omitted from Figures 1 or 2 if they are comparable to melting curves obtained with the subsequent sample (data not shown). Melting curves obtained after the first fermentation cycle were dominated by peaks representing acetic acid bacteria (Figure 1), in keeping with the isolation of *Gluconobacter* and *Acetobacter* in most samples obtained after the first fermentation cycle (Table 3). Bacterial populations as analysed by HRM-qPCR rapidly stabilized and remained unchanged after 4 – 8 fermentation cycles (Figure 1 and data not shown). Major melting peaks observed after 8 or 10 fermentation cycles matched in most cases the species that was predominant after 10 fermentation cycles (Figure 1 and Table 3). Doughs started with hawthorn, myrtle berries or mother of vinegar yielded melting curves with a dominant peak at 84.1°C (Figure 1), matching
the melting temperature of amplicons of *L. sanfranciscensis*, the dominant species in these samples (Table 3). Melting peaks in samples from sourdoughs started with mustard or apple flowers matched *L. graminis, L. plantarum*, and *L. rossiae*, again confirming the identification of isolates from these samples (Figure 1 and Table 3). Melting peaks in samples from sourdoughs started with speedwell flowers also matched melting peak of bacterial species that were identified by culture dependent analysis (Table 3 and data not shown). Culture dependent analysis of sourdough started with pomegranate identified *L. plantarum* after 10 fermentation cycles; HRM-qPCR analysis confirmed presence of *L. plantarum* and additionally indicated the presence of *L. sanfranciscensis* (Figure 1).

HRM-qPCR analyses of yeast microbiota in *de novo* sourdoughs are shown in Figure 2. Because yeast isolates were obtained and characterized only after 4 fermentation cycles, not all melting peaks observed in HRM-qPCR analysis (Figure 2) could be matched to the melting temperature of amplicons obtained from yeast isolates (Table 5). Yeast microbiota in *de novo* sourdoughs inoculated with apple flowers, myrtle berries, pomegranate fruits, or vinegar stabilized after less than 4 fermentation cycles and were characterized by a peak with a melting temperature of 83°C (Figure 2), in keeping with the presence of *S. cerevisiae* as only or dominant yeast species after 4 fermentation cycles. HRM-qPCR analysis also confirmed the presence of *S. cerevisiae* in *de novo* sourdoughs inoculated with mustard flowers and hawthorn berries (Fig 2), however, in these sourdoughs, *S. cerevisiae* was replaced by unknown yeasts after 10 fermentation cycles.

3.5. **Relative ecological fitness of lactobacilli isolated from de novo sourdoughs.**

Inoculation of *de novo* sourdoughs with different plant material resulted in dominance of different species of lactic acid bacteria after 10 fermentation cycles (Table 3 and Figure 1). These
differences may result from the presence or absence of individual species in the raw material used to start the fermentation, reflecting dispersal limitation, and / or may result from strain-specific differences in the ecological fitness of isolates, reflecting selection. To distinguish between dispersal limitation and selection, the relative ecological fitness of *L. rossiae*, *L. plantarum*, *L. sanfranciscensis*, and *L. graminis* was analysed by competition experiments in three different flours. Sourdoughs were propagated and fermentation microbiota were analysed by HRM-qPCR (Figure 3). Melting curves obtained after the first fermentation cycle conform to the presence of all four strains in the three sourdoughs. After only 4 fermentation cycles, however, *L. sanfranciscensis* displaced the other species and prevailed as dominant representative of the bacterial microbiota. This result indicates that the presence of *L. plantarum*, *L. graminis*, *L. rossiae* in *de novo* sourdoughs started with apple and mustard flowers or pomegranate fruits reflects the absence of *L. sanfranciscensis* in the inoculum rather than superior fitness of the strains.

