~

Bibliothéque nationale
du Canada »

National ‘Library
of Canada

i

Canadian Theses Service

’

Ottawa. Canada
K1A ON4

CANADIAN THESES .

. NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfiiming. Every
effort has been made to ensure the highest quality of reproduc-
flon possible.

If pages are missing, contact the university which granted the
degree. ’

Some pages may have indistinct print especially if the original
pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published
tests, etc.) are not fiimed.

Reproduction in full qr in part of this film is governad by the
Canadian Copyright Act, R.S.C. 1970, ¢. C-30. Please read
the authorization forms which accompany this thesis.

v

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 338 . 8001)

Services des théses canadiennes

THESES CANADIENNES

AVIS

La qualité de cette microfiche dépend grandement de la qualité
de la thése soumise au microfilmage Nous avons tout fait pour
assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec I'univer-
sité qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont éié dactylographiées
& f'aide d'un ruban usé ou si I'université nous a fait parvenir

une photocopie de qualité inférieure.

Leg documents qui font déja I'objet d'un droit d’ auteur (articles
de revue, examens publids, etc.) ne sont pas microfimés.

La reproduction, méme paertiatie, de ce microfiim est soumise
4 la Loi canadienne sur le droit d'autewr, SRC 1970, ¢. C-30.
Veulliez prendre connaigsance des formules d’ autorisation qui
accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

—

Bibliotheque nationale
du Canada

National Library
of Canada

Canadian Theses Division

Ottawa. Ganada '
K1A ON4

3-315-27817-9

Division des theses canadiennes

v

PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER

| Please print or type — Ecrire en lettres moulées cu dactylographter

Full Name of Author — Nom « complet de | auteur

HNTOINE

Date of B|rth — Date de naissance

P \/CQHEIJEM

Country of Bmh — Lleu de naissance

NCTH:K(JQND s

3 owy 26 19588 I He

Permanent Address — Reésidence fixe - ' cTTrrmrTrm e e e

3544 1an Aue.

EoronTon | Hserrn

T6C 3L s
Title of Thesis — Titre de la these) oo T e

Evmum-uou OFR D-ﬁﬁouﬂc /Pﬁue QLGO&«THHJ

~

University — Université

UN(UEoQSIT\I or ﬂLBE!m

Degree for which thesis was presenteqd — Grade pour lequel cette these fut présentée

MasterR oF Sacienes

Year this degree conferred — Année d cbtention de ce grade

1ve3 !

Name of Supervisor — Nom du directeur de theése

Stancey CrsAay

Permission 1s hereby granted to the NATIONAL LIBRARY OF
CANADA to microfitm this thesis and to lend or sell copies of
the film.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-
wise reproduced without the author's written permission.

L'autorisation est, par la présente, accordée a la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette thése et de
préter ou de vendre des exemplaires du film.

L'auteur se réserve ies autres droits de publication; ni la thase
ni de longs extraits de celle-ci ne doivent &tre imprimés ou
autrement reproduits sans |'autorisation écrite de |'auteur.

Oct.

7 /83

ignature A
e Vel

NL-91 (4/77)

A e e e

ot

|

if”ﬁr

ot ol
AR & | .

! »‘1;}7,*9 -

R

b THE UNIVERSITY OF ALBERTA

Evaluation of Diagonal Pade Algorithms

//C by
Antoine Verheijen

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF Master of Science

Department of Computing Science

EDMONTON, ALBERTA

Fall, 1983

THE UNIVERSITY OF ALBERTA

RELEASE FORN

NAME OF AUTHOR Antoine Verheijen
TITLE OF THESIS Evaluation of Diagonal Pade Algorithms
DEGREE FOR WHiCﬁ THESIS WAS PRESENTED Master of Séienco ’
YEAR THIS DEGREE GRANTED Fall, 1933
Permission is hereby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reprodu;e single copies of this
thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only.
The author reserves other publication rights, and
. neither the thesis nor extensive extracts from it may
be printed or otherwise reproduced without the author's
written permission.

(SIGNED) pf“*"“"-

PERMANENT ADDRESS:
3544 12A Avenue

® ® 0 0 % 0 00 BP0 R N OO OSSP LSS

Edmonton, Alberta

® 6 00 0 09 00 0 OO 90O SN E S SN SO S BN

T6L 3L5

® & 5 0 ¢ 8 0 0 0 00 0L 0SS0 eE S
.

DATED 6.&‘?(»44’15 1933

THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH
The undersigned certify that they have read, and
recommend to the Faculty of Graduafe Studies and Research,
for acceptance, a thesis entitled Evaluation of Diagonal
Pade Algorithms submitted by Antoine Verheijen in partial
fulfilment of the requirements for the degree¢ of Mastet of

Science in Computing Science.

~

Supervisor

vate . Octsben. .. 13, 19.83..

-,

Abstract

Four algorithms are presented for computing symbolic .
diagonal Pade approximantg for a power series Jﬁose
coefficiénts‘lie in a field. Precise bounds are developed
' for the worst case cost of each of the four algorifhms uéing
both classical'and fast power series';hd polynomial |
arithnetic.‘rolloving thii, empirical CﬁU tgning results, as
obt;ined for'e;ch of the algorithns,;are'given. Base%-on
both the theoretical and empirical costs\.produced, it is
shown thnt,gne method, using classical arithmetic, is
superior for obtaining approximants of low degree and that a
different method, using fast arithmetic, becomes superior
for larger problems. Estimates for the crossover in

superiority between the two methods are obtained.
»

iv

Table of Contents

Chapter | ' Page

1. INtrodUCLION .ot vtveseesesonocononenssonsnssansonoocnns 1
1.1 Pade Approximants ceessteenss Ceececane e b
2. Polynomiél and Pdwer Series Arithmetic cesen.. 14
2.1 The Ciassicél Aléorithﬁs L L LR E R R R R 15
2.2 The Fast Fourier Transform Ceetrececsaaane 20

»

2.3 Past Nultjpliqation and Division «e. 30

3. Algoritfhsis £or Computing Pade Approximants 39

3. AD Algorithmc0cccteevesrecsansscenssecss 40

The MD AlQOrithmcccevevcencsenssasassassess 26
.3 The DIAG ALGOFitREeeveverrnnnnnneeeeeeinnss 61
3.‘ Th‘ OPPDXAG Algotith‘co’-oooooo'oo.o-c-ooo-no.o.n-oo'69

Pt.ctic‘l hml’.i' ..'.....f.’.C.'.O.........I..'..“.. 77

"

‘4.1 Selection of the Coefficient Pield 77
"2 Im‘lm‘nt.ticﬂ mt.il' ;.............'.....O.Q.... 79
¢.3 Bapirical Results

............'..'.....‘..‘. ‘2
< B

“‘ c%lu.im.'.l'.......Q.....O....'.......‘OC.. ‘7

¢.5 Tbouqht: for Puture ReSEBIChcccvcccscccccce M

hf.r'm‘. OQQ...OIVO‘OODO..l.'....l...'....'..’.....'0".0..Q "
' Appendix A: Determining Theoretical Cost Estimates .}...‘loo.‘

Appendix B: l-piricai\EFB\Ting Valuescccevnsnceese 104
- A ‘ -

List‘of Tabies

Table . . " Page

1. CPU Times us}né Classical Arithmeticce0000es0... 104

2. CPU Times using Fast Arithmetic AU ' 1
3. Storage Mgnipulétion Times using Classical

Arithmetic:...f..................{. 106

3. Storage Manipulation Times using Fast Arithmetic 107

.

ve——

vi | [.

£ 2

=t

Figure

\

1. Empirical CPU Time Graphv...%

N se

e

™

.

" List of Figures

.

N

Qﬁvz;lTheoretiéal Cost Graphv.coeess

a

1
H

{
' ' L

Pag§

. a!,

)

;o-oo-oooo..ooo-o.qao 84

‘o.l'oot.ooucononsooacno.. 85

1

v TR

1: Introduction
Over the last few years, a refiewed interest has been
expressed in the computation of Pade épproximants for a
power seties, which represents one approach to converting a
povwer series to rational farm, as outliﬁed shortly. Pade

approximants have held a long andcfstablished place in

mathematical analysis and theoretical physics, as indicated (’,w

by Gragg [12] and Geddes [10,11]. However, this lastest
interest has been geneaiggd from within thé<stddy of
stbblic computer'algebra by the desire to be able to
efficiently hanipulate;rational functions.
. Tﬂe most straightforward approach for dealing with
ratioﬁal functions, that of retaining both the numerator gnd
the denominaéor as separate entities, is susceptible to
unpredictable growth in the numerator and the denominator.
In particulaf, performing arithmetic on rational functions
has a tendency to dramatically increase the sizes (in terms
of their degrees) of the numerator and denominator of the
result. This makes it necessary either to retain and work
with undesirably large values, or to continually compute .
polyﬁomial greatest common divisors in order to keep the
rational function in reduced forn. For some (perhaps all)
‘applications, a possible alternative is available in the
form of truncated power series. 8

The idea behind the use of power series for this
purpose is that the rational funcgﬁon is first converted to

.

a truncated power series of a prideter-indd number of terms.

4

Ly vem A e e e s

The desired caléﬁlations are then performed on this power
series with an appropriate number of terms being retained.
Finally, "the resulting power series is (are) converted back
into rational form. | -,

The transformation from rational form to truncated
power series form is relativel& easy to perform, for
example, by applying power series division (described in
Chébter 2) to the numerator and dfnomihator polynomialsf
However, the reverse transformation is not as easy to
accomplish. It is in this Jrea that the usefulness of Pade
approximants bekomes apparent., To date, Pade approximation
techniques represént the most promising method for
converting a rational function from truncated power series
form back to rational form.

The recent work on Pade approximants has resulted in
the development of three fast algorithms that reduce the
_cpmplexity of computing.diagonal Pade approximants (defined
iﬁ the next section) to O(nlogzn) from the prevfous best of
,O(nz) as achieved by the classical algorithms. It is thé
purpose of the pfesent research to perform a comparative
evaluation of these three algorithms along with the best of
the classical methods. The analysis is carried out at both
the abstract and the practical level, but it is the
practical results which forﬁ the major contribution_of‘this
study. klthough two of the algorithms are désigned to handle
more géneral cases, and are presented in thejr more general

form, only the computation of Pade approximants which lie
%

NP —"

f
along the main diagonal of the Pade table is considered.

This i$ not limiting in any practaal sense since it is
shown that algorithms for gbmputing diagonai approximants
can easily be used té obtain any arbitrary Pade approximant
for a power series. A further limitation imposed in.the
present study is that all polynomials and power series are
assumed to be univariate with coefficients lying in a field.

No mention is made throughout this presentation of any
classical method for computing Pade approximants other than
the one mentioned above. The reason for this is twofold. To
begin with, the.classical‘method that is included herein is
2/3 the cost of the next best classical method. Furthermore,
almost all of the other classical algorithms fail for poket
series that are abnormal (as defined in th;’next sectionf. ‘
Details of these other approaches can be found in Gragg [12]
and d;ades {10,11]. '

Throughout this presentation, some familiarity with the
basic concepts of abstract algebra is assumed. Should such
knowledge be lacking, it is ad§ised that a text on abstract
algebra, such as Herstein [13] or Lipson {19], be consulted
to obtain a rudimentary background in the preliminary |
aspects of ring and field theory.

. An effort has been made to keep this discussion as

complete as possible in an ittempt to reduce the need to
consult the various references. To meet this objective, a

substantial amount of existing theory is included in this

presentation. In particular, although sometimes stated in a

A

.different form in order to produce a unified approach, the‘
algorithms, theorems, and proofs presented perein are not)
unique to the present discussion and can all be fbund in tﬁe
references listed at the end of ghis presentation. However,
because simply knowing the order of complexity of the
algorithms is not completely sufficient for performing a
practical'compariéon, more precise worst case cost estimates
are developed in this presentation than are available
elsewhere in the literature.

In the abstract presentation of any polynomial or power
seriés algorithm in this discussion, all theoretical cost
estimates are derived in terms of unit operations, or
coefficient operationé. Such operations include the
addition, subtraction, %nd multiplication of\two elements

from the coefficient field. It is assumed that the cost of

each of these three types of operations is the same.

1.1 Pade Approximants
A univariate polynomial or power series is defined to

)

be an expression’of the form

n .
A{x) = Z akxk RN

® =

)

vhere n is a specific integer value for polynomials and n is

= for power series. The a, values, referred to as the

coefficients of the polynomial or power series, are selected

}from a specific algebraic system. For present purposes, this

\ ..
system is assumed to be a field, known as the coefficient

: A

™.
field. By convention, it 1s assumed that a, =0 for all

kK > n. The value x 1s the indeterminate of the polynomial or
power series and 1s a variable thse domain is the same as
the coefficient field.

Because it is not possible, in practice, to retain an
infinite number of terms, power series are often truncated
to a specified number of terms. This makes truncated powsr
series look very much like polynomials. A difference does
still exist, howeve;, in the way that the division operation
1s defined for these two sets. The details of this
difference is deferred until Chapter 2, where the general

LY
concepts of polynomial and power series arithmetic are fully

described. ‘

A somewhat non-standard convention is adopted for
denoting polynomials and power series throughout this
presentation. If A(x) is a polynomial or truncated power
series, then A denotes the vector of coefficient; of A(x). -
Since all polynomials and power series considered in this
discussion are assumed’to be univariate, the vector of
coefficients completely describes the polynomial or power
series. Therefore, because it results in less cluttered
notati&n, the vector form of denoting polynomials and
truncated power series is used. Unless otherwise indicated,

the kth coefficient of polynomial or poWwer series A is

denoted by ak vhile the indeterminate of all polynomials and °

}52rer series is assumed to be x.

~

-

Two functions are used to indicate the magnitude of a

polynomial or truncated power series.
Definition 1.1.1

Let A be a non-zero polynomial or truncated power
series. Then
1) deg(A) = max{k such that ak¢o} = degree of A,

2) ord(A) = min{k such that akto} = ordinate of A.

By convention,.aeg(O) is -« while ord(0) 1s «. Given this
definition, a zero-ordinate polfnomial Oor power series is
one whose ordinate is zero. Some properties of the degree
3nd ordinate functions, which’ are required later, now

- follow:
Theorem 1.1.2

Let A,B be two non-zero polynomials or truncated power
series. Then

1) deg(A+B) < max{deg(A),deg(B)},

2) deg(AB) < deg(A)+deg(B),

3) ord(A+B) 2 min{ord(A),ord(B)},

4) ord(AB) = ord(A)+ord(B).

These properties are a direct consequence of the definitions

of the two functions and the ‘definitions of the addition and

~

multiplication operations for polynomials and power series.

When dealing only with polynomials, the second inequality in

this theorem becomes an equality. Note also that fourth

-~}

property és applied tc truncated power series assumes that
the product of A and B 1s not zero within the degree of
truncation.

When considering the division operation for
polynomials, an unfamiliar notational convention 1is adopted
in this presentation. As with the integers, the division of

{
two polynomials produces both a quotient and a remainder.

Definition 1.1,3

Let A,B,Q,R be polynomials such that B # 0, A = QB+R,
and deg(R) < deg(B). Then
1) |A/B] = Q = quotient of A/B,

2) Amod B = R = remainder of A/B.

Although non-standard, this method of denoting the guotient
of the polynomial division operation is not unigue to the
present discussion as it has been used in such works as Aho,
Hopcroft, and Ullman [1]. The mod operation should be a
familiar concept from abstract algebra.

Since the division of two power series only produces a
quotient, a similar method of distinguishing the gquotient of
a power series division is not required. Furthermore, a mod
operator of the type defined for polynomials does not exist
for power series. However, a similar mod operation is

defined for power series:
Definition 1.1.4

Let A be an arbitrary power series. Then

n-1
A mod xn = I a. x

K
k=0 X

Note that the second operand for the mod operator as applied
to power serlies 1s always a power of the i1ndeterminate.
Thus, the mod operation for power series provides a
convenient mechanism for indicating the degree of truncation
for a truncated pover series.

One final algebraic system needs to be defined. A
rational function 1s an expression of the form A/B where A,
the numerator, and B, the denominator, are polynomials.

Equality for rational functions is defined as follows:
Definition 1.1.5

Let A/B, C/D be two rational functions. Then A/B = C/D

1ff AD = BC.

Note that this definition makes no assertions about the
equality of the numerators or the denohinators. The two
basic arithmetic operations performed for rational functions

are given below:
Definition 1.1.6

Let A/B, C/D be two rational functions. Then
1) (A/B)+(C/D) = (AD+BC)/(BD),
2) (A/B)(C/D) = (AC)/(BD).

