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Abstract Cancer stem cells (CSCs) are pluripotent cancer cells, which are less sensitive to treatments, and
which can generate new tumors once transplanted into a healthy tissue environment. They have been identified
in many cancers and they are the driving force of cancer growth and metastasis. Mathematical modelling
of CSCs has contributed to our increased understanding of CSC interactions. Here we will consider CSC
feedback mechanisms, treatments with radiation therapy, differentiation promoters, and dedifferentiation
inhibitors. In addition, we will consider spatially explicit models. The dominating effect in these models
is the tumor growth paradox. It says that a tumor under treatment might grow larger than a similar tumor
without treatment. Using geometric singular perturbation methods, we prove mathematically that such a
tumor growth paradox can arise. In the spatial context, it leads to a tumor invasion paradox, as we will explain.
Many of the models presented here lead to interesting mathematical questions and to the development of
new mathematical techniques. We end our chapter with a collection of open problems, which we think, are
amenable to further mathematical analysis.

1 Introduction

The term “cancer” is a notion for a large collection of diseases, which share certain common hallmarks of
cancer [23, 24, 22]. Medical research in oncology over the last decades has revealed a plenitude of cancer
types, cancer dynamics, and cancer treatments. Cancer is no longer seen as an isolated disease; it rather arises
as a complex interaction of cells of different genotypes, phenotypes, epigenetics, in a biochemical network
of chemokines, growth factors, and antigens, in interaction with immune response, microenvironment, and
treatments [23, 24, 22].

Just over twenty years ago, Hanahan and Weinberg published their landmark paper The Hallmarks of
Cancer [23] where they outlined 6 key differences (“hallmarks”) between cancer tissue and normal tissue.
These original six hallmarks were updated eleven years later in a second paper - Hallmarks of Cancer: The
Next Generation [24], followed in 2022 by a third paper – Hallmarks of Cancer: New Dimensions [22]. As
things stand now, the hallmarks of cancer consist of eight hallmark capabilities: (H1) sustained proliferative
signalling, (H2) evading growth suppressors, (H3) resisting cell death, (H4) replicative immortality, (H5)
angiogenesis, (H6) invasion and metastasis, (H7) reprogrammed metabolism, (H8) avoidance of immune
destruction, plus two enabling characteristics: (H9) genome instability, (H10) tumor promoting inflammation;
along with four more emerging hallmarks and enabling characteristics: (H11) phenotypic plasticity, (H12)
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epigenetics, (H13) the microbiome, and (H14) cell senescence. Reading this list is overwhelming. It shows
why it is so difficult to properly understand cancer and to efficiently treat it. Researchers with many different
expertise are needed to gain a full picture of this disease, and mathematics is one important partner in this
research.

1.1 Cancer Stem Cells

A major player in the growth and spread of cancer are cancer stem cells (CSCs). These are pluripotent cells
that are able to generate a full tumor if transplanted into new, healthy, environment [49, 10, 14]. Although the
classification of CSCs is not uniform among cancers, or among scientists, the common features of CSCs often
include the ability to self-renew, having unlimited replicative potential, immortality, and having reduced
sensitivity to treatments such as radiation and chemotherapy [14, 32, 55]. CSCs are involved in many of the
hallmarks mentioned above. They provide sustained growth signals (H1), evade growth suppression (H2),
resist cell death (H3), have replicative immortality (H4), are involved in metastasis formation (H6), and can
become senescent (H14). They are likely involved in the other hallmarks too. Hence, a good understanding
of CSCs and their role inside the tumor environment is essential. CSCs have been identified in most cancers
[14], and their relevance in cancer progression has been understood. In fact, Dingli and Michor [13] entitled
their 2006 paper with Successful therapy must eradicate cancer stem cells.

One method to help gain an understanding of complex processes is mathematical modelling. Since the
early models for cancer stem cells [2, 13, 19, 58], mathematical modelling of cancer stem cells is at full
swing [39, 62, 31, 6, 60, 26, 61, 20, 50, 59, 7, 4, 54, 46, 34, 57].

CSCs are similar to healthy stem cells, however, healthy stem cells, for example in the hematopoietic sys-
tem, give rise to various cell lineages of progenitor cells, transient amplifying cells and differentiated cells.
Such a distinction is less clear for CSCs, hence in our modelling we only distinguish between stem and non-
stem cancer cells. As our focus here is on solid tumors, we denote non-stem cancer cells as tumor cells (TCs).

1.2 Outline

For this book chapter, we begin with a very basic cancer stem cell model, and progressively consider model
extensions to include many of the effects mentioned above. Writing down the basic CSC model already
leads to confusion, since there are several ways to formulate the equations. For example, some authors use a
probability of CSC self renewal as a model parameter, while others use a fraction of CSC offspring. Further,
some scientists consider asymmetric divisions, while others consider symmetric divisions only. In the end,
all these formulations are mathematically equivalent, and we will illustrate this equivalence in Section 1.3.

Having established the equivalence of the different model formulations, we add the defining feature of a
solid tumor in tissue, which is having limited access to space and nutrients. We express this by a competition
function 𝐹 (see Section 1.4). The competition function leads directly to one of the key properties of the CSC
model, which is the tumor growth paradox. It shows that increased treatment can lead to a larger tumor.
This is a surprising effect that is related to the self-renewal properties of CSCs. In Section 2, we recall
the arguments of [26] and use geometric singular perturbation theory to mathematically understand this
phenomenon.

The model in [26] shows that treatments and immune responses can lead to CSC enriched cancers. Hence,
it is a natural question to see if differentiation of CSCs into TCs can be promoted. Or if dedifferentiation of
TCs into CSCs plays a role. Section 3.2 considers treatment of cancer with differentiation promoters such as
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TGF-𝛽 or all-trans-retonic (ATRA) therapy. We combine this treatment with radiation and compare various
model outcomes. We find that this combination of treatments shows great improvements for head and neck
cancer and for metastatic brain cancer, but not so much for breast cancer. These results were published in
[4].

In Section 3.3, we turn the differentiation process around and consider dedifferentiation. Dedifferentiation
describes the process where differentiated cells, TCs, revert back and show stem cell like behavior. This
process has been identified in many cancers [9, 33, 35]. In Section 3.3, we review a model from [50], which
was developed to include the dedifferentiation promoter survivn and a survivin inhibitor YM155. Based on
mice experiments of [30], we parametrize the model and again show that a combination therapy is beneficial.
We also consider feedback mechanisms as modelled by [52, 34, 69] in Section 3.4. In that case, we account
for chemokines that are released from CSCs and from TCs feedback on the self-renewal probability of CSCs.
We show that some of these feedbacks can lead to an Allee effect.

In Section 4, we consider spatial versions of the CSC model. The first such model is developed closely
to the experimental observations and takes the form of a birth-jump process (17). We show some general
results on existence, uniqueness and positivity from [7, 38, 16]. The integral terms of the birth-jump model
can be expanded as second order derivatives, which then leads to a reaction-diffusion model for CSCs and
TCs. For this reduced model, we explain the tumor invasion paradox, which was proven in [57]. It describes
the effect that a tumor with an increased death rate of TC invades faster.

We finish with a conclusion section, where the significance of these results is discussed and interesting
open questions are presented.

1.3 Various CSC Models

To model the reproduction of cancer stem cells (CSCs) and their differentiation into non-stem cell tumor
cells (TCs), we can use various approaches. We can use the probability of symmetric cell division into two
CSCs, or use the frequency of CSC offspring through division, or use transition rates for the various possible
mitosis events. We show a schematic in Figure 1. The left image in Figure 1 shows the full pathway, where
CSCs divide with a rate 𝑘 > 0 and then produce two CSC with probability 𝛼1 (symmetric division), two
TCs with probability 𝛼3, or one CSC and one TC with probability 𝛼2 (asymmetric division). In the middle
image of Figure 1, it is assumed that one offspring replaces the mother cell and the second offspring is either
a CSC with probability 𝛿 or a TC with probability 1 − 𝛿. In the third image of Figure 1, we only consider
symmetric divisions into two CSC with probability 𝑝 and into two TC with probability 1− 𝑝. These various
formulations of symmetric versus asymmetric cell division have led to some confusion in the literature.
Here, we quickly show that these approaches are all mathematically equivalent where a simple redefinition
of the parameters leads from one form to the other.

