University of Alberta

ExPLORING THE COLOR HISTOGRAM’S DATASPACE FOR CONTENT
BASED IMAGE RETRIEVAL

by

Alexandru Coman

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

(L4

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis im microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Oftawa ON K1A ON4

Your filo Volre référence

Qur file Notre référence

L’auteur a accordé¢ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-81383-5

Canada

University of Alberta

Library Release Form

Name of Author: Alexandru Coman

Title of Thesis: Exploring the Color Histogram’s Dataspace for Content
Based Image Retrieval

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

§ o nionn
Alexandru Coman
#305-8516 99St,
Edmonton, Alberta
Canada, T6E3T6

Date: Mﬁ M”fs /2

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Exploring
the Color Histogram’s Dataspace for Content Based Image Retrieval
submitted by Alexandru Coman in partial fulfillment of the requirements for
the degree of Master of Science.

P

Dr. Zé/'l'gan Koles

ya2s

Dr. Sherif Ghali

Dr. J64g Sander
o (7,

Dr. Mdrlo A. Nasmmento

Date: A"? Q”?; 200l
g /

A picture is worth a thousand words.
Anonymous

Abstract

With the growth of available information in digital format, indexing has drawn
much attention as a viable solution to reduce retrieval time when searching
large databases. There are many indexing techniques available nowadays, but,
as they were developed with general goals in mind, they do not perform at
their best in many cases.

In this thesis we explore the use of prior knowledge about the data to be
indexed (e.g. its spatial distribution) in order to enhance the performance of
the indexing structure. Based on a concrete example — the constraint exist-
ing in color histograms — we explore how such property induces other data
constraints. We design a specialized index structure to take advantage of
the induced data constraints. We also propose a new lower bound distance
between data points and Minimum Bounding Rectangles to be used when
indexing histograms with existing indexing structures.

The proposed indexing technique is shown to be efficient and stable with
respect to variations in number of data objects, page size, feature vector di-

mensionality and variation in number of nearest neighbors to be searched for.

Acknowledgements

I would like to express my appreciation to the following people, who have made
the completion of this study possible:

My supervisor, Dr. Mario A. Nascimento, who not only provided his guid-
ance and advice, but also taught me how to do research. My co-supervisor,
Dr. Jorg Sander for contributing to my formation as a researcher. To both
of them, for their valuable suggestions and patience during many hours of
discussions.

The examining committee members, Dr. Zoltan Koles and Dr. Sherif Ghali
for their interesting questions and suggestions for future research issues.

The authors of SR-tree[29] and A-tree[48] for providing their source code.

My friends, for their patience and understanding while I was busy working
on this research.

My family, for encouragement and believing in me.

Finally, I want to thank my wife Luiza for continuous love and moral

support.

Dedication

To my wife and my family.

Contents

Introduction

1.1 Motivation L
1.2 Our Contribution
1.3 Thesis Outline

Related Work

2.1 Color Representation and Similarity Models
2.1.1 ColorSpaces e
2.1.2 Color Properties Representation

2.2 Indexing Techniques
2.2.1 Data Partitioning Indexes
2.2.2 Space Partitioning Indexes

Indexing with Constraints
3.1 Motivationo
3.2 Feature Representation
3.3 Experimental Sets.
3.4 Feature Constraints
3.5 Improved Distance
3.5.1 Theoretical Analysis
3.5.2 Experimental Evaluation
3.6 Index Optimization
3.6.1 Theoretical Analysis
3.6.2 Unbalanced Split Policy

3.6.3 Experimental Evaluation

S

oo ot ot R

4 Conclusions

4.1 Summary & Contributions

4.2 Future Research

Bibliography

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12

2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7

The RGB colorspace
The HSV colorspace
Generic tree index structure
Query types in information retrieval
Range Query Search Algorithm
k-Nearest Neighbor Query Search Algorithm
The R-tree structure
Example of a TV-tree with 1 active dimension
The SS-tree structure
The X-tree structure
The SR-tree structure
Bounding regions as specified by the intersection of a bounding
sphere and a bounding rectangle
A 2-dimensional bulk-load partitioning (adapted from [6]) . . .
A 2-dimensional VA-file data objects approximation example .
Lower and upper bounds for query processing

A 2-dimensional example of Virtual Bounding Rectangle

3-dimensional GCHs feature space representation
Original and improved query-to-MBR distances
Improved MBRs search order by using the improved distance .
Distance improvements with dataset size - uniform dataset . .
Distance improvements with dataset size - Corel dataset
Distance improvements with dataset size - TV dataset

Distance improvements with no. of neighbors - Corel dataset .

36
38
39
41
42

43

3.8

3.9

3.10

3.11

3.12

3.13

3.14
3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

Distance improvements with dimensionality - Corel dataset . . 43
Uniform data generation in constrained space 47
Average value of a dimension in a feature vector with increasing
dimensionality oo 48
Average marginal value distribution of 10,000 objects in an 8(a)

and 64(b) dimensional uniformly distributed constrained space 48

Nlustration of the effect yielded by induced splits (for the sake
of clarity only the MBRs being split are shown) 49
Average marginal value distribution of Corel dataset objects in
64 dimensionso 52
Bulkload index creation using Top-Down dataset partitioning. 53
Number of page accesses using ratio split over LP split - uniform
dataset 56
Number of page accesses for varying data partition sizes - uni-
form dataset Lo 57
Number of page accesses using ratio split over LP split - real
datasets 58
Split ratio efficiency for several combinations of data dimension-
ality and page sizes - Corel dataset 59
Split ratio efficiency for several combinations of data dimension-
ality and page sizes - TV dataset 59
Number of page accesses for varying data set sizes - Corel dataset 60

Number of page accesses for varying data set sizes - TV dataset 60

Number of page accesses for varying number of dimensions -

Corel dataset 61
Number of page accesses for varying number of neighbors - Corel
dataset L L 61
Overall number of page accesses for varying number of neighbors

- Corel dataset 62

List of Acronyms

CBIR
CPU
GCH

10

kNN

LP split
MBR
MBS
NN
X-LP
X-xx%
Xid-xx%

Content Based Image Retrieval

Central Processing Unit

Global Color Histogram

Disk operation (Input/Output)

k Nearest Neighbors

Last Page split

Minimum Bounding Rectangle

Minimum Bounding Sphere

Nearest Neighbors

Optimized index using LP split policy
Optimized index using ratio split policy at xx%
Optimized index using improved distance and

ratio split policy at xx%

Chapter 1

Introduction

1.1 Motivation

In the last few years great effort has been put into analyzing and indexing the
large number of images that have become available with the boom of the Inter-
net. Through digital photography and image scanners, many personal photo
albums have been transformed into private digital library collections. Even
before the expansion of digital technologies in private usage, large collections
of images were available for professionals in fields such as design, photogra-
phy, astronomy, publishing and others. Efficient browsing and retrieval are
important issues for all these people, for private or professional use.

In contrast to standard database systems, similarity search is the main
functionality required by most multimedia applications. While textual in-
formation may be directly stored and queried, multimedia data is handled
through feature transformations, where multimedia object’s properties are
usually transformed into a high-dimensional point, also called feature vec-
tor. The similarity of two multimedia objects is then decided based on the
similarity of their feature vectors. While the image processing researcher is
challenged by the feature extraction task, what makes this field interesting
for the information retrieval researcher is, among other factors, the complex-
ity and dimensionality of the feature vectors. Common information retrieval
techniques, effective with other types of data, cannot be used in this case, and
neither are trivial adaptations of those techniques. One challenging task for

image information retrieval has proved to be handling the large dimensionality

of the feature vectors.

In the case of image objects, these vectors are designed to capture the
image content and therefore the retrieval process is called Content Based Image
Retrieval (CBIR). Typically, a CBIR system extracts some visual features from
a given query image which are then compared with the features of images
stored in the database. The similarity is based on the abstracted image content
rather then on the images themselves. Due to the exponential growth in the
number of digital images available, human-assisted annotation is not feasible.
A feature that is easy and fast to extract and also captures reasonably well
the image content is color. It is common to use a Global Color Histogram
(GCH) to represent the distribution of colors within an image [8]. It has
the desired characteristic of low complexity for extraction and invariance to
scaling and rotation. In Section 2.1 we will introduce in more details color
models and image colors representations, as our work presented in this thesis
uses Global Color Histogram as the feature extracted from images. Some other
features that have been used for image representation and retrieval purposes
are texture [33, 50], shape [28, 35], spatial relationships [9, 24] and others.
It is also common to use a combination of features to improve the quality of
retrieval.

There are many CBIR systems available, some commercial, other for re-
search purposes. Several of them are: IBM’s QBIC [38, 43], Virage’s VIR Im-
age Engine retrieval system [3, 54], Excalibur’s RetrievalWare [17, 44], MIT’s
Photobook [41, 42|, Columbia University VisualSEEk [51, 55], University of
Alberta’s BSIm [14, 36] and IBM/NASA’s Satellite Image Retrieval System
[34].

With the growth of available information in digital format, indexing has
drawn much attention as a viable solution to reduce retrieval time when search-
ing large databases. While a sequential scan is efficient for CBIR from small
image collections, efficient high-dimensional indexing techniques need to be
explored for efficient CBIR from large collections. One of the main issues
the indexing techniques for Image Retrieval have to deal with is the large di-

mensionality of the feature vectors. The history of multidimensional indexing

techniques can be traced back to middle 1970’s when the quad-tree and k-
d tree were first introduced [47] for 2-dimensional data. Improved structures
such as the R-tree [25] and variants were introduced in the following years, but
not even the best dynamic variant, the R*-tree [4], performs well for more than
20 dimensions. Section 2.2 presents a review of the most important research
work in the indexing of high dimensional data, from the R-tree to state-of-the-
art techniques developed recently. The proposed indexing techniques are very
general with respect to data to be indexed and do not always scale well to
the high dimensionality of the feature vectors used in Image Retrieval. This is
due to a number of effects collectively referred to as “the curse of dimensional-
ity”. For Global Color Histograms, however, some of these effects do not occur
due to the inherent constraint on the values of a histogram; the sum over all
values of the normalized histogram feature vector must be equal to 1. This
constraint leads to other constraints on the data’s dimensional distribution,
maximum distance between two objects and others. The careful observation
and understanding of these constraints allow us to design a more specialized

index structure for normalized histograms.

1.2 Our Contribution

In this thesis we will show how the efficiency of retrieval can be improved by
taking advantage of constraints inherently existing in image feature vectors at
both index construction and search time. Although we will use GCHs as our
image feature of choice, similar constraints may exist in other features used in
CBIR or other fields. For example, histograms can also be used to represent
and compare the shapes of objects [2, 19].

Firstly, we refine the distance function that computes the minimum dis-
tance between the query point and a potential point inside a Minimum Bound-
ing Rectangle (MBR). Since the minimum distance is used in pruning the
search space, it is important to approximate it as accurately as possible. The
improved distance function will help reduce the number of Minimum Bounding

Rectangles (MBRs) searched during retrieval, as well as changing the MBRs

search order, as we will present in Section 3.5. Thus, we improve the search
efficiency. This function can be used to improve pruning in combination with
any existing indexing techniques that use Minimum Bounding Rectangles as
bounding regions.

Secondly, based on our observations regarding the data constraints imposed
by the use of Global Color Histograms as feature vectors as well as the data
distribution (synthetic and real data), we propose a new split policy. To show
its efficiency we will use it during bulkload construction of the index structure.
This basic index structure is an extreme case of the X-tree index for high
dimensionality [7]. We will also show that a strategy that proves efficient for
uniformly distributed data is not as good for real data. We show how the
split policy can be adapted for real data collections in order to improve the

efficiency of our index structure.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 contains an overview of the
current research in information indexing as well as several color models and
color properties representations. Chapter 3 gives a description of our obser-
vations regarding the existing data constraints induced by using normalized
histograms. We will also introduce a variant of an indexing technique that will
take advantage of these constraints at index creation time. We will describe
an accurate distance that helps improve pruning the search space at retrieval
time. The evaluation of the improvements obtained by using the new proposed
technique over state-of-the-art index methods will be presented in Chapter 3.
Finally, Chapter 4 concludes the thesis and states some possible directions for

future research.

Chapter 2
Related Work

In the following sections, some information regarding color descriptors and
possible similarity measures is presented, as well as an overview of the most

popular and efficient indexing methods applied to color indexing over time.

2.1 Color Representation and Similarity Mod-
els

Color is an extensively used visual attribute in image retrieval that often sim-
plifies object identification and extraction [23]. This attribute is very conve-
nient since it provides multiple measurements at a single pixel level on the
image, often enabling classification to be done without the need of complex
spatial decisions [49], like objects’ shape and positioning. Its extraction is very
fast, making it the feature of choice in large dynamic collections, when image
features have to be extracted in real time. Traditionally, color histograms
have been used as color feature vectors. Some advantages are that they are
robust to image rotation and scaling and image similarity can be computed
using simple metric distances (e.g: Hamming or Euclidean distance). In the
following paragraphs, color representation and some similarity models will be

presented in overview.

2.1.1 Color Spaces

The most commonly used color representation model is RGB, which is com-

posed of three primary colors: Red, Green and Blue. This model has both

a physiological foundation and a hardware related one. Results from neuro-
physiology [8] show the existence of three distinct types of cones in the human
retina used for capturing what humans define as color. The Red, Green and
Blue colors correspond to the location of the maximum of cone responses to
a monochromatic stimulus. The RGB model is also most frequently used to
reproduce colors in optic devices such as TV monitors and computer screens.
These three colors are called primary colors and are additive. By varying
their combinations, other colors can be obtained [21]. This color model can
be represented as a unit cube with black (0,0,0) and white (1,1,1) as extremes
of the scales, red (1,0,0), green (0,1,0) and blue (0,0,1) as primary colors and
cyan (0,1,1), magenta (1,0,1) and yellow (1,1,0) as secondary colors (Figure
2.1). A drawback of this model is that it is not perceptually uniform; that is
the calculated distance between two colors does not truly correspond to the

perceptual difference [32].