Finally, a rational function, A/B, is said to be in reduced

form if gcd(A,B) = 1,

With this background information given, it is now

possible to introduce the concept of a Pade approximant .
Definition 1.1.7

Let A be a power series. Then the rational function
P/Q is an (m,n) Pade approximant for A if

1) AQ-P = 0 mod x™'N*!

1]

2) deg(P) s m,
3) deg(Q) s n.

One way of interpreting this definition is that, if a
rational function, P/Q, with ord(Q) = 0, is an (m,n) Pade
approximant for a power series, A, then the application of
pover series division to P and Q produces a power series
whose first m+n+) coefficient; are the same as the
corresponding coefficients of A. A rational function is
referred to as a reduced (m,n) Pade approximant if it is
equivalent to the reduced form of the rational function
represented by the (m,n) Pade approximant. Note that by this
definition: a reduced Pade approximant is not a Pade
approximant according to the aiffnition given above; it is
simply the reduced rational form of the given Pade
approximant.

The complete set of Pade approximants for a given power
series are normally organized into a table, called the Pade
table for that pover series, wvhere the (m,n)th entry of the

table corresponds to the (m,n) Pade approximant for the

power series. A power series is said to be normal, with

10

respect to its Pade table, if every approximant in the Pade
table is not equal to any other approximant in the table. A
power series is (m,n)-normal ifbits {(i,j) Pade approximants
are distinct from each other f{s all 0 s i‘s m and

0 £ j £ n. A power series is normal along a diagonal 2?
anti-diagonal of its Pade table if all approximants along
that diagonal or anti-diagonal are distinct.

. If a Paée approximant for a power series lies on the
main diagonal of the Pade table for that power series, then
that apbroximant is referred to as a diagonal (n,n) Pade
approximant for the power series. A handy definition

associated vith diagonal Pade approximants is given as

follows:
Theorem 1.1.8

Given a diagonal (n,n) Pade approximant for a power
series, the value of n is defined to be the degree of

conversion for. that Pade approximant.

i .
This definition provides a useful means of. referring to the

position of g'diagonal Pade approximant in the Pade table.
An interesting result concerning the Pade table for an
abnormal power series (one which is not normal) is contained

in the following theorem,

Theorem 1.1.9

Let A be a pover series. Let P/Q be a reduced rational

function with deg(P) = m and deg(Q) = n such that

1M

AQ-P = 0 mod xm+n+1. Let k 2 0 be the largest integer

such that AQ-P = 0 mod xm+n+k+1.

Finally, let Rij be
the (i,j) Pade approximant of A for m £ i < m+k and

n £ j S n+k. Then Rij = P/Q.

The proof of this result is given by Gragg [12], whose
article constitutes an excellent discussion of the concept
of Pade approximants in general. The implication of Theorem
1.1.9 is that equal Pade apprdximants for an abnormal power
series occur in rectangular blocks in the Pade table for
that power series.

Another useful feature of Pade approximants is

presented as the following result.

Theorem 1.1.10

Let A,B,C be power series such that B = A mod x™ " and
C = (A-B)/x™ " for two integers m 2 n. Now let P/Q be
the (n,n) Pade approximant for C. Then the (m,n) Pade
approximant for A is the rational function P/Q vheFe

P = BQ+Px® " and @ = Q.

Proof:

AQ-P = AQ-(BQ+Px™ ")

(A-B)é-?x.-n

(cQ-p)x™ "

v= (0 mod x2N*1)® D
=0 wmod x™M*,

Also, deg(P) = deg(pQ+Bx™ ")

12

IA

max{deg(BQ),deqg(P)+m-n}

max{m—ﬁ,m}

IA

= m

and deg(Q) deg(Q) < n.

Thus, P/Q is the (m,n) Pade approximant for, A.
. Q.E.D.
This result shows that to compute any Pade approximant on or
below the main diagonal of the Pade table for a power
series, it is‘;;I} necessary to hayf'available a method that
computes approximants along the main diagonal of a Pade
table.
To complete this abstract discussion of Pade
approximants, one more property of such approximants is

presented. In order to present this result, the definition

of Pade approximants is first modified slightly.
-
Definition 1.1.11

Let A,B,C be power series such thﬁt A = B/C. Then the
rational function P/Q is an (m,n) Pade approximant for
APE |
1) BQ-CP = 0 mod x™"*7,
2) deg(P) < m, ; A

3) deg(Q) < n.

\
\

Note that‘§f C = 1, then this new detinition is the same as
that given earlier. Using this new definition, the following
relation betwveen the Pade approximants of two power series

which are inverses of each other can be giv§ni & -

|
1

13
Theorem 1.1f12

Letl A,B,C be power series such that A = B/C and
ord(A) = 0. Let P/Q be an (m,n) Egde approximant for
A. Then Q/P is an (n,m) Pade approximant for power

series A-1 = C/B. —_—

The proof of this theorem is trivial, given the extended
definition of Pade approximants. This result is given using
the more general definition of Pade approximants because it
is required in that form later. A benefit of this result is
that, coupled with Theorem 1.1.10, it indicates that the
computation of any Pade approximant for a_power series
requires only the availability of a metﬁod for computing

N

main diagonal Pade approximants. A

2. Polynomial and Power Series Arithmetic

Of primary concern in the analysis of any algebraic
algorithm are the methods used to perform the basic -
arithmetic operations, since these have such a direct effect ~
on the complexity of the problem. Two techniquesb#re
commonlf considered when discﬁssing polynomial and power
series atithmetic: the classical algorithms and the fast
algorithms. Even though the asymptotic complexity of the -
latter are known to be superior, both approaches‘;re
presented in this chapter for reasons which will become
apparent later. . J

Before proceeding, a no:ational convention adopted in
this chapter is restated. All polynomials and power series
are assumed to be univariate with coefficients belonging to
a field. If A(xi is a polynomial or power series, then A
denotes the vector of coefficients of A(x) while a, denotes
the kth coefficient of A(x). On the other hand, if V is a
vector, then V(x) is the polynomial or power series whose
coefficients are the elements of V. Taking advantage of this
duality, only the vector ‘form notation is used for
polynomiils or power series, since it is less cumbersome in
appearance and does not result in any ambiéuities, while x
is use@ to denote the indeterminate of all polynomials and
powver series throughout.

A couple of definitions are also repeated. Firstly, a
zero-ordinate power series is a power series whose constant
term is non“zq.g. Secondly, the costs of polynomial or power

R

14

15

series algorithms are determined in terms of unit
operations, which are defined to be the operations of
addition, subtraction, or multiplication when performed on

two elements from the coefficient field.

2.1 The Classical Algorithms

The easiest arithmetic operations to perform on
polynomials and power series are thoé; of addition and
subtraction. If A and B are two polynomials, then their sum

or difference, C\- A t B, is calculated as follows:
Algorithm 2.1.7: Polynomial Addition and Subtraction

Input: A,B are polynomials.

Output: C = At B.

1) n = max{deg(A)+1,deg(B)+1].
o
2) For i = 0 until n-1 do begin
3) c; = a; t b,.
end.

It‘can be observed that both polynomial addition and
subtraction each require n operations involving elépents
"from the coefficient field. If A and B are two pover series
instead, then the value of n becomes éhe ﬁﬁmber of terﬁs
retained wheq using truncated poier series and the
coﬁplexity of addition and subtraction is the same.

The product: C = AB, of two arbitrary polynomiais or

power series, A and B, is defined by the Cauchy product as

16

follows:
"Algorithm 2.1.2; Polynomial/Power Series Multiplication

Input: A,B are polynomials or power series.

Output: C = AB.

1) n = deg(Cl+1. o

2) For i = 0 until n-1 do begin

!

3) c; = 0. ,
4) For j = 0 until i do begin
5) c; =c; ¢t ajbi-j‘
end. ' .
end. ‘

For polynomials, n = deg(A)+deg(B)+1 whereas for power
series, n is the number of terms retained when using
_ truncated power series., The complexity of this algorithm, as

24n unit operations.

detqrmined by step 5, is n
For polynomials, the complexity of Aléorithm 2.1.2 can
be improved by using the fact that
ajbi—j = 0 if j > deg(A) or i-j > deg(B).
Eliminating these terms from the prev&ous~algorithm, and

rearranging, produces the following result:
Algorithm 2.1.3: Polynomial Multiplication

Input: A,B are polynomials.

Output: C = AB.

o~

17

1) For i

0 yntil deg(A)+deg(B) do c; = 0.

2) For i

n

0 until deg(A) do begin
3) - For j = 0 until deg(B) do begin
4) Ciej T Ci+j + aibj'

end.

end.

The complexity of this algorithm is 2[deg(A)+1]jdeg(B)+1],
which is easily verified as an improvement over the previous
result. A similar improvement is not possible, however, for
arbitrary power series multiplication because, in general,
deg(A) = deg(B) = n-1 for any arbitrary truncated power
series, A and B;

Up to this point, the arithm;tic operations for
polynomials and power series have been very §imilar. The

same is not true for the operation of division. This is due

to the fact that the division of two polynomials produces

both a quotient and a remainder while the division of two
povwer series produces only a quotient, For two arbitrary
polynomials, A and B, the guotient, Q, and the remainder, R,
are prodhced as follows:
Algorithm 2.1.4: Polynomial Division
‘ e

Input: A,B are polynomials such that deg(B)<deg(A). ,

Output: Q,R such that A = QB+R, deg(R)<deg(B).

1) R=A, m-deg(A),.hsdeg(B).

-1
2) ¢ = bn .

18

3) For i = m-n until 0 do begin

4) q. -

1 n+ic”
5) Coey = 0-
6) For j = i until n+i-1 do begin
7) . =r. - qg.b. .. .
575 7 94754 -
> end.
end.

o

Step 2 requires calculating_the inverse of a unit element,
the cost of which is dependent on the actual coefficient
field used. Step 4 reqqires 1 operation per execution while
steps 6 and 7 combin?d require 2n operations per execution.
Thus, the total cost of polynomial division is 2n(m-n)+m+n+1
unit operations plus 1 unit inverse computation.

On the other hand, the algoiithm fof dividing an

arbitrary power series, A, by a zero-ordinate power series,

B, is a variation of the Cauchy rule.
Algorithm 2.1.5: Pqower Series Division

Input: A is an arbitrary power series,

B is a zero-ordinate power series.

1 n

Output: Q = AB ' mod x .

1) n = deg(Q)+1 = number of terms required.
-1

0 -

3) For i = 0 until n-1 do begin

2) ¢c =b

- 4) q; = a;.

5) For j = 0 until i-1 do begin

end.

In\thgg algorithm, step 2 requires the calculation of a unit
inverse, steps 5 and 6 combined require 2i operations per
execution, aTd step 7 requires 1 unit operation per
execution. This brings the total cost of power series
diyiéion to n2 unit operations plus 1 unit 1nverse
computation,

A careful examination of the last algorithm shows that
not every power series can be a divisor 1in the division
operation. This 1s because the Eonstant term, bo, of the
divisor need not be non-zero for every power series. If thg
coOnstant term is zero, then its inverse do" not exist so

that the division algorithm will not wo "This situation

can bé rectified to some extent so that di;ision ;ill work
if the ord}nate of the dividend, ord(A), is no less than the
ordinate of the divisor, ord(B). Since all power series
divisons required by any later algorithms meet the
conditions of the above algorithm, this extension is not
presented. It is important to remember, however, that this
A

restriction does exist.

Although covered by the previous/algorithms, the
méltiplicationAand division of an arbitrary polynomial or

.pover series by a power of its indeterminate should be dealt

.with as separate operations. These operations often do not

~

20

have any cost attributed to them, regardless of the size of
the values being operated on, because no actual Jnit
arithmetic 1s required to produce the result. Although the
computational model permits this assumption, it 1s not
completely Jjustified in practice since, at best, some
manipulation of the coefficients is invariably necessary.
Conseguently, to retain a more accurate account of the cost
of these operations, a different convention 1s adopted.
Given an arbitrary polynomial or power series, A, and a
power, k, of the indeterminate, the multiplication and

divison of A by the kth power of the indeterminate have the

following associated costs:

Operation Polynomial Cost Power Series Cost
Multiplication deg(A)+k+1 n-
Division deg(A)+1 n

where n is the number of terms retained for truncated power
series. The polynomial division cost is the cost of
producing both the quotient and the remainder. The cost for
producing only one of the two results is assumed to be the

same as the cost of producing both.

2.2 The Fast Féurier Transform

A polynomial or power series can be represented by>
either its coefficients, as is the most common practice, or
by a vector of values which result when it ié evaluated at a

specified number of points. The number of points for which

21

this evaluation is performed 1s at least one more thqn t he
degree of the polynomial or power series. The discrete fast
Fourier transform and 1ts inverse provide an efficient
method for changing from the former representation to the
latter type and back again. This transformation 1s discussed
because it provides the basis for the fast polynomial and
power series multiplication and division techniques
presented in following section.

Part of the Fourier transform's efficiency derives from
the choice of points for which the evaluation 1s performed.
For a polynomial or power series of degree less than n, the
points used aré the nth roots of unity for the coefficient

field.
Definition 2.2.1

An element, w, in an arbitrary field is a primitive
(or principal) nth root of unity if
who= 1 and wh oz 1 -

for all 0 < 1 < n, The valﬁes wk for all k = 0,...,n-1

are referred to simply as nth roots of unity.

This definition, given by Borodin and Munro [4], differs
somewhat from that normally encountered in the literature,
as represented, for example, by Aho, Hopcroft, and Ullman
[1] or Horowitz and Sahni [14], in that the following

property is usually included as part of the defipition.

Theorem 2.2.2

Let w be a primitive nth
field. Then

n-1

z wil - 0
1=0
Proof:
Let z = w) for any 3 = 1
n-1 1 n
Then T 2z = (z -1)/(z-
1=0 .
= [(wH"-1)/
= [(wM)I-1y/

= 0.

22

root of unity 1n an arbitrary

for any j = 1, ,n-1
, ,n-1

1)

(wl-1)

(wi-1)

Q.E.D.

The advantage of removing this property from the definition

is that without it, it is easier to verify whether or not

any given element of a field might be a root of unity.

Now, let A be a polynomial or power series such that

deg(A) < n, and let w be a primitive nth root of unity for

the coefficient field. Then

transform is defined by the
n-1 .
vy = z akwlk
k=0

where v, is the ith element
alternate representation of

algorithm uses a divide and

the forward discrete Fourier

equation

-0 £ 1 £ n-1

of the vector, V, forming an
A. The fast Fourier transform

conquer approach to reduce the

problem of computing these elements to two smaller problems

of half the complexity. The

value used for n by this

23

algorithm is n = 2° where r = [logldeg(A)+1]]. The fast
Fourier transform algorithm can then be presented as

follows: .

Algorithm 2.2.3: FFT(A,V,w,n)

Inbut: A 1s a polynomial or power series,
w is an nth primitive root of unity,
[log[deg(A)+1]]
n 2 .
Output: V = the Fourier transform vector for A.

Comment B,C are polynaomials or power series,

S,U are vectors.

1) I1f n = 1 then v, = a, else begin

0 0

2) m = n/2.
3) For i = 0 until m-1 do begin
¢) bj=azi+ i%¥z541-

end.
5) call FFT(B,S,vw’,m).
6) call FFT(C,U,w?,m).
7) d= 1.
8) For i = 0 until m-1 do begin
9) da' = du,.
10) vi-si+d', Viep=S; 9’ -
1) d = dw.

end.

end.

Let T(n) denote the total cost of this algorithm. Steps -1 sai

4 are assumed to be cost-free. Steps 5 and 6 each reguire
T(n/2) unit operations. Steps 9, 10, and 11 combined require
4 operations, bringing the cost of the loop starting at step
8 to 2n unit operations. Therefore,
T(n) = 2T(n/2)+2n = 2nlogn+n.
Verification of the fact that Algorithm 2.2.3 does

indeed compute the forward Fourier transform requires the

use of a couple of properties related to roots of unity.
Theorem 2.2.4

Let w be a primitive nth root of us{iy in an arbitrary

field and let n = 2m. Then

o
1+m 1
w = W ,

Proof:

First note that PLL w2m = 1,

Since w™ # 1 by definition, this means that A

. . . .
Therefore, wiT® oo W e Wi (o) - -wl,

Q.E.D.

Theorem 2.2.5

Let w be a primitive nth root of unity in an arbitrary
field and let n = km. Then 'k is a primitive mth root

of .unity fdr the given field.

Proof:

Note that (v¥)® = w*® = w" = 1.

