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A B ST R A C T

The simplification resulting from reduction of dimension involved in the 

study of invariant manifolds of differential equations is often difficult to achieve 

in practice. Appropriate coordinate systems are difficult to find or are essen

tially local in nature thus complicating analysis of global dynamics. Li and 

Muldowney [8] developed an approach that avoids the selection of coordinate 

systems on the manifold. Conditions were given for the stability of equilibria 

and periodic orbits in terms of stability of compound equations of the lin

earized systems at the equilibrium or periodic orbit. When the manifold is a 

finite dimensional Euclidean space, results in [11] and [7] show th a t if these 

conditions are satisfied by the linearized system at any bounded orbit, then the 

omega limit set is respectively an equilibrium or a periodic orbit. The thesis 

provides a survey of these topics and develops a new approach th a t extends 

the results on the existence of equilibria and periodic orbits to  systems with 

invariant manifolds.
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C hapter 1

Introduction

The existence and stability of periodic motions for dynamical systems is an 

area of much interest in the sciences. Prom an applied perspective, nonlinear 

ordinary differential equations are routinely used to model physical phenom

ena. Periodic motions are common for these models especially for electrical 

and biological systems. Understanding when stable periodic motions arise pro

vides insight into these systems. Prom the perspective of pure mathematics, 

generalizing well-known results in the plane such as the Poincare-Bendixson 

theorem is a fruitful path  for research.

In Chapter 2, concepts and terminology necessary for the study of dy

namical systems are discussed. To understand the long-term behavior of a 

dynamical system, properties of limit sets are considered. It is seen th a t sta

bility of an orbit has strong implications for the stability of its limit sets, as 

well as restricting what the limit set can be. Sufficient conditions are then re

viewed for the existence of an asymptotic equilibrium and a phase asymptotic 

periodic orbit.

In Chapter 3, dynamical systems generated by non-linear autonomous sys

tems of differential equations in Rn are considered. When n  =  2, the dynamics 

are well understood. Here, the Poincare-Bendixson theorem characterizes limit 

sets of a bounded orbit. This theorem can be used to deduce the existence 

of a periodic orbit. However, this theorem is not valid in higher dimensional

1
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systems. The variational equation at a solution of a differential equation can 

be used to study the behavior of this solution. Muldowney showed in [11] that 

when the linearized system about a bounded solution is uniformly asymptoti

cally stable, the flow is asymptotic at this solution and limits to  an asymptotic 

equilibrium. Li and Muldowney in [7] showed tha t when the second compound 

of the variation equation a t a bounded solution is uniformly asymptotically 

stable, the flow is phase asymptotic at this solution and it limits to  a phase 

asymptotic periodic orbit if the orbit does not get close to  any equilibrium. At 

the end of Chapter 3, we present an alternative proof of this result. It will be 

used in Chapter 4 when we extend this result to flows on invariant manifolds.

In Chapter 4, we consider flows on invariant manifolds generated by au

tonomous differential equations. Invariant manifolds arise, for example, in 

physical systems from the existence of conserved quantities. The traditional 

approach to dynamical systems with an invariant manifold is to use coordi

nate systems on the manifold to reduce the dimension of the problem. This 

approach is difficult to implement. Li and Muldowney in [8] study the stabil

ity of periodic orbits and equilibria with respect to the flow on an invariant 

manifold. They developed stability criteria for equilibria and periodic orbits 

without resorting to special coordinates. Some properties of flows on an invari

ant manifold are reviewed. The chapter concludes with Theorem 4.9, where we 

provide sufficient conditions for the existence of a phase asymptotic periodic 

orbit on an invariant manifold in terms of a linear equation associated with 

the variational equation.

In Chapter 5, Theorem 4.9 is applied to  a series of examples to demonstrate 

the existence of a phase asymptotically stable periodic orbit.

In Appendix A, we collect facts on compound matrices and compound 

differential equations necessary for the development in this thesis. Appendix 

B, contains a technical result used in the proofs of Theorems 3.11 and 4.9.

2
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C hapter 2 

D ynam ical System s

The focus of this thesis is on the existence and stability of periodic orbits 

for dynamical systems generated by an autonomous differential equation. A 

parallel discussion of similar questions for equilibria is included throughout as 

motivation.

Dynamical systems were developed to model physical phenomena. In many 

physical applications, an understanding of the long-term behavior of the sys

tems is of interest. This can be facilitated by finding the invariant sets and 

limit sets, and understanding the behavior of neighboring orbits. The simplest 

of these invariant sets are periodic orbits and equilibria. These problems can 

be explored by studying the stability of an equilibrium or a periodic orbit.

In this chapter, dynamical systems and notions of stability for equilibria 

and periodic orbits are defined. A review of known results tha t can be used to 

establish the existence of an equilibrium or a periodic orbit from the attraction 

of its neighbors by a bounded orbit is given.

2.1 D efin itions

Some terminology for dynamical systems is now reviewed. Let R denote the 

real numbers, R + the nonnegative real numbers, and M nxrn the n  x m  real 

matrices. A metric space (A, d) is a set X  with a map d : X  x X  i—> R +

3
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called the metric such th a t x, y, z E X  implies d(x, y) =  d(y, x) and d(x, y) < 

d(x, z) +  d(z,y).

D efin itio n  2.1. Let (X ,d )  be a metric space. Suppose the function ( t,x )  >—> 

<£>(t,x) is continuous for 1 € M and x  € X. Then x) is a flow or a 

(continuous) dynamical system if the following occur:

(a) ip(t + s ,x )  — ip(s, x)) for all x  € X  and s , t  E R.

(b) x) =  x, for all x  E X .

Let B s{x) :=  {y  € X  : |x  — y| < 5} and B S(A) := {y  € X  : |a  -  y| < 

d, a  E A}  for <5 > 0 where x  € X  and A  C X . A set B  C X  is positively 

invariant with respect to  the flow on X  if ip(t, B)  C B  for t > 0. It is invariant 

if <p(t, B)  C B  for t E M, where ip(t, B ) =  {<p(t, b) : b € B }.  If B  C X  and

x  € X , the distance from B  to  x  is defined as

d (x ,B )  := inf d(x, y).yeB

Im portant classes of invariant sets are the w-limit and cc-limit sets. A point 

y  E X  is defined to be in the uj- limit set at x, fi(x), if there exists a sequence 

{in} such tha t lim ^oo t n = oc and lim ^oo <p(tn, x) =  y. A point y  E X  is 

defined to be in the a-limit set at x, A(x). if there exists a sequence {tn} such 

tha t lim ^oo tn =  -o o  and lim ^oo y>(tn, x) =  y.

D efin itio n  2.2. Suppose x  € X.

(a) The set T+ (x) := {</?(<, x) : t > 0} is the positive semiorbit at x.

(b) A point x  is an equilibrium if ip(t, x) =  x  for all f G R.

(c) The positive orbit T+(x) is periodic with period ui > 0 if y>{t + uj, x) =

tp(t, x), for t €  R  and x  is not an equilibrium.

(d) The flow <£>(t,x) is Lagrange Stable at x  if T+(x) is compact, where the 

bar indicates topological closure.

4
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(e) The flow <p(t, x) is Lyapunov stable at S  if for each e > 0 there exists a

5 > 0 such tha t d(x, S) < 5 implies d(ip(t, x), S)  < e for t > 0 .

(f) If S  C X  is not Lyapunov stable then it is unstable.

(g) The flow is asymptotic at S  C X  if there exists a p > 0 such tha t Xo € 5

and d(x, xo) < p implies lim(_>ood(<p(i,x),(^(t,x0)) =  0 .

(h) The flow tp(t, x) is phase asymptotic at the set S  C X  if there exist 

p, r) > 0 such that, for each x 0 €  S,  there is a real valued phase function 

x  i-» /r(x) with |h(x)| <  77 and such th a t d(x, x 0) <  p implies

lim d(ip(t +  /i(x ),x ), <p(t,x0)) =  0 .
t —► OO

The concepts of phase asymptoticity and asymptoticity for a flow will be 

im portant throughout this thesis. A flow may be asymptotic at a set but not 

be phase asymptotic. In the definitions of phase asymptotic and asymptotic, 

often the set S  will be taken to be an orbit or a point.

Note: to apply these notions of stability to a periodic orbit with path T 

one would let S  = T. In this case, if the flow is Lyapunov stable, asymptotic,

or phase asymptotic at T, then it is said th a t the periodic orbit is orbitally

stable, orbitally asymptotically stable, or orbitally phase asymptotically stable, 

respectively.

2.2 L im it S ets and th e  E x isten ce  o f P eriod ic  

O rbits

In this section, sufficient conditions are stated for a Lagrange stable orbit to 

limit to a phase asymptotically stable closed orbit.

P roposition  2.3. Suppose the flow is Lagrange stable at x  G X . Then Q(x) 

is nonempty, compact, connected, and invariant.

5
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The following proposition states tha t the cj-limit set of an orbit a ttracts 

this orbit. However, it is not necessarily the case tha t an u -limit set a ttracts 

all neighboring orbits.

P rop osition  2.4. Suppose that the flow is Lagrange stable at x* € X .  Then 

for every open neighborhood V  of Life*) there exists a r  such that <p(f, x*) € V  

for t > t .

A proof of Propositions 2.3 and 2.4 can be found in [13] chapter II.

P rop osition  2.5. Suppose the flow, <p(f,x), is Lagrange stable at x*. Then 

<p(t, x) is Lyapunov stable, asymptotic, or phase asymptotic at T+(x*) i f  and 

only i f  it has the same property at fl(x*).

Proof. The proposition is proved only for the “phase asymptotic” statem ent. 

The others are proved similarly.

Suppose ip is phase asymptotic at T+(x*) and Xo 6  Life*). Let p and r/ be 

as in the definition of phase asymptotic. There exists Xi € T+(x*) such th a t 

|xj — x 0| < p/2. If |x0 -  x| < p/2, then by the triangle inequality |xi — x| < p. 

Since the flow is phase asymptotic at F+(x*), the previous inequalities imply 

tha t

lim d(<p(t,X!),<p(t +  h(x1,x 0) ,x 0))) =  0, (2.1)
£—>00

lim d(p(t, x a), >p(t +  h fe i ,  x), x))) =  0. (2 .2)
£—►00

From the triangle inequality, (2.1), (2.2), and the properties of a flow, 

lim d(ip (t ,x0) ,p ( t  + h fe i ,x )  -  h f e i , x 0),x ))) =  0 .
£—►00

Let h :=  h fe i ,x )  — h (x i,x 0). Then

lim d(p(t, x 0), p(t  +  h, x))) =  0 ,
£—»oo

where \h\ < 2r/. We conclude tha t the flow is phase asymptotic at fi(x*).

Conversely, suppose the flow is phase asymptotic at fl(x*). Let p and r/

be as in the definition of phase asymptotic. Then there exists a t\ such tha t

6
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for t > t\, d(p(t, x*), Q(x*)) < p/2. Let y i :=  ^ (f^ x * ). If Xi G r + (yi), then 

there exists Xo in f2(x*) so tha t d(xo,Xi) <  p/2. By the triangle inequality, 

d ( x , x i) < p/2  implies th a t d (x ,x o) < p. Then

lim d(ip(t, x 0), <p(t +  /i(x0, x a), X j ) ) )  =  0, (2.3)
t —> OO

lim d((p(t, xo), ip(t +  h(x0, x), x))) =  0. (2.4)
t —►OO

From the triangle inequality, (2.3), (2.4), and the properties of a flow,

lim d(p(t, x{),<p(t +  h, x))) =  0
t —+ OO

where h :=  h(xo, x) — h (xo, Xi) with |h| <  2p. It has been shown tha t T+(yi) C 

r+(x,) is phase asymptotic.

We will now show th a t <p is phase asymptotic a t T+(x*). Since <p is uni

formly continuous on [0 , t\] x r+(x*), there exists p\, 0 <  p\ <  p such th a t if

(yC>(si,Zi) =  y i with si G [0 ,ii], then \z\ — x| <  p\ implies |yj — <^(sj,x)| <  p.

Since the flow is phase asymptotic at y i,

lim |<p(t + h(<p(si,x), y i), x) -  <p(t, z x)|
t~* OO

=  lim \p(t + si +  h(ip(si ,x ) ,y i ) ,x )  -  ip(t + s i ,z i) |
t — >O0

=  lim |(/o(t +  / i ( ^ ( s i ,x ) ,y i ) ,¥j(s1,x )) -  <p(t, y i) |
I —* OO 

=  0

Hence, the flow is phase asymptotic at r+(x*). □

The following theorem was first proved in [11], It can be used to detect an 

asymptotic equilibrium.

T h e o re m  2.6. Suppose ( t ,x )  i—► cp(t,x )  is a flow which is Lagrange stable at 

x*. Then the following are equivalent:

7
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(i) The flow tp is asymptotic ]and Lyapunov stable] at r +(x*), the positive

image of x* under the flow.

(ii) The co-limit set f2(x*) is an equilibrium at which tp is asymptotic [and 

Lyapunov stable].