4. Discussion

The present study assessed the relevance of selection and dispersal in the development of sourdough microbiota. The experimental design used various plant materials to inoculate sourdoughs at the first fermentation cycle, reflecting a practice that is employed by artisanal bakers when establishing *de novo* sourdough fermentation. The use of plant material resulted in rapid establishment of a stable consortium of yeasts and lactobacilli. *L. sanfranciscensis* was rapidly established as dominant microorganism in 4 of the 7 sourdoughs. *L. sanfranciscensis* is considered a key species in those sourdoughs that used as sole leavening agent; however, its presence in laboratory-made sourdoughs is unprecedented (De Vuyst et al., 2014; Harth et al.,
The absence of *L. sanfranciscensis* in three of the 7 sourdoughs excludes its presence as a laboratory-derived contaminant, and indicates that the carryover of *L. sanfranciscensis* is not common to all plants. Analysis of sourdough microbiota requires a combination of culture-dependent and culture-independent methods (De Vuyst et al., 2014). Culture-independent methods often fail to account for all members of sourdough microbiota (Meroth et al., 2003; Van der Meulen et al., 2007). Indeed, the yield of bacterial DNA from sourdough fermented with different strains of the same species may differ up to 100,000-fold even if the organisms are present at the same cell counts (Scheirlinck et al., 2009; Zheng et al., 2015b).

HRM-qPCR was recently established for culture-independent analysis of sourdough microbiota (Lin and Gänzle, 2014a). In comparison to other approaches using high-throughput sequencing of 16S rRNA gene sequences, HRM-qPCR has a lower resolution; however, in samples containing only few bacterial genotypes, HRM-qPCR is a highly suitable method for rapid high-throughput analysis of multiple samples (Lin and Gänzle, 2014a). The present study confirmed the suitability of HRM-qPCR for qualitative assessment of dominant bacterial species in sourdough (Table 3 and Figure 1); only one of the seven sourdoughs harboured an organism that was detected by HRM-qPCR but not by culture. This discrepancy may reflect the lower limit of detection of the HRM-qPCR assay (Lin and Gänzle, 2014a), or failure of the specific strain of *L. sanfranciscensis* to grow on the mMRS (Minervini et al., 2012).

This study indicates that HRM-qPCR analyses are also suitable for characterization of yeast microbiota. HRM-qPCR primers targeted 28S rRNA genes or internal transcribed spacer regions which are commonly used in fungal taxonomy (Sandhu et al., 1995; Iwen et al., 2002). This
study identified *W. anomalus*, *A. proteae*, and *S. cerevisiae* in sourdough microbiota. The yeast population was established rapidly and the ratio of bacteria to yeasts after four fermentation cycles matched the ratio observed in mature sourdoughs (Ottogalli et al., 1996). *S. cerevisiae* is associated with food fermentations or with diverse plant material (Wang et al., 2012). *W. anomalus* are isolated from fruits (Lee et al., 2011), citrus fruits peels (Martos et al., 2013), tree exudates, soil, frass (Kurtzman et al., 2011). *Aureobasidium* sp. were isolated from plant leaf surfaces (Pollock et al., 1992), grape (Bararta et al., 2012), berries (Katsoudas and Tournas, 2005), and apples (Kurtzman et al., 2011). Remarkably, *Candida humilis* and *Kazachstania exigua*, typical members of type I sourdough microbiota (de Vuyst et al., 2014), were not identified.