Let 1 €1 S m-1,

25

Then ki < km = n,
Therefore, (wk).1 = wki # 1 since w is a primitive nth
root of unity.
Consequently, wk fits the definition of a primitive
mth root of unity.
Q.E.D.
The validity of the fast Fourier transform algorithm can n&w
be verified using mathematical induction.‘First note that
the recursive calls to produce vectors § and U rely on w?
being a primitive (n/2)th root of unity. This is, in fact,
guaranteed by the last theorem. Now assume that the
algorithm works for n/2. In particular, this assumption is
equivalent to accepting S and U as the true forward
transforms for B and C, respectively. The inductive step of
the verification then goes as follows:

n-1

. 'k .
v. = I a wl 0 £1 < m-1
i k=0 k
m-1 2ik m-1 i(2k+1)
= (Z a, ¥) + (Z LY)
k=0 k=0
m-1 . m-1 . .
= (£ bwilk) s (£ c Wikl .
k=0 K k=0 K
i
n-1 .
Viem * z akv(l*m)k 0 €£i S m1
k=0
m- . -1 .-
I ‘Zk'(1+m)2k) . Z . (1+m)(2k+1))
k=0 k=0

.

\

26

m-1 . m-1 .
-z b [-w'1®) w (z e [-w1PT)
k=0 k=0
m-1 ¢ . m-1 . .
= (Z b%w21k) - (Z ckw21kw1)
k=0 k=0
1
= S§. - U.W .

Therefore, since all elements of V are covered by these two
cases, and since they show that, given the initial
assumption, the equations used by the algorithm are the same
as computing the defihing equations, the fast Fourier
transform algorithm can be considered valid by the principle
of mathematical induction.

As it turns out, the reverse (or inverse) Fourier
transform, which computes the coefficients of a polyhomial
or power series given its values at the nth roots of unigy,
is jhst”a slight variation of the forward transform. Let A,
w, and V be the same as defined for the forward transform.

Then the coefficients of A are computed from V using the

*cggation

. n-1
ai‘- (1/n) T wv
k=0

s _4 D-1
w ik | n ! L vk(w

k=0

-1,ik .
K) 0 £is n-1,

The rightmost side of this equality suggests that the
reverse transform can be computed by making direct use of
the fust forward transform algorithm with w | replacing v as
the primitive nth root of unity. This, of course, requires

1

that v ' is also a primitive nth root of unity.

Theorem 2.2.6

Let w be a primitive nth root of unity in an arbitrary
field. Then w | is also a primitive nth root of unity

for the same field.

Proof:

1

First observe that (w‘1)n = (W) ' = (1)-:1 = 1.

Now:let 1 1 < n-1,

-1

“Hhi oo e, .

. i
Then, since w™ # 1, (w

Consequently, w ' is a primitive nth root of unity.

27

Q.E.D.

Therefore, let the values of w and n be the same as for the

fast Fourier transform algorithm. Then the reverse transform

can be calculated using the algorithm given below.
Algorithm 2.2.7: FFT '(A,V,w,n)

Input: V is a vector of values,
v is an nth primitive root of unity,
n = 2° for some r.
Output: A = the polynomial or power series, deg(A)<n,

whose Fourier transform is V.

1) Por i = 0 until n-1 do begin

2) a; = v;.

end.

[4 -
3) call FPT(A,V,v |

4)d=n"'.

,n).

5) Por i = 0 until n-1 do begin

4

QO

28

end.

The verification of this algorithm is trivial, so the
details are omitted. As to the algorithm's complexity, the
loop starting as step ! is cost-free, step 3 has a cost of
2nlogn+n operations, and the loop starting at step 5 has a
cost of n operations. The single operation at step 4 is
ignored. This gives the reverse transform algorithm a total
cost of 2nlogn+2n unit operations. .

The alggrithms just presented for computing both the
forward and the reverse Fourier transforms rely on the use
of recursive procedure calls to produce some ofltheir
effiéiency. While such calls do not affect the theoretical
complex{ty of an algorithm, they do have an associated

‘ptactical overhead which makes recursive algorithms less
desirable than iterative algorithms of the same cost. (In
fact, this overhead is charged on all procedure calls since
most pfogranming language implementations do not distinguish
betwveen recursive and non-recursive procedures.) For this
reason, an iterative version of the fast Fourier transform
algorithm, based on an evaluation technique developed by

Fiduccia [9], is given below.
Algorithm 2.2.8: Iterative PPT(A,V,w,n)

Input: A is a polynomial or power series,

v is an nth primitive root of unity,

n = 2i10gldeg(A)+1]]

Output: V = the Fourier transform vector for A.
1} For i = 0 until n-1 do begin
2) v. = a..
1 1
end.

3) m=n/2, j=0.

4) For i = 0 until n-2 do begin

5) If i < j then begin
6) d=v,.
7) v, = vj.
8) vj = d.
€ end
9) k = m.
10) while k < j+1 do begin
1) j = j-k.
12) k = k/2.
end.
13) j = j+k.
end.
14) For k =~ 2 step k until n do begin ¢
15) d=1, m=k/2.
16) For j = 1 until m do begin
17) Por i = j-1 step k until n-1 do begin
18) , a' = vi+md’
19) . Viem " v,-a'.
20) . v = v,+d'.
. end.
21) a = av"/k,

-

30

end.

end.

Verification of the validity of this form of the algorithm,
and of the fact that it has the same complexity as the
recursive form, can be found in Horowitz and Sahni [14],
from whom this particular version was obtained, or in Aho,
Hopcroft, and Ullman [1], who present a similar version of

the iterative approach.

2.3 Fast Multiplication and Division

Fast polynomial and power series multiplication use the
fast Fourier transform to convert the problem to another
less costly one. In computing the product, C = AB, for two
,arbitrary polynomials or power series, A and B; this is

accomplished as follows:

Algorithm 2.3.1: Fast Polynomial/Power Series

Multiplication

Input: A,B are polynomials or power series.

Output: C = AB.
Comment U,V are vectors.

1) r = [logldeg(A)+deg(B)+1]].

2) n=2%, m=deq(C)+1.

3) w = primitive nth root of unity.
4) Call FPT(A,Uyv,n).

5) Call PPT(B,V,w,n).

31

6) For i = 0 until n-1 do begin
7) Uu. = U.V..
end.

1

8) Call FFT (C,U,w,n).

9) C = C mod x™

For polynomials, deg(C) = deg(A)+deg(B) while for power
series, deg(C) is éne less than the number of terms retained
for truncated power series. It should be noted, therefore,
that the last step of the algorithm is only required for
‘power series multiplication. This algorithm is directly
based on the following property of the Fourier fransform

when applied to polynomials.
Theorem 2.3.2

Let A,B be arbitrary polynomials and let F(-) denote
the Fourier transform operation. Then

F(AB) = F(A)F(B).

Proof:

Let C = AB, m = deg(A), and n 2 deg(A)+deg(B).

n-1 m n-1
z a.b_,. . = z b . L)+ z b . .
jei+1 3 O*17] (j=i+f ®3Pnsi-3) (j=m+1 ®3Pnvi-3)
m n-1
=(Z a;0)+(Z Ob__._.)
jei+ jam+1 MTETI
= 0.
i
Thus ci = I albi_J

32

i n-1
- (jEO ajb(n+i-j) mod n) * (j=§*1 ajbn+i“j)
n-1
B jEO ajb(n+i~j) mod n°

Now let F(-)k denote the kth element of the Fourier

transform vector.

n-1 n-1 ik
Then F(AB)k = iEO (jEO ajb(n+i-j) mod n)w
n-1 n-1 ik
] jfo aj(ifo ®(n+i-3) mod n*
n-1 n-1-3 j
N (j+r)k
i jEO 23 rf— b(n+r) mod n !
(where r = i-j)
n-1 n-1-j (5
. j+r)k
"5 2t Ly Pener) mpa o o
(n-1 (j+r—n)k)]
r=n r mod n"
n-1 n-1 ;
- r a.(E brw(3+r)k) r
. j=0 1 r=0
n—1 . n"1
-z awifz bt
j=0 3 r=0
= F(A)RF(B)k'
‘3 b
Q.E.D.

Turning to the cost of this algorithm, steps 1 to’3 are
ignored, steps 4 and 5 each require 2nlogn+n operations (for
a total of 4niogn+2n operations), the loop starting at étep

6 takes n operations, and step 8 has a cost of 2nlogn+2n

33

operations. This brings the complete cost ofwfast polynomial
multiplication to é6nlogn+5n unit operations. The cost for
fast power series multiplication has an additional n
operations associated with it as a result of step 9,
bringing its total cost to 6nlogn+6n unit operations.

A comparison of the fast multiplication costs with
those for classical multiplication 1ndicates that the fast
multiplichtion method is not i1mmediately superior. Assuming
the worst case situation for classical multiplication, which
occurs when deg(A) = deg(B), it can be observed that the
crossover for polynomial multiplication occurs when

2[deg(A)*5][deg(B)+1]—6nlogn~5n 2 0.
This happens somewhere around deg(A) = ded(B) = 55.'%he
crossover for power series is a little higher. If m 1s the
number of terms retained for power series, then Sge two
techniqu;s crossover when {J v ﬂ

m2+m—6nlogn—6n 2 0

which happens when m = 78. The crossover point presented
here for polynomials is a little higher than that produced

by Moenck [23]. This discrepency is due to a slightly

'iﬁifferent approach to accumulating the number of unit

*

operations. In particular, Moenck does not include the
operation in step 11 of Algorithm 2.2.3 (ghe fast Fourier
transform) in his counts.

" Fast division of both polynomials and power series rely

_Qeavily on the ability to perform power series inversion

efficiently. A fast method for determining the inverse of a

power series can be obtained through the use of
approximation formula. Let A be a zero-ordinate

and let n be the number of terms desired i1n the

b

A] can be computed by usiﬁg:

Algorithm 2.3.3: Fast Power Series Inversion

PSINV(Q,A,n)

34

Newton's
. 1
power series

result. Then

Input: A 1s a zero-ordinate power seriles,
n = number of terms desired in result.
-1 n
Qutput: Q = A mod x

1) Qy=a, m=[logn].
2) For 1 = 1 until m do begin

3) Q. = (2Q.

2 2
; {-1 AQi'1) mod x

4) Q = Q mod xn

This algorithm is based on the i1dea that each successive

. . . -1
value for Qi 1s a closer approximation to A than the

previous one. That this is indeed the case 1s verified as

follows:

Let e, =_A-1—Qi for all 0 < 1 <€ m.

-1
Then € el = A Qk+1

.) Sk
A -(2Qk—AQk) mod x

A’J-[2(§'1-ek)—A(A"—ek)2]

-1 -1 -1
= A -[2-A(A -ek)](A e,

mod x

) mod x

2k

2k*1

35

k+1
- ,1 2
= - 1+ - N
A { Aek)(A ek> mod x
—_ -1 2 k41
= A -(A ‘*Aek) mod x°
k+ 1
= Aei mod x2
Thus, 1t can be shown by i1nduction that
k+?
ord(ek41) > 2 ;
Therefore, ord(em) 2 Zm 2 n.
Conseguently, AQ = A(A_"em) = 1~Aem = 1 mod x"

The last eqguation shows that the value of Q 1s accurate up
tc the degree of truncation for truncated power series.

In order to determine the cost of the 1nversion
algorithm, let K = 2i and let N = 2", Furthermore, assume
that fast power series multiplication 1s being used. Then,
using the observation that deg(Qi) = K-1, step 1 reguires a
single unit inverse calculation, step 3 requires !'8KlogK+31K
operations, and step 4 requires N operations. The cost of
step 3 is based on the fact that a multiplication of two
truncated power series of degree K/2-1, each, and a
multiplication of two truncated power series of degree K-1,
each, is required. Therefore, the total cost of i1nversion 1s
bounded by 36NlogN+27N unit operations plus 1 unit inverse
computation.

Given Algorithm 2.3.3, it becomes a simple task to
develop a fast power series division algorithm. Given an
arbitrary power series, A, and a zero-ordinate power series,

B, their qguotient, Q = A/B, can be obtained, to within n

36
terms, by:
Algorithm 2.3.4: Fast Power Series Division

Input: A 1s an arbitrary power seriles,
B 1s a zero-ordinate power seriles.
-1 n
Output: Q = AB mod x

1) Call PSINV{({J,B,n).

\2) Q = AQ mod xn
The proof of this algorithm is trivial. As to 1ts cost, let
N = z[logn]. Then step 1 requires 36Nl1ogN+27N operations
plus 1 unit inverse calculation and step 2 requires
6Nl1ogN+6N operations, giving fast power series division a
total cost of 42NlogN+33N unit operations plus 1 unit
inverse calculation. As with multiplication, the fast method
is not immediately superior. This time, the crossover occurs
when n2-42NlogN-33N 2 0, which happens at n = 682.

Fast division of two polynomials is a little more

complex. If A and B are two arbitrary polynomials, then the
following algorithm produces the quotient, Q, and remainder,

R, which result from the division of A by B.
Algorithm 2.3.5: Fast Polynomial Division

Input: A,B are polynomials such that deg(B)sdeg(A).

Output: Q,R such that A = QB+R, deg(R)<deg(B).

Comment C,D,E are polynomials.

37

[logldeg(A)-deg(B)+1]].

>
]

3) For 1 = 0 until deg(B) do begin
i = Pgeg(B)-i-
end.
5) Call PSINV(D,C,n).

6) For 1 = 0 until n-1 do begin

7) e, = dn-i-1'

end.
8) Q = LAE/xdeg(B)*n—lj'
9) R = A-QB.

The correctness of this algorithm is proven as follows:

DC = 1 mod x" = Fx"+1 where deg(F) < deg(B).
Then EB = xdeg(B)+n-1+G where deg(G) < deg(F):
Thus R = A - QB

- A - |(aEB)/x9¢9(B)*n-1)

- A - l_[deeg(B)m—l‘_G)]/xdeg(B)*nﬂJ

. LAG/xdeg(B)+n_1J.
Now note that deg(A) < deg(B)+n-1 and

deg(AG) < deg(A)+deg(B).

Then deg(R) < deg(A)=n+1 < deg(B)+n-1-n+1 = deg(B).

Consequently, A = QB+R where deg(R) < deg(B).

Thig shows that the values computed for Q and R are the

appropriate gquotient and remainder for polynomial division.y

-

As an aside, it should be pointed out that the operations

performed in steps 3 to 7 are, in fact, just a different
S~

38

form of the polynomial reciprocal procedure given by Aho,
Hoperoft, and Ullman [1].

Now let N, 2flog[deg(A)*n]1 and N, - zflog[deg(A)JW.
Assume that fast pélynomial multiplication 1s being u;ed.
Then step 5 of the fast polynomial division algorithm has a
cost of 42nlogn+33n operations plus 1 unit inverse
computation, step 8 requires 6N1logN1+5N1*deg(A)+n
operations, and step 9 requires 6N2109N2*5N2+deg(A)
operations. The remaining steps are assumed to be cost-free.
Thus the total cost of fast polynomial division becomes
+5N

42nlogn+34n+6N1logN1+5N1+6NzlogN +2deg(A) unit

2 2
operations plus 1 unit inverse calculation. For determining
the crossover point for classical and fast polynomial
division, assume that deg(A) = 2deg(B). This particular
choice is made because it represents the worst case for the
polynomial divisions encountered in the Pade algorithms of
the next chapter. The cost of fast division under these
conditions collapses to 72nlogn+8§n+4deg(8) unit operations
plus a single unit inverse computation, which becomes
cheaper than classical division at the point where

2[deg(B)]z-deg(B)-72nlogn-89n 2 0.

This happens when deg(B) = 951,

3. Algorithms for Computing Pade Approximants

Having provided some background information for
handling polynomials and power series via computer, it 1s
now possible to turn to the discussion of algorithms for
computing diagonal Pade approximants for a power series. The
four algorithms considered in this chapter fall into two
categories: one which computes approximants along the
anti-diagonals ofe«the Pade table, and three which compute
them along the forward diagonals.

“As with the previous chapter, the coefficient vector
form of denoting univariate polynomials and power series is
used,~with x being used as the indeterminate. It should also
be remembered that a unit operation in a polynomial or power
series algorithm refers to the operations of addition,
gubtraction, and multiplication when performed on two
elements from the coefficient field.

A few further definitions are also required by the
discussion in this chapter. A power series is said to be
normal along a diagonal or anti-diagonal of its Pade table
if all approximants along that diagonal or anti-diagonal are
distinct. A power series is (m,n)-normal if all (i,j) Pade
approximants are distinct for 0 < i < mand 0 < j S n. A
polynomial sequence is normal if the degree of each
successive polynomial in the sequence is exactly one less
than the degree of the previous one,

Because two forms of polynomial or power series

arithmetic can be used for the various algorithms in this

39

40

chapter, one final convention is adopted when determining
the initial cost estimates of each algorithm. The function
CM(m,n) is used to denote the cost of multiplyinﬁyan
m-degree polynomial or power series by an n-degree
polynomial or power series while the function CD(m,n)
denotes the cost of dividing an m-degree polynomial or power
series by a polynomial or power series of degree n. A
similar function is not required for addition and
subtraction since only one form of these operations exist.
The distinction between polynomials and power series need
not be made in the notation since the context of each

algorithm indicates which entities are being operated on.