AR
1
|
1,Red
! Magenta
1
1
?
I
Yellow | | White
|
! .
k k\;ﬁ
G
U U | B
Black Blue B
1
.7 Green Cyan

Figure 2.1: The RGB color space

Another color model based on the same unit cube as RGB is CMY. It is
based on the secondary colors of the RGB space and it is mainly used for
color printing [8]. The Cyan, Magenta and Yellow are the complements of
Red, Green and Blue. As compared with the RGB model, the CMY has the

limitation that none of these three colors is a pure color, and they are always

adulterated by a certain proportion of each other. It is impossible to create
a pure black color using this model. In order to overcome this problem, the
CMY color model is extended to another model, referred as CMYK, which
uses black (K) as the fourth color [1].

red

geenta

Figure 2.2: The HSV color space

A color model derived on how colors appear to a human observer is the
HSB (Hue, Saturation, Brightness) model. Hue describes the wavelength of
the color percept. Saturation indicates the amount of white light present in a
color. Brightness represents the intensity of a color. The HSB model is based
on experiments analyzing human reactions to opponent primaries* [8] and on
the observation that opponent hues (like Yellow and Blue) cancel each other
when superimposed. This model can be represented as a cylinder, but it is
usually represented by a double hexagonal cone. Brightness (B) represents the
vertical axis, saturation (S) is represented on a side of the hexagonal cone and

hue (H) is an angle around the vertical axis. Another color coding scheme

Nights of a single wavelength

belonging to the same class as HSB is HSV (Hue, Saturation, Value). The
representation of the HSV space (Figure 2.2) is derived from the RGB space
cube, with the main diagonal of the RGB model, as the vertical axis in HSV
[31]. As saturation varies form 0.0 to 1.0, the colors vary from unsaturated
(gray) to saturated (no white component). Hue ranges from 0 to 360 degrees,
with variation beginning with red, going through yellow, green, cyan, blue and
magenta and back to red. These color spaces are intuitively corresponding to
the RGB model from which they can be derived through linear or non-linear
transformations [8].

Another uniform color space based on human perception is L*u*v*. It is
device-independent, based on the opponent color theory of human vision and
highly approximates color difference as perceived by humans [8]. It was rec-
ommended by CIE (Commision Internationale e I'Eclairage) for quantifying
differences in monitor displays. Lightness L* is perceptually based on bright-
ness and u* and v* are chromatic coordinates. In the L*u*v* color model,
Red is the best represented color, Green is moderately represented, while Blue
is poorly represented.

The selection of a color space is very important for deriving useful image
related color information. Several researchers have evaluated various color
models for the purpose of image retrieval under varying sets of image conditions
[22]. Tt has been shown that the RGB color model closely corresponds with
the physical sensors of the human eye, although the human perception is more
accurately reflected using the HSV color space. There is no clear proof in the
specialized literature of one model being better than the other in all aspects.
In the Color Based Information Retrieval research, the RGB color model is
most frequently used, as it is easy to understand and extract. We use the
RGB model in our research, but the proposed techniques would equally apply

well when using any other color model.

2.1.2 Color Properties Representation

Color histograms are the most common way of describing low-level color prop-

erties of images [8]. A color histogram is represented by a set of bins, where

8

each bin represents one color. It is obtained by counting the number of pixels
that fall into each bin based on their color. Since the typical computer repre-
sents color images with up to 16,777,216 colors (RGB model, 256 Red levels x
256 Green levels x 256 Blue levels), this process generally involves substantial
quantization of the color space. Color histograms could be generated either as
three independent color distributions (one for each of the RGB primary colors)
or, more frequently, as a joint distribution of all three primary colors. Usually,
the obtained color histogram is normalized with total number of image pixels.
In normalized histograms, each bin represents the percentage of pixels of the
bin corresponding color found in the image.

When only one histogram is generated for the entire image, it is called
Global Color Histogram (GCH). Assuming a D-color space, a GCH is then
an D-dimensional feature vector (hy, hs, ..., hp), where h; represents the nor-
malized percentage of pixels of color ¢; found in the target image. Formally,
each component ¢; can be defined as a unique combination of Red-Green-Blue
values. The GCH by itself does not capture any spatial information about the
image, so that very different layouts may have similar representations. For
example, a large red object on blue background could have the same GCH
representation as many pixel-size blue objects on red background. When only
GCH is used as feature vector describing an image, the retrieval of similar
images is based on similarity of their GCHs. Often, the similarity metric used

between two image GCHs is the Euclidean distance, that is defined as:

D

d(Q,I) = \JZ(h? — hi)? (2.1)

i=1
where () represents the query image, I is one of the images in the dataset
and hY and h! represent the histogram value for the same coordinate (color)
7 in Q, respectively I. A smaller distance reflects a closer similarity match. In
fact, the color histogram feature vectors are usually mapped onto points in an
D-dimensional metric space, and similar images would therefore appear close
to each other, with a smaller Euclidean distance between them.

Another popular distance function used to measure similarity between color

histograms is the Hamming distance, that is defined as:

dQ, 1) = Zmef (2:2)

Hafner et al. propose in [26] a quadratic form distance function that they
suggest it captures better the similarity between color histograms. The new

distance function is defined as:

d@,1) =/(Q -)'A(Q - I) (2.3)

where A = [a;;] is a weight matrix and a;; represents the extent to which
histogram’s bins (colors) i and j are perceptually similar to each other. When
compared with the Hamming or Euclidian distances, the quadratic distance
allows similarity matching between different colors.

In order to capture some spatial information through color histograms,
local color histograms (LCH) [52] can be used. An image is divided into
regions and a color histogram is computed for each region. Thus, an image
divided into 16 regions will be represented by 16 LCHs, one for each region.

A different type of histogram that incorporates some spatial information
about an image is proposed in [40]. Each pixel is classified in a given color bin
as either coherent or incoherent. A color’s coherence is defined as the degree
to which pixels of that color are members of a large similarly colored region.
A Color Coherence Vector (CCV) stores the number of coherent () versus
incoherent (f;) pixels for each color i. «; + §; represents the total number of
pixels of color 7 in the image, as represented in GCHs. In CCV, the feature
vector of an image is described as I= (a4, 1), .-, (@p, Bp)), with D being the
size of the color space. Using this notation, the Hamming distance between Q

and I using Global Color Histograms representation is:

D
duast(@, 1) = 2| (0 +87) — (of +5]) | (2.4)
1=1

When using CCV representation, the distance is defined as:
D

deev(Q, 1) = (] af —af |+ 8%~ 81) (2.5)

1=1

10

It is shown that dyist(@,) < deey(Q,) [40] and therefore one can have a
better distinction among similar images for the case when the distance between
GCHs would produce many similarity ties. Experimental results show that
Color Coherence Vectors can give superior results when compared to Global
Color Histograms.

In [36], a different approach is proposed that emphasizes less dominant
colors, while still taking into account major colors of an image. The approach
is based on the discretization of colors into binary bins which improves the
retrieval performance and significantly saves storage space. After each image
is quantized into a fixed number of colors I = (cy,¢, ..., ¢p), each color
element c; is further discretized into T binary bins B; = bib2...b7, where only
one bit can take value 1. If the discretization function assigns equal color value
ranges to each bin, the arrangement is called Constant Bin Allocation (CBA),
while if it uses variable color ranges it is called a Variable Bin Allocation
(VBA) approach. The VBA method gives advantage to less dominant colors
by discretizing the space with larger ranges assigned to a bin for the lower
values. A signature of an image will then be represented by the following bit-
string: S = blb2...bTbib2. .61 .. .bL,b%...b%, where b] represents represents the ;t
bin of the ¢; color element. Since each bin is represented by just one bit, the
obtained signature is very compact. For example, by using D = 64 colors, F
= 4 bytes/float value and T = 10 bins, the image signature requires 80 bytes
= 64 colors x 10 bits, while GCH would require 256 bytes = 64 colors x 4
bytes/float and CCV 512 bytes = 64 colors x 2 histograms x 4 bytes/float.
That is a saving of over 68% over GCH and 84% over CCV. The distance

between two images QQ and 1 is defined as:

d(@,1) = 3| (pos(B) — pos(B]) | (2.6)

1=1

where pos(BF) gives the position of the set bit within the set of bits B; of image
R. Experimental results show that VBA method can equal and sometimes

outperform the use of GCHs. Beside the advantage of great savings in storage

11

space, signatures can be indexed efficiently using signature based methods
such as the S-tree [37].

In [53] the authors propose a method based on color moments. For each
color channel (H, S and V in their case), they extract the first three color
moments: average, variance and skewness. FEach image is described by 9
features (3 channels x 3 moments). They also propose a similarity distance
based on these features, where each color moment has a different weight. They
argue that the index is small and the retrieval process is fast and effective. A
drawback of this technique is that the choice of the weights in the distance
function is dependent on the data set and highly affects the retrieval results.

Jacobs at al. have suggested in [27] the use of quantized 2-dimensional
wavelet decomposition by applying the Haar wavelet transform to images.
Similarity is determined by checking how many significant wavelet coeflicients
on the query image and dataset image are close to each other. As wavelet
coefficients capture information of image content independent of original im-
age resolution, the query and dataset images may have different resolutions,
without affecting the quality of retrieval.

In the VisualSEEk system [51], Smith and Chang use color sets to locate
regions within a color image. Color sets are binary vectors that correspond
to a selection of colors. It is assumed that image regions have only a few
dominant colors. Similarity between two images is determined by verifying
the presence of a color set in an image region. For single region queries, the
overall distance is computed as the weighted sum of distances between color
sets, spatial locations, areas and spatial extents. The best match minimizes
the overall distance.

A pyramidal multiresolution representation of color regions is used in the
Picasso system [8, 10]. Region segmentation is performed by iteratively ag-
gregating uniform color patches. Image segmentations obtained with this pro-
cess are organized in a pyramidal schema. Each segmentation is represented
through a graph, where each node represents color uniform regions at a certain
image resolution. Global color vectors are used to quickly extract candidate

Images containing regions with the same colors as the query. Then, candidate

12

images are analyzed by inspecting their pyramidal representation from top
to bottom, to find the best matching region for each region in the query. A

similarity score is computed based on the matching score of each region.

2.2 Indexing Techniques

In order to increase the efficiency of retrieval, indexing techniques are used.
Since we are generally dealing with a large number of data objects, these ob-
jects are kept on secondary storage (disk). The smallest unit a disk is logically
partitioned into is called disk page (in the following referred as page). We can
only access whole multiples of pages. Since secondary storage operations are
very time costly compared with operations in main memory, the main con-
cern is to minimize the number of disk pages that have to be accessed during
retrieval.

Before proceeding to the presentation of some indexing techniques, we will
first introduce two common types of queries in image information retrieval.
We assume a generic tree-like index structure (as in Figure 2.3) where the leaf
nodes keep the indexed objects and each internal node contains a bounding

region for all objects contained in its sub-tree.

Figure 2.3: Generic tree index structure

Firstly, there is the Range Query. In a range query, a radius is given
together with the query object (note that in the following the terms object
and point will be used interchangeably since an object is represented by a

feature vector which is a point in the feature space). The expected result is

13

(a) Range Query (b) Nearest Neighbor Query
Figure 2.4: Query types in information retrieval

the retrieval of all points closer than the given radius from the query object
(Figure 2.4 (a)). The number of returned objects depends on the radius and,
for a fixed radius, on the objects distribution in space. It could be null, if the
radius is too small, or equal to the number of indexed objects, if the chosen
radius is too large. An advantage of this type of query is that a maximum
query to object distance is known. Therefore the search space can be pruned
early without loosing any objects from the answer set. For a pseudo-code
version of the range query search algorithm, see Figure 2.5. Note that the
Insert procedure keeps the lists sorted, dist computes the distance between
two data points and mindist computes the distance between a point and the
bounding region of a node.

Another type of frequently used query is the k- Nearest Neighbor Query. In
this type of query, the desired number of neighbors (k) is supplied with the
query object. The expected result is a list of k-nearest neighbors of the query
object (Figure 2.4 (b)). In this case, the distance from the query object to the
furthest k*-neighbor object is unknown a priori. Therefore, pruning the search
space has to be done dynamically, based on the distance to the k!'-nearest
neighbor encountered in intermediate steps of the search. Processing such a
query requires a substantially different search algorithm than for range query
[5, 46]. It is also more costly than range query search for most indexes. For
a pseudo-code version of the basic k-Nearest Neighbor query search algorithm,

see Figure 2.6. Note that the Insert procedures keeps the lists sorted, the

14

Input : Query Object q, Radius r, ActiveNodeList anl = [root],
RangeList 1l = [NULL]

Output: RangeList rl

while anl Not Empty do

Node N = anl.Removekirst;

if N Is LeafNode then

for each Object o in N do
if dist(q,0) < r then

l» | Insert oinrl;

else

/*Non-Leaf Node*/;

for each ChildNode c in N do
if mindist(g,c) < r then

{ | Insert cin anl;

Figure 2.5: Range Query Search Algorithm

NNList keeps just k elements and knn.mazdist represents the maximum nearest
neighbor distance found.

