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Abstract

A lthough they axe intended to  support and  encourage reuse, object-oriented application 

frameworks are difficult to  use. The arch itecture  and im plem entation details of frameworks, 

because of the ir size and complexity, are rarely fully understood. Instead, faced with a 

fram ework problem , developers m ust somehow learn ju s t enough about the p arts  of the 

fram ework required for the ir task  and  ask for assistance or m uddle through using a trial- 

and-error approach. In m any cases, they  m isuse the fram ework by not learning w hat the 

fram ework designer had in m ind as th e  proper solution to  th e ir problem .

This thesis investigates bo th  th e  feasibility and th e  effectiveness of tools support for the 

problem: The idea is to  formalize the  p a tte rn s  to  which the code s tructu re  of the  application 

should conform, and thereafter detect violations of such p a tte rn s  w ith an au tom ated  checker 

program . To capture the know-how knowledge abou t fram eworks use, we introduce the 

notion of framework constraints: fram ework constrain ts are rules th a t frameworks impose 

on th e  code of framework-based applications.

The tool consists of a  specification language and  an associated checker. The specification 

language, FCL (Framework C onstrain ts Language), is defined to  formally specify framework 

constraints. The sem antics of FCL is based on a  first-order logic extended w ith set and 

sequence operations. Essentially, fram ework constrain ts can be regarded as framework- 

specific typing rules conveyed by FCL specifications and thus can be enforced by techniques 

analogous to  those of conventional type  checking.

Several case studies have been conducted to  evaluate the  approach. These include a  part 

of the  M FC (Microsoft Foundation Classes) fram ework, the  law of D em eter, Scott M eyers’ 

C + +  guidelines, and the Observer design p a tte rn . Lessons in term s of bo th  the  strengths 

and th e  lim itations of FCL are reported.
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The refinement of techniques fo r  the prompt discovery of errors 
serves as well as any other as a hallmark of what we mean by science.

--J. R obert O ppenheim er

Most papers in Computer Science describe how their authors learned what 
someone else already knew.

-P e te r  Landin, C irca 1967
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Chapter 1 

Introduction

1.1 Statem ent of Research Problem

An object-oriented fram ew ork is a reusable design for all or p a r t  of a  system  th a t is rep­

resented by a set of ab strac t classes and the  way their instances in teract [JF88]. From 

the  perspective of application program m ers, it is a  skeleton application  th a t can be cus­

tom ized to  produce specific applications in a certa in  domain. Fram ew ork builders provide 

mechanisms, the  variation points, to  enable th is [Deu89].

W hile a deep understanding  of general fram ework-based developm ent [Joh97, BMMB98] 

rem ains a  research problem , m any frameworks are being used for production  development. 

Having chosen a framework, how does th e  development team  address th e  problem  of correct 

usage of the chosen fram ework? T he essence of software determ ines th a t  solutions are likely 

to  be m ulti-faceted and  com plem entary to  each other.

Experience w ith using industria l streng th  frameworks has shown th a t  in order for fram e­

works users to  understand  and  properly  use a  framework, precise, concise, and complete 

docum entation is required [FHLS97, Fro02]. However, tex tu a l and  diagram m atic docu­

m ents are informal, and  in general, we do not know yet how to  te s t w hether a program m er 

has understood a docum ent.

O ther conventional approaches such as framework design review , m anual code inspection, 

and testing can also be helpful. B u t they are not w ithout problem s. Fram eworks are 

supposed to capture com m onality in a way th a t makes reuse easier. B u t applying most 

current frameworks requires a nontriv ial body of knowledge abou t th e  frameworks on the 

p a rt of users. Lack of understand ing  makes debugging difficult because it can be hard 

to  follow a th read  of execution th a t  is m ostly buried in the  fram ew ork code. Testing is 

similarly difficult since it often requires a fundam ental understanding  of the  architecture of 

the  framework.

The size and com plexity of fram eworks and th e ir notorious lack of design and intended- 

usage docum entation make fram ew ork-based development a learning-intensive and error-

1
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prone process [HHY03]. Commonly framework users m isunderstand  the relationships be­

tween their application and  the framework and are unaw are of how the framework designer 

intends the fram ework to  be used, resulting in overly complex solutions or subtle bugs.

This work was inspired by our initial observation th a t  m any errors of using fram e­

works are due to  wrong s truc tu res or m isunderstanding of structu res. This observation has 

been backed up by two studies on user groups of M FC (M icrosoft Foundation Classes) and 

Java/Sw ing: In the Java/S w ing  case, we collected and analyzed about 200 news group ques­

tions related to  the JT ree com ponent and  confirmed th a t  s tru c tu ra l errors indeed represent 

an im portan t class of errors [HHY03]; our MFC study  supports the  observation in a more 

rigorous m anner because the  evidences are docum ented by an  expert user who has been 

using M FC and answ ering news group questions for several years [New], We analyzed only 

a subset of his essays and  found m any of them  are s tru c tu ra l errors (see C hapter 6). In 

addition, our experience of in teracting  w ith active users of o ther fram eworks also supports 

this observation [ML].

For th e  fram ework user w ith shallow knowledge, som ething m ore akin to  type-checking 

is desirable. T h a t is, fram ew ork developer takes on the  burden  of describing/specifying how 

to  properly use th e  fram ew ork so th a t  compliance by th e  fram ew ork user can be checked 

mechanically. A lthough correct type m atching is no guaran tee th a t  a  function is used 

properly, it does catch m any common mistakes. We would like som ething similar to  apply 

to  framework use.

We use the term  fram ew ork constraints to  denote th e  knowledge th a t  a user needs to  

know in order to  use a  fram ew ork properly. The idea is to  form alize th e  framework con­

stra in ts on hot spots and  check w hether a  framework in stan tia tio n  satisfies these constraints. 

Our goals are twofold: to  create  specification languages and  tools so th a t  fram ework builders 

can specify the  intended use of the ir frameworks and fram ew ork users can then  use the  tools 

to  check their applications.

In the long run, we w ant to  look into the feasibility of two technologies, namely, sta tic  

analysis and model checking, to  the problem  [HHS02]. Along th a t  line, framework con­

strain ts can be categorized into structural constraints and  behavioral constraints. S tructural 

constraints can be evaluated  by parsing and analyzing source code while behavioral con­

strain ts could be dealt w ith  by model checking.

This thesis focuses on th e  structu ra l aspect of fram ew ork constrain ts. A specification 

language, FCL (Fram ew ork C onstrain t Language), is designed to  express th e  constraints 

on the structu re  of source code. The feasibility and effectiveness of FCL are  dem onstrated 

through several case studies. We conclude th a t it is indeed useful to  fram ework users.

2
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1.2 FCL

FCL is a strongly typed  first-order logic extended w ith set and sequence operations. Its  term  

language consists of a special set of to tal functions, reflecting the entities and relationships 

of program m ing languages.

FC L ’s form alism  lends to  its autom ation. Specifiers specify a set of constraints on 

program  structu re , and conformance of a specific program  to  the  constraints is then  au to ­

matically determ ined by an FCL checker.

Since FCL is typed , run-tim e errors can be ruled ou t, bu t it is up to  the  specifiers to  

ensure th e  consistency of FCL specifications. W ith  FCL, it is the  specifiers who carry out 

the reasoning process and determ ine to  w hat constrain ts th e  code structure  should conform. 

FCL specifications are only the  “conclusion” of th a t  process.

The need for FCL stem s from the absence of constra in t languages rich enough to  express 

the  kinds of s tru c tu ra l constrain ts we explored and  th e  possibility to  do inference w ith FCL 

specifications in  form al system s such as the M izar environm ent [Org] in the  future.

Several case studies have been done to  gain knowledge on how FCL can be b e tte r designed 

and used, and w hether it can be helpful in practice:

• T he Observer P a tte rn

•  M F C ’s dialog architecture

• Swing’s JTree com ponent

In addition  to  fram eworks, FCL has also been used to  encode general design rules:

•  Law of D em eter

• Scott M eyers’ C + +  guidelines

False positives and  false negatives are always a  big concern w ith any error detection tool. 

W hen specifying constrain ts, one often inclines to  add  as m any constraints as possible, hop­

ing to  pick up m ore errors. B u t care m ust be taken  no t to  add  too  many; otherwise spurious 

errors m ight be generated. Ideally, one would expect to  have ju s t enough constraints, no 

more and  no less, so th a t  FCL can help pick up all errors b u t th e  spurious ones. We do not 

have any hard  principles on how this can be achieved yet, bu t our experience suggests th a t 

the following guidelines tend  to  be useful:

• In  general, th e  m ore specific the context is, the  m ore effective FCL tends to  be. 

M any exam ples show th a t  the  com ponents which FCL is used to  constrain are highly 

specialized; they  often assume a great deal of context. FCL can be more effective 

under such circum stances.

3
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• Specifiers should know the design well and avoid im m ature generalization. However, 

th is often implies th a t  the specifiers should be the  designers or som ebody who works 

closely w ith them .

® Specifying against specific sym ptom s som etim es can be economical.

The errors FCL detects include both errors of om ission and errors of commission. M any 

errors are design errors caused by m isunderstanding a n d /o r  by being unaw are of properties 

and in teraction a t system  interfaces. T he errors are b o th  system - and domain-specific. They 

are different from generic im plem entation errors such as dereferencing null pointers or array 

bound overflow; independent of the dom ains of the inspected  program s, such im plem entation 

errors can occur in any program s.

O ur experience so far shows th a t FCL specifications ten d  to  be short. This is encouraging 

since practitioners would be more likely to  pick up  and use it.

T he current version of FCL is targeted  a t C + +  for several reasons. C + +  has m any fea­

tu res th a t  can potentially  complicate program  analyses: separate  com pilation, inheritance, 

overloading, tem plates, exception handling, and  so on. Thus choosing C + +  as the  ta rg e t 

is more likely to  expose potential problem s w ith th e  approach. A real C + +  framework, 

MFC (M icrosoft Foundation Classes), is publicly available [SW96]; furtherm ore, extensive 

user experience w ith M FC is also available in the  forms of b o th  news group discussion and 

essays by expert users [New], We are relatively fam iliar w ith  M FC. B ut th e  idea should be 

ready to  extend to  o ther strongly-typed program m ing languages such as Java.

The im plem entation of FCL consists abou t 20,000 lines of C + +  code, and to  date about 

1,200 lines of FCL specifications have been w ritten .

T he FCL approach is different from program  verification; there, the specifications are 

m ainly concerned w ith program  behavior. M oreover, conventional m ethods of specification 

and verification em phasize abstractions; typically, abstrac tion  functions are used to  tie  a 

piece of specification w ith a specific im plem entation [Hoa72]. The idea is th a t  by focusing 

on th e  ab strac t specification and ensuring its correctness, one can no t only reuse it in 

m any different im plem entations, bu t also use it as a  surrogate  when reasoning about o ther 

im plem entations th a t  use it.

Verification in theory  can guarantee the  correctness of a program  w ith respect to  a 

specification. B u t au tom atic  theorem  proving is in trac tab le , which burdens the users to  

provide b o th  lem m as and  proof strategies. Typically, th e  process is labor-intensive and  

tedious. In contrast, FCL is fully au tom ated  and FCL specifications tend  to  be short and 

thus easier to  w rite. Its  drawback is th a t even if a  program  passes all the constrain ts in an 

FCL specification, FCL cannot guarantee its  full correctness. FCL is p artia l in its expressive 

power, m odeling ability (only on syntactic  s tru c tu re ), degree of analysis, and degree of 

com positionality. Thus FCL belongs to  th e  family of “lightw eight” formal m ethods [JW96].
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A lthough FCL has no constructs for specifying abstractions, its focus on syntactic  struc­

tu re  seems to  be desirable in practice, to  quote the authors of the Larch book [GH93]:

Specifications should not ju s t describe m athem atical abstractions, bu t real in ter­

faces supplied by program s. They should be w ritten  at the level of abstraction  at 

which clients program . This usually m eans sinking to  the level of a program m ing 

language.

In a sense, FCL is a technique th a t  com plem ents conventional formal specifications.

The relation between FCL and model checking can be characterized as follows: T he pro­

gram  being checked would be the m odel, while the  FCL specification would be th e  properties 

th a t the  model is supposed to  uphold. T he difference lies in the fact th a t technically, tools 

for model checking often assume the  responsibility  of constructing all the possible models 

and  check them  exhaustively, whereas in FCL, it is the  program m ers who provide program s 

to  the  tool one by one.

Technically, FCL is more akin to  type-checking. The difference can be best illustrated  

by an example: while the  em pty program  would pass all the  type checkers, it can hardly 

pass any non-trivial FCL specifications.

FCL complements testing. Testing requires executability and execution implies com­

pleteness, in the  sense of bo th  the  com pleteness of the  application and the  coverage of the 

te s t cases. Testing is also intrusive. In contrast, a com pleted application is no t necessary 

in order for FCL to  work; FCL can check p a rtia l im plem entations. Thus FCL fits well w ith 

increm ental development.

1.3 Summary of Contributions

T his thesis is m otivated by the  desire to  have tools support for detecting errors in framework- 

based developm ent. More specifically, it proposes to  extend the technique of type checking 

and  apply it to  fram ework-based developm ent. A sum m ary of the  m ain resu lt and contri­

butions are as follows:

1. The design and im plem entation of FCL m ake the  bulk of the  work. A m odel of the  

sta tic  properties of C + +  program s is presented, and FCL is defined based on th a t  

model. A formal semantics is also defined for FCL.

2. The feasibility and the po ten tia l usefulness of the  approach are then  dem onstrated  

by applying FCL to  real frameworks. Specific lessons learned from the  experience are 

reported . These lessons are im portan t for bo th  the use and fu ture developm ent of 

tools like FCL.
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To use a framework is to  learn  its design; m any problems originate from a lack of 

understanding abou t its a rch itecture , design pitfalls, and evolution. FCL has been 

used to  perform  the following kinds of tasks:

•  Detecting omission of program m ing obligations;

•  Detecting violations of program m ing constrain ts implied by a design;

•  Detecting violations of program m ing constraints implied by a “negative design;”

•  Enforcing program m ing disciplines;

•  Helping w ith the  co-evolution of bo th  the  framework and its in tended use.

1.4 Outline of the R est of the Thesis

The rest of this thesis is organized as follows:

•  C hapter 2 provides the  necessary background for understanding fram ew ork-based de­

velopment. I t traces the  origin of th e  related  concepts such as program  families, 

frameworks, and software p ro d u c t lines. The s ta te  of the  a rt of frameworks is then 

surveyed. Finally, we show th e  curren t s ta tu s  of the research area, presenting one 

recent result in b e tte r m odularization  support for reusing large scale com ponents, the 

m ixin layers.

•  C hapters 3 and  4 describe th e  design and im plem entation of FCL. Specifically, chap­

te r 4 presents a model of th e  s ta tic  properties of C + +  in the object-oriented  notation; 

chapter 3 describes how a first-order logic, FCL, is defined and  im plem ented on top 

of th a t model. Appendix A presen ts a form al trea tm en t of th e  s ta tic  and dynam ic 

sem antics of FCL.

• C hapters 5, 6, and 7 present th ree  case studies on the application of FCL. C hap ter 5 

is purported  to  dem onstrate th e  m ain features of FCL. It was done to  explore the 

design space of FCL. One lesson repo rted  in th e  chapter is th a t FCL depends on the 

specificity of the  contexts: T he m ore specific they  are, the m ore effective FCL can be. 

C hapter 6 describes how FC L is applied to  p a r t of the M FC fram ew ork and analyzes 

the  kinds of situations where FC L  m ay help. C hap ter 7 describes how FCL is applied 

to  general design principles and  program m ing guidelines w ith th e  law of D em eter and 

a  subset of M eyers’ C + +  guidelines as examples.

•  C hapter 8 positions FCL in re la ted  works. P rogram  analyses, e rror detection  tools, 

formal specification languages, and  work specifically for frameworks are surveyed and 

analyzed. Closely related  works such as CCEL and CoffeeStrainer are  com pared w ith 

FCL.
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•  Finally, chapter 9 sum m arizes the  m ain contributions of the thesis and outlines some 

future work.
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Chapter 2

Background

The essence of software construction is the form ulation of complex conceptual constructs 

th a t are abstrac t in th e  sense th a t they rem ain the  sam e under different representations. 

The four inherent properties of this essence are complexity, conformity, changeability, and 

invisibility [Bro87].

Software does no t grow by a mere duplication of th e  sam e elements; instead, a  scaling-up 

of a software is necessarily an  increase in the  num ber of different elements. In  m ost cases, 

the  elements in terac t w ith each other in some nonlinear fashion, and the  complexity of the 

whole increases much m ore th an  linearly. This comprises th e  complexity of software.

M any technical and m anagerial problem s stem  from  th is  complexity including: th e  dif­

ficulty of enum erating and understanding all th e  possible sta tes of the  program  and the 

difficulty of com m unication among team  m em bers, th e  cause of p roduct flaws, cost over­

runs, and  schedule delays. This makes an overview challenging and thus impedes conceptual 

integrity. The subsequent learning and understanding  burden  makes personnel turnover a 

disaster.

M anaging com plexity therefore has been a  central topic in the  pioneering work of our 

field [Dij70, ParO lb, Dij68, HFC76]. In particu lar, these works all center on the  hierarchical 

s tructures of system s for a  num ber of reasons, am ong which its linear s truc tu re  is probably  

the  m ost a ttrac tive  one for its lower complexity and th u s b e tte r intellectual m anageability.

The rest of th is chap ter traces the common origin of such seemingly different concepts 

as frameworks, program  families, and software p roduct lines, dem onstrating th a t they  are 

indeed all derived from  early research on program m ing m ethodologies whose m ain concern 

is how to  construct correct and reliable program s system atically.

2.1 Stepwise R efinem ent and Program Families

W ith stepwise refinem ent [Dij70], one composes program s in m inute steps, deciding each 

tim e as little  as possible. Each of the steps contains such design decisions as choosing a

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particu lar d a ta  struc tu re  or creating a loop sta tem en t. As one proceeds w ith the problem  

analysis, so does the  fu rther refinement of the ir program . At any given m om ent, th e  pro­

gram  can be viewed as being derived from successive levels, w ith the later levels containing 

refinements to  entities in the earlier ones. W hen a program  has to  be m ade, the  desired 

com putation  has to  be composed from actions corresponding to  a well-understood repertoire 

of instructions.

Since the steps are small, their correctness, w ith respect to  the entities they  refine, 

should subject to  rigorous proofs immediately. T his way, one essentially obtains a  correct 

program  by construction. This is the  so-called constructive approach to program correctness, 

examples of which can be found in, for instance, [Dij70].

One im portan t insight inspired by stepwise refinem ent is the  notion of program families. 

D uring stepwise program  com position, the  following may happen: (1) often one encounters 

situations where m ore th an  one refinem ent exists for an en tity  of the  higher level, and  (2) 

sometimes, tw o entities a t the  same level can be refined independently. Therefore, m any 

program s ra th e r th a n  the only one for th e  ta sk  a t hand  can be conceived using these  two 

kinds of variations. These program s either do th e  sam e task  in different ways or carry  out 

sim ilar tasks. Thus it  makes sense to  create and  study  a program fam ily  and to  consider 

the  program s as m em bers of the  family.

A nother m otivation for program  families comes from  the  evolution of large software 

system s. Large software are often changed for tw o reasons: the software is no t satisfactory  

in one way or another and thus needs to  be changed; a n d /o r  th e  software is su itab le for the 

ta sk  a t hand, b u t people want to  ad ap t it to  sim ilar tasks. In either case, the  program m er 

would have to  “change some design decisions.” O n th e  o ther hand, a t any in stan t of stepwise 

refinem ent, w hat has been built up is an in term ediate  program  th a t  is a suitable “common 

ancestor” for all the  possible program s produced by fu rther refinements. In th is process, one 

defers design decisions. I t is the  po ten tia l sim ilarity  between “the  decision to  be  changed” 

and  “the  decision still left open” th a t  inspires th e  concept of “program  families.”

It pays off for one to  focus on creating a  p rogram  fam ily instead of individual program s. 

T he benefit of regarding program s as family m em bers derived from a  common ancestor can 

be sum m arized as follows:

® M embers of the  family share the  correctness proof as far as possible. Regardless w hat 

decisions are m ade a t the  current level, th e  coding of the  earlier levels rem ains valid.

® M embers share as far as possible the com m on coding.

® T he regions th a t  can be adap ted  or modified are well localized.

T he paper [ParOld] further develops the concept of program families in the  context of 

inform ation hiding modules [ParOlc], I t  considers “a set of program s to  constitu te  a  fam ily, 

whenever it is worthwhile to  study  program s from  the  set by first studying th e  common
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properties of the set and then  determ ining the  special properties of the individual family 

m em bers.” Although the  discussion on program  families and the m ethod of developing 

them  in [DijTO] is general and not necessarily tied to  any specific com puting mechanism, it 

is dem onstrated  prim arily through algorithm ic program s a t the level of control statem ents. 

T hus the contributions of [ParOld] are to  in troduce the  concept of modules and  dem onstrate 

how m odule specifications work in designing program  families. The conclusion is th a t these 

two m ethods complement each other.

T he paper [ParOla] studies the design of software bo th  extensible and easily contracted. 

T he m ost critical step is the  design of a  software stru c tu re  called the “use” relation. Having 

defined the  “use” structu re , one can th en  identify subsets of modules th a t  can be used 

independently  of their dependents. T he resu lting  practical benefit m eans th a t  one can not 

only reuse a subset in different contexts, b u t also “failsafe” in case of schedule slippage by 

delivering only the subset. The identification of m inim al subsets and m inim al extensions 

can lead to  such software.

O perating  systems have been a good sub jec t for studying design in general [Dij68] and 

program  families in particu lar [HFC76, C + 93]. To describe systems structu re , an im portan t 

concept, variously nam ed as “layered ab strac tio n ,” “levels of abstraction ,” or ’’hierarchical 

s tru c tu re ,” was used in these studies. One well-known observation is th a t, even in strictly  

layered dom ains like operating  system s, th e  notion of “inform ation m odule” [ParOlc] does 

no t necessarily coincide w ith the  notion of “layers of abstrac tion” : m odules m ay encom pass 

different p arts  of several layers [HFC76].

A note  has to  be m ade here abou t th e  distinction  between the  concept of m odularization 

and language constructs such as m acros, procedures, and classes. P am  as’ early  work clearly 

trea ted  m odularization as a design issue, no t a language issue. A m odule was a  work 

assignm ent, no t a sub-routine or any o ther language element, although language supports 

could make the  job  easier [D+ 03].

2.2 Software Product Lines and Object-Oriented Frame­
works

W hile th e  idea of program  families is old, it has become a popular topic only recently. The 

la test incarnation  of the  notion is software product lines [WL99]. A product-line architecture 

(P L A )  [BCSOO] is a design for a family of re la ted  applications. The m otivation  for PLAs 

is to  simplify the design and m aintenance of program  families and to  address the needs of 

highly customizable applications in an  econom ical m anner.

A framework  is an abstrac t design for a family of related problem s w ithin a certain  

dom ain; the abstrac t design consists of a set of ab strac t classes, each of which defines the  

interface for a m ajor com ponent of the  applications [Deu89, JF88]. C erta in  m ethods of
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these classes are left unspecified (and hence are “ab s trac t” ) because their im plem entation is 

application-specific. Thus a fram ew ork is a “code tem plate” : key m ethods and o ther details 

still need to  be supplied, bu t all com m on code is present in ab strac t classes. A framework 

instance provides the missing details. T he pairing  of a concrete class w ith each abstrac t 

class of the  framework provides a com plete im plem entation.

O bject-oriented application fram ew orks are appropriate for reusing software p a rts  and 

specializing them  in m ultiple ways for d istinct applications, and thus are an enabling technol­

ogy for producing m em bers of program  families. This is due to  th ree features supported  by 

object oriented languages: d a ta  ab strac tion , polym orphism , and inheritance. D a ta  abstrac­

tions define interfaces behind which im plem entation  can change. Polym orphism  increases 

the  likelihood th a t a given com ponent will be usable in new contexts. Inheritance prom otes 

the  emergence of s tandard  protocols and  ab strac t classes, and allows existing com ponents 

to  be customized. Therefore, fram ew orks are  a  simple and general technique-from  an imple­

m entation  standpoint, they  are ju s t a  coordinated use of inheritance. Since d a ta  abstraction , 

polym orphism , and inheritance are fundam ental mechanisms of object-oriented languages, 

th e  applicability of the  fram ework approach is wide.

Through the m eans of custom ization, fram eworks can be categorized into w hitebox and 

blackbox [JF88]. For w hitebox fram ew orks, one m ainly relies on inheritance and subclass­

ing. Thus one would have to  know th e  im plem entation details of th e  frameworks in order 

to  use them  correctly. For blackbox fram eworks, one prim arily relies on com position of 

existing components; to  custom ize th e  fram eworks, one only has to  know th e  interfaces of 

the  components. One the  surface, it seems th a t  blackbox frameworks axe easier to  use th an  

w hitebox ones; thus they  are claim ed to  be the  ideal tow ards which a fram ework should 

evolve.

Frameworks are a kind of reuse technique [Kru92] different from  bo th  com ponents and 

design pa tte rn s [Joh97]. C om ponents are code reuse, while design p a tte rn s  represent design 

reuse; design reuse reuses concepts while code reuse reuses im plem entation. Fram ew orks are 

bo th  code and design reuse. One of th e  problem s in reusing design knowledge is the  lack of 

standard  notations to  capture and express them  [BR89]. In frameworks, no special notations 

represent designs: object-oriented program m ing language are used as bo th  im plem entation 

and design notations. W hile b o th  design reuse and code reuse are im portan t, in th e  long 

run  it is probably the design and  understand ing  of the  dom ains th a t  provide the  biggest 

payoff [BR89].

M any frameworks have been bu ilt for such diverse areas as graphical user interfaces [Deu89, 

Inc89, SW96], operating system s [C+ 93], drawing editors [VL89], d istribu ted  software and 

m anufacturing control [FS97], to  m ention a few. Frameworks th a t  can be reused across 

many domains are foundation frameworks, and  those only applicable to  a certa in  dom ain are
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domain or application frameworks. M ost dom ain frameworks are  kept proprietary  [Joh97].

Frameworks are harder to  build th an  plain applications. Building a framework requires 

experience, and the process is alm ost always iterative and increm ental [JF88]. The reasons 

are as follows [Joh97]:

• Domain analysis is needed to  understand  a dom ain. M istakes in dom ain analysis are 

discovered when a  system  is built, which leads to  iteration .

• A framework makes explicit the  p arts  of a design likely to  change. In  general, the  only 

way to learn w hat change is by experience.

• Frameworks are abstractions, and  abstractions are expensive to  discover and verify.

Framework developers should always s ta rt w ith concrete exam ples and  generalize from 

them  [Joh97]. For large and complex domains, the  num ber of exam ples can be huge. This 

proliferation of examples also explains why frameworks are bo th  hard  to  build  and difficult 

to  build on schedule. T hey  should be built by advanced developm ent or research groups, 

w ith close collaboration of application team s.

A common m istake is to  s ta r t  using a framework while its design is still changing. On 

the o ther hand, the  only way to  find ou t w hat is wrong w ith  a fram ework is to  use it [Joh97]. 

However, a framework should only be released to  public use when it  is stab le  enough.

2.3 Scaling Stepwise R efinem ent

I t is well-known th a t  in object-oriented design, objects are encapsulated  bu t rarely self- 

sufficient entities. T he sem antics of an  object is often defined by its relationship w ith 

others. Object interdependencies can be expressed as collaborations. A collaboration is a 

set of objects and a  protocol th a t  determ ines how th e  objects in te rac t [BCSOO]. The p a rt 

of an object th a t enforces th e  protocol of a collaboration is called the  o b jec t’s role in th a t 

collaboration [BCSOO].

Two problems w ith object-orien ted  frameworks are identified [BCSOO, SB02]. One is 

th a t frameworks “grow” in  a  “top  down” fashion: subclasses are coded in  term s of super­

classes; they cannot exist independently. It is desirable, however, for subclasses to  exist 

independently of superclasses; for instance, if the  strategies for graph traversal could exist 

independently of the  graphs, regardless w hether the graphs are directed or no t, then given a 

graph, it would be possible to  compose a traversal collaboration w ith it, instead of reimple- 

m enting the traversal for th e  graph. The o ther problem  has to  do w ith  “optional features.” 

Given an optional feature, a fram ework would have to  either include it in the  code base, 

which would be inapprop ria te  for those applications th a t  do no t need it, or exclude it. In 

the la tte r case, if the  im plem entation of the  feature is nontrivial, then  it would be inappro­

p ria te  for those who need th e  feature since they would have to  reim plem ent it each tim e it
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is needed. One way to get ou t of this dilemma is to  provide a simple way so th a t users can 

specify th a t a certain  feature is needed: accordingly, code for th e  feature is composed into 

the  final program .

Historically, software design and program m ing languages in tim ately  evolve around the 

concept of m odularity. The language solution to  th is  problem  is a  new construct th a t allows 

one to  represent collaborations as modules param eterized by th e ir dependees and supports 

the  composition of such collaborations.

In collaboration based design, however, each collaboration usually involves more th an  one 

program fragm ent: to  refine a collaboration, one typically  would have to  change more than  

one program  fragm ent. M ixin layers extend th e  notion  of m ixins  and are a program m ing 

technique th a t allows one to  program  all the  changes in one place.

In object-oriented languages, a superclass can be defined independently  of any subclass. 

This property, however, is no t symmetric; it does no t hold for subclasses. M ixin classes 

are abstract subclasses. M ixins represent a m echanism  for specifying classes th a t  eventually 

inherit from a superclass, b u t the superclass is no t specified a t th e  site of the  m ixin’s 

definition. T hus a  single m ixin can be in stan tia ted  w ith  different superclasses, yielding 

widely varying classes. N ote th a t this is different from  C + + ’s concept of mixin classes. 

In C + + , mixin classes are classes th a t share a common v irtu a l base class, each of which 

implements p a rt of th e  interface of the base class [Str99].

One can im plem ent m ixins through C + +  tem pla te  classes:

template<class Super> 
class Mixin: public Super {
... // mixin body 
};

M ixin layers can then  be  im plem ented w ith param eterized  tem plates and nested classes 

in languages such as Java  and  C + + . In C + + , a  m ixin layer is a mixin class th a t  may 

define m ultiple nested  classes. The mixin layer itself is called th e  outer m ixins, while the 

nested classes are called th e  inner mixins. An ou ter m ixin is im plem ented as a tem plate 

class whose type  param eter is the layer th a t it depends on. Some nested classes w ithin an 

outer mixin m ay be newly defined while others refine the  corresponding nested classes of 

the layer on which th e  curren t layer depends.

template<class SuperLayer> 
class MixinLayer: public SuperLayer { 

class rolel: SuperLayer::rolel
{
// rolel body

}class role2: SuperLayer::role2 
{
// role2 body

}
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class newClass 
{
// newClass body

}
};

C ollaboration-based designs in general and m ixin layers in particu lar are not universally 

applicable bu t m ore suitable to  m ature dom ains th a t  are well-understood and am enable to 

detailed decom positions. The domains should be decom posable into largely independent 

refinements. Clearly, this is different from fram eworks, which pose no such requirem ents on 

the  dom ains. In fact, some future extensions to  fram eworks can be completely open a t the 

tim e th e  fram eworks are constructed. Therefore, collaboration-based design and frameworks 

are  two com plem entary techniques.