The phrase in square brackets may be included or omitted throughout.

Proof. Suppose the flow is asymptotic at T+(x*). Let p be as in the definition 

of asymptotic. Choose Xi G r +(x») and w  > 0 so tha t |xi — </?(e,Xi)| <  p for 

|e| <  w. Then

lim d(ip(t, Xi), p(t, p(e, Xi))) =  lim d{p{t, x x), p(e, p(t, x x))) =  0 (2.5)
t — > OO t —* OO

since p  is asymptotic at T+(x*). Let x 0 € Q(x*). Then there exists a sequence 

{tn}, tn —> oo as n  —> oo such tha t p ( tn, x i) —> x 0 as n —> oo. From (2.5),

lim d(p(tn, x i), tp(e, p ( tn, x x))) =  0 , |e| <  w. (2 .6)
n —>oo

Therefore,

lim < (̂tn,x i)  =  lim ip(e, p ( tn, Xi)) (2.7)
n —> oo n —> oo

or equivalently x 0 =  <p{e, xo) for |e| <  w. This implies that x 0 is an equilibrium. 

From Proposition 2.5, the flow is asymptotic at x 0 since the flow is asymptotic 

at r+(x*). Further, there exists an open neighborhood, N ,  of xo such tha t 

x  G N  implies tha t <p(t,x) limits to Xo- This implies tha t Xo is the only 

equilibrium in N .  Since f2(x*) is connected, x 0 =  fi(x*). If the the flow is 

Lyapunov stable at r+(x*), then from Proposition 2.5 the flow is Lyapunov 

stable at f2(x»). This proves tha t (i) implies (ii).

Conversely, suppose the flow is asymptotic at Xo =  fi(x»). Then, from 

Proposition 2.5 the flow is asymptotic at T+(x*). If the flow is Lyapunov 

stable at J7(x»), then from Proposition 2.5 the flow is Lyapunov stable at 

r+ (x .) . This proves tha t (ii) implies (i). □

The following theorem was proved by Li and Muldowney in [7]. It is a

8
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generalization of a theorem in [14] due to Sell. Sell’s result does not assume 

boundedness of the phase function and has Lyapunov stability as a requirement 

rather then as an option. The boundedness of the phase function is in fact a 

consequence of this requirement.

T h e o re m  2.7. Suppose ( t ,x )  i—> p ( t ,x )  is a flow which is Lagrange stable at 

x*. Then the following are equivalent:

(i) The flow p  is phase asymptotic [and Lyapunov stable] at T+(x*), the 

positive semiorbit o f x *.

(ii) The u-limit set fl(x*) is a periodic orbit at which tp is phase asymptotic 

[and Lyapunov stable].

The phrase in square brackets may be included or omitted throughout.

Proof. Suppose the flow is phase asymptotic at T+(x*). Let p,r] be as in the 

definition of phase asymptotic.

Choose Xi,X2 G T+(x*) such tha t |xj — x 2| < p and x 2 =  p(ti,x fl)  with 

ti  > 77. Since the flow is Lagrange stable at x*, we take C > 77. Since the flow 

is phase asymptotic at T+(x*), there exists a phase h — h (x i , x 2) with |/i| <  77 

so that

lim d(<p(t, Xi), ip(h, p(t,  x 2)))
£—►00

=  lim d(p(t, x i ) ,p (h  + t i + t ,  p it ,  x i))) =  0 . (2 .8)
£—►00

Let ui := h + ti > 0  and Xo G f2(x*). Then, there exists a sequence tn, tn 00 

as n —> 00 , such tha t lim ^oo p ( tn,X\) = Xo- W ith (2.8) this implies tha t

lim d{p{tn, x x),p{<jO, </?(£„, x j))) = 0
n —►oo

or equivalently Xo =  p ( u , x 0). Hence, T+(x0) is a periodic orbit.

From Proposition 2.5 the flow is phase asymptotic at the orbit T+(xo) C 

fl(x*). Hence,

lim d(<p(t, x*), T+(xo)) =  0. (2.9)
t —+ o o

9
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To obtain a contradiction, suppose that y! € H (x*)\r+(xo). Then,

d(yi,r+(xo)) > 0,

and there exists a sequence tn, tn —► oo as n  —> oo, such tha t

lim d((p(tn, x*), y j) =  0 . (2 .10)
n —►OO

This is a contradiction, since an orbit cannot come arbitrarily close to T+(x0) 

as t —► oo and be bounded away from it. Hence, ff(x *) =  r + (x0) is a periodic 

orbit, and the flow is phase asymptotic at fl(x*). If the flow is Lyapunov stable 

at T(x»), then from Proposition 2.5 the flow is Lyapunov stable a t fi+ (x*). 

This proves tha t (i) implies (ii).

Conversely, suppose the flow is asymptotic at T+(xo) =  f2(x*). Then, from 

Proposition 2.5 the flow is asymptotic at r +(x»). If the flow is Lyapunov stable 

at fi(x*), then from Proposition 2.5 the flow is Lyapunov stable at r +(x*). 
This proves tha t (ii) implies (i).

□

10
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C hapter 3 

D ynam ics o f D ifferential 

Equations in Rn

In the previous chapter, we reviewed some results that can be used to estab

lish the existence of an equilibrium or a periodic orbit from the attraction of 

its neighbors by a bounded orbit. This chapter presents a similar review of 

known results for dynamical systems associated with autonomous differential 

equations.

Results in this chapter are all well-known. However, the approach of Sec

tion 3.6 gives a new proof of the known Theorem 3.11 on the existence of a 

phase asymptotically stable periodic orbit. This approach plays an essential 

role in extending Theorem 3.11 to flows on invariant manifolds in Chapter 4.

Let C k(D *—> Rm) denote the class of fc-differentiable functions from D  to 

R'm, where D  is an open subset of R".

Suppose f  € ^ ( D  i-» R"), and let </?(f,x) =  x(f) be a solution of

^  =  m m  (3 .1)

where x  G D  and t € R, such tha t (p(t, x) exists for all t G R and is uniquely

determined by the given initial condition < (̂0, x) =  x(0). Then, </?(£, x) is a

flow or dynamical system.

11
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3.1 P lanar A u ton om ou s S ystem s

In this section, dynamical systems generated by a system of autonomous differ

ential equations in the plane R2 are considered. In the plane, a periodic orbit 

can be detected using the Poincare-Bendixson theorem, which states tha t any 

bounded solution which does not get close to any equilibria limits to a periodic 

orbit.

Suppose P (x ,y )  and Q (x ,y ) are continuously differentiable functions from 

R 2 into R. Consider the following system of equations

T h e o re m  3.1 (P o in c a re -B e n d ix so n  T h e o re m ). Suppose (x ( t ) ,y ( t )) is a 

bounded solution to (3.2) with the initial condition (x(Q),y(Q)) =  (rco,2/o)• U  

Q(%o,yo) contains no equilibria, then (x(t) ,y(t)) limits to a periodic orbit. In 

particular, tt(xo,yo) is a periodic orbit.

teristics of the periodic orbit.

We give a brief outline of the proof. A detailed proof can be found in [12].

and no points where I is tangential to  the corresponding vector field.

•  Every non-equilibrium point is an interior point of a transversal.

•  A transversal has a neighborhood such tha t every trajectory tha t inter

sects this neighborhood must cross the transversal. All crossing are in 

the same sense (see Figure 3.1).

•  Choose a transversal I through a point (aq,r/i) G Q(xo,yo). The tra 

jectory enters a neighborhood of I infinitely many times, and so the 

trajectory crosses I infinitely many times.

P (x ,y ) ,
Q (x,y).

(3.2)

Theorem 3.1 does not provide any information about the stability charac-

A closed line segment I is a transversal for (3.2) if it contains no equilibria

12
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Figure 3.1: Solutions cross I in the same sense.

•  The Jordan Curve Theorem implies tha t successive crossings are mono

tone on I, so it follows tha t the trajectory spirals to  a periodic orbit.

3.2 D efin itions o f S tab ility

Definitions of stability are now introduced for solutions of the following non- 

autonomous differential equation

/7v
-  =  h(*,x). (3.3)

D efin ition  3.2. Suppose x(f) and z (t)  are solutions of (3.3), where x(f) is 

defined for all t  >  to,  where to is some fixed number.

(a) The solution x(i) is stable with respect to the interval [to, oo], if for each

e > 0 there is a 8 > 0 such tha t |x (0) — z(0)| <  8 implies z ( t )  exists and 

satisfies |x(t) — z(t)\ < e for t > t0.

(b) The solution x(t) is asymptotically stable if it is stable and

lim |x(£) — z(i)| =  0
£—►00

whenever |x (0) — z(0)| is sufficiently small.

(c) The solution x(t) is uniformly stable if for each e > 0 there exists a <5 > 0

such tha t if I x ^ )  — z{t\)\ < 8 for some t\ > to, then |x(t) — z(t)| <  e for

13
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t >  f j .

(d) The solution x(£) is uniformly asymptotically stable if it is uniformly stable 

and there is a So > 0 such tha t for every e >  0 there exists a T  > 0 such 

tha t if |x(fj) — z(fi)| <  <50 for some t\ > t0 then |x(£) — z(t)\ < e for 

t ^  t\ T T.

Suppose x(£) and y (t) +  x(f) are solutions of (3.1). Then y (t) satisfies

^ ^  =  f(y(f) +  x (£ ) ) - f (x ( f ) ) .  (3.4)

If |y(£)| is sufficiently small and f  € C 1, then

f(y  +  x ) — f(x ) fa |^ ( x ) y ,  

and so (3.4) is approximately

t  =

where §~(x) is the Jacobian m atrix of f. We are thus led to believe tha t under 

certain circumstances the stability of x (t) can be reduced to the stability of 

the zero solution of the non-autonomous linear equation (3.5).

Let 4  G C(M ^  M nxn) where M nxn is the set o f n x n  real matrices. We 

know that each solution of the linear system

t  - •4 <t)y  (3 6)

is stable, uniformly stable, asymptotically stable, or uniformly asymptotically 

stable if and only if the zero solution of (3.6) is stable, uniformly stable, asymp

totically stable, or uniformly asymptotically stable, respectively. Thus, the 

equation (3.6) is said to be stable, uniformly stable, asymptotically stable, or 

uniformly asymptotically stable if the zero solution to the equation has the 

same property, respectively.

Also, we have the following equivalent conditions for stability.

14
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P ro p o s itio n  3.3. Let Y( t )  be a fundamental matrix solution of (3.6). Then 

the equation (3.6) is

(i) stable i f  and only i f  there exists a K  > 0 such that

\ Y ( t ) \ < K  for all t >  t0.

(ii) uniformly stable i f  and only if  there exists a K  > 0 such that

|y ( t)Y - 1(s)| <  K  for all to < s < t < oo.

(iii) asymptotically stable if  and only i f

lim |y (f) | =  0 .
t —*OQ

(iv) uniformly asymptotically stable i f  and only i f  there exist positive constants 

K  and a  such that

|Y (t)Y _1(s)| <  K e~ a('t~s'1 for all to < s < t  < oo.

A proof of the above proposition can be found in Chapter 3, [1].

Consider the autonomous time-independent linear system,

where A  £ M nxn.

P ro p o s itio n  3.4. Let Re(A) denote the real part of the eigenvalue A of A. 

The equation (3.7) is uniformly asymptotically stable if  and only i f  Re(A) < 0 

for all A.

For a proof, see [3].

15
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3.3 S tab ility  o f E quilibria

The linearization of (3.1) with respect to a solution x(t) is

(3.8)

An equilibrium Xo of (3.1) is said to  be hyperbolic if none of the eigenvalues 

of f |(x o ) have zero real parts. It is said to be stable hyperbolic if all the

eigenvalues of |^ (x 0) have negative real parts. As a consequence, we have the 

following proposition.

P ro p o s itio n  3.5. An equilibrium Xo o/(3.1) is stable hyperbolic i f  and only i f  

the linearization (3.8), with respect to x(f) =  Xo, is uniformly asymptotically 

stable.

In principle, the problem of finding all stable equilibria can be solved by 

the following procedure. First, solve f(x) = 0  for all the equilibria, and then 

calculate all the eigenvalues of the linearized system. However, in practice, 

this can be quite difficult to  achieve, since the equations may not be algebraic 

or the domain may be unbounded.

By Proposition 3.3(iv), the equation (3.8) is uniformly asymptotically stable 

if and only if there exist positive constants K  and a  such that

for x  € r+(x(0)) and t > 0, since Y ( t ) Y ~ 1(s) =  |^ ( t  — s, x) when x  =  ip(s, x 0) 

and Y( t )  is a fundamental m atrix solution of (3.8). The matrix valued function 

|^ ( t,x (0 ))  is also fundamental solution of (3.8) with |^ (0 , x(0)) =  /.

