
Application of Natural Language Processing and
Information Retrieval in Two Software Engineering

Tools

by

Hazel Victoria Campbell

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Hazel Victoria Campbell, 2021

Abstract

Many software engineering problems have traditionally been approached by ap-

plying techniques based on static analysis and fixed sets of rules. I created two

novel techniques to tackle three software engineering problems: typo location,

fix suggestion, and crash report bucket creation. However, unlike previous

techniques based on static analysis or a fixed set of rules, these techniques are

based on methods commonly used to handle natural language artifacts.

Existing tools and previous work typically tries to be general and work

with any valid program or theoretically possible output. In contrast, this

thesis builds upon the success of prior work that successfully applied NLP

models to code to improve code completion in an IDE (Integrated Development

Environment). This thesis continues in that vein and presents tools that focus

on the code that programmers actually write and the crashes that actually

occur.

First, I applied natural-language models to locate errors in source code

that cause the code to fail to compile or create an error when the code runs.

Language models can adapt to coding styles and idioms. My co-authors and I

showed that a tool using an n-gram model of code previously compiled success-

fully could supplement errors with locations produced by the Java compiler.

Using our tool to suggest a location after each error message produced by the

Java compiler resulted in an MRR score 11-40% closer to a perfect score than

the Java compiler’s score. Then, my co-authors and I showed that a similar

ii

approach also worked with the Python interpreter, though it faced signifi-

cantly more challenges. When combined with the Python interpreter’s error

messages, our approach correctly located an additional 9-23% of tested typos

made by mutation. Next, my co-authors and I showed that the technique still

worked in a more restricted offline setting. In addition, we showed that the

approach could also accurately suggest changes to repair around a third of

typos made by students.

I also applied the TF-IDF representation and distance function to the task

of bucketing (clustering) software crash reports. In all cases, performance (in

terms of F1-score) matched or beat commonly used rule-based techniques. The

TF-IDF-driven approach can adapt automatically to patterns in crash reports

as they evolve. Additionally, several side benefits arose from using statistical

techniques. Some errors in source code can be automatically repaired using a

language model. Patterns in crash metadata can be extracted easily using a

bag-of-words approach with a suitable tokenizer.

This thesis’s results encourage research on approaches based on on-line

off-the-shelf algorithms or models initially developed for natural-language arti-

facts with programming language and other software artifacts. However, this

thesis’s results do not necessarily guarantee that such uses will be successful;

it does indicate that they should, at least, be considered.

iii

Preface

Some of the research conducted for this thesis forms part of a research collab-
oration led by Professor Abram Hindle at the University of Alberta. Professor
Abram Hindle also provided some of the software in Chapter 3. The experi-
ments and data analysis procedures in Chapter 3 and Chapter 4 were designed
by myself, with Professor Abram Hindle and Professor José Nelson Amaral’s
assistance. The experiments and data analysis procedures in Chapter 5 were
designed by myself, with assistance from Eddie Antonio Santos, Professor
Abram Hindle, and Professor José Nelson Amaral.

Chapter 3 has been published as Campbell et al. (2014). I was responsible
for software development, data collection, data analysis, and the majority of
manuscript composition. Dr. Abram Hindle provided the related work section
and Figure 3.1. Professor Abram Hindle and Professor José Nelson Amaral
provided editing and supervision and were involved with concept formation.

Some of the research conducted for this thesis forms part of a research
partnership between the University of Alberta and BioWare, ULC, a division
of Electronic Arts, led by Professor Abram Hindle at the University of Alberta.
The software referred to in Chapter 7 was developed by myself with feedback
from Professor Abram Hindle and BioWare.

Chapter 4 has been distributed without peer review as Campbell et al.
(2015). I was responsible for software development, data collection, data anal-
ysis, and the majority of manuscript composition. Professor Abram Hindle
and Professor José Nelson Amaral provided editing and supervision and were
involved with concept formation.

iv

Apart from tables, Chapter 5 has not been published elsewhere. I am the
sole author of the text and algorithms presented in Chapter 5. Eddie Antonio
Santos was heavily involved in concept formation, experimental design, and
producing results. Professor Abram Hindle and Professor José Nelson Amaral
were involved with concept formation, manuscript revision, and supervision.

Chapter 6 has been distributed without peer review as Campbell et al.
(2016b). The data collection was performed by myself. Data analysis was
performed by myself with assistance from Eddie Antonio Santos. Professor
Abram Hindle was involved with concept formation, manuscript revision, and
supervision.

Chapter 7 has been published as Campbell et al. (2016a). The data col-
lection and data analysis were performed by myself. Manuscript composition,
software development, and data analysis were performed by myself with Ed-
die Antonio Santos’s assistance. Professor Abram Hindle and BioWare, ULC,
were involved with concept formation. Professor Abram Hindle was involved
with manuscript revision and supervision.

Chapters 1, 2, and 8 were written entirely by me and have not been pub-
lished elsewhere. Professor Abram Hindle, Professor José Nelson Amaral, and
Professor Sarah Nadi provided feedback for manuscript revisions.

v

To my cat, Senator Whiskers
For being there for me throughout my studies and my research.

vi

Very nice!

— Peter Norvig, 2015.

vii

Acknowledgements

The work for chapters 6 and 7 was funded by a MITACS Accelerate Cluster
with BioWare, ULC.

The work for chapters 3 and 4 was funded by University of Alberta PhD
recruitment and early achievement scholarships, and an NSERC Discovery
grant.

viii

Contents

1 Introduction 1
1.1 Two Engineers . 1
1.2 Motivation . 4
1.3 The Road to Data-driven SE Tooling 6

1.3.1 Thesis Statement . 10
1.4 Research Presented in this Thesis 11
1.5 Contributions . 12
1.6 Potential Applications . 14
1.7 Organization . 15

2 Terminology and Philosophy 16
2.1 Typos . 16
2.2 Unnatural Tools . 18
2.3 The Unnatural Way . 20

3 Dynamic Detection of Typographical Errors in Java Code 23
3.1 Preface . 23

3.1.1 Acknowledgements . 23
3.1.2 Significance . 23
3.1.3 Impact . 24

3.2 Abstract . 24
3.3 Motivation . 25
3.4 Background . 27

3.4.1 Previous Work . 30
3.5 A Prototype Implementation of UnnaturalCode 33
3.6 Validation Method . 37

3.6.1 Mean Reciprocal Rank 39
3.7 Validation Results . 40
3.8 Discussion . 48

3.8.1 Performance on Milestones 49
3.8.2 Performance on Revisions 50
3.8.3 Performance with Interleaved Errors 51

3.9 Threats to Validity . 52
3.10 Future Directions . 53
3.11 Conclusion . 54

4 Dynamic Detection of Typographical Errors in Python Code 56
4.1 Preface . 56

4.1.1 Acknowledgement . 56
4.1.2 Significance . 56
4.1.3 Impact . 57

4.2 Abstract . 57
ix

4.3 Introduction . 58
4.4 Background . 60

4.4.1 n-Grams in Software Engineering 60
4.4.2 Programming Errors 61
4.4.3 Technical approaches to Syntax Errors 62

4.5 Implementation . 64
4.6 Experimental Validation Procedure 68
4.7 Results . 70

4.7.1 Comparison to UnnaturalCode with Java 77
4.8 Discussion . 80

4.8.1 UnnaturalCode.py Performance 80
4.8.2 Properties of Python 81

4.9 Threats to Validity . 87
4.10 Future Work . 88
4.11 Conclusions . 89

5 From Online Location to Offline Correction of Typographical
Errors in Code 93
5.1 Preface . 93

5.1.1 Acknowledgement . 93
5.1.2 Relationship with “Syntax and Sensibility” 93
5.1.3 Significance . 94
5.1.4 Terminology . 94

5.2 Introduction . 95
5.2.1 Motivation . 95
5.2.2 Prior Work . 96

5.3 Methodology . 97
5.3.1 Tokenization . 98
5.3.2 Locating syntax errors 98
5.3.3 Fixing syntax errors 100

5.4 Evaluation . 102
5.4.1 Novice Mistakes . 104
5.4.2 Big Java . 106

5.5 Results . 107
5.5.1 Research Answers . 109
5.5.2 Comparison with LSTM model 110

5.6 Discussion . 110
5.6.1 Single-edit Repairs . 110
5.6.2 Constrained Performance 111
5.6.3 What is a Correct Location 113
5.6.4 Comparison with Previous Chapters 113
5.6.5 General Limitations of this Evaluation 114
5.6.6 The Benefits of Cheap Models 115

5.7 Conclusion . 118
5.7.1 Automated Repair . 118

6 Statistical Properties of Crash Reports 119
6.1 Preface . 119

6.1.1 Acknowledgement . 119
6.1.2 Significance . 119

6.2 Introduction . 120
6.3 Terminology . 122
6.4 Prior Work . 125

6.4.1 Studying crash report repositories 126
x

6.4.2 Stacktrace crash report deduplication 127
6.5 Data . 128

6.5.1 How do crashes make it into Launchpad? 129
6.5.2 Why Launchpad? . 129
6.5.3 How were the crashes obtained? 130
6.5.4 What do the crashes look like? 130

6.6 Research Questions, Methodology and Results 131
6.6.1 RQ1. How are crashes distributed among applications? 132
6.6.2 RQ2. How are crashes distributed among buckets? . . 136
6.6.3 RQ3. How long do crash buckets last? 139
6.6.4 RQ4. What Unix signals are crashes associated with? . 144
6.6.5 RQ5. What CPU architectures experienced the crashes? 146
6.6.6 RQ6. How long are crash stacktraces? 148
6.6.7 RQ7. How are crashes associated with recursion? . . . 151
6.6.8 RQ8. How long are function names in crashes? 154
6.6.9 RQ9. What are the most common crashing functions? 158
6.6.10 RQ10. What are the most common crashing libraries? 160

6.7 Threats to validity . 162
6.7.1 Threats to construct validity 162
6.7.2 Threats to internal validity 162
6.7.3 Threats to external validity 163

6.8 Conclusions . 163

7 Clustering Automatically Generated Software Crash Reports166
7.1 Preface . 166

7.1.1 Acknowledgement . 166
7.1.2 Significance . 166
7.1.3 Impact . 167
7.1.4 Extensions . 167

7.2 Introduction . 168
7.2.1 Contributions . 169
7.2.2 What makes a crash bucketing technique useful for in-

dustrial scale crash reports? 170
7.2.3 Background . 173
7.2.4 Methods Not Appearing In This Report 175

7.3 Methodology . 179
7.3.1 Mining Crash Reports 180
7.3.2 Crash Bucket Brigade 183
7.3.3 Deciding when a Crash is not Like the Others 183
7.3.4 Implementation . 184
7.3.5 Evaluation Metrics . 185

7.4 Results . 188
7.4.1 BCubed and Purity 188
7.4.2 Bucketing Effectiveness 191
7.4.3 Tokenization . 195
7.4.4 Runtime Performance 199

7.5 Discussion . 199
7.5.1 Threats to Validity . 199
7.5.2 Related work . 199
7.5.3 Future Work . 200

7.6 Conclusion . 201
7.7 Errata . 202

xi

8 Conclusion 204
8.1 Summary . 204
8.2 Future Work . 207

8.2.1 General Motivations Future Work 207
8.2.2 Questions for Future Work 209

8.3 Remarks . 211
8.3.1 Thoughts . 212

References 214

xii

List of Tables

3.1 Validation Data Summary Statistics 37
3.2 Cumulative Mean Reciprocal Ranks (Mean MRR) 41
3.3 Interleaved Error Mean Reciprocal Ranks (MRRs). 48
3.4 Reduction of the gap between the Java compiler’s MRR score

and a perfect MRR score of 1.0. 49

4.1 Experimental Data Summary 71
4.2 Fraction of Mutations Located by Mutation Type 72
4.3 Error-Generating Mutations Located by Mutation Type . . . 73
4.4 Error-Generating Mutations Located by Token Type 74
4.5 Python Exception Frequency by Mutation Type 75
4.6 Fraction of Mutations Located by Exception Type 76
4.7 Distance in Lines of Code by Mutation Type 78
4.8 MRR Comparison . 78

5.1 Token kinds . 98
5.2 Edit distance of collected syntax errors 105
5.3 Summary of single-token syntax errors 105
5.4 Number of tokens between partitions 106
5.5 Abstract vs concrete: Number of unique tokens 106
5.6 MRRs of n-gram and LSTM models 107

6.1 Crashes Per Package Statistics 135
6.2 Crashes per Bucket Statistics 136
6.3 Lifetime Statistics . 139
6.4 Stack Length Statistics . 148
6.5 Recursion Depth Statistics . 151
6.6 Function Name Length Statistics 154
6.7 Top 10 Most Common Function Names in Crash Stacktraces . 156
6.8 Top 10 Most Common Function Names at Top of Stack 158
6.9 Top 10 Most Common Library Names at Top of Crash Stack . 161

xiii

List of Figures

1.1 High-level representation . 10

3.1 Oracle Java error messages . 26
3.2 Syntax error location in Eclipse 28
3.3 Cross-entropy of English text vs source code 31
3.4 Data flow . 34
3.5 Example UnnaturalCode output 36
3.6 UnnaturalCode MRR Distributions 42
3.7 MRR distributions of new and changed files from Lucene . . . 43
3.8 MRR distributions of new and changed files from Apache Ant 43
3.9 MRR distributions of new and changed files from XercesJ . . 44
3.10 MRR distributions of files from Ant 45
3.11 MRR distributions of XercesJ 46
3.12 Interleaved Error MRR distributions 47

4.1 Performance of UnnaturalCode.py and Python 91
4.2 Performance of UnnaturalCode and Java 92

6.1 Example Crash Report . 123
6.2 Ubuntu Crash Dialog . 128
6.3 Crashes Per Package . 133
6.4 Frequency Spectrum of Crashes by Package 134
6.5 Crashes Per Bucket . 136
6.6 Frequency Spectrum of Crashes Per Bucket 137
6.7 Empirical and Model CDF of Bucket Lifespan 140
6.8 Bucket Lifespans . 142
6.9 Signals . 144
6.10 Crashes by Architecture . 147
6.11 Stacktrace Lengths . 149
6.12 Recursion Length . 152
6.13 CamelCase Function Name Lengths 155
6.14 Frequency Spectrum of Crashes by Top Function 157

7.1 Example Stacktrace, Signatures, Tokenizations 172
7.2 PartyCrasher within a development context 179
7.3 Example Crash Report and Stack 181
7.4 BCubed and Purity Scores for clusteringMethods 189
7.5 Buckets Created Versus Crashes Seen 190
7.6 BCubed Scores for the Lerch Method 192
7.7 Buckets Created Versus Crashes Seen for Lerch 193
7.8 Trade-Off Between BCubed Precision and Recall 194
7.9 Purity Scores for the Lerch Method 196
7.10 BCubed Scores for the Lerch Method 197

xiv

7.11 Purity Scores for the TF-IDF-based methods 198

xv

List of Algorithms

1 Scoring each token’s contribution to the cross-entropy 100
2 Searching for a change . 102
3 Scoring potential repairs . 103

xvi

Chapter 1

Introduction

It is a truism that most bugs are detected only at a great distance
from their source. — Wand, 1986

1.1 Two Engineers

This thesis centers around two tasks: bucketing (clustering) automatically
generated and gathered crash reports and the task of helping developers fix
minor mistakes and typos in their code. This chapter starts with two sto-
ries concerning two software engineers, Margaret, the maintainer and Debra,
the developer, to motivate, provide background, and ground this thesis with
concrete examples.

Margaret is a maintainer. Her job is to fix crashes that have been reported
in a large and popular piece of software, Widget. When Widget crashes on
some user’s computer, it collects information about the crash and information
about the environment it was running in. The collected information includes
the location in the code where the crash occurred. Widget takes this informa-
tion, bundles it up in a crash report and sends that crash report to Margaret.

Margaret is quickly overwhelmed by the sheer number of crash reports
being collected because Widget is popular and crashes often. Margaret decides
to automatically organize these crashes, grouping them by which function
Widget crashed in. Such information is readily available in the crash reports.
Groups of similar crashes are called buckets. Then, Margaret gets to work on

1

fixing the crashes in the bucket with the most crashes since those crashes affect
users the most often. Margaret relies on the assumption that the crashing
function indicates the crash’s cause, so she already has two problems.

The first problem with Margaret’s initial, naive approach is that multiple
different bugs could be causing Widget to crash in the same function. Multiple
different bugs could be causing Widget to crash on the same line of code. When
different crashes caused by different bugs cause crashes in the same bucket,
that bucket has poor precision or purity. Poor precision means that Margaret
could miss critical bugs if she does not carefully examine each bucket. Poor
precision could also cause some buckets to have unrelated crashes, which is
the opposite of what Margaret wants.

The second problem with Margaret’s initial approach is that a single bug
in Widget’s code could be causing it to crash in several different functions.
Margaret wants to fix the problems causing the most crashes first, but her
approach may not target those problems. When a single bug causes crashes
that Margaret’s approach sorts into different buckets, those buckets have poor
recall or inverse purity. Buckets with poor recall could hide the actual number
of crashes caused by a single bug from Margaret by spreading out the crashes
caused by that bug, making it seem like it caused many fewer crashes than it
actually did.

Later, Margaret notices that Widget often crashes in an error-handling
routine. To handle that, Margaret adds a rule to her crash grouping tool
that ignores this routine and instead uses whatever function invoked the error
handler to group the crashes. Now Margaret has a third problem, adding rules
to her tool to deal with different circumstances as they come up. Adding rules
to her tool uses Margaret’s time: time that could be spent fixing bugs. The
necessity of creating hand-tuned rules to improve bucketing as Widget evolves
increases the maintenance effort required to continue using Margaret’s naive
tool over time.

This thesis aims to help Margaret by giving her a tool, PartyCrasher, that
produces buckets with improved precision and recall while not requiring Mar-

2

garet to maintain a list of hand-written rules. PartyCrasher should also help
Margaret find informative patterns among her crash reports.

This thesis also aims to help our second software engineer, Debra, the
developer. Debra is working on the next version of Widget. Debra follows
the familiar pattern of making incremental changes and then compiling and
possibly testing them. Each time she makes a change and compiles a new
version of Widget, Debra may feel the changes she made since the last time
she committed are not significant enough to commit the new version. Debra
may not commit until finishing a series of minor changes if she has a larger
goal in mind.

For example, Debra may be tasked with adding a new button to Widget
that runs a new method. To do so, she might first write the method in one
source file, and ensure that it compiles before adding the code to display the
button in another source file, testing the button, and committing the code.
In this scenario, Debra committed both changes simultaneously. Thus, the
version control system she uses will not record the intermediate state of the
code between commits.

When Debra makes a small mistake, a typo, or a stray character ends
up somewhere in the code, the compiler outputs an error message. If the
compiler’s error message gives Debra a suggestion or a good idea of how to
fix the problem, then Debra can quickly fix it and move on. If the compiler’s
error message gives Debra an accurate location of the problem, that is almost
as good: at least Debra knows where to look. However, if the compiler’s error
message describes the problem poorly or points to the wrong location, then
she must look through the code herself and try to find the problem.

To make this example even more concrete, consider one instance of Debra
making a typo. In this instance, Debra is writing a simple loop. Debra usually
names loop counter variables i, but one time Debra made a mistake in her
typing and accidentally named her loop counter variable o instead. (The keys
are right next to each other on a QWERTY keyboard.)

3

Naming a loop counter variable o is a perfectly valid thing to do in most
programming languages. Thus, the compiler will not report the error’s location
where Debra named a loop counter variable o. Instead, the compiler will
produce an error message with the location of the first usage of i because i has
not been defined, and using an undefined variable is invalid.

This example demonstrates when a compiler’s error message is certainly
correct but not helpful for Debra. It would be easier for Debra if the compiler
told her the location of her mistake so that she can fix it immediately. Instead,
Debra must work backward by first imagining or recalling what kinds of mis-
takes she could have made that would cause the compiler to complain about
an undefined use of i and then searching through her code for such a mistake.

However, in this case, the compiler is not being as helpful as Debra would
like either, because the actual location of the mistake is where she accidentally
defined o. The compiler will not complain about this location, because naming
a loop counter variable o is perfectly valid.

This thesis aims to help Debra by arming her with a tool, UnnaturalCode,
that can, in combination with the compiler, provide Debra with a solution
or the problem’s location more often than the compiler alone can. Ideally,
the tool would be able to use patterns in Debra’s old code to help Debra
fix her new code. By considering not only the single revision of the code
being compiled but other versions as well, the tool would adapt to the Widget
codebase, coding conventions, and Debra’s style choices when writing code
and use that information to help Debra fix problems.

1.2 Motivation

With Margaret and Debra from the previous section in mind, this section will
motivate helping them on a more abstract level. Then, I will discuss how tools
that can help Margaret and Debra are connected, although they are in two
very different software engineering roles.

4

The motivation for this thesis is to reduce manual labour in both fixing
source code with typos and in bucketing crash reports. Another motivation is
to exploit information that is available to tools working with source code and
crash reports.

This thesis is focused on reducing manual labour in two different scenarios,
one at the small scale and one on a much larger scale. On the small scale,
Chapters 3, 4, and 5 try to reduce the manual labour for an individual software
developer by focusing on the very act of writing program code and problems
that comes with it: small mistakes, typos, and spelling errors. On the large
scale, Chapter 7 aims to reduce manual labour for software developers working
on fixing crashes in large, popular pieces of software.

Collecting and organizing crash reports is economically motivated, as
demonstrated by the existence of multiple companies that offer crash-report
collection and organization services such as Raygun (Raygun, 2020), Airbrake
(Airbrake, 2020), Rollbar (Rollbar, 2020), and BugSplat (BugSplat, 2020).

This work also attempts to ground the way tools deal with software ar-
tifacts in statistical reality. A compiler will compile any valid program, no
matter how unlikely that program is. The space of valid programs is infinite.
The space of programs that a human programmer has or will or might write
is far smaller. This thesis focuses on tools that deal with the smaller space.
This thesis also focuses on tools that adapt to programming style and context
(for example, a specific software product) by taking into account the code that
has actually been written by the programmers in that context.

A similar situation exists with tools for bucketing crash reports. They are
built with the assumption that they need to handle any kind of crash anywhere
in the software’s code. Consider a simple and common rule for bucketing crash
reports: if two crash reports show the software crashing in the same location
in the code, they are placed in the same bucket. Compare that to the ideal
output: if two crash reports were caused by the same bug, they will end up
in the same bucket. The rule only works if the causes (the bugs) match up
one-to-one with the effects (the crash locations).

5

Like the compiler, the simple rule for bucketing crash reports only considers
every possible crash location individually. But developers charged with fixing
crashing software based on crash reports typically only care about crashes that
have actually happened. Otherwise, they would be using proactive tools, such
as static analysis tools and proofs, rather than reacting to crash reports. Thus
they may be better served by tools that take into account what crashes have
actually happened and the patterns in those crashes.

1.3 The Road to Data-driven SE Tooling

Software engineers, in practice, commonly approach problems relating to the
practice of engineering software itself with familiar tools based on rules. For
dealing with problems during compilation, they add rules to the compiler to
help locate problems. When receiving reports of problems during the operation
of software, they use rules to divide these crashes into clusters. Statistical ap-
proaches, however, have enjoyed great success in the realm of natural language
processing and information retrieval from natural-language text. Statistical
approaches have been overlooked in software development and maintenance
tooling.

Software artifacts such as source code and crash reports are very struc-
tured. Without considering software-related artifacts written by people for
other people to read such as documentation and bug reports, software arti-
facts are either produced by software or consumed by software. For example,
a crash report is produced by software (a debugger) and a program is con-
sumed by software (a compiler). Compilers and debuggers are based on rules
and exact sequences of steps. It is natural to build tools for working with such
structured software artifacts using related rules and sequences of steps.

In comparison, natural language artifacts, such as news articles, books,
and personal messages are far less structured than software artifacts. Thus,
tools that rely on consistent structure are impractical. Tools for working with
natural language artifacts typically rely on modelling a corpus of example

6

artifacts. For example, a search engine might count the number of artifacts a
word appears in, and a language model might count the number of of times a
sequence of words appears.

Consider a compiler. A compiler accepts every single possible input that
meets the rules of the language being compiled. Compare that with a tool for
finding natural language artifacts, such as a search engine, that deals solely
with a collection of artifacts that already exist. For example, by focusing
on code that already exists, NLP based tools can focus on the code that
programmers have written, instead of any possible program that might be
valid in a particular programming language.

The focus on rule-based approaches to dealing with software artifacts ne-
glects the wide array of techniques that have been developed for dealing with
natural language artifacts. Despite tradition, there is no reason that these ap-
proaches cannot be combined with or replaced by more dynamic, statistically-
driven approaches that have been developed for handling natural-language
artifacts.

Rule-based approaches also have a tendency to neglect additional informa-
tion that may be available. Consider, for example, a computer programmer
who invokes a compiler on a piece of a source code that they have just mod-
ified. If the source code compiles, then all is well. However, if the source
code does not compile, then the compiler will produce some error and often
a recommendation for how to fix the code. The compiler only considers that
single version of the source code during compilation. However, there is more
information available: the previous versions of the same code.

As a second example, consider a crash report. Crash reports usually con-
tain a wealth of information about not only the state of the program as it
was crashing but the environment that was running in. This information is
included because it is useful to the human engineers that are responsible for
reading crash reports and fixing the software that crashed. Typically, rule-
based approaches to organizing crash reports have focused on one piece of
information only: where in the program’s code it crashed.

7

Unfortunately, rules-based approaches do not always work perfectly. It is
impossible to devise a set of rules that covers every possible future situation.
Techniques using dynamic, statistical approaches that can adapt to situations
as they arise and use all of the information available may work better than
hand-crafted sets of rules.

Rule-based approaches do not take into account any historical information.
However, crashes do not happen independently. If a line of code crashes, it
is likely that the same line will crash again, even after the bug responsible
has been fixed (Seo and Kim, 2012b). Thus, it is reasonable to build tools
for organizing crashes that take into account the crashes they have already
seen: a Bayesian approach. A combination of both a rule-based approach and
a statistical approach may be able to combine the best of both worlds.

When a working compiler produces an error, in one sense, it is never wrong:
the program does not meet the rules of that programming language. Or, in the
rare case the compiler is wrong, it is considered broken and in need of repair.

By their very nature, the rules that define a language define only what is
considered valid source code for that language. This means that they are not
focused on addressing source code that is almost, but not yet valid. Statistical
approaches, on the other hand, are well-suited for dealing with artifacts that
almost follow the rules.

The error messages the compiler produces are based on rules as well, and
they are not always helpful. The compiler is doing its job as it was designed,
taking valid programs and compiling them, or producing an error. However,
the errors a compiler produces do not always meet the human needs of the
software developer invoking compilation. Becker et al. (2019) states:

[Finding the location] of errors is a particularly difficult problem.
Syntax errors such as missing semicolons or curly braces may be
detected at a later point than the source of the error, and error-
recovery algorithms in parsers can further confuse users by produc-
ing messages referring to spurious errors.

8

What a human software developer wants, ideally, is for the compiler’s error
message to simply tell them how to fix whatever the problem is that caused
the error. What they need is, at least, some information that will help them to
discover how to fix their program on their own. However, as shown in chapters
3 and 4 sometimes the compiler’s error message does not even mention the
location of the problem in the source code.

A technique that takes advantage of other source of information that are
commonly available may be able to help improve compiler error messages.
Taking past compilations into account is a Bayesian approach that may be
able to address cases that are handled poorly by rule-based approaches.

The task of improving compiler error messages can be broken down into
pieces. The first piece is correctly identifying the location of the problem in
the code more often. Compilation errors caused by mistakes in the code being
compiled almost always come with a location: a line and column number in the
code. Some compilers, such as the Java compiler, report more than one error,
and thus more than one location at a time. The accuracy of the locations in
the errors produced by such a compiler can be measured by employing mean
reciprocal rank (MRR). MRR is a measure typically used with search engines.
MRR is a weighted average of how many results need to be considered before
reaching the correct result. In the case of compiler error messages, MRR is
a weighted average representing how many errors need to be considered, and
those error’s locations in the code need to be inspected before the location
of the actual problem in the code is inspected. For other compilers that only
produce one error at a time, we can simply consider how often the location in
the error is the correct location. The fraction of locations that are correct is
equal to MRR when there is only one location.

Now, consider the task of grouping crash reports. Typically, this is done
with a fast, rule-based approach. These approaches are labour-intensive, re-
quiring new rules to be hand written when the old rules do not handle new
patterns in the crash reports. These patterns could be derived statistically. A

9

statistical approach might eliminate the need for adding hand-written rules to
deal with new patterns in the crash reports.

Grouping crash reports is a clustering problem. Measures designed for clus-
tering algorithms such as BCubed F1-score measure how closely the clusters
produced by an algorithm match ideal clusters. Crash reports are grouped or
clustered into “buckets.” Ideally, each bucket of crash reports would contain
all of the crashes caused by a single problem (for example, crashes caused by
a single bug) and no crash reports caused by other problems.

Figure 1.1: High-level representation

Figure 1.1 shows the general approach this thesis takes to creating tools to
perform both tasks: bucketing crash reports and locating typos. This thesis
provides tools based on the same high-level formulation to both Margaret and
Debra.

1.3.1 Thesis Statement

An n-gram language model can be used to find errors in source code resulting
in more precise reports of the location of errors. Term Frequency–Inverse
Document Frequency (TF-IDF) representation can be used to cluster crash

10

reports automatically, leading to clusters that are more representative of the
bugs that caused the crashes.

In order to evaluate the above thesis statement, I will use the MRR score
to measure how precise reports of the locations of errors are and the B-Cubed
F1-score to measure how representative buckets are of the bugs that caused
crashes.

1.4 Research Presented in this Thesis

Initially, the work presented in this thesis was inspired by Hindle et al. (2012).
That work made use of a model traditionally used for natural language texts,
the n-gram model, to improve code completion suggestions in an integrated
development environment (IDE). That work lead to using techniques, specifi-
cally, n-gram models that come from the realm of natural-language processing
(NLP) to improve tools.

First, a technique similar to Hindle et al. (2012) was used to improve the
error messages produced by the Java compiler. The new technique focused
on improving the locations (line and column number) the compiler reports for
errors caused by typos and small mistakes. This work was published and is
Chapter 3 in this this thesis. Results were obtained using a very rough-and-
ready set of scripts in combination with with the n-gram software that had
been used in Hindle et al. (2012) and the Java compiler.

The work on the Java compiler’s error messages was then extended to the
Python interpreter’s error messages. This was quite a leap because Python is
typically an interpreted language, so some typos, such as misspelled identifiers
are not reported until the code is run. Thus, testing the same technique that
worked with Java code was much more difficult to test with Python code. In
order to test the use of n-gram models with python code, a new modular testing
framework and tool was implemented. The new tool, UnnaturalCode, was
designed to be extendable to multiple programming languages and multiple
language models. This work is presented in Chapter 4.

11

Work in collaboration with a Master’s student, Eddie Antonio Santos, be-
gan to compare the performance of the n-gram language model and a language
model based on neural networks. It became apparent that not only could
these models improve the locations in error messages, but that they could be
extended to automatically repair programs with small mistakes such as typos.
The language models could actually be used to turn code that did not com-
pile or did not run into code that did compile or run. In addition, we gained
access to a data set composed of real mistakes made by students to test our
techniques against. This work was published and is presented in this thesis as
Chapter 5.

Some of the research in this thesis was funded by a MITACS Accelerate
grant to work with a local software company. The company was dealing with
the problem of receiving far too many crash reports to consider individually.
In order to help them manage the crash reports, a similar approach to the
one that had worked for compiler errors was developed and tested: using
traditional techniques usually applied to natural language text. Specifically,
TF-IDF was chosen, a representation typically employed by search engines. In
order to test this approach, a data set was gathered and is presented in detail
in Chapter 6. The TF-IDF-based approach was published and is presented in
this thesis as Chapter 7.

1.5 Contributions

This thesis shows that rule-based tools for dealing with software artifacts can
be combined with or improved by statistics-based tools that take into account
more than one artifact at a time.

The research presented in Chapter 3 was the first to use a technique not
based on rules and static analysis to improve compiler error locations. It was
also the first to do so with a technique that takes into account other source
code that had been compiled previously.

12

The n-gram-model technique for locating mistakes in code initially required
the compiler to first determine whether or not a program was valid. However,
this technique was extended to a language that is not completely compiled,
Python. In this setting, despite the lack of a true compiler, the n-gram-model
technique could still operate, and even help with errors that are generated at
runtime in an interpreted language.

The work presented in 5 was the first to show that a simple n-gram lan-
guage model performed comparably to more complicated models based on
neural networks for generating code repairs. It also bridged the gap between
improving compiler error messages and repairing the mistakes that created
those error message in the first place.

Though researchers had created techniques for grouping crash reports that
employed statistics before the work in Chapter 5 was published, Chapter 5
was the first technique from the field of information retrieval (IR) applied
to the problem. Previously, techniques only used information found in the
stacktrace component of a crash report. The stacktrace is a list of routines
that were executing at the time the program crashed. In order to test this new
technique, the data set presented in Chapter 6 was gathered. This new data
set consisted of crash reports that had been grouped manually by developers
familiar with the crashing software.

The following contributions are presented in this thesis:

• A tool, UnnaturalCode, that:

– uses an n-gram language model for locating errors in compiled
source code

– and interpreted source code,

– as well as automatically suggesting changes to repair source code.

• A data set consisting of crash reports grouped by their underlying cause.

• A tool, PartyCrasher, that:

– uses TF-IDF to bucket crash reports,
13

– can take into account metadata along with stacktraces,

– does not require manual rule-writing,

– is designed to1 handle a steady stream of new crash reports.

• Descriptions, evaluations, analyses, and discussion of UnnaturalCode
and PartyCrasher.

1.6 Potential Applications

The techniques and tools developed in Chapters 3, 4, and 5 could be used
by IDEs (integrated development environments) to help guide the user (pro-
grammer) towards code that be could causing a problem. Most IDEs already
do this by parsing code and highlighting parts that they think are causing
the problem, however, they use the same or similar rules as the compiler to
do so. By combining those rules with the techniques and tools presented in
this thesis, they could highlight the code that is actually causing the problem
more often and provide more feedback to the user. In addition, the IDE could
suggest actual fixes to repair broken code.

Software telemetry is the practice of remotely monitoring software per-
formance and faults. When telemetry determines that software is crashing
repeatedly or across multiple instances, the techniques and tools from Chap-
ter 7 are intended to help find patterns in those crashes. Patterns in crash
reports could also be linked to bug reports in issue trackers.

Lessons learned from these chapters, such as software-aware token split-
ting, indicate that there are techniques that enable the use of NLP and IR
algorithms on software artifacts not discussed in this thesis and software arti-
facts of the future. For instance a lot of the techniques used to group crashes
could be used to group other kinds of software events such as log entries.

1Not achieved in worst-case scenarios without modification, see Section 7.7.

14

1.7 Organization

The following chapters will focus first on typos, helping developers like Debra,
and then on crash reports, and my tool to assist Margaret. I will treat these
two topics completely separately until the conclusion, where I will return to
unnatural tools once again. However, for both typos and crash reports, I will
present tools that meet the definition of an unnatural tool, and follow the
“Unnatural Way,” described in the next chapter.

Chapters 3, 4, and 5 focus on locating and then correcting typos. In those
chapters I will demonstrate and explore a tool that demonstrates the first part
of my thesis statement. Then, Chapter 6 and 7, will focus on crash reports,
with Chapter 7 demonstrating the second part of my thesis statement. Finally,
in Chapter 8, I will conclude, summarize, remark upon and suggest future work
for typos, crash reports, and unnatural tools in general.

15

Chapter 2

Terminology and Philosophy

In order to be clear and concise throughout the novel portions of this thesis
(the introduction, this chapter, Chapter 5 and Chapter 8), I will discuss two
key terms in this chapter, followed by a more philosophical discussion on the
process of creating the tools presented in this thesis.

The first term is typos, which is usually understood in informal conversa-
tion to indicate the sort of mistake one might make while typing (or, earlier,
typesetting) English text. However, for the purposes of this thesis and com-
puter programming languages I will provide a more concise definition.

The second term, unnatural tools, does not already have a different def-
inition in other contexts. However, I find it necessary to define it here, so
that I can avoid repeatedly describing the characteristics of this group of tools
throughout the rest of this thesis.

Then, in Section 2.3, I will expand the definition of an unnatural tool into
a strategy for creating unnatural tools.

2.1 Typos

In this introduction, chapter 5, and the conclusion (chapter 8), a typo refers
to a specific type of flaw in source code. Typos have the following properties:

• Smallness: a typo spans only a single token.

• Independence: fixing a typo requires modification, insertion, or removal
of a single token.

16

• Locality: a typo causes an error when the source code file containing it
is used.

• Obviousness: a typo does not require consideration of the logic, intended
operation, or intended usage of the program.

The usage of the term “typo” in this thesis does not exactly match its
general usage. However, a “typo” is the closest match to the specific kind of
flaws discussed in chapters 3, 4, and 5. The main difference between “typo”
when used in this thesis and its general usage, is that in this thesis a typo
includes some errors caused by ignorance and faulty reasoning. I assume that
programmers intend to write code that compiles without error.

A missing brace is a typical example of a typo for the purposes of this thesis.
A missing brace is small, since a brace is a single token. A missing brace is
independent because it can be fixed by inserting a single token. A missing
brace is local because you do not have to parse multiple files for the missing
brace to cause an error. Finally, a missing brace is obvious because it causes
an error during parsing, and parsing must be performed before execution.

A misspelled identifier is a critical example of a typo for the purposes of
this thesis. A misspelled identifier is small, since it is a single token; it is
independent, since it only requires modification of the misspelled token to the
correct spelling; it is local as long as it is not the declaration of something that
is used by other source code files; and it is obvious as long as the misspelling
does not match the correct spelling of some other identifier. This thesis counts
misspelled identifiers as typos even if the identifier is misspelled because the
programmer believed that the misspelling was correct when they typed it.

Logic errors are not considered typos, even if they are the result of an
errant keystroke. Consider the example of a programmer who forgot to include
a unary logical negation operator such as Java’s “!” or Python’s “not,” and
this caused their program to produce incorrect output for some specific input.
The missing operator in their source code would not be considered a typo for

17

the purposes of this thesis because determining that the code is faulty would
require testing the code with a specific input, making the mistake not obvious.

2.2 Unnatural Tools

Before describing what makes a tool unnatural, it is worth considering what
would be referred to as a natural (language) tool. Informally, a natural lan-
guage tool is some piece of software that performs or assists some task involv-
ing information in a natural language, such as English. A few good examples
include:

• spell checkers,

• grammar checkers,

• autocorrect,

• predictive software keyboards,

• and encyclopedia search engines.

An unnatural tool would then be, informally, a tool that fills a similar role,
but for constructed languages intended for processing by machines. Specifi-
cally, this thesis focuses on computer programming languages. However, there
is no reason to exclude other languages that are intended to be read by com-
puters, such as markup languages.

However, there are several other criteria that seperate unnatural tools from
other software engineering tools. These criteria mostly revolve around using
similar techniques, at their core, to the natural language tools that inspired
them. Additionally, I specify that they should be fast and cheap enough to
be used interactively, mirroring the interactivity of some (but not all) natural
language tools, such as spell checkers.

For brevity I will use the term “unnatural tools” to refer to tools that are:

• software-engineering tools;

18

• intended to work with source code or artifacts having some other well-
defined, rigid, artificial structure;

• not intended to work with natural language;

• on-line;1

• and designed to assist developers with existing tasks;

yet are built on top of a model or technique that:

• was originally developed for use with natural language;

• has been studied extensively in a natural language setting;

• can be updated quickly enough to be interactive;

• has multiple off-the-self implementations; and

• estimates and uses probability distributions based on prior samples,
treating “surprising” new inputs (inputs with high perplexity) differently
from “unsurprising” new inputs (inputs with low perplexity).

Perplexity is a measure of how well a probabilistic model predicts a sample
input. Perplexity increases as the probability of a model predicting a sample
decreases. The perplexity is usually defined, for observations (samples) xi and
the model’s estimated probability of an event q(xi):

2
−average

∀xi
(log2 q(xi))

To make computation easier, we use only the exponent, which is the same as
the cross-entropy of N observations: 1

N

∑N
i=0 (− log2 q (xi)).

Unnatural tools are a subset of the more general category of tools leveraging
statistics obtained by data mining software repositories, a popular topic of
publication since the annual Mining Software Repositories conference began
in 2004 (Hassan et al., 2004). Additionally, they are differentiated from other
categories of software engineering tools such as defect prediction by their goal
of assisting with existing tasks.

1A discussion of the benefits of working on-line can be found in Section 5.6.6.

19

2.3 The Unnatural Way

A general strategy for creating an unnatural tool is to first consider the task
that the tool is meant to solve. Then, consider how to treat the artifacts and
information available as if it were natural-language text. Next, ask yourself,
“can I write a simple algorithm to reduce this task to a task that can be solved
by an existing technique?” For example, if you can reduce the problem to
estimating a distribution, you may wish to use a language model; or, if you
can reduce the problem to a document search, you may wish to build your tool
on top of a search engine. Finally, ask yourself, “can I translate the artifacts
into a format that the natural-language technique will understand?” Usually
this means transforming the artifact into a sequence (or bag) of word-like
tokens.

Choose a model or technique that can be updated and adjusted quickly as
new information becomes available to it. For example, choose a search engine
that can continuously add large numbers of documents to its index with little
overhead; or choose a language model that can be updated continuously and
retrained quickly. In general, the model or technique should be be able to adapt
to each a new artifact in less time than it took for that artifact to be generated.
For example, to get all the benefits of UnnaturalCode, UnnaturalCode has to
be able to update its model from a successful compile in less time than it takes
a human to edit a single character of a single file!

Fast on-line algorithms are not strictly necessary. It is possible to use a slow,
off-line algorithm that was originally intended for use with natural language,
such as a neural network, as has been demonstrated by Santos et al. (2018)
and many others. However, during software development, artifacts are created
and evolve. Thus, using algorithms that can keep up with development by
adapting quickly in an on-line setting is important. Source code and software-
engineering artifacts are also highly contextual: they are often specific to a
single organization, project, or even an individual person. Using a fast on-line
algorithm allows tools to adapt to the context they are being used in and to

20

keep adapting over time to follow the evolution over time of the source code
and software artifacts. Adapting can dramatically improve tool efficacy, which
I discuss in depth for the case of typo location and repair in Section 5.6.6.

Based on this thesis, an unnatural tool will likely take these steps:

1. A piece of software produces some information.

2. The tool obtains an artifact representing that information.

3. The tool tokenizes the artifact into word-like tokens.

4. The tool either evaluates the artifact using an underlying natural-
language algorithm, or updates the underlying natural-language model
or statistics, or both.

5. The tool produces some output for an engineer to interpret.

For UnnaturalCode, the relevant information in step 1 is produced by the
compiler and represents whether the code compiled successfully. For Party-
Crasher, the relevant information in step 1 is produced by the crashing program
itself and the automated crash reporting system.

In step 2, it may be necessary for the tool to collect an additional artifact
such as relevant source code or debugging symbols.

Step 3 has proven to be critical, and will be discussed in Section 8.3.1.
Step 4 is about adapting the underlying natural-language algorithms to

the task at hand. For example, PartyCrasher relies on an algorithm to use
a document search engine to perform a clustering task. This type of code is
demonstrated in algorithm 1 and the following algorithms in chapter 5.

Step 5 depends on the tool and what part of the software engineering
process the tool is focused on, as well as who will be using the tool. For
example, generating a short, ranked list of suggestions, rather than a table of
raw probabilities is preferred. Or, perhaps, integration into an IDE would be
the most desirable way to deliver output to a developer.

The definition of what makes an “unnatural tool” is new in this thesis. All
of the published reports that the following chapters present were published

21

before the invention of the term “unnatural tool.” There are also unnatural
tools that predate my tools, though I could not find an appropriate term to
describe them as a group. One tool that predates the tools presented in this
thesis, but is certainly an unnatural tool, generates suggestions for completing
code as it is typed (Hindle et al., 2012).

