
U niversity o f A lb erta

F C L : A u t o m a t ic a l l y D e t e c t i n g S t r u c t u r a l E r r o r s in F r a m e w o r k - B a s e d

D e v e l o p m e n t

A thesis subm itted to th e Faculty of G raduate Studies and Research in partia l fulfillment
of the requirem ents for the degree of D o c to r o f P h ilo so p h y .

D epartm ent of Com puting Science

Edm onton, A lberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96278-4
Our file Notre reference
ISBN: 0-612-96278-4

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A lthough they axe intended to support and encourage reuse, object-oriented application

frameworks are difficult to use. The arch itecture and im plem entation details of frameworks,

because of the ir size and complexity, are rarely fully understood. Instead, faced with a

fram ework problem , developers m ust somehow learn ju s t enough about the p arts of the

fram ework required for the ir task and ask for assistance or m uddle through using a trial-

and-error approach. In m any cases, they m isuse the fram ework by not learning w hat the

fram ework designer had in m ind as th e proper solution to th e ir problem .

This thesis investigates bo th th e feasibility and th e effectiveness of tools support for the

problem: The idea is to formalize the p a tte rn s to which the code s tructu re of the application

should conform, and thereafter detect violations of such p a tte rn s w ith an au tom ated checker

program . To capture the know-how knowledge abou t fram eworks use, we introduce the

notion of framework constraints: fram ework constrain ts are rules th a t frameworks impose

on th e code of framework-based applications.

The tool consists of a specification language and an associated checker. The specification

language, FCL (Framework C onstrain ts Language), is defined to formally specify framework

constraints. The sem antics of FCL is based on a first-order logic extended w ith set and

sequence operations. Essentially, fram ework constrain ts can be regarded as framework-

specific typing rules conveyed by FCL specifications and thus can be enforced by techniques

analogous to those of conventional type checking.

Several case studies have been conducted to evaluate the approach. These include a part

of the M FC (Microsoft Foundation Classes) fram ework, the law of D em eter, Scott M eyers’

C + + guidelines, and the Observer design p a tte rn . Lessons in term s of bo th the strengths

and th e lim itations of FCL are reported.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The refinement of techniques fo r the prompt discovery of errors
serves as well as any other as a hallmark of what we mean by science.

--J. R obert O ppenheim er

Most papers in Computer Science describe how their authors learned what
someone else already knew.

-P e te r Landin, C irca 1967

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Xiao-Li, Niu-Niu, and George

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First, I wish to th an k my thesis supervisor, Prof. Dr. H. Jam es Hoover, for m any things he
has done for me during the five years. From the beginning, Jim gave me the freedom to
explore my interests. His frowning on the initial form ulation of FCL for being ad hoc and
lacking formal foundation has been a m ajor incentive for im provem ent. I have learned from
this process of form alization more th an anywhere else. I agree w ith his m ature a ttitu d e on
research, and hope th a t I can do som ething of real value in the fu ture. Last bu t no t least,
I thank Jim for loaning me m any useful books (he has a wonderful bookshelf!) and his
generous financial sup p o rt during the end phase of my program .

My co-supervisor, Prof. Dr. P io tr Rudnicki, although joined my com m ittee later, earned
my respect for being a real scholar and teacher. I t has been a joy to work w ith P io tr. He
always strives to be precise, concise, and simple. I will rem em ber forever how prom ptly he
worked to improve my thesis; he will be my model if, someday, I have my own students.

Prof. Dr. Kenny W ong has been a good person to ta lk to. He pointed out much related
works. I benefit particu larly from some of the C m put 605 (W inter 2003) readings and
discussions. I t was also he who in troduced me the D atrix tool suite.

I benefited also from in teracting w ith many outside persons, notably the m entors from
two doctoral sym posium s of ICSE 2001 and OOPSLA 2001 respectively.

Prof. Dr. Eleni S trou lia served as a co-supervisor a t th e early phase of th is thesis.
Profs. Drs. Jam es R. Cordy and Andrew J. M alton taugh t me TXL (Tree T ransform ation

Language) from O ctober 2000 to Spring 2001. A lthough TX L tu rn ed out no t being quite
suitable for FCL, it opened a relevant area of research which I should know of. I also th an k
Dr. M alton for his thorough and insightful com m entary on this thesis.

Profs. Duane Szafron and Jo n a th an Schaeffer tau g h t me object-oriented program m ing
and heuristic search respectively. Professor Jam es Miller served as a com m ittee m em ber for
bo th my candidacy exam and oral defense. English Professor Janice W illiam son proofread
a draft of this thesis and gave sound suggestions on English writing; of course, all rem aining
errors are mine. I th a n k them all.

Bell C anada provided a research-free license for the ir D atrix tool suite. I also acknowl­
edge the financial support from the University of A lberta, NSERC, and ASERC (A lberta
Software Engineering Research Consortium).

For the record, a discussion in February 2000 w ith the then fellow graduate student,
G arry Froehlich, inspired the idea of th is thesis. T hank you, Garry!

Finally, I th an k my fam ily for allowing me to im m erse in my thesis work. I t is really a
luxury to be able to do so.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 In tr o d u c tio n 3
1.1 S tatem ent of Research P r o b le m ... 3
1.2 F C L .. 5
1.3 Sum m ary of C o n trib u tio n s ... 7
1.4 O utline of the R est of the T h e s i s .. 8

2 B a ck g ro u n d 11
2.1 Stepwise Refinem ent and P rogram F a m i l i e s ... 11
2.2 Software P ro d u c t Lines and O bject-O riented F ra m e w o rk s 13
2.3 Scaling Stepwise R efin em en t.. 15

3 D e s ig n a n d Im p le m e n ta tio n o f FC L 19
3.1 An E x a m p le .. 19

3.1.1 Tools O peration .. 20
3.2 In troduction to F C L ..21

3.2.1 FC L ’s Type S y s t e m .. 23
3.2.2 Functions on Source Code M o d e l ...24
3.2.3 F C L ’s T reatm ent of “undefined” ..28

3.3 Im p le m e n ta tio n .. 28
3.3.1 P rogram D a ta b a s e ...29
3.3.2 P arser and Linker ...29
3.3.3 FCL In terp re ter .. 29

3.4 Com plexity A n a ly s is .. 29

4 A M o d e l o f S ta t ic P r o p e r tie s o f C + -f- P ro g ra m s 31
4.1 P rogram Elem ents, Contexts, Names and T y p e s ...31
4.2 P rogram U n i t s ...34
4.3 T y p e s ..35

4.3.1 Aggregate T y p e s .. 36
4.4 O p e r a to r s ... 37
4.5 E x p re s s io n s ..37

4.5.1 G enerated T y p e s .. 39
4.6 “N orm al” E x p re s s io n s ... 39

4.6.1 Function Calls ..41
4.6.2 Pre-defined E x p re s s io n s .. 41
4.6.3 Name Reference Expressions ..42
4.6.4 Control S ta te m e n ts .. 42

5 C ase S tu d y 1: E n forcin g F ram ew ork C o n stra in ts—th e O b server D esig n
P a tte r n 45
5.1 The Observer Design P a t t e r n ... 45
5.2 Observer P a tte rn in FCL .. 46
5.3 D isc u ss io n ...48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 Expressions Are Im p o rtan t for FCL ... 48
5.3.2 FCL Depends on Specialized C ontext .. 49

6 C a se S tu d y 2: E n fo rc in g F ra m e w o rk C o n s t r a in t s - M F C 53
6.1 Prelim inaries of MFC .. 54

6.1.1 T he W indows W orld and the M FC W o r l d ... 54
6.1.2 Dialog, Control ID , G etD lgltem , and Control Variables 55
6.1.3 Dialog Control M anagem ent: C ontinuous V a l id a t io n 56

6.2 Avoiding C W nd::G e tD lg l te m .. 57
6.3 Continuous V alidation in Dialog ... 58
6.4 Avoiding C W nd::U pdateD ata(B O O L) in D ia lo g s .. 61

6.4.1 C W n d ::D o D a ta E x c h an g e ..62
6.4.2 DDX and DDV R outines ..63
6.4.3 C W n d ::U p d a te D a ta .. 63
6.4.4 W hy One Should Avoid C W n d ::U p d a te D a ta ..64
6.4.5 “Avoiding C W nd::U pdateD ata” in F C L ... 64

6.5 Use th e Combo Box Controls Correctly ... 65
6.5.1 “O rder Sensitive” ... 67
6.5.2 “Language Sensitive” ... 67
6.5.3 T he Right S o lu tio n ..68
6.5.4 Combo Box Program m ing in FCL ..69

6.6 C onstrain ts on Control F lo w .. 70
6.7 O ptional F e a tu re s .. 73

6.7.1 Enabling/D isabling ESC and R E T U R N K e y s ... 74
6.7.2 Enabling Tooltips ..75

6.8 T he W indows C reation M e t h o d s ... 76
6.9 Overriding C D ocM anager::D oP rom ptF ileN am e.. 77
6.10 Enforcing Nam ing C o n v e n tio n s ... 80
6.11 D isc u ss io n .. 80

7 C a se S tu d y 3: E n fo rc in g G e n e ra l D e s ig n R u le s 83
7.1 In troduction to the “Law of D em eter” ... 83
7.2 T he Class Version of the “Law of D em eter” ...84
7.3 The “Law of D em eter” in F C L ... 85

7.3.1 D iscu ssio n ...87
7.4 Specifying a Subset of M eyers’ C + + Rules in F C L ... 88

8 R e la te d W o rk s 91
8.1 P rogram Analyses ... 91

8.1.1 A sum m ary of common t a s k s ... 92
8.1.2 Some criteria for classifying t o o l s .. 93
8.1.3 Tool g e n e ra to rs ...95
8.1.4 P a tte rn based T o o l s .. 96
8.1.5 A lgebra based T o o l s .. 98
8.1.6 Logic based Tools ..99
8.1.7 Schemas for P rogram D atabases .. 101
8.1.8 Query Languages for P rogram D atabases ... 102
8.1.9 Potential Research P r o b l e m s ... 102

8.2 Specification L a n g u a g e s .. 103
8.2.1 A llo y ..103
8.2.2 O C L ..104
8.2.3 O ther N otations ... 105

8.3 E rro r D etection T o o l s .. 105
8.3.1 (Partia l) Specification b a s e d ...105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3.2 Model checking b a s e d ... 107
8.3.3 Static analysis b a s e d ...110
8.3.4 CCEL (C + + C onstrain t Expression L a n g u a g e) ...110
8.3.5 C offeeS trainer.. I l l
8.3.6 Hybrid A p p ro ach es .. I l l

8.4 O ther Related W o rk s ... 112

9 S u m m a ry and F u tu re W ork 115
9.1 Sum m ary of R esult and C o n tr ib u t io n s .. 115
9.2 Future Work ...117

B ib lio g ra p h y 119
A p p e n d ix A

FCL: A bstract Syntax and Sem antics 127
A .l N otational C o n v e n t io n s ..127
A .2 S tatic S e m a n t ic s ..127
A .3 Static Sem antic F u n c t io n s .. 131
A .l Dynamic Semantics ...134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 Basic types and the. subtype r e l a t i o n .. 24

4.1 O bject model for C + + p r o g r a m s ... 32
4.2 The class cAsglMode and s u b c la s s e s ... 32
4.3 A bstract classes cName and cTyped .. 33
4.4 Program units ... 34
4.5 Namespaces, aggregates, and functions .. 35
4.6 T y p e s .. 35
4.7 Aggregate types .. 36
4.8 O p e r a to r s ... 37
4.9 E x p re s s io n s .. 37
4.10 G enerated types .. 39
4.11 Norm al expressions ... 39
4.12 Function calls ... 41
4.13 Name reference e x p r e s s io n s ... 42
4.14 Control sta tem ents ... 42
4.15 A CFG exam ple ..43

5.1 The O bserver P a t t e r n ..45
5.2 A Specific Im plem entation of the O bserver P a t t e r n .. 51

6.1 The relation between W indows and M FC ... 54
6.2 C W nd::G etD IgItem .. 56
6.3 D o D a ta E x c h a n g e .. 62
6.4 Class C D a ta E x c h a n g e .. 63
6.5 Class C C o m b o B o x .. 66
6.6 Disabling ESC and R ETU R N Keys in a D i a lo g ... 74
6.7 CW nd::C reate and the two overloaded C W n d ::C re a te E x 76
6.8 Class diagram for the MDI a r c h i t e c tu r e ... 78
6.9 How is D oProm ptFileN am e invoked after choosing the “F ile /O pen ...” or

“File/Save as ...” m enu i t e m s .. 79
6.10 Overriding the m ethod D o P ro m p tF ile N a m e .. 80

7.1 Video S t o r e ...84

9.1 Basic types and th e subtype r e l a t i o n .. 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 T he Syntax of F C L ... 22
3.2 FCL functions: F T: finite subsets of type T; S eq T: sequences of type T . . 25

4.1 Pre-defined E x p r e s s io n s ... 42

9.1 The A bstract Syntax of FCL .. 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Statem ent of Research Problem

An object-oriented fram ew ork is a reusable design for all or p a r t of a system th a t is rep­

resented by a set of ab strac t classes and the way their instances in teract [JF88]. From

the perspective of application program m ers, it is a skeleton application th a t can be cus­

tom ized to produce specific applications in a certa in domain. Fram ew ork builders provide

mechanisms, the variation points, to enable th is [Deu89].

W hile a deep understanding of general fram ework-based developm ent [Joh97, BMMB98]

rem ains a research problem , m any frameworks are being used for production development.

Having chosen a framework, how does th e development team address th e problem of correct

usage of the chosen fram ework? T he essence of software determ ines th a t solutions are likely

to be m ulti-faceted and com plem entary to each other.

Experience w ith using industria l streng th frameworks has shown th a t in order for fram e­

works users to understand and properly use a framework, precise, concise, and complete

docum entation is required [FHLS97, Fro02]. However, tex tu a l and diagram m atic docu­

m ents are informal, and in general, we do not know yet how to te s t w hether a program m er

has understood a docum ent.

O ther conventional approaches such as framework design review , m anual code inspection,

and testing can also be helpful. B u t they are not w ithout problem s. Fram eworks are

supposed to capture com m onality in a way th a t makes reuse easier. B u t applying most

current frameworks requires a nontriv ial body of knowledge abou t th e frameworks on the

p a rt of users. Lack of understand ing makes debugging difficult because it can be hard

to follow a th read of execution th a t is m ostly buried in the fram ew ork code. Testing is

similarly difficult since it often requires a fundam ental understanding of the architecture of

the framework.

The size and com plexity of fram eworks and th e ir notorious lack of design and intended-

usage docum entation make fram ew ork-based development a learning-intensive and error-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prone process [HHY03]. Commonly framework users m isunderstand the relationships be­

tween their application and the framework and are unaw are of how the framework designer

intends the fram ework to be used, resulting in overly complex solutions or subtle bugs.

This work was inspired by our initial observation th a t m any errors of using fram e­

works are due to wrong s truc tu res or m isunderstanding of structu res. This observation has

been backed up by two studies on user groups of M FC (M icrosoft Foundation Classes) and

Java/Sw ing: In the Java/S w ing case, we collected and analyzed about 200 news group ques­

tions related to the JT ree com ponent and confirmed th a t s tru c tu ra l errors indeed represent

an im portan t class of errors [HHY03]; our MFC study supports the observation in a more

rigorous m anner because the evidences are docum ented by an expert user who has been

using M FC and answ ering news group questions for several years [New], We analyzed only

a subset of his essays and found m any of them are s tru c tu ra l errors (see C hapter 6). In

addition, our experience of in teracting w ith active users of o ther fram eworks also supports

this observation [ML].

For th e fram ework user w ith shallow knowledge, som ething m ore akin to type-checking

is desirable. T h a t is, fram ew ork developer takes on the burden of describing/specifying how

to properly use th e fram ew ork so th a t compliance by th e fram ew ork user can be checked

mechanically. A lthough correct type m atching is no guaran tee th a t a function is used

properly, it does catch m any common mistakes. We would like som ething similar to apply

to framework use.

We use the term fram ew ork constraints to denote th e knowledge th a t a user needs to

know in order to use a fram ew ork properly. The idea is to form alize th e framework con­

stra in ts on hot spots and check w hether a framework in stan tia tio n satisfies these constraints.

Our goals are twofold: to create specification languages and tools so th a t fram ework builders

can specify the intended use of the ir frameworks and fram ew ork users can then use the tools

to check their applications.

In the long run, we w ant to look into the feasibility of two technologies, namely, sta tic

analysis and model checking, to the problem [HHS02]. Along th a t line, framework con­

strain ts can be categorized into structural constraints and behavioral constraints. S tructural

constraints can be evaluated by parsing and analyzing source code while behavioral con­

strain ts could be dealt w ith by model checking.

This thesis focuses on th e structu ra l aspect of fram ew ork constrain ts. A specification

language, FCL (Fram ew ork C onstrain t Language), is designed to express th e constraints

on the structu re of source code. The feasibility and effectiveness of FCL are dem onstrated

through several case studies. We conclude th a t it is indeed useful to fram ework users.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 FCL

FCL is a strongly typed first-order logic extended w ith set and sequence operations. Its term

language consists of a special set of to tal functions, reflecting the entities and relationships

of program m ing languages.

FC L ’s form alism lends to its autom ation. Specifiers specify a set of constraints on

program structu re , and conformance of a specific program to the constraints is then au to ­

matically determ ined by an FCL checker.

Since FCL is typed , run-tim e errors can be ruled ou t, bu t it is up to the specifiers to

ensure th e consistency of FCL specifications. W ith FCL, it is the specifiers who carry out

the reasoning process and determ ine to w hat constrain ts th e code structure should conform.

FCL specifications are only the “conclusion” of th a t process.

The need for FCL stem s from the absence of constra in t languages rich enough to express

the kinds of s tru c tu ra l constrain ts we explored and th e possibility to do inference w ith FCL

specifications in form al system s such as the M izar environm ent [Org] in the future.

Several case studies have been done to gain knowledge on how FCL can be b e tte r designed

and used, and w hether it can be helpful in practice:

• T he Observer P a tte rn

• M F C ’s dialog architecture

• Swing’s JTree com ponent

In addition to fram eworks, FCL has also been used to encode general design rules:

• Law of D em eter

• Scott M eyers’ C + + guidelines

False positives and false negatives are always a big concern w ith any error detection tool.

W hen specifying constrain ts, one often inclines to add as m any constraints as possible, hop­

ing to pick up m ore errors. B u t care m ust be taken no t to add too many; otherwise spurious

errors m ight be generated. Ideally, one would expect to have ju s t enough constraints, no

more and no less, so th a t FCL can help pick up all errors b u t th e spurious ones. We do not

have any hard principles on how this can be achieved yet, bu t our experience suggests th a t

the following guidelines tend to be useful:

• In general, th e m ore specific the context is, the m ore effective FCL tends to be.

M any exam ples show th a t the com ponents which FCL is used to constrain are highly

specialized; they often assume a great deal of context. FCL can be more effective

under such circum stances.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Specifiers should know the design well and avoid im m ature generalization. However,

th is often implies th a t the specifiers should be the designers or som ebody who works

closely w ith them .

® Specifying against specific sym ptom s som etim es can be economical.

The errors FCL detects include both errors of om ission and errors of commission. M any

errors are design errors caused by m isunderstanding a n d /o r by being unaw are of properties

and in teraction a t system interfaces. T he errors are b o th system - and domain-specific. They

are different from generic im plem entation errors such as dereferencing null pointers or array

bound overflow; independent of the dom ains of the inspected program s, such im plem entation

errors can occur in any program s.

O ur experience so far shows th a t FCL specifications ten d to be short. This is encouraging

since practitioners would be more likely to pick up and use it.

T he current version of FCL is targeted a t C + + for several reasons. C + + has m any fea­

tu res th a t can potentially complicate program analyses: separate com pilation, inheritance,

overloading, tem plates, exception handling, and so on. Thus choosing C + + as the ta rg e t

is more likely to expose potential problem s w ith th e approach. A real C + + framework,

MFC (M icrosoft Foundation Classes), is publicly available [SW96]; furtherm ore, extensive

user experience w ith M FC is also available in the forms of b o th news group discussion and

essays by expert users [New], We are relatively fam iliar w ith M FC. B ut th e idea should be

ready to extend to o ther strongly-typed program m ing languages such as Java.

The im plem entation of FCL consists abou t 20,000 lines of C + + code, and to date about

1,200 lines of FCL specifications have been w ritten .

T he FCL approach is different from program verification; there, the specifications are

m ainly concerned w ith program behavior. M oreover, conventional m ethods of specification

and verification em phasize abstractions; typically, abstrac tion functions are used to tie a

piece of specification w ith a specific im plem entation [Hoa72]. The idea is th a t by focusing

on th e ab strac t specification and ensuring its correctness, one can no t only reuse it in

m any different im plem entations, bu t also use it as a surrogate when reasoning about o ther

im plem entations th a t use it.

Verification in theory can guarantee the correctness of a program w ith respect to a

specification. B u t au tom atic theorem proving is in trac tab le , which burdens the users to

provide b o th lem m as and proof strategies. Typically, th e process is labor-intensive and

tedious. In contrast, FCL is fully au tom ated and FCL specifications tend to be short and

thus easier to w rite. Its drawback is th a t even if a program passes all the constrain ts in an

FCL specification, FCL cannot guarantee its full correctness. FCL is p artia l in its expressive

power, m odeling ability (only on syntactic s tru c tu re), degree of analysis, and degree of

com positionality. Thus FCL belongs to th e family of “lightw eight” formal m ethods [JW96].

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lthough FCL has no constructs for specifying abstractions, its focus on syntactic struc­

tu re seems to be desirable in practice, to quote the authors of the Larch book [GH93]:

Specifications should not ju s t describe m athem atical abstractions, bu t real in ter­

faces supplied by program s. They should be w ritten at the level of abstraction at

which clients program . This usually m eans sinking to the level of a program m ing

language.

In a sense, FCL is a technique th a t com plem ents conventional formal specifications.

The relation between FCL and model checking can be characterized as follows: T he pro­

gram being checked would be the m odel, while the FCL specification would be th e properties

th a t the model is supposed to uphold. T he difference lies in the fact th a t technically, tools

for model checking often assume the responsibility of constructing all the possible models

and check them exhaustively, whereas in FCL, it is the program m ers who provide program s

to the tool one by one.

Technically, FCL is more akin to type-checking. The difference can be best illustrated

by an example: while the em pty program would pass all the type checkers, it can hardly

pass any non-trivial FCL specifications.

FCL complements testing. Testing requires executability and execution implies com­

pleteness, in the sense of bo th the com pleteness of the application and the coverage of the

te s t cases. Testing is also intrusive. In contrast, a com pleted application is no t necessary

in order for FCL to work; FCL can check p a rtia l im plem entations. Thus FCL fits well w ith

increm ental development.

1.3 Summary of Contributions

T his thesis is m otivated by the desire to have tools support for detecting errors in framework-

based developm ent. More specifically, it proposes to extend the technique of type checking

and apply it to fram ework-based developm ent. A sum m ary of the m ain resu lt and contri­

butions are as follows:

1. The design and im plem entation of FCL m ake the bulk of the work. A m odel of the

sta tic properties of C + + program s is presented, and FCL is defined based on th a t

model. A formal semantics is also defined for FCL.

2. The feasibility and the po ten tia l usefulness of the approach are then dem onstrated

by applying FCL to real frameworks. Specific lessons learned from the experience are

reported . These lessons are im portan t for bo th the use and fu ture developm ent of

tools like FCL.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To use a framework is to learn its design; m any problems originate from a lack of

understanding abou t its a rch itecture , design pitfalls, and evolution. FCL has been

used to perform the following kinds of tasks:

• Detecting omission of program m ing obligations;

• Detecting violations of program m ing constrain ts implied by a design;

• Detecting violations of program m ing constraints implied by a “negative design;”

• Enforcing program m ing disciplines;

• Helping w ith the co-evolution of bo th the framework and its in tended use.

1.4 Outline of the R est of the Thesis

The rest of this thesis is organized as follows:

• C hapter 2 provides the necessary background for understanding fram ew ork-based de­

velopment. I t traces the origin of th e related concepts such as program families,

frameworks, and software p ro d u c t lines. The s ta te of the a rt of frameworks is then

surveyed. Finally, we show th e curren t s ta tu s of the research area, presenting one

recent result in b e tte r m odularization support for reusing large scale com ponents, the

m ixin layers.

• C hapters 3 and 4 describe th e design and im plem entation of FCL. Specifically, chap­

te r 4 presents a model of th e s ta tic properties of C + + in the object-oriented notation;

chapter 3 describes how a first-order logic, FCL, is defined and im plem ented on top

of th a t model. Appendix A presen ts a form al trea tm en t of th e s ta tic and dynam ic

sem antics of FCL.

• C hapters 5, 6, and 7 present th ree case studies on the application of FCL. C hap ter 5

is purported to dem onstrate th e m ain features of FCL. It was done to explore the

design space of FCL. One lesson repo rted in th e chapter is th a t FCL depends on the

specificity of the contexts: T he m ore specific they are, the m ore effective FCL can be.

C hapter 6 describes how FC L is applied to p a r t of the M FC fram ew ork and analyzes

the kinds of situations where FC L m ay help. C hap ter 7 describes how FCL is applied

to general design principles and program m ing guidelines w ith th e law of D em eter and

a subset of M eyers’ C + + guidelines as examples.

• C hapter 8 positions FCL in re la ted works. P rogram analyses, e rror detection tools,

formal specification languages, and work specifically for frameworks are surveyed and

analyzed. Closely related works such as CCEL and CoffeeStrainer are com pared w ith

FCL.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Finally, chapter 9 sum m arizes the m ain contributions of the thesis and outlines some

future work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

The essence of software construction is the form ulation of complex conceptual constructs

th a t are abstrac t in th e sense th a t they rem ain the sam e under different representations.

The four inherent properties of this essence are complexity, conformity, changeability, and

invisibility [Bro87].

Software does no t grow by a mere duplication of th e sam e elements; instead, a scaling-up

of a software is necessarily an increase in the num ber of different elements. In m ost cases,

the elements in terac t w ith each other in some nonlinear fashion, and the complexity of the

whole increases much m ore th an linearly. This comprises th e complexity of software.

M any technical and m anagerial problem s stem from th is complexity including: th e dif­

ficulty of enum erating and understanding all th e possible sta tes of the program and the

difficulty of com m unication among team m em bers, th e cause of p roduct flaws, cost over­

runs, and schedule delays. This makes an overview challenging and thus impedes conceptual

integrity. The subsequent learning and understanding burden makes personnel turnover a

disaster.

M anaging com plexity therefore has been a central topic in the pioneering work of our

field [Dij70, ParO lb, Dij68, HFC76]. In particu lar, these works all center on the hierarchical

s tructures of system s for a num ber of reasons, am ong which its linear s truc tu re is probably

the m ost a ttrac tive one for its lower complexity and th u s b e tte r intellectual m anageability.

The rest of th is chap ter traces the common origin of such seemingly different concepts

as frameworks, program families, and software p roduct lines, dem onstrating th a t they are

indeed all derived from early research on program m ing m ethodologies whose m ain concern

is how to construct correct and reliable program s system atically.

2.1 Stepwise R efinem ent and Program Families

W ith stepwise refinem ent [Dij70], one composes program s in m inute steps, deciding each

tim e as little as possible. Each of the steps contains such design decisions as choosing a

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

particu lar d a ta struc tu re or creating a loop sta tem en t. As one proceeds w ith the problem

analysis, so does the fu rther refinement of the ir program . At any given m om ent, th e pro­

gram can be viewed as being derived from successive levels, w ith the later levels containing

refinements to entities in the earlier ones. W hen a program has to be m ade, the desired

com putation has to be composed from actions corresponding to a well-understood repertoire

of instructions.

Since the steps are small, their correctness, w ith respect to the entities they refine,

should subject to rigorous proofs immediately. T his way, one essentially obtains a correct

program by construction. This is the so-called constructive approach to program correctness,

examples of which can be found in, for instance, [Dij70].

One im portan t insight inspired by stepwise refinem ent is the notion of program families.

D uring stepwise program com position, the following may happen: (1) often one encounters

situations where m ore th an one refinem ent exists for an en tity of the higher level, and (2)

sometimes, tw o entities a t the same level can be refined independently. Therefore, m any

program s ra th e r th a n the only one for th e ta sk a t hand can be conceived using these two

kinds of variations. These program s either do th e sam e task in different ways or carry out

sim ilar tasks. Thus it makes sense to create and study a program fam ily and to consider

the program s as m em bers of the family.

A nother m otivation for program families comes from the evolution of large software

system s. Large software are often changed for tw o reasons: the software is no t satisfactory

in one way or another and thus needs to be changed; a n d /o r th e software is su itab le for the

ta sk a t hand, b u t people want to ad ap t it to sim ilar tasks. In either case, the program m er

would have to “change some design decisions.” O n th e o ther hand, a t any in stan t of stepwise

refinem ent, w hat has been built up is an in term ediate program th a t is a suitable “common

ancestor” for all the possible program s produced by fu rther refinements. In th is process, one

defers design decisions. I t is the po ten tia l sim ilarity between “the decision to be changed”

and “the decision still left open” th a t inspires th e concept of “program families.”

It pays off for one to focus on creating a p rogram fam ily instead of individual program s.

T he benefit of regarding program s as family m em bers derived from a common ancestor can

be sum m arized as follows:

® M embers of the family share the correctness proof as far as possible. Regardless w hat

decisions are m ade a t the current level, th e coding of the earlier levels rem ains valid.

® M embers share as far as possible the com m on coding.

® T he regions th a t can be adap ted or modified are well localized.

T he paper [ParOld] further develops the concept of program families in the context of

inform ation hiding modules [ParOlc], I t considers “a set of program s to constitu te a fam ily,

whenever it is worthwhile to study program s from the set by first studying th e common

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

properties of the set and then determ ining the special properties of the individual family

m em bers.” Although the discussion on program families and the m ethod of developing

them in [DijTO] is general and not necessarily tied to any specific com puting mechanism, it

is dem onstrated prim arily through algorithm ic program s a t the level of control statem ents.

T hus the contributions of [ParOld] are to in troduce the concept of modules and dem onstrate

how m odule specifications work in designing program families. The conclusion is th a t these

two m ethods complement each other.

T he paper [ParOla] studies the design of software bo th extensible and easily contracted.

T he m ost critical step is the design of a software stru c tu re called the “use” relation. Having

defined the “use” structu re , one can th en identify subsets of modules th a t can be used

independently of their dependents. T he resu lting practical benefit m eans th a t one can not

only reuse a subset in different contexts, b u t also “failsafe” in case of schedule slippage by

delivering only the subset. The identification of m inim al subsets and m inim al extensions

can lead to such software.

O perating systems have been a good sub jec t for studying design in general [Dij68] and

program families in particu lar [HFC76, C + 93]. To describe systems structu re , an im portan t

concept, variously nam ed as “layered ab strac tio n ,” “levels of abstraction ,” or ’’hierarchical

s tru c tu re ,” was used in these studies. One well-known observation is th a t, even in strictly

layered dom ains like operating system s, th e notion of “inform ation m odule” [ParOlc] does

no t necessarily coincide w ith the notion of “layers of abstrac tion” : m odules m ay encom pass

different p arts of several layers [HFC76].

A note has to be m ade here abou t th e distinction between the concept of m odularization

and language constructs such as m acros, procedures, and classes. P am as’ early work clearly

trea ted m odularization as a design issue, no t a language issue. A m odule was a work

assignm ent, no t a sub-routine or any o ther language element, although language supports

could make the job easier [D+ 03].

2.2 Software Product Lines and Object-Oriented Frame­
works

W hile th e idea of program families is old, it has become a popular topic only recently. The

la test incarnation of the notion is software product lines [WL99]. A product-line architecture

(P L A) [BCSOO] is a design for a family of re la ted applications. The m otivation for PLAs

is to simplify the design and m aintenance of program families and to address the needs of

highly customizable applications in an econom ical m anner.

A framework is an abstrac t design for a family of related problem s w ithin a certain

dom ain; the abstrac t design consists of a set of ab strac t classes, each of which defines the

interface for a m ajor com ponent of the applications [Deu89, JF88]. C erta in m ethods of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

these classes are left unspecified (and hence are “ab s trac t”) because their im plem entation is

application-specific. Thus a fram ew ork is a “code tem plate” : key m ethods and o ther details

still need to be supplied, bu t all com m on code is present in ab strac t classes. A framework

instance provides the missing details. T he pairing of a concrete class w ith each abstrac t

class of the framework provides a com plete im plem entation.

O bject-oriented application fram ew orks are appropriate for reusing software p a rts and

specializing them in m ultiple ways for d istinct applications, and thus are an enabling technol­

ogy for producing m em bers of program families. This is due to th ree features supported by

object oriented languages: d a ta ab strac tion , polym orphism , and inheritance. D a ta abstrac­

tions define interfaces behind which im plem entation can change. Polym orphism increases

the likelihood th a t a given com ponent will be usable in new contexts. Inheritance prom otes

the emergence of s tandard protocols and ab strac t classes, and allows existing com ponents

to be customized. Therefore, fram ew orks are a simple and general technique-from an imple­

m entation standpoint, they are ju s t a coordinated use of inheritance. Since d a ta abstraction ,

polym orphism , and inheritance are fundam ental mechanisms of object-oriented languages,

th e applicability of the fram ework approach is wide.

Through the m eans of custom ization, fram eworks can be categorized into w hitebox and

blackbox [JF88]. For w hitebox fram ew orks, one m ainly relies on inheritance and subclass­

ing. Thus one would have to know th e im plem entation details of th e frameworks in order

to use them correctly. For blackbox fram eworks, one prim arily relies on com position of

existing components; to custom ize th e fram eworks, one only has to know th e interfaces of

the components. One the surface, it seems th a t blackbox frameworks axe easier to use th an

w hitebox ones; thus they are claim ed to be the ideal tow ards which a fram ework should

evolve.

Frameworks are a kind of reuse technique [Kru92] different from bo th com ponents and

design pa tte rn s [Joh97]. C om ponents are code reuse, while design p a tte rn s represent design

reuse; design reuse reuses concepts while code reuse reuses im plem entation. Fram ew orks are

bo th code and design reuse. One of th e problem s in reusing design knowledge is the lack of

standard notations to capture and express them [BR89]. In frameworks, no special notations

represent designs: object-oriented program m ing language are used as bo th im plem entation

and design notations. W hile b o th design reuse and code reuse are im portan t, in th e long

run it is probably the design and understand ing of the dom ains th a t provide the biggest

payoff [BR89].

M any frameworks have been bu ilt for such diverse areas as graphical user interfaces [Deu89,

Inc89, SW96], operating system s [C+ 93], drawing editors [VL89], d istribu ted software and

m anufacturing control [FS97], to m ention a few. Frameworks th a t can be reused across

many domains are foundation frameworks, and those only applicable to a certa in dom ain are

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

domain or application frameworks. M ost dom ain frameworks are kept proprietary [Joh97].

Frameworks are harder to build th an plain applications. Building a framework requires

experience, and the process is alm ost always iterative and increm ental [JF88]. The reasons

are as follows [Joh97]:

• Domain analysis is needed to understand a dom ain. M istakes in dom ain analysis are

discovered when a system is built, which leads to iteration .

• A framework makes explicit the p arts of a design likely to change. In general, the only

way to learn w hat change is by experience.

• Frameworks are abstractions, and abstractions are expensive to discover and verify.

Framework developers should always s ta rt w ith concrete exam ples and generalize from

them [Joh97]. For large and complex domains, the num ber of exam ples can be huge. This

proliferation of examples also explains why frameworks are bo th hard to build and difficult

to build on schedule. T hey should be built by advanced developm ent or research groups,

w ith close collaboration of application team s.

A common m istake is to s ta r t using a framework while its design is still changing. On

the o ther hand, the only way to find ou t w hat is wrong w ith a fram ework is to use it [Joh97].

However, a framework should only be released to public use when it is stab le enough.

2.3 Scaling Stepwise R efinem ent

I t is well-known th a t in object-oriented design, objects are encapsulated bu t rarely self-

sufficient entities. T he sem antics of an object is often defined by its relationship w ith

others. Object interdependencies can be expressed as collaborations. A collaboration is a

set of objects and a protocol th a t determ ines how th e objects in te rac t [BCSOO]. The p a rt

of an object th a t enforces th e protocol of a collaboration is called the o b jec t’s role in th a t

collaboration [BCSOO].