The development of sourdough microbiota during the *de novo* fermentation under laboratory conditions is well documented in multiple studies. If flour is the only source of bacterial contaminants, sourdough microbiota consistently develop in three stages that are characterized by dominance of *Enterobacteriaceae* in the first fermentation cycle, followed by growth of adventitious lactic acid bacteria including enterococci and streptococci. Lactic acid bacteria representing typical sourdough microbiota are usually present only after more than 10 fermentation cycles (Ercolini et al., 2013; Lönner et al., 1986; Rizzello et al., 2015; Van der Meulen et al., 2007; for a review, see De Vuyst et al., 2014). The development of microbiota in sourdoughs started with diverse plant material differs in several aspects from this well-described succession of fermentation microbiota. (i) *Enterobacteriaceae* were absent at any stage. (ii) Adventitious lactic acid bacteria including *Enterococcus* spp. were present only after the first fermentation cycle but replaced by sourdough-adapted lactic acid bacteria already after four
fermentation cycles. (iii) Acetic acid bacteria were present in 4 of the 7 sourdoughs. While acetic acid bacteria are not considered typical members of sourdough microbiota, their occasional presence in sourdough was also confirmed by analysis of traditional sourdoughs maintained in bakeries (Table 1). In 4 of the 7 sourdoughs, *L. sanfranciscensis* became established as dominant member of fermentation microbiota already after 1 - 4 fermentation cycles. This result conforms to the composition of microbiota of traditional sourdoughs but contrasts the absence of this species in *de novo* sourdoughs that were inoculated only with flour. Flowers or berries are thus a more suitable source for typical sourdough microbiota when compared to flour. The observation that diverse plant material resulted in a comparable development of microbiota in *de novo* sourdoughs may point to the relevance of plant or flower associated insects (Wong et al., 2011). The fruit fly *Drosophila melanogaster* harbours *L. brevis, L. fructivorans* and *L. plantarum* as dominant members of intestinal microbiota (Wong et al., 2011). Our observations concur with the hypothesis that flowers or flower-associated insects harbour *L. sanfranciscensis* (Groenewald et al., 2006; Zheng et al., 2015b). The rapid development of typical sourdough microbiota in *de novo* sourdoughs started with plant material is also reflected by the rapid establishment of yeasts. However, the evolution of yeast microbiota in *de novo* sourdoughs was not as well documented in the present study and elsewhere as the development of bacterial microbiota (De Vuyst et al., 2014).

Selection and dispersal shape the composition and function of sourdough microbiota (Di Cagno et al., 2014; Lin and Gänzle, 2014b; Meroth et al., 2003; Su et al., 2012; Vrancken et al., 2011). This study demonstrates that the development of microbiota in *de novo* sourdoughs is dispersal limited unless inocula of plant or animal origin are used to transfer typical sourdough microbiota.
Dispersal limitation was confirmed by the finding that *L. sanfranciscensis* exhibits superior ecological fitness when competing against other sourdough isolates. The comparison of *de novo* sourdoughs with traditional sourdoughs that were propagated for several month or years, however, indicates that microbiota of sourdoughs maintained in bakeries are mainly shaped by selection for highly adapted microorganisms. The contamination or inoculation of sourdoughs with plant (insect)- or animal associated microorganisms is unlikely in the laboratory; however, plant- or animal associated microorganisms contaminate sourdoughs that are maintained in bakeries by continuous propagation over long periods of time (Su et al., 2012).

In conclusion, our study provides scientific support for the artisanal practice to inoculate *de novo* sourdoughs with flowers, berries, or related plant material. The use of manure or intestinal tissue to inoculate *de novo* sourdoughs favours establishment of representatives of animal microbiota as dominant fermentation organisms in sourdoughs (Su et al., 2012). This study contributes to improved control of sourdough fermentations in artisanal and industrial bakeries based on the improved knowledge of the community assembly in sourdoughs.

5. Acknowledgements

The National Science and Engineering Research Council of Canada is acknowledged for financial support through a Discovery Grant to Michael Gänzle.

References.

Nemergut, D.R., Schmidt, S.K., Fukami, T., O'Neill, S.P., Bilinski, T.M., Stanish,

Figure legends

Figure 1. HRM-qPCR melting curves of bacterial 16S rDNA amplicons that were obtained with community DNA isolated from de novo sourdoughs that were propagated over 10 consecutive fermentation cycles. At the first fermentation cycle, sourdoughs were inoculated with the materials as indicated in the panels: apple flowers, mustard flowers, hawthorn berries; myrtle berries, pomegranate, mother of vinegar. Melting curves were offset by 0.1 dF/dT per fermentation cycle and are shown by alternating solid and dashed lines. The sequence of cycles shown is indicated in the individual panels. The melting temperature of major peaks is also indicated in the individual panels, the corresponding bacterial species are shown in Table 4.