Exam ples for th e  applications of mixin layers can be found in [SB02]. A case study 

th a t  applies b o th  m ixin layers and a dom ain specific language for finite sta te  machines to  a 

software product line appears in [B+ 02].
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Chapter 3

D esign and Im plem entation of 
FCL

3.1 An Example

Let us introduce FCL w ith a  simple exam ple w ith two files F .h and F.cpp:

// F.h 
class F {

virtual void m();

};

// F.cpp 
#include "F.h"

void F ::m(){

r
};

Note th a t class F defines a v irtu a l m em ber function m. Assume class F  belongs to  a 

fram ework and a constraint on F  is th a t  if a  subclass overrides m, then  the  override m ust 

call F::m.

The following code shows how a user m ight break th is constraint; they forget to  call the 

base class version from the subclass:

// A.h
#include "F.h" 
class A: public F {

v o id  m () ;

};

// A .cpp 
#include "A.h" 
void A::m(){
... // does not call F::m
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}

FCL is m eant to  detect violations of such framework constraints. This constraint may 
be specified using FCL as follows:

1 forall c: subclass(class( " F " ) ) holds
2 (m as {f: function (c) | sizeof (param (f ) ) = 0 and name (f) =''m" };]
3 (sizeof(m)=0 or
4 exist e: exp(m) holds
5 function(e) = function("m", class("F"))
6 or print (c) and println(“ breaks the constraint!'1))

In th is specification, subclass, class, function , param, and exp are prim itive functions on 

the syntactic structure  of C + +  source code (see Table 3.2 for the ir sem antics); sizeof is a 

standard  set operation re tu rn ing  th e  size of a set; print and println are p rin ting  functions 

and always re tu rn  true. These will b e  explained in more detail in Section 3.2.2.

3.1.1 Tools O peration

Four steps are involved in checking a  program :

1. Preprocess each .cpp file w ith  an  appropria te  preprocessing tool. O n Unix, use the 

cpp program; for M icrosoft C + + , use cl /P ,  where cl is the  nam e of th e  compiler.

2. For each preprocessed file f.i, ru n  dxparscpp f .i  - asgf.asg, where f.asg  is the file con­

taining the  generated D atrix  ASG. dxparscpp is a parser from Bell C anada.

3. R un dxlinker on the  set of ASG files, a sg i,..., asgn , w ith th e  following form at: 

dxlinker a sg i, . . . ,  asgn > final.linh,

where final.link is th e  file th a t  stores th e  full ASG. dxlinker perform s ty p e  analysis on 

th e  ou tputs of dxparscpp to  form  a  single ASG.

4. Given a file f.fc l containing th e  FC L specification, we can check w hether the  above 

program  conforms to  it by issuing th e  command:

fc l f.fc l -d final.link.

A lthough still rudim entary, the  o u tp u t of the  fc l program  is inform ative enough for 

debugging purpose. For exam ple, running  fc l on a small program  th a t  forgot to  call the 

m em ber function m of class F  yields th e  following message:

Parse FCL file base.fcl...
Check FCL file base.fcl...

$INSTANCE 16 cAggrType 
16{
beg = 10.1 
end = 17. 6 
name = "A" 
type = class

}breaks the constraint.
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This message corresponds to  line 6 of the  specification, showing w hat the ou tpu t of the 

printing facility looks like. N ote th a t the  current im plem entation o u tp u ts  the corresponding 

ASG node of a program  entity ; in this example, the  ASG node for class A is shown, which 

does not call the  base class version of mem ber function m.

This im plem entation is only a prototype; depending on the n a tu re  of the environm ent 

to  which FCL is a ttached , in the  fu ture the ou tp u t can be m ore interesting, for example, a 

highlight of the code region th a t violates the  constraint.

3.2 In tro d u c tio n  to  FCL

FCL is a little  language for talk ing  about the  struc tu re  of object-oriented program s. Its 

notations are borrowed from  first-order logic extended w ith set and  sequence operations; its 

term  language consists of a  set of to ta l functions reflecting th e  entity-relationships in the 

dom ain of object-oriented program s.

Abstractly, the  syntactic  s truc tu re  of an object-oriented program  forms a  graph whose 

nodes represent syntactic  elem ents such as nam espaces, classes, functions, variables, and 

expressions and whose edges represent the  relationships betw een these elem ents such as an 

expression and  the  function th a t  it is statically  bound to  and a variable and its type. In this 

chapter we wall appeal to  readers’ intuitive understanding  of such a  d a ta  model for C + +  

source code; a detailed account for our C + +  source code m odel appears in C hapter 4.

In the rest of th is  section we introduce FCL based on the  syn tax  of Table 3.1.

At the  topm ost level, an  FC L specification consists of a sequence of interleaved decla­

rations and formulas. D eclarations do no t have to  be defined all a t once before formulas; 

they can be freely in terspersed am ong formulas as long as variables are defined before they 

are used. The com bination of a top-level form ula and all the  declarations th a t  it refers to  

forms an FCL constraint.

Each declaration binds a  variable to  an associated expression, and  the variable takes the 

value of the expression. FC L variables are different from  program m ing language variables 

because their values do no t change over time. In particu lar, logical form ulas are trea ted  

as a special kind of expressions; they  are expressions th a t  yield values of th e  boolean type. 

Therefore, FC L allows one to  define boolean variables w ith form ulas as the ir value expres­

sions.

FCL allows one to  in troduce local variables for expressions th rough  a  syntactic  structure  

called block; blocks are a simple grouping mechanism, and  each expression is allowed to  

have a t m ost one block. One variable overrides another variable if the  form er has the same 

nam e as the la tte r, appears after the  la tte r, and is defined either in the sam e scope or in 

any enclosed scope of the la tte r.

Local variables are m ost useful when writing formulas; the  variables assigned for expres-
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FCL .spec : S tatem ent J is t
S tatem ent : = D eclaration 1 Form ula
D eclaration : = Variable as Expr

Form ula :— not Form ula 1 Form ula and  Form ula 1 Form ula or Form ula 1 
E xistential I Universal I Expr

Expr ::= Variable 1 C onstant 1 O peration  I Form ula 1 ExprW ithV ars
Existential :: = exist B V ar-D eclaration J is t  hold Form ula
Universal ::= forall B V ar-D eclaration J is t  hold Form ula
BVar -D eclaration ::= D eclaration
E xpr W ith  Vars ::= ‘[’D eclaration J i s t :]’ Expr

O peration  ::= Set_op I Seq-op I R elational I F C L Jc t
Set_op '•= subset (s i, s2) | belongsTo(ele,s) I s i  +  s2 I s i  - s2 I union(setO fsets) 1 

sizeof(s) 1 Set-com prehension i Set-enum eration
Set-comprehension : = { B V ar-D eclaration J is t  | Form ula [ Expr} I { BVar JDeclaration | Formula}
Set-enuineration := ‘[’ E xpr J is t  “]’
Seq-op := m em ber(seq, index) I indexOf(ele, seq)
R elational := > 1 >= 1 < 1 <= 1 =

C onstant ; — tru e  I false 1 Str l i n t  I global
Variable := Str
T-list := T*

Table 3.1: T he Syntax of FCL

sions, if properly nam ed, can help reveal intent; it also helps struc tu re  the  specification by 

avoiding long or repeated  expressions.

Formulas have conventional sem antics; the  syntax replaces Greek symbols w ith English 

words. Formulas include negation, conjunction, disjunction, and universal and existential 

quantifications.

E lem entary form ulas include the  boolean constants true  and false, relational operations, 

and  such predefined predicates as the subset relation and  the  m em bership relation (sta ting  

th a t  an element belongs to  a  set). Syntactically, these predicates are represented as function 

applications ( th a t is, in th e  form of f ( e \ , . . . ,  en)).

In bo th  universal and  existential quantifications one is allowed to  define more th a n  one 

bound variable a t once, binding the ir values to  the  elem ents of the set-valued expressions. 

For the  sequence of bound variables, those th a t appear la ter can bo th  refer to  and override 

the ones th a t appear before them .

As mentioned, FCL trea ts  form ulas as a special kind of expression. O ther kinds of 

expressions include variable references, literal constants, function applications, and sets.

Variable references and  literals are elem entary expressions; they can be used to  con­

stru c t more complex expressions. In addition to  the usual kinds of literals, true  and  false, 

integral constants, and strings, FCL has a special literal, global, which represents the  global 

nam espace of a  given program .
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Function applications of the form / ( e i , . . . ,  e„) are probably the m ost frequently-used 

expressions. FCL predefines a variety of functions. Some of them  are standard  set and 

sequence operations. O thers are functions defined on the d a ta  model for source code. For 

instance, given a variable c of type Cls, function application var(c) re tu rns th e  set of da ta  

m embers defined in the  class represented by c. These functions are specified in detail in 

section 3.2.2.

One can get sets in th ree ways: through function applications (some functions re tu rn  

sets as their result), set com prehension, and through set enum eration.

FCL supports two forms of set comprehension:

{ e : s I / ( e )  }

and

{ e,; : Sj,l < i <  n | f { e l t . . . , e n) | E ( e i , . . . , e n) }

The first form defines a  subset of the  set s, of those elem ents e th a t  make th e  form ula /  

true. B u t it only perm its  one bound variable e. The second form allows m ore th an  one 

bound variable, e i , . . . ,  en , over m ultiple sets s i , . . . ,  sn . If a tup le  e i , . . . ,  en satisfies / ,  the  

function E  is then  applied to  the  tuple and the value E ( e i , . . . ,  e„) is taken  as an  element of 

the  new set. T he second form  is m ore general th an  the first one in th a t  th e  first is a special 

case of it, which can be represented as follows: { e : s | / ( e )  | 1(e) }, where I  denotes an 

identity  function.

Unlike for sets, FCL does not provide constructor functions to  create new sequences 

from scratch; instead, sequences are re tu rn  values from function applications. For instance, 

an execution p a th  consists of an array  of expressions; a function can have a  sequence of 

param eters; and a p a th  on an inheritance hierarchy contains all the  classes from a source 

class to  a  ta rg e t class. To model these, FCL needs sequences. A sequence can also be used 

as a set; the  range of th e  sequence will be used.

3.2.1 FCL’s T ype System

FCL is strongly typed  so th a t  when evaluating an FCL specification, an FCL checker will 

not suffer run-tim e errors. This is ensured by pu tting  a set of constrain ts on th e  stru c tu re  

of FCL specifications. T he constrain ts comprise the  sta tic  sem antics of FCL.

The type system  of FC L includes two kinds of types: basic types (Figure 3.1) and  com­

pound types. Basic types can be fu rther divided into “facility” types and “dom ain” types. 

“Facility” types help form constraints, including Str for string  values, Int for integers, and 

Bool for boolean values. “D om ain” types come from the  problem  dom ain of program m ing 

constructs, including Exp for expressions, Var for variables, IMS for nam espaces, Fct for 

functions, Cls for classes, Name for nam ed entities, Unit for program  units, Gen for types
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StrExpN a m e

U n it Type Var

NS Fct Cls

Gen

±
Undef

(1)Undef is the subtype of all other types 
(2) sub->sup: sub is a subtype of sup.

Figure 3.1: Basic types and  the  subtype relation

generated  th rough  tem plate  instan tia tions, and  Type for types. The current FCL covers 

only a subset of th e  object model; for instance, pointer and reference types, arrays, builtin 

types, and generated  functions are not included.

U ndef is th e  type  for “undefined” values. U ndef is considered as th e  subtype of any 

types.

Figure 3.1 also defines the subtype relation between basic types. Besides basic types, 

subtype relations can also exist between com pound types. One set type is the  subtype of 

another if and  only if the  base type of the form er is the  subtype of the  la tte r. Similar 

definition holds for sequence types.

3.2.2 Functions on Source Code M odel

Table 3.2 presents the  signatures of all FCL functions. The following is a  brief explanation 

for each of them :

•  class, var, function:

These constructors allow one to  refer to  a  known entity  of th e  checked program . Their 

argum ents specifies the  nam e of the  entity  and its context. For instance, if one wants 

to  refer to  a  m ethod nam ed m w ithin a  class C, one can w rite it as function("m ", 

class("C ", g lobal)). Since global can be om itted , it can also be w ritten  as function("m ", 

class(" C ")).

•  isPrivate, isP rotected , isPublic:

Test visibility. Can only be applied to  variables and functions.

•  isStatic, isConst:

Test staticness and constness. Can only be applied to  variables and functions.

•  isBranch:

Test w hether an expression is conditional.

•  isReturn:

Test w hether an expression is the  argum ent of a re tu rn  sta tem ent.
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C onstructors
class: S tr x U n it -4 C ls
var: Str x U n it -4  V ar
function: S tr  x U n it  -4 F  F ct

P roperty
Predicates

isP riv a te /isP ro tec ted /isP u b lic : V ar|F ct -» B o o l
isS ta tic /isC o n st: V ar— F c t -4 B o o l
isB ranch /isR etu rn : E x p  4- B o o l
isVirtual: F c t -4 B o o l
name: N a m e  —> S tr

T ype Query 
and Type Coersion

isC lass/isG enerated/isV ar: N a m e  -4 B o o l
class: T y p e  -4 C ls
G enerated: T y p e  -4 G en
ptdType: T y p e  -4  T y p e
p tdT ypeS tar: T y p e  —> T y p e
var: N a m e -4 Var

U nit O perations

unit: N a m e | E x p r  —> S eq  U n it
class: U n it  -4  F  C ls
exp: U n it -4  F  E x p
var: U n it  4  F  V a r
function: N S  | C ls  — > F  F ct
expClosure: F c t 4  F  E x p
param : F ct —> S eq  Var

Expressions

receiver: E x p  4  E x p
arg: E xp  4  S e q  E x p
parent: E x p  — > E x p
top: E x p  -> E x p
exp: E x p  —> F  E x p
u p P a th /d o w n P a th : E x p  —> F S eq  E xp
function: E x p  —> F c t
refd: E xp  -4- N a m e
refSet: N a m e  -4  F  E x p
change: E x p  x  V ar -4 B o o l

Inheritance
subclass: C ls -4  F  C ls
superclass: C ls -4  F  C ls
descendant: C ls -4 F  C ls

Type
type: E x p  -4 T y p e
type: Var -4  T y p e
type: F ct -4 T y p e

Misc

isDefined: A n y  -4  B o o l
print: A n y -4  B o o l
println: A n y  -4 B o o l
regex: Str x S tr  -4 B o o l
concat: Str x S tr  —> Str

Table 3.2: FCL functions: F  T: finite subsets of type T; S eq  T: sequences of type T .
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•  isVirtual:

Test whether a function is v irtual.

•  name:

R eturns the nam e of a nam ed entity.

•  isClass, isGenerated, isVar:

Test whether a nam ed en tity  is a class, a generated type, and a variable, respectively.

•  class:

Downcast the argum ent from  Type to  Cls. If the argum ent is not a class, then  the 

result is the “undefined” value.

•  Generated:

Downcast the argum ent from  Type to  Gen. If the  argum ent is not a generated type, 

th en  the result is the  “undefined” value.

•  ptdType:

If the  argum ent is a pointer type, then  re tu rns the type pointed. Otherwise, re tu rn  

th e  type itself.

•  ptdTypeStar:

If the  argum ent is a pointer type, th en  re tu rns the  base type. Otherwise, re tu rn  the 

type  itself.

•  var:

Downcast the argum ent from  N am e to  Var. If the  argum ent is not a variable, then the 

result is the “undefined” value.

•  unit:

R eturns the context of th e  argum ent, a  sequence of Unit. Can be applied to  both  

Name and Expr.

•  class:

R eturns the set of classes defined w ithin a  Unit.

•  exp:

R eturns the  set of expressions defined w ithin a Unit.

•  var:

R eturns the  set of variables defined w ithin a Unit.

•  function:

R eturns the set of functions defined w ithin either a NS or a Cls.

•  expClosure:

R eturns the set of expressions th a t can be statically  reached from the  argum ent Fct.

•  param:

R eturns the sequence of param eters  of an argum ent of type Fct.

•  receiver:
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R eturns the receiver expression of an argum ent expression. If the expression has no 

receiver expression, e.g., an arithm etic  one, then  “undefined” is returned.

• arg:

R eturns the sequence of argum ent expressions of a given expression.

•  parent:

R eturns the paren t expression of a  given expression. If the  expression has no parent, 

then “undefined” is re tu rned .

•  top:

R eturns the roo t expression of a given expression.

•  exp:

R eturns the set of all sub-expressions of a  given one, including itself.

•  upPath, downPath:

If the  argum ent is an  expression w ithin a function, then  re tu rns the  sets of its up paths 

and down paths respectively. O therwise, re tu rn  th e  em pty set.

•  function:

R eturns the function th a t  a  given expression invokes.

•  refd:

If the  argum ent is a nam e reference expression, re tu rns the  nam ed entity referred. 

Otherwise, re tu rns “undefined.”

•  ref Set:

R eturns the set of nam e references th a t  refer to  the  given nam ed entity.

•  change: change(exp, aVar) tells w hether a given expression m ay change the variable 

represented by the  param eter aVar.

If aVar is not referenced by th e  expression, change re tu rns false. Otherwise, for each

of the expressions where aVar is referenced:

-  If the  expression is the  pre-defined assignm ent and aVar is a t its left-hand side, 

then change re tu rns true.

-  If the  expression is a  function  call and  aVar is the  receiver: If the  function invoked 

is not const, then  change re tu rns true; otherwise, change re tu rns false.

-  If the  expression is a function call and aVar is an argum ent to  it: If the  corre­

sponding param eter of th e  invoked function is not const bu t of reference type,

then  change re tu rns true; otherwise, change re tu rns false.

•  subclass:

R eturns the  set of classes th a t  are the subclass of th e  given class.

•  superclass:

R eturns the  set of classes th a t  are the  super class of the  given class.

•  descendant:
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R eturns the set of classes th a t are the descendant classes of the given class.

•  type:

R eturns the type of a given expression.

•  type:

R eturns the type of a  given variable.

•  type:

R eturns the re tu rn  type  of a given function.

•  isDefined:

If a given value is “undefined,” re tu rns false. O therwise, re tu rns true.

•  print:

P rin ts the tex tual represen tation  of the given value, and  re tu rns true.

•  println:

P rin ts the  tex tu a l represen tation  of th e  given value, followed by a new line, and returns 

true.

•  regex:

R eturns true if th e  second argum ent is an instance of the  first one, which should be a 

p a tte rn  of regular expressions.

•  concat:

R eturns a new string  which is the  concatenation of th e  two string argum ents.

3.2.3 FCL’s Treatm ent of “undefined”

In FCL several ways can lead to  a value of “undefined.” Casting an elem ent of one type to  

another can generate values of “undefined.” For instance, casting a type th a t  is not a class 

to  a class will yield th e  value “undefined” as the  result. Asking for a  receiver expression 

from an arithm etic expression will also result in “undefined.”

For any function applications w ith values of “undefined” as argum ents, if the  re tu rn  

types of the functions are basic types bu t not boolean, then  the  result will be a value of 

“undefined.” B ut if th e  re tu rn  type  is boolean, then  the  function application will re tu rn  

false. If the re tu rn  types are com pound types, th a t is, sequences or sets, th en  the  function 

application will re tu rn  em pty  sequences and  em pty sets respectively.

Further detail on o ther trea tm en ts of “undefined” can be found in [Jac02] and [ParOle].

3.3 Im plem entation

FCL requires a FCL parser and in terp re ter and a  program  database. The program  database 

is populated w ith a  link program  called dxlinker. Our pro to type  im plem entation consists of 

about 20,000 lines of C + +  code: 11,000 lines for dxlinker and  9,000 lines for FCL parser 

and interpreter.
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3.3.1 Program  Database

A program  database for FCL should contain sufficient inform ation so th a t the  object model 

described in C hap ter 4 can be built. Our im plem entation adopts an  abstract sem antic graph 

representation of source code. The program  database  is stored as a tex tua l file using the 

D atrix  schem a [HHL+ 00]. At run-tim e such a represen tation  is m apped  to  an  object-oriented 

representation where source code entities are strongly-typed objects.

3.3.2 Parser and Linker

A parser is responsible for ex tracting  facts out of C + +  source code and storing them  in 

compliance to  the  D atrix  schema. A linker then  links the  m ultiple graphs into one single 

graph bu t still stores it in the  D atrix  schema. Conceptually a  linker is needed to  build a 

graph where relationships such as all subclasses of a  given class can be conveniently  identified 

and facts irrelevant to  FCL, such as files and redundan t declarations, are elim inated.

In our im plem entation we chose dxparscpp [HHL+00] from Bell C anada as our parser 

and developed our own linker program  dxlinker [HHR03].

3.3.3 FCL Interpreter

FCL in terp re ter accepts two files as argum ents from com m and line: one storing FCL spec­

ifications and th e  o ther a program  database. I t checks if all constrain ts are satisfied and 

reports error messages if any of them  is violated. Specifically, the  FCL specifications are 

first parsed using a B ison-generated parser. FCL in terp re ter th en  type-checks th e  FCL 

specifications to  ru le ou t errors such as applying FCL function var to  a  Variable or using a 

Variable as th e  scope of a quantifier.

T he in terp re ta tion  of constrain ts is done w ithin th e  context of th e  given program  database. 

For each constrain t, FCL in terp re ter evaluates its com ponents first and th en  the  constrain t 

itself. P rim itive functions are in terpreted  directly against the d a ta  model. A formal tre a t­

ment of the sem antics of FCL can be found in A ppendix A, which provides m ore details on 

the in terp re ta tion  of FCL constraints.

3.4 Com plexity Analysis

FCL is designed to  be trac tab le  a t the  first place. For instance, although Int appears in 

the type system  of FC L  (Figure 3.1), quantifying directly  over the  infinite  integer set is not 

allowed. All sets in FC L specifications are finite.

In theory  the  com plexity of evaluating FCL constrain ts is exponential. For exam ple, 

for the constrain t p resen ted  a t the  beginning of this chapter, if the  num ber of subclasses is 

M  and the m axim al num ber of expressions w ithin all m em ber function m  is N ,  then  the
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com plexity of th a t constrain t is M N .

However, in practice we have not found perform ance to  be a real problem: the deepest 

level of nesting quantification formulas for the examples we have tried  is 4, and the perfor­

mance of our simple in terp reter is acceptable. On a laptop running Red H at Linux 2.4.18 

w ith a P entium  II Celeron 300 MHz C PU , all M FC constrain ts presented in C hapter 6 are 

done in less th an  20 seconds. Considering the size of the  ASGs for the M FC examples (10-15 

M Bs), we do no t th ink  th a t perform ance will be a big problem for the  acceptance of FCL.
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Chapter 4

A M odel of Static Properties of 
CH—b Programs

This chapter presents an object-oriented model of the struc tu re  of C + +  program s, which 

provides an anatom ical view of program  struc tu res 1. For instance, in our m odel, a function 

application  f(p) will be decomposed into two parts: the  function nam e, f, and  the  sequence 

of param eters, p. Therefore, the m odel is a  m eta  one concerning w ith th e  elements of 

program s. We will use the  UML (Unified M odeling Language) class diagram  to  depict the  

model.

T he class diagram  of Fig. 4.1 depicts th e  overall model. I t forms the foundation of the  

FCL language, whose syntax and sem antics will be presented form ally in chapter A. Due 

to  th e  lim itation  on visual space, some details, e.g., the  kinds of expressions, have been left 

ou t of th e  diagram ; they will be fu rther explained in la ter sections.

T he goal of this chapter is to  “d igest” the  diagram . We will proceed in the  following 

order: section 4.1 explains the  top th ree  levels, which ab strac t ou t the  common properties 

of all program  elements; section 4.2 program  units, th e  constructs for structu ring  program s; 

section 4.3 types; section 4.4 operators, th e  constructs for defining com putation; sections 4.5 

and 4.6 expressions, the applications of operators.

4.1 Program Elem ents, C ontexts, Nam es and Types

A program  consists of a  variety of program elements, which can be a class, a function, a 

variable, an expression, or a  class or function tem plate , and so on. P rogram  elements are 

associated w ith each other through  various relationships, for instance, th a t between a class 

and its members, a function and its param eters, a loop or conditional and  its condition, 

variable declaration and references, inheritance and friendship, and so forth.

Program units are a special kind of program  elem ent th a t help to  organize program s;

1In th e  lite ra tu re , there  seem to  exist a t least two notions of s truc tu res, the  sem antics one and th e  
syn tactic  one. O ur s truc tu re  concerns w ith th e  ab strac t syn tax  of program  languages.
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cFunction

cFunctionTemplate
cTypelnheritable

cName

cTypecUnit

cUnion

cTyped

cClasscStruct

cObject

cGeneric

cAsgNode

cOperator

cTypeAggrcNamespace
cExpression

cFctGenerated

cFctGeneratedcTypeGenerated

cClassTemplate

cTypeGenerated

«singleton»
cTypeMeta

cExpGeneralized

cExpGeneralized

Figure 4.1: O bject model for C + +  program s

nam espaces, classes, functions, and  blocks are program  units. In particu lar, the  global 

nam espace is the  topm ost level program  unit.

Each program  element exists in  a  certain  context th a t is composed of th e  sequence of 

program  units th a t enclose th e  elem ent. For exam ple, a class defined w ithin the  global 

nam espace takes the global nam espace as its context; an expression w ithin a m em ber func­

tion  will have the  function, the  class, and th e  context of the  class, in th is  order, as its 

context.

Each program  element can also have a  tex tu a l representation  for display purpose, which 

can be useful for diagnosis. For exam ple, th e  tex tu a l representation for an  expression a+ b  

can be “a + b ” ; a variable x of type  int can have “in t x;” as its representation.

+n am e ( ) :  s t r i n g

cName
+:3 e t T y p e ( ) :  c T y p e

cTyped

+getUnitSequence(): vector<cUnit *> 
+ g e t E n c l o s i n g U n i t ( ) :  c U n i t  *
+ t o S t r i n g { ) :  s t r i n g  ________ ______

cAsgNode

Figure 4.2: T he class cAsgNode and  subclasses
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The class cAsgNode 3 3 models th e  m ost common features of all program  elements. For 

a given program  element:

•  getUnitSequence re tu rns the  vector of its program  units, which are modeled by the 

class cUnit.

•  getEnclosingUnit re tu rn s  the  innerm ost program  unit th a t  encloses it.

• toString returns th e  tex tu a l representation.

getUnitSequence and  getEnclosingUnit together form a simple instance of the so-called 

tem plate design p a tte rn  [GHJV94]. The former is im plem ented on the basis of th e  la t­

ter. And since getEnclosingUnit is v irtual, derived classes of cAsgNode can override it to  

im plem ent different ways of obtain ing th e ir corresponding innerm ost enclosing units.

Some program  elem ents like classes and variables have nam es while others like expressions 

do not. The abstrac t class cName is effectively the  interface for any nam ed element.

Similarly, some elem ents are typed  while others are no t. If th e  elem ent is an operator- 

such as a function or class tem plate , th en  the type is its algebraic type; for instance, the  

arithm etic addition on integer set has th e  type Z  x Z  —> Z . If th e  elem ent is a variable or 

an expression, then  th e  type  is the  type  of its value.

cUnit

cName

cType

cTyped

cObjec cOperator cExpGeneralized

Figure 4.3: A bstrac t classes cName and  cTyped

A num ber of classes inherit the  classes cName an d / or cTyped. cUnit is the  abstrac t class 

for all the  program  units, cType for types, cOperator for operators, and cExpGeneralized for 

expressions, respectively. These will be described in th e  following sections.

T he class cObject m odels all kinds of variables. A variable can be either a  global one 

or a local one, it can be a  d a ta  m em ber of aggregate types, or it can be a  param eter to  a 

function. The kind which a  variable can be (being local or global, for exam ple) is determ ined 

by examining its context inform ation.

2A s a nam ing convention, all classes of the  FC L object m odel s ta r t  w ith le tte r c. T he nam e cAsgNode  
is due to  the D atrix  tool th a t  we use: D a trix  m odels program s as graphs called ASGs (A bstract Sem antics 
G raph) [RW91], whose nodes a re  program  elem ents.

3 In th is chapter, th e  font sans serif is used for nam es such as m ethod  nam es and class nam es in th e  FC L 
model.
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4.2 Program U nits

Program  units are m echanism s th a t help organize program s. C + +  supports four kinds of 

program  units: nam espaces, aggregates, functions, and  blocks. FCL supports a lim ited 

am ount of control flow analysis (section 4.6), where no block inform ation is needed. Thus 

the current object model does not trea t blocks as the  first class entity.

cName

+ g e t T y p e s ( ) :  s e t < c A s g N o d e  *> *
+ g e t c l a s s e s ( ) :  s e t < c A s g N o d e  *> * 
+ g e t E x p r e s s i o n s ( ) :  s e t < c E x p r e s s i o n  *> * 
+ g e t O b j e c t s ( ) :  s e t < c A s g N o d e  *> * 
+getTypeWithName(name:const string): cType * 
+getClassWithiName (name: const string): cClass

cUrsit

Figure 4.4: P rogram  units

Essentially, th e  class cUnit provides a  “container” view to  program  units. T h a t is, a 

program  un it can contain  new types, expressions, a n d /o r  variables. Thus it should support 

queries on its in ternals, b o th  collectively and individually.

A program  un it m ay contain new types; the new types can be, for instance, an  aggregate 

type, an enum eration, or a  tem plate-generated  type. In p articu lar, th e  global nam espace 

contains all th e  built-in  types. getT ypes re tu rns the  set of all types th a t the current unit 

contains, while getC lasses re tu rns only the  subset of aggregate types. Given a  nam e, get- 

TypeW ithN am e re tu rns th e  type  th a t has the  nam e, while getC lassW ithN am e re tu rns the  

class. If there  is no such a  type or class, the  respective m ethod  will re tu rn  null.

A program  un it m ay contain expressions. For exam ple, th e  set of expressions for a 

function includes b o th  its default argum ents and the  expressions w ith in  its body (the current 

version of FCL does no t handle exceptions y e t). The set of expressions for an  aggregate 

type or a nam espace consists of all the  initialization expressions. getE xpressions re tu rns the 

set of expressions of a  unit.

A program  un it m ay also define a set of variables. For a  function, the  set of variables 

includes b o th  its param eters and local variables; for a  class, th e  set consists of all the  da ta  

members. getObjects re tu rns the  set of variables defined by a  program  unit.

Namespaces, aggregates, and functions are the  concrete program  units th a t  FC L cur­

rently supports. In  addition  to  the  properties cap tu red  by the  class cUnit, each of them  also 

has special ones:

•  A nam espace m ay have sub-nam espaces defined w ithin it. getN am espaces re tu rns the  

set of im m ediate sub-nam espaces.
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cUnit

£
_____________cNamespace_________
+geCNamespaces(): set<cNamespace *> * 
+getFunctions(): set<cFunction *> *

cTypeAggr cFunction
+cretF\mctions () : setccFunction *> * +qetParameterSeguence(): vectorccObiect *> *

Figure 4.5: Namespaces, aggregates, and functions

•  B o th  nam espaces and aggregates can have functions. getFunctions retu rns the  set of 

functions.