We begin with the complete model that is illustrated on the left of Figure 1. We denote the CSC population
by 𝑢(𝑡) and the TC population by 𝑣(𝑡), and we assume that 𝑘 > 0 is the (constant) mitosis rate. Upon mitosis,
a CSC can divide symmetrically into two CSCs, asymmetrically into one CSC and one TC, or symmetrically
into two TCs. Each of these transitions happen with a probability of 𝛼1, 𝛼2, and 𝛼3, respectively. Note that
𝛼1+𝛼2+𝛼3 = 1 and if we multiply such a fraction by 𝑘 , then we obtain the effective rates for these transitions.
For example 𝑘𝛼2 is the rate of asymmetric division. We ignore TC self-renewal for this argument.

The complete model can be expressed as

¤𝑢 = 2𝛼1𝑘𝑢 − 𝛼1𝑘𝑢 − 𝛼3𝑘𝑢,
¤𝑣 = 𝛼2𝑘𝑢 + 2𝛼3𝑘𝑢.

(1)

Since 𝛼1 = 1 − 𝛼2 − 𝛼3, we can already eliminate one parameter:
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Fig. 1 Schematics for the three ways a CSC model can be derived. In all model diagrams 𝑘 is the mitosis rate. In the complete
model, 𝛼1, 𝛼2, 𝛼3 represent the probability of offspring comprised of two CSCs, probability of offspring comprised of one
CSC and one TC, and probability of offspring comprised of two TCs, respectively. In the No Symmetric Commitment Model,
𝛿 represents the fraction of CSC offspring. In the No Asymmetric Division Model 𝑝 represents the probability of obtaining
two CSCs as offspring.

¤𝑢 = (1 − 𝛼2 − 2𝛼3)𝑘𝑢,
¤𝑣 = (𝛼2 + 2𝛼3)𝑘𝑢.

Note that if 𝛼2 + 2𝛼3 > 1, then the CSC population declines. Now, we set 𝛿 := 1 − (𝛼2 + 2𝛼3) to obtain the
model

¤𝑢 = 𝛿𝑘𝑢,

¤𝑣 = (1 − 𝛿)𝑘𝑢. (2)

These are the equations for the asymmetric division model that is shown in the middle of Figure 1. Note
that in general 𝛿 can be negative, which means that CSCs can decline. If 𝛿 > 0, then 𝛿 can be seen as the
fraction (or probability) of offspring that are CSCs.

Finally, in the symmetric division model on the right of Figure 1, we denote by 𝑝 the probability that
division leads to two CSCs and by 1 − 𝑝 the probability that division leads to two TCs. The equations for
this model are

¤𝑢 = 2𝑝𝑘𝑢 − 𝑘𝑢 = (2𝑝 − 1)𝑘𝑢,
¤𝑣 = 2(1 − 𝑝)𝑘𝑢. (3)

If 𝛿 = 2𝑝 − 1, then 1 − 𝛿 = 2(1 − 𝑝) and we obtain model (2) again. In reverse, if we define 𝑝 = 1
2 (𝛿 + 1),

then model (2) leads to model (3). Hence (2) and (3) are fully equivalent.
Model (1) has two free parameters 𝛼2 and 𝛼3 and we cannot uniquely recover those from the knowledge

of 𝛿 or 𝑝. However, once 𝛼2 and 𝛼3 are given, the dynamics of (1) are fully described by any of the models
(2) or (3). In the following sections, we will mostly use (2) and in cases where the probability 𝑝 is important,
we will also use model (3).

1.4 The Base Model

To obtain the base model for CSC driven solid tumors, we add three more effects into the model (2). First
of all, we introduce a competition function 𝐹 (𝑛), where 𝑛 = 𝑢 + 𝑣 denotes the total cell population. As 𝑛
increases, the availability of space and nutrients decreases until a certain carrying capacity 𝐾 is reached. For
𝑛 > 𝐾 no reproduction is possible due to limited space and limited nutrients and the cells become quiescent.
To be specific, we assume

(F) 𝐹 (𝑛) is Lipschitz continuous, 𝐹 (0) = 1, 𝐹 is non-increasing, and 𝐹 (𝑛) = 0 for all 𝑛 ≥ 𝐾 .

Our standard example is 𝐹 (𝑛) = max{1 − 𝑛, 0} and 𝐾 = 1.
We also include TC self renewal with rate 𝑘2 and TC cell death with rate 𝑎. We do not (yet) include CSC

death, since we assume that CSC are essentially immortal if unperturbed. Then our base model becomes



Cancer Stem Cells 5

¤𝑢 = 𝛿𝑘𝐹 (𝑛)𝑢
¤𝑣 = (1 − 𝛿)𝑘𝐹 (𝑛)𝑢 + 𝑘2𝐹 (𝑛)𝑣 − 𝑎𝑣.

(4)

2 The Tumor Growth Paradox

To explain how the tumor growth paradox arises from a mathematical point of view, we simplify a bit and
assume that the growth rates for CSCs and TCs are the same and equal to one: 𝑘 = 𝑘2 = 1. The same
arguments also hold for more general values, but the calculations would include additional growth rate
ratios. With this, model (4) simplifies to a two-parameter model for the fraction of CSC offspring 𝛿 and the
TC death rate 𝑎

¤𝑢 = 𝛿𝐹 (𝑛)𝑢,
¤𝑣 = (1 − 𝛿)𝐹 (𝑛)𝑢 + 𝐹 (𝑛)𝑣 − 𝑎𝑣. (5)

Definition 1 System (5) shows a tumor growth paradox, if there exist parameter values 𝑎1 > 𝑎2 and an open
time interval (𝑡1, 𝑡2), with 0 < 𝑡1 < 𝑡2 such that 𝑛𝑎1 (0) = 𝑛𝑎2 (0) and

𝑛𝑎1 (𝑡) > 𝑛𝑎2 (𝑡), for all 𝑡 ∈ (𝑡1, 𝑡2),

where 𝑛𝑎𝑖 = 𝑢𝑎𝑖 + 𝑣𝑎𝑖 denotes the solution of (5) for death rate 𝑎 = 𝑎𝑖 , 𝑖 = 1, 2.

In other words, if we consider two versions of (5) with different death rates 𝑎1 > 𝑎2 and the same initial
condition, then there is a time where the tumor with the larger death rate of TCs becomes larger than the
tumor with the lower death rate of TCs. A paradox.

In [26], we prove:
Theorem 1 Assume the conditions (F) and assume 𝛿 > 0 is small. Then (5) shows a tumor growth paradox.
The proof uses a multiscale argument, which we like to present here in some detail. It gives a lot of insight
into the dynamics of the model, and it prepares the arguments for later sections. The parameter 𝛿 is assumed
to be small enough such that the conditions of the Fenichel theorems of geometric singular perturbation
theory are satisfied [25]. Please see [26] for those details on the scaling. Here, we simply assume 𝛿 is small
and as an example we use 𝛿 = 0.01 in our simulations. We use this 𝛿 in an asymptotic expansion of model
(5). If we set 𝛿 = 0 in (5), then we obtain the leading order term, also called the fast system:

¤𝑢 = 0
¤𝑣 = 𝐹 (𝑛)𝑢 + 𝐹 (𝑛)𝑣 − 𝑎𝑣. (6)

We rescale time by setting 𝜏 = 𝛿𝑡, which describes a macroscopic time, also called the slow time scale. If
we perform this transformation in (5) and then look at the leading order term, we obtain the slow system

𝑑
𝑑𝜏
𝑈 = 𝐹 (𝑁)𝑈
0 = 𝐹 (𝑁) (𝑈 +𝑉) − 𝑎𝑉. (7)

Here we use capital letters 𝑈,𝑉, 𝑁 = 𝑈 + 𝑉 , to distinguish the slow system (7) from the fast system (6).
The second equation from (7) is an algebraic equation for 𝑈 and 𝑉 . In the (𝑈,𝑉) phase space it defines a
manifold, called the slow manifold

𝑀 := {(𝑈,𝑉) ∈ R2 : 𝐹 (𝑈 +𝑉) (𝑈 +𝑉) = 𝑎𝑉}.