Figure 2. HRM-qPCR melting curves of yeast DNA amplicons that were obtained with community DNA isolated from de novo sourdoughs that were propagated over 10 consecutive fermentation cycles. At the first fermentation cycle, sourdoughs were inoculated with the materials as indicated in the panels: apple flowers, mustard flowers, hawthorn berries; myrtle berries, pomegranate, mother of vinegar. Melting curves were offset by 0.1 dF/dT per fermentation cycle and are shown by alternating solid and dashed lines. The sequence of cycles shown is indicated in the individual panels. The melting temperature of major peaks is also indicated in the individual panels; the corresponding yeast species are shown in Table 5.

Figure 3. HRM-qPCR melting curves of bacterial 16S rDNA amplicons that were obtained with community DNA isolated from sourdoughs prepared from white wheat flour (Panel A), whole wheat flour (Panel B), or rye malt flour (Panel C). Sourdoughs were inoculated with approximately 10^7 cfu / g each of *L. rossiae*, *L. plantarum*, *L. sanfranciscensis* and *L. graminis* and propagated over 4 consecutive fermentation cycles. Melting curves were offset by 0.1 dF/dT
per fermentation cycles and the sequence of cycles shown is indicated in the individual panels. The melting temperature of major peaks is also indicated in the individual panels; the melting peak of 84.1°C matched the melting peak of 16S rDNA amplicons from *L. sanfrancensis*. Results are representative for two independent experiments analysed in duplicate.
Table 1. Identity of the species isolated from traditional sourdoughs.

<table>
<thead>
<tr>
<th>Sourdough sample</th>
<th>Origin</th>
<th>Initial starter</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Ancona</td>
<td></td>
<td>Lactobacillus plantarum group<sup>a</sup>, Pediococcus pentosaceus Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>SP</td>
<td>Camerino</td>
<td></td>
<td>L. plantarum group, Lc. holzapfelli</td>
</tr>
<tr>
<td>PeL</td>
<td>Montelupone</td>
<td></td>
<td>L. brevis, Pc. pentosaceus, S. cerevisiae</td>
</tr>
<tr>
<td>M</td>
<td>Civitanova Alta</td>
<td></td>
<td>L. plantarum group, Pc. pentosaceus S. cerevisiae</td>
</tr>
<tr>
<td>AC</td>
<td>Belforte</td>
<td>apple</td>
<td>Acetobacter cerevisiae, L. sakei, L. graminis, L. brevis S. cerevisiae</td>
</tr>
<tr>
<td>UPRF</td>
<td>Porto Recanati</td>
<td>apple</td>
<td>A. cerevisiae, L. plantarum group, S. cerevisiae, S. unisporus</td>
</tr>
<tr>
<td>G</td>
<td>Ancona</td>
<td>fruits</td>
<td>A. cerevisiae, L. plantarum, Pc. pentosaceus, Wickerhamomyces anomalus</td>
</tr>
<tr>
<td>MA</td>
<td>Filottrano</td>
<td>cow manure</td>
<td>L. plantarum, L. sanfranciscensis S. cerevisiae</td>
</tr>
<tr>
<td>AA</td>
<td>Ancona</td>
<td>honey</td>
<td>L. plantarum group, Pc. pentosaceus, W. cibaria S. cerevisiae, Wickerhamomyces anomalous</td>
</tr>
<tr>
<td>EC</td>
<td>Morrovalle</td>
<td>honey</td>
<td>L. graminis, Pc. pentosaceus, S. cerevisiae</td>
</tr>
<tr>
<td>FA</td>
<td>Ancona</td>
<td>honey</td>
<td>L. brevis, Pc. pentosaceus, S. cerevisiae</td>
</tr>
<tr>
<td>GF</td>
<td>Altidona</td>
<td>honey</td>
<td>L. graminis, Pc. pentosaceus, S. cerevisiae, S. barnetti, L. sanfranciscensis, Lc. holzapfelli, Lc. kimchi, Leuconostoc mesenteroides*, Lc. mesenteroides, W. cibaria, S. cerevisiae</td>
</tr>
<tr>
<td>PA</td>
<td>Agugliano</td>
<td>honey</td>
<td>L. sanfranciscensis, Lc. holzapfelli, Lc. kimchi, Leuconostoc mesenteroides, W. confusa S. cerevisiae</td>
</tr>
<tr>
<td>FLM</td>
<td>Pollenza</td>
<td>yoghurt</td>
<td>W. cibaria, Pc. pentosaceus, Lc. holzapfelli, Lc. mesenteroides S. cerevisiae</td>
</tr>
<tr>
<td>VM</td>
<td>Macerata</td>
<td>yoghurt</td>
<td>L. sanfranciscensis, W. cibaria, Lc. holzapfelli S. cerevisiae</td>
</tr>
<tr>
<td>AV</td>
<td>Strettura (Umbria)</td>
<td>yoghurt</td>
<td>L. rossiae, Pc. pentosaceus, L. paracasei, Lc. mesenteroides, L. plantarum group, Lc. holzapfelli S. cerevisiae</td>
</tr>
<tr>
<td>CP</td>
<td>Fermo</td>
<td>water and flour</td>
<td>L. plantarum group, L. paracasei, Lc. holzapfelli S. cerevisiae</td>
</tr>
<tr>
<td>PM</td>
<td>Moresco</td>
<td>vinegar</td>
<td>L. rossiae, L. plantarum group, Lc. mesenteroides, S. cerevisiae</td>
</tr>
</tbody>
</table>