P ro p o s itio n  3.6. Suppose the flow is Lagrange stable at x* and (3.9) holds 

for  x  € r+(x*) and t >  0. For any L > K  and 0 < 7 < a, there exist an

3.4 T he E x isten ce  o f S tab le  Equilibria

(3.9)

16
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open neighborhood U o /r +(x*) and a 5 > 0 such that y 6 U and |y — z| < 5 
implies that \<p(t,y) — tp(t,z)\ <  Le~7<|y — z| /o r all t > 0. In particular, the 

flow is asymptotic and Lyapunov stable at U .

Proof. Since the flow (p(t, x ) is a C l function with respect to x, (3.9) is satisfied 

if f  >  O andx  € r+(x*). Choose a constant T  > 0 so that < 1. Since

| is uniformly continuous with respect to t 6 [0, T], y  € i?r)(r+(x0)) 
if rj > 0 , it follows tha t there exists 5 > 0 such tha t |y — x| < <5 implies

Let t > 0, x  € r+(x*), and x*, :=  ip(kT, x) for k = 0,1, 2 , . . . .  There exist an 

s €  [0, T] and a positive integer k  so tha t t = s + Tk.  By the chain rule

Let U := S 5( r + (x*)) and x 0 6  T+(x,). Suppose |y -  x 0| < 5, \y — z| < 6,

y  — z. If the line segment x(A), 0 <  A < 1 is evolved under the flow ip, then 

the curve ^(t,x(A )), 0 <  A <  1 will join the two points ip(t, y )  and ip(t, z).

(3.10)

l ^ . x )  = &<p(s +  kT,x)
=  | > ( S +  ( f c - l ) 7 > ( T ,x ) )

= g (*  + ( * - l  )T,Xi)%{T,x) (3.11)

g ( T  +  S>x * _ 1) . . . g ( T >x 1) | e ( T , x )  

g ( s ,x fc) g ( r >x fc_1) . . . H ( r >x 1) | | ( r >x).

Recall tha t Le '^T < 1, therefore from (3.10) and (3.11)

£¥>(*, x) | < | ̂ p{s ,  x fc) | | £ p ( T , Xfc-i) | . . .  | £<p(T, x) |
<  Le~a3(Le~aT)k

< Le~'y3e~'ykT 

= Le~7t.

(3.12)

and x(A) := (1 — A)z +  Ay for 0 <  A <  1. Immediately, we have tha t ^x (A ) =

Further, the length of the this curve, | x(A)) | dX will be no less than

17
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the distance from ip(t, y) to ip(t, z). Then

\ ^ , y )  -  <p{t,z)\ < [
Jo

5 fJo

d_
dX
dip
dx

< p ( t , x ( X ) ) dX

(t, x(A))(y — z) dX

< f  Le ^ \ y  — z\dX 
Jo

< L e~l3t|y — z| for t > 0.

where the second last inequality follows from (3.12). This implies tha t the 

flow is asymptotic and Lyapunov stable at U. □

The following theorem allows us to establish the existence of a stable hy

perbolic equilibrium.

T h e o re m  3.7. Suppose the flow is Lagrange stable at a solution of (3.1), 

x (t). Then lim^oo x(t) =  x0, where Xo is a hyperbolic and stable equilibrium, 

i f  and only i f  the linearization (3.8) of (3.1) with respect to x (t) is uniformly 

asymptotically stable.

Proof. (I) Suppose Xo is a stable hyperbolic equilibrium. From the proof of 

Proposition 3.6, there exist positive constants L  and 7  and an open neighbor

hood U of Xq, such tha t

dx
ip(t,x) < Le- '11 (3.13)

for t > 0 and x  G U. We now show tha t (3.13) holds for x  € T+(x(0)) and 

t > 0. If lim^oo x(t) =  Xo, then x(i) in U for sufficiently large t, which implies 

constants 7  and L  can be chosen so tha t (3.13) is valid for x  G T+(x0) and 

t > 0. Thus, the equation (3.8) is uniformly asymptotically stable.

Conversely, suppose the linearization (3.8) of the flow at x(t) is uniformly 

asymptotically stable. Then, from Proposition (3.6), there exist positive con

stants 5 ,L ,7 and an open neighborhood U of T+(x(0)) so tha t z G U and

18
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|z — y | < 8 imply that

M t ,  y) -  <p(t, z)| <  Le~11 |y -  z| (3.14)

for t > 0. It follows from Theorem 2.6 tha t Xo is an asymptotic equilibrium. 

Since (3.8) is uniformly asymptotically stable, if we replace x(f) with x 0, the 

equation (3.8) will still be uniformly asymptotically stable. Thus, by Propo

sition 3.5, Xo is stable hyperbolic. □

Remark 1. The alternative proof of Theorem 3.7, given below, is simpler than 

the preceding one. However, it does not have an apparent analogue for periodic 

orbits. The first proof has been given as motivation of the approach to periodic 

orbits based on the analysis developed in Chapter 2 on the consequences of an 

orbit attracting its neighbors asymptotically.

Proof. (II) Let y (t) := d x(t) /d t  =  f(x(f)). Then y(t)  is a solution of (3.8). 

Suppose the linearization (3.8) of the flow is uniformly asymptotically stable 

at x(t). Then

lim f(x(f)) =  lim y (t) =  0. (3.15)
t —►co £—»oo

Take Xo G Q(x(0)) (which is nonempty by Lagrange stability of the flow 

at X o). Then there exists a sequence { tn}, tn —> oo as n  —> oo, such tha t 

lim ^oo ip(tn, x(0)) =  x0, so by (3.15), lim^o*, f(ip{tn, x(0))) =  0. Hence, by 

the continuity of f , Xo is an equilibrium.

Since (3.8) is uniformly asymptotically stable, equation (3.9) is valid for 

t > 0 and x  G T+(x(0)). Moreover, by continuity of dtp/dx, (3.9) is also 

valid for x  =  x 0 and t > 0. Hence, x 0 is a stable hyperbolic equilibrium. In 

particular, lirrp .,.  ̂x(<) — x 0. Further, xo being a stable hyperbolic equilibrium 

implies th a t there exists an open neighborhood V  of Xo such tha t any solution 

of (3.1) with initial condition in V  limits to Xo. Consequently, there are no 

equilibria different from xo in V. Therefore, fl(x(0)) being a connected set of 

only equilibria, is a single equilibrium. □
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3.5 S tab ility  o f P eriod ic O rbits

In this section, we will review sufficient conditions for a periodic orbit to be 

stable.

Let p (t) be a non-trivial periodic solution of (3.1). The linearization about 

p  (t) is given by

t = S(p(f))y' (3-16)

By Floquet’s Theorem, a fundamental m atrix solution Y (t)  of the linear pe

riodic system (3.16) can be expressed as Y (t)  = P(t)eLi, where P(t)  has the 

same period as p(£) and L € M nxn. The eigenvalues of L  are called the 

characteristic exponents or Floquet exponents of (3.16).

T h e o re m  3.8. Let p (t) be a non-trivial periodic solution of (3.1). I f  0 is a 

simple characteristic exponent o f the linearization (3.16) and the other n — 1 

characteristic exponents have real part strictly less than zero, then the periodic 

solution p (t) is orbitally phase asymptotically stable.

For a proof of the above result see page 82, [1].

T h e o re m  3.9 (P o in c a re ’s S ta b ility  C r ite r io n ) . Suppose p(f) is an u>-

periodic solution of (3.1). When n = 2, p(f) is orbitally asymptotically stable

f d ivf(p(f))d f 
Jo 

Poincare’s Stability Criterion was extended to higher dimensions by Mul- 

downey in [10] as follows:

T h e o re m  3.10. A sufficient condition for  p(f) to be orbitally asymptotically 

stable is the linear system

dy d f  ^
(p(f))y

being asymptotically stable.

For an n x n matrix A, the (”) x (^) matrix A ^  is the second additive 

compounded matrix which is defined in Appendix A.

20
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3.6 T he E x isten ce  o f S table P eriod ic O rbits

In this section, we provide an alternative geometric proof to Theorem 4.1(a) in

[7], where it was shown th a t if the second compound of the variational equation

is uniformly asymptotically stable, then any Lagrange stable orbit, which does 

not get close to any equilibria, limits to a phase asymptotically stable periodic 

orbit. The proof was carried out by studying an integral equation in a Banach 

space. Here, we take a different approach. It will be used extensively in 

Chapter 4, where we discuss flows on invariant manifolds.

The linear variational equation of (3.1) at T+(xo) is

f = £ W i -x »))y - (3' i7)

and the second compound is

rj7  I2)
-  =  T x  ( y ( i ,X o ) )z ,  (8 .18)

where B ^  denotes the second additive compound of a matrix B  (see Appendix 

A for properties and definitions of compound matrices).

T h e o re m  3.11. Suppose that the flow ip(t,x) of (3.1) is Lagrange stable at 

x 0; T+(x0) C D, the ui-limit set D(xq) contains no equilibria, and (3.18) is 

uniform asymptotically stable. Then,

(i) there exist positive constants K , p, 7  and a bounded function h : D  R

such that for all y  G D, t  > 0, |y  — x 0| < p implies

\tp(t + h (y ) ,y )  -  <p(i,xo)| < K\ y  -  x 0|e“7i.

(ii) Q(xo) is a phase asymptotically stable periodic orbit.

For convenience, we introduce the following notations. Define the flow box 

F(z,rj,5)  := {<£>(t,x) : |i| < 77, |x — z| <  5, f(z) • (x — z) =  0} and put 

n (a )  := {x € IK" : a  • x  =  0}. The affine plane z +  n (a ) is a transverse section
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Figure 3.2: The flow box F(z, rj, S) and the affine plane z +  II(a(z)).

of the flow box F (z, 77,5) if for each x  G z +  II(f(z)) fl F (z, 77, <5), there exists 

an h G [—77, 77] such th a t x) G z +  11(a).

To prove Theorem 3.11, we need the following lemma:

L em m a 3.12. Suppose that a  : T+ (xo) 1—► Rn and that

(i) the flow ip(t,x) o f (3.1) is Lagrange stable at x 0;

(ii) the function  f(z) 7̂  0 for  z G T+ (xo). By compactness, we put I :=

inf{z6r ^ ) }  lf (z)l > 0/

(iii) there is a f  G (0,1) such that for  z G T+(x0) and 0 7̂  a(z) G R", we 

have

Cla (z)| |f(z)| <  a(z) • f(z). (3.19)

Let 77 : R+ i—>• R + be defined by r](S) — j^. Then,

(a) there exists a 5* > 0 such that for  0 < 5 < 8*, the affine plane z +  II(a(z))

is a transverse section of F(z,r](5),S) for each z G T+(xo);

(b) there exists a constant b such that B^/2{z) C F(z,r)(S),S) C ^ ( i + 46)(z).
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof, (a) By condition (i) we have the uniform continuity of f  on r+(x0), 
which implies th a t there exists a constant b > 0 such that

Qbl/2 >  |f(z)| (3.20)

for z € r+(xo). W ithout loss of generality, we assume that z =  0. By condition

(ii), f(z) ^  0 , so we can choose an orthogonal basis { e i , . . .  ,e„} of K" with 

ex =  f(0 )/|f(0 ) |. Thus, given a n x G l "  we write x  =  (aq ,x2) € R x R" _1

where x\ and X2 are the corresponding coordinates with respect to {ei} and

{e2, . . . , e „ } ,  and f(x ) =  ( / i (x ) ,f2(x)) similarly. Clearly, (0 ,x2) € II(ei) =  

ll(f(0)). In addition,

f(0) =  (/i(0 ),0 ) and /i(0 ) =  | f ( 0 ) |> z > 0 .  (3.21)

By definition of the flow box and uniform continuity of f, we can choose 

a sufficiently small 5* such tha t |f(x) — f (0) | is arbitrary small for all x  € 

F (0, rj(8*), 5*). Also taking into account (3.20) and (3.21), we have a choice of 

5* such tha t

Cbl > f i (x) >  1/2 (3.22)

and

|f2(x)| <  /C/8 . (3.23)

Consequently, for any 5 €  (0,5*) and x  € II(f(0)) with |x| < 5, we have

a (0) • <p(rj(6),x) = 01(0) ^ 1(77(5) ,x) +  a 2(0) • <p2(??(5),x)

>  a i (0 ) |r ? ( 5 ) - |a 2(0 ) |(5 + iC ^ (5 ))  (3.24)

> « M - | a 2(0)|f.

In addition, combining (3.19) and (3.21), we obtain 0 < ai(0) and |a2(0)j < 

ai(0)/C, so (3.24) implies tha t

a(0) • <p(T}(S),x) > > 0. (3.25)
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Similarly,

a(0) • c/?(—r](S, x) < 0 (3.26)

holds for x  G II(f(0)) and |x| < 8. Therefore, by the intermediate value 

theorem, there exists h G (—??((5), rj(8)) such tha t a(0) • p (h ,x )  = 0, which in 

turn  implies II(a(0)) is a transverse section of F(0, r?(<5), S). □

Proof, (b) As in the proof of (a), without loss of generality we assume z =  0. 