We plot this manifold for three different values of 𝑎 = 0.1, 0.5, 1 in Figure 2 (A). The first equation of (7)
describes the dynamics on 𝑀 . As 𝐹 (𝑁) > 0 for 𝑁 < 1, the dynamics on 𝑀 is a continued growth until
𝑁 = 1.
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The fast system (6) describes the fast approach onto the manifold 𝑀 . In our case 𝑢(𝑡) = constant and the
𝑣-nullcline of the fast system is the slow manifold 𝑀 . The Fenichel theory of geometric singular perturbation,
which is nicely presented in [25], now ensures that the orbits of the full model (5) follow the fast system until
they reach 𝑀 , and then follow the slow system on 𝑀 . In Figure 2 (B), we show three orbits of the model (5)
for different values of 𝑎 = 0.1, 0.5, 1, which all start at the same initial value (𝑢(0), 𝑣(0)) = (0.01, 0.05),
and all end at time 𝑡 = 1000. In all three cases we see a quick vertical growth until the corresponding slow
manifold is reached. Then the orbits follow their corresponding 𝑀 . Notice that the blue curve corresponds
to the lowest death rate 𝑎 = 0.1, while the red curve corresponds to the larger rate 𝑎 = 1. The blue curve
raises much higher in the 𝑣-component, while the red curve advances further in 𝑢-direction. To see the total
population 𝑛 = 𝑢 + 𝑣 at 𝑡 = 1000, we include three helper lines for the levels of 𝑛 = 0.8, 0.9, and 1. Using
this information, we see clearly that the red curve (large 𝑎) has advanced further beyond the 0.9 level than
the green curve (medium 𝑎) and the blue curve (small 𝑎), showing the tumor growth paradox in action. We
also note that larger 𝑎 selects for a CSC enriched tumor (larger 𝑢-values).

A) B)

Fig. 2 A) The slow manifolds 𝑀 in the phase space for 𝑎 = 0.1 in blue, 𝑎 = 0.5 in green and 𝑎 = 1 in red. B) Three orbits with
a common initial condition but with different 𝑎 values illustrating the tumor growth paradox, blue: 𝑎 = 0.1, green 𝑎 = 0.5,
red: 𝑎 = 1. Gray lines denote the levels of 𝑢 + 𝑣 = 0.8, 0.9, 1.0.

3 Inclusion of Treatments and Feedbacks

To discuss the inclusion of treatments, we will present three scenarios. In the first case, we use a hypothetical
treatment on-off situation, which enables us to explain the dynamics using the slow manifold technique
from above. In that case, no attempt was made to fit to specific cancer data or cancer treatments. In Section
3.2 however, we review the results from [4] and parameterize the model for differentiation therapy of head
and neck cancer, breast cancer, and metastatic brain cancer. We will see that combination of differentiation
promoters and radiation treatment can have large beneficial effects for the patients. In Section 3.3, we
consider a model given in [50], where we included an anti-survivin treatment for non small cell lung cancer
(NSCLC). Survivin promotes TC dedifferentiation into CSCs, and a treatment with YM155 (sepantronium
bromide) inhibits survivin, i.e. inhibiting dedifferentiation [30, 42]. A fit to mouse data of NSCLC shows a
significant effect of YM155 treatment. In section 3.4 we include feedback mechanisms that arises through
cytokines that are released from the growing tumor. We find growth inhibition and Allee effects related to
those feedbacks.
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3.1 General treatments

The slow manifold analysis is quite useful when including treatments. Mathematically, treatment changes
the death rate 𝑎 of TCs and it also affects CSCs. During treatment 𝑎 is large and between treatments it is low.
As we have seen, the slow manifold 𝑀 depends on the value of 𝑎, where the manifolds with high values of
𝑎 are lower in the phase plane than the manifolds for low 𝑎 (see Figure 2). For a periodic treatment (such as
fractionated radiation), we will have two manifolds to consider, a treatment-on manifold and a treatment-off
manifold. The solution will jump between these. We illustrate this behavior in Figure 3 A), where we clearly
see jumps between a higher arc (no treatment) and a lower arc (treatment).

The model that we use for Figure 3 is slightly modified, since if treatment is applied the CSCs will be
affected, but to a lower degree. CSC have various resistance mechanism [14]. Hence, we consider

¤𝑢 = 𝛿𝐹 (𝑛)𝑢 − 𝑎𝜅𝑅(𝑡)𝑢
¤𝑣 = (1 − 𝛿)𝐹 (𝑛)𝑢 + 𝐹 (𝑛)𝑣 − 𝑎𝑣 − 𝑎𝑅(𝑡)𝑣, (8)

where 𝑅(𝑡) denotes the radiation treatment schedule. We multiply the radiation term by the natural death
rate 𝑎 such that the effect of 𝑅 can be better compared to the death rate of 𝑣. As a simple example, we assume
radiation is on for 200 time units and off for 200 time units. During treatments, 𝑅(𝑡) = 10 and in between
treatments 𝑅(𝑡) = 1. The simulations for initial condition (𝑢0, 𝑣0) = (0.2, 0.2) are shown in Figure 3. Now
the behavior depends on the size of the CSC resistance factor 𝜅. If 𝜅 is small (𝜅 = 0.001 in Figure 3 (A)), then
the disease progresses. If 𝜅 is intermediate (𝜅 = 0.008 in Figure 3 (B)) then we reach a periodic solution.
This corresponds to cancer control but not to cancer removal. And finally, for large enough sensitivity of
CSCs (𝜅 = 0.02 in Figure 3 (C)), we can observe treatment success.

A) B) C)

Fig. 3 Typical treatment scenarios with initial condition (𝑢0, 𝑣0 ) = (0.2, 0.2) . A) The CSCs are minimally affected and
𝜅 = 0.001. The disease progresses along the slow manifolds of on-treatment and off-treatment. B) Here 𝜅 = 0.008 and CSCs
are sensitive to the treatment. We obtain a trade off between tumor shrinkage during treatment and tumor regrowth in between
treatments. If treatment was repeated indefinitely, we would end up in a periodic orbit. In C), we use 𝜅 = 0.02, which leads to
full elimination of the cancer. The slow manifold for no-treatment is shown as a thin blue line and the on-treatment manifold
is shown in black.

3.2 Differentiation Therapy

Since CSCs are less sensitive to treatments [32, 44, 14], it might be possible to use drugs that force CSCs
to differentiate, thereby reducing the number of CSCs and increasing the sensitivity for treatments. As
discussed in [36, 64, 40, 69], members of the TGF-𝛽 family are known to increase differentiation. TGF-𝛽
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also affects other cancer characteristics such as immune evasion, but here we focus on the role on CSCs
differentiation. In case of leukemia, a differentiation promoting therapy, called ARTA therapy, was discussed
in [55], and in case of melanoma, interferon 𝛽 and mezerein were considered as differentiation promoters
[37].