22

Chapter 3

Dynamic Detection of
Typographical Errors in Java
Code

3.1 Preface

3.1.1 Acknowledgements

This chapter originally appeared as a report (Campbell et al., 2014).
I, Hazel Victoria Campbell, wrote the majority of the chapter, conducted

the experiments, collected data produced results and analysis, and created
most of the figures. Dr. Abram Hindle wrote the related work section, provided
editing, some figures, and modifications to the software used, and supervised
the research. Dr. José Nelson Amaral provided editing and supervised the
research.

Table 3.4 and related discussion was written exclusively for this thesis.

3.1.2 Significance

The work presented in this chapter was the first time that Natural Language
Processing (NLP) techniques had been applied to the problem of detecting
syntax errors. According to my research, all previous techniques relied strictly
on static analysis or heuristics, and did not include any statistical, modelling,
or learning component.

23

Unlike prior work, this work does not rely on parsing, compilation, or
heuristics to locate syntax errors within a file. Instead, it only uses parsing
and compilation to detect that a file does or does not compile, from then on
it uses lexical analysis and natural language models to locate syntax errors.
This work uses parsing and compilation only to detect that some error exists,
not what or where the error is.

This work shows that statistics, modelling, or learning can have a place
alongside static analysis and heuristics when reporting compilation errors

to a programmer.

3.1.3 Impact

Since its original publication, the report presented in this chapter has received
50 citations as reported by Google Scholar.

3.2 Abstract

A frustrating aspect of software development is that compiler error messages
often fail to locate the actual cause of a syntax error. An errant semicolon
or brace can result in many errors reported throughout the file. We seek to
find the actual source of these syntax errors by relying on the consistency of
software: valid source code is usually repetitive and unsurprising. We exploit
this consistency by constructing a simple N-gram language model of lexical
source code tokens. We implemented an automatic Java syntax-error locator
using the corpus of the project itself and evaluated its performance on mutated
source code from several projects. Our tool, trained on the past versions of
a project, can effectively augment the syntax error locations produced by the
native compiler. Thus we provide a methodology and tool that exploits the
naturalness of software source code to detect syntax errors alongside the parser.

24

3.3 Motivation

Syntax errors plague new programmers as they struggle to learn computer pro-
gramming (Garner et al., 2005; McIver, 2000). Even experienced programmers
get frustrated by syntax errors, often resorting to erratically commenting their
code out in the hope that they discover the location of the error that brought
their development to a screeching halt (Kummerfeld and Kay, 2003). Syntax
errors are annoying to programmers, and sometimes very hard to find.

Garner et al. (2005) admits that “students very persistently keep seeking
assistance for problems with basic syntactic details.” They, corroborated by
numerous other studies (Jackson et al., 2005; Jadud, 2005; Jadud, 2006; Ta-
banao et al., 2008), found that errors related to basic mechanics (semi-colons,
braces, etc.) were the most persistent and common problems that beginner
programmers faced. In fact these errors made up 10% to 20% of novice pro-
grammer compiler problems. As an example, consider the missing brace at the
end of line 2 in the following Java code taken from the Lucene 4.0.0 release:

1 for (int i = 0; i < scorers.length; i++) {
2 if (scorers[i].nextDoc() == NO_MORE_DOCS)
5 lastDoc = NO_MORE_DOCS;
6 return;
7 }
8 }

This mistake, while easy for an experienced programmer to understand
and fix, if they know where to look, causes the Oracle Java compiler1 to report
50 error messages, including those in Figure 3.1, none of which mention the
line with the mistake. This poor error reporting slows down the software
development process because a human programmer must examine the source
file to locate the error, which can be a very time consuming process.

Some smart IDEs such as Eclipse, aim to address this problem but still
fall short of locating the actual cause of the syntax error as seen in Figure 3.2.

1Oracle’s Java compiler, version 1.7.0_13, is available at
http://www.oracle.com/technetwork/java/javase/downloads/index.htm

25

http://www.oracle.com/technetwork/java/javase/downloads/index.htm

Thus syntax errors and poor compiler/interpreter error messages have been
found to be a major problem for inexperienced programmers (Garner et al.,
2005; McIver, 2000; Tabanao et al., 2008).

Figure 3.1: Oracle Java error messages from the motivational example.

There has been much work on trying to improve error location detection
and error reporting. Previous methods tend to rely on rules and heuristics
(Corchuelo et al., 2002; Heeren, 2005; Hristova et al., 2003). In contrast to
those methods, we seek to improve on error location reporting by exploiting
recent research on the regularity and naturalness of written source code (Hindle
et al., 2012). Recent research (Hindle et al., 2012) exploits n-gram based
language models, applied to existing source code, to predict tokens for code
completion. The effectiveness of the n-gram model at code completion and
suggestion is due to the repetitive, and consistent, structure of code.

Using this exact same model, and exploiting the natural structure of source
code, we can improve error location detection. The idea behind this new
method is to train a model on compilable source-code token sequences, and
then evaluate on new code to see how often those sequences occur within
the model. Source code that does not compile should be surprising for an n-
gram language model trained on source code that compiles. Intuitively, most
available and distributed source code compiles. Projects and their source code
are rarely released with syntax errors, although this property may depend
on the project’s software development process. Thus, existing software can
act as a corpus of compilable and working software. Furthermore, whenever
a source file successfully compiles it can automatically update the training
corpus because the goal is to augment the compiler’s error messages. Changes
to the software might not compile. When that happens, locations in the source

26

file that the model finds surprising should be prioritized as locations that a
software engineer should examine.

The following sections of the chapter examine the feasibility of this new
method by testing its ability to locate errors in a variety of situations, as an
augmentation of compiler error reporting. These situations include situations
that are much more adverse than expected in practice.

The main contributions of this work include:

• A method of statistical, probabilistic syntax-error location detection that
exploits n-gram language models.

• A prototype implementation of an n-gram language-model-based Java
syntax error locator, UnnaturalCode,2 that can be used with existing
build systems and Java compilers to suggest locations that might contain
syntax errors.

• A validation of the feasibility of the new syntax error location detection
method.

• A validation of the integration of the new method with the compiler’s
own methods.

• A modified version of MITLM3, with routines developed by the authors to
calculate the entropy of short sentences with respect to a large corpus
quickly.

3.4 Background

An n-gram language model at its lowest level is simply a collection of counts.
These counts represent the number of times a phrase appears in a corpus.
These phrases are referred to as n-grams because they consist of at most n

words or tokens. These counts are then used to infer the probability of a
2UnnaturalCode is available at https://github.com/hazelybell/unnaturalcode
3The modified MITLM package used in this chapter is available at

https://github.com/hazelybell/MIT-Language-Mode{l}ing-Toolkit

27

https://github.com/hazelybell/unnaturalcode
https://github.com/hazelybell/MIT-Language-Mode{l}ing-Toolkit

Figure 3.2: Top: Figure 3.1’s code snippet put into Eclipse; bottom: another
example of failed Eclipse syntax error location detection. Eclipse often detects
syntax errors, but often reports them in the wrong location. Eclipse’s sug-
gested error location is circled in red, and the actual error location is circled
in green.

28

phrase: the probability is simply the frequency of occurrence of the phrase in
the original corpus. For example, if the phrase “I’m a little teapot” occurred 7
times in a corpus consisting of 700 4-grams, its probability would be .01. How-
ever, it is more useful to consider the probability of a word in its surrounding
context. The probability of finding the word “little” given the context of “I’m
a ______ teapot” is much higher because “little” may be the only word
that shows up in that context — a probability of 1.

These n-gram models become more accurate as n increases because they
can count longer, more specific phrases. However, this relationship between
n and accuracy is also problematic because most n-grams will not exist in
a corpus of human-generated text (or code). Therefore most n-grams would
have a probability of zero for a large enough n. This issue can be addressed
by using a smoothed model. Smoothing increases the accuracy of the model
by estimating the probability of unseen n-grams from the probabilities of the
largest m-grams (where m < n) that the n-gram consists of and that exist
in the corpus. For example, if the corpus does not contain the phrase “I’m
a little teapot” but it does contain the phrases “I’m a” and “little teapot” it
would estimate the probability of “I’m a little teapot” using a function of the
two probabilities it does know. In UnnaturalCode, however, the entropy is
measured in bits. Entropy in bits is simply S = − log2 (p) , where p is the
probability. The higher the entropy, therefore, the lower the probability and
the more surprising a token or sequence of tokens is.

Based on the entropy equation, as probability approaches 0, entropy ap-
proaches infinity. An uncounted n-gram could exist, which would have 0
probability effectively cancelling out all the other n-grams. Thus we rely on
smoothing to address unseen n-grams.

UnnaturalCode uses Modified Kneser-Ney smoothing as implemented by
MITLM, the MIT Language Model package (Hsu and Glass, 2008). Modi-
fied Kneser-Ney smoothing is widely regarded as a good choice for a general
smoothing algorithm. This smoothing method discounts the probability of
n-grams based on how many m-grams (where m < n) it must use to estimate

29

their probability. Probability can be estimated for a 7-gram from a 3- and
a 4-gram; in this case the probability will not be discounted as heavily as
when probability must be estimated from seven 1-grams. Modified Kneser-
Ney smoothing is tunable: a parameter may be set for each discount. In
UnnaturalCode these parameters are not modified from their default values in
MITLM.

While MITLM and the entropy estimation techniques implemented within
MITLM were designed for natural-language text, UnnaturalCode employs these
techniques on code. Hindle et al. (2012) showed that code has an even lower
entropy per token than English text does per word, as shown in Figure 3.3.
That is to say, the same techniques that work for natural English language
texts work even better on source code. Moreover, syntactically invalid source
code will often have a higher cross-entropy than compilable source code given a
corpus of only syntactically valid source code. Therefore, defective source code
looks unnatural to a natural language model trained on compilable source.

3.4.1 Previous Work

Previous publications addressing this issue fall into two categories. Most work
has focused on parser-based (Burke and Fisher, 1987) or type-based static
analysis (Heeren, 2005; Lerner et al., 2007). There have also been heuristic
analyzers that work alongside the parser such as the one presented in Hristova
et al. (2003), but it is limited to a specific selection of common mistakes. Many
modifications for particular parser algorithms have also been proposed to at-
tempt to suppress spurious parse errors by repairing or resuming the parse
after an error. Examples can be found in Corchuelo et al. (2002), Graham
et al. (1979), and Kim and Choe (2001). In comparison, the new system pro-
posed here requires no additional information about a language other than its
lexemes, which may be extracted from its implementation or specification. A
major difference between UnnaturalCode and those works is that Unnatural-
Code does not attempt to parse the source code. There is also a more recent
publication by Weimer et al. (2009) that uses Genetic Algorithms to mutate

30

●

●

●

●

●
● ● ● ● ●

2 4 6 8 10

0
2

4
6

8
1
0

Order

C
ro

s
s
E

n
tr

o
p
y

Code To Code
Lucene to Lucene
Xerces to Xerces
English to English

Cross Entropy of Project Code compared to English

Figure 3.3: From Hindle et al. (2012), a comparison of cross-entropy for English
text and source code vs gram size, showing that English has much higher cross-
entropy than code.

31

parse trees in an attempt to fix defects, but this requires syntactically valid
source code.

The frequency and importance of syntax errors among novice and expe-
rienced programmers has been studied by numerous authors (Garner et al.,
2005; Jackson et al., 2005; Jadud, 2005; Jadud, 2006; McIver, 2000; Tabanao
et al., 2008). Many of these studies evaluated new programmers (often under-
graduate first year students) and have examined the frequency of syntax errors
and other kinds of errors. According to these studies missing semi-colons and
misplaced braces cause between 10% to 20% of the errors that novices expe-
rience (Jackson et al., 2005; Jadud, 2005; Jadud, 2006). Jadud Jadud (2005)
and Jadud (2006) took over 42000 snapshots of first year undergraduate code
before each compile and labelled the cause of compilation failure. They found
that 60% of syntax errors were immediately solved within 20 seconds, but
40% took longer, 5% taking longer than 10 minutes. Tabanao (Tabanao et
al., 2011; Tabanao et al., 2008) studied student performance correlated with
syntax errors, for more than 120 students, and found that the number of er-
rors and frequency of compilation negatively correlated with student midterm
grades. Jackson Jackson et al. (2005) observed 559000 errors produced by
583 students during 1 semester; the second most common error was missing
semicolons. Finally Kummerfeld and Kay (2003) studied the effect of student
programming experience on syntax errors and found that experienced users
relied on strategies to solve syntax errors; when these strategies failed, the ex-
perience programmers made erratic modifications just like their inexperienced
counterparts. Thus we can see from numerous sources that syntax errors are
a common source of errors that novice and experienced programmers run into
and resolving these errors can often consume a lot of time and effort.

Previous publications that attempt to improve syntax error messages and
syntax error location fall into two categories: parser-based or type-based.
Burke’s parse action deferral (Burke and Fisher, 1987) is a parser-based tech-
nique that backs the parser down the parse stack when an error is encountered
and then discards problematic tokens. Graham et al. (1979) implemented a

32

system that combined a number of heuristic and cost-based approaches in-
cluding prioritizing production rules to be resumed. Many modifications for
particular parser algorithms have also been proposed to attempt to suppress
spurious parse errors by repairing or resuming the parse after an error. Recent
examples can be found in Kim and Choe (2001) where the k-nearest neighbour
algorithm is applied to search for repairs, or Corchuelo et al. (2002) where a
modification is presented that can be applied to parser generators and does
not require user interaction. Other researchers have focused on type-based
static analysis such as Heeren’s Ph.D. thesis (Heeren, 2005), which suggests
implementing a constraint-based framework inside the compiler. Lerner et al.
(2007) use a corpus of compilable software to improve type error messages for
statically typed languages. There have also been heuristic analyzers that work
alongside the parser such as the one presented in Hristova et al. (2003), but this
approach is limited to predefined heuristic rules addressing a specific selection
of common mistakes. In comparison, UnnaturalCode requires no additional
information about a language other than its lexemes, which may be extracted
from its implementation or specification. The implementation presented here
differs from those works in that it does not attempt to parse the source code.
There is also a more recent publication, (Weimer et al., 2009) that uses Ge-
netic Algorithms to mutate parse trees in an attempt to fix defects, but this
requires syntactically valid source code.

3.5 A Prototype Implementation of Unnatu-
ralCode

UnnaturalCode is designed to assist the programmer by locating the coding
mistakes that caused a failed compilation. To this end, it only provides sug-
gestions if the compile fails. If the compile succeeds it adds the error-free code
to its corpus automatically. This allows UnnaturalCode to adapt rapidly to
changing codebases. The data-flow diagram of UnnaturalCode is depicted in
Figure 3.4.

33

Figure 3.4: Data flow of the syntax-error location detector, UnnaturalCode.

The central component of the system is javac-wrap.pl, a wrapper script
that is inserted in between the build system and the compiler, javac. Our tests
were run with the ant build system and the Oracle 1.7.1 JDK javac Java com-
piler. Unfortunately, the package’s build.xml file, which instructs ant how
to build the package, must be modified to instruct ant to call javac-wrap.pl
instead of merely instantiating the Java compiler classes from within ant. Fur-
thermore, javac is called with a list of all java files to be compiled in a single
run. This list often contains hundreds of source files. The first thing that
javac-wrap.pl must do in the case of a failed compilation is to locate the
file that failed to compile. It does this using heuristic regular expressions on
javac’s error output.

In the case of a failed compilation, UnnaturalCode lexically analyzes the
source file that failed to compile, and queries the smoothed n-gram model
using a sliding window of length 2n tokens. The model is built using success-
fully compiled code from previous compilations of the same project. Both the
query code and the corpus has comments removed and contiguous whitespace
reduced to a single space.

34

Once javac-wrap.pl detects a failed compilation and locates the offend-
ing file, it must lexically analyze that file. No parsing is done, only lexical
analysis is performed. In UnnaturalCode, comments are first removed from
the input and then lexical analysis is performed by an ANTLR-produced Java
lexical analyzer called LexJavaMQ. LexJavaMQ was originally written for Hindle
et al. (2012) for use as a lexical analyzer server that any number of clients may
connect to in order to analyze Java code. javac-wrap.pl and LexJavaMQ com-
municate over the network using the ZeroMQ library and protocol. LexJavaMQ
tokenizes its input and returns a list of tokens as they appear in the original
source. It does not return any meta-information about the tokens such as their
type or location.

In the case of a failed compilation, once LexJavaMQ returns the lexically
analyzed source back to javac-wrap.pl, javac-wrap.pl starts an instance of
MITLM. It then sends MITLM a series of queries that are sequences of tokens from
the lexically analyzed source file. Queries are generated by sliding a window
of length c · n tokens. Therefore, there are at most l− c · n queries for a single
file, where n is the gram size of the n-gram model being used in MITLM, and c

is the chunk size used by javac-wrap.pl.
The prototype implementation of UnnaturalCode uses a modified version

of the MITLM package that was first modified for use in Hindle et al. (2012)
and then further modified for the system presented here. It has been modified
to compute the entropy of a small sample of text in relation to a corpus. It
has also been modified to do so without requiring a restart and for higher
performance.

Once UnnaturalCode has finished computing results for all the queries, it
ranks them by the entropy per token of each query, as in Figure 3.5. It then
reports the top five strings with the highest entropy to the user as suggestions
of where to look for mistakes in the code. The entropy is a measure of how
unlikely the presented string of 2n tokens is, given the corpus. In this case,
n = 10, a setting that works well while also keeping memory use low enough
for machines with 512MB of memory.

35

The entropy, S, is calculated by MITLM in bits as the negative logarithm
of the probability. The higher the entropy score, the less likely a given string
of tokens was found to be by MITLM. Figure 3.3 shows that entropy per token
values are typically between 2 and 3 bits, lower than English text, which
typically has entropy near 7 bits per word.

Figure 3.5: Example of UnnaturalCode output showing an accurate error lo-
cation from the motivational example.

The current prototype of UnnaturalCode has several drawbacks. One prob-
lem is that during the lexical-analysis process, LexJavaMQ loses track of what
line each token is on, thus javac-wrap.pl cannot generate line numbers along
with the suggestions, however this is very easy to remedy. Another problem is
that UnnaturalCode relies on at least three processes written in three different
languages: javac-wrap.pl, written in Perl, LexJavaMQ, written in Java, and
MITLM, which is written in C++. IPC between these three processes is often
fragile. Furthermore, the system is not easily installed and run due to its many
components and dependencies.

The current implementation is fast enough to be used interactively by a
software engineer. Building the corpus takes much less time than compiling
the same code, because only lexical analysis is performed. For the Lucene 4.0.0
corpus, results for a broken compile, in the form of suggestions, are found for
a source file with over 1000 tokens in under 0.02 seconds on an Intel i7-3770
running Ubuntu 12.10 using only a single core and under 400MiB of memory.
This is more than fast enough to be used interactively if MITLM is already
running. However, MITLM start-up can be quite slow depending on the size of
the corpus. For the Lucene 4.0.0 corpus MITLM takes about 5 seconds to start
on the same platform.

36

Table 3.1: Validation Data Summary Statistics

n-gram order 10
Files in Lucene 4.0.0 2 866
Files in Lucene 4.1.0 2 916
Files in Ant 1.7.0 1 113
Files in Ant 1.8.4 1 196

Files in Xerces Java 2.9.1 716
Files in Xerces Java 2.10.0 754
Files in Xerces Java 2.11.0 757

Types of mutation 3
Mutations per type per file/hunk ≥ 120
Tests using Lucene 4.0.0 corpus 2 626 940
Tests using Ant 1.7.0 corpus 833 960

Tests using XercesJ 2.9.1 corpus 1 547 180
Total Tests Performed 5 008 080

Since UnnaturalCode is not a parser, it is not necessary for the model to
receive an unmatched } to detect a missing {. UnnaturalCode instead relies on
nearby contextual information such as public static void main(String[]

args). Therefore, the length of a body, block, parenthetical expression or
other balanced syntactic structure is irrelevant despite the limited 20-token
sliding window that UnnaturalCode operates with.

3.6 Validation Method

UnnaturalCode was tested primarily on three Apache Foundation projects:
Lucene,4 Ant,5 and XercesJ.6

For each experiment the training corpus consisted of every Java source file
from the oldest version of a single project. These source files were compiled and
all successfully compiled files were added to the training corpus. This corpus
was used for the duration of testing. No automatic updates to the training
corpus were performed during testing. UnnaturalCode was also tested against
the contiguous parts (hunks) of the diffs of the revisions of Lucene between

4Apache Lucene is available at https://lucene.apache.org/
5Apache Ant is available at https://ant.apache.org/
6Apache XercesJ is available at https://xerces.apache.org/xerces-j/

37

https://lucene.apache.org/
https://ant.apache.org/
https://xerces.apache.org/xerces-j/

4.0.0 and 4.1.0. These hunks represent the changes that a product sees over
time. Three different types of mutation tests on four different kinds of input
source file were performed.

The following mutations were applied to files and relevant diff hunks (con-
tiguous lines added in a patch):

• Random Deletion: a token (lexeme) was chosen at random from
the input source file and deleted. The file was then run through the
querying and ranking process to determine where the first result with
adjacent code appeared in the suggestions.

• Random Replacement: a token was chosen at random and replaced
with a random token found in the same file.

• Random Insertion: a location in the source file was chosen at random
and a random token found in the same file was inserted there.

The resulting mutant files were actually compiled, and when compilation
succeeded the mutant file was skipped. This had particularly dramatic results
on the deletion tests, where 33% of the random token deletions resulted in a
file that still compiled.

After compilation, the compiler’s own error messages were considered.
These error messages were also given a score for each file. The compiler was
scored in a similar fashion to UnnaturalCode: the first result produced by the
compiler mentioning the correct line number was considered correct.

Each of the three mutation tests was repeated on each input file at least
120 times, each time modifying a newly and randomly chosen location in the
source file. For Lucene, all 3 tests were performed at least 120 times each on
1266 files. Millions of tests were run on Ant and XerecesJ as well. Thus, a
total of over 5 million data points were collected as shown in Table 3.1.

For Lucene, 4 different kinds of source-code inputs were tested. First, for
the Lucene 4.0.0 test, source files were taken from the exact same package as
the corpus and were modified by the above process and then tested. These

38

source files exist unmodified in the corpus. Second, source files were taken
from the next Lucene release, the 4.1.0 version, that had been modified by
developers. Some of these source files exist in their 4.0.0 form in the corpus,
but have been modified by developers and then by the above process. These
files are listed in the results as the “Lucene 4.1.0 – Changed Files” test. Ad-
ditionally, new source files were added to Lucene after the 4.0.0 release for
4.1.0. These new files do not exist in the corpus but are related to files that
did. These are listed in the results as the “Lucene 4.1.0 – New Files” test.
Finally, to test files completely external to the corpus, Java source files from
Apache Ant 1.8.4 were tested. Not only do these files not exist in the corpus
but they are not related to the files that do, except in that they are both
Apache Foundation software packages.

In order to get the above results, the following steps were performed. First
a corpus was created from the earliest release. For example, Lucene 4.0.0 was
built, automatically adding all compilable source files to the corpus.

Next, we ran query tests. In each test, we choose a random token in the
input file to mutate as described above. Then, we run UnnaturalCode on the
input file and record the rank of the first correct result, rq.

3.6.1 Mean Reciprocal Rank

The rankings are analyzed statistically using the reciprocal rank. The mean
is reported as the mean reciprocal rank (MRR) Voorhees et al. (1999):

µ =
1

|Q|

[∑
q∈Q

1

rq

]
.

Q is the set of all queries, and q is an individual query from that set. For
example, |Q| = 120 for an individual file and type of mutation. Using the MRR
has several advantages: it differentiates the most among the first few (highest)
ranks. MRR scores range from 0.0 to 1.0 where 0.0 is the worst possible score.
In comparison, if we considered the average rank without taking the reciprocal,
the worst possible rank would depend on the length of the input file. MRR
represents the way that people tend to look through only the first few results.

39

In this case, we assume that a programmer will also only look through the first
few error messages.

MRR is a very unforgiving measure of the performance of a system that
returns multiple sorted results. In order to achieve an MRR greater than 0.75,
the correct result must be the first result presented to the user most of the
time. For example, consider three hypothetical token deletions performed as
described above on a single file. If the correct result was ranked first for the first
test, second for the second test, and third for the third test, UnnaturalCode
would only have achieved an MRR score of 0.61 for that file.

MRR scoring was implemented for two different sets of interleaved JavaC
and UnnaturalCode results. These combined results consist of a JavaC result
followed by an UnnaturalCode result, followed by a JavaC result, and so on.
The two variations are: 1) returning a JavaC result first; and 2) returning an
UnnaturalCode result first. These combined results represent the intended use
of UnnaturalCode as a way to augment compiler errors.

3.7 Validation Results

Figure 3.6 shows the distributions of the MRR scores of the files of versions of
Lucene and Ant versus a Lucene trained corpus. The wider the shaded area is
in these charts, the more files had that MRR. These plots also show the 25th,
50th and 75th percentiles as the beginning of the black box, the white dot,
and the end of the black box in the center. Table 3.2 presents the cumulative
mean MRRs for each data set and method.

UnnaturalCode performs very well at detecting mutations in code that
it is familiar with. UnnaturalCode did very well with only the first Lucene
4.0.0 version in the corpus when tested against both Lucene 4.0.0 and Lucene
4.1.0. A test of Ant 1.8.4 against a foreign corpus (Lucene 4.0.0) results in
poor performance. Syntax error detection performance is best with a corpus
trained on the same or earlier version of the system.

40

Table 3.2: Cumulative Mean Reciprocal Ranks (Mean MRR)

Sources Tested Corpus Delete Insert Replace
Lucene 4.0.0 Lucene 4.0.0 0.88 0.99 0.98
Lucene 4.1.0 Lucene 4.0.0 0.77 0.91 0.91
Ant 1.8.4 Lucene 4.0.0 0.20 0.36 0.36

Lucene 4.1.0 Lucene 4.0.0 0.30 0.47 0.48Only new files
Lucene 4.1.0 Lucene 4.0.0 0.68 0.86 0.85Only changed files
Ant 1.7.0 Ant 1.7.0 0.86 0.99 0.98
Ant 1.8.4 Ant 1.7.0 0.55 0.75 0.74
Ant 1.8.4 Ant 1.7.0 0.29 0.54 0.53Only new files
Ant 1.8.4 Ant 1.7.0 0.42 0.66 0.66Only changed files

XercesJ 2.9.1 XercesJ 2.9.1 0.86 0.98 0.98
XercesJ 2.10.0 XercesJ 2.9.1 0.50 0.80 0.79
XercesJ 2.11.0 XercesJ 2.9.1 0.49 0.79 0.78
XercesJ 2.11.0 XercesJ 2.9.1 0.25 0.46 0.47Only new files
XercesJ 2.11.0 XercesJ 2.9.1 0.50 0.81 0.79Only changed files

41

0
.0

0
.4

0
.8

Delete Insert Replace

Lucene 4.0.0

M
R

R
0

.0
0

.4
0

.8

Delete Insert Replace

Lucene 4.1.0 using Lucene 4.0.0 corpus

M
R

R
0

.0
0

.4
0

.8

Delete Insert Replace

Ant 1.8.4 using Lucene 4.0.0 corpus

M
R

R

Figure 3.6: UnnaturalCode-only MRR Distributions of the files of Lucene 4.0.0,
4.1.0 and the files of Ant 1.8.4 tested against a Lucene 4.0.0 corpus.

42

0
.0

0
.4

0
.8

Delete Insert Replace

Lucene 4.1.0 − New Files

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Lucene 4.1.0 − Changed Files

M
R

R

Figure 3.7: UnnaturalCode-only MRR Distributions of only new and changed
files from Lucene 4.1.0, using Lucene 4.0.0 as the corpus.

0
.0

0
.4

0
.8

Delete Insert Replace

Ant 1.8.4 − New Files

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Ant 1.8.4 − Changed Files

M
R

R

Figure 3.8: UnnaturalCode-only MRR Distributions of only new and changed
files from Apache Ant 1.8.4, using ant 1.7.0 as the corpus.

43

0
.0

0
.4

0
.8

Delete Insert Replace

XercesJ 2.11.0 − New Files

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

XercesJ 2.11.0 − Changed Files

M
R

R

Figure 3.9: UnnaturalCode-only MRR Distributions of only new and changed
files from XercesJ 2.11.0 Using XercesJ 2.9.1 as the corpus.

The scores and chart for the whole of Lucene 4.1.0 is not the entire story
for that version. It contains three kinds of files: files unchanged from 4.0.0,
changed files, and new files added since 4.0.0. Figure 3.7 clearly shows how
these types files bring the MRR scores for 4.1.0 down from the scores for 4.0.0.
The newly added files have very inconsistent performance with MRR scores
near those of the scores for Ant’s unrelated files, despite the fact that they are
a part of the same project as the training corpus. Figures 3.8 and 3.9 show
the same pattern on Apache Ant and XercesJ.

Figure 3.10 compares the performance of Ant 1.7.0 versus itself and Ant
1.8.4. The MRR behaviour is similar to the Lucene plots in Figure 3.6 for
Lucene versus Lucene tests, and the poor performance of Ant versus Lucene
has been negated by using Ant code in the corpus. The median remains very
high, implying that UnnaturalCode scores very well on most files.

Figure 3.11 tests 3 consecutive major releases of XercesJ against a corpus
of XercesJ 2.9.1. In all cases the median MRR of these tests are above or near
0.5: over 50% of the files have an MRR greater to or near 0.5. This is the

44

0
.0

0
.4

0
.8

Delete Insert Replace

Ant 1.7.0 using Ant 1.7.0 Corpus

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Ant 1.8.4 using Ant 1.7.0 Corpus

M
R

R

Figure 3.10: UnnaturalCode-only MRR Distributions of the files of Ant 1.7.0
and Ant 1.8.4 tested against the Ant 1.7.0 corpus.

same MRR score that a hypothetical system that always returns the correct
result in second place would get. As with Ant, for XercesJ in the test on a
past corpus (XercesJ 2.10.0 and 2.11.0) the bottom quartile extends further,
but ends before an MRR score of 0.2, implying that for 75% of the files tested,
UnnaturalCode performed similarly to, or better than, a hypothetical system
that always returns the correct result in fifth place.

Table 3.3 shows the results of the interleaved tests and Figure 3.12 shows
the MRR distribution for one of these tests. In this table, the column head-
ing describes the output interleaving pattern: “UUUU” gives MRR means for
UnnaturalCode results, “JJJJ” gives MRR means for JavaC, “JUJU” gives
MRR means for interleaved results with JavaC’s first result first in the output,
and “UJUJ” gives MRR means for interleaved results starting with Unnatural-
Code’s first result. All four plots come from the same set of randomly chosen
mutations. Both JavaC and UnnaturalCode perform well on their own. Un-
naturalCode performs worse than JavaC on the deletion test and better than
JavaC on the insertion and replacement tests. However, interleaved results

45

0
.0

0
.4

0
.8

Delete Insert Replace

XercesJ 2.9.1 using XercesJ 2.9.1 Corpus
M

R
R

0
.0

0
.4

0
.8

Delete Insert Replace

XercesJ 2.10.0 using XercesJ 2.9.1 Corpus

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

XercesJ 2.11.0 using XercesJ 2.9.1 Corpus

M
R

R

Figure 3.11: MRR Distributions of the files of XercesJ 2.9.1, 2.10.0, and 2.11.0
tested against the XercesJ 2.9.1 corpus.

46

0
.0

0
.4

0
.8

Delete Insert Replace

UnnaturalCode Alone

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Oracle JavaC Alone

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Interleaved Results Starting with JavaC

M
R

R
0
.0

0
.4

0
.8

Delete Insert Replace

Interleaved Results Starting with UnnaturalCode

M
R

R

Figure 3.12: MRR Distributions of the files of Lucene 4.0.0 for the interleaved
test.

47

Table 3.3: Interleaved Error Mean Reciprocal Ranks (MRRs).

Interleaving Pattern
Sources Tested Corpus UUUU JJJJ JUJU UJUJ
Lucene 4.0.0 Lucene 4.0.0 .950 .932 .959 .963
Lucene 4.1.0 Lucene 4.0.0 .865 .937 .960 .914
Ant 1.7.0 Ant 1.7.0 .940 .927 .956 .958
Ant 1.8.4 Ant 1.7.0 .681 .923 .945 .806
Ant 1.8.4 Lucene 4.0.0 .308 .921 .930 .600

XercesJ 2.9.1 XercesJ 2.9.1 .939 .895 .937 .955
XercesJ 2.10.0 XercesJ 2.9.1 .694 .889 .916 .796
XercesJ 2.11.0 XercesJ 2.9.1 .688 .884 .911 .791

perform better than either system by itself: the best performing interleave
depends on the file.

In the XercesJ tests, both UnnaturalCode and the Java compiler performed
worse overall than the other projects. However, the interleaved results still
dramatically improve performance. Interleaving allows the XercesJ results to
approach the performance achieved with Ant and Lucene.

Table 3.4 shows how much closer to a perfect score of 1.0 each interleaved
result (“JUJU” or “UJUJ”) is compared to using the Java compiler’s error
messages exclusively (“JJJJ”). For example, if the Java compiler’s MRR score
was 0.9 and the interleaved score was 0.95, this would represent a score 50%
closer to perfect. In cases where the the sources tested are different than the
corpus, the UnnaturalCode-first interleaving, “UJUJ”, makes the MRR score
worse. However, the JavaC-first interleaving, “JUJU”, always gets closer to a
perfect score by 11-40%.

3.8 Discussion

The n-gram language-model approach was capable of detecting all mutations:
inserted tokens, missing tokens, and replaced tokens. This is because the
sequence of tokens will not have been seen before by the language model,
assuming it has been trained on compilable code.

48

Table 3.4: Reduction of the gap between the Java compiler’s MRR score and
a perfect MRR score of 1.0.

% closer to perfect MRR score
Sources Tested Corpus JJJJ to JUJU JJJJ to UJUJ
Lucene 4.0.0 Lucene 4.0.0 40% 46%
Lucene 4.1.0 Lucene 4.0.0 37% -37%
Ant 1.7.0 Ant 1.7.0 40% 42%
Ant 1.8.4 Ant 1.7.0 28% -151%
Ant 1.8.4 Lucene 4.0.0 11% -406%

XercesJ 2.9.1 XercesJ 2.9.1 40% 57%
XercesJ 2.10.0 XercesJ 2.9.1 24% -83%
XercesJ 2.11.0 XercesJ 2.9.1 23% -80%

3.8.1 Performance on Milestones

Results were very inconsistent from file to file, and even, in the case of some
files, such as TermsFilter.java, from version to version. One very clear
pattern stands out, however. The deletion mutations were much easier for
UnnaturalCode to detect than the insertion or replacement changes in the
feasibility tests above. However, in the compiler integration test they were
harder to detect.

In the milestone tests, some files would get consistently wrong results be-
cause the top results would always be the same regardless of where the changes
were made. In particular, files from outside the corpus that contained strings
of new identifier tokens would consistently produce poor results with Unnatu-
ralCode.

Unfortunately, with only a single project in the corpus, performance was
sometimes very poor. This poor performance could be easily triggered by
adding new identifiers that were not present in the corpus, since those new
identifiers were labelled with high entropy by the model. Sometimes this be-
haviour is accurate, as in the case of a misspelled identifier, but sometimes it
is inaccurate, as in the case of a newly added, but correctly spelled, identifier.

These results are highly encouraging, however. Even the worst MRR score
of 0.20 implies that there are files in Apache Ant in which errors are locatable

49

using a corpus trained on Lucene. If one runs the tests as described above on
broken Java code that imports classes from packages that do not exist in the
training corpus, these correctly specified imports will almost always be the top
five results. However, this behaviour only persists until they are added to the
corpus, and this happens after the first successful compilation of those files. For
example, even though class imports in Ant 1.8.4 share the same org.apache

class path, they also contain new identifiers. When ProjectHelperImpl.java

imports org.apache.tools.ant.Target, this string contains three identi-
fiers, “tools,” “ant,” and “Target,” which are not in the training corpus.
This will cause the average entropy of any string of 20 tokens containing
“tools.ant.Target” to contain at least three high entropy contributions. In
comparison, when the code is mutated for testing, at most one additional un-
seen token is introduced. One possible solution to the new identifier problem
is to ignore identifier content and train on the type of the identifier lexeme
itself (Allamanis and Sutton, 2013).

The syntax error detector can often misreport new identifiers, such as
package names, as syntax errors.

3.8.2 Performance on Revisions

Some revisions have much higher MRR than others. An examination of some
of these changes reveals what may have caused their score to be particularly
high or low.

Lucene revision 1408367 had a particularly low mean MRR score of 0.15. In
this revision there was no Java code change hunk larger than the 25-token mini-
mum in UnnaturalCode, and the remaining large hunks were English language
comments. These comments were not removed because diff had removed the
leading /*. Another low-scoring revision, number 1419892, with a mean MRR
of 0.12, contained a hunk with a fragment of the Apache 2.0 License.

50

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information regarding
copyright ownership. The ASF licenses this file to You under the
Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy
of the License at

Thus, the actual performance on Java code from the diff hunks is likely
higher than the mean presented in Table 3.2 because that result includes hunks
of English text. The validation framework failed to remove these English texts
from the hunks it considered. Sometimes diffs lack the context to resolve
their content. Comments are often modified such that the code signalling the
beginning of the comment is not recorded in the diff.

There are also high-MRR outliers in the set of revisions considered, such
as revision number 1425817, in which the Lucene developers added new vari-
ables, “CONN_LOSS,” and “EXP.” However, these new variables were added with
common Java attributes and types: “private static final boolean.” This
common sequence occurs 20 times in the training corpus. Therefore, they help
keep the entropy of token sequences containing the new declarations low by
averaging out the high entropy of “CONN_LOSS,” and “EXP,” that do not occur
in the training corpus anywhere.

3.8.3 Performance with Interleaved Errors

The UnnaturalCode/JavaC combination performed better than either
JavaC or UnnaturalCode alone in every test case.

UnnaturalCode was often capable of detecting errors that JavaC was not
and JavaC often was capable of detecting errors that UnnaturalCode was not.
This fact allows UnnaturalCode to augment the accuracy, in terms of MRR
score, of the compiler when its results were interleaved. The interleaving im-
proved the MRR score from 0.915, using just JavaC, to 0.943 using interleaved

51

results for the deletion test on Lucene 4.0.0. This closes the gap between the
Java compiler’s MRR score and a perfect score of 1.0 by 34%. The best inter-
leave choice is not consistent, so it may be best to present results to the user
side-by-side.

3.9 Threats to Validity

Construct validity is affected by the assumption that single-token mutation is
representative of syntax errors. This assumption may not be very representa-
tive of changes a software engineer would make between compilation attempts.

However, single-token mutations are the worst-case scenario and provide a
lower bound on performance.

A file with two syntax errors is further from compiling than a file with
one syntax error. Since UnnaturalCode only models files that do compile, a
file with two syntax errors will have more entropy than a file with one syntax
error. In this case a developer would be presented with the highest-entropy
error first. If they chose to fix that problem and recompile, they would be
presented with the next-highest entropy error. Multi-token errors would be
easier for UnnaturalCode to detect.

Internal validity is hampered by using the MRR formula to score our rank-
ing of the correct query results. These rankings are affected by the maximum
gram length, n, where typically larger is better, and the number of total re-
sults. The number of total results is l − 2n/s where l is the length of the
file and s is the step size. Since correct results comprise at most 2n/s of the
results, the chance of the correct result appearing in the top 5 if the results
are sorted randomly is approximately proportional to 1/l. In other words, the
system will naturally perform better on short input files simply because there
is less noise to consider. This is the reason diff hunks with less than 25 tokens
are discarded. Since 25−2×5

1
= 5, there are only 5 total query results and the

correct one is always in the top 5. The revision tests can accidentally run on

52

context-less Java comments, when the comment tokens (/* , */ or //) are
missing, which can have some effect on the MRR results.

External validity is affected by the choice of Java projects. The experi-
mental evaluation covers 5 million tests of UnnaturalCode and JavaC across
3 different medium-to-large Apache Foundation Java projects: Ant, XercesJ
and Lucene. JavaC compilation is much slower than querying UnnaturalCode
alone.

Java has a syntax typical of many C-like languages. Thus, these tests are
a good representative, and the results for these projects will generalize well to
other projects. These results should generalize to other languages as well but
this assumption has not been tested yet. The evaluation on 5 million single-
token mutation tests across 3 distinct corpuses is a fairly significant evaluation
of the new method.

3.10 Future Directions

This technology can be very useful to software engineers who are actively
developing a piece of software. All the engineer must do is instruct their build
system to call the wrapper instead of the compiler directly, and the system will
begin building a corpus; if the compile fails it will return side-by-side ranked
results from both the compiler and from UnnaturalCode. The performance
evaluation indicates that a system using the ideas presented in this chapter
will suggest the location of the fault in the top two results often enough to
be useful as long as the corpus contains one successful compile of the same
project.

The method proposed should be implemented not only as a compiler wrap-
per for general purpose command-line use, but also as a plug-in for an inte-
grated development environment (IDE) such as Eclipse. In such an environ-
ment it could provide immediate and visual feedback after a failed compile of
which lines were likely to cause problems, perhaps by colouring the background
with a colour corresponding to the increase in entropy for those lines.

53

The generalization to other languages needs to be evaluated. One simply
needs to replace the Java lexical analyzer used in UnnaturalCode with a lexical
analyzer for the language they wish to use and modify the compiler wrapper
to locate input file arguments and detect the failure of their compiler of choice.
The n-gram model is flexible and will work with many programming languages
(Hindle et al., 2012).

The effect of a multi-project corpus on syntax error detection should be
investigated. The idea is to explore what makes a good corpus for general
purpose syntax error detection.

Statistical information on what typical coding mistakes look like is miss-
ing from UnnaturalCode, as it can only characterize correct code. Therefore,
software repositories could be mined for patches that fix coding mistakes and
syntax errors. That data could then be used to characterize those mistakes
and fixes statistically. Source code could then be examined for code resembling
the broken code from those defective commits.

Several extensions to the system could be implemented. For example, the
combination of this method with token prediction could automatically repair
source code by statistically directing most-likely syntax repair searches based
on a dynamic and project-specific corpus instead of statically defined least-cost
repair searches such as those presented in Corchuelo et al. (2002) and Kim and
Choe (2001). This approach should be much more efficient than the approach
applied in Weimer et al. (2009). It may also be interesting for developers or
project managers to be able to see the entropy of each line or token of source
code themselves because the entropy may correlate with other properties of
the source code that have not yet been considered.

3.11 Conclusion

This chapter presents a system to address the common issue of poor syntax-
error location reporting by modern compilers. Syntax errors plague novice and
experienced programmers alike. UnnaturalCode avoids parsing completely, in-

54

stead relying on a statistical language model from the field of natural language
processing. The choice of model was guided by the promising results in code
completion. UnnaturalCode consists of a compiler wrapper, a lexical ana-
lyzer, and a language model that cooperate and are more than fast enough
to be used interactively. UnnaturalCode is tested by inserting, deleting and
replacing random tokens in files from the software that it was trained on, and
later versions of the software it was trained on, and a completely independent
software package. The experimental evaluation shows that UnnaturalCode
performed very well on the same version, well on the next version, and poorly
on external software. When UnnaturalCode’s results are combined with the
compilers own results, the correct location is reported earlier than with the
compiler’s results alone.

This work helps bridge the gap between statistical language analysis tools
and computer-language parsers. Bridging this gap solves a problem that has
haunted the users of parsers since they were invented: accurately locating
syntax errors. This approach is unique in that it employs a statistical model:
all previous work in this area are based on parser modifications to repair or
recover from syntax errors, static code analysis, predefined heuristics, or type
analysis. Furthermore, the model can evolve with the changing contexts of
individual engineers and projects as it continuously updates its training cor-
pus. By combining this method with the current compiler’s error messages we
achieve better performance in syntax error localization than either technique
alone.

The n-gram language-model is capable of enhancing the compiler’s ability
to locate missing tokens, extra tokens, and replaced tokens.

Finally, when you build a language model of working source code, “syntax
errors just aren’t natural.”

55

Chapter 4

Dynamic Detection of
Typographical Errors in Python
Code

4.1 Preface

4.1.1 Acknowledgement

This chapter was originally published as a “pre-print” (Campbell et al., 2015).
I, Hazel Victoria Campbell, wrote the majority of the chapter, conducted the
experiments, collected data produced results and analysis, and created most
of the figures. Dr. Abram Hindle wrote the related work section, provided
editing, some figures, and modifications to the software used, and supervised
the research. Dr. José Nelson Amaral provided editing and supervised the
research.