^aunless otherwise noted, samples were collected in the Marche region.

^bSourdoughs Ca, SP, PeL and M have been propagated for more than 100 years and reliable information on the inoculum was not available.

^c*L. plantarum* was identified on the basis of 16S rRNA sequences and thus not differentiated from *L. paraplantarum* or *L. pentosus*.

26
Table 2. Plant material used as inoculum for sourdough fermentations and bacterial and yeast cell counts in *de novo* sourdough samples at the 4th refreshment

<table>
<thead>
<tr>
<th>Inoculum</th>
<th>Bacterial cell count (cfu/g)</th>
<th>Yeast cell count (cfu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malus domestica (apple) flowers</td>
<td>1.0 x 10⁹</td>
<td>2.0 x10⁷</td>
</tr>
<tr>
<td>Sinapis alba (mustard) flowers</td>
<td>5.0 x 10⁹</td>
<td>5.0 x10⁷</td>
</tr>
<tr>
<td>Veronica persica (speedwell) flowers</td>
<td>4.0 x 10⁹</td>
<td>1.0 x10⁶</td>
</tr>
<tr>
<td>Myrtus communis (myrtle) berries</td>
<td>5.8 x 10⁸</td>
<td>8.7 x10⁷</td>
</tr>
<tr>
<td>Crataegus monogyna (hawthorn) berries</td>
<td>2.1 x 10⁹</td>
<td>6.6 x10⁷</td>
</tr>
<tr>
<td>Punica granatum (pomegranate) fruit</td>
<td>1.2 x 10⁹</td>
<td>1.4 x10⁷</td>
</tr>
<tr>
<td>mother of vinegar</td>
<td>8.4 x10⁹</td>
<td>1.2 x10⁷</td>
</tr>
</tbody>
</table>
Table 3. Identification of bacterial isolates in *de novo* sourdoughs after 1, 4, and 10 fermentation cycles.