Youssefpour et al. [69] developed a very detailed CSC model, which not only includes CSCs and
TCs, but also transient amplifying cells, chemokine induced feedback mechanisms, spatial dependence and
mechanical forces. They show that a differentiation promoter in combination with radiation treatment can
have beneficial effects, allowing reduced radiation doses to be used to achieve treatment success. In [4],
they use our simple model from above, to specifically consider parameter values for three cancers: head and
neck, breast, and metastatic brain tumors.

To include a differentiation promoter, we follow the choice of [69] and modify the probability of symmetric
CSC division as function of a differentiation promoter concentration 𝐶 (𝑡) as

𝑝(𝑡) = 𝑝min + (𝑝max − 𝑝min)
1

1 + 𝜓𝐶 (𝑡) , (9)

where 𝑝max is the self-renewal probability without any treatment and 𝑝min is the minimum self renewal
probability at maximal treatment. The parameter 𝜓 represents the sensitivity of the CSC to the chosen drug.
Since the effect of the differentiation promoter affects the probability 𝑝, we use the model formulation (3)
as our base model. We recall that the 𝑝 relates to 𝛿 as 𝛿 = 2𝑝 − 1. In our simulations, we chose 𝑝max = 0.505,
which corresponds to 𝛿 = 0.01, as chosen before. We chose 𝑝min = 0.2 as in [69], which gives a negative
𝛿 = −0.6, i.e. CSC die out at large doses of 𝐶 (𝑡).

To describe radiation damage, we use the standard linear-quadratic model (LQ-model). It describes the
surviving fraction of cells that are exposed to a dose 𝑑 as

𝑆(𝑑) = 𝑒−𝛼𝑑−𝛽𝑑2
. (10)

The parameters 𝛼 and 𝛽 denote the radio sensitivities of the tissue at hand. These values are well known
for cancer and healthy tissues, and we will consider typical values for three cancer types: head and neck,
metastatic brain cancer, and breast cancer (see Table 1). The 𝛼 term corresponds to a single hit action, i.e.
DNA damage that results from direct interaction of radiation with DNA [17, 67]. The 𝛽-term represents
double-hit action, where two non-lethal single hit events interact to form lethal damage. In our model, we
assume that CSCs have an increased ability of damage repair, hence we chose 𝛽 = 0 for CSC.

There are (at least) two methods to include fractionated radiotherapy into an ODE model of cancer. One
method is to stop the ODE model at the treatment time, and apply the surviving fraction (10) to the solution.
The new values will then be used as new initial conditions to solve the ODE for the next non-treatment
period. Alternatively, we can include the surviving fraction directly into the ODE formulation via the hazard
function approach. As shown in detail in [21], the hazard function for fractionated treatment of dose 𝑑 per
fraction is given as ℎ(𝑡) = (𝛼 + 𝛽𝑑) ¤𝐷, where ¤𝐷 is the dose rate during treatment (for example 2 Gy per
hour). In our case we have two hazard functions, one for CSC and one for TC as

ℎCSC (𝑡) = 𝛼 ¤𝐷, ℎTC (𝑡) = (𝛼 + 𝛽𝑑) ¤𝐷.

Hence our modified model for combination treatment with differentiation promoter and radiation treatment
becomes

¤𝑢 = (2𝑝(𝑡) − 1)𝑘𝐹 (𝑛)𝑢 − ℎCSC (𝑡)𝑢
¤𝑣 = 2(1 − 𝑝(𝑡))𝑘𝐹 (𝑛)𝑢 + 𝑘𝐹 (𝑛)𝑣 − 𝑎𝑣 − ℎTC (𝑡)𝑣,

(11)

where we also include the growth rate 𝑘 .
In [4], we present a full analysis of this model for different cancers and with different schedules for

𝐶 (𝑡). For these cases, we also computed the tumor control probability and analysed how it depends on
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the combination treatment. Here, we take a little simpler approach, which conveys the same message. We
consider radiation treatment for the first week (5 treatment days), and vary the probability of CSC self
renewal between its minimum 𝑝min and maximum 𝑝max values. The other model parameters are chosen from
the literature shown in Table 1.

Parameter Head and Neck Brain Breast
𝛼/𝛽 10 12 2.88

𝛼 (Gy−1) 0.35 0.3 0.08
𝛽 (Gy−2) 0.035 0.025 0.027

d (Gy) 2.53 3.8 2.26
k (1/h) 0.027 0.021 0.007

Table 1 Model parameters. The parameters for head and neck cancer were taken from [18], the values for metastatic brain
cancer from [70], and those for breast cancer from [48, 47].

Figure 4 shows the corresponding solutions of model (11). We show the CSC population in red and the
TC population in blue. The case of maximal CSC self renewal 𝑝 = 𝑝max as shown in bold lines while the
minimal self renewal 𝑝 = 𝑝min cases are shown as thin line. The value 𝑝 = 𝑝max corresponds to the absence of
differentiation promoter, while the case 𝑝 = 𝑝min assumes maximal differentiation promoter effect. Figures 4
(A), (B), and (C) show the corresponding plots for head and neck cancer, metastatic brain cancer, and breast
cancer, respectively.

We observe the largest effect of differentiation promoter for the head and neck case (A). The thin lines
are clearly below the bold lines, and the tumor declines much quicker under differentiation treatment. In the
case of metastatic brain cancer (B), we see that treatments with and without differentiation promoter are
efficient, while for breast cancer both treatments are less efficient. In each case we get slight improvement
by using a differentiation promoter. For a more detailed analysis of these cases see [4].

A) B) C)

Fig. 4 In each figure, CSCs are represented by the red curves and TCs are represented by the blue curves. Bold curves represent
the absence of a differentiation promoter in treatment and the thin curves represent the presence of a differentiation promoter in
treatment. The time is shown in hours (120 hrs = 5 days), and radiation treatment of 2𝐺𝑦 is applied on each day at 9 AM for one
hour. Figures A), B), C) represent the cases for head and neck cancer, metastatic brain cancer, and breast cancer, respectively.
In A) the treatment with a differentiation promoter is significantly better at reducing the CSCs, whereas there is less difference
between treatments in C), but the treatment with a differentiation promoter is still more effective.
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3.3 Survivin and Dedifferentiation

Since the work of Takahashi [63], it is known that non-stem cancer cells can, potentially, reverse differentia-
tion and express stem-cell like behavior. This process of dedifferentiation has been reported in many cancers
[9, 33, 35]. As non stem tumor cells (TCs) are more sensitive to radiation, dedifferentiation can lead to
radioresistance. Dahan [11] found that the inhibitor of apoptosis protein survivin supports dedifferentiation.
Survivin has a low expression in healthy tissue [3], while it is is over expressed in embryonic tissue and
in cancer tissue. Furthermore, survivin expression increases upon radiation treatment, thereby reducing
apoptosis and increasing radioresistance [11]. Nakahara [42] found that sepratonium bromide (YM155)
reduces the expression of survivin, and can be used as survivin inhibitor in treatments. Iwasa [29] used
these observations to design a detailed mouse model. They consider immuno suppressed mice that carry a
human NSCLC and perform four types of experiments: (i) a control case of no treatment, (ii) a radiation
treatment of 2 Gy per day for 5 days, (iii) a YM155 treatment, and (iv) a combination of radiation and
YM155 treatments. In [50] a CSC-based mathematical model was developed to fit to the data of Iwasa [29].
The model fits the data very well and supports the conclusion that survivin plays an important role in cancer
radio resistance.