An important issue that affects the performance of these search algorithms
is the amount of overlap existing among the tree nodes. Overlap is the per-
centage of the space volume that is covered by more than one node sub-tree
bounding region. This affects the query performance since during query pro-
cessing the overlap of bounding regions results in the necessity to follow mul-
tiple paths, covering same regions of space more than once.

It is important to note that the more accurate the mindist distance, the
better te prunning of sub-trees during the tree traversal, i.e., the faster the

query processing (this is discussed in more details in Section 3.5.

2.2.1 Data Partitioning Indexes

The most popular techniques for indexing data try to group or organize the
data objects based on their distribution. The data space is partitioned into
cells and a disk page is allocated to each cell. These cells are organized into an
index tree which is used to help prune the search space during query processing.

There are many such methods and some of the most commonly used will

15

Input : Query Object q, Neighbors k, ActiveNodeList anl = [root],
NNList knn = [NULL)]

Output: NNList knn

while anl Not Empty do
Node N = anl.RemoveFirst;
if N Is LeafNode then
for each Object 0 in N do
if dist(q,0) < knn.mazdist then
Insert o in knn;
\» Update knn.mazdist;
Prune anl using knn.mazdist;

else
/* Non-Leaf Node */;
for each ChildNode ¢ From N do
if mindist(q,c) < knn.mazdist then
L | Insert cin anl;

Figure 2.6: k-Nearest Neighbor Query Search Algorithm

be presented in this section. They are the R*-tree, TV-tree, SS-tree X-tree
and SR-tree. We will also introduce bulkload index construction, that helps
improve the efficiency of these index structures when the dataset to be indexed

is known in advance.

R*-tree

The R*-tree [4] is a multidimensional index structure designed for indexing
D-dimensional rectangular data based on their spatial location. It is one of
the most successful versions of the R-tree [25] index introduced in 1984 by
Gutmann . The R-tree is a height-balanced tree corresponding to a multilevel
hierarchy of rectangles. Therefore it is only suitable for rectangular and point
(which can be considered as a degenerated rectangle) objects.

We will introduce first the basic R-tree structure (Figure 2.7), since the R*-
tree and many other indexing structures start from the same basic structure
followed by enhancements or adaptations of it. A leaf node (Figure 2.7, nodes

A to I) contains entries of the form (ObjP, Rect) where ObjP represents a

16

™~
)
¢]

LR PO
e | IE? -
:B b H
A . o pooe e
| SA R I ST (OO [P i
C : :
: PO
L] : ® -
® i}
3 i
Object Space R*~tree

Figure 2.7: The R-tree structure

pointer to the actual spatial object (or just a database record describing the
object) and Rect is the smallest enclosing rectangle of the indexed object. All
leaves are on the same level. A non-leaf node (Figure 2.7, nodes 1, 2, 3 and
root) contains entries of the form (ChildP, MBR) where ChildP represents
a pointer to a child node in the tree hierarchy and MBR is the Minimum
Bounding Rectangle of all objects indexed in the subtree rooted at the child
node. Therefore, a non-leaf node contains the MBR of all rectangles of the
objects contained in the leaves of subtree. The root node contains the MBR
of all the indexed objects. Each node corresponds to a disk page. If nodes
have many entries, the tree is very wide, and almost all the storage space is
used for leaf nodes containing index records [25].

This indexing structure is dynamic, insertions and deletions can be in-
termixed with queries and no periodic global reorganization is required [4].
One drawback of this structure is that it may have highly overlapping direc-
tory rectangles (MBR). More overlap means more paths have to be searched
to find one (exact match) or more objects (for nearest neighbor and range
queries) as the query point will be either inside or close to many MBRs. In
order to reduce overlapping, the original R-tree tries to minimize the MBR en-
largement area during insertions and minimize the total area of the new nodes
MBR during splits. The R*-tree improves the performance of the R-tree by
introducing heuristics for minimizing the area, margin and overlap of MBRs

in the case of insertions and splits. It also introduces the concept of Forced

17

Reinsert, which in some cases avoids splits by reinserting the node overflow in
the structure and therefore reorganizing the structure dynamically. This strat-
egy reduces the impact of objects insertion order on structure organization.
Another advantage of Forced Reinserts is that it provides a better storage
utilization than the original R-tree. Due to possible overlap of rectangles, the
search time depends not only on the tree height, but also on the amount of
overlap. Although the R-tree was originally designed for rectangular objects,
the authors show in [4] that this structure is also effective as a point access
method.

The R*-tree is suitable for a small number of dimensions, but its perfor-
mance decreases rapidly with increasing dimensionality [7]. Since for each
dimension two values are used to represent the spatial extension of an MBR,
only a few MBR can be kept on a disk page and therefore the fanout (or
branching factor, describing the maximum number of entries that a node can
have) is too small for an efficient search. Another disadvantage is that MBRs’
overlap increases rapidly with the dimensionality, highly reducing the pruning

capabilities.
TV-tree

The first method proposed specifically for indexing high-dimensional data is
the T'V-tree [30]. This structure tries to improve the performance of R*-tree for
high-dimensional feature vectors by employing a reduction in dimensionality
with the use of a shift of active dimensions (Figure 2.8). An active dimension
is a dimension that can be used for discriminating the objects at a certain level
in the tree. All dimensions are initially ordered (based on their importance
- defined by the user/specialist) and shifted (activated) towards the root of
the tree. This shift occurs when feature vectors in a subtree have the same
coordinate on the most important active dimensions. Then, those dimensions
are made inactive and less important dimensions are activated for indexing.
The number of dimensions used for indexing is adapted to the number of
objects to be indexed and to the level of the tree. This way the nodes closer

to the root use only a few dimensions for indexing. Therefore, they can store

18

D1 D2 D3 D4

.
A .
7 H
D1 ’
D3
B 1

Figure 2.8: Example of a TV-tree with 1 active dimension

more child nodes and enjoy a high fanout even if the objects’ feature vectors
have many dimensions. As the indexing descends the tree, more and more
dimensions are used for discriminating the indexed objects. The performance
comparisons presented in the literature show that the TV-tree is much more
efficient than the R*-tree.

The main drawback of this approach is that it is based on two assumptions
[67]. The first assumption is that an order based on importance can be found
for the dimensions of the feature vectors. The second assumption is that the
feature vectors can be exactly matched based on some dimensions, especially
on the first few important dimensions. If the first assumption may hold by
finding an appropriate transformation of the feature vectors, the second one
does not hold for real-valued feature vectors since their coordinates generally
have great diversity. This assumption is valid only if the feature vectors take
values in a (small) discrete set. For visual information retrieval, real-valued
feature vectors are the most common case and therefore the efficiency boost
of the TV-tree is lost. In this case the TV-tree is reduced to an index on only
the first few dimensions. Thus, the effectiveness of this indexing structure is

dependent on the application.

19

Obiject Space SS8~tree

Figure 2.9: The SS-tree structure

SS-tree

The SS-tree [57] is another indexing structure designed for high dimensional
point data. Its main goal is an efficient similarity indexing in order to facilitate
efficient similarity queries on a dataset of high dimensional feature vectors.
The SS-tree is an improvement of the R*-tree, still sharing many common
characteristics with it. In order to enhance the performance of neighborhood
queries, the R*-tree is modified in two directions.

Firstly, the minimum bounding rectangles (MBR) used in the R*-tree for
the region shape are transformed into minimum bounding spheres (MBS) (Fig-
ure 2.9). One advantage of this approach is that a data space region requires
less storage space to be represented. For example, each dimension requires two
values, minimum and maximum extension on each dimension, for rectangles
boundary representation. If the feature vectors have D dimensions, D x 2 val-
ues are required to describe a MBR. A sphere can be described by its center
and its radius. Therefore, just D +1 values are required to represent it, saving
almost half of the storage space. By using less storage space in the non-leaf
nodes, node fanout is increased and the tree height is decreased, improving
the search efficiency. In the SS-tree, the center of the sphere is the centroid of
the underlying points. The feature vectors are divided into neighborhoods by
using centroids in the tree construction algorithm, the insertion and split algo-

rithms. For the case of insertions, the most suitable subtree to accommodate a

20

new entry is simply chosen based on the node whose centroid is closest to the
new entry. When a node or leaf becomes full, the coordinate variance on each
dimension from the centroids of its children is computed, and the dimension
with the highest variance will be split.

Second, the concept of forced reinsertions introduced in the R*-tree is
modified in order to enhance the dynamic organization of the tree structure.
In the case of the R*-tree, when a node or leaf is full, the forced reinsert policy
is used instead of the split strategy only if reinsertion has not been made at the
same tree level. In the SS-tree, as improved over the R*-tree, the reinsertion
policy is used instead of split policy only if reinsertions have not been made at
the same node. This strategy allows more reinsertions and leads to a better
utilization of the disk page storage space and more independence from the
order of insertions.

In spite of these improvements, the SS-tree still suffers from a rapid degra-
dation of its performance in high dimensionality. One of the reasons is that
the volume occupied by an MBS is generally much larger than the volume of
the corresponding MBR for the same undelying objects. The larger volume in-
duces more overlap at the non-leaf level and consequently less prunning during

search.

X-tree

In order to overcome the overlap problem of the bounding rectangles in the
R*-tree which increases with the growing dimensions, Berchtold et al. propose
in [7] some improvements. The new structure is called X-tree (eXtended node
tree) and it is optimized for high-dimensional vector spaces. In order to keep
the directory as hierarchical as possible and avoid node splits that would result
in high overlap, the concept of supernode is introduced along with a new split
algorithm that tries to minimize and eliminate the MBRs overlap.

The X-tree starts from the observation that, for a large number of dimen-
sions, the overlap introduced by the R*-tree like structures is very high and
the whole structure has to be searched. Therefore, a linear organization of

the directory is more efficient (takes less storage space and the pages can be

21

Normal Node

[
o

D.e
R PR—— }
Tl leE
AR
A PR
LR | i
: E @l @ --reroieniines ® :
B oft % TG :
| P] @ ;
[H
e :' R .. o B
R T
3 ie

Object Space X-tree

Figure 2.10: The X-tree structure

fetched faster from the disk). Depending on the dimensionality of the feature
space, the X-tree uses a hybrid approach trying to automatically organize the
directory as hierarchically as possible without introducing overlap. If dur-
ing insertions there is no other possibility to avoid overlap, then supernodes
(Figure 2.10) are created. Supernodes are large tree nodes of variable size
(multiples of a disk page size) used to avoid splits in the directory nodes that
would result in an inefficient tree structure. In the case of the R*-tree, these
splits would create a hierarchical structure with high overlap, and the split
generated nodes would have a high probability of being all searched when one
of them is searched. However, this would be inefficient compared with a linear
scan of the supernode.

The number and size of supernodes increases with growing dimensions.
Due to this increase, the height of the X-tree corresponding to the minimum
number of page access necessary for point queries is decreasing with increasing
dimensionality of the feature space. The authors mention two possible special
cases of X-tree. The first is when none of the nodes is a supernode. In this
case X-tree is similar to R-tree. This may occur only for low dimensionality.
The second case is that of the directory consisting of only one large supernode
(root). This case occurs for highly dimensional data. The X-tree supports not
only point data, but extended spatial data as well. Experimental performance
shows that, on high-dimensional data, the X-tree outperforms the R*-tree and

TV-tree by up to two orders of magnitude.

22

Object Space SR~tree

Figure 2.11: The SR-tree structure

SR-tree

The SR-tree [29] is an improvement over the SS-tree with the goal of enhanc-
ing the efficiency of nearest neighbor search in point queries. The authors
start from the observation that, although a minimum bounding sphere (MBS
were proposed in the SS-tree as bounding hyperobject) has a shorter diameter
than the diagonal of the corresponding minimum bounding rectangle for the
same underlying objects, its volume it is generally much larger. The higher
the dimensionality of the feature space, the larger the ratio of MBS volume
over MBR volume. A larger volume in MBSs or MBRs induces more overlap
at, the non-leaf level and therefore less pruning during search. A combina-
tion of both these bounding hyperobjects would give the advantage of both
smaller volume and shorter diameter for bounding hyperobjects. The SR-
tree (Spheres/Rectangles-tree) specifies a region of the vector space by the
intersection of a bounding sphere and a bounding rectangle (Figure 2.11). As
compared with the SS-tree, incorporating bounding rectangles allows neigh-
borhoods to be partitioned into smaller regions, improving the disjointness
among regions.

The general structure of the SR-tree is based on the R-tree, sharing many
attributes with R*-tree and SS-tree, and it is represented by a nested hierarchy
of bounding regions over the underlying objects. What makes the SR-tree

structure distinctive is that a region is specified both by its minimum bounding

23

(a) Leaf level (b) Node level

Figure 2.12: Bounding regions as specified by the intersection of a bounding
sphere and a bounding rectangle

sphere (MBS) and minimum bounding rectangle (MBR) of the underlying
points (Figure 2.12). While a leaf node has a similar structure with the SS-
tree, a non-leaf node describes each child with four components: a pointer
to the child node, the number of points in the child node and the MBS and
MBR of the child node. Since a child node entry of the SR-tree has a three
times larger size than in the SS-tree and one-and-a-half than in the R-tree, the
fanout of the SR-tree is one-third of the SS-tree and two-thirds of the R-tree.
As mentioned before, a small fanout requires more nodes to be read on queries
and may cause a reduction in query performance. Experiments have shown
that although there is an increase of non-leaf nodes reads as expected, the
overall total number of disk reads of the SR-tree is smaller than that of the
SS-tree and R*-tree.