4.1.2 Significance

This chapter’s significance centers around the differences between strict, stati-
cally typed, and fully compiled languages like Java and less strict, dynamically
typed, and interpreted languages like Python. Since Python is not statically
compiled, the scope of this chapter was expanded to include run-time errors
that can be introduced by typographical errors in the source code.

The work presented in this chapter was the first time that Natural Lan-
guage Processing (NLP) techniques had been applied to the problem of locating

56

errors both at the time of compilation and during run-time. Due to the nature
of errors at run-time the work presented in this chapter had to overcome many
challenges that simply were not present in the previous chapter.

The software developed to conduct the research presented in this chap-
ter forms the foundation of the software developed to conduct the research
presented in the next chapter.

4.1.3 Impact

The original publication of this work has been cited by Derezinska and Hałas
(2015) as a source for mutation operators to avoid when performing mutation
testing. Since the Python interpreter often fails to detect the types of muta-
tions introduced in this work (see Section 4.7), these types of mutations would
be counter-productive during mutation testing.

4.2 Abstract

Dynamic scripting programming languages present a unique challenge to soft-
ware engineering tools that depend on static analysis. Dynamic languages do
not benefit from the full lexical and syntax analysis provided by compilers
and static analysis tools. Prior work exploited a statically typed language
(Java) and a simple n-gram language model to find syntax-error locations in
programs. This work investigates whether n-gram-based error location on
source code written in a dynamic language is effective without static analysis
or compilation. UnnaturalCode.py is a syntax-error locator developed for the
Python programming language. The UnnaturalCode.py approach is effective
on Python code, but faces significantly more challenges than its Java coun-
terpart did. UnnaturalCode.py generalizes the success of previous statically-
typed approaches to a dynamically-typed language.

This chapter also presents a novel tool for random-edit mutation-based
automatic exploration of program code variants. The random-edit mutation

57

tool is used to analyze both the implementation of the Python language and
UnnaturalCode.py.

4.3 Introduction

This chapter seeks to help Python programmers find coding mistakes by cre-
ating an error location tool, UnnaturalCode.py, for use with Python.

Campbell et al. (2014) describes a prototype system, UnnaturalCode, for
locating syntax errors in programs written in the Java programming language.
UnnaturalCode produced additional diagnostic information for Java source
files that failed to compile. UnnaturalCode used an n-gram language model to
identify snippets of source code that it finds unlikely to be correct. Unnatural-
Code was shown to be effective by locating some errors that the Java compiler
was not able to locate. Syntax errors and syntax-error reporting are impor-
tant because researchers have found that syntax errors are serious roadblocks
for introductory programming students. Garner et al. (2005), corroborated by
numerous others (Jackson et al., 2005; Jadud, 2005; Jadud, 2006; Tabanao
et al., 2008) show that “students very persistently keep seeking assistance for
problems with basic syntactic details.”

In this chapter, a new UnnaturalCode.py system is applied to a new pro-
gramming language. In the interests of diversity and generality, another pop-
ular programming language, which is very different from Java, was chosen:
Python. Besides being a dynamically typed scripting language, Python also
offers additional challenges for the localization of errors, and thus is a good
candidate to evaluate UnnaturalCode in a different point in the space of pro-
gramming languages. For instance, Python is an interactive scripting language,
while Java is not. Python has different syntactical style from Java: it uses
whitespace to define the end of statements and the extent of code blocks.

Python has taken hold as an instructional language (Bell et al., 2012; Kr-
pan and Bilobrk, 2011). It is popular to teach Python and Python is now
quite popular among scientists (Millman and Aivazis, 2011; Pérez et al., 2011).

58

Many new programmers are being introduced to programming with Python
because Python lacks excessive syntax and forces structured and modular pro-
gramming via forced whitespace block structures (Stajano, 2000).

However, the approach used in Campbell et al. (2014) does not work with
Python because of the differences between Java and Python. A new approach
was developed, to generalize the previous approach.

Differences between languages have implications for UnnaturalCode, the
practice of software development, and the use of Python as a language for
experimentation. Experiments and practices that involve generating Python
code that may or may not execute are the focus of this chapter. These type
of experiments are heavily impacted by Python’s features, especially its lack
of compilation and static analysis.

The contributions of this chapter are: 1) a corpus-based tool, Unnatural-
Code.py, that can help users locate the causes of errors in Python software;
2) a novel methodology and tool for mutation testing of Python tools without
restricting the forms those mutations can take; 3) an analysis of the differ-
ences in approach required for dynamic scripting languages as compared to
approaches that relies on statically typed and compiled languages.

The trumpeting of Python as an excellent introductory language, raises
the question “does Python’s own language definition support new developers?”
More explicitly, Python is considered a great instructional language despite
lacking analytical tools to recognize basically correct programs. Studies such as
Krpan and Bilobrk (2011) fail to show that Python is an effective introductory
programming language.

Python cannot give timely and appropriate error messages to new program-
mers because error-ridden code might never be executed: syntax errors can
exist in Python files that are currently runnable and executable. Java, on
the other hand, requires a lot of boilerplate to get started, yet Java statically
type checks programs before compilation. Programs written in Java must have
appropriate syntax before they are compiled, unlike Python.

59

This chapter investigates automatic error discovery/reporting in Python
programs via a corpus-based approach. This investigation revealed the chal-
lenges that liberal typing and scoping pose to such a corpus-based approach.

4.4 Background

UnnaturalCode was introduced in Campbell et al. (2014). It is a prototype
system that effectively finds syntax errors by training itself on working Java
source code and then trying to find phrases of source code that it has not seen
before. This chapter differs from the prior work by introducing a new system
with some of the same core ideas. UnnaturalCode.py includes a mutation-
testing framework for Python implementations, software engineering tools, and
test suites.

The UnnaturalCode prototype for Java depended on language features such
as declarative scope, static typing, context-free syntax and pre-compiled li-
braries. Additionally, source-code compliance with the rules and requirements
of these language features is testable with a single tool: the Java compiler. It
is also reasonable to expect the Java compiler to halt (not halting would be a
bug). In this chapter, however, arbitrary Python programs are used instead of
a compiler, and cannot be reasonably assumed to behave in any particular way.
This work discusses many of the issues faced with error location in a dynamic
language, as well as mutation testing in a dynamic scripting language.

4.4.1 n-Grams in Software Engineering

Hindle et al. (2012) proposed the application of n-gram language models to
source code. These models were classically applied to natural language text,
but Hindle et al. (2012) showed that software had properties (low entropy)
that made it compatible with these kinds of models.

N -grams are a phrase formed by at most n words or tokens. An n-gram
language model is simply a collection of counts that represent the number
of times a phrase appears in a corpus. Empirically the probability of an n-

60

gram is simply the frequency of occurrence of the phrase in the original corpus.
For example, if the for loop “for x in l :” occurred 10 times in a corpus
consisting of 1000 5-grams, its probability would be 0.01. One could consider
the probability of a token in its surrounding context. For example, the token
“in” might have a probability of 1 given the context of “for x ------ l :”
because “in” may be the only token that had been observed in that context.

Performance of n-gram models tends to increase as n increases, but so does
the memory required to store the model. Larger values of n cause sparsity —
not all n-grams of size n will be observed if n is large. Empirically, unless the
corpus is large enough, there will be unobserved and legitimate n-grams that
are not in the corpus. If missing n-grams have a probability of zero, the model
cannot estimate any probabilities on the unseen text. This short-coming is
addressed by smoothing. Smoothing estimates the probability of unseen n-
grams from the probabilities of the largest m-grams (where m < n) that are
part of the unseen n-gram and that exist in the corpus. For example, if the cor-
pus does not contain the phrase “for x in l” but it does contain the phrases
“for x in” and “l” it would estimate the probability of “for x in l” using a
function of the two probabilities it does know. Specifically, UnnaturalCode.py
uses Modified Kneser-Ney smoothing (Hsu and Glass, 2008).

UnnaturalCode.py works by finding n-grams that are improbable – they
have high entropy. Thus UnnaturalCode.py exploits the fact that syntactically
invalid source code often has a higher entropy. The entropy of source code is
computed with respect to a corpus of code that is known to be compilable.
Unnatural Code looks for source code that is unnatural to a n-gram model
trained on compilable source code.

4.4.2 Programming Errors

There is much empirical research on the effect of syntax errors on novices and
experienced programmers (Garner et al., 2005; Jackson et al., 2005; Jadud,
2005; Jadud, 2006; McIver, 2000; Tabanao et al., 2008). The consensus is that

61

programming errors consume time, occur frequently for new programmers, and
persistently for experienced programmers.

Kummerfeld and Kay (2003) studied the effect of syntax errors on program-
ming experience and program comprehension. They found that inexperienced
students made rapid and erratic modifications to their source code, in the hur-
ried hope of achieving a compiling program. These furious modifications do
not exhibit much strategy or reasoning, but represent a brute-force approach
to programming. When studying experienced programmers, they found that
after the failure of a set of syntax-error solving strategies, the experienced
programmers would revert to this brute-force random edit strategy as well.

Student performance (grades) have been found to negatively correlate with
the frequency of syntax errors. Tabanao et al. (2011) and Tabanao et al.
(2008) studied more than 120 students and found that errors and compilation
frequency were negatively correlated with midterm test performance.

Jadud (2005) and Jadud (2006) studied first-year students’ programming
errors by taking snapshots of code before compilation. Each failure was man-
ually labelled. Of relevant failures, 5% took students longer than 10 minutes
to resolve while 60% only took 20 seconds. Thus, addressing and fixing syntax
errors is time consuming for inexperienced programmers.

4.4.3 Technical approaches to Syntax Errors

Two main methods used to identify and report coding errors are parser-based
and type-based. Parser-based methods augment the parser to enable better
reporting or to skipping over ambiguous sections in hopes of providing more
feedback. Many of these techniques seek to create more error messages that
might be more helpful. Burke’s parse action deferral (Burke and Fisher, 1987)
backs the parser down the parse stack when an error is encountered and then
discards problematic tokens. This approach allows the rest of the file to be
checked as well, assuming that the state of the parser is recoverable. In a
similar vein, heuristics and cost-based approaches, such as production rule
prioritization resumption were combined by Graham et al. (1979) in order to

62

provide better parse error messages. Parr and Fisher (2011) discusses the LL(*)
parsing strategy used in parser-generators such as ANTLR. LL(*) parsers dy-
namically attempt to increase the look-ahead at parse time up to a constant
maximum look-head, finally failing over to a backtracking algorithm. This
method gains contextual error reporting from a top-down perspective enabling
source-level debugging while still performing well enough to be a usable and
popular parser.

Other parse-based methods avoid reporting spurious parse errors. They
often work by attempting to repair the source code or by resuming the parse
after an error. Corchuelo et al. (2002) and Kim and Choe (2001) apply search
methods to find repairs to source code to enable a parser to continue, often
without user intervention. These are merely two examples of such techniques:
research on parser error recovery and diagnostics spans many decades and is
far too voluminous to list here.

Type-based static analysis is leveraged as an alternative method of parse
and syntax error fixing. Python employs a liberal type system and parser that
can be viewed as a barrier to Type-based static analysis. Cannon concluded
that one barrier to type inference and type-based static analysis was that
“Object-oriented programming also affects the effectiveness of type inference.”
(Cannon, 2005). Many attempts at type inference, such as Salib (2004), Psyco
by Rigo and Tismer (2001), Rigo (2004) and Python ignore part of Python’s
semantics or just handle subsets of Python’s language. PyPy (Rigo and Pe-
droni, 2006) is the most modern effort at static analysis of Python code by
enabling just in time (JIT) compilation of Python code. RPython by Ancona
et al. (2007) attempted to limit the semantics of Python to work “naturally”
within statically typed domains such the JVM or CLI. Thus there has been
some work on Python, static analysis and type-based analysis, but much of it
either chooses to work on safe subsets of the languages or restrict language
semantics.

Type-based analysis focuses on reconciling the types of the identifier and
functions called, rather than focusing on grammatical correctness. Heeren

63

(2005) leverages types to implement a constraint-based framework within the
compiler.

Some type-based techniques leverage corpora either to aid their type-based
reasoning with heuristics or to improve search performance. Hristova et al.
(2003) leverage predefined heuristic rules to address common mistakes observed
in code. Lerner et al. (2007) use a corpus of compilable software and its types
to improve type error messages for statically typed languages.

One mutation-based technique was described by Weimer et al. (2009). They
use Genetic Algorithms to mutate parse trees to fix defects. In comparison to
previous mutation-based approaches, the mutations presented in this chapter
are not guaranteed to produce either parsable text or a valid parse tree.

4.5 Implementation

UnnaturalCode.py is intended to augment the Python run-time environment’s
error messages with additional information about the probable location of a
coding error. It is comprised of two major parts. The first is a piece of Python
software, and the second is a modified version of the MIT Language Model
(MITLM). MITLM is a software implementation of the n-gram language model
written in C++.

UnnaturalCode.py wraps around the system’s Python interpreter in order
to add the desired functionality: UnnaturalCode.py is invoked to run Python
programs instead of the system’s Python interpreter. First, UnnaturalCode.py
runs the desired Python program in exactly the same way as the system’s
Python interpreter. Then, UnnaturalCode.py checks the result of the execu-
tion.

There are two possible outcomes:

• In the case that the Python program exited successfully, or more prefer-
ably, the Python program’s test suite passed, UnnaturalCode.py can add
it to its corpus of known-good Python code.

64

• In the case that the Python program exits with an error, Unnatural-
Code.py attempts to locate the source of that error and to give the user
a suggestion of where to look for coding mistakes along with the standard
Python error information.

UnnaturalCode for Python would fit within Beck’s test-driven-development
(Beck, 2003) loop whereby after a success run of tests the updated code would
be used to update the n-gram model. Such updates would ensure that the
code used to build the model is of sufficient quality.

UnnaturalCode.py could be integrated into Beck’s test-driven-development
(Beck, 2003) process in two places: as a method to help locate test-failing code
in the case of an error inducing a test failure; after tests pass UnnaturalCode.py
could be updated with the new working code so that it becomes more familiar
with the successful test-compliant system.

UnnaturalCode.py does not interfere with the usual process of execut-
ing Python software. UnnaturalCode.py’s goal is only to augment the usual
Python diagnostics and error output with its own suggestions. In order to
achieve this goal it performs the following functions: first, it lexically analyzes
the Python program with its own custom lexical analyzer. This lexical ana-
lyzer is based on Python’s standard lexical analyzer, but modified to continue
in the case of an error instead of stopping.

Second, it breaks the Python file that caused the error into sequences of 20
contiguous tokens using a sliding window. A 20-token sliding window is used
to ensure that MITLM has sufficient context to employ smoothing. Then, it
sends each sliding window to MITLM. MITLM can either be running locally
or on a server. MITLM returns, for each sequence, a single value representing
the cross entropy (or, log probability) of that sequence versus the corpus of
known-good Python code.

Finally, UnnaturalCode.py reports to the user the sequence that has the
highest cross-entropy, along with its line number, file name, and the usual
Python diagnostics and error messages. The entire UnnaturalCode.py process

65

usually takes less than 1 second and 300-500MB of RAM on a modern 64-bit
PC for a single large Python project.

MITLM is configured to use a 10-gram model, and the modified Kneser-Ney
smoothing, when estimating entropy values. This configuration allows Unnat-
uralCode.py to receive reasonable entropy estimates even for token sequences
that have never been seen before.

UnnaturalCode.py also includes a program mutation tool, which it uses
to test itself. This tool can be used to test test suites, error handling, and
Python implementations. The mutation tool includes rules for 14 different
types of mutations, all of which are designed to be extremely general.

11 of those 14 types of random mutations were studied in this chapter:
token deletion, token insertion, token replacement, digit deletion, digit inser-
tion, letter deletion, letter insertion, symbol deletion, symbol insertion, line
dedenting, line indenting.

These 11 types of random-edit-mutations are intended to simulate mistakes
that a typical developer may make when writing Python code, such as mis-
spelling identifiers, typos, unbalanced parentheses, braces and brackets, bad
indentation, missing characters, and using incorrect operators.

In all three token mutations, a token is chosen at random. Deletion simply
removes the chosen token. Insertion inserts a copy of the chosen token at a
random location. Replacement writes a copy of the chosen token over another
randomly selected token. In digit, letter and symbol mutations, a single digit,
letter, or symbol character is deleted or inserted randomly in the file. In the
indentation mutations a line in the file is selected at random and its indentation
is decreased or increased. Digit, letter, symbol, and indentation mutations may
mutate any part of the file, including code and comments. Token mutations
can only affect the code and never comments.

Other techniques for mutating Python code are far more limited, such
as the operators presented by Derezińska and Hałas (2014) or the mutations
employed by Moore (2000–2013). These mutators are designed to produce
reasonably valid and executable Python programs, whereas the mutations used

66

in the experiments here are not. UnnaturalCode.py mutations are designed to
be as general as possible, they do not guarantee an executable program after
mutation. Thus the set of possible of programs we generate is larger than the
set that Moore (2000–2013) produces. In this chapter these mutations are only
applied once so that they produce general text files that are similar to known
good Python programs. Two types of mutation rules are available: rules that
are guaranteed to produce text that Python can successfully lexically analyze,
and rules that do not have this guarantee.

In order to obtain as much information on whether a Python program is
valid or not, while also preventing that program from affecting the operation of
UnnaturalCode.py, UnnaturalCode.py runs code in a separate process. Execu-
tion is limited to 10 seconds, though this limit was never needed. The mutation
testing system has several features that manage the execution of random, un-
predictable, Python code and extract error-report data produced by Python
and Python programs. Python types may change at runtime, Python does not
enforce encapsulation, and Python does not have a standard external debugger.
Thus, UnnaturalCode.py executes Python code in a separate process to prevent
unknown programs and mutants from changing types, global and local vari-
ables used by UnnaturalCode.py. UnnaturalCode.py also obtains debugging
information from the process under test, and exports that information back
to the main UnnaturalCode.py process for examination. UnnaturalCode.py
ensures that all testing processes halt by forcefully killing processes in case
they exceed a preset amount of execution time.

UnnaturalCode.py depends only on its own code, the implementation of
the Python language, and MITLM. MITLM is the only component of Unnatu-
ralCode.py that was preserved from the prototype Java implementation of the
tool. UnnaturalCode.py uses a slightly modified version of Python’s own lexi-
cal analyzer. It does not use a lexical analyzer generated by a parser-generator
from a grammar.

Additionally, UnnaturalCode.py is intended not only for research but also
for practical use by Python developers. One can download and experiment

67

with UnnaturalCode.py as it is distributed freely on GitHub:
https://github.com/hazelybell/unnaturalcode.

4.6 Experimental Validation Procedure

UnnaturalCode.py is designed to help the Python developer locate simple pro-
gramming mistakes such as typos. Most of these mistakes are syntactic in
nature, although some may be semantic errors, such as misspelled identifiers.
Consider the following example Python program:

def functionThatExpectsTwoArguments(a, b):
return True

def testA():
functionThatExpectsTwoArguments("a" "b")

def testB():
functionThatExpectsTwoArguments("a",-"b")

def testC():
functionThatExpectsTwoArguments["a","b"]

The program listed above executes without error in the Python interpreter
and loads without error if imported as a module, indicating that it has basic
syntactic validity. However, importing this Python module and running any of
the three test functions would result in a TypeError. A Python programmer
could quickly identify the simple mistakes: there is a comma missing in testA;
in testB there is a stray “-” and in testC square brackets were used instead
of parentheses.

All three of these mistakes would be quickly caught by a compiler at com-
pile time. However, Python must load this file and actually run one of the
three broken lines of code in order to discover this mistake. The experimen-
tal validation that follows attempts to evaluate UnnaturalCode.py’s ability
to locate simple coding mistakes such as these, including both mistakes that
Python can catch and mistakes that it cannot.

First, known-good Python source files were collected from a variety of
Python projects including Django, pip, setuptools and Zope. These are pop-
ular, well-known projects that are used in real-world production Python envi-
ronments. The files collected are assumed to be in good condition, and free of

68

https://github.com/hazelybell/unnaturalcode

syntax errors. Some files were modified to substitute relative import paths for
absolute import paths in order to run. Not every file from these projects was
used because some of them required configuration or configuration files, or re-
lied on external libraries not available to the authors, such as Oracle database
libraries and could not run without such dependencies. Files with less than 21
tokens were also excluded because they are too short to produce meaningful
results. 936 files remained after removing files that were inappropriate for the
mutation experiments. UnnaturalCode.py will always be able to locate the er-
ror in a file shorter than its sliding-window length. Including such files is akin
to asking which line a syntax error is on in a file with only one line. The Python
files used are available at https://github.com/hazelybell/pythonCorpus.

Collecting these 936 files required each to be tested, library dependencies in-
stalled, run-time dependencies configured, module paths specified or corrected.
Programs with errors may not terminate; therefore a limit of 10 seconds was
imposed on the execution of any single file. Among the collected test cases
no known-good file would run for more than 10 seconds. These known-good
files were then used to build a corpus, which was then used to build a 10-gram
language model with MITLM. UnnaturalCode.py updates its own corpus as
soon as a valid version of a new or changed file is discovered. Therefore, Un-
naturalCode.py has all known-good versions in the corpus at the beginning of
the validation procedure, including files from the current project. Unnatural-
Code.py is designed to have the most-recent working versions of all files in its
corpus during regular usage (that is the entire set of 936 files). Thus, starting
UnnaturalCode.py with a corpus of all known good files is done to test Unnat-
uralCode.py’s intended use case of running after modifying a Python source
file. Each file was then repeatedly subjected to a random-edit mutation and
tested against both Python and UnnaturalCode.py.

Once a file was mutated, the location of the mutation was noted, and the
mutant file was ‘required’, imported and executed, using Python 2.7 because
the original files were all designed to be run with this Python version. This is
similar to running the file from the command line: python2.7 filename.py.

69

https://github.com/hazelybell/pythonCorpus

This tests if the file parses and executes. One of two possible outcomes was
recorded: 1) the file ran successfully; 2) the file exited with an error; or 3) the
file took more than 10 seconds to execute at which point it was terminated.
The exact type of error and location were recorded and compared to the lo-
cation of the mutation, see Table 4.1. For the sake of brevity, only common
errors reported by Python are shown in the results in Table 4.5.

The language model is queried with every contiguous 20-token window
present in the file, and reporting the single contiguous 20-token window with
the highest entropy with respect to that model. The location of the 20-token
window was then compared to the location of the mutation. A source file that
is 200 tokens long will have 200− 20 + 1 = 181 20-token phrases.

This validation procedure differs slightly from the one described in Camp-
bell et al. (2014). The differences are: 1) some files were excluded because
they had missing dependencies or run-time requirements; 2) some files were
edited to specify full import paths or to remove run-time checks such as checks
to ensure the database is configured properly; and 3) only the top result from
UnnaturalCode was considered to avoid biasing against Python, which only
returns one result.

4.7 Results

The data in this section is presented as the fraction of experiments for which
the first result returned by Python or UnnaturalCode.py is near the location of
the mutation, which is denoted precision. Precision is a measure of the perfor-
mance of an information retrieval system. In this chapter, precision measures
how often Python and UnnaturalCode.py locate a mutation. False positive
rate is irrelevant to UnnaturalCode.py because it only runs in the presence of
an error indicated by Python. Only a single result is considered. Therefore,
precision is equal to recall, 1-precision, precision at 1 result, and mean recip-
rocal rank (MRR) with only 1 result. This metric was chosen because Python
only produces at most a single result. Therefore, the comparison would be

70

unfair if UnnaturalCode.py was allowed to produce more than one location for
examination by the user, although it is capable of doing so.

Table 4.1: Experimental Data Summary

Python Source Files 936
Source Files from django 623
Source Files from pip 159
Source Files from zope 75
Source Files from setuptools 52
Source Files from Python 25
Source Files from markerlib 2

DeleteToken mutations 560400
InsertToken mutations 560400
ReplaceToken mutations 532372
DeleteDigit mutations 79225
InsertDigit mutations 93500
DeleteSymbol mutations 93550
InsertSymbol mutations 93400
DeleteLetter mutations 93550
InsertLetter mutations 93523
Dedent mutations 93450
Indent mutations 93550
Total data points 2386920

Table 4.1 shows some summary statistics about the experimental data gath-
ered. Each file was subjected to many different mutations of each type in order
to obtain a mean precision value.

Table 4.2 shows the overall performance of Python and UnnaturalCode.py
on the 11 types of mutations tested. Each number in the table represents the
fraction of injected errors that were detected. The baseline for all fractions
is the total number of errors injected. Py is the Python interpreter. Py Only

are the errors detected by Python but not detected by UnnaturalCode.py.
Similarly, the fraction of errors detected by UnnaturalCode.py appears in the
UC column and the errors exclusively detected by UnnaturalCode.py are in the
UC Only column. Then the table shows errors that were detected by both.
Either is the union of detection by both methods and None are errors that
are not detected.

71

Table 4.2: Fraction of Mutations Located by Mutation Type

Py Py Only UC UC Only Both Either None
DeleteToken 0.64 0.14 0.65 0.15 0.50 0.79 0.21
InsertToken 0.64 0.09 0.77 0.23 0.55 0.86 0.14
ReplaceToken 0.63 0.13 0.74 0.23 0.51 0.86 0.14
DeleteDigit 0.25 0.01 0.52 0.28 0.24 0.53 0.47
InsertDigit 0.33 0.02 0.62 0.31 0.31 0.64 0.36
DeleteSymbol 0.43 0.15 0.49 0.22 0.27 0.65 0.35
InsertSymbol 0.46 0.14 0.50 0.18 0.32 0.64 0.36
DeleteLetter 0.19 0.03 0.52 0.36 0.17 0.55 0.45
InsertLetter 0.31 0.03 0.58 0.30 0.28 0.61 0.39
Dedent 0.00 0.00 0.09 0.09 0.00 0.09 0.91
Indent 0.33 0.10 0.38 0.15 0.24 0.48 0.52

One example of a mutation that occurred during the experiment — that
appears in the UC, UC Only, and Either amounts on the DeleteToken row in
Table 4.2 — is the following code, which is missing the dot operator between
self and discard:

def __isub__(self, it):
if it is self:

self.clear()
else:

for value in it:
selfdiscard(value)

return self
MutableSet.register(set)

Python does not report an error when running this code because the block
containing the mutation is never reached, while UnnaturalCode.py reports the
20-token window indicated by the bold text above.

Assuming that UnnaturalCode.py is used in conjunction with the Python
interpreter to improve error detection, the important data in Table 4.2 ap-
pear in the Py and Either column. For instance, for the set of programs
used in the evaluation and for the random-edit insertions used, combining Un-
naturalCode.py with the Python interpreter would improve the detection of
token-replacement errors from 63% to 86%.

72

For all three types of token mutations, Python and UnnaturalCode.py per-
form comparably, with the combination locating 9-23% more of the total num-
ber of mutations than either Python or UnnaturalCode.py alone. This result
is similar to the result obtained in Campbell et al. (2014) where interleav-
ing UnnaturalCode.py and JavaC error messages always improved the score.
Though the single-character and indentation mutations are harder for both
Python and UnnaturalCode.py to detect, the combination of Python and Un-
naturalCode.py detects the most mutations. Surprisingly, most indentation
mutations did not cause errors on execution.

Another similarity between these experimental results and the previous
results in Campbell et al. (2014) is that UnnaturalCode.py struggles more
with deletion mutations than any other mutation type.

Table 4.3: Fraction of Error-Generating Mutations Located by Mutation Type

Py Py Only UC UC Only Both Either None
DeleteToken 0.85 0.18 0.71 0.04 0.67 0.89 0.11
InsertToken 0.70 0.10 0.81 0.21 0.60 0.91 0.09
ReplaceToken 0.70 0.14 0.75 0.19 0.56 0.89 0.11
DeleteDigit 0.74 0.04 0.83 0.13 0.71 0.87 0.13
InsertDigit 0.75 0.05 0.86 0.16 0.70 0.91 0.09
DeleteSymbol 0.71 0.25 0.56 0.11 0.45 0.82 0.18
InsertSymbol 0.77 0.23 0.63 0.09 0.54 0.86 0.14
DeleteLetter 0.67 0.09 0.73 0.15 0.58 0.82 0.18
InsertLetter 0.72 0.07 0.81 0.16 0.65 0.88 0.12
Dedent 0.00 0.00 0.03 0.03 0.00 0.03 0.97
Indent 0.71 0.21 0.60 0.09 0.50 0.80 0.20

Table 4.2 shows the performance of UnnaturalCode.py and Python under
the assumption that every mutation is an error. However, this is clearly not
the case for some mutations. This provides an upper bound on performance.
In order to provide a lower bound, Table 4.3 shows the performance of Python
and UnnaturalCode.py on the 11 types of mutations tested, while only count-
ing mutations known to cause an error. By removing some data points that
were counted against Python, Python’s precision improves across the board
and especially for deletion mutations. Python errors that are not near the

73

location of the mutation are still counted against Python’s precision. Unnat-
uralCode.py performs similarly either way for the token mutations, but its
extra contribution to precision when combined with Python is reduced for
token deletion mutations.

Table 4.4: Fraction of Error-Generating Mutations Located by Token Type

Py Py Only UC UC Only Both Either None
NAME 0.75 0.08 0.87 0.20 0.67 0.95 0.05
OP 0.68 0.21 0.62 0.15 0.47 0.83 0.17
NEWLINE 0.17 0.01 0.51 0.34 0.16 0.52 0.48
STRING 0.61 0.05 0.83 0.27 0.56 0.88 0.12
INDENT 0.47 0.05 0.73 0.31 0.41 0.78 0.22
DEDENT 0.16 0.01 0.46 0.30 0.15 0.47 0.53
NUMBER 0.71 0.06 0.87 0.22 0.65 0.93 0.07

Table 4.4 shows the performance of Python and UnnaturalCode.py in re-
lation to the lexical type of the token mutated, for token mutations. For
token-replacement mutations, the type of the replacement token is considered,
not the type of the original token.

One interesting result is that Python struggles the most with mutations in-
volving token newlines and indentation tokens. Additionally, both Python and
UnnaturalCode.py struggle the least with mutations involving names (identi-
fier tokens).

Table 4.5 shows the frequency at which Python generates different types of
errors based on which type of token mutation is performed. The “None” row
indicates that Python did not detect a problem in the mutant file.

Many token mutations change the indentation of the code in Python. In-
dentationError is a type of SyntaxError, and therefore a large number of mu-
tations result in some type of SyntaxError. The third most common outcome
of running a mutant Python file is that no error is raised, and it is followed by
relatively rare ImportErrors, NameErrors, and ValueErrors that are to be ex-
pected from mutations affecting library loading, identifiers, and literals. Other
types of error occur, however they are extremely rare.

74

Table 4.5: Python Exception Frequency by Mutation Type

DeleteToken InsertToken ReplaceToken
SyntaxError 0.60 (336117) 0.68 (383365) 0.61 (323125)
IndentationError 0.11 (62263) 0.23 (128356) 0.29 (152778)
None 0.25 (139131) 0.09 (47771) 0.09 (47522)
ImportError 0.02 (12338) 0.00 (23) 0.01 (2789)
NameError 0.01 (3177) 0.00 (355) 0.01 (4250)
ValueError 0.01 (4876) 0.00 (100) 0.00 (144)
TypeError 0.00 (1685) 0.00 (339) 0.00 (987)
AttributeError 0.00 (641) 0.00 (32) 0.00 (595)
OptionError 0.00 (5) 0.00 (15) 0.00 (135)
IndexError 0.00 (73) 0.00 (3) 0.00 (12)
error 0.00 (29) 0.00 (14) 0.00 (9)
InvalidInterface 0.00 (42) 0.00 (2) 0.00 (0)
KeyError 0.00 (3) 0.00 (12) 0.00 (5)
HaltingError 0.00 (3) 0.00 (8) 0.00 (6)
ImproperlyConfigured 0.00 (7) 0.00 (0) 0.00 (5)
ArgumentError 0.00 (1) 0.00 (1) 0.00 (4)
UnboundLocalError 0.00 (2) 0.00 (2) 0.00 (1)
OGRException 0.00 (3) 0.00 (0) 0.00 (2)
AssertionError 0.00 (1) 0.00 (0) 0.00 (2)
GEOSException 0.00 (2) 0.00 (0) 0.00 (0)
TemplateDoesNotExist 0.00 (0) 0.00 (1) 0.00 (1)
OSError 0.00 (1) 0.00 (0) 0.00 (0)
FieldError 0.00 (0) 0.00 (1) 0.00 (0)

Some deletions lead to mutant Python programs that do not contain syntax
or semantics errors that could be raised by an automatic tool. For instance,
deleting a unary “not” operator changes the semantics of the program, but
this change does not cause identifier, syntax, argument or type errors. The
results in Table 4.5 indicate that 25% of token deletion mutations yield Python
programs that can be successfully ran or imported. For most Python files this
means that they successfully defined classes, variables and functions. However,
some of the functions defined may not have been executed. It is unlikely that
all 25% of the deletions that lead to no error detection actually resulted in
error-free programs.

In comparison, the digit, symbol, letter and indentation mutations do not
always lead to a change in the semantics of the python program. These muta-

75

tions can occur in comments or literals. Additionally, the indentation muta-
tions, indent and dedent, may change a line of code but not affect the block
structure if their change is to a single-line block of code. The results in Table
4.3 do not include any mutations that did not change the semantics of the
Python program.

A significant number of token deletions leading to no automatic error detec-
tion has troubling implications for Python’s use as an instructional language
for beginning programmers. If any significant fraction of accidentally omitted
Python tokens result in an erroneous Python program, but one that produces
no error message when executed, many significant coding mistakes may not
be reported to novice Python programmers by the Python interpreter.

Table 4.6: Fraction of Mutations Located by Exception Type

Py Py Only UC UC Only Both Either None
SyntaxError 0.78 0.15 0.73 0.11 0.62 0.88 0.12
IndentationError 0.63 0.10 0.83 0.30 0.53 0.93 0.07
None 0.00 0.00 0.49 0.49 0.00 0.49 0.51
ImportError 0.98 0.07 0.93 0.02 0.91 1.00 0.00
NameError 0.95 0.04 0.96 0.05 0.90 1.00 0.00
ValueError 0.99 0.08 0.92 0.00 0.92 1.00 0.00
TypeError 0.45 0.06 0.92 0.53 0.39 0.98 0.02
AttributeError 0.49 0.04 0.87 0.42 0.45 0.91 0.09
OptionError 0.00 0.00 0.85 0.85 0.00 0.85 0.15
IndexError 0.02 0.00 0.90 0.88 0.02 0.90 0.10

Table 4.6 shows the performance of Python and UnnaturalCode.py in re-
lation to the type of error seen by Python. For this measurement, a file for
which Python does not detect an injected error is counted as an irrelevant
result. Thus, the “None” reports zero mutations as detected by Python — it
is not the fraction of files that do not contain mutations.

The results in Table 4.6 indicate that Python’s ability to detect indentation
error is rather poor: this is unsurprising and mirrors the examples shown in Un-
naturalCode on Java (Campbell et al., 2014). While it is difficult to determine
whether there is a missing indentation or an extra indentation (comparable to
a missing { or an extra } in Java) using static analysis, it is easier for Unnat-

76

uralCode.py to locate such errors because UnnaturalCode.py has information
about the author’s or project’s coding style and history.

Unfortunately, it is very difficult to determine why UnnaturalCode.py re-
ports a location that is not the location of the mutation. This could be because
of poor performance or because UnnaturalCode.py is reporting actual faulty
code that is present in the code as it was released by project authors, before
mutation. The experimental results are computed under the assumption that
the code, as it was released by its authors, is syntax-error-free. Determining
whether the code, as released by the authors, is actually syntax-error-free, or
if UnnaturalCode.py is reporting locations near bugs that were shipped would
require expert auditing of the locations suggested by UnnaturalCode.py.

The cumulative proportion of results falling into several range of distances
is shown in Table 4.7. Each range is a column. Each report that counts toward
the “0” proportion counts also toward the “0-1” proportion, “0-2” proportion,
and so on. Python reports a line number with its error messages, and Unnat-
uralCode.py reports a 20-token window that may be one line, less than one
line, or multiple lines long. The results for UnnaturalCode.py in Table 4.7 are
computed by taking the distance between the mutation and the beginning of
the window reported by UnnaturalCode.py.

If we only consider the exact line of the error, Python usually outperforms
UnnaturalCode.py in terms of the location of the error, according to Table
4.7. However if we consider up to five lines before and after the reported error,
UnnaturalCode indicates a line near the error more often than Python.

4.7.1 Comparison to UnnaturalCode with Java

Table 4.8 shows the performance of Python and UnnaturalCode.py compared
to the results obtained previously for Java and the prototype version of Un-
naturalCode. Only mutants that produced an error in Python are considered.
Mean reciprocal ranks are reported for Java and both versions of Unnatu-
ralCode. Precision is computed for Python as the proportion of times that
Python reports the error on the same line as the mutation. This metric is very

77

Table 4.7: Distance in Lines of Code by Mutation Type

0 0-1 0-2 0-5 0-10 0-20 >20

DeleteToken Py 0.85 0.90 0.92 0.93 0.94 0.95 0.05
UC 0.28 0.57 0.73 0.93 0.98 0.99 0.01

InsertToken Py 0.70 0.70 0.70 0.71 0.74 0.77 0.23
UC 0.35 0.65 0.80 0.95 0.99 1.00 0.00

ReplaceToken Py 0.70 0.73 0.74 0.75 0.77 0.80 0.20
UC 0.32 0.63 0.78 0.95 0.99 1.00 0.00

DeleteDigit Py 0.74 0.75 0.76 0.77 0.79 0.81 0.19
UC 0.20 0.43 0.59 0.77 0.88 0.93 0.07

InsertDigit Py 0.75 0.82 0.83 0.85 0.86 0.87 0.13
UC 0.17 0.45 0.63 0.85 0.93 0.97 0.03

DeleteSymbol Py 0.71 0.84 0.88 0.91 0.91 0.92 0.08
UC 0.30 0.53 0.67 0.84 0.92 0.95 0.05

InsertSymbol Py 0.77 0.86 0.88 0.90 0.91 0.92 0.08
UC 0.24 0.51 0.67 0.86 0.93 0.97 0.03

DeleteLetter Py 0.67 0.70 0.71 0.73 0.74 0.77 0.23
UC 0.17 0.44 0.62 0.84 0.92 0.96 0.04

InsertLetter Py 0.72 0.81 0.82 0.83 0.85 0.86 0.14
UC 0.18 0.46 0.64 0.85 0.93 0.97 0.03

Dedent Py 0.00 0.01 0.02 0.05 0.11 0.16 0.84
UC 0.25 0.48 0.66 0.92 0.98 1.00 0.00

Indent Py 0.71 0.79 0.82 0.86 0.88 0.90 0.10
UC 0.08 0.36 0.57 0.84 0.93 0.97 0.03

Table 4.8: MRR Comparison

Python Java UC.py UC.java
DeleteToken 0.85 0.92 0.74 0.87
InsertToken 0.70 0.93 0.83 0.99
ReplaceToken 0.70 0.93 0.77 0.98

similar to mean reciprocal rank (MRR) because MRR places as much weight
on the first result as it does on the second through last results combined. Thus
the results here differ in the methodology used to present results in Campbell
et al. (2014) where MRR was used.

78

Given that Python produces at most one result, this metric is somewhat
comparable to the mean reciprocal rank. The precision is computed for Python
in the exact same way as the MRR was computed for the Java compiler in
the case that the Java compiler only returned a single result. Though the
Java compiler can produce up to 100 results, it does produce single results
occasionally.

The results show that the new UnnaturalCode.py system does not per-
form as well as the prototype version of UnnaturalCode, and that Python’s
own error detection mechanism does not perform as well as the Java compiler
error reporting. The distribution of MRR scores for the Java compiler and
UnnaturalCode is shown in Figure 4.2.

As was found with the UnnaturalCode prototype for Java, some source
files simply seem to be more difficult for UnnaturalCode.py than others. Files
that seem to be difficult for UnnaturalCode.py have long sequences of tokens
that do not appear elsewhere, such as lists of string literals. Figure 4.1 shows
the distribution of UnnaturalCode.py, Python, and combined “either” preci-
sion over the files tested. Python also seems to have difficulties with specific
files. Typically, random-edit mutations tend to produce random results from
Python’s own parser: regardless of whether Python’s error messages identify
the correct location, different mutations tend to cause Python to identify dif-
ferent lines as the source of the location.

On some files, however, such as posixpath.py, from the Python standard
library, the Python parser often reports a parse error at the same location. In
posixpath.py, this location is on line 182 and 72% of random-edit mutations
cause Python to report an error at this location. This effect occurs only when
the actual mutant line is after the line that Python’s parser tends to point
to. In the case of posixpath.py, the line that the Python parser consistently
reports is shown below. This may indicate that Python’s own parser strug-
gles with multi-line statements when the line-continuation character \ is used.
Multi-line statements such as the one shown below are typically handled dur-

79

ing lexical analysis in Python, but the errors observed orginate in the parser,
not the lexical analyzer.

return s1.st_ino == s2.st_ino and \

4.8 Discussion

4.8.1 UnnaturalCode.py Performance

The results described in the previous section show that both UnnaturalCode.py
and Python are able to locate mutations made to Python source files most
of the time for most mutation types. UnnaturalCode.py is able to identify
most mutations that cause a program to fail to execute. UnnaturalCode.py
is able to locate some mutants that Python misses. Python is able to locate
some mutants that UnnaturalCode.py misses. When used alongside Python,
UnnaturalCode.py improves the chances of the correct location being reported
to the user. UnnaturalCode.py struggles more with random deletion mutations
than any other type of mutation.

Despite the fact that the Python version of UnnaturalCode.py has a lower
MRR score than the Java version had, the MRR score still indicates that most
of the time the correct result is in the top few. These results indicate that
the usefulness of natural language techniques used with programming languages
includes scripting languages like Python.

The Java version of UnnaturalCode was shown to perform much worse on
code it had never seen before in Campbell et al. (2014). It is safe to assume
that UnnaturalCode.py also performs worse on new code that it has not seen
before. However, this is not the intended usage of UnnaturalCode.py. Unnat-
uralCode.py is designed to have good code added automatically to its corpus
as soon as it is compiled or run. UnnaturalCode.py’s corpus is therefore up-
dated much more often than the project’s source code repository. This allows
UnnaturalCode.py to follow code evolution very closely. Testing Unnatural-
Code.py with completely unrelated test and training code would not relate to its
real-world use case.

80

4.8.2 Properties of Python

Python is a very flexible language with many useful and ultimately powerful
features. But some of this power limits other aspects and properties of the
language. The following differences between Python and Java needed to be
accounted for in UnnaturalCode.py: 1) Python is not compiled; 2) Python
programs may remove or add identifiers to or from any scope during execution;
3) Python types may change during execution; 4) Python has indentation-
based syntax; 5) Python’s lexical analyzer does not produce whitespace tokens;
6) run-time dependencies and requirements exceed compile-time dependencies
and requirements; and 7) Python only produces at most a single syntax error.

No Compilation

Python is not a compiled language. This means that, in contrast with compiled
languages such as Java, there is no oracle for basic Python program validity.
The absence of an oracle creates several challenges for UnnaturalCode.py, and
requires that both UnnaturalCode.py’s goals and implementation be general-
ized.

The main challenge is that there is no way to tell if a Python program is
valid. Executing the program will check it for basic syntactic validity, but some
issues such as misspelled identifiers can not be checked merely by parsing the
program. While there is a fine line between syntactic and semantic errors, due
to their simple and typo-driven nature, UnnaturalCode.py is able to assist in
locating semantic errors caused by typographical mistakes made when working
with identifiers, expressions, values, and indentation. UnnaturalCode.py has
no ability to discern between a syntactical Python error and a semantic Python
error.

Determining if a Python program is valid is an undecidable question be-
cause making such determination requires running the program. So, the ap-
proach taken by UnnaturalCode.py is to run the program. Besides being an
interactive scripting language, in Python any scope, name-space, type, con-
stant, or library may change at any time during program execution.

81

A Python script may not necessarily halt. Furthermore, a Python program
may execute without error even though it contains misspelled identifiers, bro-
ken imports, or other problems with the code that are easily caught in any
compiled language.