Two problems w ith object-orien ted frameworks are identified [BCSOO, SB02]. One is

th a t frameworks “grow” in a “top down” fashion: subclasses are coded in term s of super­

classes; they cannot exist independently. It is desirable, however, for subclasses to exist

independently of superclasses; for instance, if the strategies for graph traversal could exist

independently of the graphs, regardless w hether the graphs are directed or no t, then given a

graph, it would be possible to compose a traversal collaboration w ith it, instead of reimple-

m enting the traversal for th e graph. The o ther problem has to do w ith “optional features.”

Given an optional feature, a fram ework would have to either include it in the code base,

which would be inapprop ria te for those applications th a t do no t need it, or exclude it. In

the la tte r case, if the im plem entation of the feature is nontrivial, then it would be inappro­

p ria te for those who need th e feature since they would have to reim plem ent it each tim e it

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is needed. One way to get ou t of this dilemma is to provide a simple way so th a t users can

specify th a t a certain feature is needed: accordingly, code for th e feature is composed into

the final program .

Historically, software design and program m ing languages in tim ately evolve around the

concept of m odularity. The language solution to th is problem is a new construct th a t allows

one to represent collaborations as modules param eterized by th e ir dependees and supports

the composition of such collaborations.

In collaboration based design, however, each collaboration usually involves more th an one

program fragm ent: to refine a collaboration, one typically would have to change more than

one program fragm ent. M ixin layers extend th e notion of m ixins and are a program m ing

technique th a t allows one to program all the changes in one place.

In object-oriented languages, a superclass can be defined independently of any subclass.

This property, however, is no t symmetric; it does no t hold for subclasses. M ixin classes

are abstract subclasses. M ixins represent a m echanism for specifying classes th a t eventually

inherit from a superclass, b u t the superclass is no t specified a t th e site of the m ixin’s

definition. T hus a single m ixin can be in stan tia ted w ith different superclasses, yielding

widely varying classes. N ote th a t this is different from C + + ’s concept of mixin classes.

In C + + , mixin classes are classes th a t share a common v irtu a l base class, each of which

implements p a rt of th e interface of the base class [Str99].

One can im plem ent m ixins through C + + tem pla te classes:

template<class Super>
class Mixin: public Super {
... // mixin body
};

M ixin layers can then be im plem ented w ith param eterized tem plates and nested classes

in languages such as Java and C + + . In C + + , a m ixin layer is a mixin class th a t may

define m ultiple nested classes. The mixin layer itself is called th e outer m ixins, while the

nested classes are called th e inner mixins. An ou ter m ixin is im plem ented as a tem plate

class whose type param eter is the layer th a t it depends on. Some nested classes w ithin an

outer mixin m ay be newly defined while others refine the corresponding nested classes of

the layer on which th e curren t layer depends.

template<class SuperLayer>
class MixinLayer: public SuperLayer {

class rolel: SuperLayer::rolel
{
// rolel body

}class role2: SuperLayer::role2
{
// role2 body

}

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class newClass
{
// newClass body

}
};

C ollaboration-based designs in general and m ixin layers in particu lar are not universally

applicable bu t m ore suitable to m ature dom ains th a t are well-understood and am enable to

detailed decom positions. The domains should be decom posable into largely independent

refinements. Clearly, this is different from fram eworks, which pose no such requirem ents on

the dom ains. In fact, some future extensions to fram eworks can be completely open a t the

tim e th e fram eworks are constructed. Therefore, collaboration-based design and frameworks

are two com plem entary techniques.

Exam ples for th e applications of mixin layers can be found in [SB02]. A case study

th a t applies b o th m ixin layers and a dom ain specific language for finite sta te machines to a

software product line appears in [B+ 02].

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

D esign and Im plem entation of
FCL

3.1 An Example

Let us introduce FCL w ith a simple exam ple w ith two files F .h and F.cpp:

// F.h
class F {

virtual void m();

};

// F.cpp
#include "F.h"

void F ::m(){

r
};

Note th a t class F defines a v irtu a l m em ber function m. Assume class F belongs to a

fram ework and a constraint on F is th a t if a subclass overrides m, then the override m ust

call F::m.

The following code shows how a user m ight break th is constraint; they forget to call the

base class version from the subclass:

// A.h
#include "F.h"
class A: public F {

v o id m () ;

};

// A .cpp
#include "A.h"
void A::m(){
... // does not call F::m

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

FCL is m eant to detect violations of such framework constraints. This constraint may
be specified using FCL as follows:

1 forall c: subclass(class(" F ")) holds
2 (m as {f: function (c) | sizeof (param (f)) = 0 and name (f) =''m" };]
3 (sizeof(m)=0 or
4 exist e: exp(m) holds
5 function(e) = function("m", class("F"))
6 or print (c) and println(“ breaks the constraint!'1))

In th is specification, subclass, class, function , param, and exp are prim itive functions on

the syntactic structure of C + + source code (see Table 3.2 for the ir sem antics); sizeof is a

standard set operation re tu rn ing th e size of a set; print and println are p rin ting functions

and always re tu rn true. These will b e explained in more detail in Section 3.2.2.

3.1.1 Tools O peration

Four steps are involved in checking a program :

1. Preprocess each .cpp file w ith an appropria te preprocessing tool. O n Unix, use the

cpp program; for M icrosoft C + + , use cl /P , where cl is the nam e of th e compiler.

2. For each preprocessed file f.i, ru n dxparscpp f .i - asgf.asg, where f.asg is the file con­

taining the generated D atrix ASG. dxparscpp is a parser from Bell C anada.

3. R un dxlinker on the set of ASG files, a sg i,..., asgn , w ith th e following form at:

dxlinker a sg i, . . . , asgn > final.linh,

where final.link is th e file th a t stores th e full ASG. dxlinker perform s ty p e analysis on

th e ou tputs of dxparscpp to form a single ASG.

4. Given a file f.fc l containing th e FC L specification, we can check w hether the above

program conforms to it by issuing th e command:

fc l f.fc l -d final.link.

A lthough still rudim entary, the o u tp u t of the fc l program is inform ative enough for

debugging purpose. For exam ple, running fc l on a small program th a t forgot to call the

m em ber function m of class F yields th e following message:

Parse FCL file base.fcl...
Check FCL file base.fcl...

$INSTANCE 16 cAggrType
16{
beg = 10.1
end = 17. 6
name = "A"
type = class

}breaks the constraint.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This message corresponds to line 6 of the specification, showing w hat the ou tpu t of the

printing facility looks like. N ote th a t the current im plem entation o u tp u ts the corresponding

ASG node of a program entity ; in this example, the ASG node for class A is shown, which

does not call the base class version of mem ber function m.

This im plem entation is only a prototype; depending on the n a tu re of the environm ent

to which FCL is a ttached , in the fu ture the ou tp u t can be m ore interesting, for example, a

highlight of the code region th a t violates the constraint.

3.2 In tro d u c tio n to FCL

FCL is a little language for talk ing about the struc tu re of object-oriented program s. Its

notations are borrowed from first-order logic extended w ith set and sequence operations; its

term language consists of a set of to ta l functions reflecting th e entity-relationships in the

dom ain of object-oriented program s.

Abstractly, the syntactic s truc tu re of an object-oriented program forms a graph whose

nodes represent syntactic elem ents such as nam espaces, classes, functions, variables, and

expressions and whose edges represent the relationships betw een these elem ents such as an

expression and the function th a t it is statically bound to and a variable and its type. In this

chapter we wall appeal to readers’ intuitive understanding of such a d a ta model for C + +

source code; a detailed account for our C + + source code m odel appears in C hapter 4.

In the rest of th is section we introduce FCL based on the syn tax of Table 3.1.

At the topm ost level, an FC L specification consists of a sequence of interleaved decla­

rations and formulas. D eclarations do no t have to be defined all a t once before formulas;

they can be freely in terspersed am ong formulas as long as variables are defined before they

are used. The com bination of a top-level form ula and all the declarations th a t it refers to

forms an FCL constraint.

Each declaration binds a variable to an associated expression, and the variable takes the

value of the expression. FC L variables are different from program m ing language variables

because their values do no t change over time. In particu lar, logical form ulas are trea ted

as a special kind of expressions; they are expressions th a t yield values of th e boolean type.

Therefore, FC L allows one to define boolean variables w ith form ulas as the ir value expres­

sions.

FCL allows one to in troduce local variables for expressions th rough a syntactic structure

called block; blocks are a simple grouping mechanism, and each expression is allowed to

have a t m ost one block. One variable overrides another variable if the form er has the same

nam e as the la tte r, appears after the la tte r, and is defined either in the sam e scope or in

any enclosed scope of the la tte r.

Local variables are m ost useful when writing formulas; the variables assigned for expres-

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FCL .spec : S tatem ent J is t
S tatem ent : = D eclaration 1 Form ula
D eclaration : = Variable as Expr

Form ula :— not Form ula 1 Form ula and Form ula 1 Form ula or Form ula 1
E xistential I Universal I Expr

Expr ::= Variable 1 C onstant 1 O peration I Form ula 1 ExprW ithV ars
Existential :: = exist B V ar-D eclaration J is t hold Form ula
Universal ::= forall B V ar-D eclaration J is t hold Form ula
BVar -D eclaration ::= D eclaration
E xpr W ith Vars ::= ‘[’D eclaration J i s t :]’ Expr

O peration ::= Set_op I Seq-op I R elational I F C L Jc t
Set_op '•= subset (s i, s2) | belongsTo(ele,s) I s i + s2 I s i - s2 I union(setO fsets) 1

sizeof(s) 1 Set-com prehension i Set-enum eration
Set-comprehension : = { B V ar-D eclaration J is t | Form ula [Expr} I { BVar JDeclaration | Formula}
Set-enuineration := ‘[’ E xpr J is t “]’
Seq-op := m em ber(seq, index) I indexOf(ele, seq)
R elational := > 1 >= 1 < 1 <= 1 =

C onstant ; — tru e I false 1 Str l i n t I global
Variable := Str
T-list := T*

Table 3.1: T he Syntax of FCL

sions, if properly nam ed, can help reveal intent; it also helps struc tu re the specification by

avoiding long or repeated expressions.

Formulas have conventional sem antics; the syntax replaces Greek symbols w ith English

words. Formulas include negation, conjunction, disjunction, and universal and existential

quantifications.

E lem entary form ulas include the boolean constants true and false, relational operations,

and such predefined predicates as the subset relation and the m em bership relation (sta ting

th a t an element belongs to a set). Syntactically, these predicates are represented as function

applications (th a t is, in th e form of f (e \ , . . . , en)).

In bo th universal and existential quantifications one is allowed to define more th a n one

bound variable a t once, binding the ir values to the elem ents of the set-valued expressions.

For the sequence of bound variables, those th a t appear la ter can bo th refer to and override

the ones th a t appear before them .

As mentioned, FCL trea ts form ulas as a special kind of expression. O ther kinds of

expressions include variable references, literal constants, function applications, and sets.

Variable references and literals are elem entary expressions; they can be used to con­

stru c t more complex expressions. In addition to the usual kinds of literals, true and false,

integral constants, and strings, FCL has a special literal, global, which represents the global

nam espace of a given program .

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function applications of the form / (e i , . . . , e„) are probably the m ost frequently-used

expressions. FCL predefines a variety of functions. Some of them are standard set and

sequence operations. O thers are functions defined on the d a ta model for source code. For

instance, given a variable c of type Cls, function application var(c) re tu rns th e set of da ta

m embers defined in the class represented by c. These functions are specified in detail in

section 3.2.2.

One can get sets in th ree ways: through function applications (some functions re tu rn

sets as their result), set com prehension, and through set enum eration.

FCL supports two forms of set comprehension:

{ e : s I / (e) }

and

{ e,; : Sj,l < i < n | f { e l t . . . , e n) | E (e i , . . . , e n) }

The first form defines a subset of the set s, of those elem ents e th a t make th e form ula /

true. B u t it only perm its one bound variable e. The second form allows m ore th an one

bound variable, e i , . . . , en , over m ultiple sets s i , . . . , sn . If a tup le e i , . . . , en satisfies / , the

function E is then applied to the tuple and the value E (e i , . . . , e„) is taken as an element of

the new set. T he second form is m ore general th an the first one in th a t th e first is a special

case of it, which can be represented as follows: { e : s | / (e) | 1(e) }, where I denotes an

identity function.

Unlike for sets, FCL does not provide constructor functions to create new sequences

from scratch; instead, sequences are re tu rn values from function applications. For instance,

an execution p a th consists of an array of expressions; a function can have a sequence of

param eters; and a p a th on an inheritance hierarchy contains all the classes from a source

class to a ta rg e t class. To model these, FCL needs sequences. A sequence can also be used

as a set; the range of th e sequence will be used.

3.2.1 FCL’s T ype System

FCL is strongly typed so th a t when evaluating an FCL specification, an FCL checker will

not suffer run-tim e errors. This is ensured by pu tting a set of constrain ts on th e stru c tu re

of FCL specifications. T he constrain ts comprise the sta tic sem antics of FCL.

The type system of FC L includes two kinds of types: basic types (Figure 3.1) and com­

pound types. Basic types can be fu rther divided into “facility” types and “dom ain” types.

“Facility” types help form constraints, including Str for string values, Int for integers, and

Bool for boolean values. “D om ain” types come from the problem dom ain of program m ing

constructs, including Exp for expressions, Var for variables, IMS for nam espaces, Fct for

functions, Cls for classes, Name for nam ed entities, Unit for program units, Gen for types

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

StrExpN a m e

U n it Type Var

NS Fct Cls

Gen

±
Undef

(1)Undef is the subtype of all other types
(2) sub->sup: sub is a subtype of sup.

Figure 3.1: Basic types and the subtype relation

generated th rough tem plate instan tia tions, and Type for types. The current FCL covers

only a subset of th e object model; for instance, pointer and reference types, arrays, builtin

types, and generated functions are not included.

U ndef is th e type for “undefined” values. U ndef is considered as th e subtype of any

types.

Figure 3.1 also defines the subtype relation between basic types. Besides basic types,

subtype relations can also exist between com pound types. One set type is the subtype of

another if and only if the base type of the form er is the subtype of the la tte r. Similar

definition holds for sequence types.

3.2.2 Functions on Source Code M odel

Table 3.2 presents the signatures of all FCL functions. The following is a brief explanation

for each of them :

• class, var, function:

These constructors allow one to refer to a known entity of th e checked program . Their

argum ents specifies the nam e of the entity and its context. For instance, if one wants

to refer to a m ethod nam ed m w ithin a class C, one can w rite it as function("m ",

class("C ", g lobal)). Since global can be om itted , it can also be w ritten as function("m ",

class(" C ")).

• isPrivate, isP rotected , isPublic:

Test visibility. Can only be applied to variables and functions.

• isStatic, isConst:

Test staticness and constness. Can only be applied to variables and functions.

• isBranch:

Test w hether an expression is conditional.

• isReturn:

Test w hether an expression is the argum ent of a re tu rn sta tem ent.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C onstructors
class: S tr x U n it -4 C ls
var: Str x U n it -4 V ar
function: S tr x U n it -4 F F ct

P roperty
Predicates

isP riv a te /isP ro tec ted /isP u b lic : V ar|F ct -» B o o l
isS ta tic /isC o n st: V ar— F c t -4 B o o l
isB ranch /isR etu rn : E x p 4- B o o l
isVirtual: F c t -4 B o o l
name: N a m e —> S tr

T ype Query
and Type Coersion

isC lass/isG enerated/isV ar: N a m e -4 B o o l
class: T y p e -4 C ls
G enerated: T y p e -4 G en
ptdType: T y p e -4 T y p e
p tdT ypeS tar: T y p e —> T y p e
var: N a m e -4 Var

U nit O perations

unit: N a m e | E x p r —> S eq U n it
class: U n it -4 F C ls
exp: U n it -4 F E x p
var: U n it 4 F V a r
function: N S | C ls — > F F ct
expClosure: F c t 4 F E x p
param : F ct —> S eq Var

Expressions

receiver: E x p 4 E x p
arg: E xp 4 S e q E x p
parent: E x p — > E x p
top: E x p -> E x p
exp: E x p —> F E x p
u p P a th /d o w n P a th : E x p —> F S eq E xp
function: E x p —> F c t
refd: E xp -4- N a m e
refSet: N a m e -4 F E x p
change: E x p x V ar -4 B o o l

Inheritance
subclass: C ls -4 F C ls
superclass: C ls -4 F C ls
descendant: C ls -4 F C ls

Type
type: E x p -4 T y p e
type: Var -4 T y p e
type: F ct -4 T y p e

Misc

isDefined: A n y -4 B o o l
print: A n y -4 B o o l
println: A n y -4 B o o l
regex: Str x S tr -4 B o o l
concat: Str x S tr —> Str

Table 3.2: FCL functions: F T: finite subsets of type T; S eq T: sequences of type T .

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• isVirtual:

Test whether a function is v irtual.

• name:

R eturns the nam e of a nam ed entity.

• isClass, isGenerated, isVar:

Test whether a nam ed en tity is a class, a generated type, and a variable, respectively.

• class:

Downcast the argum ent from Type to Cls. If the argum ent is not a class, then the

result is the “undefined” value.

• Generated:

Downcast the argum ent from Type to Gen. If the argum ent is not a generated type,

th en the result is the “undefined” value.

• ptdType:

If the argum ent is a pointer type, then re tu rns the type pointed. Otherwise, re tu rn

th e type itself.

• ptdTypeStar:

If the argum ent is a pointer type, th en re tu rns the base type. Otherwise, re tu rn the

type itself.

• var:

Downcast the argum ent from N am e to Var. If the argum ent is not a variable, then the

result is the “undefined” value.

• unit:

R eturns the context of th e argum ent, a sequence of Unit. Can be applied to both

Name and Expr.

• class:

R eturns the set of classes defined w ithin a Unit.

• exp:

R eturns the set of expressions defined w ithin a Unit.

• var:

R eturns the set of variables defined w ithin a Unit.

• function:

R eturns the set of functions defined w ithin either a NS or a Cls.

• expClosure:

R eturns the set of expressions th a t can be statically reached from the argum ent Fct.

• param:

R eturns the sequence of param eters of an argum ent of type Fct.

• receiver:

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eturns the receiver expression of an argum ent expression. If the expression has no

receiver expression, e.g., an arithm etic one, then “undefined” is returned.

• arg:

R eturns the sequence of argum ent expressions of a given expression.

• parent:

R eturns the paren t expression of a given expression. If the expression has no parent,

then “undefined” is re tu rned .

• top:

R eturns the roo t expression of a given expression.

• exp:

R eturns the set of all sub-expressions of a given one, including itself.

• upPath, downPath:

If the argum ent is an expression w ithin a function, then re tu rns the sets of its up paths

and down paths respectively. O therwise, re tu rn th e em pty set.

• function:

R eturns the function th a t a given expression invokes.

• refd:

If the argum ent is a nam e reference expression, re tu rns the nam ed entity referred.

Otherwise, re tu rns “undefined.”

• ref Set:

R eturns the set of nam e references th a t refer to the given nam ed entity.

• change: change(exp, aVar) tells w hether a given expression m ay change the variable

represented by the param eter aVar.

If aVar is not referenced by th e expression, change re tu rns false. Otherwise, for each

of the expressions where aVar is referenced:

- If the expression is the pre-defined assignm ent and aVar is a t its left-hand side,

then change re tu rns true.

- If the expression is a function call and aVar is the receiver: If the function invoked

is not const, then change re tu rns true; otherwise, change re tu rns false.

- If the expression is a function call and aVar is an argum ent to it: If the corre­

sponding param eter of th e invoked function is not const bu t of reference type,

then change re tu rns true; otherwise, change re tu rns false.

• subclass:

R eturns the set of classes th a t are the subclass of th e given class.

• superclass:

R eturns the set of classes th a t are the super class of the given class.

• descendant:

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eturns the set of classes th a t are the descendant classes of the given class.

• type:

R eturns the type of a given expression.

• type:

R eturns the type of a given variable.

• type:

R eturns the re tu rn type of a given function.

• isDefined:

If a given value is “undefined,” re tu rns false. O therwise, re tu rns true.

• print:

P rin ts the tex tual represen tation of the given value, and re tu rns true.

• println:

P rin ts the tex tu a l represen tation of th e given value, followed by a new line, and returns

true.

• regex:

R eturns true if th e second argum ent is an instance of the first one, which should be a

p a tte rn of regular expressions.

• concat:

R eturns a new string which is the concatenation of th e two string argum ents.

3.2.3 FCL’s Treatm ent of “undefined”

In FCL several ways can lead to a value of “undefined.” Casting an elem ent of one type to

another can generate values of “undefined.” For instance, casting a type th a t is not a class

to a class will yield th e value “undefined” as the result. Asking for a receiver expression

from an arithm etic expression will also result in “undefined.”

For any function applications w ith values of “undefined” as argum ents, if the re tu rn

types of the functions are basic types bu t not boolean, then the result will be a value of

“undefined.” B ut if th e re tu rn type is boolean, then the function application will re tu rn

false. If the re tu rn types are com pound types, th a t is, sequences or sets, th en the function

application will re tu rn em pty sequences and em pty sets respectively.

Further detail on o ther trea tm en ts of “undefined” can be found in [Jac02] and [ParOle].

3.3 Im plem entation

FCL requires a FCL parser and in terp re ter and a program database. The program database

is populated w ith a link program called dxlinker. Our pro to type im plem entation consists of

about 20,000 lines of C + + code: 11,000 lines for dxlinker and 9,000 lines for FCL parser

and interpreter.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 Program Database

A program database for FCL should contain sufficient inform ation so th a t the object model

described in C hap ter 4 can be built. Our im plem entation adopts an abstract sem antic graph

representation of source code. The program database is stored as a tex tua l file using the

D atrix schem a [HHL+ 00]. At run-tim e such a represen tation is m apped to an object-oriented

representation where source code entities are strongly-typed objects.

3.3.2 Parser and Linker

A parser is responsible for ex tracting facts out of C + + source code and storing them in

compliance to the D atrix schema. A linker then links the m ultiple graphs into one single

graph bu t still stores it in the D atrix schema. Conceptually a linker is needed to build a

graph where relationships such as all subclasses of a given class can be conveniently identified

and facts irrelevant to FCL, such as files and redundan t declarations, are elim inated.

In our im plem entation we chose dxparscpp [HHL+00] from Bell C anada as our parser

and developed our own linker program dxlinker [HHR03].

3.3.3 FCL Interpreter

FCL in terp re ter accepts two files as argum ents from com m and line: one storing FCL spec­

ifications and th e o ther a program database. I t checks if all constrain ts are satisfied and

reports error messages if any of them is violated. Specifically, the FCL specifications are

first parsed using a B ison-generated parser. FCL in terp re ter th en type-checks th e FCL

specifications to ru le ou t errors such as applying FCL function var to a Variable or using a

Variable as th e scope of a quantifier.

T he in terp re ta tion of constrain ts is done w ithin th e context of th e given program database.

For each constrain t, FCL in terp re ter evaluates its com ponents first and th en the constrain t

itself. P rim itive functions are in terpreted directly against the d a ta model. A formal tre a t­

ment of the sem antics of FCL can be found in A ppendix A, which provides m ore details on

the in terp re ta tion of FCL constraints.

3.4 Com plexity Analysis

FCL is designed to be trac tab le a t the first place. For instance, although Int appears in

the type system of FC L (Figure 3.1), quantifying directly over the infinite integer set is not

allowed. All sets in FC L specifications are finite.

In theory the com plexity of evaluating FCL constrain ts is exponential. For exam ple,

for the constrain t p resen ted a t the beginning of this chapter, if the num ber of subclasses is

M and the m axim al num ber of expressions w ithin all m em ber function m is N , then the

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

com plexity of th a t constrain t is M N .

However, in practice we have not found perform ance to be a real problem: the deepest

level of nesting quantification formulas for the examples we have tried is 4, and the perfor­

mance of our simple in terp reter is acceptable. On a laptop running Red H at Linux 2.4.18

w ith a P entium II Celeron 300 MHz C PU , all M FC constrain ts presented in C hapter 6 are

done in less th an 20 seconds. Considering the size of the ASGs for the M FC examples (10-15

M Bs), we do no t th ink th a t perform ance will be a big problem for the acceptance of FCL.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A M odel of Static Properties of
CH—b Programs

This chapter presents an object-oriented model of the struc tu re of C + + program s, which

provides an anatom ical view of program struc tu res 1. For instance, in our m odel, a function

application f(p) will be decomposed into two parts: the function nam e, f, and the sequence

of param eters, p. Therefore, the m odel is a m eta one concerning w ith th e elements of

program s. We will use the UML (Unified M odeling Language) class diagram to depict the

model.

T he class diagram of Fig. 4.1 depicts th e overall model. I t forms the foundation of the

FCL language, whose syntax and sem antics will be presented form ally in chapter A. Due

to th e lim itation on visual space, some details, e.g., the kinds of expressions, have been left

ou t of th e diagram ; they will be fu rther explained in la ter sections.

T he goal of this chapter is to “d igest” the diagram . We will proceed in the following

order: section 4.1 explains the top th ree levels, which ab strac t ou t the common properties

of all program elements; section 4.2 program units, th e constructs for structu ring program s;

section 4.3 types; section 4.4 operators, th e constructs for defining com putation; sections 4.5

and 4.6 expressions, the applications of operators.

4.1 Program Elem ents, C ontexts, Nam es and Types

A program consists of a variety of program elements, which can be a class, a function, a

variable, an expression, or a class or function tem plate , and so on. P rogram elements are

associated w ith each other through various relationships, for instance, th a t between a class

and its members, a function and its param eters, a loop or conditional and its condition,

variable declaration and references, inheritance and friendship, and so forth.

Program units are a special kind of program elem ent th a t help to organize program s;

1In th e lite ra tu re , there seem to exist a t least two notions of s truc tu res, the sem antics one and th e
syn tactic one. O ur s truc tu re concerns w ith th e ab strac t syn tax of program languages.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cFunction

cFunctionTemplate
cTypelnheritable

cName

cTypecUnit

cUnion

cTyped

cClasscStruct

cObject

cGeneric

cAsgNode

cOperator

cTypeAggrcNamespace
cExpression

cFctGenerated

cFctGeneratedcTypeGenerated

cClassTemplate

cTypeGenerated

«singleton»
cTypeMeta

cExpGeneralized

cExpGeneralized

Figure 4.1: O bject model for C + + program s

nam espaces, classes, functions, and blocks are program units. In particu lar, the global

nam espace is the topm ost level program unit.

Each program element exists in a certain context th a t is composed of th e sequence of

program units th a t enclose th e elem ent. For exam ple, a class defined w ithin the global

nam espace takes the global nam espace as its context; an expression w ithin a m em ber func­

tion will have the function, the class, and th e context of the class, in th is order, as its

context.

Each program element can also have a tex tu a l representation for display purpose, which

can be useful for diagnosis. For exam ple, th e tex tu a l representation for an expression a+ b

can be “a + b ” ; a variable x of type int can have “in t x;” as its representation.

+n am e () : s t r i n g

cName
+:3 e t T y p e () : c T y p e

cTyped

+getUnitSequence(): vector<cUnit *>
+ g e t E n c l o s i n g U n i t () : c U n i t *
+ t o S t r i n g {) : s t r i n g ________ ______

cAsgNode

Figure 4.2: T he class cAsgNode and subclasses

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The class cAsgNode 3 3 models th e m ost common features of all program elements. For

a given program element:

• getUnitSequence re tu rns the vector of its program units, which are modeled by the

class cUnit.

• getEnclosingUnit re tu rn s the innerm ost program unit th a t encloses it.

• toString returns th e tex tu a l representation.

getUnitSequence and getEnclosingUnit together form a simple instance of the so-called

tem plate design p a tte rn [GHJV94]. The former is im plem ented on the basis of th e la t­

ter. And since getEnclosingUnit is v irtual, derived classes of cAsgNode can override it to

im plem ent different ways of obtain ing th e ir corresponding innerm ost enclosing units.

Some program elem ents like classes and variables have nam es while others like expressions

do not. The abstrac t class cName is effectively the interface for any nam ed element.

Similarly, some elem ents are typed while others are no t. If th e elem ent is an operator-

such as a function or class tem plate , th en the type is its algebraic type; for instance, the

arithm etic addition on integer set has th e type Z x Z —> Z . If th e elem ent is a variable or

an expression, then th e type is the type of its value.

cUnit

cName

cType

cTyped

cObjec cOperator cExpGeneralized

Figure 4.3: A bstrac t classes cName and cTyped

A num ber of classes inherit the classes cName an d / or cTyped. cUnit is the abstrac t class

for all the program units, cType for types, cOperator for operators, and cExpGeneralized for

expressions, respectively. These will be described in th e following sections.

T he class cObject m odels all kinds of variables. A variable can be either a global one

or a local one, it can be a d a ta m em ber of aggregate types, or it can be a param eter to a

function. The kind which a variable can be (being local or global, for exam ple) is determ ined

by examining its context inform ation.

2A s a nam ing convention, all classes of the FC L object m odel s ta r t w ith le tte r c. T he nam e cAsgNode
is due to the D atrix tool th a t we use: D a trix m odels program s as graphs called ASGs (A bstract Sem antics
G raph) [RW91], whose nodes a re program elem ents.

3 In th is chapter, th e font sans serif is used for nam es such as m ethod nam es and class nam es in th e FC L
model.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Program U nits

Program units are m echanism s th a t help organize program s. C + + supports four kinds of

program units: nam espaces, aggregates, functions, and blocks. FCL supports a lim ited

am ount of control flow analysis (section 4.6), where no block inform ation is needed. Thus

the current object model does not trea t blocks as the first class entity.

cName

+ g e t T y p e s () : s e t < c A s g N o d e *> *
+ g e t c l a s s e s () : s e t < c A s g N o d e *> *
+ g e t E x p r e s s i o n s () : s e t < c E x p r e s s i o n *> *
+ g e t O b j e c t s () : s e t < c A s g N o d e *> *
+getTypeWithName(name:const string): cType *
+getClassWithiName (name: const string): cClass

cUrsit

Figure 4.4: P rogram units

Essentially, th e class cUnit provides a “container” view to program units. T h a t is, a

program un it can contain new types, expressions, a n d /o r variables. Thus it should support

queries on its in ternals, b o th collectively and individually.

A program un it m ay contain new types; the new types can be, for instance, an aggregate

type, an enum eration, or a tem plate-generated type. In p articu lar, th e global nam espace

contains all th e built-in types. getT ypes re tu rns the set of all types th a t the current unit

contains, while getC lasses re tu rns only the subset of aggregate types. Given a nam e, get-

TypeW ithN am e re tu rns th e type th a t has the nam e, while getC lassW ithN am e re tu rns the

class. If there is no such a type or class, the respective m ethod will re tu rn null.

A program un it m ay contain expressions. For exam ple, th e set of expressions for a

function includes b o th its default argum ents and the expressions w ith in its body (the current

version of FCL does no t handle exceptions y e t). The set of expressions for an aggregate

type or a nam espace consists of all the initialization expressions. getE xpressions re tu rns the

set of expressions of a unit.

A program un it m ay also define a set of variables. For a function, the set of variables

includes b o th its param eters and local variables; for a class, th e set consists of all the da ta

members. getObjects re tu rns the set of variables defined by a program unit.

Namespaces, aggregates, and functions are the concrete program units th a t FC L cur­

rently supports. In addition to the properties cap tu red by the class cUnit, each of them also

has special ones:

• A nam espace m ay have sub-nam espaces defined w ithin it. getN am espaces re tu rns the

set of im m ediate sub-nam espaces.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cUnit

£
_____________cNamespace_________
+geCNamespaces(): set<cNamespace *> *
+getFunctions(): set<cFunction *> *

cTypeAggr cFunction
+cretF\mctions () : setccFunction *> * +qetParameterSeguence(): vectorccObiect *> *

Figure 4.5: Namespaces, aggregates, and functions

• B o th nam espaces and aggregates can have functions. getFunctions retu rns the set of

functions.

® E ach function has a sequence of param eters. getParameterSequence returns the se­

quence for the function.

4.3 Types

cTyped

cTypePtr cTypeRef

cTypeFct

cTypeMeta

cTypeEnum cTypeArray

cTypeAggr cTypeBuiltln

+createPtrType(): cTypePtr
+createRefType(): cTypeRef
+ g e t D e r e f T y p e () : c T y p e *

cType

Figure 4.6: Types

C + + supports seven different types: built-in types, pointer types, reference types, enu­

m eration types, function types, array types, and aggregate types. In th e FCL object model,

each of these types has a corresponding class (for instance, an aggregate type is an instance

of the class cTypeAggr). The class cType is the ab s trac t interface for all of the seven classes.

T he class cType inherits cTyped, thus types them selves are also considered being “typed .”

T h a t is, each of them has a type. The singleton class cTypeMeta is used to denote th e type

of types. The reason for assigning a type to types is th a t in C + + , types can be referenced

as expressions, and all expressions have types.

T he class cType defines the following operations:

• createPtrType: Given a type, createPtrType re tu rn s the pointer type to it. If th e type

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a ineta type, th a t is, the instance of cTypeMeta, createPtrType retu rns the type

itself.

• createRefType: Given a type, createRefType returns the reference type to it. If the

type is a m eta type, th a t is, the instance of cTypeMeta, createRefType retu rns the

type itself.

• getDerefType: If the given type is an indirect type, getDerefType retu rns th e type th a t

it points to; otherwise, getDerefType re tu rns the type itself. For example, if the type

is of the form “**T” , where T is no t indirect, applying getDerefType to it will yield

the type “*T” . If, however, the type is “T ” , then the result of applying getDerefType

to it will be “T ” itself.

4.3.1 A ggregate Types

cTypeAggr

5
cTypelnheritable cUnion

+getSuperclasses(): set<cAsgNode *> *
+getSubclasses(): setccAsgNode *> *
+getAncestors(): setccAsgNode *> *
+getDescendants(): setccAsgNode *> *

I
cClass cS truct

5
cTypeGenerated

Figure 4.7: A ggregate types

C + + supports three kinds of aggregate types, class, s truc t, and union (Fig. 4.7). Only

class and s tru c t can be p a r t of an inheritance hierarchy. Given such a type, one can query

its direct base classes and derived classes, ancestor classes, and descendant classes, from the

inheritance graph. These commonalities are cap tu red by the class cTypelnheritable. B oth

class cClass and class cStruct are its subclasses. In particu lar, the class cTypeGenerated, for

types generated from class tem plates, is a subclass of cCiass.

In con trast to class and struct, a union can be neither a base class nor a derived class.

The class cUnion is for unions.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cGenericcFunction

cName cTyped

+ g e t T y p e () : c T y p e *
+ g e t R e s u l t T y p e () : c T y p e

cOperator

F igure 4.8: O perators

4.4 O pera to rs

Informally, an operator 4 is som ething th a t can be applied to some operands. Exam ples

of operators are functions and class and function tem plates (class tem plates and function

tem plates are modeled as subclasses of cG eneric).

T he types of operators are th e ir algebraic types, and getT ype re tu rns the types. B u t for

a function, in addition to its type, norm ally one would also be in terested in its re tu rn type.

T he operation getR esultT ype can be used to get the re tu rn type 5.

4.5 Expressions

An expression is a sequence of opera to rs and operands th a t specifies a com putation. An

expression can result in a value and can cause side effects. FCL recognizes no t only “norm al,”

first-order expressions like arithm etic operations and function calls, bu t also second-order

expressions th a t either take types as operands or generate types as values. In F ig 4.9,

cExpression models first-order expressions. cTypeGenerated and cFunctionG enerated model

instan tia tions of class tem plates and function tem plates respectively.

cFunctionGeneratedcExpression cTypeGenerated

+getArgSequence(): vectorcvoid *>
+getAllSubExprs(): set<void *> *
+getParent(): cExpGeneral *
+getTopExpr(): cExpGeneral *
+ g e t O p e r a t o r () : c O p e r a t o r *
+ g e t T y p e () : c T y p e *
+ g e t V a l u e () : cName * __________

cExpGeneralized

Figure 4.9: Expressions

4T he term operato r is m uch overloaded; here it, does no t refer specifically to C + + operators, and its
m eaning is more general th an th a t in C + + .

5T he current version of FCL has no t been used to check any property of a function type or a tem plate
type. getResultType is only a sho rtcu t for ob ta in ing the re tu rn types of functions and tem plates.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Regardless of being first- or second-order, all expressions share some common properties.

Any expression can have sub-expressions as operands, which in tu rn can have their own sub­

expressions as operands, and so on. Thus, structurally , an expression can be viewed as a

tree, whose nodes represent expressions.

Consequently, cExpGeneralized supports the following “tree” operations:

• getArgSequence:

Each expression can have a sequence of argum ents, which are also expressions. The

sequence can be ob tained th rough getA rgSequence. For instance, for y + + and *y, the

argum ent would be y, and for y=x+z(j), the argum ents would be y and x + z (j) .