Another difference from the SS-tree and R-tree is for nearest neighbor
queries. Because a bounding region in the SR-tree is represented by the inter-
section of a bounding rectangle and a bounding sphere, the minimum distance
from the search point to a region is defined by the longer distance between
the minimum distance to its bounding rectangle and the minimum distance
to its bounding sphere. The performance evaluations have shown that near-
est neighbor queries are specially effective for the SR-tree compared to other
indexing structures for high-dimensional and non-uniform data sets which is

the general case for real data in image retrieval.

24

Index Building by Bulkload Technique

Typically, small high dimensional databases do not require an index structure
since sequential scan search performs better than an index based search in this
case. Once the database reaches a certain size, the use of an index structure is,
however, worthwhile. In some fields, like Image Retrieval, it is usual to start
with a large collection of data to which an index structure has to be built
in order to improve the search efficiency. In either cases, it is undesirable to
dynamically build an index since it has a high building time due to successive
insertions and it will not take advantage of a priori knowledge of data.

The solution is to bulk-load the index, that is to build the index struc-
ture statically. Once built, as further data updates may be required in the
future, the index structure has to allow dynamic operations to be performed.
Bulk-load is not an index structure, but an operation that is applied to build
a desired index structure. One can also take advantage of knowing a large

amount of data items at building time.

10,000 objects
—_| 3 E F
§l1000f 2000 2,000 1
g
E| K G H
= 11,000] 2000 2,000
dimension 0
[unsorted data i
split
l ’ $>unsoncd
A B
)splig. 8
partition
l A r C } D |
®
®
®
7 [x | & | *F [& | & |

Figure 2.13: A 2-dimensional bulk-load partitioning (adapted from [6])

Several bulkload techniques are proposed in the literature. We will focus
on those proposed in [6, 13]; since it is the index building technique that we
will also use in our experimental part. The proposed bulk-loading technique
is applicable to R-tree-like structures. The basic idea of the technique is to

split the dataset recursively in a binary split tree top-down fashion using hy-

25

perplanes as separators between partitions. A hyperplane is defined by a split
dimension and a split value on the split dimension. The split value is cho-
sen such that a certain ratio between the number of objects on the two sides
of the split plane is achieved. Although the generated space partitioning is
unbalanced, the resulting index structure is balanced, as the actual index is
build in a bottom-up manner from the leaf nodes generated by the partitioning
algorithm. An arbitrary storage utilization can be chosen. Beside the advan-
tage of optimizing the shape of the bounding boxes, the proposed bulk-load
algorithm creates an overlap-free directory. For a better understanding, Fig-
ure 2.13 shows a 2-dimensional bulkload partitioning in three ways: as spatial
distribution of the partitions, as the top-down split tree and the evolution in
time of the partitioning process (all numerical values represent numbers of

objects).

2.2.2 Space Partitioning Indexes

Another approach for indexing is based on grouping data objects based on
their spatial positioning. The data space is divided along predefined or prede-
termined lines. Well known representatives of space partitioning indexes are
quad-trees [20], k-d-b-trees [45] and grid-files [39]. Recent structures are using
such vector space partitions to approximate the spatial locations of the data
objects in order to accelerate the retrieval by creating a compact approximate
feature search space. Such structures are the VA-file and the A-tree which will

be presented in the following.

VA-file

With the increase in dimensionality, the data partitioning methods tend to
lose efficiency, requiring to search most of their nodes. In this case, a sim-
ple sequential scan can outperform most indexing methods since a sequential
reading of all data disk pages is faster than a random read of more than 20%
of data pages [56] (for many structures this happens already when the data
space dimensionality is larger than 10).

The VA-file [11] (Vector Approximation file) is a simple flat array of vector

26

data space

vector data
*le Al 02 08
11
o . B 03 03
A @
b C 0.4 04
@ D 0.8 0.6
10 ° ®
°p 5 L
® ® approximation
Olle L % % . ° A 00 1
B o1 00
® .B o [
00 e C 10 01
@
® D 11 10
00 01 10 11

Figure 2.14: A 2-dimensional VA-file data objects approximation example

approximations. The data space is divided into cells and each of these cells
is represented by a unique bit-string of length b (user defined). Each data
object is approximated by the bit-string of the cell in which it falls (Figure
2.14). This object approximation is equivalent to a quantization scheme. For
nearest neighbor queries, all these approximations are scanned and for each
approximation a lower and upper bound is computed for the distance between
the object and query (Figure 2.15). These bounds are then used to eliminate
some of the vectors from the search, generating a candidate set sorted by
their lower distance. These candidates are then loaded from disk and the
accurate distances between query and vectors are computed. If too many
candidate vectors remain, the performance gain due to compact representation
of approximation is lost. Since we already know the lower bound for each
candidate, not all of them have to be visited. Once the accurate k™ neighbor
distance is smaller than the lower bound of approximated distance, the search
stops.

Based on the number of points and data distribution the user has to decide
a priori how many bits (b;) to allocate for a certain dimension (d;). Then
dimension d; is split into 2% regions (2% +1 partition points are required). The

partition points have to be chosen in such a way that the obtained regions are

27

®

i q - query point
1 1 1.

; —lower bound

uy u; - upper bound

a; — approximation cell

Figure 2.15: Lower and upper bounds for query processing

equally full. Typically, b; is a small integer in the range 2-8. The length b of
the approximation bit-string is the sum of the approximation lengths b; over
all dimensions. Each approximation cell is represented by an unique bit-string
of length b. Each data point is approximated by the bit-string of the cell into
which it falls. In Figure 2.14 this transformation is illustrated for four data
points (b; = 2 for each dimension).

The partition points are dividing the vector space in 2° partitions. The
total number of partitions is very large. For example, for a 64 dimensional
feature space and 1 bit per dimension (that is each dimension is split in two
partitions), we have 2% partitions. If the total number of objects is 10% — less
than 2%° -, then most partitions will be empty in our space. As the number of
partitions is very large compared with the number of points, the probability
that two or more objects will share the same cell, respectively approximation,
is very low. Consequently, rough approximations can be used without the risk
of collisions. The VA-file benefits from the spareness of a high-dimensional
data space as opposed to data partitioning methods.

The main disadvantage of this approach is the requirement of a prior:
decisions regarding the number of bits per dimension (or total number of
bits per approximation) and the partitioning points. If data distribution is
modified in time, new partition points are required in order to keep equally
full partitions. In order to precisely determine the partitioning points, the

entire data set has to be analyzed, which is too costly for the case of insertions,

28

deletions and updates. A solution is to determine these points stochastically
by sampling. Another one is to keep these regions fixed during insertions,
deletions and updates but this solution is safe only if we know that data
distribution does not fluctuate. The authors show that for dimensionality
larger than 10, the VA-file can outperform most other methods. Also, the

performance of this method improves with dimensionality increase.

A-tree

An approach that combines both data and space partitioning techniques is the
A-tree [48]. The basic idea of this structure is to combine both the pruning
advantages of tree-like indexes and the compact representation of position ap-
proximations as in the VA-file. The main contribution in this respect is the
introduction of the Virtual Bounding Rectangle (VBR), which is an approx-
imate representation of an MBR or data object (see Figure 2.16). A VBR
is used to approximate children MBRs relative to their parent MBR (which
is the MBR of all children MBRs). A child’s VBR is represented by its two
endpoints relative to the parent’s MBR. The basic idea is to quantize the po-
sition of a child MBR relative to its parent MBR, so that an approximate
position of child MBR is known while saving node space. Figure 2.16 shows
a 2-dimensional example of parent MBR (pMBR), child MBR (cMBR) and
child VBR (cVBR). For the child VBR, 3 bits (2° = 8 regions) per dimen-
sion are used to quantize the child MBR relative to its parent MBR. While
16 bytes (2 points x 2 dimensions/point x 4 bytes/float = 16 bytes) would
be required to represent the child ’s MBR, less than 2 bytes (2 points x 2
dimensions x 3 bits/point = 12 bits < 2 bytes) are enough to represent the
child’s VBR in 2-dimensional case. Therefore, intermediate nodes have a large
fanout, improving search efficiency.

Compared to the VA-file, another advantage is that the quantization func-
tion dynamically adapts to the data distribution. In the A-tree representation,
an index node contains the exact representation of the MBR of the node and
the relative approximation of the MBRs of the node’s children. This way, by

reading just one A-tree node, we get partial information about the bounding

29

(03,02 pMBR ©.7,0.2)

]] | [i] [
(001 010) cVBR (101 010)
- gy g il]
1 (0.38,0.31) cMBR 0.59,031) :
i
|
1
|
— 1 |]
: 1
I
- | 1 -
1 ©3804D (0.59.0.41) :

B orion T T T T Taetoy]
e it
]] l 1 | | |
0.3,052) 0.7.0.52)

Figure 2.16: A 2-dimensional example of Virtual Bounding Rectangle

regions of two levels. A drawback of approximating MBRs is that approxi-
mation error may lead to reduced pruning in searching if a query point falls
outside the MBR but inside the approximation of the MBR.

The authors have used the SR-tree as a start point in the A-tree design.
Since their experiments have shown that the effect of the Minimum Bounding
Spheres is reduced for high dimensionality, MBSs are no longer stored in the
A-tree nodes. In its structure, the A-tree is using four types of nodes. The data
nodes contain objects feature vectors and pointers to the actual objects. Each
leaf node corresponds to a data node and contains the MBR of the data node,
a VBR approximating each feature vector and a pointer to the data node. An
intermediate node contains the MBR of its children MBRs and for each child,
its VBR, number of objects in child, child’s objects centroid and a pointer to
child. The root node is like an intermediate node, with the exception that it
no longer contains the MBR bounding all children since this MBR would be
close to the whole data space which is known in advance.

In order to apply the nearest neighbor algorithm on the A-tree, two nearest

neighbor lists are used. One is the usual list found also in the other algorithms,

30

containing candidate nearest neighbor points based on the real distance. The
other list contains the candidate nearest neighbors based on the distance from
the query point to the VBRs of data objects. With the help of the second
list, data objects are filtered and fewer data nodes are accessed. The reported
results show that the A-tree is up to 75% more efficient in page accesses than

the SR-tree and VA-file for 64 dimensions.

31

Chapter 3

Indexing with Constraints

3.1 Motivation

Nowadays, large collections of information from many fields need to be in-
dexed for faster retrieval, but sometimes, this information is too complex to
be indexed directly. Often, features of the data are extracted and these fea-
tures, usually represented as vectors, are used further on for indexing and
retrieval. The generated feature space could have only a few dimensions or
its dimensionality could be very large. Much research have been focused on
indexing techniques for feature vectors (see Chapter 2), but they are very gen-
eral with respect to indexed data. This generality is good since it allows an
approach to be applied in many fields. On the other hand, a solution which is
very particular to a certain problem can provide a great efficiency boost over
other methods, while losing its relative advantage by being applicable only to
a reduced set of problems.

This chapter will present our research with respect to image features in-
dexing by taking into account a priori knowledge about data constraints in the
feature space, in particular its distribution. We will show how simple yet pow-
erful observations about the data distribution can help improve the efficiency
of the retrieval process. Although our research is focused on the use of Global
Color Histograms for Image Information Retrieval, the proposed solutions are
applicable whenever the data can be represented as normalized histograms or
the feature vectors have similar constraints. In the context of multimedia data,

other applications include the representation of shapes of objects using differ-

32

ent types of histograms. For instance, in [2] different methods for decomposing
the enclosing sphere of an objects into a number of cells (e.g. concentric shells),
corresponding to histogram bins, are proposed. The value of a bin in these
histograms is the percentage of the object that falls into the corresponding
cell. Experiments have shown this approach to work well, particularly when
applied to 3-dimensional objects in the context of molecular biology. Another
means to represent shapes using distance histograms was proposed in [19],
and has been shown to provide effectiveness comparable to that obtained with

more elaborate approaches such as using Fourier coeflicients.

3.2 Feature Representation

To start, we will introduce the data preprocessing phase required for the in-
dexing process. The first step is the feature extraction. As mentioned earlier,
our data will consist of images and we decided to use Global Color Histograms
as image features of choice. GCHs provide the type of constraint we want to
study and take advantage of, while being easy to understand and extract. In
addition, color histograms are extensively used in the image indexing research
(see Chapters 1 and 2).

As presented in Chapter 2, Global Color Histogram is the color distribu-
tion obtained by discretizing the color space used by an image and counting
the number of pixels that fall into each bin. A color image using the RGB
color model has a very large number of colors and therefore we perform a
color reduction (discretization) to a lower dimensional color space before ex-
tracting the GCH. We chose 64 to be the number of colors to use in most
experiments since this discretization captures reasonably the color distribu-
tion within our image without extending too much the dimensionality of the
feature vectors. 64 also represents the maximum dimensionality used in many
indexing techniques. It is also one of the most frequently used color spaces for
color histograms in image information retrieval [15, 18, 36, 37, 40, 48]. In ad-
dition, it has been argued that a larger number of colors introduce noise in the

sense that the notion of dominant color may be lost, while a smaller number

33

might not capture accurately the color variation in an image. It is important
to note that our work does not depend on any particular dimensionality —
in fact we aim at higher values. In order to reduce the RGB color space to
64 colors, we approximate each color by the representative of the RGB space
partition where it falls into. That is, for reduction to 64 colors, the R, G and
B color axis are divided into four partitions each. This will generate 4% = 64
partitions in the RGB cube. Then, each color is approximated by the repre-
sentative color of the partition where it falls into. The Global Color Histogram
is computed by counting how many pixels belong to each color in the lower
(64) dimensional space and normalizing the obtained values. Therefore, each
GCHs bin represents the percentage of pixels of the corresponding color found

in the target image.