® E ach function has a sequence of param eters. getParameterSequence returns the  se­

quence for the  function.

4.3 Types

cTyped

cTypePtr cTypeRef

cTypeFct

cTypeMeta

cTypeEnum cTypeArray

cTypeAggr cTypeBuiltln

+createPtrType(): cTypePtr 
+createRefType(): cTypeRef 
+ g e t D e r e f T y p e ( ) :  c T y p e *

cType

Figure 4.6: Types

C + +  supports seven different types: built-in  types, pointer types, reference types, enu­

m eration  types, function  types, array  types, and aggregate types. In th e  FCL object model, 

each of these types has a corresponding class (for instance, an aggregate type  is an instance 

of the class cTypeAggr). The class cType is the  ab s trac t interface for all of the  seven classes.

T he class cType inherits cTyped, thus types them selves are also considered being “typed .” 

T h a t is, each of them  has a type. The singleton class cTypeMeta is used to  denote th e  type 

of types. The reason for assigning a type to  types is th a t  in C + + , types can be referenced 

as expressions, and  all expressions have types.

T he class cType defines the  following operations:

•  createPtrType: Given a type, createPtrType re tu rn s  the  pointer type to  it. If th e  type
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is a ineta  type, th a t is, the  instance of cTypeMeta, createPtrType retu rns the  type 

itself.

•  createRefType: Given a type, createRefType returns the  reference type  to  it. If the 

type is a  m eta  type, th a t is, the instance of cTypeMeta, createRefType retu rns the 

type  itself.

• getDerefType: If the given type is an indirect type, getDerefType retu rns th e  type th a t 

it points to; otherwise, getDerefType re tu rns the  type itself. For example, if the  type 

is of the  form “**T” , where T is no t indirect, applying getDerefType to  it  will yield 

the  type “*T” . If, however, the type is “T ” , then  the result of applying getDerefType 

to  it will be “T ” itself.

4.3.1 A ggregate Types

cTypeAggr

5
cTypelnheritable cUnion

+getSuperclasses(): set<cAsgNode *> * 
+getSubclasses(): setccAsgNode *> * 
+getAncestors(): setccAsgNode *> * 
+getDescendants(): setccAsgNode *> *

I
cClass cS truct

5
cTypeGenerated

Figure 4.7: A ggregate types

C + +  supports three kinds of aggregate types, class, s truc t, and union (Fig. 4.7). Only 

class and  s tru c t can be p a r t of an inheritance hierarchy. Given such a type, one can query 

its direct base classes and derived classes, ancestor classes, and descendant classes, from the 

inheritance graph. These commonalities are cap tu red  by the  class cTypelnheritable. B oth  

class cClass and class cStruct are its subclasses. In  particu lar, the  class cTypeGenerated, for 

types generated  from class tem plates, is a  subclass of cCiass.

In con trast to  class and struct, a union can be neither a base class nor a derived class. 

The class cUnion is for unions.
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cGenericcFunction

cName cTyped

+ g e t T y p e ( ) :  c T y p e  * 
+ g e t R e s u l t T y p e ( ) :  c T y p e

cOperator

F igure 4.8: O perators

4.4 O pera to rs

Informally, an operator 4 is som ething th a t  can be applied to  some operands. Exam ples 

of operators are functions and class and  function tem plates (class tem plates and function 

tem plates are modeled as subclasses of cG eneric).

T he types of operators are th e ir algebraic types, and getT ype re tu rns the  types. B u t for 

a  function, in addition to  its type, norm ally one would also be in terested  in its re tu rn  type. 

T he operation getR esultT ype can be used to  get the  re tu rn  type 5.

4.5 Expressions

An expression is a  sequence of opera to rs and  operands th a t specifies a  com putation. An 

expression can result in a value and  can cause side effects. FCL recognizes no t only “norm al,” 

first-order expressions like arithm etic  operations and function calls, bu t also second-order 

expressions th a t  either take types as operands or generate types as values. In F ig 4.9, 

cExpression models first-order expressions. cTypeGenerated and cFunctionG enerated model 

instan tia tions of class tem plates and  function tem plates respectively.

cFunctionGeneratedcExpression cTypeGenerated

+getArgSequence(): vectorcvoid *> 
+getAllSubExprs(): set<void *> * 
+getParent(): cExpGeneral * 
+getTopExpr(): cExpGeneral * 
+ g e t O p e r a t o r ( ) :  c O p e r a t o r  *
+ g e t T y p e ( ) :  c T y p e  *
+ g e t V a l u e ( ) :  cName * __________

cExpGeneralized

Figure 4.9: Expressions

4T he term  operato r is m uch overloaded; here it, does no t refer specifically to  C + +  operators, and its 
m eaning is more general th an  th a t  in C + + .

5T he current version of FCL has no t been used to  check any property  of a function type or a  tem plate  
type. getResultType is only a sho rtcu t for ob ta in ing  the  re tu rn  types of functions and tem plates.
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Regardless of being first- or second-order, all expressions share some common properties. 

Any expression can have sub-expressions as operands, which in tu rn  can have their own sub­

expressions as operands, and so on. Thus, structurally , an expression can be viewed as a 

tree, whose nodes represent expressions.

Consequently, cExpGeneralized supports the following “tree” operations:

•  getArgSequence:

Each expression can have a  sequence of argum ents, which are also expressions. The 

sequence can be ob tained  th rough  getA rgSequence. For instance, for y + +  and *y, the 

argum ent would be y, and  for y=x+z(j), the argum ents would be y and  x + z (j) .

•  getAIISubExprs:

It re turns the set of all sub-expressions of an expression.

•  getParent:

If th is expression is a to p  level expression, then getParent re tu rns th is expression itself; 

otherwise, it will re tu rn  the  expression in which th is expression is an argum ent.

» getTopExpr:

R eturns the expression corresponding to  the  root node of the  tree  where th is expression 

“lives” .

The operator and resu lt of an  expression can be obtained th rough  the  following opera­

tions:

•  getOperator:

Each expression is th e  result of invoking an operator on some operands (argum ents). 

For instance, a  function  call is the  result of invoking a  corresponding function. The 

arithm etic expression a + b  is th e  result of applying the pre-defined operator, +  : Z x  

Z  —> Z , to  two integers, a and  b. Particularly , a generated type is the  result of 

applying a  class tem pla te  to  operands of types a n d /o r expressions of constan t values. 

getO perator re tu rns the  opera to r th a t  the  expression uses.

•  getType:

T he result of evaluating an  expression has a type, and getT ype re tu rns th e  type. For 

example, for a function call, getT ype will re tu rn  the  re tu rn  type  of the  function being 

invoked; for a  generated  type, getT ype will re tu rn  cT ypeM eta.

•  getValue:

For first-order expressions 6, m ost of the  tim e sta tic  analysis does not know their 

values. In th a t case, getV alue re tu rns null. For second-order expressions, getV alue  

returns the types or functions generated.

E x p ress io n s  whose operands are  no t ty p es are considered first-order, otherw ise, second-order.
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4.5.1 G enerated Types

cClass

cTypeGenerated

cExpGeneralized

Figure 4.10: G enerated  types

Like expressions, a generated  ty p e  also has a  sequence of argum ents. Unlike expressions, 

the  argum ents of a generated  ty p e  can only be constant values and types. In addition, 

the value of a  generated  type  is the  result of in stan tia ting  a  class tem plate w ith concrete 

argum ents, and it is viewed as a class.

4.6 “Norm al” Expressions

The class cExpression m odels expressions o ther th a n  generated types, hence the  nam e “nor­

m al.” Such an expression can be a  function call; a  pre-defined operation  such as arithm etic, 

relational, and logical expressions; a  cast call or a sizeof expression, b o th  of which involve a 

type as their operand; and  nam e references (to variables and  to  types) and literals.

cExpExitcExpCast cExpEntrycExpSizeof

cExpLiteralcExpFctCall cExpPredefined cExpNameRef

+isBranch(): bool 
+trueBranch(): cExpression *
+falseBranch(): cExpression *
+isReturn(): bool
+createDownPath{endExpr:cExpression *=NULL): set< vectorcvoid *> *> * 
+createUpPath(startExp:cExpression *=NXJLL): set<vector<void *>*>* 
■f-getReceiver () : cExpression *
+change(aVar:cObject *): bool

cExpression

Figure 4.11: Norm al expressions

An expression can appear a t several places. I t  can be an  intializer to  a sta tic  d a ta  

member, a constructor, or to  a  variable. I t can also be a  default argum ent to  a function. 

Of course, m ost often an expression will be a  com putational step  w ithin a function.

FCL builds a  CFG (C ontrol Flow Graph) for each function. T he nodes of CFGs are 

expressions. Particularly , two artificial expressions, of types cExpEntry and cExpExit, re­

spectively, are added to  each CFG: cExpEntry represents the  s ta rtin g  point of control, and

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cExpExit represents th e  end of control. Edges are also added, respectively, from the cExpEn­

try node to  the  en try  expressions of a  function, and from  the  exit expressions to  the cExpExit 

node.

Six operations are available for querying control flow re la ted  inform ation about an ex­

pression:

•  isBranch:

Given an expression, if it is the  condition of a  conditional or loop sta tem ent, isBranch 

re tu rns true; otherw ise, isBranch re turns false.

•  trueBranch:

Given an expression, if it is the condition of a  conditional or loop sta tem ent, trueBranch  

re tu rns the first expression on its tru e  branch; otherw ise, trueBranch returns null.

•  falseBranch:

Given an expression, if it is the  condition of a  conditional or loop sta tem ent, falseBranch  

re tu rns th e  first expression on its false branch; otherwise, falseBranch re turns null.

•  isReturn:

Given an expression, if it is the  expression of a re tu rn  sta tem ent, isReturn re tu rns true; 

otherwise, isReturn re tu rns false.

•  createD ow nPath:

If th is expression is w ithin a  function, createD ow nP ath  (end Exp) re tu rns the  set of paths 

s ta rtin g  from th is  expression and ending a t end Exp. By default, end Exp has th e  value 

of cExpExit. If th is expression is no t w ithin a  function, th en  createD ow nPath re tu rns 

the  em pty set.

•  createU pPath:

If th is  expression is w ithin a function, createU pPath  (startExp) re tu rns the set of paths 

s ta rtin g  from start Exp and ending a t this expression. By default, start Exp has th e  value 

of cExpEntry. If th is expression is not w ithin a  function, th en  createU pPath re tu rns 

the  em pty set.

T he following exam ple m ay help illustrate  control paths: .

(*) starting point
(1) if (a+b<100)
(2) doSomething();
(3 ) i f  (a+b>50)
(4) doTheRestO;
(*) exiting point

The set of down p a th s  from  the function call a t (2) to  the  exiting point is { < a , b, a + b , 

50, a + b > 5 0 , d o T h eR est> , < a , b, a + b > 5 0 >  } . The set of up path s  to  (2) from the sta rting  

point is { < a, b, a + b , 100, a + b < 1 0 0  >  }.

The evaluation order of the  constituent expressions is im plem entation-dependent [Int98]. 

The exam ple assum es a  left-to-right order.
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T he operation  getR eceiver returns the  receiver expression r for an expression of the  form 

“r .m (...) .” Otherwise, th a t is, if the expression is not sending a message to  an object, 

getR eceiver re tu rns null.

bool change(cO bject * aVar) tells w hether a given expression may change the variable 

represented by the  param eter aVar.

If aVar is no t referenced by the expression, change returns false. Otherwise, for each of 

the  expressions where aVar is referenced:

• If the  expression is a pre-defined one, th e  pre-defined operator is an assignm ent, and 

aVar is th e  left-hand side of the assignm ent, then  change re tu rns true.

• If th e  expression is a function call and  aVar is the  receiver: If the  function invoked is 

no t const, then  change re tu rns true; otherw ise, change re tu rns false.

• If th e  expression is a function call and  aVar is an  argum ent to  it: If th e  corresponding 

param eter of the  invoked function is no t const b u t of reference type, then  change  

re tu rns true; otherwise, change re tu rns false.

If aVar is of pointer types, one may w ant to  query w hether an expression changes the 

value th a t  aVar points to. Currently, FCL has yet no constructs to  express this.

4.6.1 Function Calls

cExpFctCall

cExpOperatorCallcExpCommonFctCall

Figure 4.12: Function calls

Function calls are fu rther divided in to  tw o categories: common function calls and oper­

ato r calls. Invocations of b o th  free functions and  m em ber functions are common function 

calls. O pera to r calls correspond to  functions th a t  use operators as names; in C + +  operators 

can also be overloaded.

4.6.2 Pre-defined Expressions

Pre-defined expressions invoke the  pre-defined operators. FCL p u ts pre-defined operators 

into the  global nam espace and trea ts  the opera to rs and the ir expressions in th e  sam e way 

as user-defined functions.
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Assignm ents IIV 
!

VIIAAII<IIII!i

B it m anipulation: & [ ' » < < ~
M emory new delete & * . -> .* ->*
A rithm etic +  - * /  % + +  (pre) — (pre) + +  (post) — (post)
Logical & &  1 1 !
Relational > >= = =  < <= !=

Special 0

Table 4.1: Pre-defined Expressions

cExpFctRefcExpVarRef cExpTypeRef

+g e t  T a r g e t ( ) :  cName

cExpNameRef

Figure 4.13: Nam e reference expressions

4.6.3 N am e Reference Expressions

A n identifier can be bound to  a  variable, a  type, or a function. For a given nam e reference 

expression, getTarget returns the  corresponding elem ents th a t it is bound to .

4.6.4 Control Statem ents

C ontrol sta tem ents are not trea ted  as an  essential p a r t of the FCL object model. The reason 

is th a t  by building control flow in term s of expressions, m any im portan t constrain ts can be 

handled  w ithout the  need of inform ation abo u t control statem ents. They m ay be needed 

when, say, one w ants to  enforce certa in  coding conventions. B ut th a t  is not th e  focal point 

of FCL a t the  m om ent.

cStmtExpr

cStmtBreak

cStmtSwitch

cStmtCaseLabel cStmtDefau ItLabel

cStmtCont cStmtReturn

cStmtlf cStmtLoop cStmtBlock

cStmtCaseBlock cStmtDefaultBlock

+buildControlGraph(pred: set<cExpression *> *) .-  void

cStmt

Figure 4.14: C ontrol sta tem ents

C ontrol sta tem ents are used to  generate control flow graphs for functions. T he class 

diagram  for C + +  statem ents is depicted in Fig. 4.14. The control sta tem ents of a function 

form a tree structu re . The control flow graph  is bu ilt by a syntax-directed traversal of the
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tree, connecting the corresponding expressions a t each node. 

T he following example m ay help illu stra te  the idea:

void f()
{
El;
if (E2)

Bl; 
else B2;
E3;

}

whose CFG is shown in Fig. 4.15.

;ntr;

El

E2
falsetrue

B2Bl

E3

Exit

L e g e n d s :

o
O

special nodes

expression

subgraph

i> nnife control

Figure 4.15: A CFG example 

M ore details on constructing C FG s from  statem ents can be found in [AU78].
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Chapter 5

Case Study 1: Enforcing 
Framework Constraints—the  
Observer Design Pattern

The purpose of th e  O bserver exam ple is to  in troduce the  m ain features of FCL. It also 

illustrates how to  use th e  checker program , fd, b o th  th e  form at of its com m and line and the 

form at of its o u tp u t message.

5.1 The Observer Design Pattern

Design p a tte rn s [GHJV94] can be seen as small frameworks m ade of a  few classes. We in tro­

duce FCL by specifying constrain ts for an im plem entation of th e  Observer design p a tte rn  

(Figure 5.1).

observers ►

for all o in observers 
o->Update()

subject

observerState=subject->GetState()

Observer

+observerState
+Update(

ConcreteObserver

+Attach(Observer) 
+Detach(Observer) 
+Noti£y() i

Subject

+subjectState 
+GetState() 
+SetState()

ConcreteSubject

Figure 5.1: The O bserver P a tte rn
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Together, the ab strac t classes Subject and O bserver im plem ent an abstraction for the 

notification of sta te  changes, as depicted in the  top  of F igure 5.1. The class Subject provides 

an interface for attach ing  and detaching O bserver objects; a subject knows its observers. 

Any num ber of observers may observe a subject. The Observer class defines an updating  

interface for objects th a t  should be notified of any s ta te  changes in a subject. A subject 

should notify all of its observers whenever its s ta te  changes. This can be done by calling the  

notify m ethod  of the  class Subject, which in tu rn , calls th e  update  m ethod of each observer 

object, w ith th e  subject itself as the actual argum ent. As a  response to  th e  notification, 

each observer object should query the subject object to  synchronize their states.

L et’s assum e th a t  any extensions to  the  fram ew ork are required to  have a t least one 

subclass of th e  class Subject. Then, as designers, we can stipu la te  th a t each subclass of the  

class Subject m ust obey the following constraints:

1. T he Subject class has to  define some s ta te , thus it m ust define a t least one instance 

variable to  represent the state.

2. All the  instance variables m ust be private for sake of inform ation hiding.

3. T he class m ust define a t least two m ethods. Because all of its instance variables are 

required to  be private, a t  least one m ethod  is needed to  change the s ta te  and another 

to  query it.

4. In the  class, there  m ust exist a t least one m ethod  th a t  satisfies the following conditions:

•  F irst, i t  changes some new variables defined by th e  class.

•  Second, it calls the  inherited notify m ethod.

•  A nd th ird , the  change m ust happen  before th e  notify m ethod is called.

We use th e  nam e modifier for the set th a t  contains all such m ethods.

Similarly, we require th a t:

1. Any extensions to  the  framework m ust have a t least one subclass of the  class Observer.

2. Furtherm ore, all th e  subclasses of Observer m ust override th e  update  m ethod.

3. In addition , the  override m ust call some m ethod  defined in a subclass of the  class 

Subject. B ut it  is prohibited to  call any m ethods th a t  belong to  the  set modifier.

5.2 Observer Pattern in FCL
The following is an FCL specification for the  O bserver pa tte rn :

1 subject as class("Subject") ;
2 observer as class("Observer") ;
3 model as subclass(subject);
4 view as subclass(observer) ;
5
6 forall mdl : model holds
7 [
8 modifiers as { m : function(mdl) |
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9 exist e : exp(m), v : var(mdl) holds
10 (
11 change(e, v)
12 and
13 exist p : downPath(e), notify : p holds
14 name(noti fy)="noti fy"
15 )
16 }
17 ]
18 (
19 for v being var(mdl) holds
20 isPrivate(v)
21 and
22 sizeof(function(mdl)) > 1
23 and
24 sizeof(modifiers) > 0
25 and
26 forall v : view holds
27 [
28 update as { m : function(v) |
29 [
30 p as param(m);
31 firstParam as member(p ,0);
32 ]
33 (name(m) = "update" and sizeof(p) =1 and
34 type(firstParam) = ptr(subject))
35 and
36 forall e : exp(m) holds
37 not belongsTo(function(e), modifiers)
38 and
39 exist e :exp(m) holds
40 [
41 invokedFunction as function(e);
42 programUnits as unit(invokedFunction);
43 ]
44 (
45 belongsTo(first(programUnits), model)
46 and
47 last(programUnits)=global
48 )
49 }
50 ]
51 sizeof(update) = 1
52 )

Overall, th is  specification m aps relatively straightforw ard w ith the n a tu ra l language 

description of th e  last section. For exam ple, lines 7 through 24 correspond to  the  item s 1 

to  4 for the Subject class; the constrain ts of item  4 are reflected in the  set com prehension 

defined a t lines 8 th rough 16. In th e  following, we rem ark on some peculiarities of the  

specification.

T he overall s truc tu re  of the  specification consists of two nested forall formulas, s ta rtin g  

a t lines 6 and 26, respectively. This s tru c tu re  is used because constrain ts for each subclass of 

the  Observer class need to  refer to  the  set modifier defined for each subclass of th e  Subject 

class. Should there  be no such a dependence betw een subjects and observers, we would have 

had  two independent forall formulas instead.

N ote th a t bo th  subject and observer are FC L variables th a t represent the  Subject class 

and the  Observer class, respectively; they  are constructed  through the constructor func­

tion  class. Moreover, the FCL variables model and  view  represent the  respective sets of
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subclasses.

T he set comprehension th a t defines the  set modifier deserves some com m ents. One 

question m any may ask about the change p redicate a t line 11 goes along th e  lines of “w hat 

if a subclass of the  Subject class defines an instance variable of integer type, which does 

not represent sta te , b u t some m ethods happen  to  change it, and thus m ake th e  code satisfy 

th e  constra in t?” In th a t  case, indeed, FC L will miss the  error, and there  will be no error 

messages reported. This exam ple shows th a t although FCL can detect errors of omission, 

it is not complete (th a t is, it generates false negatives); in particu lar, som etim es an error 

m ight be camouflaged by code th a t  happens to  expose the same structu re  as expected, and 

thus satisfies the  constraint.

This specification also examplifies th e  use of sequences. FCL needs sequences to  model 

th ree things, the execution path s  w ith in  a m ethod, the  param eter list of a  m ethod, and 

the  syntactical context of a program  elem ent. In the  above specification, there  are three 

exam ples of sequences, a t lines 13, 30, and 42, respectively.

T he function downPath a t line 13 re tu rn s  the set of all the  execution p a th s  th a t  s ta rt 

from the  argum ent exp and  end a t th e  end of the  m ethod; each elem ent of the  set is a 

sequence of expressions.

T he function param  a t line 30 re tu rn s  the  param eter list of the  function m. At th e  next 

line, mem berfp, 0) re tu rns the  first elem ent of th e  sequence; in fact, it is th e  first and  the 

only param eter of the function, as ind icated  by the  constrain t at lines 33 and  34. A t line 

34, p tr  is a constructor function th a t  constructs a pointer type to  th e  subclass subject.

T he last example is a t line 42: th e  un it  function re tu rns the  sequence of program  units 

th a t  enclose the argum ent, which is a  function in  th is case. Furtherm ore, th e  specification 

goes on to  check w hether the  class of th is function belongs to  the  set m odel; the function 

first a t  line 45 effectively obtains th e  enclosing scope of the  function. If th e  re tu rn  value is 

a class th a t belongs to  the set model, th en  the  belongsTo test will yield true. Finally, the  

form ula a t line 47 is a  tauto logy since th e  last elem ent of a context is always the  global 

nam espace; the  function last re tu rns th e  last elem ent of a  sequence, and  global is a constant 

of FCL th a t  denotes the global nam espace.

5.3 Discussion

5.3.1 Expressions Are Im portant for FCL

In addition to  classes and m ethods, it  is also im portan t to  be able to  specify constra in ts for 

expressions. W ithout support for expressions, the  content of the above specification would 

drop rapidly; all th a t would rem ain are  th e  requirem ents th a t the subject subclasses should 

have b o th  some m ethods and variables defined and th a t the observer subclasses should 

override the update  m ethod. These are still useful, bu t their likelihood of detecting subtle
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errors is reduced.

Some of the constraints are im plem entation oriented, for exam ple, the  one th a t requires 

all the instance variables of a sub jec t class be private and the one on the  num ber of methods. 

A lthough they may not be as im p o rtan t as design constraints, it is w orth enforcing them.

Certain p arts  of a specification can get very detailed; for example, to  accurately specify 

a m ethod, one needs to  provide no t only its nam e, bu t also the num ber of param eters and 

their respective types.

Context knowledge can be used to  shorten  FCL specifications. A t lines 13 and 14 of the 

above specification, we only check w hether there  is a function call expression th a t  invokes a 

function nam ed notify. This m ay be insufficient under certain circum stances; for example, 

th e  function being called m ay be a  global one th a t has the same nam e. O n the  o ther hand, 

w ithin the specialized context of a  p ro ject, it may be the case th a t  th is will never happen. 

Therefore, the specifier m ay tak e  advantage of the  knowledge, and  the  above specification 

becomes acceptable. For ano ther exam ple, notice th a t line 34 specifies the  update in full 

detail. If one knows th a t th e  update m ethod  will not be overloaded, then  one can elim inate 

the  code th a t specifies the  param eters.

5.3.2 FCL Depends on Specialized Context

Conventional m ethods of program  specification emphasize abstractions and generality [GH93] 

This is achieved through using concepts and  constructs such as specification variables and 

abstraction  functions in the  specifications. By concentrating on only properties of the ab­

stractions, one obtains the benefits of easier m aintenance and a  higher chance of reusing the 

specifications. W ith  abstractions, it becomes clear w hat p roperties m ust be preserved when 

one changes the im plem entations. By program m ing to  abstractions, an  abstrac tion  can be 

used in various contexts w ithout th e  program m er having to  worry about th e  underlying im­

plem entations. Moreover, one im plem entation  can be replaced by ano ther w ithout affecting 

correctness.

In contrast, FCL depends on specialized context; it specifies constra in ts in term s of im­

plem entation details such as variable nam es, expressions, and specific classes and  m ethods. 

However, FCL complements ra th e r th a n  contradicts the established wisdom. Traditional 

m ethods focus on identifying and  specifying the  core abstractions w ithin a problem  domain. 

This is of course a right strategy. B u t fram eworks by definition already contain  the  key ab­

stractions of the  corresponding problem  dom ains. Therefore, FCL is no t concerned w ith the 

correctness of the  abstractions them selves. In contrast, FCL is addressing a  different issue; 

it is m eant to  detect the  po ten tia l errors th a t  m ay occur a t th e  boundary  betw een the core 

and the  extension. This requires th a t  FCL specifications explicitly m ention im plem entation 

details.
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Specific im plem entations of a generic design may specialize in certain  aspects. For ex­

ample, there are several dim ensions along which a particu lar im plem entation of the generic 

observer design p a tte rn  can vary:

S ta te s  Both prim itive types and user-defined types can be used to  represent states. Fur­

therm ore. if the  s ta te  represen tation  is of a collection type, the  s ta te  may be either 

th e  collection, the  elem ents th a t  it contains, or both . Clearly, a t the  general level, 

w ithout fu rther inform ation, w hat FCL can speak abou t is lim ited. The best th a t one 

can say abou t th e  s ta te  is p robably  th a t “there m ust be a  change to  the sta te , and 

it is followed by a  call to  th e  notify m ethod.” A lthough quite  conservative, it cap­

tures the  key requirem ent th a t  the  user of the p a tte rn  has to  fulfill. W hen specifying 

constraints, one has to  balance between picking up  m ore errors and  avoiding spurious 

ones.

There are also exam ples of th e  p a tte rn  in which the  s ta te  is divided in to  substates and, 

subsequently, a  different notification m ethod is provided for each individual substate. 

The JTree com ponent of th e  Swing framework provides a default im plem entation 

for the TreeM odel interface, which corresponds to  the  Subject class of the  Observer 

p a ttern . For perform ance reason, th e  default im plem entation  distinguishes four kinds 

of s ta te  changes: change to  th e  whole tree, addition  of nodes to  or removal from a 

particu lar in ternal node, and  change to  a  whole sub-tree .

R e g is t r a t io n  W here can an  observer be a ttached  to  a subject?  T he registration can be 

done by the  client of th e  p a tte rn , th a t is, outside of bo th  the  subjects and observers. 

I t can be done by th e  observers; the  JTree class actually  registers itself to  the  tree 

model. I t  is also conceivable to  do it in the  subject classes.

C a rd in a lities  N ot only can each subject have m ultiple observers, bu t each observer can 

watch m ultiple subjects. Moreover, these subjects can belong to  different classes.

W h o  ca lls n o tify ?  N otification does not have to  always be issued by the  m ethods of sub­

jec t classes. I t  can also be done by the client of th e  pa tte rn . T he related  advantages 

and disadvantages are discussed in [GHJV94],

Specializations can influence th e  content of the specifications. In the  following, a special 

im plem entation of th e  observer p a tte rn  will be used to  illustra te  th is  point.

The im plem entation of F igure 5.2 makes several changes to  the  generic one:

1. In this example, th e  s ta te  is a  nam e of the string  type, and  a modifier setNam e  is 

im plem ented to  change it. As a  result, the  class Subject is no t ab strac t any more.

2. The Observer class also becomes concrete. In addition , it adds a private d a ta  m em ber 

to  rem em ber the  nam e. It also implements a m ethod  printNarne.
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observers ►

!Subject \
+name: string = 11" Dhc(an/oi*
+Attach(Observer)
+Detach(Observer)
+Notify()
+setName (name.- const string &} : void

-name: string = ""
+Update()
+printName{): void

Figure 5.2: A Specific Im plem entation of the  Observer P a tte rn

3. B oth  setNam e  and  printN am e  are v irtual.

4. The d a ta  m em ber nam e  of the  Subject class is deliberately m ade public to  illustrate 

how FCL can be used to  restrict the access to  d a ta .

The FCL specification for this im plem entation is as follows:

1 // Constraint 1: not call attach
2 setOfExpInFreeFunction as { fct: function(global) | true | exp(fct) };
3 expInFreeFunction as union(setOfExpInFreeFunction);
4 setOfExpInClass as { els: class(global) | true | expClosure(els) } ;
5 expInClass as union(setOfExpInClass);
6 attach as function("attach", class("Subject"));
7
8 exist exp being expInFreeFunction+expInClass holds
9 function(exp) = attach
10
11 // Constraint 2: directly assign to Subject::name
12 Subject as class("Subject") ;
13 Observer as class("Observer") ;
14 classesOfSubjectAndObserver as [Subject, Observer ]+descendant(Subject)+
15 descendant(Observer);
16 expOfSubjectAndObserver as union( { els: classesOfSubjectAndObserver |
17 true | expClosure(els) } )
18
19 // version 1:
20 not exist exp : expInFreeFunction+expInClass-expOfSubjectAndObserver holds
21 (
22 name(exp)="="
23 and
24 [arg as arg(exp); leftHand as member(arg,0);
25 argl as arg(leftHand);
26 receiverType as ptdTypeStar(type(member(argl, 0)));
2 7 varRe f as member(argl, 1);]
28 (
29 name(var Ref)="name"
30 and
31 belongsTo(receiverType, ClassesOfSubjectAndObserver)
32 and println(name(varRef))
33 )
34 )
35
3 6 // version 2:
37 forall exp being expInFreeFunction+expInClass-expOfSubjectAndObserver holds
38 (
39 not (
40 name(exp)="="
41 and
42 [arg as arg(exp); leftHand as member(arg,0) ;
43 argl as arg(leftHand);
44 receiverType as ptdTypeStar(type(member(argl, 0)));
45 varRef as member(argl, 1);]
46 (
47 name(varRef)="name" and
48 belongsTo(receiverType, classesOfSubjectAndObserver)
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49 )
50 )
51 or not (println("the node for the expression is") and println(exp))
52 )
53
54 // Constraint 3: Nev/Observer: :printName does not call Observer:: printName
55 NewObserver as subclass(class("Observer"));
56 printNameOfObserver as function("printName", class("Observer"));
57
58 forall observer being NewObserver holds
59 [
60 printName as { fct:function(observer) | name(fct)="printName" and
61 sizeof(param(fct))=0 } ;
62 expOfPrintName as union) { fct:printName | true | exp(fct) } )
63 ]
64 exist exp being expOfPrintName holds
65 function(exp)=printNameOfObserver
66
67 // Constraint 4: NewObserver::update calls Subject::setName
68 setNameOfSubject as function("setName", class("Subject"));
69
7 0 forall observer being NewObserver holds
71 [
72 update as{ fct:function(observer) | name(fct)="update" and
73 sizeof(param(fct))=1 } ;
74 expOfUpdate as union( { fct:update | true | exp(fct) } )
75 ]
7 6 forall exp being expOfUpdate holds
77 not function(exp)=setNameOfSubject

There are four constrain ts in the  specification. A few com m ents about them  fall in place:

C on stra in t 1 requires th a t  the  attach  m ethod be called. To enforce this, the  specification 

considers no t only all th e  expressions of classes, b u t also those of free functions. The 

constructor fun ction  on attach  re tu rns a  set. The equality a t line 9 is actually  a 

shorthand  supported  by FCL; it requires bo th  th a t  the  set attach  be a singleton and 

th a t  its only elem ent be equal to  the  left hand  side.

