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Abstract

The concepts of semihypergroups and hypergroups were first introduced by C.

Dunkl [8], I. Jewett [18] and R. Spector [29] independently around the year

1972. Till then, a variety of research has been carried out on different areas

of hypergroups. However, no extensive study is found so far on the more

general category of semihypergroups, which serves as building blocks of the

hypergroup theory.

In this thesis, we initiate a systematic study of semihypergroups. We intro-

duce and study several natural algebraic and analytic stuctures on semihyper-

groups, which are well-known in the case of topological semigroups and groups.

In particular, we study semihypergroup actions, almost periodic and weakly

almost periodic function spaces, ideals, homomorphisms and free structures

in the category of semihypergroups, and finally investigate where the theory

deviates from the classical theory of (topological) semigroups.
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To Mathematics, a symphony of logic and paradox
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Chapter 1

Introduction

The theory of topological semigroups and groups have been a very important

area of research in mathematics, especially in the study of abstract harmonic

analysis, starting from early 1960’s. But in practice, we often come across

certain objects arising from groups (for example, coset and double-coset spaces,

orbit spaces etc.), which although have a structure somewhat similar to groups,

are not exactly groups. In particular, consider the following examples.

Example 1.0.1. Consider the topological group GLn(R) of all invertible n×n

matrices for some n ∈ N. We know that the space of orthogonal n×n matrices

O(n) is a non-normal subgroup of GLn(R).

Hence the coset space GLn(R)/O(n) is not even a semigroup.

Example 1.0.2. Consider the n× n orthogonal group O(n) and the natural

group action π : O(n)× Rn → Rn of O(n) on Rn given by (A, x) 7→ Ax.
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Recall that for any x ∈ Rn the orbit of x under the above action is given as

O(x) = {Ax : A ∈ O(n)}

Now consider the orbit space {O(x) : x ∈ Rn} for this action. Note that again,

it is not even a topological semigroup.

Example 1.0.3. Consider the double coset space

GLn(R)//O(n) := {O(n)A O(n) : A ∈ GLnR}

It can be seen immediately that this is not a topological group either.

Hence these kinds of structures that frequently appear while studying the

classical theory of topological groups, fall out of the parent category and can

not quite be studied or analysed with the existing general theory for topological

groups and semigroups.

To mend this kind of situation, the concepts of semihypergroups and hyper-

groups were introduced around 1972 [8, 18, 29]. The theory of semihyper-

groups and hypergroups allows a detailed study of various important measure

algebras. In turns out that these concepts are sufficiently general to cover a

variety of interesting special cases including those described above, but yet

have enough structure to allow an independent theory to develop. Often these

structures can be expressed in terms of a convolution of measures on the un-

derlying spaces.
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A semihypergroup can be perceived in a number of ways. To start with, it

can be seen simply as a generalization of locally compact semigroups where

the product of two elements is a certain probability measure, rather than

being a single element. Similarly a hypergroup, as we will see later, can be

perceived simply as a generalization of locally compact groups. The structure

and concept of a semihypergroup arises naturally from the quotient space of a

locally compact group whereas the structure of a hypergroup arises naturally

from the double coset space of a locally compact group.

Again, a semihypergroup is essentially a Hausdorff locally compact topological

space where the measure space is equipped with a certain convolution product,

turning it into an associative algebra, whereas in the case of a hypergroup, the

measure algebra is also equipped with an identity and an involution. The

concept of hypergroups and semihypergroups was first introduced early in

1972 by C. Dunkl [8], R. Spector [29] and I. Jewett [18] independently. Dunkl

and Spector called their creations hypergroups (resp. semihypergroups) while

Jewett preferred to call them convos (resp. semiconvos). The definitions given

by these authors are not identical, although their core ideas are essentially the

same (except that Dunkl’s definition requires the convolution on hypergroups

to be commutative). Hence most of the interesting examples of hypergroups

and semihypergroups hold true according to all the definitions.

The theory of hypergroups has developed in several directions since then ([12],

[26], [28], [32], [33] among others), including the area of commutative hyper-

groups, weighted hypergroups, amenability of hypergroups and several func-
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tion spaces on it, most of which have been based on the definition introduced

by Jewett [18]. In this text, we will also base our work on semihypergroups on

Jewett’s definition of semiconvos [18].

The lack of any algebraic structure on a semihypergroup poses a serious chal-

lenge in extending results from semigroups to semihypergroups. Also unlike

hypergroups, the fact that a semihypergroup structure lacks the existence of

a Haar measure or an involution in its measure algebra, creates a serious ob-

stacle to generalize most group and semigroup theories and ideas naturally to

semihypergroups.

In practice, although the double-coset spaces have a hypergroup structure, if

the compact subgroup is not normal (which is of course, more often than not

the case), then the left coset spaces and orbit spaces of a locally compact group

as discussed in the examples before, are never a semigroup nor a hypergroup.

However, these objects arising frequently in different areas of research (for

example, matricial and classical abstract harmonic analysis on coset spaces,

dynamical systems among others), fall in the more general category of semi-

hypergroups.

Unlike hypergroups, no extensive systematic literature is found so far on semi-

hypergroups. The main motivation behind this thesis is to develop a system-

atic theory on semihypergroups. The brief structure of this text will be as the

following.

In the first chapter, we recall some important definitions and notations given by

Jewett in [18], and introduce some new definitions required for further work. In
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the second chapter, we list some important useful examples of semihypergroups

and hypergroups.

In the third chapter, we introduce the concepts of left, right and semitopo-

logical semihypergroups. We also introduce semihypergroup actions in terms

of the space of non-negative measures and investigate the relation between

joint and separate continuity near the centre of a hypergroup contained in a

semihypergroup.

In the fourth chapter we discuss several properties of two of the most important

function spaces on semihypergroups, namely the spaces of almost periodic

and weakly almost periodic functions. Here we explore the relation of these

function spaces to the compactness of the underlying space, as well as some

other important identities related to them. We conclude the section with

examining the behavior of Arens product on the duals of these function spaces.

In our fifth chapter, we introduce the concept of an ideal in (semitopological)

semihypergroups and explore some of its basic properties as well as its rela-

tion with a more general form of homomorphism between semihypergroups.

Furthermore, we investigate the structure of the kernel of a compact (semitopo-

logical) semihypergroup and finally explore the connection between minimal

left ideals and the concept of amenability on a compact semihypergroup.

In the sixth chapter, we initiate the study of a free structure on semihyper-

groups. We introduce a free product structure and construct a specific topol-

ogy and convolution for a family of semihypergroups such that the resulting

semihypergroup abides by an universal property equivalent to the universal
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property for free products in the classical theory of topological groups, thus

providing us with a whole new class of semihypergroups.

Finally, we conclude with some potential problems and areas which we intend

to work on and explore further in near future, in addition to introducing and

investigating similar structures as in [9], [10], [11], [13], [14], [15], [19], [25], [30],

[31] for the case of semihypergroups and explore where and why the theory

deviates from the classical theory of topological semigroups and groups .
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Chapter 2

Preliminaries

In this chapter, we list some formal definitions with brief required background

and introduce some new definitions, mostly analogous to the theory of semi-

groups, that we will need in the following chapters. We also list some important

examples of semihypergroups and hypergroups, emphasising the fact that the

category of semihypergroups indeed includes the examples outlined in the pre-

vious chapter, hence catering to the overall need for a more general theory as

discussed before.
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2.1 Notations and Definitions

Here we first list a set of basic notations that we will use throughout the

text. Next we briefly recall the tools and concepts needed for the formal

definition of a semihypergroup and a hypergroup [18]. Finally in addition to

the formal definitions, we also recall some basic structures on semihypergroups

and hypergroups, required for the following chapters.

All topologies in this text are assumed to be Hausdorff unless otherwise speci-

fied. Now for any locally compact Hausdorff topological space X, consider the

following spaces:

M(X) := Space of all regular complex Borel measures on X.

M+(X) := Subset of M(X) consisting of all finite non-negative

regular Borel measures on X.

MF (X) := Subset of M(X) consisting of all Borel measures on X

with finite support.

M+
F (X) := Subset of M(X) consisting of all finitely supported non-

negative Borel measures on X.

P (X) := Set of all probability measures on X.

Pc(X) := Set of all probability measures with compact support on X.

C(X) := Space of all compact subsets of X.
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B(X) := Space of all bounded functions on X.

C(X) := Space of all bounded continuous functions on X.

C+
c (X) := Space of all non-negative compactly supported continuous

functions on X.

B(X) := Space of all Borel measurable functions on X.

Also note that for any x ∈ X, we denote by px the point-mass measure or

Dirac measure on X at the point x.

First, let us introduce two very important topologies on the positive measure

space and the space of compact subsets for any locally compact topological

space X. Unless mentioned otherwise, we will always assume these two topolo-

gies on the respective spaces.

Definition 2.1.1 (Cone Topology). The cone topology on M+(X) is de-

fined as the weakest topology on M+(X) for which the maps µ 7→
∫
X
f dµ is

continuous for any f ∈ C+
c (X) ∪ {1X} where 1X denotes the characteristic

function of X.

Note that if X is compact then it follows immediately from the Riesz repre-

sentation theorem that the cone topology coincides with the weak*-topology

on M+(X) in this case.

Definition 2.1.2 (Michael Topology [22]). The Michael topology on C(X)

is defined to be the topology generated by the sub-basis
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{CU(V ) : U, V are open sets in X},

where for any open sets U, V ⊂ X we have

CU(V ) = {C ∈ C(X) : C ∩ U 6= Ø, C ⊂ V }.

Note that C(X) actually becomes a locally compact Hausdorff space with

respect to this natural topology.

Moreover if X is compact then C(X) is also compact [22].

Now before we proceed to the formal definition of a semihypergroup, let us

briefly recall the concepts of positive linear maps on the measure space of a

locally compact topological space.

Definition 2.1.3. Let X and Y be locally compact Hausdorff spaces. A linear

map π : M(X)→M(Y ) is called positive continuous if the following holds:

1. π(µ) ∈M+(Y ) whenever µ ∈M+(X).

2. The map π|M+(X) : M+(X)→M+(Y ) is continuous.

For any locally compact Hausdorff space X and any element x ∈ X, we denote

by px the point-mass measure or the Dirac measure at the point {x}.

Definition 2.1.4. Let X and Y be locally compact Hausdorff spaces and π :

M(X)→M(Y ) is a positive continuous map. Then for any Borel function f
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on Y , the function f ′ on X is defined as

f ′(x) :=

∫
Y

f(y) dπ(px)(y)

whenever the integral exists.

Proposition 2.1.5. Let X and Y be locally compact Hausdorff spaces and

π : M(X) → M(Y ) is a positive continuous map. Then for any µ ∈ M(X)

and f ∈ C(Y ) we have the following results:

1. f ′ is also a bounded continuous function on X.

2.
∫
X
f ′ dµ =

∫
Y
f dπ(µ).

The proof of this Proposition can be found in [18].

Definition 2.1.6. Let X, Y, Z be locally compact Hausdorff spaces. A bilin-

ear map Ψ : M(X) ×M(Y ) → M(Z) is called positive continuous if the

following holds :

1. Ψ(µ, ν) ∈M+(Z) whenever µ ∈M+(X), ν ∈M+(Y ).

2. The map Ψ|M+(X)×M+(Y ) is continuous.

Now we are ready to state the formal definitions for a semihypergroup and a

hypergroup. Note that we follow Jewett’s notion [18] in terms of the definitions

and notations, in most cases.
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Definition 2.1.7. (Semihypergroup) A pair (K, ∗) is called a (topological)

semihypergroup if they satisfy the following properties:

(A1) K is a locally compact Hausdorff space and ∗ defines a binary operation

on M(K) such that (M(K), ∗) becomes an associative algebra.

(A2) The bilinear mapping ∗ : M(K)×M(K) → M(K) is positive continu-

ous.

(A3) For any x, y ∈ K the measure px ∗ py is a probability measure with

compact support.

(A4) The map (x, y) 7→ supp(px ∗ py) from K ×K into C(K) is continuous.

Note that for any A,B ⊂ K the convolution of subsets is defined as the

following

A ∗B := ∪x∈A,y∈B supp(px ∗ py) .

It is shown by Jewett in [18, Lemma 3.2] that the following basic properties

hold for this convolution of sets.

Proposition 2.1.8. Let (K, ∗) be a semihypergroup. Then for any subsets

A,B,C ⊂ K the following statements hold true.

1. Ā ∗ B̄ ⊂ (A ∗B).

2. If A,B are compact, then so is A ∗B.

3. the convolution map ∗ : C(K) × C(K) → C(K) is jointly continuous in

Michael topology.
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4. The convolution is associative, i.e, we have

A ∗ (B ∗ C) = (A ∗B) ∗ C

Also recall that for any locally compact Hausdorff space X, a map i : X → X

is called a topological involution if i is a homeomorphism and i ◦ i(x) = x for

each x ∈ X. For semihypergroups, an involution is defined in the following

way.

Definition 2.1.9 (Involution). Let (K, ∗) be a semihypergroup. Then a map

i : K → K given by i(x) := x− is called an involution if it is a topological

involution and if for any µ, ν ∈M(K) we have that

(µ ∗ ν)− = ν− ∗ µ−,

where for any measure ω ∈ M(K) we have that ω−(B) := ω(B−) = ω(i(B))

for any Borel measurable subset B of K.

Definition 2.1.10. (Hypergroup) A pair (H, ∗) is called a (topological)

hypergroup if it is a semihypergroup and satisfies the following conditions :

(A5) There exists an element e ∈ H such that px ∗ pe = pe ∗ px = px for any

x ∈ H.

(A6) There exists an involution x 7→ x− on H such that e ∈ supp(px ∗ py) if

and only if x = y−.

13



The element e in the above definition is called the identity of H. Note that

the identity and the involution are necessarily unique [18].

Remark 2.1.11. Given a Hausdorff topological space K, in order to define a

continuous bilinear mapping ∗ : M(K) ×M(K) → M(K), it suffices to only

define the measures (px ∗ py) for each x, y ∈ K.

This is true since we can then extend ‘∗’ linearly to M+
F (K). As M+

F (K) is

dense in M+(K) [18], we can further extend ‘∗’ to M+(K) and hence to the

whole of M(K) using linearity.

Definition 2.1.12 (Centre of a Semihypergroup). Let (K, ∗) be a semihyper-

group. The center of K, denoted as Z(K) is defined as

Z(K) := {x ∈ K : supp(px ∗ py) is singleton for any y ∈ K}.

Definition 2.1.13 (Centre of a Hypergroup, [28]). Let (H, ∗) be a hypergroup.

The center of H, denoted as Z(H) is defined as

Z(H) := {x ∈ K : px ∗ px− = px− ∗ px = pe}.

Note that for any hypergroup, the center is always nonempty since it will

always contain the identity. Also, it can easily be seen that the definition of

center for a hypergroup coincides with that of the definition of center for a

semihypergroup. The following is an example of a hypergroup with a non-
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trivial centre. Note that if G is a topological group, we immediately see that

Z(G) = G.

Example 2.1.14. This example is due to Zeuner ([33]). Consider the hyper-

group (H, ∗) where H = [0, 1] and the convolution is defined as

ps ∗ pt =
p|s−t| + p1−|1−s−t|

2
.

Then it can be shown that Z(H) = {0, 1}.

Now we conclude this section with the definition of left and right translations

for a (semitopological) semihypergroup.

Definition 2.1.15 (Translations). Let K be a semihypergroup and f be a

continuous function on K. Then for x ∈ K the left translation of f by x is

the function Lx on K defined as the following.

Lx(y) = f(x ∗ y) :=

∫
K

f(z) d(px ∗ py)(z).

Similarly the right translation of f by x is defined as the function

Rx(y) := f(y ∗ x) =

∫
K

f(z) d(py ∗ px)(z).

15



2.2 Examples

In this section, we list some well known examples [18] of semihypergroups and

hypergroups and thus explore how the shortcomings explained in the intro-

duction are overcome by the category of semihypergroups and hypergroups.

Example 2.2.1. If (S, ·) is a locally compact topological semigroup, then

(S, ∗) is a semihypergroup where px ∗ py = px.y for any x, y ∈ S.

Similarly, if (G, ·) is a locally compact topological group, then (G, ∗) is a

hypergroup with the same bilinear operation ∗, identity element e where e is

the identity of G and the involution on G defined as x 7→ x−1.

Example 2.2.2. Take any set with three elements S = {e, a, b} and equip it

with the discrete topology. Define

pe ∗ pa = pa ∗ pe = pa

pe ∗ pb = pb ∗ pe = pb

pa ∗ pb = pb ∗ pa =
pe + pb

2

pa ∗ pa =
pa + pb

2

pb ∗ pb = pa

Then (S, ∗) is a semihypergroup with identity e.

Example 2.2.3. Take T = {e, a, b} and equip it with the discrete topology.

16



Define

pe ∗ pa = pa ∗ pe = pa

pe ∗ pb = pb ∗ pe = pb

pa ∗ pb = pb ∗ pa = z1pa + z2pb

pa ∗ pa = x1pe + x2pa + x3pb

pb ∗ pb = y1pe + y2pa + y3pb

where xi, yi, zi ∈ R such that x1 + x2 + x3 = y1 + y2 + y3 = z1 + z2 = 1 and

y1x3 = z1x1. Then (T, ∗) is a commutative hypergroup with identity e and the

identity function on T taken as involution.