3.3 Experimental Sets

The experimental evaluation consists of tests performed on real and synthetic
data. Synthetic data consists of 300,000 (300k) data points with either 16, 32
or 64 dimensions. As real data sets, we use two image collections. The first
data collection contains around 60,000 (60k) images from the Corel Gallery
[16]. The second real data collection consists of around 110,000 (110k) TV
snapshot images. The GCH is extracted for each image and used as feature
vector. The generated data space has 16, 32 or 64 dimensions, depending on
the level of quantization applied on the original images. Since the read disk
operations (in the following noted as page accesses or 10s) are several times
more costly than CPU and main memory operations such as computing the
query-to-object and query-to-MBR distances, we will use the number of disk

operations (page accesses) as a measure of performance in our experiments.

34

3.4 Feature Constraints

Directly from the color space reduction and GCH normalization, three impor-

tant observations follow. Let us denote the D-dimensional GCH as:
H(I) = (e, ¢2, ...y Cp), (3.1)

where I represents an image in a D-dimensional color space and c; represents
the normalized number of pixels from image I corresponding to color 1.

The first important observation is:
(Vi) 0<¢ <1, i=1:D (3.2)

In other words, the data space is enclosed in a D-dimensional hypercube with
each dimension taking values in the range 0 to 1. This is a trivial observation
and all previous indexes using GCHs as feature vectors take advantage of it in
a way or another.

The second observation is:

D
Zci =1 (33)
1=1

The vector coordinates of the feature space are not independent, i.e., their
sum is always 1. This gives us a different perspective of the data space. From
the perspective of our space as a hypercube, now we know that we have a
skewed data distribution in the hypercube. Actually, our data space is just a
hyperplane intersecting the hypercube. Figure 3.1 shows these constraints for
a 3-dimensional histogram feature space. To our knowledge, this observation
has never been taken advantage of.

A third observation is that the maximum Euclidian distance between two
points in this space is bounded and does not depend on the dimensionality of

the space. Let p and ¢ be two points in our constrained D-dimensional space,

p= (p1>p27 "'7pD) and q = (QhQZ’ QD) Thena

i=1 i=1

dL,p, ——»\J i "_% __\J sz iiQ <\/-_ (34)

35

/]

.! — data cube
/L

- data plane

Figure 3.1: 3-dimensional GCHs feature space representation

While in a non-constrained D-dimensional unit-cube space the maximum
distance between two points is v/ D, the histogram’s constraint imposes a
v/ 2 maximum distance. Therefore, the distribution of neighbor distances in
our constrained space is different than in a general space. This observation
affects the performance of the nearest neighbor search algorithm, as we will
see in the forthcoming sections. As the maximum possible distance between
two points is decreased, more points are likely to be found in the same distance
range from a query. As a result, the MBRs of many space regions have to be
searched to determine the accurate neighbors during index search.

Since it will be used in the following sections, let us define here also the Eu-
clidian distance between a point and a Minimum Bounding Rectangle (MBR)
in a D-dimensional space. In general, when using a tree-based access structure,
for processing a nearest neighbor query, the tree is traversed in a top-down
manner. Sub-trees can be pruned if the objects contained in this sub-tree
cannot be closer to the query than a current nearest neighbor candidate found
earlier in the search. Hence, a tight lower bound for the distance between a
query and the MBRs (enclosing the points and MBRs in lower levels of the tree)

is of fundamental importance for the query efficiency. Currently, such a lower

36

bound is obtained by computing the smallest possible distance between the
query point and the boundary of the MBR. Formally, let ¢ = (q1, ..., ¢;, ---, ¢p)
be a (query) point and B = (Iy — uy,....,Li = u;,...,Ip = up) an MBR of a
data space region, where /; (u;) represents the lower (upper) bound for dimen-
sion ¢ and [; — u; is defined as MBR’s dimensional extension (referred simply

as extension in the following). Then,

D
dmsr(q, B) = \j S maz(li — :,0,q — u)? (3.5)

i=1
This distance is 0 if the query point ¢ is inside the MBR; otherwise it is the
minimum distance between ¢ and any point on the face of the MBR,, which is
closest to g. Clearly, this lower bound measures the minimum distance between
the query point and the sides of the MBR, assuming that the bounded points
can be anywhere inside the MBR.

3.5 Improved Distance

3.5.1 Theoretical Analysis

Based on our second observation (Equation 3.3), we will show that the lower
bound distance used for pruning subtrees in indexing methods that use Min-
imum Bounding Rectangles as partitioning objects can be computed more
realistically. We can compute a tighter lower bound distance for pruning than
dypr defined in Equation 3.5. Therefore, we can provide improved pruning
efficiency for several indexing methods (such as R*-tree, X-tree, SR-tree and
others) when using normalized histograms as indexing objects. We will denote
the new distance as d$g, in the following.

Similar to the original dypg, our new minimum distance d$z5 is 0 if the
query is inside the MBR. Since a query point ¢ which does not satisfy the
constraint of the histogram is not meaningful, each query point must be located
on the data hyperplane. A tighter lower bound for the distance between a
query point ¢ and an MBR than dspp is the distance between ¢ and the closest
possible point on the intersection of the data hyperplane with the boundary
of the MBR that is closest to g. This distance can be easily computed by

37

first calculating the point on the face of the MBR that satisfies the original
distance. If this point p does not satisfy the constraint in Equation 3.3, p is
not on the data hyperplane, and a better minimum distance estimation can
be found. The point can be computed by a simple procedure that (iteratively
if necessary) adjusts the coordinates of p equally toward the data hyperplane,
subject to the constraint that a coordinate cannot be adjusted beyond the

limits of the MBR.

~MBR

— data space in MBR

Figure 3.2: Original and improved query-to-MBR. distances

To better understand our improved lower bound distance we will use again
the 3-dimensional color space example, since it is easier to visualize. In Figure
3.2, g represents the query point (contained in the constrained data space),
d R represents the original lower bound distance to the MBR of a data space
region as computed in MBR-based indexing methods, while d$,,5 represents
the new lower bound distance to a possible data point within the MBR. While
usual indexing methods assume that data points could exist anywhere inside
an MBR, by acknowledging the constraints of our data space we compute
a better approximation of the lower bound distance to a possible data point
inside the MBR. In other words, djpr represents the shortest distance between

a query and an MBR, while d$ 55, is the shortest distance between a query and
y MBR y

38

a possible constrained data space point included in the MBR. The relation

(Vq) (vVB) dusrla, B) < dijpla, B) (3.6)

where B represents an MBR and ¢ a query point, always holds.

Proof: Let assume that equation 3.6 is false. Then:

(3q) d5sr(e, B) < dusr(q, B) (3.7)

Also, by definition of d$;5x,

(I) p€ B di,(g,p) = d]?/JBR(‘LB) (3.8)

From here, it follows that

(3p) p€ B dr,(¢,p) < dusr(q. B) (3.9)

But, by definition, dypgg is the smallest distance from ¢ to any point on the
MBR B. Therefore, the above equation is false and our assumption is also

false. So, equation 3.6 must be true. e

data space .~
£
A T
{y
i
HY TR
HY
4
) i"~
i G AN
BR .
. - /l?:"/ < B2
A X e gl
A Qe -~ Omer
i R X
.' T -/ “ 1
N v} “MBR
t

Figure 3.3: Improved MBRs search order by using the improved distance

An important effect of the improved query-to-MBR distance is a changed

order in which the MBRs are considered in a nearest neighbor search. Figure

39

3.3 shows a 3-dimensional vector space example where the search order is
modified. By and B; represent two bounding rectangles of regions from the
data space, q is the query object, d},zp is the original query-to-MBR distance
for By (equal with the improved d$}, for MBR)), d%; 55 is the original query-
to-MBR distance for By and d$?; represents the improved query-to-MBR
distance for By. The three distances satisfy the following equation (consistent
with Equation 3.6):

d}MBR = d%wBR < d](\j/_IQBR (3.10)

Let us assume that By is searched first (note that this assumption always
holds when using the improved distance in our example). Since d},zp is the
minimum query-to-MBR distance, the k™ neighbor distance after searching B,
cannot be smaller then d};5,. When using the original distance function, d%55
is equal with d}, 5, and, therefore, B, has to be searched as well. By using the
improved distance, By does not have to be searched if the k™ neighbor (maybe
found while searching B;) distance is smaller then d3,55. Thus, by using the
improved query-to-MBR, distance derived based on the constrains of the data,
we can improve pruning during the index search.

As this example suggests, an even more important effect of the improved
distance is that some MBRs (sub-trees) may not be considered at all during
search, where they had to be considered with the original distance. Although
we do not expect this effect to be extremely large, there is a potential for con-
sistently saving disk page accesses. In particular, with increasing dimension,
the difference between the usual distance and our new distance (d$;z5 — dysr)
will become smaller on average. An intuition for this is the way the new dis-
tance is computed — using the closest possible point p = (py, ..., P, ..., Pp) tO
a query point ¢ = (q1,..., ¢, -.-,¢p), where p is located on the surface of the
MBR and has the original distance to ¢. If p is not on the data hyperplane,
then 2 ¢; — 2, p; = ¢ > 0. A new point p° on the intersection of the
MBR, and the data hyperplane is then computed by adjusting the coordinates
of p equally toward the data hyperplane without leaving the MBR boundary.

As dimensionality D increases and ¢ is tentatively equally divided among all

40

dimensions, the distance between p and p°® decreases. Consequently the the

difference between d%}BR and dupp decreases.

3.5.2 Experimental Evaluation

To test the effect of our improved distance on the number of page accesses, we
performed tests with an X-tree like index structure built using the bulkload
technique explained in Section 2.2.1. Since the improved distance can be used
in combination with any indexing structure using MBRs as bounding regions,
we used a straightforward split policy for index building (the data partition
is split into two equal subsets at each step during index bulkload). For ail
experiments the average result over 1000 100-nearest neighbor search queries
is computed. The calculated measure is the number of page accesses required
to find the nearest neighbors when using the original and when using improved
query-to-MBR distances during index search. Also, we use 64 dimensional
feature vectors unless otherwise noted. The figures display the percentage of
page accesses saved when using the improved distance. We also varied the page
size - that influence the MBRs sizes and number of pages - and the number of
objects (points) to see how these affect the percentage of saved page accesses.
We used 4096 (4kb), 8192 (8kb) and 16384 (16kb) bytes as possible disk page

sizes.

saved page accesses(%)
W
T
L

20 40 80 80 100 200 300
Dataset size (x1000)

Figure 3.4: Distance improvements with dataset size - uniform dataset

41

55 , T |
5 Kb —m—
| 8kb ---e--
1 -----
L 6kb ---®
S
&
2 4r —
8
&
© 35 | - - |
. -
g . et
el sth .. —
o
@ 25 - o o
PR
! 4
&
1.5 ' | |
10 " - . 50
Dataset size (x1000)

Figure 3.5: Distance improvements with dataset size - Corel dataset

55 . , .
'F\V/E»/'M’“"—
51 4kb —-m—
[8k ~--e---
& 16k ---@---
8 45} i
@
[
[¥3
&
" 4 - N
g) -
s oY PR
IR S — o |
>
o
u
3r i
--------- B SRIETTEREEED SRIPERPRPETTRESEREEE 4
e o
A
25 . L L
30 50 70 90 10
Dataset size (x1000)

Figure 3.6: Distance improvements with dataset size - TV dataset

In the first set of tests we performed on all three datasets, we obtained
around 5% improvement in the number of page accesses required (Figures 3.4,
3.5 and 3.6). As the total number of pages increases (with decrease in page size
for the same dataset size), the distance improvements become more significant
for all datasets.

To test the effect of the number of nearest neighbors on the distance im-
provement, we used the Corel data set with a fixed number of objects (60k),
while varying the number of nearest neighbors searched for. The percentage

of saved page accesses slightly decreases with the number of nearest neighbor

42

6
d ' r ‘
55 b\’\‘\‘\i'
z sl 4kb ~—s— ~
3 8kb ---o---
g 16kd ---o---
8 a5t |
(5]
«
>
g 4 ‘
= pmm €
o T e 4
% 35+ © |
w0
3k |
N LR o
--------- L TR §
25 : l :
20 60 100 140 180

No. of Nearest Neighbors

Figure 3.7: Distance improvements with no. of neighbors - Corel dataset

9.5 T T T

9
8.5
8

saved page accesses(%)
-~

65 _
——————— 4
N o -
z"e ________
| /,f’/ I |
T S
°l __v———f‘—ffg_’__ _______
4587 . | |
10 20 - "]

Data size (x1000)

Figure 3.8: Distance improvements with dimensionality - Corel dataset

objects searched for (Figure 3.7). As observed in the previous set of tests,
smaller page sizes leads to higher savings.

Figure 3.8 shows the effect of feature vector’s dimensionality on the distance
improvements. As the dimensionality increases, the gain obtained using the
improved distance decreases. This result is consistent with our conclusion from
the previous section.

Overall, the improvement in the number of saved page accesses by using
the proposed distance it is not very high, but it is increasing with the number

of objects in the data set and number of data pages that have to be searched.

43

Unfortunately, as data dimensionality increases, the advantage of the improved

distance over the original one decreases.