The results in the previous section indicate that this is not merely a theo-
retical footnote, but that random-edit mutations produce cases in which it is
difficult to determine the validity of a Python program a significant fraction
(1
4
) of the time.
The interactive, dynamic nature of Python has implications not just for

the experiments presented in this chapter, but also any other experiment that
depends on the execution of Python code of unknown quality. Techniques such
as genetic programming and mutation would clearly be impacted: in order to
be certain that programs produced by a genetic algorithm were valid in basic
ways, the programs produced would have to be severely limited in terms of
what mutations and combinations were allowed. Indeed, this is the approach
taken in Derezińska and Hałas (2014), and Jester (Moore, 2000–2013). For
example, one would have to ensure that no programs that referenced a vari-
able before assignment were produced by limiting the set of possible output
programs, because use before definition can not be checked easily after pro-
gram generation. Another consideration is that generating Python code with
correct indentation, or repairing Python indentation, requires more memory
and time than checking pairs of braces.

Dynamic Scope

Even if a given Python program seems well-formed at one point during exe-
cution, it may not be at another point. For example, if a program uses an
identifier, not only is that identifier not added to any scope until execution,
but it may be removed or changed during execution. Holkner and Harland
(2009) found in Python software advertised as production-stable quality that
variables are created and removed, and their types changed after program ini-

82

tialization. Politz et al. (2013) discusses the differences between Python scope
and traditional compiled languages.

Though the assumption that types, scopes and names will not change at
runtime is tempting to make, it is not a given. For example, Django, a popular
Python web-framework, makes use of this flexibility. This flexibility is used
to enable developers to inject their own code and types into exceptions when
debugging Python code.

The presence of runtime changes to built-in exception types in Python
programs created a challenge for the implementation of UnnaturalCode.py.
UnnaturalCode.py’s built-in mutation testing system uses Python’s standard
multiprocessing library to run mutant Python code in a separate process, to
implement the 10-second timeout, and to communicate the result of running
the mutant Python code back to the main UnnaturalCode.py process. Sending
the raw exception caused by the mutant code, if any, is impossible because the
type of the exception generated by the mutant code may not exist in the
master process, or may exist in a different form. Relying on serialization
and deserialization for inter-process communication is unreliable because the
types may be different. They may be different even when both processes are
running the same program. Thus, UnnaturalCode.py must convert exceptions
and other debugging information to plain strings.

In comparison to Python, other interactive scripting languages such as Perl
may have fewer disadvantages compared to compiled languages such as Java.
Idiomatic Perl programs declare all variables and scope by enabling a mode
called use strict, enabling the Perl interpreter to check identifiers before
execution (Hall, McAdams, et al., 2010). Additionally, Perl uses semicolons
and braces to define the extent of statements and blocks, respectively, in much
the same way that Java does.

No Constants

The ability to change semantics at runtime is not limited to identifiers. Python
has no real concept of constants: even math.pi (π) may be changed during

83

execution. Furthermore, even the type system is not constant at runtime.
For example, because libraries and modules are imported during execution,
a Python program with two threads may lose the ability to communicate
between its threads if one thread imports something that overwrites a built-
in Python type. This is not merely a theoretical consequence, but one that
actually occurs in some of the software used for the experiments presented in
this chapter.

Furthermore, the lack of constants in python has direct impacts on the
practice of software engineering when using Python. Dynamic typing has been
shown in recent research by Hanenberg (2010), Kleinschmager et al. (2012),
and Mayer et al. (2012) to either have negative or neutral impact on various
aspects of software engineering. Even if you assume that types, constants, or
names are not changed in surprising ways at runtime, test suites are a require-
ment to ensure some types of basic program sanity that compilers, optimizers,
and static analysis tools provide automatically.

Any changes that the program made to the state of the Python run-time
environment — including changes to local scopes, global scope, and types —
are discarded by terminating the process after successful execution, exception,
or failure to halt. This allows UnnaturalCode.py to protect itself from having
its semantics disrupted by other software.

UnnaturalCode.py cannot improve the detection of coding mistakes, it only
attempts to locate them once a problem occurs. Thus, it can be completely
bypassed in several ways. The existence of a misspelled identifier in any rele-
vant scope may not be verified if said identifier is used in a conditional block
that does not run. Furthermore, SyntaxErrors produce exceptions that can be
caught and ignored, which will prevent both Python and UnnaturalCode.py
from reporting these errors.

Indented Blocks

Python’s use of indentation to define code blocks creates a very different kind
of lexical analyzer than most programming languages. While it is considered

84

usual to specify tokens with regular expressions and parse trees with context-
free grammars using parser generators such as ANTLR (Parr and Quong,
1995), this is not the case for Python. In order to track indentation levels,
even the lexical analyzer must be context-sensitive (Jim, 2012).

During lexical analysis, Python produces tokens of type “NEWLINE,” “IN-
DENT,” and “DEDENT.” These are roughly equivalent to semi-colons, open-
ing braces and closing braces in Java, respectively. However, they do not
necessarily correspond to whitespace in a Python source file. In fact, “DE-
DENT” corresponds to a lack of whitespace, and “NEWLINE” is only present
once at the end of a multi-line statement.

UnnaturalCode.py employs a modified version of the official Python lexical
analyzer, tokenize.py, which produces token streams even in the following
cases: 1) bad indentation; 2) unterminated multi-line statements; and 3) un-
terminated multi-line literals. The modified lexical analyzer is only used for
querying the language model. It is never used to parse or execute Python
code. Changes made to the Python lexical analyzer were minimal: it merely
continues in whatever state it was in before encountering an error, or assumes
that the end of the file terminates multi-line statements and literals.

In comparison with other lexical analyzers, such as ANTLR (Parr and
Quong, 1995), Python does not produce whitespace tokens. Instead, whites-
pace is tracked by computing the difference between the end of one token and
the beginning of the next. Whitespace contains semantic information, even
in languages where they are syntactically irrelevant. Though this information
may be irrelevant to Python, it is relevant to the human developers. Since Un-
naturalCode.py cannot see whitespace in Python, its efficacy both in practice
and in the experimental validation procedure described in may be negatively
impacted.

The experimental validation only performs mutations on tokens produced
by Python’s lexical analyzer, and therefore produces far fewer mutations in-
volving whitespace changes, such as the space between an identifier and an
operator, then could be produced if whitespace tokens were considered.

85

Runtime Dependencies

Python software may have dependencies at runtime. One example are libraries
that work with database engines such as MySQL and that require not only
MySQL libraries and development files, but also require MySQL to actually
be running when the library is loaded with Python’s import statement. Such
requirements complicates the use of real-world software in validation experi-
ments. Furthermore, the order in which libraries are loaded is occasionally
important for successful execution: if they are loaded in the wrong order they
may break.

Validation used only source files from open-source software that could actu-
ally run during the experiments. This is a significantly higher bar that source
code must meet than merely compiling. One example that was encountered
was that some Python modules depend on a configuration module, which must
be written by the user, in order to be imported. This configuration model
defines run-time behaviour such as database authentication. and passwords,
which can not be distributed with the module.

The environment in which mutated Python code was executed included
some initial imports to set up the global scope before running the mutant
code. These imports were required because a few Python files would not
execute unless another file was imported first from the same project.

One Error

Python only produces a single syntax error at most, and this syntax error is
usually without diagnostics. In contrast, most other compilers, such as C and
Java compilers, can produce many syntax errors for a single failed compilation.
The reporting of multiple errors employs techniques such as those described
by Kim and Choe (2001) and Corchuelo et al. (2002).

To be consistent with Python’s behaviour this study reports only one result
from UnnaturalCode.py to the user. UnnaturalCode.py is capable of producing
as many results as there are contiguous 20-token sequences in the source file.
However, given that Python only reports at most one syntax or other error

86

at a time, while javac reported 50 or more, UnnaturalCode.py is limited to
report only one result so that it can be more easily used and compared with
Python.

Python, could, perhaps be served well by implementing several features to
mitigate the difficulties listed above. First, Python could add a mode similar
to Perl’s use strict that forces all variables to be declared with their scope.
Second, Python could add variables, similar to Java’s final variables, which
can not be changed once set. Third, Python could prevent the run-time mu-
tation of types, especially built-in and standard library types. The Python
project has recently, as of 2014, announced future improvements to Python
typing, such as type hinting, which will address this difficulty. Fourth, Python
could employ the standard extensions of basic parser technology to produce
better parser diagnostics, error recovery, and multiple-error messages in a sim-
ilar fashion to C, C++, Java and many other languages, as recommended by
Cannon (2005). Sippu and Soisalon-Soininen (1990) describes many of these
techniques.

These suggestions and proposals should not interfere with the operation of
most Python programs, and require minimal changes to those whose operation
is affected. For example, software may need to be adjusted so that it uses a
new type instead of overwriting a type from Python’s standard library.

4.9 Threats to Validity

When comparing these results to the results obtained in UnnaturalCode Java,
the validity of the comparison is threatened by several factors. First, the
metric used in Campbell et al. (2014), MRR, is not directly comparable or
convertible to the metric used in this chapter: the precision of the only result.
The conversion of Python’s precision at 1 to an MRR in Table 4.8 is biased
against Python because it produces only one result. Second, the Python lexer
produces different token types than Java’s lexer. For example, Python’s lexer
does not produce whitespace tokens. This implies that the distribution of

87

semantic meanings of the mutations generated for Python code differs from the
distribution of semantic meanings of the mutations performed for Java code.
Third, Campbell et al. (2014) did not use mutations that passed compilation:
rather, any mutation that compiled was discarded. However, those mutations
were included here. Table 4.3 shows the performance of UnnaturalCode.py on
Python programs that are known to be broken.

Python provides no mechanism to perform static analysis such as type
checking, scope checking, and constant immutability checking. Thus, the ex-
perimental evaluation of UnnaturalCode.py provides results at both extremes:
results assuming that every mutant would fail the checks in table 4.2, and re-
sults assuming that every mutant that executed successfully would successfully
pass the checks in Table 4.3.

As an analysis of random-edit mutations in Python source files, the validity
of these results is threatened mainly by the possibility that the uniform distri-
bution of the mutations made in the evaluation do not reflect the distribution
of mistakes made by humans when authoring Python software. In order to
address this concern, both whole-token and single-character mutation experi-
ments were performed. Whole-token mutations represent changes to program
structure and single-character mutations represent typographical errors that a
human may make.

4.10 Future Work

There are many other software engineering tools available for Python and their
performance or some aspects of their performance may be characterized by us-
ing the random-edit-mutation testing tools presented in this chapter. These
include tools such as pyflakes, and pylint. UnnaturalCode.py could be in-
tegrated into such tools as another method of critiquing code. A scientific
comparison of the use of random-edit-mutation tool as opposed to a tool with
fewer, specialized mutations such as Pester (Moore, 2000–2013), to character-
ize the coverage and effectiveness of test suites would also be useful.

88

Whether the mutations used in this chapter or the mutations used in other
systems more accurately represent typos that are introduced by human soft-
ware developers is an open question.

An extension of UnnaturalCode.py intended to provide feedback on possi-
ble errors while an author types would be useful. This feedback could then
be compared to other systems that give similar feedback such as the Eclipse
integrated development environment. Experimental results using Python 3.0
and other Python implementations would also be useful in order to track the
changes over time and between projects.

4.11 Conclusions

Python, and other dynamically typed, interactive, scripting languages, pose
many challenges to the Software Engineering experimenter. Due to Python’s
lack of static analysis and its complex lexical structure, Python is a poor choice
for generating and analyzing of source code of unknown quality. The Python
interpreter can not be asked if the identifiers in a Python program are valid,
a question that the compilers for statically-typed languages answer easily.

This chapter provides a tool, and some techniques, for addressing these
challenges. This tool may also be used when experimenting with genetic pro-
gramming or other types of automatic code generation. These techniques may
be applied when languages with a robust compiler is not available or desired.
If a robust compiler is available, it should be employed. Because such a com-
piler can be used as an oracle for basic program validity including syntactic
validity and identifier validity.

UnnaturalCode.py can augment Python’s own error messages by suggest-
ing a location for the developer to check. Often that is the location of a
mistake, as shown in the “UC” column of Table 4.3. Using UnnaturalCode.py
with Python improves the chances of locating a mutant piece, or mistaken
piece, of code. Therefore UnnaturalCode.py can be a valuable tool for debug-
ging language implementations such as Python because syntax errors appear

89

unnatural to language models trained with working source code. The n-gram
language models can help find syntax errors when the model is built from a
corpus of code known to be correct. Additionally, UnnaturalCode.py is able
to locate some semantic errors, such as type errors induced by typos.

Python is a language that raises challenges for mutant-based experimen-
tation: for instance, Python does not report as faulty 25% of programs with
a single missing token. Python’s use as an educational language needs fur-
ther study and perhaps suitable supporting tools. Thus, when performing
mutation-based experiments with “scripting” languages such as Python, re-
searchers must be aware of the issues discussed in this chapter. Typical code
errors that would be caught quickly and automatically by a compiler for a
language such as Java can be difficult to automatically discover and report in
Python.

90

0
.0

0
.4

0
.8

Delete Insert Replace

UnnaturalCode.py Alone

A
c
c
u
ra

c
y

0
.0

0
.4

0
.8

Delete Insert Replace

Python Alone

A
c
c
u
ra

c
y

0
.0

0
.4

0
.8

Delete Insert Replace

Either UnnaturalCode.py or Python

A
c
c
u
ra

c
y

Figure 4.1: Independent and combined performance of UnnaturalCode.py and
Python Width indicates the relative number of source files on which the pre-
cision level is achieved.

91

0
.0

0
.4

0
.8

Delete Insert Replace

UnnaturalCode Alone

M
R

R
0

.0
0

.4
0

.8

Delete Insert Replace

Oracle JavaC Alone

M
R

R
0

.0
0

.4
0

.8

Delete Insert Replace

Interleaved Results Starting with JavaC

M
R

R
0

.0
0

.4
0

.8

Delete Insert Replace

Interleaved Results Starting with UnnaturalCode

M
R

R

Figure 4.2: Independent and combined performance of UnnaturalCode Java
prototype and JavaC, from Campbell et al. (2014). Width indicates the rela-
tive number of source files on which the MRR score is achieved.

92

Chapter 5

From Online Location to Offline
Correction of Typographical
Errors in Code

5.1 Preface

5.1.1 Acknowledgement

This chapter is based on work presented in the proceedings of the 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER) as “Syntax and Sensibility: Using Language Models to De-
tect and Correct Syntax Errors” (Santos et al., 2018). The experiments in
that paper pertaining to n-gram language models were performed by myself.
The experiments in that paper pertaining to LSTM neural network models
were performed by the primary author, Eddie Antonio Santos. The paper was
written by Eddie Antonio Santos and myself. Editing and supervision was
provided by Abram Hindle and José Nelson Amaral. Dhvani Patel assisted
in data processing and coding. The tables in this chapter are taken verbatim
from that work.

5.1.2 Relationship with “Syntax and Sensibility”

Santos et al. (2018) focuses on the comparison of n-gram and LSTM (long
short-term memory neural network) language models for finding and correcting
syntax errors in Java code. Both models are trained on correct, syntactically

93

valid, source code. Then the models are queried for both the most likely
location of a typo and the most probable fixes for that typo, based on their
representation of correct source code.

This chapter focuses on n-gram model results, as well as providing details
about the preprocessing and algorithms used. Instead of focusing on a compar-
ison between LSTM and n-gram models as in the paper, this chapter focuses
on the implementation and evaluation of n-gram models for automatically re-
pairing source code. LSTM results from the paper are present in the tables,
but there is no further discussion of the LSTM methodology.

5.1.3 Significance

At the time of writing (March 2021), Santos et al. (2018) had 36 citations
(according to Google Scholar), including works describing other approaches to
helping programmers work with compiler error messages (Ahmed et al., 2019).
Some of those citations, were published in major journals and conferences,
such as Chen et al. (2019), which already has 29 citations of its own after
appearing in the IEEE Transactions on Software Engineering. Santos et al.
(2018) is also listed in Monperrus (2020) Many of those 31 citations include
extensions to the neural network work performed by Eddie Antonio Santos
and presented in the paper. Thus, the n-gram work presented in this chapter
remains state-of-the-art for typo location and fix suggestion generation with
fast, on-line algorithms. I discuss the advantages that fast, on-line algorithms
have over methodologies that require slow, off-line neural network training in
Section 5.6.2.

5.1.4 Terminology

In this chapter, I will refer to the 10-gram model, coupled with the algorithms
listed in this chapter as UnnaturalCode. However, UnnaturalCode as discussed
in this chapter is a much more mature and refined version of UnnaturalCode
than was discussed in previous chapters.

94

In this chapter, “typo” is used as defined in Section 2.1, while in chapters
3 and 4, “mistake” and “syntax error” were also used for the same purpose.

5.2 Introduction

This chapter is focused on evaluating a practical application of UnnaturalCode
and comparing it to a similar tool based on a more advanced LSTM (long short-
term memory) neural network. Additionally, this chapter focuses on providing
UnnaturalCode in a form that would not require updating the corpus as done in
previous chapters. Instead, the idea is to provide UnnaturalCode as if it were
already trained, with a general purpose, fixed corpus based on known-good
Java code. This chapter is also the first chapter to use real human-generated
data for evaluation rather than applying mutations to known-good code.

5.2.1 Motivation

The motivation for the research presented in this chapter is largely the same
as the motivation for the research presented in chapters 1, 3, and 4. However
the same motivations pushed me to go beyond helping programmers find their
typos and to move on to helping programmers fix their typos. This chapter is
a natural progression of the prior work.

My peers had criticized the research done in earlier chapters was that the
10-gram model used was simple and uninteresting, so I also wanted to compare
the 10-gram model to a more complex neural network model. I was motivated
by the question: was I leaving typo locations on the table by using such a
simple model?

Another common criticism of the research done in earlier chapters was that
the evaluation was performed using synthetic typos in the form of code that
was known to be good and then mutated. Thus, I also wanted to respond to
those criticisms by performing an evaluation that was based on typos created
by human programmers.

Santos et al. (2018) begins with this motivational example:

95

Imagine a novice programmer writing this simple program for the
first time, being greeted with three error messages, all of which in-
clude strange jargon such as error: illegal start of type. The
compiler identified the problem as being at least on line 7 when
the mistake is four lines up, on line 3. However, an experienced
programmer could look at the source code, ponder, and exclaim:
“Ah! There is a missing open brace ({) at the end of line 3!” Such
mistakes involving unbalanced braces are the most frequent errors
among new programmers (Brown and Altadmri, 2014), yet the
compiler offers little help in resolving them.

The example of the novice programmer shows exactly knowing where a
problem is may not be enough information to fix it. If they are not familiar
with the language they may not be able to easily recognize a missing delimiter.
They may not yet have an understanding of when braces should or should not
be used. A compiler certainly understands braces and what they mean when
used correctly, A compiler has understand every facet of the language to in
order to do its job. However, compilers sometimes fail to produce intelligible
errors and repair suggestions when faced with an input that does not meet the
language’s specification.

5.2.2 Prior Work

In 2014, the research in Chapter 4 was concluded, and Section 4.4 was written.
Since then, research has continued on both the application of n-gram models
language models to source code and the improvement of compilation errors
resulting from typos. This chapter presents research that is a part of that
ongoing work. Thus, the prior work mentioned in Chapter 3 and 4 remains
relevant to this chapter. This section focuses on prior work since 2014 that
is relevant to n-gram language models as well as typo location and repair.
For a discussion of prior work relevant to the LSTM neural network research
and results mentioned in this chapter, which was performed and evaluated by
Eddie Antonio Santos, please consult (Santos et al., 2018) and (Santos, 2018).

96

The results in this chapter are produced by evaluating with code and ty-
pos collected in the Blackbox repository of student’s activity (Brown et al.,
2014), while using the BlueJ Java IDE (Integrated Development Environment)
(Kölling and contributors, 2016; Kölling et al., 2003). The Blackbox repository
is used for other research projects in Altadmri and Brown (2015) and Brown
and Altadmri (2014). In a five-year retrospective, Brown et al. (2018) lists this
work (along with Eddie Antonio Santos’s neural-network) as the only work to
apply machine-learning of any sort to the Blackbox data set.

5.3 Methodology

The UnnaturalCode methodology for this chapter’s iteration of UnnaturalCode
involves the following steps:

1. Provide UnnaturalCode with a ready-made general corpus of known-
good Java code.

2. Wait for compilation of some code to fail.

3. Tokenize the input file for which compilation failed.

4. Generate windows of tokens from the tokenized input file.

5. Use the 10-gram model to estimate the cross entropy between each win-
dow and the corpus.

6. Interpolate each token’s contribution to total cross entropy from the
cross entropy of each window.

7. Rank tokens by their contribution to the total cross entropy.

8. Generate a list of possible repairs for the top-ranked tokens.

9. Compute the improvement (decrease) in cross entropy between a win-
dow centered on the repair before and after applying the repair and the
corpus.

97

10. Rank repairs by how much they improve (decrease) cross entropy.

11. Present the top-ranked repairs to the programmer.

5.3.1 Tokenization

For the experiments presented in this chapter, two different tokenization
schemes were used. In one, each token was taken directly from the token
stream produced by the javac lexical analyzer from Java 8 SE. This is re-
ferred to as “concrete” in this chapter. The “concrete” model is trained using
these exact tokens.

In the second tokenization scheme, which is referred to as “abstract” in this
chapter, all identifiers are replaced with a single common token, Identifier
and all literals are replaced with a token that represents the type of literal such
as String. Table 5.1 gives examples of the tokens and how they are treated.

Table 5.1: Token kinds according to the Java SE 8 Specification Gosling et al.
(2015), and whether we abstracted them or used them verbatim. From Santos
et al. (2018).

Token kind Action Examples

Keyword Verbatim if, else, for, class, strictfp, int,
char, const, goto, …

Keyword literal Verbatim true, false, null
Separators Verbatim (,),{, },[],;, ,, ., ..., @, ::
Operators Verbatim +, =, ::, >>>=, ->, …

Identifier Abstracted AbstractSingletonFactory, $ecret,
buñuelo

Numeric literal Abstracted 4_2L, C0FFEE, 0755 0b101010,
.3e-02d, 0xFFp+12f, '�'

String literal Abstracted "hello, world"

5.3.2 Locating syntax errors

In the exact same manner as the typo location techniques proposed in chapter
3 and 4, the technique evaluated in this chapter depends on a compiler or
interpreter to determine whether input code contains errors or not. In the
evaluation used for this chapter, the Java 8 SE compiler is used to determine

98

whether code causes compilation errors. The technique is presented under
the assumption that the user has a Java compiler available to check code
first, before any of the algorithms in this chapter are used. This workflow is
described in detail in Section 3.5.

The n-gram language model uses up to 10-grams, the same as the language
models used in previous chapters. However, the window length used for the
validation presented in this chapter is 21 tokens. 21 token windows were
chosen to remain consistent with the LSTM model for comparison in Santos
et al. (2018). Previously, Chapters 3 and 4 used a window length of 10 tokens.

Querying the language model 21 “grams” at a time rather than 10 “grams”
at a time results in the total cross-entropy of a 21-token sequence being re-
ported, rather than the cross-entropy for a 10-token sequence being reported.
However, the model used to compute the cross-entropy is still the same 10-
gram language model. The entropy of a window w = (w1, . . . , w21) is computed
with the following formula:

Hbits(w, q) =− log2 [qmodKN (w1)]

− log2 [qmodKN (w2 | w1)]

− log2 [qmodKN (w3 | w2, w1)]

...

− log2 [qmodKN (w10 | w9, . . . , w1)]

− log2 [qmodKN (w11 | w10, . . . , w2)]

...

− log2 [qmodKN (w20 | w19, . . . , w11)]

− log2 [qmodKN (w21 | w20, . . . , w12)]

(5.1)

In Equation 5.1, qmodKN is the smoothed estimate of the conditional proba-
bility according to the model q. If the entire proceeding sequence of up to 10
tokens if that sequence has not been seen before the estimate will be computed
using modified Kneser-Ney smoothing (James, 2000).

99

In order to keep the window length consistent, the file is padded at be-
ginning with 20 “<s>” and at the end with 20 “</s>” tokens. Thus, each
window contains 21 tokens, while at the same time, each token exists within
21 windows.

As in Algorithm 1, the n-gram model is queried for the cross entropy one
window at a time, and can only produce the cross entropy for the entire window.
It cannot produce the cross entropy for a single token. In order to find tokens
that may be erroneous, it is necessary to find tokens that contribute the most
entropy to the windows they exist within. In order to recover that information,
each token from the source code is assigned a score, which is the average cross-
entropy of the 21 windows that each token is a part of.

Finally, tokens are ranked from highest score to lowest.

Algorithm 1 Scoring each token’s contribution to the cross-entropy
1: function score(tokens, window, q)

Ensure: tokens is a sequence of tokens
Ensure: window is a positive integer
Ensure: q is a 10-gram model

2: padding ← window − 1
3: header ← repeat(<s>, padding)
4: footer ← repeat(</s>, padding)
5: tokens← concatenate(header, tokens, footer)
6: l← length(tokens)
7: scores← a sequence of zeros
8: for i← 0 to l − window inclusive do
9: entropy ← Hbits (tokens[i to i+ padding], q) ▷ all ranges inclusive

10: for j ← i to i+ padding inclusive do
11: scores[j]← scores[j] + entropy/window
12: end for
13: end for
14: return scores
15: end function

5.3.3 Fixing syntax errors

Algorithm 2 shows how UnnaturalCode searches a limited space for a change to
the code that will repair it. Using the same metric, the cross entropy between
a window and the model. However, this time the windows being tested are

100

windows containing modified source code: each one is the result of applying
a insertion, deletion, or mutation at a specific location. In order to limit the
search space, only the locations of the depth tokens with the highest estimated
contribution to the total cross-entropy are considered.

For each of the depth locations that are considered, Algorithm 2 generates
a number of suggestions. Since there is only one way to delete a token, this
provides the first suggestion: delete the token at the considered location. Then,
for each token that has been seen by the model at least minf times anywhere
in the corpus, it generates a suggestion to insert the previously seen token after
the token at the considered location and a suggestion to replace the token at
the considered location with the previously seen token.

Most of the suggestions generated by this procedure will not produce
enough of an improvement in the cross-entropy, if any. In order to save pro-
cessing time, the algorithm uses depth and minf as a simple heuristic to limit
the number of windows with possible suggestions generated that would then
need to be evaluated and ranked. Even though the task of computing the
cross-entropy for a window is practically instantaneous, there are an astro-
nomical number of possible suggestions that could be evaluated. Thus, this
space needs to be limited.

In order to limit the search space of possible suggestions, the algorithm
considers insertions, deletions, or replacements only for the depth windows
with the highest entropies. The depth limit is based on the assumption that
the typo is very unlikely to have produced a window with low cross-entropy.
Additionally, the algorithm applies the assumption that tokens, such as liter-
als, that appear very few times, (especially those that appear only once) are
unlikely to be a good suggestion for a valid insertion or replacement token.
Thus, insertion and replacement suggestions that would suggest inserting or
replacing a very infrequently used token are skipped.

Each suggestion is given a score: the reduction (improvement) of the cross-
entropy score for the window that the suggestion modifies. Finally, the sug-
gestions are ordered by their score from greatest to least, and presented to

101

the user. With the assumption that the user will only consider the first few
suggestions, they will only consider the suggestions that improve (reduce) the
total cross-entropy of the file the most. The first few suggestions are the sug-
gestions that seem the most likely to the model and would result in the least
surprising code.

Algorithm 2 Searching for a change to the code that will repair it
1: function fix(oldTokens, window, depth, uniques,minf)

Ensure: oldTokens is a sequence of oldTokens
Ensure: window is a positive integer
Ensure: depth is a positive integer
Ensure: uniques is a list of all the unique oldTokens in the corpus, along

with their frequency in the corpus
Ensure: minf is a positive integer

2: scores← score(oldTokens, window)
3: suggestions is an empty set of changes to the oldTokens along with

their scores
4: for token← each of the top-depth scoring oldTokens do
5: suggestions←

suggestions+ try delete(token, oldTokens, window)
6: for unique← each of the oldTokens in uniques do
7: if unique has frequency at least minf in the corpus then
8: suggestions← suggestions+

try insert(token, oldTokens, window, unique)
9: suggestions← suggestions+

try replace(token, oldTokens, window, unique)
10: end if
11: end for
12: end for
13: return suggestions ordered by score from greatest to least
14: end function

5.4 Evaluation

UnnaturalCode, the 10-gram language model combined with the algorithms
in the previous section, was evaluated on the following task: Providing Unnat-
uralCode with a general, fixed corpus for a given programming language as a
ready-to-go tool that requires no training or on-line updating of the corpus to

102

Algorithm 3 Scoring potential repairs to the source code
1: function try delete(token, oldTokens, window)
2: side← (window − 1) /2
3: center ← index of token in oldTokens
4: oldEntropy ← Hbits (oldTokens[center − side to center + side], q)

▷ all ranges inclusive
5: newTokens ← oldTokens with token removed at the appropriate lo-

cation
6: newEntropy ← Hbits (newTokens[center − side to center + side], q)
7: score← oldEntropy − newEntropy
8: return (score, newTokens)
9: end function

10: function try insert(token, oldTokens, window,what)
11: side← (window − 1) /2
12: center ← index of token in oldTokens
13: oldEntropy ← Hbits (oldTokens[center − side to center + side], q)

▷ all ranges inclusive
14: newTokens← oldTokens with what inserted after token
15: newEntropy ← Hbits (newTokens[center − side to center + side], q)
16: score← oldEntropy − newEntropy
17: return (score, newTokens)
18: end function

19: function try replace(token, oldTokens, window,what)
20: side← (window − 1) /2
21: center ← index of token in oldTokens
22: oldEntropy ← Hbits (oldTokens[center − side to center + side], q)

▷ all ranges inclusive
23: newTokens← oldTokens with token replaced by what
24: newEntropy ← Hbits (newTokens[center − side to center + side], q)
25: score← oldEntropy − newEntropy
26: return (score, newTokens)
27: end function

103

help programmers locate and suggest repairs for typos. Thus, I will answer
the following research questions:

RQ1 Can UnnaturalCode, using a general, fixed corpus, locate human-made
typos?

RQ2 Can UnnaturalCode, using a general, fixed corpus, suggest repairs for
human-made typos that allow the code to compile successfully?

RQ3 Can UnnaturalCode, using a general, fixed corpus, suggest repairs for
human-made typos that are the same repairs that the human who made
the typo would use to repair their own code?

RQ4 How does using abstracted literal and identifier tokens impact Unnatu-
ralCode performance?

RQ5 How does UnnaturalCode’s performance compare to a similar tool using
a LSTM neural network?

5.4.1 Novice Mistakes

The evaluation is run against actual novice code collected by the Blackbox
project (Brown et al., 2014). This differs from the evaluation used in previous
chapters, which used random mutations. The Blackbox project uses the BlueJ
Java Integrated Development Environment (IDE) (Kölling et al., 2003) to
record edit events, user actions that the novice programmers take while they
are using BlueJ to develop, compile, run, and debug code.

The Blackbox data set was mined to find typos that were genuinely created
by human programmers. The data also contains information about how the
programmers fixed those typos. These are referred to as true fixes, which
distinguishes them from fixes that do make the code compilable but are not
what the actual novice programmer used to fix their code. Fixes that make
the code compilable but are not the actual fix that the human programmer
used are referred to as valid fixes.

104

Table 5.2: Edit distance of collected syntax errors. From Santos et al. (2018).

Edit Distance Instances Percentage (%)
0 10 562 0.62
1 984 471 57.39
2 248 388 14.48
3 93 931 5.48
4 54 932 3.20
5 or more 323 028 18.83
Total 1 715 312

Table 5.3: Summary of single-token syntax errors. From Santos et al. (2018).

Edit Operation Instances Percentage (%)
Insertion 223 948 22.75
Substitution 77 846 7.91
Deletion 682 677 69.34

In order to evaluate the methodology described by this chapter, revisions of
source code were selected. In particular, revisions where the code ”before” the
revision caused a compilation error and the code ”after” the revision caused
none. Additionally, only revisions where a single token was changed by the
programmer to fix the compilation error were selected. Selecting only single-
edit revisions removes ambiguity from the evaluation.

Table 5.2 shows how many tokens needed to be inserted, deleted, or re-
placed (the edit distance) for a revision to fix the previous revision and allow
the revised code to compile without error. Some revisions fixed the syntax of
escape sequences within long string literals. Since string literals are considered
a single token, and often their full contents cannot be used in the model, these
revisions are listed as having an edit distance of 0.

Table 5.3 shows, for the single-edit revisions used in this evaluation, the
prevalence of each edit action. In Table 5.3, “deletion” indicates that the
erroneous revision was missing tokens that were inserted in the next revision,
while “insertion” indicates that the erroneous revision contained extra tokens
that were removed in the fixed revision. “Substitution” means that a token was

105

Table 5.4: Number of tokens between partitions. From Santos et al. (2018).

Mean S.D. Median Min Max
Train 8.16 M 596 019.30 8.06 M 7.45 M 9.00 M

Table 5.5: Abstract vs concrete model: Number of unique tokens between
partitions

Partition 1 2 3 4 5
Concrete 229027 229027 208728 208707 226604
Abstract 110 109 110 109 109

replaced by a different token, either of the same, or of a different kind. Notably,
missing tokens that need to inserted in order to get source code compiling
accounted for almost 70% of the novice single-token typos. Substitutions,
using the wrong token or token kind, were far more rare, accounting for only
8% of the single-edit revisions.

5.4.2 Big Java

Since the task I was evaluating UnnaturalCode for was one where the corpus
was supplied pre-formed and not updated while the tool was being used, a
corpus for the evaluation was obtained from popular Java projects on GitHub.
Table 5.4 shows summary statistics of how many tokens were assigned to the
mutually exclusive training data sets. All training data was mined from the
9993 most-popular Java projects on GitHub by downloading the latest revision
of the default branch of that project’s source code directly from GitHub. Each
project was then randomly assigned to a training data set, and all of that
project’s source code files that compiled without error (about 99%) was added
to that training data set. The training data consists of 2.3 million tokenized
files.

Table 5.5 shows the stark difference in vocabulary size between the abstract
and concrete corpuses. Concrete corpuses have a vocabulary that is on the
order of two thousand times larger than abstract corpuses.

106

Table 5.6: MRRs of n-gram and LSTM models: performance from Santos et al.
(2018)

.

Model Qualification 1 2 3 4 5 All
10-gram Abstract Location .41 .42 .41 .40 .40 .41

Valid Fix .39 .39 .39 .38 .38 .39
True Fix .36 .36 .36 .35 .35 .36

10-gram Concrete Location .07 .07 .07 .08 .07 .07
Valid Fix .06 .06 .06 .07 .06 .06
True Fix .04 .04 .04 .04 .04 .04

LSTM 1 Location .06 .05 .05 .05 .05 .05
(RMSProp) Valid Fix .06 .05 .05 .05 .05 .05
(no reshuffling) True Fix .05 .04 .04 .04 .04 .04
LSTM 2 Location .52 .53 .53 .50 .50 .52
(Adam) Valid Fix .52 .53 .52 .49 .50 .51
(reshuffling) True Fix .46 .46 .46 .44 .44 .46

No Blackbox data was used in the corpus. Conversely, all evaluation data
came from Blackbox novice typos, and no GitHub data was used for evalu-
ating model performance. Thus, the corpus and evaluation data sets are all
completely independent and mutually exclusive.

5.5 Results

Table 5.6 shows the performance of the 10-gram model with identifiers and
literals abstracted, and verbatim, as well as the results obtained in Santos et al.
(2018) for a LSTM model. This shows that the 10-gram model in combination
with the algorithms presented in this chapter is able to locate and repair the
test programs at least one third of the time. However it is not able to make
repairs with correct identifiers and literals.

In Table 5.6, the columns labelled 1 through 5 are independent partitions of
the evaluation data set, each with its own separation between test and training
(corpus) data. The column labelled “All” is the average of the MRRs obtained
for each partition. In all cases, the individual partitions are within 0.02 MRR

107

of each other, so I am confident that the results in Table 5.6 form an accurate
representation of the data set, tools, and validation methodology.

In Table 5.6, rows labelled “10-gram Abstract” contain the performance of
the algorithms presented in this chapter with a 10-gram model on code with
identifiers and literals abstracted. Rows labelled “10-gram Concrete” contain
the performance of the algorithms presented in this chapter with a 10-gram
model on code with identifiers and literals left as-is. Rows labelled “LSTM”
contain the performance of similar algorithms using an LSTM model with
identifiers and literals abstracted. The two groups of rows labelled “LSTM”
show results from two different LSTM models with different hyperparameter
and training algorithm tuning.

Table 5.6 quantifies performance using MRRs, which are described in detail
in section 3.6.1. In short, MRR indicates how many results, on average, a user
would have to consider from a ranked list of results before finding one that
meets some criteria.

The MRRs in Table 5.6 indicate how many suggested locations or repairs,
on average, a human programmer would have to consider from the ranked
list produced by UnnaturalCode after a failed compilation for some accept-
able result. Rows labelled “Location” contain MRRs using the criteria that
an acceptable result must specify the exact location of the missing, extra, or
incorrect token causing the compilation error. Rows labelled “Valid Fix” con-
tain MRRs using criteria the an acceptable result must propose a change to
the source code that allows it to compile. In all cases, the proposed changes
listed are the insertion, deletion, or modification of a single token. Rows la-
belled “True Fix” contain MRRs using criteria the an acceptable result must
propose the same change to the source code that the human programmer used
to repair the compilation error.

As an example, one could expect UnnaturalCode to automatically repair
a missing curly brace one third of the time, while may not be able to repair
a misspelled identifier even one twentieth of the time. The 10-gram Abstract
results do not consider the spelling of identifiers at all.

108

In comparison, the LSTM model outperformed the 10-gram model, making
repairs to abstracted code successfully almost half of the time.

The LSTM (Long Short-Term Memory) model, is a type of neural network.
This model is explored in depth in Santos et al. (2018). The results for the
LSTM model are included in this chapter as a comparison for the 10-gram
model. The LSTM and 10-gram Abstract results presented in this chapter
were produced by the same evaluation methodology at the same time with the
same evaluation data using the same evaluation code.

5.5.1 Research Answers

For RQ1, the results show that yes, UnnaturalCode can sometimes (MRR of
0.41) locate human-made typos, even when using a general, fixed corpus, as
long as those typos do not occur as misspellings within identifiers or literals.

For RQ2, the results show that yes, UnnaturalCode can sometimes suggest
a repair (MRR of 0.39) that will allow the code to compile successfully, even
when using a general, fixed corpus, as long as those typos do not occur as
misspellings within identifiers or literals.

For RQ3, the results show that UnnaturalCode is almost as good at sug-
gesting repairs that are the very same repair the human programmer would
make as it is at suggesting repairs that simply allow the code to compile suc-
cessfully (MRR goes down from 0.39 to 0.36).

For RQ4, the results show that when using a general, fixed corpus, using
abstracted literal and identifier tokens significantly improves UnnaturalCode’s
ability to locate and suggest repairs for typos (MRR goes up form 0.07-0.04
to 0.36-0.41).

For RQ5, the results show that UnnaturalCode’s ability to locate and
suggest repairs for typos is similar to that of a similar LSTM neural-network-
based tool (MRR of 0.36-0.41 compared to 0.46-0.51 for the LSTM tool).

109

5.5.2 Comparison with LSTM model

The LSTM model and its training program had many structural options and
parameters that needed to be carefully selected and tuned. Tuning the LSTM
model to the performance level obtained in Table 5.6 required a huge amount
of work. 985 different configurations of the LSTM model’s hyperparameters
and training algorithms were evaluated (Santos et al., 2018).

In contrast, the 10-gram model had only two choices: the size of n, which
was chosen in this case to be 10, and the type of smoothing, for which I chose
modified Kneser-Ney, as in previous chapters. 10 was chosen for the size of
n because it is relatively large. Typical values for n in literature employing
n-gram models is around 3. However, n = 10 did not cause any memory or
disk usage issues during initial experiments for Chapter 3. No other sizes of n
were ever evaluated. No other smoothing methods were ever evaluated either
formally or informally.

An off-the-shelf 10-gram model coupled with a fast, shallow search
algorithm can achieve performance comparable to a sophisticated,

highly-tuned neural network for the task of locating and fixing typos.

5.6 Discussion

5.6.1 Single-edit Repairs

As described in subsection 5.4.1, we only evaluated code that could be repaired
with a single edit. This means that the evaluation results in Table 5.6 do not
represent UnnaturalCode’s ability, using any of the three models, to locate
and repair code with multiple seperate problems.

More than half of the files that failed to compile in one revision and com-
piled successfully in the next were fixed with a change to a single edit to a
single token, as shown in Table 5.2. If the Blackbox data set is representative
of source code written by novices, our evaluation applies to their typos most
of the time.

110

It is reasonable to assume that performance on code with multiple, seper-
ate problems would change dramatically depending on evaluation criteria. For
example, consider a piece of code that has two seperate problems. Under
the expectation that UnnaturalCode should be able to locate and repair both
problems performance would be much lower, because it can only repair a single
problem some of the time. However, under the expectation that Unnatural-
Code should be able to locate and repair at least one problem. Performance
would be higher with multiple seperate problems, because it would have two
or more chances at getting a single repair correct.

Consider a human programmer using UnnaturalCode as a tool to help
them locate problems and make repairs to their own code. The human pro-
grammer may choose to repair one problem at a time, which is a reasonable
approach. Thus, the second expectation may be the most appropriate. With
additional experiments, the Blackbox data set could be used to quantify these
assumptions.

5.6.2 Constrained Performance

As shown in Table 5.6, the 10-gram model performed worse than similar models
in previous chapters. In this chapter, compared to the previous chapters, there
were two main differences to the evaluation methodology. First, there was a
hard split between testing and training data. Second, typos made by human
students were used, rather than automatically generated mutations.

However, based on the results in Chapter 3, which involves testing a 10-
gram model against code it has not seen, such as the results presented in figure
3.6 have already shown that using a 10-gram model to locate typos in Java
code that the model has never seen before will yield poor results. Thus, rela-
tively poor results, when compared to earlier chapters, in this chapter are not
unexpected. Furthermore, there is evidence that the decrease in performance
is due to splitting the data into exclusive training and testing sets.

As shown in Table 5.6 using concrete (non-abstracted) tokens performed
very poorly. This poor performance comes from using the technique in a set-

111

ting where there is a firm division between the training and test sets. The
training and test sets also have different vocabulary, especially for the “10-
gram Concrete” experiment. As described in previous chapters, the technique
can work in a setting where this division does not exist, so it is rather artifi-
cial. It should also be noted that the LSTM results from Santos et al. (2018)
do not include a concrete version because the one-hot encoding used in the
LSTM model is not capable of representing concrete tokens without becoming
unreasonably large and slow to train.

Without being able to use previous iterations of the same codebase or
related code as training data, the 10-gram model cannot work with identifiers.
It has never seen the identifiers being used in the broken code before, due to the
nature of splitting the data between a training set and a validation set. Thus,
most identifiers in the code are novel to the model, and create high entropy
tokens throughout the code. These high entropy tokens are then flagged by
algorithm 1 and prioritized by 2 as locations in the source code where a repair
could be made, however, these locations are usually not the location of the
problem. Instead, the locations prioritized by 2 are simply the locations of
identifiers that are unfamiliar to the 10-gram model. This essentially negates
the 10-gram model’s ability to locate defects. Since the model can no longer
locate defects, it fails to suggest fixes for them as well. As shown in previous
chapters, this performance degradation does not happen when the model is
trained on compilable versions of the same code before the typo is introduced.

Another possible cause of reduced performance comes from the fact that
the models used a corpus compiled from popular Java projects on GitHub.
The code in popular Java projects on GitHub is likely produced by multiple
experienced programmers working together, rather than a single student work-
ing alone. This may lead the model to represent how code from large, popular
Java projects is written rather than how Java code is written by students.

112

5.6.3 What is a Correct Location

Algorithm 1 was not used in Chapters 3 and 4 for locating typo tokens because
in those earlier experiments, location accuracy down to a single token was not
required. For those earlier evaluations, the location of a single line or 10-token
window was considered good enough, as the ranked locations were intended
for direct output to the human programmer. For this chapter, in order to
attempt to repair source code, the location of each specific, individual token
in the source code needed to be ranked.