C on stra in t 2 dem onstrates how access to  d a ta  can be restricted . Note th a t  how verbose 

it can be to  detect even such a simple assignm ent expression. The tw o versions of 

the  constrain t also show how the  prin ting  facility of FCL can be used. Currently, the 

p r in t and  prin tln  expressions are trea ted  as predicates th a t alway re tu rn  the  value of 

true. It is up to  the  specifier to  m ake sure th a t  the  use of them  does no t change the 

m eaning of th e  original specification.

C on stra in t 3 is representative; it requires th a t  the  overriding m ethods call the ir corre­

sponding superclass versions.

C o n s tr a in t  4 requires th a t  the  overriding update m ethod  in any subclass of th e  O bserver 

class do no t call th e  setN am e  m ethod of the  Subject class. This is a specialized version 

of the corresponding constraint for the  generic observer pa ttern . I t  is considered 

“specialized” in th a t  now we know w hat the modifier m ethod is, and thu s can directly 

use it  to  specify constraints.
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Chapter 6

Case Study 2: Enforcing 
Framework Constraints-M FC

This chapter provides a few examples of fram ework constrain ts taken  from the  MFC fram e­

work. The purposes of these examples are twofold: first, they dem onstrate  th a t framework 

constrain ts are nontriv ial in the  practice of fram ew ork-based development; second, they 

show how FCL can be applied to  a real fram ework and  w hat lessons we can learn.

These examples are adopted from a th ird  party , which brings us certa in  benefits in term s 

of the  quality of our validation. F irst, it increases our confidence in the  authentic ity  of the 

exam ples since contrived examples can be more easily and  often accused of being no t real. 

The quality of th e  exam ples also depends on th e  calibre of the  au thor. In  our case, the 

au thor, Dr. Joseph M. Newcomer, has a  strong background in bo th  the  theory  and practice 

of software construction , which can be evidenced by the  following quo tation  from his web 

site [New]:

Dr. Joseph M. Newcomer is a Microsoft M V P [(Microsoft Valued Professional)], 

an aw ard presented to  a fairly small group of people who help ou t on a  volunteer 

basis on th e  M icrosoft newsgroups. A collection of his articles, expanded beyond 

the  postings on the  newsgroups, is now available on his M V P essays page, as 

well as useful code samples.

Joseph M. Newcomer is the au tho r of several articles on W indows program m ing 

as well as co-author of two books on W indows program m ing and  a  course in w rit­

ing W indows N T Device Drivers and a course in W indows System  Program m ing.

He also is co-author of three U.S. paten ts on d istribu ted  inform ation technology.

Section 6.1 presents some prelim inaries for M FC. Sections 6.2 th rough  6.10 present exam ­

ples of M FC rela ted  problem s and how FCL is used to  detect them . Section 6.11 sum m arizes 

lessons learned.
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6.1 Preliminaries of MFC

6.1.1 The W indows W o r l d  and the MFC World

FC

Windows OS

Application

cuw h and le  to  W indows w idgets

C B u tto n C E d it C r  ran  ic C D iu lo g

/

A te x t fie ld  »

Tftla Title
File Edit A bout

Dialog
Fram e

( y e s )  ( l a )

Windows

:CWnd 

Creation methods Register a  callback

store this 

: :CreateW indowEx

‘map

Cali the callback 
to accomplish 
the mapping

Figure 6.1: The relation  between W indows and MFC

As an operating system , M icrosoft W indows provides a set of APIs th a t  can be used 

to  create, m anipulate, modify, and delete objects of bo th  graphical interfaces and other 

resources. G raphical objects are often called controls. As usual in system s design, each 

control has a  corresponding piece of inform ation called ‘hand le’ to  identify itself; the  type 

of handles is HW ND. Similarly, resources are also m anaged th rough  handles; for example, 

fonts have handles of type H FO N T, and brushes have handles of type HBRUSH, and so on.

To support an object-oriented style of program m ing, M FC provides a set of “w rapper 

classes” th a t  encapsulate the  W indows controls and resources (top of F igure 6.1). For 

exam ple, a  C W nd object wraps an HW ND, a CFont w raps an H FO N T, a  C B rush w raps 

an HBRUSH, and  so on. Thus given a w rapper object, one can access its w rapped control 

th rough  the  instance variable m_hW nd. By default, M FC designates a default class for each 

type of controls and resources, for exam ple, C B utton  for bu ttons, CListBox for lists, CEdit 

for inpu t fields, and so on. B ut program m ers can customize th e  default behavior of these 

classes th rough  subclassing.

T he w rapper classes provide various message handlers to  handle the  messages th a t  the
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underlying controls need to  respond to . Moreover, operations are also designed so th a t one 

can move freely between th e  W indows object dom ain, where objects are represented by 

handles, and the MFC object dom ain, w here objects are represented by instances of the 

C + +  classes. In practice, it is im portan t to  understand  the relationship between these two 

representations in order to  use them  in a  safe and non-leaking fashion.

It is also known th a t when an  event happens for a W indows control, the  event loop 

m echanism  can get the handle of the  control from the operating  system . Because the 

m essage handlers are defined as m ethods of the w rapper object, in order to  find the right 

handler for the  event, however, th e  event loop of MFC has to  find the object first. I t  tu rns 

out th a t M FC uses a m ap d a ta  s tru c tu re  to  m ain tain  the relation between the  handles and 

their w rapper objects; given a handle as a  key, M FC can retrieve the  corresponding w rapper 

object from the map.

The bottom  of Figure 6.1 illustrates how- th e  m apping relation is established. It s ta rts  

by calling one of the creation m ethods for the  w rapper object. After the  m ethod  is invoked, 

it first registers a callback function for a  certain  pre-defined event of the  operating  system; 

th e  pre-defined event has th e  following p roperty : when a control is created, W indows will 

generate an instance of the  event, which will th en  trigger the  registered callback function. 

T hen, the  creation m ethod stores a  po in ter to  the  w rapper object into a global variable. 

Eventually, the  m ethod will call th e  windows A PI CreateW indowEx to  actually create a 

control. As a response to  th e  invocation of the  API, W indows autom atically  calls the 

previously registered callback w ith the  handle of the  new control as an  argum ent. The 

callback then  retrieves the  previously sto red  poin ter to  the  w rapper object from  the global 

variable and adds the pair of pointer and  handle to  the map.

6.1.2 Dialog, Control ID, G etD lg ltem , and Control Variables

A dialog is a  container th a t  can contain o ther controls th a t have visual appearance. In  MFC 

program m ing, a  dialog is represented  by a  class th a t inherits the  fram ework class CDialog. 

Each control of the  dialog can have a constan t integer called “control ID ” associated w ith 

it. A control ID can uniquely identify the  control and is only valid relative to  the  dialog 

th a t  contains it.

The m ethod C W nd: :G etD lgItem  is defined to  retrieve a child control from a  dialog. Note 

th a t  CDialog inherits CW nd. F igure 6.2 depicts artifacts re la ted  to  the  im plem entation 

of CW nduG etD lgltem . C W nduG etD lg ltem  is im plem ented using ::GetD lgItem  and the 

FromHandle m ethod of th e  CW nd class.

The free function ::GetD lgItem  is a  W indows A PI function. I t takes a handle to  a  dialog 

and  a control ID and re tu rns the handle to  the  control. Also note th a t  the  handle to  a 

Windows control, HW ND, is im plem ented as a  pointer to  a structure . In particu lar, a
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: , .

struct HWND_{int unused}; 
typedef struct HWND_ * HWND;
HWND GetDlgItem(HWND hDlg, int nIDDlgltem);

CWnd
+m_hWnd: HWND________________________________ _
+GetDlgItem(nID;int): CWnd *
+FromHandle(hWnd:HWND): CWnd * 
+FromHandlePermanent(hWnd:HWND); CWnd *
+Attach(hWnd:HWND): BOOL
+Detach(): HWND_______________________________

Figure 6.2: C W ndcG etD lgltem

dialog can be represented by a  handle of type  HW ND.

The diagram  for the  class C W nd shows only a small portion of its im plem entation. Each 

CW nd object can w rap a  W indows control, represented by the  instance variable m JiW nd. 

B oth FromHandle and  From H andlePerm anent are sta tic  m ethods, which, given a handle, can 

look up the map for a  corresponding C W nd object; the  difference is th a t  From H andlePer­

m anent will re tu rn  NULL if th ere  does no t exist a CW nd object w hereas From Handle will 

re tu rn  a tem porary  one in th a t  case (and M FC can autom atically  m anage the mem ory). 

A ttach  and D etach, as th e ir nam es suggest, effectively add and remove a  pair of handle and 

CW nd object to  and  from  the  m ap.

Sometimes one may w ant to  custom ize the behavior of a control; this can be done by 

creating a subclass of th e  default M FC class for the  control. For exam ple, one m ay want 

to  create a subclass, CHorzListBox, for th e  CListBox class; CH orzListBox overrides the 

A ddString m ethod to  recom pute th e  horizontal extent of the box and call SetHorizontalEx- 

ten t, and consequently also overrides R esetC ontent to  set the  horizontal extent to  0.

Each control of the  dialog m ay also be represented by an instance variable of the  dialog 

class whose type is th e  corresponding class of the  control. The instance variable is then  

called a “control variable.” W ith  control variables, one can opera te  on a  control in the  

“norm al” C + +  way:

CButton c_Button; // c_Button is an instance variable of the dialog 

if(c_Button.GetCheck() == BST_CHECKED)

6.1.3 Dialog Control M anagem ent: C o n t i n u o u s  Validation

A user interacts w ith a  com puter no t only by reading d a ta  from it, b u t also by w riting d a ta  

to  it. Typically, when users inpu t d a ta  to  a program , the  program  has to  provide certain  

capabilities of checking w hether th e  d a ta  are valid according to  some criteria. The process 

of checking is called “validation.”
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There exist two ways of validation: one is “continuous validation.” and the o ther can 

be called “validation-on-ok,” which does not validate the  d a ta  until the  user presses the 

ok bu tton . They are distinguished by the immediacy of the  provided feedback; coded in 

the  style of continuous validation, the  program  can provide im m ediate feedback to the user 

whenever the value of th e  current inpu t field becomes invalid, instead of deferring it until the 

user presses the  ok b u tto n . The benefit of “validation-on-ok” is th a t it is easier to  program ; 

in fact, m any in troducto ry  textbooks use this style of validation as examples.

To provide b e tte r  in teraction  experience to  the end user, “continuous validation” is 

preferred to  the simple, “validating-on-ok” style. In fact, p roduct quality software should 

all be program m ed w ith  “continuous validation.” Section 6.3 will discuss issues on how to  

properly program  w ith the  style.

So much for the  M FC prelim inaries. More inform ation on the  arch itectural design of 

MFC can be found from  the  article [DiL95]. For inform ation on the detailed design, one 

can consult the  book [SW96].

6.2 Avoiding CW nd::GetDlgItem

MFC supports a  style of dialog program m ing w ithout creating control variables. Instead, 

one obtains an M FC object for the  underlying control th rough  the  m ethod  G etD lgltem , 

w ith a  control ID as th e  argum ent:

CButton * aButton = (CButton *)GetDlgItem(IDC_BUTTON); 
if(aButton->GetCheck( ) == BST_CHECKED) ...

ID C J3U T T O N  is th e  control ID for a b u tto n  in th e  dialog, and BST_CHECKED is a 

constant th a t represents th e  s ta te  th a t a  bu tto n  is checked. C W nduG etD lgltem  retu rns a 

pointer to  CW nd. A dow ncast to  “C B utton  *” is th en  applied to  th e  re tu rn  value. After 

getting the pointer to  th e  MFC object in the variable aB u tton , one can send it bu tton- 

specific messages. For exam ple, the  code above sends th e  m essage G etCheck to  determ ine 

whether the b u tto n  has been checked.

Program m ing in th e  G etD lgltem  style is all right as long as one program s only simple 

dialogs, which may, for exam ple, m anage only a few controls. In fact, m any in troductory  

MFC program m ing books use G etD lgltem  to  illustra te  how to  program  (simple) dialogs. 

Unfortunately, real world dialogs are usually much m ore complex th a n  th a t; it is norm al 

for one dialog to  have tens of controls in it. Furtherm ore, som etim es using G etD lgltem  can 

pose a severe m aintenance headache.

The problem  happens when your program  has m any G etD lgltem  casts and you w ant to  

subclass a control. You th en  will have to  find all uses of th e  control obtained by G etD lgltem  

and change the  casts to  the  new class. Say, for exam ple, you have created  a subclass, 

CM yButton, of the  C B utton  class, then you will have to  find all the  G etD lgltem  and change
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the  target type of the  casts from “C B utton *” to  “C M yB utton *.” It can be time-consum ing 

to  make such changes. However, if you use control variables, all you have to  do is to  change 

the variable type in the  declaration, and all the  overloading and  inheritance wank correctly. 

M uch be tte r. This is how7 C + +  is supposed to  be used.

Avoiding C W ndcG etD lg ltem  can be enforced by FCL as follows:

1 CWnd as class("CWnd");
2 CDialog as class{"CDialog" ) ;
3 DerivedDialog as descendant(CDialog);
4 // GetDlgltem as function("GetDlgltem", CWnd};
5 // CWnd * CWnd::GetDlgltem(int); CWnd * CWnd::GetDlgltem(int, HWND);
6 GetDlgltem as {fct:function(CWnd) | name(fct)="GetDlgItem" and
7 sizeof(param(fct))=1}?
8 forall derivedDialog being DerivedDialog holds
9 forall fctCallExp being expClosure(derivedDialog) holds
10 not function(fctCallExp) = GetDlgltem

T his specification requires th a t no derived classes of CDialog invoke the m ethod “CW nd 

* C W nd::G etD lgItem (int).” As shown at line 5, th e  class CW nd has two overloaded G et­

D lgltem  m ethods. Thus, had  we defined the set G etD lgltem  as line 4, the set would have 

contained two elem ents, and the negation a t line 10 will always yield tru e  regardless whether 

there  are invocations of the m ethod G etD lgltem . T he above specification fixes th is problem 

by defining th e  set G etD lgltem  through set com prehension; since we know th a t th e  class 

CW nd defines tw o G etD lgltem  m ethods w ith different num ber of param eters, it suffices to  

define the  set as containing m ethods w ith the nam e “G etD lgltem ” and only one param eter. 

Effectively, th is  will yield a singleton set w ith “C W nd * C W nd::G etD lgItem (int)” as its 

only element.

Note th a t th e  equality  test a t line 10 is a  sho rtcu t for:

1 forall getDlgltem being GetDlgltem holds
2 function{fctCallExp) = getDlgltem

This effectively requires G etD lgltem  to  be a singleton set.

6.3 Continuous Validation in Dialog

W hen program m ing in  the  style of continuous validation, based on the curren t values of 

some o ther controls, one often w ants to  enable or disable certain  controls or tu rn  them  into 

visible or invisible sta tes. There are two ways to  do this: One is to  im plem ent the  logic in 

the code that responds to events such as b u tto n  presses, ListBox selections, and so on. T h a t 

is, pu t the  logic in the  event handlers. The other is to  pu t the control manipulation code in 

precisely one place in  the program. The “event handler” approach can create code scattered  

all over the place and  thus hard  to  change and m aintain . In th e  following, we first use an 

exam ple illustra ting  why the former approach is a  bad  idea and then  show how to  improve 

it by localizing th e  code. Finally, we analyze the  m ain characteristics of the  localized code 

and cap ture  them  w ith FCL.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now, assume we have a dialog w ith 4 controls: one bu tto n  c_OK, two edits, c .Text and 

c_Count, and one check box c.O ption, and  we w ant to  handle the updating  of c_OK and 

c .C ount based on the following requirem ents:

•  c_OK is disabled if c.Text is empty.

•  c.O K  is disabled if c.O ption is selected and c.C ount is 0.

• c .C ount is enabled if and only if c .O ption  is checked.

T he event handler solution is as follows:

void CMyDialog::OnChangeText()
{

CString s;
c_Text.GetWxndowText(s )  ; 
s .TrimLeft(); // ignore leading space 
if (s.GetLength()==0)

c_0K.EnableWindow(FALSE);
}
void CMyDialog::DnChangeCount()
{

CString s;
c_Count.GetWindowText(s); 
s.TrimLeftQ ; // ignore leading space 
if (s=="0" && c _ Opt ion.GetChe ck()==BST_CHECKED) 

c_OK.EnableWindow(FALSE);
}
void CMyDialog::DnChangeOptionO
{

BOOL enable = (c_Option.GetCheck()==BST_CHECKED); 
c_Count.EnableWindow(enable);
CString s;
c_Count.GetWindowText(s); 
s.TrimLeftQ; // ignore leading space 
if (s=="0" && enable)

c_0K.EnableWindow(FALSE);
}

This code is hard  to  w rite correctly, not to  m ention m aintaining it. The disabling of 

c_OK depends on th e  sta te  of all o ther th ree controls; thus all of th e  th ree event handlers 

above have to  check w hether c.O K  should be disabled. If we w ant to  add  another condition 

to  c.O K , then  we shall have to  revisit all th ree  places. This is error-prone: one m ay miss 

updating  some of the  places or mess up  w ith th e  com putation of the enabling condition. We 

need a  b e tte r  s tra tegy  to  deal w ith th is kind of code.

One alternative is to  encode each enabling condition into a single com pound boolean 

expression and allow each control to  have only a  m inim um  num ber of “EnableW indow ” 

and “ShowW indow.” Normally, a t m ost one instance of “EnableW indow ” and a t m ost one 

instance of “ShowW indow” should suffice. B u t there  can be exceptions: for exam ple, a 

simple if-statem ent may have two instances, one in each branch.
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Furtherm ore, all invocations of “EnableW indow ” and “ShowW indow” should be local­

ized in one single place. To localize the  control updating  logic, a dialog can have a m ethod, 

say, “updateC ontro ls,” in which all s ta te  changes on all controls are com puted. The short­

coming of th is scheme is th a t we may end up w ith some control handlers (for example, those 

for checkboxes) doing nothing bu t calling “updateC ontro ls.”

W hen the sta te  of one control depends on one or more o ther controls, th e  s ta te  of the 

controls affecting it should be directly accessed only at the  tim e the com putation is done. 

Always com pute from the  first principles, every time; every variable th a t can affect the  sta te  

is com puted when needed, not a t any in stan t before it is needed, and no references to  any 

boolean variables set magically from som e o ther functions are allowed.

The alternative im plem entation is as follows:

void MyDialog::OnChangeText()
{ updateControls();
}
v o id  CMyDialog: .-u p d a te C o n tro ls ()
{

BOOL e n a b le ;

/ /  c_0K =========================================
CString s;
c _ T e x t. G etW indow T ext(s); 
s . T r im L e f t( ) ;  / /  ig n o re  le a d in g  sp a c e s

e n a b le  = s . G e tL en g th 0  != 0 &&
(c _ 0 p tio n .G e tC h e c k Q  == BST_UNCHECKED II 
c_Count != " 0 " ) ;

c_0K.E nab leW indow (enab le);

// c.Count =======================================
e n a b le  = c_0pt i o n . GetChe c k ( ) ==BST_CHECKED; 
c_ C o u n t. E nab leW indow (enab le);
x _ C o u n t.E nab leW indow (enab le); / /  x_Count i s  th e  c a p t io n  o f  c_Count

Now if we w ant to  add or change a condition to  c.O K , all we have to  do is to  concen­

tra te  on the first assignment to  th e  variable enable. T h a t everything is physically centered 

together makes changes easier. This is a  m uch b e tte r approach.

The dialog should conform to  th ree  constrain ts: (1) minimizing the  num ber of invocations 

of “EnableW indow ” and “ShowW indow,” (2) always com puting the  condition directly  from 

the  s ta te  of the  controls, and  (3) localizing the  calls to  one single place. Ideally, we should 

enforce all th ree  of them . In the  following, we shall show a specification of (3) in  FCL and 

then explain why we leave the  first tw o no t enforced.

1 // Based on the essay ''Dialog Box Control Management'' by Joseph Newcomer
2 // Revision: all "EnableWindow" and "ShowWindow" of each control must be
3 //in the same routine.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4
5 windowCiasses as descendant(class("CWnd")) ;
6 Dialogs as descendant(class("CDialog"});
7
8 forall subclassOfDialog being Dialogs holds
9 [
10 EnableWindowOrShowWindow as
11 {exp: expClosure(subclassOfDialog) |
12 [receiverType as type(receiver(exp));]
13 ((name(exp) = "EnableWindow" or name(exp) = "ShowWindow")
14 and
15 belongsTo(receiverType, windowCiasses))
16 }
17 ]
18 forall el, e2 being EnableWindowOrShowWindow holds
19 (
20 (el = e2} or
21 (not refd(receiver(el)) = refd(receiver(e2)) or
22 unit(el) = unit(e2) or
23 not (println(el) and println(e2))
24 )
25 )

One special case of constra in t (1) is to  require th a t for each control, there  be a t m ost 

one instance for each of the  two m ethods; th is effectively forces everybody to  program  in 

the  idiom embodied in the  above im proved im plem entation, th a t is, do not call the  m ethods 

until a  final enabling condition is com pletely com puted. B ut som etim es th is may be too 

restrictive; it would be reasonable for one to  w rite code as follows:

c_0K.EnableWindow(TRUE); 
if (c_0ption.GetCheck()==BST_CHECKED && 

s_Count == "0") 
c_0K.EnableWindow(FALSE); 

if (s_Text.GetLength()==0) 
c_0K.EnableWindow(FALSE);

C onstraint (2) is an  exam ple th a t  we would like to  enforce b u t cannot w ith FCL. It 

m ight become feasible if we add  to  FCL more sophisticated analyses of d a ta  dependences 

such as Aspects [Jac95]. B u t in th e  context of th is example, we feel th a t  enforcing (3) alone 

yields the  best benefit versus cost ratio . Following it, one is ge tting  on the  right track  for 

dealing with the  d istribu ted  u p d a te  problem . Once one gets the  s tru c tu re  right, chances are 

much lower for them  to  mess up  w ith  (1) and (2).

6.4 Avoiding CW nd::UpdateData(BO OL) in Dialogs

A dialog is a control th a t  can contain  a set of o ther controls, allows a user to  edit the  da ta  

associated with the controls, and  provides validation to  the user during the  interaction. 

Designing dialogs involves two aspects: a way to  transfer d a ta  item s back and forth  between 

d a ta  members and the controls and  a m echanism  to  validate th e  data . F igure 6.3 depicts 

M FC ’s design for dialogs.
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UpdateData(FALSE) ;

if (UpdateData(TRUE) 
EndDialog(1);

+UpdateData(bSaveAndValidate:B00L=1): BOOL s
# D o D a t a E x c h a n g e  ( p D X :C D a . ta .E xc h an g e  * ) :  v o i d  »-

CWnd

+ O n I n i t D i a l o g ( ) :  BOOL --------

. ftOnOk () : v o i  d  j

U O n C a n c e l { ) ;  void ,
+EndDialog(nResult:int)• void

C D ialog

try{pDX~>m_pDlgWnd = this;
pDX - >m_bSaveAndVa1 i da t e = bSaveAndValidate? 
DoDataExchange(pDx); 
return 1;}
c a t c h r e t u r n  0;}

Figure 6.3: D oD ataExchange 

6.4.1 CW nd::DoDat aExchange

The core of the design is a  v irtua l m ethod C W nd::D oD ataExchange th a t  is based on a 

set of so-called “d a ta  exchange and  d a ta  validation rou tines.” D a ta  exchange routines 

are prefixed w ith “D D X -,” and d a ta  validation routines “D D V -” For example, “void 

DDX_Text(CDataExchange* pDX, in t nlD C , CString& value)” is a d a ta  exchange routine 

th a t transfers a string  betw een the param eter, value, and a control w ith a  control ID nlD C.

The param eter pDX is a po in ter to  an  object th a t carries th e  context inform ation for the  con­

trol. The class C D ataE xchange will be explained later, “void D D VJVlinM axInt(CDataExchange* 

pDX, int value, in t m inVal, in t m axV al)” is an exam ple of d a ta  validation routines: this 

routine checks th a t th e  param eter, value, falls between minVal and m axVal inclusively; 

otherwise it will pop up  a  window to  inform the user.

A specific subclass of th e  class CDialog th a t has only one edit as its  child control, say, 

CM odalDialog, can th en  override D oD ataExchange. Its  code m ay look like as follows:

void CModalDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

DDX_Control(pDX, 1001, c_MyEdit);
DDX_Text(pDX, 1001, m_MyEdit);
DDV_MaxChars(pDX, m_MyEdit, 4);

}

In this code, D D X -Control is a d a ta  exchange routine m apping the  control variable c JVIyEdit 

to  a  W indows control w ith a control ID 1001. Next, DDX_Text transfers the  string be­

tween th e  edit and th e  m em ber variable m_MyEdit, which is of the  C String type. At last, 

DDV_MaxChars, when pDX->m _bSaveAndValidate is true, validates if th e  length of the  

string is less th an  or equal to  4.

It is up to  the  program m er to  decide which DDX and DDV routines they  want to  use
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in the D oD ataExchange m ethod. Particularly, since the  capability  of bo th  DDV routines 

and the error handling is quite prim itive and inflexible, one m ay elect not to  use the DDV 

mechanism a t all.

6.4.2 D D X  and D D V  R outines

The im plem entation of all DDX and DDV routines exploits the  helper class CD ataExchange 

shown in Figure 6.4:

» im bSaveA ndV alidate: if !m_bSaveAndValidate, then  loads the d a ta  sta te  into the 

controls; if m_bSaveAndValidate, then validates and sets the d a ta  members from the 

controls. V alidation occurs only when m .bSaveA ndV alidate is true.

•  m_pDlgWnd: T he dialog th a t contains controls. The dialog is needed to  get the control 

from a  given control ID.

• P repareC trl and  P repareE ditC trl: Rem em ber th e  current control th a t  is exchanging 

data . T he handle will be used to  set the  focus if a  validation fails. P repareC trl is used 

for nonedit controls and P repareE d itC trl is used for edit controls.

• Fail: If there  is an inpu t error, this rou tine  will be called, bringing up a message 

box to  a le rt th e  user. This routine will restore  th e  focus to  th e  last control (the one 

referenced by P rep areC trl/P rep areE d itC trl)  and throw  an exception. This m ember 

function m ay be called from bo th  D D X . and  DDV_ routines.

CDataExchange
+m_bSaveAndValidate: BOOL 
+m_pDlgWnd: CWnd *
+PrepareCtrl: HWND 
+PrepareEditCtrl: HWMD 
+Fail(): void_________________

Figure 6.4: Class C D ataExchange

6.4.3 C W nd::U pdateD ata

C W nduU pdateD ata , as shown in Figure 6.3, does th e  initialization  and  exception handling 

around the  call to  C W nd:: DoD ataE xchange. It takes a  boolean as its param eter. If the 

param eter is tru e , then  U pdateD ata  will transfer d a ta  from  th e  controls to  the m em ber 

variables and validate them ; otherwise, it will transfer the  d a ta  from m em ber variables to  

the controls. U pdateD ata  retu rns 0 if there is an  exception th row n by a d a ta  validation 

routine; otherwise, it re tu rns 1.

T he class CDialog im plem ents the standard  behavior for dialogs. On the  initialization of 

a dialog, an in itialization  event is generated, and the  corresponding event handler O nlnitD i- 

alog will be invoked. O nlnitD ialog calls U pdateD ata  w ith false as the  argum ent to  initialize
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all the  controls w ith the values of their corresponding m em ber variables. A standard  dialog 

has bo th  an ok bu tto n  and a cancel bu tto n  w ith O nO K  and OnCancel as their respective 

event handlers. Particularly , OnOk calls U pdateD ata  to  transfer d a ta  from the controls to 

the  m em ber variables. If the transfer succeeds, th a t  is, no exceptions are throw n by any 

DDV routines, then the  dialog will be closed off by calling the EndDialog m ethod.

So much for dialog design.

6.4.4 W hy One Should A void C W nd::U pdateD ata

In dialog program m ing, d a ta  validation can be done in two ways: the  simple, “validating- 

on-ok” style and th e  sophisticated, continuous validation style. M FC fully supports the 

form er w ith th e  design presented before. Custom izing th e  design to  im plem ent continuous 

validation is also possible, bu t requires m ore work on th e  p a rt of the  program m er.

In practice, m any program m ers have trouble  w ith  im plem enting continuous validation 

for several reasons. For one thing, M icrosoft does no t adequately docum ent the  correct way 

to  work w ith controls; thus it is left up to  the  program m ers to  somehow magically infer 

how to  do it correctly. For another, m any M FC program m ers do no t fully understand  the 

design of th e  dialog, and thus cannot correctly ex tend  it. Even worse, the  “Microsoft m odel” 

(simple validation) is designed in such a  way th a t one does not have to  fully understand  

th e  above design before using it. One gets so used to  the  simple m odel th a t  they are  not 

p repared  well enough to  transit to  the  sophisticated  one. For example, one m istake th a t 

m any make is to  call U pdateD ata(T R U E ) to  get the  current values of the  controls. In fact, 

assigning control variables to  controls can elim inate calling U pdateD ata  since one can access 

the  values th rough th e  control variables.

O f course, th e  M icrosoft model has its use in certa in  simple scenarios, provided th a t  one 

is satisfied w ith th e  error handling provided by th e  default im plem entation. Sometimes one 

m ay need a dialog only to  obtain some d a ta  from  the  end user even w ithout validation, 

then  th e  default m odel is certainly adequate for th e  purpose. In either case, however, no 

U pdateD ata(T R U E ) is needed to  be called in any subclasses of the  CDialog class.

Therefore, wre conclude th a t one should avoid calling U pdateD ata(T R U E ), and  th a t 

calling it is a  sign of trouble.