• getAIISubExprs:

It re turns the set of all sub-expressions of an expression.

• getParent:

If th is expression is a to p level expression, then getParent re tu rns th is expression itself;

otherwise, it will re tu rn the expression in which th is expression is an argum ent.

» getTopExpr:

R eturns the expression corresponding to the root node of the tree where th is expression

“lives” .

The operator and resu lt of an expression can be obtained th rough the following opera­

tions:

• getOperator:

Each expression is th e result of invoking an operator on some operands (argum ents).

For instance, a function call is the result of invoking a corresponding function. The

arithm etic expression a + b is th e result of applying the pre-defined operator, + : Z x

Z —> Z , to two integers, a and b. Particularly , a generated type is the result of

applying a class tem pla te to operands of types a n d /o r expressions of constan t values.

getO perator re tu rns the opera to r th a t the expression uses.

• getType:

T he result of evaluating an expression has a type, and getT ype re tu rns th e type. For

example, for a function call, getT ype will re tu rn the re tu rn type of the function being

invoked; for a generated type, getT ype will re tu rn cT ypeM eta.

• getValue:

For first-order expressions 6, m ost of the tim e sta tic analysis does not know their

values. In th a t case, getV alue re tu rns null. For second-order expressions, getV alue

returns the types or functions generated.

E x p ress io n s whose operands are no t ty p es are considered first-order, otherw ise, second-order.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5.1 G enerated Types

cClass

cTypeGenerated

cExpGeneralized

Figure 4.10: G enerated types

Like expressions, a generated ty p e also has a sequence of argum ents. Unlike expressions,

the argum ents of a generated ty p e can only be constant values and types. In addition,

the value of a generated type is the result of in stan tia ting a class tem plate w ith concrete

argum ents, and it is viewed as a class.

4.6 “Norm al” Expressions

The class cExpression m odels expressions o ther th a n generated types, hence the nam e “nor­

m al.” Such an expression can be a function call; a pre-defined operation such as arithm etic,

relational, and logical expressions; a cast call or a sizeof expression, b o th of which involve a

type as their operand; and nam e references (to variables and to types) and literals.

cExpExitcExpCast cExpEntrycExpSizeof

cExpLiteralcExpFctCall cExpPredefined cExpNameRef

+isBranch(): bool
+trueBranch(): cExpression *
+falseBranch(): cExpression *
+isReturn(): bool
+createDownPath{endExpr:cExpression *=NULL): set< vectorcvoid *> *> *
+createUpPath(startExp:cExpression *=NXJLL): set<vector<void *>*>*
■f-getReceiver () : cExpression *
+change(aVar:cObject *): bool

cExpression

Figure 4.11: Norm al expressions

An expression can appear a t several places. I t can be an intializer to a sta tic d a ta

member, a constructor, or to a variable. I t can also be a default argum ent to a function.

Of course, m ost often an expression will be a com putational step w ithin a function.

FCL builds a CFG (C ontrol Flow Graph) for each function. T he nodes of CFGs are

expressions. Particularly , two artificial expressions, of types cExpEntry and cExpExit, re­

spectively, are added to each CFG: cExpEntry represents the s ta rtin g point of control, and

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cExpExit represents th e end of control. Edges are also added, respectively, from the cExpEn­

try node to the en try expressions of a function, and from the exit expressions to the cExpExit

node.

Six operations are available for querying control flow re la ted inform ation about an ex­

pression:

• isBranch:

Given an expression, if it is the condition of a conditional or loop sta tem ent, isBranch

re tu rns true; otherw ise, isBranch re turns false.

• trueBranch:

Given an expression, if it is the condition of a conditional or loop sta tem ent, trueBranch

re tu rns the first expression on its tru e branch; otherw ise, trueBranch returns null.

• falseBranch:

Given an expression, if it is the condition of a conditional or loop sta tem ent, falseBranch

re tu rns th e first expression on its false branch; otherwise, falseBranch re turns null.

• isReturn:

Given an expression, if it is the expression of a re tu rn sta tem ent, isReturn re tu rns true;

otherwise, isReturn re tu rns false.

• createD ow nPath:

If th is expression is w ithin a function, createD ow nP ath (end Exp) re tu rns the set of paths

s ta rtin g from th is expression and ending a t end Exp. By default, end Exp has th e value

of cExpExit. If th is expression is no t w ithin a function, th en createD ow nPath re tu rns

the em pty set.

• createU pPath:

If th is expression is w ithin a function, createU pPath (startExp) re tu rns the set of paths

s ta rtin g from start Exp and ending a t this expression. By default, start Exp has th e value

of cExpEntry. If th is expression is not w ithin a function, th en createU pPath re tu rns

the em pty set.

T he following exam ple m ay help illustrate control paths: .

(*) starting point
(1) if (a+b<100)
(2) doSomething();
(3) i f (a+b>50)
(4) doTheRestO;
(*) exiting point

The set of down p a th s from the function call a t (2) to the exiting point is { < a , b, a + b ,

50, a + b > 5 0 , d o T h eR est> , < a , b, a + b > 5 0 > } . The set of up path s to (2) from the sta rting

point is { < a, b, a + b , 100, a + b < 1 0 0 > }.

The evaluation order of the constituent expressions is im plem entation-dependent [Int98].

The exam ple assum es a left-to-right order.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T he operation getR eceiver returns the receiver expression r for an expression of the form

“r .m (...) .” Otherwise, th a t is, if the expression is not sending a message to an object,

getR eceiver re tu rns null.

bool change(cO bject * aVar) tells w hether a given expression may change the variable

represented by the param eter aVar.

If aVar is no t referenced by the expression, change returns false. Otherwise, for each of

the expressions where aVar is referenced:

• If the expression is a pre-defined one, th e pre-defined operator is an assignm ent, and

aVar is th e left-hand side of the assignm ent, then change re tu rns true.

• If th e expression is a function call and aVar is the receiver: If the function invoked is

no t const, then change re tu rns true; otherw ise, change re tu rns false.

• If th e expression is a function call and aVar is an argum ent to it: If th e corresponding

param eter of the invoked function is no t const b u t of reference type, then change

re tu rns true; otherwise, change re tu rns false.

If aVar is of pointer types, one may w ant to query w hether an expression changes the

value th a t aVar points to. Currently, FCL has yet no constructs to express this.

4.6.1 Function Calls

cExpFctCall

cExpOperatorCallcExpCommonFctCall

Figure 4.12: Function calls

Function calls are fu rther divided in to tw o categories: common function calls and oper­

ato r calls. Invocations of b o th free functions and m em ber functions are common function

calls. O pera to r calls correspond to functions th a t use operators as names; in C + + operators

can also be overloaded.

4.6.2 Pre-defined Expressions

Pre-defined expressions invoke the pre-defined operators. FCL p u ts pre-defined operators

into the global nam espace and trea ts the opera to rs and the ir expressions in th e sam e way

as user-defined functions.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Assignm ents IIV
!

VIIAAII<IIII!i

B it m anipulation: & [' » < < ~
M emory new delete & * . -> .* ->*
A rithm etic + - * / % + + (pre) — (pre) + + (post) — (post)
Logical & & 1 1 !
Relational > >= = = < <= !=

Special 0

Table 4.1: Pre-defined Expressions

cExpFctRefcExpVarRef cExpTypeRef

+g e t T a r g e t () : cName

cExpNameRef

Figure 4.13: Nam e reference expressions

4.6.3 N am e Reference Expressions

A n identifier can be bound to a variable, a type, or a function. For a given nam e reference

expression, getTarget returns the corresponding elem ents th a t it is bound to .

4.6.4 Control Statem ents

C ontrol sta tem ents are not trea ted as an essential p a r t of the FCL object model. The reason

is th a t by building control flow in term s of expressions, m any im portan t constrain ts can be

handled w ithout the need of inform ation abo u t control statem ents. They m ay be needed

when, say, one w ants to enforce certa in coding conventions. B ut th a t is not th e focal point

of FCL a t the m om ent.

cStmtExpr

cStmtBreak

cStmtSwitch

cStmtCaseLabel cStmtDefau ItLabel

cStmtCont cStmtReturn

cStmtlf cStmtLoop cStmtBlock

cStmtCaseBlock cStmtDefaultBlock

+buildControlGraph(pred: set<cExpression *> *) .- void

cStmt

Figure 4.14: C ontrol sta tem ents

C ontrol sta tem ents are used to generate control flow graphs for functions. T he class

diagram for C + + statem ents is depicted in Fig. 4.14. The control sta tem ents of a function

form a tree structu re . The control flow graph is bu ilt by a syntax-directed traversal of the

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree, connecting the corresponding expressions a t each node.

T he following example m ay help illu stra te the idea:

void f()
{
El;
if (E2)

Bl;
else B2;
E3;

}

whose CFG is shown in Fig. 4.15.

;ntr;

El

E2
falsetrue

B2Bl

E3

Exit

L e g e n d s :

o
O

special nodes

expression

subgraph

i> nnife control

Figure 4.15: A CFG example

M ore details on constructing C FG s from statem ents can be found in [AU78].

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Case Study 1: Enforcing
Framework Constraints—the
Observer Design Pattern

The purpose of th e O bserver exam ple is to in troduce the m ain features of FCL. It also

illustrates how to use th e checker program , fd, b o th th e form at of its com m and line and the

form at of its o u tp u t message.

5.1 The Observer Design Pattern

Design p a tte rn s [GHJV94] can be seen as small frameworks m ade of a few classes. We in tro­

duce FCL by specifying constrain ts for an im plem entation of th e Observer design p a tte rn

(Figure 5.1).

observers ►

for all o in observers
o->Update()

subject

observerState=subject->GetState()

Observer

+observerState
+Update(

ConcreteObserver

+Attach(Observer)
+Detach(Observer)
+Noti£y() i

Subject

+subjectState
+GetState()
+SetState()

ConcreteSubject

Figure 5.1: The O bserver P a tte rn

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Together, the ab strac t classes Subject and O bserver im plem ent an abstraction for the

notification of sta te changes, as depicted in the top of F igure 5.1. The class Subject provides

an interface for attach ing and detaching O bserver objects; a subject knows its observers.

Any num ber of observers may observe a subject. The Observer class defines an updating

interface for objects th a t should be notified of any s ta te changes in a subject. A subject

should notify all of its observers whenever its s ta te changes. This can be done by calling the

notify m ethod of the class Subject, which in tu rn , calls th e update m ethod of each observer

object, w ith th e subject itself as the actual argum ent. As a response to th e notification,

each observer object should query the subject object to synchronize their states.

L et’s assum e th a t any extensions to the fram ew ork are required to have a t least one

subclass of th e class Subject. Then, as designers, we can stipu la te th a t each subclass of the

class Subject m ust obey the following constraints:

1. T he Subject class has to define some s ta te , thus it m ust define a t least one instance

variable to represent the state.

2. All the instance variables m ust be private for sake of inform ation hiding.

3. T he class m ust define a t least two m ethods. Because all of its instance variables are

required to be private, a t least one m ethod is needed to change the s ta te and another

to query it.

4. In the class, there m ust exist a t least one m ethod th a t satisfies the following conditions:

• F irst, i t changes some new variables defined by th e class.

• Second, it calls the inherited notify m ethod.

• A nd th ird , the change m ust happen before th e notify m ethod is called.

We use th e nam e modifier for the set th a t contains all such m ethods.

Similarly, we require th a t:

1. Any extensions to the framework m ust have a t least one subclass of the class Observer.

2. Furtherm ore, all th e subclasses of Observer m ust override th e update m ethod.

3. In addition , the override m ust call some m ethod defined in a subclass of the class

Subject. B ut it is prohibited to call any m ethods th a t belong to the set modifier.

5.2 Observer Pattern in FCL
The following is an FCL specification for the O bserver pa tte rn :

1 subject as class("Subject") ;
2 observer as class("Observer") ;
3 model as subclass(subject);
4 view as subclass(observer) ;
5
6 forall mdl : model holds
7 [
8 modifiers as { m : function(mdl) |

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 exist e : exp(m), v : var(mdl) holds
10 (
11 change(e, v)
12 and
13 exist p : downPath(e), notify : p holds
14 name(noti fy)="noti fy"
15)
16 }
17]
18 (
19 for v being var(mdl) holds
20 isPrivate(v)
21 and
22 sizeof(function(mdl)) > 1
23 and
24 sizeof(modifiers) > 0
25 and
26 forall v : view holds
27 [
28 update as { m : function(v) |
29 [
30 p as param(m);
31 firstParam as member(p ,0);
32]
33 (name(m) = "update" and sizeof(p) =1 and
34 type(firstParam) = ptr(subject))
35 and
36 forall e : exp(m) holds
37 not belongsTo(function(e), modifiers)
38 and
39 exist e :exp(m) holds
40 [
41 invokedFunction as function(e);
42 programUnits as unit(invokedFunction);
43]
44 (
45 belongsTo(first(programUnits), model)
46 and
47 last(programUnits)=global
48)
49 }
50]
51 sizeof(update) = 1
52)

Overall, th is specification m aps relatively straightforw ard w ith the n a tu ra l language

description of th e last section. For exam ple, lines 7 through 24 correspond to the item s 1

to 4 for the Subject class; the constrain ts of item 4 are reflected in the set com prehension

defined a t lines 8 th rough 16. In th e following, we rem ark on some peculiarities of the

specification.

T he overall s truc tu re of the specification consists of two nested forall formulas, s ta rtin g

a t lines 6 and 26, respectively. This s tru c tu re is used because constrain ts for each subclass of

the Observer class need to refer to the set modifier defined for each subclass of th e Subject

class. Should there be no such a dependence betw een subjects and observers, we would have

had two independent forall formulas instead.

N ote th a t bo th subject and observer are FC L variables th a t represent the Subject class

and the Observer class, respectively; they are constructed through the constructor func­

tion class. Moreover, the FCL variables model and view represent the respective sets of

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subclasses.

T he set comprehension th a t defines the set modifier deserves some com m ents. One

question m any may ask about the change p redicate a t line 11 goes along th e lines of “w hat

if a subclass of the Subject class defines an instance variable of integer type, which does

not represent sta te , b u t some m ethods happen to change it, and thus m ake th e code satisfy

th e constra in t?” In th a t case, indeed, FC L will miss the error, and there will be no error

messages reported. This exam ple shows th a t although FCL can detect errors of omission,

it is not complete (th a t is, it generates false negatives); in particu lar, som etim es an error

m ight be camouflaged by code th a t happens to expose the same structu re as expected, and

thus satisfies the constraint.

This specification also examplifies th e use of sequences. FCL needs sequences to model

th ree things, the execution path s w ith in a m ethod, the param eter list of a m ethod, and

the syntactical context of a program elem ent. In the above specification, there are three

exam ples of sequences, a t lines 13, 30, and 42, respectively.

T he function downPath a t line 13 re tu rn s the set of all the execution p a th s th a t s ta rt

from the argum ent exp and end a t th e end of the m ethod; each elem ent of the set is a

sequence of expressions.

T he function param a t line 30 re tu rn s the param eter list of the function m. At th e next

line, mem berfp, 0) re tu rns the first elem ent of th e sequence; in fact, it is th e first and the

only param eter of the function, as ind icated by the constrain t at lines 33 and 34. A t line

34, p tr is a constructor function th a t constructs a pointer type to th e subclass subject.

T he last example is a t line 42: th e un it function re tu rns the sequence of program units

th a t enclose the argum ent, which is a function in th is case. Furtherm ore, th e specification

goes on to check w hether the class of th is function belongs to the set m odel; the function

first a t line 45 effectively obtains th e enclosing scope of the function. If th e re tu rn value is

a class th a t belongs to the set model, th en the belongsTo test will yield true. Finally, the

form ula a t line 47 is a tauto logy since th e last elem ent of a context is always the global

nam espace; the function last re tu rns th e last elem ent of a sequence, and global is a constant

of FCL th a t denotes the global nam espace.

5.3 Discussion

5.3.1 Expressions Are Im portant for FCL

In addition to classes and m ethods, it is also im portan t to be able to specify constra in ts for

expressions. W ithout support for expressions, the content of the above specification would

drop rapidly; all th a t would rem ain are th e requirem ents th a t the subject subclasses should

have b o th some m ethods and variables defined and th a t the observer subclasses should

override the update m ethod. These are still useful, bu t their likelihood of detecting subtle

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

errors is reduced.

Some of the constraints are im plem entation oriented, for exam ple, the one th a t requires

all the instance variables of a sub jec t class be private and the one on the num ber of methods.

A lthough they may not be as im p o rtan t as design constraints, it is w orth enforcing them.

Certain p arts of a specification can get very detailed; for example, to accurately specify

a m ethod, one needs to provide no t only its nam e, bu t also the num ber of param eters and

their respective types.

Context knowledge can be used to shorten FCL specifications. A t lines 13 and 14 of the

above specification, we only check w hether there is a function call expression th a t invokes a

function nam ed notify. This m ay be insufficient under certain circum stances; for example,

th e function being called m ay be a global one th a t has the same nam e. O n the o ther hand,

w ithin the specialized context of a p ro ject, it may be the case th a t th is will never happen.

Therefore, the specifier m ay tak e advantage of the knowledge, and the above specification

becomes acceptable. For ano ther exam ple, notice th a t line 34 specifies the update in full

detail. If one knows th a t th e update m ethod will not be overloaded, then one can elim inate

the code th a t specifies the param eters.

5.3.2 FCL Depends on Specialized Context

Conventional m ethods of program specification emphasize abstractions and generality [GH93]

This is achieved through using concepts and constructs such as specification variables and

abstraction functions in the specifications. By concentrating on only properties of the ab­

stractions, one obtains the benefits of easier m aintenance and a higher chance of reusing the

specifications. W ith abstractions, it becomes clear w hat p roperties m ust be preserved when

one changes the im plem entations. By program m ing to abstractions, an abstrac tion can be

used in various contexts w ithout th e program m er having to worry about th e underlying im­

plem entations. Moreover, one im plem entation can be replaced by ano ther w ithout affecting

correctness.

In contrast, FCL depends on specialized context; it specifies constra in ts in term s of im­

plem entation details such as variable nam es, expressions, and specific classes and m ethods.

However, FCL complements ra th e r th a n contradicts the established wisdom. Traditional

m ethods focus on identifying and specifying the core abstractions w ithin a problem domain.

This is of course a right strategy. B u t fram eworks by definition already contain the key ab­

stractions of the corresponding problem dom ains. Therefore, FCL is no t concerned w ith the

correctness of the abstractions them selves. In contrast, FCL is addressing a different issue;

it is m eant to detect the po ten tia l errors th a t m ay occur a t th e boundary betw een the core

and the extension. This requires th a t FCL specifications explicitly m ention im plem entation

details.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Specific im plem entations of a generic design may specialize in certain aspects. For ex­

ample, there are several dim ensions along which a particu lar im plem entation of the generic

observer design p a tte rn can vary:

S ta te s Both prim itive types and user-defined types can be used to represent states. Fur­

therm ore. if the s ta te represen tation is of a collection type, the s ta te may be either

th e collection, the elem ents th a t it contains, or both . Clearly, a t the general level,

w ithout fu rther inform ation, w hat FCL can speak abou t is lim ited. The best th a t one

can say abou t th e s ta te is p robably th a t “there m ust be a change to the sta te , and

it is followed by a call to th e notify m ethod.” A lthough quite conservative, it cap­

tures the key requirem ent th a t the user of the p a tte rn has to fulfill. W hen specifying

constraints, one has to balance between picking up m ore errors and avoiding spurious

ones.

There are also exam ples of th e p a tte rn in which the s ta te is divided in to substates and,

subsequently, a different notification m ethod is provided for each individual substate.

The JTree com ponent of th e Swing framework provides a default im plem entation

for the TreeM odel interface, which corresponds to the Subject class of the Observer

p a ttern . For perform ance reason, th e default im plem entation distinguishes four kinds

of s ta te changes: change to th e whole tree, addition of nodes to or removal from a

particu lar in ternal node, and change to a whole sub-tree .

R e g is t r a t io n W here can an observer be a ttached to a subject? T he registration can be

done by the client of th e p a tte rn , th a t is, outside of bo th the subjects and observers.

I t can be done by th e observers; the JTree class actually registers itself to the tree

model. I t is also conceivable to do it in the subject classes.

C a rd in a lities N ot only can each subject have m ultiple observers, bu t each observer can

watch m ultiple subjects. Moreover, these subjects can belong to different classes.

W h o ca lls n o tify ? N otification does not have to always be issued by the m ethods of sub­

jec t classes. I t can also be done by the client of th e pa tte rn . T he related advantages

and disadvantages are discussed in [GHJV94],

Specializations can influence th e content of the specifications. In the following, a special

im plem entation of th e observer p a tte rn will be used to illustra te th is point.

The im plem entation of F igure 5.2 makes several changes to the generic one:

1. In this example, th e s ta te is a nam e of the string type, and a modifier setNam e is

im plem ented to change it. As a result, the class Subject is no t ab strac t any more.

2. The Observer class also becomes concrete. In addition , it adds a private d a ta m em ber

to rem em ber the nam e. It also implements a m ethod printNarne.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

observers ►

!Subject \
+name: string = 11" Dhc(an/oi*
+Attach(Observer)
+Detach(Observer)
+Notify()
+setName (name.- const string &} : void

-name: string = ""
+Update()
+printName{): void

Figure 5.2: A Specific Im plem entation of the Observer P a tte rn

3. B oth setNam e and printN am e are v irtual.

4. The d a ta m em ber nam e of the Subject class is deliberately m ade public to illustrate

how FCL can be used to restrict the access to d a ta .

The FCL specification for this im plem entation is as follows:

1 // Constraint 1: not call attach
2 setOfExpInFreeFunction as { fct: function(global) | true | exp(fct) };
3 expInFreeFunction as union(setOfExpInFreeFunction);
4 setOfExpInClass as { els: class(global) | true | expClosure(els) } ;
5 expInClass as union(setOfExpInClass);
6 attach as function("attach", class("Subject"));
7
8 exist exp being expInFreeFunction+expInClass holds
9 function(exp) = attach
10
11 // Constraint 2: directly assign to Subject::name
12 Subject as class("Subject") ;
13 Observer as class("Observer") ;
14 classesOfSubjectAndObserver as [Subject, Observer]+descendant(Subject)+
15 descendant(Observer);
16 expOfSubjectAndObserver as union({ els: classesOfSubjectAndObserver |
17 true | expClosure(els) })
18
19 // version 1:
20 not exist exp : expInFreeFunction+expInClass-expOfSubjectAndObserver holds
21 (
22 name(exp)="="
23 and
24 [arg as arg(exp); leftHand as member(arg,0);
25 argl as arg(leftHand);
26 receiverType as ptdTypeStar(type(member(argl, 0)));
2 7 varRe f as member(argl, 1);]
28 (
29 name(var Ref)="name"
30 and
31 belongsTo(receiverType, ClassesOfSubjectAndObserver)
32 and println(name(varRef))
33)
34)
35
3 6 // version 2:
37 forall exp being expInFreeFunction+expInClass-expOfSubjectAndObserver holds
38 (
39 not (
40 name(exp)="="
41 and
42 [arg as arg(exp); leftHand as member(arg,0) ;
43 argl as arg(leftHand);
44 receiverType as ptdTypeStar(type(member(argl, 0)));
45 varRef as member(argl, 1);]
46 (
47 name(varRef)="name" and
48 belongsTo(receiverType, classesOfSubjectAndObserver)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49)
50)
51 or not (println("the node for the expression is") and println(exp))
52)
53
54 // Constraint 3: Nev/Observer: :printName does not call Observer:: printName
55 NewObserver as subclass(class("Observer"));
56 printNameOfObserver as function("printName", class("Observer"));
57
58 forall observer being NewObserver holds
59 [
60 printName as { fct:function(observer) | name(fct)="printName" and
61 sizeof(param(fct))=0 } ;
62 expOfPrintName as union) { fct:printName | true | exp(fct) })
63]
64 exist exp being expOfPrintName holds
65 function(exp)=printNameOfObserver
66
67 // Constraint 4: NewObserver::update calls Subject::setName
68 setNameOfSubject as function("setName", class("Subject"));
69
7 0 forall observer being NewObserver holds
71 [
72 update as{ fct:function(observer) | name(fct)="update" and
73 sizeof(param(fct))=1 } ;
74 expOfUpdate as union({ fct:update | true | exp(fct) })
75]
7 6 forall exp being expOfUpdate holds
77 not function(exp)=setNameOfSubject

There are four constrain ts in the specification. A few com m ents about them fall in place:

C on stra in t 1 requires th a t the attach m ethod be called. To enforce this, the specification

considers no t only all th e expressions of classes, b u t also those of free functions. The

constructor fun ction on attach re tu rns a set. The equality a t line 9 is actually a

shorthand supported by FCL; it requires bo th th a t the set attach be a singleton and

th a t its only elem ent be equal to the left hand side.

C on stra in t 2 dem onstrates how access to d a ta can be restricted . Note th a t how verbose

it can be to detect even such a simple assignm ent expression. The tw o versions of

the constrain t also show how the prin ting facility of FCL can be used. Currently, the

p r in t and prin tln expressions are trea ted as predicates th a t alway re tu rn the value of

true. It is up to the specifier to m ake sure th a t the use of them does no t change the

m eaning of th e original specification.

C on stra in t 3 is representative; it requires th a t the overriding m ethods call the ir corre­

sponding superclass versions.

C o n s tr a in t 4 requires th a t the overriding update m ethod in any subclass of th e O bserver

class do no t call th e setN am e m ethod of the Subject class. This is a specialized version

of the corresponding constraint for the generic observer pa ttern . I t is considered

“specialized” in th a t now we know w hat the modifier m ethod is, and thu s can directly

use it to specify constraints.

•50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Case Study 2: Enforcing
Framework Constraints-M FC

This chapter provides a few examples of fram ework constrain ts taken from the MFC fram e­

work. The purposes of these examples are twofold: first, they dem onstrate th a t framework

constrain ts are nontriv ial in the practice of fram ew ork-based development; second, they

show how FCL can be applied to a real fram ework and w hat lessons we can learn.

These examples are adopted from a th ird party , which brings us certa in benefits in term s

of the quality of our validation. F irst, it increases our confidence in the authentic ity of the

exam ples since contrived examples can be more easily and often accused of being no t real.

The quality of th e exam ples also depends on th e calibre of the au thor. In our case, the

au thor, Dr. Joseph M. Newcomer, has a strong background in bo th the theory and practice

of software construction , which can be evidenced by the following quo tation from his web

site [New]:

Dr. Joseph M. Newcomer is a Microsoft M V P [(Microsoft Valued Professional)],

an aw ard presented to a fairly small group of people who help ou t on a volunteer

basis on th e M icrosoft newsgroups. A collection of his articles, expanded beyond

the postings on the newsgroups, is now available on his M V P essays page, as

well as useful code samples.

Joseph M. Newcomer is the au tho r of several articles on W indows program m ing

as well as co-author of two books on W indows program m ing and a course in w rit­

ing W indows N T Device Drivers and a course in W indows System Program m ing.

He also is co-author of three U.S. paten ts on d istribu ted inform ation technology.

Section 6.1 presents some prelim inaries for M FC. Sections 6.2 th rough 6.10 present exam ­

ples of M FC rela ted problem s and how FCL is used to detect them . Section 6.11 sum m arizes

lessons learned.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Preliminaries of MFC

6.1.1 The W indows W o r l d and the MFC World

FC

Windows OS

Application

cuw h and le to W indows w idgets

C B u tto n C E d it C r ran ic C D iu lo g

/

A te x t fie ld »

Tftla Title
File Edit A bout

Dialog
Fram e

(y e s) (l a)

Windows

:CWnd

Creation methods Register a callback

store this

: :CreateW indowEx

‘map

Cali the callback
to accomplish
the mapping

Figure 6.1: The relation between W indows and MFC

As an operating system , M icrosoft W indows provides a set of APIs th a t can be used

to create, m anipulate, modify, and delete objects of bo th graphical interfaces and other

resources. G raphical objects are often called controls. As usual in system s design, each

control has a corresponding piece of inform ation called ‘hand le’ to identify itself; the type

of handles is HW ND. Similarly, resources are also m anaged th rough handles; for example,

fonts have handles of type H FO N T, and brushes have handles of type HBRUSH, and so on.

To support an object-oriented style of program m ing, M FC provides a set of “w rapper

classes” th a t encapsulate the W indows controls and resources (top of F igure 6.1). For

exam ple, a C W nd object wraps an HW ND, a CFont w raps an H FO N T, a C B rush w raps

an HBRUSH, and so on. Thus given a w rapper object, one can access its w rapped control

th rough the instance variable m_hW nd. By default, M FC designates a default class for each

type of controls and resources, for exam ple, C B utton for bu ttons, CListBox for lists, CEdit

for inpu t fields, and so on. B ut program m ers can customize th e default behavior of these

classes th rough subclassing.

T he w rapper classes provide various message handlers to handle the messages th a t the

■52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

underlying controls need to respond to . Moreover, operations are also designed so th a t one

can move freely between th e W indows object dom ain, where objects are represented by

handles, and the MFC object dom ain, w here objects are represented by instances of the

C + + classes. In practice, it is im portan t to understand the relationship between these two

representations in order to use them in a safe and non-leaking fashion.

It is also known th a t when an event happens for a W indows control, the event loop

m echanism can get the handle of the control from the operating system . Because the

m essage handlers are defined as m ethods of the w rapper object, in order to find the right

handler for the event, however, th e event loop of MFC has to find the object first. I t tu rns

out th a t M FC uses a m ap d a ta s tru c tu re to m ain tain the relation between the handles and

their w rapper objects; given a handle as a key, M FC can retrieve the corresponding w rapper

object from the map.

The bottom of Figure 6.1 illustrates how- th e m apping relation is established. It s ta rts

by calling one of the creation m ethods for the w rapper object. After the m ethod is invoked,

it first registers a callback function for a certain pre-defined event of the operating system;

th e pre-defined event has th e following p roperty : when a control is created, W indows will

generate an instance of the event, which will th en trigger the registered callback function.

T hen, the creation m ethod stores a po in ter to the w rapper object into a global variable.

Eventually, the m ethod will call th e windows A PI CreateW indowEx to actually create a

control. As a response to th e invocation of the API, W indows autom atically calls the

previously registered callback w ith the handle of the new control as an argum ent. The

callback then retrieves the previously sto red poin ter to the w rapper object from the global

variable and adds the pair of pointer and handle to the map.

6.1.2 Dialog, Control ID, G etD lg ltem , and Control Variables

A dialog is a container th a t can contain o ther controls th a t have visual appearance. In MFC

program m ing, a dialog is represented by a class th a t inherits the fram ework class CDialog.

Each control of the dialog can have a constan t integer called “control ID ” associated w ith

it. A control ID can uniquely identify the control and is only valid relative to the dialog

th a t contains it.

The m ethod C W nd: :G etD lgItem is defined to retrieve a child control from a dialog. Note

th a t CDialog inherits CW nd. F igure 6.2 depicts artifacts re la ted to the im plem entation

of CW nduG etD lgltem . C W nduG etD lg ltem is im plem ented using ::GetD lgItem and the

FromHandle m ethod of th e CW nd class.

The free function ::GetD lgItem is a W indows A PI function. I t takes a handle to a dialog

and a control ID and re tu rns the handle to the control. Also note th a t the handle to a

Windows control, HW ND, is im plem ented as a pointer to a structure . In particu lar, a

•53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: , .

struct HWND_{int unused};
typedef struct HWND_ * HWND;
HWND GetDlgItem(HWND hDlg, int nIDDlgltem);

CWnd
+m_hWnd: HWND________________________________ _
+GetDlgItem(nID;int): CWnd *
+FromHandle(hWnd:HWND): CWnd *
+FromHandlePermanent(hWnd:HWND); CWnd *
+Attach(hWnd:HWND): BOOL
+Detach(): HWND_______________________________

Figure 6.2: C W ndcG etD lgltem

dialog can be represented by a handle of type HW ND.

The diagram for the class C W nd shows only a small portion of its im plem entation. Each

CW nd object can w rap a W indows control, represented by the instance variable m JiW nd.

B oth FromHandle and From H andlePerm anent are sta tic m ethods, which, given a handle, can

look up the map for a corresponding C W nd object; the difference is th a t From H andlePer­

m anent will re tu rn NULL if th ere does no t exist a CW nd object w hereas From Handle will

re tu rn a tem porary one in th a t case (and M FC can autom atically m anage the mem ory).

A ttach and D etach, as th e ir nam es suggest, effectively add and remove a pair of handle and

CW nd object to and from the m ap.

Sometimes one may w ant to custom ize the behavior of a control; this can be done by

creating a subclass of th e default M FC class for the control. For exam ple, one m ay want

to create a subclass, CHorzListBox, for th e CListBox class; CH orzListBox overrides the

A ddString m ethod to recom pute th e horizontal extent of the box and call SetHorizontalEx-

ten t, and consequently also overrides R esetC ontent to set the horizontal extent to 0.

Each control of the dialog m ay also be represented by an instance variable of the dialog

class whose type is th e corresponding class of the control. The instance variable is then

called a “control variable.” W ith control variables, one can opera te on a control in the

“norm al” C + + way:

CButton c_Button; // c_Button is an instance variable of the dialog

if(c_Button.GetCheck() == BST_CHECKED)

6.1.3 Dialog Control M anagem ent: C o n t i n u o u s Validation

A user interacts w ith a com puter no t only by reading d a ta from it, b u t also by w riting d a ta

to it. Typically, when users inpu t d a ta to a program , the program has to provide certain

capabilities of checking w hether th e d a ta are valid according to some criteria. The process

of checking is called “validation.”

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There exist two ways of validation: one is “continuous validation.” and the o ther can

be called “validation-on-ok,” which does not validate the d a ta until the user presses the

ok bu tton . They are distinguished by the immediacy of the provided feedback; coded in

the style of continuous validation, the program can provide im m ediate feedback to the user

whenever the value of th e current inpu t field becomes invalid, instead of deferring it until the

user presses the ok b u tto n . The benefit of “validation-on-ok” is th a t it is easier to program ;

in fact, m any in troducto ry textbooks use this style of validation as examples.

To provide b e tte r in teraction experience to the end user, “continuous validation” is

preferred to the simple, “validating-on-ok” style. In fact, p roduct quality software should

all be program m ed w ith “continuous validation.” Section 6.3 will discuss issues on how to

properly program w ith the style.

So much for the M FC prelim inaries. More inform ation on the arch itectural design of

MFC can be found from the article [DiL95]. For inform ation on the detailed design, one

can consult the book [SW96].

6.2 Avoiding CW nd::GetDlgItem

MFC supports a style of dialog program m ing w ithout creating control variables. Instead,

one obtains an M FC object for the underlying control th rough the m ethod G etD lgltem ,

w ith a control ID as th e argum ent:

CButton * aButton = (CButton *)GetDlgItem(IDC_BUTTON);
if(aButton->GetCheck() == BST_CHECKED) ...

ID C J3U T T O N is th e control ID for a b u tto n in th e dialog, and BST_CHECKED is a

constant th a t represents th e s ta te th a t a bu tto n is checked. C W nduG etD lgltem retu rns a

pointer to CW nd. A dow ncast to “C B utton *” is th en applied to th e re tu rn value. After

getting the pointer to th e MFC object in the variable aB u tton , one can send it bu tton-

specific messages. For exam ple, the code above sends th e m essage G etCheck to determ ine

whether the b u tto n has been checked.

Program m ing in th e G etD lgltem style is all right as long as one program s only simple

dialogs, which may, for exam ple, m anage only a few controls. In fact, m any in troductory

MFC program m ing books use G etD lgltem to illustra te how to program (simple) dialogs.

Unfortunately, real world dialogs are usually much m ore complex th a n th a t; it is norm al

for one dialog to have tens of controls in it. Furtherm ore, som etim es using G etD lgltem can

pose a severe m aintenance headache.

The problem happens when your program has m any G etD lgltem casts and you w ant to

subclass a control. You th en will have to find all uses of th e control obtained by G etD lgltem

and change the casts to the new class. Say, for exam ple, you have created a subclass,

CM yButton, of the C B utton class, then you will have to find all the G etD lgltem and change

•55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the target type of the casts from “C B utton *” to “C M yB utton *.” It can be time-consum ing

to make such changes. However, if you use control variables, all you have to do is to change

the variable type in the declaration, and all the overloading and inheritance wank correctly.

M uch be tte r. This is how7 C + + is supposed to be used.

