# **Comparison of Breath Collection Techniques Using TD-GCxGC-MS** Natasha J. Babuik<sup>1</sup>, E. Y. Mesfin<sup>1</sup>, S. A. Schmidt<sup>1</sup>, A. P. de la Mata<sup>1</sup>, J. J. Harynuk<sup>1</sup>

Department of Chemistry, University of Alberta, Edmonton, Alberta

### Introduction

- Exhaled breath contains volatile organic compounds (VOCs). VOCs are a broad class of compounds that includes many different organic compounds. Within the human body, these volatile metabolites act as biomarkers. They can indicate disease presence, progression, and environmental hazards/exposures, and can be used for other applications.<sup>1</sup>
- Breath is gaining popularity as a biosample because its sampling process is non-invasive and low risk for patients.
- In this study, 3L Tedlar bags and the BioVOC2 device were compared as collection techniques for breath volatiles using TD-GC×GC-TOFMS. Techniques were compared according to analytical performance (diversity of compounds, analyte responses, etc.), as well as practical considerations (sampling time, ease of use, etc.).

### Methods



Participants blew into the device and pumped breath onto tube. Repeated 8 times as each sample collects 129 mL of breath (8 samples total on one tube)



BioVOC 2 samples were loaded directly onto the biomonitoring tubes.



Participant inhaled and exhaled fully, filling the 3L bag with 2 breaths.



Tedlar bag samples were pumped onto biomonitoring tubes (Tenax TA and Carbograph 5) at 50 mL/min







60 mL/min flow rate 13.8 mL/min split flow



## Results

# 122 Total Peaks 6.14E+08 Total Peak Area First Dimension Retention Time (min) a 160 Total Peaks <sup>2</sup> 1.53E+09 Total Peak Area First Dimension Retention Time (min) <sup>©</sup> 77 Total Peaks <sup>≝</sup> 3.02E+08 Total Peak Area First Dimension Retention Time (min)



References (1)A.Z.Berna, A.R.O.John, Clinical Chemistry 68:1 43-51 (2022) Breath Metabolites to Diagnose Infection



## Acknowledgements