By (3.22), for 0 <  8 < 8*, x  G II(f(0)) with |x| < 8, and |£| < r](8), we have

| <p(* ,x) |  < C blr](8) + 8 

< 8(1 + 4b)

i.e. F(0,r}(8),8) C F,s(1+46)(0).

Put

dF(0,ri(8)/4,8) = E 1 U E 2,

where

Ei = | v ? ( ± ^ , x )  : x G n(f(0)), |x| < < 5 ,

and

E 2 =  |< ^ (t,x ) : x  G II(f(0)), | x |  =  8, < t < •

Take y  G dF(0,r](S)/4,8). If y  G E\, then by 3.22 |?/i| >  (l/2)rj(8)/4 > 8/2.

Otherwise if y  G E 2 with y  — <p(t,-x) and x  G II(f(0)), then by (3.23) 

|x2 -  y2| < (v(8)/4)(lC/8) = (5/8, and so

■ , . . 76 6
| y 2 -  0| > |x2 -  0| -  |x 2 -  y 2 | >  —  >  - .

Thus, B |(0 )  C F(0, rj(8)/4,5). Therefore, B i(0 )  C F(0,i](8),8) and the result 

follows. □

We are now in a position to prove Theorem 3.11.
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Proof. From Theorem B.3 with m  =  0,

\Y(t)P2Y ~ 1(s)\ < C e -ait~s) for t > s > 0, (3.27)

where Y (t)  is the fundamental solution of (3.17) with T(0) =  I,  P2 is an 

(n — l)-dimensional projection matrix, and a , C  are some positive constants. 

Notice, Y (t)  =  |^ ( f ,  xo). Since Y ( t ) Y ^ 1(s) and |^ ( t  — s ,x ) coincide when 

t =  s and by uniqueness of solutions, we have

y ( i ) y - 1(s) =  | | ( f - s , x )

where x  =  <^(s,xq). Thus,

Y ( t)P 2Y ~ \ s )  = Y ( t ) Y - \ s ) Y ( s ) P 2Y - l {s)
dip
dx

(t -  s ,x )Y ( s )P 2Y ~ 1(s)

where x  =  <p(s,xo) and P2(x ) =  Y ( s)P2Y  a(s) is a projection m atrix since

(P2(x ))2 := Y ( s )P2Y - \ s ) Y ( s )P2Y - 1(s )

= Y { s )P 22Y - \ s )

=  Y ( s )P2Y - \ s )

-  P2(x).

Therefore, (3.27) is equivalent to

dp>
dx

with t — s replaced by t.

( t,x )P 2(x) <  Ce~at for t > 0

By continuity of P 2(x) and compactness of [0,T], P^(r+(x0)), and T+(x0), 

§£(t,y)P2(x)eat is uniformly continuous with respect to t £ [0, T], x € T+(xo), 

and y  £ B v(r +(x0)). It follows th a t there exists k > 0 such tha t |y — x| <  k
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implies
d p
a r ( t ' y ) P j ( x ) <  2Ce~at. (3.28)

The range of the projection m atrix .P2(x) for each x € r +(x0) is a plane. 

Take a non-zero normal vector a(x) to  this plane. From the proof of The

orem B.3, the angle between II(f(x)) and II(a(x)) is bounded away from 

±7t/2, which implies tha t there exists a constant £, 0 <  < 1, such that

£|a(x)||f(x)| < f(x) • a(x). By condition (ii), f(x) ^  0 for x  G r +(x0). Also, 

the flow ip(t, x) is Lagrange stable at Xo- Thus, the conditions of Lemma 3.12 

are satisfied. Let 5* the sufficiently small number we chose as in the lemma 

and Z, b some constants in the corresponding proof.

Let x k := <p(T7c, x 0) for k = 0 ,1 , . . . .  Suppose |u  — x*,| <  k and (u  — x k) =  

P2(xfc)(u  -  x fc) <E Lf(a(xfc))( immediately, (u  -  x k) =  P2(x*,)(u -  x fc)). Define 

x(A) := x k +  A(u — Xfe) for 0 <  A <  1. Then, dx(X)/dX  =  u  — x*,, and

= §*(t,x (  A ) ) ( u - x fc)

=  ^ ( ^ X(x ))p ( x k ) ( u - X k).

So (3.28) and (3.29) imply tha t

|<p(f,u) -  p ( t , x k)\ <  /o |^<p(t,x(A ))|dA

=  fo l§§(t ,x (X ))P (xk) ( u - x k)jdX

< fo 2Ce~at |u  — x k | dX

< 2Ce~at|u  — Xfel for 0 <  t < T.

(3.29)

(3.30)

We choose k sufficiently small so tha t k < S* and (3.28) holds. Take T  

large enough so tha t 4Ce~aT(l  +  4b) < 1/2. We prove the following statem ent 

by induction:

Statement (S): If |y — x0| <  p := ft/(2 +  86), then p  (fcT +

€ n (a (x fc) )+ x fc, p  ( k T  + J 2 L o hi>y) ~  x fe < 2-fc|y -x o |,  and |/ifc| <  ^ | y -  

Xo| for all k  =  0 , 1, . . . .

Base Step: By choice of k and p, |y — x 0| < p implies Sq :=  2 |y  — x fc| < Z>„.
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n(«(xA+1)) + x,+l

Figure 3.3: An induction step.

So, by Lemma 3.12(a) with 6 =  <50 there exists an m 0 with |m0| < r/(5) 

such th a t ip(m0,y )  €  II(f(xo)) +  xo and </?(mo,y) € F(xo, ??(5o), 4 )-  Further, 

Lemma 3.12(a) implies tha t there exists an £o satisfying |mo +  £o| <  =

16|y -Xo|/ZC so th a t \p{m0 +  £o,y) - x 0| < 2(1 +  46)|y -  x0| <  k  and <p{m0 +  

£o,y) S n(a(x0)) +  Xo. Then, the Statement (S) holds for k =  0 with ho := 

m o +  £o-
Inductive Step: Suppose th a t Statement (S) is true for arbitrary positive 

integer k. Then, by (3.30) with t  = T, u  = tp ( k T  +  E i= o ^ > y j combined 

with the fact tha t Xfc+1 =  ip(T(k + 1), Xq) =  <p(T, x*,), we have the following

We put 4 + i =  4Ce aT\tp(kT +  X)f_0 ^i>y) — x fc|, they by Lemma 3.12 there 

exists an hk+\ (see Base Step for details) satisfying

\hk+i\ < 277(4 +1) (3.32)
<  y $ + r \ y  -  Xo
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so that
k + 1

fc+1<p ^(fc +  1 )T  +  ^ 2  hi, y J  -  x k 

< 4Ce~aT(l  +  46) j f  ( k T  +  Yh=o h i ,  y) -  x fc

< I ( k T  +  J 2 i = 0 hi, y) -  x*
(3.33)

< 2-(fc+1) | y - x 0|

and ip ((k  +  1 )T  + Yh^o  G n(a(xfc+i)) +  Xfc+i- The Statement (S) is

true for k  +  1, which concludes the induction proof.

Prom (3.30),

< 2 Ce - a tp  hi +  t, y j  -  ip(t, x fe)

for 0 < t < T, or equivalently,

k  k

W (5 2 h i + t , y )  -  f ( t , x 0)| <  2Ce~a{t- kT \ ip(k T  +  Y ^ K y )  -  p ( k T ,x 0)\
i = 0  i = 0

for k T  < t < ( k +  1 )T. Combining with (3.33), we have

k

\fC22hi + *,y) -  x°)l < 2C'e-Q(t~A:T)2~fc|y -  x 0| (3.34)
i = 0

In addition, if k T  < t  < (k + 1 )T, then

exp(—a(t — kT))  <  1 for a  > 0

and
)-fc ex P(ln(2) ) e x p ( - 1" ^ ; +^ )

<  exp(ln(2)) exp(—̂ ^ ) .

(3.35)

(3.36)

The above inequalities (3.34), (3.35), and (3.36) yield tha t

I<p(Y2hi + t >y) -¥>0,xo)I ^  2C'exP(ln(2 ))exP ( - ^ ^ ) | y  -X ol- (3.37)
i = 0
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Let h := YliLo^i, so tha t by (3.32) \h\ <  — x0|. Combined with (3.33),

we obtain

\T,Zk+\hi\(lb ^ 1662 1 y - xol
< 166exp(ln(2)) e x p ( -^ p ^ ) |y  -  x0|

(3.38)

Hence, (3.37) and (3.38) imply tha t

\<p(h + t, y) -  ^(Cxo)!
<

<
<p(h + t , y )  -  ip{t + E*fe=o^>y) +  ¥>(* +  £<=o^i-y) -  ^ (C x 0) 

X)Sfe+i^|C^ +  2 C 'e x p ( ln (2 ) ) e x p ( -^ ) |y  -  x0|

<  (166 +  2C )exp(ln(2) ) e x p ( - i ^ ) | y  -  x 0|.

Let 7  := ln (2 )/T  and K  := (166 +  2C) exp(ln(2)). Then, Theorem 3.11(i) 

follows. In turn  the statem ent(i) implies tha t the flow is phase asymptotic at 

r+(xo), so, from Theorem 2.7, the cu-limit set C (x0) is a phase asymptotically 

stable periodic orbit, which proves (ii). □
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C hapter 4

D ynam ics o f D ifferential 

Equations on Invariant 

M anifolds

In this chapter, an autonomous differential equation with an invariant manifold 

is considered. An invariant manifold is a smooth surface tha t is invariant with 

respect to the dynamical system. The restriction of the dynamical system to 

the invariant manifold is also a dynamical system. The presence of an invariant 

manifold, in principle, simplifies the study of the dynamics. The traditional 

approach to these systems is to  use the invariance to reduce the number of 

variables of the system. Selecting an appropriate coordinate system on the 

invariant manifold can be very difficult. Moreover, sometimes all tha t is known 

is the existence of the invariant manifold, so th a t a change of coordinates 

cannot be considered. Instead, we focus on the implications of the variational 

equation and its associated compounded differential equations. Criteria are 

developed for the existence of a phase asymptotically stable periodic orbit 

with respect to the dynamics on an invariant manifold.

An orbit being phase asymptotically stable with respect to  the flow on the 

invariant manifold means tha t solutions on the invariant manifold are attracted 

in phase to the orbit. It is possible th a t solutions off the invariant manifold
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are repelled away from a phase asymptotically stable orbit with respect to the 

flow on the invariant manifold. This thesis does not investigate solutions off 

the invariant manifold.

4.1 S tab ility  o f  E quilibria and P eriod ic O rbits

In this section, we consider the stability of equilibria and periodic orbits as 

well as some general facts concerning the flow on an invariant manifold. The 

treatm ent in this section is based on [8]. The proofs of all of the propositions 

and theorems in this section can be found there.

In what follows, let D  be an open set in 1 " , f  G C l (D <—> M"), and 

g G C 2(D  i-» Mm) where 0 <  m  < n. Let ip(t,x) be the flow defined by the 

following autonomous differential equation

£=f(*>. (4-1)

Let E :=  {x G D  : g(x) =  0}. Then, E is a manifold of dimension n — m  if 

■ *(£(*)) =  rn for all x  € E, where rk ( | |( x ) )  is the rank of Jacobian matrix of 

g at x. The case m  = 0 will correspond to the case tha t E =  D. The manifold 

E is an invariant manifold with respect to (4.1) if x  G E implies g x ) )  =  0 

for any t e l .  The function g(x) is a first integral if g x)) =  g(x) for all 

x  G D  and t  G R. If E :=  {g(x) — c =  0} is a manifold, then it is also an 

invariant manifold for each constant c G Km.

Let v  G C ^ R ” i—*• Rm). Recall, the derivative of v  along solutions of (4.1) 

at x  is the continuously differentiable Rm-valued function

(4-2)

since ^ v (x (t) )  =  |^ (x (t))x '( t)  =  |^ (x (t))f(x (t))  if x(t) is a solution of (4.1).

Proposition  4.1. Let E := (x  G D  : g(x) =  0} be a manifold of dimension 

n — m. Then, E is an invariant manifold with respect to (4.1) i f  and only if
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there is a continuous m  x m  matrix valued function N (x )  such that

Suppose, in what follows, tha t E is an invariant manifold with respect to

(4.1). Then, by Proposition 4.1, such N (x )  always exists. We denote by z'(x) 

the trace of the matrix N (x) .  Additionally, 7^ will be used to  denote the 

tangent space to E at x.

Let g(x) be a first integral. Choose c € Mm and suppose E :=  {x € R" : 

g(x) =  c} is a manifold. Then, for a solution x(t)  of (4.1) with g(x(0)) =  c,

This implies g (4 ^ (x ) =  0 for x  G D. Then, by Proposition 4.1 with g =  g — c, 

iV(x) =  0. Consequently, u(x)  =  T r(A (x) =  0.

Take x  € E. Let Y(t)  := |^ ( t ,  x). Then, Y{t)  is the fundamental matrix 

for the linearization of (4.1) with respect to the solution ip(t,x):

§(4.i) (x ) =  ^ (x )g (x )  for x e D . (4.3)

§ ( 4 . 1 ) ( X W )  =  ~ - ( X W ) f ( X W )

(4.4)

such tha t Y (0) =  I.