Here, we review the model of [50] and explain the effects of survivin inhibition on a simplified treatment
model. The above base model (4) is extended by a third compartment 𝑠(𝑡) for the survivin concentration,
plus dynamics that result from survivin:

¤𝑢 = 𝛿𝑘𝐹 (𝑛)𝑢 + 𝜇(𝑠)𝑣 − 𝜏𝑠 (𝑠)𝑢,
¤𝑣 = (1 − 𝛿)𝑘𝐹 (𝑛)𝑢 + 𝑘2𝐹 (𝑛)𝑣 − 𝜇(𝑠)𝑣 − 𝜏𝑑 (𝑠)𝑣,
¤𝑠 = 𝜔𝑑𝜏𝑑 (𝑠)𝑣 + 𝜔𝑠𝜏𝑠 (𝑠)𝑢 − 𝜎𝑠,

(12)

where 𝜇(𝑠) describes the survivin-induced dedifferentiation and 𝜏𝑑 (𝑠), 𝜏𝑠 (𝑠) are the survivin dependent
death rates of CSCs and TCs, respectively. The parameters 𝑘 and 𝑘2 denote the base rates of mitosis for
CSCs and TCs, respectively. The factors 𝜔𝑑 , 𝜔𝑠 denote the survivin production rates based on cell apoptosis
events and the rate 𝜎 denotes the rate of survivin clearance. We chose to describe the availability of space
with the nonlinear function

𝐹 (𝑛) = max{1 − 𝑛4, 0}

since cells are deformable and they can squeeze into open spaces [43]. The functional forms of the survivin
dependent rates were chosen according to [69, 50]. The survivin dependent death rates are decreasing
functions of 𝑠, since survivin is an anti-apoptotic protein:

𝜏𝑠 (𝑠) =
𝜏dmax

1 + 𝜃𝑠𝑠
, 𝜏𝑑 (𝑠) =

𝜏smax

1 + 𝜃𝑑𝑠
. (13)

The survivin-induced dedifferentiation rate 𝜇(𝑠) is chosen to be a sigmoid function

𝜇(𝑠) = 𝜇max

1 +
(
𝜇max−𝜇min
𝜇min

)1− 𝑠
𝑠2
. (14)

And finally, radiation was modelled by the linear quadratic model as done before in (10). In [50], a detailed
model fitting of the model (12,13,14) to the experimental data of Iwasa [29] was performed. In Table 2, we
list the parameters that best fit those data.

In Figure 5, we show some model simulations with the parameter values from Table 2. In Figure 5 A), the
dashed lines show the tumor evolution as a function of time for the untreated (control) case. The dark blue
(dashed) line shows the CSC compartment, while the light blue line shows the TCs. Survivin concentration
is shown in pink. We clearly see the growth of a stem-cell driven tumor. The thin solid lines show the case
where survivin production is inhibited (for example by YM155). In that case, the tumor is TC dominated
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Table 2 Parameter values used for the survivin model (12).
Parameter meaning value from [50]
initial conditions
𝑢(0) initial CSC density 0.0025
𝑣(0) initial TC density 0.05
𝑠 (0) initial survivin concentration 0.0004
model parameters
𝛿 fraction of CSC after mitosis of CSC 0.01
𝑘 (𝑡𝑖𝑚𝑒−1 ) CSC mitosis rate 0.0659
𝑘2 (𝑡𝑖𝑚𝑒−1 ) TC mitosis rate 0.6256
𝜏smax (𝑡𝑖𝑚𝑒−1 ) max CSC death rate 0.002
𝜏dmax (𝑡𝑖𝑚𝑒−1 ) max TC death rate 0.5
𝜇max (𝑡𝑖𝑚𝑒−1 ) max rate of dedifferentiation 1.0997
𝜔𝑠 (𝑡𝑖𝑚𝑒−1 ) CSC survivin release 77
𝜔𝑑 (𝑡𝑖𝑚𝑒−1 ) max TC survivin release 55
𝜎 (𝑡𝑖𝑚𝑒−1 ) survivin decay rate 0.475
𝜃𝑠 (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−1 ) CSC survivin sensitivity 250
𝜃𝑑 (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−1 ) TC survivin sensitivity 125
𝜇𝑚𝑖𝑛 (𝑡𝑖𝑚𝑒−1 ) min rate of dedifferentiation 0.000001
𝑠2 (𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) 𝜇𝑚𝑎𝑥

2 survivin concentration 0.1187
radiation parameters
𝛼/𝛽 (𝐺𝑦) NSCLC LQ ratio 10
𝛼𝑠 (𝐺𝑦−1 ) CSC DNA damage single tract 0.02465
𝛼𝑑 (𝐺𝑦−1 ) TC DNA damage single tract 0.2465
𝛽𝑠 (𝐺𝑦−2 ) CSC DNA damage double tract 0.002465
𝛽𝑑 (𝐺𝑦−2 ) TC DNA damage double tract 0.02465

(golden curve) with a very small CSC compartment (black line) and zero survivin (purple). The tumor
grows slower and the composition is very different. We expect that the increased TC fraction in the case of
inhibited survivin will make this tumor much more radiosensitive.

To show this effect, we apply radiation of 5 Gy on day 3 and day 7 in Figure 5 B). Here, the dashed
lines show the growth of the total tumor 𝑢(𝑡) + 𝑣(𝑡) as functions of time without radiation. The base case
is in black and the survivin-inhibited case in red. The corresponding thin lines include radiation, which can
clearly be seen by the jumps on days 3 and 7. Radiation in the base case (thin black line) has a positive
effect on delaying the cancer growth for a few days. But it does not control the cancer. However, radiation
applied to the survivin-inhibited case (thin red line), has a drastic effect. On day 7 the cancer gets close to
zero, which can be sufficient for treatment success if random perturbations are included. Even if it is not
eradicated, the growth has been significantly delayed through the combination therapy of survivin inhibition
and radiation treatment.

These simulations, and the more detailed analysis in [50], confirm Iwasa’s [29] conclusion that survivin
inhibition might be a suitable strategy to reduce radio-resistance in cancer cells.

3.4 Inclusion of Feedback Mechanisms

Rodriguez-Berens et al. [52, 68] used a simple variation of (4) to study feedback mechanisms that control
CSC self renewal. In the experiments of Lander and others [36, 68], two effects were identified. The first
effect is that a growing TC compartment down-regulates the proliferation rate 𝑘 . Secondly, the growing TC
compartmen reduces the probability of CSC self renewal 𝑝. Hence in [52], they assume that both 𝑘 (𝑣) and
𝑝(𝑣) depend on the TC compartment as strictly decreasing functions, which converge to 0 as 𝑣 → ∞. Their
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A) B)

Fig. 5 A) dashed curves show the solutions of the survivin model (12) without treatment, CSCs dark blue, TCs blue, survivin
pink; the solid lines are the model with survivin inhibition, CSCs in black, TCs in gold and survivin in purple. B) Total cancer
population 𝑢(𝑡 ) + 𝑣(𝑡 ) as function of time for the four cases: survivin + no treatment in dashed black, survivin + treatment in
solid black, no survivin + no treatment in dashed red and no survivin + treatment in solid red.

model reads
¤𝑢 = (2𝑝(𝑣) − 1)𝑘 (𝑣)𝑢
¤𝑣 = 2(1 − 𝑝(𝑣))𝑘 (𝑣)𝑣 − 𝑎𝑣. (15)

Compared to (4), this model has no TC self renewal (i.e. 𝑘2 = 0) and also no volume mechanism (i.e.
𝐹 (𝑛) ≡ 1). The authors chose 𝑝(0) > 0.5 as otherwise the cancer would not grow in the first place. Using
the above model (15), they find in [52] that growth control depends significantly on the self renewal proba-
bility 𝑝(𝑣) and feedback on 𝑝 is essential. Roughly speaking, we need to achieve 𝑝(𝑣) < 0.5 for large values
of 𝑣 such that CSCs can decay. Feedback in the division rate 𝑘 (𝑣) will only change the speed of growth, but
will not control tumor growth [52].