3.1 The AD Algorithm .

The anti-diagonal approach to computing Pade
approximants is‘based on some observations made by McEliece
and Shearer [20] concerning the extended Euclidean algorithm
for computing polynomial GCDs. Let Ao and A, be two
polynomials such that deg(A,) < deg(Ao). Then;the extended

Buclidean algorithm is defined as follows:
Algorithm 3.1.1: Extended Euclidean Algorithm

Input: Aqy,A, are polynomials such that deg(A,)(deq(Ao).

Output: A,,S,,T, such that S A,+T A, = A, = gcd(Ao,A1).
Comment A,,S;,T;,Q; are polynomials for all i.

=1, i=1..

1) Sp=1, s!-o;iro-o, T,

41

2) While A mod A, 0 do begin

1

3) Q;=[A;_/A;], Ay y=A;_, mod A;.
4) Sl*1=51_‘-lel, T1*1=T1‘1—T1Q1.
5) 1 = i+].

end.

The sequence {Ai} for 0 s 1 S k is referred to as the
‘polynomial remainder sequence for Ao and A,. This algorithm

exhibits three very valuable properties:

Theorem 3.1.2

Let A,,A, be two polynomials with deg(A1) < deg(Ao).

Then
N
X 1) S;Ap*T A, = A, 4 0 SsisKk
\ 2) deg(Ti)+deg(Ai_1) - deg(Ao) 1 €1 <k
- . (-1)1 .
3) A "Ti_ Ay = (=1)7A, 1si<k

for all Ai,si,Ti computed by the extended Euclidean

algorithm.

Each of these three properties can be proven using
mathematical induction, the details of which are omitted.

At this point, an interesting result, as presented by

McEliece and Shearer [20]), can be given.

Theorem 3.1.3

Let A,,A, be twvo polynonials with deg(A1) < deg(Ao).
Let m,n be tvo integers such that m 2 deg[gcd(Ao,A1)]

and m+n = deg(Ao)-l. Then there exist unigue AT,

4?2

computed by the extended Euclidean algorithm such that
deg(Ai) < m, deg(Ti) <n

for some 0 < 1 S k.

Proof:
Let 1 be the index such that deg(Ai)is m and,
deg(Ai_]) 2 m+1.
" Then deg(Ti) = deg(Ao);deg(Ai_1) S m+n+1-m-1 = n,
and deg(Ti+1) = deg(AO)-deg(Ai) 2 m+n+1-m = n+1.
Thus, Ai and Ti exist and are unique.
Q.E.D.
This theorem shows that the extended Euclidean algorithm
provides a mechanism for computing Pade approximants for a
power series. Let A, = x™t ;ga‘let A, be a power series
truncated to m+n+1 terms, for SVO integers m and n. Applying
the extended Euclidean algorithm to Ao and A, until
dgg(Ai) S m produces the polynomials A, S;, and T, such

that

SiA + TiA1 = Ai => TiA1 = Ai mod A

0 0

m+n+1
=> TiA1 Ai = moQ X

where deg(Ai) < m and deg(Ti) < n. This indicates that A;7Ti
is the im,n) Pade approximant for power series A,. It is a
trivial matter, therefore, to verify that for any arbit;ar&
pover series, B, and integer, d, the extended Euclidean
algorithm can be used to obtain all the Pade approximants
for B along fhe anti-diagonal in the Pade tqble whose

indices, m and n, satisfy the equation i+n = d-1.

43

Having developed this technigue for computing Pade
approximants, the problem now arises as to determining the
best method for computing the polynomials Ai’ Si' and Ti’
defined by the extended Euclidean algorithm. The most
efficient method, in terms of asymptotic cost, for producing
these polynomials 1s a GCD algorfghm first‘presénted (in 1ts
most general form) by Moenck [21,22). To facilitate the
presentation of this algorithm, the following definition 1s

made.

oA -
Definitibn '3¢1.4

Let {Qil be the sequence of quotients computed by the
extended Euclidean algorithm for 0 < i < k{ Then the

matrices M. . are defined as follows:
4

(1 0
1) M, . = 0 i < Kk,
' [0 1
(0 1 0 1
2) M; 5 = ...% 0 < j < i<k,
S 179444

To make effective use of these matrices, the folloGing

properties are also required.
Theorem 3.1.5

Let M, 3 be defined as above for all 0 < j < i < k.
Then

DOMy My

"

M jSrsi

r,j

44

(98]
k 4
[}
——
2}
-
-3
. -
—
O
A
-
IA
-

where Ai’si'Ti are as defined by the extended

Euclidean algorithm.

The first property is a direct consequence of the definition
while the other two properties can be proven by trivial
inahgtive arguments.

fhé~efficient GCD algorithm mentioned above actually
consists of two separate algorithms: one which computes the
two polynomials which lie at the exact middle of the
remainder sequence produced by the extended Euclidean
algorithm, and another which uses the first one to compute
the rest of the polynomials in the remainder sequence. Only
the first one_is presented here since it is shown later that
the other is not required for computing diagonal Pade
approximants for a power series. Let Ao and A] be two
polynomials such that deg(A1) < degtio). Then the EMGCD

algorithm, given below, computes the matrix

vhere deg(Ai+1) < [deg(Ao)/z] S deg(Ai) and A., A, .,, S;,

S;+qr T;, @and T,,, are as defined by the extended Euclidean

algorithm.

45

Algorithm 3.1.6: EMGCD(M,A)

oA

Input: A ,A. are polynomials such that deg(A])<de§(AO).

0"
Ai Si Ti
Output: M =
Al*l Si+1 T1+1
where SiAO*TiA1 = Ai' Si+1A0+Ti+1A1 = Ai+1’
deg(A.) < fdeg(AO)/ZT < deg(A.).

Comment BO,B1,CO,C1,D,E,F,Q,G0,G‘,HO,H1 are

polynomials,

M1,M1,M2,M2 are matrites.

' Ay 10
1) 1f A, = 0 or deg(A.) < deg&Ao)/z then M =

A1 0
else begin R
2) m=[deg(A0)/2]. '
m m
3) Bosle/x] C0=Ao mod x . \%
m m B
4) B]‘LA1/X 1. C1=A1 mod x . N 5
5) call Enccn(ﬁ],no,al). |
1o 1017 ‘
6) M1 = M1 . g
0 01
D
= m T
7) [} = Ml[x Co c1] .
E
‘D \
8) 1f deg(E) < deg(Ao)/Z then M = , M,
~ E 2
‘ else begin
9) Q=|D/E], F=D mod E, k=2m-deg(E).
k k
10) - Gy=E/x], Hy=E mod x.
11) G1=LF/ka, HlfF mod xk.

46

12) Call EMGCD(MZ,GO%E1).
fo 1 0]"
13) M, = M .
o2 %o oo
0 1
_ - k T

14) M = { M,[x" Hy H ", MZ{ }Ml].

1 -0
end.
end.

This version of the partial GCD algorithm corresponds to
that given by Brent, Gustavson, and Yun [5].
In order to prove the validity of the EMGCD algorithm,

a couple of preliminary results must first be given.
Theorem 3.1.7

Let A,B be two polynomials such that deg(B) < deg(a).

2+By,B, be polynomials such that A = A1xk+A2,

where k < 2deg(B)-deg(A), deg(Az) < k,

Let A]'A

k
B = le +82

deg(B,) < k. Finally, let Q = |A/B], Q, = |A,/B,],

R = A-QB, R, = A1-QIB1. Then

1

1)Q=Q1' |
2) LR/xdeg(A)-deg(BHkJ - LR1/xdeg(A)—deg(B)J_'
Proof:
Let R' = A-QB

K., o\ k
(A1x +A2) Q](B1x

"

+Bz)

k
(A,-Q,B,)x*+(a,-0 B,)
k

R.x +A2-Q1B2.

1
Now,_deg(R1xk) = deg(R1)+deg(xk)

< deq(B‘Hk

= deq(

n

and deq(Qle)

B),

deg(Q])*deg(Bz)

- deg(A])'deg(B])*k

= deg(A)-deg(B)+k

+ deg(A)-deg(B)+2deg(B)-deg(A)

= deg(

B).

Thus, deg(R') < max[deg(R1xk),deg(A2),deg(Q182)]

A

i}

deg (B

max(deg(B),k,deg(B)]

).

Therefore, A = Q1B+R' where deg(R') < deg(B).

Conseqguently, Q = Q, by unigqueness of quotients.

Now, for convenience

J

Then LR/xn+k

W

Thus, LR/xdeg

The importance of this theorem,

’

let n = deg(A)-deg(B).

R/
L(R;x*+A,-0 B,)/x""¥)

[R,/x"].
(A)-deg(B)+k

] - LR]/x.cleg(l’x)-deg(B)J’

interesting property of the gquotients of polynomials,

that it 1is rgﬁuired for proving the following result.
Rt

Theorem 3.1.8

Let AO,

A, be two polynomials such that

47

Q.E.D.

other than displaying an

1s

deg(A,) <'deg(A0). Let B,,B,,C,,C, be polynomials such

k
that AO = Box +C A

0'
deg(C,) < k. Let M,

1

0

k

= B.x ¥C1 wvhere deg(CO) < k,

be the matrix of the form

4t

described i1n Def.:n:t:0on 3. .4 suchk tha:t
‘B, B
P
Mx -)
LB‘J B “+
where deg(B <-7[deg(AC>—k] 2 < dec(B '. Ther
(AOT) ;'A; ;
Mx,@? P
LA" LA - -
where deg(A) < r[deg(AO)*k]/2’ < deg(A 1.

Proof:

The proof of this theorem :s5 by :nduction.

E 3

For convenience, let n = deg(AO>, n = deg(A1‘2>,
n' = deg(Aj_}), n" = deg(Aj), r’ = deg(Bj_.‘,
rt = deg(Bj).

Assume first that M., g 1S @ matrix of the form

4 .

described 1n Definition 3.1'.4 such that

Bo] 1]

Mi-1o - |

. ;B‘|4 LBJ J

A b TA b

and Mo g of _ M3
) AL LAj

n-n +k n P‘
Assume also that LAj-w/‘ o= LBj-1,x] and
n-n’+k ,.n-n',
LA /X _j = !..Bj’x IR
(

This i1mplies that deg Bj—w) = deg(Aj_,)—k and

deg(Bj) = deg(Aj)‘k.

Assume finally that ((deg(Ao)-k]’ZT < deg(Bj_,) and
r[deg(AO)*k]/Zl < deg(Aj_j).

Since deg(A.) s deg(Aj_z), n-n® s n-n'.

]—1
. n-n'+k.
Therefore, LAﬁ_j/x i = LBj—1/‘

-

Now suppcse that Z20ect B _'-dec!B
Then, by subst.tut.or,
dec!B '-degth_ | 'k - deg\A:"deg(A‘r.‘
= degi(B_ - '[deg(Ap>Ak} z

Alsc, by adcinc k tc each s:de,

dec(B_'-dec{B_ . i+k < n-n’+k

> 2deg(A '-deg(h__) = deg(AC‘—deg(Aﬂ__*'k

"

> deg!A_' < ‘[deg'A.)+k] 2.

Thus, 1i1n this case, the theorem hcids w:th B = B

- " - N o NN
a

B = B., A = A , A ., = A_, and M_ Mo

tor both BC’B’ and AO,A. as desired.

Therefore, assume n-n' < 2deg(B_)-deg(B__ .
Then f[deg(AO)—k]/2T < deg(B_).
/ J
Alsc, n-n'+k = 2deg(Bj)-deg(Bj>1)*k
= 2deg(A_)-deg(A_. .},
g 3 9 -1

which means that f[deg(AO)¢k]/21 < deg(Aj).

Thus the third assumption holds by induction.

1 n-n'+k n-n'
Now let Dj-1 = LAj_1/x] = LBj_1/x | and
‘ n-n'+k n-n'
D. = A_/ = B./ .
j % LAy Jo= [By/x)
This means that, for some E. ,E. ,F. LF .,
' ' 31T
A =p. x* P *k+E. wvhere deg(E.) < n-n'+k,
J-1 J-1 -1 11
A. =D.x" " *k+E. where deg(E_.) < n-n'=+k,
]])]
B, . = D. x"°P +F._, where deg(F. .) < n-n’,
J-]"'] 37
B. = D.x" " +F. where deg(F.) < n-n'
J]]]
Let .= |D. . /D.{ and R. = D. .-Q.D..
Q; = P-4 7Dy y 5-17950;
Then, by Theorem 3.1.7, .= |A. /A.| = |B. _/B.]l.
d Q5 = DAy /Ay) = 1By, 7Byl
Thus, AjH = Aj-1-QjAj and Bj*T = Bj_1-Qij.

n-r Tk n rTen-r ek
A X = A X
L ~ - - ~ 4 >
‘ n'-n"
= “R“ X
* -r "
= 'R_ X
‘ ri-rTen-n
= (B, x .
n-n"
= 'B X

Thus, the second assumption ho.ids by i1n8uct:on.

B, 0 TUBL
Finaily, : -~ = e .
kB““‘ L. ~Q"J‘ ‘LB“ -
‘B,
" MM oty
L AP
(Bg
= M] O! 1,
LBM
[A-’ A O ,'“l Av_w-w
| : i
A 1 - A
Ayas U7 Q50 1Ay
A
= Mool Moo 0
3.3 -1, A
[*o
4 LA1

Conseqguently, the first assumption also hoclds by
induction and the theorem is valid.
Q.E.D.
It 1s the result in this theorem that forms the basis of the
EMGCD algorithm.

The proof of the EMGCD algorithm's correctness can now’

be given, using induction, as follows:

Let 1,) be the indices in the remainder sequence for

A, and A. such that deg(A__.) « f3deg(AO) 4] < deg(A._)!

C b
4 P

and deg(a . < fdeg(AO)’27 s deg(A).

.Assume that the recursive procedure calls produce the
proper resu.it.

First, 1t 1s shown that M, = M, for AO and A ..

By the inductive hypothes:is,

. L J
are the polynomials in the remainder seguence for BO

and ‘B, such that deg(B__,) < [deg(BO)/21 s deg(B).

+
Then, by Theorem 3.1.8, M] = Mj,O for AO and Aw'

A A B [C,.]

Thus, [J J = M1{ O} = M1{ 01 . M, 0
[Ajﬂ A, B,] €,
(B i fc..]

- r xm + M 0

Te

L5 r+ 14 LT 4

vhere deg(Aj41) < f3deg(Ao)/4] s deg(Aj).

0 1
Next, by definition, F = A and = M. . for
I+ 1 -Q 1+1.3

AO and A1.

Finally, by an agrument identical to that for M,,

M, = Mi for E and F.

2 ,0
This implies that M2 = M

for A, and A1.

i,5+1 0

A.
1

Consequently, M = { [A J , "i,j¢1"j+1,juj,0 }
: 1+1

)

52

Therefore, by induction, the algorithm produces the expected
result,

For the purpose of determining the complexity of this
algorithm, a number of assumptions are made. First, it 1is
assumed that deg(A.) = deg(AO)—1 and that the remainder
sequence for the input polynomials 1$ normal. This
represents the worst case (highest cost) situation for this
algorithm. Secondly, it is assumed that n = deg(A1) is an
exact power of 2. This is done for notational convenience
mostly, and does not detract from the complexity equation
which results, since the same convention is adopted for all
Pade algorithms discussed later. The major consequence of
this last assumption is that [n/Zi] = Ln/ZiJ = n/2i for all
Zi < n, which is valuable in reducing the number of terms in
the final cost estimate.