Using the same technique, we can actually see that any finite set can be seen

as a semihypergroup.

Example 2.2.4. Let G be a locally compact topological group and H be a

compact subgroup of G. Also, let µ be the normalized Haar measure of H.

Consider the left quotient space

S := G/H = {xH : x ∈ G}

and equip it with the quotient topology. For any x, y ∈ G, define

pxH ∗ pyH =

∫
H

p(xty)H dµ(t).

Then (S, ∗) is a semihypergroup.
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For instance, take G to be the symmetric group S4 and take H to be the

dihedral group D8. We know that D8 is not a normal subgroup of S4. Consider

the left coset space

G/H = {H, s1H, s2H}

where s1 = (124) and s2 = (142).

Then the above formulation gives us that

pxH ∗ pyH =
1

8

∑
h∈H

p(xty)H

Hence the left coset space S4/D8 is a discrete semihypergroup where the con-

volution can explicitly be given by the following table:

∗ pH ps1H ps2H

pH pH
1
2
(ps1H + ps2H) 1

2
(ps1H + ps2H)

ps1H ps1H
1
2
(pH + ps2H) 1

2
(pH + ps1H)

ps2H ps2H
1
2
(pH + ps1H) 1

2
(pH + ps2H)

Example 2.2.5. Let G be any locally compact topological group and H be a

compact group. Recall that a map φ : G→ G is called affine if there exists a

scaler α and an automorphism Ψ of G such that φ(x) = αΨ(x) for each x ∈ G.

An action π of H on G given by π(h, g) = gh for each g ∈ G, h ∈ H is

called a continuous affine action if π : H ×G→ G is continuous and the map

g 7→ gh : G → G is affine for each h ∈ H. For any continuous affine action π

18



of H on G, consider the orbit space

O := {xH : x ∈ G},

where xH = O(x) = {π(h, x) : h ∈ H}.

Let σ be the normalized Haar measure of H. Consider O with the quotient

topology and the following convolution

pxH ∗ pyH :=

∫
H

∫
H

pπ(s,x)π(t,y)H dσ(s)dσ(t).

Then (O, ∗) becomes a semihypergroup.

Example 2.2.6. Similarly, consider the space of double cosets

K := G//H = {HxH : x ∈ G}

where G is a locally compact topological group and H is a compact subgroup

of G.

Equip K with the usual quotient topology. Let µ be the normalized Haar

measure of H and for any x, y ∈ G, define

pHxH ∗ pHyH =

∫
H

pH(xty)H dµ(t).

Then (K, ∗) is a hypergroup with the identity element e = H and involution

function HxH 7→ Hx−1H.
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Chapter 3

Semitopological

Semihypergroup and Actions

In this chapter we introduce the concept of semitopological semihypergroups

analogous to the category of semitopological semigroups. Moreover, we in-

troduce the concept of semihypergroup actions on a topological space with

respect to the space of non-negative measures. Some of its properties and its

behaviour near the centre of a hypergroup included in a semihypergroup is

also investigated.
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3.1 Semitopological Semihypergroups

First let us briefly recall some definitions regarding semigroups. Based on

these concepts we introduce some more general kinds of semihypergroups that

satisfy weaker continuity conditions than those of semihypergroups, and hence

include a more varied family of objects than that of semihypergroups.

We know that a semigroup (S, ·) is called a topological semigroup if the set S

is equipped with a topology such that the multiplication map

(s, t) 7→ s.t : S × S → S

is jointly continuous on S × S.

Also for a semigroup (S, ·), the left multiplication map ls for some element

s ∈ S is defined as

ls : S → S

x 7→ s.x

Similarly the right multiplication map rs for some s ∈ S is defined as

rs : S → S

x 7→ x.s

21



A semigroup (S, ·) is called a left topological semigroup if the set S is equipped

with a topology such that the left multiplication map ls is continuous on S for

each s ∈ S.

Similarly, a semigroup (S, ·) is called a right topological semigroup if the set

S is equipped with a topology such that the right multiplication map rs is

continuous on S for each s ∈ S.

Finally, a semigroup (S, ·) is called a semitopological semigroup if S is equipped

with a topology such that the multiplication map

(s, t) 7→ s.t : S × S → S

is separately continuous, i.e, if (S, ·) is both left and right topological.

Now we introduce some analogous definitions to the class of semihypergroups.

Definition 3.1.1. A pair (K, ∗) is called a left topological semihyper-

group if it satisfies all the conditions of Definition 2.1.7 with property (A2)

replaced by the following:

(A2′) The bilinear map (µ, ν) 7→ µ ∗ ν is positive and for each ω ∈ M+(K)

the left multiplication map

Lω : M+(K) → M+(K)

µ 7→ ω ∗ µ
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is continuous on M+(K).

Similarly we can define the right multiplication map for semihypergroups and

thus introduce the class of right topological semihypergroups.

Definition 3.1.2. A pair (K, ∗) is called a right topological semihyper-

group if it satisfies all the conditions of Definition 2.1.7 with property (A2)

replaced by the following:

(A2′′) The bilinear map (µ, ν) 7→ µ ∗ ν is positive and for each ω ∈ M+(K)

the right multiplication map given by

Rω : M+(K) → M+(K)

µ 7→ µ ∗ ω

is continuous on M+(K).

Definition 3.1.3. A pair (K, ∗) is called a semitopological semihyper-

group if it is both left and right topological semihypergroup, i.e, if it satisfies

all the conditions of Definition 2.1.7 with property (A2) replaced by the fol-

lowing:

(A2′′′) The bilinear map (µ, ν) 7→ µ ∗ ν is positive and the restricted map

(µ, ν) 7→ µ ∗ ν : M+(K)×M+(K)→M+(K)
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is separately continuous.

Note that in particular whenever (K, ∗) is a semigroup as in Example 2.2.1, all

the definitions reduce to the classical definitions on semigroups as discussed

in the beginning of this section.

3.2 Semihypergroup Actions

As in the previous section, here we first briefly recall the classical definition

of an action of a topological semigroup on a topological space, and thereafter

proceed to introduce an analogous concept of a semihypergroup action on an

arbitrary topological space.

Let (S, ·) be a topological semigroup and X be a topological space.

Definition 3.2.1. A map σ : S×X → X is called an action of S on the space

X if it satisfies the following two conditions.

1. For each s ∈ S the map

σs : X → X

x 7→ σ(s, x)

is continuous on X.
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2. For any s, t ∈ S and x ∈ X we have that

σ(st, x) = σ(s, σ(t, x)).

Now we define actions on semihypergroups in such a way that whenever we

take the semihypergroup to be a topological semigroup as outlined in Example

2.2.1 the definition coincides with that of topological semigroups.

Definition 3.2.2. Let (K, ∗) be a semihypergroup and X be any locally com-

pact Hausdorff space. A map σ : M+(K) ×X → X is called an action of K

on X if the following two conditions hold :

1. For each ω ∈ M+(K) the map σω : X → X given by σω(x) = σ(ω, x) is

continuous.

2. For any µ, ν ∈M+(K), x ∈ X we have that σ(µ ∗ ν, x) = σ(µ, σ(ν, x))

Remark 3.2.3. Let (K, ∗) be a semihypergroup and X be a locally compact

Hausdorff space.

• We can define actions of left/ right/ semitopological semihypergroups on

X in the same manner as in Definition 3.2.2.

• An action σ : M+(K) × X → X is called seperately continuous if for

each x ∈ X the map
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σx : M+(K) → X

µ 7→ σ(µ, x)

is also continuous on M+(K).

• An action σ : M+(K) × X → X is called a continuous action if σ is

continuous on M+(K)×X.

• For an action σ of K on X and any subset N of M+(K), V of X, we

define

N.V := {σ(µ, x) : µ ∈ N, x ∈ V } .

Now we are ready to state the main theorem of this section investigating when

separate continuity forces joint continuity of the action of a left (or right)

topological semihypergroup on a compact Hausdorff space.

Theorem 3.2.4. Let (K, ∗) be a compact left topological semihypergroup with

identity e and σ is a separately continuous action of K on a compact Hausdorff

space X. Let H ⊂ K be a hypergroup containing e. Then σ is continuous at

each point (pg, x) where g ∈ Z(H), x ∈ X.

But before we proceed with the proof of the above theorem, we first prove a

couple of lemmas imperative for proving the same. Note that the proof of this

theorem follows similar ideas as outlined in [23], with the additional details
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required in order to generalize it for semihypergroups.

Lemma 3.2.5. Assume that Theorem 3.2.4 holds for any separately contin-

uous action σ for which the map σpe : X → X is the identity mapping, i.e,

σ(pe, x) = x for any x ∈ X.

Then the theorem will hold for any separately continuous action σ on K.

Proof. Let σ be any separately continuous action on K and set

L := {pe}. X .

Note that for any x ∈ X we have

σ(pe, σ(pe, x)) = σ(pe ∗ pe, x) = σ(pe, x) .

Also, for any µ ∈M+(K), x ∈ X we have that

(µ, σ(pe, x)) = σ(µ ∗ pe, x)

= σ(pe ∗ µ, x)

= σ(pe, σ(µ, x)) ∈ L .

Hence the restricted action σ̃ := σ|M+(K)×L : M+(K)× L→ L is well defined

and satisfies the initial assumption, i.e,

σ̃(pe, x̃) = x̃
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for any x̃ = σ(pe, x) ∈ L where x ∈ X. Thus by the above hypothesis, σ̃ is

continuous at each point (pg, x̃), g ∈ Z(H), x ∈ X.

Now pick any g ∈ Z(H), x ∈ X and let {(µα, xα)} be any net in M+(K)×X

that converges to (pg, x). Since σ is separately continuous, the net {x̃α} :=

{σ(pe, xα)} converges to x̃.

Hence {(µα, x̃α)} converges to (pg, x̃) in M+(K)× L. Then we have that

σ(µα, xα) = σ(µα ∗ pe, xα)

= σ(µα, σ(pe, xα))

= σ̃(µα, x̃α)→ σ̃(pg, x̃) = σ(pg ∗ pe, x) = σ(pg, x).

Lemma 3.2.6. Under the hypothesis of Theorem 3.2.4, if x, y are two distinct

points in X, then we can find neighborhoods N of pe (in the weak∗ topology of

M+(K)), U of x and V of y such that N.U ∩ V = Ø.

Proof. Using Urysohn’s Lemma, let us first choose a continuous function f :

X → [−1, 1] such that f(x) 6= f(y) = 0. Set g := f ◦ σ.

Since K is compact, M+(K) is locally compact with respect to the weak∗
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topology [5]. Also since σ is separately continuous, the function

g : M+(K)×X → [−1, 1]

is separately continuous. Hence we can find[27] a dense Gδ subset M of M+(K)

such that g is continuous at each point (µ, x) of M+(K)×X.

Now set

S := {µ ∈M+(K) : g(µ, x) 6= g(µ, y)} .

Note that since σpe is identity, we have

g(pe, x) = f(σ(pe, x))

= f(x)

6= f(y)

= f(σ(pe, y))

= g(pe, y).

Thus S is a non-empty open subset of M+(K) and hence S ∩M 6= Ø. Pick

µ0 ∈ S ∩M and set

ε := |g(µ0, x)− g(µ0, y)| > 0 .

Since g is continuous at (µ0, x) there exist neighborhoods N0 of µ0 and U of x
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such that

|g(ν, z)− g(µ0, x)| < ε/4 for any ν ∈ N0, z ∈ U. (3.2.6.1)

Now since K is left topological, the map

Lµ0 : M+(K) → M+(K)

ν 7→ µ0 ∗ ν

is continuous. In particular, Lµ0(pe) = µ0 and hence we can find a neighbor-

hood N of pe in M+(K) such that {µ0} ∗N ⊆ N0. Set

V := {z ∈ X : |g(µ0, z)− g(µ0, y)| < ε/4} .

Clearly, V is an open neighborhood of y.

Now if possible, assume that N.U ∩ V 6= Ø, i.e, there exists ν ∈ N , z ∈ U

such that σ(ν, z) ∈ V . Then we have

ε = |g(µ0, x)− g(µ0, y)| ≤ |g(µ0, x)− g(µ0 ∗ ν, z)|+ |g(µ0 ∗ ν, z)− g(µ0, y)|

< ε/4 + |g(µ0, σ(ν, z))− g(µ0, y)|

< ε/4 + ε/4

< ε
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which can not be true. Note that the second inequality follows since

µ0 ∗ ν ∈ {µ0} ∗N ⊆ N0

and the third inequality follows since σ(ν, z) ∈ V by Equation 3.2.6.1.

Now we return to the proof of our main theorem for this section.

Proof of Theorem 3.2.4: First using Lemma 3.2.5, without loss of generality

we can assume that σpe is the identity mapping on X. Pick and fix any x ∈ X

and let W be any open neighborhood of σ(pe, x) = x in X.

Pick y ∈ X \W . By Lemma 3.2.6 we can find open neighborhoods Ny of pe,

Uy of x and Vy of y such that Ny.Uy ∩ Vy = Ø. We will get such a set of

neighborhoods corresponding to each y ∈ X \W .

But X \W is compact and hence we can find y1, y2, . . . , yn ∈ X \W such that

X \W ⊆ ∪ni=1Vyi .

Set N := ∩ni=1Nyi and U := ∩ni=1Uyi . Then clearly N.U ∩ V = Ø. Thus we

get neighborhoods N of pe, U of x such that N.U ⊆ W , i.e, σ is continuous

at (pe, x). This is true for any x ∈ X.
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Now pick any g ∈ Z(H), x ∈ X. Let {(µα, xα)} be a net in M+(K)×X that

converges to (pg, x). Since K is left topological, Lpg− is continuous and so

pg− ∗ µα −→ pg− ∗ pg = pe

since g ∈ Z(H). But we know that σ is continuous at (pe, x) and hence

σ(pg− ∗ µα, xα) −→ σ(pe, x) = x. (3.2.6.2)

Finally we have

σ(µα, xα) = σ(pe ∗ µα, xα)

= σ(pg ∗ pg− ∗ µα, xα)

= σ(pg, σ(pg− ∗ µα, xα))→ σ(pg, x)

where the convergence follows from Equation 3.2.6.2 and the fact that σ is

separately continuous.
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Chapter 4

Almost Periodic and

Weakly Almost Periodic

Functions

Here we first recall some definitions of several important function spaces on

a semihypergroup. We further explore some basic properties of the spaces of

almost periodic and weakly almost periodic functions, and investigate the re-

lation between these spaces and compactness of the underlying space. Finally,

we conclude with examining Arens regularity [1] on dual of the space of almost

periodic functions. The contents of this chapter is based on [2, Section 4].
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4.1 Motivation and Definitions

Before we proceed to the main definitions regarding different function spaces on

a (semitopological) semihypergroup, let us first recall the relevant definitions

for the real line and semigroups in general.

Almost periodic functions on the real line R were first introduced by H. A.

Bohr around 1925 as the closure of trigonometric polynomials with respect to

the uniform norm || · ||∞ on R. His definition is equivalent to the following

definition.

Definition 4.1.1 (Bohr). A continuous function f : R → R is called almost

periodic if for every ε > 0 there exists some δε > 0 such that for each interval

[t, t+ δε] ⊂ R there exists some τ(t) ∈ (t, t+ δε) such that

|f(t+ τ(t))− f(t)| < ε.

Later around 1926, S. Bochner gave a simpler version of an equivalent defini-

tion using sequential compactness, which is closer to the definition we mostly

use nowadays.

Definition 4.1.2 (Bochner). A continuous function f : R → R is called

almost periodic if for any sequence {an} in R, the sequence {fn} of translations

of f has a subsequence that converges uniformly on (−∞,∞) where for each

t ∈ R

fn(t) := f(t+ an).
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Later the definition got generalized for semigroups and groups in terms of

left and right almost periodic functions, using left and right translations of

continuous functions on a semigroup.

Let (S, ·) be a topological semigroup and f be a continuous function on S.

Then for each s ∈ S, the left translation lsf is a continuous function on S

defined as

lsf(t) := f(st) for each t ∈ S.

Similarly for each s ∈ S, the right translation rsf : S → R is the continuous

function defined as

rsf(t) := f(ts) for each t ∈ S.

A function f ∈ C(S) is called right almost periodic if the right orbit

Or(f) = {rsf : s ∈ S}

is relatively compact in C(S) with respect to the uniform norm || · ||∞ on C(S).

Similarly, f ∈ C(S) is called left almost periodic if the left orbit

Ol(f) = {lsf : s ∈ S}

is relatively compact in C(S) with respect to the norm topology on C(S).
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On the other hand, a function f ∈ C(S) is called right (resp. left) weakly

almost periodic if the right (resp. left) orbit Or(f) (resp. Ol(f)) is rela-

tively compact in C(K) with respect to the weak topology on C(K) (see [6],

[7], [17] for further details regarding these functions spaces for a topological

semigroup).

Now as a final step in the evolution, we get the definitions for left and right

(weakly) almost periodic functions for semihypergroups as follows.