The evaluation performed in this chapter is not directly comparable to the
evaluations performed in previous chapters. Importantly, it cannot be used
to validate the mutation testing performed in previous chapters. A direct
comparison between the evaluation using mutation and the evaluation using
human-generated typos cannot be made.

5.6.4 Comparison with Previous Chapters

Even the results from Table 3.2 with a corpus built from Apache Lucene 4.0.0
and typos mutated from Apache Ant 1.8.4 are not comparable with the 10-
gram concrete results obtained in this chapter. The results in Table 3.2 are
with respect to locating a 10-gram window containing the code-breaking mu-
tation, while the results in Table 5.6 are with respect the exact location of a
single token.

It is reasonable to assume that the much narrower locations used in this
chapter’s evaluation are the cause of the MRRs listed for 10-gram concrete
location, giving an MRR of 0.07, being much lower than the MRRs obtained
with a corpus from Apache Lucene 4.0.0 and typos mutated from Apache Ant
1.8.4 giving an MRR between 0.20 and 0.36. In more human terms, this is a
search tool providing the exact location of the typo or missing token as the
14th search result rather than an approximate location as the 5th search result.

There are several other possible explanations for the change in performance
for the comparison described above. The first is that the Ant and Lucene
projects, both being Java projects from one single organization, may have sim-

113

ilar coding style, coding conventions, and even shared code. The second may
be that human typos are more difficult for the 10-gram tool to locate. The
third may be that changes to the tool itself, as I rewrote and evolved Unnatu-
ralCode’s and MITLM’s code over the years caused a decrease in performance.

Unfortunately, it is impossible to determine the exact cause of the appar-
ent change in performance without additional experiments to evaluate each
proposed cause listed above.

For the reasons discussed in this section, the evaluation methodology pre-
sented in this chapter also diverges significantly from evaluations in the previ-
ous two chapters. Comparing results from this chapter and the previous two
chapters may have very limited validity.

5.6.5 General Limitations of this Evaluation

Unfortunately, because the evaluation presented in this chapter was designed
to meet several requirements, it is also limited in its power to evaluate Unnat-
uralCode as it was intended to be used.

The evaluation in this chapter was designed to address common concerns
raised by peer reviewers who reviewed the work done in Chapters 3 and 4. Peer
reviewers were frequently concerned by the use of similar test and training sets,
though of course, for the n-gram model this was entirely by design. Reviewers
were also frequently concerned by whether or not the random mutations used in
previous chapters accurately represented human-made typos for the purposes
of evaluation.

Human-made typos were used and their repairs were used in this chapter’s
evaluation rather than mutations of known-good code. This constrains the
amount of training and testing data available. The results may also be biased
towards typos made by students rather than programmers at other levels of
expertise. It is also biased toward typos made by users of the research IDE
that was used to collect the data. Many of the typos in the evaluation data
set may have been prevented by a different IDE.

114

As discussed in subsection 5.6.2, the test and training data sets were strictly
divided in the familiar way used to evaluate algorithms for static, offline in-
ference. However, the setting UnnaturalCode is meant to be used in, a devel-
opment environment, combined with the fact that the 10-gram model can be
updated quickly, means that UnnaturalCode can be used for dynamic, online
inference.

This evaluation was designed to satisfy peer reviewers who had often asked
for a hard division between test and training data sets. Additionally, this
evaluation was designed to allow the direct comparison of the 10-gram model
with the LSTM model. The LSTM model could not be updated quickly, which
prevents it from being used online.

Additionally, since the evaluations performed for previous chapters, the 10-
gram model used (MITLM) had also received a number of bug fixes that may
affect performance. The code and algorithms that attempt to locate typos
using the 10-gram model have also been rewritten and refined. The goal of
these changes was to make the software more careful and precise, while also
expanding the types of evaluations that could be performed. Thus, the results
in previous chapters may diverge from the results in this chapter because of
bugs fixes, algorithm changes, and code rewrites.

5.6.6 The Benefits of Cheap Models

While the LSTM model had better performance, getting that level of per-
formance required tuning and multiple days to train the model with a high
performance GPU, in 2017-2018. In comparison, the 10-gram model can be
initialized and updated with additional data extremely quickly, typically in
just a fraction of a second, and without the assistance of specialized hardware
such as a GPU. In fact, training speed for the 10-gram model is primarily lim-
ited by available I/O bandwidth required to read the training data and write
the model to disk.

For comparison, Santos et al. (2018) states of the LSTM neural-network
models: “ Each model individually took between 21/2 and 111/2 days to train;

115

up to six models were trained simultaneously on two nVidia® GeForce® GTX
1070 GPUs. Section VII-A discusses how files were chosen for the training,
validation, and testing sets.” The same training sets were processed into a
usable n-gram model in less than 10 seconds each: about 100 000 times faster,
without the assistance of GPU acceleration. The time required to produce
suggestions was similar for each type of model: 2-3 seconds.

The speed and ease with which the n-gram model makes updating the
n-gram model cheap. The updating the model with new information is so
inexpensive (in terms of time and hardware requirements) that updates can
easily happen on-line and immediately when any new information becomes
available, making UnnaturalCode usable in the workflow presented in Section
3.5.

Evaluating UnnaturalCode for its original intended workflow gives Unnat-
uralCode a huge boost. It is possible that this effect extends to other tools
and techniques that rely on a corpus of source code. If a technique or tool is in-
tended to provide a quick response at some stage of the software development
process, and it uses some corpus or training data based on plentiful software
artifacts, it may be possible to leverage a workflow similar to UnnaturalCode’s.

This is true for techniques and tools requiring any task to be performed
as long as that task can be performed with a model-driven algorithm. This
includes techniques and tools that require classification, clustering, regression,
anomaly detection, prediction, information retrieval, and search (search-based
software engineering). As long as the model being used can be updated or
retrained quickly enough, it can be updated or retrained with every commit,
every compilation, or every change to a file. It may even be possible to update
a model in real-time with every keystroke or action in an IDE. These cheap
models bring with them several advantages.

With current hardware cheap models generally excludes neural network
models and complex probabilistic graphical models (PGMs, for example, La-
tent Dirichlet Allocation) with slow inference schemes (for example, Gibbs sam-
pling). Both neural networks and PGMs that require slow inference schemes

116

approximate a maximum value for some function with a large number of de-
grees of freedom by iterating. In the case of neural networks the computation
cost of obtaining good results has has lead to booming business for compa-
nies (such as nVidia) that provide hardware to accelerate the process. Such
hardware is becoming more common, and future advancements in computer
hardware and neural network training may allow neural network models to be
updated or retrained quickly enough to be used workflows with frequent model
updates like the original UnnaturalCode workflow from Chapter 3.

In contrast, however, generating an n-gram model merely involves counting
the number of times each sequence of tokens is seen and storing those counts
in a look-up table. Even the advanced n-gram model software used, MITLM,
does this. (However, the look-up tables computed by MITLM are specialized
and organized cleverly for maximum performance while using minimal disk-
space.) Computing the look-up tables needed to estimate the n-gram model
can be done in less than a second, even for large projects with hundreds of
thousands of lines of code old hardware.

One advantage of using cheap models is that models that are specific to
a project, organization, or developer can be produced. Such models may out-
perform a generalized model trained on a massive corpus of a large number of
projects. Of course, such a specialized model would also underperform when
used with a different project, organization, or developer. However, because
they are cheap to retrain, the model can just be thrown out and replaced with
a new, specialized model.

By focusing on a single project, a model can focus on a limited vocabulary
of terms, identifiers, and structures that are employed by that project. Fo-
cusing allows the model to represent terms, identifiers, and structures much
more precisely in a way that would be considered over-training for a more
generalized model.

A second advantage of using cheap models is that the model can “keep
up” and “follow along” with the progress of the software development process,
adapting each time it is updated or retrained. For example, as soon as a new

117

class appears in a Java project, the model can incorporate the identifiers, the
“vocabulary,” associated with the new class. It may be possible for the model
to stay up to date regardless of whether it is being used for code completion,
bug prediction, or any other model-driven SE task.

In summary, n-gram language models can be used to help human pro-
grammers find the locations of and suggest repairs to typos in source code
that cause compilation to fail. n-gram language models are competitive with
more advanced neural-network based models on this task when both are used
in an off-line setting.

5.7 Conclusion

5.7.1 Automated Repair

For faults that can be detected by compilation and repaired with one
single-token edit, a 10-gram model combined with a fast search algorithm
can perform the repair automatically a significant fraction of the time.

However, the results presented in this chapter show that using a 10-gram
model, combined with the algorithms described, can be used to quickly perform
automated repair for some simple typos that prevent program compilation. In
fact, this technique is so fast on modern hardware that it adds negligible time
when compared to the compilation itself.

UnnaturalCode can provide this service to students, amateur, volunteer,
and professional programmers with almost no overhead. The primary cost to
using UnnaturalCode to automatically repair typos is set-up, since computa-
tional overhead is negligible.

118

Chapter 6

Statistical Properties of Crash
Reports

6.1 Preface

6.1.1 Acknowledgement

This chapter was originally distributed as a “pre-print” (Campbell et al.,
2016b). I performed the data collection. I also performed data analysis for
most of presented results and figures. However, some of the analysis was spec-
ified by me, but performed by and plotted by my co-author, Eddie Antonio
Santos. I most of the text, with some of the text also being composed by Eddie
Antonio Santos. Dr. Abram Hindle helped with concept formation, editorial
work, and supervised the research. The research presented in this chapter was
funded by a MITACS Accelerate grant and BioWare, LLC.

6.1.2 Significance

Despite being distributed without peer review, the work presented in chapter
has been referenced by one of its co-authors in Hindle (2019). People working
in industry seemed more interested in the results than those in academia: I
have received a number personal comments on how valuable this work would
be if there were more of it available to industry that focused on different types
and collections of software, different languages, etc. I intend to publish a
shortened summary of these results in a practitioner-oriented venue.

119

6.2 Introduction

A software crash is any unintended abrupt termination of a program, often
as the result of a programming error (Khomh et al., 2011). Software crashes
may happen in deployed code, away from the developer’s machine. When
this happens, some systems create a crash report, summarizing the state of
the program and its environment when it crashed. Telemetric crash reports
are a major source of data about software quality that can be collected to
identify bugs in software so that they can be fixed and the software can be
improved. Because crash reports are so important, software companies such as
Google (Google Inc., 2016), Canonical (Canonical Ltd., 2004), Mozilla (Mozilla
Corporation, 2012), Apple (Technical Note TN2123: CrashReporter 2016), and
Microsoft (Glerum et al., 2009) have automated crash reporting systems. These
systems send crash reports from end users’ machines to a centralized database,
letting developers know what software is crashing and helping them figure out
why. You may have experienced one of these systems if you have ever seen
a dialog box that popped up asking if you wanted to send feedback when an
application crashed (Figure 6.2).

Most crash repositories rely on automated systems (Mozilla Corporation,
2012) that deduplicate and cluster the crash reports, so that hopefully each
crash bucket (cluster) has crashes relating only to one fault in the program.
Crashes must be deduplicated automatically, as the quantity of crash reports
being uploaded is vast. Campbell et al. (2016a) indicated that Mozilla received
2,189,786 crash reports in a single week alone. There is a substantial body of
prior work (Bartz et al., 2008; Campbell et al., 2016a; Dang et al., 2012a;
Dhaliwal et al., 2011; Glerum et al., 2009; Kim et al., 2011; Modani et al.,
2007; Seo and Kim, 2012a; Wang et al., 2013) that has tackled automated
crash report deduplication and triage; however none of these works focused on
the properties of crashes and buckets or how those properties are distributed.
Unfortunately the true accuracy (measured in precision and recall) of these

120

automated systems is unknown, because they have not been validated with a
gold set of true duplicates.

Because of the big data nature of the problem, sources of manually dedupli-
cated bug reports are rare. For this reason, we analyzed the Ubuntu Launch-
pad data set, which contains manually-deduplicated buckets of crashes—
crashes that a human determined to be caused by the same underlying software
fault. The data set also contains crashes that may have been neglected, receiv-
ing little or no attention. The Ubuntu data set contains crashes from 1,921
different applications, programs, and libraries made available on Ubuntu. This
type of crash repository data mining and fundamental descriptive statistics has
not been performed in the literature previously, to our knowledge.

Due to the manual labor involved in manually bucketing crashes, datasets
like the Launchpad crash repository are both rare and small. Thus, we wish
to extract as much useful information from the dataset as possible.

Understanding crash repositories and characterizing the properties of
crashes that can be found within is important not only to deduplication and
triage. For example, large crash repositories could be used to provide feedback
on how crashes are collected, how software is designed, or what hardware is
problematic. One can leverage crash repositories by instrumenting crashes in
a way to aide debugging (Liblit et al., 2005). Another question that can be
answered by analyzing crash repositories is how often recursion was involved in
a crash. We can also find out what actions cause a large number of crashes. In-
tuitively, functions on the top of stacktraces are viewed as the most important
features for deduplication, and we can use the Ubuntu data set to investigate
those functions.

The Ubuntu data set is a valuable resource because it contains thousands
of buckets of crash reports that were hand-marked as duplicates by Ubuntu
developers and volunteers. The Ubuntu project has limited human resources
to carry out this task, however, leaving many crash reports neglected and not
yet deduplicated. Unfortunately it is difficult to discern crash reports that are
truly unique from ones that were merely never given enough attention to be

121

assigned a duplicate. Thus, the Ubuntu data set does not contain a gold set
of unique crashes.

Fortunately, the Ubuntu data set contains crashes from 1,921 different ap-
plications, programs, and libraries made available on Ubuntu. This includes
a wide variety of software such as, GUI applications, command line tools, spe-
cialized libraries, standard libraries, compilers, server software, video games,
scientific software, and more.

We attempted to characterize the data set statistically to inform crash
report bucketing techniques and the validation methodologies for those tech-
niques. We hope that these statistical characterizations will be helpful to the
developers of crash bucketing tools and the engineers deciding how to triage
and handle crash reports. In addition, we want to understand the Launch-
pad crash repository to understand the impact that validating crash report
bucketing tools with this data might have.

While there are a large number of aspects of the data set that could be
studied we chose 10 aspects in the form of research questions (RQ) for this
chapter. RQ1 to RQ3 focus on how crashes are organized into groups in the
data set. RQ4 to RQ5 focus on categorical properties of crash reports. RQ6
to RQ8 focus on the size of stacktraces, recursion and names. RQ9 and RQ10
focus on common functions and libraries that crash.

6.3 Terminology

To understand the domain of crash report deduplication, we provide definitions
of the terms used in this chapter.

A crash is any unintended, abrupt termination of a program. These are
often due to bugs, or erroneous programming caused by human errors. Human
errors lead to faults in programs, faults can lead to failures, and failures can
include crashes. We use bugs as an umbrella term to cover human error, faults,
and failures, while crashes are the result of bugs. One common crashing bug

122

Figure 6.1: An example crash report (Schaaf, 2012): its contextual data, its
stacktrace, and a dissection of one of its stack frames. Note that some infor-
mation was removed for space.

123

occurs when a program tries to access memory that is not allocated to it. This
is called a segmentation fault on Linux and Unix-based systems.

Crash reports (Figure 6.1) can be generated when a program crashes. Such
reports typically contain information about what was going on in the program
when it crashed such as the stacktrace, file and line number of code that was
executing when the program crashed, and what was in memory at the time
of the crash. They also typically include information about the system the
program was running on such as what type of computer it was running on,
what other programs were running, and what version the program and any
libraries it used.

A stacktrace (Figure 6.1, middle) is a snapshot of the execution state of a
program. A stacktrace is a sequence of stack frames (Figure 6.1, bottom) that
describe the current function, on the top of the stack, followed by the function
that called the current function—the second function on the stack—and so
on. The entry point of the program is the bottom of the stack. Included in a
stack frame is usually, the address of the function, the name of the function,
and the source file that defined the function. Sometimes, a stacktrace also
includes the line number in the source file that defined the function, or the
line number that was executing at that point in time. Additional information
such as arguments and their values at the time each function is called may
also be included.

A crash stacktrace is the stacktrace captured at the time that a crash
occurred. In this case, the top of the stack indicates the function that en-
countered the crash, but this function does not necessarily contain the bug
that induced the crash. The contents and formatting of crash stacktraces
varies wildly depending on what language the software was written in, what
platform it was running on, what tools were invoked to generate the crash
stacktrace, and what libraries the software was using.

Bug reports (sometimes called issue reports) are user- or developer-
submitted reports, usually in a standard format, that detail a problem that
the user or developer experiences with a piece of software.

124

Crash buckets are groups (or clusters) of crash reports, in our case, in the
form of bug reports, that have been manually or automatically determined to
represent crashes caused by the same underlying problem.

In addition to the stacktraces, contextual data may be included such as:
what version the software and other pieces of software on the system are, the
system architecture and OS version, settings the user may have modified, and
information about hardware installed on the system such as sound and video
cards.

Stacktraces may contain recursion, which occurs when a function calls itself.
Stacktraces may also contain mutual recursion, when multiple functions call
each other in a sequence with the last calling the first. In a stacktrace with
recursion, there are several instances of the same function.

Unbounded recursion is when a function calls itself endlessly without finding
a terminating condition. In C and C++ programs, each function call allocates
stack space.1 Thus, unbounded recursion will allocate stack space endlessly
until the operating system refuses to allocate more pages to the program,
crashing the process with a segmentation violation (SEGV signal as described
in Section 6.6.4).

Applications, programs, and libraries are treated as packages, or pieces of
software that can be installed onto Ubuntu systems, using the Ubuntu system’s
package manager. These packages come from source packages that typically
consist of a single piece of software from a single source repository, plus bug
fixes and customizations made for Ubuntu.

6.4 Prior Work

There have been a few prior works that have investigated the properties of
crash report repositories. These works primarily seek to determine causes of
crashes, in contrast to this this chapter that seeks to describe and characterize

1A compiler may be able to apply the tail-call elimination optimization to recycle the
same stack frame, however this is an optional feature provided by some compilers (Options
That Control Optimization—GCC online documentation 2016).

125

the nature of the crashes from one particular crash repository. Much more
prior work has created tools to deduplicate crash reports for the ultimate
purpose of aiding developers in fixing common crashes in production. Our
work is far more empirical, seeking to understand the properties and structure
of crash reports, and is similar in intent to that of Herraiz et al. (2007) who
sought to characterize distributions of version control system repositories to
study software growth.

6.4.1 Studying crash report repositories

Kechagia and Spinellis (2014) mined crashes from Android applications writ-
ten in the Java programming language. The authors recorded the exceptions
that crashed the software compared to the exceptions that were said to occur
according to the Android API documentation and found that many of the
crash causing exceptions were not mentioned at all in the documentation.

Ganapathi and Patterson (2005) collected crashes from local research ma-
chines running Windows XP SP1. Their analysis revealed that web browsers
crashed most frequently of all types of applications, even more so than the more
widely-used document preparation software. The software that did crash was
due to users manual termination due to an application hang. The authors
remarked that shared libraries (.dll files on Windows) invoked by multiple
applications accounted for about 15% of all application crashes.

This was followed up by Ganapathi et al. (2006), which analyzed Win-
dows XP kernel crash data collected from machines on the Berkeley Open
Infrastructure for Network Computing. They measured several aspects such
as kernel crashes per user, and system uptime before a crash. They concluded
that many kernel crashes are the result of unreliable device drivers; 10 device
driver vendors were responsible for over 75% of kernel crashes out of the 110
vendors attested in the crash corpus.

Gómez et al. (2015) created MoTiF to generate in vivo crash test suites
that create the shortest sequence of actions to reproduce a crash experienced

126

by a user. They used crowdsourced test suites to bucket crashes in order to
give developers a sense of what needs to be fixed.

Like Campbell et al. (2016a), this chapter focuses on one particular crash
repository—the Ubuntu Launchpad data set. Unlike the prior work, this chap-
ter places a greater emphasis on describing the statistical tendency of crashes.
Our data set is different from the ones studied in the prior work in a few
important ways. We collected crashes from Linux machines, so some of the re-
search questions in this work are Unix-specific, as opposed to Windows-specific
as with Ganapathi’s two prior works (Ganapathi et al., 2006; Ganapathi and
Patterson, 2005). As well, the crashes came from lower level languages; de-
spite the presence of exceptions in C++, ultimately what we captured were
the Unix signals that crashed the applications.

6.4.2 Stacktrace crash report deduplication

In order to prevent as many crashes as possible, it is necessary to find out how
many users are experiencing what kinds of crashes, categorize those crashes,
prioritize them, and triage them. Deduplication is necessary to group and
count similar crashes that are hopefully caused by the same fault in the soft-
ware. Many papers use stacktraces—either exclusively, or combined with con-
textual data—to deduplicate crash reports. Brodie et al. (2005b) introduced
the concept of bug localization by comparing stacktraces and finding the “best”
sequence of consecutive function names to create a signature for a crash. This
was followed up by Brodie et al. (2005a), wherein the authors describe sev-
eral heuristics for preprocessing stacktrace data, including stop word removal
and recursive call removal. Bartz et al. (2008) created a call stack similar-
ity classifier based on learned weighted edit distance. Modani et al. (2007)
proposed several stacktrace similarity metrics including edit distance, longest
common subsequence, and top-of-the-stack matching. Dhaliwal et al. (2011)
described using average weighted Levenshtein distance between stack frames
to measure the similarity between crashes. Kim et al. (2011) deduplicated
already bucketed crashes by constructing a directed graph using stack frames

127

as nodes, and their relation to one-another as directed edges, and then ap-
plied a graph similarity metric. Seo and Kim (Seo and Kim, 2012a) studied
crash stacktraces in order to select previously bucketed crashes that may re-
occur, and are thus worth the triaging and debugging effort to fix. Dang et
al. (2012a) used agglomerative hierarchical clustering on crash stacktraces for
deduplication. Wang et al. (2013) used crash stacktraces to train a Bayesian
belief network to find files that are likely the cause of a crash. Note that
many deduplicators (Brodie et al., 2005a; Dang et al., 2012a; Modani et al.,
2007) who used stacktrace edit-distance found it necessary to remove recur-
sion in the preprocessing stages. Lerch and Mezini (Lerch and Mezini, 2013)
addressed deduplication by using tf–idf to determine the similarity between
crash stacktraces in order to deduplicate bug reports as they are being written.
Campbell et al. (2016a) followed this up by directly addressing crash report
deduplication by comparing various tokenization methods and the parameter
of similarity threshold to bucket crashes.

6.5 Data

Figure 6.2: The dialog that appears when an Ubuntu application crashes. A
user can opt-out of sending the crash report to Canonical.

This chapter uses the Ubuntu Launchpad data set that consists of 40,592
crash reports that are taken from bug reports for 1,921 packages. In Ubuntu
Launchpad, crash reports are submitted as bug reports by a user, but with
tooling that helps fill out the contextual data automatically. The tooling

128

that collects the information from the crash report to the bug report also
tags the bug report so that it is possible to separate out bug reports that
were completely manually generated from those that were generated with the
assistance of the crash reporting tool apport.

6.5.1 How do crashes make it into Launchpad?

On standard installs of Ubuntu Desktop and Ubuntu Server, the Apport sys-
tem collects the stacktrace and metadata, such as the CPU architecture and
the signal that crashed the program. According to the Ubuntu Wiki: “If any
process in the system dies due to a signal that is commonly referred to as
a ‘crash’, […] the Apport back-end is automatically invoked” (Ubuntu Wiki
contributors, 2012). Apport does this by installing itself as the program that
receives the core dump by setting /proc/sys/kernel/core_pattern (Piping
core dumps to a program—core(5) Linux User’s Manual 2015). The Linux
kernel invokes Apport with the core dump, which contains the full state of
the program at the point of the crash. The core dump is loaded into gdb to
extract a string representation of the crash stacktrace (Figure 6.1, middle).
Apport presents the user with a window indicating that their app has crashed
(Figure 6.2). At this point, the user may choose to opt-out of sending the crash
report. If the user does not opt-out they are prompted to log in to Ubuntu
Launchpad, and add their comments to a form that is pre-filled with all of the
data automatically collected by the Apport system.

6.5.2 Why Launchpad?

We chose the Launchpad data set for several reasons: the data set is freely
available to researchers,2 so our observations are reproducible. Similarly, most
of the crashes occurred in open source software, allowing researchers to find
the source code online and analyze any interesting faults (as we show in Sec-
tion 6.6.7). Since the crashes come from a myriad of applications and pack-
ages on desktop machines, we can analyze crashes that were caused by shared

2https://pizza.cs.ualberta.ca/lp_big.json.xz

129

https://pizza.cs.ualberta.ca/lp_big.json.xz

libraries—in contrast with Mozilla’s crash database that only contains crashes
from Firefox. Most remarkably, crashes that were marked as duplicates on
Launchpad were labelled manually by volunteers and employees of Canonical.
This creates somewhat of a gold set with which researchers can evaluate the
precision and recall of their automated crash deduplication algorithms (Camp-
bell et al., 2016a). This set of human-curated crash buckets are invaluable for
evaluating crash deduplication methods.

Since most of the software in Ubuntu is open source, most crashes can be
debugged if they were not caused by system instability, cosmic rays (Hwang
et al., 2012), or other random phenomena. Even though some of the crashes
are more than 6 years old, the version of the code that crashed is usually still
available.

6.5.3 How were the crashes obtained?

The corpus was downloaded using a modified version of Bicho (Robles et al.,
2011) that is available online.3 This process took a considerable amount of
time (more than a month) due to the fact that the Ubuntu Launchpad API
throttles requests. Additionally, much of the data required for the crash reports
are uploaded as attachments that must be downloaded separately. These were
downloaded using wget. 126,609 issues were downloaded, of which 44,464
contained stacktraces from C or C++ programs. Of those, 3,872 were thrown
out because they were unparsable, leaving 40,592 crash reports. These crash
reports come exclusively from software that is compiled to a standard Linux
binary and can be debugged with GDB, the GNU debugger. This limits the
data set to crashes from software written in C, C++ or other similarly compiled
languages.

6.5.4 What do the crashes look like?

Each crash report consists of semi-structured text information. An example is
shown in Figure 6.1. The text was parsed with a Python script written by the

3https://github.com/hazelybell/Bicho

130

https://github.com/hazelybell/Bicho

authors.4 The initial text is automatically generated by Apport, but the user
is free to modify anything they want. This results in mostly machine-readable
crashes. Unfortunately, some crashes are unparsable or contain unparsable
metadata.

Additionally, because the data set contains crashes from 2009 until 2015,
the various software that produced the crash reports, the Launchpad system,
and the standard format of reports changed over time. Some reports, when
parsed contain the wrong information in the wrong place. For example, if
there is a missing newline in the crash report data, information about which
package a crash occurred in might mistakenly appear in the field meant to
describe the signal that crashed the application. Our parser cannot correct
these types of problems in the data. However, this type of problem is rare,
occurring in less than 1% of crashes.

Most crashes contain more than one stacktrace. This is because there are
stacktraces of varying types available for a single crash. For example, for many
crashes, both a normal stacktrace is available along with stacktraces for any
other threads that might be running simultaneously in the application when
it crashed. We only use the single stacktrace (of the crashing thread) in our
experiments.

Additionally, several versions of the same stacktrace of the same crash
are often available. This can be caused by information that was missing on
the user’s computer being automatically filled in later by the Ubuntu Apport
system. We attempt to use the stacktrace with the additional information by
default, if it is available.

6.6 Research Questions, Methodology and Re-
sults

We answer 10 research questions about the Launchpad crash repository. The
first 3 answer how crashes are organized within the crash repository:

4https://github.com/naturalness/partycrasher/blob/master/partycrasher/
launchpad_crash.py

131

 https://github.com/naturalness/partycrasher/blob/master/partycrasher/launchpad_c rash.py
 https://github.com/naturalness/partycrasher/blob/master/partycrasher/launchpad_c rash.py

RQ1. How are crashes distributed among applications?

RQ2. How are crashes distributed among buckets?

RQ3. How long do crash buckets last?

The latter 7 research questions are focused on the properties of individual
crashes and how they are distributed:

RQ4. What Unix signals are crashes associated with?

RQ5. What CPU architectures experienced the crashes?

RQ6. How long are crash stacktraces?

RQ7. How are crashes associated with recursion?

RQ8. How long are function names in crashes?

RQ9. What are the most common functions in crashes?

RQ10. What are the most common crashing libraries?

6.6.1 RQ1. How are crashes distributed among applica-
tions?

In order to fix the causes of crashes, it is first necessary to find out what
applications, programs, or libraries the crashes occur in. If a few pieces of
software crash far more often, it may make sense to allocate developer time or
other resources by focusing on them. Or, if crashes are spread out among many
pieces of software, it might indicate that widely-used libraries are a common
cause.

In order to determine which applications crashed we looked at each crash
report’s SourcePackage metadata field, or if that was not available, the crash
report’s Package field. Ubuntu applications are often broken up into multiple
packages, but they will usually all share a single SourcePackage. 44 crash
reports were missing this information (or it was unparsable) so we looked at
the remaining 40,548 crash reports.

132

Figure 6.3: Crashes per package. Both axes are logarithmic.

133

Figure 6.4: Frequency spectrum of crashes by package, indicating there are
many packages with only one crash report, and a few packages with many
crash reports. Both axes are logarithmic. The leftmost point on the plot
indicates there are 736 packages with only a single crash.

134

Minimum Maximum Median Mean Std. Dev. Skewness Kurtosis
1 1895 2 21.1 94.8 10.8 150.4

Table 6.1: Descriptive statistics for crashes per package.

The package with the most crashes was Nautilus with 1,895 crash reports.
In total, 1,921 packages had crash reports. A log-log plot of the distribution
of crash reports is shown in Figure 6.3. This plot shows the packages with
the most crashes on the left and the fewest crashes on the right. Additionally,
a log-log frequency spectrum plot of the distribution is shown in Figure 6.4.
The frequency spectrum shows how many packages have 1 crash, how many
packages have 2 crashes, and so on.

Figure 6.3 indicates that the data might follow a broken power-law (Zipf’s
law) distribution because it appears to have several linear appearing decreas-
ing segments when plotted with both axes being logarithmic. The plot is very
similar in shape to plots of word frequency in English-language texts, such
as the plot of the word frequency in English Wikipedia text by Grishchenko
(Grishchenko, 2006). This indicates that the distribution of crashes per appli-
cation has a piecewise power law distribution.

We fit a finite Zipf-Mandelbrot model to the frequency spectrum using
the zipfR R package (Evert and Baroni, 2007). In Figure 6.4, the red line
indicates the model distribution and the black line indicates the empirical
data. We used the χ2 goodness-of-fit test to determine how well the model
fit the data. The test determined a p-value of 0.17. However this p-value is
not small enough to reject the hypothesis that the data came from the model
distribution.

We can conclude that the distribution of crashes among packages follows a
power-law distribution. Therefore, a few applications will cause a large num-
ber of crashes, and there will also be a large number of applications with only
a few crashes. Crash deduplication systems must be able to handle deduplicat-
ing both crashes from software that crashes rarely and software that crashes
frequently.

135

Figure 6.5: Crashes per bucket. Both axes are logarithmic.

6.6.2 RQ2. How are crashes distributed among buck-
ets?

Minimum Maximum Median Mean Std. Dev. Skewness Kurtosis
1 148 1 1.4 2.5 24.0 989.4

Table 6.2: Descriptive statistics for crashes per bucket.

Understanding the distribution of crashes in buckets is critical to effective
crash report deduplication. It might also be useful for predicting how many
major buckets (groups of crashes that are caused by a single underlying bug)
will appear based on how many new crashes appeared. Thus it may be use-

136

Figure 6.6: Frequency spectrum of crashes by bucket, indicating there are
many buckets with only one crash report, and a few buckets with many crash
reports. Both axes are logarithmic. The leftmost point indicates there are
25,594 buckets with only a single crash.

137

ful for predicting how many new crash-causing faults have appeared in the
software once the number of new crashes is known.

We downloaded all of the crash reports available at the end of 2015. Our
modified version of Bicho also downloaded information about which crash each
crash was marked as a duplicate of, if any. This information is available from
the Launchpad API (Launchpad contributors, 2016) along with the crashes. It
is provided by the API as a field indicating the bug report each bug report is a
duplicate of (crashes are stored as bug reports in the same system). We used
this information to group crashes into buckets. Then we sorted the buckets by
size and plotted the result.

Figure 6.5 shows the distribution of crashes among buckets. The largest
bucket had 148 crashes. The crashes concern a library package called
gtk-sharp that is used as a GUI toolkit for many applications in Ubuntu.
These packages include CD burning applications, photo management applica-
tions, and others, all of which crashed due to this library bug.

In addition, there are 1,853 buckets with only 2 crashes in them, and there
are 25,594 buckets with only a single crash. Buckets with only a single crash
were not used in Campbell et al. (2016a) because it is not known if they
are truly unique or simply have not been evaluated by Ubuntu developers
and volunteers enough to be assigned to a larger bucket. In this chapter, we
consider crashes with no known duplicates as being in a bucket by themselves.

Buckets with only a single crash in them account for more than half of the
crashes. There are only 14,998 crashes in the data set that are in buckets with
other crashes.

We fit a finite Zipf-Mandelbrot model to the frequency spectrum using
the zipfR R package (Evert and Baroni, 2007). In Figure 6.6 the red line
indicates the model and the black line indicates the empirical data. We used
the χ2 goodness-of-fit test to determine how well the model distribution shown
fit the data. The test produced a p-value less than 10−13, indicating that the
data did not come from the fit distribution. However, Figure 6.6 clearly shows

138

that the model distribution is able to capture the general shape of most of the
empirical distribution.

Much like RQ1, we can conclude that a many crashes will be lonely, that is,
being the only crash in a bucket, with no duplicates, while some buckets will be
significantly larger, containing a large number of crashes. Crash deduplication
systems must be able to correctly place crashes into both small buckets and
very large buckets. This means that any deduplication technique that tends
toward some average size of bucket will perform poorly. Most importantly,
this data set indicates developers can address large amounts of the crashes
that users report by focusing on only a few crash buckets.

6.6.3 RQ3. How long do crash buckets last?

Min. Max. Median Mean Std. Dev. Skewness Kurtosis
0 1.28× 108 0 6.3× 106 2.5 9.8 124.0

Table 6.3: Descriptive statistics for lifetime in seconds.

A bucket is first created when a user experiences a crash and reports it.
After that, other users might experience the same crash, and those crashes
will be added to the bucket. Eventually, the code causing the crashes could
be fixed, replaced, or become irrelevant. However, even if it is fixed, it is still
possible that later changes undo the fix and more crashes are reported. Ideally,
all of these crashes are in the same bucket.

It is important to understand how long crash buckets last in order to dedu-
plicate them, simulate their creation over time, and manage crash repositories.
For example when deciding on data retention policies, if we found that buckets
have a very limited lifespan it would indicate that crashes could be removed
after some time, limiting the amount of work that processes working with
crashes, such as databases, would need to do.

We analyzed the lifespan of buckets in order to determine whether there
are any patterns in bucket lifespan. The lifespan is the time between when
the first and last crashes were posted to Launchpad, for each bucket. Of

139

Figure 6.7: Empirical and model cumulative distribution functions of bucket
lifespan. Only buckets with at least 2 crashes are shown.

140

course, there could have been crashes added to each bucket after the data was
collected (and could be in the future) so it is impossible to know definitively
how long each bucket lasts. We used a Cullen and Frey graph produced by
the fitdistrplus R package (Delignette-Muller, Dutang, et al., 2015) to
determine what distribution to attempt to fit to the data.

Figure 6.7 shows the lifespan of each bucket. The longest-lived bucket
lasted for over 4 years, while there are several buckets containing multiple
crashes that lasted less than an hour.

The Cullen and Frey graph indicated that the skewness and kurtosis of
the data matched that of a beta distribution. An example beta distribution
is show in Figure 6.7. The distribution was fit using the method of moments.
When fitting a distribution and plotting, only buckets with two or more crashes
were used. A method of moments fit matches the mean and the variance of
theoretical distribution to the empirical distribution. The fit beta distribution
shown in Figure 6.7 has parameters a = 0.30 and b = 2.88.

We used the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-
Darling goodness-of-fit tests to determine how well the model fit the data.
The tests all produced p-values less than 10−6, indicating that the data did
not come from a pure beta distribution of the estimated parameters. How-
ever, Figure 6.7 clearly shows that the beta distribution is able to capture the
general shape of the empirical distribution. It is possible that the empirical
distribution is a sum of two distributions or the result of multiple processes
that a single beta distribution is not able to capture completely.

The beta distribution predicts that more buckets will have lifetimes less
than a month than are actually observed. This could be the result of only
considering buckets with two or more crashes in them.

There is little evidence to support a strong correlation between bucket
size and bucket lifetime. The Pearson’s (linear) correlation is 0.17, which
is a weak correlation, but it is statistically significant, with a p-value of 2 ·
10−12. Similarly, the Spearman’s (rank) correlation is 0.23, also statistically
significant with a p-value of 2 · 10−16. Despite the weakness of the correlation,

141

Figure 6.8: Lifespan of each bucket. Only buckets with at least two crashes
are shown.

142

it is present. Our initial hypothesis was that larger buckets would have a
longer lifespan, because with more crashes in a bucket, the bucket has more
opportunities to have crashes that are spaced further apart in time. This
relationship is shown in Figure 6.8.

However, we also expect that there is a competing effect: the more crashes
a single bug causes, the more likely it is to be fixed by drawing the attention
of Ubuntu developers or volunteers. The bucket with the largest lifespan,
lasting from 2007-08-13 until 2011-09-12 (∼4 years, 30 days), had 39 crashes.
However, the bucket with the second largest lifespan lasted from 2009-10-03
until 2013-10-16 (∼4 years, 12 days) and only contained two crashes. This is
possibly due to a bug that was present in the code for a long time. In fact,
the bug report for this crash is still open at the time of writing (2016-11-07).

The age of a crash may be artificially shortened due to the Launchpad
maintainers deeming a crash report to be “unreproducible.” Crashes (which
are treated as a type of bug in the Launchpad system) are marked as “unre-
producible” if the report does not contain enough information to replicate the
conditions under which the crash occurred. A crash may be considered unre-
producible even if it contains a stacktrace, context about the machine, and a
comment from the user who experienced the crash. The issue will be closed
with a status of “Invalid” (Zerone, 2009).

The empirical data shows that the lifespan of buckets is highly variable,
and that it would be incorrect to assume that it is limited. If the data set
contained 60 years of data rather than 6, crashes with lifetimes even longer
than 4 years would probably be observed. Thus, crash repositories should keep
data for as long as possible, because some old crashes will be experienced again.
In addition, crash deduplication systems must be able to find duplicates of any
age.

Duplicate crash reports can also arrive in fairly rapid succession. In this
data set there are buckets with more than one crash, that lasts less than an
hour. This indicates that crash deduplication systems must be able to form
buckets quickly.

143

Figure 6.9: Signals causing crashes.

If the deduplication system only looked for similar crashes in an archive,
and the archive was only updated once an hour, it might miss duplicate

crashes.

6.6.4 RQ4. What Unix signals are crashes associated
with?

Signals are sent to processes running on Linux when they crash. They can
indicate what kind of crash the process experienced. Sometimes they are sent
by the Linux kernel when it detects a crash, and sometimes they are sent by
the program itself or by other programs on the system when they detect some

144

fault condition in order to crash the process. These are similar to exceptions
in managed languages like Java, where there has been prior work (Kechagia
and Spinellis, 2014) to understand that exceptions crash programs.

Because the signal indicates what general type of crash occurred, 2 crashes
with different signals are unlikely to be caused by the same underlying bug.
Therefore the signal is very useful for crash deduplication.

In order to investigate the ways in which applications crash, we used the
crash metadata that usually contains a field indicating what signal a program
crashed with. An example can be seen in Figure 6.1.

Figure 6.9 shows the amount of crashes associated with each signal in the
data set. Due to the semi-structured text nature of the data, 101 crashes either
did not have signals or the signals were not parsable.

The most common signal, SEGV (a segmentation violation), indicates that
memory has been accessed in an illegal way. This can happen when a program
tries to access memory that does not belong to it, has yet to be allocated,
or has been deallocated. It can also happen if the program tries to write to
read-only memory. SEGV can also occur when a program uses up all of the
available stack space due to unbounded recursion (Section 6.6.7). It is sent to
the program by the Linux kernel.

ABRT was the second most common signal and is typically caused by the
program sending ABRT to itself. This can happen, for example, when a program
attempts to deallocate memory that has already been deallocated. In this case,
the fault is not detected by the OS kernel, but rather, by a library in use by
the program.

The third most common signal causing crashes was TRAP. This signal is
typically used to invoke a C debugger such as gdb (Eldredge, 2008). However,
when a program receives TRAP and is not being debugged, the default action is
to terminate the program. Thus it is used to either exit the program or pause
the debugger when some fault condition is detected (Walters, 2011).

BUS was the fourth most common signal. Originally it was intended to
indicate that there was something wrong with the hardware memory bus, but

145

this usage is not common anymore. This is because serious hardware faults are
now handled by the kernel and typically crash the entire system. BUS signals
do still occur in other situations, such as when a program tries to read data
past the end of a file (Linux man-pages project, 2014).

The fifth most common signal, FPE indicates a floating-point math error,
such as division by zero. It was followed by XCPU and XFSZ, both of which
indicate that a program has used more than its allowed CPU time and that
a program has made a file that is larger than the maximum allowed size,
respectively. The least commonly seen signal was SYS that is described as
unused.

From this information we can conclude that C and C++ software running
on Ubuntu mostly crashes due to illegal memory access. This may indicate
that there could be fewer crashes if memory-safe languages were used for these
applications instead.

6.6.5 RQ5. What CPU architectures experienced the
crashes?

When using a crash repository to evaluate deduplication methods, it is impor-
tant to understand how the computer architecture will affect those findings.
For example, Campbell et al. (2016a) found that the addresses of functions
was a possible method of deduplicating crashes using an earlier version of the
Launchpad data set used in this analysis. However, we can see that the data
set contains two types of addresses: 32-bit and 64-bit. A 32-bit address will
never match a 64-bit address.

We used the “Architecture” metadata field provided in most Ubuntu crash
reports to examine how often crashes were reported on different CPU architec-
tures. An example can be seen in Figure 6.1. Due to the semi-structured text
nature of the data, 55 crashes either did not have architecture information or
the architecture information was not parsable.

Figure 6.10 shows the amount of crashes occurring in each CPU archi-
tecture. The crashes in the data set consist primarily of the two PC architec-

146

Figure 6.10: Crashes by architecture.

147

tures, i386 and amd64. The most popular is the 32-bit i386 architecture, even
though it is becoming less common. The second most popular is the amd64

architecture, which is the 64-bit version of the i386 architecture. amd64 is
also commonly referred to as x86_64 in other places, and does not necessarily
indicate that the CPU in use is an AMD.

Less popular architectures are armhf and the older armel. Both armhf and
armel are ARM architectures, which differ on how they support floating-point
math. The least popular architecture is ppc, indicating PowerPC CPUs. There
is one crash labelled i686, but this is likely due to the person who submitted
the crash mistakenly editing i386 before they submitted it to Launchpad.

Because crash repositories can contain crashes from several hardware archi-
tectures, any system that works with crash reports—whether for storage, data
mining, or deduplication—needs to function regardless of changes in metadata
caused by differences between architectures. These difference include handling
both 32-bit and 64-bit addresses.

6.6.6 RQ6. How long are crash stacktraces?

Minimum Maximum Median Mean Std. Dev. Skewness Kurtosis
1 2654 16 42.7 201.8 9.5 91.6

Table 6.4: Descriptive statistics for stack length.

Because stacktraces are a major component of a crash report, the longer a
stacktrace is, the more data a crash report contains. That data may then be
used as a source of features for a crash report deduplicator. For example, if
all crashes only had one function in its stacktrace, it would be impossible to
distinguish crashes from each other based on the stacktrace alone. A factor
that may affect the length of stacktraces is recursion (Section 6.6.7).

Using our crash report extraction scripts (described in Section 6.5), we
were able to count the amount of stack frames to determine the stacktrace
length for each crash. Then we fit a geometric distribution to the empirical
data.

148

Figure 6.11: Stacktrace lengths.