6.4.5 “A voiding C W nd::U pdateD ata” in FCL
1 // Based on Dr. Joseph Newcomer's MFC essay 'Avoiding UpdateData'
2
3 DerivedDialog as descendant(class("CDialog")) ;
4
5 forall derivedDialog being DerivedDialog holds
6 [
7 doDataExchange as function{"DoDataExchange”, derivedDialog};
8 callMFCDdv as sizeof(doDataExchange)=1 and
9 exist ddv being exp(doDataExchange) holds
10 regex ("DDV _. , name (ddv));
11 allMeth as function(derivedDialog);
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12 onOk as function("OnOK", derivedDialog);
13 ]
14 (
15 (not callMFCDdv or sizeof(onOk)=0) // callMFCDdv => sizeof(onOk)=0
16 and
17 not exist e being exp(allMeth-onOk) holds
18 (
19 name(e)="UpdateData"
20 and
21 [argument as member(arg(e),0)]
2 2  (

2 3 name(argument)="1" or name(argument)="true"
24 )
25 )
26 )

A few com m ents are in order:

• T his specification exemplifies how to  use the FCL function “function.” This function 

is overloaded, w ith one version being a constructor th a t returns a  set of functions 

sharing the  given nam e and the  o ther re tu rn ing  a set of functions contained by a given 

program  unit. Lines 7 and 12 define tw o singleton sets, ‘doD ataE xchange’ and ‘onO k,’ 

respectively. They apply the constructor version whereas the one a t line 11 applies 

th e  non-constructor version.

•  T he FCL variable ‘callM FCD dv,’ defined a t lines 8 th rough 10, is of ty p e  boolean. 

T his is an  exam ple where one can define a variable for a  formula, because FCL allows 

for trea tin g  formulas as expressions. T he definition also makes use of ‘regex,’ the  

regular expression operator of FCL. In  th is case, it m atches any function call whose 

nam e s ta rts  w ith “DDV_.”

• N ote th a t  the ‘exp’ operator a t line 17 is applied to  a set of m ethods instead of an 

individual m ethod.

• ‘argum ent’ a t line 21 represents the  first argum ent of expression ‘e ’; ‘a rg (e)’ re tu rns 

the  sequence of argum ents of ‘e ’, and  ‘m em ber’ then  re tu rns the one a t index 0.

•  TR U E is a m acro representing ‘1.’ T he form ula a t line 23 checks w hether ‘argum ent’ 

is ‘1’ or ‘tru e .’

6.5 Use the Combo Box Controls Correctly

A combo box control can display a list of strings, each of which has an associated d a ta  item  

and an index identifying its position in th e  list. A user can select a certa in  item  from a 

combo box by clicking on its corresponding string.

F igure 6.5 depicts a relevant p a rt of th e  design. Some brief specifications for the  m ethods 

follow:

•  G etC ount: R eturns the num ber of item s in th e  combo box.

• G etCurSel: R eturns the index of the  cu rren t selected item.
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CComboBox
+GetCount(): int
+GetCurSel(): int
+SetCurSel(): int
+AddString(str:CString &): int
+GetLBText(nlndex:int,str:CString &): void
+GetItemData(nlndex:int): DWORD
+SetIteroData(nlndex:int, dwItemData:DWORD): int

  CString
+LoadString(nID:UIMT): BOOL 

Figure 6.5: Class CComboBox

•  SetCurSel: Sets the  curren t selected item .

• AddString: Adds a  string  in to  the  list and returns its index.

• GetLBText: Retrieves the  string  of th e  n ln d ex th  item  and  re tu rns it w ith  str.

•  Setltem D ata: Sets th e  d a ta  associated  w ith the  nlndex  th  item .

• G etltem D ata: G ets th e  d a ta  associated w ith the  nlndex  th  item .

The IDE for M FC, M icrosoft V isual Studio, supports a notion of “resources;” any com­

pilation tim e constants can be tre a te d  as “resources.” For instance, b o th  icon images and

constant strings can be resources. E ach resource belongs to  a specific category and is as­

signed a constant ID. Each type  of resource has a  special set of A PIs to  load th e  real resource. 

For example, given th e  ID of a string  resource, C String::LoadString effectively initializes a 

CString object w ith the string  corresponding to  the  ID.

A tool of th e  ID E called “resource ed ito r” can help set up the  list of strings for a combo 

box. For example, suppose th a t  one w ants to  program  a combo box w ith th e  following color 

names: Black, Blue, Red, and  Green. W ith  th e  resource editor, one can sim ply type  in these 

strings; a t runtim e M FC will au tom atically  load the  strings into th e  combo box. The tool 

saves th e  program m er from explicitly w riting  code for loading th e  strings.

W ith  the support of th e  resource editor, m any program m ers have developed some wrong 

ways of program m ing combo boxes, ways th a t can cause problem s for fu tu re  m aintenance. 

Their program s depend on either th e  item  index or the item  string, b o th  of which can 

subject to  fu ture change. W hen such change happens, one is then  forced to  inspect and 

adjust existing source code to  m ake sure th a t  th e  software will still work. Such adjustm ent 

can be both tedious and error-prone.

The following subsections will use the  color example to  show first two typical wrong 

ways of program m ing combo boxes and th en  the  correct way. FCL specifications are then 

w ritten  to  help reveal the  errors.
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6.5.1 “Order S en sitiv e”

One kind of solution is exemplified by the following code:

switch(c ComboBox.GetCurSelQ)
{

case 0: // black
color = RGB(0, 0, 0); 
break;

case 1: // blue
color = RGB(0, 0, 255); 
break;

} ”

This solution im plicitly associates each index w ith a certain  color, th a t  is, 0 with Black, 1 

w ith Blue, and so on.

The problem is th a t  it is “order sensitive:” if later on one decides to  sort the  strings or 

insert some new colors into th e  list, then  it is highly possible th a t  the  index-to-nam e m ap 

will have to  change. T he only way to  make the change is to  exam ine th e  source code line 

by line. Since exam ining source code can be tedious and  error prone, a  b e tte r  approach is 

needed.

6.5.2 “Language Sensitive”

A nother kind of solution is as follows:

CString s;
int index = c_CComboBox.GetCurSel();

c_CComboBox.GetLBText(index,s);

if(s == CString("Black"))
{

color = RGB(0, 0, 0);
}

else if(s == CString("Blue"))
{

color = RGB(0, 0, 255);
}

This solution has the  benefit th a t one does not have to  read th e  source code again if they 

add or re-order the  strings, since th e  code does not depend on th e  index for the meaning of 

the item.

B ut this code has a  “language sensitive” problem. If, for exam ple, one is asked to  po rt 

th is software to  G erm an, th en  one will have to  find from the source all the  strings for colors 

and change them  to  the  corresponding G erm an words. This change m ay be easier to  make 

th an  the last one, b u t ano ther solution can make all these changes m uch easier.
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6.5 .3  T he R ight S o lu tion

The key to  the  right solution is to  associate d a ta  w ith each item  and use the data, ra ther 

th an  the index or string, to  determ ine which item  the user wants to  select from the list. In 

the following, a sam ple im plem entation is provided.

F irst, the s tring -to -da ta  pairs can be established by th e  following data  structure:

typedef struct IDData {
UINT id;
DWORD value;

};

IDData colors □  = {
IDS_BLACK, RGBCO, 0, 0),
IDS_BLUE, RGB(0, 0, 255),

0, 0 // end of table

};

N ote th a t  the  IDSs are for string resources defined by th e  IDE. This solution has a single

point of definition for all values in the  combo box. Thus, to  add  or delete item s, one needs

to  look a t and change only one place.

The next step is to  initialize the combo box w ith the  above data . This can be done

through a m ethod of th e  subclass of CComboBox, defined as follows:

void CIDCombo::load(IDData * data)
{
for(int i = 0; data[i].id != 0; i++)

{
CString s;
s .LoadString(data[i].id); 
int index = AddString(s);
SetItemDataCindex, data[i].value);

where CIDCombo is a  subclass of CComboBox.

And make sure to  call CIDCombo: :load from w ithin th e  event handler OnlnitDialog:

BOOL CMyDialog::OnlnitDialog ( )
{
c_Colors.load(colors);

One can create the  m ethod  CIDCom bouGetColor to  get the  color value of the current 

selected item:

C0L0RREF CIDCombo::GetColor()
{int sel = GetCurSelC); 
ifCsel == CB_ERR)

return RGB(0, 0, 0); // or other suitable default value 
return GetltemData(sel);

}
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Another m ethod CIDCombo::Select is needed to  select an item:

int CIDCombo::Select(DWORD value)
{
for(int i = 0; i < CComboBox::GetCount(); i++)

{ /* compare */
DWORD v = CComboBox::GetltemData(i); 
if(value == v)

{ /* found it */
CComboBox::SetCurSel(i) ; 
return i ;

} /* found it */

CComboBox::SetCurSel(-1 )  ; 
return CB_ERR;

}

This ends our presentation  of the right solution.

6.5.4 Combo Box Program m ing in FCL

One has to  be selective when writing FCL specifications. Usually, m any details can be 

specified and it is up to  the  specifier to  choose th e  “app rop ria te” constraints on the  structu re . 

The specifier has to  weigh all the candidates and  choose only those th a t are m ost likely to  

reveal errors. Som etim es one specifies against specific sym ptom s w ith the expectation  to  

catch recurring, common mistakes. O ther tim es one specifies th e  necessary features th a t  a 

correct solution m ust possess, expecting to  detect errors of omission.

T he following two specifications are targeted  a t specific sym ptom s. The first one requires 

no invocations of th e  G etCurSel m ethod on any com bo box whose re tu rn  value is com pared 

w ith som ething else to  make a decision. If otherw ise such a  code p a tte rn  does appear, then  

th e  program m er m ust have assigned some m eaning to  th e  offset, which is not desirable. The 

specification follows:

1 // Based on Dr. Joseph Newcomer's MFC essay 'Combo Box Initialization'
2 //In any derived classes of CDialog, there must not be such patterns:
3 // comparing return value of CComboBox::GetCurSel with constant integers.
4
5 DerivedDialog as descendant(class("CDialog"));
6 defaultCombo as class("CComboBox");
7 DerivedComboBox as descendant(defaultCombo);
8
9 forall derivedDialog being DerivedDialog holds
10 not exists exp being expClosure(derivedDialog) holds
11 (name(exp)="GetCurSel" and
12 belongsTo(type(receiver(exp)), DerivedComboBox) and
13 exist path being downPath(exp) holds
14 exist compExp being path holds
15 (isBranch(compExp) and dep(compExp, exp)))

N ote the two predicates isBranch and dep: isB ranch determ ines whether the  param eter 

expression is a b ranch condition, and dep determ ines w hether the  value of the  first param eter 

depends on the  value of the  second.

Similarly, th e  following specification requires th e  control flow of the program  to  not 

depend on the  display strings:
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1 // In any derived classes of CDialog, there must not be such patterns:
2 // comparing text returned by CComboBox::GetLBText with constant strings.
3
4 DerivedDialog as descendant(class("CDialog"));
5 defaultCombo as class("CComboBox");
6 DerivedComboBox as descendant(defaultCombo);
7
8 forall derivedDialog being DerivedDialog holds
9 not exists exp being expClosure(derivedDialog) holds
10 (name(exp)="GetLBText" and
11 belongsTo(type(receiver{exp)), DerivedComboBox) and
12 exist path being downPath{exp) holds
13 exist compExp being path holds
14 (isBranch(compExp) and dep(compExp, exp)))

In contrast to  the  above two, the following specification constrains the  structu re  of the 

right solution. I t  requires all the  classes of th e  combo boxes contained in a dialog to  call 

b o th  the  G etltem D ata  m ethod and  th e  S e tltem D ata  m ethod, and the  dialog to  initialize 

the  combo box by calling one of its m ethods in the  O nlnitD ialog m ethod.

1 //In any derived classes of CComboBox, there must be expressions of both
2 // GetltemData and SetltemData
3
4 DerivedDialog as descendant (class ("CDialog") )
5 defaultCombo as class("CComboBox”);
6 DerivedComboBox as descendant(defaultCombo);
7
8 forall derivedDialog being DerivedDialog holds
9 forall aVar being var(derivedDialog) holds
10 [ varType as type(aVar)]
11 (
12 not belongsTo(varType, DerivedComboBox) or
13 exist OnlnitDialog being function(derivedDialog) holds
14 (
15 name(onlnitDialog) = "OnlnitDialog" and
16 exist fctCall being exp(onlnitDialog) holds
17 (
18 refd(receiver(fctCall)) = aVar and
19 exist SetltemData being exp(function(fctCall)) holds
2 0 name(SetltemData)="SetItemData"
21  )

2 2 )
23 and
24 exist getltemData being expClosure(varType) holds
25 name(getltemData)="GetItemData"
26 )

Even if the im plem entation of a com bo box class satisfies this specification, it  is no t 

guaranteed to  be correct: it may contain  o ther kinds of errors. W hat the  specification is 

in terested  in is to  detect the  opposite: when it is no t satisfied, chances are high th a t  the  

im plem entation has an error; FCL helps us catch such errors.

6.6 Constraints on Control Flow

Suppose you have a dialog th a t contains a  tex t control and want to  resize the  tex t control 

whenever the  size of the dialog changes. In M FC, th is can be done by subclassing the  

class CDialog and in the  subclass, im plem enting th e  message handler O nSize for m essage 

WM_SIZE:
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CMyDialog::OnSize(...)
{ CDialog::OnSize(...);

// c_text is a control in the dialog 
c_text.SetSize(...);

}

This im plem entation is problem atic. W hen running it, you will find th a t  the  program  

crashes in the  middle of an ASSERT sta tem en t, which requires th a t  th e  control object 

cT ext m ust have a control associated w ith it. If you trace the program , you will find th a t 

the  ASSERT sta tem ent comes from th e  SetSize call.

The problem  is because of a m ism atch between MFC and the  underlying W indows. A 

dialog can receive th e  WM_SIZE message in two states: (1) where the  dialog is created  but 

some of its child windows have not been initialized yet, and (2) where bo th  th e  dialog and 

all of its child window's are properly initialized. W hat has happened is th a t  a t s ta te  (1), a 

WIVLSIZE is generated and dispatched to  th e  dialog, and the corresponding event handler, 

OnSize, is called. B u t since the  cAext control has not been properly initialized, the  call to  

SetSize will cause the  assertion failure.

The solution is to  distinguish the  tw o s ta te s  of the  dialog. One can set up a  condition 

th a t indicates w hether the  controls are ready  and guard  all the  control operations by th a t 

condition. Usually a m em ber of in t or boolean in the  dialog class would suffice. I t  should 

be initialized as false in th e  constructors and  set to  tru e  a t the  end of th e  O nlnitD ialog 

m ethod, since by then  all the  controls of th e  dialog should have been properly  initialized.

Thus we can w rite a specification to  detect the key features of th is solution:

1 // Assertion failure caused by the mismatch between Windows and MFC
2
3 PredefinedDialog as [class("CCommonDialog") , class("CPropertyPage"));
4 DerivedDialog as subclass(class("CDialog"))-PredefinedDialog;
5 cWndSet as descendant(class("CWnd"));
6
7 forall derivedDialog being DerivedDialog holds
8 [
9 OnlnitDialog as { fct:function(derivedDialog) | name(fct)="OnInitDialog"} ;
10
11 Cstor as { fct:function(derivedDialog) | name(fct)=name(derivedDialog) };
12
13 OnSize as { fct:function(derivedDialog) | name (fct)="OnSize" };
14
15 expOfOnSize as union( { fct:OnSize | true | exp(fct) } );
16
17 ctrlExp as { exp :expOfOnSize |
18 [receiver as receiver(exp); type as type(receiver);]
19 (belongsTo(type, cWndSet))
20  };
21
22 booleanVar as { v: var(derivedDialog) |
23 [type as type(v)]
24 (name(type)=Mboolean" or name(type)="int")
25 };
26 ]
27 (
28 sizeof(OnSize)=0
29 or
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3 0 exist aBool being booleanVar holds
31 (
32 // assigned in both OnlnitDialog and Constructors
33 forall fct being OnlnitDialog+Cstor holds
34 exist expr being exp(fct) holds
35 (var(expr) = aBool and name!top(expr))=" = ")
3 6 and
37 forall fct being OnSize holds // control operations guarded
38 [controlledExp as union({ expr: exp(fct) |
39 var(expr) = aBool and isBranch(parent(expr)) j
40 union(downPath(parent(expr)))
41 });
42 ]
43 subset(ctrlExp, controlledExp)
44 )
45 )

A brief explanation for the  specification follows. The m ain p a rt runs from  line 28 to  line 

44. Line 28 says th a t  if the  checked program  does not define the  OnSize handler, then  the 

specification is satisfied; otherw ise, proceed. The rest of the  specification, lines 30 through 

44, says th a t bo th  O nlnitD ialog and  the  constructors m ust have a t least one assignm ent 

sta tem ent th a t involves a  m em ber of boolean or int and th a t all th e  control operations in the 

OnSize m ethod m ust be guarded by a  predicate expression th a t involves th a t  d a ta  m ember.

Note th a t the  specification requires no t only th a t there be m em ber variables of appro­

p ria te  types, bu t also th a t  there  exist a t least one such variable being changed in bo th  

the  constructors and  the  O nlnitD ialog m ethod. We should know some subtleties w ith  this 

specification. Let us explore tw o a lternative  specifications.

T he simplest one would be to  check only th a t the class has th e  required  condition vari­

able. In general, any prim itive types can be used as the  type of the  variable. In  practice, 

however, norm ally only in t and  boolean would be considered; even it is acceptable by the 

compiler, it would be ra th e r unusual to  use a char to  represent a  boolean. Even such a 

simple specification can be useful: when using dialogs, often one does no t define m em ber 

variables a t all, and a  miss of such a  variable will indeed be an error. O f course, if one does 

define other mem ber variables in th e  dialog class, this specification risks trea tin g  m em ber 

variables for o ther purposes as th e  condition variable and thus generates false negatives. 

Clearly, the situation  calls for engineering judgm ent for the  right decision.

T he other a lternative is to  check only th a t the  m em ber variable is changed in b o th  the 

constructors and the  O nlnitD ialog m ethod. In fact, com pared w ith th e  last one, it provides 

a  b e tte r chance of detecting the  error of missing the definition of th e  condition variable. 

Since the O nlnitD ialog m ethod is only for initializing the dialog, application logic th a t 

has nothing to  do w ith GUI norm ally would not get into this m ethod. B u t the  condition 

variable should be used here. Therefore, it is less likely to  m istakenly tre a t variables for 

o ther purposes as the  condition variable; thus a violation of th e  specification has a high 

chance of revealing a genuine error.
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One concern for this alternative goes like this: “w hat if, instead of changing the variable 

directly by itself, O nlnitD ialog calls another m ethod th a t indirectly changes the variable?” 

This is certainly a valid concern; if th a t does happen, one can use the expClosure operator 

of FCL, which re tu rns the  set of expressions th a t are sta tically  reachable from a certain 

m ethod. On the o ther hand , for th is example this is unlikely; thus th e  specification should 

rem ain as it is. Clearly, again, engineering judgem ent is needed here.

However, the  two alternatives fail to  detect an error where one does define a condition 

variable bu t does not guard  all th e  control operations w ith it. O ur specification considers 

this. So much for the  two alternatives.

FCL specifications m ust be sufficiently strong to  detect as m any errors as possible, but 

m ust no t be so strong as to  rep o rt false positives (spurious errors). One example is the 

definition of the set controlledExp, from line 38 to  line 41, representing th e  set of guarded 

control operations (to be m ore precise: all the  control operations th a t execute after the 

first evaluation of the  condition expression). I t would be too  restrictive to  define a guarded 

control operation as one guarded by a condition expression consisting of only the boolean 

itself, since it is possible for one to  define the m eaning of the  boolean as “not initialized” 

ra th e r th an  “initialized.” In  th a t case, the  guard  would th en  have to  be th e  negation of 

the  boolean. The specification has been relaxed to  cover b o th  cases. On the  other hand, it 

would be unconceivable to  im plem ent the logic in idioms o ther th a n  these two. Hence the 

current specification.

S trictly  speaking, th e  curren t specification is not sufficient either. I t  assumes th a t code 

for all control operations appears in the OnSize handler. I t  m ay be so for m ost cases, bu t 

it is also possible for one to  create another m ethod to  separate  the  code for “updating 

controls,” then  this specification would fail to  check th a t  the  control operations there are 

also properly guarded. T he aforem entioned call graph opera to r ‘expC losure’ might come to  

th e  rescue in th is case.

6.7 Optional Features

O ptional features are logical functionalities provided by th e  fram ew ork b u t not m andatory 

for all applications. In  general, program m ers m ay have tw o types of problem s with optional 

features: how to  find them  and how to  correctly use them . FCL can help w ith the la tte r 

type of problem.

To apply FCL to  a  certa in  optional feature, one needs first to  knowr w hether the feature 

is indeed used. W ith  th a t  inform ation, FCL can then  check w hether the  feature has been 

correctly used. Logically, th is is a p a tte rn  of the  form  = >  F2, where F\ is a formula 

indicating th a t the featu re  is used, and F2 the  constrain ts to  which the  solution has to  

conform.
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There are two possible ways of getting F j : One is to  ask the program m er to  provide 

the list of features th a t he thinks his application is using, and the other is to  find some 

code p a tte rn s  whose appearance can be used to  infer safely th a t the feature is indeed used. 

Since the la tte r m ethod is less dem anding of inform ation, norm ally it should be preferred; 

however, not all features possess the  necessary code p a tte rn s  for FCL to  leverage; thus 

sometimes user inpu t m ay be needed as well. T he following two examples illustra te  the 

respective types of optional features.

6.7.1 Enabling/ Disabling ESC and R E T U R N  Keys

I t is common in GUI program m ing to  provide m ultiple ways of issuing a  command, for 

instance, th rough  a bu tto n , a menu item , a hot key, and  so forth. In particular, a  dialog 

can be term inated  in  three ways: through the  ok and  cancel bu ttons, through the close icon 

provided as p a r t of the  M icrosoft user interface s tan d ard , and th rough  the ESC and E N T E R  

keys.

CMyDialog::OnOK(){
CMyDialog::OnCancel(){

+ P r e T r a n s l a t e M e s s a g e  (pM sg:M SG * ) :  b o o l e a n  
+OnOK() : v o i d  
-t-OnCancel () : v o i d

CDialog

if (pMsg->hWnd is an edit && 
pMsg->message is WM_KEYDOWN &.& 
pMsg->wParain is ESC) {

Figure 6.6: D isabling ESC and R E T U R N  Keys in a Dialog

Figure 6.6 depicts the  relevant design. T he O nO K  and  OnCancel m ethods are the 

corresponding event handlers for pressing the  ok and  cancel bu ttons. PreTranslateM essage 

is a v irtual m ethod  th a t  can be overridden to  pre-process a  message; only when the m ethod 

re tu rns tru e  will the  message be fu rther passed on to  th e  message dispatch mechanism. 

By default, CD ialoguPreTranslateM essage in tercepts key presses such as ESC and EN T E R , 

in terprets them  as requests to  term inate  the dialog, and  invokes the corresponding event 

handlers.

At least two solutions can prevent the  ESC key and  the E N T E R  key from term inating  

a dialog, as shown in Figure 6.6. One solution is to  (1) define tw o em pty event handlers for 

the ok and cancel bu ttons, which are provided as default by th e  GUI editor, and (2) remove 

the  two bu ttons from the  dialog. This works because of polym orphism : bo th  O nO k and
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O nC ancd  are v irtual m ethods; thus when ESC and  E N T E R  are pressed, their corresponding 

em pty versions of handlers will be executed, which effectively disables them.

The other solution is through overriding PreTranslateM essage in the CMyDialog subclass 

and checking the message represented by the pM sg param eter. If the  message is an ESC 

key or an E N T E R  key, then the m ethod re tu rns false, and thus effectively consumes the 

message w ithout any effect. The shortcom ing of th is  solution would be th a t it d istributes 

the  term ination  logic into two places, which m ight cause a poten tia l m aintenance problem  

in the future. Thus the  first solution is preferred.

It is easy to  w rite an FCL specification to  detect th e  presence of the  two em pty handlers; 

thus we om it it.

6.7.2 Enabling Tooltips

Tooltips is an exam ple w ith a code p a tte rn  ind icating  th a t the tooltips feature is being 

used. MFC Internally  keeps track  of when the  m ouse pointer enters or leaves the  boundary  

of a control. If the pointer stays w ithin th e  control for over a certain am ount of tim e, 

a  notification message will be generated and sent to  the  dialog th a t contains th e  control. 

To respond to  the notification, the  dialog has to  define its corresponding m essage handler 

nam ed “OnToolTipNotify.” Inside th a t  m ethod, one can prepare the tooltip  tex t to  be 

displayed.

B ut to  enable the  tooltips feature for the  dialog, one also has to  call the  EnableToolT ips 

m ethod in the  O nlnitD ialog m ethod. This is a  program m ing obligation th a t  m any often 

forget. The following FCL specification can be used to  detect th is error of omission:

1 DerivedDialog as subclass(class("CDialog"));
2
3 forall derivedDialog being DerivedDialog holds
4 [
5 onToolTipNotify as { fct:function(derivedDialog) |
6 name(fct)="OnToolTipNotify"
7 };
8
9 onlnitDialog as { fct:function(derivedDialog) |
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26 
27
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name (fct)="OnInitDialog"

sizeof(onToolTipNotify)=0 
or
sizeof(onlnitDialog) = 1 
and
forall onlnitDialog being onlnitDialog holds 
exist enableToolTips being exp(onlnitDialog) holds 
(
name(enableToolTips)="EnableToolTips" 
and sizeof(arg(enableToolTips))=1 
and
[theOnlyArg as member(arg(enableToolTips),0)] 
(name(theOnlyArg)="true" or name(theOnlyArg)="1")

)
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In th is example, the  appearance of the  OnToolTipNotify m ethod is used to  indicate th a t 

the too ltip  feature has been used.

6.8 The W indows Creation M ethods

The class CWnd is the  base class of all the  M FC classes ‘w rapping’ W indows controls. It 

defines th ree public m ethods for window creation, as shown in Figure 6.7. Among the 

three m ethods, C rea teE x j1 is the core. I t  calls the  W indows A PI CreateWindowEx to  create 

the control object. I t also im plem ents th e  crucial m apping between the  operating  system  

controls and C + +  w rapper objects so th a t once the  m apping is established, all messages 

for the  controls can be rou ted  to  th e  message handlers of the M FC subclasses ra ther th an  

the default message processing routines provided by the W indows operating  system . Both 

CW nd::Create and Cwnd.cCreateExa eventually call C W nd::C reateExi.

(crealeExl(...))

CWnd

v BOOL Creaie(...) or -

BOOL CreatefExI (...) 
BQOLpreateEx2(...) Q -'

class CWnd: publi£ CCmdTarget 
{

public: 1
//For child ̂ windows, views? panes etc 

 ̂ virtual BObL Create(LPCTSTR ipszClassName,
 ̂ LPCTSTR IpszWindowName, DWORD dwStyle,
\  con's! RECT & rect, CWnd * pParentWnd, U1NT nID,

\  CCteateContext ’ pContext = NULL);
//Advance  ̂creation (allows access to extended style)
BOOLbreateEx(DWORD dwExStyle, LPCTSTR IpszClassName, 

LPCTSTR IpszWindowName, DWORD dwStyle, 
intx, int y, intnWidth, intnHeight, HWND hWndParent, 
H^ENU nIDorHMenu, LPVOID IpParam = NULL);

BOOL CreateEx(DWORD dwExStyle, LPCTSTR IpszClassName, 
LPCTSTR IpszWindowName, DWORD dwStyle, 
const RECT & rect, CWnd * pParentWnd, UINT nID, 
LPVOID IpParam = NULL);

};

F igure 6.7: C W nd::C reate and  the two overloaded C W nduC reateE x

If a program m er subclasses th e  class CWnd, th e n  each subclass m ust define a t least 

one public m ethod directly or indirectly calling one of the  three m ethods: CW nd::Create, 

C W nd::C reateExi, or CW nd::CreateEx2 . Furtherm ore, outside of th e  subclasses there  m ust 

exist invocations of a t least one of the  m ethods.

These constrain ts can be specified using FCL as follows:

1 // for child windows, views, panes etc
2 def create = CWndCreate (LPCTSTR,
3 LPCTSTR, DWORD,

1T he first CreateEx  in F igure 6.7. We use subscrip ts to  distinguish betw een th e  two CreateEx.
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4 const RECT&,
5 CWnd*, UINT,
6 CCreateContext*);
7
8 // advanced creation (allows access to extended styles)
9 def createl = CWnd::CreateEx(DWORD, LPCTSTR,
10 LPCTSTR, DWORD,
11 int, int, int, int,
12 HWND, HMENU, LPVOID);
13
14 def create2 = CWnd::CreateEx{DWORD, LPCTSTR,
15 LPCTSTR, DWORD,
16 const RECT&,
17 CWnd*, UINT,
18 LPVOID);
19
20 allClasses as class (global) ,-
21 newWindows as subclass(class("CWnd")) ;
22
23 not sizeof (newWindows) > 0 or
24 forall class being newWindows holds
25 t
26 creationMethods as {m: function(class) |
27 exist exp: expClosure(m) holds
28 [fct as function(exp);]
29 (fct=createl or fct=create2 or fct=create)
30 };
31 ]
32 (
33 sizeof(creationMethods) > 0 and
34 exist anotherClass being allClasses - newWindows holds
35 exist exp being expClosure(anotherClass) holds
36 [fct as function(exp);]
37 belongsTo(fct, creationMethods)
38 )

The first th ree sta tem ents of the specification are shorthands for the  long m ethod pro­

totypes.

6.9 Overriding C D ocM anager::D oP rom ptF ileN am e

Figure 6.8 depicts th e  m ost im portan t classes of M FC ’s MDI (M ultiple D ocum ent In ter­

face) arch itecture  (the M FC varian t of th e  MVC architecture [KP88]). T he singleton class 

CWinApp hooks up all aspects of an M FC-based application. The class runs th e  event loop­

ing logic; G UI messages due to  user in teraction  first arrive a t and are d ispatched from  this 

class. The class C D ocM anager m anages and  coordinates the classes th a t  im plem ent doc­

um ents. Particularly , each application contains a  docum ent m anager to  m anage b o th  the 

types of docum ents th a t  it  supports and th e  docum ents currently  opened by th e  application.

MDI standardizes th e  looks and feel of applications. In particu lar, each application can 

have two m enu items: “F ile /O pen  ...” and  “File/Save as ...” . If either item  is selected, the 

standard  behavior is to  pop up a file dialog, allowing users to  choose from  a  list of files. 