Based on these assumptions, the following statements

can be made concerning the sizes of various intermediate

results:
deg(Bo) = n/2 deg(Co) = n/2
deg(B1) = (n/2)-1 deg(CI) = n/2
deg(D) = (3n/4)+1 deg(E) = 3n/4¢
deg(Q) = 1 deg(F) = (3n/4)-1

deg(GO)

deg(G1)

deg(M1)

53

(n/2)-2 deg(HOQ = (n/4)+1
(n/2)-3 deg(H,) = (n/4)+1
n/4 deg(Mz) = (n/4)-1

It should be noted that the degrees of matrices M, and M2

are assumed to be the same as the degrees of the largest

element

in each matrix. Under these conditions, the cost of

each step in the EMGCD algorithm can be outlined as given

below:

Step
Step
Step
Step
Step
Step
Step
Step

Step

10:

11:

12:

14:

n+2

n+1

T([n/2]-1)

4C\(n/4,n/2)+(9n/2)+7
Cp(l3n/4]+1,3n/4)

(3n/4)+1

3n/4

T([n/2]-3)

4C, ([n/2]-1,[n/41+1)+2C, (1, [n/4])-1)+

BCM(n/4,n/4)+(11n/2)+13

The remaining steps have no assoctated cost. After a few

minor modifications, this brings the total cost of the EMGCD

algorithm to:

T(n) = 2T(n/2)+CD([3n/4]+1,3n/4)+4CH(n/4,n/2)+

IZCM(n/Q,n/4)+2CM(1,In/4]-1)+(27n/2)+24

Using classical polynomial arithmetic, this cost becomes:

54

T(n) = 2T(n/2)+(5n°/2)+(73n/2)+58

5n2*(73/2)nlogn+53n—58 unit operations,
while with fast polynomial arithmetic, this cost is:

., T(n) 2T(n/2)+114nlogn+104n+178

]

57nlogzn+161nlogn+178n-178 unit operations.

Note that this cost is based on the size of the smaller
input polynomial. This is not a normal practice. However,
when using this algorithm to compute Pade approximants, as
outlined shortly, the size of the larger input polynomial is
always exactly one more than the size of the smaller one.
Therefore, in this case, this convention is valid. It is
done because it simplifies the cost comparisons of the
anti-diagonal approach for computing Pade approximants with
oﬁher methods.

Having completed the description of the EMGCD
algorithm, it can now be used to compute the reduced (n,n)
diagonal Pade approximant for an arbitrary power series, A,

in the following way:
Algorithm 3.1.9: AD(P,Q,A,n)

Input: A is a power series,
n is an integer. _

Output: P,Q such that P/Q is the reduced (n,n) diagonal

Pade approximant for A.

Comment M is a matrix.

-

55

1) Call EMGCD(M,xzn*1,A mod x2n+1).
_ P 100 0
2) - M| |,
Q 0 0]
3) d = min[ord(P),ord(Q)]. hd

s) p=|p/x%, o=lo/xY].

The correctness of the first step of this algorithm has
already been verified. Step 2 is simply an exotic, but

- mathematically concise, way of setting the values of P and Q
to be the same as specific elements of matrix M. The purpose
of the last two steps is to put the rational function P/Q
into reduced form. That this particular method for doing so

is correct is quaranteed by the following result:
Theorem 3.1.10

Let A.,T, be as defined by the extended Euclidean

algorithm for all 0 < i < k. Then gcd(A;,T.) | A,.

This result is a direct consequence of the third propefty
given in Theorem 3.1.2. The implication of this property to
the anti-diagonal approach for computing the (m,n) Pade
approximant is that anj common divisor of any numerator and
denominator derived using the extended Euclidean algorithm

must also divide x“*"+1

. Therefore, any common divisor of
such a numerator and denominator, and, thus, of P and Q in
Algorithm 3.1.9, must be an integral power of the

indeferninate, X,

56

Determining the cost of Algorithm 3.1.9 1s
straightforward. The cost of step 1 is the same as the cost
of the EMGCD algorithm when deq(A]) = 2n while the cost of
step 4 1s 2n unit operations. Therefore, using classical
arithmetic, the cost of the anti-diagonal approach to

computing the reduced (n,n) diagonal Pade approximant 1is:

T(n) = 20n2*73nlogn+181n—58 unit operations,

whereas using fast polynomial arithmetic, this cost 1is:
]

(

T(n) = 114nlogzn+550nlogn+794n—178 unit operations.

3.2 The MD Algorithm
The first of the forward diagonal algorithms is the MD

algorithm presented by Brent, Gustavson, and Yun [5]. This

¢

(
algorithm uses another recursive algorithm to compute the
(n,n) diagonal Pade approximant for an (n,n)-normal power
series quotient. Let A and B be two power series such that
ord(A) = ord(B) = 0 and A/B is (n,n)-normal. Let s be an
integer with a value of zero or one. Then the reduced
(n+s-1,n) and (n+s,n) Pade approximants for A/B can be

computed using the following algorithm:
Algorithm 3.2.1: MD2(M,A,B,n,s)

Input: A,B are polynomials such that ord(A)=ord(B)=0 and
A/B is (n,n)-normal,
n is an integer,

s is an integer such that s=0 or s=1,

Output:

Comment

57

a0k}

P
M = [} where P/Q 1s the reduced (n+s-1,n) Pade
Q

Q1

approximant for A/B,
and P/Q is the reduced (n+s,n) Pade

IS

approximant for A/B.

C,D,E,F are polynomials,

Ml,M2 are matrices.

0 ag
1) If n*s < 0 then M = else begin
0

2)
3)
4)

5)

6)

7)

8)

9)

10)

end.

1 b
k = |n/2].
d = n-k.
m = d+s-1.

+s+ 1 n+s+i

Call MD2(M,,B mod x" JA mod «x

il

E={c/x™9] mod x"

,m,1-s).

+1 n+1

, F=LD/xm+d*1J mod x .

Call MDZ(MZ,F,E,k,O).

Q Q] -x 0
| =M M.
P B Mo]?
P mod x"'5 P mod xn¢s+1]
M =

+ - +
1 Q mod x" !

Q0 mod x"

vl

The proof of this algorithm's validity is, again, by

induction

Let P, j(-) denote the (i,j) Pade approximant of a

’

power series.

58

. Q, Q 0, Q
Let M, = { 1 _1} and M, = [2 2}.

P, P, P, P,
Assume thgt M, and M2 are correct.
Then Q, /P, = Py) m(B/A) => P./Q = P o (A/B),
,~ Q,/P, = Py m(B/A) => P,/Q, = P glA/B),

Q,/P, - pk_]';(p/z> => P,/Q, = Pk'k_Y(E/F):
Q,/P, = P, | (F/E) => P,/Q, = Py | (E/F).

Furthermore, ord(Pi) = ord(@i) = ord(Qi) = ord(éi) =0
for 1=1,2.

Because of normality, ord(E) = ord(F) = O.

Thus, PB-QA = (P ,P,-xP,Q,)B-(Q,P,~xQ,Q,)A

(P]B—Q1A)P2-X(P1B—Q1A)Q2

m+d+ 1

[}

(FPZ—EQZ)x

2n+s-1
X .

0] mod

Also, deg(P) max[deg(§1)*deg(P2),deg(P])+deg(Qz)*1]

= n+s-1,
deg(Q) = max[deg(§1)+deg(P2),deg(Q1)+deg(Q2)+1]
= n,
ord(P) = ord(§1P2) = 0 since ord(xP1QQ) = 1,
ord(Q) = ord(§1P2) = sincerrd(xQ1d2) = 1:

Therefore, P/Q is the reduced (n+s-1,n) Pade
approximant for A/B.
By an identical arqument, P/Q is the reduced (n+s,n)

Pade approximant for A/B.

Thus, the algorithm behaves as stated.
‘ For determining the cost of the MD2 algorithm, a few

conventions are again adopted. In particular, it is again

59

assumed that n is an exact power of 2. Furthermore, 1t 1s

"

assumed that s 1. The effect of these two assumptions 1S
that k = d = m = n/2. Under these conditions, and
remember?ﬁg that A/B is (n,n)-normal, the sizes of various

intermediate results can be given as follows:

/

’
deg(A) = 2n*) deg(C) = [5n/2]+
deg(B) = 2n+! deg(D) = [5n/2]+1
deg(M1) = n/2 deg(Mz) = n/2

In fact, matrices M, and M2 each contain one polynomial of
size [n/2)}-1 and three of size n/2. However, setting the
size of all to n/2 should only have a very minor effect, for
large n, on the final eguation. Based on these values, the
cost of each step in the algorithm can now be summarized as

2

below:?

Step 5: T(n/2)

Step 6: 4CM(n/2,2n+1)*5n44
Step 7: 8n+7

Step 8: T(n/2)

Step 9

4CM(n/2,[n/2]*1)+4CM(n/2,n/2)+5n+12

Step 10: 4n+8

The remaining steps are cost-free. Thus, the total cost of

this algorithm becomes:

v

T(n) = 2T(n/2)+4C_(n/2,2n+1)+4C,(n/2,[n/2])+1)+
Cm Cn

4CM(n/2,n/2)+22n*31.

60

Using classical polynomial arithmetic, this cost becomes:

T(n) = 2T(n/2)+12n%+66n+71

24n2*66nlogn+47n—71 unit operations,

whereas using fast arithmetic, 1t becomes:

T(n) 2T(n/2)+192nlogn+470n+31

96nlogzn+566nlogn+31n—31 unit operations.

It is interesting to note that no polynomial or power series
division 1is required by this algorithm. This accounts for
its good performance when using fast arithmetic. To offset
this, however, is the fact that A/B must be (n,n)-normal.
Brent, Gustavson, and Yun [5] mention that this normality
requirement can be relaxed somewhat. However, then the
resulting rational function would not necessarily be 1in
reduced form anymore. Furthermore, they indicate that to
remove the normality condition entirely deteriorates‘the
complexity of the algorithm. They do not give any further
information about either claim so these points are not
pursued any further.

To compute the reduced (n,n) diagonal "Pade approximant
for any (n,n)-normal power series using this technique, 511
that is now required is an appropriate call to the MD2
procedure. If A is an (n,n)-normal power series and n is aﬁ

»

integer, this is accomplished as follows:

t
Algorithm 3.2.2: MD(FP,Q,A, n)

input : A 1s an {(n,n) normal power series,
n 1S an 1nteqger .
"

Qutput: P,Q such that P’Q 1s the reduced (n,n) Pade

J,approxlmant for A.
e

Commen't M 1s a thatrix.

1) Call MD2(M,A,‘,O).

The validity of this algorithm 1s directly dependent on the
correctness of the MD2 algorithm. The cost of the MD

algorithm 1s 1dentical to the cost of MDZ2.

3.3 The DIAG Algorithm
The next forward diagonal approach for computing‘
diagonal Pade approximants is an iterative method developed
by Cabay and Kao [6]. Given two consecutive diagonal Pade
approximants, this technique computes the next one in the
sequence based on the given two. Let A be an arbitrary power
: y
series truncated to 2n+1 terms. Then this approach computes

the reduced (n,n) diagonal Pade approximant by the following

. algorithm:
Algorithm 3.3.1: DIAG(P,Q,A,n)

" Input: A is a power series truncated to 2n+! terms,

.

ca.cu.at.ons

pover series or pc.ynom:a. ar:.t

A

LNVCiVING power ser.es

hme? .

car pe Jdone us.nc e.the

c. Ir *he case !¢

[+3)
0

S a’ ctede:l .
cutput .. Sul! That r o, .S tre reculec Fale
approx.man < A
Commern:* E,PK ;k,ﬁk are power ser.es Tl oa..
‘P, F_ ‘a. X
v - N
T . <
L
2 R =%, k=(, >=- =
“* Wh:i.e . <« r dc peg.r
4 ¢ = oral ‘AL, x°T leu-
S 1f ¢ < n ther beg:r
6) R, = AL xd“ moc xjk“
K . bl -
- M R c -
J R. . = ‘RA{ .oox’ moc x
K- . g - _
) < (R._. R ' moé z° *~
8 B K - K o¢
P ‘P, P . "B
9 = L
TR T TR
0 kK = k-
end.
) o=l
12) 1 = @.
end.
T 13) p=pP C
> = ’ B\, -
ARt
The divisior ir stepr &€ mus: be done US.NC power ser.es
division. The d.vis:or by the power cf) .r Ssteps & ¢
7 must be done using po.ynom:i:a. d:v.s.0rn. A.. Cther

0.

<

-

¢ fotrle gLl LS Dy LTQuls
ASsSume - ha- :k . ¢ T ne red.lecC raqge
appr.x.ma~* !{1: A ac tna:r ?Ki, ;‘k-‘ 1S the
reducec - .- Pade approx.marnt for AL owitt
Assume &.SC *ha: <rc ;r = °r2 ;x =
The AL IS A’ x;;‘ x;“r AL P moC <"
er -F = . - - P x
~x ¥ Ly D S ©
- - " -
— . PE. & -
= A“k ¥ x
oy
Tros. LI AL . -F = o= = A7 P = 1 moc x :
“k ok . Lol S =
~ e - ¢ -
Thereflcre,
~ e ~a ' do .
AL -F = AL xT T oxT T+l AL -P moc x :
“k ¥ “y - ‘ !k % el P
. C-L d. .
= R' moc x x
c-. ¢
= 9'7 moc x
F.rthermcre., Crc K = ord'AL -P -3-. = [,
¥ “y k"
S.m..er.yv., Lrd’Ay -® = .*>, Ccro'Fk = L, anc

Qk-_—r .= "R, _x° - moc x - .

Because crd‘RK-_ = crc<R" = {, ord(B) = (.

The .nduct.ve s eds as fc..ows:

re
"
h ol
O
’ -
e
=
"
he}
'y
(o]
O
X
he,
"
Q
(8]
4 J

r _-' . = A7 B——’N D 1 -, -1 P ~-P i -
“ke ke g S k- P B-P,

Al
N
Q.
+

)

hA.SC, Jeg:P = max

A
).

aegq ;k“ = max[deq’;K +~deg B!,degfﬁki,?‘c -)
c:d’;K‘. = Qrd<QkB> =
. c-:
since ord<gkr,x o= ds oo
k+' d+1

Ncw, ¢cbserve tha*t P

Th:s can be ver:.:!:ed by i1nduct:on:

d- - a-
_ - - S0 - - <)
Pk*’Qk Qk"Pk (PKB Pk;‘x Qk QKB Qk—ix P
4--
= - / -)
x (Pka‘, Qkpk—"
I P TR N
k+' g+
= (- X
., _d*a
Th:s means that gcd<Pk,q.Qk,5’ X -
However K because ord(Q, .) = C, x°} gcd(P _..,Q ..

Therefore, gcd(Pk‘.,Qk‘,) =

Consequent.y, P _.'C, . 1s the reduced (d.d) Pade
approx:imant for A.
The a.gorithm terminates wher d 2 n+". That th:s

actuai.y occurs :s guaranteed by the fact that

At +hat pc:int, P Qk forms the reduced in,n) Pade

Therefcre, as ca.cu.ated py th.s a.gcr:thm, P. QL :s the

reduced (rn,n' Pade approx.mant for A.

(&)

Befcre perfcrm.ng the ccst ana.ys:s for the DIAG

Vo]

a.gcr.thm, a few commerts shou.d be made regarding some

the ca.cu.at.ons perfcrmed :7 thi:s a.gor:thm. Consider,

re

.rst, the probiem cf{ computing the vaiue for d :n step

the a.gcr:thr. One way :C Obta.r the va.ue ¢!

k

64

ord[L<AQk> x°"] is tc actua.i.y compute the va.ue cf A:k
tc 2n terms anc ther .lock fcor the f.rst non-zerc term pas:t
the (2.:)th coetfic:ent of the result. Another approach :s <
on.y compute coefticients 21+, ..., a+: of AQk until the
{d+:)th coefficient 1s non-zerc or unt:i d+: > 2n, Using
this iatter scheme, step 4 of DIAG can be replacec with the

foilowing sequence of caiculations:

4b) While ¢ = 0 and é@ < 2n do begin

4c) d = d=+
44) For m = C until 1 dc begin
4e) c = C*ad—mqk,m'
end.
end.

4f) If ¢ = C then @ = n+' else d = 4d-1..

IS
where A denotes the mth coefficient of Qk‘ In a similar

fashion, the value of R computed 1n step 6 of DIAG, can be

k 14
obtained by constructing only coefficients d+i,...,2d of the

product AQ, . which can be done by the following method:

6a) For m = d+1 until 2d do begin

6b) rk,m C.

6¢c) For s = C unt:il i do begin

6d) L r'k,mq'u’t—sqk,s'
end.

end.

66

where r :s the mth coeff.c:ent cf R and g 1s the sth
K, m K k,s

coeftic:ent of Qk. Ncte that .! the a.ternate technigue for
step 4 .s a.sc used, then Tk gy - C where ¢ 1s the last
coeftficient calculated by the first technique and the value
for m in step 6a, above, starts at d+i1+! rather than d+i.