Recall that for any continuous function f on a (semitopological) semihyper-

group K and each x, y ∈ K we define the left and right translates of f (denoted

as Lxf and Rxf respectively) as the following:

Lxf(y) = Ryf(x) = f(x ∗ y) =

∫
K

f d(px ∗ py)

Definition 4.1.3. For any function f ∈ C(K) we define the right orbit Or(f)

of f as

Or(f) := {Rxf : x ∈ K}

Definition 4.1.4. A function f ∈ C(K) is called right almost periodic if

we have that Or(f) is relatively compact in C(K) with respect to the norm

topology.

Similarly, a function f ∈ C(K) is called right weakly almost periodic if we have

that Or(f) is relatively compact in C(K) with respect to the weak topology on

C(K).
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We denote these two classes of functions as:

APr(K) := Space of all right almost periodic functions on K.

WAPr(K) := Space of all right weakly almost periodic functions on K.

Similarly we can define the left orbit Ol(f) of a function f ∈ C(K) and hence

define the set of all left almost periodic functions APl(K) and left weakly

almost periodic functions WAPl(K). In most instances, the results proved for

the right case also hold true for the left case.

Now recall that for a topological group (G, ·), the spaces LUC(G) (resp.

RUC(G)) denote the spaces of left (resp. right) uniformly continuous func-

tions [17] and serves as two very important functions spaces. In the same light

as for topological groups and semigroups, these function spaces can be defined

for (semitopological) semihypergroups as well.

Definition 4.1.5. A function f ∈ C(K) is called left(right) uniformly contin-

uous if the map x 7→ Lxf (x 7→ Rxf) from K to C(K) is continuous.

A function f is called uniformly continuous if it is both left and right uniformly

continuous.

We denote these classes of functions as:

LUC(K) := Space of all left uniformly continuous functions on K.

RUC(K) := Space of all right uniformly continuous functions on K.
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UC(K) := Space of all uniformly continuous functions on K.

Finally, we conclude this section with recalling the notion of amenability for

semihypergroups.

Definition 4.1.6. Let K be a (semitopological) semihypergroup with identity

and F is a linear subspace of C(K) containing constant functions. A function

m ∈ F∗ is called a mean of F if we have that

||m|| = 1 = m(1).

Definition 4.1.7. Let K be a (semitopological) semihypergroup with identity

and F is a translation-invariant linear subspace of C(K) containing constant

functions. A mean m of F is called a left invariant mean (LIM) if we have

that m(Lxf) = m(f) for any x ∈ K, f ∈ F .

The space F is called left amenable if it admits a left invariant mean. Also,

a semihypergroup K is called left amenable if C(K) admits a left-invariant

mean.

Similarly, we can define right-invariant means (RIM) on a translation-invariant

linear subspace F of C(K) containing constant functions, and K is called right

amenable if C(K) admits a right-invariant mean.
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4.2 Basic Properties

Here we examine the relation between the spaces of left and right (weakly)

almost periodic functions, and their relation to other function spaces as well.

The translation-invariance properties of these spaces are also investigated.

Recall that for any subset A of a topological vector space X, the convex hull

co(A) is defined as

co(A) :=
{ n∑

i=1

αixi : xi ∈ A,αi > 0 ∀ i,
n∑
i=1

αi = 1, n ∈ N
}
.

The closed convex hull of X, i.e, the closure of co(X) is denoted as co(X).

Also, the circled hull Γ(A) of A is defined as

Γ(A) := {αx : x ∈ A, |α| ≤ 1}.

The convex circled hull of A, denoted as cco(A) is the convex hull of the circled

hull Γ(A) of A. Similarly, the closed convex circled hull cco(A) is the closure

of cco(A).

Now let us start with examining the relation between the spaces of left and

right (weakly) almost periodic functions. But before we proceed to prove the

first result on this aspect, first let us recall an important result on the existence

of a vector integral on the function space of a general locally compact Hausdorff

space, proved in [27].
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Theorem 4.2.1. Suppose that (X, τ) is a Hausdorff topological vector space

where X∗ separates points, and λ ∈ Pc(Y ) where Y is a locally compact Haus-

dorff space. If a function F : Y → X is continuous and co(F (Y )) is compact

in X then the vector integral ω :=
∫
Y
F dλ exists and ω ∈ co(F (Y )).

We divide the proof of our next theorem in a series of key steps for convenience,

due to the length of the proof.

Theorem 4.2.2. Let K be a semihypergroup. Then

WAPr(K) ∩ UC(K) = WAPl(K) ∩ UC(K).

Proof. Pick any f ∈ WAPl(K)∩UC(K). We need to show that f ∈ WAPr(K),

i.e, we prove that Or(f) is relatively weakly compact in C(K). We will show

this in five steps.

Step I: Embed K into Pc(K) through the homomorphism x 7→ px [18]. Now

define a map Φ : C(K)→ C(Pc(K)) by Φ(f) = f̃ for any f ∈ C(K) where

f̃(µ) :=

∫
f dµ ∀µ ∈ Pc(K).

We know that Φ is an isometry [18]. Thus Φ is continuous in the norm topolo-

gies of C(K) and C(Pc(K)) and hence Φ is continuous in the weak topologies

of C(K) and C(Pc(K)).
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Step II: For any µ ∈ Pc(K) define a function L̂µf on K by

L̂µf(x) :=

∫
K

f(y ∗ x) dµ(y) .

Since f ∈ UC(K) the map x 7→ Rxf is continuous, and L̂µf(x) =
∫
K
Rxf dµ

by the above construction. Hence L̂µf ∈ C(K) for any µ ∈ Pc(K).

Now define a subset in C(K) as the following.

Õl(f) := {L̂µf : µ ∈ Pc(K)}.

Consider the left-translation map ψ on K given as

ψ : K → C(K)

x 7→ Lxf.

Since f ∈ UC(K) ψ is continuous on K. Also since f ∈ WAPl(K) the left

orbit of f namely ψ(K) is relatively weakly compact in C(K).

Hence by the Krein-Smulian Theorem we have that co(ψ(K)) is weakly com-

pact in C(K), i.e, co(Ol(f)) is weakly compact in C(K).

Step III: Now can use Theorem 4.2.1 by letting (X, τ) = (C(K), weak topology),

Y = K, F = ψ and λ = µ for any µ ∈ Pc(K). Thus we see that

ω0 :=

∫
K

ψ dµ ∈ co(ψ(K)).
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Now for any x ∈ K we have that

ω0(x) =

∫
K

(ψ(y))(x) dµ(y)

=

∫
K

Lyf(x) dµ(y)

=

∫
K

f(y ∗ x) dµ(y) = L̂µf(x).

Since ψ(K) = Ol(f) by construction, thus we see that L̂µf ∈ co(Ol(f)) for

any µ ∈ Pc(K). Hence Õl(f) ⊂ co(Ol(f)). But from Step II we know that

co(Ol(f)) is weakly compact in C(K). Hence Õl(f) is relatively weakly com-

pact in C(K).

Step IV: Note that (L̂µf )̃ = Lµf̃ for any µ ∈ Pc(K). This is true since for

any ν ∈ Pc(K) we have that

(L̂µf )̃(ν) =

∫
K

L̂µf(x) dν(x)

=

∫
K

∫
K

f(y ∗ x) dµ(y) dν(x)

=

∫
K

f d(µ ∗ ν)

= f̃(µ ∗ ν) = Lµf̃(ν).

where the thirds equality follows from [18, Theorem 3.1E]. Thus we see that

(Õl(f))̃ = {f̃ : f ∈ Õl(f) ⊂ C(K)} = Ol(f̃).

From Step III we know that Õl(f) is relatively weakly compact in C(K), and
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from Step I we see that the map f 7→ f̃ from C(K) to C(Pc(K)) is continuous

when both spaces are equipped with weak topology.

Hence the set (Õl(f))̃ is also relatively weakly compact in C(Pc(K)). Thus

Ol(f̃) is relatively weakly compact in C(Pc(K)),i.e, f̃ ∈ WAPl(Pc(K)).

Step V: We know that (Pc(K), ∗) is a topological semigroup. Hence

WAPl(Pc(K)) = WAPr(Pc(K)). Thus we have that f̃ ∈ WAPr(Pc(K)), i.e,

Or(f̃) is relatively weakly compact in C(Pc(K)).

Hence the set N := {Rpx f̃ : x ∈ K} ⊂ Or(f̃) is also relatively weakly compact

in C(Pc(K)).

Now consider the map φ : C(Pc(K))→ C(K) given by h 7→ ȟ where

ȟ(x) := h(px)

for any x ∈ K. The fact that ȟ is continuous on K follows directly from

the fact that the map x 7→ px is continuous. Also, φ is continuous since

||ȟ|| = supx∈K |h(px)| ≤ ||h|| for any h ∈ C(Pc(K)).

Note that for each h ∈ C(K), x ∈ K, φ(Rpxh̃) = Rxh since for any y ∈ K we

have that

φ(Rpxh̃)(y) = (Rpxh̃)̌(y)

= Rpxh̃(py)
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= h̃(py ∗ px)

=

∫
K

h d(py ∗ px)

= h(y ∗ x) = Rxh(y)

Thus in particular, we have that φ(N) = Or(f). Since φ is continuous and

N is relatively weakly compact in C(Pc(K)), we finally have that Or(f) is

relatively weakly compact in C(K), i.e, f ∈ WAPr(K) as required.

Similarly for any f ∈ WAPr(K) ∩ UC(K) we can show that f ∈ WAPl(K).

Hence the proof is complete.

Remark 4.2.3. In the proof of Theorem 4.2.2, the ideas involved in steps

I-III are similar to [32, Theorem 2.4] as no specific involution properties are

required. However, the above proof of those steps contains several important

details, not found in the aforementioned text.

Theorem 4.2.4. Let K be a semihypergroup. Then APl(K) = APr(K).

Proof. This can be proved in exactly similar manner as in Theorem 4.2.2. The

only modification needed is, we need to consider the norm topologies on C(K)

and C(Pc(K)) opposed to the fact that we had to consider weak topologies on

these two spaces in the proof of Theorem 4.2.2.

Remark 4.2.5. For a (semitopological) semigroup (S, ·) it is easy to see [23]

that the spaces of left and right weakly almost periodic functions coincide, i.e,

WAPr(S) = WAPl(S).
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But the question that whether it holds true in general for a semitopologi-

cal semihypergroup (K, ∗) is still open. For example, if we pick some f ∈

WAPl(K)\UC(K), then as shown in the proof of Theorem 4.2.2, steps II and

III may not hold true for f and hence we can not necessarily conclude if f will

indeed be contained in WAPr(K) as well or not.

The following facts regarding the relation between the function spaces in ques-

tion are proved for hypergroups in [32]. The same proof works for semihyper-

groups as well. We give a proof of the second statement later in the next

section in Theorem 4.3.5.

Proposition 4.2.6. Let K be a semihyergroup. Then the following statements

hold true.

1. WAPl(K),WAPr(K), APl(K), APr(K) are norm-closed, conjugate-closed

subsets of C(K) containing the constant functions.

2. APl ⊂ UC(K) and APr(K) ⊂ UC(K).

3. APl(K) ⊂ WAPl(K) and APr(K) ⊂ WAPr(K).

Next we proceed to examine the translation-invariance properties of the spaces

of (weakly) almost periodic functions on a (semitopological) semihypergroup.

Recall that a function space F on a (semitopological) semihypergroup K is

called left (resp. right) translation-invariant if we have that Lxf ∈ F (resp.

Rxf ∈ F) for any f ∈ F and x ∈ K.
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Also, F is simply said to be translation-invariant if it is both left and right

translation-invariant.

Theorem 4.2.7. Let K be any semitopological semihypergroup. Then AP (K)

is translation-invariant.

Proof. Pick any f ∈ AP (K), x0 ∈ K. Now consider the following map on

C(K).

Φ : C(K) → C(K)

g 7→ Lx0g.

First note that for any x, y, t ∈ K we have

RxLyf(t) = Lyf(t ∗ x)

= f(y ∗ t ∗ x)

= Rxf(y ∗ t) = LyRxf(t).

Hence in turn we see that

Or(Lx0f) = {RxLx0f : x ∈ K}

= {Lx0Rxf : x ∈ K}

= Φ(Or(f)).
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Now for any two functions g, h ∈ C(K) we have that

||Φ(g)− Φ(h)|| = ||Lx0g − Lx0h||

= sup
y∈K
|(Lx0g − Lx0h)(y)|

= sup
y∈K
|Lx0(g − h)(y)|

= sup
y∈K
|(g − h)(x0 ∗ y)|

= sup
y∈K

∣∣∣ ∫
K

(g − h) d(px0 ∗ py)
∣∣∣

≤ ||g − h|| sup
y∈K
|(px0 ∗ py)(K)|

= ||g − h|| .

Thus we see that Φ is continuous in the norm topology on C(K). Hence

Φ(Or(f)) is compact since f ∈ APr(K). Also as noted before, since

Or(Lx0f) = Φ(Or(f)) ⊂ Φ(Or(f))

we have that Or(Lx0f) is relatively compact in C(K) with respect to the

norm-topology and hence Lx0f ∈ APr(K) = AP (K).

Similarly, consider the map

Ψ : C(K) → C(K)

g 7→ Rx0g.

We can see similarly that Ψ is is acontinuous map on C(K) with respect to

the norm topology and hence the set Ψ(Ol(f)) is compact in C(K). As before,
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we have that

Ol(Rx0f) = {LxRx0f : x ∈ K}

= {Rx0Lxf : x ∈ K}

= Ψ(Ol(f))

⊆ Ψ(Ol(f)).

Hence Rx0f ∈ APl(K) = AP (K) as required.

Theorem 4.2.8. Let K be any semitopological semihypergroup. Then

1. WAPr(K) is left translation-invariant.

2. WAPl(K) is right translation-invariant.

Proof. Pick any f ∈ WAPr(K), x0 ∈ K. As in the proof of the above theorem,

consider the map

Φ : C(K) → C(K)

g 7→ Lx0g.

Note that Or(f)
w

is compact in C(K). But the weak topology on C(K) is

stronger than the topology of pointwise-convergence where later topology is

Hausdorff. Hence these two topologies coincide on any compact subset on

C(K), particularly on Or(f)
w

.

Now let g ∈ Or(f)
w

and {gα} be a net in Or(f)
w

such that gα −→w g on K.
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Then in particular, we have that

∫
K

gα d(px0 ∗ py)→
∫
K

g d(px0 ∗ py) for each y ∈ K.

⇒ gα(x0 ∗ y)→ g(x0 ∗ y) for each y ∈ K.

⇒ Lx0gα → Lx0g pointwise on K.

⇒ Lx0gα −→w Lx0g on C(K).

Thus Φ is weak-weak continuous on Or(f)
w

and hence Φ(Or(f)
w

) is weakly

compact in C(K). Now the fact that Lx0f ∈ WAPr(K) follows from the fact

that

Or(Lx0f) = {RxLx0f : x ∈ K}

= {Lx0Rxf : x ∈ K}

= Φ(Or(f))

⊆ Φ(Or(f)
w

).

In a similar manner we can also see that WAPl(K) is right translation-

invariant.

Remark 4.2.9. Note that for a topological semigroup (S, ·) it is trivial to see

that both AP (S) and WAP (S) are translation-invariant since for any s, t ∈ S

we have that

lslt = lts , rsrt = rst.

But in general for a semitopological semihypergroup (K, ∗), the left translation-
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invariance ofWAPl(K) and similarly the right translation-invariance of WAPr(K)

may not neccessarily hold.

4.3 AP(K) and WAP(K) on Compact Spaces

In this section, we examine the structure of the (weakly) almost periodic func-

tion spaces when the underlying (semitopological) semihypergroup is compact.

In particular, we see that in this aspect, semihypergroups in general behave

exactly like semigroups when the underlying space is compact.

The converse of the result, i.e, whether for an unknown semihypergroup, cer-

tain particular structure of these function spaces are sufficient to conclude

that the underlying space is compact, is also investigated. We conclude the

section with a sufficient condition for the existence of a left invariant mean on

a semihypergroup K.

Before we proceed further, let us first quickly recall a widely-used result by A.

Grothendieck [16].

Theorem 4.3.1 (Grothendieck). Let X be a compact Hausdorff space. Then

a bounded set in C(X) is weakly compact if and only if it is compact in the

topology of pointwise convergence.

The proof of the above theorem can be found in [16].

Proposition 4.3.2. Let K be a semitopological semihypergroup and f is a

continuous function on C(K). Then the map (x, y) 7→ f(x ∗ y) is separately
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continuous.

Proof. Fix x0 ∈ K. Since the map (µ, ν) 7→ µ ∗ ν is separately continuous on

M(K) ×M(K), we have that the map ν 7→ px0 ∗ ν is positive continuous on

M(K).

Thus by Proposition 2.1.5 we have that the map y 7→ f ′(y) is continuous. But

here f ′(y) =
∫
K
f d(px0 ∗ py) = f(x0 ∗ y) and so the map y 7→ f(x0 ∗ y) is

continuous.

Similarly, we can show that the map x 7→ f(x ∗ y0) is continuous for any fixed

y0 ∈ K.