It tu rns out th a t  the  v irtua l m ethod C DocM anager: :D oP rom ptF ileN am e(..., int IFIags, ...) is 

responsible for popping up th e  dialog and displaying files according to  certain  criteria , which 

are set up th rough  the  param eter IFIags. IFIags specifies the file filtering p a tte rn s  using a
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CDocManager

(v) SOOL
D oProm ptFileN am e(. )

M O D EL

C D o cT e m p la te

C V iew '  createViewQ 

CD ocum ent * creat©Documenl()

CDocTe-mplme 1 n̂j’forphni'

ilQ N T R O L L E R
C W inA pp «

(v) InitlnslanceO 0 ------
DoPromp!FileNamc( . )

C D ocM anager* 
m _ p  D o c  M a n a g e r

C M D lFram eW nd VIEW
A n in te rm e d ia te  w in d o w  

w hich  c o n ta in s  m u ltip le  
M D fC h ild W m l w id so ts

V
C V irw  ■* ,.i jdVll'.'kVMV

V v

C V ie w  « w i n » C M D IC hildW nd
« w i i i »

P a r e n t child 

« s in g l e to n »

Association through object pointers

Association through parcnt-children relation maintained by W indows 

Each MFC based application has only one global object o f CWinApp 
Wrapper class for Windows control

Figure 6.8: Class diagram  for the  M DI architecture

com bination of b it p a tte rns. The sequence diagram s of Figure 6.9 depict how the m ethod 

is invoked in the  two scenarios respectively.

Now, suppose th a t  a  fram ework user is asked to  change th e  default file filtering p a tte rn  

for his specific application. In order to  do so, he must:

1. Subclass th e  class C DocM anager.

2. Override the  D oProm ptFileN am e m ethod. The override should first change IFIags and 

th en  call C D ocM anager::D oProm ptFileN am e.

3. Subclass th e  class CWinApp.

4. Override the  C M yW inA pp::lnitlnstance() m ethod. T he override should create an object 

of C M yDocM anager on th e  heap and assign it to  the instance variable rrupDocManager 

before call the  A ddD ocT em plate m ethod.

Figure 6.10 illustrates these constraints, where th e  class C M yD ocM anger is the subclass 

of C D ocM anager, and CM yW inApp is the subclass of CWinApp.

The constrain ts can be specified w ith FCL as follows:

1 CDocManager as class("CDocManager");
2 CMyDocManager as subclass(CDocManager);
3 DoPromptFileNameOfDocManager as function("DoPromptFileName",CDocManager);
4 sizeof(CMyDocManager)=1 or sizeof(CMyDocManager)=0;
5 forall docManager being CMyDocManager holds
6 [ DoPromptFileName as function("DoPromptFileName",docManager); ]
7 (
8 not sizeof(DoPromptFileName)=1 or
9 exist e being exp(DoPromptFileName) holds
10 (
11 DoPromptFileNameOfDocManager=function(e) and
12  [
13 IFIags as member(param(DoPromptFileName),3);
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Windows

: CW inApp

: C Docum ent

tmemi item /D oSave

D oProm ptI i eN am e

Windows

: CW inApp : C D ocM anagerr„
onFileO pen

DoPromptFH

OpenDocum t

,eName 

ilfile

Event flow 
control flow 

italic m essage handlers

Figure 6.9: How is D oProm ptFileN am e invoked after choosing the  “F ile /O pen  ...” or 
“F ile/Save as ...” menu item s

14 argFlags as member(arg(e),3);
15 ]
16 dep(argFlags, IFIags);
17 )
18 )
19
20 CWinApp as class("CWinApp");
21 CMyWinApp as subclass(CWinApp);
22 sizeof(CMyWindApp)=0 or sizeof(CMyWinApp) = 1;
23 sizeof(CMyDocManager)=0 or
24 sizeof(CMyWinApp)=1 and
25 forall myWinApp being CMyWinApp holds
26 [ Initlnstance as function("Initlnstance", myWinApp); ]
27 (
28 sizeof(Initlnstance)=1 and
29 exist e being exp(Initlnstance) holds
30 [type as refd(member(arg(e),0));]
31 (name(e)="new" and type = CMyDocManager)
32 )

T his exam ple shows th a t  sometimes a  variation point can involve more th a n  one point of 

a framework. In particu lar, the  variation point m ay be p a r t of the  behavior of two m ethods. 

To elaborate it, one has to  understand  th e  surrounding context, th a t is, how these two 

m ethods work in general, how the  variation point works w ithin them , and how to  hook the  

variant back into the framework. This is no t a triv ial task .

Furtherm ore, the curren t design of D oProm ptF ileN am e seems inadequate to  support all 

the  custom ization th a t  users may w ant to  perform . It could be redesigned as a tem plate  

m ethod  design p a tte rn  [G H JV 94] so th a t  one can do e ither one of the  following:
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+DoPromptFileName(...): BOOL
CDocManager

+DoPromptFileName(...): BOOL
CMyDocManager

+Ini tInstance () BOOL
CMyWinApp

#m_pDocManager: CDocManager
+Ini tInstance {) .- BOOL

CWinApp

Figure 6.10: Overriding the  m ethod  D oProm ptFileN am e

• replacing the default dialog used to  display files;

•  changing IFIags;

•  deciding w hether th e  file filter p a tte rn  is needed in a file dialog.

This example illustrates th a t  fram eworks m ay evolve even after they are used in production.

6.10 Enforcing Nam ing Conventions

T he function regex has been added to  FCL to  express regular expression p a tte rn s  on charac­

te r strings; thus FCL can also be used to  enforce certa in  nam ing conventions. For example, 

in M FC program m ing, one m ay require th a t the  nam es of control variables be prefixed w ith 

“c .” instead of “m_” and use “m_” only for value variables. Clearly th is constrain t can be 

expressed w ith regular expression patterns.

6.11 Discussion

This section discusses the  n a tu re  of the  previous problem s and p u t them  into perspectives:

1. Lack of knowledge on th e  design of th e  fram ework

Learning to  use a fram ework is not an easy task , and the  devil is in the  details. 

The challenge stem s b o th  from the  com plexity of software in general and  from  the 

difficulty of com m unication. This challenge is for bo th  the  fram ework developers and 

the framework users. As exemplified by th e  examples in sections 6.4, 6.5, 6.6, 6.7.1, 

and 6.9, docum entation  of th e  detailed designs can get fairly verbose. Fram ework 

developers face the  ta sk  of effectively docum enting and  com m unicating th e  design to  

the users. On th e  o ther hand, to  avoid the  problem s, users m ust know enough about 

the details. This is a ram ification of th e  essential difficulty of software.

The difficulty can be inform ally appreciated  by counting the num ber of classes and 

m ethods each design involves. A lthough th is  is no t an objective m eans of m easuring 

design complexity, it seems sufficient to  allow us to  conclude th a t m ost of the  designs
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are not as triv ia l as creating an object or calling an API and  th a t the  com plexity of 

the design is one of the m ain contributors to  th e  problem of using frameworks.

Early reuse efforts focus m ostly on libraries and  generally do not pay off as much 

as expected. T he recent trend  is to  reuse architectures as a whole, which essentially 

provide the  contexts for reuse. As Johnson [Joh97] points out, “although a good com­

ponent library  is a crucial com panion to  a framework, the  essence of a fram ework is 

not the com ponent library, bu t the  model of in teraction arid control flow am ong its 

objects.” P rogram m ers have to  learn how to  live w ithin the provided architectural 

contexts. T h a t is, to  learn the  model of in teraction  and control flow instead of indi­

vidual functions or classes. Experience has indicated  th a t this is not a trivial m atte r. 

A utom atically detecting  errors is needed to  support th is kind of reuse.

Another observation is th a t some variation points are “open.” It seems challenging for 

a user to  elaborate  on an  “open” variation poin t since to  do th a t, they would have to  

not only understand  the  design of the  relevant p a rt of th e  framework, b u t also make 

design decisions to  fill in the  open parts.

Also note th a t some constrain ts originate no t from  exploiting the  design to  achieve 

certain functionalities, bu t from  avoiding problem s caused by the design. Handling 

the OnSize m essage is such an example. We call such a design a “negative design.” 

This does no t necessarily m ean th a t  overall th e  design is poor, although they  can be 

triggers for revising the  design.

Gan we design b e tte r  to  solve the  problem ? T he answer is bo th  yes and  no. In general, 

it is always possible to  improve a particu lar design for concerns like usability. B u t we 

suspect th a t  due to  th e  n a tu re  of reusing frameworks, the  essential difficulty cannot 

be removed simply by a b e tte r  design. We ju s t have to  live w ith it.

2. Enforcing program m ing disciplines

Sometimes one m ay w ant to  enforce im portan t program m ing disciplines for bo th  mod- 

ifiability and m aintainability . Sections 6.5 and 6.3 provide two relevant exam ples.

3. Forgetting program m ing obligations

At least two types of program m ing obligations are easy to  forget. One is for the 

override to  call an appropria te  version from  the  base class, the  o ther is w hat we 

call “d istribu ted  obligations,” where to  fulfill a  logical function, one has to  change 

more th a n  one spot of the  source code. Section 6.7.2 is an exam ple of “'d istribu ted  

obligations.”

4. Evolving Frameworks

It is rarely possible to  deliver a  high quality  fram ework once and for all; instead, 

frameworks are more likely to  evolve as they  are used and feedbacks are gathered  from 

the users. Likewise, the  intended ways of using a fram ework may evolve as well.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Some constrain ts are related to  software evolution; bo th  frameworks and applications 

can evolve. One exam ple for framework evolution is the D oProm ptFileN am e m ethod. 

A nother is the G etD lgltem  m ethod; initially, it is designed as the m ain wav of retriev­

ing the  object for a control. B ut this tu rns out no t to  be the  right way. FCL can be 

used to  prevent any further use of the  m ethod.

Factors th a t a specifier needs to  consider when applying FCL include:

1. Choosing between sym ptom -oriented and feature-oriented strategies;

2. Avoiding false positives and false negatives;

3. A pplying engineering judgm ents when w riting FCL specifications;

4. Knowing the  lim itation of FCL: some sem antics are useful bu t cannot be captured in 

FCL.
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Chapter 7

Case Study 3: Enforcing 
General D esign Rules

This chapter presents how to  specify the law of D em eter [LH89] and  M eyers’ C + +  guide­

lines [Mey92b, Mey96] in FCL. O ur purpose is to  illustra te  th a t  th e  applicable scope of 

FCL is no t confined to  frameworks; it can also be used to  enforce existing generic design 

principles.

FCL specification for a version of the  “Law of D em eter” is w ritten . I t is th en  tested  on 

two sm all examples. One is taken  from the paper: “A ssuring Good Style for O bject-O riented 

P rogram s” [LH89]. The o ther is taken from M artin  Fowler’s refactoring book [F+ 99]. The 

specification is also tested  against the  corrected versions of the  examples. In all cases, FCL 

can respond correctly, either pointing out the  place of the  violations or reporting  th a t there 

are no errors.

This chapter also analyzes a subset of C + +  program m ing rules. The goal is to  justify 

our belief th a t  expressions are indispensable for any such tools as FCL.

7.1 Introduction to the “Law of D em eter”

T he “Law of D em eter” expresses the  general principles of software design, such as infor­

m ation  hiding and low coupling and high cohesion, in an easy-to-follow form. The basic 

idea is to  reduce as much as possible the  am ount of dependency th a t  a m ethod  pu ts on 

its environm ent. Simply pu t it, if one finds oneself m aking use of more th a n  one level of 

indirection in code, it is m ostly likely th a t  one is violating the  “Law of D em eter.” It is 

because of this th a t some people define the law by simply saying: “D on’t  use m ore th an  one 

do t.” This sim plification is no t a hundred percent accurate, b u t it captures th e  m ain idea. 

F igure 7.1 depicts an exam ple th a t violates th e  law; the  im plem entation of the  statem ents 

m ethod  of the  Custom er class uses the class Movie th rough th e  R ental class, which should 

have been avoided.

Even though its nam e suggests otherwise, it is m ore accurate to  consider the “Law of
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customer

has ►
rental

-getTitle(): string
Movie

+getMovie(): Movie
aMovie: Movie

Rental

^statements(): string
rentals: vector<Rental *>

Customer

result+=_rentals[i]~>getMovie()->getTitle{);

return result;

string result;

F igure 7.1: Video Store

D em eter” a heuristic or guideline; in practice, certain  violations of th e  law are considered 

acceptable.

Therefore, the  general design principles are still the  u ltim ate  standards for judging the 

quality  of a specific design. In  a sense, th e  “Law of D em eter” is only a  “surface” version of 

th e  general principles. Yet, because th e  law is phrased in term s of program m ing constructs, 

it  is possible to  enforce it a t com pile-tim e w ith au tom ated  tools.

7.2 The Class Version of the “Law of D em eter”

Several versions of the  law exist for different purposes. For exam ple, the  object version 

s ta tes the  law in term s of run-tim e objects, and thus provides us th e  best conceptual model 

to  follow. B ut it is difficult to  enforce it w ith tools. In contrast, the  class version phrases 

th e  law in term s of compile-time artifacts, and thus makes it possible to  program m atically  

check any violation of the  law. Since our goal here is to  dem onstrate how FCL can be used 

to  encode the law, we choose the  class version.

To present the  class version of th e  law, we need to  define several term s first:

C lient M ethod: A m ethod can be either an  instance m ethod or a  sta tic  m ethod. If th e  im ­

plem entation of a m ethod M has a t least one expression either of the form  “o .m ( .. . ) ” , 

where the  sta tic  type of o is th e  class C, or “C . m ( . . . where m  is a s ta tic  m ethod  of 

the  class C, then  M is the  client of the m ethod  m  of the class C; M is also th e  client 

of the class C itself.

Supplier Class: A supplier class to  a  m ethod M is the  class whose m ethods are called by 

M. Thus if the  m ethod M is th e  client of the  class C, then  C is M ’s supplier class.
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Preferred Supplier Class: A class C is a preferred supplier class to  a m ethod M if C is a 

supplier class to  M and  one of the  following conditions holds:

•  C is used as a p a r t  of the  type of an instance variable of Cm - where C m  is the 

class to  which M belongs.

• C is used as a p a r t of the  type  of a formal param eter of M.

•  C is used as a  p a r t of th e  type of a local variable of M.

•  C is used as a p a r t of the  type  of a global variable referenced by M.

Languages like C + +  allows indirect types, i.e., po in ter or reference types, array types,

and container types generated  by in stan tia ting  tem plates of STL. In the  case of indirect 

types, we consider the  types th a t  are referenced as suppliers. In the case of array  and 

containers, we consider the  elem ent types as suppliers. T h a t is why in the above 

conditions, C is required  to  be “a  p a rt of the  type of” th e  respective variables.

W ith  the definitions of these term s, the  “Law of D em eter” can be phrased as follows:

Every supplier class to a method must be a preferred supplier class.

7.3 The “Law of D em eter” in FCL
1 AllClasses as [class("Movie"), class("Rental"), class("Customer")];
2 forall C: AllClasses holds
3 [
4 // classes thru instance variables
5 classesBylnstance as { v: var(C) |
6 [varType as type(v);]
7 isClass(ptdTypeStar(varType)) |
8 Class(ptdTypeStar(type(v)))
9 } ;
10 // types thru templates instantiations
11 generated as { v: var(C) |
12 [varType as type(v);]
13 isGenerated(ptdTypeStar(varType)) |
14 Generated(ptdTypeStar(type(v)))
15 } ;
16 templArgs as union({ t: generated | true |exp(t)} )
17 classesReferredByCollection as { expr: templArgs |
18 isClass(ptdTypeStar(refd(expr))) |
19 Class(ptdTypeStar(refd(expr)))
20 }
21  ]
22 forall M:function(C) holds
23 [
24 classesByParam as { v: param(M) |
25 [varType as type(v);]
26 isClass(ptdTypeStar(varType))
27 |
28 Class(ptdTypeStar(type(v)))
29 } ;
30 preferredSuppliers as classesBylnstance + generated + classesByParam +
31 classesReferredByCollection + [C ] ;
32
33 ]
34 forall E: exp(M) holds
35 [
36 Receiver as receiver(E);
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38
3 7 referredVar as Var (refd {Receiver)) 

typeOfVar as type (referredVar),-
39
40
41
42
43
44
45
46
47

( // The receiver is a var: a global variable or a local variable
(isClass(typeOfVar) or isGenerated(typeOfVar)) 
and

unit(referredVar)=unit(E)
or
first(unit(referredVar))=global

48 // The receiver is an expression
49
50
51
52
53
54
55
56
57
58
59

or

or not println(E)

( [
typeOfReceiver as type(Receiver); 
basicType as ptdTypeStar(typeOfReceiver) ;

not isDefined(basicType) or belongsTo(basicType, preferredSuppliers)

The overall s truc tu re  of th e  specification consists of th ree nested universal quantifica­

tions, starting  a t lines 2, 22, and  34, respectively. R ephrased in English, they mean:

For each class C, of th e  set of classes th a t need to  be checked, for each m ethod 

M, of C ’s m ethods, for each expression E, of th e  expressions th a t belong to  the 

m ethod M, E  m ust obey th e  Law of Dem eter.

The block from line 3 to  21 defines local variables for the  sub-form ula of line 2; th a t is, 

these variables will be visible w ith the  form ula s ta rtin g  a t line 22. T he local variables define 

the  sets of supplier classes th a t  are generated due to  the class C; specifically, classesByln­

stance defines th e  set of supplier classes th a t  are in troduced th rough  the instance variables 

of the class C. generated  represents the  sets of tem plate  instan tia tions. And classesByCol- 

lection is the sets of supplier classes th a t  are the  argum ent to  th e  tem plate  instan tiations.

Together, lines 5 to  9 form  a  set com prehension th a t  defines classesBylnstance. var is 

a  function th a t re tu rns th e  set of instance variables of the  class C. type is a function th a t 

returns the type of a variable. p tdT ypeS tar is a  function th a t  re tu rns the  “basic” type of a 

type; if the type is a  po in ter to  another non-pointer type, the function will re tu rn  th e  la tte r 

as its basic type. isClass re tu rn  tru e  if its argum ent is a class. Class is a  cast function th a t 

casts a type to  class.

Lines 11 to  15 is ano ther set com prehension th a t  defines generated. isG enerated is a 

predicate th a t re tu rns tru e  if and  only if its argum ent type  is a generated type. G enerated 

is a casting function th a t  can cast a type to  a generated  type.

templArgs is a tem porary  variable th a t represents the  set of types th a t  are used as 

argum ents to  th e  generated  types. A generated type  is an expression. T he function exp 

returns the set of the  sub-expressions of its argum ent. For exam ple, if the  argum ent to  exp 

is a generated type of the  form  “L 1<L 2<L 3 * > , L 4 > ,” then  th e  result of applying exp to
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it should be a set th a t  contains “L2<L3 *>”, “L3 *” , and “L4”. The operation union then 

flattens all the sets to  form a  new one.

W ith tem plA rgs, classByCollection is then defined as the set of supplier classes th a t  are 

in troduced th rough tem pla te  instantiations. N ote th a t  refd is a function th a t re tu rns the 

object th a t a nam e reference refers to.

Lines 23 to  33 defines local variables for the  second forall formula. I t first defines class- 

esB yParam , which represents the set of supplier classes in troduced th rough the param eters 

of the  m ethod M. T hen  it defines the  preferred classes of the  m ethod M as the union of 

relative sets, as shown in lines 30 and 31.

W ith all these variables defined, we can proceed to  check each expression E of the m ethod 

M (lines 34 th rough  59). For each expression E, Receiver is defined as its receiver expression. 

If, however, E  is no t a message sending expression, Receiver will be “undefined.” In  this 

case, the  whole form ula eventually will be true. T his is because b o th  typeOfReceiver and 

basicType will be “undefined” (line 51 and line 52),and  thus isDefined a t line 55 will yield 

false, which in tu rn , m akes th e  whole sub-form ula a t line 55 true. This reflects our intention; 

In this version of th e  law, we are only interested in  checking nested message sending.

There can be th ree  cases for the  receiver expression. I t  can be a reference to  a variable, 

which can be either a  local one or a global one. I t  can also be a com pound expression. 

If Receiver is a  reference to  a  variable, then referredV ar will be the  variable th a t Receiver 

refers to  and typeO fV ar the  type of the  variable. A ccording to  th e  law, in order for the 

m essage sending expression to  be valid, referredVar has to  be either a global variable or a 

local variable. T he locality of referredVar is checked using th e  un it function, as show in 

lines 44 and 46, respectively.

If, however, th e  Receiver is a com pound expression, then  we have to  check w hether its 

type is one of the  preferred supplier classes. This is reflected in the  FCL specification at 

lines 50 th rough 57.

Finally, if E  does no t satisfy any of the  above conditions, then  it is no t a  valid expression 

in term s of the  law. A nd its content will be prin ted  ou t (line 58).

7.3.1 D iscussion

Note th a t the calculation of th e  set of classes involved through param eters is a b it simplified; 

param eter types can be generated types, and thus a com plete specification would need some 

ex tra  specification sim ilar to  lines 4 th rough 20. T his is all right for our exam ples since they 

do not use generated  types in the  declaration of param eters, bu t to  use this specification in 

a m ore general context, we would have to  fix th is problem .

This exam ple also makes extensive use of the  type-related  features of FCL. In particu lar, 

note th a t FCL trea ts  generated types as expressions, as shown by line 16.
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N ote th a t there is a m ajor flaw in the above trea tm en t of the law: if, instead of accessing 

the movie through array indexing as the exam ple does, one defines a local variable th a t is 

a  pointer to  the  class Movie, and accesses the movie through the local variable, then FCL 

would no t be able to  detect this violation of th e  law. Thus a false negative is generated. A 

rem edy to  th is problem would be to  add to  FC L some sort of pointer analyses, reporting 

errors when a local variable obtains some value th a t lives beyond the current m ethods. 

Poin ter analyses, however, are known to  be conservative by n a tu re  [Ryd03], therefore cannot 

com pletely elim inate all such false negatives. This exam ple illustrates the  kind of tradeoff 

which one has to  make when using sta tic  analyses like FCL.

7.4 Specifying a Subset of M eyers’ C + +  Rules in FCL

In  an article of Dr. D obb’s journal [MK97], Scott Meyers and  M artin  K laus reports an 

evaluation of 5 C + +  compilers and 8 sta tic  analyzers, including CCEL [MDR93], on their 

ability  of detecting  anom alies from C + +  program s. T he benchm ark consists of 36 rules, 34 

of which are  taken  from M eyers’ two books: “Effective C + + ” [Mey92b] and  “M ore Effective 

C + + ” [Mey96].

T hese tools take different approaches on expressing th e  constraints; some, like the  com­

pilers, hard-code the rules, some define special languages for specifying constrain ts, and still 

some pre-define a  lib rary  of common rules while provide the  ability for users to  define their 

own custom  rules. One finding reported  by th e  article is th a t th e  specification languages 

m ust be designed w ith care, and th a t declarative ones are  easier to  w rite and understand 

th a n  im perative ones.

CCEL fails 17 of the  36 rules. Upon closer scrutiny, we find th a t  m ost of them  involve 

expressions in one way or another. This is no t surprising since CCEL stops a t the  level 

of functions and  m ethods: it does not support expressions. This reinforces our belief th a t 

expressions are an indispensable p a rt of such tools, and we are glad th a t  FCL has taken  

them  into account right from the beginning.

In the  following, we study  the 17 rules which CCEL fails to  handle. Each rule s ta rts  

w ith a num ber, a le tte r, and another num ber, following by a short description. The first 

num ber is the  num ber of the  rule in the  original list [MK97]; le tte r M represents the  book 

“M ore Effective C + + ” and E “Effective C + + .” The num ber th a t  follows th e  le tte r is the 

num ber of th e  corresponding item in the books. Being lazy, we only rephrase the rules in 

English; it should be evident th a t they can be specified in FCL.

1. 2 M 2 Use new-style casts instead of C-style casts

This can be rephrased as “there are no C-style cast expressions in C + +  program s,” 

and thus is checkable in FCL.
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2. 3 M 3 D on’t  trea t [a pointer to] Derived]] as [a pointer to] Base]].

For any argum ent to  any function call, if its type is an array, and the  element type 

of the  array  is a subtype of the  elem ent type  of the corresponding param eter of the 

function, then  it violates this rule.

3. 4 E 5 Use the same form for calls to  new and  delete. (In general, th is calls for dynamic 

analysis, bu t static  analysis can catch some special cases, e.g., calls to  new in ctors 

and  to  delete in dtors.)

If there  is a new expression in a ctor, then  there  m ust exist a delete in a  dtor; if there 

is a  new]] expression in a ctor, then  there  m ust exist a delete[] in a d tor.

4. 5 E  6 W hen the result of a new expression in a ctor is stored in a class m em ber, make 

sure delete is called on the  m em ber in th e  dtors.

For any pointer d a ta  m em ber, if it is initialized by a new expression in any ctor, then 

there  m ust be a delete expression in a  d tor.

5. 8 E  12 Initialize each class d a ta  m em ber via the m em ber initialization list.

W ith in  each ctor, for each class d a ta  m em ber, there is a t m ost one of ctors and 

assignm ent operators invoked.

6. 9 E  13 List m embers in a m em ber in itialization  list in an order consistent w ith the 

order in which they are actually  initialized.

This example needs lexical inform ation: in th is  case, the  line and colum n num bers of 

each d a ta  mem ber would be needed to  com pare their positions.

7. 11 E  15 Have the  definition of o p e ra to r=  re tu rn  a  reference to  *this. (Note: th is  says 

nothing about declarations.)

This boils down to  the  requirem ent th a t  there  be a t least one expression of th e  form 

“*this.”

8. 12a E 16 Assign to  every local d a ta  m em ber inside o pera to r= .

This seems to  be too  strong; a  m em ber of “char *” may very well be first initialized in 

a ctor and then  obtain its content th rough  strcpy in o p e ra to r^ . Instead , we require 

th a t  inside op era to r=  there  be an assignm ent expression for each non-poin ter d a ta

mem ber.

9. 12b E  16 Call a base class o p e ra to r=  from a  derived class o p e ra to r^ .

Of course, the  prerequisite for th is is th a t  th e  base class defines o p era to r= .
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10. 12c E 16 Use the  m em ber in itialization  list to  ensure th a t a  base class copy ctor is 

called from a derived class copy ctor.

11. 13 Don’t  call v irtu a l functions in constructors or destructors.

Being virtual is a  p roperty  of functions, and FCL can tell constructors and destructors 

through their special nam ing conventions. This is checkable in FCL. In  fact, I did make 

such an error when im plem enting FCL.

12. 21 E  29 and E  30 D on’t  re tu rn  pointers/references to  in ternal d a ta  structu res unless 

they  are po in ters/references-to-const.

I am not sure th is  rule is absolutely correct; it seems highly depend on the  sem antics 

of the specific application. For example, to  re tu rn  a reference to  char from a string 

seems appropriate to  me. Instead , I would like to  require th a t  any expression returned  

be neither a po in ter nor an array.

13. 22 M 26 Never define a  sta tic  variable inside a non-m em ber inline function unless the 

function is declared extern.

Any non-extern and  inline function should no t define sta tic  variables.

14. 26 M 5 Avoid use of user-defined conversion operators (i.e., non-explicit single argu­

m ent ctors and im plicit type  conversion operators).

No expressions invoke conversion operators.

15. 29 M 6 Use prefix + +  and  — when the  result of th e  increm ent or decrem ent expression 

is unused.

In a program , there  exist no such expressions th a t are either postfix + +  or — , bu t 

have no parent expressions.

16. 31 M 11 P revent exceptions from  leaving destructors.

Currently FCL does no t handle  exceptions.

17. 32 M 13 C atch exceptions by reference.
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Chapter 8

Related Works

This chapter surveys w orks re lated  to  FCL:

•  P rogram  analyses are technically relevant since they  all require parsing and type anal­

ysis. Section 8.1 surveys and  com pares a set of such tools, analyzing the ir similarities 

and differences.

• P rogram  specification languages are relevant since FCL is a specification language 

too. Section 8.2 sum m arizes the  m ain features of two recent specification languages: 

Alloy [Jac02] and  OCL [WK99], the in teraction contract [HHG90], and  the W right 

architecture specification language [AG97].

• Tools specifically for error detection are surveyed in section 8.3. In particu lar, two 

closely related  works, CCEL [LM93, MDR93] and CoffeeStrainer [Bok99], are com­

pared w ith FCL.

•  O ther related  works include docum entation, tools for fram ework instan tia tion , and 

sem antics for object-oriented  languages. Section 8.4 surveys works in these areas.

8.1 Program Analyses

M any source code analysis tools [CNR90, PP96, P P 94a, MN96, Dev99, DRW96, LR95, 

C+ 00b, MS95, Cre97] have been developed to  perform  a  variety  of software engineering tasks, 

ranging from program  understanding , design recovery, and reverse engineering, th rough 

software testing, to  softw are transform ation  and restructuring . These tools are technically 

relevant to  our work; knowing them  can help us answer such questions: “since many tools 

have been created before, why bother developing a new one?” Moreover, by pu tting  the tools 

together and com paring them , one can gain a b e tte r understanding  of th e  whole problem  

space, the  position of our too l in th a t  space, and its streng ths and lim itations.

In general, these tools can be divided into two categories according to  w hether they need 

to  change the source: query tools th a t only read source code and restructuring tools th a t 

both  read and w rite source code.
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Query tools parse existing source code and ex trac t facts. The process can be sum m arized 

into three steps:

• E x tract: P arse  th e  source and ex tract elem entary facts from it.

• A bstract: Perform  queries on the ex tracted  facts to  derive inform ation relevant to  

one’s analysis tasks.

•  View: Visualize the  derived inform ation.

R estructuring  tools also parse and ex tract facts from source, bu t with a different goal: 

to  either transform  the  source to  another language or to  “im prove” it according to  certain 

criteria. Consequently, the  process now becomes extract-abstract-transformations, where 

the transform ation  step  restructu res code using the  sem antic inform ation obtained in the 

abstraction  step.

At the  high level, all these tools consist of th ree  key elements:

• program databases (also called fact bases, program repository, and so o n ),

• schemas (also called conceptual model [CNR90] or data model [CGK98]) for the  pro­

gram  databases, and

•  a query or m anipulation  language of some sort.

8.1.1 A sum m ary o f com mon tasks

A list of common tasks m ay help us be tte r understand  the  needs for such tools. Query tasks 

found in the  lite ra tu re  include:

• A rchitecture reconstruction  and visualization

• P rogram  organization

Exam ples include th e  set of files in a program , header file inclusion, file interfaces (the 

set of functions defined in one file and called by ano ther file), and  so on.

• Reachability analysis and dead code detection [CNR90, CGK98]

• Com puting m etrics

Exam ples include M cC abe’s cyclomatic com plexity [Cre97, DRW96, PP96], average 

function and  file sizes [PP96], FANIN and FANOUT [PP96], and so forth.

• Fine-grained query of syntactic  code p a tte rns, e.g. [PP94a, Cre97, Dev99]:

— Finding all instances of simple assignm ent expressions appearing in any condi­

tional expressions.

— Finding all instances of equality-tests and  dereference expressions whose results 

are discarded.

— Finding all instances of conditional or ite ra tion  sta tem ents th a t have em pty bod­

ies.

— Finding all case s ta tem ent fallthroughs.
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— Finding the set of case conditions of a  switch  statem ent.

— Finding all switch statem ents w ithout th e  default branches.

— Finding gaps (unused space due to m em ory alignm ent) in structure  definition.