At the beginning of each execution of the loop starting

at step 5 of the DIAG algorithm, Ry, contains the value

147 21+

R . = L(AQk_j)/x] mod x , as left over from the

k_
previous execution of this loop. Thus, at step 7 of the
algorithm, 1t 1s only necessary to perform any calculations
1f 21 < d+3j, 1n which case only coefficients 2i*1,...,d+j of

the product AQk_1 are required. Consequently, step 7 of this

algorithm can be replaced with:

7a) 1f d+j > 2i then begin

7b) For m = 21+1 until d4+j do begin
Tc) Ty-1,m * 0.
74) For s = 0 until j do begin
Te) rk—1,m rk—1,m+am-sqk-1,s'
end.
end.
) end.
where r, _, is the mth coefficient of Ry 4 and Qp-1 o is

the sth coefficient of Qu-1-
The three technigues presented above are only valuable
if they represent an improvement over the original methods

for producing the same results. A careful examination of

these technigues shows that each computes a partial power
series (or polynomial) product using classical power series
multiplication. Thus, each is an i1mmediate improvement, by
necessity, over computing the compiete product using
classical arithmetic. That they are an improvement over
computing the total product using fast power serles
multiplication results from the fact that, 1n the worst
case, steps 4, 6, and 7 of DIAG are each executed n times.
It i1s shown shortly that using these three techniques then
results in a total algorithm complexity of O(n2). On the
other hand, computing the total product using fast power
series arithmetic results 1n an O(nzlogn) algorithm.
Therefore, computing only the partial products 1in this way
represents a clear improvement over computing the total
product using either form of power series arithmetic. It
should be noted that a partial product can not be obtained
using the fast power series multiplication technique without
first computing the total product. Thus, no further gain can
be obtained in that,direction. :
For determining the cost of the DIAG algorithm, assume
that the worst case situation exiété, wvhich again occurs
vhen the input power sgries, A, is normal along the main
diagonal. In that event, the following bounds hold on the

sizes of various calculated values:

deg(Pk) = k deg(Rk_q) = 1
deg(Qk) = Kk deg(Rk) = 1

L

deg(B) = 1

68

Then, assuming that the three 1mprovements presented above
are used, the cost of each non-trivial step of DIAG,
‘

excluding the loop starting at step 5, can be given as

follows:

Step 4: 2k=+2
Step 6: 2k+2
Step 7: O

Step 8: CD(1,1)

Step 9: ZCM(k,1)*4k*8

This brings the total cost of the algorithm, as determined
by the loop starting at step S5, to:
n-1
T(n) = L [zcn(k,1)*CD(1,1)~8k~12].
k=0
Using classical polynomial multiplication and power series
division, this equation collapses to:
n-1 2
T(n) = I (12k+20) = 6n"+14n unit operations.
k=0
Cabay and Kao [6] derive the same pound for classical
arithmetic usage without the normality assumption. Using the
fast arithmetic algorithms, and assuming that n is an exact
pover of 2, the total cost becomes:
] n-1
T(n) = I (12mlogm+10m+Bk+162)
k=0

= 8n2logn+8n2+48nlogn+246n-68 unit operations

t

rl°9(k+2)].-lt is interesting to note that for

where m = 2

this particular algorithm, use of the fast arithmetic

69
13

techniques actually results in a poorer complexity for the

worst case situation than use of the classical methods.

3.4 The OFFDIAG Algorithm

The final algorithm considered for computing symbolic
diagonal Pade approximants was developed by Choi [7] in an
attempt to improve on the complexity of the technique used
in the DIAG algo}ithm. The result is an algorithm with a
better asymptotic cost which can be used to compute the Pade
approximants of a power series on or below the main diagonai
of the Pade table. Let A be a power Series truncated to
m+n+1 terms where m and n are two integers such that m. 2 n.
Then the OFFDIAG algorithm produces two Pade approximants
for A along the diagonal of the Rade table for which
1-j = m-n. One 1s the reduced (m,h& Pade approximant for A.
The other 1s the last different Pade approximant for A to

appear on the same diagonal just before the (m,n) Pade

approximant.
Algorithm 3.4.1: OFPDIAG(M,A,m,n,m,n)

Input: A is a powver series truncated to m+n+1 terms,
m,n are integers such that m 2 n,
PP

_] vhere P/Q is the reduced (m,n) Pade

Qutput: M = [
QQ

~approximant for A,
and P/Q is the (m-1,n-1) Pade
approximant for A,

m,n such that_i+ﬁ-ordeQ-P)-1 and m-n=m-n.

70

] = .
Comment A ,R,R are power series,

x
M 1S a matrix.

1) d=m-n, 1=C.

2) m=d, n=0.
P B T(a mod 2 x4 N

=

3)

|
e L ¢
4) while 2' < 2n do begin

1

5) If n > 2° then m‘ = 21—5 else m‘ = n-n
- .
6) R = [(AQ) x™ ™| mod x°"
7) If R » 0 then begin
8) d* = ord(R)+1.
9) n® = m*-a°
. d“’

10) R = |R/x .

- - —Of.]—'[‘0 ‘o‘
1) R = [(AQ)/x" | mod x™ " T .

3

12) A. = (R/R) mod " *n 1.
13) call ofFfFDIAG(M® . A% . 0" . n*. 0% n%).

PP PP O .
14) o= - gter M -

Q Q Q Q{{0 -x
15) mem+n®, n=n+m".

end.
16) i o= i+, |.
end.‘

17) M =
y »
ﬁ .

Note that the Pade apptoximant computed as P/Q is not

IR

necessarily in re*ed form. As with the DIAG algorithm, the

'R

d:vision :n step 'Z of OFFDIAG must be done using power
series d:vision whi.e the divis:on by the power of x :in
steps 6, ‘0, and ' must by done using poiynomia. d:ivision.
All other power seri:es operations can be done using either
power seriles or po.ynomiai arithmetic., although for step 4,
the poiynomial methods aYe more efficient. The proof of the

1

OFFDIAG algor:thm 1s very simiiar tc that for DIAG:

For notational convenience, replace step '4 w.th

BT PRI ¢)
t ! = i ’: d‘ N M‘.
le" 2, e Q)0 -« J
[p‘ E"T
s i
Let M = | o _,
o o)
P P . S
Assume that | and M are correct, forming the
Q Q
inductive hypothesis.
- = . - —%
Then AQ-P = 0 mod xm*n*I' AQ‘-P‘ = 0 mod X *n 01,
- = ~% -8
AQ-P = 0 mod x™ "', AQ*-P* = 0 mod x™ "M 7.

Also, ord(Q) = ord(Q') = 0 since both P/Q and P'/Q'
are in reduced form.

This means that

AQ-P = [(AQ)/x™ ™ x™* " e[(AQ=P) mod x™ "]

= LA /x™TRT Mt

Thus ord(AQ-P) = ord[[(AQ)/x™ ™" !|]+men+1 = men+d®,
- - .8
=> AQ-P = 0 mod xm+n+d .
Therefore,

G- m+n+d® men+d® [m+n+d®
Q-P = |[(AQ)/x Ix +[(AQ-P) mod x]

: s .8 = .= .
= (R mod x2m -d +1)xm*n*c~d

. % + - -
m+n+gd 2m +men-+

= (Rx 1 mod x
Furthermore, ord(R}) = ord(AQ—P)—&-:-d‘ =
Sim:iarly, ord(Aé-ﬁ’ = &'ﬁf‘, ord(R) = 7, and
I . -
Aé-@ = (ﬁxm‘n_') mod xT 4n'*m0n
Because ord(R) = ord(R) = 0, ord(A‘) =

The i1nductive step of the proof proceeds as follows:

E 3 E 3
AQ -P' = a(Qp-0x9 “To*)-(ept-Bx? 0"
zx
- (aQg-P)P - (a0-b)x¢ ‘"
Sl . .-
= [(Rxm’n*d) mod x2m ’m’n‘wlpt—
- men- moenemen, d e s
[(Rx) mod «x Ix ;
- . . - -
= [(Rxm*n’d) mod x2m *m*n*l]pt_
S o . . - -
[(ﬁxm‘n’d) mod x2m *m4n“]Q‘
* - s &*ﬁ*d’ 2m‘+&+ﬁ*1
= [(RP -RQ)x] mod «x -
- . s _-1- s men+d’ 2m’ smene
=> R (AQ'-P') = [(P -R RQ)x] mod x

[(a%Q*-P*) men+d’ %§ 2m* +men+1
! - x gﬁgo x

&06+d‘0&‘; + 1
0 mod x

- 0 mod x(m*m)+ (n+m)*1.

Since R_' # 0, this implies that
' 4 (mem®) s (Rem®)
AQ'-P' = 0 mod x .
Also, deg(P') = max[deg(??'),deg(ﬁQ‘)+d‘+1]
- -8
< mem ,
deg(Q’') = max[deg(QP‘),deg(éQ‘)+d'¢1] &
- -8
S n+m .
Thus, P'/Q' is the (m*m*,n+m*) Pade approximant for A.
By a similar argument, P'/Q' forms the (m+m -1,n+m -1)
Pade approiimant for A.

By indﬂction, ord(p') = min[ord(A),ord(ﬁQ‘)*d‘*1], as

shown by:

crd(P') = min(o

= mxn[ord(P)*ord(P*),ord(

= min[ord(A
= min[ord(A
TQus, 1N partxcula;,
Tﬁen ord(Q') = min[ord(QP‘)
Now observe that P'Q' -Q'P' = —xk for

Assuming that P@-Q§ = —xh

rdiPP') ordipgt)+d

y+ord(A®) , ordl

and P‘@‘-Q’

Lat

x

-]
po*)aat)

pQ*)+d*+ 1]

),ord(PQT)+d"+1].
x *
ord(P) = 0 since ord(A) = 0.

,ord(éb‘)*d'

1] = 0.
some k 2 0.

P* = -xJ for some

h and j, this can be verified by induction:
P s 4%+ - -2 dT+i1-2-
P'Q'-Q'P' = [(PP -x Q P)(QP - QQ)]-
% d‘+1 E - % d‘+ 1-%—
[(QP -x Q Q) (PP -x Q P)]
a*+ SF

-x [Q*PoP*+PP*Q"0

]

-x [(PQP Q -QPP Q

(0PQ"B"-pR0"?’

P 3
3 PP Q*-pr*0)

]

(rQQ P*-oPQ P’
vos

-x9 " T(rQ-0P) (P*0*-Q’

x .
(-x3) (-xM) (-xD)

k
= -X .

where k = h+j;d‘+1.
k

-Q*app*-0p*0%P)
%
d +1. - _X=% = _&=%

+

)]

)]

%)

This means that gcd(P',Q')
However, because ord(Q') =
Therefore, gcd(P',Q') = 1.
Consequently, P'/Q' 1is in r

It is now a trivial task to

| x

0, x J gcd(r',Q').

educed form.

verify that at some point,

P'/Q' forms the (m,n) Pade approximant for A.

a

74

The details of the fact that this occurs when i 2 logn

are left to Choi [7].

This then completes the verification for tRig algorithm.
Like in the DIAG algorithm, the calculations performed
in steps 6, 10, and 11 can be performed either as stated or
by computing only a partial power series product using the
classical power series multiplication?technique. However, in
this case, use of the second alternat?ve results 1n a poorer
complexity when fast power series multiplication 1s used.

This occurs because of the»fact that the covering loop,

starting at step 4 of OFFDfAG, 1s only executed }ogn times
whereas in DIAG, 1t 1s executed n times 1in the worst case
situation. Consequently, use of the partial multipl;cation
scheme 1s not considered f%r the OFFDIAG algprithm.

Assume- now that the input, power series, A, 1s
(m,n)-normal, which represents the worst-case situation for
the OF&&IAG algorithm. In that case, the following

assertions hold about the sizes of various valuqevbefore

step 14 of the algorithm 1s executed:

deg(P) = m deg(P*) = m*
deg(Q) = n deg(Q*) = n®
deg(P) = m-1 deg(P*) = m*-1
deg(Q) = n-1 deg(é‘) = n¥-1
deg(R) = m*+n® : deg(A.) =m +n’

deg(R) = m +n .

This means that the costs of the non-trivial steps in the

algorithm can be summa:ized as foliows:

b 3
Step t: Co tem smen ntedm +2m+ 3n+,
Step 'U: Zm
. x - L ISR
Step 'l: C,{m +n +m+n-" ,n¥+2m +2n +’2m+ 3"
Step 12: C._(m +n ., m +u)
Step '3: T(m ,n !

Step 14: 4CM(&,m‘)*QCM(B,m')*Sm“Zm‘2;+8

Since the major éincern cf this discussior :s di:agcna. Pace
}

approximants, let m = n, which then .mp..:es that T = n.
Assume further that n 1s an exact power c¢f 2. Then, wher
_ - - % L . N
1 =0, m=n=n =0anmd m' = °, while ¢ : =2

I3
- - x 1 -]] 1-1 -
m=n=m = 2 and n = 2 ~!. This meanrs, after a

qouple of minor modxficatioqé, that

i

T(1) = Cp(1,11+2C,(2,0)+8C,(0,1)+26, and

i1 i, il i1 _i-1
yrcp(2h-1,2 -1 w2 (277,20

¢

T(2Y) = T(2

8C, (201, 2" eae(2h) 410

-

where i > 0, This.brings the total cost of the OFFDIAG

~algorithm to:

-3
-’
L]

g¢(9/2)+co(n—1,n—1>+szczn,n/2)+8cM<n/z,n/2)+

" 16n+CL(T,1)+2C,(2,0)+8C\ (0, 1)+36. v
1
* Using classical arithmetic techniques, this cost becomes:

'S K _
©T() = 2T(n/2)+9n%+42n+104

18n2+42nlogn+160n-104 unit operations.

/
"

- | | x“h‘

Ny .

- e - - > - *
- o -
se e L Z L e FVTOLAD L - o
’
my - Lo e _ &7 Zoe - ¢ [SE S PN Y T
grr.TIleTte ;T ower Sser ec ~ < - \ Ll R X3
re e L llw el ec_:e
ALTTTLTho v .. TFEZIAG B LA
TR A .S a8 @a@rb.irely prwer ser _es.

Jutpit F._, such that P L .s the recucec -~ . - rade
0 .
approx.imant fcr A
Comment : M is a matrix,
. 1,] are 1ntegers.)

1) Call OFFDIAG(M,A,n,n,i,3j).

1 4

P 1
2) = M .
Q 0
The validity of this algorithm 1s guaranteed by the

correctness of OFFDIAG. The cost of this procedure 1is

‘identical to the cost of the OFFDIAG algorithm.

. Z « e - e L I N < -

LX) ¢ N O e < s I e o ~
LK < - e - . me e AR e e e
e e - e .é ez _sel at e L TLa. o«
Lwel Se- ec e! .em" ITMma . . Nex: scme sper IS tore
Ty .eme~a°" - T_ S De Tl .uiZeC. F.e..v. a"s mise
STl TTan L e T .T.TLC Tes..TS a"Cc nlUw Trhen werle _IDta. ec.

7.8° De [rese" el a"C C.SC.SSsecC.
4. 1" Selection of the Coefficient Field

UF tc this pcint. .t has beer assumed that the
coefficients c¢cf a..i poiynomia.s and power series ile 17 an
arbitrary fi1eld. For a practicai 1mplementation, 1t 1is
necessary to select a specific field as the coefficient
domain. One of the more popular classes of fields used for
this,purpose are the finite fields, or Galois fields,
consisting of the integers modulo a prime integer. For any
givsn prime integer, p, such a field i1s often dehoted by
GF(p). The presentation of the nature and properties of such
fields are. outside the scope of the current discussion.
Details can be found in any introductory fext on nﬁmbér
theory, for example, in Shockley [25].

Although adequate for many algebraic applications, the
use of GF(p) for any arbitrary prime integer, p, is not
completely sufficient for the problem at hand. The reason

‘ v .

77

ks LTy

¢t ume T . e T . .ec el e e “e oot o T O
cloer ¢ e : L : 4 e ex cte” e :)
: a~o z > er Cotre » er .S s @
G. o oTasr Scme ass.s'a e s o JeZ ©y T nhe
MO 3 T Tes._.

Trhecrem 4.

_e* T pe a gr.me .""eger. Ther GF. ¢ has a rimit:ve
+ r

™

~th oroct cf ounity 80 tp- .

The proct of this theorem can be found 1n Shockiey [25].
Using this resu.it 1n conjunction with the fact that n always
has the form n = 2k for some k > 0, 1t becomes immediately
apparent that the optimal choice for GF(p) is where p 1S a

Fourier prime.
Definition 4.1.,2

A prime integer, p, 1s a Fourier prime if p = c2m+1

for some c,m > 0,

Some valuable work regarding the existence and practical use
of Fourier primes has been done by J. Lipson. Details of his
results can be found in Lipson [19]. The actual Fourier
prime used in the present implementation will be given
shortly.