149

Figure 6.11 shows a log-log plot of the lengths of stacks found in crashes.
The peak at stack length 2000 is caused by a hard limit coded into gdb

that prevents it from generating traces with more than 2000 frames. There
were 413 such stacktraces truncated at 2000 frames. The code that performs
this truncation is defined in tracefile.c in the gdb source with #define

MAX_TRACE_UPLOAD 2000 (Qi et al., 2014). The truncated stacktraces always
include the top of the stack (the point of the crash), but discard the bottom
of the stack (the entry point of the program). There was only one crash that
exceeded the truncation limit with 2654 stack frames, which was an internal
error from the Mono C# runtime (Ford, 2008).

In Figure 6.11, the red line indicates the model and the black bars indi-
cate the empirical data. The model distribution is geometric distributed with
parameter p = 0.060. We used the χ2 goodness-of-fit test to determine how
well the model fit the data. The test determined a p-value of less than 10−13,
which indicates that the data did not come from a geometric distribution with
the parameters listed. However, it appears to capture the shape of the data
with stack lengths between 10 and 50 quite well.

The fact that some of the data seems to follow a distribution that appears
similar in shape to a geometric distribution, indicates that there may be some
fixed chance of any function calling (or not calling) another function, and
making the stack one frame longer. However, the small p-value, and the tail
that extends past the fit geometric distribution indicates that this is only a
part of the process that determines stack length.

The truncation behaviour in gdb is problematic for a number of reasons.
First, this discarded information may be crucial for debugging, because the
point that triggered the crash may be missing—even though it is essential for
debugging the root cause of the crash. Second, it is incomplete information
that may produce incorrect results in a naïve tool, relying on the fact that the
bottom of the stack may contain the entry point of the program.

Future crash reporting systems should not truncate the stack if possible, to
avoid losing information about what the software was doing before it began to

150

crash. In addition, crash deduplication systems need to be able to determine
if stacks are similar regardless of stack length.

6.6.7 RQ7. How are crashes associated with recursion?

When synthesizing crash reports, it is important to know whether to model
recursion, both bounded and unbounded; when creating crash report dedupli-
cation algorithms, it is useful to know whether unbounded recursion can be
used as a feature to cluster crashes together.

We found all cases of single-function recursion or trivial recursion. To
find cases of trivial recursion, we considered all stacktraces wherein at least 2
consecutive stack frames contained the same function name. Then, we counted
the number of consecutive stack frames with the same function to find the
recursion length. Note that each stacktrace with recursion may contain more
than one instance of recursion; thus, we counted the instances of recursion
contained within one stacktrace. We considered any trivial recursion as being
unbounded if the recursive function was at the top-of-stack and the stack length
exceeded gdb’s hard-coded limit, described in Section 6.6.6.

Minimum Maximum Median Mean Std. Dev. Skewness Kurtosis
2 2000 2.0 4.8 72.3 26.9 732.1

Table 6.5: Descriptive statistics for recursion lengths.

Summary descriptive statistics for recursion lengths are provided in Ta-
ble 6.5. We plotted the length of all instances of trivial recursion in Figure
6.12, bottom. There appears to be at least two different distributions at play:
one wherein there is shallow recursion, never exceeding 25 stack frames deep;
and one wherein there is deep, perhaps unbounded recursion. There is an
additional clump of recursion lengths around 1000 stack frames deep.

5,947 crash reports had trivial recursion associated. In those reports, 28,172
instances of recursion for 2 or more frames were identified. Thus, many crash
reports had multiple instances of recursion within their stacktraces. Of the
413 truncated stacktraces (Section 6.6.6), 123 of these stacktraces exhibited

151

Figure 6.12: Recursion length. The top plot shows lengths 2 to 2000 and
bottom right plot shows lengths 2 to 30 of the same data. A function is
considered recursive if there are least two consecutive stack frames with the
same function name, hence the minimum length of recursion is 2.

152

unbounded trivial recursion, leaving 290 truncated stacktraces unaccounted
for.

We fit a negative binomial distribution to recursion lengths less than 20
stack frames. The fit distribution is shown in red in Figure 6.12. An offset
of 2 was applied to the distribution, because recursion must have a length of
at least 2. The µ (mean) parameter was 0.086 and the dispersion parameter
(size) was 0.047. The fit distribution had a p-value of 0.0014 according to the
χ2 test, indicating that the data likely did not come from the fit distribution.
However, based on Figure 6.12, the fit distribution captures the general shape
of the empirical data for recursion lengths less than 8.

A crash in Rhythmbox exhibited unbounded trivial recursion (Zerone,
2009). All 2000 reported stack frames represented the same function: rb_-

removable_ media_source_should_paste_no_duplicate(); thus, the entry
point to this C program, main(), and all ancestors to the function call that
caused the unbounded recursion were discarded from the stacktrace that
was ultimately uploaded to Launchpad. This function was defined within
a Rhythmbox plugin, Rhythmbox-Spotify-Plugin (McCann et al., 2008). The
bug is interesting, because there is no explicit call to the function; rather, a
function pointer is assigned to a member of a struct (Matthew et al., 2009),
and a pointer to that struct is eventually passed to the crashing function
itself. This function innocently calls the function pointer, implicitly calling
itself (McCann et al., 2008).

For the 15 percent of crash reports that had trivial recursion, we can not
necessarily say whether or not the recursion caused the crash, except in the
case of the 123 stacktraces with trivial unbounded recursion. However, we can
conclude that recursion occurred in a crash in a significant fraction of crash
reports, and that it is capable of causing a crash. Synthetic crash report data
must contain examples of both bounded recursion and unbounded recursion.
Crash deduplication systems should be able to use information from both
recursive functions and non-recursive functions.

153

6.6.8 RQ8. How long are function names in crashes?

Minimum Maximum Median Mean Std. Dev. Skewness Kurtosis
0 331 3 2.9 5.7 38.2 1987.6

Table 6.6: Descriptive statistics for function name lengths.

Function names are an important source of information when debugging,
categorizing, or deduplicating crash reports because they indicate what the
software was doing when it crashed. The longer (and hopefully more descrip-
tive) a function name is, the more information it contains. This is supported
by prior work on the quality and efficacy of identifier names (Lawrie et al.,
2007a; Lawrie et al., 2007b). However, in this study a single “function name”
may include multiple identifiers, such as its declaring class, and any C++ tem-
plate parameters. In order to extract that information, function names must
be tokenized.

In order to evaluate function name lengths in words, we used the Camel-
Case tokenizer used in Campbell et al. (2016a) for crash report deduplication.
We re-implemented the tokenizer in Python (originally, it was implemented
in Java) and then applied it to every function name in the data set. The
CamelCase tokenizer splits words into tokens on symbols and at lowercase-to-
uppercase transitions. It is a regular expression suggested by the ElasticSearch
documentation (Gormley, 2015).

Sigurd et al. (2004) fit gamma distributions to word lengths in syllables
and sentence lengths in words in various natural languages. Because words
in a function name serve a similar purpose to words in a sentence, and often
contain natural language vocabulary words (Lawrie et al., 2007a; Lawrie et al.,
2007b), we attempted to fit a gamma distribution to the tokenized function
name lengths as well.

However, as shown in Figure 6.13, the Gamma distribution does not appear
to be a particularly good fit for function name lengths in tokens. When only
unique tokens are considered, the tail of the distribution extends past where it
is predicted by the gamma distribution. The gamma distribution fit for every

154

Figure 6.13: Function name lengths in tokens as produced by the CamelCase
tokenizer.

155

Count Function name
1 15477 main
2 14625 g_main_context_dispatch
3 12433 g_main_loop_run
4 8501 __libc_start_main
5 7654 g_signal_emit_valist
6 7526 g_closure_invoke
7 7204 g_signal_emit
8 7197 g_main_context_iterate
9 5836 gtk_main
10 5662 g_main_dispatch

Table 6.7: The top 10 most common function names in crash stacktraces. Each
function name is counted at most once per crash.

function name seen in every frame had parameters α = 3.6 and β = 0.74. The
gamma distribution fit for unique function names had parameters α = 6.3 and
β = 1.3. p-values were computed using the Kolmogorov-Smirnov, Cramer-von
Mises, and Anderson Darling tests for both distributions, but they were all
less than 10−16, indicating the data did not come from the fit distributions.
The fit distributions only appear to capture the shape of the data for function
names less than around 10 tokens.

Occasionally, function names can become very long when using C++ tem-
plates as a metaprogramming device. One example contains function names
with over 300 tokens in over 2000 characters using the CamelCase tokenizer
(Kehne, 2013).

From this data we can conclude that function names can range from very
short, single-token names to very long, multiple identifier names involving C++
templates. Thus, crash repositories and crash deduplication systems must be
able to handle function names that range from short to very long. Synthetic
crash repositories should contain function names of a wide variety of lengths.

156

Figure 6.14: Frequency spectrum of crashes by the function on top of the
stacktrace, indicating there are many functions that only appear on top of the
stacktrace once, and a few functions that appear on top of the stacktrace in
many crash reports. Both axes are logarithmic.

157

Count Function name Most common signal
Name Count %

1 3390 __kernel_vsyscall ABRT 2637 77.8%
2 1442 __GI_raise ABRT 1421 98.5%
3 1440 g_logv TRAP 1428 99.2%
4 1237 raise ABRT 946 76.5%
5 544 g_type_check_instance_cast SEGV 543 99.8%
6 299 strlen SEGV 286 95.7%
7 245 free SEGV 244 99.6%
8 230 pthread_mutex_lock SEGV 230 100.0%
9 220 malloc_consolidate SEGV 219 99.5%
10 205 g_slice_alloc SEGV 205 100.0%

Table 6.8: The top 10 most common function names at the top of crash stack-
traces. The most common signal associated with the function is given. An
explanation of what each signal means is provided in Section 6.6.4.

6.6.9 RQ9. What are the most common crashing func-
tions?

An important piece of information about the cause of a crash is what the
program is doing at the time of the crash. The functions present in the stack
at the time of the crash indicate what the software was doing when it crashed.
This is usually indicated by the function on the top of the stack at the time
of a crash. It is also considered to be the most important part of the stack in
many papers on crash deduplication (Glerum et al., 2009; Modani et al., 2007;
Wang et al., 2013). Thus, by examining the functions on top of the stack, we
can determine how reliable the top of the stack is for determining the cause of
a crash.

To collect function names, we iterated through every crash in the data set,
and collected every unique function name present in the crash stacktrace. Not
every stack frame had a function name. Function names are often missing due
to missing debugging symbols that gdb relies on to produce this information.
Once collected, we counted the number of crashes each function name appeared
in.

158

Only 36,511 out of the 40,592 crashes (89.9%) had any parsable function
names at all. Of these, 27,406 crashes had parsable function names on the
top of the stack (67.5% of all crashes). Thus, the results presented here are a
subset of the total corpus. The results of the most common unique function
names within a stacktrace are presented in Table 6.7, and the most common
functions at the top of the stack, along with their crashing signal, are presented
in Table 6.8.

Figure 6.14 shows the frequency spectrum of the top functions. We fit a
finite Zipf-Mandelbrot model to the frequency spectrum using the zipfR R
package (Evert and Baroni, 2007). In Figure 6.14, the red line indicates the
model distribution and the black line indicates the empirical data. We used
the χ2 goodness-of-fit test to determine how well the model fit the data. The
test determined a p-value of less than 10−75. However, the shape of the model
distribution seems to follow the empirical distribution quite closely, with the
exception of functions that only appear in a single crash (the leftmost points
plotted in Figure 6.14). This could indicate some other process is affecting the
number of functions that are only seen once.

Despite being the entry point for most C and C++ programs (thus, most
likely to be the top function present in stacktraces), main() is present in only
15,477 crashes (42.4% of crashes with function names). Part of this may be
explained by the stack truncation reported in Section 6.6.7.

Because the most common function on the top of the stack merely indicates
that some signal was raised, but not the name of the signal raised, it alone is
often a poor indicator of what the software is truly doing at the time of the
crash. This is why we included its most common crashing signal. In particular,
the function __kernel_vsyscall is a generic way to invoke any system call
in Linux, and as such, its most common signal, ABRT, does not account for
22.2% of all its crashes. The second, third, and fourth most common functions
on top of the stack (__GI_raise, g_logv, and raise, respectively) merely
indicate that the program is crashing itself intentionally after detecting some
fault condition. This is supported by ABRT (intentionally aborts the program)

159

and TRAP (causes the debugger to break here, or crash if not attached to a
debugger) being the most common signals for these crashes. The rest of the
top ten are caused by the top signal overall SEGV, or segmentation violations
(Section 6.9). These are often caused due to passing an invalid pointer or a
NULL pointer to some function argument, causing the function at the top of the
stack to access memory in some invalid manner. For example, the fifth most
common crasher (g_type_check_instance_cast) indicates that an invalid
pointer was passed into a glib function. The sixth most common function on
top of the stack does not give a clear indication of the bug: either a bad pointer
was passed to strlen—a C function that computes the length of a string—or
the string was not null-terminated, perhaps due to being invalid or corrupted
data.

The top of a stacktrace is often not a good indication of what exactly the
fault is. Thus, crash deduplicators must not rely on the top of the stacktrace.
Instead, they should examine the entire stack for clues, and contextual data
like the crashing signal for clues.

The top of the stack is populated with intentional crashes, aborts, and
syscalls, as well as calls to the standard library with inappropriate data. Again
we see that improper memory management affects many crashes rather than
resource depletion.

6.6.10 RQ10. What are the most common crashing li-
braries?

While crashes are often specific to a particular product, similar faults or mis-
uses of a library can occur across the clients of a library. Even worse, if a
library has a fault it could induce crashes across numerous client products.
Thus we ask the question what are the most common crashing libraries. Are
they just misuses of libc or is GUI client code causing instability? Are device
drivers at play or concurrency? In this section we look for evidence of libraries
whose use can cause or correlate with instability across many products.

160

Count Library name
1 2950 libc
2 1854 libglib-2
3 469 libpthread
4 376 libgobject-2
5 341 libgtk-x11-2
6 309 libGL
7 268 ld-linux
8 152 libQtCore
9 143 libdbus-1

10 141 libQtGui

Table 6.9: The top 10 most common library names at the top of crash stack-
traces.

In order to determine the libraries that crashed the most often, we exam-
ined the top of the stacktrace. For some crash reports, frames have the library
file listed in the crash report. For others, the source file is listed, or there is no
information about the origin of the function. We only considered stacktraces
that had the library file specified, because it could be parsed the most reliably.
11,569 out of 40,592 crashes had a library file specified for the function at the
top of the stack.

The 10 most common crashing libraries are listed in Table 6.9. The most
common library in which crashes occurred was libc, the C standard library.
Yet libraries about concurrency, libpthread, GUI libraries, libgtk-x11-2,
libQtGui, libQtCore, and even 3D graphics, libGL, are ranked top crashers.

Using our methodology we could only determine what library functions
software crashed inside. However, a library function may crash because it was
supplied invalid arguments by another part of the software. Therefore, we
cannot necessarily conclude that the libraries that crash the most often are
the most buggy. For example, the library that crashed the most often, libc is
probably the most well-tested C library because it is used by every C program
on Linux. Thus, it is not likely that the crashes in libc are caused by faults
in libc, but rather by software using libc. libGL also signals that graphical
device drivers could also be at fault for instability.

161

The libraries and frameworks that tend to induce crashes are both popular
and infrastructural. Many crashes seem to be the result of passing invalid
parameters (invalid pointers) to library and framework code. Ubuntu’s UI
are dominated by GTK and QT based programs so it is not surprising to see
these functions appear in stacktraces. We are left wondering if managed code
environments such as C# or Java exhibit the same properties.

6.7 Threats to validity

6.7.1 Threats to construct validity

Construct validity is threatened by the fact that parsing the semi-structured
textual crash reports is not completely reliable. As stated, 3,872 reports (9
percent) of the collected reports were thrown out because they could not be
parsed. Additionally, the crashes that could be parsed were not always per-
fectly reliable. For example, a missing newline character can cause data from
one field to appear in another field. However, we believe these issues to be
very rare, affecting only a handful of crashes.

6.7.2 Threats to internal validity

Internal validity is threatened by the validity of the Ubuntu Launchpad data
set itself. We trusted that the manually tagged duplicates were true duplicates
and that all true duplicates were found and clustered appropriately. This af-
fects our conclusions about the distribution of crashes among buckets (Section
6.6.2) and the lifespan of crash buckets (Section 6.6.3).

Even though we only studied crashes for which we could parse stacktraces,
not all stack frames contained crucial information such as function names,
line numbers, and filenames. As such, this fact may affect our conclusions
depending on function names (Section 6.6.7, Section 6.6.9, and Section 6.6.8).

A threat to internal validity is alluded to in Figure 6.2 is that end-users
have the ability to opt-out of submitting a crash report. As such, this biases
the data that is ultimately available for analysis—both in this chapter, and for

162

other purposes, such as crash report deduplication. In addition, the crashes
that do appear in Launchpad require that the users have a Launchpad account,
as the bug reports are intended to be uploaded by more technically-minded
users. This further biases the data we have available for study. This affects our
conclusions, as we cannot reason about crash reports that were never uploaded.

6.7.3 Threats to external validity

The crashes from the Launchpad data set came exclusively from Ubuntu-based
distributions of Linux, focusing on personal computing and server applications
(such as Rhythmbox, a music player, and Nautilus, a graphical file manager).
As such, our conclusions may not be applicable to other platforms and operat-
ing systems such as macOS and Windows, different crash report repositories,
or even different distributions of Linux.

Since the stacktraces we collected exclusively come from software debug-
gable by gdb, most of the crashes come from C and C++ software. The results
here may not generalize to software written in other programming languages
such as Java or Python.

Because the Launchpad data set consists of crashes from many different
applications, the results in this chapter may not generalize to crash repositories
that contain only crashes from a single application such as Mozilla’s (Mozilla
Corporation, 2012).

6.8 Conclusions

We analyzed 40,592 crash reports for 1,921 packages from the Ubuntu Launch-
pad crash repository. From this data set, we found that various properties
of crash reports tend to have empirical distributions that, at least partially,
resemble standard statistical distributions. However, crash reports are compli-
cated, and no single standard distribution fit the entire range of crash reports
we observed.

163

When grouped by package or by bucket, crashes exhibited power-law dis-
tributions. There are a few groups with many crashes, and many groups with
few crashes. This fact should be taken into account when deciding that two
crashes are similar, and when determining which crashes should receive devel-
oper attention. Crash deduplication systems must be able to handle this wide
variety. The data set also shows that it is not possible to rely on buckets hav-
ing a limited life span. Thus, crash repositories and deduplication techniques
must allow crashes to be added to buckets regardless of their age.

Crashes in this data set, which consists of programs written in naively com-
piled languages, such as C and C++, are heavily impacted by the hardware
architecture. Crashes from two different architectures may be difficult to com-
pare despite being caused by the same underlying software fault. In addition,
the most common fault type for the crashes in the data set was illegal memory
access (SEGV). This indicates that preventing illegal memory access may be a
valuable approach to preventing crashes.

Crash stacktraces and function names can range from short to very long.
Crash repositories and crash reporting tools should be able to handle any
length of stacktrace. Crash deduplication techniques must be able to handle
any length of stacktrace and a wide range of lengths of function names, despite
the fact that long stacktraces and long function names provide much more
information that deduplication techniques can use than short function names
and short stacktraces. Additionally, deduplication techniques should handle
crashes with no recursion, bounded recursion, and unbounded recursion.

Popular infrastructural, GUI, and standard libraries and functions ap-
peared in stacktraces. Graphical libraries such as libGL and concurrency
libraries such as libpthread occurred as well. Essentially complicated and
popular infrastructure libraries and functions appeared frequently in crashes.
While these could be common errors that clients are susceptible to, it might
be worthwhile for library maintainers to understand how their code becomes
involved in these crashes. Perhaps library maintainers could provide checks
for the more common crashes?

164

Overall, this data indicates that there are many crashes that have similar
characteristics, and many crashes that have unique and exceptional charac-
teristics. Crash repositories, deduplicators, or other systems cannot rely on
crashes following common patterns or expressing limited ranges, because ev-
ery property has significant outliers. For example, crash repositories cannot
rely on buckets having a consistent size, applications causing similar numbers
of crashes, or buckets having limited lifespans. Crash deduplicators cannot
rely on crashes having functions with addresses or names of similar length, or
stacktraces of similar lengths, and they should examine the entire stack, not
just the first function. Recursion can cause problems by making the stack too
long or by hiding the bottom of the stack if it gets truncated.

Future work includes analyzing other crash repositories to determine if
crashes from those repositories follows similar distributions to the crashes in
the Ubuntu Launchpad data set. In addition, studying crashes in languages
such as Python, which crash due to exceptions rather than signals, and are
unlikely to experience a SEGV signal, might give better insight into why software
crashes.

The lack of larger data sets, and data sets with known good examples of
unique (not duplicate) crash reports motivates the need to create data sets
where such knowledge exists. A major reason to understand the distributions
of crash report data is for creating synthetic crash report data sets. Unfor-
tunately, synthesizing crash report data sets is still work for the future. For
synthetic data sets to be helpful, we require a deep understanding of what real
crash repositories contain. This must include understanding properties of real
crashes and their statistical distributions within real crash repositories. Be-
cause of the scarcity of data sets that contain gold sets of human-deduplicated
crashes that can be used to study crash report deduplication techniques, we
feel it would be beneficial to produce large data sets of artificial automatically
synthesized crash reports.

165

Chapter 7

Clustering Automatically
Generated Software Crash
Reports

7.1 Preface

7.1.1 Acknowledgement

This chapter originally appeared as a report in the Proceedings of the 13th
Working Conference on Mining Software Repositories, 2016, as “The Unrea-
sonable Effectiveness of Traditional Information Retrieval in Crash Report
clustering.”

I, Hazel Victoria Campbell, wrote most of the chapter, conducted most of
the experiments, collected the data used, produced results and analysis and
created the figures. Eddie Antonio Santos assisted with developing the soft-
ware described in the chapter and used in the experiments. Dr. Abram Hindle
wrote did some writing and editorial work on the chapter and supervised the
research. The research presented in this chapter was funded by a MITACS
Accelerate grant and BioWare, LLC.

7.1.2 Significance

The work presented in this chapter was the first time that textbook Informa-
tion Retrieval (IR) techniques had been applied to the problem of crash-report
bucketing (clustering). Much like UnnaturalCode, the technique presented in

166

this chapter is a significant departure from traditional bucketing techniques.
By using a “bag-of-words” approach with TF-IDF representation, and aggres-
sive tokenization, much of the information that is relied upon by other buck-
eting techniques is lost. However, the ability to handle information flexibly,
such as “metadata” that may not be present in every crash, automatically, is
introduced by this work.

The importance of practicality is a major focus of the work presented in this
chapter, an aspect of crash report bucketing that is often neglected in other
techniques. Instead, much of the literature on crash report bucketing focuses
solely on clustering accuracy. Often, bucketing accuracy in related works is
gained at the expense of speed. In this chapter I argue why techniques using
algorithms with quadratic time complexity (or worse) are simply not practical
in industrial applications.

7.1.3 Impact

From its publication in 2016 until mid-2020, this chapter has earned a number
of citations, including a citation in the top-tier journal Empirical Software
Engineering, and the top-tier conference, Foundations of Software Engineering.

7.1.4 Extensions

Perhaps the most obvious improvement on the algorithm presented in this
chapter is to use more of the information that PartyCrasher discards, such as
function call order. Moroo et al. (2017) presents a re-ranking based technique
to allow function call order to inform the organization of the final buckets
(clusters of crash reports). Moroo et al. (2017) not only extends the work
presented in this chapter with a new technique based upon it, but provides
another comparison of bucketing “performance,” in both speed and accuracy,
the author’s technique, and another piece of prior work, “ReBucket,” described
in Dang et al. (2012b).

167

7.2 Introduction

Ada is a senior software engineer at Lovelace Inc., a large software develop-
ment company. Lovelace has just shipped the latest version of their software
to hundreds of thousands of users. A short while later, as Ada is transitioning
her team to other projects, she gets a call from the quality-assurance team
(QA) saying that the software she just shipped has a crashing bug affecting
two-thirds of all users. Worse yet, Ada and her team can not replicate the
crash. What would really be helpful is if every time that crash was encoun-
tered by a user, Lovelace would automatically receive a crash report (Seo and
Kim, 2012a), with some context information about what machine encountered
the crash, and a stacktrace (Seo and Kim, 2012a) from each thread. Devel-
opers consider stacktraces to be an indispensable tool for debugging crashed
programs—a crash report with even one stacktrace will help fix the bug signif-
icantly faster than if there were had no stacktraces available at all (Schröter
et al., 2010).

Luckily for Ada, Lovelace Inc. has gone through the monumental effort of
setting up an automated crash reporting system, much like Mozilla’s Crash
Error Reports (Mozilla Corporation, 2012), Microsoft’s WER (Glerum et al.,
2009), or Apple’s Crash Reporter (Technical Note TN2123: CrashReporter
2016). Despite the cost associated with setting up such a system, Ada and her
team find the reports it provides are invaluable for collecting telemetric crash
data (Ahmed et al., 2014).

Unfortunately, for an organization as large as Lovelace Inc., with so many
users, even a few small bugs can result in an unfathomable amount of crash
reports. As an example, in the first week of 2016 alone, Mozilla received
2 189 786 crash reports, or about 217 crashes every minute on average.1 How
many of crash reports are actually relevant to the bug Ada is trying to fix?

1https://crash-stats.mozilla.com/api/SuperSearch/?date=>%3d2016-01-01&
date=<%3d2016-01-08 The total number of crashes will slowly increase over time and
then eventually drop to zero due to Mozilla’s data collection and retention policies.

168

 https://crash-stats.mozilla.com/api/SuperSearch/?date=>%3d2016-01-01&date=<%3d 2016-01-08
 https://crash-stats.mozilla.com/api/SuperSearch/?date=>%3d2016-01-01&date=<%3d 2016-01-08

The sheer amount of crash reports present in Lovelace’s crash reporting
system is simply too much for one developer, or even a team of developers,
to deal with by hand. Even if Ada spent only one second evaluating a single
crash report, she would still only be able to address 1/3 of Lovelace’s crash
reports received during one day of work. Obviously, an automated system is
needed to associate related crash reports together, relevant to this one bug,
neatly in one place. All Ada would have to do is to select a few stacktraces
from this crash bucket (Glerum et al., 2009), and get on with debugging her
application. Since this hypothetical bucket has all crash stacktraces caused
by the same bug, Ada could analyze any number of stacktraces and pinpoint
exactly where the fault is and how to fix it.

The questions that this chapter seeks to answer are:
RQ1: What are effective, industrial-scale methods of crash report bucketing?
RQ2: How can these methods be tuned to increase precision or recall?

This chapter will evaluate existing techniques relevant to crash report buck-
eting, and propose a new technique that attempts to handle this fire hose of
crash reports with industrially relevant upper bounds (O (logn) per report,
where n is number of crash reports). In order to validate new techniques
some of the many techniques described in the literature are evaluated and
compared in this chapter. The results of the evaluation shows that techniques
based on the standard information retrieval statistic, term frequency × inverse
document frequency (TF-IDF), do better than others, despite the fact these
techniques discard information about what is on the top of the stack and the
order of the frames on the stack.

7.2.1 Contributions

This chapter presents PartyCrasher, a technique that buckets crash reports.
It extends the work done by Lerch and Mezini (2013) to the field of crash report
clusteringand show that despite its simplicity, it is quite effective. This chapter
contributes:

1. a criterion for industrial-scale crash report clusteringtechniques;
169

2. replication of some existing methods of clustering(such as Wang et al.
(2013) and Lerch and Mezini (2013)) and evaluations of these methods on
open source crash reports, providing evidence of how well each technique
performs at crash report bucketing;

3. implementation of these methods in an open source crash bucketing
framework;

4. evaluation based on the automated crashes collected by the Ubuntu
project’s Apport tool, the only such evaluation at the time of writing;

5. a bug report clusteringmethod that outperforms other methods when
contextual information is included along with the stacktrace.

7.2.2 What makes a crash bucketing technique useful
for industrial scale crash reports?

The volume, velocity, variety, and veracity (uncertainty) of crash reports
makes crash report bucketing a big-data problem. Any solution needs to
address concerns of big-data systems especially if it is to provide develop-
ers and stakeholders with value (Marr, 2015). Algorithms that run in O (n2)

are unfeasible for the increasingly large amount of crash reports that need to
be bucketed. Therefore, an absolute upper-bound of O (n logn) is chosen for
evaluated algorithms.

The methods evaluated in this chapter were methods found in the literature,
or methods that the authors felt possibly had promise. Methods that were
evaluated in this chapter were restricted to those that met the following criteria.
The criteria were chosen to match the industrial scenario as described in the
introduction.

1. Each method must scale to industrial-scale crash report clusteringre-
quirements. Therefore, it must run in O (n logn) total time. Equiva-
lently, each new, incoming crash must be able to be assigned a bucket
in O (logn) time or better.

170

2. No method may delay the bucketing of an incoming crash report sig-
nificantly, so that up-to-date near-real-time crash reports, summaries,
and statistics are available to developers at all times. This requires the
method to be online.

3. No method may require developer intervention once it is in operation,
or require developers to manually categorize crashes into buckets. This
requires the method to be unsupervised.

4. No method may require knowledge of the eventual total number of buck-
ets or any of their properties beforehand. Each method must be able to
increase the number of buckets only when crashes associated with new
faults arrive due to changes in the software system for which crash re-
ports are being collected. This requires the method to be non-stationary.

Several clusteringmethods are evaluated in this chapter. They can be cat-
egorized into two major categories. First, several methods based on selecting
pre-defined parts of a stack to generate a signature were evaluated. The sim-
plest of these methods is the 1Frame method, that selects the name of the
function on top of the stack as a signature. All crashes that have identical
signatures are then assigned to a single bucket, identified by the signature used
to create it.

Similarly, signature methods 2Frame and 3Frame concatenate the names of
the two or three functions on top of the stack to produce a signature. 1Addr

selects the address of the function on top of the stack to generate a signa-
ture rather than the function name. 1File selects the name of the source file
in which the function on top of the stack is defined to generate a signature,
and 1Mod selects either the name of the file or the name of the library, de-
pending on which is available. Figure 7.1 shows an example stacktrace and
how the various signatures are extracted from it using these methods. All of
the signature-based methods, as implemented, run in O (n logn) total time or
O (logn) amortized time.

171

#1 0x00002b344498a150 in CairoOutputDev::setDefaultCTM () from
/usr/lib/libpoppler-glib.so.1
#2 0x00002b344ae2cefc in TextSelectionPainter::TextSelectionPainter () from
/usr/lib/libpoppler.so.1
#3 0x00002b344ae2cff0 in TextPage::drawSelection () from
/usr/lib/libpoppler.so.1
#4 0x00002b344498684a in poppler_page_render_selection () from
/usr/lib/libpoppler-glib.so.1
Method Signature
1Frame CairoOutputDevsetDefaultCTM
2Frame CairoOutputDev::setDefaultCTM

TextSelectionPainter::TextSelectionPainter
3Frame CairoOutputDev::setDefaultCTM

TextSelectionPainter::TextSelectionPainter
TextPage::drawSelection

1Addr 0x00002b344498a150
1File No Signature (no source file name given in the stack)
1Mod /usr/lib/libpoppler-glib.so.1
Method Tokenization
None #1 0x00002b344498a150 in

CairoOutputDev::setDefaultCTM () from
/usr/lib/libpoppler-glib.so.1

Lerch 0x00002b344498a150 cairooutputdev setdefaultctm
from libpoppler glib

Space #1 0x00002b344498a150 in
CairoOutputDev::setDefaultCTM () from
/usr/lib/libpoppler-glib.so.1

Camel 1 0 x 00002 b 344498 a 150 in Cairo Output Dev
set Default CTM from usr lib libpoppler glib so 1

Figure 7.1: An example stacktrace (top), its various signatures (middle), and
various tokenizations of the top line of the stacktrace (bottom).

172

1Addr is not necessarily threatened by address space layout randomization
(ASLR). ASLR is a technique employed by the operating system kernel and
loader/dynamic linker to reduce the exploitability of security flaws in running
software. However, the debugger which produces crash reports automatically
undoes any randomization. Thus, stack traces in two different crash reports
usually contain comparable addresses. If the debugger did not undo the ran-
domization, 1Addr would be completely unusable.

The second category of methods are those based on TF-IDF (Salton
and McGill, 1983) and inverted indices, as implemented by the off-the-shelf
information-retrieval software ElasticSearch 1.6 (Elasticsearch BV, 2016). TF-
IDF is a way to normalize the importance or weight of a token proportional
to its occurrence in a particular document (in our case, crash reports), and
inversely proportional to its appearance in all documents. That means that
common tokens that appear frequently in nearly all crash reports have little
discriminative power compared to tokens that appear quite frequently in a
small set of crash reports.

ElasticSearch uses a score based on TF-IDF. However, ElasticSearch uses
its own additional weighting, smoothing, and distance metric, so it is not a
pure TF-IDF implementation.

7.2.3 Background

Of course, the idea of crash bucketing is not new; Mozilla’s system performs
bucketing (Ahmed et al., 2014; Dhaliwal et al., 2011), as does WER (Glerum
et al., 2009). Many approaches make the assumption that two crash reports
are similar if their stacktraces are similar. Consequently, researchers (Bartz
et al., 2008; Brodie et al., 2005a; Dang et al., 2012a; Dhaliwal et al., 2011;
Glerum et al., 2009; Lerch and Mezini, 2013; Liu and Han, 2006; Modani et
al., 2007; Wang et al., 2013; Wu et al., 2014) have proposed various methods
of finding similar stacktraces, crash report similarity, crash report clustering,
and crash report bucketing. In order to motivate the evaluation and design
choices it is necessary to look at what already has been proposed.

173

Empirical evidence suggests that a function responsible for crash is often
at or near the top of the crash stacktrace (Brodie et al., 2005a; Schröter et
al., 2010; Wu et al., 2014). As such, many bucketing heuristics employ higher
weighting for grouping functions near the top of the stack (Glerum et al., 2009;
Modani et al., 2007; Wang et al., 2013). Many of these methods are similar
to or extensions of the 1Frame method, that assumes that the function name
on the top of the stack is the most (or only) important piece of information
for crash bucketing. However, at least one study refutes the effectiveness
of truncating the stacktrace (Lerch and Mezini, 2013). The most influential
discriminative factors seem to be function name (Lerch and Mezini, 2013) and
module name (Bartz et al., 2008; Glerum et al., 2009).

Lerch and Mezini (2013) did not directly address crash report bucketing;
they addressed bug report clusteringthrough stacktrace similarity. They clus-
teredbug reports that included stacktraces by comparing the traces with TF-
IDF, which is usually applied to natural language text. Although crash buck-
eting was implicit in this approach to bug-report-clustering, the authors did
not compare this technique against the other crash report clusteringtechniques.
Unlike the signature-based methods, TF-IDF-based methods do not consider
the order that frames appear on the stack. A function at the top of the stack
is treated identically to a function at the bottom of the stack.

This chapter applies and evaluates the method in Lerch and Mezini (2013)
of bug report clusteringto crash report clustering, both excluding contextual
data from the crash report as suggested by Lerch and Mezini (2013) and in-
cluding it. These methods are listed in the evaluation section as the Lerch

method and the LerchC method, respectively. The automated crash report-
ing tools collected contextual data at the same time as the crash stacktrace.
This chapter also evaluates variants of the Lerch and LerchC methods. Space,
SpaceC, Camel, and CamelC were created for this evaluation based on tokeniza-
tion techniques described by Elasticsearch BV (2016) and by including or ex-
cluding contextual information available in the crash reports. The variants
replace the tokenization pattern used in Lerch and LerchC with a different

174

tokenization pattern. The name specifies the kind of tokenization–Space splits
on whitespace only; Camel splits intelligently on CamelCasedComponents. If
the name is followed by a C, the evaluation included the entire context of the
stacktrace along with the stacktrace itself. Figure 7.1 shows how each method
tokenizes a sample stack frame.

Modani et al. (2007) provides two techniques to improve performance of
the various other algorithms. These techniques are inverted indexing and top-
k indexing, both of which are evaluated in this chapter. Inverted indexing
is employed to improve the performance of all of the TF-IDF-based methods
including Lerch and LerchC (however Modani et al. (2007) did not use TF-IDF
in their evaluation). The implementation is provided by ElasticSearch’s version
1.6 (Elasticsearch BV, 2016) indexing system. Top-k indexing is employed to
evaluate all of the methods that use the top portions of stacks, including
1Frame, 2Frame, 3Frame, 1File, etc.

7.2.4 Methods Not Appearing In This Report

Mozilla’s clusteringtechnique, at the time of writing, as it is implemented in
Socorro (mozilla/socorro: Socorro is a server to accept and process Breakpad
crash reports. 2016) requires a large number of hand-written regular expres-
sions to select, ignore, skip, or summarize various parts of the crash report.
These must be maintained over time by Mozilla developers and volunteers
in order to stay relevant to crashes as versions of Firefox are released. This
technique typically uses one to three of the frames of the stack and likely
has similar performance to 1Frame, 2Frame, and 3Frame. Furthermore, the
techniques employed by Mozilla are extremely specific to their major product,
Firefox, while the evaluation data set contains crashes from 616 other systems.

Brodie et al. (2005a) presented an approach that normalizes the call stack
to remove non-discriminative functions as well as flattening recursive func-
tions, and compares stacks using weighted edit distance. Since pairwise stack
matching would be infeasible on large data sets–having a minimum worst case
run-time of O (n2)–they index a hash of the top k function names at the top of

175

the stack and use a B+Tree look-up data structure. Several approaches since
have used some stack similarity metric, and found that the most discriminative
power is in the top-most stack frames—i.e., the functions that are closer to
the crash point.

Liu and Han (2006) grouped crashes together if they suggest the same
fault location. The fault locations were found using a statistical debugging
tool called SOBER (Liu et al., 2005), that, trained on failing and passing
execution traces (based on instrumenting Boolean predicates in code (Liblit et
al., 2005)), returns a ranked list of possible fault locations. Methods involving
full instrumentation (Liu and Han, 2006) or static call graph analysis (Wu
et al., 2014) are also deemed unfeasible, as they are not easy to incorporate
into already existing software, and often incur pairwise comparisons to bucket
regardless of instrumentation cost. Methods that already assume buckets such
as Kim et al. (2011) and Wu et al. (2014) are disregarded as well.

Modani et al. (2007) propose several algorithms. The first algorithm em-
ploys edit distance, requiring O (n2) total time. The second and third algo-
rithms are similar, employing longest common subsequences and longest com-
mon prefixes, respectively. The longest common subsequence problem is, in
general, NP-hard in the number of sequences (corresponding to crashes for
the purposes of this evaluation). The longest common prefix algorithm can be
implemented sufficiently efficiently for the purposes of this evaluation, but was
not evaluated here because it must produce at least as many buckets as the
1Frame algorithm, that already creates too many buckets. Thus no Modani
et al. (2007) comparison algorithms were used.

In addition to comparison algorithms that might be used for clusteringdi-
rectly, Modani et al. (2007) also provide several algorithms for identifying
frames that may be less useful in each stack and removing them from those
stacks. These algorithms would then be combined with their other algorithms
and are not evaluated in this chapter. One such algorithm removes frequent
frames, such as main() that occur in many stacks. A similar effect is gained
from TF-IDF, because the inverse document frequency reduces the weight of

176

terms that are found in many documents (crashes). These filtering techniques
were not evaluated.

Bartz et al. (2008) also used edit distance on the stacktrace, but a weighted
variant with weights learned from training data. Consequently, they were able
to consider other data in the crash report aside from the stacktrace. The
weights learned suggested some interesting findings: substituting a module
in a call stack resulted in a much higher distance; as well, the call stack edit
distance was found to be the highest-weighted factor, despite the consideration
of other crash report data, confirming the intuition in the literature of the
stacktrace’s importance.

The methods based on edit distance 2 (Bartz et al., 2008; Brodie et al.,
2005a; Modani et al., 2007) are disqualified due to their requirement of pairwise
comparisons between stacktraces, with an upper-bound of O (n2).

Schröter et al. (2010) empirically studied developers’ use of stacktraces
in debugging and found that bugs are more likely to be fixed in the top 10
frames of their respective crash stacktrace, further confirming the surprising
significance of the top-k stack frames in crash report bucketing, which is also
corroborated more recently by Wu et al. (2014).

Glerum et al. (2009) describe the methods used by Microsoft’s Windows
Error Reporting (WER) service. Although they tout having over 500 heuris-
tics for crash report bucketing—-many derived empirically—a large bulk of
the bucketing is attributed to top-1 module offset; over 91% of bucketing is
attributed to eight heuristics alone.

To avoid the O(n2) pairwise comparisons common to many of the previous
approaches, Dhaliwal et al. (2011) proposed a weighted edit distance technique
that creates representative stacktraces—a probability distribution based on all
stacktraces seen within a bucket. Thus, instead of computing similarity against
all stacktraces in a bucket, one would only use the weights derived from all
stacktraces in the bucket simultaneously.

2They first use naive methods for indexing as well, that is evaluated here

177

The method described in Dhaliwal et al. (2011) is not included in the
evaluation because it first subdivides buckets produced by the 1Frame cluster-
ingmethod, and requires O (|B| 2) total time to run, where |B| is the number
of buckets. Its use of the 1Frame method already produces a factor of 1.67
times too many buckets. Despite the optimization in Dhaliwal et al. (2011)
that attempts to avoid O (n2) behaviour, it has O (|B| 2) behaviour. Since the
number of buckets increases over time, though at a slower rate, this method
will eventually become computationally unfeasible if old data is not discarded.

Kim et al. (2011) constructed Crash Graphs, that are simply directed
graphs using stack frames as nodes and their adjacency to other stack frames
as edges. This also proved to be a useful crash visualization technique.

Dang et al. (2012a) created the position independent model that places
more weight on stack frames closer to the top of the stack; and favours stacks
whose matched functions are similarly spaced from each other. Purporting
significantly higher accuracy than previous methods, this technique suffers
from a proposed O(n3) clustering algorithm.

Wang et al. (2013) propose three different methods, that they refer to
as rules. The first rule requires an incoming crash to be compared to every
existing crash, requiring O (n2) time. The second rule compares only the top
frame of every crash by considering two crashes related if the file names in the
top frame of the crash are the same. This method is listed in the evaluation as
the 1File method. The third rule requires a set of common “frequent closed
ordered sub-sets” of stack frames to be extracted from known “crash types”
that are pre-categorized groups of crashes that have been bucketed using a
separate method. The third rule requires O

(
|B|2

)
total time where |B| is the

number of buckets created by the other method. Specifically the authors use
the method of comparing the top frame from each stack, that is evaluated in
this chapter as the 1Framemethod. This method appears to create a number of
buckets roughly proportional to the number of seen crashes, n. Thus, the third
rule requires O (n2) total time, though with a low coefficient. The only method

178

from Wang et al. (2013) directly evaluated in this chapter is the method of
comparing file names at the top of the stack.

Thus, there are many approaches for bucketing crash reports and crash
report similarity, but some are less realistic or industrially applicable than
others. Any new work in the field must attempt to compare itself against
some of the prior techniques such as Lerch and Mezini (2013).

Figure 7.2: PartyCrasher within a development context

7.3 Methodology

First, the requirements for an industrial-scale automated crash clusteringsys-
tem were characterized by looking at systems that are currently in use. Then,
a variety of methods from the existing literature were evaluated for applica-
bility to the task of automated crash report clustering. Several methods that
met the requirements were selected. A general purpose Python framework in
which any of the selected clusteringmethods could be supported and evaluated

179

was developed, and then used to evaluate all of the methods by simulating the
process of automated crash reports arriving over time. Additionally, a data
set that could be used as a gold set to judge the performance of such methods
was obtained. The data set was then filtered to include only crash reports that
had been clusteredby human developers and volunteers.

Various approaches of automatic crash report categorization (the exact
problem that Ada is tasked with solving) is simulated. First, a crash report
arrives with no information other than what was gathered by the automated
reporting mechanisms on the user’s machine. This report might include a de-
scription written by the user of what they were doing when the crash occurred.
Figure 7.3 is an example of one of the crash reports used in the evaluation
with a user-submitted description on the second line, metadata in the middle,
and a stacktrace on the bottom.