— Finding instances of code pattern s, such as th ree levels of nested loops or long

if-then-else, as a candidate of rew riting to  switch  statem ents.

— Finding all compound sta tem ents whose bodies are not enclosed w ithin curly 

braces.

— Finding all instances of variable redeclaration  in nested scopes.

• Resource flow analyses such as d a ta  binding [PP96, CNR90]

» Control flow analyses such as Call G raph E x trac tio n  [PP96, CNR90]

Exam ples of transform ation tasks include:

•  P re tty  printing,

• Sem antics preserving transform ation (refactorings) such as renam ing variables and 

ex tracting  m ethods,

• Code rew riting.

8.1.2 Some criteria for classifying too ls

L ex ica l v s . sy n ta c tic  ap p roach es M any software tasks involve extracting  facts from  soft­

w are artifacts, which may include no t only source code bu t also docum entation. These 

tasks are sufficiently broad so th a t  it is hard  to  have one tool to  satisfy all the  needs. 

Instead, a  spectrum  of tools would have to  be built, which can be categorized into 

lexical ones and  syntactic  ones.

Historically, program m ers have been using u tility  tools such as grep and awk and 

scrip ts w ritten  in languages like Perl to  perform  such tasks. Since the  underlying 

m odel th a t these tools have for th e  analyzed te x t is either character stream s or record 

stream s, they  are lexical tools. Lexical tools provide certain  formalisms of regular 

expressions to  support p a tte rn  m atching.

As described in the  work of L SM E  (Lexical Source Model E xtractor) [MN96], the  

lexical approach has the advantages of being:

•  lightweight, in term s of w riting specifications,

• flexible, in term s of the diversity of tex t th a t  it can handle, and 

® tolerant to  certain  syntactic errors in th e  tex t.

On the o ther hand, the  simplicity of regular expressions often does not allow one to  

express queries th a t involve deep knowledge of th e  s truc tu re  of the  source code, or 

even if possible, the  answers m ay be highly approximate in nature. Consider tasks
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such as “querying the calls to  an  overloaded opera to r” or “querying all the  variables 

whose names are x'' for C + + . For some task , th is loss of precision is not tolerable; 

thu s syntactic  approaches are also needed.

G r a n u la r i ty  and p rec is io n  o f  p ro g ra m  fa c ts  Program  databases may contain three types 

of inform ation w ith different granularities, global structural inform ation, sta tem ent 

structural information, and expressions and flow information. Global in form ation  in­

cludes files, functions, global variables and types, for C, and nam espaces, classes, 

tem plates, and so forth, for C + + . S ta tem ent structural inform ation  includes details 

such as statem ent types and blocks; these are useful to  identify code patterns th a t 

m atch  a program m ing plan or cliche [RW88]. L ast, expressions and flow  inform ation  

concern with the  d a ta  and control flows am ong the expressions w ithin procedures.

Choices of w hat inform ation a  program  database  may contain are driven by b o th  the  

consideration of efficiency and the  n a tu re  of the tasks a t hand. In general, the  more 

inform ation, the  more space occupied, and  the slower the tools would be. Some tools, 

for example, CIA [CNR90], C IA + +  [CGK98], and  H y + / GraphLog [CEH+ 94, MS95], 

trad e  the  completeness of inform ation for speed and space.

Completeness of program  inform ation has different im pacts on different tasks. W orks 

such as reconstructing arch itectural views from  source code [Hol98] focus on th e  overall 

program  structu res and thus do no t need detailed inform ation abou t expressions and 

d a ta  and control flows. In con trast, FCL needs the full detail abou t expressions and  

some flow inform ation to  detect errors m ore effectively.

F ile  b a sed  v s . w h o le -p ro g ra m  b a se d  r e p o s ito r ie s  Some tools [Dev99] work on a file-

to-file basis whereas others such as [CNR90, CGK98, PP96] assum e th a t  a  linkage 

has been perform ed over the  com pilation units and work on the w hole-program  repos­

itories. W hile program  based repository  m ay cause some perform ance problem , it 

allows one to  express certain  types of queries m ore natu rally  and succinctly. Since the  

specifiers have no way to  know th e  file nam es a fram ework user m ay use, file-based 

approach does not work for FCL. A whole program  repository is necessary.

C o n c r e te  s y n ta x  v s. a b stra ct s y n ta x  Some tools base their query languages on the  

concrete syntax of the  subject languages while others on the ab s trac t syntax. One 

advantage of using concrete syn tax  would be the  ability to  query syn tactic  p a tte rn s  

such as “all if statem ents th a t do no t use curly braces.” The disadvantage of using it is 

th a t  if an abstrac t p a tte rn  has m ore th a n  one corresponding concrete syn tax  p a tte rn , 

the  query can get quite verbose. Therefore, the  advantage of using a b s tra c t syn tax  is 

the  conciseness of queries.
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S u p p o r te d  s u b je c t  la n g u a g e s  CIA [CNR90], SCA [PP96], SC R U PLE [PP94a], and

TAWK [GAM96] support only C. H y+ /G rap h L o g  [CEH+94, MS95], ASTLOG [Cre97], 

and C IA + +  [CGK98] also support C + + .

Q u e ry  v s . t r a n s f o r m a t io n  This has been discussed in the beginning of th is  section.

S u p p o r te d  fo rm a lis m s  A* [LR95] and TAWK [GAM96] support the  awk style of pro­

gram m ing, where the  program s consist of pattern-action  pairs and traversa l strategies.

SCRU PLE [PP94a] is a query language expressing code p a tte rn s  as regular expressions.

SCA [PP96] is based on a  m ulti-sorted , sort-ordered algebra. H y+  / G raphLog [CEH+94, 

MS95] is based on a re la tional calculus extended w ith the  closure operato r. And AST­

LOG [Cre97] is based on an  extended Prolog.

T o o l g e n e r a to r s  In  this context, tool generators are tools th a t can generate program  anal­

ysis tools. This definition can be confusing since it is not clear w hether a  too l or system  

th a t  provides a language, such as a  database m anagem ent system  w ith  a  SQL, is a  tool 

or a generator. O ur executive definition requires a tool to  satisfy a t least one of the  fol­

lowing conditions to  be a  generator: either some of its com ponents can be customized 

or replaced to  produce a new tool, or th e  tools program m ed w ith  th e  provided lan­

guage are im portan t enough th a t  it is justified to  call them  tools. G EN O A  [Dev99] is 

a generator in the  form er sense whereas A* [LR95], A ria [DRW96], and  TX L [C+OOb] 

th e  la tter.

8.1.3 Tool generators

GENOA [Dev99] is m otivated  by two observations: first it is expensive to  build  reliable 

parsers for complex languages like C and C + + ; and moreover, in  p roduction  environm ents 

it is a significant task  to  m anage th e  build procedure for a  product. T hus it is im portan t 

for tools to  preserve the efforts in creating  the  build procedures. GENOA em phasizes both  

the  retargetab ility  and the  language-independence of the  back end. T he re targetab ility  is 

achieved by defining a com m on denom inator representation for m ost languages, ASG. A 

query interface is defined over th is d a ta  model, and in tu rn  a  reusable scrip ting  language 

is defined in term s of the  interface. A tran sla to r generator, G EN II, is also provided to  

facilitate the specification and  im plem entation of the  transition  to  a new language.

A sum m ary of the  im p o rtan t features of GENOA follows:

•  It is front-end retargetab le .

• I t grafts itself onto a parser by replacing its back end w ith G EN II generated  code, 

which m anipulates the  parser produced AST and provides an  ASG interface to  the
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scripting language. Since a parser works with com pilation units, current instantiations 

of GENOA are all based on ASGs for individual files.

• T he scripting language is procedural, and it allows users to  determ ine traversal s tra te ­

gies.

• The scripting language cannot change the underlying ASGs.

A ria [DRW96] is a too l generator produced by retargeting  GEN O A  to  Reprise [RW91], a 

C + +  ASG representation. A ria is used to  generate a num ber of tools th a t  would require long 

development tim e otherwise: a m etrics tool, a path  expression tool, and  a CDG (Control 

Dependence G raph) generator. In  essence, Aria is a validation of GENOA.

The TXL system  [C+ 00b] supports  program  transform ation. I t  was m otivated by the 

desire to  experim ent w ith  different dialects of the sam e base language. Using TXL, one 

can transla te  program s of a  dialect to  program s w ritten  in th e  base language. This is 

accomplished by transform ing th e  parse tree built using the  dialect g ram m ar into a tree  of 

the base gram m ar. A recursive tree  m atching algorithm  is used to  achieve this. TXL also 

finds m any other applications [DCMS02].

8.1.4 Pattern based Tools

A* [LR95] is m otivated  by th e  desire to  create language processing tools w ith extremely 

low overhead. The goal is to  allow inexperienced users to  build  sim ple tools in a  m atter 

of m inutes w ith a few lines of code. Therefore, the  usual com bination of YACC and C 

is considered too expensive for th is. Moreover, the au thors observe th e  sim ilarity between 

language processing and file processing provided by tools such as Awk. A* comes combining 

the  language definition facility of YACC with the p a tte rn  m atching capability  of Awk1, 

which is described as follows:

•  retaining the Awk action language and its in terpreter;

•  providing a  m echanism  for replacing Awk’s parser w ith an  a rb itra ry  L A L R (l) parser;

• providing a new d a ta  s tru c tu re  and notation  for parse trees;

® providing a way to  describe parse  tree  traversal;

• augm enting the  action language to  ease the construction of larger program s.

One im portan t change th a t  A* m akes to  Awk is its p a tte rn  language; instead of boolean 

expressions, pa tte rns are specified using the  concrete syntax  of th e  processed language.

T he following is an  exam ple of an  infix-to-prefix transla tion  w ith a yacc-like pattern : 

_ e x p re s s io n : _ e x p re s s io n  ' + ’ _ e x p re s s io n

xAwk is a language for file processing; th e  essence of its convenience is a  contro l s tru c tu re  in  all Awk 
program s. Awk breaks each file in to  records, and each record in to  fields. A typ ical Awk program  consists 
of an im plicit loop over all all records, and  w ith in  th is loop th e  u se r’s code is executed. U sr’s code consists 
of “pa tte rn -ac tion” pairs; a  p a tte rn  is a  boolean expression based on th e  value of th e  curren t record. An 
action is the sta tem en ts to  be executed once th e  p a tte rn  evaluates to  “t ru e .”
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{
printf "Add(";
traverse ($$kids [expression#!.] ) 
printf
traverse($$kids[expression#2]) 
printf

}

W here underscore prefixed symbols represent non-term inals in the  concrete grammar.

A sum m ary of th e  key features of A* is as follows:

• I t provides m echanism  to  support new languages; therefore, it is a  tool generator.

• Its  p a tte rn  language is based on concrete ra th e r th an  ab strac t syntax  of the processed 

language. Therefore, its  pattern-m atch ing  facilities are lim ited.

» The syntax m ust be L A L R (l); th is would make it  im possible to  process “irregular” 

b u t popular languages such as C and C + + .

® It allows tool builders to  specify a rb itra ry  traversals of the  ASTs.

• Its action language allows one to  change the underlying ASTs, such as performing tree 

surgery.

Therefore, A* is suitable for tasks satisfying a t least one of th e  following conditions:

• the  sem antics of th e  language is low (the language is sim ple).

•  the  desired tool im plem ents little  of th e  sem antics.

• or the too l needs to  exam ine only a proper subset of g ram m atical constructs.

SCRU PLE [PP94a] is a  pure query system  th a t  can locate code fragm ents m atching 

certain  patterns. I t exceeds in its support for a  rich set of pa tterns.

« T he p a tte rn  language is based on the  ab strac t syn tax  of the  language; at the same 

tim e, it also supports m ost code fragm ents of th e  sub jec t language. This means th a t  

in certain  cases one can directly type in a fragm ent of code and  let the  tool search for 

it.

•  The tool appears to  work on program -based ASTs.

•  T he p a tte rn  language provides a  certain level of abstrac tion  th a t  allows users to  control 

the  precision of p a tte rn s . For example. Query: F ind sequences o f statem ents that 

contain three if sta tem ents  can be specified as follows:

if # ®;

if # <8;
@*;
if # @;

In SC R U PPLE, #  represents expressions, @ sta tem ents, and @* zero or more s ta te ­

m ents. @* provides the  abstraction  to  represent a rb itra ry  sequences of statem ents.
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• P a tte rn s  are compiled into finite s ta te  machines, and search is efficient.

• Traversal is implicit and always sta rts  globally.

Two m ore SC R U PPLE queries are included to  give a taste  of SCRU PPLE works:

1. Query: F ind all functions that have references to the identifier xmax:

$t $f<xmax>($v*) { @* };

W here $t represents types, $ f functions, and $v* a sequence of variables.

2. Query: Find all instances o f three consecutive if statem ents:

if # @; 
if # @; 
if # @;

TAWK [GAM96] is a tool similar to  A* in term s of its overall structure, w ith differences 

sum m arized as follows:

® TAWK is a tool, no t a generator; it does not assum e the  responsibility of parsing 

source code.

• TAW K’s p a tte rn s  are specified in term s of ab s trac t syntax.

• TAW K’s action language is C.

• TAWK recognizes the  im portance of ab strac t pa tte rn s , and provides a simple, m acro 

based mechanism.

•  TAWK provides im plicit traversal control.

• TAWK recognizes th e  im portance of dealing w ith m acros and com pilation directives

in languages like C, and can recognize function-like m acro invocation as function calls.

8.1.5 Algebra based Tools

Informally, algebras are m athem atical s truc tu res th a t  consist of d a ta  types (sorts) and 

operations defined on the  d a ta  types (operators). One fam iliar example is the classical 

relational algebra [UW97]; O perators of the  a lgebra such as union, set difference, select, 

project, cartesian product, and join, take relations as argum ents and  produce new relations. 

I t  is, however, a  one sort algebra, th a t is, it deals w ith only one d a ta  type, i.e., relations.

SCA (Source Code Algebra) [PP96, PP94b] is an  algebra-based formalism th a t  can 

express queries on C program s. Its m ain features are  sum m arized as follows:

• SCA is b o th  m any-sorted  and order-sorted.

• SCA recognizes the  im portance of in form ation completeness. Its da ta  model contains 

not only global structural information, b u t also statem ent-level structural inform ation  

and control and data flow information. I t also supports  queries th a t use b o th  stru c tu ra l 

inform ation and program  flow inform ation.
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•  T he operators of SCA can be categorized into:

-  operators on object a ttrib u tes

SCA defines four types of a ttrib u tes  for objects, components to  reflect the  s truc­

tural relations between a  conditional and  its condition and body, references to  

capture nam e references, annotations  for inform ation such as line num bers th a t 

an object appear a t, and methods for dynam ically com putation of new inform a­

tion from the  model. I t is less clear how useful methods would be.

To get an a ttribu te , one can apply the  nam e of the a ttr ib u te  to  the  objects. For 

example, applying the  opera to r nam e  to  a  file /, nam e(f), will re tu rn  th e  file 

name.

An im portan t feature of SCA is closure; for example, it allows one to  specify all 

the functions th a t a certain  function can be reach.

-  operators on collections

SCA allows one to  select a  subset or pick  one element, which satisfy a  given con­

dition, from a  collection of objects. I t also supports columns projection th rough 

the project operator, and cartesian  p roducts  through the product operator.

One im portan t feature of SCA is th e  extend  operator, which allows one to  extend 

the existing type definitions w ith new a ttrib u tes . A nother is th a t  it supports 

logical quantifiers forall and  exists by, however, treating  them  as operators. SCA 

also defines two higher order operators, apply and reduce; apply takes b o th  a 

collection and a unary operato r, and  apply  the  operator to  each elem ent of the  

collection to  get a new collection; reduce takes a collection and a binary  opera to r, 

and apply the  operator to  each pair m ade of elements of the collection to  get a 

new collection.

— set operators

— sequence operators

Two questions are left unansw ered by the  SCA work: F irst, it seems th a t  SCA is m ore 

driven by the  desire of having a form alism  th an  by th e  kinds of queries th a t  would be needed 

in  practice; it is not clear under w hat circum stances operators like the  methods a ttr ib u te s  

on objects and the  reduce operator on collections would be useful. Second, SCA is only 

dem onstrated  w ith C as its subject language.

8.1.6 Logic based Tools

H y +  [CEH+ 94, MS95] is a generic visualization too l th a t  supports a  visual query language 

called GraphLog. H y+  supports a  graphical form alism  th a t allows com prehensible represen­

ta tions of databases, GraphLog queries, and query answers to  be interactively m anipulated . 

H y+  [MS95] has been applied to  tasks such as software m etrics, verifying constrain ts, and
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identifying design p a tte rn s  from code.

G raphLog supports two types of queries, define and filter. B oth  queries represent a p a t­

tern  in th e  hygraph; the  query in terp re ter searches the hygraph designated as the database 

for all occurrences of th a t pa ttern . A define query can be transla ted  to  stratified D ata- 

log [UW97]. A filter  query can be viewed as composed of m ultiple define queries, and its 

result is th e  com bination of evaluating all the  define queries.

G raphLog also supports aggregate functions on m ultisets of tuples, such as M A X , M IN , 

C O U N T , SUM, and AVG.

Since G raphLog is based on D atalog [UW97] and has the  sam e expressiveness as a 

relational algebra extended with generalized transitive closure, which can be used to, for 

example, com pute th e  inheritance relation  through  inheritance chains, it is m ore expressive 

th an  relational algebra. B u t adopting a  relational model of source code prevents it from 

conveniently expressing queries th a t  p e rta in  to  abstrac t syntax  trees. M oreover, when the 

com plexity of G raphLog queries increase, to  w hat extent its visualization facility can scale 

up is questionable.

ASTLOG [Cre97] exploits the  unification and backtracking facility provided by Prolog 

to  exam ine ASTs. The key changes A STLO G  makes to  Prolog are:

•  ASTLOG extends Prolog w ith prim itives suitable for exam ining tree  structures.

•  For perform ance, instead  of im porting  program  databases into Prolog as its fact bases, 

ASTLOG in terprets its predicates and  queries on top  of external objects, in  th is case, 

nodes of ASTs.

•  ASTLOG adopts the  so-called Prolog-w ith-an-am bient-current-object approach, th a t 

is, term s are always evaluated against a current object. For exam ple, a  predicate 

assignm ent can be defined as follows:

assignment(target, value)
<- op ( # =) ,

kid(#LEFT, target), 
kid(#RIGHT, value);

N ote th a t in th e  exam ple, there  is an  implicit current object.

• ASTLOG im plem ents some second-order features such as lam das and  function appli­

cations, and Prolog set-predicates th rough m anipulating the  current object.

® Com pared w ith the AWK approach, ASTLOG provides additional expressive power; 

for example, w ith A STLO G , one can com pare two trees.

• The author feels th a t  ASTLOG needs a support for type checking.

The SOUL (Sm alltalk O pen Unification Language) work [Wuy98, MM WO 2] advocates a 

logic program m ing approach to  m an ipu la te  struc tu ra l inform ation in source code. SOUL is a 

Prolog variant th a t currently  works w ith Sm alltalk as the  subject language. Im plem entation- 

wise, SOUL [Wuy98] adopts th e  sam e stra tegy  as ASTLOG, th a t  is, instead of im porting  the
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program  databases as Prolog fact bases, it in terprets logic prim itives against the  Sm alltalk 

image, through a well-defined access interface.

SOUL is targeted  a t general program m ing, instead of specific dom ains like frameworks. 

As a result, its rules m ight be less accurate in term s of finding code pa tte rn s , and it is 

undesirable for a tool to  generate too  m any false positives and false negatives. There is no 

work seen towards addressing these issues. Therefore, it is no t clear how effective it -would 

be in practice.

8.1.7 Schemas for Program  Databases

One early work in storing program  facts into a relational database is O M EG A  [Lin84], which 

uses the  IN G RES database  m anagem ent system  to  store inform ation for a  program m ing 

language called Model. One of the  goals of OM EGA is to  reconstruct software objects 

from th e  program  database. Therefore, detailed inform ation abou t variables, expressions, 

statem ents, and  relationships am ong them  are stored in the  database. A to ta l of 58 relations 

were used in th e  database schema. According to  [Lin84], the  p ro to type  im plem entation of 

OM EGA had  poor response tim e in retrieving the body of a procedure. Different objects 

w ithin th e  procedure had  to  be retrieved, and  each retrieval required  a  separate  database 

query.

Over th e  years, m any schemas have been proposed and tried , e.g., Reprise [RW91], 

CIA-I—h [CGK98], RSF [MOTU93], and D atrix  [HHL+00]. M ore recently, there  have also 

been works tow ards a com m on form at for exchanging software inform ation [Hol97, FSH01, 

WKR02].

W hen choosing a  schem a, one should consider m any factors, such as th e  level of seman­

tics, the  am ount of inform ation, the  granularity  of the  inform ation, and  th e  precision of 

the  inform ation. The level of sem antics refers to  lexical, syntactic, and sem antic kinds of 

inform ation. The am ount of inform ation a  schem a can provide m ay also vary, some may 

provide only lexical and  syntactic  inform ation while others all th ree  kinds. G ranularity  

refers to  th e  level of detail which the  inform ation can reach, for exam ple, Rigi [MOTU93] 

and CIA-I—I- [CGK98] only keep global s truc tu ra l inform ation such as function and class 

declarations whereas D atrix  tools also provide inform ation abou t sta tem ents and expres­

sions. Finally, precision refers to  the  extent to  which a schema can recognize things such as 

implicit conversions and opera to r calls.

I t  is not clear w hether it is possible to  devise a universal schem a th a t  fits all languages 

and all needs. B ut it is clear th a t  the  current focus should be in understand ing  the needs of 

different tasks and the in tricacy of individual languages, and correspondingly, experim enting 

w ith different com binations.
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8.1.8 Query Languages for Program  Databases

In general, the n a tu re  of a query language closely depends on the  underlying schema th a t 

organizes the data . Therefore, it is critical to  having the right schemas th a t capture the 

essence of the d a ta , otherwise, unnecessary details will creep into th e  query language. For 

example, the goal of the relational model is to  achieve b e tte r data independence, as shown 

in [Cod70], by formalizing th e  d a ta  model w ith the relation theo ry  to  elim inate several 

unw arranted dependencies.

SCA is a m any-sorts, sort-ordered algebra whereas both  G raphLog and ASTLOG are 

logic based. In addition, G raphLog is a visual formalism p u rpo rted  to  facilitate the query 

and display of program  facts. One of the  advantages of having a m any-sorts algebra is the 

possibility of type checking, of which several authors [LR95, Cre97] have felt the  need.

Grok [Hol02] is based on a binary  relation algebra extended w ith  some procedural con­

struc ts  such as assignm ents and  loops. A comparison between G rok and another query 

language, GReQL (G raph R epository  Query Language), can be found in [HWW02].

8.1.9 Potential R esearch Problem s

We have identified five problem s for fu tu re  research:

• I t is a challenging task  to  engineer reliable parsers for com plicated languages such as 

C + +  [SEH03].

Sim et al proposed to  build  and  share a common set of correct parsers w ithin the  re­

search community. Free, open-source parsers for C and C + + , for exam ple, C P P X  [MDH01], 

are now available.

• Dealing w ith m acros and  com pilation directives in languages like C is a  problem.

® Query languages need to  support abstrac t pa tte rns for b e tte r  expressiveness.

•  Is it possible to  have one query language th a t serves all th e  purposes?

R ather th an  serving as a  generic query language on program  databases, FCL was 

designed specially for “fram ew ork constrain ts” ; this is evident from, for exam ple, the 

inclusion of th e  existential o pera to r and the  exclusion of a  po ten tia lly  useful “ancestor” 

operator for obtain ing all base classes.

FCL is certainly not com plete if one views it as a generic query language for program  

databases. I t rem ains an  in teresting question w hether one can extend it to  a generic

one.

•  Given the m odern com puting power, is it feasible to  build full ASGs?

FCL is based on th e  assum ption  th a t a full ASG is available. Real p ro jects often 

require fast tu rn -a round  tim e. One concern is the. feasibility of building ASGs in such 

a short time.
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8.2 Specification Languages

The Alloy [Jac02] specification language is for formalizing and analyzing ‘object, m odels’. 

The OCL (O bject C onstra in t Language) [WK99] of UML was developed w ith m any the 

same goals as Alloy. T hey  b o th  have the Z specification language [Spi92] as their common 

root.

M any specification languages can be found in the  lite ra tu re . We choose these two to  

show th a t  they cannot be used in place of FCL.

8.2.1 Alloy

In Alloy [Jac02], an ob ject m odel captures the  basic s tru c tu re  of a certain  problem domain, 

as well as constrain ts and  operations describing how the  s tructu re  changes dynamically. 

Alloy is m eant to  give an  entirely abstrac t, im plem entation-free sem antics to  object models. 

The insight is th a t such a  sem antic model is a b e tte r s ta rtin g  point for object-oriented 

development th an  a m odel in which objects have m ethods and fields. One outstanding 

feature of Alloy is its fully au tom ated  analyses.

Alloy’s starting  poin t is Z [Spi92]. Like Z, Alloy is also based on sets and relations, bu t 

it contains a few novelties:

•  Alloy trea ts  scalars as singleton sets.

•  Alloy’s navigation syn tax  for relational image allows one to  form  expressions by fol­

lowing relations. This feature, combined w ith th e  scalars as singleton sets feature, 

bo th  simplifies and  unifies navigation expressions.

• Alloy allows one to  p u t bo th  type inform ation and  m ultiplicity  in to  relation definitions. 

Moreover, instead  of th e  range notation , Alloy uses the  regular expression style for 

multiplicity, th a t  is, * (zero or more), +  (more th a n  zero), ! (exactly one), and ? (zero 

or one). These can help shorten  specifications considerably.

Unlike Z, however, Alloy is designed w ith au tom atic  analysis in m ind a t the  first place. 

This requirem ent has a  num ber of im portan t im plications on the  design of Alloy:

• Alloy specifications are explicitly structured  into paragraphs, which include dom ain 

declarations, s ta te  declarations, conditions, invariants, operations, and assertions. Z 

exploits conventions to  distinguish the  roles of the  various schemas.

• Alloy exploits tw o form s of analyses on its specifications, sim ulation  and checking. 

Alloy’s struc tu ring  makes the  two analyses possible. T he goal of sim ulation is to  find 

a model2 for a specification; if a model is found, th en  th e  specification is considered 

consistent. T he goal of checking is to  find counter examples th a t fail the  assertions,

2 model is an overloaded term ; here it m eans a configuration of s ta te  th a t  satisfies the  specification.
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which is done by finding models for the  conjunction of the negation of the  assertions 

and the rest of the  specification.

•  Since the language is undecidable, com prom ise is inevitable to make the  analyses 

feasible. Alloy’s analysis works by lim iting th e  scopes of the carrier sets of the  prim itive 

types to  a given size. The analysis is done by first, transla ting  each relation into a 

boolean formula, and  an off-the-shelf SAT solver is then used to find solutions to  the 

form ula.

• Alloy is im plicitly typed.

FCL can be viewed as an Alloy whose dom ains are  the  syntactic elements of object- 

oriented program m ing languages. I t would be in teresting  to  encode FCL specifications 

w ith Alloy and  detect inconsistency of FC L specifications. Some difficulties would be the 

constructor functions of FCL, string, and integers, which Alloy does not support yet.

8.2.2 OCL

The O bject C onstrain t Language [WK99] of UML is m ean t to  bring rigors into the UML 

notation . However, m any shortcom ings have been identified [VJ99, Jac99]. OCL is still not 

am enable to  au tom atic  analysis. As it is, OCL is m ore a  no ta tion  for hum an comm unication 

th an  for au tom ation , yet far from n a tu ra l languages.

A sum m ary of O C L’s shortcom ings is as follows:

» OCL is driven by the  desire to  support th e  practical use of object-oriented languages, as 

such, it is too  im plem entation-oriented, thus is no t as well-suited for problem analysis 

as Alloy.

• OCL is m ore expressive th an  Alloy; it has integer and  string  datatypes, and sequences. 

B u t it does no t have transitive closure. And a ttem p t to  use operations to sim ulate 

transitive  closure tu rn s  out to  be unsafe [VJ99].

•  Giving OCL a  sem antics is likely to  be challenging because of its many features such as 

th e  elaborate  type  system , type casting, m ultiple inheritance, and iteration  construct.

• T he syntax  of OCL has some shortcom ings. O C L ’s expressions are stacked in the 

style of Sm alltalk, which makes it h a rd  to  see th e  scope of quantified variables. Unlike 

Alloy, navigations in OCL are applied to  atom s and  not sets of atom s. A ttribu tes are 

m odeled as p artia l functions in OCL, and  result in expressions with undefined values.

A lthough OCL has been used to  specify constrain ts for the  UML m eta model, it is not 

suitable for our purpose. OCL supports quantification form ulas and standard  set opera­

tions, b u t it does not contain sufficient inform ation abou t source code: for example, neither 

expressions nor control pa ths are supported by OCL. This is all right for a  design m odeling 

language such as UML bu t not for FCL. As m entioned, O C L’s syntax is not standard  bu t
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chooses to  keep close to  the object-oriented no tations, presum ably to make program m ers 

feel fam iliar. FCL is designed to  be close to classic notations. One benefit of this design 

decision is th a t we may do inference about FCL specifications in formal system s such as 

M izar [Org]. At last, although tools are available for OCL, we did not find they are su it­

able for FCL; for example, the D resdren OCL too lk it works only at the first-order level: it 

allows only for specifying pre- and post-conditions and  class invariants bu t no t constraints 

on syntactic structures.

8.2.3 Other N otations

In teraction  contracts [HHG90] are the  first n o ta tiona l constructs proposed to  specify be­

havioral com positions. Particularly, it focuses on specifying the obligations th a t  the  partic­

ipating  objects should fulfill in order to  function correctly. The aim is to  explicitly capture 

the  dependencies among cooperating objects, which otherwise will be buried in the  code 

of classes and m ethods. C ontracts and FCL are  close in th a t bo th  want to  specify how 

objects can correctly in teracted w ith each o thers. There are also im portan t differences be­

tween them . C ontract specifications need to  be com plete and self-contained whereas FCL 

specifications can be partial. C ontracts can contain  statically  uncheckable invariants while 

FCL is fully autom ated. However, contracts can be more expressive than  FCL due to  its 

informality.

T he W right language [AG97, AGI98, SG96] aim s to  describe software architectures, 

especially concurrency-related ones. I t is an  e x tra  layer beyond code, m eant to  be used as 

a  stand-alone design language, and there  is no support to  ensure the  consistency between 

the  code and th e  W right specification.

In contrast, FCL works directly on th e  syn tax  and  sem antics of specific object-oriented 

program m ing languages. Instead of full arch itectures, FCL specifies checkable constrain ts 

on the  code of framework extensions. The applicable scope of FCL is lim ited in th a t  it is 

designed to  ensure the  appropriate reuse of object-orien ted  frameworks ra ther th a n  a rb itra ry  

software. B ut since frameworks are concrete im plem entations of software architectures, 

we can also regard FCL as a specification language on ad hoc object-oriented software 

architectures, and we believe th a t th is study  can fu rther our understanding of software 

architectures.