3.6 Index Optimization

3.6.1 Theoretical Analysis

Before introducing our other observations and improvements regarding data
indexing, let us present the basic indexing method that we will as a starting
point. As discussed in Section 2.2.1, it is inefficient to build an index by
dynamic insertions of a large number of data objects when all data is available
a priori. As this is a common case for Image Retrieval (creating an index for
an already existing collection of images), we assume that we have the data
collection beforehand. We start from this assumption and create our index
by using bulkload as described in [6]. Bulkload is not an indexing structure
by itself, but a technique for efficiently building an index when an initial
set of data exists. Once an index is built by bulkload, all algorithms used
by dynamic index structures such as insertions, deletions, range or nearest
neighbor searches and others can be directly applied on the resulting structure.
The advantage of the bulkload technique over dynamical index building is that
one can easily take advantage of information about the distribution of the data
at building time. As shown in [6], the bulkload technique is efficient for both
building and searching the index. Basically, the idea is to split the data space
recursively in a top-down fashion, using hyperplanes as separators between
partitions. A hyperplane is defined by a split dimension (the normal vector
on the hyperplane) and a split value along that dimension (the actual position
of the hyperplane). The basic indexing structure we choose is the X-tree [7].
Combined with bulkload construction, the X-tree index has the advantage of
overlap-free partitions. The bulkload technique allows also to target a desired
storage utilization. Due to the large dimensionality of our feature vectors, the
X-tree is reduced to a list of leaf nodes and a large supernode (for a description
of the high dimensionality effects on the X-tree, see Section 2.2.1 and [7]). Since

we are only interested in query performance and not in dynamic insertions, we

44

use a near 100% node storage utilization.

Several aspects of an index structure such as fanout, tree height, split
policy, node size, node overlap and node characteristics are important for
query performance. Many of these aspects are dependent on the index type.
One of the most important factors influencing the query performance is the
split policy (determined by the split dimensions and the split values), which is
independent of the target tree structure. We will show that the range of the
feature values, feature vector’s constraints and the object value’s distribution
allow the design of a new split policy for our constrained data space which
improves significantly the query performance.

An important observation regarding high-dimensional indexing [12] is that
for uniformly distributed features in a high dimensional unit hypercube we
cannot have a split in all dimensions of the data space. For example, in an
uniform 32-dimensional data space, if there is only one split on each dimen-
sion, we would require 2°2 = 4,294, 967, 296 pages to hold each partition in a
separate page. Therefore, the D-dimensional data is usually split in D' < D
dimensions. The MBRs of the resulting partitions are restricted in D’ dimen-
sions while in D — D' dimensions the MBRs are covering the whole range of
possible values in those dimensions. The number of split dimensions D’ can
be determined from the number N of objects in the dataset and the average

number of data points per index page Cz:

D' = log, (ONﬁ) (3.11)

For instance, for N = 1,000, 000 feature vectors and Cp = 10 feature vectors

per page, we need to perform at least 17 splits to be able to fill index pages,
and no more than 19 splits to have at least one object per page/partition,
since 22° > 108.

Another observation is about the extension of the nearest neighbor distance
in an uniformly distributed high-dimensional unit hypercube data space. If we

want to find the k-nearest neighbors in an NV point dataset in D-dimensional

space, the side length [of the hypercube containing the neighbors is:

o k
| = \/; (3.12)

Proof: We assume an uniform D-dimensional unit hypercube space. Let
k be the number of neighbors, N be the total number of points in the dataset,
Vi = 1P be the volume occupied by the k neighbor hypercube of side length I
of and Vp = 1P be the volume of the unit hypercube space. Then:

k k | k
V}c:—]—v——XVD => lD:]—\],“XlD = l:D“N“‘ (313)

For a 32-dimensional uniform space with N = 1, 000, 000 points and k = 20-
nearest neighbors required, the nearest neighbor hypercube side length is [=
0.71, which is larger than half of the data space extension for each dimension.
To improve the query performance, it is essential to have as few data MBRs
as possible intersecting the k-nearest neighbor hypercube. Therefore, it is
important to have the MBRs extents restricted in as many dimensions as
possible.

Let us first introduce an observation regarding the uniformity of the con-
strained data space. In an unconstrained multi-dimensional space, data is uni-
formly distributed in the whole space when data is uniformly distributed along
each space dimension. Thus, one can generate uniform distributed data in an
unconstrained multi-dimensional space by generating uniform distributed val-
ues along each dimension. In order to obtain an uniform distribution of data
in the constrained space a naive approach would be to generate uniformly
distributed points in the unconstrained space and select those that fulfill the
constraint. However, the distribution function of the number of objects in the
constrained space Ngg based on number of objects in the unconstrained space

NUS is:

X NUS (314)

where VolSs (VolHs) represents the volume of the constrained (unconstrained)
D-dimensional space. Since the constrained space is a hyperplane in a hyper-
cube, Vol8s = 0 in the D dimensional space (the constrained space extends
freely in only D — 1 dimensions) and therefore, P(Nyg) = 0. Therefore, it is
not feasible to generate uniform distributed points in the constrained space by

this approach.

Input : Dimensionality D, Constraint Value ¢ = 1, Point p = (0,0, ..., 0)
Output: Data Space Point p

while ¢ # 0 do
value = Random() * ¢;
Choose dimension dim such that p[dim]=0;
pldim] = value;
¢ = ¢ - value;

Figure 3.9: Uniform data generation in constrained space

To obtain uniformly distributed data in the constrained space, we use the
algorithm presented in Figure 3.9. Note that function Random() generates a
random real value in the range 0 to 1. At each step the algorithm gener-
ates a random number between 0 and the maximum value allowed such that
the constraint holds, taking into account the already assigned dimensional
values. Note that although this procedure will generate uniform distributed
data points in our constrained space, the marginal value distribution on each
dimension taken individually is not uniform.

Since the sum of a feature vector values over all dimensions is constant
(Equation 3.3), the values on most dimensions have to be low. When this
constant is 1 as in the GCHs case, the average value of a dimension in a feature
vector is 1/D in a D-dimensional vector space (Figure 3.10). For instance, for
data distributed uniformly in the constrained space and 64 dimensions, the
average dimensional value is 0.016. Therefore, the marginal distribution of
data point values is more dense in the lower value range and this density is
increasing with the feature space dimensionality increase (Figure 3.11 (a) and

(b)). As we shall see, this implies properties that can be further explored.

47

0.081

0.081

Average dimensional value

0 20 40 80 80 100 120 140
Number of dimensions

Figure 3.10: Average value of a dimension in a feature vector with increasing
dimensionality

8000 - v 5 - 1 ~ g T —
9000 -
50001
BOOD
a
9
K] 7000
57 av00
=]
'-s 6000
=
_3 3000 - SBO0
g
g 4060
2000
3000
2000
1000
\—}“ 1000
o

o o1 02 03 0.4 [0.6 0.7 08 3 1 [0.1 0.2 0.3 0.4 a3 08 o7 08 os 1

value value
(a) 8 Dimensions (b) 64 Dimensions

Figure 3.11: Average marginal value distribution of 10,000 objects in an 8(a)
and 64(b) dimensional uniformly distributed constrained space

To understand the effect of constraints on the new MBRs created once a
split is performed, we reduce again the data space to the 3-dimensional case
(Figure 3.12). Let our initial MBR be B = (I, — ug,l;, — uy, 1, — u,), where
[(u) stands for the lower (upper) bounds. As our example starts with the
whole space, [, =1, = [, = 0 and u; = u, = u, = 1, but the effects presented
in the following are not related with these particular values.

Let us first choose to split dimension z at split value s,, where [, < 5, < u,.
The dataset is split into two partitions (Figure 3.12 (a)). One partition, with

B, as bounding region, contains all data points with dimensional value on

48

"7~ original MBR

S RRG AR B
— data plane ; " 81
""""" 5 s
i RN)
+ . ¢ R
L — MBRs after split ‘ Foa _
—= . induced MBR restrictions FC : /4-'
1 N 7 N)
& @
Ax
X
1‘\
B, 3
A
A >
z
1"'; __________ l:"f
- B
B22 Ky 221
7y (®) ©

Figure 3.12: Illustration of the effect yielded by induced splits (for the sake of
clarity only the MBRs being split are shown)

the z axis between [, and s,. The other one, with B; as bounding region,
contains all data points with dimensional value on the 2z axis between s, and
u,. Although only one dimension is explicitly reduced by the split, due to
the data constraints, all dimensional bounds are restricted for By = (I, —
uy, by — uy, s, = u;), where u; and u, represent the induced upper bounds.
On the other hand, for By = (l; — ug,l, — u,, [, — s;), only the bound on
the dimension that is split is affected.

Note that although this split generates overlap-free MBRs, the projections
on some dimensions of the two generated MBRs do overlap (further referred
as dimensional overlap). The dimensional overlap of the two generated MBRs

is equal to the B; extensions on dimensions x and y. Since the distance

49

between the query point and the MBRs resulting from the split is a sum of
distances in each dimension, the more the MBRs differ in each dimension, the
larger the difference in the distance between them and the query point. This
yields a higher degree of dissimilarity between them with respect to the query
and consequently a smaller probability that both would be searched during
the nearest neighbors query process. Hence, the importance in reducing the
dimensional overlap when splitting an MBR.

If 5, is close to u,, then B; will be very restricted on all dimensions. Though
only one dimension is chosen to be split not only that facet of the MBR is
affected, but indirectly others are too, hence inducing an effect similar to
multiple simultaneous splits. If s, is close to [,, the extent of the dimensional
overlap is higher as the extensions of B; are larger. In this case, the nearest
neighbor distance from a query point inside B, will have a higher probability to
intersect B; as the Euclidean distance from the query to By will mostly depend
on their distance on dimension z (see Equation 3.5). Therefore, it is better to
choose a split value closer to the upper bound of the chosen split dimension in
order to affect the extensions of all dimensions as much as possible.

This split induces MBR restrictions for By, but By still extends on most
dimensions as much as the initial MBR B and dimensionally overlaps with By
in all dimensions but z. In order to reduce the dimensional overlap further on,
the split policy should select other dimensions for splitting By than the one
already split.

If B, is now split on dimension z, two new partitions are generated, with
Bs; and B, as their bounding rectangles (Figure 3.12 (b)). Again, the MBR
bounding the partition created in the higher value range from the split value
(Bg1) is further restricted in other dimensions beside the split dimension due
to data constraints. Note that if s, would be closer to u,, the induced MBR
restrictions would be present on both y and 2z dimensions, and not just y as
we have in the presented example.

Finally, consider By, is further split on dimension y (Figure 3.12 (c¢)). The
new bounding regions are Bagy and Bjgs for the higher, respectively lower,

value range on the split dimension. In this split example, the data constraints

20

induce additional MBR restrictions to the MBR bounding the data points from
the lower value range. If the split value is chosen closer to the u,, then the
induced MBR restrictions will act on the MBR bounding the other partition.

It is hard to predict which MBRs will suffer the induced restrictions. In
fact, the same sequence of splits shown in Figure 3.12, could yield quite distinct
MBRs, with the induced constraints acting in different ways (and possibly
MBRs), depending on the split values and dimensions chosen at each split.
Nevertheless, it is important to have the split value closer to the upper value
bounds on the split dimension in order to induce stronger MBR restrictions.

Based on the observation regarding the increased density values in the
lower range of each dimension, we can draw another strategy for the split
policy. If the split policy would choose the split value close to the lower bound
of the split dimension, then the distance from many points on both sides of the
split to the split value on the split dimension will be very small. Recall that
lower value range has a higher density of objects (Figure 3.11). Therefore,
it is better to choose the split value towards the higher bound on the split
dimension of an MBR. This observation is consistent with the previous one
regarding the MBRs split value in order to increase the induced constraints in
non-split dimensions.

Even though we have concluded that the split value should be close to the
upper bound of the split dimension, an interesting question is how close that
should be. If the newly created MBRs are too “thin”, i.e., the split value is too
close to the upper bound, the radius of the nearest neighborhood (as suggested
by Equation 3.12) would cause the query process to search through possibly
many neighboring MBRs, hence decreasing query performance. Therefore we
have two competing splitting strategies. On the one hand, we want the split
value to be close to the split dimension upper bound, on the other hand we
do not want it to be “very” close, i.e., we do not want to create thin MBRs
as mentioned above. How to achieve a good balance is the question we try to
answer in what follows.

For the real data sets, obtained from collections of images, the marginal

distribution is different than the uniform one. Most colors have a dimensional

51

number of objects

J

a 4l 02 a3 w4 a5 06 D7 Eetd 09 1 i ot 0z 03 s DS LU Y [04 b 0 ol az 03 04 A5 Ge By ok Lt 1
value value value

(a) ®) ©

Figure 3.13: Average marginal value distribution of Corel dataset objects in
64 dimensions

distribution close to the one of the uniform data in the constrained space
(Figure 3.13(a)), a few colors are in very small quantities or almost do not
show at all, a few appear more often (Figure 3.13(b)) and one color tends to
have a distribution closer to the uniform dimensional distribution (likely back-
ground color) (Figure 3.13(c)). Although the feature vector values constraint
is valid, this variation in the marginal (dimensional) value distribution makes
the split policy for uniform data inappropriate, as we will show later on in the

experimental evaluation.

3.6.2 TUnbalanced Split Policy

In order to improve the retrieval process, based on our observations with re-
spect to data partitioning, we define a recursive algorithm. The algorithm con-
sists of a recursive procedure that takes a data set and, based on the character-
istics of its MBR, splits it into two smaller partitions with overlap-free MBRs.
The procedure is further applied on each of the generated MBRs until each
partition fits into an index page. In the splitting process, three procedures are
used to determine the split policy. The first one, choose_split_dimension(),
selects the split dimension d;. Assuming the MBR extension on dimension d; is
[, find split_ratio() finds the split ratio s, for the length of the resulting ex-
tents. That is, one extent will cover the first s, X[of the original extent, and the
other will cover (1 —s,) x[. This ratio could be a constant number or adaptive
based on the current step of the algorithm. Finally, find_split_position()

computes the actual dimensional split value as close as possible to satisfy the

52

split ratio, and such that each partition results in a number of nearly full
pages. A pseudo-code version of the algorithm is presented in Figure 3.14.