The m-dimensional equation,

(4.5)

is the adjoint of the equation
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Let U(t) be an m, x m  solution matrix of (4.5). Then, it can be shown (see 

page 301 in [8] ) th a t W (t)  = (^)*(<p(t,x))U(t)  is an n  x m  solution matrix 

to the adjoint of (4.4).

P ro p o s itio n  4.2. Let w*(t) =  (j^)*(yp(f,x))f/(i)e*; where x  G E, {e* : i — 

1 , . . . ,  m } is the canonical basis on Rm, and U (t ) is a solution matrix of (4.5) 

with U(0) =  Imxm■ Then,

(i) each w %(t) is orthogonal to and (w*(t) : i = 1, . . .  ,m } spans a m-

dimensional solution subspace of the adjoint equation of  (4.4), which is 

orthogonal to T<p(t,x) •

(ii) I f  y (f) is a solution of (4.4) and y(0) G Tx , then y (t) G %>(t,x) f or all 

t  G Rn .

Remark 2. Statements (i) and (ii) in Proposition 4.2 are equivalent. If y(t)  

and w (t) are solutions of (4.4) and the adjoint of (4.4), respectively, then 

y (t) ■ w (t) =  y(0) • w(0) for all ( 6  R. Hence, if y(0) G Tx and w(0) is 

orthogonal to  Tx , then y ( t) -w ( t )  =  0 for t >  0. This implies th a t y(t)  G 

for t  >  0 if and only if w (t) is orthogonal to %p(t,x) f°r t  > 0 .

Remark 3. The differential §^(L x) of the map x  i—> <p(t, x) satisfies the prop- 

ertY ^ ( t , x ) T x = 7^(tiX).

P ro p o s itio n  4.3. Let U(t), w %(t), i — 1 , . . . ,  m, be as defined in Proposition 

4.2. Then,

|w J(t) A . . .  A w m(f)| < Cexp J u ( p ( s , x ) ) d s ^  |w 1(t) A . . .  A w TO(t)|

where C  =  sup { |A m(§ |)* (y )| /  lA™ I f  (x )| : Y e T +(x)}.

Let A  G M nxn and T  be a subspace of MTl. The restriction of A to T  is 

denoted by A\r . In addition,

| A\r  | =  sup |Ax|.
x e r ,  [x|—l
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P ro p o s itio n  4.4. Under the assumptions of Proposition 4.3. We have

K

A <
( m + k )  _

A in v(<p(s))ds

The following proposition indicates a close relation between the function

v{x) =  Tr(iV(x)) and the spectrum of § |(x ).

P ro p o s itio n  4 .5 . Let A i(x ),. . . ,  A„(x) be the eigenvalues of §£(x). I f  x  G £  

and Am+i ( x ) , . . . ,  An(x) are t/ie eigenvalues which correspond to the (n — m)-  

dimensional tangent space Tx , then

u(x) =  Aj(x) • • • Am(x).

Suppose Xo e  S  is an equilibrium of (4.1). Recall, x 0 is stable hyperbolic 

with respect to  the dynamics on £ , if the (n — m)  the eigenvalues A, of |^ ( x 0) 

corresponding to  the invariant subspace TXo satisfy R e { \ )  < 0. Let <fi(t,xo) 

be an (^-periodic orbit for some to > 0. By Proposition 4.2, the tangent space 

to £  at x 0, TXq is mapped to  Tv(WtXo) by ||(o ;,x o ) . Further, by the periodicity

of <p(t,x0), ^ ( u>,Xq)TX0 =  Tv %0- T hat is, TXo is invariant under
d p

d x
[oj, Xo). The eigenvalue, pn , of |^(ca, x0) |r  associated with the eigenvector

</?(0, xq) satisfies p n = 1. Recall, we call the periodic orbit ip(t, Xo) stable 

hyperbolic w ith respect to the dynamics on £ , if the (n — m — 1) remaining 

eigenvalues pi of |^ (w , Xo)|r  satisfy \pi\ < 1.

T h e o re m  4 .6 . Let Xo € T, be an equilibrium of (4.1).

(i) A sufficient condition for  Xq to be a stable hyperbolic equilibrium with 

respect to the dynamics of (4.1) on £  is that

dz
dt

Qf [m+l]

dx (x0) -  In (x 0) (4.6)

is asymptotically stable, where I  is the (m" x) x (m” x) identity matrix.
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(ii) The sufficient condition in (i) is also necessary i f  the system

is stable.

For a w-periodic orbit, we have the following analog of Theorem 4.6. It 

is also an analog of Poincare’s Stability Criterion for stability of a periodic 

solution of a 2-dimensional autonomous differential equation.

T h e o re m  4.7. Take < (̂0) € E, and suppose ip(t) is a non-trivial u-periodic 

solution of (4.1) where ui > 0.

(i) A sufficient condition for  r+(</?(0)) to be a stable hyperbolic with respect 

to the dynamics on E is that

4.2 T he E x isten ce  o f Equilibria

The following is an analog of Theorem 3.7 for a flow on an invariant manifold.

lution o/(4.1) on S. Then limt_ 00x(t) =  x0 is a stable hyperbolic equilibrium 

with respect to the dynamics on E if

-  Iu((p{t)) z (4.7)

is asymptotically stable, where I  is the (m” 2) x (m+2) 'Identity matrix.

(ii) The sufficient condition in (i) is also necessary if  the system

is stable.

T h e o re m  4.8. Suppose that the flow ip(t, x) is Lagrange stable at x(t) a so-

(4.8)
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is uniformly asymptotically stable.

Proof. Let Y (t ) be a fundamental solution of the following

(4.9)

Suppose (4.8) is uniformly asymptotically stable. Then, there exist positive

constants a , K  so tha t Y(m+1\ t ) e  a fundamental solution of (4.8),

As a result, from Proposition 4.4 with k =  1, we have

I n O k J  =  | ^ (1)C0 k o| <  |y (m+1> W |r J e -^ < * « > *
<  K e~ Qt for t >  0.

Let y i (t) =  f(x(£)). Then y x(t) is a solution of (4.9), and since f(x(0)) € 

we have y i(t)  =  y (i)k (o )y (0 )- This implies with (4.10) tha t

Let x* G fl(x(0)). Then, there exists a sequence {tn}, tn —► oo as 

n  —» oo, such th a t x(f„) —> x* as n —» oo. This implies with (4.11) tha t 

lim ^ o o y ^ fn ) =  limn_+00f(x (fn)) =  f(x*) -  0. Consequently, x* is an equi

librium. By continuity, (4.8) is uniformly asymptotically stable when x(t) is 

replaced by x*. Therefore, from Theorem 4.6(i), x* is a stable hyperbolic 

equilibrium. □

4.3 T h e E xisten ce o f P eriod ic O rbits

In this section, a similar result to Theorem 3.11 is proved for a flow on an 

invariant manifold. That is, sufficient conditions are given for the existence of 

a periodic orbit which is phase asymptotically stable with respect to the flow 

on an invariant manifold.

satisfies

lim y(f) =  0 . (4.11)
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For the system of differential equations ^4-ljj the variational equation at 

p { t ,x 0) is
dy S i  .
-  =  - ( „ ( ( ,  x „ ) ) y . (4.12)

Recall, we suppose tha t E =  {x G K" : g(x) =  0} is an (n — m)-dimensional 

invariant manifold where 0 < m  < n  and g € C 2(E” i—> Mm). The linear 

equation
dz
dt

Qf \m+2]
—  (<p(t, x 0)) -  Iv(<p(t, X o)) Z, (4.13)

plays an im portant role in the analysis th a t follows.

T h e o re m  4.9. Suppose that T+(xo) C D  and that

(i) the flow (p(t, x) generated by (4.1) is Lagrange stable at x o € E;

(ii) the co-limit set fl(xo) contains no equilibria;

(iii) equation (4.13) is uniformly asymptotically stable.

Then, the following holds,

(a) there exist positive constants K ,  p, 7  and a bounded function h : E

such that for  all y € E ; |y — Xo| < p implies

|ip(t +  h{y ) ,y )  -  <p(t,x0)| <  K \y  — x 0|e_7t f o r t  > 0;

(b) fl(x0) is a non-trivial periodic orbit.

Proof. Under the assumptions (i)-(iii), the conditions of Theorem B .3 are 

satisfied. Hence, there exist positive constants C  and a  so tha t

\Y{t)P2Y - 1{s)\ < ^-e~a{t- s) for 0 < s <  t,
Zi

(4.14)

where P2 is a projection matrix of rank {n — m  — 1) and Y (t)  := | &(t, Xo) is 

the fundamental solution of (4.12), such th a t Y ( 0) =  I. As shown in Theorem 

3.11,
dp
dx

( t ,z )P 2(z)
C

< — e -a t for t > 0 ,
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where P2(z) := Y (s)P 2Y ~ 1(s) for z =  t/?(s,x0) is a projection matrix.

Take z G F+(xo). Let the set { v i , . . . ,  v m} be a basis of the normal space 

to E at z, and let {vm, . . . ,  v„_i} be a basis for the subspace P2(z)Rn, a 

subset of the tangent space to E at z. Then, {v1;. . . ,  v n_!} is a basis for 

an (n — l)-dimensional plane. Let a(z) be a normal vector to this plane at 

z. We shall show tha t the angle between the two planes Il(f(z)) and Il(a(z)) 

is uniformly bounded away from ir/2 for z € T+ (x0) where Il(a(z)) is the 

plane with normal vector a(z). Recall tha t the conditions of Theorem B.3 are 

satisfied. Let Z \  and Z 2 be as defined in Theorem B.3 i.e. Z\  span jy^-)} , 

with yi(£) :=  f(<^(t,Xo)) and Z 2 is the set of all solutions of (4.12) such that 

y(0) G P2M.n which is the (n — m  — l)-dimensional subspace of all solutions 

going to zero as t —-»• 00 . Also, Z \ and Z 2 are uniformly bounded away from 

each other by (B.28). By definition of P2(z) and the fact tha t Y(s)  has full 

rank, we have

P2(z)R" =  y ( s )F 2r - 1(s,xo)lR"

=  Y ( s )P2 W 1

=  {y(0 = y(-) e z 2, z  = <p(s,x0)}.

Thus, the angle between the vector f(z) and any nonzero vector in P2(z)R” 

is bounded away from 0. Since the normal space to E at z is orthogonal to 

f(z), the angle between the vector f(z) and any nonzero vector in II(a(z)) is 

bounded away from 0. Therefore, the angle between the planes Il(a(z)) and 

II(f(z)) is uniformly bounded away from 7r/2, which implies tha t there exists 

a constant £, 0 < C < 1, such tha t

C |a(z)||f(z)| < a(z) • f(z).

Moreover, by the uniform boundedness of the angle, such a choice of £ does 

not depend on z G T+(xo).

Since y)P 2(x.)ea t| is uniformly continuous on any compact subset of
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Figure 4.1: The existence of the vector w

a finite-dimensional space, we can choose T  > 0 and 77 >  0 such tha t for all

t G [0, T], y  G £ „ (r +(xo)), and x  G r+ (x 0), there exists a k  > 0 such that 

|x — y| <  k  implies that

< Ce -a t (4.15)

Since [0, T] x S n( r + (xo)) is compact, there exists a constant M  such tha t 

I a a : y ) I  <  M  when t  G [0, T] and y  G B ri(T+(xG)). Further, (4.15) yields 

tha t for t G [0, T], x  G r +(x0), w  G P2 (x)Rn with |w| =  1, |x — y| < k  implies 

||^ (i ,y )w | <  Ce~at. In addition, for w such th a t |w — w| < Ce~aT/M ,  we 

have

d(p
dx ( t ,  y )w < dip

{t, y)wdx

< Ce~at +  M

< 2 Ce~at.

+  |w — w|

C e -aT
a£ [t' y )

M
(4.16)

The compactness of S n i? ^ ( r + (xo)) and the continuity of E imply th a t we 

can chose k  > 0 small enough such tha t for all x  G r +(xo), y  G E f l  II(a(x)) 

with 0 <  |x — y| < k, there exists a w  G P-zixjW1 (see Figure 4.1) such tha t

|y
w <

Ce -a.T

X M
(4.17)
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For k — 0 , 1 . . we put x*, =  ip(T ■ k, x0). Take y G E fl n(a(x)) such tha t

|y — Xfc| < k . In particular, by (4.17), there exists a w  such that (y~xfc)
|y-xkl w

C e-
M Consequently, (4.16) applies with w  — (y — x ^ )/|y  — x^. On the ot

<

ler

hand, let x(A) =  x*, +  A(y — x*,) for 0 <  A <  1. Then, as showed in the proof 

of Theorem 3.11,

M C y )-¥>(*, xfe)| < f o  |^^(Cx (A))|dA

^ f o  liK*>x (A) ) ( y - x*)ldA (4.18)

<  l y - x f c l / o  S ( * > x ( A ) ) g = g f dX

for 0 <  t < T .  Therefore, we have

\<p(t,y) -  <p(t,Xk)\ < \ y - * k \ f o 2Ce atdX
< 2Ce~at\y — x*,|

(4.19)

for 0 <  t < T.