Avoiding C W ndcG etD lg ltem can be enforced by FCL as follows:

1 CWnd as class("CWnd");
2 CDialog as class{"CDialog") ;
3 DerivedDialog as descendant(CDialog);
4 // GetDlgltem as function("GetDlgltem", CWnd};
5 // CWnd * CWnd::GetDlgltem(int); CWnd * CWnd::GetDlgltem(int, HWND);
6 GetDlgltem as {fct:function(CWnd) | name(fct)="GetDlgItem" and
7 sizeof(param(fct))=1}?
8 forall derivedDialog being DerivedDialog holds
9 forall fctCallExp being expClosure(derivedDialog) holds
10 not function(fctCallExp) = GetDlgltem

T his specification requires th a t no derived classes of CDialog invoke the m ethod “CW nd

* C W nd::G etD lgItem (int).” As shown at line 5, th e class CW nd has two overloaded G et­

D lgltem m ethods. Thus, had we defined the set G etD lgltem as line 4, the set would have

contained two elem ents, and the negation a t line 10 will always yield tru e regardless whether

there are invocations of the m ethod G etD lgltem . T he above specification fixes th is problem

by defining th e set G etD lgltem through set com prehension; since we know th a t th e class

CW nd defines tw o G etD lgltem m ethods w ith different num ber of param eters, it suffices to

define the set as containing m ethods w ith the nam e “G etD lgltem ” and only one param eter.

Effectively, th is will yield a singleton set w ith “C W nd * C W nd::G etD lgItem (int)” as its

only element.

Note th a t th e equality test a t line 10 is a sho rtcu t for:

1 forall getDlgltem being GetDlgltem holds
2 function{fctCallExp) = getDlgltem

This effectively requires G etD lgltem to be a singleton set.

6.3 Continuous Validation in Dialog

W hen program m ing in the style of continuous validation, based on the curren t values of

some o ther controls, one often w ants to enable or disable certain controls or tu rn them into

visible or invisible sta tes. There are two ways to do this: One is to im plem ent the logic in

the code that responds to events such as b u tto n presses, ListBox selections, and so on. T h a t

is, pu t the logic in the event handlers. The other is to pu t the control manipulation code in

precisely one place in the program. The “event handler” approach can create code scattered

all over the place and thus hard to change and m aintain . In th e following, we first use an

exam ple illustra ting why the former approach is a bad idea and then show how to improve

it by localizing th e code. Finally, we analyze the m ain characteristics of the localized code

and cap ture them w ith FCL.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, assume we have a dialog w ith 4 controls: one bu tto n c_OK, two edits, c .Text and

c_Count, and one check box c.O ption, and we w ant to handle the updating of c_OK and

c .C ount based on the following requirem ents:

• c_OK is disabled if c.Text is empty.

• c.O K is disabled if c.O ption is selected and c.C ount is 0.

• c .C ount is enabled if and only if c .O ption is checked.

T he event handler solution is as follows:

void CMyDialog::OnChangeText()
{

CString s;
c_Text.GetWxndowText(s) ;
s .TrimLeft(); // ignore leading space
if (s.GetLength()==0)

c_0K.EnableWindow(FALSE);
}
void CMyDialog::DnChangeCount()
{

CString s;
c_Count.GetWindowText(s);
s.TrimLeftQ ; // ignore leading space
if (s=="0" && c _ Opt ion.GetChe ck()==BST_CHECKED)

c_OK.EnableWindow(FALSE);
}
void CMyDialog::DnChangeOptionO
{

BOOL enable = (c_Option.GetCheck()==BST_CHECKED);
c_Count.EnableWindow(enable);
CString s;
c_Count.GetWindowText(s);
s.TrimLeftQ; // ignore leading space
if (s=="0" && enable)

c_0K.EnableWindow(FALSE);
}

This code is hard to w rite correctly, not to m ention m aintaining it. The disabling of

c_OK depends on th e sta te of all o ther th ree controls; thus all of th e th ree event handlers

above have to check w hether c.O K should be disabled. If we w ant to add another condition

to c.O K , then we shall have to revisit all th ree places. This is error-prone: one m ay miss

updating some of the places or mess up w ith th e com putation of the enabling condition. We

need a b e tte r s tra tegy to deal w ith th is kind of code.

One alternative is to encode each enabling condition into a single com pound boolean

expression and allow each control to have only a m inim um num ber of “EnableW indow ”

and “ShowW indow.” Normally, a t m ost one instance of “EnableW indow ” and a t m ost one

instance of “ShowW indow” should suffice. B u t there can be exceptions: for exam ple, a

simple if-statem ent may have two instances, one in each branch.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furtherm ore, all invocations of “EnableW indow ” and “ShowW indow” should be local­

ized in one single place. To localize the control updating logic, a dialog can have a m ethod,

say, “updateC ontro ls,” in which all s ta te changes on all controls are com puted. The short­

coming of th is scheme is th a t we may end up w ith some control handlers (for example, those

for checkboxes) doing nothing bu t calling “updateC ontro ls.”

W hen the sta te of one control depends on one or more o ther controls, th e s ta te of the

controls affecting it should be directly accessed only at the tim e the com putation is done.

Always com pute from the first principles, every time; every variable th a t can affect the sta te

is com puted when needed, not a t any in stan t before it is needed, and no references to any

boolean variables set magically from som e o ther functions are allowed.

The alternative im plem entation is as follows:

void MyDialog::OnChangeText()
{ updateControls();
}
v o id CMyDialog: .-u p d a te C o n tro ls ()
{

BOOL e n a b le ;

/ / c_0K ===
CString s;
c _ T e x t. G etW indow T ext(s);
s . T r im L e f t() ; / / ig n o re le a d in g sp a c e s

e n a b le = s . G e tL en g th 0 != 0 &&
(c _ 0 p tio n .G e tC h e c k Q == BST_UNCHECKED II
c_Count != " 0 ") ;

c_0K.E nab leW indow (enab le);

// c.Count =======================================
e n a b le = c_0pt i o n . GetChe c k () ==BST_CHECKED;
c_ C o u n t. E nab leW indow (enab le);
x _ C o u n t.E nab leW indow (enab le); / / x_Count i s th e c a p t io n o f c_Count

Now if we w ant to add or change a condition to c.O K , all we have to do is to concen­

tra te on the first assignment to th e variable enable. T h a t everything is physically centered

together makes changes easier. This is a m uch b e tte r approach.

The dialog should conform to th ree constrain ts: (1) minimizing the num ber of invocations

of “EnableW indow ” and “ShowW indow,” (2) always com puting the condition directly from

the s ta te of the controls, and (3) localizing the calls to one single place. Ideally, we should

enforce all th ree of them . In the following, we shall show a specification of (3) in FCL and

then explain why we leave the first tw o no t enforced.

1 // Based on the essay ''Dialog Box Control Management'' by Joseph Newcomer
2 // Revision: all "EnableWindow" and "ShowWindow" of each control must be
3 //in the same routine.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
5 windowCiasses as descendant(class("CWnd")) ;
6 Dialogs as descendant(class("CDialog"});
7
8 forall subclassOfDialog being Dialogs holds
9 [
10 EnableWindowOrShowWindow as
11 {exp: expClosure(subclassOfDialog) |
12 [receiverType as type(receiver(exp));]
13 ((name(exp) = "EnableWindow" or name(exp) = "ShowWindow")
14 and
15 belongsTo(receiverType, windowCiasses))
16 }
17]
18 forall el, e2 being EnableWindowOrShowWindow holds
19 (
20 (el = e2} or
21 (not refd(receiver(el)) = refd(receiver(e2)) or
22 unit(el) = unit(e2) or
23 not (println(el) and println(e2))
24)
25)

One special case of constra in t (1) is to require th a t for each control, there be a t m ost

one instance for each of the two m ethods; th is effectively forces everybody to program in

the idiom embodied in the above im proved im plem entation, th a t is, do not call the m ethods

until a final enabling condition is com pletely com puted. B ut som etim es th is may be too

restrictive; it would be reasonable for one to w rite code as follows:

c_0K.EnableWindow(TRUE);
if (c_0ption.GetCheck()==BST_CHECKED &&

s_Count == "0")
c_0K.EnableWindow(FALSE);

if (s_Text.GetLength()==0)
c_0K.EnableWindow(FALSE);

C onstraint (2) is an exam ple th a t we would like to enforce b u t cannot w ith FCL. It

m ight become feasible if we add to FCL more sophisticated analyses of d a ta dependences

such as Aspects [Jac95]. B u t in th e context of th is example, we feel th a t enforcing (3) alone

yields the best benefit versus cost ratio . Following it, one is ge tting on the right track for

dealing with the d istribu ted u p d a te problem . Once one gets the s tru c tu re right, chances are

much lower for them to mess up w ith (1) and (2).

6.4 Avoiding CW nd::UpdateData(BO OL) in Dialogs

A dialog is a control th a t can contain a set of o ther controls, allows a user to edit the da ta

associated with the controls, and provides validation to the user during the interaction.

Designing dialogs involves two aspects: a way to transfer d a ta item s back and forth between

d a ta members and the controls and a m echanism to validate th e data . F igure 6.3 depicts

M FC ’s design for dialogs.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UpdateData(FALSE) ;

if (UpdateData(TRUE)
EndDialog(1);

+UpdateData(bSaveAndValidate:B00L=1): BOOL s
D o D a t a E x c h a n g e (p D X :C D a . ta .E xc h an g e *) : v o i d »-

CWnd

+ O n I n i t D i a l o g () : BOOL --------

. ftOnOk () : v o i d j

U O n C a n c e l {) ; void ,
+EndDialog(nResult:int)• void

C D ialog

try{pDX~>m_pDlgWnd = this;
pDX - >m_bSaveAndVa1 i da t e = bSaveAndValidate?
DoDataExchange(pDx);
return 1;}
c a t c h r e t u r n 0;}

Figure 6.3: D oD ataExchange

6.4.1 CW nd::DoDat aExchange

The core of the design is a v irtua l m ethod C W nd::D oD ataExchange th a t is based on a

set of so-called “d a ta exchange and d a ta validation rou tines.” D a ta exchange routines

are prefixed w ith “D D X -,” and d a ta validation routines “D D V -” For example, “void

DDX_Text(CDataExchange* pDX, in t nlD C , CString& value)” is a d a ta exchange routine

th a t transfers a string betw een the param eter, value, and a control w ith a control ID nlD C.

The param eter pDX is a po in ter to an object th a t carries th e context inform ation for the con­

trol. The class C D ataE xchange will be explained later, “void D D VJVlinM axInt(CDataExchange*

pDX, int value, in t m inVal, in t m axV al)” is an exam ple of d a ta validation routines: this

routine checks th a t th e param eter, value, falls between minVal and m axVal inclusively;

otherwise it will pop up a window to inform the user.

A specific subclass of th e class CDialog th a t has only one edit as its child control, say,

CM odalDialog, can th en override D oD ataExchange. Its code m ay look like as follows:

void CModalDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

DDX_Control(pDX, 1001, c_MyEdit);
DDX_Text(pDX, 1001, m_MyEdit);
DDV_MaxChars(pDX, m_MyEdit, 4);

}

In this code, D D X -Control is a d a ta exchange routine m apping the control variable c JVIyEdit

to a W indows control w ith a control ID 1001. Next, DDX_Text transfers the string be­

tween th e edit and th e m em ber variable m_MyEdit, which is of the C String type. At last,

DDV_MaxChars, when pDX->m _bSaveAndValidate is true, validates if th e length of the

string is less th an or equal to 4.

It is up to the program m er to decide which DDX and DDV routines they want to use

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the D oD ataExchange m ethod. Particularly, since the capability of bo th DDV routines

and the error handling is quite prim itive and inflexible, one m ay elect not to use the DDV

mechanism a t all.

6.4.2 D D X and D D V R outines

The im plem entation of all DDX and DDV routines exploits the helper class CD ataExchange

shown in Figure 6.4:

» im bSaveA ndV alidate: if !m_bSaveAndValidate, then loads the d a ta sta te into the

controls; if m_bSaveAndValidate, then validates and sets the d a ta members from the

controls. V alidation occurs only when m .bSaveA ndV alidate is true.

• m_pDlgWnd: T he dialog th a t contains controls. The dialog is needed to get the control

from a given control ID.

• P repareC trl and P repareE ditC trl: Rem em ber th e current control th a t is exchanging

data . T he handle will be used to set the focus if a validation fails. P repareC trl is used

for nonedit controls and P repareE d itC trl is used for edit controls.

• Fail: If there is an inpu t error, this rou tine will be called, bringing up a message

box to a le rt th e user. This routine will restore th e focus to th e last control (the one

referenced by P rep areC trl/P rep areE d itC trl) and throw an exception. This m ember

function m ay be called from bo th D D X . and DDV_ routines.

CDataExchange
+m_bSaveAndValidate: BOOL
+m_pDlgWnd: CWnd *
+PrepareCtrl: HWND
+PrepareEditCtrl: HWMD
+Fail(): void_________________

Figure 6.4: Class C D ataExchange

6.4.3 C W nd::U pdateD ata

C W nduU pdateD ata , as shown in Figure 6.3, does th e initialization and exception handling

around the call to C W nd:: DoD ataE xchange. It takes a boolean as its param eter. If the

param eter is tru e , then U pdateD ata will transfer d a ta from th e controls to the m em ber

variables and validate them ; otherwise, it will transfer the d a ta from m em ber variables to

the controls. U pdateD ata retu rns 0 if there is an exception th row n by a d a ta validation

routine; otherwise, it re tu rns 1.

T he class CDialog im plem ents the standard behavior for dialogs. On the initialization of

a dialog, an in itialization event is generated, and the corresponding event handler O nlnitD i-

alog will be invoked. O nlnitD ialog calls U pdateD ata w ith false as the argum ent to initialize

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all the controls w ith the values of their corresponding m em ber variables. A standard dialog

has bo th an ok bu tto n and a cancel bu tto n w ith O nO K and OnCancel as their respective

event handlers. Particularly , OnOk calls U pdateD ata to transfer d a ta from the controls to

the m em ber variables. If the transfer succeeds, th a t is, no exceptions are throw n by any

DDV routines, then the dialog will be closed off by calling the EndDialog m ethod.

So much for dialog design.

6.4.4 W hy One Should A void C W nd::U pdateD ata

In dialog program m ing, d a ta validation can be done in two ways: the simple, “validating-

on-ok” style and th e sophisticated, continuous validation style. M FC fully supports the

form er w ith th e design presented before. Custom izing th e design to im plem ent continuous

validation is also possible, bu t requires m ore work on th e p a rt of the program m er.

In practice, m any program m ers have trouble w ith im plem enting continuous validation

for several reasons. For one thing, M icrosoft does no t adequately docum ent the correct way

to work w ith controls; thus it is left up to the program m ers to somehow magically infer

how to do it correctly. For another, m any M FC program m ers do no t fully understand the

design of th e dialog, and thus cannot correctly ex tend it. Even worse, the “Microsoft m odel”

(simple validation) is designed in such a way th a t one does not have to fully understand

th e above design before using it. One gets so used to the simple m odel th a t they are not

p repared well enough to transit to the sophisticated one. For example, one m istake th a t

m any make is to call U pdateD ata(T R U E) to get the current values of the controls. In fact,

assigning control variables to controls can elim inate calling U pdateD ata since one can access

the values th rough th e control variables.

O f course, th e M icrosoft model has its use in certa in simple scenarios, provided th a t one

is satisfied w ith th e error handling provided by th e default im plem entation. Sometimes one

m ay need a dialog only to obtain some d a ta from the end user even w ithout validation,

then th e default m odel is certainly adequate for th e purpose. In either case, however, no

U pdateD ata(T R U E) is needed to be called in any subclasses of the CDialog class.

Therefore, wre conclude th a t one should avoid calling U pdateD ata(T R U E), and th a t

calling it is a sign of trouble.

6.4.5 “A voiding C W nd::U pdateD ata” in FCL
1 // Based on Dr. Joseph Newcomer's MFC essay 'Avoiding UpdateData'
2
3 DerivedDialog as descendant(class("CDialog")) ;
4
5 forall derivedDialog being DerivedDialog holds
6 [
7 doDataExchange as function{"DoDataExchange”, derivedDialog};
8 callMFCDdv as sizeof(doDataExchange)=1 and
9 exist ddv being exp(doDataExchange) holds
10 regex ("DDV _. , name (ddv));
11 allMeth as function(derivedDialog);

62

with permission of the copyright owner. Further reproduction prohibited without permission.

12 onOk as function("OnOK", derivedDialog);
13]
14 (
15 (not callMFCDdv or sizeof(onOk)=0) // callMFCDdv => sizeof(onOk)=0
16 and
17 not exist e being exp(allMeth-onOk) holds
18 (
19 name(e)="UpdateData"
20 and
21 [argument as member(arg(e),0)]
2 2 (

2 3 name(argument)="1" or name(argument)="true"
24)
25)
26)

A few com m ents are in order:

• T his specification exemplifies how to use the FCL function “function.” This function

is overloaded, w ith one version being a constructor th a t returns a set of functions

sharing the given nam e and the o ther re tu rn ing a set of functions contained by a given

program unit. Lines 7 and 12 define tw o singleton sets, ‘doD ataE xchange’ and ‘onO k,’

respectively. They apply the constructor version whereas the one a t line 11 applies

th e non-constructor version.

• T he FCL variable ‘callM FCD dv,’ defined a t lines 8 th rough 10, is of ty p e boolean.

T his is an exam ple where one can define a variable for a formula, because FCL allows

for trea tin g formulas as expressions. T he definition also makes use of ‘regex,’ the

regular expression operator of FCL. In th is case, it m atches any function call whose

nam e s ta rts w ith “DDV_.”

• N ote th a t the ‘exp’ operator a t line 17 is applied to a set of m ethods instead of an

individual m ethod.

• ‘argum ent’ a t line 21 represents the first argum ent of expression ‘e ’; ‘a rg (e)’ re tu rns

the sequence of argum ents of ‘e ’, and ‘m em ber’ then re tu rns the one a t index 0.

• TR U E is a m acro representing ‘1.’ T he form ula a t line 23 checks w hether ‘argum ent’

is ‘1’ or ‘tru e .’

6.5 Use the Combo Box Controls Correctly

A combo box control can display a list of strings, each of which has an associated d a ta item

and an index identifying its position in th e list. A user can select a certa in item from a

combo box by clicking on its corresponding string.

F igure 6.5 depicts a relevant p a rt of th e design. Some brief specifications for the m ethods

follow:

• G etC ount: R eturns the num ber of item s in th e combo box.

• G etCurSel: R eturns the index of the cu rren t selected item.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CComboBox
+GetCount(): int
+GetCurSel(): int
+SetCurSel(): int
+AddString(str:CString &): int
+GetLBText(nlndex:int,str:CString &): void
+GetItemData(nlndex:int): DWORD
+SetIteroData(nlndex:int, dwItemData:DWORD): int

 CString
+LoadString(nID:UIMT): BOOL

Figure 6.5: Class CComboBox

• SetCurSel: Sets the curren t selected item .

• AddString: Adds a string in to the list and returns its index.

• GetLBText: Retrieves the string of th e n ln d ex th item and re tu rns it w ith str.

• Setltem D ata: Sets th e d a ta associated w ith the nlndex th item .

• G etltem D ata: G ets th e d a ta associated w ith the nlndex th item .

The IDE for M FC, M icrosoft V isual Studio, supports a notion of “resources;” any com­

pilation tim e constants can be tre a te d as “resources.” For instance, b o th icon images and

constant strings can be resources. E ach resource belongs to a specific category and is as­

signed a constant ID. Each type of resource has a special set of A PIs to load th e real resource.

For example, given th e ID of a string resource, C String::LoadString effectively initializes a

CString object w ith the string corresponding to the ID.

A tool of th e ID E called “resource ed ito r” can help set up the list of strings for a combo

box. For example, suppose th a t one w ants to program a combo box w ith th e following color

names: Black, Blue, Red, and Green. W ith th e resource editor, one can sim ply type in these

strings; a t runtim e M FC will au tom atically load the strings into th e combo box. The tool

saves th e program m er from explicitly w riting code for loading th e strings.

W ith the support of th e resource editor, m any program m ers have developed some wrong

ways of program m ing combo boxes, ways th a t can cause problem s for fu tu re m aintenance.

Their program s depend on either th e item index or the item string, b o th of which can

subject to fu ture change. W hen such change happens, one is then forced to inspect and

adjust existing source code to m ake sure th a t th e software will still work. Such adjustm ent

can be both tedious and error-prone.

The following subsections will use the color example to show first two typical wrong

ways of program m ing combo boxes and th en the correct way. FCL specifications are then

w ritten to help reveal the errors.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5.1 “Order S en sitiv e”

One kind of solution is exemplified by the following code:

switch(c ComboBox.GetCurSelQ)
{

case 0: // black
color = RGB(0, 0, 0);
break;

case 1: // blue
color = RGB(0, 0, 255);
break;

} ”

This solution im plicitly associates each index w ith a certain color, th a t is, 0 with Black, 1

w ith Blue, and so on.

The problem is th a t it is “order sensitive:” if later on one decides to sort the strings or

insert some new colors into th e list, then it is highly possible th a t the index-to-nam e m ap

will have to change. T he only way to make the change is to exam ine th e source code line

by line. Since exam ining source code can be tedious and error prone, a b e tte r approach is

needed.

6.5.2 “Language Sensitive”

A nother kind of solution is as follows:

CString s;
int index = c_CComboBox.GetCurSel();

c_CComboBox.GetLBText(index,s);

if(s == CString("Black"))
{

color = RGB(0, 0, 0);
}

else if(s == CString("Blue"))
{

color = RGB(0, 0, 255);
}

This solution has the benefit th a t one does not have to read th e source code again if they

add or re-order the strings, since th e code does not depend on th e index for the meaning of

the item.

B ut this code has a “language sensitive” problem. If, for exam ple, one is asked to po rt

th is software to G erm an, th en one will have to find from the source all the strings for colors

and change them to the corresponding G erm an words. This change m ay be easier to make

th an the last one, b u t ano ther solution can make all these changes m uch easier.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 .3 T he R ight S o lu tion

The key to the right solution is to associate d a ta w ith each item and use the data, ra ther

th an the index or string, to determ ine which item the user wants to select from the list. In

the following, a sam ple im plem entation is provided.

F irst, the s tring -to -da ta pairs can be established by th e following data structure:

typedef struct IDData {
UINT id;
DWORD value;

};

IDData colors □ = {
IDS_BLACK, RGBCO, 0, 0),
IDS_BLUE, RGB(0, 0, 255),

0, 0 // end of table

};

N ote th a t the IDSs are for string resources defined by th e IDE. This solution has a single

point of definition for all values in the combo box. Thus, to add or delete item s, one needs

to look a t and change only one place.

The next step is to initialize the combo box w ith the above data . This can be done

through a m ethod of th e subclass of CComboBox, defined as follows:

void CIDCombo::load(IDData * data)
{
for(int i = 0; data[i].id != 0; i++)

{
CString s;
s .LoadString(data[i].id);
int index = AddString(s);
SetItemDataCindex, data[i].value);

where CIDCombo is a subclass of CComboBox.

And make sure to call CIDCombo: :load from w ithin th e event handler OnlnitDialog:

BOOL CMyDialog::OnlnitDialog ()
{
c_Colors.load(colors);

One can create the m ethod CIDCom bouGetColor to get the color value of the current

selected item:

C0L0RREF CIDCombo::GetColor()
{int sel = GetCurSelC);
ifCsel == CB_ERR)

return RGB(0, 0, 0); // or other suitable default value
return GetltemData(sel);

}

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another m ethod CIDCombo::Select is needed to select an item:

int CIDCombo::Select(DWORD value)
{
for(int i = 0; i < CComboBox::GetCount(); i++)

{ /* compare */
DWORD v = CComboBox::GetltemData(i);
if(value == v)

{ /* found it */
CComboBox::SetCurSel(i) ;
return i ;

} /* found it */

CComboBox::SetCurSel(-1) ;
return CB_ERR;

}

This ends our presentation of the right solution.

6.5.4 Combo Box Program m ing in FCL

One has to be selective when writing FCL specifications. Usually, m any details can be

specified and it is up to the specifier to choose th e “app rop ria te” constraints on the structu re .

The specifier has to weigh all the candidates and choose only those th a t are m ost likely to

reveal errors. Som etim es one specifies against specific sym ptom s w ith the expectation to

catch recurring, common mistakes. O ther tim es one specifies th e necessary features th a t a

correct solution m ust possess, expecting to detect errors of omission.

T he following two specifications are targeted a t specific sym ptom s. The first one requires

no invocations of th e G etCurSel m ethod on any com bo box whose re tu rn value is com pared

w ith som ething else to make a decision. If otherw ise such a code p a tte rn does appear, then

th e program m er m ust have assigned some m eaning to th e offset, which is not desirable. The

specification follows:

1 // Based on Dr. Joseph Newcomer's MFC essay 'Combo Box Initialization'
2 //In any derived classes of CDialog, there must not be such patterns:
3 // comparing return value of CComboBox::GetCurSel with constant integers.
4
5 DerivedDialog as descendant(class("CDialog"));
6 defaultCombo as class("CComboBox");
7 DerivedComboBox as descendant(defaultCombo);
8
9 forall derivedDialog being DerivedDialog holds
10 not exists exp being expClosure(derivedDialog) holds
11 (name(exp)="GetCurSel" and
12 belongsTo(type(receiver(exp)), DerivedComboBox) and
13 exist path being downPath(exp) holds
14 exist compExp being path holds
15 (isBranch(compExp) and dep(compExp, exp)))

N ote the two predicates isBranch and dep: isB ranch determ ines whether the param eter

expression is a b ranch condition, and dep determ ines w hether the value of the first param eter

depends on the value of the second.

Similarly, th e following specification requires th e control flow of the program to not

depend on the display strings:

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 // In any derived classes of CDialog, there must not be such patterns:
2 // comparing text returned by CComboBox::GetLBText with constant strings.
3
4 DerivedDialog as descendant(class("CDialog"));
5 defaultCombo as class("CComboBox");
6 DerivedComboBox as descendant(defaultCombo);
7
8 forall derivedDialog being DerivedDialog holds
9 not exists exp being expClosure(derivedDialog) holds
10 (name(exp)="GetLBText" and
11 belongsTo(type(receiver{exp)), DerivedComboBox) and
12 exist path being downPath{exp) holds
13 exist compExp being path holds
14 (isBranch(compExp) and dep(compExp, exp)))

In contrast to the above two, the following specification constrains the structu re of the

right solution. I t requires all the classes of th e combo boxes contained in a dialog to call

b o th the G etltem D ata m ethod and th e S e tltem D ata m ethod, and the dialog to initialize

the combo box by calling one of its m ethods in the O nlnitD ialog m ethod.

1 //In any derived classes of CComboBox, there must be expressions of both
2 // GetltemData and SetltemData
3
4 DerivedDialog as descendant (class ("CDialog"))
5 defaultCombo as class("CComboBox”);
6 DerivedComboBox as descendant(defaultCombo);
7
8 forall derivedDialog being DerivedDialog holds
9 forall aVar being var(derivedDialog) holds
10 [varType as type(aVar)]
11 (
12 not belongsTo(varType, DerivedComboBox) or
13 exist OnlnitDialog being function(derivedDialog) holds
14 (
15 name(onlnitDialog) = "OnlnitDialog" and
16 exist fctCall being exp(onlnitDialog) holds
17 (
18 refd(receiver(fctCall)) = aVar and
19 exist SetltemData being exp(function(fctCall)) holds
2 0 name(SetltemData)="SetItemData"
21)

2 2)
23 and
24 exist getltemData being expClosure(varType) holds
25 name(getltemData)="GetItemData"
26)

Even if the im plem entation of a com bo box class satisfies this specification, it is no t

guaranteed to be correct: it may contain o ther kinds of errors. W hat the specification is

in terested in is to detect the opposite: when it is no t satisfied, chances are high th a t the

im plem entation has an error; FCL helps us catch such errors.

6.6 Constraints on Control Flow

Suppose you have a dialog th a t contains a tex t control and want to resize the tex t control

whenever the size of the dialog changes. In M FC, th is can be done by subclassing the

class CDialog and in the subclass, im plem enting th e message handler O nSize for m essage

WM_SIZE:

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CMyDialog::OnSize(...)
{ CDialog::OnSize(...);

// c_text is a control in the dialog
c_text.SetSize(...);

}

This im plem entation is problem atic. W hen running it, you will find th a t the program

crashes in the middle of an ASSERT sta tem en t, which requires th a t th e control object

cT ext m ust have a control associated w ith it. If you trace the program , you will find th a t

the ASSERT sta tem ent comes from th e SetSize call.

The problem is because of a m ism atch between MFC and the underlying W indows. A

dialog can receive th e WM_SIZE message in two states: (1) where the dialog is created but

some of its child windows have not been initialized yet, and (2) where bo th th e dialog and

all of its child window's are properly initialized. W hat has happened is th a t a t s ta te (1), a

WIVLSIZE is generated and dispatched to th e dialog, and the corresponding event handler,

OnSize, is called. B u t since the cAext control has not been properly initialized, the call to

SetSize will cause the assertion failure.

The solution is to distinguish the tw o s ta te s of the dialog. One can set up a condition

th a t indicates w hether the controls are ready and guard all the control operations by th a t

condition. Usually a m em ber of in t or boolean in the dialog class would suffice. I t should

be initialized as false in th e constructors and set to tru e a t the end of th e O nlnitD ialog

m ethod, since by then all the controls of th e dialog should have been properly initialized.

Thus we can w rite a specification to detect the key features of th is solution:

1 // Assertion failure caused by the mismatch between Windows and MFC
2
3 PredefinedDialog as [class("CCommonDialog") , class("CPropertyPage"));
4 DerivedDialog as subclass(class("CDialog"))-PredefinedDialog;
5 cWndSet as descendant(class("CWnd"));
6
7 forall derivedDialog being DerivedDialog holds
8 [
9 OnlnitDialog as { fct:function(derivedDialog) | name(fct)="OnInitDialog"} ;
10
11 Cstor as { fct:function(derivedDialog) | name(fct)=name(derivedDialog) };
12
13 OnSize as { fct:function(derivedDialog) | name (fct)="OnSize" };
14
15 expOfOnSize as union({ fct:OnSize | true | exp(fct) });
16
17 ctrlExp as { exp :expOfOnSize |
18 [receiver as receiver(exp); type as type(receiver);]
19 (belongsTo(type, cWndSet))
20 };
21
22 booleanVar as { v: var(derivedDialog) |
23 [type as type(v)]
24 (name(type)=Mboolean" or name(type)="int")
25 };
26]
27 (
28 sizeof(OnSize)=0
29 or

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 0 exist aBool being booleanVar holds
31 (
32 // assigned in both OnlnitDialog and Constructors
33 forall fct being OnlnitDialog+Cstor holds
34 exist expr being exp(fct) holds
35 (var(expr) = aBool and name!top(expr))=" = ")
3 6 and
37 forall fct being OnSize holds // control operations guarded
38 [controlledExp as union({ expr: exp(fct) |
39 var(expr) = aBool and isBranch(parent(expr)) j
40 union(downPath(parent(expr)))
41 });
42]
43 subset(ctrlExp, controlledExp)
44)
45)

A brief explanation for the specification follows. The m ain p a rt runs from line 28 to line

44. Line 28 says th a t if the checked program does not define the OnSize handler, then the

specification is satisfied; otherw ise, proceed. The rest of the specification, lines 30 through

44, says th a t bo th O nlnitD ialog and the constructors m ust have a t least one assignm ent

sta tem ent th a t involves a m em ber of boolean or int and th a t all th e control operations in the

OnSize m ethod m ust be guarded by a predicate expression th a t involves th a t d a ta m ember.

Note th a t the specification requires no t only th a t there be m em ber variables of appro­

p ria te types, bu t also th a t there exist a t least one such variable being changed in bo th

the constructors and the O nlnitD ialog m ethod. We should know some subtleties w ith this

specification. Let us explore tw o a lternative specifications.

T he simplest one would be to check only th a t the class has th e required condition vari­

able. In general, any prim itive types can be used as the type of the variable. In practice,

however, norm ally only in t and boolean would be considered; even it is acceptable by the

compiler, it would be ra th e r unusual to use a char to represent a boolean. Even such a

simple specification can be useful: when using dialogs, often one does no t define m em ber

variables a t all, and a miss of such a variable will indeed be an error. O f course, if one does

define other mem ber variables in th e dialog class, this specification risks trea tin g m em ber

variables for o ther purposes as th e condition variable and thus generates false negatives.

Clearly, the situation calls for engineering judgm ent for the right decision.

T he other a lternative is to check only th a t the m em ber variable is changed in b o th the

constructors and the O nlnitD ialog m ethod. In fact, com pared w ith th e last one, it provides

a b e tte r chance of detecting the error of missing the definition of th e condition variable.

Since the O nlnitD ialog m ethod is only for initializing the dialog, application logic th a t

has nothing to do w ith GUI norm ally would not get into this m ethod. B u t the condition

variable should be used here. Therefore, it is less likely to m istakenly tre a t variables for

o ther purposes as the condition variable; thus a violation of th e specification has a high

chance of revealing a genuine error.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One concern for this alternative goes like this: “w hat if, instead of changing the variable

directly by itself, O nlnitD ialog calls another m ethod th a t indirectly changes the variable?”

This is certainly a valid concern; if th a t does happen, one can use the expClosure operator

of FCL, which re tu rns the set of expressions th a t are sta tically reachable from a certain

m ethod. On the o ther hand , for th is example this is unlikely; thus th e specification should

rem ain as it is. Clearly, again, engineering judgem ent is needed here.

However, the two alternatives fail to detect an error where one does define a condition

variable bu t does not guard all th e control operations w ith it. O ur specification considers

this. So much for the two alternatives.

FCL specifications m ust be sufficiently strong to detect as m any errors as possible, but

m ust no t be so strong as to rep o rt false positives (spurious errors). One example is the

definition of the set controlledExp, from line 38 to line 41, representing th e set of guarded

control operations (to be m ore precise: all the control operations th a t execute after the

first evaluation of the condition expression). I t would be too restrictive to define a guarded

control operation as one guarded by a condition expression consisting of only the boolean

itself, since it is possible for one to define the m eaning of the boolean as “not initialized”

ra th e r th an “initialized.” In th a t case, the guard would th en have to be th e negation of

the boolean. The specification has been relaxed to cover b o th cases. On the other hand, it

would be unconceivable to im plem ent the logic in idioms o ther th a n these two. Hence the

current specification.

S trictly speaking, th e curren t specification is not sufficient either. I t assumes th a t code

for all control operations appears in the OnSize handler. I t m ay be so for m ost cases, bu t

it is also possible for one to create another m ethod to separate the code for “updating

controls,” then this specification would fail to check th a t the control operations there are

also properly guarded. T he aforem entioned call graph opera to r ‘expC losure’ might come to

th e rescue in th is case.

6.7 Optional Features

O ptional features are logical functionalities provided by th e fram ew ork b u t not m andatory

for all applications. In general, program m ers m ay have tw o types of problem s with optional

features: how to find them and how to correctly use them . FCL can help w ith the la tte r

type of problem.

To apply FCL to a certa in optional feature, one needs first to knowr w hether the feature

is indeed used. W ith th a t inform ation, FCL can then check w hether the feature has been

correctly used. Logically, th is is a p a tte rn of the form = > F2, where F\ is a formula

indicating th a t the featu re is used, and F2 the constrain ts to which the solution has to

conform.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are two possible ways of getting F j : One is to ask the program m er to provide

the list of features th a t he thinks his application is using, and the other is to find some

code p a tte rn s whose appearance can be used to infer safely th a t the feature is indeed used.

Since the la tte r m ethod is less dem anding of inform ation, norm ally it should be preferred;

however, not all features possess the necessary code p a tte rn s for FCL to leverage; thus

sometimes user inpu t m ay be needed as well. T he following two examples illustra te the

respective types of optional features.

6.7.1 Enabling/ Disabling ESC and R E T U R N Keys

I t is common in GUI program m ing to provide m ultiple ways of issuing a command, for

instance, th rough a bu tto n , a menu item , a hot key, and so forth. In particular, a dialog

can be term inated in three ways: through the ok and cancel bu ttons, through the close icon

provided as p a r t of the M icrosoft user interface s tan d ard , and th rough the ESC and E N T E R

keys.

CMyDialog::OnOK(){
CMyDialog::OnCancel(){

+ P r e T r a n s l a t e M e s s a g e (pM sg:M SG *) : b o o l e a n
+OnOK() : v o i d
-t-OnCancel () : v o i d

CDialog

if (pMsg->hWnd is an edit &&
pMsg->message is WM_KEYDOWN &.&
pMsg->wParain is ESC) {

Figure 6.6: D isabling ESC and R E T U R N Keys in a Dialog

Figure 6.6 depicts the relevant design. T he O nO K and OnCancel m ethods are the

corresponding event handlers for pressing the ok and cancel bu ttons. PreTranslateM essage

is a v irtual m ethod th a t can be overridden to pre-process a message; only when the m ethod

re tu rns tru e will the message be fu rther passed on to th e message dispatch mechanism.