Theorem 4.3.3. If K is a compact semitopological semihypergroup, then

WAPr(K) = C(K).

Proof. Pick any f ∈ C(K). We need to show that Or(f) is weakly compact

in C(K).

Let {xα} be a net in K converging to x. By Proposition 4.3.2 we see that

for each y ∈ K the map x 7→ f(x ∗ y) = Rxf(y) is continuous and hence

Rxαf(y)→ Rxf(y). Thus the map x 7→ Rxf from K into C(K) is continuous

where C(K) is equipped with the topology of pointwise convergence.

Since K is compact, by Theorem 4.3.1 we have that Or(f) is relatively compact

in C(K) with respect to the weak topology.
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It turns out that the result becomes much stronger if we have joint-continuity

on the convolution product ∗ on M(K), opposed to separate continuity as in

the above case.

Theorem 4.3.4. If K is a compact semihypergroup, then

AP (K) = WAPl(K) = WAPr(K) = C(K).

Proof. Pick any f ∈ C(K). We need to show that Or(f) is relatively compact

in C(K) with respect to the strong (norm) topology.

Consider the map Φ : K → C(K) given by x 7→ Rxf . Since the map (µ, ν) 7→

µ∗ν is continuous on M+(K)×M+(K) we have that the map (x, y) 7→ f(x∗y)

is continuous on K ×K.

Fix y0 ∈ K and pick any ε > 0. Then for each x ∈ K we will get open

neighborhoods Vx of x and Wx of y0 such that

|f(x ∗ y0)− f(s ∗ t)| < ε

where (s, t) ∈ Vx ×Wx.

Since {Vx}x∈K is an open cover of the compact space K, we will have a finite

subcover {Vxi}ni=1 that covers K. Set W := ∩ni=1Wxi . Then for any x ∈ K, t ∈

W we will have that

|Ry0f(x)−Rtf(x)| = |f(x ∗ y0)− f(x ∗ t)| < ε.
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Thus we get an open neighborhood W of y such that ||Ry0f −Rtf ||∞ < ε for

any t ∈ W . Hence the map Φ is continuous and so Or(f) is compact.

Since AP (K) ⊂ WAPl(K) and AP (K) ⊂ WAPr(K) the result follows.

The immediate question that naturally rises now is whether a converse to

Theorem 4.3.3 and Theorem 4.3.4 also holds true. We will examine that in

two parts in what follows.

Recall that a topological space X is called σ-compact if it is an union of

countably many compact subspaces. Now before we proceed further, let us

first note the following property of (weakly) almost periodic functions on a

semitopological semihypergroup.

Theorem 4.3.5. Let K be a semitopological semihypergroup and f ∈ C(K).

If Or(f) is (weakly) relatively compact in C(K) then the map x 7→ Rxf is

(weakly) continuous on K.

Proof. First assume that Or(f) is relatively compact in C(K) in norm topol-

ogy. Let {xα} be a net in K converging to x ∈ K. Then By Proposition 4.3.2

we have that f(y ∗ xα) → f(y ∗ x) for each y ∈ K and hence Rxαf → Rxf

pointwise in C(K).

If the net {Rxαf} has a limit point in C(K), it has to be Rxf . But Or(f) is

compact in C(K) and hence Rxαf → Rxf , as required.

The case where Or(f) is relatively compact in C(K) with respect to the weak
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topology, can be proved proceeding along the same lines.

Note that all the above results will also hold true for the spaces of left almost

periodic functions. Now we are ready to investigate the converses as mentioned

above.

Theorem 4.3.6. Let K be a σ-compact semitopological semihypergroup such

that WAPl(K) = C(K). Then K is compact.

Proof. If possible, suppose that K is not compact.

Then we can get a strictly increasing sequence {Ki} of compact sets in K such

that ∪iKi = K. Set U0 := Ø. For each i ∈ N repeat the following steps:

1. Pick xi ∈ K such that ({xi} ∗Ki) ∩ Ui−1 = Ø.

2. Set Ai := {xi} ∗Ki.

3. Pick yi ∈ K such that (Ki ∗ {yi}) ∩ (Ui−1 ∪ Ai) = Ø.

4. Set Bi := Ki ∗ {yi}.

5. Set Ui to be a compact neighborhood of the compact set (Ui−1 ∪ Ai ∪

Bi ∪Ki).

Note that we can always get such xi and yi’s since otherwise it will imply that

K is compact. Now we have that each Ai and Bi are compact and Ai∩Bi = Ø

for each i. Hence using Urysohn’s Lemma we get f ∈ C(K) such that f ≡ 0

on each Ai and f ≡ 1 on each Bi.
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Now for any y ∈ Ki we have that supp(pxi ∗ py) ⊂ Ai and hence

f(xi ∗ y) =

∫
K

f d(pxi ∗ py) =

∫
supp(pxi∗py)

f d(pxi ∗ py) = 0 .

This is true for each i.

Pick any y ∈ K. From the contruction of Ki’s there exists some i0 ∈ N such

that y ∈ Ki for any i ≥ i0. Since the map (x, y) 7→ f(x ∗ y) is separately

continuous on K ×K we have that

lim
i→∞

Lxif(y) = lim
i→∞,i≥i0

f(xi ∗ y) = 0 .

Hence the sequence {Lxif} converges pointwise to 0 on K. Thus any weakly

convergent subsequence of {Lxif}, if exists, will converge weakly to 0.

Following the same steps as above we see that limi→∞Ryif(x) = 1 for any

x ∈ K. Now for any g ∈ C(K), we define φ(g) := limi→∞ g(yi).

Set N := {g ∈ C(K) : φ(g) exists }. Then N is a linear subspace of C(K),

and φ is a well-defined linear functional on N . Therefore using Hahn-Banach

Theorem we can extend φ to C(K), and consider φ as a linear functional on

C(K).

In particular, for each xj ∈ K we have that

φ(Lxjf) = lim
i→∞

Lxjf(yi) = lim
i→∞

Ryif(xj) = 1 .

55



But we know that any weakly convergent subsequence of {Lxjf}, if exists, will

converge weakly to the zero function. Hence the above equality implies that

there does not exist any weakly convergent subsequence of {Lxjf}j∈N, i.e, the

set {Lxf : x ∈ K} is not sequentially weakly compact.

This implies that Ol(f) is not weakly compact, contradicting the fact that

f ∈ C(K) = WAPl(K).

Theorem 4.3.7. Let K be a non σ-compact semitopological semihypergroup

with identity such that WAPl(K) = C(K). Then K is compact.

Proof. If possible, suppose that K is not compact.

Let {Un} be an increasing sequence of open sets in K such that e ∈ U1,

Un ⊂ Un+1 for each n and Un is compact for each n. Set Vn := Un and for

each n, k ∈ N define

V k
n := Vn ∗ Vn ∗ . . . ∗ Vn︸ ︷︷ ︸

k times

.

For any n > 1 since Vn−1 ⊂ Vn we have that

V n−1
n−1 ⊂ V n−1

n ⊂ V n−1
n ∗ Vn = V n

n

where the second inclusion holds since e ∈ Vn and therefore for any x ∈ V n−1
n

we have that {x} = supp(px) = supp(px ∗ pe) ⊂ V n−1
n ∗ Vn. Thus we see that

V n
n ⊂ V m

m whenever n < m.
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Set H := ∪k∈NV k
k . Note that for any x, y ∈ H we can get m,n ∈ N such that

x ∈ V m
m and y ∈ V n

n . Pick any l ∈ N such that l > m + n. Then from the

above result we have that x, y ∈ V l
l and hence

{x} ∗ {y} ⊂ V l
l ∗ V l

l = V 2l
l ⊂ V 2l

2l

where the last inclusion follows since Vl ⊂ V2l. Thus we see that

H ∗H ⊂ H,

i.e, H is a subsemihypergroup of K, which is closed and σ-compact by con-

struction.

If H is compact, then set L to be the subsemihypergroup of K generated

by the union of countably many cosets of H in K. If H is non-compact,

then set L := H. From Theorem 4.3.6 we see that WAPl(L) 6= C(L). Pick

f ∈ C(L)\WAPl(L) and extend f to F ∈ C(K) by defining F (x) = 0 for any

x outside L. Since Ol(f) is not weakly sequentially compact in C(L) we have

that Ol(F ) is not weakly sequentially compact in C(K).

Thus we see that F does not lie in WAPl(K) contradicting our given hypoth-

esis.

Now the final result of this section gives us a sufficient condition for the left

amenability of a semihypergroup K, i.e, the existence of a left-invariant mean

on C(K). Here we use the well-known fact that a commutative semigroup is
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always amenable.

Recall that a (semitopological) semihypergroup K is called commutative when-

ever we have that

µ ∗ ν = ν ∗ µ

for any µ, ν ∈M(K), or equivalently, whenever we have

px ∗ py = py ∗ px

for any x, y ∈ K.

Theorem 4.3.8. Let K be a commutative semihypergroup. Then there exists

a LIM on C(K).

Proof. Consider the function Φ : C(K) → C(PC(K)) introduced in the proof

of Theorem 4.2.2, defined as f 7→ f̃ where

f̃(µ) :=

∫
K

f dµ

for each µ ∈ PC(K).

We know that (PC(K), ∗) is a commutative semigroup. Then there exists a

LIM m on PC(K). Define

m̃ := m ◦ Φ : C(K)→ C,

58



i.e, for each f ∈ C(K) we have

m̃(f) = m(f̃).

Note that for any f ∈ C(K) such that f ≥ 0 we have that

f̃(µ) =

∫
K

f dµ ≥ 0

for any µ ∈ PC(K). Therefore

m̃(f) = m(f̃) ≥ 0.

Moreover, m̃(1) = m(1̃) = m(1) = 1. Hence m̃ is a mean on C(K).

Now pick any x ∈ K, f ∈ C(K). For any µ ∈ PC(K) we have that

(Lxf)˜(µ) =

∫
K

Lxf dµ

=

∫
K

f d(px ∗ µ)

= f̃(px ∗ µ) = Lpx f̃(µ).

Now the left invariance of m̃ follows as below

m̃(Lxf) = m((Lxf)˜)

= m(Lpx f̃)

= m(f̃) = m̃(f).
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Hence the result.

4.4 Introversion on AP(K)*

In the last section of this chapter, similar to the general theory of topological

semigroups, we introduce the concept of introversion on a translation invari-

ant function space on a (semitopological) semihypergroup K. For topological

semigroups, the concept of introversion was introduced by M. M. Day in [4].

We conclude by exploring how the introversion operators help us in acquiring

an algebraic structure on AP (K)∗.

Definition 4.4.1. Let F be a translation-invariant linear subspace of C(K).

For each µ ∈ F∗ the left introversion operator Tµ determined by µ is the map

Tµ : F → B(K) defined as

Tµf(x) := µ(Lxf)

for each x ∈ K.

Similarly, the right introversion operator Uµ determined by µ is the map Uµ :

F → B(K) given by

Uµf(x) := µ(Rxf).

Definition 4.4.2. Let K be a (semitopological) semihypergroup and F be a

translation-invariant linear subspace of C(K). F is called left-introverted if
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Tµf ∈ F for each µ ∈ F∗, f ∈ F .

Similarly, F is called right-introverted if Uµf ∈ F for each µ ∈ F∗, f ∈ F .

We denote by B1 the closed unit ball of AP (K)∗. Now before we proceed

further to define an algebraic structure on AP (K)∗, let us first explore some

basic properties of introversion operators on AP (K).

The next result gives us a necessary and sufficient condition for a function to

be almost periodic, in terms of left and right introversion operators. Before

we get on with the proof, let us first quickly recall the following version of

Mazur’s Theorem and another important result from [23].

Theorem 4.4.3 (Mazur). Let A be a compact subset of a Banach space X.

Then the closed circled convex hull of A, denoted as cco(A) is also compact.

Theorem 4.4.4. Let K be a semihypergroup and F be a translation-invariant

conjugation-closed linear subspace of B(K) containing constant functions. For

any f ∈ F , the set {Tµf : ||µ|| ≤ 1} is the closure of cco(Or(f)) in B(K) with

respect to the topology of pointwise convergence.

Note that the above theorem is proved for topological semigroups in [23]. The

proof for semihypergroups follows in exactly the same manner.

Theorem 4.4.5. Let K be a semitopological semihypergroup. Then

f ∈ AP (K) if and only if the map

µ 7→ Tµf : B1 → B(K)
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is σ(B1, AP (K))-norm continuous.

Proof. Let f ∈ AP (K). Let Ψ : B1 → B(K) be the map given by

Ψ(µ) := Tµf for each µ ∈ B1.

Let µα → µ in B1 with respect to the topology σ(B1, AP (K)), i.e, we have

that µα(g)→ µ(g) for each g ∈ AP (K).

Also by Theorem 4.2.7 we know that Lxf ∈ AP (K) for each x ∈ K. Hence in

particular for each x ∈ K we have that

µα(Lxf) → µ(Lxf) for each x ∈ K

⇒ Tµαf(x) → Tµf(x) for each x ∈ K

⇒ Tµαf → Tµf in topology of pointwise convergence.

Hence the map Ψ is continuous when B(K) is equipped with the topology of

pointwise convergence.

Also, Ψ(B1) is the closure of cco(Or(f)) with respect to topology of pointwise

convergence. Since Or(f) is compact in B(K), we have that Ψ(B1) is compact.

Hence the topology of pointwise convergence coincides with the norm topology

on Ψ(B1).

Conversely, let the map Ψ : B1 → B(K) as defined above is σ(B1, AP (K))-

norm continuous. Then it follows immediately that f ∈ APr(K) = AP (K)
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since Ψ(B1) is norm-compact and the following inclusion holds:

Or(f) ⊂ cco(Or(f))
pt.wise topology

= Ψ(B1).

Note that of course, the right-counterpart of the above theorem holds true in

a similar manner, i.e, we can also show that a function f is almost periodic

if and only if the map

µ 7→ Uµf : B1 → B(K)

is σ(B1, AP (K))-norm continuous.

Now we see that AP (K) is left and right introverted, enabling us to introduce

left and right Arens product [1] on AP (K)∗.

Corollary 4.4.6. Let K be any semitopological semihypergroup. Then AP (K)

is left and right introverted.

Proof. We know that AP (K) is a translation-invariant linear subspace of

C(K). Now pick any f ∈ AP (K) and again consider the function Ψ : B1 →

B(K) given by

Ψ(µ) := Tµf for each µ ∈ B1.

As pointed out in the above proof, we have that the norm topology coincides

with the topology of pointwise convergence on Ψ(B1) and hence finally we have
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that

Ψ(B1) = cco(Or(f)) ⊂ AP (K).

Hence after scaling by proper scalers we have that Tµf ∈ AP (K) for each

µ ∈ AP (K)∗, as required.

The proof for the right-counterpart follows similarly.

Theorem 4.4.7. Let K be a semitopological semihypergroup and f ∈ AP (K).

Then the map Φ : B1 × B1 → C given by

Φ(µ, ν) := µ(Tνf)

is continuous with respect to the topology σ(B1, AP (K))× σ(B1, AP (K)).

Moreover, for any µ, ν ∈ AP (K)∗ we have that

µ(Tνf) = ν(Uµf).

Proof. Pick any (µ0, ν0) ∈ B1×B1 and consider the function Ψ as in Theorem

4.4.5. Then for any µ, ν ∈ B1 we have that

|φ(µ, ν)− φ(µ0, ν0)| = |µ(Tνf)− µ0(Tν0f)|

≤ |µ(Tνf)− µ(Tν0f)|+ |µ(Tν0f)− µ0(Tν0f)|

≤ ||Ψ(ν)−Ψ(ν0)||+ |(µ− µ0)(Tν0f)|

= ||Ψ(ν)−Ψ(ν0)||+ |(µ− µ0)(Ψ(ν0))|
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Since Ψ is σ(B1, AP (K))-norm continuous, we have that both the terms in the

last inequality tends to zero whenever (µ, ν) tends to (µ0, ν0) in B1 × B1 with

respect to the topology σ(B1, AP (K))× σ(B1, AP (K)).

In a similar way, we can show that the map Φ′ : B1 × B1 → C given by

Φ′(µ, ν) := ν(Uµf)

is continuous with respect to the topology σ(B1, AP (K))× σ(B1, AP (K)).

Now for any x ∈ K consider the evaluation map Ex ∈ AP (K)∗ given by

Ex(f) := f(x) for each f ∈ AP (K).

We denote the set of all evaluation maps in AP (K)∗ as E(K), i.e, we have

E(K) := {Ex : x ∈ K}.

Pick any µ = Ex, ν = Ey for some x, y ∈ K. Then we have

µ(Tνf) = Ex(Tνf)

= Tνf(x)

= Ey(Lxf)

= Lxf(y) = f(x ∗ y).
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On the other hand, we have

f(x ∗ y) = Ryf(x)

= Ex(Ryf)

= Uµf(y)

= Ey(Uµf) = ν(Uµf).

Note that as E(K) is the set of extreme points, we have that the weak∗ closure

of cco(E(K)) equals B1 [23]. Hence it follows from the continuity of the maps

Φ and Φ′ that

µ(Tνf) = ν(Uµf)

for any µ, ν ∈ B1 and hence by proper scaling, for any µ, ν ∈ AP (K)∗.