Moreover, since (i)-(ii) and (4.3) holds, the conditions of Lemma 3.12 ap

plies. Therefore, by using the induction argument as in the proof of Theorem 

3.11 with y e E ,  the result follows.

□
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C hapter 5

Exam ples

We consider three examples where Theorem 4.9 is used to find a phase asymp

totically stable periodic orbit with respect to the flow on an invariant manifold. 

In the first example (cf. Section 5.2), a system with an invariant sphere cor

responding to a first integral is considered. Then, we discuss a general system 

with an invariant manifold in Section 5.3. Two examples are given for the 

system in Sections 5.4 and 5.5. The first is a 3-dimensional system with a 

2-dimensional invariant cylinder, where we show there exists a unique phase 

asymptotic periodic orbit. The other example considers a 4-dimensional sys

tem which has a 3-dimensional invariant cylinder.

5.1 A  R ev iew  o f F irst Integrals

For convenience we summarize properties of first integrals which were discussed 

in Section 4.1.

First integrals commonly arise from the existence of conservation principle 

in dynamical systems. They are functions along which solutions to a differen

tial equation are constant.

Suppose f  G C ^ R ” R") and g G C 2(R” Rm) where (m <  n).
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Consider the following differential equation

(5.1)

Let ip(t,x) be the flow generated by (5.1). Recall, the function g(x) is called

a first integral for (5.1) if g(<p(t,x)) =  g(x) for all x  € R” and t €  R. The set 

E := {x € R" : g(x) =  c} is an (n — m)-dimensional invariant manifold for

Proposition 4.1 for an invariant manifold, there always exists a corresponding 

function N  : R" e-> M nxn defined by (4.3) with g =  g — c. In the case of a 

first integral, iV =  0, so we have t'(x) :=  Tr(A^(x) =  0.

5.2 A n Invariant Sphere

Consider a system in R3 as follows

=  0 .

Hence, {x\ +  x \  +  x%) is a first integral. Let g(x) := x \  +  x \  +  x \  — 1 and let 

S  := {x G R" : gf(x) =  0}. Then, E is an invariant manifold and is(x) =  0.

42

each given constant c, if the m atrix (x) is of rank m  for x  € E. Moreover, by

where aq G R, i = 1,2,3. We write it concisely as

(5.2)

If x(t) is a solution of (5.2), then

J t {x\{t) + x 22{t) + x\{t)) = 2x x( t ) ^ { t )  + 2x 2( t ) ^ { t )  + 2x z( t) <̂ ( t )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the cylindrical coordinates, x\ = rcosO, X2 = rsinO , and ,t3 =  x 3 

where r  =  {x\ +  the system is

dr
dt 
dfi
dt 

dx 3
dt

It is evident from (5.3) tha t the only equilibria on E are (0,0,1) and (0,0, —1). 

Take x(f) to be a solution of (5.2) on E with |x3(0)| <  1/3. If 0 <  x3(0) < 

1/3, then dx3/d t  < —8x 3/ 9 , and hence x 3(t) <  1/3 for t >  0. Otherwise if 

—1/3 < rr3(0) <  0, then dx3/d t  > —8x3/9, and hence x 3(t) > —1/3 for t > 0. 

Therefore, the w-limit set of an orbit in E with |x3(0)| < 1 /3  does not contain 

any equilibria.

Since the sphere is bounded, to  apply Theorem 4.9 to the solution x(<), it 

remains to  show tha t the linear 1-dimensional equation

dz d f [3J
*  =  s  <x(())z <54)

is uniformly asymptotically stable, where d f ^ / d x  is the third additive com

pound of the Jacobian matrix of f. Take z ( t ) to be a solution of (5.4). Then 

\z (t)\ ^  l2̂ 5)! exP(fg I f  ̂ ( x (r ))^r  f°r t > s > 0. This implies tha t if there 

exists a constant c > 0 such tha t | |  (x(f)) <  —c <  0, then by Proposition 

3.3(iv) the equation (5.4) will be uniformly asymptotically stable. Since

d f  t3l 2  8  2
—  (x) =  d iv f(x ) =  2x § - x ? <  -  -  -  < for x  € r + (x(0)),

we have tha t (5.4) is uniformly asymptotically stable.

The conditions of Theorem 4.9 are satisfied for the solution x(f). Hence x(<) 

limits to a phase asymptotic periodic orbit in the region |x3| < 1/3 contained 

in E. Prom (5.3), the only nontrivial periodic orbit must be in the plane
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=  rx  I,

=  1,

=  - x 3r2. (5.3)
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defined by x 3 =  0. This periodic orbit is given by

x 2( t) ,x 3(t)) =  (cos(t -  4>0), sin(f -  0O), 0) 

where (f>0, a constant, is the phase shift.

5.3 A  S ystem  w ith  an Invariant M anifold

In this section, a system of differential equations with an invariant manifold 

is considered. Suppose F  £ C 1(Rn 1—> R"), and suppose H  is a n  x  n constant 

nonzero real matrix. Consider the autonomous differential equation

//x
—  =  f(x ) := F (x ) -  [x* iT tf F(x)]x, (5.5)

where the asterisk denotes the transpose.

P ro p o s itio n  5.1. Let S  :=  {x £  R" : \H x\2 =  1}, where \H x\2 — x*H*Hx. 

Then E is an invariant manifold for  (5.5).

Proof. For g £ C'1(R" t-»R), V 3 will be used to denote the gradient of g. Let 

g(x) := \Hx\2 — 1 =  x*H *H x — 1. The set E is a manifold of dimension n — 1 

if g G C X(R" R) and rk(V  fl'(x)) =  1 for any x  G E. This is equivalent 

to showing tha t V <?(x ) /  0 for x  G E. Since (VflO* =  2x*H*H = 0, we 

have x*H *H x  =  0. This contradicts the fact tha t x*H *H x  =  1 for x  G E. 

Therefore, E is a manifold of dimension n  — 1.

The manifold E is an invariant with respect to (5.5) if for all x  G E, f(x) is 

tangent to E at x, tha t is if V ^(x) • f(x ) =  0 for x  G E. In fact for all x  G E,

V g(x) • f(x) =  2x*iL*ifF(x) -  2[x*H*HF(x)][x*H*Hx]

= 2[x*if*iTF(x)](l -  x*H*Hx)

=  0 ,

and so E is an invariant manifold. □
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Let j/(x) — Tr(7V(x)) where iV(x) is the m atrix valued function tha t satis

fies

Vff(x) -f(x ) =  N (x)g (x) .

Such a function always exists (see Section 4.1).

In this case, u(x) ~  N (x) .  We obtain,

V ff(x ). f(x) = V g(x) ' (F(x) — [x* H* H F  (x)]x)

= -2x*H *H F (x)g (x) .

Therefore,

i/(x) = —2x*H*HF(x). (5.6)

5.4 A n  Invariant 2-D im ensional C ylinder

Proposition 5.1 will now be used as an example of Theorem 4.9 on an invariant 

cylinder.

Let F(x) := (Fj(x), F2(x), F3(x)) where

F\(x) := x2 +  | i  

F 2 ( x )  : =  +

F 3 ( x )  := - x 3 + q(x1, x 2) + x 3(x1F1(x) + x 2F2(x)),

and q E C'1(R2 i—► R). From Proposition 5.1 with H  := Diagonal[l, 1,0],

E :=  {x : \H x\2 = x \  +  x \  =  1} is an invariant manifold for the following
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system

—  =  F i(x ) -  (x jF \(x) +  x 2 F 2 (x))
dt

=  x 2  -  + x l  +  x l )  ' ■ =  / i ( x )>

~  =  F 2 (x) -  x 2 (x iF i(x )  +  x 2 F 2 (x))

=  - x i  -  t ^ ( - £ 2 +  x? +  x2) := / 2(x)

^  =  F 3 ( x )  -  x3(xiF i(x) +  x 2 F 2 ( x ) )

=  -^3 +  q(xi,x2) := / 3(x).

We Write concisely as

dx./dt =  f(x). (5.7)

Suppose tha t x  € E and /i(x )  =  / 2(x) =  0. Then,

0 =  10x2/ i (x )  — 10x j / 2(x) =  10(xj +  x%) + x 2x \  — x i x l

>  1 0 - 2  =  8 ,

which contradicts / i (x )  =  / 2(x) =  0. Hence, there are no equilibria on E.

Next, we show th a t any solution on the cylinder is bounded. By con

tinuity of q and compactness of the set {(xq, x 2) \ x \  + x \  =  1} we let 

M  := maxx€s q(%i, x 2). If x3 >  M , then dx3/d t < 0, and hence a solution is 

bounded from above. Similarly, if x3 < — M , then dx^/dt > 0, and hence any 

solution is bounded from below. Therefore, all solutions are bounded.

Finally, we show tha t the 1-dimensional linear equation

is uniformly asymptotically stable, where q>(t) is any solution of (5.7) on E. 

As in Section 5.2, it is sufficient to show tha t there exists a constant c so tha t 

d iv f(x ) — u(x) < —c < 0 for x  G E. From (5.6), v{x) =  —2x*H*HF(x)  =
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— (x j + X 2)/5. Thus,

—10 +  2 x \  +  3 x f  -F 2 x 2  +  3^2
d iv f(x ) — i/(x) =

<

10
—10 T 4 T 3(xj -F

10

< — — for x  € S.
10

As established in the previous three paragraphs, the conditions of Theorem 

4.9 are satisfied for any solution of (5.7) on E. Hence, all these solutions are 

phase asymptotically stable with respect to the flow on E, and they limit to 

a phase asymptotically stable periodic orbit on E. Further, we show th a t this 

periodic orbit is unique on E. In this case, any solution on E will be attracted 

in phase with respect to  the dynamics on E to a single periodic orbit.

Suppose tha t a periodic orbit on E is homotopic to a point on E. Then, 

it must contain an equilibrium in E, clearly this is impossible since there are 

no equilibria in E. As a consequence, any periodic solution goes around the 

cylinder exactly once.

By continuous differentiability of any solution of (5.7) and since ^  0 

if |£31 > M, all periodic orbits on E must be contained in the region |.x3| < 

M  Suppose there are infinitely many periodic orbits on E. Since they are 

contained in a finite region, there exists a periodic orbit T(x*) where every open 

neighborhood of T(x*) contains at least two periodic orbits. This contradicts 

T(x.) being phase asymptotically stable with respect to  the dynamics on E. 

We conclude th a t there are a finite number of periodic orbits on E.

Let x* £ S  be some point between the two periodic orbits. We can adapt 

Theorem 3.1, the Poincare-Bendixson theorem, to E bounded between the 

periodic orbits. As a result the a-lim it set, A(x*), contains either a periodic 

orbit or an equilibrium. Since there are no equilibria on E, A(x*) contains 

a periodic orbit. This periodic orbit cannot be phase asymptotically stable. 

Hence there is at most one periodic orbit on E.
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5.5 A n  Invariant 3-D im ensional C ylinder

Proposition 5.1 is used as an example of Theorem 4.9 on a 3-dimensional 

invariant cylinder. Let

e ,(x )  := +  |

O (x ) := - x .  +  g ,

F 3 (x) := - x 3 +  x i / 10,

F 4 (x) :=  - x 4 +  x2/ 10.

Let H  Diagonal[ 1,1,0,0]. Then, Proposition 5.1 implies th a t E :=  {x : 

| i f x |2 =  x \  +  x§ =  1} is an invariant manifold for the differential equation

dx 1 x \  (xf +  rr )̂
~dt =  X 2 + 5 0 _ a :i 50 ’
dx 2 _  ^  (x? + x\)
dt Xl 50 X2 50 ’

dx 3 Xi (x? +  Xo)
=  _ l3  +  i o “ x'3 so ’

dx4 X2 (xf +  X2)

w ritten concisely as

di  - f(x>- (5'8>
Let E  :=  {x G E : |x4|, jx2j < 1}- We show tha t all solutions to  (5.8) on E 

will eventually enter and stay in E. Take x(f) to be a solution of (5.8) on E. 

Suppose x3(0) >  0. Then,

dx3 Xi (x? +  Xo)
dt -  3 10 50

1 2 x 3

£  “ X3 +  I o + 50

<  — 24x 3/2 5  +  —
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and so x3(t) < 5/48 +  C exp(—24t/25). Hence, x 3(t) is eventually less than 1. 

Similarly, if £3(0) <  0, then x3(t) is eventually greater than —1. Therefore, all 

solutions are bounded in the a;3 direction. Likewise, all solutions are eventually 

enter and remain in the region |rc41 < 1. Therefore the region E  is positively 

invariant under the flow generated by (5.8). In particular, all solutions are 

bounded.