In the context of colorectal cancers, it has been found that healthy stem cells and also cancer stem cells
release the molecule Wnt as a self renewal promoter [1], thereby creating a positive feedback between CSC
growth and CSC self renewal. Hence in Konstorum et al. [34], they included such a positive feedback into the
CSC model. A self renewal promoter 𝑤(𝑡) is included, and, as before, TGF-𝛽 is modelled as differentiation
promoter 𝐶 (𝑡). The CSC model then becomes

¤𝑢 = (2𝑝(𝐶, 𝑤) − 1)𝑘𝑢
¤𝑣 = 2(1 − 𝑝(𝐶, 𝑤))𝑘𝑢 − 𝑎𝑣 (16)
¤𝐶 = 𝜈𝑣 − 𝜇𝐶

¤𝑤 = 𝑤

(
𝛽𝑢𝑤

1 + 𝜆𝑤 − 1
)
,

where the probability of CSC self renewal is increasing in 𝑤 and decreasing in 𝐶 with a functional form as
in (9)

𝑝(𝐶, 𝑤) = 𝑝min + (𝑝max − 𝑝min)
𝜉𝑤

1 + 𝜉𝑤
1

1 + 𝜓𝐶 ,

and 𝑝min, 𝑝max, 𝜉, 𝜓 > 0 are constants. The differentiation promoter 𝐶 is produced by the TC at rate 𝜈 > 0
and decays at rate 𝜇 > 0. The growth activator 𝑤 shows saturated growth with a finite carrying capacity
and the coefficients 𝛽 and 𝜆 are constant. In [34], the model (16) is simplified by assuming that 𝐶 and 𝑣 are
in quasi steady state. In our words this means that we look at the dynamics of (16) on the slow manifold.
For this reduced system, the existence of an Allee effect is shown in [34]. If the CSC and self promoter
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𝑤 are too small, then the CSC population dies off. The tumor can only grow if there is a sufficiently large
CSC and 𝑤 compartment. This observation has consequences for treatment since cancer does not need to be
fully extinct via treatment. Rather, it is sufficient to reduce its size below an Allee threshold, such that the
tumor can no longer self sustain and dies out. It is really interesting to see that such a positive feedback loop
between CSC and 𝑤 can produce an Allee effect. In the above two models (15) and (16), we did not include
TC self renewal (i.e. 𝑘2 = 0) and neither the volume filling constraints 𝐹 (𝑛). It is an interesting question to
include TC self renewal 𝑘2 ≠ 0 and volume filling terms 𝐹 (𝑛) in these models to see how the results change
with the inclusion of these effects.

4 Spatially Explicit Models for CSCs

As we now understand the cancer stem cell model and its modifications very well, it is time to put it into
the spatial context. We could simply, as many authors do, add diffusion terms to the equations of (4). This
however, appears too naive for our purpose. Rather, we take guidance from the work of Enderling et al.
[15, 65], where a spatial cancer stem cell model was developed as an individual based cellular automaton.
They consider a square grid where each grid cell can be either occupied by a CSC or a TC, or be empty.
Cells can divide if nearby empty cells are available. Otherwise, they stay quiescent or die. In addition, cells
are able to randomly move to nearby grid cells, if space is available. The CSCs have unlimited replicative
potential, while the TCs can only divide a limited amount of time. In simulations, it is seen that CSCs
surround themselves with TCs, which in turn occupy space and inhibit further CSC divisions. CSCs become
trapped and tumor growth stops. Once TCs are removed, say via treatment, space for CSC division and
movement becomes available which results in more CSCs, eventually leading to a larger tumor. This effect
is known as the tumor growth paradox. In [15], the ability of cells to move randomly seemed important, as
otherwise the tumor growth paradox would not arise.

4.1 Birth-Jump Models

Here we take the rules of Enderling’s cellular automaton model [15] and formulate them as a spatial
continuous model, using the framework of birth-jump models [27]. A birth-jump process is a process where
population growth and spread are not decoupled but rather interdependent. In our context, we assume that
upon division one daughter cell replaces the mother, while the other daughter cell is redistributed locally to
some empty space. Mathematically, we introduce a spatial relocation kernel 𝐾 (𝑥, 𝑦) and as before a function
for the volume effect 𝐹 (𝑛). We denote the spacial domain by Ω and for 𝐾 , 𝐹, Ω we assume:

(𝐴.1) 𝐾 ≥ 0, 𝐾 ∈ 𝐶 (Ω̄, Ω̄), 𝐾 ∈ 𝐿2 (Ω ×Ω),
∫
Ω

𝐾 (𝑥, 𝑦)𝑑𝑥 = 1,
∫
Ω

𝐾 (𝑥, 𝑦)𝑑𝑦 ≤ 1.

(𝐴.2) 𝐹 : R+ → [0, 1], 𝐹 (0) = 1, 𝐹 (𝑛) = 0 for 𝑛 ≥ 1
𝐹 is non-increasing and Lipschitz continuous.

(𝐴.3) Ω ⊂ R𝑛 is either a smooth bounded domain, or it is Ω = R𝑛.

Then the spatially dependent cancer stem cell birth-jump model, introduced in [26], reads
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𝑢𝑡 (𝑥, 𝑡) = 𝑑𝑢Δ𝑢(𝑥, 𝑡) + 𝛿𝑘
∫
Ω

𝐾 (𝑥, 𝑦)𝐹 (𝑛(𝑥, 𝑡))𝑢(𝑦, 𝑡)𝑑𝑦 (17)

𝑣𝑡 (𝑥, 𝑡) = 𝑑𝑣Δ𝑣(𝑥, 𝑡) + (1 − 𝛿)𝑘
∫
Ω

𝐾 (𝑥, 𝑦)𝐹 (𝑛(𝑥, 𝑡))𝑢(𝑦, 𝑡)𝑑𝑦 + 𝑘2

∫
Ω

𝐾 (𝑥, 𝑦)𝐹 (𝑛(𝑥, 𝑡))𝑣(𝑦, 𝑡)𝑑𝑦 − 𝑎𝑣,

where again 𝑛(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) and 𝑑𝑢, 𝑑𝑣 are diffusion coefficients. The above system needs to be
equipped with appropriate boundary conditions, for example with the no-flux boundary conditions

𝜕𝑢

𝜕𝑛
=
𝜕𝑣

𝜕𝑛
= 0, where 𝑛 denotes an outer normal on 𝜕Ω. (18)

Maddalena et al. [38] provided a full solution theory for (17,18). The diffusion terms are the leading order
differential operators. As they define strongly continuous semigroups of 𝐿2 and 𝐻1 spaces, we can consider
the integral terms as compact perturbations. Then perturbed semigroup theory can be applied [45] to obtain
unique local solutions. Furthermore, Maddalena et al. [38] show the following

Theorem 2 Assume 𝑛 ≤ 3 and 𝑢0, 𝑣0 ∈ 𝐻2 (Ω). Then there exists a unique global solution of (17) with
𝑢(., 𝑡), 𝑣(., 𝑡) ∈ 𝐻2 (Ω) and

𝑢(𝑥, 𝑡) ≥ 0, 𝑣(𝑥, 𝑡) ≥ 0, 0 ≤ 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) ≤ 1, for all (𝑥, 𝑡).

Moreover, Maddalena et al. [38] show with an energy principle, that all stationary states are spatially
homogeneous. Hence, the model (17) excludes formation of small and stationary tumor masses. This is a
serious short coming, since not all tumors continue to grow. The reason is the included diffusion terms,
which always allow CSC and TC to escape and invade further.

In Borsi et al. [8] they consider the above model (17) without diffusion terms, i.e. 𝑑𝑢 = 𝑑𝑣 = 0. The
leading order terms are now the non-linear integral operators and a semigroup method is not applicable.
Instead, the authors use a fixed point argument. They assume for the initial conditions 𝑢0 (𝑥), 𝑣0 (𝑥) that

(𝐵) 𝑢0, 𝑣0 ∈ 𝐶 (Ω̄), 𝑢0 ≥ 0, 𝑣0 ≥ 0, 0 ≤ 𝑢0 + 𝑣0 ≤ 1.