The above theorem holds true even if we replace AP (K) by any translation

invariant conjugation-closed linear subspace F of C(K) containing constant

functions.

Now let us define a product ? on AP (K)∗ given by

µ ? ν(f) := µ(Tνf).

for any (µ, ν) ∈ AP (K)∗ × AP (K)∗.

Now recall the construction of the left Arens product ♦ for any Banach algebra

X [1] and apply it on AP (K)∗. For any µ, ν ∈ AP (K)∗, f ∈ AP (K) and
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x, y ∈ K we have that

f♦x(y) := f(x ∗ y).

ν♦f(x) := ν(f♦x).

µ♦ν(f) := µ(ν♦f).

Hence in particular, we have that

f♦x(y) = Lxf(y).

ν♦f(x) = ν(Lxf) = Tνf(x).

µ♦ν(f) = µ(Tνf) = µ ? ν(f).

Note that here the second step is possible since AP (K) is left translation-

invariant and the last step is possible since AP (K) is left introverted.

Thus the left Arens product coincides with ? onAP (K)∗ and hence (AP (K)∗, ?)

becomes a Banach algebra.

Now in a similar manner, consider the right Arens product � on AP (K)∗.

Then we have that

x�f(y) = f(y ∗ x) = Rxf(y).

f�µ(x) = µ(x�f) = µ(Rxf) = Uµf(x).

µ�ν(f) = ν(f�µ) = ν(Uµf).
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Thus in view of Theorem 4.4.7 we see that the left and right Arens product

coincide on AP (K)∗, i.e, AP (K)∗ is Arens regular.
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Chapter 5

Ideals and Homomorphisms

In this chapter, we introduce the concept of an ideal in (semitopological) semi-

hypergroups and explore some of its basic properties as well as its relation

with a more general form of homomorphism between semihypergroups. Fur-

thermore, we investigate the structure of the kernel of a compact (semitopo-

logical) semihypergroup and finally explore the connection between minimal

left ideals and the concept of amenability on a compact semihypergroup. The

contents of this chapter is based on [2, Section 5].

69



5.1 Motivation and Definitions

Here we introduce the basic definitions of ideals and homorphisms for semi-

topological semihypergroups. First we briefly recall the concepts of ideals and

homomorphisms for a semigroup, in order to realise how the definitions for

(semitopological) semihypergroups boil down to the classical definitions when

restricted to topological semigroups.

Throughout this section unless otherwise mentioned, K and H will denote

semitopological semihypergroups.

Definition 5.1.1. Let (S, ·) be a semigroup. A subset I ⊂ S is called a left

ideal if for any a ∈ I, x ∈ S we have that

a.x ∈ I.

Similarly, a subset I ⊂ S is called a right ideal of S if for any a ∈ I, x ∈ S we

have that

x.a ∈ I.

Finally, a subset I ⊂ S is called a two-sided ideal (or simply an ideal) in S if

it is both a left and right ideal.

Now we define such structures for a semitopoloical semihypergroup.

Definition 5.1.2. Let K be a (semitopological) semihypergroup. A Borel mea-

surable set I ⊂ K is called a left (resp. right) ideal of K if for any a ∈ I,
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x ∈ K we have that

px ∗ pa(I) = 1
(
resp. pa ∗ px(I) = 1

)
.

Equivalently, a Borel measurable set I ⊂ K is called a left (resp. right) ideal of

K if for any a ∈ I, x ∈ K and any measurable set E ⊂ K such that E∩I = Ø,

we have that

px ∗ pa(E) = 0
(
resp. pa ∗ px(E) = 0

)
.

A subset I ⊂ K is called a (two-sided) ideal if it is both a left and right ideal.

Remark 5.1.3. It follows immediately from the above definitions that a closed

set I ⊂ K is a left (resp. right) ideal in K if for any x ∈ K, a ∈ I we have

that

supp(px ∗ pa) ⊂ I
(
resp. supp(pa ∗ px) ⊂ I

)
.

Now let K be a topological semigroup as in Example 2.2.1. Then for any

a ∈ I, x ∈ K we have that

a.x = supp(pa.x) = supp(pa ∗ px).

Hence the classical definition of a left ideal (and similarly for a right ideal)

coincides with the above definition.

Throughout this chapter, we discuss the properties of left ideals and their
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relation to several algebraic and analytic objects associated to K. All these

results hold for right ideals too, and can be proved in exactly similar manner

as in the case of left ideals.

Now let us briefly recall the definition for a semigroup homomorphism.

Definition 5.1.4. Let (S, ·) and (T, ·) be semigroups. A map φ : S → T is

called a homomorphism if for any x, y ∈ S we have that

φ(x.y) = φ(x).φ(y)

We now define homomorphisms for (semitopological) semihypergroups in such

a way, that a continuous homomorphism (in the classical definition) between

two (semi)topological semigroups will also remain a homomorphism according

to the new definition.

Definition 5.1.5. Let K and H be two (semitopological) semihypergroups. A

continuous map

φ : K → H

is called a homomorphism if for any Borel measurable function f on H and

for any x, y ∈ K we have that

f ◦ φ(x ∗ y) = f(φ(x) ∗ φ(y)).

A homomorphism φ between K and H is called an isomorphism if the map φ

is bijective.
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Remark 5.1.6. Let K be a topological semigroup as in Example 2.2.1. Then

for any Borel measurable function h on K and any u, v ∈ K we have

h(u ∗ v) =

∫
K

h d(pu ∗ pv)

=

∫
K

h d(puv)

= h(uv).

Now let both K and H in the above definition be topological semigroups in

the sense of Example 2.2.1. Then a continuous map

φ : K → H

will be called a homomorphism if for any measurable function f on H and for

any x, y ∈ K we have that

f ◦ φ(xy) = f(φ(x)φ(y)) .

In particular, if we have that

φ(xy) 6= φ(x)φ(y)

for some x, y ∈ K, then we can easily find a measurable function f on K such

that

f
(
φ(xy)

)
= 1, f

(
φ(x)φ(y)

)
= 0
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and hence φ will not be a homomorphism according to Definition 5.1.5.

Thus we see that the classical definition of a homomorphism between two

semigroups coincide with Definition 5.1.5 when we restrict K and H to be

(semi)topological semigroups.

Remark 5.1.7. In 1975 Jewett introduced the concept of orbital morphisms

for hypergroups in [18]. If K and J are two hypergroups, then a map

φ : k → J

is called proper if φ−1(C) is compact in K for every compact set C in J . A

recomposition of φ was defined to be a continuous map from J → M+(K)

defined as x 7→ qx such that

supp(qx) = φ−1({x}).

Roughly speaking, a proper open map φ : K → J is called a orbital homomor-

phism if for any x, y ∈ J we have that

px ∗ py = φ(qx ∗ qy)

as measures, i.e, for nay Borel measurable function f on J we have that

∫
J

f d(px ∗ py) =

∫
K

f ◦ φ d(qx ∗ qy).
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Jewett defined homomorphism between hypergroups as a special case of orbital

morphisms. According to the definition in [18] a continuous open map

φ : K → J

is called a homomorphism if

φ(px ∗ py) = pφ(x) ∗ pφ(y)

for any x, y ∈ K.

Note that our definition of homomorphism is equivalent to that of Jewett’s

apart from the fact that in Definition 5.1.5 we do not need the map φ to be

open and proper, and here the map is defined between two (semitopological)

semihypergroups, instead of hypergroups.

Otherwise these two definitions coincide since similar to the definition of or-

bital morphisms, Jewett’s definition of homomorphism implies that for any

measurable function f on J , x, y ∈ K we have that

∫
J

f d(pφ(x) ∗ pφ(y)) =

∫
K

f ◦ φ d(px ∗ py).

Hence by definition we have

f(φ(x) ∗ φ(y)) = f ◦ φ(x ∗ y).
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5.2 Basic Properties

Now that we have defined ideals and homomorphisms for semitopological semi-

hypergroups, next we check if some of the basic properties of the classical case

hold for these definitions as well. Since in the classical case, the multiplication

of two points simply gives us another point, these properties hold trivially in

that case.

Throughout this section, we see that all of these properties hold true for semi-

topological semihypergroups as well, with respect to Definition 5.1.2 and Def-

inition 5.1.5. We first prove the following key lemma before we proceed to

examine several specific properties sketching the interplay of ideals and homo-

morphisms in general for (semitopological) semihypergroups.

Lemma 5.2.1. Let K and H be (semitopological) semihypergroups, and

φ : K → H is a homomorphism. Then for any x, y ∈ K, for almost all

z ∈ supp(px ∗ py) with respect to the measure (px ∗ py) we have that

φ(z) ∈ supp(pφ(x) ∗ pφ(y)).

Conversely for any x, y, z ∈ K, for almost all φ(z) ∈ supp(pφ(x) ∗ pφ(y)) with

respect to the measure (pφ(x) ∗ pφ(y)) we have that

z ∈ φ−1φ(supp(px ∗ py)).

Proof. Pick any x, y ∈ K and let z ∈ supp(px ∗ py).
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Now set

A := supp(pφ(x) ∗ pφ(y)) ⊂ H

and define a measurable function g on H such that

g ≡


0 on A.

1 on Ac.

Then we have that

0 =

∫
A

g d(pφ(x) ∗ pφ(y))

=

∫
H

g d(pφ(x) ∗ pφ(y))

= g(φ(x) ∗ φ(y))

= g ◦ φ(x ∗ y)

=

∫
K

g ◦ φ d(px ∗ py).

For any z ∈ supp(px ∗ py), for the relation

∫
K

(g ◦ φ) d(px ∗ py) = 0

to hold true we must have that g◦φ(z) = 0 almost everywhere on supp(px∗py)

with respect to (px ∗ py). Thus by construction of g we have that φ(z) ∈ A for

almost all z ∈ supp(px ∗ py) as required.

Now to prove the converse, pick any x, y ∈ K and let z ∈ K be such that
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φ(z) ∈ supp(pφ(x) ∗ pφ(y)).

Set

A := supp(px ∗ py)

and define a measurable function h on H such that

h ≡


0 on φ(A).

1 on φ(A)c.

Note that for any u ∈ A we have that φ(u) ∈ φ(A) and hence h ◦ φ(u) = 0.

Thus we have

0 =

∫
A

h ◦ φ(u) d(px ∗ py)

=

∫
K

h ◦ φ d(px ∗ py)

= h ◦ φ(x ∗ y)

= h(φ(x) ∗ φ(y))

=

∫
H

h d(pφ(x) ∗ pφ(y)).

where the first equality follows from the construction of h and the second

equality follows from the construction of A.

Now if z ∈ A, then the result follows trivially. Let z does not lie in A. Since

φ(z) ∈ supp(pφ(x) ∗ pφ(y)) ⊂ H,
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for the relation
∫
H
h d(pφ(x) ∗ pφ(y)) = 0 to be true we must have that

h(φ(z)) = 0

for almost all φ(z) ∈ supp(pφ(x) ∗ pφ(y)) with respect to (pφ(x) ∗ pφ(y)).

Thus almost all φ(z) ∈ φ(A) and so z ∈ φ−1φ(A) as required.

Remark 5.2.2. Roughly speaking, the above lemma implies that for two

(semitpological) semihypergroups K and H and an isomorphism φ : K → H

between them, we have the following:

For any x, y ∈ K we have that z ∈ supp(px ∗ py) if and only if

φ(z) ∈ supp(pφ(x) ∗ pφ(y)),

upto a set of measure zero.

Proposition 5.2.3. Let φ : K → H be a homomorphism. Then φ(K) is a

semihypergroup.

Proof. In order to verify if φ(K) is a semihypergroup we only need to check if

φ(K) is closed under convolution, i.e,

φ(K) ∗ φ(K) ⊂ φ(K).

Pick a, b ∈ K and set

A := supp(pφ(a) ∗ pφ(b)).
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If possible, let A * φ(K). Hence A \ φ(K) 6= Ø. Now define a measurable

function f on H such that

f ≡


1 on A \ φ(K).

0 on A ∩ φ(K).

Then we have

∫
A\φ(K)

f d(pφ(a) ∗ pφ(b)) =

∫
A

f d(pφ(a) ∗ pφ(b))

=

∫
H

f d(pφ(a) ∗ pφ(b))

= f(φ(a) ∗ φ(b))

= f ◦ φ(a ∗ b)

=

∫
K

f ◦ φ d(pa ∗ pb) = 0.

where the first equality holds since f ≡ 0 on A ∩ φ(K), the second equality

follows from the construction of A and the last equality holds since for almost

all z ∈ supp(pa ∗ pb) we have from Lemma 5.2.1 that φ(z) ∈ A.

Thus φ(z) ∈ A ∩ φ(K) and hence f ◦ φ(z) = 0.

But f ≡ 1 on A \ φ(K) and A \ φ(K) ⊂ supp(pφ(a) ∗ pφ(b)). But A \ φ(K) can

not be a set of (pφ(a) ∗ pφ(b))-measure zero and hence

∫
A\φ(K)

f d(pφ(a) ∗ pφ(b)) 6= 0

and we arrive at a contradiction.
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Proposition 5.2.4. Let K be a semitopological semihypergroup. Pick any

a ∈ K. Then I := K ∗ {a} is a left ideal in K.

Proof. Pick any x ∈ K and b ∈ I. Since I = ∪y∈Ksupp(px ∗ pa) there exists

some y0 ∈ K such that

b ∈ supp(py0 ∗ pa) = {y0} ∗ {a}.

Now the result follows:

supp(px ∗ pb) = {x} ∗ {b}

⊂ {x} ∗ ({y0} ∗ {a})

= ({x} ∗ {y0}) ∗ {a}

⊂ K ∗ {a} = I.

where the second equality follows from the associativity of convolution of sets

(see Proposition 2.1.8).

Proposition 5.2.5. Let φ : K → H is a homomorphism and I ⊂ K is a left

ideal. Then φ(I) is also a left ideal in φ(K).

Proof. Pick any a ∈ I, x ∈ K. Set

B := supp(pφ(x) ∗ pφ(a))
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and define a function f on H such that

f ≡


1 on φ(I) ∩ B.

0 elsewhere .

Then we have

pφ(x) ∗ pφ(a)(φ(I)) =

∫
φ(I)∩B

1 d(pφ(x) ∗ pφ(a))

=

∫
H

f d(pφ(x) ∗ pφ(a))

= f(φ(x) ∗ φ(a))

= f ◦ φ(x ∗ a)

=

∫
K

(f ◦ φ) d(px ∗ pa)

=

∫
φ−1φ(I)

1 d(px ∗ pa)

= (px ∗ pa)(φ−1φ(I))

= (px ∗ pa)(I) = 1.

where the sixth equality follows from the fact that for almost all z ∈ supp(px ∗

pa) Lemma 5.2.1 gives us that φ(z) ∈ B and hence f(φ(z)) = 0 whenever φ(z)

does not lie in φ(I), i.e, whenever z lies outside φ−1φ(I).

Also, the second last equality follows since I ⊂ φ−1φ(I) and supp(px ∗ pa) ⊂ I

as I is a left ideal in K.
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Proposition 5.2.6. Let φ : K → H be a homomorphism and J ⊂ H is a left

ideal in H. Then φ−1(J) is also a left ideal in K.

Proof. Pick any a ∈ φ−1(J), x ∈ K. Then φ(a) ∈ J and hence supp(pφ(x) ∗

pφ(a)) ⊂ J and (pφ(x) ∗ pφ(a))(J) = 1. Define a function f on H by

f ≡


1 on J.

0 elsewhere .

Now for almost all z ∈ supp(px ∗ pa) using Lemma 5.2.1 we have that

φ(z) ∈ supp(pφ(x) ∗ pφ(a)) ⊂ J.

Hence f ◦ φ(z) = 1 for almost all z ∈ supp(px ∗ pa). Hence the result follows:

(px ∗ pa)(φ−1(J)) =

∫
φ−1(J)

1 d(px ∗ pa)

=

∫
J

f ◦ φ d(px ∗ pa)

=

∫
K

f ◦ φ d(px ∗ pa)

= f ◦ φ(x ∗ a)

= f(φ(x) ∗ φ(a))

=

∫
H

f d(pφ(x) ∗ pφ(a))

=

∫
J

1 d(pφ(x) ∗ pφ(a))
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= (pφ(x) ∗ pφ(a))(J) = 1.

5.3 Minimal Ideals

From now onwards and throughout the rest of this chapter, all the (minimal)

left and right ideals in question are assumed to be closed in K, unless otherwise

mentioned.

In this section, we define and investigate left and right minimal ideals on a

(semitopological) semihypergroup. We start off with examining some equiva-

lence criteria for the minimality of a left ideal. Next we examine some basic

properties of minimal left (resp. right) ideals that hold trivially for semigroups,

for reasons explained in the previous section.

We see that again, most of these properties hold true for the semihypergroup

case as well. Before we proceed to the results, let us briefly state the defi-

nition of minimal left (resp. right and two-sided) ideals on a semitopological

semihypergroup.