Onegitem that has been largely ignored to this point is

the problem of how to compute inverses within the

“ceft . r.emt ft.e.2. The macor reascn {or th:is de.ay .S tha:
SLCh Ca.cu.at:ons tend < be very dependent on the doma:n
w.thir which they are done. Inr GF(p!, muitiplicative

inverses can be computed using a couple of difterent
technigues. The better of the two, as determined 1n an
analysis by Collins [8], 1s the extended Euclidean

K
\

algorithm. Since gcd(b,p} = ' tor any non-zero value b in
GF(p), the extended Euclidean algorithm can be used to
compute, using standard integet,@ivision, values ¢ and d 1n

/

GF(p) such that

bY

cb + dp = 1 => cb = 1 mod p.

Conseguently, ¢ is the multiplicative inverse of b in GF(p).
A result attributed to G. Lame, as given by Horowitz and
Sahni [14], states that the number of divisions required by
the extended Euclidean algorithm in this case 1s no more
than Slog1ob. This means that for any given p, the number of
operations required to compute the inverse of a non-zero

element in GF(p) is bounded by a constant.

4.2 Implementation Details

The algorithms described in the previous chapters have
been implemented in an extended form of-the AlgolW
programming 1anguége using a slightly modified version of a
compiler jointly developed by the University of Newcastle
upon Tyne and the University of Michigan. A description of

both~;he language and the compiler used can be found in

8C

[24]). The :mplementat:on was accomplished on the MTS
operating system, a somewhat dated but still fairly accurate
general description of which can be found 1n the article by
Boettner and Alexander [3].

One of the features of the AlgolW language 1s that any
integer product cannot have a result larger than 2147483647.
Thus, 1f exact arithmetic 1s to be retained, no element of
the GF(p) used as the coefficient fieldﬁcan‘be larger than
46340. Since ;0961 1s the largest Fourier ézime within this
bound, GF(40961) becomes the optimal choice for use as the ’
coeff}cient domain in AlgolW, and is the field so. used in
the present implementation.

The largest value of n, where n 1s a power of 2, such
that an nth primitive root of unity exists .in GF(40961) is
n = 4096, which means that the fast polynomial and power
series multiplication technigue can be used to obtain
products with a maximum degree of 4095. An empirical
examination shows that i’is an appropriate (4096)th

»

primitive root of unity for this field. All other primitive -

.roots of unity required for obtaining smaller results us}

fast. arithmetic are simple integral powers of this given™

» ~

\3* primitive root{ To cut down on‘the affect of manipulating
roots of unity on the execution times obtained, all powers
of this primitive root are stored, in the present
implementation, as constants in an array, so that obtaining

\ N

any particular root of unity simply consists of determining

the appropriate index into this array.

The primary method used for storing polynomials and
power series 1s as a linked list of coefficients, using
AlgolW's RECORD and REFERENCE facility, with no special
distinction being made between dense and sparse polynomials
and/or power series. To increase efficiency and to provide
bétter control over the creation of such storage, AlgolW's
dynamic RECORD allocation mechanism has been bypassed in
favour of making direct system calls to obtain large blocks
of storage which are then dispensed under~greater control.
Furthermore, because AlgolW has no storage reclamation
facility, all storage is returned by each procedure to a
central pool after it is no longer needed so that 1t can be
re-used in later calculations.

When performing polynomial and power series arithmetic,
the use of linked lists is inferior to a more directly
accessible structure. Therefore, when performing.any
calculations, the coefficients of the polynomials or powver
series involved are transferred to an arré} structure until
the operation is complete, after which the results are
converted back into linked list form.

’ In order to obtain execution time values that are as -
inggpendent as possible of the storage mechanism used, fwé
different time values are obtained by each of the programé.
“The first value consists of the complete g¢xecution time fer
each Pade procedure. The second value is the time spent in
storage m;nipulation for each Pade procedure. This latter

value includes the time spent for polynomial and ﬁower

L

B2

series storage allocation and reclamation as well as the
time for converting from linked list format to array format
and vice-versa. In this way, a non-storage specific time
value caﬁ easily be determined. To prévent the time
accumuiation operation from interfering with the execution
time values, each call to the standard Algol® TIME procedure
has been replaced with an SVC instruction (see Boettner and
Alexander [3]) which returns the elapsed problem state time

for the activg task.

4.3 Empirical Results

In order to determine the practical efficiency of each
of the four Pade algorithms, the implementation just
described was used to obtain CPU time costs’for each
algorithm using a number of shmple input power series. The
programs were executed under the MTS operating system
running on an Amdahl 470/V8 mainframe computer with a real
mémory space of 32 megabyteé} The programs were executed
,}ith that execution as the only active taskion ‘Pe machine;
no other user or system;prograAS were operational at the
time of execution. Ali of the background system tasks, such
as the STAT job and LOADLEVg;fwéTe turned off in ;ttempt to
eliminate as much system interference.as possible. To
gUar;ntee that there would be no interference»i;g%he results
due to memory paging, the paging drum processof (PDP), which

handles that particular system function, was also turned

off, since a shortage of memory would not be a Sroblem with

Nom

B3

the available memory space.

The sample set bf power series used to obtain the
empiricél CPU costs consisted of 18 power series wilth
coefficients generated at random from the coefficient field,
GF(40961). For 10 of these power series, the degree of
conversion (tﬁe value of n when computing an (n,n) diagonal
Pade approximant) was also chosen at random from between 0
and 250. The degree of conversion for the other 8 power
series ranged from 250 to 2000 in increments of 250.

Each of the 18 power series was converted twice using
each of the four Pade algorithms: once using classical
polynomial and power series arithmetic and once using fast
arithmetic, resulting «n 8 total CPU time values and 8
associated storage manipulation time values for each sample
power series. The actual CPU time values for each power
‘series were then obtained by subtracting the storage
manipulation time from the ‘total CPU time value for each‘
execution, producing*a total of 8 actual CPU time values for
each sample power series. These actual execution times are
plotted, with the CPU time as a function of the degre®e of.
conversion, in the graph‘in Figurg 1. In this graph, the
solid lines represent the costs using classical polynomial
and péwer series arithmetic while thé.troken lines represent
the costs using fast arithmetic. For the sake of
:completenessﬁvthe actual CPU time values obtained, as well
as the tihes’spentlby each program in storage manipulation,

can be found in Appendix B at the end of this presentation.

|)

84

- 2 1 4
g 1 1oy
' /[/ [}
) //'
: //
! I/
E ",
- ;’
.’ 46
N :' p - | 3 ' -
— E o' ,I .45
v ! r - v
o ' ‘-
g ! 1T 18
(&] ' L7 1 ’/ y
L] . , : .
‘*8 " // ’/ ,’<
b ! I/ II
— 1 ’ '
5 g i ’ f /,
w ’,J’ .
= L’
—4 7’
— L
o) -’
2
o
™
“‘
. 1
E 1.5 = AD
- 2,6 = MD
3.7 = DIRG
4,8 = OFFDIAG __
0 400 800 1200 1800 2000
Degree of Conversiaon ‘
Figure 1: Empirical CPU Tihe Graph i

Vel
e o]

-
N [FORNNN ¢ o]
. ~
RN L]
DR - AN %
-t —
- g2
N RN Q0 H W
DN aT T ao
R NN
S N [D B I
<~
AN S n o~ o
. N « e e T
- N — (N M <x
- el - ~
- RN ~ N ‘
.. s .
N NN
~ ~ ~
~ ~ 0N
~ [N
~ [N
~ ~ ~ ’
; ~ . S~ e
- < N
< — N A
T — e NN
Te— N N
Oy ~ NN
— ~ [N
. N NN
/// ~ NN .
KN II NN
/ ~ LN
~ A
~ NN
~ NN
N NI
~ N
~ ~ -
~ NN
> AN
S NN
~ AR
~ AR
N Na
~ Iﬂ
~ K
= —+ - - L ~ N
-~ ~ N /
- A\
AR "
e N
S T T _
N
bttt bttt bt ttttttttttt—ttbtd bttt -ttt bttt L1
4444444<4A44444.-44d44444444ﬁ%444*44.<<—<<4<<<<<<d<<<44

(SUOT1BJ3do 1Tun) 1S07 TEIT1aJ0ay|

4

2400

Degree of Conversion

16800

1 Cost Graph

Figure 2: Theoretica

s

L 4

Be

in Figure 2, a graph ¢of the theoret;cai operation
counts, plotted with the operation counts as a function of
\

.the degree of conversion, 15 alisc :included to ailow the
making of comparisons. Solid lines are again used to
indicate the use of classical arithmetic while broken lines
againtrepresent the Qge of fast arithmetic. A comparison of
the t;o graphs indicate that, in terms of the general
appearance of the graphs, there is little difference between
the empirical behaviour and the theoretical behaviour of the
four algorithms. A couple of noticable differences do exist
bgtween the two graphs, however, which can largely be
attributed to two causes. .

To begin with, the theoretical cost graph, as plotted,
assumes that the value of n in each of the cost eqguations
corresponds to the degree of conversioh. While this 1s true
when using classical arithmetic, the value of n when using
fast arithmetic is actually closer to the nearest power of 2
great@h than or equal to the degree of conversion. As a
result, the lines in the theoretical cost graph

corresponding to the use of fast arithmetic should more

properly appear as staircases, rasher than as gmooth curves,

" indicating that the empirical CPU time graph is more

PR

‘%%dicative of the true behaviour of the Pade algorithms when
using fast polynomiél and power series arithmetic.
The second reason for differences between the two

graphs is that there is an -imbalance in the hidden costs,

mogtfy in the form of -procedure calls, that exist in the

N

87

implementation of the four algorithms. For example, 1n the
implementation, each polynomial or power series operation
requlires a procedure call, the cost of which 1s not
accounted for 1n any of the theoretical cost equations.
Since the dumbervof times thét such costs are incurred 1s
nog th §;me for each of the dlgorithms, this has the effect

- pt s1 il h%ly altering the relations that ex1st between the

// -
four algorithms. In particular, it 1s for this reason that

some of the crossover points in the emplyical CPUAtihe graph
do not occur at the same plaCelaé they occur 1in the
'
~_J//A\\\theoretical cost graph. o

Up to this point, very little has been said about the
storage manipulation times obtained.iThe reason for this is =
that the storage manipulation times represent only the costs
of converting a polynomial or power series from a linked
list structure to an array structure and back agi}n. These
costs are not an intrinsicAproperty of the various
algorithms and they would not exist if polynomials and power

series are only stored using arrays. These time values are

- included in Appendi@}B simply to gigé'én idea 'of how the use

of linked lists affects the implementati&*&_/ ‘ ’

4.4 Conclusions

As stated in the introduction, the ability to compute
Pade approximants for a power series is useful to qhe
effiéient manipulation of rgtioﬁal functions in a symbolic.

\
computer algebra system. Motivated by this fact, a study was"

approach forvtoo loﬁg q‘pgriod of time.

88

. Ve

‘undertaken to compare the best methods currently available

for Computin diagonal‘Pade‘ppproximanfs. Both the

-«

theoretical cost graph and the gempirical cost graph that
. .. &
resulted from this study point to a very definite conclusion

concerning the relative efficiencies of the four. Pade

algorithms considered. . v o
It appears from both graphs that initially, for a
substantial class of problems, the DIAG algorithm ua&ng
classical polynomial and power series arithmetic 1is the‘pest
method for computing diagonal Pade approiimants.ﬂzhen, after
the problem exceeds a certain size, the OFFDIAG algorithm.
using fast Q{ithmetic takes over in this rof?ﬂ?Tﬁe other .
’ methods for computing diagonal Pade approximants are alwayéQ)
inferior to at least . one of these two approaches. '
The actual point at which:the use of OFFDIAG becomes ;;
superior to the use of DIAG varies depending on - whether .the '’ AN

empirical or the theoretical results are béing used. In the

v

case of the former, the crossover occurs a Bree of

s

conversion of about 1700 while 1in the latter case, the
- . -

deqree of conversion for the crossover point is about 2700
For practical purposes,; it is probably safest to use the .
' A\

empirical value as nbe,crdssover point in any implementation
that combines the use of both methods (as proposed shortly)

since both graphs indicate .that the cost of the DIAG

[4
N

algorithm using classical arithmetic takes a sharp rise at
this point, making it undesirable to keep using that

\

.

89
b 4

An immediate conseguence of the high value of the
[l

crossover point given above 1s that 1t rajses some guestion

as to theé-usefulness of the OFFDIAG algorithm using fast
arithmet. It is not known whether there are any
épplications currentiy in use that require Pade approximants
large enough forﬂthe OFFDIAG algoriﬁhm to become effective.
In the absence of tgis information, however, it is probably
not safe to elim;nate the use of the OFFDIAG algorithm in a
general system for handling rﬂtional functions using
truncated power series until tie intended applications are
better known. .

As a result of all this, it appears that the best
approach to computing diagonal Pade approximants efficiently
usyhg any of the given four methods is to design an
algorithm that takes advantage of the efficiencies of both
éhe DIAG and the OFFDIAG techniqugs. Such an algorithm would
initially employ the DIAG algorithm using classical
arithmetic to éompute consecutive Pade approximants along
the main diagonal until a specific degree of conversion is
reached. After this pdint, Zhe OFFDIAG algorithm using fast
ar;thmetic would be used to continue the process of
computing approximants aldng the diagonﬁl (although these
wvould no longer be consecutive) until the desired one is
reached. The recursive call made by the OFFDIAG procedure
would not call OFFDIAG agaxn 1n-edlate1y, as it currently

does, but would instead call this combined procedure so that

full advantage could be made of both algorithms in their

Afoihim

S0

most efficient environment. Such a combined use of the DIAG
and OFFDIAG algorithms would, quite naturally, be superior
to the use of OFFDIAG only, and its crossover ‘with the DIAG
algorithm would be lower than the crossover of the DIAG and
OFFDIAG algorithms. As a result, it becomes necessary to
‘re-determine the point at which the combined algorithm

becomes superior to the DIAG algorithm.

4.5 Thoughts for Future R.s;;rch

The algorithms and results presen;ed so far apply to
pover series and polynomial; with coefficients that lie in a
field. A substantial number 9f problems (perhaps even the |
majority) dégl with polynomials and power series whose
coeffiéients come from a more general algebraic system, most
notably a unique factorization domain (ufd). IE, therefore,
becomes interesting to speculate as to wvhether these results
can be extended to this larger class of polynomials and
- power series.)

One way in which all four algorithms can be adapted to
compute Pade approximants for a power series vhose
coefficiehts‘lie in a unique factorization domain is to make
use of modular techniques. Using this approach, the initial
pover series is first mapped onto several Galois fields
defined within the ufd using prime elements selected from
the ufd. (Of course, Fourier primes should be ielected in
ofdet to retain the ability to use Fourier-based fast

o

arithmetic within the resulting fields.) The pover series to

91

rational function conversion operation is then performed

over each of these fields using the desired Pade algorithm.

L 4

The results produced by each of these conversions are then

combined using the Chinese Remainder Algorithm, as described

by Lipson [17,19], to form a single solution over the given

unique factorization domain.

The only costs introduced by the use of modular

techniques is the cost of mapping the initial power
onto the selected Galois fields and the cost of the
Remainder Algorithm. Since these costs are the same
regardless of the method used to compute the Pade

approximants, the relative efficiencies of the four
algorithms as applied to power series over a unique
factorization domain using this approach remain the

vhen the coefficient domain is a field.

A major dissdvantage to the use of the Chinese

series

Chinese

Pade

Remainder Algorithm is that solutions over a poténtially

large number of different Galois fields may be required to

produce the desired Pade approximant over the ufd. As an

alternative to the use of this algorithm, it appears that

decoupled p-adic construction via the Hensel Algorithm, a

description of which is given by Yun [26], may be useful for

mapping Pade approximants from a Galois field back to a ufd .

in much the same vay as it is applied to the problem of

polynomial division over a ufd. The advantage of using the

p-adic technique is that only a single Galois field

is

required to produce the desired Pade approximant over the

92

A
given unique factorization domain. As with the use of the

Chinese Remainder Algorithm, the relative efficienciés of
the foPr Pade algorithms when applied over a unigue
factorization domain using p-adic construction would remain
the same as wvhen performed over a field. A

A third, and perhaps the most obvious, way to extend
the four given Pade algorithms to the class of pover series
over a ufd is to perform all power series and polynoeial
arithmetic directly over the desired unique factorization
domain rather than over a field. Unfortunately, this
approach suffers from a few difficulties. To begin with,
since inverses of coefficients do not exist when the
coefficient domsin is a utd, it is not possible to perform
exact polynomial and pover series division within this
domain, making it necesfary, instead, to use pseudo-division
of polynomials and pover series, as outlined, for example,
by Knuth [16]. The problem vith the use of pseudo-division
is that it produces explosive coefficient growth in the
results of calculations, a phenomenon well-known in the
study of computer algebra. It is possible that the same
technique used to ease this problem in the Subresultant PRS
Algorithm for computing polynomial GCDs (see Knuth [16]) may
alsd be used to reduce the rate of sqch coefficient growth |
in the Pade apptoxi-ntibn algorithms, but thii is not a
certainty and r;quires further investigation. ..