7.3.1 Mining Crash Reports

The first step in the evaluation procedure is mining of crash reports from
Ubuntu’s bug repository, Launchpad (Canonical Ltd., 2004). This was done
using a modified version of Bicho (Robles et al., 2011), a software repository
mining tool.3 Over the course of one month, Bicho was able to retrieve 126 609
issues from Launchpad, including 80 478 stacktraces in 44 465 issues. Some
issues contain more than one stacktrace. For issues that contained more than
one stacktrace, the first stacktrace posted to that issue was selected, yielding
44 465 issues with crash reports and stacktraces. The first stacktrace is selected
because it is the one that arrives with the automated crash report, generated
by the instrumentation on the user’s machine.

Ubuntu crash reports were used for the evaluation because they are au-
tomatically generated and submitted but many of them have been manually
clusteredby Ubuntu developers and volunteers. Other data sources, such as
Mozilla’s Crash Reports have already been clusteredby Mozilla’s own auto-
mated system, not by humans.

3https://github.com/hazelybell/Bicho/

180

https://github.com/hazelybell/Bicho/

Binary package hint: evolution-exchange

I just start Evolution, wait about 2 minutes, and then evolution-exchange
crashed

ProblemType: Crash
Architecture: i386
CrashCounter: 1
Date: Tue Jul 17 10:09:50 2007
DistroRelease: Ubuntu 7.10
ExecutablePath: /usr/lib/evolution/2.12/evolution-exchange-storage
NonfreeKernelModules: vmnet vmmon
Package: evolution-exchange 2.11.5-0ubuntu1
PackageArchitecture: i386
ProcCmdline: /usr/lib/evolution/2.12/evolution-exchange-storage --oaf-activate-i
ProcCwd: /
ProcEnviron:
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
LANG=en_US.UTF-8
SHELL=/bin/bash

Signal: 11
SourcePackage: evolution-exchange
Title: evolution-exchange-storage crashed with SIGSEGV in soup_connection_discon
Uname: Linux encahl 2.6.20-15-generic #2 SMP Sun Apr 15 07:36:31 UTC 2007 i686 G
UserGroups: adm admin audio cdrom dialout dip floppy kqemu lpadmin netdev plugde

#0 0xb71e8d92 in soup_connection_disconnect () from /usr/lib/libsoup-2.2.so.8
#1 0xb71e8dfd in ?? () from /usr/lib/libsoup-2.2.so.8
#2 0x080e5a48 in ?? ()
#3 0xb6eaf678 in ?? () from /usr/lib/libgobject-2.0.so.0
#4 0xbfd613e8 in ?? ()
#5 0xb6e8b179 in g_cclosure_marshal_VOID__VOID ()

from /usr/lib/libgobject-2.0.so.0
Backtrace stopped: frame did not save the PC

Figure 7.3: An example crash report, including stack.

181

Next, the issues were put into groups based on whether they were marked
as duplicates of another issue, resulting in 30 664 groups of issues. These
groups are referred to as “issue buckets” for the remainder of the chapter, to
prevent confounding with groups of crash reports, that will be referred to as
“crash buckets.” This data set is available!4

7.3.1.1 Stacktrace Extraction

Each issue and stacktrace obtained from Ubuntu is formatted as plain text, as
shown in Figure 7.3. They were then parsed into JSON-formatted data with
individual fields for each item, such as address, function name, and which li-
brary the function came from. Unfortunately, this formatting is not always
consistent and may be unusable. For example, some stacktraces contain un-
intelligible binary data in place of the function name. This could be caused
by memory corruption when the stacktrace was captured. 2216 crash reports
and stacktraces were thrown out because their formatting could not be parsed,
leaving 41 708 crash reports with stacktraces.

7.3.1.2 Crash Report and Stacktrace Data

Issues were then filtered to only those that had been clusteredby Ubuntu de-
velopers and other volunteers, yielding 15 293 issues with 15 293 stacktraces in
3824 issue buckets. These crash reports were submitted to Launchpad by the
Apport tool.5 They were collected over a one month period. Because Launch-
pad places restrictions on how often the Launchpad API can be used to request
data, and each crash report required multiple requests, it required over 20 sec-
onds to download each issue. The crash reports used in the evaluation span
617 different source packages, each of which represents a software system. The
only commonalities between them are that they are all written in C, C++, or
other languages that compile to binaries debuggable by a C debugger, and that
they are installed and used on Ubuntu. The most frequently reported software

4https://archive.org/details/bugkets-2016-01-30
5https://launchpad.net/apport

182

https://archive.org/details/bugkets-2016-01-30
https://launchpad.net/apport

system is Gnome6, which has 2154 crash reports with stacktraces. This data
set is large, comprehensive and covers a wide variety of projects.

7.3.2 Crash Bucket Brigade

In order to simulate the timely nature of the data, each report is added to
a simulated crash report repository one at a time. This is done so that no
method can access data “from the future” to choose a bucket to assign a crash
report to. It is first assigned a bucket based on the crashes and buckets already
in the simulated repository, then it is added to the repository as a member of
that bucket.

7.3.3 Deciding when a Crash is not Like the Others

For methods based on Lerch and Mezini (2013), a naive clustering algorithm
is used. It was not based on a clustering algorithm in the clustering litera-
ture. The clustering algorithm was not an attempt to approximate any known
clustering algorithm or to be optimal under any specific metric.

The clustering is hierarchical, but neither bottom-up or top-down. Instead,
only a single pass through the data is allowed. However, it is most similar to
a single-linkage clustering algorithm (Murtagh and Contreras, 2012). Despite
the similarity, the algorithm never computes cluster-cluster similarity for two
clusters which both have more than one element. Two clusters with more than
one element will never be merged, regardless of how similar they are.

The algorithm is also similar to a minimum spanning tree algorithm such
as Prim’s algorithm (Sedgewick and Wayne, 2011). However, vertices are not
introduced in the order that minimizes some function. Vertices are introduced
in the order in which they are generated by an external, unpredictable process.
The first two vertices in time are always connected by an edge. The third
vertex is always connected to one of the first two, and so on.

6https://www.gnome.org/

183

https://www.gnome.org/

The the distance between two elements also changes over time due to the
IDF (inverse document frequency) component in TF-IDF. Thus, the clustering
produced depends heavily on the order in which elements are introduced.

Each crash is placed in the same bucket as the highest scoring crash re-
turned by ElasticSearch search, unless that score does not meet a threshold,
T . T determines how often, and when, an incoming crash report is assigned
to a new bucket. A specific value for T was not described by Lerch and Mezini
(2013), so a range of different values from 1.0 to 10.0 were evaluated. Higher
values of T will cause the algorithm to create new buckets more often.

The threshold value applies to the score produced by the Lucene search en-
gine inside ElasticSearch 1.6 (Elasticsearch BV, 2016). Details of this TF-IDF
based scoring method are described within the ElasticSearch documentation.7

The scoring algorithm is based on TF-IDF, but contains a few minor adjust-
ments intended to make scores returned from different queries more compara-
ble. The output of the scoring function is not directly comparable with cosine
distance or any other formally defined distance metric. The score was designed
by the creators of ElasticSearch and Lucene to rank results. A value of 1.0 is
indicates a result more similar to the query than smaller values, such as 0.5,
and more dissimilar than other values, such as 2.0.

7.3.4 Implementation

The complete implementation of the evaluation presented in this chapter is
available in the open-source software PartyCrasher.8 The implementa-
tion includes every clusteringmethod we claimed to evaluate above, a general-
purpose clusteringframework, the programs used to mine and filter the data
used for the evaluation, the programs that produced the evaluation results,
the raw evaluation results, and the scripts used to plot them.

7https://www.elastic.co/guide/en/elasticsearch/guide/1.x/
practical-scoring-function.html

8https://github.com/naturalness/partycrasher

184

 https://www.elastic.co/guide/en/elasticsearch/guide/1.x/practical-scoring-functi on.html
 https://www.elastic.co/guide/en/elasticsearch/guide/1.x/practical-scoring-functi on.html
https://github.com/naturalness/partycrasher

7.3.5 Evaluation Metrics

Two families of evaluation metrics were used. These are the BCubed precision,
recall, and F1-score, and the Purity, Inverse Purity, and F1-score. Both are
suitable for characterizing the performance of online non-stationary clustering
algorithms by comparing the clusters that evolve over time to clusters created
by hand. A comparison of BCubed and Purity, along with several other met-
rics, and an argument for the advantages of BCubed over Purity is provided
in Amigó et al. (2009). The mathematical formulae for both metrics can be
found in Amigó et al. (2009). However, Purity also has an advantage over
BCubed: specifically that it does not require O (n2) total time to compute
whereas BCubed does.

If a method has a high BCubed precision, this means that there would be
less chance of a developer finding unrelated crashes in the same bucket. This
is important to prevent crashes caused by two unrelated bugs from sharing
a bucket, possibly causing one bug to go unnoticed since usually a developer
would not examine all of the crashes in a single bucket.

If a method has a high BCubed recall, this means that there would be
less chance of all the crashes caused by a single bug to become separated
into multiple buckets. Reducing the scattering of a single bug across multiple
buckets is important as scattering interferes with statistics about frequently
experienced bugs.

In contrast, Purity and Inverse Purity focus on finding the bucket in the
experimental results that most closely matches the bucket in the gold set. Then
the overlap between the two closest matching buckets is used to compute the
Purity and Inverse Purity metrics, with high Purity indicating that most of
the items in a bucket produced by one of the methods evaluated are also in
the matching bucket in the gold set. High Inverse Purity indicates that most
of the items in a bucket from the gold set are found in the matching bucket
produced by the method being evaluated.

The Purity method does not, however, completely reflect the goals of the
evaluation. Purity and Inverse Purity do not capture anything besides the

185

overlap between the gold-set buckets and the output buckets that overlap the
most. The Purity metric was defined in Zhao and Karypis (2001) as:

Purity =
1

(total number
of documents)

∑
b∈clusters

[
max

g∈classes

(number of documents in class g
that were assigned cluster b

)]
In this case, the class is the bucket in the gold set, and the cluster is the

bucket produced by the method being evaluated. The Inverse Purity metric,
then, follows from the Purity metric by swapping the roles of the “class” and
the “cluster” (Amigó et al., 2009), or in our case, the gold set and the method
being evaluated:

Inverse Purity =
1

(total number
of documents)

∑
g∈classes

[
max

b∈clusters

(number of documents in class g
that were assigned cluster b

)]
So, if a method creates a bucket that is 51% composed of crashes from

a single bug, the other 49% does not matter. That 49% could come from a
different bug, or 200 different bugs, but the Purity would be the same value.
The Purity value isn’t affected by the other 49% because of the use of the
max function in Purity and Inverse Purity. It is included in this evaluation for
completeness, since it was used by Dang et al. (2012a).

In comparison, BCubed Precision and BCubed Recall based on the idea of
the correct bucketing of a pair of documents (crashes). First, let ci ∈ bi, ci ∈ gi

be some crash that was assigned bucket bi by a bucketing method, and bucket
gi in the gold set. Similarly, let cj ∈ bj, cj ∈ gj be some crash that was assigned
bj and was in gj in the gold set. Then ci and cj are bucketed correctly if they
are placed in the same bucket and they should be in the same bucket, or they
are in different buckets and should be in different buckets:

Correct (ci, cj) =

1, if bi ≡ bj and gi ≡ gj

1, if bi ̸≡ bj and gi ̸≡ gj

0, if bi ≡ bj and gi ̸≡ gj

0, if bi ̸≡ bj and gi ≡ gj

186

BCubed Precision is the average correctness over all pairs of documents
(crashes) that were placed in the same bucket by the bucketing method, while
BCubed Recall is the average correctness over all pairs of documents that were
in the same bucket in the gold set.

BCubed Precision = average
cj ,cj such that: bi≡bj

{
1, if gi ≡ gj

0, if gi ̸≡ gj

BCubed Recall = average
ci,cj such that: gi≡gj

{
1, if bi ≡ bj

0, if bi ̸≡ bj

In comparison, BCubed Precision and BCubed Recall based on the idea of
the correct bucketing of a pair of documents (crashes). First, let ci ∈ bi, ci ∈ gi

be some crash that was assigned bucket bi by a bucketing method, and bucket
gi in the gold set. Similarly, let cj ∈ bj, cj ∈ gj be some crash that was assigned
bj and was in gj in the gold set. Then ci and cj are bucketed correctly if they
are placed in the same bucket and they should be in the same bucket, or they
are in different buckets and should be in different buckets:

Correct (ci, cj) =

1, if bi ≡ bj and gi ≡ gj

1, if bi ̸≡ bj and gi ̸≡ gj

0, if bi ≡ bj and gi ̸≡ gj

0, if bi ̸≡ bj and gi ≡ gj

BCubed Precision is the average correctness over all pairs of documents
(crashes) that were placed in the same bucket by the bucketing method, while
BCubed Recall is the average correctness over all pairs of documents that were
in the same bucket in the gold set.

BCubed Precision = average
cj ,cj such that: bi≡bj

{
1, if gi ≡ gj

0, if gi ̸≡ gj

BCubed Recall = average
ci,cj such that: gi≡gj

{
1, if bi ≡ bj

0, if bi ̸≡ bj

Both metrics can be combined into F-scores. In this evaluation, F1-scores
were used, placing equal weight on BCubed Precision and Recall (or Purity
and Inverse Purity.)

187

BCubed and Purity can be used with the gold set, hand-made buckets that
are available from Ubuntu’s Launchpad (Canonical Ltd., 2004) bug tracking
system. Ubuntu developers and volunteers have manually marked many of the
bugs in their bug tracker as duplicates. Furthermore, many of the bugs in the
bug tracker are automatically filed by Ubuntu’s automated crash reporting
system, Apport. This evaluation uses only bugs that were both automatically
filed by Apport and manually marked as duplicates of at least one other bug.
The data set is biased to the distribution of crashes that are bucketed, which
might be different than crashes that are not. Conversely, this prevents the
evaluation data set from containing any crashes that have not yet evaluated
by an Ubuntu developer or volunteer.

7.4 Results

After extracting crash reports from Launchpad, and implementing various
crash report bucketing algorithms, the performance of these algorithms on
the Launchpad gold set was evaluated. Evaluation is multifaceted as in most
information retrieval studies since the importance of either precision or recall
are tunable.

7.4.1 BCubed and Purity

Evaluation of the performance of bucketing algorithms is performed with
BCubed and Purity metrics. Figure 7.4 shows the performance of a variety of
clusteringmethods evaluated against the entire gold set of clusteredcrash re-
ports. The 1File and 1Addr methods have the most precision, while LerchC

has the most recall. F1-score is dominated by CamelC and Lerch. As in the
results of Lerch and Mezini (2013), using only the stacks outperforms using
the stack plus its metadata and contextual information in terms of F1-score.
For the CamelC, Lerch, and LerchC simulations, a threshold of T = 4.0 was
used.

188

Figure 7.4: BCubed (top) and Purity-metric (bottom) scores for various meth-
ods of crash report clustering.

189

Amigó et al. (2009) observed differences in BCubed and Purity metrics.
Their observation was tested empirically by the evaluation. In Figure 7.4,
BCubed and Purity showed similar results. The best and worst methods in
terms of BCubed precision are the same as the best and worst methods in
terms of Purity; the same holds true for BCubed recall and Inverse Purity,
and BCubed F1-score and Purity F1-score. However, some of the methods
with intermediate performance are much closer together in Purity F1-score
than they are in BCubed F1-score.

Figure 7.4 also shows that in general, if a method has a higher precision or
Purity, it also has a lower recall and Inverse Purity. For example, 3Frame has
a higher precision than 2Frame, having a higher precision than 1Frame, but
1Frame has a higher recall than 2Frame and 3Frame.

The CamelC crash bucketing method employs: TF-IDF; a tokenizer that
attempts to break up identifiers such as variable names into their component
words; and the entire context of the crash report including all fields reported
in addition to the stack. It outperforms other bucketing methods evaluated.

Figure 7.5: Number of buckets created as a function of number of crashes seen.
The line labelled Ubuntu indicates the number of groups crashes that were
marked as duplicates of each other by Ubuntu developers or volunteers.

190

7.4.2 Bucketing Effectiveness

Figure 7.5 shows the number of buckets created by a variety of clusteringmeth-
ods. The number of issue buckets extracted from the Ubuntu Launchpad gold
set is plotted as the line labelled Ubuntu. The method that created a number
of buckets most similar to the number mined from the Ubuntu Launchpad
gold set was LerchC. For the Lerch and LerchC simulations, a threshold of
T = 4.0 was used.

Figure 7.6 shows the performance of the Lerch method when used with a
variety of different new-bucket thresholds, T . Figure 7.7 shows the number of
buckets created by the same method with those same thresholds. Since Lerch
and Mezini (2013) did not specify what threshold they used, this evaluation
explored a range of thresholds. It can be seen from the plots that the relative
performance of T thresholds, in terms of BCubed precision, BCubed recall,
and BCubed F1-score, becomes apparent after only 5000 crash reports. In
practice, the authors of this chapter suggest that developers using this system
start with a middle F1-score of around T = 4.0 and adjust it as they use the
system, rather than systematically examining thousands of crash reports.

It is possible for developers using this system to create multiple sets of
buckets with different thresholds. This can be done efficiently as the crash
reports are received, and would allow developers to choose a threshold at any
time without re-bucketing. The implementation only requires a single query
and can produce multiple buckets for each incoming crash report, since the
threshold is applied after results from ElasticSearch are retrieved.

For all the results that do not specify a value for T , T = 4.0 was used. The
highest F1-score was observed at T = 4.0 after only processing 5000 bugs with
a variety of different thresholds. For Lerch, a threshold of 3.5 < T < 4.5 had
the highest performance.

As shown in figure 7.8, T = 4.0 still has the highest F1-score after every
crash was processed. Furthermore, other values of T near 4.0 have the same
F1-score, including the range 3.5 ≤ T ≤ 4.5. Figure 7.8 also shows how
the threshold can be tuned to create a trade-off between precision and recall.

191

Figure 7.6: BCubed scores for the Lerch method of crash report clusteringat
various new-bucket thresholds T .

192

Figure 7.7: Number of buckets created as a function of number of crashes seen
for the Lerch method of crash report clusteringat various new-bucket thresh-
olds T . The line labelled Ubuntu indicates the number of groups crashes that
were marked as duplicates of each other by Ubuntu developers or volunteers.

Setting a threshold of 0.0 is similar to instructing the system to put all of the
crashes into a single bucket. This would be the correct choice if developers
were satisfied with the explanation that all of those crashes were created by
a single bug. In that case the bug would likely be filed as an issue titled,
“Programs on Ubuntu Crash.” The fact that setting the threshold to 0.0 does
not result in recall quite at 1.0 is an artifact of optimizations employed in
ElasticSearch, specifically ElasticSearch’s inverted index.

Conversely, setting the threshold to 10.0 results in every crash being as-
signed to its own bucket, and therefore a perfect precision of 1.0. This would
be the correct choice if developers considered every individual crash to be a
distinct bug because the exact state of the computer was at least somewhat
different during each crash. It might be more desirable to tune the value of T
by using direct developer feedback rather than the technique employed here,
comparing against an existing data set. Instead of using data, one could ask
developers if they had seen too many crashes caused by unrelated bugs in a

193

Figure 7.8: Precision/Recall plot showing the trade-off between BCubed pre-
cision and recall as the new-bucket threshold T is adjusted. BCubed F1-score
is also listed in the plot.

194

single bucket recently. If they had, then T should be increased. Or, T should
be decreased if developers see multiple buckets that seemed to be focused on
crashes caused by the same bug.

7.4.3 Tokenization

Threshold is not the only way that a trade-off between precision and recall can
be made. A variety of methods were tested that use the ElasticSearch/Lucene
TF-IDF-based search from Lerch and Mezini (2013), but do not follow their
tokenization strategy. The performance of several tokenization strategies is
shown in Figure 7.10. As in other cases, the methods with high precision had
low recall, and the methods with high recall had low precision. All methods
shown in Figure 7.10 used a threshold of T = 4.0.

The Space method is obtained by replacing the tokenization strategy in
Lerch with one that splits words on whitespace only, such that it does not dis-
card any tokens regardless of how short they are, and does not lowercase every
letter in the input. The Space method performs worse than Lerch. However,
when both stacktraces and context are used, the SpaceC method, performance
improves slightly. This is the opposite behaviour of Lerch. Adding context
(LerchC) causes performance to decrease slightly. A third tokenization strat-
egy, Camel was evaluated. Camel attempts to break words that are written in
CamelCase into their component words, using a method provided in the Elas-
ticSearch documentation.9 This strategy had the worst performance of the
three, until it was used with context included, called CamelC. The addition of
context allowed CamelC to outperform every other method evaluated in this
chapter.

The worst-performing tokenization evaluated, 1Addr, was also the method
that produced the largest number of buckets. However, tuning methods to
match the number of buckets in the gold set without concern for performance
did not result in higher performance. Lerch with T = 3.0 and SpaceC with

9https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/
analysis/analyzers/pattern-analyzer.asciidoc

195

 https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/analysis/analyz ers/pattern-analyzer.asciidoc
 https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/analysis/analyz ers/pattern-analyzer.asciidoc

Figure 7.9: Purity-metric scores for the Lerch method of crash report clus-
teringat various new-bucket thresholds T .

196

Figure 7.10: BCubed scores for the Lerch method of crash report clustering-
with Lerch’s tokenization technique replaced by a variety of other techniques.

197

Figure 7.11: Purity-metric scores for the TF-IDF-based methods of crash re-
port clusteringwith various tokenization strategies.

T = 4.0 were not the best-performing threshold or method, but both produced
almost the same number of buckets as the gold set.

198

7.4.4 Runtime Performance

The current implementation of PartyCrasher requires only 45 minutes to
bucket and ingest 15 293 crashes, using the slowest algorithm, CamelC, on a
Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz machine with 32GiB of RAM
and a Hitachi HDS723020BLE640 7200 RPM hard drive. Performance de-
pends mainly on disk throughput, latency and RAM available for caching;
ElasticSearch recommends using only solid-state drives. This works out to 335
crashes per minute, meeting the performance goal of 217 crashes per minute
based on crash-stats from Mozilla. The performance of ElasticSearch is highly
dependent on ElasticSearch’s configuration settings. The settings used during
these evaluations is available in the PartyCrasher repository.

7.5 Discussion

7.5.1 Threats to Validity

Results are dependent on the gold set—a manual classification of crash report
by Ubuntu volunteers. The results may be biased due to the exclusive use
of known duplicate crashes; the known and classified duplicates may not be
representative of all crash reports. If any of these methods with with tunable
parameters are deployed, the parameters should be tuned based on feedback
from people working with the crash buckets, not just the gold set.

Since the evaluation only used data from open source software, it is un-
known if our results are applicable to closed-source domains. Only stacks that
originate from C and C++ projects have been evaluated; it is possible that
other languages, compilers, and their runtimes have different characteristics in
how they form stacktraces. However, these results are corroborated by studies
that examined Java exclusively (Lerch and Mezini, 2013; Wang et al., 2013).

7.5.2 Related work

Although crash bucketing facilitates manual debugging of individual faults,
crash buckets are much more beneficial as the input to other methods in soft-

199

ware engineering. Lerch and Mezini (2013) originally applied their technique
to the field of deduplicating bug, not crash, reports; Khomh et al. (2011) used
crash buckets to triage bugs: prioritizing developer effort on the most crucial
bugs. Seo and Seo and Kim (2012a) leveraged crash buckets to predict “recur-
ring crashes”—i.e., bugs that were “fixed” but had to be fixed again in a later
revision. Crash buckets may also serve as input to crash localization (Liu and
Han, 2006; Wang et al., 2013; Wu et al., 2014) and crash visualization (Dang
et al., 2012a; Kim et al., 2011).

7.5.3 Future Work

The results in this chapter indicate that there may be a large number of
improvements that could be made to the relatively high-performance TF-IDF-
based crash clusteringmethods.

Many stack comparison methods (Dhaliwal et al., 2011; Glerum et al., 2009;
Modani et al., 2007; Wang et al., 2013), take into account the position that
each frame is on the stack, giving more weight to the frames near the top of
the stack and less weight to frames on the bottom of the stack, or consider
stacks that have similar frames in a similar order. The best-performing method
of crash clusteringpresented in this chapter completely disregards information
about the order of the stack. It is likely that a technique based on TF-IDF
that also incorporates information about the order of frames on the stack
would outperform all of the methods evaluated in this chapter, since several
previous works indicate that the top of the stack contains the most important
information (Brodie et al., 2005a; Schröter et al., 2010; Wu et al., 2014). This
could be achieved by giving words that appear in the top of the stack more
weight when computing TF-IDF or by re-ranking the top results produced by
TF-IDF according to stack similarity before choosing a bucket to place a crash
in. Neither of these extensions would cause the method to be unable to scale.

The results presented indicate that improvements could be made to TF-
IDF-based-crash clusteringmethods. For instance, a technique based on TF-

200

IDF that also incorporates information about the order of frames on the stack
would likely outperform many of the presented methods.

The tokenization techniques evaluated in this chapter are extremely primi-
tive. They are merely regular expressions that break up words based on certain
types of characters such as spaces, symbols, uppercase letters, lowercase let-
ters and numbers. Advanced tokenization techniques, such as the ones found
in Guerrouj et al. (2013) and Hill et al. (2014), would likely outperform the
basic techniques that have been evaluated in this chapter.

As shown in Figure 7.3, crash reports often contain a multitude of data
apart from the stacktrace itself. This chapter only measured the performance
of TF-IDF when using only the stacktrace or the entire crash report. Some
fields in the crash report may be more important to obtaining a high per-
formance than others. For example, Architecture (the computer architec-
ture on which the crash occurred) might be more valuable for clusteringthan
CrashCounter (the number of times that a crash has occurred on that com-
puter) or vice-versa, but this has not been studied in the context of information
retrieval.

We would like to extend information retrieval techniques with more sophis-
ticated normalization. We want to investigate any effects that stack normal-
ization, as first proposed by Brodie et al. (2005a), would have on our TF-IDF
approach.

It would be valuable to measure the effectiveness of using the buckets
produced by the CamelC technique as input to other methods, such as those
that perform bug triaging (Khomh et al., 2011) and crash localization (Wu
et al., 2014).

7.6 Conclusion

The results in this chapter indicate that off-the-shelf TF-IDF-based informa-
tion retrieval tools can bucket crash reports in a completely unsupervised,
large-scale setting when compared to a variety of other previously proposed

201

algorithms. Based on these results, a developer, such as Ada, should choose
a TF-IDF-based crash clusteringmethod with tokenization that fits their data
set, and intermediate new-bucket threshold. They should update this thresh-
old based on feedback from developers, volunteers, or employees that work
with the stacktraces directly. A TF-IDF approach that used the entire crash
report and stacktrace, tokenized using camel-case had the best F1-score on the
Ubuntu Launchpad crash reports used in this work. In addition, there is a lot
of room for improvements to these techniques. This conclusion is surprising
in light of the fact that the TF-IDF-based techniques evaluated disregard in-
formation that is often considered to be essential to stacktraces, such as the
order of the frames in the stack.

Finally the research questions can be answered:
RQ1: TF-IDF-based methods are effective, industrial-scale methods of crash
report bucketing.
RQ2: New-bucket thresholds and tokenization strategies can be tuned to
increase precision and recall.

Acknowledgements

The authors would like to thank the Mozilla foundation, especially Robert
Helmer, Adrian Gaudebert, Peter Bengtsson and Chris Lonnen for their help,
and for making Mozilla’s massive collection of stack reports open and publicly
available. Additionally, the authors would like to thank the Ubuntu project
and all of its developers who manually clusteredbug reports that were submit-
ted with crash reports. Funding for this research was provided by MITACS
Accelerate with BioWare™, an Electronic Arts Inc. studio.

7.7 Errata

After publication of the work in this chapter in 2016, I found that the algorithm
presented in this chapter’s time complexity degrades for a specific type of input.
Thus, PartyCrasher does not meet the time-complexity claims made in this

202

chapter in some cases. Input data that would cause performance degradation
is not present in the evaluation data used in this chapter.

Degradation occurs after PartyCrasher buckets a large group of identical
crash reports, causing the underlying search engine, ElasticSearch, to fail to
meet performance expectations. Time taken to bucket an additional crash re-
port increases linearly, as long as that crash report is also identical, resulting
in an overall O (n2) time complexity. This behaviour is present in the imple-
mentation of ElasticSearch that was used “off-the-shelf,” and not modified,
and would similarly affect ElasticSearch’s performance in other applications.

Fundamentally, the performance degradation occurs when ElasticSearch
finds a large number of highly relevant documents, all with the same relevance
to the query. These documents would all be tied to be the first result in the
output of a typical search engine application. In addition, the query must
have a large of terms (tokens or words), and ElasticSearch must fail to find
any search term in the query that would break the tie based on that term’s
document frequency.

203

Chapter 8

Conclusion

This chapter concludes this thesis by summarizing the results, exploring av-
enues for future research, and finally, providing some concluding remarks.

8.1 Summary

The results presented throughout this thesis demonstrate that some software-
engineering tasks, such as typo repair and crash bucketing, can be performed
with on-line, off-the-shelf, statistical techniques, just as well, if not better than
by using static rule-based approaches. I have demonstrated that fact with two
“unnatural tools” (section 2.2) that were originally intended to work natural-
language artifacts adapted to work with source code and crash reports. I have
analyzed and presented a novel data set for use with one of these tools in
Chapter 6.

In Chapter 3 I introduced UnnaturalCode, a technique and tool for locating
the causes of compilation errors in Java. UnnaturalCode is focused on locat-
ing typos that cause compilation errors. The technique presented in Chapter
3 was a major departure from earlier techniques that used some form of static
analysis. By using an n-gram language model from the field of natural lan-
guage processing, UnnaturalCode had unique strengths and weaknesses when
compared to earlier techniques.

Chapter 3 demonstrated the first part of my thesis statement (1.3.1): using
an n-gram language model to find typos in source code can provide more

204

precise reports to the user of the location of those errors. Then, my results in
Chapter 4 reinforce that conclusion by duplicating the same technique with a
contrasting programming language.

UnnaturalCode in Chapter 3 had a major limitation that was addressed
in Chapter 4. The first version required the use of an oracle to first check
whether or not code was acceptable. A compiler acted as an oracle. However,
accepting or rejecting source code may be undecidable in many languages,
such as interpreted languages. I extended the technique to work with the
interpreted language Python, in Chapter 4, and eliminate reliance on an or-
acle. Then, I re-evaluated UnnaturalCode with Python code instead of Java
code. Extending and re-evaluating UnnaturalCode with an interpreted pro-
gramming language presented several challenges that were not present with
a compiled programming language like Java. I showed that performance (in
terms of MRR) decreased when moving from Java to Python. Additionally,
the evaluation in Chapter 4 was extended to include mutations that mimicked
actual typographical errors.

Then, in chapter 5, I extended UnnaturalCode to not only locate typos,
but also suggest changes to fix them. The n-gram model at the heart of Unnat-
uralCode was compared with a more sophisticated neural network language
model. Additionally, an evaluation was performed with typos written by stu-
dents rather than relying on mutations to simulate typos. The evaluation
was also performed with UnnaturalCode in an off-line setting, with unrelated
corpus and testing data sets. The off-line setting dramatically reduced perfor-
mance (in terms of MRR), but UnnaturalCode was still able to suggest the
correct fix for one third of the student generated typos, as long as those typos
did not occur within an identifier or literal.

In Chapters 3 and 4, I was able to demonstrate the first part of my thesis
statement for a language where an oracle for basic semantics, such as identifier
spelling, is available and one where it is not. In Chapter 5 I was able show
that n-gram language models can suggest corrections to the user in addition
to precisely reporting the locations of typos. In the following chapters, I go

205

on to generalize the success of UnnaturalCode by demonstrating a second
unnatural tool, PartyCrasher, that replaces n-gram representation with TF-
IDF representation.

Then, in Chapter 6 and 7 I moved away from typos and demonstrated
the second part of my thesis statement: automated crash report bucketing.
Chapter 6 presents a novel data set of crash reports. A variety of statistical
analyses are applied to the crash reports and the crash reports are character-
ized in several different ways. The analysis is geared toward using automated,
statistics-driven techniques, such as those from the field of (natural-language)
information retrieval. A few striking similarities between natural language and
crash reports are described. A few additional statistics that may be relevant
to software engineering research and practice are also detailed.

PartyCrasher was presented in Chapter 7. PartyCrasher is an application
to bucket and explore crash reports. PartyCrasher buckets crash reports with
the help of a distributed document search engine. I then evaluated Party-
Crasher using the data set from Chapter 6. Despite the search engine be-
ing designed to search natural-language documents, PartyCrasher was able to
bucket crash reports. Additionally, PartyCrasher’s output was more similar
to human-curated buckets than simple static, rule-based approaches to clus-
tering crashes. A number of additional benefits were also gained when using
an on-line, statistical approach.

Chapter 7 demonstrated the second part of my thesis statement (1.3.1):
by using a searching engine, that used TF-IDF representation, PartyCrasher
produced buckets that were more similar to buckets curated by developers
than other common, simple algorithms for bucketing crashes.

Based on the success of UnnaturalCode and PartyCrasher, there are many
directions for future work. Future work could proceed not only by answering
questions related to the UnnaturalCode and PartyCrasher, but also in new
unnatural tools.

206

8.2 Future Work

I will divide this section in to three parts, consisting of first, motivating fu-
ture work on unnatural tools, and then enumerating possibilities for future
research in unnatural tools in general, future research specifically inspired by
UnnaturalCode, and future research specifically inspired by PartyCrasher.

8.2.1 General Motivations Future Work

Software artifacts, even if they are not written in a natural language, are still
symbolic communication. At the very least, they are symbolic communication
between two pieces of software, if not between a human and a piece of soft-
ware like a compiler. Thus in a lot of situations where currently static tools
are employed, we can simply pretend the language being spoken is a natural
one and immediately gain a path toward addressing that situation with more
abstract, and thus, flexible NL/IR techniques. NL/IR techniques are more
abstract because they typically will not “understand” the structure of the lan-
guage being spoken beyond what is conveyed through tokenization and what
they are capable of “learning” by processing many examples.

The process of developing software generates huge quantities of informa-
tion that often goes unused, despite the burgeoning field (and practice) of data
mining software repositories. In fact, much of this data does not make it into
software repositories at all. Developers often make a small code change and
then check how that change impacts the behaviour of their software. This is
especially true for students. UnnaturalCode is not designed to act on and pos-
sibly incorporate information from commits to a software repository. Instead,
UnnaturalCode is designed to act on and possibly incorporate information
from every single compilation attempt, which can and often do occur multi-
ple times in between commits. For a single project or a single developer this
information is not much larger than a repository, yet it is discarded.

Furthermore, each time code is compiled, run, or static analysis of any sort
is performed, a wealth of information is inferred by the compiler, interpreter,

207

or analysis tool. However, usually this information is not recorded anyplace
where it can be accessed outside of the compiler, interpreter, or analysis tool.
The main exceptions to this are debugging information (debugging symbols)
and profiling records. Plenty of other information, such as whether two control
statements (such as loops) could trade places, or whether a recursive function
can be easily transformed into a loop is never recorded. Yet it may be the
case that such information would be valuable to the developer or to a software
engineering tool like a refactoring tool.

Indeed, compilers, interpreters, and static analysis tools often completely
ignore statistical information that might be employed to make those tools more
effective. With the notable exception of optimization, which began to integrate
statistical information in 1991 (Chang et al., 1991), software engineering tools
are often created with only the information that can be deduced through static
analysis of the source code in mind.

While static analysis is the obvious choice for reasoning about the com-
putational or spatial complexity of code, software engineering brings us the
additional idea of measuring how complicated a piece of software is, or how
difficult it is for a human to understand a piece of software and reason about it.
This is a seperate concept from software complexity that describes how many
interactions different pieces of code have with each other. While complexity is
used to get an idea of how complicated a piece of code is, it is not necessarily
measuring the same thing.

It would be valuable to get an idea of how complicated a piece of code is
by using language modelling or information retrieval to estimate the effect of
familiarity and fluency (the mere exposure effect) with the code. Motivation
for this has been explored by Casalnuovo et al. (2019). For example, even
though a particular piece of code may be highly complex, such that it has
many interactions within itself and with other pieces of code, it may also
adhere to a common pattern, such that the developer is has had experience
with similar pieces of code, making it easier for them to understand.

208

8.2.2 Questions for Future Work
8.2.2.1 General Questions

The results described in this thesis have encouraging implications for research
that does not focus on n-gram models, typos, search engines, or crash reports.
Future work on unnatural tools could, and should, cover a wide variety of
questions, such as:

• Given a parallel corpus of program code and corresponding unit test
code, could a natural-language translation algorithm be trained “trans-
late” new program code into corresponding unit tests? Such a parallel
corpus could be obtained automatically by test suite coverage measure-
ment tools.

• Could a natural language translation technique be applied to add addi-
tional information to documentation produced by documentation gener-
ation tools, which currently rely on static analysis?

• Linters typically rely on static analysis. Could they be improved by
including a language model or search engine to produce warnings and
suggestions that developers would be more likely to agree with during
code review?

• Linters are also often tasked with checking whether code conforms to
an organizations stylistic conventions. Could a linter model how an
organization uses whitespace? Could a linter then use that model to flag
code that does not conform to organizational conventions?

• Does the size of the vocabulary used in a library API (after suitable
tokenization) correlate with the difficulty using that particular library?

• Can a natural language model be used to help identify features or syntax
of a programming language that are not used often enough to justify their
maintenance?

209

• By generating an n-gram model (or any relevant Markov model) of the
procedure calls between two different layers of software, such as an ap-
plication and a framework, can problematic call sequences be detected?

• Can stochastic language models, especially those that were developed
to deal with natural language, be used to infer the correct contents of
missing sections of abstract syntax trees?

• The field of Search-Based Software Engineering has had great success
repairing bugs using metaheuristic search, as described in the yearly
proceedings of the International Symposium on Search-Based Software
Engineering (Nejati and Gay, 2019). Could repairs be improved if meta-
heuristics were combined with heuristics derived from likelihood estima-
tion based on stochastic models built on human-written code?

8.2.2.2 Typos

Even considering the narrower scope of typo correction, there is research left
to be done.

• Are mutations a good approximation of human-made typos?

• How do typos made by novice programmers differ from typos made by
expert programmers?

• Is there an effective way to integrate a tool like UnnaturalCode into an
integrated development environment (IDE)?

• Can UnnaturalCode, or a similar tool, effectively suggest repairs to code
that compiles but fails to pass tests?

• Would UnnaturalCode work as an immediate “autocorrect” tool that
fixes typos in real time as soon as they are typed?

• Can UnnaturalCode be extended to fix multiple typos at the same time?

210

• Can UnnaturalCode be improved by modelling both known-good and
known-bad code?

• Can UnnaturalCode be improved by using more advanced graphical mod-
els in place of n-grams?

8.2.2.3 Crashes

Just like with typos, there are plenty of research opportunities to explore what
useful information and tools can be built around crash reports.

• Can crashes be analyzed statistically to automatically identify and diag-
nose hardware malfunctions?

• Can crashes caused by cosmic rays or other external influences be isolated
automatically?

• Can crashes be automatically separated into those caused by bugs in the
software itself, and those caused by library and operating system bugs?

• Can PartyCrasher be combined with UnnaturalCode to automatically
locate the cause, in the code, of the crashes?

• Can the human component be further removed from crash analysis to
the point where useful bug reports can be filed automatically for new
trends in the crash reports as the appear?

• Is PartyCrasher, or a similar tool, effective in bucketing non-fatal errors?

8.3 Remarks

Software-engineering tools can be developed with the option of employing
on-line, off-the-shelf, statistical techniques for natural language in mind.

Apart from the above statement, which I demonstrated in this thesis, the
following comments are my thoughts on this work and do not have hard evi-
dence for them. However, based on my experience, I believe them to be true.

211

8.3.1 Thoughts

I do not claim that alternative approaches similar to the ones presented here
will always perform comparably or better than static analysis and rule-based
techniques. However, I believe the results presented in this thesis, as well as
in the prior work show that similar techniques deserve consideration.

However, by applying techniques already proven in the fields of natural-
language processing and (natural language) information retrieval, I have cre-
ated viable software engineering tools in spaces where similar tools have tradi-
tionally not employed statistics of any kind. UnnaturalCode and PartyCrasher
both solve real-world problems that face stakeholders at different stages of the
software engineering process.

While both PartyCrasher and UnnaturalCode are preceded by tools with
the same goals, this does not necessarily have to be the case. There is no
reason that unnatural tools cannot solve software engineering challenges for
which no tool currently exists. Unnatural tools can also be combined with
tools that currently rely on static analysis.

Chapters 3 through 7 show that unnatural tools can be provided to assist
software engineers at time-consuming points in the software development pro-
cess. While how much time they might save engineers is not empirically known,
they can provide engineers with useful information at wildly different stages
in the software development process. This naturally leads to the possibility
that unnatural tools may be able to assist developers with other tasks.

My experience with UnnaturalCode and PartyCrasher has also taught me
that the exact tokenization method used in an unnatural tool is critical to the
tool’s development and eventual success. During the development of Unnatu-
ralCode, several different lexical analyzers were used to tokenize Java source
code because they were readily available. However, all of the lexical analyzers
plagued development with problems. Eventually, I resorted to isolating the
lexical analyzer inside Java 8 compiler, that is written in Java, extracting the
analyzer from the compiler, and wrapping it so that it could be called from
UnnaturalCode, which is written in Python. When tokenizing source code, a

212

lexical analyzer that was “close enough” was never actually close enough. This
was especially true when attempting scientific evaluations.

In contrast, the tokenization scheme that was found to be the most effective
for PartyCrasher, as shown in Figure 7.4, was the “CamelCase” tokenizer.
The CamelCase tokenizer is not specific to any specific programming language.
Additionally, the CamelCase tokenizer attempts to split identifiers that consist
of multiple natural-language words into a seperate token for each word (Figure
7.1).

My experience suggests that tasks that are not usually a focus of tooling or
a focus of software engineering research in general, the tasks that are generally
glossed over, will benefit the most from unnatural tools. This was exactly the
case for fixing typos in code before I introduced UnnaturalCode in 2014.

213

References

I. Ahmed, N. Mohan, and C. Jensen (2014). “The Impact of Automatic
Crash Reports on Bug Triaging and Development in Mozilla”.
In: Proceedings of The International Symposium on Open Collaboration.
OpenSym ’14. New York, NY, USA: ACM, 1:1–1:8.
isbn: 978-1-4503-3016-9.
doi: https://doi.org/10.1145/2641580.264158510.1145/2641580.2641585.
url: http://doi.acm.org/10.1145/2641580.2641585 (visited on
01/08/2016) (cit. on pp. 168, 173).

U. Z. Ahmed, R. Sindhgatta, N. Srivastava, and A. Karkare (Nov. 2019).
“Targeted Example Generation for Compilation Errors”.
In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 327–338.
doi: https://doi.org/10.1109/ASE.2019.0003910.1109/ASE.2019.00039
(cit. on p. 94).

Airbrake (2020). Crash Reporting Software.
url: https://airbrake.io/features/crash-reporting-software
(visited on 09/30/2010) (cit. on p. 5).

M. Allamanis and C. Sutton (2013). “Mining source code repositories at
massive scale using language modeling”. In: Proceedings of the Tenth
International Workshop on Mining Software Repositories. IEEE Press,
pp. 207–216 (cit. on p. 50).

A. Altadmri and N. C. C. Brown (2015).
“37 Million Compilations: Investigating Novice Programming Mistakes in
Large-Scale Student Data”. In: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. ACM, pp. 522–527
(cit. on p. 97).

E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo (2009). “A comparison of
extrinsic clustering evaluation metrics based on formal constraints”.
In: Information retrieval 12.4, pp. 461–486.
url: http://link.springer.com.login.ezproxy.library.ualberta.
ca/article/10.1007/s10791-008-9066-8 (visited on 01/26/2016)
(cit. on pp. 185, 186, 190).

D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis (2007). “RPython: a
step towards reconciling dynamically and statically typed OO languages”.

214

http://doi.acm.org/10.1145/2641580.2641585
https://airbrake.io/features/crash-reporting-software
http://link.springer.com.login.ezproxy.library.ualberta.ca/article/10.1007/s10791-008-9066-8
http://link.springer.com.login.ezproxy.library.ualberta.ca/article/10.1007/s10791-008-9066-8

In: Proceedings of the 2007 symposium on Dynamic languages. ACM,
pp. 53–64 (cit. on p. 63).