Definition 5.3.1. Let K be a (semitopological) semihypergroup. A left ideal

I ⊂ K is called a minimal left ideal of K if I does not contain any proper left

ideal of K.

Similarly, we can define a minimal right ideal of K. An ideal I of K which is
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both minimal left and right ideal, is called a minimal ideal of K.

Proposition 5.3.2. For any left ideal I ⊂ K the following are equivalent:

1. I is a minimal left ideal.

2. K ∗ {a} = I for any a ∈ I.

3. I ∗ {a} = I for any a ∈ I.

Proof. (1)⇒ (3): Let I be a minimal left ideal of K and a ∈ I.

Then I ∗{a} ⊂ I ∗ I ⊂ I since I is a left ideal. Also, I ∗{a} is a left ideal since

K ∗ (I ∗ {a}) = (K ∗ I) ∗ {a} ⊂ I ∗ {a}

where the last inclusion follows since I is a left ideal.

Hence the minimality of I gives us that I ∗ {a} = I.

(3)⇒ (2): Since I is a left ideal, for each a ∈ I we have that

I = I ∗ {a} ⊂ K ∗ {a} ⊂ I

which forces that K ∗ {a} = I.

(2)⇒ (1): Let J be a left ideal contained in I. Pick any b ∈ J . Since b ∈ I as
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well, (2) gives us that

I = K ∗ {b} ⊂ K ∗ J ⊂ J.

Therefore we get that I = J implying the minimality of I in K.

Proposition 5.3.3. For any (semitopological) semihypergroup K the following

assertions hold.

1. If I1, I2 are minimal left ideals in K, then either I1 = I2 or I1 ∩ I2 = Ø.

2. Let I be a minimal left ideal in K. Then any minimal left ideal in K

will be of the form I ∗ {x} for some x ∈ K.

Moreover, we have that K ∗ J = J for any minimal left ideal J in K.

3. K can have at most one minimal ideal, namely the intersection of all

ideals in K.

Proof. (1): Let J := I1 ∩ I2 6= Ø. We know that J is a left ideal since for any

x ∈ K, a ∈ J we have that supp(px ∗ pa) lies in both I1 and I2 and hence in J .

Thus by the minimality of both I1 and I2 we have that I1 = J = I2.

(2): Pick any x0 ∈ K and set

I0 := I ∗ {x0}.
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Since I is a left ideal, I0 has to be a left ideal as well, as

K ∗ I0 = K ∗ (I ∗ {x0}) = (K ∗ I) ∗ {x0} ⊂ I ∗ {x0} = I0.

Now from Proposition 5.3.2 we see that

K ∗ I = ∪x∈K,a∈I supp(px ∗ pa)

= ∪a∈I ∪x∈K supp(px ∗ pa)

= ∪a∈IK ∗ {a}

= ∪a∈II = I

Therefore we have:

K ∗ I0 = K ∗ (I ∗ {x0})

= (K ∗ I) ∗ {x0}

= I ∗ {x0} = I0.

Now let J be any minimal left ideal of K. Pick y ∈ J . Then

I ∗ {y} ⊂ I ∗ J ⊂ J

since J is a left ideal. The minimality of J then forces that J = I ∗ {y}.

(3): Let I denote the intersection of all ideals in K. If I 6= Ø, then we know
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that I is a minimal ideal.

Let J be any minimal ideal in K. Then

J ∗ I ⊂ I ∩ J.

Hence I ∩ J is non-empty and the minimality of I gives us that I = J .

Remark 5.3.4. Unlike semigroups, the family of sets {I ∗ {x} : x ∈ K} does

not serve as an exhaustive family of minimal left ideals for a semihypergroup,

where I is a minimal left ideal in K. For any x ∈ K the set I ∗{x} is of course

a left ideal of K, but it need not be minimal.

For example, simply consider the finite semihypergroup (K, ∗) where K =

{a, b, c} and the operaion ∗ is given in the following table.

∗ pa pb pc

pa pa
1
2
(pa + pb)

1
2
(pa + pc)

pb pa
1
2
(pa + pb)

1
2
(pa + pc)

pc pa pb pc

Set I = {a}. Then I is a minimal left ideal as the left multiplication by ∗

leaves pa fixed. But I ∗ {b} = {a, b} and I ∗ {c} = {a, c}, both of which are

left ideals, but fail to be minimal.

Theorem 5.3.5. Let K be a compact semitopological semihypergroup. Then

each left ideal of K contains at least one minimal left ideal and each right ideal

contains at least one minimal right ideal of K.
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Moreover, each minimal left and right ideal of K is closed.

Proof. We will prove the statement only for minimal left ideals, and the case

for minimal right ideals will follow symmetrically.

Let I be a left ideal of K. Consider the following collection of left ideals in K

Q := {J ⊂ K : J is a left ideal in K and J ⊂ I}.

If a ∈ I, then

K ∗ {a} ⊂ K ∗ I ⊂ I

is a left ideal in K, by Proposition 5.2.4. HenceQ is non-empty and non-trivial.

Equip Q with the partial order of reverse inclusion. Let C be a linearly ordered

sub-collection of Q. Since K is compact, the ideal ∩J∈C J is non-empty. Hence

we can use Zorn’s Lemma to deduce that there exists a minimal element J0 in

Q, which serves as a minimal left ideal of K contained in I.

Now let a ∈ J0. Then K ∗ {a} is a left ideal in K contained in J0. Hence by

minimality of J0 we get that

J0 = K ∗ {a}

which is closed as K is compact [18].
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5.4 Kernel of a Semihypergroup

Here in the last section of this chapter, we define and explore the characteris-

tics of the kernel of a (semitopological) semihypergroup. We restrict ourselves

to the case where the underlying space is compact and investigate the inter-

play between the structures of a kernel and the exhaustive set of minimal left

(resp. right) ideals. We conclude with a result outlining the relation between

amenability and the existence of a unique minimal left ideal for a compact

semihypergroup.

Let us first define the kernel of a semihypergroup, in the same light as the

classical case of semigroups.

Definition 5.4.1. For any (semitopological) semihypergroup K, the kernel of

K denoted as Ker(K) is defined to be the intersection of all (two-sided) ideals

in K, i.e, we define

Ker(K) :=
⋂
I⊂K

is a closed ideal

I.

Consider the set of all minimal left and right ideals and denote them as the

following:

L(K) := Set of all minimal left ideals in K

R(K) := Set of all minimal right ideals in K
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Finally, the following theorems give us an explicit idea on the structure of the

kernel of a compact semihypergroup.

Theorem 5.4.2. Let K be a compact semitopological semihypergroup and I

be a minimal left ideal in K. Then we have that

⋃
M∈L(K)

M ⊂ Ker(K) ⊂
⋃
x∈K

(I ∗ {x})

Proof. Let I ∈ L(K) and consider the following union

I0 := ∪x∈KI ∗ {x}.

We know from Proposition 5.3.3 that I0 is a union of left ideals and hence is

a left ideal of K itself. Now pick any a ∈ I0. There exists some x0 ∈ K such

that a ∈ I ∗ {x0}. Thus for any y ∈ K we have

supp(pa ∗ py) = {a} ∗ {y}

⊂ (I ∗ {x0}) ∗ {y}

= I ∗ ({x0} ∗ {y})

= ∪x∈{x0}∗{y} (I ∗ {x})

⊂ ∪x∈K (I ∗ {x}) = I0.

Hence I0 is a right ideal of K as well and therefore Ker(K) ⊂ I0.
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Now let J be any ideal in K and M ∈ L(K). Then

K ∗ (J ∗M) = (K ∗ J) ∗M ⊂ J ∗M ⊂M.

Thus J ∗M is a left ideal of K contained in M and hence by minimality of

M , we have that M = J ∗M . But J is a two-sided ideal and hence

M = J ∗M ⊂ J.

This is true for any M ∈ L(K) and any ideal J in K. Hence finally we see

that ∪I∈L(K) I ⊂ Ker(K) as required.

The result holds true similarly for minimal right ideals as well, i.e, for any

minimal right ideal J ∈ R(K) we have that

⋃
N∈R(K)

N ⊂ Ker(K) ⊂
⋃
x∈K

({x} ∗ J)

Note that the above result implies that the kernels of semihypergroups can

essentially be larger than the kernels of (topological) semigroups in general.

Corollary 5.4.3. Let K be a compact semitopological semihypergroup. Then

Ker(K) is non-empty.

Proof. We know by Proposition 5.2.4 that K ∗{a} is a left ideal for any a ∈ K.

Since K is compact, it follows from Theorem 5.3.5 that it contains at least
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one minimal left ideal. Hence the result follows immediately from the above

theorem.

Note that the above Corollary only implies that K does not contain any two

disjoint ideals. But it may very well be the case that Ker(K) = K as demon-

strated in Examples 5.3.4 and 2.2.4.

We now conclude this section by examining the relation between minimal left

ideals and amenability of a compact semihypergroup.

Theorem 5.4.4. Let K be a compact semihypergroup. If K is right amenable,

i.e, if C(K) admits a right invariant mean, then K has a unique minimal left

ideal.

Proof. Let m be a right invariant mean on C(K). Since K is compact, it

follows from Theorem 5.3.5 that there exists at least one minimal left ideal of

K.

If possible, let I1 and I2 be two distinct minimal left ideals of K. Then by

Proposition 5.3.3 and Theorem 5.3.5 we have that I1 ∩ I2 = ∅ and both I1

and I2 are closed in K. Since K is compact, it is normal. Hence we can use

Urysohn’s Lemma to get a continuous function f ∈ C(K) such that f ≡ 0 on

I1 and f ≡ 1 on I2.

Now pick a ∈ I1. For any x ∈ K we have that

Raf(x) = f(x ∗ a)
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=

∫
K

f d(px ∗ pa)

=

∫
supp(px∗pa)

f d(px ∗ pa) = 0.

where the last equality follows since supp(px ∗ pa) ⊂ I1 and hence

f ≡ 0 on supp(px ∗ pa).

Similarly for any b ∈ I2, x ∈ K we have that

Rbf(x) = f(x ∗ b)

=

∫
K

f d(px ∗ pb)

=

∫
supp(px∗pb)

f d(px ∗ pb)

=

∫
supp(px∗pb)

1 d(px ∗ pb) = (px ∗ pb)(K) = 1.

where as before, the fourth equality follows since supp(px ∗ pb) ⊂ I2 and hence

f ≡ 1 on supp(px ∗ pb).

Thus for any a ∈ I1, b ∈ I2 we have that Raf ≡ 0 and Rbf ≡ 1. This leads to

a contradiction as we have that

1 = m(1) = m(Rbf) = m(f) = m(Raf) = m(0).

Hence the minimal left ideal of K must be unique.
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Chapter 6

Free Structure on

Semihypergroups

In this chapter, we initiate the study of a free structure on semihypergroups.

We introduce a free product structure and a specific topology and convolution

to a family of semihypergroups such that the resulting semihypergroup abides

by an universal property equivalent to the universal property for free product

of topological groups [24]. The contents of this chapter is based on [2, Section

6].
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6.1 Introduction

Free groups and free products of topological groups or semigroups have been

an useful tool for a number of reasons. Providing specific examples or counter-

examples, constructing an unified group with specific properties of a number

of groups and studying the problem of (topologically) embedding a topological

semigroup into a topological group are a few of the areas where the use of a

free structure proves to be very helpful.

Before we proceed to the definition and construction of a free product, let us

first briefly recall some basic formal structures on an arbitrary set and ex-

amine how a homomorphism between two semihypergroups (Definition 5.1.5)

translates to a specific homomorphism between their measure algebras, in the

classical sense.

Definition 6.1.1. Let A be any nonempty set. Then a word or string on A is

a finite sequence a1a2 . . . an which is either void or ai ∈ A for each 1 ≤ i ≤ n.

Similarly, given a family {Aα} of nonempty sets, a word or string on {Aα} is

a finite sequence a1a2 . . . an which is either void or ai ∈ Aα for some α, for

each 1 ≤ i ≤ n.

For convenience of notation and in order to avoid confusion for some specific

cases, we write the word a1a2 . . . an simply as a1a2 . . . an or (a1a2 . . . an).

Definition 6.1.2. Let {Kα} be a family of semihypergroups and w = a1a2 . . . an
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is a word on {Kα} where ai ∈ Kαi for 1 ≤ i ≤ n. Then w is called a reduced

word if either w is empty or if w satisfies the following two conditions:

1. ai 6= 1Kα for 1 ≤ i ≤ n where 1Kα is the identity element of Kα, if exists.

2. αi 6= αi+1 for 1 ≤ i ≤ n− 1.

Definition 6.1.3. Given a reduced word a1a2 . . . an on a family of semihyper-

groups {Kα}, the length of the word is defined to be the number of elements

in the word, and is written as l(a1a2 . . . an) = n.

Theorem 6.1.4. Given a finite set A of cardinality n, we can form the free

semihypergroup (FA, ∗) generated by A, where FA is the set of all words (finite

sequences) consisting of 0 or more elements from A.

Proof. Note that given any finite set of cardinality n, we can easily form a free

semigroup (F, ·) generated by A where where F is the set of all words (finite

sequences) consisting of 0 or more elements from A and the multiplication of

two words a1a2 . . . an, b1b2 . . . bm are simple concatenation given by

(a1a2 . . . an).(b1b2 . . . bm) = a1a2 . . . anb1b2 . . . bm

Note that equipping F with the discrete topology makes it into a topological

semigroup. Then as outlined in Example 2.2.1 we can consider (F, ·) as a

semihypergroup (FA, ∗) where as sets, we have F = FA.
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Theorem 6.1.5. Let K and H be two semihypergroups. Then a homomor-

phism φ : K → H induces a positive continuous homomorphism

Γφ : M(K)→M(H).

Moreover, Γφ is unique for any such homomorphism φ.

Proof. First recall that C(K) and C(H) denote the spaces of bounded contin-

uous functions on K and H respectively. Define Tφ : C(H)→ C(K) by

Tφf(x) := f(φ(x))

for each f ∈ C(H), x ∈ K.

Then the adjoint operator T ∗φ : C(K)∗ → C(H)∗ is simply the push-forward

operator induced by φ as

T ∗φ(m)(f) := m(Tφf)

for each m ∈ C(K)∗, f ∈ C(H).

Note that on point-mass measures px for each x ∈ K, we have that

T ∗φ(px)(f) = px(Tφf) = f(φ(x)) = pφ(x)(f)

for any f ∈ C(H). Hence in particular, we have that T ∗φ(M(X)) ⊂M(Y ).
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Thus we have Γφ in the following way. For each x ∈ K define

Γφ(px) := pφ(x)

and then extend Γφ linearly to M+
F (K).

Since M+
F (K) is dense in M+(K) we can extend Γφ to M+(K) and then finally

extend Γφ linearly to M(K).

Thus by construction, we get that Γφ is a positive continuous linear map on

M(K). Now to see if it is a homomorphism, it suffices to show that

Γφ(px ∗ py) = Γφ(px) ∗ Γφ(py)

for any x, y ∈ K.

Pick any x, y ∈ K. Then px ∗ py ∈M+(K). Hence there exists a net {mα} in

M+
F (K) such that

mα → (px ∗ py).

For each α let

mα =
kα∑
i=1

cαi pxαi
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for some kα ∈ N, cαi ∈ F, xαi ∈ K. Thus we have

Γφ(px ∗ py) = Γφ(lim
α
mα)

= lim
α

Γφ
( kα∑
i=1

cαi pxαi
)

= lim
α

kα∑
i=1

cαi Γφ(pxαi )

= lim
α

kα∑
i=1

cαi pφ(xαi )

= lim
α

m̃α

where for each α we set

m̃α :=
kα∑
i=1

cαi pφ(xαi ).

Now pick any f ∈ C(H). We have

(pφ(x) ∗ pφ(y))(f) =

∫
H

f d(pφ(x) ∗ pφ(y))

= f(φ(x) ∗ φ(y))

= (f ◦ φ)(x ∗ y)

=

∫
K

(f ◦ φ) d(px ∗ py)

=

∫
K

(f ◦ φ) d(lim
α
mα)

= lim
α

∫
K

(f ◦ φ) d(mα)

where the third equality holds since φ is a homomorphism and the last equality

follows since f ◦ φ ∈ C(K).
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Thus we have that

(pφ(x) ∗ pφ(y))(f) = lim
α

kα∑
i=1

cαi

∫
K

(f ◦ φ) d(pxαi )

= lim
α

kα∑
i=1

cαi f(φ(xαi ))

= lim
α

kα∑
i=1

cαi pφ(xαi )(f) = lim
α
m̃α(f).

Since f ∈ C(H) was chosen arbitrarily, it follows that

lim
α
m̃α = pφ(x) ∗ pφ(y)

Hence for any x, y ∈ K we have that

Γφ(px ∗ py) = pφ(x) ∗ pφ(y)

= Γφ(px) ∗ Γφ(py)

as required. Also the fact that Γφ is unique, follows immediately from its

construction.
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6.2 Free Product

Now we define the free product of a family of (semitopological) semihyper-

groups, following the standard norms of defining a free product on a category

of objects. Note that the definition follows the definition of free product for

topological groups [24, Definition 2.1]. The first two structural conditions

essentially remain the same as in the case of topological groups, whereas the

universal property is naturally defined in terms of measure spaces, generalizing

the product to semihypergroups.