Suppose for x  S S  th a t f(x ) =  0. Then,

0 =  x 2f l (-x) -  X!/2(x)

=  50(xj +  x \)  +  x \x 2 — X\x\

> 5 0 -  2 =  48.

Clearly this is impossible, which implies tha t are no equilibria in S.

Take x (t) to  be a solution of (5.8) in E. We show tha t

,i7 ( f)f ['*1 \
*  =  ( &  W «)) -  U x(())A  J  ^ (5.9)

is uniformly asymptotically stable. By the definition of compound matrices

elf131
a i  (x) -  ^ ) h  =

/  x\-2x^+x2—2x|-25 n n n
25
q xi —2x̂ +X2—2xy—25 q Q

— 5+3x4X% 3 X3 X3  2 x i— 4x'? — x?~  100 50—3 x ix |
50 _  50 50 50

3x4X^ 5+3x3X^ —50—3x2X^ 2 x i —X j+ 2 x 2 —4x1—100
\  ~  50 _  50 50 50 /

Let Oy(x) be the components of this matrix. For z £ l 4, consider the Lya

punov function for the system (5.9), V(z) = HzH^ =  m ax{|zi|, \z2\, \z3\, |2q|}. 

From [1] page 58,

J t y {z) < n(x(t))V (z) ,  (5.10)
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where

/z(x) =  max{yUj(x)} and /r,(x) =  {ai((x) +  V '  |a^(x)|} . 
l < i < 4  x— /

By the theory of Lyapunov functions (see [5] page 305), if V(z)  is positive def

inite and f t V(z)  is negative definite, then (5.9) will be uniformly asym ptoti

cally stable. Since the norm is positive definite, V (z) is positive definite. From 

(5.10), ^  V ( z ) will be negative definite if for some constant c, /u(x(i)) <  —c < 0 

for t > 0 .

For x  G E,  we have

. —25 -|- X\ — 2x? +  X2 — —25 +  14-2-1-1-1-2 19
" ‘ (X ) =  ---------------------2 5  “ < --- ----------------2 5 ----------------  <  “ S ’

. . —25 +  x i — 2x? +  X2 — 2x% 19
" 2<X> = -----------------25----------------- £  ‘ a '

Ms(x)
—5 +  3x4X2

+
3x5X3

+
50 — 3x1X5

50 50 50
+

— 100 +  2x\ — 4xf — x\  
50

5 +  3 +  3 +  50 +  3 -  100 +  2 +  4 + 1  -2 9<  <
50 50 ’

/r4(x) =
3X4X1

50
+

5 +  3x3x1
50

+
50 +  3 x 2x1

50
+ -100 — x \  +  2x2 — 4x2 

50
3 +  5 +  3 +  50 +  3 -  100 +  1 +  2 +  4 ^  -2 9  <       <

50 50

Consequently, Since E  is positively invariant set for system (5.8), p(x(f)) < 

—29/50 for t > 0. We conclude tha t (5.9) is uniformly asymptotically stable. 

Thus, the conditions of Theorem 4.9 are satisfied. Hence, there exists a phase 

asymptotically stable periodic orbit with respect to the dynamics on E.
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A ppendix  A  

C om pound Equations

In this appendix, compound matrices and compound equations are considered.

A .l  C om pound M atrices

Suppose X  is an n x m  real or complex matrix. Let xj*'"3£ denote the minor of 

X  determined by the rows (*i, . . . ,  if.) and the columns ( jq, . . .  ,jk)  of X  where

1 <  i\ < h  < ■ ■ ■ < ik <  n  and 1 <  j i  < j '2 < • • ■ <  jk <  m-

D efin ition  A .I . The k-th  multiplicative compound, X^k\  of X  is the (£) x (™) 

m atrix whose entries w ritten in lexicographical order are x 3̂ '"3*.

T heorem  A .2 (B inet-C auchy T heorem ). Let A  and B  be n x  I and I x m

real or complex matrices, respectively. Then

(A B )W  = A {k)B {k). (A .l)

A proof can be found in [9] page 17.

D efin ition  A .3. Suppose X  is a real or complex n x n-matrix, and let k be 

an integer such tha t 1 < k < n. The k-th  additive compound matrix of X  is

defined by X ^  = D (I  +  h X ) ^ \ h=0.

P roposition  A .4. Suppose A and B  are real or complex n x n  matrices. Then
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(i) {A =  ( T ^ )  1 i f  A is nonsingular.

(ii) I ^ n = I Nxn where N  = (”).

(iii) {A + B)W = A ^  + BW.

The components of the k-th  additive compound m atrix can be computed 

as follows. For the integers i =  1 , let (i) — (i1}. . . ,  i/.) be the i th index 

in the lexicographic ordering of all /c-tuples of integers such th a t I < ii < i2 < 

. . .  < ik <  n. If Y  =  X^k\  then

x h + --- + x Z if (*) =  (j).
(—l ) r+sx l{  if exactly one entry is in (i) does not occur

Hi = s
in (j) and j r does not occur in(i),

0 if (i) differs from (j) in two or more entries.

W hen n — 3, the additive compound matrices are

t

a\ w
1

II a\ £ to 
to a2

WH

---1
coco

a\ 

a% + a\

=  a] +  a2 +  al — Tr[A], 

W hen n = 4, the additive compound matrices are

a\ ai a\ a

IIII a\ a2 a\ a

ĈOi a\ a3 a

a\ +  a2 

a\ 

- a \
a i al

a\
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1  +  a2 a\ a\ -a ? - af 0

a3 a{ +  a\ a\ a\ 0 ~ a i
a\ a\ a} +  a\ 0 a\ a\

- a \ a\ 0 +  «3 a\ - a \

—a\ 0 a\ a\ al +  a\ al

0 - a \ a\ - 0 4 a | a3 a4

+  “b °3 a\ — a 2 a\

al a\ +  a% +  a\ a\ - a \

- a l a\ a\ +  al +  0 4 a\

a\ - a l a\ a2 +  a3 +  a'

= a\ +  a\ +  ag +  a\ — Tr[A].

In addition, the additive and multiplicative matrices can be defined in a 

more general setting. Let T  : 1 "  h> K" be a bounded linear operator. Define 

two linear operators and T (k> from the wedge product space f \ k Rn to R 

for Ui, . . . ,  Ufc e  R" as

T(fe)(uj A . . .  A Ufc) =  Tuj A . . .  ATuj (A.2)

and

T^(ui A . . .  A Ufc) =  Ui A .. .  A T  ^  A . . .  A Ufc, (A.3)
i

respectively. If we identify T, T^k\  and T (k) with their m atrix representation 

with respect to  the canonical basis on R", then and T ^  will be the k-th  

additive compound and k-th  multiplicative compound matrices of T, respec

tively. In this definition, the space R may be replaced with C, the complex 

numbers.
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P ro p o s itio n  A .5. Suppose that A i , . . . , An, are the eigenvalues of a n  x n 

matrix A . Then

(i) the eigenvalues of A^k\  counting multiplicities, are given the (£) possible

products of the form:

Ajx • • • A 1 ^  i\ . . .  <1 i\z ^  n.

(ii) the eigenvalues of A^k\  counting multiplicities, are the (£) possible sums 

of the form:

Ajj +  . . .  +  Aik, 1 <  i\ < . . .  < ik < n.

(iii) suppose that Xi , . . .  ,Xfc are independent eigenvectors of A  corresponding 

to the eigenvalues Xix, . . . ,  Xi k . Then Xi A . .. Ax^ is an eigenvector of A ^

and A M corresponding to the eigenvalue A^ . . .  Xik and An +  . . .  +  Aik,

respectively.

A .2 Linear D ifferential E quations and C om 

pound D ifferential E quations

Suppose A  € C(K h->■ M nxn). Consider the linear non-autonomous differential 

equation
dx „. , . . .
-  =  A(t )x (A.4)

and its k-th  compound

f  =  ^ ‘ ' W y  ( A . 5 )

where k £ N, 1 < k < n.

T h e o re m  A .6 . Suppose X (t ) is a fundamental solution of (A .4). Then X ^  (t ) 

is a fundamental solution of  (A.5).
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If k =  n, then X ^ f t )  =  d e t(X (t))  and A ^ ( t )  =  Tr(A(f)). In this case the 

above theorem reduces to the Abel-Jacobi-Liouville formula:

j t de t(X (t))  =  T r(A (f))det(X (f))

which implies

det(A (i)) =  det(X (0)) exp ( ^ J  Tr(A(s))ds

Let x be a subspace of C([0, oo] i—»■ R") and let x k denote its k-th  exterior 

power, 1 <  k < n:

Xk =  s p a n fx 1 A . . .  A x fe : x* G x}-

Further, define

Xo =  {x G x : lim x(f) =  0}
t — > OO

T h e o re m  A .7. Suppose for  x (t) G x  that

(i) l i m s u p ^  |x (f) | <  oo.

(ii) lim inf^oo |x(i)| =  0 implies that limt_+0Ox(£) =  0 .

Then

codimixo) <  k  «=> X(0k) = X(k) • (A.6)

This theorem is proved in [10].

C o ro lla ry  A .8 . Suppose the system (A.4) is uniformly stable. Then a neces

sary and sufficient condition that (A.4) have an (n — k + 1)-dimensional set 

of solutions satisfying lim^oo x(f) =  0 is that the system (A.5) be uniformly 

asymptotically stable.
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A ppendix  B 

A Linear R esult

In this section, sufficient conditions are provided for the existence of a di

chotomy of the solutions to the variational equation of a differential equation 

on the tangent space to an invariant manifold. Theorem B.3 is similar to 

Proposition 3.1 in [7]. In their result, the invariant manifold is all of R". A 

few adjustments to the proof in [7] are required for the proof in the more 

general setting.

Let D  C R", f  G ^ ( D  >—> R"), and g G C 2(D  h-> Mm) where m  is an 

integer and 0 < m < n .  Consider the autonomous differential equation

I -  f(x). (B'l)

Let <p(t,x) be the flow generated by (B .l). The linear variational equation of 

(B .l) at a solution ip(t, x 0) is

(B.2)

where f |( x )  is the Jacobian m atrix of f  at x. An equation tha t will be impor

tan t in what follows is the second compound:

dw (9fl2l
H  = <B3>
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where | | ^ ( x )  is the second additive compound of the Jacobian m atrix of f  at 

x. See Appendix A for the definitions of additive and multiplicative compound 

matrices. Let E := {x € R" : g(x) =  0} be a (n — m)-dimensional invariant 

manifold and let i'(x) be the corresponding function defined in Section 4.1. A 

linear equation associated with the linear variational equation is

dz
dt

Qf [m+2]
—  (<p(t,x0)) -  v(<p(t,Xo)) (BA)

where is the (m  +  2)-th additive compound matrix of the m atrix B.

The m atrix B ^  is the second multiplicative compound of the m atrix B. 

If Ai , . . . ,  A„ are the eigenvalues of the n  x n  real matrix A. Then, \ \ j  and 

Aj -f- \ j .  1 <  i < j  <  n, are the eigenvalues of A (2) and A ^ ,  respectively. 

The numbers a\  >  . . .  >  a2 >  0 are the singular values of A  if o 2, . . .  , o 2 

are the eigenvalues of the symmetric m atrix A*A. For the Z2-norm on R n, 

|x| =  (x*x) 1//2 and the m atrix norm it induces, \A\ =  a\ and |A^2̂ | =  a \02- 

The following two propositions are used in the proof of Theorem B.3 below.

P ro p o s itio n  B . l .  Let V  be a subspace of 1R” . Suppose that V  decomposes 

into a direct sum V  = V1 + V2 o f subspaces of V , and Pi and P2 =  I \v  — Pi 

are the corresponding projections onto these subspaces. Then, the following 

estimate is valid:

l/\Pk\ < 2sin(0/2) <  2/|P*| for k = 1,2  (B.5)

where 6 is the angle between the two subspaces V\ and V2.

The above proposition is proved in [4] page 156. There, V  is a Banach

space and V\, V2 are closed subspaces of V.

P ro p o s itio n  B .2 . Suppose that there exist positive constants a, M , N , J  and 

supplementary projection matrices Pi, P2 on 7^(l such that Pi + P2 =  I \ f xq,

\Y(t)Pi£\ < M e - a{t- s)\X(s)Pif,\ for 0 < s < t, (B.6)
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< iV |X (s)P 2̂ | for 0 < t < s, (B.7)

I ^ P i Y " 1^)! <  J  for t > 0, (B.8)

for any ^ e R " .  Then, there exist positive constants M ' and N 1 such that

<  M 'e - a{t- s), for  0 < s < t ,  (B.9)

|Y (t)P2Y - 1(s)| <  N', for 0 < t  < s. (B.10)

Proof. Let the columns of Y  1(t) be e i( t ) , . . . ,  en(t). Then

n

| Y { t)P xY - \ s ) \  < £ |Y ( * ) P ie i(s)|
«=1

n

< Y , \ Y { s ) P lei{s)\M e - a^ s)
i—1

<  n J M e - a{t~s)

for t > s > 0. Thus, (B.9) holds with M '  =  n J M .  Equation (P . 10) likewise 

holds. □

The result above can be found in [2],

T h e o re m  B .3 . Suppose

(i) the flow is Lagrange stable at x 0 €  E ;

(ii) the u-limit set, f2(xo), contains no equilibria;

(iii) the equation (B.4) is uniformly asymptotically stable.