By default, CD ialoguPreTranslateM essage in tercepts key presses such as ESC and EN T E R ,

in terprets them as requests to term inate the dialog, and invokes the corresponding event

handlers.

At least two solutions can prevent the ESC key and the E N T E R key from term inating

a dialog, as shown in Figure 6.6. One solution is to (1) define tw o em pty event handlers for

the ok and cancel bu ttons, which are provided as default by th e GUI editor, and (2) remove

the two bu ttons from the dialog. This works because of polym orphism : bo th O nO k and

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O nC ancd are v irtual m ethods; thus when ESC and E N T E R are pressed, their corresponding

em pty versions of handlers will be executed, which effectively disables them.

The other solution is through overriding PreTranslateM essage in the CMyDialog subclass

and checking the message represented by the pM sg param eter. If the message is an ESC

key or an E N T E R key, then the m ethod re tu rns false, and thus effectively consumes the

message w ithout any effect. The shortcom ing of th is solution would be th a t it d istributes

the term ination logic into two places, which m ight cause a poten tia l m aintenance problem

in the future. Thus the first solution is preferred.

It is easy to w rite an FCL specification to detect th e presence of the two em pty handlers;

thus we om it it.

6.7.2 Enabling Tooltips

Tooltips is an exam ple w ith a code p a tte rn ind icating th a t the tooltips feature is being

used. MFC Internally keeps track of when the m ouse pointer enters or leaves the boundary

of a control. If the pointer stays w ithin th e control for over a certain am ount of tim e,

a notification message will be generated and sent to the dialog th a t contains th e control.

To respond to the notification, the dialog has to define its corresponding m essage handler

nam ed “OnToolTipNotify.” Inside th a t m ethod, one can prepare the tooltip tex t to be

displayed.

B ut to enable the tooltips feature for the dialog, one also has to call the EnableToolT ips

m ethod in the O nlnitD ialog m ethod. This is a program m ing obligation th a t m any often

forget. The following FCL specification can be used to detect th is error of omission:

1 DerivedDialog as subclass(class("CDialog"));
2
3 forall derivedDialog being DerivedDialog holds
4 [
5 onToolTipNotify as { fct:function(derivedDialog) |
6 name(fct)="OnToolTipNotify"
7 };
8
9 onlnitDialog as { fct:function(derivedDialog) |
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

73

name (fct)="OnInitDialog"

sizeof(onToolTipNotify)=0
or
sizeof(onlnitDialog) = 1
and
forall onlnitDialog being onlnitDialog holds
exist enableToolTips being exp(onlnitDialog) holds
(
name(enableToolTips)="EnableToolTips"
and sizeof(arg(enableToolTips))=1
and
[theOnlyArg as member(arg(enableToolTips),0)]
(name(theOnlyArg)="true" or name(theOnlyArg)="1")

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In th is example, the appearance of the OnToolTipNotify m ethod is used to indicate th a t

the too ltip feature has been used.

6.8 The W indows Creation M ethods

The class CWnd is the base class of all the M FC classes ‘w rapping’ W indows controls. It

defines th ree public m ethods for window creation, as shown in Figure 6.7. Among the

three m ethods, C rea teE x j1 is the core. I t calls the W indows A PI CreateWindowEx to create

the control object. I t also im plem ents th e crucial m apping between the operating system

controls and C + + w rapper objects so th a t once the m apping is established, all messages

for the controls can be rou ted to th e message handlers of the M FC subclasses ra ther th an

the default message processing routines provided by the W indows operating system . Both

CW nd::Create and Cwnd.cCreateExa eventually call C W nd::C reateExi.

(crealeExl(...))

CWnd

v BOOL Creaie(...) or -

BOOL CreatefExI (...)
BQOLpreateEx2(...) Q -'

class CWnd: publi£ CCmdTarget
{

public: 1
//For child ̂ windows, views? panes etc

 ̂ virtual BObL Create(LPCTSTR ipszClassName,
 ̂ LPCTSTR IpszWindowName, DWORD dwStyle,
\ con's! RECT & rect, CWnd * pParentWnd, U1NT nID,

\ CCteateContext ’ pContext = NULL);
//Advance ̂creation (allows access to extended style)
BOOLbreateEx(DWORD dwExStyle, LPCTSTR IpszClassName,

LPCTSTR IpszWindowName, DWORD dwStyle,
intx, int y, intnWidth, intnHeight, HWND hWndParent,
H^ENU nIDorHMenu, LPVOID IpParam = NULL);

BOOL CreateEx(DWORD dwExStyle, LPCTSTR IpszClassName,
LPCTSTR IpszWindowName, DWORD dwStyle,
const RECT & rect, CWnd * pParentWnd, UINT nID,
LPVOID IpParam = NULL);

};

F igure 6.7: C W nd::C reate and the two overloaded C W nduC reateE x

If a program m er subclasses th e class CWnd, th e n each subclass m ust define a t least

one public m ethod directly or indirectly calling one of the three m ethods: CW nd::Create,

C W nd::C reateExi, or CW nd::CreateEx2 . Furtherm ore, outside of th e subclasses there m ust

exist invocations of a t least one of the m ethods.

These constrain ts can be specified using FCL as follows:

1 // for child windows, views, panes etc
2 def create = CWndCreate (LPCTSTR,
3 LPCTSTR, DWORD,

1T he first CreateEx in F igure 6.7. We use subscrip ts to distinguish betw een th e two CreateEx.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 const RECT&,
5 CWnd*, UINT,
6 CCreateContext*);
7
8 // advanced creation (allows access to extended styles)
9 def createl = CWnd::CreateEx(DWORD, LPCTSTR,
10 LPCTSTR, DWORD,
11 int, int, int, int,
12 HWND, HMENU, LPVOID);
13
14 def create2 = CWnd::CreateEx{DWORD, LPCTSTR,
15 LPCTSTR, DWORD,
16 const RECT&,
17 CWnd*, UINT,
18 LPVOID);
19
20 allClasses as class (global) ,-
21 newWindows as subclass(class("CWnd")) ;
22
23 not sizeof (newWindows) > 0 or
24 forall class being newWindows holds
25 t
26 creationMethods as {m: function(class) |
27 exist exp: expClosure(m) holds
28 [fct as function(exp);]
29 (fct=createl or fct=create2 or fct=create)
30 };
31]
32 (
33 sizeof(creationMethods) > 0 and
34 exist anotherClass being allClasses - newWindows holds
35 exist exp being expClosure(anotherClass) holds
36 [fct as function(exp);]
37 belongsTo(fct, creationMethods)
38)

The first th ree sta tem ents of the specification are shorthands for the long m ethod pro­

totypes.

6.9 Overriding C D ocM anager::D oP rom ptF ileN am e

Figure 6.8 depicts th e m ost im portan t classes of M FC ’s MDI (M ultiple D ocum ent In ter­

face) arch itecture (the M FC varian t of th e MVC architecture [KP88]). T he singleton class

CWinApp hooks up all aspects of an M FC-based application. The class runs th e event loop­

ing logic; G UI messages due to user in teraction first arrive a t and are d ispatched from this

class. The class C D ocM anager m anages and coordinates the classes th a t im plem ent doc­

um ents. Particularly , each application contains a docum ent m anager to m anage b o th the

types of docum ents th a t it supports and th e docum ents currently opened by th e application.

MDI standardizes th e looks and feel of applications. In particu lar, each application can

have two m enu items: “F ile /O pen ...” and “File/Save as ...” . If either item is selected, the

standard behavior is to pop up a file dialog, allowing users to choose from a list of files.

It tu rns out th a t the v irtua l m ethod C DocM anager: :D oP rom ptF ileN am e(..., int IFIags, ...) is

responsible for popping up th e dialog and displaying files according to certain criteria , which

are set up th rough the param eter IFIags. IFIags specifies the file filtering p a tte rn s using a

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CDocManager

(v) SOOL
D oProm ptFileN am e(.)

M O D EL

C D o cT e m p la te

C V iew ' createViewQ

CD ocum ent * creat©Documenl()

CDocTe-mplme 1 n̂j’forphni'

ilQ N T R O L L E R
C W inA pp «

(v) InitlnslanceO 0 ------
DoPromp!FileNamc(.)

C D ocM anager*
m _ p D o c M a n a g e r

C M D lFram eW nd VIEW
A n in te rm e d ia te w in d o w

w hich c o n ta in s m u ltip le
M D fC h ild W m l w id so ts

V
C V irw ■* ,.i jdVll'.'kVMV

V v

C V ie w « w i n » C M D IC hildW nd
« w i i i »

P a r e n t child

« s in g l e to n »

Association through object pointers

Association through parcnt-children relation maintained by W indows

Each MFC based application has only one global object o f CWinApp
Wrapper class for Windows control

Figure 6.8: Class diagram for the M DI architecture

com bination of b it p a tte rns. The sequence diagram s of Figure 6.9 depict how the m ethod

is invoked in the two scenarios respectively.

Now, suppose th a t a fram ework user is asked to change th e default file filtering p a tte rn

for his specific application. In order to do so, he must:

1. Subclass th e class C DocM anager.

2. Override the D oProm ptFileN am e m ethod. The override should first change IFIags and

th en call C D ocM anager::D oProm ptFileN am e.

3. Subclass th e class CWinApp.

4. Override the C M yW inA pp::lnitlnstance() m ethod. T he override should create an object

of C M yDocM anager on th e heap and assign it to the instance variable rrupDocManager

before call the A ddD ocT em plate m ethod.

Figure 6.10 illustrates these constraints, where th e class C M yD ocM anger is the subclass

of C D ocM anager, and CM yW inApp is the subclass of CWinApp.

The constrain ts can be specified w ith FCL as follows:

1 CDocManager as class("CDocManager");
2 CMyDocManager as subclass(CDocManager);
3 DoPromptFileNameOfDocManager as function("DoPromptFileName",CDocManager);
4 sizeof(CMyDocManager)=1 or sizeof(CMyDocManager)=0;
5 forall docManager being CMyDocManager holds
6 [DoPromptFileName as function("DoPromptFileName",docManager);]
7 (
8 not sizeof(DoPromptFileName)=1 or
9 exist e being exp(DoPromptFileName) holds
10 (
11 DoPromptFileNameOfDocManager=function(e) and
12 [
13 IFIags as member(param(DoPromptFileName),3);

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Windows

: CW inApp

: C Docum ent

tmemi item /D oSave

D oProm ptI i eN am e

Windows

: CW inApp : C D ocM anagerr„
onFileO pen

DoPromptFH

OpenDocum t

,eName

ilfile

Event flow
control flow

italic m essage handlers

Figure 6.9: How is D oProm ptFileN am e invoked after choosing the “F ile /O pen ...” or
“F ile/Save as ...” menu item s

14 argFlags as member(arg(e),3);
15]
16 dep(argFlags, IFIags);
17)
18)
19
20 CWinApp as class("CWinApp");
21 CMyWinApp as subclass(CWinApp);
22 sizeof(CMyWindApp)=0 or sizeof(CMyWinApp) = 1;
23 sizeof(CMyDocManager)=0 or
24 sizeof(CMyWinApp)=1 and
25 forall myWinApp being CMyWinApp holds
26 [Initlnstance as function("Initlnstance", myWinApp);]
27 (
28 sizeof(Initlnstance)=1 and
29 exist e being exp(Initlnstance) holds
30 [type as refd(member(arg(e),0));]
31 (name(e)="new" and type = CMyDocManager)
32)

T his exam ple shows th a t sometimes a variation point can involve more th a n one point of

a framework. In particu lar, the variation point m ay be p a r t of the behavior of two m ethods.

To elaborate it, one has to understand th e surrounding context, th a t is, how these two

m ethods work in general, how the variation point works w ithin them , and how to hook the

variant back into the framework. This is no t a triv ial task .

Furtherm ore, the curren t design of D oProm ptF ileN am e seems inadequate to support all

the custom ization th a t users may w ant to perform . It could be redesigned as a tem plate

m ethod design p a tte rn [G H JV 94] so th a t one can do e ither one of the following:

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+DoPromptFileName(...): BOOL
CDocManager

+DoPromptFileName(...): BOOL
CMyDocManager

+Ini tInstance () BOOL
CMyWinApp

#m_pDocManager: CDocManager
+Ini tInstance {) .- BOOL

CWinApp

Figure 6.10: Overriding the m ethod D oProm ptFileN am e

• replacing the default dialog used to display files;

• changing IFIags;

• deciding w hether th e file filter p a tte rn is needed in a file dialog.

This example illustrates th a t fram eworks m ay evolve even after they are used in production.

6.10 Enforcing Nam ing Conventions

T he function regex has been added to FCL to express regular expression p a tte rn s on charac­

te r strings; thus FCL can also be used to enforce certa in nam ing conventions. For example,

in M FC program m ing, one m ay require th a t the nam es of control variables be prefixed w ith

“c .” instead of “m_” and use “m_” only for value variables. Clearly th is constrain t can be

expressed w ith regular expression patterns.

6.11 Discussion

This section discusses the n a tu re of the previous problem s and p u t them into perspectives:

1. Lack of knowledge on th e design of th e fram ework

Learning to use a fram ework is not an easy task , and the devil is in the details.

The challenge stem s b o th from the com plexity of software in general and from the

difficulty of com m unication. This challenge is for bo th the fram ework developers and

the framework users. As exemplified by th e examples in sections 6.4, 6.5, 6.6, 6.7.1,

and 6.9, docum entation of th e detailed designs can get fairly verbose. Fram ework

developers face the ta sk of effectively docum enting and com m unicating th e design to

the users. On th e o ther hand, to avoid the problem s, users m ust know enough about

the details. This is a ram ification of th e essential difficulty of software.

The difficulty can be inform ally appreciated by counting the num ber of classes and

m ethods each design involves. A lthough th is is no t an objective m eans of m easuring

design complexity, it seems sufficient to allow us to conclude th a t m ost of the designs

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are not as triv ia l as creating an object or calling an API and th a t the com plexity of

the design is one of the m ain contributors to th e problem of using frameworks.

Early reuse efforts focus m ostly on libraries and generally do not pay off as much

as expected. T he recent trend is to reuse architectures as a whole, which essentially

provide the contexts for reuse. As Johnson [Joh97] points out, “although a good com­

ponent library is a crucial com panion to a framework, the essence of a fram ework is

not the com ponent library, bu t the model of in teraction arid control flow am ong its

objects.” P rogram m ers have to learn how to live w ithin the provided architectural

contexts. T h a t is, to learn the model of in teraction and control flow instead of indi­

vidual functions or classes. Experience has indicated th a t this is not a trivial m atte r.

A utom atically detecting errors is needed to support th is kind of reuse.

Another observation is th a t some variation points are “open.” It seems challenging for

a user to elaborate on an “open” variation poin t since to do th a t, they would have to

not only understand the design of the relevant p a rt of th e framework, b u t also make

design decisions to fill in the open parts.

Also note th a t some constrain ts originate no t from exploiting the design to achieve

certain functionalities, bu t from avoiding problem s caused by the design. Handling

the OnSize m essage is such an example. We call such a design a “negative design.”

This does no t necessarily m ean th a t overall th e design is poor, although they can be

triggers for revising the design.

Gan we design b e tte r to solve the problem ? T he answer is bo th yes and no. In general,

it is always possible to improve a particu lar design for concerns like usability. B u t we

suspect th a t due to th e n a tu re of reusing frameworks, the essential difficulty cannot

be removed simply by a b e tte r design. We ju s t have to live w ith it.

2. Enforcing program m ing disciplines

Sometimes one m ay w ant to enforce im portan t program m ing disciplines for bo th mod-

ifiability and m aintainability . Sections 6.5 and 6.3 provide two relevant exam ples.

3. Forgetting program m ing obligations

At least two types of program m ing obligations are easy to forget. One is for the

override to call an appropria te version from the base class, the o ther is w hat we

call “d istribu ted obligations,” where to fulfill a logical function, one has to change

more th a n one spot of the source code. Section 6.7.2 is an exam ple of “'d istribu ted

obligations.”

4. Evolving Frameworks

It is rarely possible to deliver a high quality fram ework once and for all; instead,

frameworks are more likely to evolve as they are used and feedbacks are gathered from

the users. Likewise, the intended ways of using a fram ework may evolve as well.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Some constrain ts are related to software evolution; bo th frameworks and applications

can evolve. One exam ple for framework evolution is the D oProm ptFileN am e m ethod.

A nother is the G etD lgltem m ethod; initially, it is designed as the m ain wav of retriev­

ing the object for a control. B ut this tu rns out no t to be the right way. FCL can be

used to prevent any further use of the m ethod.

Factors th a t a specifier needs to consider when applying FCL include:

1. Choosing between sym ptom -oriented and feature-oriented strategies;

2. Avoiding false positives and false negatives;

3. A pplying engineering judgm ents when w riting FCL specifications;

4. Knowing the lim itation of FCL: some sem antics are useful bu t cannot be captured in

FCL.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Case Study 3: Enforcing
General D esign Rules

This chapter presents how to specify the law of D em eter [LH89] and M eyers’ C + + guide­

lines [Mey92b, Mey96] in FCL. O ur purpose is to illustra te th a t th e applicable scope of

FCL is no t confined to frameworks; it can also be used to enforce existing generic design

principles.

FCL specification for a version of the “Law of D em eter” is w ritten . I t is th en tested on

two sm all examples. One is taken from the paper: “A ssuring Good Style for O bject-O riented

P rogram s” [LH89]. The o ther is taken from M artin Fowler’s refactoring book [F+ 99]. The

specification is also tested against the corrected versions of the examples. In all cases, FCL

can respond correctly, either pointing out the place of the violations or reporting th a t there

are no errors.

This chapter also analyzes a subset of C + + program m ing rules. The goal is to justify

our belief th a t expressions are indispensable for any such tools as FCL.

7.1 Introduction to the “Law of D em eter”

T he “Law of D em eter” expresses the general principles of software design, such as infor­

m ation hiding and low coupling and high cohesion, in an easy-to-follow form. The basic

idea is to reduce as much as possible the am ount of dependency th a t a m ethod pu ts on

its environm ent. Simply pu t it, if one finds oneself m aking use of more th a n one level of

indirection in code, it is m ostly likely th a t one is violating the “Law of D em eter.” It is

because of this th a t some people define the law by simply saying: “D on’t use m ore th an one

do t.” This sim plification is no t a hundred percent accurate, b u t it captures th e m ain idea.

F igure 7.1 depicts an exam ple th a t violates th e law; the im plem entation of the statem ents

m ethod of the Custom er class uses the class Movie th rough th e R ental class, which should

have been avoided.

Even though its nam e suggests otherwise, it is m ore accurate to consider the “Law of

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

customer

has ►
rental

-getTitle(): string
Movie

+getMovie(): Movie
aMovie: Movie

Rental

^statements(): string
rentals: vector<Rental *>

Customer

result+=_rentals[i]~>getMovie()->getTitle{);

return result;

string result;

F igure 7.1: Video Store

D em eter” a heuristic or guideline; in practice, certain violations of th e law are considered

acceptable.

Therefore, the general design principles are still the u ltim ate standards for judging the

quality of a specific design. In a sense, th e “Law of D em eter” is only a “surface” version of

th e general principles. Yet, because th e law is phrased in term s of program m ing constructs,

it is possible to enforce it a t com pile-tim e w ith au tom ated tools.

7.2 The Class Version of the “Law of D em eter”

Several versions of the law exist for different purposes. For exam ple, the object version

s ta tes the law in term s of run-tim e objects, and thus provides us th e best conceptual model

to follow. B ut it is difficult to enforce it w ith tools. In contrast, the class version phrases

th e law in term s of compile-time artifacts, and thus makes it possible to program m atically

check any violation of the law. Since our goal here is to dem onstrate how FCL can be used

to encode the law, we choose the class version.

To present the class version of th e law, we need to define several term s first:

C lient M ethod: A m ethod can be either an instance m ethod or a sta tic m ethod. If th e im ­

plem entation of a m ethod M has a t least one expression either of the form “o .m (.. .) ” ,

where the sta tic type of o is th e class C, or “C . m (. . . where m is a s ta tic m ethod of

the class C, then M is the client of the m ethod m of the class C; M is also th e client

of the class C itself.

Supplier Class: A supplier class to a m ethod M is the class whose m ethods are called by

M. Thus if the m ethod M is th e client of the class C, then C is M ’s supplier class.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preferred Supplier Class: A class C is a preferred supplier class to a m ethod M if C is a

supplier class to M and one of the following conditions holds:

• C is used as a p a r t of the type of an instance variable of Cm - where C m is the

class to which M belongs.

• C is used as a p a r t of the type of a formal param eter of M.

• C is used as a p a r t of th e type of a local variable of M.

• C is used as a p a r t of the type of a global variable referenced by M.

Languages like C + + allows indirect types, i.e., po in ter or reference types, array types,

and container types generated by in stan tia ting tem plates of STL. In the case of indirect

types, we consider the types th a t are referenced as suppliers. In the case of array and

containers, we consider the elem ent types as suppliers. T h a t is why in the above

conditions, C is required to be “a p a rt of the type of” th e respective variables.

W ith the definitions of these term s, the “Law of D em eter” can be phrased as follows:

Every supplier class to a method must be a preferred supplier class.

7.3 The “Law of D em eter” in FCL
1 AllClasses as [class("Movie"), class("Rental"), class("Customer")];
2 forall C: AllClasses holds
3 [
4 // classes thru instance variables
5 classesBylnstance as { v: var(C) |
6 [varType as type(v);]
7 isClass(ptdTypeStar(varType)) |
8 Class(ptdTypeStar(type(v)))
9 } ;
10 // types thru templates instantiations
11 generated as { v: var(C) |
12 [varType as type(v);]
13 isGenerated(ptdTypeStar(varType)) |
14 Generated(ptdTypeStar(type(v)))
15 } ;
16 templArgs as union({ t: generated | true |exp(t)})
17 classesReferredByCollection as { expr: templArgs |
18 isClass(ptdTypeStar(refd(expr))) |
19 Class(ptdTypeStar(refd(expr)))
20 }
21]
22 forall M:function(C) holds
23 [
24 classesByParam as { v: param(M) |
25 [varType as type(v);]
26 isClass(ptdTypeStar(varType))
27 |
28 Class(ptdTypeStar(type(v)))
29 } ;
30 preferredSuppliers as classesBylnstance + generated + classesByParam +
31 classesReferredByCollection + [C] ;
32
33]
34 forall E: exp(M) holds
35 [
36 Receiver as receiver(E);

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38
3 7 referredVar as Var (refd {Receiver))

typeOfVar as type (referredVar),-
39
40
41
42
43
44
45
46
47

(// The receiver is a var: a global variable or a local variable
(isClass(typeOfVar) or isGenerated(typeOfVar))
and

unit(referredVar)=unit(E)
or
first(unit(referredVar))=global

48 // The receiver is an expression
49
50
51
52
53
54
55
56
57
58
59

or

or not println(E)

([
typeOfReceiver as type(Receiver);
basicType as ptdTypeStar(typeOfReceiver) ;

not isDefined(basicType) or belongsTo(basicType, preferredSuppliers)

The overall s truc tu re of th e specification consists of th ree nested universal quantifica­

tions, starting a t lines 2, 22, and 34, respectively. R ephrased in English, they mean:

For each class C, of th e set of classes th a t need to be checked, for each m ethod

M, of C ’s m ethods, for each expression E, of th e expressions th a t belong to the

m ethod M, E m ust obey th e Law of Dem eter.

The block from line 3 to 21 defines local variables for the sub-form ula of line 2; th a t is,

these variables will be visible w ith the form ula s ta rtin g a t line 22. T he local variables define

the sets of supplier classes th a t are generated due to the class C; specifically, classesByln­

stance defines th e set of supplier classes th a t are in troduced th rough the instance variables

of the class C. generated represents the sets of tem plate instan tia tions. And classesByCol-

lection is the sets of supplier classes th a t are the argum ent to th e tem plate instan tiations.

Together, lines 5 to 9 form a set com prehension th a t defines classesBylnstance. var is

a function th a t re tu rns th e set of instance variables of the class C. type is a function th a t

returns the type of a variable. p tdT ypeS tar is a function th a t re tu rns the “basic” type of a

type; if the type is a po in ter to another non-pointer type, the function will re tu rn th e la tte r

as its basic type. isClass re tu rn tru e if its argum ent is a class. Class is a cast function th a t

casts a type to class.

Lines 11 to 15 is ano ther set com prehension th a t defines generated. isG enerated is a

predicate th a t re tu rns tru e if and only if its argum ent type is a generated type. G enerated

is a casting function th a t can cast a type to a generated type.

templArgs is a tem porary variable th a t represents the set of types th a t are used as

argum ents to th e generated types. A generated type is an expression. T he function exp

returns the set of the sub-expressions of its argum ent. For exam ple, if the argum ent to exp

is a generated type of the form “L 1<L 2<L 3 * > , L 4 > ,” then th e result of applying exp to

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it should be a set th a t contains “L2<L3 *>”, “L3 *” , and “L4”. The operation union then

flattens all the sets to form a new one.

W ith tem plA rgs, classByCollection is then defined as the set of supplier classes th a t are

in troduced th rough tem pla te instantiations. N ote th a t refd is a function th a t re tu rns the

object th a t a nam e reference refers to.

Lines 23 to 33 defines local variables for the second forall formula. I t first defines class-

esB yParam , which represents the set of supplier classes in troduced th rough the param eters

of the m ethod M. T hen it defines the preferred classes of the m ethod M as the union of

relative sets, as shown in lines 30 and 31.

W ith all these variables defined, we can proceed to check each expression E of the m ethod

M (lines 34 th rough 59). For each expression E, Receiver is defined as its receiver expression.

If, however, E is no t a message sending expression, Receiver will be “undefined.” In this

case, the whole form ula eventually will be true. T his is because b o th typeOfReceiver and

basicType will be “undefined” (line 51 and line 52),and thus isDefined a t line 55 will yield

false, which in tu rn , m akes th e whole sub-form ula a t line 55 true. This reflects our intention;

In this version of th e law, we are only interested in checking nested message sending.

There can be th ree cases for the receiver expression. I t can be a reference to a variable,

which can be either a local one or a global one. I t can also be a com pound expression.

If Receiver is a reference to a variable, then referredV ar will be the variable th a t Receiver

refers to and typeO fV ar the type of the variable. A ccording to th e law, in order for the

m essage sending expression to be valid, referredVar has to be either a global variable or a

local variable. T he locality of referredVar is checked using th e un it function, as show in

lines 44 and 46, respectively.

If, however, th e Receiver is a com pound expression, then we have to check w hether its

type is one of the preferred supplier classes. This is reflected in the FCL specification at

lines 50 th rough 57.

Finally, if E does no t satisfy any of the above conditions, then it is no t a valid expression

in term s of the law. A nd its content will be prin ted ou t (line 58).

7.3.1 D iscussion

Note th a t the calculation of th e set of classes involved through param eters is a b it simplified;

param eter types can be generated types, and thus a com plete specification would need some

ex tra specification sim ilar to lines 4 th rough 20. T his is all right for our exam ples since they

do not use generated types in the declaration of param eters, bu t to use this specification in

a m ore general context, we would have to fix th is problem .

This exam ple also makes extensive use of the type-related features of FCL. In particu lar,

note th a t FCL trea ts generated types as expressions, as shown by line 16.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N ote th a t there is a m ajor flaw in the above trea tm en t of the law: if, instead of accessing

the movie through array indexing as the exam ple does, one defines a local variable th a t is

a pointer to the class Movie, and accesses the movie through the local variable, then FCL

would no t be able to detect this violation of th e law. Thus a false negative is generated. A

rem edy to th is problem would be to add to FC L some sort of pointer analyses, reporting

errors when a local variable obtains some value th a t lives beyond the current m ethods.

Poin ter analyses, however, are known to be conservative by n a tu re [Ryd03], therefore cannot

com pletely elim inate all such false negatives. This exam ple illustrates the kind of tradeoff

which one has to make when using sta tic analyses like FCL.

7.4 Specifying a Subset of M eyers’ C + + Rules in FCL

In an article of Dr. D obb’s journal [MK97], Scott Meyers and M artin K laus reports an

evaluation of 5 C + + compilers and 8 sta tic analyzers, including CCEL [MDR93], on their

ability of detecting anom alies from C + + program s. T he benchm ark consists of 36 rules, 34

of which are taken from M eyers’ two books: “Effective C + + ” [Mey92b] and “M ore Effective

C + + ” [Mey96].

T hese tools take different approaches on expressing th e constraints; some, like the com­

pilers, hard-code the rules, some define special languages for specifying constrain ts, and still

some pre-define a lib rary of common rules while provide the ability for users to define their

own custom rules. One finding reported by th e article is th a t th e specification languages

m ust be designed w ith care, and th a t declarative ones are easier to w rite and understand

th a n im perative ones.

CCEL fails 17 of the 36 rules. Upon closer scrutiny, we find th a t m ost of them involve

expressions in one way or another. This is no t surprising since CCEL stops a t the level

of functions and m ethods: it does not support expressions. This reinforces our belief th a t

expressions are an indispensable p a rt of such tools, and we are glad th a t FCL has taken

them into account right from the beginning.

In the following, we study the 17 rules which CCEL fails to handle. Each rule s ta rts

w ith a num ber, a le tte r, and another num ber, following by a short description. The first

num ber is the num ber of the rule in the original list [MK97]; le tte r M represents the book

“M ore Effective C + + ” and E “Effective C + + .” The num ber th a t follows th e le tte r is the

num ber of th e corresponding item in the books. Being lazy, we only rephrase the rules in

English; it should be evident th a t they can be specified in FCL.

1. 2 M 2 Use new-style casts instead of C-style casts

This can be rephrased as “there are no C-style cast expressions in C + + program s,”

and thus is checkable in FCL.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. 3 M 3 D on’t trea t [a pointer to] Derived]] as [a pointer to] Base]].

For any argum ent to any function call, if its type is an array, and the element type

of the array is a subtype of the elem ent type of the corresponding param eter of the

function, then it violates this rule.

3. 4 E 5 Use the same form for calls to new and delete. (In general, th is calls for dynamic

analysis, bu t static analysis can catch some special cases, e.g., calls to new in ctors

and to delete in dtors.)

If there is a new expression in a ctor, then there m ust exist a delete in a dtor; if there

is a new]] expression in a ctor, then there m ust exist a delete[] in a d tor.

4. 5 E 6 W hen the result of a new expression in a ctor is stored in a class m em ber, make

sure delete is called on the m em ber in th e dtors.

For any pointer d a ta m em ber, if it is initialized by a new expression in any ctor, then

there m ust be a delete expression in a d tor.

5. 8 E 12 Initialize each class d a ta m em ber via the m em ber initialization list.

W ith in each ctor, for each class d a ta m em ber, there is a t m ost one of ctors and

assignm ent operators invoked.

6. 9 E 13 List m embers in a m em ber in itialization list in an order consistent w ith the

order in which they are actually initialized.

This example needs lexical inform ation: in th is case, the line and colum n num bers of

each d a ta mem ber would be needed to com pare their positions.

7. 11 E 15 Have the definition of o p e ra to r= re tu rn a reference to *this. (Note: th is says

nothing about declarations.)

This boils down to the requirem ent th a t there be a t least one expression of th e form

“*this.”

8. 12a E 16 Assign to every local d a ta m em ber inside o pera to r= .

This seems to be too strong; a m em ber of “char *” may very well be first initialized in

a ctor and then obtain its content th rough strcpy in o p e ra to r^ . Instead , we require

th a t inside op era to r= there be an assignm ent expression for each non-poin ter d a ta

mem ber.

9. 12b E 16 Call a base class o p e ra to r= from a derived class o p e ra to r^ .

Of course, the prerequisite for th is is th a t th e base class defines o p era to r= .

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10. 12c E 16 Use the m em ber in itialization list to ensure th a t a base class copy ctor is

called from a derived class copy ctor.

11. 13 Don’t call v irtu a l functions in constructors or destructors.

Being virtual is a p roperty of functions, and FCL can tell constructors and destructors

through their special nam ing conventions. This is checkable in FCL. In fact, I did make

such an error when im plem enting FCL.

12. 21 E 29 and E 30 D on’t re tu rn pointers/references to in ternal d a ta structu res unless

they are po in ters/references-to-const.

I am not sure th is rule is absolutely correct; it seems highly depend on the sem antics

of the specific application. For example, to re tu rn a reference to char from a string

seems appropriate to me. Instead , I would like to require th a t any expression returned

be neither a po in ter nor an array.

13. 22 M 26 Never define a sta tic variable inside a non-m em ber inline function unless the

function is declared extern.

Any non-extern and inline function should no t define sta tic variables.

14. 26 M 5 Avoid use of user-defined conversion operators (i.e., non-explicit single argu­

m ent ctors and im plicit type conversion operators).

No expressions invoke conversion operators.

15. 29 M 6 Use prefix + + and — when the result of th e increm ent or decrem ent expression

is unused.

In a program , there exist no such expressions th a t are either postfix + + or — , bu t

have no parent expressions.

16. 31 M 11 P revent exceptions from leaving destructors.

Currently FCL does no t handle exceptions.

17. 32 M 13 C atch exceptions by reference.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Related Works

This chapter surveys w orks re lated to FCL:

• P rogram analyses are technically relevant since they all require parsing and type anal­

ysis. Section 8.1 surveys and com pares a set of such tools, analyzing the ir similarities

and differences.

• P rogram specification languages are relevant since FCL is a specification language

too. Section 8.2 sum m arizes the m ain features of two recent specification languages:

Alloy [Jac02] and OCL [WK99], the in teraction contract [HHG90], and the W right

architecture specification language [AG97].

• Tools specifically for error detection are surveyed in section 8.3. In particu lar, two

closely related works, CCEL [LM93, MDR93] and CoffeeStrainer [Bok99], are com­

pared w ith FCL.

• O ther related works include docum entation, tools for fram ework instan tia tion , and

sem antics for object-oriented languages. Section 8.4 surveys works in these areas.

8.1 Program Analyses

M any source code analysis tools [CNR90, PP96, P P 94a, MN96, Dev99, DRW96, LR95,

C+ 00b, MS95, Cre97] have been developed to perform a variety of software engineering tasks,

ranging from program understanding , design recovery, and reverse engineering, th rough

software testing, to softw are transform ation and restructuring . These tools are technically

relevant to our work; knowing them can help us answer such questions: “since many tools

have been created before, why bother developing a new one?” Moreover, by pu tting the tools

together and com paring them , one can gain a b e tte r understanding of th e whole problem

space, the position of our too l in th a t space, and its streng ths and lim itations.

In general, these tools can be divided into two categories according to w hether they need

to change the source: query tools th a t only read source code and restructuring tools th a t

both read and w rite source code.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Query tools parse existing source code and ex trac t facts. The process can be sum m arized

into three steps:

• E x tract: P arse th e source and ex tract elem entary facts from it.

• A bstract: Perform queries on the ex tracted facts to derive inform ation relevant to

one’s analysis tasks.

• View: Visualize the derived inform ation.

R estructuring tools also parse and ex tract facts from source, bu t with a different goal:

to either transform the source to another language or to “im prove” it according to certain

criteria. Consequently, the process now becomes extract-abstract-transformations, where

the transform ation step restructu res code using the sem antic inform ation obtained in the

abstraction step.

At the high level, all these tools consist of th ree key elements:

• program databases (also called fact bases, program repository, and so o n),

• schemas (also called conceptual model [CNR90] or data model [CGK98]) for the pro­

gram databases, and

• a query or m anipulation language of some sort.

8.1.1 A sum m ary o f com mon tasks

A list of common tasks m ay help us be tte r understand the needs for such tools. Query tasks

found in the lite ra tu re include:

• A rchitecture reconstruction and visualization

• P rogram organization

Exam ples include th e set of files in a program , header file inclusion, file interfaces (the

set of functions defined in one file and called by ano ther file), and so on.

• Reachability analysis and dead code detection [CNR90, CGK98]

• Com puting m etrics

Exam ples include M cC abe’s cyclomatic com plexity [Cre97, DRW96, PP96], average

function and file sizes [PP96], FANIN and FANOUT [PP96], and so forth.

• Fine-grained query of syntactic code p a tte rns, e.g. [PP94a, Cre97, Dev99]:

— Finding all instances of simple assignm ent expressions appearing in any condi­

tional expressions.

— Finding all instances of equality-tests and dereference expressions whose results

are discarded.