'A second difticulfy vith performing polynomial and

pover series arithmetic directly over a ufd is that

[

93

primitive roots of unity do not exist in a ufd so that fast
polynomial and power series multiplication and,
consequently, division based on the Fourier transform can
not be performed directly over a unique factorization
domain. Furtﬁefmore, an alternative method for performing
fast polynomial and pover series arithmetic over a ufd qoes
not currently exist. It may be possible to employ modular’
techniques, using the Chinese Remainder_Algorithm, to
produce the desiréd multiplication result over Q ufd from
products conputed using fast multiplication over several
Galois fxelds properly chosen from within the ufd, but 1t is
unclear as to vhether the superior order of complexity of
fast multiplication cen be retained using this approach.
Another possibility is that the polynomial or pov‘r series
product can be co-putod over a single Galois field qenerlted
from vithin the ufd using a prime element that is at least
tvice as large as any coefficient in the result as produced
over the ufd, bounds for which can easily be determined. If
the proper residue class is used in this Galois field, then
the product produced is the same as the result wvould be over
the ufd. Hhilé the order of complexity for fastz
sultiplication over a ufd remains the same using this
approach as for over a field, it suffers fro- one difficulty
in that, for the general case, vhere no p(actical maximum
exists on the size of coefficients in the ufd, no single - _
prime element is sufficient for producing any arbitrary

product, making it necessary to continually !ind 8 nev oﬁe.

L]

94

along with a primitive root of unity for the field thus

‘defined, for each multiplication problem, the cost of which,

m&‘-.z. hid A
is not trivial, o

Another factor that needs to be considered when
. 4 . ;
performing arithmetic directly over a ufd is that the cost
of performing unit operations, no longér remains a constant.

Regardless of whether classical or fast arithmetic is being

‘used, it inevitably becomes necessary, at a practical level,

-

to perform indefinite precision arithmetic involvihg
elements ‘from the ufd since mqst~uniqub factorisation

domains, such'as the integers, cont#in a wealth of values

_that edceed the precision of most computers. Thus the cost

. of unit aritbhetic in a ufd varies depending on the size of

the elements bexng operated on.

In a leghtly dxfterent context, a final question vhich

should be raised is vhethﬁg the- results presented for. the

“computation of Pade approximants for a power s&ries over a

txcld can still be i-proved. The ansver to this’ is unclear.
At ptesent no knovn work is be1ng done on either” the AD or
thg MD apptoaqhes to solving the Pade approximation problem.
division bper;tions-required by the DIAG and OPFDIAG
glgorithas can be removed in a manner sxn11ar to the way in
vhich they are nvoided by the MD algorithm. 1t this is
pon.xble, the costs of these two algorithms should improve

dralatically since these opcrations ropresont the single

" largest ccntributor to the cost of these tvo methods,

Q’povcvqr,rsono study. is being done to see if the power series .

%

particularly when using fast polynomial and power series
arithmetic. Initial results in this area by Choi (7]
indicate that the divisions can'bé eliminated for computing
diagoﬁbl Pade approximants for a power serie§ that i1s normal
along.the main diagonal of its Pade table. It wili be
interesting to see if this result can be extended to include

the more general class of abnormal power series as well.

(1]

(2]

(3]

(4]

©[s]

(6]

7]

(8)

References

Aho A., Hopcroft J., Ullman J., The Design and Analysis

of Computer Algorithms, Addison-Wesley‘Publisﬁing Co.,

Reading, Mass., 1974,

3 .
Bentley J., Haken D., Saxe J., "A General Method for
Solving Divide-and-Conguer Recurrences”, ACM SIGACT

News, 12, 3, Fall 1980, pp. 36-44.

Boettner D., Alexander M., "The Michigan Terminal ,

System", Proceedings of the IEEE, 63, 6, June 1975,

‘pp. 912-918.

"Borodin A., Munro I., The Computational Complexity of

Algebraic and Numeric Probléms, Americah Elsevier

"Publishing Co., Inc., New York, N.Y.j 1975.

Brent R., Gustawvson F,, Yun D.,_"Fast Solut1on of

Voo

‘Toeplitz Systems of Equat1ons and Computatxon§o£ Padé

Approximants”, Journal of Algor;thms, 1, 3, September

’

Cabaf S., Kao T., "The Diagonal Pade Table and the

Triangular Decomposition of Hankel Matrices", To

appear.

Choi.D., PhD Thesis, University of Alberta, in
: i
preparation.

Collins G., Computing Multiplicative Inverses in @¥(p),

»

9‘ .

97

'\Un1ver51ty of W1scons1n Computer Sciences Technical

[10]

(11]

[12]

191

?

Repbrt ‘No. 22, May, 1968

F1ducc1a C.,"Polynomlal Evaluat1on vid the D1v1s1on

Algorithm: The Fast Fourler Transfbrm Rev151ted“

Proceedlng§ g£ the 4th Annual ‘ACM Symposium gﬂ Theory y
v . :) T) : . .

gg‘C6mguting; Méy 1~ 3, 1872, pp. 88-93. B

Geddes K., Algorithms for Analj;ic Approximation,

University 6§ Téronto, Computer Science Technical T -

Report No. 56, August, 1973.

Geddes KJ, "Symbolic Computation of Pade Approximants”

ACM Transactions on Mathematical Software, 5, 2, June

1979, ‘pp. 218-233.

Gragg.W., "The Pade Table and ifs'Relatipn-to,Certéin

- Algorithms of Numerical Analysis”, SIAM~Revfev,.14,'1$'

[13]

(14]

('5]

1

{

>¥[161

¥

_l-ryi;nd,5197a.

. 4y
January 1972, pp. 1-62. ' <:i -

'

Herstein I., Topics in Algebra, Second ggiiioni prn

£ e B Wi SO - e

Wiley and Sons, Inc., New York, N.Y., 1975,

Horowits !.;QSaﬁni S., Fundamentals of Cg!ggtct
Algo;itggg, Computer Science Press, Inc., Potomac, :

)

Knuth D., gggg!!gggg_ Algorithms, Second Edition,
Addison«!ciloy Publilhinq Co., lnndinq, n.:s., 1913.

lnuth n-. 5122_!!!!15!1 .l!eliikzl !:see! Bdition,

g‘ L a

98

t

Addison-Wesley Publishing 'Co., Reading, Mass., 1981.

(17) Lipson J., "Chinese Remalnder and Interpolatlon

Algorithms", Proceedings of the Second Symposium on

'Symbblic and Algebraic Manipulation, March 23 - 25,

1971, pp. 372-391.

[18]) Lipson J., "Newton's Method: A Great Algebraic

Algorithm" Proceedlngs of the 1976 ACM Symp051um(pg*

Symbolit and Algebra1c Computat1on, Augﬁst 10 - 12,

1976, pp. 260-270.

[49] Lipson J., Elements of Algebra and Algebraic Computing,

) Addison-Wesley Publishing Co., Readihg, Mass., 1981.

[20] McEliece R., Shéarer J., "A Property of Euclid's
Algorlthm and an Application to Pade Approximation”

SIAM Journal on Applied Mathematics, 34, 4 June 1978

pp. 611-615.

. d .
[21] Moenck R., "Fast Computation of GCDs", Proceedings of

~ .the 5th Annual ACM Symposium on Theory of Computing,

April 30 - May 2, 1973, pp. 142-151,

- [22] Moenck R., Studies ig"?ast‘hlgebraic Algorithms,

University of Toronto, Computer Science Technical

"

‘Report- No. 57, September, 1973. ' '
p ,

[23] Moenck R., "Practical Fast Polynomial Multiplication®,
. Proceedings of the 196 ACM Symposium on Symbolic and
Algobraic Computation, August 10 - 12, 1976,

[24]

(25]

[26]

99

pp. 136-148.

MTS Manual, Volume 16: AlgolW in MTS, University of

Michigan, Ann Arbor, Mich., 1980.

Shockley J., Introduction to Number Theory, Hol{,

Rinehart and Winston, Inc., New York, N.Y., 1967.

Yun D., "Algebraic Algorithms using p-adic

Constructions", Proceedings of the 1976 ACM Symposium

on Symbolic and Algebraic Computation, August i0 - 12,

1976, pp. 248-259.

Appendix A: Determining Theoretical Cost Estimates

A theoretical cost estimate fpr an algorithm 1s
obtained by accumuli;ing a fount of the number of base
opetations, expressed in terms of the input size, required
to execute the algorithm. In most cases, only the order of
magnitude of such an estimate is required. However, in the
present discussion, more accurate estimates are desired,
making it necessary to have exact meihqu for counting unit
operations. It {s the purpose of this appendix to examine
some of the Eechniques used fér‘producing the cost estimates.
given in the current presentation.

The accumulation of the exact number of operations
required to execute a linear sequence of statements in an
algorithm is a straightforward, and simple, countiné
exercise. However, two algoritﬁmic constructs, the loop and
recursion, require somewhat more elaborate teéhniques to

- » _
obtain Epe operation count.

To determine the total number of operations for
executing a loop, it is necessary to be able to sum up a
finite sequence of values. Normally, thest seguences have a

rigid fixed pattern to them. For the algofithms described in

. this presentation, four types of sequences occur.

Theorem A.0.1

Let a,n be arbitrary positive integers. Then
n-1 |
1) L i =n(n-1)/2,
i=0

100

\

101

1 . .

2) I a'= (a"-1)/(a-1),
1=0 v
n-1 i n+1 n) 2
3) £ i1ia” = [(n-1)a -na +al/(a~-1)".
1=0
n-1 - n n-1
4) I a ! =-(a"-1)/(a"-a)
1=0

The correctness proofs for these four equations are simple
inductive exercises. Two useful properties of such sums of

sequences are given as follows:
Theorem A.0.2

Let f(i),g(i) be two functions with i as their input

and let ¢ be a constant. Then

n-1 n-1 n-1]
1) L [£(i)+g(i)] = £ f£(i) + I g(i),

i=0 i=0 i=0

n-1 n-1°%
2) I cf(i) =cl Z f£(i)].

i=0 i=0

Again, the inductive proofs of the'correctnesglof these:

1

equations are trivial. The results of these two theorems are

~all that is required for obtaining cgst estimates for the

iterative aspectslof the algorithms in the present
8 ' ra

discussion,

.

In handling the recursive aspects of any algorithms, it

is necessary to be able to convert the resulting recurrence

" relation ¥nto a more iterative equation of the type given by

the previous two theorems. Two types of recurrence relations

102

-

S~

need to be solved when determining cost estimates for the
algorithms 1n the current discussion. The general solution
to the first type of recurrence relation can be attributed

to Bentley, Haken, and Saxe [2].
Theorem A.0.3

Assume T(n) = kT(n/2)+f(n) where n = 2™. Let c <« logk,
c log n 1
g(n) = f(n)/n", and h(n) = I g(2°). Then
1=1

T(n) = nS[T(1)+h(n)]. '

Proof:

The assertion holds by mathematical induction:
First, note that k = k1992 . 109k | ¢
Therefore T(n) = 2°T(n/2)+f(n)

= ZCT(n/Z)*an(n).
Note also that h(n) = h(n/2)+g(n).
Assume T(n) = n“[T(1)+hi(n)],

_Then T(2n) = kT(n)+f(2n)

'ZCT(n)¢(2n)C9(2n)

2°(n€IT(1)+h(n)))+(2n)%g(2n)

(2n)C[T(1)+h(n)+g(2n)]

(2n)C[T(1)+h(2n)].

’ ' Q.E.D.
Note that in the recurrence relation solved by this theorenm,
the value of n is assun@d to be .an exact powver of 2, a

. situation that holds-tor all recurrence relations which

occur in this presentation. The second recurrence relation

103

which needs to be solved 1is onl{ required, 1n this
presentation, by the cost equation for the OFFDIAG

algorithm.

Theorem A.Q.4

o~

log n 1-1 1 m
Assume T(n) = ha [T(2)+£(2°)] where n = 2 . Then
1=1

T(n) = 2T(n/2)+f(n).

Proof: .

By induction:

logen i-1 i
T(2n) = z [T(2 y+£(27)])
=1
leg n i-1 i
= T(n)+f(2n)+ z [T(2)+£(27)]
i=1

= 2T(n)+f(2n).
Q.E.D.

In this second case, the recurrence relation is converted
into another recurrence relation of the first type which can

then be solved usihé the tecﬁnique given by Theorem A.0.3.

Appendix B:

For the sake of completeness,

Empirical CPU Time Values

the actual CPU time

values, obtained by subtracting the storage manipulation

times from the total CPU times for each algorithm, as well

as the times spent by each algorithm in storage
manipulation, are presented in this appendix. In
tables that follow, the first column, denoted by
corresponds to the degree of conversion for each

power series converted in the sample runs. Since

generation and implications of these time values

the four
n,
particular
the

are already

discussed in Chapter 4 of this presentation, there 1s little

more that needs to be said about them, so they are now given

without any further comment.

CPU Times (microseconds)

n
AD MD DIAG OFFDIAG
16 51459 70261 13646 32031
18 61823 81459 15313 40521
45. 200078 251640 59531 137738
59 286563 361953 90365 207448
67 3440818 431693 111823 280312
67 350078 428724 113073 280078
95 5824713 707760 204193 449713
102 645546 783567 231692 506016
105 676562 B16224 244114 526094
125 891302 1063802 332552 698229
250 2830234 3262760 1193594 2399636
500 9817812 10987719 4504976 8786250
,750 20924296 23183398 9936544 19558483
1000 36160690 39795408 17501248 334813979
1250 55493593 60813327 27181328 562004135
1500 78974352 86350176 39014528 75693411
1750 106570704 116293440 52935664 101009578
2000 138284064 150663984 69040896 130504861

104

Table ': CPU Times using Classical Arithmetic

105

CPU Times (microseconds)
n
AD MD DIAG OFFDIAG
16 142969 191745 54349 125365
18 182213 232812 70052 171953
45 657526 666067 394609 525156
59 822578 1035885 620781 732708
67 1053177 1292239 821328 1024114
67 1074922 1294791 821249 1027656
95 1768515 1642083 1773958 1363150
102 1858515 1806953 2012421 1590130
105 1894270 2199687 2116484 1615156
125 2103724 2564843 2803880 1885052
250 5037083 6028047 11829375 4567474
500 11865924 14008039 51186512 10911640
750 24456065. 20463037 134307728 18579000
1000 27622981 32232943 220060272 25668435
1250 44077103 44215637 393430288 36064308
1500 57273488 46702720 576299088 43146964
1750 60969040 69460016 759825664 52457729
2000 63629664 73588384 944027904 59502073

Table 2: CPU Times using Fast Arithmetic

106

Storage Manipulation Times (microseconds)
n
AD MD DIAG OFFDIAG
16 85286 119583 26120 51250
18 104531 135312 33151 61953
45 307969 387292 157448 178906
59 427604 528646 260156 241380
67 490781 610078 331016 - 304974
67 493776 612969 330208 305495
95 784948 909687 641953 423490
102 806172 986823 735391 467083
105 833099 1021380 777448 482422
125 1040130 1244557 1084296 585104
250 2343203 2706458 4229270 1297942
500 5183411 5870937 16779984 2875703
750 8212968 9181770 38102592 4615677
1000 11441614 12691536 67986368 6341093
1250 14639687 16198385 106727696 8359869
1500 18089600 19865904 154027392 10107421
1750 21464000 23590048 210258320 11993958
2000 25068304 27381344 275289856 13872291
Table 3: Storage Manipulation Times using Classical

Arithmetic

107

Storage Manipulation Times (microseconds)

n P
AD MD DIAG OFFDIAG
16 87682 {3' 122109 27292 52161
18 105469 137865 33568 64271
45 313177 399922 162214 183620
59 433099 544870 264948 250391
67 499401 |., 631406 338281 317422
67 503854 629271 337865 313750
95 766953 931198 658958 439714
102 819818 1006901 752552 483984
105 846120 1047396 795729 494271
125 1054739 1273177 1102968 600000
250 2369687 2778385 4324843 1337213
500 ' 5262604 6039817 17259568 2962734
750 8388255 9446979 39373328 4759192
1000 11639739 13099713 70123664 6546093
1250 14965729 16720859 110578928 8663020
1500 18501344 20471680 159600304 10458828
1750 21902704 .| 24400624 | 217808896 12415807
2000 25505360 28271680 | 284588288 14343463

Table 4: Storage Manipulation Times using FPast Arithmetic