Algorithm: create_partitions(Bs)

Input : A set of feature vectors S, the MBR of S Bg, the capacity of an
index page psize
Output: An X-tree supernode with links to all leaf (data) index pages

if no_of_objects(Bs) < psize then

create_page (Bg);
STQOP ;

ds = choose_split_dimension (Bg);

s, = find_split_ratio (ds, Bs) ;

s, = find_split_position (s,, ds, Bs);
(B, By) = split MBR (Bg, sp, ds);
create_partitions (By);
create_partitions (By);

Figure 3.14: Bulkload index creation using Top-Down dataset partitioning

Beside the three split related procedures presented above, there are a few
‘others like create_page() that takes the data set partition and fills a newly
created page, computes the page’s MBR and adds it to the directory super-
page, and split MBR() that separates the data set partition according to the
split dimension and split value into two subpartitions. Therefore, that data
set is partitioned in a top-down tree like manner.

The two procedures that most affect the efficiency of the index structure
are choose_split_dimension() and find split_ratio(). For the first one,
our previous discussions suggest that choosing the split dimension based on
the maximal extension is a straightforward choice allowing more freedom in
selecting the split value and allowing to impose a larger constraint in the other
dimensions for the MBR bounding the data points from the higher value range.
Also the data density variation could be larger, thus allowing a better split
(for the same number of objects, a larger extension implies a lower density).
For find split_ratio() there are several possibilities since, as argued above,
this ratio is highly dependent on the data and it should optimize competing
criteria. One option is to find a constant ratio (e.g. that is closer to the

higher bound as mentioned before) that performs best on average. The other

53

possibility is that of an adaptive ratio based on the current step of the recursive
partitioning.

According to our analysis, an efficient split should choose different split
dimensions as often as possible and a split value closer to the upper bound of
the MBR on the split dimension. The induced MBR restrictions are then be
maximized. Due to the marginal distribution (see Figure 3.11), the resulting
MBRs are be large enough so that they are not affected by the negative effect
of large nearest neighbor distance during retrieval process. For uniformly
distributed data in our constrained space, the split policy is straightforward to
implement. As split dimension we choose the one with the maximal extension.
As data has the same distribution in all dimensions, this strategy for selecting
the split dimension will therefore effectively alternate among all dimensions.
As split value, the closest possible value to the upper bound such that near
100% node utilization is obtained would be to make the split at one page
distance from the upper bound. In other words, the algorithm selects all
dimensions for splitting in round-robin fashion and, for each split phase, takes
enough objects that have the marginal value on the split dimension close to
the upper bound in order to fill a new page. In the following we will refer to
this strategy as last page (LP) split.

Experimental evaluation shows that this split policy is efficient for uniform
data in the constraint space. However, it may not be optimal for real data due
to differences in the marginal distributions (Figure 3.13). In what follows we
will show experimentally that, due to the complex and contradictory conditions
that have to be fulfilled for real data, a constant split ratio of 80% gives good

results on average. In the following we will refer to this strategy as ratio split.

3.6.3 Experimental Evaluation

To compare the proposed index optimizations with other indexing structures,
we decided to use state-of-the-art indexing structures: the SR-tree [29], one of
the best data partitioning index techniques and the A-tree [48], to our knowl-
edge the best of space partitioning indexing techniques. We used the original

implementations of the SR-tree and A-tree as provided by their authors.

54

To show the performance of our proposed indexing technique, we have
performed many tests on both synthetic (uniform) and real data sets. Our tests
have mainly focused on the real sets since we consider the applicability of our
solutions very important. To denote our technique, we are using the notation
X (since the created index is an extreme version of the X-tree index structure
for high dimensional data) followed by the split ratio or by LP for Last Page
split (e.g., X-80% or X-LP). To show the independence of the proposed index
structure from the new distance, our structure will use the original distance
function. For the other two indexing structures we compare to, we use their
own names (A-tree and SR-tree). Unfortunately, the code provided by the
authors of the A-tree index structure did not work with datasets larger than
100,000 data points. Therefore, in some of the graphs presenting results for
various data sizes, the A-tree curve line stops prematurely.

As the code for the three indexing structures comes from different sources
using different implementation choices, we will use only comparisons based on
number of disk accesses during search. Unless otherwise specified, we have
use the average over 1000 100-nearest neighbor search queries. Also, we use
64 dimensional feature vectors with the exception of the graphs where feature
vectors size is varied.

In all tests, the query objects are randomly taken from the test datasets,
in order to query the sets with something representative to their content.

To investigate our intuition about the superiority of Last Page Split for
uniform data, we have performed several tests for three dataset sizes: 20000
(20k), 100000 (100k) and 300000 (300k), using both LP Split and different ratio
splits. Figure 3.15 shows the ratio between number of page accesses required
when using different split ratios over number of page accesses required when
using the Last Page Split policy. As the graph shows, a 95% split ratio returns
results very close to the LP Split. As explained in Section 3.6.1, when using a
split ratio we choose the actual split value as accurate as possible to acquire
the split ratio, with the constraint of obtaining a near 100% page utilization.
For instance, when using a 95% split ratio, we may not obtain enough points

to (nearly) fill a page. At this moment, we need to go below the (95%) split

95

" 20k Unif 8
100Kk Unif ~-o---
300k Unif o

Ut
o
|

ES

n

page accesses using LP spiit
w

page accesses using ratio split

-

0 i 1 i 1] 1 1 1 1] 1 3, 1 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Split ratio{%)

Figure 3.15: Number of page accesses using ratio split over LP split - uniform
dataset

point in order to fill the page, i.e. the 95% split ratio behaves as the LP
split. Indeed, such behaviour can be seen in Figure 3.15. The LP Split policy
proved to be the best for 20k and 100k set, but there were better ratio splits
than LP split for the 300k size uniform dataset. As the dataset size increases,
the objects’ density in the dimensional high end increases. Thus, the MBRs
created by the LP Split are too narrow and a query falling inside such an MBR
will intersect all other narrow MBRs in the vicinity of its MBR. Nevertheless,
since for most uniform dataset sizes we tested, the LP split policy performs
better than ratio split policy, all test involving uniform sets will use this policy.

Figure 3.16 shows the number of page accesses for the three indexing struc-
tures for several dataset sizes on 64 dimensional uniform data. The page size
is 4kb for all index structures. Our approach uses the Last Page split strat-
egy and it is consistently better than the A-tree and SR-tree. Unfortunately,
the A-tree did not allow us to extend our comparison to larger data sets. In
average, the SR-tree accessed 8.61 times more disk pages then our structure,
while the A-tree required 2.29 times more disk page reads. As the number of
disk accesses for the SR-tree is considerably higher than for our approach and
the A-tree, we use a logarithmic scale for the y-azis not only here, but also
whenever we compare against the SR-tree.

As mentioned during our theoretical analysis, we believe the Last Page split

56

10000 ¢ T T T T T 3
XALP —a— 1
A-tree ------ 1

SR-tree ---e---

1000 F —— t

log(page accesses)

10 L L 1 L)
20 40 80 80 100 200 300

Dataset size (x1000)

Figure 3.16: Number of page accesses for varying data partition sizes - uniform
dataset

is not suitable for real datasets due to a different dimensional distribution of
data objects. In order to test this, we have performed tests on the real sets
using both the Last Page split and ratio based splits. As Figure 3.17 shows,
the ratio based split is better for any split ratio for both real sets. For Corel
collection and TV snapshots we used all data objects available, 4kb page size
and 64 dimensional feature vectors. The improvements in page accesses of
ratio split over the Last Page split is larger for the TV dataset (up to 4 times
less page accesses) than for Corel set (around 2 times less page accesses). This
is due to the larger size of the TV dataset - almost twice the number of objects
in the Corel dataset, as well as a different objects distribution.

To determine the best split ratio for real datasets, we have performed tests
on various combinations of data dimensionality and page sizes for Corel (see
Figure 3.18) and TV (see Figure 3.19) datasets. Based on these experimental
observations, we determined that an 80% split ratio results in the lowest page
access requirements on most cases for both datasets. For the cases when the
80% split ratio is not the best, the differences in page accesses between using
80% ratio and the best ratio is very small. Therefore, in all following tests
involving our approach on real data sets we will use an 80% split ratio.

Figures 3.20 and 3.21 show the number of page accesses for varying data

subset sizes taken from Corel and TV datasets. We used 64 dimensions and

T T T T
Corel —#—
TV ---e---

0.8 B

206 | .

04k .

page acoesses using ratio split
page accesses using LP split

02 F -

0 1 1 i L] 1] 1 1 1 1 1] 1 1 i H
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Split ratio(%)

Figure 3.17: Number of page accesses using ratio split over LP split - real
datasets

4kb page size. Our approach performs better than the A-tree and SR-tree.
The improvements are increasing with increasing number of objects in the
dataset. While the improvements of our approach are smaller compared to
the A-tree (up to 45% more page accessed by the A-tree), they are substantial
with respect to the SR-tree (up to 500% more pages accessed by the SR-tree).

To study the scalability with respect to increasing dimensions of the three
indexing structures, we have extracted feature vectors of different dimension-
ality from the Corel collection. The disk page size was again set to 4kb and
we used all objects available in the dataset. As Figure 3.22 shows, the number
of page accesses increases with dimensionality increase, while the advantage
of our method over the two other indexing structures remains stable (around
30% (80%) less page accesses for X-80% than the A-tree (SR-tree)).

When increasing the number of nearest neighbors, the improvement of our
method is slowly decreasing, while still being significantly better even for 180
nearest neighbor search. Although Image Retrieval Web engines search for
around 15 to 25 nearest neighbors for various reasons, in all previous experi-
ments we have used 100 nearest neighbor search, as we believe that 100 is a
reasonable number of nearest neighbor images that a user is willing to visually
check. While our method proves to be the best every time, its advantage over

the other two indexing structures is even larger if we chose a smaller number

58

500 gy T T T T T T

"akeaD —w—-
8k,64D @~
450 + 16k64D -0]
400 4
8 350 b E 2
A 2
LN 8
g 300 - i 8
° [} -8, @
> T T, @
g 250 Lot QAN p g
e NN 120 -, oo —
| B--g” \"*o-fa\aﬂ e
i DA L SPNIP:S -
"‘---owo..,._,v,”.”,.-'; _l
- R ST
b e
I T S T A S ol T e
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 5 10 15 20 25 30 35 40 45 50 55 €0 65 70 75 80 85 90 95
Split ratio(%) Split ratio(%)
120 T T T T T
4k 16D —a—
110 8k, 16D --e--- 4
16k, 16D ---@---

page accesses

BOF e ® T S e e
g b e
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Spiit ratio{%)

Figure 3.18: Split ratio efficiency for several combinations of data dimension-
ality and page sizes - Corel dataset

320 T T T T T T T T T T T T 180 gy T T T
4k,84D —w— 4%,32D —m—
300 8k,64D ---o--- o 8KA2D —--o--
16k,640D 160 16k,32D ---
140 |-
@ @
D g
g § 120 & E
& A
o g 100 F be A
o \ o Qe Bang J
& [oo @ OOy S
o 180 ‘;»‘e"e‘\o.,e /z a -3 "3"9‘*0»0-—9._9._.9"’9'
160 |- Tt g] 80 - 1
140 ;- 1] e gl
.. 50 - B g @R B Bgp..p.. g oo ap 0]
120 |- "e-e” A S P ° -7
[N SO W B 2 S o i X, Sk 7Y S O SO S T T S T S VOO O SO TR DU MU Y
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 5 10 15 20 25 30 3% 40 45 50 55 60 65 70 75 80 85 90 95
Split ratio(%) Split ratio(%)

80

3

page accesses
(2]
3
-
:

e

&

R T T

R TR S,

e .
PR B. g g g8

7Y% P U ST ST S SN WA O S S TR VOO S T WA OO S
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Spiit ratio(%6)

Figure 3.19: Split ratio efficiency for several combinations of data dimension-
ality and page sizes - TV dataset

10000 T T T
X-80% -~—u—

A-treg --—o---
b SR-tree ---e---
_____________ >
P

1000

log{page accesses)
@y

100 1 L I
10 20 30 40 50

Dataset size (x1000)

Figure 3.20: Number of page accesses for varying data set sizes - Corel dataset

10000 . . '
[X-80% —a—
- A-tree ---e---]
SR-tree ---9---]
— [
o
[0
(2]
g L]
€ 1000 L e PRI
S 1000 | I . ;
2 T e
[2 e
si
Q.
E)
o
—————————— Q——-ﬂ—-«——»_—‘a
_______ T
:;,A/'/"'_—“_' A
100 .) ’
i > i 90 110

Dataset size {x1000)

Figure 3.21: Number of page accesses for varying data set sizes - TV dataset

60

10000 ¢ T
F X-80% —=—]
A-tree -—-0---
SR-tree ---e---

w0k 5

log(page accesses)

10 L
16 32 64

dimensionality

Figure 3.22: Number of page accesses for varying number of dimensions - Corel
dataset

10000 , | | |
X-80% —a—]
A-tree ---o---
SR-tree ---#---
PURERSE SR
........ .
1000 '- _

log(page accesses)

100 L ' 1
20 60 100 140 180

No. of Nearest Neighbors

Figure 3.23: Number of page accesses for varying number of neighbors - Corel
dataset

61

of neighbors in all experiments. For example, while for 100 neighbors search
the X-80% accesses 31.79% less pages than the A-tree, for 20 neighbors the
saving increases to 40.73% less page accesses.