— Finding all instances of conditional or ite ra tion sta tem ents th a t have em pty bod­

ies.

— Finding all case s ta tem ent fallthroughs.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— Finding the set of case conditions of a switch statem ent.

— Finding all switch statem ents w ithout th e default branches.

— Finding gaps (unused space due to m em ory alignm ent) in structure definition.

— Finding instances of code pattern s, such as th ree levels of nested loops or long

if-then-else, as a candidate of rew riting to switch statem ents.

— Finding all compound sta tem ents whose bodies are not enclosed w ithin curly

braces.

— Finding all instances of variable redeclaration in nested scopes.

• Resource flow analyses such as d a ta binding [PP96, CNR90]

» Control flow analyses such as Call G raph E x trac tio n [PP96, CNR90]

Exam ples of transform ation tasks include:

• P re tty printing,

• Sem antics preserving transform ation (refactorings) such as renam ing variables and

ex tracting m ethods,

• Code rew riting.

8.1.2 Some criteria for classifying too ls

L ex ica l v s . sy n ta c tic ap p roach es M any software tasks involve extracting facts from soft­

w are artifacts, which may include no t only source code bu t also docum entation. These

tasks are sufficiently broad so th a t it is hard to have one tool to satisfy all the needs.

Instead, a spectrum of tools would have to be built, which can be categorized into

lexical ones and syntactic ones.

Historically, program m ers have been using u tility tools such as grep and awk and

scrip ts w ritten in languages like Perl to perform such tasks. Since the underlying

m odel th a t these tools have for th e analyzed te x t is either character stream s or record

stream s, they are lexical tools. Lexical tools provide certain formalisms of regular

expressions to support p a tte rn m atching.

As described in the work of L SM E (Lexical Source Model E xtractor) [MN96], the

lexical approach has the advantages of being:

• lightweight, in term s of w riting specifications,

• flexible, in term s of the diversity of tex t th a t it can handle, and

® tolerant to certain syntactic errors in th e tex t.

On the o ther hand, the simplicity of regular expressions often does not allow one to

express queries th a t involve deep knowledge of th e s truc tu re of the source code, or

even if possible, the answers m ay be highly approximate in nature. Consider tasks

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as “querying the calls to an overloaded opera to r” or “querying all the variables

whose names are x'' for C + + . For some task , th is loss of precision is not tolerable;

thu s syntactic approaches are also needed.

G r a n u la r i ty and p rec is io n o f p ro g ra m fa c ts Program databases may contain three types

of inform ation w ith different granularities, global structural inform ation, sta tem ent

structural information, and expressions and flow information. Global in form ation in­

cludes files, functions, global variables and types, for C, and nam espaces, classes,

tem plates, and so forth, for C + + . S ta tem ent structural inform ation includes details

such as statem ent types and blocks; these are useful to identify code patterns th a t

m atch a program m ing plan or cliche [RW88]. L ast, expressions and flow inform ation

concern with the d a ta and control flows am ong the expressions w ithin procedures.

Choices of w hat inform ation a program database may contain are driven by b o th the

consideration of efficiency and the n a tu re of the tasks a t hand. In general, the more

inform ation, the more space occupied, and the slower the tools would be. Some tools,

for example, CIA [CNR90], C IA + + [CGK98], and H y + / GraphLog [CEH+ 94, MS95],

trad e the completeness of inform ation for speed and space.

Completeness of program inform ation has different im pacts on different tasks. W orks

such as reconstructing arch itectural views from source code [Hol98] focus on th e overall

program structu res and thus do no t need detailed inform ation abou t expressions and

d a ta and control flows. In con trast, FCL needs the full detail abou t expressions and

some flow inform ation to detect errors m ore effectively.

F ile b a sed v s . w h o le -p ro g ra m b a se d r e p o s ito r ie s Some tools [Dev99] work on a file-

to-file basis whereas others such as [CNR90, CGK98, PP96] assum e th a t a linkage

has been perform ed over the com pilation units and work on the w hole-program repos­

itories. W hile program based repository m ay cause some perform ance problem , it

allows one to express certain types of queries m ore natu rally and succinctly. Since the

specifiers have no way to know th e file nam es a fram ework user m ay use, file-based

approach does not work for FCL. A whole program repository is necessary.

C o n c r e te s y n ta x v s. a b stra ct s y n ta x Some tools base their query languages on the

concrete syntax of the subject languages while others on the ab s trac t syntax. One

advantage of using concrete syn tax would be the ability to query syn tactic p a tte rn s

such as “all if statem ents th a t do no t use curly braces.” The disadvantage of using it is

th a t if an abstrac t p a tte rn has m ore th a n one corresponding concrete syn tax p a tte rn ,

the query can get quite verbose. Therefore, the advantage of using a b s tra c t syn tax is

the conciseness of queries.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S u p p o r te d s u b je c t la n g u a g e s CIA [CNR90], SCA [PP96], SC R U PLE [PP94a], and

TAWK [GAM96] support only C. H y+ /G rap h L o g [CEH+94, MS95], ASTLOG [Cre97],

and C IA + + [CGK98] also support C + + .

Q u e ry v s . t r a n s f o r m a t io n This has been discussed in the beginning of th is section.

S u p p o r te d fo rm a lis m s A* [LR95] and TAWK [GAM96] support the awk style of pro­

gram m ing, where the program s consist of pattern-action pairs and traversa l strategies.

SCRU PLE [PP94a] is a query language expressing code p a tte rn s as regular expressions.

SCA [PP96] is based on a m ulti-sorted , sort-ordered algebra. H y+ / G raphLog [CEH+94,

MS95] is based on a re la tional calculus extended w ith the closure operato r. And AST­

LOG [Cre97] is based on an extended Prolog.

T o o l g e n e r a to r s In this context, tool generators are tools th a t can generate program anal­

ysis tools. This definition can be confusing since it is not clear w hether a too l or system

th a t provides a language, such as a database m anagem ent system w ith a SQL, is a tool

or a generator. O ur executive definition requires a tool to satisfy a t least one of the fol­

lowing conditions to be a generator: either some of its com ponents can be customized

or replaced to produce a new tool, or th e tools program m ed w ith th e provided lan­

guage are im portan t enough th a t it is justified to call them tools. G EN O A [Dev99] is

a generator in the form er sense whereas A* [LR95], A ria [DRW96], and TX L [C+OOb]

th e la tter.

8.1.3 Tool generators

GENOA [Dev99] is m otivated by two observations: first it is expensive to build reliable

parsers for complex languages like C and C + + ; and moreover, in p roduction environm ents

it is a significant task to m anage th e build procedure for a product. T hus it is im portan t

for tools to preserve the efforts in creating the build procedures. GENOA em phasizes both

the retargetab ility and the language-independence of the back end. T he re targetab ility is

achieved by defining a com m on denom inator representation for m ost languages, ASG. A

query interface is defined over th is d a ta model, and in tu rn a reusable scrip ting language

is defined in term s of the interface. A tran sla to r generator, G EN II, is also provided to

facilitate the specification and im plem entation of the transition to a new language.

A sum m ary of the im p o rtan t features of GENOA follows:

• It is front-end retargetab le .

• I t grafts itself onto a parser by replacing its back end w ith G EN II generated code,

which m anipulates the parser produced AST and provides an ASG interface to the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scripting language. Since a parser works with com pilation units, current instantiations

of GENOA are all based on ASGs for individual files.

• T he scripting language is procedural, and it allows users to determ ine traversal s tra te ­

gies.

• The scripting language cannot change the underlying ASGs.

A ria [DRW96] is a too l generator produced by retargeting GEN O A to Reprise [RW91], a

C + + ASG representation. A ria is used to generate a num ber of tools th a t would require long

development tim e otherwise: a m etrics tool, a path expression tool, and a CDG (Control

Dependence G raph) generator. In essence, Aria is a validation of GENOA.

The TXL system [C+ 00b] supports program transform ation. I t was m otivated by the

desire to experim ent w ith different dialects of the sam e base language. Using TXL, one

can transla te program s of a dialect to program s w ritten in th e base language. This is

accomplished by transform ing th e parse tree built using the dialect g ram m ar into a tree of

the base gram m ar. A recursive tree m atching algorithm is used to achieve this. TXL also

finds m any other applications [DCMS02].

8.1.4 Pattern based Tools

A* [LR95] is m otivated by th e desire to create language processing tools w ith extremely

low overhead. The goal is to allow inexperienced users to build sim ple tools in a m atter

of m inutes w ith a few lines of code. Therefore, the usual com bination of YACC and C

is considered too expensive for th is. Moreover, the au thors observe th e sim ilarity between

language processing and file processing provided by tools such as Awk. A* comes combining

the language definition facility of YACC with the p a tte rn m atching capability of Awk1,

which is described as follows:

• retaining the Awk action language and its in terpreter;

• providing a m echanism for replacing Awk’s parser w ith an a rb itra ry L A L R (l) parser;

• providing a new d a ta s tru c tu re and notation for parse trees;

® providing a way to describe parse tree traversal;

• augm enting the action language to ease the construction of larger program s.

One im portan t change th a t A* m akes to Awk is its p a tte rn language; instead of boolean

expressions, pa tte rns are specified using the concrete syntax of th e processed language.

T he following is an exam ple of an infix-to-prefix transla tion w ith a yacc-like pattern :

_ e x p re s s io n : _ e x p re s s io n ' + ’ _ e x p re s s io n

xAwk is a language for file processing; th e essence of its convenience is a contro l s tru c tu re in all Awk
program s. Awk breaks each file in to records, and each record in to fields. A typ ical Awk program consists
of an im plicit loop over all all records, and w ith in th is loop th e u se r’s code is executed. U sr’s code consists
of “pa tte rn -ac tion” pairs; a p a tte rn is a boolean expression based on th e value of th e curren t record. An
action is the sta tem en ts to be executed once th e p a tte rn evaluates to “t ru e .”

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{
printf "Add(";
traverse ($$kids [expression#!.])
printf
traverse($$kids[expression#2])
printf

}

W here underscore prefixed symbols represent non-term inals in the concrete grammar.

A sum m ary of th e key features of A* is as follows:

• I t provides m echanism to support new languages; therefore, it is a tool generator.

• Its p a tte rn language is based on concrete ra th e r th an ab strac t syntax of the processed

language. Therefore, its pattern-m atch ing facilities are lim ited.

» The syntax m ust be L A L R (l); th is would make it im possible to process “irregular”

b u t popular languages such as C and C + + .

® It allows tool builders to specify a rb itra ry traversals of the ASTs.

• Its action language allows one to change the underlying ASTs, such as performing tree

surgery.

Therefore, A* is suitable for tasks satisfying a t least one of th e following conditions:

• the sem antics of th e language is low (the language is sim ple).

• the desired tool im plem ents little of th e sem antics.

• or the too l needs to exam ine only a proper subset of g ram m atical constructs.

SCRU PLE [PP94a] is a pure query system th a t can locate code fragm ents m atching

certain patterns. I t exceeds in its support for a rich set of pa tterns.

« T he p a tte rn language is based on the ab strac t syn tax of the language; at the same

tim e, it also supports m ost code fragm ents of th e sub jec t language. This means th a t

in certain cases one can directly type in a fragm ent of code and let the tool search for

it.

• The tool appears to work on program -based ASTs.

• T he p a tte rn language provides a certain level of abstrac tion th a t allows users to control

the precision of p a tte rn s . For example. Query: F ind sequences o f statem ents that

contain three if sta tem ents can be specified as follows:

if # ®;

if # <8;
@*;
if # @;

In SC R U PPLE, # represents expressions, @ sta tem ents, and @* zero or more s ta te ­

m ents. @* provides the abstraction to represent a rb itra ry sequences of statem ents.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• P a tte rn s are compiled into finite s ta te machines, and search is efficient.

• Traversal is implicit and always sta rts globally.

Two m ore SC R U PPLE queries are included to give a taste of SCRU PPLE works:

1. Query: F ind all functions that have references to the identifier xmax:

$t $f<xmax>($v*) { @* };

W here $t represents types, $ f functions, and $v* a sequence of variables.

2. Query: Find all instances o f three consecutive if statem ents:

if # @;
if # @;
if # @;

TAWK [GAM96] is a tool similar to A* in term s of its overall structure, w ith differences

sum m arized as follows:

® TAWK is a tool, no t a generator; it does not assum e the responsibility of parsing

source code.

• TAW K’s p a tte rn s are specified in term s of ab s trac t syntax.

• TAW K’s action language is C.

• TAWK recognizes the im portance of ab strac t pa tte rn s , and provides a simple, m acro

based mechanism.

• TAWK provides im plicit traversal control.

• TAWK recognizes th e im portance of dealing w ith m acros and com pilation directives

in languages like C, and can recognize function-like m acro invocation as function calls.

8.1.5 Algebra based Tools

Informally, algebras are m athem atical s truc tu res th a t consist of d a ta types (sorts) and

operations defined on the d a ta types (operators). One fam iliar example is the classical

relational algebra [UW97]; O perators of the a lgebra such as union, set difference, select,

project, cartesian product, and join, take relations as argum ents and produce new relations.

I t is, however, a one sort algebra, th a t is, it deals w ith only one d a ta type, i.e., relations.

SCA (Source Code Algebra) [PP96, PP94b] is an algebra-based formalism th a t can

express queries on C program s. Its m ain features are sum m arized as follows:

• SCA is b o th m any-sorted and order-sorted.

• SCA recognizes the im portance of in form ation completeness. Its da ta model contains

not only global structural information, b u t also statem ent-level structural inform ation

and control and data flow information. I t also supports queries th a t use b o th stru c tu ra l

inform ation and program flow inform ation.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• T he operators of SCA can be categorized into:

- operators on object a ttrib u tes

SCA defines four types of a ttrib u tes for objects, components to reflect the s truc­

tural relations between a conditional and its condition and body, references to

capture nam e references, annotations for inform ation such as line num bers th a t

an object appear a t, and methods for dynam ically com putation of new inform a­

tion from the model. I t is less clear how useful methods would be.

To get an a ttribu te , one can apply the nam e of the a ttr ib u te to the objects. For

example, applying the opera to r nam e to a file /, nam e(f), will re tu rn th e file

name.

An im portan t feature of SCA is closure; for example, it allows one to specify all

the functions th a t a certain function can be reach.

- operators on collections

SCA allows one to select a subset or pick one element, which satisfy a given con­

dition, from a collection of objects. I t also supports columns projection th rough

the project operator, and cartesian p roducts through the product operator.

One im portan t feature of SCA is th e extend operator, which allows one to extend

the existing type definitions w ith new a ttrib u tes . A nother is th a t it supports

logical quantifiers forall and exists by, however, treating them as operators. SCA

also defines two higher order operators, apply and reduce; apply takes b o th a

collection and a unary operato r, and apply the operator to each elem ent of the

collection to get a new collection; reduce takes a collection and a binary opera to r,

and apply the operator to each pair m ade of elements of the collection to get a

new collection.

— set operators

— sequence operators

Two questions are left unansw ered by the SCA work: F irst, it seems th a t SCA is m ore

driven by the desire of having a form alism th an by th e kinds of queries th a t would be needed

in practice; it is not clear under w hat circum stances operators like the methods a ttr ib u te s

on objects and the reduce operator on collections would be useful. Second, SCA is only

dem onstrated w ith C as its subject language.

8.1.6 Logic based Tools

H y + [CEH+ 94, MS95] is a generic visualization too l th a t supports a visual query language

called GraphLog. H y+ supports a graphical form alism th a t allows com prehensible represen­

ta tions of databases, GraphLog queries, and query answers to be interactively m anipulated .

H y+ [MS95] has been applied to tasks such as software m etrics, verifying constrain ts, and

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identifying design p a tte rn s from code.

G raphLog supports two types of queries, define and filter. B oth queries represent a p a t­

tern in th e hygraph; the query in terp re ter searches the hygraph designated as the database

for all occurrences of th a t pa ttern . A define query can be transla ted to stratified D ata-

log [UW97]. A filter query can be viewed as composed of m ultiple define queries, and its

result is th e com bination of evaluating all the define queries.

G raphLog also supports aggregate functions on m ultisets of tuples, such as M A X , M IN ,

C O U N T , SUM, and AVG.

Since G raphLog is based on D atalog [UW97] and has the sam e expressiveness as a

relational algebra extended with generalized transitive closure, which can be used to, for

example, com pute th e inheritance relation through inheritance chains, it is m ore expressive

th an relational algebra. B u t adopting a relational model of source code prevents it from

conveniently expressing queries th a t p e rta in to abstrac t syntax trees. M oreover, when the

com plexity of G raphLog queries increase, to w hat extent its visualization facility can scale

up is questionable.

ASTLOG [Cre97] exploits the unification and backtracking facility provided by Prolog

to exam ine ASTs. The key changes A STLO G makes to Prolog are:

• ASTLOG extends Prolog w ith prim itives suitable for exam ining tree structures.

• For perform ance, instead of im porting program databases into Prolog as its fact bases,

ASTLOG in terprets its predicates and queries on top of external objects, in th is case,

nodes of ASTs.

• ASTLOG adopts the so-called Prolog-w ith-an-am bient-current-object approach, th a t

is, term s are always evaluated against a current object. For exam ple, a predicate

assignm ent can be defined as follows:

assignment(target, value)
<- op (# =) ,

kid(#LEFT, target),
kid(#RIGHT, value);

N ote th a t in th e exam ple, there is an implicit current object.

• ASTLOG im plem ents some second-order features such as lam das and function appli­

cations, and Prolog set-predicates th rough m anipulating the current object.

® Com pared w ith the AWK approach, ASTLOG provides additional expressive power;

for example, w ith A STLO G , one can com pare two trees.

• The author feels th a t ASTLOG needs a support for type checking.

The SOUL (Sm alltalk O pen Unification Language) work [Wuy98, MM WO 2] advocates a

logic program m ing approach to m an ipu la te struc tu ra l inform ation in source code. SOUL is a

Prolog variant th a t currently works w ith Sm alltalk as the subject language. Im plem entation-

wise, SOUL [Wuy98] adopts th e sam e stra tegy as ASTLOG, th a t is, instead of im porting the

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program databases as Prolog fact bases, it in terprets logic prim itives against the Sm alltalk

image, through a well-defined access interface.

SOUL is targeted a t general program m ing, instead of specific dom ains like frameworks.

As a result, its rules m ight be less accurate in term s of finding code pa tte rn s , and it is

undesirable for a tool to generate too m any false positives and false negatives. There is no

work seen towards addressing these issues. Therefore, it is no t clear how effective it -would

be in practice.

8.1.7 Schemas for Program Databases

One early work in storing program facts into a relational database is O M EG A [Lin84], which

uses the IN G RES database m anagem ent system to store inform ation for a program m ing

language called Model. One of the goals of OM EGA is to reconstruct software objects

from th e program database. Therefore, detailed inform ation abou t variables, expressions,

statem ents, and relationships am ong them are stored in the database. A to ta l of 58 relations

were used in th e database schema. According to [Lin84], the p ro to type im plem entation of

OM EGA had poor response tim e in retrieving the body of a procedure. Different objects

w ithin th e procedure had to be retrieved, and each retrieval required a separate database

query.

Over th e years, m any schemas have been proposed and tried , e.g., Reprise [RW91],

CIA-I—h [CGK98], RSF [MOTU93], and D atrix [HHL+00]. M ore recently, there have also

been works tow ards a com m on form at for exchanging software inform ation [Hol97, FSH01,

WKR02].

W hen choosing a schem a, one should consider m any factors, such as th e level of seman­

tics, the am ount of inform ation, the granularity of the inform ation, and th e precision of

the inform ation. The level of sem antics refers to lexical, syntactic, and sem antic kinds of

inform ation. The am ount of inform ation a schem a can provide m ay also vary, some may

provide only lexical and syntactic inform ation while others all th ree kinds. G ranularity

refers to th e level of detail which the inform ation can reach, for exam ple, Rigi [MOTU93]

and CIA-I—I- [CGK98] only keep global s truc tu ra l inform ation such as function and class

declarations whereas D atrix tools also provide inform ation abou t sta tem ents and expres­

sions. Finally, precision refers to the extent to which a schema can recognize things such as

implicit conversions and opera to r calls.

I t is not clear w hether it is possible to devise a universal schem a th a t fits all languages

and all needs. B ut it is clear th a t the current focus should be in understand ing the needs of

different tasks and the in tricacy of individual languages, and correspondingly, experim enting

w ith different com binations.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.1.8 Query Languages for Program Databases

In general, the n a tu re of a query language closely depends on the underlying schema th a t

organizes the data . Therefore, it is critical to having the right schemas th a t capture the

essence of the d a ta , otherwise, unnecessary details will creep into th e query language. For

example, the goal of the relational model is to achieve b e tte r data independence, as shown

in [Cod70], by formalizing th e d a ta model w ith the relation theo ry to elim inate several

unw arranted dependencies.

SCA is a m any-sorts, sort-ordered algebra whereas both G raphLog and ASTLOG are

logic based. In addition, G raphLog is a visual formalism p u rpo rted to facilitate the query

and display of program facts. One of the advantages of having a m any-sorts algebra is the

possibility of type checking, of which several authors [LR95, Cre97] have felt the need.

Grok [Hol02] is based on a binary relation algebra extended w ith some procedural con­

struc ts such as assignm ents and loops. A comparison between G rok and another query

language, GReQL (G raph R epository Query Language), can be found in [HWW02].

8.1.9 Potential R esearch Problem s

We have identified five problem s for fu tu re research:

• I t is a challenging task to engineer reliable parsers for com plicated languages such as

C + + [SEH03].

Sim et al proposed to build and share a common set of correct parsers w ithin the re­

search community. Free, open-source parsers for C and C + + , for exam ple, C P P X [MDH01],

are now available.

• Dealing w ith m acros and com pilation directives in languages like C is a problem.

® Query languages need to support abstrac t pa tte rns for b e tte r expressiveness.

• Is it possible to have one query language th a t serves all th e purposes?

R ather th an serving as a generic query language on program databases, FCL was

designed specially for “fram ew ork constrain ts” ; this is evident from, for exam ple, the

inclusion of th e existential o pera to r and the exclusion of a po ten tia lly useful “ancestor”

operator for obtain ing all base classes.

FCL is certainly not com plete if one views it as a generic query language for program

databases. I t rem ains an in teresting question w hether one can extend it to a generic

one.

• Given the m odern com puting power, is it feasible to build full ASGs?

FCL is based on th e assum ption th a t a full ASG is available. Real p ro jects often

require fast tu rn -a round tim e. One concern is the. feasibility of building ASGs in such

a short time.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Specification Languages

The Alloy [Jac02] specification language is for formalizing and analyzing ‘object, m odels’.

The OCL (O bject C onstra in t Language) [WK99] of UML was developed w ith m any the

same goals as Alloy. T hey b o th have the Z specification language [Spi92] as their common

root.

M any specification languages can be found in the lite ra tu re . We choose these two to

show th a t they cannot be used in place of FCL.

8.2.1 Alloy

In Alloy [Jac02], an ob ject m odel captures the basic s tru c tu re of a certain problem domain,

as well as constrain ts and operations describing how the s tructu re changes dynamically.

Alloy is m eant to give an entirely abstrac t, im plem entation-free sem antics to object models.

The insight is th a t such a sem antic model is a b e tte r s ta rtin g point for object-oriented

development th an a m odel in which objects have m ethods and fields. One outstanding

feature of Alloy is its fully au tom ated analyses.

Alloy’s starting poin t is Z [Spi92]. Like Z, Alloy is also based on sets and relations, bu t

it contains a few novelties:

• Alloy trea ts scalars as singleton sets.

• Alloy’s navigation syn tax for relational image allows one to form expressions by fol­

lowing relations. This feature, combined w ith th e scalars as singleton sets feature,

bo th simplifies and unifies navigation expressions.

• Alloy allows one to p u t bo th type inform ation and m ultiplicity in to relation definitions.

Moreover, instead of th e range notation , Alloy uses the regular expression style for

multiplicity, th a t is, * (zero or more), + (more th a n zero), ! (exactly one), and ? (zero

or one). These can help shorten specifications considerably.

Unlike Z, however, Alloy is designed w ith au tom atic analysis in m ind a t the first place.

This requirem ent has a num ber of im portan t im plications on the design of Alloy:

• Alloy specifications are explicitly structured into paragraphs, which include dom ain

declarations, s ta te declarations, conditions, invariants, operations, and assertions. Z

exploits conventions to distinguish the roles of the various schemas.

• Alloy exploits tw o form s of analyses on its specifications, sim ulation and checking.

Alloy’s struc tu ring makes the two analyses possible. T he goal of sim ulation is to find

a model2 for a specification; if a model is found, th en th e specification is considered

consistent. T he goal of checking is to find counter examples th a t fail the assertions,

2 model is an overloaded term ; here it m eans a configuration of s ta te th a t satisfies the specification.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is done by finding models for the conjunction of the negation of the assertions

and the rest of the specification.

• Since the language is undecidable, com prom ise is inevitable to make the analyses

feasible. Alloy’s analysis works by lim iting th e scopes of the carrier sets of the prim itive

types to a given size. The analysis is done by first, transla ting each relation into a

boolean formula, and an off-the-shelf SAT solver is then used to find solutions to the

form ula.

• Alloy is im plicitly typed.

FCL can be viewed as an Alloy whose dom ains are the syntactic elements of object-

oriented program m ing languages. I t would be in teresting to encode FCL specifications

w ith Alloy and detect inconsistency of FC L specifications. Some difficulties would be the

constructor functions of FCL, string, and integers, which Alloy does not support yet.

8.2.2 OCL

The O bject C onstrain t Language [WK99] of UML is m ean t to bring rigors into the UML

notation . However, m any shortcom ings have been identified [VJ99, Jac99]. OCL is still not

am enable to au tom atic analysis. As it is, OCL is m ore a no ta tion for hum an comm unication

th an for au tom ation , yet far from n a tu ra l languages.

A sum m ary of O C L’s shortcom ings is as follows:

» OCL is driven by the desire to support th e practical use of object-oriented languages, as

such, it is too im plem entation-oriented, thus is no t as well-suited for problem analysis

as Alloy.

• OCL is m ore expressive th an Alloy; it has integer and string datatypes, and sequences.

B u t it does no t have transitive closure. And a ttem p t to use operations to sim ulate

transitive closure tu rn s out to be unsafe [VJ99].

• Giving OCL a sem antics is likely to be challenging because of its many features such as

th e elaborate type system , type casting, m ultiple inheritance, and iteration construct.

• T he syntax of OCL has some shortcom ings. O C L ’s expressions are stacked in the

style of Sm alltalk, which makes it h a rd to see th e scope of quantified variables. Unlike

Alloy, navigations in OCL are applied to atom s and not sets of atom s. A ttribu tes are

m odeled as p artia l functions in OCL, and result in expressions with undefined values.

A lthough OCL has been used to specify constrain ts for the UML m eta model, it is not

suitable for our purpose. OCL supports quantification form ulas and standard set opera­

tions, b u t it does not contain sufficient inform ation abou t source code: for example, neither

expressions nor control pa ths are supported by OCL. This is all right for a design m odeling

language such as UML bu t not for FCL. As m entioned, O C L’s syntax is not standard bu t

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chooses to keep close to the object-oriented no tations, presum ably to make program m ers

feel fam iliar. FCL is designed to be close to classic notations. One benefit of this design

decision is th a t we may do inference about FCL specifications in formal system s such as

M izar [Org]. At last, although tools are available for OCL, we did not find they are su it­

able for FCL; for example, the D resdren OCL too lk it works only at the first-order level: it

allows only for specifying pre- and post-conditions and class invariants bu t no t constraints

on syntactic structures.

8.2.3 Other N otations

In teraction contracts [HHG90] are the first n o ta tiona l constructs proposed to specify be­

havioral com positions. Particularly, it focuses on specifying the obligations th a t the partic­

ipating objects should fulfill in order to function correctly. The aim is to explicitly capture

the dependencies among cooperating objects, which otherwise will be buried in the code

of classes and m ethods. C ontracts and FCL are close in th a t bo th want to specify how

objects can correctly in teracted w ith each o thers. There are also im portan t differences be­

tween them . C ontract specifications need to be com plete and self-contained whereas FCL

specifications can be partial. C ontracts can contain statically uncheckable invariants while

FCL is fully autom ated. However, contracts can be more expressive than FCL due to its

informality.

T he W right language [AG97, AGI98, SG96] aim s to describe software architectures,

especially concurrency-related ones. I t is an e x tra layer beyond code, m eant to be used as

a stand-alone design language, and there is no support to ensure the consistency between

the code and th e W right specification.

In contrast, FCL works directly on th e syn tax and sem antics of specific object-oriented

program m ing languages. Instead of full arch itectures, FCL specifies checkable constrain ts

on the code of framework extensions. The applicable scope of FCL is lim ited in th a t it is

designed to ensure the appropriate reuse of object-orien ted frameworks ra ther th a n a rb itra ry

software. B ut since frameworks are concrete im plem entations of software architectures,

we can also regard FCL as a specification language on ad hoc object-oriented software

architectures, and we believe th a t th is study can fu rther our understanding of software

architectures.

8.3 Error D etection Tools

8.3.1 (Partial) Specification based

A spect [.Jac95] is a sta tic analysis technique th a t aim s to detect errors of missing dependences

from w ithin procedure im plem entations. A simple specification language is defined so th a t,

for each procedure, the specifier can specify dependences th a t should exist betw een its

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p resta te and poststa te . A dataflow analysis is then perform ed on each procedure, any

dependences th a t exist, in the specification bu t not in the result of the dataflow analysis will

be reported as errors. To deal with po in ters and pointer aliases, reconfiguration assertions

are introduced; a reconfiguration assertion s ta tes all the possible bindings th a t may exist

betw een a pointer value a t the p o ststa te and pointers of the presta te . I t is a special case of

dependence assertions.

Specifications w ritten directly in te rm s of im plem entation variables are vulnerable to

changes in representation. To cope w ith th is problem, the concept of aspects is introduced;

aspects are simply names for ab strac t com ponents of abstrac t types. For example, a two-

dim ensional vector can have two ab strac t com ponents, X and Y, as its coordinates. T he de­

pendence and reconfiguration assertions are w ritten w ith aspects instead of concrete names,

so clients of the abstrac t type see only th e division into aspects, w ith the actual represen­

ta tio n rem aining hidden. Abstraction functions are then used to associate representation

w ith aspects.

A sum m ary of the im portan t features of Aspect follows:

• I t requires specifications, albeit simple, for each procedure.

• I t works in a m odular fashion, th a t is, checking is perform ed on one procedure a t a

tim e.

• I t never produces false positives, provided th a t the specifications are correct.

• I t m ay produce false negatives, though.

• I t is increm ental in th a t it does no t require the completeness of the pro ject to work.

Therefore, it can precede testing.

• Com pared w ith verification, its specifications are cheaper and easier to write.

• I t detects errors of omission, which com plem ents state-based techniques such as type

checking, which detects errors of commission. The em pty procedure, SKIP, satisfies

m ost type specifications, bu t no nonem pty Aspect specification.

T he LCLint tool [E+ 94, Eva96], subsequently renam ed as Splint [E+], exploits simple

annotations to explicitly specify th e otherw ise hidden assum ptions a t interface points about

th e re tu rn value of functions, param eters, and global variables. The too l th en combines

these knowledge w ith sta tic analysis to detect errors in a m odular fashion. For example,

by default a pointer is considered being no t null; one can use null to an n o ta te th e fact

th a t it can take the null value. A function th a t uses this pointer w ithout proper check of

the nullness of the pointer would then contain an error. Similarly, if the m em ory pointed

by a pointer is not allowed to be shared, one can use only to anno ta te it. In [Eva96], 15

annotations are defined to help cap tu re dynam ic m em ory errors.

T he ESC (Extended S tatic Checking) tools [DLNS98, LNSOO, FLL+02] shares th e sam e

goal of detecting errors from code as m any other tools. It is s ta tic yet can detect such

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

errors as dereferencing null pointers, array index errors, and race conditions and deadlocks,

which conventional sta tic analysis like type checking cannot find, hence the nam e extended

static checking. ESC exploits the au tom ated program verification approach ra ther than

s ta tic analysis. Therefore, it requires specification support for bo th procedural abstraction

and d a ta abstraction . Verification is carried out in a m odular fashion; for each module, a

verification condition is generated and a program verifier then a ttem p ts to prove it. ESC

sacrifices soundness for error detection: it is more interested in a failed proof; then an error

message can be produced. Tools for bo th M odula-3 [DLNS98] and Java [FLL+02] have been

constructed. A m ethodology for verifying program s w ith th e appearance of d a ta abstraction

and inform ation hiding is generated w ith the E SC /M odula project [LN02].

The Vault [DF01] language allows users to specify typesta tes for resources, such as

m em ory regions, files, and sockets, to track their safe uses. P rogram s w ritten correctly

using the language would th en be pro tec ted from the resource m anagem ent related bugs.

Despite the language approach adopted, the notions of keys and type guards are very close

to the annotations of LC Lint [Eva96]; indeed, they are m eant to solve th e same resource

m anagem ent problem. H istorically, language adoptions have been an e rra tic process. In

contrast, analysis tools work im m ediately.

8.3.2 M odel checking based

Dawson Engler’s m etacom pilation (MC) research group a t S tanford investigates the uses of

bo th sta tic analyses and m odel checking for finding bugs from code. T heir sta tic analysis

allows program m ers to ad d simple system-specific compiler extensions th a t autom atically

check or optimize the code. T hey also build a model checker, CM C, for C, and apply it to

several case studies [M PC+ 02, ME03].

The sta tic analysis is based on an extension language and a back-end engine added to

the gcc compiler. The extension language, metal, is defined to specifying analyses, and the

back end, xgcc, is used to execute th e analyses efficiently. T he detail of m etal and xgcc is

docum ented in [HCXE02, CHE02], b u t a brief sum m ary follows:

® The extension language is program object-centered; it can specify th e sta tes of any

program objects, such as pointers, as a finite sta te machine. In p articu lar, erroneous

sta tes are explicitly m odeled by the s ta te machine; when the s ta te m achine reaches

such states, error messages will be reported,

s t a t e d e c l a n y -p o in te r v;

start: { kfree(v) } ==> v.freed;

v.freed: { *v } ==> v.stop,
{ err ("using 7,s after free! " , mc_identif ier (v) ; }
I { kfree(v) } ==> v.stop,
{ err ("double free of 7,s after free!", mc_identif ier (v) ; }

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This example specification can detect two errors about a po in ter, dereferencing freed

memory and double frees, by tracing its s ta te , v is a (specification) variable repre­

senting a pointer variable in the checked program . A variable can have states; for

example, v has two sta tes, freed and stop. T he current s ta te of a variable such as v

is w ritten as v.freed. The alphabet of the sta te machine consists of code patterns; for

example, kfree(v) is actually a free call on v, and *v is an expression dereferencing v.

• The gcc compiler is used to construct an AST for each C file. The xgcc engine then

reads in the ASTs and perform s analyses on the control flow graphs of all functions

no t called by any others, e.g., th e main function.

• The engine essentially traverses each AST one p a th a t a tim e w ith a depth-first search,

evaluating th e curren t s ta te of each path and using the s ta te to drive the transitions

of the finite s ta te m achine model.

• The traversal perform ed by xgcc is interprocedural, and a simple, path-sensitive anal­

ysis is used to elim inate nonexecutable paths.

The m ost in teresting insight of th is work is th a t the seemingly simple technique can be

effective in finding errors in real system s. The paper [C+ 0Qa] shows how metal is applied to

th e Stanford FLASH m achine’s em bedded cache coherence protocol code. The paper [E+ 00]

discusses a set of small extensions th a t found roughly 500 bugs in Linux, OpenBSD, and

the Xok exokernel; th e extensions are usually less th an 100 lines. I t also uses extensions to

find hundreds of optim ization opportun ities in heavy-tuned software.

CMC [M PC+ 02] is a m odel checker th a t directly executes C and C + + program s and

perform s model checking on th e m onitored sta te space. CMC has some lim itations, though.

T he current CMC assumes an event driven model of the checked system . Its correctness

properties are coded as boolean functions directly in term s of th e saved states. Further­

more, the AODV case study in [M PC+ 02] does not present how tem poral properties can be

supported. W ithou t tem poral properties, CMC seems to be m ore an advanced testing tool

th an a model checker.

Based on the experience applying both approaches to th ree non-trivial case studies,

[ME03] presents an in teresting com parison between the two approaches and some lessons

learned:

• S tatic analyses generally can find more errors th an m odel checking. There are two

reasons for this: first, models and environm ents are abstrac tions of the underlying

im plem entation and m any details are suppressed from them , thus model checking tends

to miss m any errors th a t s ta tic checking can directly get from code; second, model

checking, sim ilar to testing, can only find errors from executed paths; incomplete

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environm ent m odeling is bound to miss m any errors on the non-executed paths.