Then, there exist positive constants N ,M  and supplementary matrix projec

tions P i,P 2 on R", where P\ +  P2 =  I \rXQ, rk(Pi) =  (n — m  — 1) and rk(P2) =  1 

such that

|Y (* )P iy - 1(s)| <  M e - a{t- s) for 0 < s < t,

|Y (t)P 2Y ~ 1{s)\ < N  for 0 < t < s.
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Proof. Let y i( t )  := ^ ip ( t ,x o). Then, yi(i) is a solution of (B.2). We now 

show tha t there exists a L > 1 such tha t

\yi{t)\ < T|yi(s)| for s , t  > 0 . (B-11)

Condition (ii) implies tha t there exists a b such tha t

0 <  b < |y i(s)| (B.12)

for s >  0. If not, then either T+ (x0) contains an equilibrium or there exists 

a sequence {tn}, tn —> oo as n —> oo, such tha t f(<p(fn)) =  y i ( t n) —+ 0 as 

n  —> oo. This implies, from continuity and condition (i), th a t C (x0) contains 

an equilibrium. In either case, there is a contradiction to condition (ii). By 

the continuous differentiability of </?(£, xo) in t and condition (i), there exists a 

constant a such tha t

Then, (B.12) and (B.13) imply |y i( t) |/ |y i( s ) | <  a/b  for t, s > 0. Suppose a 

had be chosen large enough so th a t 1 < a/b. Then, the assertion is proved 

with L  :=  a/b.

Suppose y(t)  is a solution of (B.2). Condition (i) and the continuity of 

| | ( x )  implies tha t there exists a constant (3 such tha t ||£(<p(t,X o )) |  < /3 for 

t > 0. Thus,

Recall from Appendix A, if Aft)  is a continuous n  x n-m atrix valued

| y x ( t ) |  < a for t > 0. (B.13)

for t > s > 0 .

Then, by Gronwall’s inequality

|y(<)| <  |y (s)|ew_s) for 0 < s < t. (B.14)
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function and X (t)  is a fundamental solution of the linear differential equa

tion d x /d t  =  A (t)x ,  then is fundamental solution of the linear equation 

d w /d t  = w.

Suppose Y (t)  is a fundamental solution of (B.2) such th a t F(0) =  / .  This 

implies tha t Y (t)  = |^ ( f ,x 0). By direct substitution,

■— Y{t)^n~m+2)e“ Jo

is a m atrix solution of (B.4). Since Z ( 0) =  I, Z ( t ) is a fundamental solution 

of (B.4). Prom condition (iii), there exist positive constants a, C  such that

( m + 2 )

A nt)

By Proposition 4.4 with k =  2 and the previous equation,

A r m a t (B.15)

for t > 0 .

The tangent space to E at <p(s, x0), T \ ^ s^ ,  is mapped under the trans

formation Y ( t ) Y ^ ( s )  to the tangent space T |v(t_S)X). The map

leaves the space T |v(s>xo) invariant. Let

<7i (s, f) >  . . .  >  <Tn- m(s,t) > 0

be the singular values of the values of this map associated with the invari

ant subspace. Then, a i(s , t)  =  |T ( 0 ^ _1(s )I'A3(s,xo)|; and hence from (B.14),
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<̂ 1 {s, t) < ^  if 0 <  s < t. Similarly, from (B .ll)

1 /L < c r \{ s , t )  for t , s > 0. (B.16)

Further, (B.15) implies

=  < W » , f) <  C K e - < '-) for 0 <  > < t. (B.17)

It follows from (B.16) and (B.17) tha t

a2(s, t ) < L C K e~ a{t~s) for 0 <  s < t. (B.18)

Let 5 > 0. From (B.17) and (B.18), T  > 0 can be chosen sufficiently large 

so tha t if t  — s +  T,  then

0 i 02(s ,i)  < S, and a2(s, t) < 8. (B.19)

For a fixed s, let y x :=  span{yi(-)} and y 2 :=  span{y2(-), • • •, y n-m(-)}> 

where y 4(s) is an eigenvector of (Y ~ 1(s))*Y*(t)Y(t)Y~1(s) corresponding to 

the eigenvalues of (f, s) for i =  2 , . . . ,  n — m  and y^(-) is a solution of (B.2) for 

i =  1 , . . . ,  n — m. Then, since y(t) =  y ( f ) y _1(s)y(s), y(-) & y 2 implies

|y(f)l < \ y ( s ) W2( s J ) .  (B.20)

The subspaces y x and y 2 are supplementary, tha t is y x D y 2 — {0} and y x © 

y 2 =  T \v M , since a solution in is bounded away from zero and solutions 

in y 2 decay to zero. Let t  s + T. Suppose T  had been chosen sufficiently 

large so tha t 0 < 1 /L  — 5. Let y(-) G y 2. From (B.16), (B.19), and (B.20),

0 < l / L - 8  < yi(t) y(t)
|yi(s)l ly(s)l

(B.21)
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Since ------—|yi(«)l ly(s)l *s a so û^ on (B-2) tangent to  the invariant manifold,

y ( s )y i W y  (t) < yiOO

|y i ( s ) l |y(«) l | y i ( s ) l | y ( s ) l
CTi(s,t).

This implies with (B.21) tha t the angular separation, inf |(y i(s ) / |y i(s ) |)  — 

(y (s ) /|y (s ) |) |, over y(-) G T2, between spaces of initial values {y(s) : y(-) G 

y i } , i  = 1,2, is at least (1—L 8) /La\{s , t). Therefore, projections Pi(s), i =  1,2 

with Pi(s) +  P2(s) = I\t^sx ) from T |¥,(s,Xo) onto these initial value subspaces 

satisfy

\Pi{s)\ < 7 tri(s ,i) f o r i  =  1,2  (B.22)

where 7  =  2L/(1 — L 8), from Proposition B .l.

The space Ti is independent of (s, t), while T 2 is not necessarily so, since the 

span of the eigenvectors y*(s) is not necessarily so. Let so >  0, sk := s0+ k T  for 

k = 0 , 1, . . . ,  and 3 2̂,k denote the space 3̂ 2 corresponding to  (s, t) =  (sk, Sfe+i)- 

i fy(-)  is a solution of (B.2) with y(0) G TXo, then for k =  0 , 1 ,2 , . . .  there exist 

yi,fe(-) G T u  and y 2,fc(-) G y 2,k such th a t y(-) =  yi,*(-) +  y 2,fc(-)- Then,

y  i,fc(sfc) =  Pi(sk)y(sk) = Pi(sk)yi,k-i(sk) + Pi(sk)y2,k-i(sk) 

for i =  1, 2. Simplifying,

yi,fc(sfc) =  yi,fe-i(5 fc) +  T>i(sfc)y2,*:- i ( '5*:), (B.23)

for A: =  1 , 2 , . . . ,  since 3;i,fc is independent of k, and

y 2 ,k(sk) =  -P2(s/c)y2jfc-l(Sfc).

From (B.20) and (B.22),

|-Pj(«fc)y2>*:-l(Sfc)| <  70 'l(Sfc,Sfe+1) |y 2lfe_1(Sfe)|

™ 7^”i(sa;? ^/c+i)rr2(s/j,_i, SA;)|y2,fc—i(sat—i)|
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for i — 1,2 and k — 1, 2 . . . .  By the same reasoning |y2,o(so)| =  ^ (scO y ^ o )! < 

7 cri(so, si)|y (so)|. Hence, by induction, (B.20), and (B.22)

|P.(Sfc)y2,fc-l(Sfc)| <  l k+l (T\(Sk,  Sfe+ 1 ) n 7 = l [crl°r2 ("Sj —1, sj ) ] |y (so)| . .

< 7 /£+15fee/3T|y (s0)|.

Let constants ck be defined so tha t yi,fc(-) =  c*,yi(-). Then, (B.23) is equiv

alent to  ck =  cfc_x +  A k where Afey^sjt) =  P i(s fe)y 2,*-i(sfc) for k = 1, 2 , . . . .  

Thus, by (B.24), |A fc| < 7 fc+1̂ e /3T|y(s0)|/|yi(sA;)|. Additionally, |co||yi(s0)| <  

l-Pi(so)||y(so)|- This implies tha t |c0| <  7 e/3T|y(so)|/|yi(«o)|- Therefore, if 5 

had been chosen small enough so tha t yS < 1, then

A  7 M ,e/3r
N < N  +  E l ^ l ^ m , ( 1 - 7 j ) l ! ' ( » » ) l  < B 2 5 >

where m i  :=  infs>o |j/i(s)| and Mi := sups>0 |y i(s)|. Further,

|y2,fe(sfe)| =  |P2(sfc)y2,fc-i(s*)| <  7fc+1̂ e /3T|y (s0)| <  7 e /3T|y(so)|- (B -26)

Together (B.25) and (B.26) imply tha t

|y(sfc)| <  |yi,fe(sfc)| +  |y2,fc(«fc)| <
M ,  ■

_ m i ( l  -7<5)

From (B.14), \y(t)\ <  e/3T|y (sfe)| for sk < t < sk+u and so

|y(so)l-

\y(t)\ < i / |y ( s 0)| for 0 < s0 <  t (B.27)

where H  5e2@T [M i/m i( l  — 7 <5) +  l]. We conclude tha t (B.2) has a uniformly 

stable subspace.

Let x  be this uniformly stable subspace. Then, (B.27) implies tha t all 

solutions are bounded. Hence, condition (i) of Theorem (A.7 is satisfied.. 

Suppose y(t)  G x  and lim inft_ 00 |y(f)|  =  0. Then, there exists a sequence 

ti —> oo as i —► oo, such tha t lim *-^ |y(L)l =  0- Additionally, (B.27) implies
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tha t |y (t)| <  H\y(ti)\ if 0 < U < t, and hence limt_>00y(t) =  0. Therefore, 

condition (ii) of Theorem A.7 is satisfied. From equation (B.15), =  Xo^-

This implies from Theorem A.7 th a t codimyo < 2, and therefore n  — m  — 1 < 

dim(xo) < n  — m. Since yi(f) is bounded from below, dim(xo) =  n — m — 1.

Let Z \  =  span{yi(-)} and Z 2 =  Xo- Then, to apply Proposition B.2 to 

prove the theorem we need to  show th a t there exist positive constants a, M ,  

N ,  and J  and supplementary projection matrices P i,P 2, P\ +  P2 — I \ t {x0) i 

so th a t (B.6), (B.7), and (B.8) are satisfied. Equation (B.7) is equivalent to 

(B .ll) , for suppose y\{ t)  =  Y ( t)v ,  T(0) =  I  for some vector v  6  R". Then, 

|T(it)v| <  |y (s)v |L . Let P i be a 1-dimensional projection m atrix such tha t 

P jv  =  v. Then |y (i)P i£ | <  L |y (s )P i^ | for t, s > 0 and £ € R". Similarly, if 

we can show Z 2 is uniformly asymptotically stable (B.6) will be satisfied, where 

P2 a (n — m  — l)-dimensional projection matrix defined such tha t P2y (0) =  

y(0) for y(-) € Z 2. Equation (B.8) is equivalent to subspaces being bounded 

away from each other from Proposition B .l. The theorem will, therefore, be 

established if we can show that,

(a) the subspace Z 2 is uniformly asymptotically stable.

(b) if y(-) € Z 2 is nonzero, the angle 9{t) between yi(£) and y(f) is bounded

away from 0 uniformly with respect to t > 0 .

We show tha t (b) implies (a). If y i and y  are vectors in Rn and if 9 is the 

angle between them, then |y i A y | =  sin(^)|y1||y |. Since w(-) =  yi(-) Ay(-) is 

a solution of ^  =  | |^ ( (p ( t ) )w  with w(0) € T \Xo, (B.15) implies tha t

|s in fl( i) ||y i( i) ||y ( t) | <  | s in 6»(s)||y1(s)||y (s)|C A 'e“a(t-s)

if 0 <  s < t. Further, (B .ll)  implies

C K L \y (s ) \e -a^  
|yWI ~  |s in 0(t)|

Thus, proving condition (a).
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Condition (b) is equivalent to showing 2| sin(0(f)/2)| =  | (yi(£)/ |yi(s)| )  — 

(y(f)/ |y(s) | ) |  is bounded away from zero. Choose t > s sufficiently large that 

|y(£)| < l/2 L |y (s ) |. Then, (B.27) implies

0 < 1/ 2L < L  - |yi(*)l / yi (*) y(t) < H yi(s) y(s)
|yi(s)l ~ |yi(s)l |y(s)l |yi(»)l |y(s)l

. (B.28)

Therefore, 0 < L/ ( 2H)  <  2 |s in0 (s) |, and hence 6 (s) is bounded away from 

zero for s > 0 . □
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