Overall, our method consistently retrieved the nearest neighbors using the
smallest number of page accesses among all tested indexing techniques. For
uniform data, our theoretical analysis about the ideal split proved to be correct.
For real data we determined experimentally that an 80% split is a good choice
for both real sets and different combinations of data dimensionality and disk
page sizes. As shown by all experimental results, the improvements shown
by our method over the SR-tree and A-tree index structure are consistently
better and stable with respect to variation in dataset size, length of feature

vectors and total number of pages (determined by page size variation).

550 T T T
Xid-80% —e—

X-80% ---o--- 4
500 A-trega__::—-‘-’-"' T
.-'.’_"-‘
450 1
,—"..’—‘
2 400 | .
@
7] .
IS
] 350
13]
&
S 300 - .
L
250
200

150 d
20 60 100 140 180

No. of Nearest Neighbors

Figure 3.24: Overall number of page accesses for varying number of neighbors
- Corel dataset

Since in our research we have also proposed a new distance function, we
decided to use it simultaneously with the proposed index to show the overall
gain obtained. We know from Section 3.5 that the improvements brought by
the new distance are consistent regardless the variation of different parameters
(such as data dimensionality, page size, number of neighbors a.o.). Therefore,
we will show the overall results of combining the new distance and the new
index for only one parameter, that is the number of nearest neighbors. Figure

3.24 shows a comparison among the number of page accessed using the A-tree

62

index, our X-80% index and the X-80% index combined with the use of the
improved query-to-MBR distance (denoted as Xid-80%). We used the Corel
dataset with 64 dimensions and a 4kb page size. Since we are not comparing
to the SR-tree which was always much slower, this graph does not use a log-
arithmic scale. As the number of nearest neighbors increases, the proposed
distance helps improve the number of page accesses obtained by X-80% al-
gorithm, making the overall gain of our proposed solution over the existing
indexing structures even larger (Xid-80% accesses 36.5% less pages than the
A-tree as compared with the X-80% which accesses 33% less pages than the A-
tree). Although the improvement brought by the use of our proposed distance
are low as also shown in Section 3.5, it helps the proposed index structure

improve even more over the existing structures.

63

Chapter 4

Conclusions

4.1 Summary & Contributions

In our research we have explored the use of a priori knowledge about the data
to be indexed in order to enhance the performance of retrieval. Based on a
concrete example — use of color histograms in Image Information Retrieval,
we have shown how constraints in normalized histogram data can be used at
both index building and retrieval time to improve the search efficiency.

The experimental results show that the proposed solution is efficient and
improves over existing state-of-the-art techniques. Experiments were per-
formed on uniform distributed data as well as two real image collections. For
all tests, our proposed algorithm outperformed other indexing techniques in
the number of page accesses required during retrieval. We have also shown
that a solution that proves efficient for the uniform data set, it is not necessary
the best for real collections. Therefore, a parameter (the split ratio) has to be
adapted for the type of collection the user is dealing with. For our technique,
we have shown that the split policy is capital for achieving good performances.
While a Last Page split is the best for uniform data, an 80% split proved to
be the best choice for indexing of both real datasets.

‘We have also proposed a new definition of a distance function that proved to
be is more accurate than the usual one in approximating the distance between
a query point and a possible data point inside an MBR. Experiments showed
that although the number of page accesses saved by using the new distance is

not very large, the distance can help improve an indexing technique based on

64

Minimum Bounding Rectangles.

Finally, the overall performance of our indexing technique is shown to be
efficient and stable with respect to variations in number of data objects, page
size, feature vector dimensionality and variation in number of nearest neigh-
bors to be searched for. Thus, this technique should be valuable in practical

applications.

4.2 Future Research

The scope of this thesis was to explore how one can take advantage of con-
straints existing inherently in a data collection in order to improve the effi-
ciency for nearest neighbor queries. In the course of our exploration we have
touched several other related issues that could lead to promising and challeng-

ing areas for future research. These would include:

e Determining an adaptive split ratio during index building. It may be
based on the data distribution in the current step of index construction
or it may take into account what split choices have been taken in the

previous steps.

e In this thesis, we have taken advantage of the data constraints at bulk-
load building time. Since the a prior: knowledge that we used does not
depend on the number of objects but on the object’s characteristics,
an index structure using dynamic objects insertion may be able to take

advantage of the existing constraints as well.

e While the proposed distance function has not improved very much our
indexing technique, there may be indexing techniques using other data

organization policies where the distance may be more helpful.

e [t would be an interesting issue to investigate similar optimized split poli-
cies and the proposed distance definition within index structures using

quantization techniques, such as the A-tree.

Bibliography

[1] Adobe Systems, Inc., Color management systems - technical guide.

www.adobe.com /support/techguides/color/colormanagement /cmsdef. html.

[2] M. Ankerst, G. Kastenmullera, H.-P. Kriegel, and T. Seidl. 3d shape
histograms for similarity search and classification in spatial databases.
In Proceedings of the International Symposium on Advances in Spatial

Databases, pages 207-226, 1999.

[3] J.R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey,
R. Jain, and C.F. Shu. The Virage image search engine: An open frame-
work for image management. In Proceedings of SPIE Storage and Re-

trieval for Image and Video Databases, pages 7687, 1996.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B.Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Pro-
ceedings of ACM SIGMOD International Conference on Management of
Data, pages 322-331, 1990.

[5] S. Berchtold, C. Bohm, D.A. Keim, and H.-P. Kriegel. A cost model
for nearest neighbor search in high-dimensional data space. In Proceed-
ings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 78-86, 1997.

[6] S. Berchtold, C. Bohm, and H.-P. Kriegel. Improving the query perfor-
mance of high-dimensional index structures by bulk load operations. In
Proceedings of the International Conference on Ertending Database Tech-

nology (EDBT), pages 216-230, 1998.

66

[7]

8]

[12]

[13]

S. Berchtold, D.A. Keim, and H.-P. Kriegel. The X-tree: An index struc-
ture for high-dimensional data. In Proceedings of the International Con-

ference on Very Large Databases, pages 28-39, 1996.

A. Del Bimbo. Visual Information Retrieval. Morgan Kaufmann Pub-

lishers, Inc., 1999.

A. Del Bimbo, W.-X. He, and E. Vicario. Image Description and Re-
trieval, chapter Using weighted spatial relationships in retrieval by visual

content. Plenum Press Publishers, 1998.

A. Del Bimbo, M. Mugnaini, P. Pala, and F.Turco. Visual querying by
color perceptive regions. Pattern Recognition, 31(9):1241-1253, 1998,

S. Blott and R. Weber. A simple vector approximation file for similarity
search in high-dimensional vector spaces. Technical report, Esprit Project

HERMES, 1997.

C. Bohm. Efficiently Indexing High- Dimensional Data Spaces. PhD thesis,
Department of Computing Science, University of Munich, 1998.

C. Boéhm and H.-P. Kriegel. Efficient bulk loading of large high-
dimensional indexes. In Proceedings of the International Conference on

Data Warehousing and Knowledge Discovery, pages 251-260, 1999.
BSIm web page. http://db.cs.ualberta.ca/BSIm/.

N.G. Colossi and M.A. Nascimento. Benchmarking access structures for
high-dimensional multimedia data. In Proceedings of the IFEE Interna-
tional Conference on Multimedia and Ezpo, pages 1215-1218, 2000.

Corel Corp. Corel Gallery 1,000,000. http://www.corel.com.

J. Dowe. Content-based retrieval in multimedia imaging. In Proceedings
of SPIE Storage and Retrieval for Image and Video Databases, pages
164-167, 1993.

67

[18]

[19]

[20]

23]

[24]

[25]

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic,
and W. Equitz. Efficient and effective querying by image content. Journal
of Intelligent Information Systems, 3(3/4):231-262, 1994.

S. Fan. Indexing and retrieving shapes via distance histograms. Master’s

thesis, Department of Computing Science, University of Alberta, 2001.

R. Finkel and J. Bentley. Quad-trees: A data structure for retrieval on
composite keys. ACTA Informatica, 4:1-9, 1974.

J.D. Foley, A.V. Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics:
Principles and Practice in C. Addison-Wesley Publishing Company, Inc.,
1990.

T. Gevers and W.M. Smeulders. A comparative study of several color
models for color image invariant retrieval. In Proceedings of the Interna-
tional Workshop od Image Database and Multimedia Search, pages 17-23,
1996.

R.C. Gonzalez and R.E. Wood. Digital Image Processing. Addison-Wesley
Publishing Company, Inc., 1993.

V.N. Gudivada and V.V. Raghavan. Design and evaluation of algorithms
for image retrieval by spatial similarity. ACM Transactions on Informa-

tion Systems, 13(2):115-144, 1995.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of ACM SIGMOD International Conference on Management
of Data, pages 47-57, 1984.

J.L. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack.
Efficient color histogram indexing for quadratic form distance func-
tions. IEFEE Transactions on Pattern Analysis and Machine Intelligence,

17(7):729-736, 1995.

C.E. Jacobs, A. Finkelstein, and D.H. Salesin. Fast multiresolution image -

querying. Computer Graphics, 29:277-286, 1995.

68

28]

2]

[30]

31]

[32]

[33]

[35]

[36]

H.V. Jagadish. A retrieval technique for similar shapes. In Proceedings of

the ACM SIGMOD, pages 208-217, 1991.

N. Katayama and S. Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 369-380,
1997.

K.-I. Lin, H.V. Jagadish, and C. Faloutsos. The TV-tree: An index
structure for high-dimensional data. VLDB Journal: Very Large Data
Bases, 3(4):517-542, 1994.

S. Lin. An extensible hashing structure for image similarity searches.
Master’s thesis, Department of Computing Science, University of Alberta,

2000.

G. Lu. Multimedia Database Management Systems. Artech House Pub-
lishers, Inc., 1999.

B.S. Manjunath and W.Y. Ma. Image indexing using a texture dictio-
nary. In Proceedings of SPIE conference on Image Storage and Archiving

System, pages 288-298, 1995.

IBM/NASA’s Satellite Image Retrieval System web page.
http://maya.ctr.columbia.edu:83080/.

R. Mehrotra and J.E. Gary. Similar-shape retrieval in shape data man-

agement. [EEE Computer, 28(9):57-62, 1995.

M.A. Nascimento and V. Chitkara. Content-based image retrieval using
binary signatures. In Proceedings of the ACM Symposium on Applied
Computing, pages 687-692, 2002.

M.A. Nascimento, E. Tousidou, V. Chitkara, and Y. Manolopoulos. Color
based image retrieval using signature trees. Technical report, Department

of Computing Science, University of Alberta, 2001.

69

[38]

[39]

[43]

[44]

[45]

[46]

[47]

W. Niblack, R. Barber, W. Equitza, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, and C. Faloutsos. The QBIC project: Query-
ing images by content using color, texture and shape. In Proceedings of
SPIE Storage and Retrieval for Image and Video Databases, pages 173—
187, 1994.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adapt-
able symmetric multikey file structure. ACM Transactions on Database

Systems, 9(2):38-71, 1984.

G. Pass, R. Zahib, and J. Miller. Comparing images using color coher-
ence vectors. In Proceedings of the ACM International Conference on

Multimedia, pages 6573, 1996.

A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Content-based
manipulation of image databases. International Journal of Computer

Vision, 18(3):233-254, 1996.

Photobook Image Search System web page.
http://www—white.media.mit.edu/~tpminka/photobook/.

QBIC web page. http://wwwqgbic.almaden.ibm.com/.

Retrieval Ware Image Search System web page.

http:/ /vrw.excalib.com/cgi-bin/sdk/cst/cst2.bat.

J. Robinson. The k-d-b-tree: A search structure for large multidimen-
sional dynamic indexes. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 10-18, 1981.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 71-79, 1995.

Y. Rui, T. Huang, and S.F. Chang. Image retrieval: Past, present, and fu-
ture. In International Symposium on Multimedia Information Processing,

volume 10, pages 1-23, 1997.

70

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-tree: An
index structure for high-dimensional spaces using relative approximation.
In Proceedings of the International Conference on Very Large Data Bases,

pages 516-526, 2000.

L. Shapiro and G. Stockman. Computer Vision. Prentice Hall Publishing
Company, Inc., 2001.

J.R. Smith and S.-F. Chang. Automated binary texture feature sets for
image retrieval. In Proceedings of the International Conference on Acous-

tics, Speech, and Signal Processing, pages 2239-2242, 1996.

J.R. Smith and S.-F. Chang. VisualSEEk: a fully automated content-
based image query system. In ACM Multimedia, pages 87-98, 1996.

R.O. Stehling, M.A. Nascimento, and A.X. Falcao. On “shapes” of colors
for content-based image retrieval. In Proceedings of the Iniernational
Workshop on Multimedia Information Retrieval (MIR’2000), pages 171-
174, 2000.

M.A. Stricker and M. Orengo. Similarity of color images. In Proceedings
of SPIE: Storage and Retrieval for Image and Video Databases, pages
381-392, 1995.

Virage’s VIR Image Engine system web page.
http://www.virage.com/cgi-bin/query-e.

VisualSEEk Image Search System web page.
http://www.ee.columbia.edu/~sfchang/demos.html/.

R. Weber, H. Schek, and S. Blott. A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces.
In Proceedings of the International Conference on Very Large Databases,

pages 194-205, 1998.

71

[57] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceed-
ings of the IEEE International Conference on Data Engineering, pages
516-523, 1996.

72