K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S. Calinoiu, and
G. Loihle (2008). “Finding Similar Failures Using Callstack Similarity.”
In: SysML. url: https://www.usenix.org/event/sysml08/tech/full_
papers/bartz/bartz_html/ (visited on 01/19/2016)
(cit. on pp. 120, 127, 173, 174, 177).

K. Beck (2003). Test-driven development : by example.
Boston: Addison-Wesley. isbn: 978-0-321-14653-3 (cit. on p. 65).

B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier,
B. Harrington, A. Kamil, A. Karkare, C. McDonald, P.-M. Osera,
J. L. Pearce, and J. Prather (2019).
“Compiler Error Messages Considered Unhelpful: The Landscape of
Text-Based Programming Error Message Research”.
In: Proceedings of the Working Group Reports on Innovation and
Technology in Computer Science Education. ITiCSE-WGR ’19.
Aberdeen, Scotland Uk: Association for Computing Machinery,
pp. 177–210. isbn: 9781450375672.
doi: https://doi.org/10.1145/3344429.337250810.1145/3344429.3372508.
url: https://doi.org/10.1145/3344429.3372508 (cit. on p. 8).

T. Bell, P. Andreae, and A. Robins (2012). “Computer Science in NZ High
Schools: The First Year of the New Standards”. In: Proceedings of the
43rd ACM Technical Symposium on Computer Science Education.
SIGCSE ’12. Raleigh, North Carolina, USA: ACM, pp. 343–348.
isbn: 978-1-4503-1098-7.
doi: https://doi.org/10.1145/2157136.215724010.1145/2157136.2157240.
url: http://doi.acm.org/10.1145/2157136.2157240 (cit. on p. 58).

M. Brodie, S. Ma, G. Lohman, L. Mignet, M. Wilding, J. Champlin, and
P. Sohn (June 2005a). “Quickly Finding Known Software Problems via
Automated Symptom Matching”. In: Second International Conference on
Autonomic Computing, 2005. ICAC 2005. Proceedings.
Second International Conference on Autonomic Computing, 2005. ICAC
2005. Proceedings, pp. 101–110.
doi: https://doi.org/10.1109/ICAC.2005.4910.1109/ICAC.2005.49
(cit. on pp. 127, 128, 173–175, 177, 200, 201).

M. Brodie, S. Ma, L. Rachevsky, and J. Champlin (2005b).
“Automated problem determination using call-stack matching”.
In: Journal of Network and Systems Management 13.2, pp. 219–237. url:
http://link.springer.com/article/10.1007/s10922-005-4443-8
(visited on 01/19/2016) (cit. on p. 127).

N. C. C. Brown, A. Altadmri, S. Sentance, and M. Kölling (2018).
“Blackbox, Five Years On: An Evaluation of a Large-Scale Programming
Data Collection Project”. In: Proceedings of the 2018 ACM Conference on
International Computing Education Research. ICER ’18.
Espoo, Finland: Association for Computing Machinery, pp. 196–204.

215

https://www.usenix.org/event/sysml08/tech/full_papers/bartz/bartz_html/
https://www.usenix.org/event/sysml08/tech/full_papers/bartz/bartz_html/
https://doi.org/10.1145/3344429.3372508
http://doi.acm.org/10.1145/2157136.2157240
http://link.springer.com/article/10.1007/s10922-005-4443-8

isbn: 9781450356282.
doi: https://doi.org/10.1145/3230977.323099110.1145/3230977.3230991.
url: https://doi-
org.login.ezproxy.library.ualberta.ca/10.1145/3230977.3230991
(cit. on p. 97).

N. C. C. Brown and A. Altadmri (2014). “Investigating novice programming
mistakes: Educator beliefs vs. student data”. In: Proceedings of the tenth
annual conference on International computing education research. ACM,
pp. 43–50 (cit. on pp. 96, 97).

N. C. C. Brown, M. Kölling, D. McCall, and I. Utting (2014).
“Blackbox: a large scale repository of novice programmers’ activity”.
In: Proceedings of the 45th ACM technical symposium on Computer
Science Education. ACM, pp. 223–228 (cit. on pp. 97, 104).

BugSplat (2020). Learn About BugSplat’s Features.
url: https://www.bugsplat.com/features/ (visited on 09/30/2010)
(cit. on p. 5).

M. G. Burke and G. A. Fisher (Mar. 1987). “A practical method for LR and
LL syntactic error diagnosis and recovery”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) 9.2, pp. 164–197
(cit. on pp. 30, 32, 62).

J. C. Campbell, E. A. Santos, and A. Hindle (May 2016a).
“The Unreasonable Effectiveness of Traditional Information Retrieval in
Crash Report Deduplication”. In: 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR).
IEEE. Los Alamitos, CA, USA: IEEE Computer Society, pp. 269–280.
doi: https://doi.org/10.1109/MSR.2016.03510.1109/MSR.2016.035.
url: https://doi.ieeecomputersociety.org/10.1109/MSR.2016.035
(cit. on pp. v, 120, 127, 128, 130, 138, 146, 154).

J. C. Campbell, A. Hindle, and J. N. Amaral (2015).
Error location in Python: where the mutants hide. Tech. rep.
PeerJ PrePrints (cit. on pp. iv, 56).

J. C. Campbell, E. A. Santos, and A. Hindle (Nov. 2016b). “Anatomy
of a crash repository”. In: PeerJ Preprints 4, e2601v1. issn: 2167-9843. doi:
https://doi.org/10.7287/peerj.preprints.2601v110.7287/peerj.preprints.2601v1.
url: https://doi.org/10.7287/peerj.preprints.2601v1
(cit. on pp. v, 119).

J. C. Campbell, A. Hindle, and J. N. Amaral (2014). “Syntax errors just
aren’t natural: improving error reporting with language models”.
In: Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, pp. 252–261
(cit. on pp. iv, 23, 58–60, 70, 73, 76, 78, 80, 87, 88, 92).

B. Cannon (2005).
“LOCALIZED TYPE INFERENCE OF ATOMIC TYPES IN PYTHON”.
MA thesis. California Polytechnic State University (cit. on pp. 63, 87).

216

https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3230977.3230991
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3230977.3230991
https://www.bugsplat.com/features/
https://doi.ieeecomputersociety.org/10.1109/MSR.2016.035
https://doi.org/10.7287/peerj.preprints.2601v1

Canonical Ltd. (2004). Launchpad.
url: https://launchpad.net/ (visited on 01/20/2016)
(cit. on pp. 120, 180, 188).

C. Casalnuovo, K. Lee, H. Wang, P. Devanbu, and E. Morgan (2019).
“Do People Prefer” Natural” code?” In: arXiv preprint arXiv:1910.03704
(cit. on p. 208).

P. P. Chang, S. A. Mahlke, and W.-M. W. Hwu (1991).
“Using profile information to assist classic code optimizations”.
In: Software: Practice and Experience 21.12, pp. 1301–1321
(cit. on p. 208).

Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and
M. Monperrus (2019). “SEQUENCER: Sequence-to-Sequence Learning
for End-to-End Program Repair”.
In: IEEE Transactions on Software Engineering. issn: 1939-3520. doi:
https://doi.org/10.1109/TSE.2019.294017910.1109/TSE.2019.2940179
(cit. on p. 94).

R. Corchuelo, J. A. Pérez, A. Ruiz, and M. Toro (Nov. 2002).
“Repairing syntax errors in LR parsers”.
In: ACM Trans. Program. Lang. Syst. 24.6, pp. 698–710. issn: 0164-0925.
doi: https://doi.org/10.1145/586088.58609210.1145/586088.586092
(cit. on pp. 26, 30, 33, 54, 63, 86).

Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel (2012a).
“ReBucket: a method for clustering duplicate crash reports based on call
stack similarity”. In: Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, pp. 1084–1093. url:
http://dl.acm.org/citation.cfm?id=2337364 (visited on 01/08/2016)
(cit. on pp. 120, 128, 173, 178, 186, 200).

Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel (2012b).
“Rebucket: A method for clustering duplicate crash reports based on call
stack similarity”.
In: 2012 34th International Conference on Software Engineering (ICSE).
IEEE, pp. 1084–1093 (cit. on p. 167).

M. L. Delignette-Muller, C. Dutang, et al. (2015).
“fitdistrplus: An R package for fitting distributions”.
In: Journal of Statistical Software 64.4, pp. 1–34 (cit. on p. 141).

A. Derezinska and K. Hałas (2015).
“Improving mutation testing process of python programs”.
In: Software Engineering in Intelligent Systems. Springer, pp. 233–242
(cit. on p. 57).

A. Derezińska and K. Hałas (2014).
“Operators for Mutation Testing of Python Programs”.
In: ICS Research Report (cit. on pp. 66, 82).

T. Dhaliwal, F. Khomh, and Y. Zou (Sept. 2011). “Classifying field crash
reports for fixing bugs: A case study of Mozilla Firefox”. In: 2011 27th
IEEE International Conference on Software Maintenance (ICSM). 2011

217

https://launchpad.net/
http://dl.acm.org/citation.cfm?id=2337364

27th IEEE International Conference on Software Maintenance (ICSM),
pp. 333–342. doi:
https://doi.org/10.1109/ICSM.2011.608080010.1109/ICSM.2011.6080800
(cit. on pp. 120, 127, 173, 177, 178, 200).

Elasticsearch BV (2016). Elasticsearch.
url: https://www.elastic.co/products/elasticsearch (visited on
01/20/2016) (cit. on pp. 173–175, 184).

N. Eldredge (Oct. 2008). Re: When is SIGTRAP raised?
url: http://linux.derkeiler.com/newsgroups/comp.os.linux.
development.apps/2008-10/msg00107.html (cit. on p. 145).

S. Evert and M. Baroni (2007). “zipfR: Word frequency distributions in R”.
In: Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions.
Association for Computational Linguistics, pp. 29–32
(cit. on pp. 135, 138, 159).

C. Ford (Apr. 13, 2008). mono crashed. Accessed: 2016-10-29. url:
https://bugs.launchpad.net/ubuntu/+source/mono/+bug/217012
(visited on 04/13/2008) (cit. on p. 150).

A. Ganapathi, V. Ganapathi, and D. A. Patterson (2006).
“Windows XP Kernel Crash Analysis.” In: LISA. Vol. 6, pp. 49–159.
(Visited on 08/10/2016) (cit. on pp. 126, 127).

A. Ganapathi and D. A. Patterson (2005).
“Crash Data Collection: A Windows Case Study.” In: DSN. Vol. 5.
Citeseer, pp. 280–285. (Visited on 08/10/2016) (cit. on pp. 126, 127).

S. Garner, P. Haden, and A. Robins (2005).
“My program is correct but it doesn’t run: a preliminary investigation of
novice programmers’ problems”. In: Proceedings of the 7th Australasian
conference on Computing education-Volume 42.
Australian Computer Society, Inc., pp. 173–180
(cit. on pp. 25, 26, 32, 58, 61).

K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols,
D. Grant, G. Loihle, and G. Hunt (2009). “Debugging in the (Very)
Large: Ten Years of Implementation and Experience”. In: Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. New York, NY, USA: ACM, pp. 103–116.
isbn: 978-1-60558-752-3.
doi: https://doi.org/10.1145/1629575.162958610.1145/1629575.1629586.
url: http://doi.acm.org/10.1145/1629575.1629586 (visited on
01/15/2016) (cit. on pp. 120, 158, 168, 169, 173, 174, 177, 200).

M. Gómez, R. Rouvoy, and L. Seinturier (2015). Reproducing
Context-Sensitive Crashes in Mobile Apps Using Crowdsourced Debugging.
Report. Inria Lille ; INRIA.
url: https://hal.inria.fr/hal-01155597/document (visited on
08/22/2016) (cit. on p. 126).

218

https://www.elastic.co/products/elasticsearch
http://linux.derkeiler.com/newsgroups/comp.os.linux.development.apps/2008-10/msg00107.html
http://linux.derkeiler.com/newsgroups/comp.os.linux.development.apps/2008-10/msg00107.html
https://bugs.launchpad.net/ubuntu/+source/mono/+bug/217012
http://doi.acm.org/10.1145/1629575.1629586
https://hal.inria.fr/hal-01155597/document

Google Inc. (2016). Firebase | App Success Made Simple.
url: https://firebase.google.com/ (visited on 10/26/2016)
(cit. on p. 120).

C. Gormley (May 2015). Elasticsearch Reference: Pattern Analyzer. 1.6.
Available: https://github.com/elastic/elasticsearch/blob/1.6/
docs/reference/analysis/analyzers/pattern-analyzer.asciidoc
(cit. on p. 154).

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley (Feb. 2015).
“Lexical Structure”. In: The Java Language Specification. 8th ed.
Available:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html.
Oracle Corporation. Chap. 3 (cit. on p. 98).

S. L. Graham, C. B. Haley, and W. N. Joy (Aug. 1979).
“Practical LR error recovery”. In: SIGPLAN Not. 14.8, pp. 168–175.
issn: 0362-1340.
doi: https://doi.org/10.1145/872732.80696710.1145/872732.806967
(cit. on pp. 30, 32, 62).

V. Grishchenko (2006).
Plot of word frequency in Wikipedia-dump 2006-11-27.
[Online; accessed 17-August-2016].
url: https://commons.wikimedia.org/w/index.php?title=File:
Wikipedia-n-zipf.png&oldid=184312342 (cit. on p. 135).

L. Guerrouj, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc (2013).
“Tidier: an identifier splitting approach using speech recognition
techniques”.
In: Journal of Software: Evolution and Process 25.6, pp. 575–599
(cit. on p. 201).

J. N. Hall, J. A. McAdams, et al. (2010).
Effective Perl Programming: Ways to Write Better, More Idiomatic Perl.
Pearson Education (cit. on p. 83).

S. Hanenberg (2010).
“An Experiment about Static and Dynamic Type Systems: Doubts about
the Positive Impact of Static Type Systems on Development Time”.
In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications. OOPSLA ’10.
Reno/Tahoe, Nevada, USA: Association for Computing Machinery,
pp. 22–35. isbn: 9781450302036.
doi: https://doi.org/10.1145/1869459.186946210.1145/1869459.1869462.
url: https://doi.org/10.1145/1869459.1869462 (cit. on p. 84).

A. E. Hassan, R. C. Holt, and A. Mockus, eds. (2004).
MSR 2004: Proceedings of the 11th Working Conference on Mining
Software Repositories. Edinburgh, Scotland, UK. url: http:
//2004.msrconf.org/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf
(cit. on p. 19).

219

https://firebase.google.com/
https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/analysis/analyzers/pattern-analyzer.asciidoc
https://github.com/elastic/elasticsearch/blob/1.6/docs/reference/analysis/analyzers/pattern-analyzer.asciidoc
https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html
https://commons.wikimedia.org/w/index.php?title=File:Wikipedia-n-zipf.png&oldid=184312342
https://commons.wikimedia.org/w/index.php?title=File:Wikipedia-n-zipf.png&oldid=184312342
https://doi.org/10.1145/1869459.1869462
http://2004.msrconf.org/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf
http://2004.msrconf.org/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf

B. J. Heeren (2005). “Top Quality Type Error Messages”.
PhD thesis. Nederlands: Universiteit Utrecht (cit. on pp. 26, 30, 33, 63).

I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles (2007).
“Towards a theoretical model for software growth”. In: Proceedings of the
Fourth International Workshop on Mining Software Repositories.
IEEE Computer Society, p. 21 (cit. on p. 126).

E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker (2014).
“An empirical study of identifier splitting techniques”.
In: Empirical Software Engineering 19.6, pp. 1754–1780 (cit. on p. 201).

A. Hindle (Mar. 2019). “Complexity: Let’s Not Make This Complicated”.
In: IEEE Software 36.2, pp. 130–132. issn: 1937-4194.
doi: https://doi.org/10.1109/MS.2018.288387510.1109/MS.2018.2883875
(cit. on p. 119).

A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu (June 2012).
“On the naturalness of software”.
In: Software Engineering (ICSE), 2012 34th International Conference on,
pp. 837–847. doi:
https://doi.org/10.1109/ICSE.2012.622713510.1109/ICSE.2012.6227135
(cit. on pp. 11, 22, 26, 30, 31, 35, 54, 60).

A. Holkner and J. Harland (2009).
“Evaluating the Dynamic Behaviour of Python Applications”.
In: Proceedings of the Thirty-Second Australasian Conference on
Computer Science - Volume 91. ACSC ’09.
Wellington, New Zealand: Australian Computer Society, Inc., pp. 19–28.
isbn: 978-1-920682-72-9.
url: http://dl.acm.org/citation.cfm?id=1862659.1862665
(cit. on p. 82).

M. Hristova, A. Misra, M. Rutter, and R. Mercuri (2003).
“Identifying and correcting Java programming errors for introductory
computer science students”. In: ACM SIGCSE Bulletin 35.1, pp. 153–156
(cit. on pp. 26, 30, 33, 64).

B. Hsu and J. Glass (2008). “Iterative language model estimation: efficient
data structure & algorithms”. In: (cit. on pp. 29, 61).

A. A. Hwang, I. A. Stefanovici, and B. Schroeder (2012).
“Cosmic rays don’t strike twice: understanding the nature of DRAM
errors and the implications for system design”.
In: ACM SIGPLAN Notices. Vol. 47. 4. ACM, pp. 111–122
(cit. on p. 130).

J. Jackson, M. Cobb, and C. Carver (2005).
“Identifying top Java errors for novice programmers”. In: Frontiers in
Education, 2005. FIE’05. Proceedings 35th Annual Conference. IEEE,
T4C–T4C (cit. on pp. 25, 32, 58, 61).

M. C. Jadud (2005).
“A first look at novice compilation behaviour using BlueJ”.

220

http://dl.acm.org/citation.cfm?id=1862659.1862665

In: Computer Science Education 15.1, pp. 25–40
(cit. on pp. 25, 32, 58, 61, 62).

M. C. Jadud (2006).
“Methods and tools for exploring novice compilation behaviour”.
In: Proceedings of the second international workshop on Computing
education research. ACM, pp. 73–84 (cit. on pp. 25, 32, 58, 61, 62).

F. James (2000). Modified Kneser-Ney Smoothing of n-Gram Models.
Tech. rep. (cit. on p. 99).

T. Jim (2012). Python is not context free.
http://trevorjim.com/python-is-not-context-free/. blog
(cit. on p. 85).

M. Kechagia and D. Spinellis (2014).
“Undocumented and Unchecked: Exceptions That Spell Trouble”.
In: Proceedings of the 11th Working Conference on Mining Software
Repositories. MSR 2014. New York, NY, USA: ACM, pp. 312–315.
isbn: 978-1-4503-2863-0. (Visited on 08/10/2016) (cit. on pp. 126, 145).

J. Kehne (Jan. 30, 2013). umbrello crashed with SIGSEGV in.
Accessed: 2016-10-29. url:
https://bugs.launchpad.net/ubuntu/+source/kdesdk/+bug/1110251
(visited on 01/30/2013) (cit. on p. 156).

F. Khomh, B. Chan, Y. Zou, and A. Hassan (Oct. 2011).
“An Entropy Evaluation Approach for Triaging Field Crashes: A Case
Study of Mozilla Firefox”.
In: 2011 18th Working Conference on Reverse Engineering (WCRE).
2011 18th Working Conference on Reverse Engineering (WCRE),
pp. 261–270.
doi: https://doi.org/10.1109/WCRE.2011.3910.1109/WCRE.2011.39
(cit. on pp. 120, 200, 201).

I.-S. Kim and K.-M. Choe (July 2001).
“Error repair with validation in LR-based parsing”.
In: ACM Trans. Program. Lang. Syst. 23.4, pp. 451–471. issn: 0164-0925.
doi: https://doi.org/10.1145/504083.50408410.1145/504083.504084
(cit. on pp. 30, 33, 54, 63, 86).

S. Kim, T. Zimmermann, and N. Nagappan (June 2011). “Crash graphs: An
aggregated view of multiple crashes to improve crash triage”.
In: 2011 IEEE/IFIP 41st International Conference on Dependable
Systems Networks (DSN). 2011 IEEE/IFIP 41st International Conference
on Dependable Systems Networks (DSN), pp. 486–493. doi:
https://doi.org/10.1109/DSN.2011.595826110.1109/DSN.2011.5958261
(cit. on pp. 120, 127, 176, 178, 200).

S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik (2012).
“Do static type systems improve the maintainability of software systems?
An empirical study”. In: Program Comprehension (ICPC), 2012 IEEE
20th International Conference on. IEEE, pp. 153–162 (cit. on p. 84).

221

http://trevorjim.com/python-is-not-context-free/
https://bugs.launchpad.net/ubuntu/+source/kdesdk/+bug/1110251

M. Kölling and contributors (June 2016). BlueJ. (Accessed on 08/10/2017)
(cit. on p. 97).

M. Kölling, B. Quig, A. Patterson, and J. Rosenberg (2003).
“The BlueJ System and its Pedagogy”.
In: Computer Science Education 13.4, pp. 249–268. doi:
https://doi.org/10.1076/csed.13.4.249.1749610.1076/csed.13.4.249.17496.
eprint: http:
//www.tandfonline.com/doi/pdf/10.1076/csed.13.4.249.17496.
url: http:
//www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
(cit. on pp. 97, 104).

D. Krpan and I. Bilobrk (2011).
“Introductory programming languages in higher education”.
In: MIPRO, 2011 Proceedings of the 34th International Convention.
IEEE, pp. 1331–1336 (cit. on pp. 58, 59).

S. K. Kummerfeld and J. Kay (2003).
“The neglected battle fields of syntax errors”. In: Proceedings of the fifth
Australasian conference on Computing education-Volume 20.
Australian Computer Society, Inc., pp. 105–111 (cit. on pp. 25, 32, 62).

Launchpad contributors (2016).
bug—Launchpad web service API documentation. Accessed: 2016-10-30.
url: https://launchpad.net/+apidoc/1.0.html#bug (visited on
10/20/2016) (cit. on p. 138).

D. Lawrie, H. Feild, and D. Binkley (2007a).
“Quantifying identifier quality: an analysis of trends”.
In: Empirical Software Engineering 12.4, pp. 359–388 (cit. on p. 154).

D. Lawrie, C. Morrell, H. Feild, and D. Binkley (2007b).
“Effective identifier names for comprehension and memory”.
In: Innovations in Systems and Software Engineering 3.4, pp. 303–318
(cit. on p. 154).

J. Lerch and M. Mezini (Mar. 2013).
“Finding Duplicates of Your Yet Unwritten Bug Report”.
In: 2013 17th European Conference on Software Maintenance and
Reengineering (CSMR). 2013 17th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 69–78.
doi: https://doi.org/10.1109/CSMR.2013.1710.1109/CSMR.2013.17
(cit. on pp. 128, 169, 170, 173, 174, 179, 183, 184, 188, 191, 195, 199, 200).

B. S. Lerner, M. Flower, D. Grossman, and C. Chambers (2007).
“Searching for type-error messages”. In: Conference on Programming
Language Design and Implementation (PLDI). San Diego, CA, USA,
pp. 425–434 (cit. on pp. 30, 33, 64).

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan (2005).
“Scalable statistical bug isolation”. In: ACM SIGPLAN Notices. Vol. 40.
ACM, pp. 15–26. url: http://dl.acm.org/citation.cfm?id=1065014
(visited on 01/08/2016) (cit. on pp. 121, 176).

222

http://www.tandfonline.com/doi/pdf/10.1076/csed.13.4.249.17496
http://www.tandfonline.com/doi/pdf/10.1076/csed.13.4.249.17496
http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
https://launchpad.net/+apidoc/1.0.html#bug
http://dl.acm.org/citation.cfm?id=1065014

Linux man-pages project (Aug. 2014). mmap(2) Linux User’s Manual. 3.74.
The Linux Foundation (cit. on p. 146).

C. Liu and J. Han (2006).
“Failure Proximity: A Fault Localization-based Approach”.
In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. SIGSOFT ’06/FSE-14.
New York, NY, USA: ACM, pp. 46–56. isbn: 1-59593-468-5.
doi: https://doi.org/10.1145/1181775.118178210.1145/1181775.1181782.
url: http://doi.acm.org/10.1145/1181775.1181782 (visited on
01/19/2016) (cit. on pp. 173, 176, 200).

C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff (2005).
“SOBER: Statistical Model-based Bug Localization”.
In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ESEC/FSE-13.
New York, NY, USA: ACM, pp. 286–295. isbn: 1-59593-014-0.
doi: https://doi.org/10.1145/1081706.108175310.1145/1081706.1081753.
url: http://doi.acm.org/10.1145/1081706.1081753 (visited on
01/20/2016) (cit. on p. 176).

B. Marr (Mar. 2015). Why only one of the 5 Vs of big data really matters.
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-
really-matters (cit. on p. 170).

J. Matthew, P. Fragoso, J. Livingston, R. P. Skadberg, B. Nocera,
C. Fergeau, and W. J. McCann (Apr. 14, 2009). rb-mtp-source.c.
Accessed: 2016-09-02.
url: https://github.com/ivankelly/Rhythmbox-Spotify-
Plugin/blob/2947d775d494848bbf6fbfd5a91004cebf159926/plugins/
mtpdevice/rb-mtp-source.c#L217 (visited on 04/14/2009)
(cit. on p. 153).

C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik (2012).
“An empirical study of the influence of static type systems on the
usability of undocumented software”. In: ACM SIGPLAN Notices. Vol. 47.
10. ACM, pp. 683–702 (cit. on p. 84).

W. J. McCann, J. Livingston, R. P. Skadberg, B. Nocera, C. Fergeau, and
J. Matthew (Nov. 13, 2008). rb-removable-media-source.c.
Accessed: 2016-10-29.
url: https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/
blob/a89630dba55eab0baa5a58c9b2cfc01e1bef4ef2/sources/rb-
removable-media-source.c#L657 (visited on 11/13/2008)
(cit. on p. 153).

L. McIver (2000). “The effect of programming language on error rates of
novice programmers”. In: 12th Annual Workshop of the Psychology of
Programming Interest Group. Citeseer, pp. 181–192
(cit. on pp. 25, 26, 32, 61).

223

http://doi.acm.org/10.1145/1181775.1181782
http://doi.acm.org/10.1145/1081706.1081753
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/2947d775d494848bbf6fbfd5a91004cebf159926/plugins/mtpdevice/rb-mtp-source.c#L217
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/2947d775d494848bbf6fbfd5a91004cebf159926/plugins/mtpdevice/rb-mtp-source.c#L217
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/2947d775d494848bbf6fbfd5a91004cebf159926/plugins/mtpdevice/rb-mtp-source.c#L217
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/a89630dba55eab0baa5a58c9b2cfc01e1bef4ef2/sources/rb-removable-media-source.c#L657
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/a89630dba55eab0baa5a58c9b2cfc01e1bef4ef2/sources/rb-removable-media-source.c#L657
https://github.com/ivankelly/Rhythmbox-Spotify-Plugin/blob/a89630dba55eab0baa5a58c9b2cfc01e1bef4ef2/sources/rb-removable-media-source.c#L657

K. J. Millman and M. Aivazis (2011). “Python for Scientists and Engineers”.
In: Computing in Science & Engineering 13.2, pp. 9–12 (cit. on p. 58).

N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet (Apr.
2007). “Automatically Identifying Known Software Problems”. In: 2007
IEEE 23rd International Conference on Data Engineering Workshop.
2007 IEEE 23rd
International Conference on Data Engineering Workshop, pp. 433–441. doi:
https://doi.org/10.1109/ICDEW.2007.440102610.1109/ICDEW.2007.4401026
(cit. on pp. 120, 127, 128, 158, 173–177, 200).

M. Monperrus (July 2020). “The living review on automated program repair”.
In: url:
https://www.monperrus.net/martin/repair-living-review.pdf
(visited on 07/13/2020) (cit. on p. 94).

I. R. Moore (2000–2013). Jester: the JUnit test tester.
http://jester.sourceforge.net/ (cit. on pp. 66, 67, 82, 88).

A. Moroo, A. Aizawa, and T. Hamamoto (2017).
“Reranking-based Crash Report Deduplication.” In: SEKE, pp. 507–510
(cit. on p. 167).

Mozilla Corporation (2012). Mozilla Crash Reports.
url: http://crash-stats.mozilla.com (cit. on pp. 120, 163, 168).

mozilla/socorro: Socorro is a server to accept and process Breakpad crash
reports. (2016).
url: https://github.com/mozilla/socorro (visited on 01/24/2016)
(cit. on p. 175).

F. Murtagh and P. Contreras (2012).
“Algorithms for hierarchical clustering: an overview”.
In: WIREs Data Mining and Knowledge Discovery 2.1, pp. 86–97. doi:
https://doi.org/https://doi.org/10.1002/widm.53https://doi.org/10.1002/widm.53.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.53.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.53
(cit. on p. 183).

Search-Based Software Engineering: 11th International Symposium, SSBSE
2019, Tallinn, Estonia, August 31–September 1, 2019, Proceedings (2019)
11664 (cit. on p. 210).

Options That Control Optimization—GCC online documentation (Oct. 2016).
6.2. Available: https://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html#index-foptimize-sibling-calls-754.
Free Software Foundation, Inc. (cit. on p. 125).

T. J. Parr and R. W. Quong (1995).
“ANTLR: A predicated-LL(k) parser generator”.
In: Software: Practice and Experience 25.7, pp. 789–810. issn: 1097-024X.
doi: https://doi.org/10.1002/spe.438025070510.1002/spe.4380250705.
url: http://dx.doi.org/10.1002/spe.4380250705 (cit. on p. 85).

T. Parr and K. Fisher (2011).
“LL(*): The Foundation of the ANTLR Parser Generator”.

224

https://www.monperrus.net/martin/repair-living-review.pdf
http://jester.sourceforge.net/
http://crash-stats.mozilla.com
https://github.com/mozilla/socorro
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.53
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.53
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-foptimize-sibling-calls-754
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-foptimize-sibling-calls-754
http://dx.doi.org/10.1002/spe.4380250705

In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’11.
San Jose, California, USA: ACM, pp. 425–436. isbn: 978-1-4503-0663-8.
doi: https://doi.org/10.1145/1993498.199354810.1145/1993498.1993548.
url: http://doi.acm.org/10.1145/1993498.1993548 (cit. on p. 63).

F. Pérez, B. E. Granger, and J. D. Hunter (2011).
“Python: an ecosystem for scientific computing”.
In: Computing in Science & Engineering 13.2, pp. 13–21 (cit. on p. 58).

Piping core dumps to a program—core(5) Linux User’s Manual (Dec. 2015).
4.4. The Linux Foundation (cit. on p. 129).

J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li,
A. Chitipothu, and S. Krishnamurthi (Oct. 2013).
“Python: The Full Monty”. In: SIGPLAN Not. 48.10, pp. 217–232.
issn: 0362-1340.
doi: https://doi.org/10.1145/2544173.250953610.1145/2544173.2509536.
url: http://doi.acm.org/10.1145/2544173.2509536 (cit. on p. 83).

Y. Qi, S. Marchi, M. Kościelnicki, and J. Brobecker (2014). gdb/tracefile.c.
Accessed: 2016-10-28.
url: https://chromium.googlesource.com/native_client/nacl-
binutils/+/upstream/master/gdb/tracefile.c#65 (visited on
02/10/2014) (cit. on p. 150).

Raygun (2020). Error Tracking & Crash Reporting.
url: https://raygun.com/platform/crash-reporting (visited on
09/30/2010) (cit. on p. 5).

A. Rigo (2004). “Representation-based just-in-time specialization and the
psyco prototype for python”.
In: Proceedings of the 2004 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. ACM, pp. 15–26
(cit. on p. 63).

A. Rigo and S. Pedroni (2006).
“PyPy’s Approach to Virtual Machine Construction”.
In: Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications.
OOPSLA ’06. Portland, Oregon, USA: ACM, pp. 944–953.
isbn: 1-59593-491-X.
doi: https://doi.org/10.1145/1176617.117675310.1145/1176617.1176753.
url: http://doi.acm.org/10.1145/1176617.1176753 (cit. on p. 63).

A. Rigo and C. Tismer (2001). Psyco, the Python specializing compiler,
http://psyco.sourceforge.net/ (cit. on p. 63).

G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Herraiz
(2011). “Tools and Datasets for Mining Libre Software Repositories”.
In: Multi-Disciplinary Advancement in Open Source Software and
Processes, p. 24 (cit. on pp. 130, 180).

Rollbar (2020). Rollbar - Error Tracking Software for JavaScript, PHP,
Ruby, Python and more.

225

http://doi.acm.org/10.1145/1993498.1993548
http://doi.acm.org/10.1145/2544173.2509536
https://chromium.googlesource.com/native_client/nacl-binutils/+/upstream/master/gdb/tracefile.c#65
https://chromium.googlesource.com/native_client/nacl-binutils/+/upstream/master/gdb/tracefile.c#65
https://raygun.com/platform/crash-reporting
http://doi.acm.org/10.1145/1176617.1176753
http://psyco.sourceforge.net/

url: https://rollbar.com/product/triage/ (visited on 09/30/2010)
(cit. on p. 5).

M. Salib (2004). “Faster than C: Static type inference with Starkiller”.
In: in PyCon Proceedings, Washington DC. SpringerVerlag, pp. 2–26
(cit. on p. 63).

G. Salton and M. J. McGill (1983).
Introduction to modern information retrieval.
McGraw-Hill computer science series. New York: McGraw-Hill,
p. 63. 448 pp. isbn: 978-0-07-054484-0 (cit. on p. 173).

E. A. Santos, J. C. Campbell, D. Patel, A. Hindle, and J. N. Amaral (Mar.
2018). “Syntax and sensibility: Using language models to detect and
correct syntax errors”. In: 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 311–322.
doi:
https://doi.org/10.1109/SANER.2018.833021910.1109/SANER.2018.8330219
(cit. on pp. 20, 93–96, 98, 99, 105–107, 109, 110, 112, 115).

E. A. Santos (2018). “Applications of the Naturalness of Software”.
MA thesis. University of Alberta.
doi: https://doi.org/10.7939/R3W37MB7X10.7939/R3W37MB7X.
url: https://era.library.ualberta.ca/items/2d3cf508-cc17-4534-
bb9c-1a0fd7e920c4 (cit. on p. 96).

M. Schaaf (2012). rhythmbox crashed with SIGSEGV. url: https:
//bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/806306
(cit. on p. 123).

A. Schröter, N. Bettenburg, and R. Premraj (May 2010).
“Do stack traces help developers fix bugs?” In: 2010 7th IEEE Working
Conference on Mining Software Repositories (MSR). 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR),
pp. 118–121. doi:
https://doi.org/10.1109/MSR.2010.546328010.1109/MSR.2010.5463280
(cit. on pp. 168, 174, 177, 200).

R. Sedgewick and K. Wayne (2011). Algorithms, Fourth Edition.
Addison-Wesley Professional. isbn: 0132762560. url:
https://login.ezproxy.library.ualberta.ca/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=cat03710a&
AN=alb.9389116&site=eds-live&scope=site (cit. on p. 183).

H. Seo and S. Kim (2012a). “Predicting Recurring Crash Stacks”.
In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ASE 2012. New York, NY, USA: ACM,
pp. 180–189. isbn: 978-1-4503-1204-2.
doi: https://doi.org/10.1145/2351676.235170210.1145/2351676.2351702.
url: http://doi.acm.org/10.1145/2351676.2351702 (visited on
01/08/2016) (cit. on pp. 120, 128, 168, 200).

226

https://rollbar.com/product/triage/
https://era.library.ualberta.ca/items/2d3cf508-cc17-4534-bb9c-1a0fd7e920c4
https://era.library.ualberta.ca/items/2d3cf508-cc17-4534-bb9c-1a0fd7e920c4
https://bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/806306
https://bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/806306
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat03710a&AN=alb.9389116&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat03710a&AN=alb.9389116&site=eds-live&scope=site
https://login.ezproxy.library.ualberta.ca/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat03710a&AN=alb.9389116&site=eds-live&scope=site
http://doi.acm.org/10.1145/2351676.2351702

H. Seo and S. Kim (2012b). “Predicting recurring crash stacks”.
In: 2012 Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. IEEE, pp. 180–189 (cit. on p. 8).

B. Sigurd, M. Eeg-Olofsson, and J. Van Weijer (2004).
“Word length, sentence length and frequency–Zipf revisited”.
In: Studia Linguistica 58.1, pp. 37–52 (cit. on p. 154).

S. Sippu and E. Soisalon-Soininen (1990).
Parsing Theory: LR(k) and LL(k) Parsing.
EATCS monographs on theoretical computer sciences: European
Association for Theoretical Computer Science. Springer.
isbn: 9783540517320.
url: http://books.google.ca/books?id=en4Qk6T9PrAC (cit. on p. 87).

F. Stajano (2000).
“Python in education: Raising a generation of native speakers”.
In: Proceedings of 8 th International Python Conference, pp. 2000–01
(cit. on p. 59).

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud (2011).
“Predicting At-risk Novice Java Programmers Through the Analysis of
Online Protocols”. In: Proceedings of the Seventh International Workshop
on Computing Education Research. ICER ’11.
Providence, Rhode Island, USA: ACM, pp. 85–92.
isbn: 978-1-4503-0829-8.
doi: https://doi.org/10.1145/2016911.201693010.1145/2016911.2016930.
url: http://doi.acm.org/10.1145/2016911.2016930
(cit. on pp. 32, 62).

E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud (2008). “Identifying
at-risk novice java programmers through the analysis of online protocols”.
In: Philippine Computing Science Congress
(cit. on pp. 25, 26, 32, 58, 61, 62).

Technical Note TN2123: CrashReporter (2016).
url: https://developer.apple.com/library/mac/technotes/tn2004/
tn2123.html (visited on 01/24/2016) (cit. on pp. 120, 168).

Ubuntu Wiki contributors (Nov. 22, 2012). Apport. Ed. by C. Watson.
Wiki article. Accessed: 2016-08-30.
url: https://wiki.ubuntu.com/Apport (visited on 08/25/2016)
(cit. on p. 129).

E. M. Voorhees et al. (1999). “The TREC-8 question answering track report”.
In: Proceedings of TREC. Vol. 8, pp. 77–82 (cit. on p. 39).

C. Walters (Apr. 2011).
Use SIGTRAP (via G_BREAKPOINT()) if G_DEBUG=fatal-warnings.
url: https://mail.gnome.org/archives/commits-list/2011-
april/msg11156.html (cit. on p. 145).

M. Wand (1986). “Finding the Source of Type Errors”.
In: Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. POPL ’86.

227

http://books.google.ca/books?id=en4Qk6T9PrAC
http://doi.acm.org/10.1145/2016911.2016930
https://developer.apple.com/library/mac/technotes/tn2004/tn2123.html
https://developer.apple.com/library/mac/technotes/tn2004/tn2123.html
https://wiki.ubuntu.com/Apport
https://mail.gnome.org/archives/commits-list/2011-april/msg11156.html
https://mail.gnome.org/archives/commits-list/2011-april/msg11156.html

St. Petersburg Beach, Florida: Association for Computing Machinery,
pp. 38–43. isbn: 9781450373470.
doi: https://doi.org/10.1145/512644.51264810.1145/512644.512648.
url: https://doi.org/10.1145/512644.512648 (cit. on p. 1).

S. Wang, F. Khomh, and Y. Zou (May 2013).
“Improving bug localization using correlations in crash reports”. In: 2013
10th IEEE Working Conference on Mining Software Repositories (MSR).
2013 10th IEEE Working Conference on Mining Software Repositories
(MSR), pp. 247–256. doi:
https://doi.org/10.1109/MSR.2013.662403610.1109/MSR.2013.6624036
(cit. on pp. 120, 128, 158, 170, 173, 174, 178, 179, 199, 200).

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest (2009).
“Automatically finding patches using genetic programming”. In:
Proceedings of the 31st International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, pp. 364–374.
isbn: 978-1-4244-3453-4. doi:
https://doi.org/10.1109/ICSE.2009.507053610.1109/ICSE.2009.5070536
(cit. on pp. 30, 33, 54, 64).

R. Wu, H. Zhang, S.-C. Cheung, and S. Kim (2014).
“Crashlocator: Locating crashing faults based on crash stacks”.
In: Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, pp. 204–214. url:
http://dl.acm.org/citation.cfm?id=2610386 (visited on 01/08/2016)
(cit. on pp. 173, 174, 176, 177, 200, 201).

Zerone (Apr. 14, 2009). Rhythmbox crashes while copying songs to psp.
Accessed: 2016-09-02. url: https:
//bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/361259
(visited on 04/14/2009) (cit. on pp. 143, 153).

Y. Zhao and G. Karypis (2001).
Criterion functions for document clustering: Experiments and analysis.
Tech. rep.
Retrieved from the University of Minnesota Digital Conservancy.
url: https://hdl.handle.net/11299/215490 (cit. on p. 186).

228

https://doi.org/10.1145/512644.512648
http://dl.acm.org/citation.cfm?id=2610386
https://bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/361259
https://bugs.launchpad.net/ubuntu/+source/rhythmbox/+bug/361259
https://hdl.handle.net/11299/215490

	Introduction
	Two Engineers
	Motivation
	The Road to Data-driven SE Tooling
	Thesis Statement

	Research Presented in this Thesis
	Contributions
	Potential Applications
	Organization

	Terminology and Philosophy
	Typos
	Unnatural Tools
	The Unnatural Way

	Dynamic Detection of Typographical Errors in Java Code
	Preface
	Acknowledgements
	Significance
	Impact

	Abstract
	Motivation
	Background
	Previous Work

	A Prototype Implementation of UnnaturalCode
	Validation Method
	Mean Reciprocal Rank

	Validation Results
	Discussion
	Performance on Milestones
	Performance on Revisions
	Performance with Interleaved Errors

	Threats to Validity
	Future Directions
	Conclusion

	Dynamic Detection of Typographical Errors in Python Code
	Preface
	Acknowledgement
	Significance
	Impact

	Abstract
	Introduction
	Background
	n-Grams in Software Engineering
	Programming Errors
	Technical approaches to Syntax Errors

	Implementation
	Experimental Validation Procedure
	Results
	Comparison to UnnaturalCode with Java

	Discussion
	UnnaturalCode.py Performance
	Properties of Python

	Threats to Validity
	Future Work
	Conclusions

	 From Online Location to Offline Correction of Typographical Errors in Code
	Preface
	Acknowledgement
	Relationship with ``Syntax and Sensibility''
	Significance
	Terminology

	Introduction
	Motivation
	Prior Work

	Methodology
	Tokenization
	Locating syntax errors
	Fixing syntax errors

	Evaluation
	Novice Mistakes
	Big Java

	Results
	Research Answers
	Comparison with LSTM model

	Discussion
	Single-edit Repairs
	Constrained Performance
	What is a Correct Location
	Comparison with Previous Chapters
	General Limitations of this Evaluation
	The Benefits of Cheap Models

	Conclusion
	Automated Repair

	Statistical Properties of Crash Reports
	Preface
	Acknowledgement
	Significance

	Introduction
	Terminology
	Prior Work
	Studying crash report repositories
	Stacktrace crash report deduplication

	Data
	How do crashes make it into Launchpad?
	Why Launchpad?
	How were the crashes obtained?
	What do the crashes look like?

	Research Questions, Methodology and Results
	RQ1. How are crashes distributed among applications?
	RQ2. How are crashes distributed among buckets?
	RQ3. How long do crash buckets last?
	RQ4. What Unix signals are crashes associated with?
	RQ5. What CPU architectures experienced the crashes?
	RQ6. How long are crash stacktraces?
	RQ7. How are crashes associated with recursion?
	RQ8. How long are function names in crashes?
	RQ9. What are the most common crashing functions?
	RQ10. What are the most common crashing libraries?

	Threats to validity
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	Conclusions

	Clustering Automatically Generated Software Crash Reports
	Preface
	Acknowledgement
	Significance
	Impact
	Extensions

	Introduction
	Contributions
	What makes a crash bucketing technique useful for industrial scale crash reports?
	Background
	Methods Not Appearing In This Report

	Methodology
	Mining Crash Reports
	Crash Bucket Brigade
	Deciding when a Crash is not Like the Others
	Implementation
	Evaluation Metrics

	Results
	BCubed and Purity
	Bucketing Effectiveness
	Tokenization
	Runtime Performance

	Discussion
	Threats to Validity
	Related work
	Future Work

	Conclusion
	Errata

	Conclusion
	Summary
	Future Work
	General Motivations Future Work
	Questions for Future Work

	Remarks
	Thoughts

	References