Definition 6.2.1. Let {Kα} be a family of semihypergroups. Then a semi-

hypergroup F is called a free (topological) product of {Kα}, if the following

conditions are satisfied:

1. For each α, Kα is a sub-semihypergroup of F .

2. F is algebraically generated by ∪αKα (in terms of finite reduced words).

3. Given any semihypergroup H, if we have a continuous homomorphism

φα : Kα → H for each α, then there exists a unique positive continuous

homomorphism Γ : M(F )→M(H) such that Γ|M(Kα) = Γφα for each α.

We denote F as
∏∗

αKα.

Now before we prove that such products exists for mostly all the interesting

examples we discussed in the third section, let us first define a specific type of

semihypergroups.

102



Definition 6.2.2. Let (K, ∗) be a (semitopological) semihypergroup. We say

that K is of Type I if for any x, y ∈ K \ {e} we have that supp(px ∗ py) is not

singleton whenever e ∈ supp(px ∗ py). Here e is the identity of K.

Equivalently, we can say that K is of Type I if we have that px ∗ py 6= pe for

any x, y ∈ K \ {e}.

Note that if a semihypergroup does not have an identity, then the above con-

ditions are vacuously true and so K is a semihypergroup of Type I. Also, note

that all the examples discussed in Example 2.2.2, 2.2.3, 2.2.4, 2.2.5 and 2.2.6

are of Type I.

Theorem 6.2.3. Let {Kα} be a family of semihypergroups such that if more

than one of the Kα’s has an identity element, then all the Kα’s are of Type I.

Then there exists a semihypergroup F such that F =
∏∗

αKα.

Moreover, if more than one of the Kα has an identity element, then F is also

a semihypergroup with identity.

Proof. Set Λ := {α : Kα has an identity element}. If |Λ| ≤ 1, set

K := {a1a2 . . . , an : n ∈ N, a1a2 . . . an is a reduced word on {Kα}}.

Note that if |Λ| = 1, then we treat the identity as any other arbitrary element

in that semihypergroup. For convenience of notations, we rename the idenity

element as xe in this case, so that it can be included in finite sequences of

reduced words.
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If |Λ| > 1, let e denote the empty word on {Kα} and set e = 1Kα for each

α ∈ Λ where 1Kα denote the identity element of Kα. Now set

K := {e} ∪ {a1a2 . . . an : n ∈ N, a1a2 . . . an is a reduced word on {Kα}}.

For any x1x2 . . . xn, y1y2 . . . ym ∈ K where xi ∈ Kαi , yj ∈ Kβj for i =

1, 2, . . . , n; j = 1, 2, . . . ,m and any subset A ⊂ Kα0 where α0 6= αn, β1 and

e ∈/ A we define that:

(x1x2 . . . xn)A(y1y2 . . . ym) := {x1x2 . . . xnay1y2 . . . ym : a ∈ Kα0}.

On the other hand if e ∈ A we define that

(x1x2 . . . xn)A(y1y2 . . . ym) := {(x1x2 . . . xny1y2 . . . ym)} ∩K

∪{(x1x2 . . . xnay1y2 . . . ym) : a ∈ Kα0 , a 6= e}.

Now for any two sets A1 ⊂ Kα1 , A2 ⊂ Kα2 where α1 6= α2 define

A1A2 := {a1a2 : a1 ∈ A1, a2 ∈ A2}, if e ∈/ A1, A2.

A1A2 := {a1a2 : a1 ∈ A1 \ {e}, a2 ∈ A2} ∪ {a2 : a2 ∈ A2}, if e ∈ A1, e ∈/ A2.

A1A2 := {a1a2 : a1 ∈ A1, a2 ∈ A2 \ {e}} ∪ {a1 : a1 ∈ A1}, if e ∈/ A1, e ∈ A2.

A1A2 := {a1a2 : a1 ∈ A1 \ {e}, a2 ∈ A2 \ {e}} ∪ {a1 : a1 ∈ A1 \ {e}}

∪{a2 : a2 ∈ A2 \ {e}} ∪ {e}, if e ∈ A1, A2.
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Similarly for A1 ⊂ Kα1 , A2 ⊂ Kα2 , A3 ⊂ Kα3 where α1 6= α2 6= α3, we define

A1A2A3 := {a1a2a3 : a1 ∈ A1, a2 ∈ A2, a3 ∈ A3}, if e ∈/ A1, A2, A3.

A1A2A3 := {a1a2a3 : a1 ∈ A1 \ {e}, a2 ∈ A2, a3 ∈ A3}

∪{a2a3 : a2 ∈ A2, a3 ∈ A3}, if e ∈ A1, e ∈/ A2, A3.

A1A2A3 := {a1a2a3 : a1 ∈ A1, a2 ∈ A2 \ {e}, a3 ∈ A3}

∪{a1, a3 : a1 ∈ A1, a3 ∈ A3}, if e ∈/ A1, A3; e ∈ A2.

A1A2A3 := {a1a2a3 : a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 \ {e}}

∪{a1a2 : a1 ∈ A1, a2 ∈ A2}, if e ∈/ A1, A2, e ∈ A3.

A1A2A3 := {a1a2a3 : a1 ∈ A1 \ {e}, a2 ∈ A2 \ {e}, a3 ∈ A3} ∪ {a2a3 : a2 ∈ A2 \ {e},

a3 ∈ A3} ∪ {a1a3 : a1 ∈ A1 \ {e}, a3 ∈ A3} ∪ {a3 : a3 ∈ A3},

if e ∈ A1, A2, e ∈/ A3.

A1A2A3 := {a1a2a3 : a1 ∈ A1 \ {e}, a2 ∈ A2, a3 ∈ A3 \ {e}} ∪ {a2a3 : a2 ∈ A2,

a3 ∈ A3 \ {e}} ∪ {a1a2 : a1 ∈ A1 \ {e}, a2 ∈ A2} ∪ {a2 : a2 ∈ A2},

if e ∈ A1, A3, e ∈/ A2.

A1A2A3 := {a1a2a3 : a1 ∈ A1, a2 ∈ A2 \ {e}, a3 ∈ A3 \ {e}} ∪ {a1a2 : a1 ∈ A1,

a2 ∈ A2 \ {e}} ∪ {a1a3 : a1 ∈ A1, a3 ∈ A3 \ {e}} ∪ {a1 : a1 ∈ A1},

if e ∈ A2, A3; e ∈/ A1.

A1A2A3 := {a1a2a3 : a1 ∈ A1 \ {e}, a2 ∈ A2 \ {e}, a3 ∈ A3 \ {e}}

∪{a1a2 : a1 ∈ A1 \ {e}, a2 ∈ A2 \ {e}} ∪ {a2, a3 : a2 ∈ A2 \ {e},

a3 ∈ A3 \ {e}} ∪ {a1, a3 : a1 ∈ A1 \ {e}, a3 ∈ A3 \ {e}}
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∪{a1 : a1 ∈ A1 \ {e}} ∪ {a2 : a2 ∈ A2 \ {e}}

∪{a3 : a3 ∈ A3 \ {e}} ∪ {e}, if e ∈ A1, A2, A3.

Similarly for any n ∈ N and subsets Ai ⊂ Kαi for i = 1, 2, . . . , n, where

αl 6= αl+1 for l = 1, 2, . . . , (n − 1), let e ∈ Aik for k = 1, 2, . . . ,m and e ∈/ Al

whenever l 6= ik for any k = 1, 2, . . . ,m. Then continuing in the same manner

as above, we get that

A1A2A3 . . . An := {a1a2 . . . an ∈ K : ai ∈ Ai, i = 1, 2, . . . , n} ∪ (Fn ∩K),

where Fn is defined as the following:

Fn :=
m⋃
l=1

m⋃
k1,k2,...kl=1,
iks<iks+1

,

s=1,2,...,(l−1)

{(a1a2 . . . aik1−1aik1+1 . . . aik2−1aik2+1 . . . aikl−1aikl+1 . . . an)

: aj ∈ Aj, j = 1, 2, . . . , n}.

Note that from now on unless otherwise mentioned, whenever we write a

product A1A2 . . . An of subsets Ai ⊂ Kαi , we assume that αi 6= αi+1 for

i = 1, 2, . . . , (n − 1). Also it follows immediately from the above construc-

tion that for any such sets A1, A2, . . . , An we have

A1A2 . . . An = A1(A2A3 . . . An) = A1(A2A3 . . . A(n−1))An = (A1A2 . . . A(n−1))An.

106



Now we first introduce a certain topology τ on K. Afterwards we will define

a binary operation ‘∗’ on the measure space M(K) and then investigate how

the operation gives rise to an associative algebra on M(K) and how the Borel

sets act under the said operation and the cone topology on M+(K) induced

by τ .

First, we set

B := {U1U2, . . . , Un : Ui is an open subset of Kαi , i = 1, 2, . . . n;n ∈ N}.

We will show that B serves as a base for a topology on K. Pick any ele-

ment x1x2 . . . xn ∈ K \ {e} where xi ∈ Kαi , i = 1, 2, . . . , n. Since x1x2 . . . xn

is a reduced word, xi 6= 1Kαi , even if αi ∈ Λ. Thus we can find an open

neighbourhood Vxi of xi in Kαi such that e ∈/ Vxi . Then

x1x2 . . . xn ∈ Vx1Vx2 . . . Vxn ∈ B.

Also note that if e ∈ K, then for any open set U in Kα where α ∈ Λ, we

have that e ∈ U ∈ B. Now let U1U2 . . . Un, V1V2 . . . Vm ∈ B where Ui ⊂

Kαi and Vj ⊂ Kβj for i = 1, 2, . . . n; j = 1, 2, . . . ,m. Pick any element

x1x2 . . . xl ∈ U1U2 . . . Un ∩ V1V2 . . . Vm. Note that l ≤ min(n,m) and hence for

each k = 1, 2, . . . l, there exists some ik ∈ {1, 2, . . . , n} and jk ∈ {1, 2, . . . ,m}
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such that i1 < i2 < . . . < il, j1 < j2 < . . . < jl and

xk ∈ Uik ∩ Vjk

for each k = 1, 2, . . . , l.

Set Wk := Uik ∩ Vjk for each k = 1, 2, . . . , l. Since each Wk is open in Kαik
=

Kβjk
and xk 6= e for each k, we have that x1x2 . . . xl ∈ W1W2 . . .Wl ∈ B. Now

to show that W1W2 . . .Wl ⊂ U1U2 . . . Un ∩ V1V2 . . . Vm, pick any

x1x2 . . . xt ∈ W1W2 . . .Wl

where xk ∈ Wsk = Uisk ∩ Vjsk , k = 1, 2, . . . t.

Since x1x2 . . . xn ∈ U1U2 . . . Un we must have that e ∈ Ui whenever i ∈

{1, 2, . . . n} \ {ik : k = 1, 2, . . . , l}. Again since x1x2 . . . xt ∈ W1W2 . . .Wl,

we must have that

e ∈ Ws = Uis ∩ Vjs ⊂ Uis

whenever s ∈ {1, 2, . . . , l} \ {sk : k = 1, 2, . . . , t}. Combining these two state-

ments gives us that e ∈ Ui whenever i ∈ {1, 2, . . . , n} \ {isk : k = 1, 2, . . . , t}.

Also, we know that xk ∈ Uisk for each k = 1, 2, . . . , t. Hence it follows that

x1x2 . . . xt ∈ U1U2 . . . Un.

Similarly since x1x2 . . . xl ∈ V1V2 . . . Vm, we must have that e ∈ Vj whenever
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j ∈ {1, 2, . . .m} \ {jk : k = 1, 2, . . . , l} and since x1x2 . . . xt ∈ W1W2 . . .Wl, we

must have that

e ∈ Ws = Uis ∩ Vjs ⊂ Vjs

whenever s ∈ {1, 2, . . . , l} \ {sk : k = 1, 2, . . . , t}, we can proceed in the same

manner to get that x1x2 . . . xt ∈ V1V2 . . . Vm.

Thus finally we see that

x1x2 . . . xl ∈ W1W2 . . .Wl ⊂ U1U2 . . . Un ∩ V1V2 . . . Vm

where W1W2 . . .Wl ∈ B, implying that B serves as a base for a topology on

K. We denote the topology on K generated by B as τ .

Now as pointed out before in the first section, in order to define a binary

operation on M(K) it is sufficient to define a binary operation on the point-

mass measures on M(K). Firstly if Λ 6= ∅ then for any x1x2 . . . xn ∈ K we

define

pe ∗ px1x2...xn = px1x2...xn = px1x2...xn ∗ pe.

Now for any two elements x = x1x2 . . . xn, y = y1y2 . . . ym ∈ K \ {e} where

xi ∈ Kαi , yj ∈ Kβj for i = 1, 2, . . . , n; j = 1, 2, . . . ,m, define:
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px ∗ py =



p(x1x2...xny1y2...ym), if αn 6= β1 .

m[x,y], if αn = β1 .

where for any measurable set E ′ ⊂ K the measure m[x,y] is defined in the

following way.

m[x,y](E
′) = (pxn ∗ py1)(E),

where E is the largest measurable set in Kαn such that

(x1 . . . xn−1)E(y2 . . . ym) = E ′ ∩
(
(x1 . . . xn−1)Kαn(y2 . . . ym)

)
.

In particular, we have that:

m[x,y](E
′) =



(pxn ∗ py1)(E), if E ′ = (x1 . . . xn−1)E(y2 . . . ym)

for some measurable set E ⊂ Kαn = Kβ1 .

0, if E ′ + (x1 . . . xn−1)E(y2 . . . ym)

for any measurable set E ⊂ Kαn = Kβ1 .
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Note that m[x,y] mimics the behaviour of the probability measure (pxn∗py1) and

hence is a probability measure with support (x1 . . . xn−1) supp(pxn∗py1)(y2 . . . ym).

Also due to the construction of τ , for any two closed subsets C1 ⊂ Kα1 and

C2 ⊂ Kα2 where α1 6= α2, we have that C1C2 is a closed subset of K. This is

true since Kα1Kα2 is open in K and we have that

Kα1Kα2 \ C1C2 = (Kα1 \ C1).Kα2 ∪Kα1 .(Kα2 \ C2),

which is open in Kα1Kα2 . Similarly, we can show that C1C2 . . . Cn is a closed

set in K for any n ∈ N where Ci ∈ Kαi for 1 ≤ i ≤ n and αi 6= αi+1 for

1 ≤ i ≤ n− 1. In fact, it is now easy to see that the set

{C1C2 . . . Cn : n ∈ N, Ci is a closed set in some Kαi}

is the family of basic closed sets in K.

Now let both C1 and C2 are compact subsets of Kα1 and Kα2 respectively

and let {Aγ}γ∈I be a family of closed subsets of C1C2 with finite intersection

property. Then we must have that Aγ = Bγ
1B

γ
2 for some closed subsets Bγ

i ⊂

Ci ⊂ Kαi for each γ, i = 1, 2. Now for any {γ1, γ2, . . . , γn} ⊂ I we have that

∩n1B
γi
1 B

γi
2 = ∩n1Aγi 6= ∅.

Hence in particular, ∩n1B
γi
1 6= ∅ for any such finite subset {γ1, γ2, . . . , γn} ⊂ I.
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So {Bγ
1}γ∈I is a family of subsets in C1 with the finite intersection property.

But C1 is compact in Kα1 and hence there exists some x1 ∈ C1 such that

x1 ∈ ∩γ∈IBγ
1 . Similarly, since C2 is also compact in Kα2 , there exists some

x2 ∈ C2 such that x2 ∈ ∩γ∈IBγ
2 .

Thus we see that there exists an element x ∈ C1C2 such that x ∈ ∩γ∈IAγ

where x is given as the following:

x =



(x1x2), if x1, x2 6= e .

(x1), if x1 6= e, x2 = e .

(x2), if x1 = e, x2 6= e .

e, if x1 = x2 = e .

Thus we see that C1C2 has to be compact too. Now let C1, C2, C3 be compact

subsets of Kα1 , Kα2 , Kα3 respectively. Note that if αi 6= αj for any i, j ∈

{1, 2, 3} or if e ∈/ ∩3
i=1 Ci then we can proceed similarly as above to show that

C1C2C3 gives us a compact set in K. Otherwise, first consider the following

case.

Let C be a compact set in Kα0 and (a1a2 . . . as), (b1b2 . . . bt) ∈ K \ {e} where

ai ∈ Kγi and bj ∈ Kδj for 1 ≤ i ≤ s, 1 ≤ j ≤ t such that α0 6= γs, δ1. Consider

the set

C0 := (a1 . . . as)C(b1 . . . bt).

We want to show that any such C0 is compact in (K, τ). Let {Uα} be any
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basic open cover of C0. Hence Uα = Uα
1 U

α
2 . . . U

α
nα for some nα ∈ N where

each Uα
k is an open set in some Kα such that the product exists. Now for any

x ∈ C \ {e} there exists αx such that

(a1 . . . asxb1 . . . bt) ∈ Uαx .