Using a-priori estimates and a fixed point argument, it was shown in [8]:

Theorem 3 Assume (A), (B) and 𝑑𝑢 = 𝑑𝑣 = 0. Then (17) has a unique global solution

𝑢, 𝑣 ∈ 𝐶 (Ω̄ × [0,∞)),

with
𝑢(𝑥, 𝑡) ≥ 0, 𝑣(𝑥, 𝑡) ≥ 0, 0 ≤ 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) ≤ 1, for all (𝑥, 𝑡).

Also, in Borsi et al. [8] numerical simulations were performed which again confirm the tumor growth
paradox. We expect that the model (17) without diffusion would support finite size stationary tumors, but to
prove this mathematically is an open question.

4.2 Reaction Diffusion Models

Spatial integral operators are in some sense close to differential operators. This can be seen for symmetric
kernels 𝐾 ( |𝑥− 𝑦 |), which have small variance and even smaller higher moments. We can expand the integral
operator as
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𝐾 ( |𝑥 − 𝑦 |)𝐹 (𝑛(𝑥, 𝑡))𝑢(𝑦, 𝑡)𝑑𝑦 (19)

≈ 𝐹 (𝑛(𝑥, 𝑡))
[
𝐴𝑢(𝑥, 𝑡) + 𝐵𝑖 𝑗 (𝑥)𝜕𝑖𝜕 𝑗𝑢(𝑥, 𝑡) + 𝐶𝑖 𝑗𝑘𝑙 (𝑥)𝜕𝑖𝜕 𝑗𝜕𝑘𝜕𝑙𝑢(𝑥, 𝑡) + h.o.t.

]
where the partial symbols 𝜕 𝑗 stand for the partial spatial derivatives in direction 𝑥 𝑗 . The coefficients 𝐴, 𝐵, 𝐶
denote the first even moments of K, where 𝐴 is a scalar, 𝐵 a 2-tensor and 𝐶 a 4-tensor:

𝐴 :=
∫
Ω

𝐾 ( |𝑦 |)𝑑𝑦, 𝐵𝑖 𝑗 (𝑥) =
1
2

∫
Ω

(𝑥 − 𝑦)𝑖 (𝑥 − 𝑦) 𝑗𝐾 ( |𝑦 |)𝑑𝑦

𝐶𝑖 𝑗𝑘𝑙 (𝑥) =
1

24

∫
Ω

(𝑥 − 𝑦)𝑖 (𝑥 − 𝑦) 𝑗 (𝑥 − 𝑦)𝑘 (𝑥 − 𝑦)𝑙𝐾 ( |𝑦 |)𝑑𝑦

where the indices denote vector components and we use summation convention for repeated indices. Note
that our earlier assumption (A) implies that 𝐴 = 1.

Fasano et al. [16] looked at this case in one dimension up to order two. In this case, the diffusion cancer
stem cell model becomes

𝑢𝑡 = 𝑑𝑢𝑢𝑥𝑥 + 𝛿𝑘𝐹 (𝑛) (𝑢 + 𝐵𝑢𝑥𝑥) (20)
𝑣𝑡 = 𝑑𝑣𝑣𝑥𝑥 + (1 − 𝛿)𝑘𝐹 (𝑛) (𝑢 + 𝐵𝑢𝑥𝑥) + 𝑘2𝐹 (𝑛) (𝑣 + 𝐵𝑣𝑥𝑥) − 𝑎𝑣

The authors in [16] note that this problem is not well defined as a biological model, since the 𝐵𝑢𝑥𝑥-term
in the second equation could lead to negative solutions for 𝑣, which is biologically unrealistic. They argue,
however, that such a case is artificial and not be relevant in applications. Nevertheless, they show for model
(20):

Theorem 4 Let 𝑢0, 𝑣0 ∈ 𝐶2+𝛾 (R) such that

𝑢0 (𝑥) ≥ 0, 𝑣0 (𝑥) ≥ 0, 0 ≤ 𝑢0 (𝑥) + 𝑣0 (𝑥) ≤ 1 − 𝑀

for some small 𝑀 > 0. Then (20) has a unique local classical solution 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) which satisfies
𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) ≤ 1 for all times 𝑡 < 𝑇∗.

In [57], we go one step further and also assume that 𝐵 is small such that the 𝐵-terms can be ignored. This
means the model simplifies further and becomes

𝑢𝑡 = 𝑑𝑢𝑢𝑥𝑥 + 𝛿𝑘𝐹 (𝑛)𝑢, (21)
𝑣𝑡 = 𝑑𝑣𝑣𝑥𝑥 + (1 − 𝛿)𝑘𝐹 (𝑛)𝑢 + 𝑘2𝐹 (𝑛)𝑣 − 𝑎𝑣.

This model does preserve positivity. It is also the model we would have obtained if we simply added diffusion
terms to (4). However, now we know how it was derived and what assumptions were used to get to this model.
Existience and uniqueness for model (21) is now covered by standard arguments for parabolic equations.
The diffusion terms define a semigroup, and the other terms are globally Lipschitz-continuous perturbations,
implying global classical solutions of (21) for standard boundary conditions [45].

A further interesting open problem arises if fourth order terms from the above expansion (19) were
included. The effect on spatial invasion and regularity of solutions has not been studied yet.
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4.3 The Tumor Invasion Paradox

With the above model (21), we come back full circle to the tumor growth paradox. In the spatial context, the
tumor growth paradox leads to an increased cancer invasion speed for increased TC death rates. We call this
a tumor invasion paradox. We can prove the tumor invasion paradox for a special case of (17). We assume
the base mitosis rates for CSC and TC are the same and equal to one 𝑘 = 𝑘2 = 1. We also assume that the
diffusion coefficients for CSC and TC are the same, since these are cells of similar size, and that diffusion
is slow such that 𝑑𝑢 = 𝑑𝑣 = 𝛿𝑑, for an order one value 𝑑. The resulting system becomes

𝑢𝑡 = 𝛿𝑑𝑢𝑥𝑥 + 𝛿𝐹 (𝑛)𝑢 (22)
𝑣𝑡 = 𝛿𝑑𝑣𝑥𝑥 + (1 − 𝛿)𝐹 (𝑛)𝑢 + 𝐹 (𝑛)𝑣 − 𝑎𝑣.

As in Section 2, we consider 𝛿 to be small and use perturbation arguments. To leading order (𝛿 → 0), we
obtain the fast system

𝑢𝑡 = 0 (23)
𝑣𝑡 = 𝐹 (𝑛)𝑢 + 𝐹 (𝑛)𝑣 − 𝑎𝑣,

which, as before, describes fast convergence towards the slow manifold

𝑀 := {(𝑢, 𝑣) : 𝑎𝑣 = 𝐹 (𝑢 + 𝑣) (𝑢 + 𝑣)}.

Rescaling time as 𝜏 = 𝛿𝑡 gives us the slow system, which to leading order becomes

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝐹 (𝑢 + 𝑣)𝑢 (24)
0 = 𝐹 (𝑢 + 𝑣)𝑢 + 𝐹 (𝑢 + 𝑣)𝑣 − 𝑎𝑣.

The second equation ensures that the dynamics are on the slow manifold 𝑀 , while the first equation of (24)
describes the dynamics on 𝑀 .