• Easy-of-inspection really m atters; tool users prefer to having the priority of the errors

ranked, especially when facing thousands of errors.

• Model checking is b e tte r at finding errors involving global invariants and values, thus

complements sta tic analyses.

• T he more analyses applied to find an error, th e h arder th e error is to reason about and

to fix. Furtherm ore, the higher th e chances are for one of the analyses to go wrong.

• Model checking requires m anual construction of b o th the models and (optionally) the

environm ents w ithin which the models are supposed to function, these tasks can be

bo th expensive and error prone. E rrors in the m odels can trigger false positives. M ore­

over, applying approxim ation and abstrac tion during model construction suppresses

im plem entation details, thus can miss real errors in code. It is crucial to reuse the

efforts invested in constructing the models.

One m ore th ing w orth noting is th a t the im plem entation model of the subject system s

(the FLASH protocol [C+ Q0a], AODV [M PC+ 02], and T C P [ME03]) is closer to the finite

sta te m achine model of th e model checker. These system s are all im plem ented in C.

In th e paper “Lightweight Analysis of O bject In terac tions” [JF01], Jackson and Fekete

outline a m ethod for autom atically detecting design errors th a t are related to object in ter­

actions. The form al no ta tion Alloy [Jac02] is used to represen t the abstrac t program. W ith

Alloy, th e heap stru c tu re of th e system under analysis is explicitly modeled; a global relation

th a t m aps an object reference to its abstrac t value is included in the program state. M eth­

ods called bu t not under reasoning are specified declaratively. In order to analyze w hether

a particu lar m ethod m aintains a certain property, an in teraction diagram is extracted from

the m ethod; all the m ethods called w ithin the d iagram are specified, and their specifications

are conjuncted to form a formula, w ith different variables explicitly representing the sta tes

between the m ethod calls. The form ula is then conjoined w ith the specifications for the

o ther p a rts of the system , th a t is, the heap, classes, and m ethods. The combined speci­

fications are an assertion th a t the system should support. Alloy checks this by finding a

counter exam ple-that is, a model of the negation of the form ula. The form ula is solved by

first transla ting it to a propositional boolean form ula, and then applying an off-the-shelf

SAT solver to the boolean formula. An exam ple of the so-called comodification problem is

used to illustrate the whole process.

A num ber of challenges have also been pointed out. For example, one is th a t given an

in terested property, how to autom atically ex trac t a behavioral skeleton like an in teraction

diagram , from the source code, using some form of s ta tic analysis. A nother is how to deal

w ith conditional and loop statem ents so th a t a form ula can be formed and the analysis can

be carried out.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3.3 Static analysis based

This subsection reviews two works m ost closely related to FCL. They share the similar goals

with FCL. One has special notations and the o ther depends on annotations on code. In both

cases th e checking is autom ated.

8.3.4 CCEL (C + + Constraint Expression Language)

CCEL [LM93, MDR93] and FCL have different contents in the da ta models for the underly­

ing program m ing language (C + +). CCEL m odels only a t the C + + interface level. I t does

not consider for example, expressions. FC L no t only covers expressions, bu t also provides

some rudim entary in traprocedural control flow analyses. This tu rns out to be fairly useful.

FCL a t present handles more constructs th a n CCEL, for instance, tem plate instan tiations,

pointer and reference types, nam espaces, function pointers, and so on.

CCEL models program elements separately. This is unnecessary and inappropriate.

For exam ple, param eters, d a ta m em bers, and variables were trea ted as th ree independent

elem ents, so were m em ber functions and free functions. In contrast, FCL has a different

way of modeling. For instance, by in troducing the notion of program units, FCL makes

it possible to distinguish param eters, d a ta m em bers, and ordinary variables by exam ining

their respective program units. Therefore, FC L significantly simplifies the d a ta model. This

is im portan t. I t simplifies concepts and m akes it possible for a simpler FCL.

FCL has developed a b e tte r form alism th a n CCEL and is more expressive th an CCEL.

FCL bases itself explicitly on the first-order logic w ith the additional support of sets and

sequences, whereas CCEL a t best does so implicitly. For example, it is no t clear w hether

CCEL can support a rb itra ry levels of nested universal and existential quantifications. W ith

sets, FCL can express constraints on the size of sets, so th a t one can say som ething like “the

size of th e set is 1.” CCEL has no way to express this.

CCEL defines CCEL variables th rough a syn tax th a t mimics C + + . For exam ple, in

CCEL one needs to specify a m em ber function of a class as follows:

Class C;
MemberFunction C::mfunc;
mfunc.nameO == "aName";

whereas in FCL:

mfunc as function("aName",C);

The advantage of our no ta tion is th a t it is m ore likely to be portable, since it does not

depend on the special syntax of any particu la r program m ing language. M ore im portantly ,

by using well-known m athem atical operations such as set comprehension, FCL specifications

should be clearer in term s of sem antics and thus easier to learn.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FCL aims a t frameworks whereas CCEL so far has been mostly applied to generic design

principles or im plem entation guidelines. I t seems th a t frameworks bring FCL a unique

advantage by providing more specific contexts, such th a t the. tools can cover a. broader

range of common m istakes, and a t the sam e tim e, generate fewer spurious ones. In fact, even

M eyers himself adm itted th a t “it quickly becam e apparen t th a t the great m ajority of the

guidelines used by good C + + program m ers were too difficult to formalize, or had too many

im portan t exceptions, to be blindly enforced by a lint++[CCEL]~ like program ” [Mey92b].

8.3.5 CoffeeStrainer

CoffeeStrainer [Bok99] is a fram ework th a t allows program m ers to specify constrain ts on

the structu re of Java program s. I t works on the Java AST [BS98] to enforce constra in ts on

program m ing conventions, type definitions, and type uses.

CoffeeStrainer does not have a specification language, instead, it depends on special

annotations on the checked code. To use it, a program m er has to define an em pty interface

to express the constraints, and m anually m arks the class to which they w ant to apply the

constrain ts w ith the interface. The constrain ts are im plem ented as Java code th a t works on

the AST, and is hidden as com m ents w ithin th e body of the em pty interface. At compile

tim e, once th e fram ework detects such interfaces, it will extract and dynam ically compile

the constraint code and apply th e constrain ts to the corresponding types of AST nodes.

CoffeeStrainer relies on nam ing conventions to re la te the constrain t code to th e type of

node to which it is applicable. For exam ple, a constrain t im plem ented by th e m ethod

“checkField” would be applicable to all th e fields w ithin a checked class.

Clearly, because of its dependence on features such as dynam ic com pilation and em pty

interfaces, it is not easy to p o rt CoffeeStrainer to o ther languages such as C + + . In addition,

to apply it program m ers would have to ann o ta te the ir code w ith th e constrain t code. It

is no t clear w hether th is “intrusiveness” is desirable. Furtherm ore, CoffeeStrainer requires

program m ers to w rite the constrain ts. Typically, if one knows th e constra in ts, th en one

should be able to check them m anually right away, w ithout bothering w riting them down;

it seems hard to justify the need of such a tool.

8.3.6 Hybrid Approaches

P attern-L in t [SSC96b] aims a t m onitoring the compliance of a software system w ith its high

level design models using program databases and a Prolog engine. P a tte m -L in t explores

th ree types of design models, concrete but low level rules th a t can be phrased d irectly in term s

of program m ing elements, architectural level rules such as design p a tte rn s and arch itec tu ra l

styles, and design heuristics such as low coupling and high cohesion. Realizing th a t general

design rules can have m ultiple concrete im plem entations, and th a t checking th e conform ance

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to such heuristics as low coupling and high cohesion is largely hum an-dependent , the authors

adopt a hybrid approach: in addition to sta tic analyses, techniques of dynam ic analyses and

visualization [SSC96a] are also com bined to help query and visualize the im plem entation,

not only to detect violations, bu t also to increase the confidence th a t an im plem entation is

faithful to a certain design model. Exam ples taken from the Choices [C+ 93] framework is

used th roughout the paper. More details can be found from Sefika’s Ph .D . thesis [Sef96].

8.4 Other Related Works

D o c u m e n ta tio n The problem of fram ew ork usability has led to the proposal of several

docum entation approaches ranging from prescriptive to descriptive, and from infor­

m al to formal. Prescrip tive m ethods describe how the fram ew ork should be used

while descriptive ones describe only the design of the fram ework and users have to

deduce how to use it. Exam ples of bo th prescriptive and inform al approaches in­

clude p a tte rn s [Joh92], cookbooks [KP88], and hooks [FHLS97]. Exam ples of formal

b u t descriptive m ethods include th e in teraction contracts [HHG90] and the interface

contracts [Mey92a]. O ther m ethods such as design p a tte rn s [GHJV94] and m etapa t­

terns [Pre95] are bo th prescriptive and descriptive.

T o o ls S u p p o rt fo r F ram ew ork In s ta n tia t io n Several au thors have been working on

providing tool support for fram ew ork instan tia tion . Active cookbooks [PPSS95] is

a sem i-autom ated tool th a t can enact recipe descriptions, providing users an in terac­

tive interface th a t guides them th rough the in stan tia tion process. However, recipes do

no t explain design rationales; th ey describe only how the problem can be solved using

the framework. T he prim ary draw back of the approach is its inflexibility, namely, users

have to either follow th e recipe up to the last detail or abandon th e tool completely.

O rtigosa et al [OCMOO] present ano ther tool th a t utilizes intelligent agent technology

to assist fram ework instan tia tion . The tool asks users to select from a list of func­

tionalities and based on the selection, an agent elaborates a sequence of program m ing

activities th a t should be carried ou t in order to im plem ent it. In [FBMLOO], Fontoura

e t al propose to use DSLs (Dom ain Specific Language) to describe th e variation points

o f frameworks. T he user uses the provided DSLs to specialize varia tion points and

the application is generated by transform ing the DSL descriptions in to the underlying

im plem entation language. These works are fundam entally different from ours: first,

they are all synthetic ra th e r th a n analytic approaches; th is m ay lead to the difficulty of

in tegrating w ith existing developm ent processes. Second, all th e approaches work only

on the stru c tu ra l aspects of program s such as class skeletons an d m ethod signatures;

none of them support m ethod im plem entation.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several industrial fram eworks have IDEs (In tegrated D evelopm ent Environm ent) asso­

ciated w ith them [IBM, Mic]. In particu lar, the V isual C + + IDE provides tools such

as GUI builder, resource editor, class w izard and application w izard to help the user

in stan tia te the M FC framework; some of these tools can even generate code. However,

too ls cannot serve best unless they are m astered by the users, as some expert MFC

users have criticized: “au tom ation does not help much until th e user knows exactly

w hat is happening behind the scene” [SW96, New],

S p e c ia liz a tio n In terfa ces Several authors have been working on issues related to the spe­

cialization interface. Kiczales and Lam ping [KL92] discuss the issues in the design of

class libraries and em phasize the im portance of docum enting in ternal dependencies.

Lam ping [Lam93] proposes to extend type system s to formalize no t only the client in­

terface b u t also the specialization interface so th a t the la tte r can also benefit from the

au tom atic checking provided by type system s. However, th e expressiveness of type sys­

tem s is lim ited. S ta ta and G u ttag [SG95] propose a m ethodology for the specialization

interface based on specifications ra th e r th an type system s. T heir approach partitions

a specialization interface into m ethod groups and associating substates with them;

program m ers are required to re-verify a whole group whenever any elem ent w ithin it

is changed by a subclass. Reuse contracts [SLMD95] docum ent th e design relevant

p a r t of a specialization interface. A reuse contract is a set of m ethod signatures, each

associated w ith a specialization clause. A specialization clause nam es the signatures

of those m ethods of th e same class th a t are crucial for th e design of th e particular

m ethod. Furtherm ore, several operators on reuse contracts will be applied each tim e

a subclass is created or a class is changed by developers. Reuse contracts and their

operators serve as s tru c tu red docum entation and facilita te the propagation of changes

to reusable assets by indicating how much work is needed to upd a te applications built

previously and w here and how to te st and adjust these applications.

O b ject T y p e s and S u b ty p in g Conventional type rules for object-oriented program m ing

languages such as th e covariance/contravariance rules are m ore abou t “syntax” than

“sem antics.” N ierstrasz [Nie95] proposed the notion of “regular type” to characterize

th e non-uniform availability of object services. Liskov and W ing [LW94] present two

definitions for the subtype relation th a t differ on th e trea tm en t of history properties.

One definition dem ands the explicit specification of constrain t rules in th e supertype;

any subtype has to verify th a t they preserve the rules. T he o ther definition requires

th a t any new m ethod of the subtype be expressed in term s of the m ethods of the

supertype, resulting in an extension map. In addition, b o th definitions require th a t

(1) values of bo th supertype and subtype satisfy type invariants and (2) behavior con-

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form ance between the sam e m ethods of supertype and subtype. The authors further

distinguish between extension subtypes and constrained subtypes; both are applied in

practice. For exam ple, commonly framework builders im plem ent p art of a class and

let the users extend th e uncertain p art by subclassing it and adding new m ethods

and variables. I t is also common for users to override a m ethod and provide a more

constrained version. These are in general related to our work because we should at

least be aware of th e form al sem antics of object types and subtyping.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Summary and Future Work

9.1 Summary of Result and Contributions

O bject-O riented frameworks are composed of collaborating classes th a t provide stan d ard

solutions to a family of problem s commonly encountered am ong applications in some do­

m ain [JF88]. Fram ework builders provide m echanism s, the variation points, th a t enable

developers to use the fram ework to construct the ir specific application [Deu89].

The size and com plexity of frameworks and the ir notorious lack of design and intended-

usage docum entation m ake fram ework-based developm ent a learning-intensive and error-

prone process [HHY03]. Com m only fram ework users m isunderstand th e relation betw een

their application and how the fram ework designer intended the fram ework to be used, re­

sulting in overly complex solutions or subtle bugs.

For the framework user w ith shallow knowledge, som ething more akin to type-checking

is desirable. T h a t is, fram ework developer takes on the burden of describing/specifying how

to properly use the fram ework so th a t com pliance by th e framework user can be checked

mechanically. A lthough correct type m atching is no guarantee th a t a function is called

properly, it does catch m any common m istakes. We would like som ething similar to apply

to framework use.

We use the term fram ework constraints to denote the knowledge th a t a user needs to

know in order to use a fram ework properly. T he idea is to formalize the fram ework con­

stra in ts on hot spots and check w hether a fram ew ork instan tia tion satisfies these constrain ts.

O ur goals are to create specification languages and tools th a t enable fram ework builders to

encode their knowledge about the in tended use of th e fram ework and use the knowledge to

check user applications.

This thesis focuses on th e s tru c tu ra l aspect of fram ework constraints. A specification

language, FCL (Framework C onstrain t Language), is designed to express the constrain ts

on the structure of source code. T he feasibility and effectiveness of FCL are dem onstrated

through several case studies. We conclude th a t it is indeed useful to framework users.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FCL is a typed first-order logic extended w ith set and sequence operations. Its term

language is a special set of to ta l functions, reflecting the entities and relationships of pro­

gram m ing languages. This formalism lends to the autom ation of FCL.

Technically, FCL is m ore akin to type-checking. The difference can best be illustrated

by an example: while th e em pty program would pass all the type checkers, it can hardly

pass any non-trivial FCL specifications.

Several case studies have been done to gain knowledge on how FCL can be b e tte r designed

and used, and w hether it can be helpful to practice. The following are the general guidelines

th a t we learn from our experience:

• In general, th e m ore specific the context is, the more effective FCL tends to be.

M any examples show th a t th e com ponents th a t FCL is used to constrain are highly

specialized; they often assume a g reat deal of context. FCL can be m ore effective

under th is kind of circum stances.

• Specifiers should know the design well and avoid im m ature generalization. However,

th is often implies th a t the specifiers should be th e designers or som ebody who works

closely w ith them .

• Specifying against specific sym ptom s sometimes can be more economical.

In practice FCL has found b o th errors of omission and errors of commission. M any errors

are design errors. T hey are caused by m isunderstanding a n d /o r being unaw are of properties

and in teraction a t system interfaces. T he errors are b o th system - and domain-specific. They

are different from the generic im plem entation errors such as dereferencing null pointers or

array bound overflow. Independent of th e dom ains of the program s being inspected, they

can occur in any of them .

In short, th is work proposes to extend the technique of type checking and apply it to

framework-based developm ent. A sum m ary of the m ain result and contributions are as

follows:

1. The design and im plem entation of FCL make the bulk of the work. A m odel of the

static properties of C + + program s is presented, and an FCL is defined based on the

model. A form al sem antics is also defined for FCL.

2. The feasibility and th e poten tia l usefulness of the approach are th en dem onstrated

by applying FCL to real frameworks. Specific lessons learned from th e experience are

reported. These lessons are im portan t for bo th the use and future developm ent of

FCL.

To use a fram ework is to learn its design; m any problem s originate from a lack of

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

understanding about its architecture, design pitfalls, and evolution. FCL has been

used to perform the following kinds of tasks:

® D etecting omission of program m ing obligations:

• D etecting violations of program m ing constrain ts implied by a design;

• D etecting violations of program m ing constrain ts implied by a “negative design;”

® Enforcing program m ing disciplines;

® Helping w ith th e evolution of bo th th e fram ework and its intended use.

9.2 Future Work

Fram ew ork-based developm ent has become indispensable in m odern software engineering.

The difficulty of fram ework use probably will stay w ith us as long as we program ; thus it

is im portan t to bo th fu rther develop FCL in particu lar and deepen our understanding of

fram ew ork-based developm ent in general. In th e following, I outline some possible future

work:

D e sig n in g F C L s for o th er lan g u a g es like Java and o o P e r l In general, I believe th a t

it should be straightforw ard to develop FCLs for o ther languages. Based on experience

w ith developing FCL for C + + , the developm ent of FCL can be divided into following

aspects:

• Parsing and type analysis;

• Designing a model of sta tic properties of program s;

• Designing and grafting FCL onto the model.

Parsing and type analysis generally have been well understood; thus they are largely a

m a tte r of engineering though it can be challenging to get them right. To get a model

of s ta tic properties of program s dem ands a deep understanding of the sem antics of the

sub jec t language. I believe our experience w ith C + + can be helpful to dealing w ith

Java and oo Perl. L ast, it is clear th a t FCL can be divided in to dom ain independent

p a rt, th a t is, the first-order logic and set and sequence operations, and dom ain de­

pendent p a rt, namely, the term language and th e type system . Therefore, it should

be straightforw ard to grafting FCL to models developed for o ther languages. In fact,

it would be an interesting experim ent to mold the current FCL into a framework and

develop o ther FCLs as its instances.

A p p ly in g F C L I t is necessary to apply FCL to more cases and more im portantly , to

observe how well it works in assisting real program m ers.

A nother direction is to investigate w hether one can use FCL when developing new

frameworks. All examples so far are retrofits; how would it look like to apply FCL

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when one is designing a new framework? For example, when should framework de­

velopers spend tim e encoding constrain ts w ith FCL? In addition to framework-based

developm ent, would FCL be helpful to routine software development?

FC L as a b asis for o th er p rogram m a n ip u la tio n ta sk s such as refactorings [F+ 99] and

other program transform ation.

A r c h ite c tu r es and fram ew orks Software architectures are abou t the gross structures of

large software system s [BCK98]. The m ost im portan t th ing th a t a framework delivers

is its software architecture [Joh97]. M any problem s of using frameworks seem to come

from the lack of understanding of the architectures of the frameworks. There can

be many reasons for th is s ta te of practice including, for exam ple, th e competence of

th e user. I am particularly in terested in docum enting fram ework architecture for the

purposes of bo th hum an com m unication and form al analysis.

A p p ly in g m o d e l ch eck in g to fra m ew o rk -b a sed d ev e lo p m en t M odel checking has been

applied to b o th software requirem ents specifications [ABB+ 96, AG93] and source

code [D+ 97, M PC + 02, JF01]. O ur previous a ttem p t on m odel checking frameworks

w ith Spin [Hol91] was not successful [HHS02]. An in teresting research question re­

mains: W hether and how can one leverage m odel checking techniques in framework-

based development?

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[ABB+96] Richard J. Anderson, Pau l Beame, Steve B urns, W illiam Chan, Francesm ary
Modugno, David N otkin, and Jon D. Reese. Model checking large software
specifications. Software Engineering Notes, 21(6):156-166, November 1996.

[AG93] Joanne M. Atlee and John G annon. S tate-based model checking of event-driven
system requirem ents. IE E E Transactions on Software Engineering, 19(l):24-40,
June 1993.

[AG97] R obert J. Allen and D avid G arlan. A form al basis for arch itectural connection.
A C M Transactions on Software Engineering and Methodology, 6(3):213-249,
July 1997.

[AGI98] R obert J. Allen, David G arlan , and Jam es Ivers. Form al m odeling and anal­
ysis of the HLA com ponent in tegration standard . In Proceedings of the Sixth
International Sym posium on the Foundations o f Software Engineering (FSE-6),
November 1998.

[AU78] Alfred V. Aho and Jeffrey D. Ullman. Principles o f Compiler Design, chapter
7: Syntax-D irected T ranslation . Addison-W esley, M arch 1978.

[B+ 02] Don B atory et al. Achieving extensibility th rough product-lines and dom ain-
specific languages: A case study. A C M Transactions on Software Engineering
and Methodology, 11(2):191-214, April 2002.

[BCK98] Len Bass, P au l Clem ents, and Rick K azm an. Software Architecture in Practice.
Addison Wesley, 1998.

[BCS00] Don Batory, R. C ardone, and Y. Sm aragdakis. O bject oriented frameworks and
product lines. In Proceedings o f the F irst Software Product L ine Conference,
Denver, Colorado, A ugust 28-31 2000.

[BMMB98] Jan Bosch, P e te r M olin, M ichael M attsson, and PerO lof Bengtsson. Obstacles
in object-oriented fram ew ork-based software developm ent. A C M Computing
Survey’s Symposia on Object Oriented Application Frameworks, 1998.

[Bok99] Boris Bokowski. CoffeeStrainer: Statically-checked constrain ts on the definition
and uses of types in Java. In Proceedings o f European Software Engineering
Conference/Foundation o f Software Engineering, Toulouse, France, Septem ber
6-10 1999.

[BR89] Ted J. B iggerstaff and C harles R ichter. R eusability framework, assessm ent, and
directions. In Ted J. B iggerstaff and A lan J. Perlis, editors, Software Reusability,
volume 2, pages 1-17. ACM Press, 1989.

[Bro87] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software
engineering. IE E E Computer, pages 10-19, April 1987.

[BS98] Boris Bokowski and A ndre Spiegel. B ara t: A fron t-end for Java. Technical
R eport B -98-09 , Freie U niversity Berlin, Decem ber 1998.

[C+ 93] Roy H. Cam pbell e t al. Designing and im plem enting Choices: An o b jec t-
oriented system in C + + . Comm, of the ACM , 36(9):117—126, Septem ber 1993.

[C+ 00a] Andy Chou et al. Using m eta-level com pilation to check FLASH protocol code.
In Proceedings o f A S P L OS 2000, 2000.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[C+OOb]

[CEH+94]

[CGK98]

[CHE02]

[CNR90]

[Cod70]

[Cre97]

[D+97]

[D+03]

[DCMS02]

[Deu89]

[Dev99]

[DFOl]

[Dij68]

[Dij70]

[DiL95]

[DLNS98]

Jam es R. Cordy et al. T he TXL program m ing language, version 10. Kingston,
O ntario, C anada, Jan u ary 2000.

M ariano P. Consens, Frank Ch. Eigler, M asum Z. H asan, A lberto 0 . Mendelzon,
Em anuel G. Noik, A rthur G. R.yman, and D im itra V ista. A rchitecture and
applications of th e H y+ visualization system. IB M System s Journal, 33(3):458-
476, 1994.

Y ih-Farn Chen, Em den R. G ansner, and Eleftherios Koutsofios. A C + + d a ta
model supporting reachability analysis and dead code detection. IE E E Trans­
actions on Software Engineering, 24(9):682-693, Septem ber 1998.

B enjam in Chelf, Seth Hallem, and Dawson R. Engler. How to w rite system -
specific, s ta tic checkers in M etal. In Proceedmgs o f P A S T E 2002, 2002. Invited
paper.

Y ih-Farn Chen, M ichael Y. Nishimoto, and C. V. R am am oorthy. The C in­
form ation abstrac tio n system . IE E E Transactions on Software Engineering,
16(3):325-334, M arch 1990.

E. F. Codd. A relation model of d a ta for large shared d a ta banks. Comm, of
the ACM , 13(6), June 1970.

Roger Crew. ASTLOG: A language for exam ining ab strac t syntax tree. In
Proceedings o f the U SE N IX Conference on D om ain-Specific Languages, pages
229-242, O ctober 1997.

M athew Dwyer et al. M odel checking graphical user interfaces using abstrac­
tions. In L N C S 1301, Proceedings of the 6th European Software Engineering
Conference held jo in tly with the 5th A C M S IG S O F T Sym posium on the Foun­
dations o f Software Engineering, pages 244-261, Septem ber 1997.

Prem kum ar D evanbu et al. M odularity in the new millenium: A panel summary.
In Proceedings o f the 25th International Conference on Software Engineering,
pages 723-724, M ay 2003.

Thom as R. D ean, Jam es R. Cordy, Andrew J . M alton, and K. A. Schneider.
G ram m ar program m ing in TXL. In Proceedings o f the 2nd International W ork­
shop on Source Code Analysis and M anipulation (SC A M 02). IEEE, O ctober
2002 .

L. Peter D eutsch. Design reuse and frameworks in the sm alltalk-80 system . In
Ted J. B iggerstaff and A lan J . Perlis, editors, Software Reusability, volume 2,
pages 57-71. ACM Press, 1989.

Prem kum ar T . Devanbu. G E N O A -a custom izable, fron t-end retargetab le
source code analysis framework. A C M Transactions on Software Engineering
and Methodology, 8(2):177-212, April 1999.

R obert DeLine and M anuel Fahndrich. Enforcing high-level protocols in low -
level software. In Proceedings o f P L D I 2001, Snowbird, U tah, USA, June 1
2001 .

Edsger W . D ijkstra. The s truc tu re of the “T H E ” -m ultip rogram m ing system .
Comm, o f the ACM , 11(5), M ay 1968.

Edsger W . D ijkstra. Notes on structu red program m ing, second edition. Techni­
cal R eport 70-W SK-03, D epartm ent of M athem atics, Technological University
Eindhoven, April 1970. EW D 249.

Paul DiLascia. M eandering through the maze of mfc message and com m and
routing. M icrosoft System Journal, July 1995.

David L. Detlefs, K. R ustan M. Leino, Greg Nelson, and .James B. Saxe. Ex­
tended sta tic checking. Technical R eport 159, Com paq Systems Research Cen­
ter, December 18 1998.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DRW96] P rem kum ar T. Devanbu, David S. Rosenblum , and A lexander L. Wolf. Gen­
erating testing and analysis tools w ith Aria. A C M Transactions on Software
Engineering and Methodology, 5(1):42—62. January 1996.

[E+] David Evans et al. Splint m anual. Available a t h ttp ://ld in t.c s .v irg in ia .ed u .

[E+ 94] David Evans et al. LCLint,: A tool for using specifications to check code. In
Proceedings o f F S E ’94, New Orleans, LA, USA, December 1994.

[E+ 00] Dawson R. Engler et al. Checking system rules using system specific,
p rog ram m er-w ritte rn compiler extensions. In Proceedings of O S D I2000, 2000.

[Eva96] D avid Evans. S tatic detection of dvnam ic m em ory errors. In Proceedings of
P L D I 96, Philadelphia, PA, USA, M ay 1996.

[F+ 99l M artin Fowler et al. Refactorinqs-Im provinq the Design o f Existing Software.
Addison Wesley, 1999.

[FBML00] M arcus F. Fontoura, C hristiano B raga, Leonardo M oura, and Carlos J. Lucena.
U sing dom ain specific languages to in s tan tia te object-oriented frameworks. IE E
Proceedings-Software, 147(4), 2000.

[FHLS97] G arry Froehlich, Jim Hoover, Ling Liu, and Pau l Sorenson. Hooking into object-
oriented application frameworks. In Proceedings o f the 1997 In ternational Con­
ference on Software Engineering, Boston, M ass., May 1997.

[FLL+02] Corm ac F lanagan, K. R ustan M. Leino, M ark Lillibridge, Greg Nelson, Jam es B.
Saxe, and Ram ie S ta ta . Extended s ta tic checking for Java. In Proceedings of
P L D I’02, Berlin, Germ any, June 17-19 2002.

[Fro02] G arry Froehlich. Hooks: Aiding the Use o f 0 - 0 Frameworks. PhD thesis,
U niversity of A lberta, Edm onton, A lberta, C anada, Septem ber 2002.

[FS97] M oham ed Fayad and Douglas C. Schm idt. Special issue on ob ject-orien ted
application fram eworks, O ctober 1997. Comm, of the ACM.

[FSH01] R udolf Ferenc, Susan E llio tt Sim, and R ichard C. Holt. Towards a standard
schem a for C /C + + . In W C R E 2001: Working Conference on Reverse Engi­
neering, S tu ttg a rt, Germany, Oct. 2 -5 2001.

[GAM96] W illiam G. Griswold, D arren C. A tkinson, and Collin M cCurdy. Fast, flexible
syntactic p a tte rn m atching and processing. In Proceedings of IE E E Workshop
on Program Comprehension 1996, Berlin, Germany, M arch 29-31 1996.

[GH93] John V. G u ttag and Jam es J. Horning, editors. Larch: Languages and Tools
fo r Formal Specification. Springer-V erlag, 1993.

[GHJV94] Erich G am m a, R ichard Helm, R alph E. Johnson, and John 0 . Vlissides. Design
Patterns-E lem ents o f Reusable Object- Oriented Software. Addison Wesley, 1994.

[HCXE02] Seth Hallem, B enjam in Chelf, Yichen Xie, and Dawson R. Engler. A system
and language for building system -specific, s ta tic analyses. In Proceedings o f
O SD I 2002, Berlin, Germany, June 17-19 2002.

[HFC76] A. Nico H aberm ann, Lawrence Flon, and Lee Cooprider. M odularization and
hierarchy in a family of operating system s. Comm, o f the ACM , 19(5), M ay
1976.

[HHG90] R ichard Helm, Ian M. Holland, and D ipayan Gangopadhyay. C ontracts: Spec­
ifying behavioural compositions in object-oriented system s. In Proceedings of
E C O O P /O O PS LA 90, O ttaw a, C anada, 1990.

[HHL+00] R ichard C. Holt, Ahm ed E. Hassan, B runo Lague, Sebastien Lapierre, and
C harles Leduc. E /R schema for the D atrix C /C + + /J a v a exchange form at. In
Proceedings o f Working Conference on Reverse Engineering, pages 349 - 358,
2000 .

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ldint.cs.virginia.edu

[HHR03]

[HHS02]

[HHY03]

[Hoa72]

[Hol91]

[Hol97]

[Hol98]

[Hol02]

[HWW02]

[IBM]

[Inc89]

[Int98]

[Jac95]

[Jac99]

[Jac02]

[JF88]

[JF01]

[Joh92]

[Joh97]

[JW96]

D aqing Hou, H. Jam es Hoover, and P io tr Rudrncki. dxlinker: G enerating real
C + + ASGs. Technical R eport TR03-22, D epartm ent of Com puting Science,
U niversity of A lberta, December 26 2003.

Daqing Hou, H. Jam es Hoover, and Eleni Stroulia. Supporting the deployment
of ob jec t-o rien ted frameworks. In Proceedings of the In ternational Conference
on the Advanced Inform ation System Enqineerm q (C A iS E ’02), Toronto, ON,
C anada, M ay 2002.

Daqing Hou, H. Jam es Hoover, and C hangyu Yin. The fram ework use problem:
A prelim inary study w ith GUI fram eworks. In Proceedings o f the First M idwest
Software Engineering Conference, D ePaul University, Chicago, IL. USA, May
2003.

C. A. R. Hoare. P roof of correctness of d a ta representations. Acta Informatica,
1:271-281, 1972.

G erald Holzmann. Design and Validation of C om puter Protocols. P rentice Hall,
Englewood Cliffs, N J, 1991.

R ichard C. Holt. An in troduction to TA: th e tu p le -a ttrib u te language. Available
a t h ttp ://p lg .u w a te r lo o .c a /~ h o lt/p a p e rs /ta .h tm l, 1997.

R ichard C. Holt. S tructu ral m anipulation of software architecture using Tarski
re la tional algebra. In W C R E 1998: W orking Conference on Reverse Engineer­
ing, Honolulu, Hawaii, USA, Oct. 12-14 1998.

R ichard C. Holt. In troduction to th e Grok language. Available a t
h ttp ://p lg .u w a te rlo o .ca /~ h o lt/p ap e rs /g ro k -in tro .h tm l, May 5 2002.

R ichard C. Holt, A ndreas W inter, and Jingwei Wu. Towards a common query
language for reverse engineering. Technical report, In stitu te for Com puter Sci­
ence, U niversity K oblenz-Landau, A ugust 2002.

IBM . Visual Age for Java. 1991-1999. Available a t
h ttp : / / softw are.ibm .com /softw are/ad/vajava.

A pple C om puter Inc. M acappii p rogram m er’s guide, 1989.

In ternational S tandards O rganization (ISO). Programming languages - C++.
IS O /IE C 14882:1998(E), Septem ber 1998.

Daniel Jackson. Aspect: D etecting bugs w ith ab strac t dependences. A C M
Transactions on Software Engineering and Methodology, 4(2):109-145, April
1995.

Daniel Jackson. A com parison of ob ject m odeling notations: Alloy, UML and
Z. M IT L aboratory for C om puter Science, A ugust 11 1999.

D aniel Jackson. Alloy: A lightweight object modeling notation . A C M Transac­
tions on Software Engineering and Methodology, 11 (2) :2-56—290, April 2002.

R alph E. Johnson and B rian Foote. Designing reusable classes. Journal o f
Object-Oriented Programming, l(2):22-35 , 1988.

Daniel Jackson and A. Fekete. Lightweight analysis of object interactions. In
Proceedings of the f th In ternational Sym posium on Theoretical Aspects o f Com ­
pu ter Software, Sendai, Japan , O ctober 2001.

R alph E. Johnson. Docum enting fram eworks w ith patterns. In Proceedings of
O O PS L A 92, Vancouver, C anada, 1992.

R alph E. Johnson. Com ponents, fram eworks, pa tterns. In Proceedings o f the
1997 Sym posium on Software Reusability, pages 10-17, Boston, United S tates,
M ay 17-20 1997.

Daniel Jackson and Jennette W ing. Lightweight formal m ethods. IE E E Com­
puter, 29(4):16—30, April 1996.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/grok-intro.html

[KL92]

[KP88]

[Kru92]

[Lam93]

[LH89]

[Lin84]

[LM93]

[LN02]

[LNSOO]

[LR95]

[LW94]

[MDHOl]

[MDR93]

[ME03]

[Mey88]

[Mey92a]

[Mey92b]

[Mey96]

[Mic]

[MK97]

Gregory Kiczales and Jo h n Lam ping. Issues in the design and specification
of class libraries. In Proceedings o f O O PSLA 92. pages 435--451. Vancouver,
C anada, 1992.

Glenn E. K rasner and Stephen T . Pope. A cookbook for using the model-view-
controller user interface parad igm in sm alltalk-80. Journal of Object Oriented
Programming, 1(3), A ugust-Septem ber 1988.

Charles W. Krueger. Software reuse. A C M Computing Survey, 24(6):131-183,
1992.

John Lamping. Typing th e specialization interface. In Proceedings o f O O PSLA
93, pages 201-215, 1993.

K arl J. Lieberherr and Ian H olland. A ssuring good style for ob ject-orien ted
program s. IE E E Software, pages 38-48, Septem ber 1989.

M. A. Linton. Im plem enting re lational views of program s. In Proceedings of
A C M S IG S O F T /S IG P L A N S o ftw a re Engineering Sym posium on Practical So ft­
ware Development Environm ent, M ay 1984.

Yueh-Hong Lin and Scott M eyers. CCEL: The C + + constra in t expression
language-an annotated reference m anual (version 0.5). Technical R eport C S-
93-23, D epartm ent of C om puter Science, Brown University, 1993.

K. R ustan M. Leino and Greg Nelson. D a ta abstraction and inform ation hiding.
A C M Transactions on Programming Languages and System s, 24(5):491-553,
Septem ber 2002.