Therefore there exists ix ∈ {1, 2, . . . , nαx} such that x ∈ Uαx
ix

where Uαx
ix

is an

open set in Kα0 . Thus U := {Uαx
ix
}x∈C serves an open cover of the set C \ {e}.

If e ∈/ C, then U serves as an open cover of C and hence has a finite subcover

{U1, U2, . . . , Up} where Uk = U
αxk
ixk

for some xk ∈ C \ {e} for 1 ≤ k ≤ p. Thus

{Uαx1 , Uαx2 , . . . , Uαxp} serves as a finite subcover of {Uα}.

Now let e ∈ C. Pick α′ ∈ Λ such that α′ 6= α0. Since Kα′ is locally compact,

we can find a compact neighborhood of e in Kα′ . Let V := {Vβ} be an open

cover of F . Then C ∪F is a compact set in Kα0 ∪Kα′ with open cover U ∪V .

Thus we get a finite subcover of the form

{U1, U2, . . . , Up, Vβ1 , Vβ2 , . . . Vβq}

where Uk = U
αxk
ixk

for some xk ∈ C \ {e} for 1 ≤ k ≤ p. Note that e ∈ Bβl for

some l ∈ {1, 2, . . . , q} here and hence {Uixk}
p
k=1 covers C \ {e}.

Thus if γs = δ1, then {Uαx1 , Uαx2 , . . . , Uαxp} covers C0, as desired. Otherwise if

γs 6= δ1, then there exists some α′ such that (a1 . . . asb1 . . . bt) ∈ Uα′ . Hence in

113



this case, {Uαx1 , Uαx2 , . . . , Uαxp , Uα′} serves as a finite subcover of C0. Hence

we see that any set of the form C0 is compact in (K, τ). Using similar argument

we can immediately see that sets of the form C1C2C3 are also compact where

Ci ∈ Kαi is compact.

In particular, for any two words x = (x1x2 . . . xn), y = (y1y2 . . . ym) ∈ K

where xi ∈ Kαi , yj ∈ Kβj and αn = β1, we have that supp(px ∗ py) = supp

m[x,y] = (x1 . . . xn−1) supp(pxn ∗py1)(y2 . . . ym) is compact since supp(pxn ∗py1)

is compact in Kαn = Kβ1 . Thus it follows from the construction of convolution

products that for any two words x, y ∈ K we have that (px∗py) is a probability

measure with compact support. Also since convolution is associative in each

Kα, it follows from the construction that convolution products are associative.

Now we proceed further to show that (K, ∗) indeed gives us a semihyper-

group. First note that since each Kα is Hausdorff, for any two elements

x1x2 . . . xn, y1y2 . . . ym ∈ K where xi ∈ Kαi , yj ∈ Kβj , we can find sets

Ai ⊂ Kαi , Bj ⊂ Kβj for 1 ≤ i ≤ n, 1 ≤ j ≤ m such that xi ∈ Ai,

yj ∈ Bj and Ai ∩ Bj = ∅ for all i, j. Hence we have that x1x2 . . . xn ∈

A1A2 . . . An, y1y2 . . . ym ∈ B1B2 . . . Bm where A1A2 . . . An ∩B1B2 . . . Bm = ∅.

Also if e ∈ K, then for any such x1x2 . . . xn since xi 6= e for any i, we can

choose Ai’s such that e ∈/ Ai for any i. Then again using the fact that each Kα

is Hausdorff, we can choose a neighborhood V around e such that V ∩Ai = ∅

for all i and hence V ∩ A1A2 . . . An = ∅. Thus we can easily see that the
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topology τ on K is Hausdorff.

Next pick any element x1x2 . . . xn ∈ K where xi ∈ Kαi for 1 ≤ i ≤ n. Since

each Kαi is locally compact, we can find a compact neighborhood Ci of xi in

Kαi such that e ∈/ Ci. Let Ui be an open set in Kαi such that Ci ⊂ Ui and

e ∈/ Ui. Now consider the map φ : U1 × U2 × . . .× Un → U1U2 . . . Un given by

φ((a1, a2, . . . , an)) := (a1a2 . . . an)

for any (a1, a2, . . . , an) ∈ U1 × U2 × . . .× Un.

Note that since e ∈/ Ui for any i, the map φ is bijective. Moreover, for any basic

open set V1V2 . . . Vn ⊂ U1U1 . . . Un we have φ−1(V1V2 . . . Vn) = V1×V2× . . .×Vn

which is open in U1 × U2 × . . . × Un in the product topology. Hence φ is

continuous granting us that C1C2 . . . Cn = φ(C1×C2× . . .×Cn) is a compact

neighborhood of x1x2 . . . xn in (K, τ). Also if e ∈ K then there exists some α0

such that e ∈ Kα0 . Since Kα0 is locally compact we can always find a compact

neighborhood for e. Thus we see that (K, τ) is indeed a locally compact

Hausdorff space.

Now in order to see if the map (x, y) 7→ supp(px ∗ py) : K × K → C(K) is

continuous, first recall [18] that the map π : X → M(X) given by x 7→ px is

a homemorphism onto its image for any locally compact Hausdorff space X.

Now let {(xα, yα)} be a net in K × K that converges to some (x, y) where

x = x1x2 . . . xn, y = y1y2 . . . ym ∈ K such that xi ∈ Kγi and yj ∈ Kδj for all
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i, j. Then {xα} and {yα} converges to x and y respectively. Then for each α we

have that xα = xα1x
α
2 . . . x

α
nα for some nα ∈ N where xαi ∈ Kαi for 1 ≤ i ≤ nα.

But xα eventually lies in any basic open set of the form U1U2 . . . Un around x

where Ui is an open neighborhood of xi in Kγi that does not contain e. Hence

without loss of generality for each α we can assume that nα = n and αi = γi

for 1 ≤ i ≤ n. Similarly we can assume that yα = yα1 y
α
2 . . . y

α
m where yαj ∈ Kδj

for 1 ≤ j ≤ m.

Now consider the Michael topology on C(K) and recall [25] that the map

x 7→ {x} : K → C(K) is a homeomorphism onto its image which is also closed

in C(K). If γn 6= δ1 then using the same technique as above, we can easily

see that the net {(xα1 . . . xαnyα1 . . . yαm)}α converges to (x1 . . . xny1 . . . ym) in K.

Hence using the homeomorphism mentioned above we have that

supp(pxα ∗ pyα) = {(xα1 . . . xαnyα1 . . . yαm)}

converges to {(x1 . . . xny1 . . . ym)} = supp(px ∗ py) in C(K).

Now let γn = δ1. For any i0 ∈ {1, 2, . . . n}, pick and fix open neighborhoods Ui

around xi in Kγi for all i 6= i0. Then for any open neighborhood V around xi0

in Kγi0
we have that xα1x

α
2 . . . x

α
n lie eventually in U1U2 . . . Ui0−1V Ui0+1 . . . Un.

Hence we must have that {xαi0} lie eventually in V , i.e, {xαi0} converges to xi0

in Kγi0
. Thus {xαi } converges to xi in Kγi and {yαj } converges to yj in Kδj for

each i, j. In particular, we have that the net {(xαn, yα1 )}α converges to (xn, y1)
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in Kγn ×Kγn . Since the map

(x, y) 7→ supp(px ∗ py) : Kγn ×Kγn → C(Kγn)

is continuous, we have that supp(pxαn ∗ pyα1 ) converges to supp(pxn ∗ py1) in

C(Kγn).

As discussed before, we also have that the nets
{
{xαi }

}
α

and
{
{yαj }

}
α

con-

verge to {xi} and {yj} in C(Kγi) and C(Kδj) respectively for 1 ≤ i < n and

1 < j ≤ m. Hence it follows from the construction of basic open sets of K

that supp(pxα ∗ pyα) = {(xα1 . . . xαn−1)}supp(pxαn ∗ pyα1 ){(yα2 . . . yαm)} converges to

{(x1 . . . xn−1)}supp(pxn ∗ py1){(y2 . . . ym)} = supp(px ∗ py) in C(K).

Finally, it follows immediately from the construction of convolution products

that the map ∗ : M(K) × M(K) → M(K) is positive bilinear. Using the

same technique as above we can see that the restricted map ∗|M+(K)×M+(K) :

M+(K) × M+(K) → M+(K) is continuous. Hence we have that the pair

(K, ∗) indeed forms a semihypergroup.

Note that for each α the map iα : Kα → K given by

iα(x) =


(x) if x 6= e.

e if x = e.

where (x) is a word of length 1 in K, enables us to view Kα as a sub-

117



semihypergroup of K since iα(Kα) ∗ iα(Kα) ⊂ iα(Kα) and iα is a homeo-

morphism onto its image.

Now let H be a semihypergroup and φα : Kα → H be a homomorphism for

each α. For each x = x1x2 . . . xn ∈ K where xi ∈ Kαi for 1 ≤ i ≤ n define

Γ(px) := pφα1 (x1) ∗ pφα2 (x2) ∗ . . . ∗ pφαn (xn) .

We can then extend Γ to M(K) as in the proof of Theorem 6.1.5 to get a

positive continuous linear map Γ : M(K)→M(H).

Since for any x ∈ Kα we have that Γ(p(x)) = pφα(x), it follows immediately

from Theorem 6.1.5 that Γ|M(Kα) = Γ ◦ Γiα = Γφα for each α. Now to show

that Γ is a homomorphism, pick any two words x = x1x2 . . . xn, y = y1y2 . . . ym

in K where xi ∈ Kαi , yj ∈ Kβj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that if αn 6= β1

then we have that

Γ(px ∗ py) = Γ(px1...xny1...ym)

= pφα1 (x1) ∗ . . . ∗ pφαn (xn) ∗ pφβ1 (y1) ∗ . . . ∗ pφβm (ym)

=
(
pφα1 (x1) ∗ . . . ∗ pφαn (xn)

)
∗
(
pφβ1 (y1) ∗ . . . ∗ pφβm (ym)

)
= Γ(px1x2...xn) ∗ Γ(py1y2...ym) = Γ(px) ∗ Γ(py)

as required.

Now pick any x ∈ Kγ and y, z ∈ Kβ where γ 6= β. Then there exists a net
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{mα} in M+
F (Kβ) such that mα converges to (py ∗ pz) in M+(Kβ). Hence

(px ∗mα) converges to (px ∗ (py ∗pz)) = (px ∗py ∗pz) in M+(K). Then for each

α we have that mα =
∑nα

i=1 c
α
i pxαi for some nα ∈ N, cαi ∈ C and xαi ∈ Kβ.

Since Γ is continuous on M+(K), we have that

Γ(px ∗ py ∗ pz) = Γ
(

lim
α

(px ∗mα)
)

= lim
α

Γ(px ∗mα)

= lim
α

Γ
(
px ∗

nα∑
i=1

cαi pxαi

)
= lim

α
Γ
( nα∑
i=1

cαi (px ∗ pxαi )
)

= lim
α

nα∑
i=1

cαi Γ
(
px ∗ pxαi

)
= lim

α

nα∑
i=1

cαi

(
Γ(px) ∗ Γ(pxαi )

)
= lim

α
Γ(px) ∗

( nα∑
i=1

cαi Γ(pxαi )
)

= lim
α

Γ(px) ∗ Γ
( nα∑
i=1

cαi pxαi

)
= Γ(px) ∗ lim

α
Γ(mα)

= Γ(px) ∗ Γ
(

lim
α
mα

)
= Γ(px) ∗ Γ(py ∗ pz).

where the fourth equality follows since the convolution (µ, ν) 7→ µ∗ν : M(K)×

M(K) → M(K) is bilinear, the fifth and eighth equality follows from the

linearity of Γ on M(K) and finally the seventh equality follows since the map

(µ, ν) 7→ µ ∗ ν : M(H)×M(H)→M(H) is bilinear.
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Similarly for any x, y ∈ Kγ and z ∈ Kβ where γ 6= β we have that

Γ(px ∗ py ∗ pz) = Γ(px ∗ py) ∗ Γ(pz) .

Using these two equalities simultaneously for any two words x = x1x2 . . . xn,

y = y1y2 . . . ym in K where xi ∈ Kαi , yj ∈ Kβj for 1 ≤ i ≤ n, 1 ≤ j ≤ m and

αn = β1, we have that

Γ(px ∗ py) = Γ(px1x2...xn−1 ∗ pxn ∗ py1 ∗ py2y3...ym)

= Γ(px1x2...xn−1) ∗ Γ(pxn ∗ py1) ∗ Γ(py2y3...ym)

= Γ(px1x2...xn−1) ∗ Γφαn (pxn ∗ py1) ∗ Γ(py2y3...ym)

= Γ(px1...xn−1) ∗
(

Γφαn (pxn) ∗ Γφαn (py1)
)
∗ Γ(py2...ym)

= Γ(px1...xn−1) ∗
(
pφαn (xn) ∗ pφαn (y1)

)
∗ Γ(py2...ym)

=
(
pφα1 (x1) ∗ . . . ∗ pφαn−1 (xn−1)

)
∗
(
pφαn (xn) ∗ pφβ1 (y1)

)
∗
(
pφβ2 (y2) ∗ . . . ∗ pφβm (ym)

)
=

(
pφα1 (x1) ∗ . . . ∗ pφαn−1 (xn−1) ∗ pφαn (xn)

)
∗
(
pφβ1 (y1) ∗ pφβ2 (y2) ∗ . . . ∗ pφβm (ym)

)
= Γ

(
px1x2...xn

)
∗ Γ
(
py1y2...ym

)
= Γ(px) ∗ Γ(py)

as required. Note that here the fourth equality follows since

Γφαn : M(Kαn)→M(H)
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induced by φαn is a homomorphism and the fifth equality follows from the

construction of Γφαn as shown in Theorem 6.1.5.

Finally, note that if

Θ : M(K)→M(H)

is another positive linear continuous homomorphism such that

Θ|M(Kα) = Γφα

then for any x1x2 . . . xn ∈ K where xi ∈ Kαi for 1 ≤ i ≤ n we have that

Θ(px1x2...xn) = Θ(px1 ∗ px2 ∗ . . . ∗ pxn)

= Θ(px1) ∗Θ(px2) ∗ . . . ∗Θ(pxn)

= Θ|M(Kα1 )
(px1) ∗Θ|M(Kα2 )

(px2) ∗ . . . ∗Θ|M(Kαn )(pxn)

= Γφα1 (px1) ∗ Γφα2 (px2) ∗ . . . ∗ Γφαn (pxn)

= Γ|M(Kα1 )
(px1) ∗ Γ|M(Kα2 )

(px2) ∗ . . . ∗ Γ|M(Kαn )(pxn)

= Γ(px1) ∗ Γ(px2) ∗ . . . ∗ Γ(pxn)

= Γ(px1 ∗ px2 ∗ . . . ∗ pxn) = Γ(px1x2...xn) .

Thus we see that the map Γ constructed above is unique and hence (K, ∗)

satisfies all the conditions of Definition 6.2.1 giving us that K =
∏∗

αKα.

Remark 6.2.4. Let {Kα} be a family of semihypergroups and F is a semihy-

pergroup such that F =
∏∗

αKα.

121



If any one of the Kα has a non-discrete topology, then the locally compact

topology on F is also non-discrete.

Theorem 6.2.5. Let {Kα} be a family of semihypergroups and F1 and F2 be

semihypergroups such that Fi =
∏∗

αKα for i = 1, 2.

Then there exists a continuous isomorphism

ψ : F1 → F2.

Thus the free product
∏∗

αKα we constructed above is unique.

Proof. The proof follows readily from the universal property outlined in the

definition of free product for semihypergroups (see Definition 6.2.1).
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Chapter 7

Open Questions and Further

Work

The lack of extensive prior research on semihypergroups in general and the

significant examples it contains, make way to a number of new intruiging areas

of research on this subject. Here we list some of the potential problems and

areas of study on semihypergroups that we are currently working on and/or

intend to work on in near future.

Problem 1: Use the algebraic structure imposed on AP (K)∗ to acquire a

general compactification of semihypergroups.

Problem 2: Investigate the set of minimal ideals on a (semitopological) semi-

hypergroup more closely, finally to explore its relation to the space of almost

periodic and weakly almost periodic functions.
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Problem 3: Investigate the idempotents of a compact semihypergroup and

explore their relation to the space of minimal left ideals, kernel and amenability

of a semihypergroup.

Problem 4: Explore if results equivalent to isomorphism theorems hold true

for a semihypergroup, in addition to exploring the structure of the kernel of

a homomorphism for a (semitopological) semihypergroup with identity, as in

Example 2.2.4 and Example 2.2.5.

Problem 5: Investigate the behavior of free products on semihypergroups for

compact case and generalize the construction for amalgamated products and

for hypergroups.

Problem 6: Investigate the space of left/right uniformly continuous functions

on a semitopological semihypergroup and explore its relation to other function

spaces.

Problem 7: Investigate the measure algebra of a semihypergroup and use its

duality to acquire certain information about the underlying semihypergroup.

Problem 8: Study the notion of amenability on (semitopological) semihyper-

groups, specially for the non-commutative case.

Problem 9: Investigate the F-algebraic structure (as defined by A. T. Lau in

[19]) on the measure algebra of a semihypergroup.

Problem 10: Investigate Banach algebras on discrete semihypergroups [21].
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