<table>
<thead>
<tr>
<th>Sourdough sample</th>
<th>1st fermentation cycle</th>
<th>4th fermentation cycle</th>
<th>10th fermentation cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple flowers</td>
<td>Lc. mesenteroides, L. plantarum group, L. graminis</td>
<td>L. plantarum group, L. rossiae</td>
<td>L. plantarum group, L. rossiae</td>
</tr>
<tr>
<td>Mustard flowers</td>
<td>Gluconobacter cerinus, L. sakei, L. graminis, Leuconostoc mesenteroides</td>
<td>L. rossiae, L. brevis, L. graminis</td>
<td>L. graminis</td>
</tr>
<tr>
<td>Veronica persica flowers</td>
<td>L. sanfranciscensis, L. plantarum group, G. cerinus L. rossiae</td>
<td>L. sanfranciscensis, L. plantarum group</td>
<td>L. sanfranciscensis, G. cerinus</td>
</tr>
<tr>
<td>Haworth berries</td>
<td>L. sakei, L. curvatus, L. graminis, Lc. mesenteroides, L. sanfranciscensis</td>
<td>L. sanfranciscensis, L. plantarum group, L. curvatus, L. graminis</td>
<td>L. sanfranciscensis</td>
</tr>
<tr>
<td>Myrtle berries</td>
<td>Lc. holzapfelli, Lc. mesenteroides, Enterococcus hirae, Acetobacter tropicalis</td>
<td>Lc. mesenteroides, Lc. holzapfelli</td>
<td>L. sanfranciscensis</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>Lc. holzapfelli, L. plantarum group</td>
<td>Pediococcus pentosaceus, Lc. holzapfelli</td>
<td>L. plantarum group</td>
</tr>
<tr>
<td>Mother of vinegar</td>
<td>A. cibinongensis, G. cerinus</td>
<td>Lc. holzapfelli, L. sakei, L. brevis</td>
<td>L. sanfranciscensis</td>
</tr>
<tr>
<td>Reference organism</td>
<td>T_m (°C) a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. rossiae apple3B</td>
<td>83.6 ± 0.0;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lc. mesenteroides SA1PSC2</td>
<td>83.7 ± 0.05;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lc. holzapelli MG 1PSB</td>
<td>83.8 ± 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. sanfranciscensis AM1OPSB</td>
<td>84.1 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc. pentosaceus MG2B</td>
<td>84.4 ± 0.02;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. plantarum appleB</td>
<td>84.4 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. brevis SA3B</td>
<td>84.4 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. graminis SA1PSA b</td>
<td>84.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. sakei SA1PSB</td>
<td>84.6 ± 0.0;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. curvatus BIANC5B</td>
<td>84.6 ± 0.02;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterococcus hirae MYRT1 SB</td>
<td>85.0 ± 0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gluconobacter cerinus AM1PSD</td>
<td>85.8 ± 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetobacter tropicalis MG1PSA1</td>
<td>86.0 ± 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetobacter cibinogensis AM1PSC</td>
<td>86.3 ± 0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Left / right borders of the cells are drawn to connect melting peaks of 16S rRNA amplicons that could not be differentiated.

bL. graminis was indistinguishable by HMR-qPCR from either *Pc. pentosaceus*, *L. plantarum* and *L. brevis* or *L. sakei* and *L. curvatus.*
Table 5. Melting temperatures of PCR amplicons of reference strains representing selected species of yeasts using yeast-R/yeast-F primers or using NLS1/LS2 primers.

<table>
<thead>
<tr>
<th>Reference organism</th>
<th>T_m (°C) of product from yeast-R/yeast-F primers</th>
<th>T_m (°C) of product from NLS1/LS2 primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cerevisiae AM53y</td>
<td>78.5 ± 0.03</td>
<td>82.7 ± 0.04</td>
</tr>
<tr>
<td>A. proteae MG1PSC2</td>
<td>78.3 ± 0.05</td>
<td>81.9 ± 0.03</td>
</tr>
<tr>
<td>W. anomalus CB41y</td>
<td>78.5 ± 0.02</td>
<td>81.0 ± 0.01</td>
</tr>
</tbody>
</table>
Ripari et al., Figure 2.
Ripari et al., Figure 3.