K. R ustan M. Leino, Greg Nelson, and Jam es B. Saxe. E S C /Jav a user's m anual.
Technical R eport 2000-002, C om paq System s Research Center, O ctober 2000.

David A. Ladd and J. C hristopher Ram m ing. A*: A language for im plem enting
language processors. IE E E Transactions on Software Engineering, 21(11):894-
901, November 1995.

B arbara H. Liskov and Ja n n e tte M. W ing. A behavioral notion of subtyping.
A C M Transactions on Programming Languages and System s , November 1994.

Andrew J. M alton, Thom as D ean, and R ichard C. Holt. Union schemas as the
basis for a C + + ex tractor. In W C R E 2001: Working Conference on Reverse
Engineering, pages 59 - 67, S tu ttg a r t, Germany, Oct. 2-5 2001.

Scott Meyers, Carolyn K. Duby, an d Steven P. Reiss. C onstraining th e s tructu re
and style of ob ject-orien ted program s. Technical R eport C S-93-12, D epartm ent
of Com puter Science, Brown University, 1993.

M adanlal M usuvathi and Dawson R. Engler. Some lessons from using sta tic
analysis and software m odel checking for bug finding. In Proceedings of
So ftM C ’03, Boulder, CO, USA, Ju ly 18-19 2003. Invited paper.

B ertrand Meyer. Introduction to the Theory o f Programming Languages. In te r­
national Series in C om puter Science, P ren tice Hall, 1988.

B ertrand Meyer. Applying design by contract. IE E E Computer, O ctober 1992.

Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and
Designs. Addison-W esley Publishing Company, 1992.

Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs
and Designs. Addison-W esley Publishing Company, 1996.

Microsoft. Visual Studio. Available a t h ttp :/ /m sdn.m icrosoft.com / vstudio / .

Scott Meyers and M artin K laus. A first look at C + + program analyzers. Dr.
Dobb’s Journal, February 1997.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://msdn.microsoft.com/vstudio/

[ML]

[MMW02]

[MN96]

[MOTU93]

[MPC+02]

[MS95]

[New]

[Nie95]

[OCMOO]

[Org]

[ParOla]

[ParOlb]

[ParOlc]

[ParOld]

[ParOle]

[PP94a]

[PP94b]

[PP96]

Ian Moon and Jie Li. P rivate com m unication (Nov. and Dec. 2003): Ian is
using and extending th e P ro thos framework a t the U niversity of A lberta; Jie
is using the Jak a rta S tru ts framework, an open-source im plem entation of the
J2E E standard .

Kim Mens, Isabel Michiels, and Roel W uyts. Supporting software development
through declaratively codified program m ing patterns. Expert System with A p­
plications, 23:405-413, 2002.

Gail C. M urphy and D avid Notkin. Lightweight lexical source model extraction.
A C M Transactions on Software Engineering and Methodology, 5(3):262-292,
Ju ly 1996.

Hausi A. Mueller, M ehm et A. O rgun, Scott R. Tilley, and Jam es S. Uhl. A
reverse engineering approach to subsystem identification. Software M aintenance
and Practice, 5:181-204, 1993.

M adanlal M usuvathi, D avid Y. W . P ark , Andy Chou, Dawson R. Engler, and
D avid Dill. CMC: A pragm atic approach to model checking real code. In
Proceedings of O SD I 2002, D ecem ber 2002.

A lberto M endelzon and Johannes Sam etinger. Reverse engineering by visualiz­
ing and querying. Softw are-C oncepts and Tools, 16:170-182, 1995.

Joseph Newcomer. F lounderC raft L td . Available a t h ttp ://w w w .flounder.com .

Oscar N ierstrasz. R egular types for active objects. In O scar N ierstrasz and
Dennis Tsichritzis, editors, Object-Oriented Software Composition, pages 99-
121. P rentice Hall, 1995.

Alvaro O rtigosa, M arcelo Cam po, and R oberto M oriyon. Towards agen t-
oriented assistance for fram ew ork instan tiation . In Proceedings o f OOPSLA
2000, M inneapolis, MN, USA, O ctober 2000.

T he M izar O rganization. M izar p ro ject. Available a t h t tp : / /w w w .m izar.org .

David L. P arnas. D esigning software for ease of extension and contraction.
In Daniel M. Hoffman and D avid M. Weiss, editors, Software Fundamentals:
Collected Papers by D avid L. Parnas, pages 269-286. Addison Wesley, 2001.

David L. P arnas. O n a “buzzw ord” : Hierarchical struc tu re . In Daniel M.
Hoffman and D avid M. Weiss, editors, Software Fundamentals: Collected Papers
by David L. Parnas, pages 161-168. Addison Wesley, 2001.

David L. Parnas. On the crite ria to be used in decomposing system s into m od­
ules. In Daniel M. Hoffman and D avid M. Weiss, editors, Software Fundam en­
tals: Collected Papers by D avid L. Parnas, pages 145-154. A ddison Wesley,
2001 .

D avid L. P arnas. O n th e design and development of program families. In
Daniel M. Hoffman and D avid M. Weiss, editors, Software Fundamentals: Col­
lected Papers by D avid L. Parnas, pages 193-213. Addison Wesley, 2001.

David L. Parnas. P red ica te logic for software engineering. In D aniel M. Hoffman
and David M. Weiss, editors, Software Fundamentals: Collected Papers by David
L. Parnas, pages 51-63. A ddison Wesley, 2001.

Santanu Paul and A tul P rakash . A framework for source code search using
program patterns. IE E E Transactions on Software Engineering, 20(6):463-475,
June 1994.

Santanu Pau l and A tul P rakash . Supporting queries on source code: A for­
m al framework. In ternational Journal of Software Engineering and Knowledge
Engineering, 4(3):325-348, Septem ber 1994.

Santanu Paul and A tul P rakash . A query algebra for program databases. IE E E
Transactions on Software Engineering, 22(3):202—217, M arch 1996.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.flounder.com
http://www.mizar.org

[PPSS95]

[Pre95]

[RW88]

[RW91]

[RydOS]

[SB02]

[Sef96]

[SEH03]

[SG95]

[SG96]

[SLMD95]

[Spi92]

[SSC96a]

[SSC96b]

[Str99]

[SW96]

[UW97]

[VJ99]

[VL89]

W olfgang Pree, G ustav Poinberger, A lbert Schappert, and P e te r Sommerlad.
Active guidance of fram ework development. Software-C oncepts and Tools,
16:94-103, 1995.

Wolfgang Pree. Design Patterns for Object-Oriented Software Development.
Addison Wesley, 1995.

Charles Rich and R ichard C. W aters. The p rogram m er’s apprentice: A research
overview. IE E E Computer, 21(11):10—25, 1988.

David Rosenblum and Alexander Wolf. R epresenting sem antically analyzed
C + + code w ith Reprise. In Proceedings of the Third C + + Technical Conference,
pages 119-134, Berkeley, CA, 1991. USENIX Assoc.

B arb ara G. R yder. Dimensions of precision in reference analysis of o b jec t-
oriented program m ing languages. In Proceedings o f E T A P S ’03, April 2003.
Invited talk .

Yannis Sm aragdakis and Don Batory. Mixin layers: An ob jec t-o riten ted im­
plem entation technique for refinements and co llaboration-based designs. A C M
Transactions on Software Engineering and Methodology, 11 (2):215—255, April
2002 .

Mohlalefi Sefika. Design Conformance M anagem ent of Software Systems: A n
A rchitecture-O riented Approach. PhD thesis, U niversity of Illinois at U rb an a-
C ham paign, U rbana, Illinois, USA, 1996.

Susan E lliot Sim, Steve Easterbrook, and R ichard C. H olt. Using benchm arking
to advance research: A challenge to software engineering. In Proceedings of IC SE
2003, P o rtlan d , USA, M ay 2003.

Raym ie S ta ta and John V. G u ttag . M odular reasoning in the presence of sub­
classing. In Proceedings o f O O PSLA 95, pages 200-214, 1995.

M ary Shaw and D avid G arlan. Software Architecture: Perspectives on an
Emerging Discipline. P ren tice Hall, April 1996.

Patrick S teyaert, C arine Lucas, Kim Mens, and Theo D ’H ondt. Reuse contracts:
M anaging the evolution of reusable assets. In Proceedings o f O O PSLA 96, pages
268-285, 1995.

J. Michael Spivey. The Z Notation: A Reference M anua l Second edition,
Pren tice Hall, 1992.

Mohlalefi Sefika, A am od Sane, and Roy H. Cam pbell. A rchitecture-oriented
visualization. In Proceedings o f O O PSLA 1996, 1996.

Mohlalefi Sefika, A am od Sane, and Roy H. Cam pbell. M onitoring the compli­
ance of a software system w ith its high level design models. In Proceedings of
IC S E 1996, pages 387-396, 1996.

B jarne S troustrup . The C++ Programming Language. Addison Wesley, R ead­
ing, MA, 1999. T h ird Edition.

George Shepherd an d Scot W ingo. M FC Internals: Inside the M icrosoft Foun­
dation Classes Architecture. Addison Wesley, 1996.

Jeffrey D. U llm an and Jenniffer W idom. A First Course in Database Systems.
Prentice Hall, 1997.

M andana Vaziri and Daniel Jackson. Some shortcom ings of OCL, the object
constrain t language of UML. a response to O M G ’s request for Inform ation on
UML 2.0, M IT L abora to ry for C om puter Science, Decem ber 7 1999.

John M. Vlissides and M ark A. Linton. Unidraw: A fram ew ork for building
dom ain-specific graphical editors. In Proceedings o f the A C M User Interface
Software and Technologies’89 Conference, November 1989.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[WK99]

[WKR02]

[WL99]

[Wuy98]

Jos W arm er and Anneke Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison Wesley, 1999.

A ndreas W in ter, B ernt Kullbach, and Volker Riediger. An overview of the GXL
graph exchange language. Software Visualization, L N C S 2269. pages 324-336,
2002 .

D avid M. W eiss and Chi Tau R obert Lai. Software Product-line Engineering:
A Family-based Software Development Process. Addison Wesley, 1999.

Roel W uyts. D eclarative reasoning about th e s tru c tu re of ob ject-oriented sys­
tem s. In Proceedings of TO O LS-U SA 98, S an ta B arbara , CA, August 3 -7 1998.
IEEE.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A
FCL: Abstract Syntax and Sem antics

This appendix introduces the abstrac t syn tax (Table 9.1), type rules (static sem antics),
and the dynam ic sem antics of FCL. M eyer’s no ta tion [MeyS8] is adopted. The concrete
syntax can be found in C hap ter 3.

A .l N otational Conventions
The denotational m ethod specifies the m eaning of a program m ing language through associ­
ating w ith each construct T two functions of th e following general forms:

Vr : T —> Bool
M j ' : T — >■ D t

where T can be, for instance, S ta tem ent, Declaration, Formula, and so forth.
The function V r is a predicate. I t yields the value true if and only if its argum ent is

a valid instance of the program construct T . T he sets of constructs are called syntactic
domains. The set of validity functions for a language defines all the “constrain ts” to which
its program s have to conform. They form the static sem antics of the language.

For each construct T, the function M r denotes its dynam ic semantics w ith a set of
m athem atical objects, which is also called its denotation. For each T, D t represents the set
of m athem atical objects; th e set may vary for th e various constructs. The set of denotations
for all th e constructs of a language defines the sem antic domains of the language.

M ost of the M functions will tu rn out to be “higher order” functions th a t yield functions
as results. To highlight the specific n a tu re of these functions, their argum ents will be
enclosed in square brackets ra th e r th an the ord inary parentheses, as in My[i].

The following common m athem atical operators will also be used:

1. in d ex in g : Seq T x I n t -+ T: get the i th elem ent of a sequence. Syntactically, it is
w ritten as s(i), where s is the sequence and i the index.

2. ta il : Seq T —> Seq T: get a new sequence from the argum ent by removing its first
element.

3. addxtoJiead : T x Seq T -» Seq T: get a new sequence whose first element is the
elem ent argum ent and whose ta il is th e sequence argum ent.

4. (+): “overriding union” of two functions / , g: X -» Y :

h = f t y g ■
d o m h = d o m / U d o m g;
h(x) = f (x) if x G d o m / and x £ d o m g;
h(x) — g{x) if x € d o m g.

These no ta tional conventions are adopted from M eyer’s book [Mey88].

A .2 Static Sem antics
FCL is strongly typed so th a t when evaluating an FCL specification, an FCL checker will not
suffer any run-tim e errors. This is ensured by p u ttin g a set of constraints on th e s truc tu re
of FCL specifications. T he constraints com prise the s ta tic sem antics of FCL.

F rom O b je c t M o d e l to T y p e S y ste m

An object model presents the entity-relationship m odel w ithin a certain domain; the classes
are entities, and the relationships are m odeled by the operations th a t the classes support.
Given such a model, one can design a logical language for it by assigning a sort to each
entity and a total function to each operation supported by the entity. An inheritance
relation betw een a pair of classes can be tran s la ted in to a subtype/subset relation between
their corresponding sorts.

However, sometimes it may not be necessary to assign sorts for all classes. Fig. 4.1
depicts the ob ject model for C + + , and Fig. 9.1 th e basic types and the subtype relation for

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FCL-spec : = sl: S ta tem ent-list
Statem ent : = D eclaration I Form ula
D eclaration = v: Variable; expr: E xpr

Form ula ::= N egation I C onjunction 1 D isjunction I
Existential | U niversal I Expr

E xpr ::= Variable 1 C onstan t 1 O peration I Form ula I E xprW ithV ars
N egation ::= f: Form ula
C onjunction ::= fi: Formula; f?: Form ula
D isjunction ::= fi: Formula; fa Form ula
Existential ::= bVarl: B V ar-D eclarationJist; f: Form ula
Universal ::= bVarl: B V ar-D eclarationJist; f: Form ula
BVar .D eclaration ::= D eclaration
ExprW ithV ars ::= vl: D eclara tionJist; expr: Expr

O peration ::= Set_op I Seq_op I R elational I FCLTct
Set_op ::= Subset | M em berof I union I difference 1 fam ily-union I

card 1 Set .com prehension I Set_enumeration
Set-comprehension := bVarl: B V ar-D eclarationJist; p: Formula; ele: E xpr
Set -enum eration := exprl: E x p rJ is t
Seq_op := Seqjm em ber I SeqJndexO f
Relational — > | >= | < | <= 1 =

C onstant — tru e I false 1 Str I Int I global
Variable — id: Str
T J is t :=

Table 9.1: T he A bstrac t Syntax of FCL

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th e curren t version of FCL. Upon com paring them , one may find th a t, for instance, the class
cA sgN ode and the class cTyped have no corresponding sorts in FCL. This is because we have
not found examples where assigning so rts for them would be necessary. If the operations
supported by these classes are useful, we can move them downwards to the corresponding
sorts of their subclasses. For exam ple, retrieving the context of an identifier is defined as
an operation for the class cAsglMode, b u t since the class is not modeled in FCL, a function
unit (Table 3.2) has to be defined on tw o sorts, Name and Exp, which correspond to two of
its subclasses, cN am e and cExpGeneralized, respectively.

T y p e S y s te m o f C u r r e n t F C L

StrName Exp

Type VarUnit

NS Fct CIs

Gen

Undef
(l)Undef is the subtype of all other types
(2)sub-^-sup: sub is a subtype of sup.

Figure 9.1: Basic types and th e subtype relation

T he type system of FCL includes two kinds of types: basic types (Fig. 9.1) and com­
pound types. Basic types can be fu rth e r divided into “facility” types and “dom ain” types.
“Facility” types help form constrain ts, including Str for string values, Int for integers, and
Bool for boolean values. “D om ain” types come from the problem dom ain of program m ing
constructs, including Exp for expressions, Var for variables, NS for nam espaces, F ct for
functions, CIs for classes, Name for nam ed entities, Unit for program units, Gen for types
generated through tem plate instan tia tions, and Type for types.

T he current FCL covers only a subset of the object model; for instance, pointer and
reference types, arrays, builtin types, and generated functions are no t included.

T he set of basic types can be represented by Type_value_basic defined as follows:
T ype-value.basic = { Str, Int, B ool, Exp, Var, NS, Fct, CIs, N am e, Unit, Gen, Type, Undef

Com pound types are types for sequences and sets:
S eq .typ e = { <t> | t : {Var, Exp, U n it}} , w here <t> represents th e set of sequences the

type of whose elem ents is t.
Set_type = { F t | t:Type_value_basic U Set_type }, where F t represents th e power set of

th e type t.
Given a type t, the function build_set_type creates a new type, w hich is the set of t:

build_set_type(f: Type_value_basic U Set-type) = F t.
Given a set type of the form F t, the function elem entT ype re tu rn s its elem ent type:

elementType(F t) = t.
U ndef is the type for the undefined value.
Fig. 9.1 also defines the subtype relation between basic types. Besides basic types,

sub type relations can also exist betw een com pound types. One set type is th e subtype of
ano ther if and only if the base ty p e of the form er is the subtype of the la tte r. Similar
definition holds for sequence types.

T he subtype relation is necessary for the set union operation; For a set union expression
to be valid, FCL requires th a t th e base types of bo th its operand sets have one and only
one common ancestor in Fig. 9.1. T h is notion will be further form alized in section A .3.

Finally, the set of types th a t FC L supports, T ype.value, is defined as follows:
Type_value = Type_value_basic U S et-typ e U Seq-type
Given a type, the predicate is-Set can tell w hether it is a set type.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T y p e M a p s

W henever one says th a t an instance of some construct is “correct,” one really means tha t
it is valid in a certain context, in which each identifier has a designated type. In compiler
design, th is notion of context corresponds to “symbol tab les” , which can be modeled by a
function T y p e m ia p :

T yp e jm a p : V ariable —> T ypejva lue

FCL variables are only implicitly typed; th a t is, one does no t declare a variable in the
form of “v: T ”, where T is a nam ed type. Instead, one writes “v: E xpr”, where the type
of Expr can be inferred, and the type of v is assigned as th a t of Expr. In th e following, we
will use th e function typ e ju a l, which evaluates the type of an expression:

typejual : E x p r x T yp ejm a p —> T ype-va lue

whose definition will be deferred to th e end of this section.
For a construct T in th e context of a type m ap, the function ty p in g s constructs a type

m ap for the new variables defined in T :

ty p in g s ■ T x T yp ejm a p - t T yp e jm a p

where T can be Declaration, D eclarationJist, BVar-Declaration, BVar-D eclarationJist, or
Statem ent,

A declaration yields a type m ap consisting of only one pair, whose nam e is th a t of the
variable, and whose type is th a t of the expression:

typingDeciarationldd : D eclara tion , tm : Typejm ap] = { < dd .v ,typ e jva l[d c l.exp r,tm] > }

T he type m ap th a t a list of variable declarations introduces is th e “overriding union” of
the type m aps of each of th e variables, from head to tail:

typ in g D e c l a r a t i o n J i s t [v l ■ D e c la ra tio n J is t ,tm : T yp e jm a p] =

if v l.len g th = 0 th en 0
else

given f i r s t T M = typ ingDeciaration[vl(0),tm]
then

f i r s t T M (+J typingi>eciarationJist[vl.tail, new T M]
end

end

B oth quantification form ulas and set comprehension in troduce a list of bound variables.
The type m ap for the list is the “overriding union” of the type m aps of all the variables,
from left to right:

typ in g b v a r - D e c l a r a t i o n jis t\b V a r l : B V a r -D e c la r a tio n J is t ,tm : Typejm ap] =

if b V arl.leng th = 0 then 0
else

given f i r s t T M = ty p in g s Var-Declaration [bV arl (0), tm]
then

f i r s t T M l+J typingBVar-DeciarationJist[bVarl.tail , n e w T M]
end

end

The type m ap of each bound variable is defined as follows:

ty p in g s v ar-Declaration [del : D eclaration, tm : Typejm ap] =
given se tT yp e = typejua l[dd .expr, tm]\

se tE le m e n tT ype = e lem en tT ype(se tT ype);
then

{ < del.v, s e tE lem en tT yp e > }
end

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note th a t the type of a bound variable is the type of the elem ents of the set whereas the
type of a declared variable is th a t of its expression. For exam ple, in c as classSet;, c has the
type of classSet whereas in forall c being classSet holds c has the type of the element type
of classSet.

The following is the typ ing function for statem ents:

typingstatement[st : S ta te m e n t, tm : Typejm ap] =
case st of

D eclara tion : typ in g Deciarau on[s t ,tm]
F o rm u la : 0

end

If the sta tem ent is a form ula, it does not introduce any new variables th a t can be used
by subsequent sta tem ents, therefore, the function re tu rns the em pty set; Otherwise, it is a
declaration and the function re tu rns the new type m ap defined by the declaration.

An outline of th e function typejual is as follows:

typem al : E x p r x T yp e jm a p -» T ypejva lue

typejval[exp : E x p r , tm : T yp e jm a p] =
case exp of

V ariable : tm (exp)
C o n s ta n t : ty p e ju a lConstant[exp\
F o rm u la : Bool
O peration : t y p e j v a l o p e r a t i o n [e x p , tm]
E x p r W ith V a r s : typejva l[exp .expr,tm \+)typ ingDeciaraUonj i st[exp .vl,tm]]

end

A .3 Static Sem antic Functions
An FCL specification consists of a sequence of sta tem ents. T he specification is valid if and
only if th e sta tem ents list is valid:

VFCL-spec ■ F C L j S p e C - » Bool
Vf c l spec \P ■ F C L s p e c] — Vstatem entJist\P -Sl, 0]

A statem ent list is valid if and only if all of its s ta tem ents are valid:

Vstatement-iist ■ S ta te m e n t l i s t x T yp e jm a p -> Bool

VstatementMst[sl : S ta te m e n tJ is t , tm : Typejm ap] =
if s l.len g th = 0 then true
else V state7nent (0): tm] A

VStatementMSt[s l -ta i l’ tm W typ ing[sl(0), tm]]
end

N ote how the type m ap for subsequent statem ents is u p d a ted in th e above function.

Vstatement ■ S ta te m e n t x T yp e jm a p -> Bool

ystatement [s t : S ta te m e n t, tm : Typejm ap] =
case s t of

D eclara tion : VF >e c i a r a t i o n [s t , t m]

F o rm ula : VFormuia[st,tm]
end

The validity of a declaration is equivalent to the validity of its expression:

Vjjeciaration ■ D eclara tion x T yp ejm a p —> Bool

V D e c i a r a t i o n [d d : D eclara tion , tm : Typejm ap] = VExpr[dcl.expr, tm]

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The validity of an expression is the result of following case analyses:

Vexpt '■ E x p r x T yp e jm a p —t Bool
VexpA ^ P '■ E xpr, tm : T yp e snap] =

case exp of
V ariable : V v a,riaUe[sxp,tm]
C o n sta n t : true
F orm u la : VFormuia[exp ,tm]
E x p r W ith V a r s : VBxpTWithVaTS[exPUm]
Set-com prehension : Vset-comprehension[exp,tm}
O peration : V0peration[exp,tm]

end

Of course, a nam e reference is valid if and only if there is a variable w ith the same nam e
in the type map:

Vvariabie ■ V ariable x T yp e jm a p —> Bool

Vvariabie[v ■ V ariable, tm : T yp e jm a p] = v € dom tm

An expression can have a list of local variables. Such an expression is valid if and only
if its expression is valid under the new type map:

VBxprWithvars ■ E x p r W ith V a r s x T yp e jm a p Bool

V E x p r W i t h V a r s [f i x p : E x p r W ith V a r s , tm : T yp e jm a p] =
given n e w T M = tm 1+) typ ing[exp .vl, tm]
then

VExpr [exp.expr, new T M]
end

The validity of form ulas are also the result of case analyses:

VFormuia ■ F o rm u la x T yp e jm a p —» Bool

VFormuia[f '■ F o rm u la , tm : T yp e jm a p] =
case f of

N eg a tio n : VN egatio n [f,tm]
C o n ju n c tio n : VConjunction [f> tm \
D is ju n c tio n . Vxji8junction[f ̂ tm]
E x is te n tia l . VBxistentiai[f tm]
U niversa l . Vjjniversai[f,tm]
E x p r : VBxpr [f, tm] A ty p e jv a l[f,tm] = Bool

end

N ote th a t for an expression to be a form ula, it no t only has to be a valid expression, bu t
also has to be of the Bool type.

A negation, conjunction, or disjunction is valid if and only if the ir constituent form ulas
are valid; we om it the validity functions since they are obvious.

T he validity functions of bo th universal and existential quantifications are the same, th e
following only presents the one for existentials:

VExistentiai ’■ E x is te n tia l x T yp e jm a p s - Bool

Vsxistentiaile-xt : E x is te n tia l, tm : Typejm ap] =
V B V a r - D e c l a r a t i o n J i s t [e x t . b V arl, t m] A
Vpormuia [e x t .f , tm 1+) typ ing[ext.bV arl, tm]]

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A set comprehension is valid if and only if all of its three parts, the list of bound variables,
the "'filter” predicate, and the “elem ent” function, are valid:

V set.-co m p reh e? isio n • S I S'i. 071 X I 'jJ])(’ .JTKl jJ t B o o l

Vset-comprehension[sc : Se t-C o m p reh en sio n ,tm : T ypejm ap] =
if V}SV a r - D e c l o , r a t i o n - l i s t [-SC.6V a r l , tm] then

given n e w T M = tm *)typ ing[sc .bV arl,tm]
then

VFormula[sC.p, n e w T M] A

V ExPr[sc .e le , n e w T M]
end

else fa l s e
end

The type of set com prehension is calculated as follows:

type jual S e t - c o m p r e h e n s i o n ■ S e t -Com prehension x T yp ejm a p -» S e t_ ty p e

t y p e - v a l S e t_ c o m p re h e n s io n [sc : S e t -Comprehension, t m : T y p e j m a p } =

given n e w T M = tm l+)tj/pm g[sc.6yari,tm];
e l e m e n t T y p e = t y p e j v a l E x p r [s c . e l e ,n e w T M]

then
b u ild ,se t-typ e (e lem en tT ype)

end

For a bound variable list to be valid, all of its elements have to valid:

V B V a r - D e c l a r a t i o n J i s t ■ B V ar-D eclara tion l i s t x T yp ejm a p - » Bool

^BVar-PecJaration-iistt&Varl : B V a r J ? e c la r a tio n J is t ,tm : T yp e jm a p] =
if bV arl .leng th = 0 then tru e
else

arl(O), tm]A
VBVar jDeciarationJistibVarl.tail, tm[*)typi,ng[bVar(0) ,tm)\

end

T he definition of a bound variable is valid if and only if its set expression is valid and
the set expression is of set types:

V B V a r - D e c l a r a t i o n ’■ D eclara tion x T yp e jm a p Bool

V b v a r - D e c l a r a t i o n \bV ar : D e c la ra tio n ,tm : T yp e jm a p] =
given exprT ype = type-val[bVar.expr, tm]
then

VExpr[bVar.expr, tm] A is S e t(e x p r T y p e)
end

Before discussing the typing rules for set operations union and set enum eration, th e lub
(least upper bound) opera to r for two types has to be defined first. For two types fi and f2 ,

lub : T ypejua lue x T yp e jva lu e —» T ype-va lue
lu b { ti ,t f) =

if 3 t : (t > t \ A t > <2A /3t' : t' < t f \ t ’ > t \ / \ t ' > tf)
then t else nu ll
end

where t\ < f2 denotes th a t ti is a subtype of f2. T he subtype relation is in troduced in
section A.2.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now the validity function for set union can be defined as follows:

I'union '■ union, x T yp e jm a p —> Bool
VUnionlu ■ u n io n ,tm : Typejm ap] =

given t\ = typ e jva l[u .l,tm]] t -2 = typejual[u .r,trn];
then

VB xp r [u . l , tm] A V Expr[u .r , t m] A

i s S e t (t i) A isJ3et(t-2) A lub{t\,to;) yf nu ll
end

And th a t for set enum eration can be defined as follows:

Vset^enumeration '■ S e t-en u m era tia n x T yp e jm a p -A Bool
V s e t - e n u m e r a t i o n [s e : S e t-e n u m e ra tio n ,tm : Typejm ap] =

if se .exp ri.len g th = 0 th en true
else given e T y p e = e le m e n tT y p e (ty p e ju a l s e t - e n u n ie r a t io n [s e .e x p r l . t a i l , tm })

VE xp r [s e . e x p r l (0) ; tm] A Vset-enumeration[se.eX/prl. tail , tm] A
lub(typejva l[se .exprl(0),tm), eType) ^ null

end

typejualset-enumeration '■ S e t-en u m era tio n x T yp e jm a p - a Set_type
type-valset-enumeration[se : S e t-e n u m e ra tio n ,tm : T yp e jm a p] =

if se .exp ri.len g th = 0 then b u ild se t- ty p e (n u ll)
else given t a i l T y p e = e le m e n tT y p e (ty p e j v a l s e t - e n u m e r a t io n [s e . e x p r l . t a i l , tm])

buildse t-type(lub(type-va lE xpr [se.exprl(0),tm], ta ilT yp e))
end

A .4 D ynam ic Sem antics
S em a n tic D o m a in s

The dynam ic sem antic dom ain of FCL, V a lue , is defined as follows:

V a lu e = { * } U ^ T ypejva lue

* is a special symbol for the “undefined” value. Each element of th e set T ype.value, if viewed
by intent, represents a type; if, however, viewed by extent, it represents the set of elements
th a t are characterized by th e type. In th e definition of V alue , types are viewed from the
extent point of view.

At the top level, a program can be denoted as a function th a t m aps from nam es to
namespaces:

P ro g ra m = S tr -A N S

I t has only one pair w ithin it, th a t is, the global namespace:

P rogram = {{global, the-globaljnam espace)}

At the next level, each nam espace can contain zero or more nested nam espaces, types,
variables, and functions. Thus N S can be characterized as follows:

N S = n s : S tr -a N S] type : S tr -A Type;
var : S tr -A V ar; f c t : S tr -A F F ct

T h a t is, a nam espace can be formalized as an aggregate of functions. Note th a t we do not
intend to use th is equation as a definition of N S , for otherwise this would be a recursive
dom ain equation th a t has no solution under the usual category of sets. Instead , we intend
to use it to characterize a given N S .

In a similar way one can give o ther constructs denotations. We om it them because formal
treatm en ts for these construncts would be quite tedious w ithout increasing th e clarity of
presentation; instead, we choose to explain them informally in Section 3.2.2.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D y n a m ic S e m a n tic F u n c tio n s

T he dynam ic sem antics of FCL specifications are characterized by S ta te , a function from
FCL variables to the elements of V a lu e :

S ta te : V ariable —> V alue

T he m eaning of the FCL constan t global is defined as follows:

Mgi0bai '■ P rogram —> S ta te
M giobai[p ■ Program] = p(global)

An FCL specification consists of zero or m ore constraints. E valuating the specification
against a given program yields a sequence of boolean values, one for each constraint. Thus,
the m eaning of a specification can be defined as follows:

M pcL spec '■ F C L s p e c —t P ro g ra m —> S e q Bool
jSbFCLspec[spec : F C L s p e c] = Ap : Program -

given s ta r tS ta te = {(global, M gi0bai\p])}
then M statementJist[spec.sl, startS ta te]
end

T h a t is, th e evaluation of a specification s ta rts w ith the sta tem ent list and the startState.
T he sem antic function for the sta tem ent list is defined as follows:

Mstatement Mst ■ S ta te m e n t l i s t x S ta te —» S e q Bool
FtStatem,ent-Hst i$l • S ta te m e n t- lis t, s . State] —

if s i.len g th = 0 then ()
else case s l(0) of

D eclara tion . M s tatenient_iiSt[sl.ta il, s \^F tjoeciara,tion\sl{C), s]]
F o rm u la . add-to-head(]\Lpormuia^sl(0), s], JV1statement-iist\sl -ta il, s])
end

end

T hus, the notion of a program p being correct w ith regard to a specification spec can be
defined as:

Mb G M pcLspec[spec](p) • b
In the above definition, the evaluation of each declaration generates a variable associated

w ith a value, and the evaluation of each form ula generates a boolean value.
The sem antic function for declarations is as follows:

MDeclaration ■ D eclara tion x S ta te —» (V ariable —> V alue)
FIDeclaration\dcl : D eclara tion , s : S ta te] =

{(dcl.v , M Expr[dcl.expr, s])}

T he sem antic function for form ulas is as follows:

FI Formula '■ F o rm u la x S ta te —> Bool
FIFormula [f ■ F o rm u la , s : State] =

case / of
N eg a tio n :!Mf0rm „io[/ . / , s]
C o n ju n c tio n . A lporm uia \f-fi> A F Iporrnuia{ f.f- 2 ,s]
D is ju n c tio n . FIporrriui0j f . f \ , s] V F tpor7nuia[f.f-2 ,s]
E x is te n tia l : M E x i s t e n t i a l [/, s]
U niversa l : M Universai[f, s]

end

An existential form ula is true if and only if th ere is a t least one assignm ent to its bound
variables satisfying the formula:

FI Existential E x is te n tia l x S ta te —t Bool
F I E xisten tia lis t : E x is te n tia l, s : State] =

given bindings = FIBVar-DeciarationJist[ext.bVarl, s]
then \J{F Ip0rmuia[ext.f, s 1+| b] | b G b indings]}
end

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A universal form ula is true if and only if all of the assignm ents to its bound variables
satisfy th e formula:

My-niversai •' U niversa l x S ta te -> Bool
M i!niversai[um : U n iversa l, s : S ta te] =

given bindings = M B V a r - D e c l a r a t i o n J i s t [uni.bV arl, s]
then f \ { M FoTmu[a[uni.f,s\+)b] | b e bindings)}
end

A list of bound variable definitions generates a set of “bindings” . Each “binding” is a
set of nam e-value pairs:

M b v ar ̂ .Declaration j is t '■ B V a r-D ec la ra tio n J is t x Sta,te F (V ariable —> V a lu e)
M b v a r - D e c l a r a t i o n j i s t [dl : B V ar -D eclara tion l i s t , s : State) =

if dl.length = 0 then 0
else given p a irs — {dl(0).v} x M Expr[dl(0).expr,s];

7 e s tB m d m g S — BV a r - D e c l a v a t i o n - l i s t \ d l .ta il , s |+) p)
then {{p} 1+) r \ p £ p a irs A r e re s tB in d in g s}
end

end

Each expression yields a value. T he value depends on the type of th e expression:

M Expr : E x p r x S ta te V a lu e
M.Expr\exp : E xp r , s : State] =

case exp of
C o n s ta n t: M C o n s t a n t [e x p , s)

Variable : Mvariabie[exp, s]
F o rm u la : M Formuia[exp, s]
E x p r W ith V a r s : M ExprWithVars{exp, s)
O peration . Mioperation\SXp, s]

end

Each constant has a real value as its denotation; we om it the ir sem antic functions.
T he sem antics of V ariable is defined as follows:

Mvariable '■ V ariable x S ta te —» V alue
MvariaUe[v '■ V ariable, s : S ta te] = s(v)

T he sem antics of E x p r W ith V a r s is defined as follows:

MExprWithVars '■ E x p r W ith V a r s x S ta te —>■ V a lu e
AfExprWithVars\exp : E x p r W ith V a r s , s : State] =

M Expr\pXp.expr, S (+j M D e c l a r a t i o n J i s t \exp.dl, s]]

T he sem antics of the declaration list is defined as follows:

MDeclarationJist '■ D e c la ra tio n J is t x S ta te —> F (V ariab le -> V alue)
MDeclarationJist[dl • D ec la ra tio n d is t, s . State] =

if d l.length = 0 then 0
else given p a ir = {(d l(0).v , M Expr[dl(0).expr, s]}

then p a ir (+) M D e c l a r a t i o n Jist[dl-tail, s Impair]
end

end

In the abstrac t syntax, set and sequence operations, relational operations, and functions
on the object model are under th e category of operations. Since the sem antics of m ost
of the set, sequence, and relational operations are s tandard , we will present the sem antic

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function for only set com prehension. F C L - fc t represents all th e FCL functions on source
code model; these functions are described in Section 3.2.2.

T he sem antic function of Set-com prehension is defined as follows:

Mset-comprekension '■ S e t-Comprehension x S ta te -> Set-type
M S e t - c o m p r e h e n s i o n [s c : S e t-Comprehension, s : State] =

given bindings = M B v a r - D e c i a r a u o n - i i s t [s c . b V a r l , s]

th en {ele | M Formuia[sc.p, s 1+) b] = tr u e , ele = M E x p r [s c . e l e , s t+J b], ele ^ *, b 6 bindings}
end

Note th a t if the result of th e element function is “undefined,” the element will not be
included in the set. Thus set com prehensions always re tu rn “valid” sets.

13-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