In [57], we analyse the properties of the slow manifold in detail. We show that on 𝑀 , 𝑣 can be written as
a graph on 𝑢, i.e. 𝑣 = 𝑣𝑎 (𝑢). We use an index 𝑎 to indicate that this map depends on the death rate 𝑎. Using
this representation, we can write the first equation of (24) as an equation for 𝑢 alone as

𝑢𝜏 = 𝑑𝑢𝑥𝑥 + 𝐹 (𝑢 + 𝑣𝑎 (𝑢))𝑢. (25)

In [57], we show that this equation (25) is a bistable equation of Fisher-KPP type and we can look for
travelling wave solutions. Travelling wave solutions are solutions that retain their shape and either propagate
to the left or right with a constant speed. For example, a travelling wave solution propagating to the right
can be written as 𝑢(𝑥, 𝑡) = 𝜑(𝑥 − 𝑐𝑡) where 𝑐 is a constant that defines the speed of the wave and 𝜑(𝑧) with
𝑧 = 𝑥 − 𝑐𝑡 gives the wave profile [12]. Additionally, 𝜑 satisfies

𝜑(−∞) = 1 and 𝜑(∞) = 0.

This means that on the left the population density has reached its maximum size of 1, but the population has
not yet arrived to the space on the right [12]. Since we know that (25) is of Fisher-KPP type, we can directly
apply the known results on travelling waves for Fisher-KPP equations [66, 12]. To formulate the result, we
define invasion initial conditions.

Definition 2 A invasion initial condition for 𝑢0 (𝑥) is a non-increasing function 𝑢0 (𝑥) that satisfies

lim
𝑥→−∞

𝑢0 (𝑥) = 1, 𝑢0 (𝑥) = 0 for all 𝑥 ≥ 𝑥∗, for some 𝑥∗ ∈ R.
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We show in [57]:

Theorem 5 We assume the previous assumptions (A) and (B), 𝑎 > 0 and that 𝐹′ (𝑛) < 0 for 0 ≤ 𝑛 ≤ 1. We
consider invasion initial conditions for 𝑢0 (𝑥) and denote the solution of (25) with 𝑢(𝜏, 𝑥).

1. If 𝑎 ≥ 1 then 𝑢(𝜏, 𝑥) converges to a travelling wave with minimum wave speed

𝑐∗ = 2
√
𝑑.

2. If 𝑎 < 1 then 𝑢(𝜏, 𝑥) converges to a travelling wave with minimum wave speed

𝑐∗ = 2
√
𝑑𝑎.

The cases connect continuously for 𝑎 → 1.

We see that for large 𝑎 (𝑎 > 1) the wave speed is independent of its value. However, for small 𝑎 we see an
invasion paradox. Reducing the death rate 𝑎 reduces the invasion speed, quite contrary to what is expected.

We simulate (25) by choosing 𝐹 = 1 − 𝑛 where 𝑛 = 𝑢 + 𝑣. We choose this simple function 𝐹 for the
ease of computation since in [57] it was shown that any 𝐹 satisfying the assumptions in Theorem 5 the
resulting numerical solutions are very similar. We set 𝑑 = 1 for simplicity and focus on studying the death
rates 𝑎 = 3, 1, 0.5, 0.1 as these highlight the key dynamics of the solutions to (25). By using the 𝑝𝑑𝑒𝑝𝑒
solver in MATLAB, we numerically obtain the travelling wave solutions of (25) shown in Figure 6. In these
simulations, the initial condition is a step function where 𝑢0 (𝑥) = 1 for 𝑥 < 𝑥∗ and 𝑢0 (𝑥) = 0, otherwise.
We set 𝑥∗ = 20 and stop the simulation at 𝜏 = 80 to illustrate the main behaviour of the solutions given our
parameter choices.

In Figure 6, we can clearly see the invasion paradox. For 𝑎 ≥ 1, we see that there is not much difference
in the travelling wave solutions or invasion speeds as Theorem 5 states. However, for 𝑎 < 1, as 𝑎 decreases
the travelling wave solutions become slower, illustrating the invasion paradox.

𝑎 3 1 0.5 0.1
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Fig. 6 Travelling wave solutions at 𝜏 = 0, 16, 32, 48, 64, 80 of system (25). The value of 𝑎 is given in column headers. The
initial condition is a step function satisfying the invasion initial condition with 𝑥∗ = 20. For death rates 𝑎 = 3, 1 no invasion
paradox is present, whereas for 𝑎 = 0.5, 0.1 the invasion paradox can be observed where the solutions for 𝑎 = 0.5 invade faster
into space that the solutions with 𝑎 = 0.1.

In summary, the invasion paradox is an underlying property of (21). This shows that in addition to
the tumor growth paradox, the invasion paradox may be at play. This means that cancer treatments may
additionally increase tumor spread [57]. Fortunately, shorter treatments were shown to not significantly
increase spread [57], but the invasion paradox becomes more significant in long term treatments.
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5 Conclusions and Open Questions

The inclusion of CSC dynamics into solid tumor modelling adds another dimension to the discussion of
tumor growth. On the one hand, CSCs are essential to keep a tumor growing, while on the other hand, CSCs
can be blocked from space and nutrients making them quiescent. Once we wake them up, by liberating space
or supplying nutrients, they divide again and possibly create a worse situation than before. Mathematically,
this was expressed through the tumor growth paradox and the tumor invasion paradox. Through the spatial
modelling, we observe a dichotomy between treatment-related tumor cell death and treatment induced spatial
invasion. A fine balance needs to be achieved so that all CSCs are killed before the tumor can spread any
further.

We included many cancer related effects into the modelling, such as treatments, combination therapies,
feedback mechanisms, and spatial dependence. But this is just scratching the surface. Many interesting
questions remain, and many of them are accessible to mathematical modelling. Here we like to summarize
some of the questions that we find interesting for further study.

1. Hallmarks: We related the CSC modelling to the hallmarks (H1) sustained growth signals, (H2) evasion of
growth suppression, (H3) resistance of cell death, (H4) replicative immortality, (H6) metastasis formation,
and (H14) senescence. We expect that CSC play important roles in the other hallmarks as well, and a
detailed modelling of those seems to be a natural place to continue. For example, the interaction of
immune cells and CSCs is relatively poorly understood. There is indication [53] that CSCs evade immune
destruction. This implies that an immune response would select for CSCs [26]. CSCs might also be able
to re-educate immune cells to become pro-tumor immune cells [56, 51].

2. Allee effect: The Allee effect model (16) did not include the volume constraint 𝐹 (𝑛) and TC self
reproduction. It would be interesting to extend the model (16) by including those terms and analyzing
how the Allee threshold changes with those terms.

3. Geometric singular perturbation theory for PDEs: We saw that the slow manifold analysis is a quite
powerful tool to understand the paradoxical behavior in tumor dynamics. For the ODE cases this is
justified through the Fenichel theorems [25] for geometric singular perturbation theory. Unfortunately,
such a theory is missing for the PDE models. Hence our scaling analysis in the PDE case is just a formal
expansion without an abstract backbone behind it. Some early results for PDEs are available in the work
of Bates et al. [5].

4. Compact-support steady states for birth-jump models: It would be important to understand possible
steady states of the non-local spatial model (17) without diffusion, (𝑑𝑢 = 𝑑𝑣 = 0). Since the steady states
represent solid tumors that stopped growing. We saw that if diffusion is added, steady states are constants
[38]. However, without diffusion, we expect that non-constant steady states with compact support are
possible. This will, of course, depend on the choice of the integral kernel 𝐾 (𝑥, 𝑦).

5. Tumor spheroids: It would also be interesting to see the relative distribution of CSCs in a spatially
extended tumor. There is extensive material available about CSC distributions in growing spheroids [28]
and this material is just waiting for a mathematical analysis.

6. Fourth order terms: In the moment expansion of the integral term (19), Fasano et al. [16] stopped
at the second order term (20). Many colleagues asked what would happen if the fourth order terms in
(19) were included. In that case the model gets a Cahn-Hilliard [41] type structure, and phase separation
phenomena might occur, where one phase describes tumor present and the other phase tumor absent.
Interesting dynamics on the phase boundaries might occur.
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