8.3 Error D etection Tools

8.3.1 (Partial) Specification based

A spect [.Jac95] is a sta tic  analysis technique th a t  aim s to  detect errors of missing dependences 

from w ithin procedure im plem entations. A simple specification language is defined so th a t, 

for each procedure, the specifier can specify dependences th a t should exist betw een its
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p resta te  and poststa te . A dataflow analysis is then perform ed on each procedure, any 

dependences th a t exist, in the  specification bu t not in the result of the  dataflow analysis will 

be reported  as errors. To deal with po in ters and pointer aliases, reconfiguration assertions 

are introduced; a reconfiguration assertion s ta tes all the  possible bindings th a t may exist 

betw een a pointer value a t the  p o ststa te  and  pointers of the  presta te . I t is a  special case of 

dependence assertions.

Specifications w ritten directly in te rm s of im plem entation  variables are vulnerable to  

changes in representation. To cope w ith  th is problem, the concept of aspects is introduced; 

aspects are simply names for ab strac t com ponents of abstrac t types. For example, a two- 

dim ensional vector can have two ab strac t com ponents, X  and Y, as its  coordinates. T he de­

pendence and reconfiguration assertions are w ritten  w ith aspects instead of concrete names, 

so clients of the  abstrac t type see only th e  division into aspects, w ith the  actual represen­

ta tio n  rem aining hidden. Abstraction functions  are then  used to  associate representation  

w ith  aspects.

A sum m ary of the im portan t features of Aspect follows:

•  I t  requires specifications, albeit simple, for each procedure.

•  I t works in a m odular fashion, th a t  is, checking is perform ed on one procedure a t a

tim e.

•  I t  never produces false positives, provided th a t  the specifications are  correct.

•  I t  m ay produce false negatives, though.

•  I t  is increm ental in th a t it does no t require the  completeness of the pro ject to  work. 

Therefore, it can precede testing.

•  Com pared w ith verification, its specifications are cheaper and easier to  write.

•  I t  detects errors of omission, which com plem ents state-based techniques such as type

checking, which detects errors of commission. The em pty procedure, SKIP,  satisfies 

m ost type  specifications, bu t no nonem pty Aspect specification.

T he LCLint tool [E+ 94, Eva96], subsequently renam ed as Splint [E+ ], exploits simple 

annotations to  explicitly specify th e  otherw ise hidden assum ptions a t interface points about 

th e  re tu rn  value of functions, param eters, and global variables. The too l th en  combines 

these knowledge w ith sta tic  analysis to  detect errors in a  m odular fashion. For example, 

by default a  pointer is considered being no t null; one can use null to  an n o ta te  th e  fact 

th a t  it can take the  null value. A function  th a t uses this pointer w ithout proper check of 

the  nullness of the pointer would then  contain an error. Similarly, if the  m em ory pointed  

by a  pointer is not allowed to  be shared, one can use only to  anno ta te  it. In  [Eva96], 15 

annotations are defined to  help cap tu re  dynam ic m em ory errors.

T he ESC (Extended S tatic  Checking) tools [DLNS98, LNSOO, FLL+02] shares th e  sam e 

goal of detecting errors from code as m any other tools. It is s ta tic  yet can detect such
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errors as dereferencing null pointers, array  index errors, and race conditions and deadlocks, 

which conventional sta tic  analysis like type checking cannot find, hence the  nam e extended 

static checking. ESC exploits the  au tom ated  program  verification approach ra ther than  

s ta tic  analysis. Therefore, it requires specification support for bo th  procedural abstraction 

and d a ta  abstraction . Verification is carried out in a m odular fashion; for each module, a 

verification condition is generated  and a program  verifier then  a ttem p ts  to  prove it. ESC 

sacrifices soundness for error detection: it is more interested in a  failed proof; then  an error 

message can be produced. Tools for bo th  M odula-3 [DLNS98] and  Java [FLL+02] have been 

constructed. A m ethodology for verifying program s w ith th e  appearance of d a ta  abstraction 

and  inform ation hiding is generated  w ith the E SC /M odula project [LN02].

The Vault [DF01] language allows users to  specify typesta tes for resources, such as 

m em ory regions, files, and  sockets, to  track  their safe uses. P rogram s w ritten  correctly 

using the  language would th en  be pro tec ted  from the resource m anagem ent related bugs. 

Despite the  language approach adopted, the notions of keys and type guards are very close 

to  the  annotations of LC Lint [Eva96]; indeed, they are m eant to  solve th e  same resource 

m anagem ent problem. H istorically, language adoptions have been an e rra tic  process. In 

contrast, analysis tools work im m ediately.

8.3.2 M odel checking based

Dawson Engler’s m etacom pilation  (MC) research group a t S tanford investigates the uses of 

bo th  sta tic  analyses and m odel checking for finding bugs from  code. T heir sta tic  analysis 

allows program m ers to  ad d  simple system-specific compiler extensions th a t  autom atically  

check or optimize the  code. T hey also build a  model checker, CM C, for C, and  apply it to  

several case studies [M PC+ 02, ME03].

The sta tic  analysis is based on an  extension language and a  back-end engine added to  

the gcc compiler. The extension language, metal, is defined to  specifying analyses, and the 

back end, xgcc, is used to  execute th e  analyses efficiently. T he detail of m etal and xgcc is 

docum ented in [HCXE02, CHE02], b u t a  brief sum m ary follows:

® The extension language is program  object-centered; it can specify th e  sta tes of any 

program  objects, such as pointers, as a finite sta te  machine. In  p articu lar, erroneous 

sta tes are explicitly m odeled by the s ta te  machine; when the  s ta te  m achine reaches 

such states, error messages will be reported, 

s t a t e  d e c l  a n y -p o in te r  v;

start: { kfree(v) } ==> v.freed;

v.freed: { *v } ==> v.stop,
{ err ("using 7,s after free! " , mc_identif ier (v) ; }
I { kfree(v) } ==> v.stop,
{ err ("double free of 7,s after free!", mc_identif ier (v) ; }
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This example specification can detect two errors about a  po in ter, dereferencing freed 

memory and double frees, by tracing its s ta te , v is a (specification) variable repre­

senting a pointer variable in the  checked program . A variable can have states; for 

example, v has two sta tes, freed  and stop. T he current s ta te  of a variable such as v 

is w ritten as v.freed. The alphabet of the sta te  machine consists of code patterns; for 

example, kfree(v) is actually  a free call on v, and *v is an expression dereferencing v.

•  The gcc compiler is used to  construct an AST for each C file. The xgcc engine then 

reads in the  ASTs and  perform s analyses on the  control flow graphs of all functions 

no t called by any others, e.g., th e  main function.

• The engine essentially traverses each AST one p a th  a t a tim e w ith a depth-first search, 

evaluating th e  curren t s ta te  of each path  and using the  s ta te  to  drive the transitions 

of the finite s ta te  m achine model.

• The traversal perform ed by xgcc is interprocedural, and a  simple, path-sensitive anal­

ysis is used to  elim inate nonexecutable paths.

The m ost in teresting  insight of th is  work is th a t the  seemingly simple technique can be 

effective in finding errors in real system s. The paper [C+ 0Qa] shows how metal is applied to  

th e  Stanford FLASH m achine’s em bedded cache coherence protocol code. The paper [E+ 00] 

discusses a  set of small extensions th a t  found roughly 500 bugs in Linux, OpenBSD, and 

the  Xok exokernel; th e  extensions are usually less th an  100 lines. I t also uses extensions to  

find hundreds of optim ization  opportun ities in heavy-tuned software.

CMC [M PC+ 02] is a  m odel checker th a t directly executes C and  C + +  program s and 

perform s model checking on th e  m onitored sta te  space. CMC has some lim itations, though. 

T he current CMC assumes an  event driven model of the  checked system . Its correctness 

properties are coded as boolean functions directly in term s of th e  saved states. Further­

more, the  AODV case study  in  [M PC+ 02] does not present how tem poral properties can be 

supported. W ithou t tem poral properties, CMC seems to  be m ore an  advanced testing tool 

th an  a model checker.

Based on the experience applying both  approaches to  th ree  non-trivial case studies, 

[ME03] presents an  in teresting  com parison between the  two approaches and some lessons 

learned:

•  S tatic  analyses generally can find more errors th an  m odel checking. There are two 

reasons for this: first, models and environm ents are abstrac tions of the underlying 

im plem entation and  m any details are suppressed from them , thus model checking tends 

to  miss m any errors th a t  s ta tic  checking can directly get from  code; second, model 

checking, sim ilar to  testing, can only find errors from executed paths; incomplete
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environm ent m odeling is bound to  miss m any errors on the non-executed paths.

• Easy-of-inspection really m atters; tool users prefer to  having the priority of the errors 

ranked, especially when facing thousands of errors.

• Model checking is b e tte r  at finding errors involving global invariants and values, thus 

complements sta tic  analyses.

• T he more analyses applied to  find an error, th e  h arder th e  error is to  reason about and  

to  fix. Furtherm ore, the  higher th e  chances are for one of the analyses to  go wrong.

• Model checking requires m anual construction of b o th  the  models and (optionally) the  

environm ents w ithin which the models are supposed to  function, these tasks can be 

bo th  expensive and  error prone. E rrors in the m odels can trigger false positives. M ore­

over, applying approxim ation and abstrac tion  during model construction suppresses 

im plem entation details, thus can miss real errors in code. It is crucial to  reuse the 

efforts invested in constructing the  models.

One m ore th ing  w orth  noting is th a t  the  im plem entation  model of the  subject system s 

(the FLASH protocol [C+ Q0a], AODV [M PC+ 02], and  T C P  [ME03]) is closer to  the  finite 

sta te  m achine model of th e  model checker. These system s are all im plem ented in C.

In th e  paper “Lightweight Analysis of O bject In terac tions” [JF01], Jackson and Fekete 

outline a  m ethod for autom atically  detecting design errors th a t  are related to  object in ter­

actions. The form al no ta tion  Alloy [Jac02] is used to  represen t the abstrac t program. W ith  

Alloy, th e  heap stru c tu re  of th e  system  under analysis is explicitly modeled; a  global relation 

th a t m aps an object reference to  its abstrac t value is included in the  program  state. M eth­

ods called bu t not under reasoning are specified declaratively. In  order to  analyze w hether 

a particu lar m ethod m aintains a certain  property, an in teraction  diagram  is extracted  from 

the  m ethod; all the  m ethods called w ithin the  d iagram  are  specified, and  their specifications 

are conjuncted to  form a  formula, w ith different variables explicitly representing the sta tes 

between the m ethod calls. The form ula is then  conjoined w ith the  specifications for the  

o ther p a rts  of the  system , th a t is, the  heap, classes, and  m ethods. The combined speci­

fications are an assertion th a t  the system  should support. Alloy checks this by finding a 

counter exam ple-that is, a  model of the  negation of the form ula. The form ula is solved by 

first transla ting  it to  a propositional boolean form ula, and then  applying an off-the-shelf 

SAT solver to  the boolean formula. An exam ple of the  so-called comodification problem  is 

used to  illustrate  the  whole process.

A num ber of challenges have also been pointed out. For example, one is th a t given an 

in terested  property, how to  autom atically  ex trac t a behavioral skeleton like an in teraction 

diagram , from the  source code, using some form of s ta tic  analysis. A nother is how to  deal 

w ith conditional and  loop statem ents so th a t a  form ula can be formed and the  analysis can 

be carried out.
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8.3.3 Static analysis based

This subsection reviews two works m ost closely related  to  FCL. They share the similar goals 

with FCL. One has special notations and the  o ther depends on annotations on code. In both  

cases th e  checking is autom ated.

8.3.4 CCEL (C + +  Constraint Expression Language)

CCEL [LM93, MDR93] and FCL have different contents in the da ta  models for the underly­

ing program m ing language (C + + ). CCEL m odels only a t the C + +  interface level. I t does 

not consider for example, expressions. FC L no t only covers expressions, bu t also provides 

some rudim entary  in traprocedural control flow analyses. This tu rns out to  be fairly useful. 

FCL a t present handles more constructs th a n  CCEL, for instance, tem plate instan tiations, 

pointer and reference types, nam espaces, function  pointers, and so on.

CCEL models program  elements separately. This is unnecessary and inappropriate. 

For exam ple, param eters, d a ta  m em bers, and  variables were trea ted  as th ree independent 

elem ents, so were m em ber functions and  free functions. In contrast, FCL has a different 

way of modeling. For instance, by in troducing the  notion of program  units, FCL makes 

it possible to  distinguish param eters, d a ta  m em bers, and ordinary variables by exam ining 

their respective program  units. Therefore, FC L significantly simplifies the d a ta  model. This 

is im portan t. I t simplifies concepts and m akes it possible for a simpler FCL.

FCL has developed a b e tte r  form alism  th a n  CCEL and is more expressive th an  CCEL. 

FCL bases itself explicitly on the  first-order logic w ith  the  additional support of sets and 

sequences, whereas CCEL a t best does so implicitly. For example, it is no t clear w hether 

CCEL can support a rb itra ry  levels of nested  universal and existential quantifications. W ith  

sets, FCL can express constraints on the  size of sets, so th a t  one can say som ething like “the 

size of th e  set is 1.” CCEL has no way to  express this.

CCEL defines CCEL variables th rough  a  syn tax  th a t  mimics C + + . For exam ple, in 

CCEL one needs to  specify a  m em ber function of a class as follows:

Class C;
MemberFunction C::mfunc; 
mfunc.nameO == "aName";

whereas in  FCL:

mfunc as function("aName",C);

The advantage of our no ta tion  is th a t  it is m ore likely to  be portable, since it does not 

depend on the special syntax  of any particu la r program m ing language. M ore im portantly , 

by using well-known m athem atical operations such as set comprehension, FCL specifications 

should be clearer in term s of sem antics and thus easier to  learn.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FCL aims a t frameworks whereas CCEL so far has been mostly applied to  generic design 

principles or im plem entation guidelines. I t seems th a t frameworks bring FCL a  unique 

advantage by providing more specific contexts, such th a t the. tools can cover a. broader 

range of common m istakes, and a t the  sam e tim e, generate fewer spurious ones. In fact, even 

M eyers himself adm itted  th a t “it quickly becam e apparen t th a t the  great m ajority  of the 

guidelines used by good C + +  program m ers were too  difficult to  formalize, or had  too  many 

im portan t exceptions, to  be blindly enforced by a lint++[CCEL]~ like program ” [Mey92b].

8.3.5 CoffeeStrainer

CoffeeStrainer [Bok99] is a fram ework th a t  allows program m ers to  specify constrain ts on 

the  structu re  of Java program s. I t  works on the  Java  AST [BS98] to  enforce constra in ts on 

program m ing conventions, type definitions, and  type uses.

CoffeeStrainer does not have a specification language, instead, it  depends on special 

annotations on the checked code. To use it, a program m er has to  define an em pty interface 

to  express the constraints, and m anually  m arks the  class to  which they  w ant to  apply  the 

constrain ts w ith the  interface. The constrain ts are im plem ented as Java code th a t works on 

the  AST, and is hidden as com m ents w ithin th e  body of the em pty interface. At compile 

tim e, once th e  fram ework detects such interfaces, it will extract and  dynam ically compile 

the  constraint code and  apply th e  constrain ts to  the  corresponding types of AST nodes. 

CoffeeStrainer relies on nam ing conventions to  re la te  the constrain t code to  th e  type  of 

node to  which it is applicable. For exam ple, a constrain t im plem ented by th e  m ethod 

“checkField” would be applicable to  all th e  fields w ithin a checked class.

Clearly, because of its dependence on features such as dynam ic com pilation and em pty 

interfaces, it is not easy to  p o rt CoffeeStrainer to  o ther languages such as C + + . In  addition, 

to  apply it program m ers would have to  ann o ta te  the ir code w ith th e  constrain t code. It 

is no t clear w hether th is “intrusiveness” is desirable. Furtherm ore, CoffeeStrainer requires 

program m ers to  w rite the  constrain ts. Typically, if one knows th e  constra in ts, th en  one 

should be able to  check them  m anually  right away, w ithout bothering  w riting  them  down; 

it seems hard  to  justify  the  need of such a  tool.

8.3.6 Hybrid Approaches

P attern-L in t [SSC96b] aims a t m onitoring the  compliance of a software system  w ith its  high 

level design models using program  databases and a  Prolog engine. P a tte m -L in t  explores 

th ree types of design models, concrete but low level rules th a t can be phrased d irectly  in term s 

of program m ing elements, architectural level rules such as design p a tte rn s  and  arch itec tu ra l 

styles, and design heuristics such as low coupling and high cohesion. Realizing th a t  general 

design rules can have m ultiple concrete im plem entations, and th a t checking th e  conform ance
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to  such heuristics as low coupling and  high cohesion is largely hum an-dependent , the authors 

adopt a hybrid approach: in addition  to  sta tic  analyses, techniques of dynam ic analyses and 

visualization [SSC96a] are also com bined to  help query and visualize the  im plem entation, 

not only to  detect violations, bu t also to  increase the confidence th a t  an im plem entation is 

faithful to  a certain  design model. Exam ples taken from the Choices [C+ 93] framework is 

used th roughout the paper. More details can be found from Sefika’s Ph .D . thesis [Sef96].

8.4 Other Related Works

D o c u m e n ta tio n  The problem  of fram ew ork usability has led to  the  proposal of several 

docum entation approaches ranging from prescriptive to  descriptive, and from infor­

m al to  formal. Prescrip tive m ethods describe how the  fram ew ork should be used 

while descriptive ones describe only the design of the  fram ework and  users have to  

deduce how to  use it. Exam ples of bo th  prescriptive and inform al approaches in­

clude p a tte rn s  [Joh92], cookbooks [KP88], and hooks [FHLS97]. Exam ples of formal 

b u t descriptive m ethods include th e  in teraction contracts [HHG90] and  the interface 

contracts [Mey92a]. O ther m ethods such as design p a tte rn s  [GHJV94] and m etapa t­

terns [Pre95] are bo th  prescriptive and descriptive.

T o o ls  S u p p o rt fo r  F ram ew ork  In s ta n tia t io n  Several au thors have been working on 

providing tool support for fram ew ork instan tia tion . Active cookbooks [PPSS95] is 

a sem i-autom ated tool th a t can enact recipe descriptions, providing users an in terac­

tive interface th a t guides them  th rough  the in stan tia tion  process. However, recipes do 

no t explain design rationales; th ey  describe only how the  problem  can be solved using 

the  framework. T he prim ary  draw back of the  approach is its inflexibility, namely, users 

have to  either follow th e  recipe up to  the last detail or abandon th e  tool completely. 

O rtigosa et al [OCMOO] present ano ther tool th a t utilizes intelligent agent technology 

to  assist fram ework instan tia tion . The tool asks users to  select from  a  list of func­

tionalities and based on the  selection, an agent elaborates a  sequence of program m ing 

activities th a t should be carried ou t in order to  im plem ent it. In  [FBMLOO], Fontoura 

e t al propose to  use DSLs (Dom ain Specific Language) to  describe th e  variation points 

o f frameworks. T he user uses the  provided DSLs to  specialize varia tion  points and 

the  application is generated  by transform ing the DSL descriptions in to  the  underlying 

im plem entation language. These works are fundam entally different from  ours: first, 

they  are all synthetic ra th e r th a n  analytic approaches; th is m ay lead to  the  difficulty of 

in tegrating  w ith existing developm ent processes. Second, all th e  approaches work only 

on the  stru c tu ra l aspects of program s such as class skeletons an d  m ethod  signatures; 

none of them  support m ethod  im plem entation.
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Several industrial fram eworks have IDEs (In tegrated  D evelopm ent Environm ent) asso­

ciated w ith them  [IBM, Mic]. In particu lar, the  V isual C + +  IDE provides tools such 

as GUI builder, resource editor, class w izard and application w izard to  help the user 

in stan tia te  the M FC framework; some of these tools can even generate code. However, 

too ls cannot serve best unless they are m astered by the users, as some expert MFC 

users have criticized: “au tom ation  does not help much until th e  user knows exactly 

w hat is happening behind the scene” [SW96, New],

S p e c ia liz a tio n  In terfa ces  Several authors have been working on issues related  to  the  spe­

cialization interface. Kiczales and Lam ping [KL92] discuss the  issues in the  design of 

class libraries and em phasize the  im portance of docum enting in ternal dependencies. 

Lam ping [Lam93] proposes to  extend type system s to  formalize no t only the  client in­

terface b u t also the  specialization interface so th a t the  la tte r  can also benefit from the 

au tom atic  checking provided by type system s. However, th e  expressiveness of type sys­

tem s is lim ited. S ta ta  and G u ttag  [SG95] propose a  m ethodology for the  specialization 

interface based on specifications ra th e r th an  type system s. T heir approach partitions 

a  specialization interface into m ethod groups and associating substates with them; 

program m ers are required  to  re-verify a  whole group whenever any elem ent w ithin it 

is changed by a  subclass. Reuse contracts [SLMD95] docum ent th e  design relevant 

p a r t  of a specialization interface. A reuse contract is a  set of m ethod  signatures, each 

associated w ith a  specialization clause. A specialization clause nam es the signatures 

of those m ethods of th e  same class th a t are crucial for th e  design of th e  particular 

m ethod. Furtherm ore, several operators on reuse contracts will be applied each tim e 

a  subclass is created  or a class is changed by developers. Reuse contracts and their 

operators serve as s tru c tu red  docum entation and facilita te  the  propagation  of changes 

to  reusable assets by indicating how much work is needed to  upd a te  applications built 

previously and w here and how to  te st and adjust these applications.

O b ject T y p e s  and  S u b ty p in g  Conventional type rules for object-oriented program m ing 

languages such as th e  covariance/contravariance rules are  m ore abou t “syntax” than  

“sem antics.” N ierstrasz [Nie95] proposed the notion of “regular type” to  characterize 

th e  non-uniform  availability of object services. Liskov and  W ing [LW94] present two 

definitions for the  subtype relation th a t  differ on th e  trea tm en t of history properties. 

One definition dem ands the  explicit specification of constrain t rules in th e  supertype; 

any subtype has to  verify th a t  they  preserve the  rules. T he o ther definition requires 

th a t any new m ethod  of the  subtype be expressed in term s of the  m ethods of the 

supertype, resulting in an extension map. In addition, b o th  definitions require th a t 

(1) values of bo th  supertype and subtype satisfy type invariants and (2) behavior con-
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form ance between the  sam e m ethods of supertype and subtype. The authors further 

distinguish between extension subtypes and constrained subtypes; both  are applied in 

practice. For exam ple, commonly framework builders im plem ent p art of a  class and 

let the  users extend th e  uncertain  p art by subclassing it and adding new m ethods 

and variables. I t  is also common for users to  override a  m ethod and provide a more 

constrained version. These are in general related to  our work because we should at 

least be aware of th e  form al sem antics of object types and subtyping.
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Chapter 9

Summary and Future Work

9.1 Summary of Result and Contributions

O bject-O riented frameworks are composed of collaborating  classes th a t provide stan d ard  

solutions to a  family of problem s commonly encountered am ong applications in some do­

m ain [JF88]. Fram ework builders provide m echanism s, the variation points, th a t enable 

developers to  use the  fram ework to  construct the ir specific application [Deu89].

The size and com plexity of frameworks and the ir notorious lack of design and intended- 

usage docum entation m ake fram ework-based developm ent a learning-intensive and error- 

prone process [HHY03]. Com m only fram ework users m isunderstand th e  relation betw een 

their application and how the fram ework designer intended the  fram ework to  be used, re­

sulting in overly complex solutions or subtle bugs.

For the  framework user w ith shallow knowledge, som ething more akin to  type-checking 

is desirable. T h a t is, fram ework developer takes on the  burden of describing/specifying how 

to  properly use the fram ework so th a t com pliance by th e  framework user can be checked 

mechanically. A lthough correct type m atching is no guarantee th a t a function is called 

properly, it does catch m any common m istakes. We would like som ething similar to  apply 

to  framework use.

We use the  term  fram ework constraints to  denote the  knowledge th a t a user needs to  

know in order to  use a  fram ework properly. T he idea is to  formalize the  fram ework con­

stra in ts  on hot spots and check w hether a fram ew ork instan tia tion  satisfies these constrain ts. 

O ur goals are to  create specification languages and  tools th a t enable fram ework builders to  

encode their knowledge about the  in tended use of th e  fram ework and use the  knowledge to  

check user applications.

This thesis focuses on th e  s tru c tu ra l aspect of fram ework constraints. A specification 

language, FCL (Framework C onstrain t Language), is designed to  express the  constrain ts 

on the structure  of source code. T he feasibility and effectiveness of FCL are dem onstrated  

through several case studies. We conclude th a t it is indeed useful to  framework users.
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FCL is a typed  first-order logic extended w ith set and sequence operations. Its  term  

language is a special set of to ta l functions, reflecting the entities and relationships of pro­

gram m ing languages. This formalism lends to  the autom ation of FCL.

Technically, FCL is m ore akin to  type-checking. The difference can best be illustrated  

by an example: while th e  em pty program  would pass all the  type checkers, it can hardly 

pass any non-trivial FCL specifications.

Several case studies have been done to  gain knowledge on how FCL can be b e tte r designed 

and used, and w hether it can be helpful to  practice. The following are the general guidelines 

th a t we learn from our experience:

• In general, th e  m ore specific the  context is, the  more effective FCL tends to  be. 

M any examples show th a t  th e  com ponents th a t  FCL is used to  constrain  are highly 

specialized; they often assume a g reat deal of context. FCL can be m ore effective 

under th is kind of circum stances.

• Specifiers should know the  design well and avoid im m ature generalization. However, 

th is  often implies th a t  the  specifiers should be th e  designers or som ebody who works 

closely w ith them .

• Specifying against specific sym ptom s sometimes can be more economical.

In practice FCL has found b o th  errors of omission and errors of commission. M any errors 

are design errors. T hey are caused by m isunderstanding a n d /o r being unaw are of properties 

and in teraction  a t system  interfaces. T he errors are b o th  system - and domain-specific. They 

are different from  the  generic im plem entation errors such as dereferencing null pointers or 

array bound overflow. Independent of th e  dom ains of the  program s being inspected, they 

can occur in any of them .

In short, th is work proposes to  extend the  technique of type checking and  apply it to  

framework-based developm ent. A sum m ary of the  m ain result and contributions are as 

follows:

1. The design and im plem entation of FCL make the  bulk of the  work. A m odel of the 

static  properties of C + +  program s is presented, and  an FCL is defined based on the 

model. A form al sem antics is also defined for FCL.

2. The feasibility and  th e  poten tia l usefulness of the  approach are th en  dem onstrated  

by applying FCL to  real frameworks. Specific lessons learned from th e  experience are 

reported. These lessons are im portan t for bo th  the  use and future developm ent of 

FCL.

To use a fram ework is to  learn its design; m any problem s originate from  a lack of
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understanding  about its architecture, design pitfalls, and evolution. FCL has been 

used to perform  the following kinds of tasks:

® D etecting omission of program m ing obligations:

• D etecting violations of program m ing constrain ts implied by a design;

•  D etecting violations of program m ing constrain ts implied by a “negative design;”

® Enforcing program m ing disciplines;

® Helping w ith th e  evolution of bo th  th e  fram ework and its intended use.

9.2 Future Work

Fram ew ork-based developm ent has become indispensable in m odern software engineering. 

The difficulty of fram ework use probably will stay  w ith  us as long as we program ; thus it 

is im portan t to  bo th  fu rther develop FCL in particu lar and deepen our understanding of 

fram ew ork-based developm ent in general. In th e  following, I outline some possible future 

work:

D e sig n in g  F C L s for o th er  lan g u a g es like Java  and  o o  P e r l In general, I believe th a t 

it should be straightforw ard to  develop FCLs for o ther languages. Based on experience 

w ith developing FCL for C + + , the  developm ent of FCL can be divided into following 

aspects:

•  Parsing  and type analysis;

•  Designing a model of sta tic  properties of program s;

•  Designing and grafting FCL onto the  model.

Parsing  and  type analysis generally have been well understood; thus they are largely a 

m a tte r  of engineering though it can be challenging to  get them  right. To get a model 

of s ta tic  properties of program s dem ands a  deep understanding  of the  sem antics of the  

sub jec t language. I believe our experience w ith C + +  can be helpful to  dealing w ith 

Java  and  oo Perl. L ast, it is clear th a t  FCL can be divided in to  dom ain independent 

p a rt, th a t  is, the  first-order logic and set and  sequence operations, and  dom ain de­

pendent p a rt, namely, the  term  language and  th e  type system . Therefore, it should 

be straightforw ard to  grafting FCL to  models developed for o ther languages. In fact, 

it would be an interesting experim ent to  mold the  current FCL into a framework and 

develop o ther FCLs as its  instances.

A p p ly in g  F C L  I t  is necessary to  apply FCL to  more cases and  more im portantly , to 

observe how well it works in assisting real program m ers.

A nother direction is to  investigate w hether one can use FCL when developing new 

frameworks. All examples so far are retrofits; how would it look like to  apply FCL
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when one is designing a new framework? For example, when should framework de­

velopers spend tim e encoding constrain ts w ith FCL? In addition to  framework-based 

developm ent, would FCL be helpful to  routine software development?

FC L  as a b asis  for o th er  p rogram  m a n ip u la tio n  ta sk s such as refactorings [F+ 99] and 

other program  transform ation.

A r c h ite c tu r es  and  fram ew orks Software architectures are abou t the  gross structures of 

large software system s [BCK98]. The m ost im portan t th ing th a t  a  framework delivers 

is its  software architecture [Joh97]. M any problem s of using frameworks seem to  come 

from  the  lack of understanding of the  architectures of the  frameworks. There can 

be many reasons for th is s ta te  of practice including, for exam ple, th e  competence of 

th e  user. I am particularly  in terested  in docum enting fram ework architecture for the 

purposes of bo th  hum an com m unication and form al analysis.

A p p ly in g  m o d e l ch eck in g  to  fra m ew o rk -b a sed  d ev e lo p m en t M odel checking has been 

applied to  b o th  software requirem ents specifications [ABB+ 96, AG93] and source 

code [D+ 97, M PC + 02, JF01]. O ur previous a ttem p t on m odel checking frameworks 

w ith  Spin [Hol91] was not successful [HHS02]. An in teresting  research question re­

mains: W hether and how can one leverage m odel checking techniques in framework- 

based development?
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Appendix A 
FCL: Abstract Syntax and Sem antics

This appendix introduces the abstrac t syn tax  (Table 9.1), type rules (static  sem antics), 
and the dynam ic sem antics of FCL. M eyer’s no ta tion  [MeyS8] is adopted. The concrete 
syntax can be found in C hap ter 3.

A .l N otational Conventions
The denotational m ethod specifies the  m eaning of a program m ing language through associ­
ating w ith each construct T  two functions of th e  following general forms:

Vr : T  —> Bool
M j '  : T  — >■ D t

where T  can be, for instance, S ta tem ent, Declaration, Formula, and so forth.
The function V r  is a  predicate. I t yields the  value true  if and only if its argum ent is 

a valid instance of the  program  construct T . T he sets of constructs are called syntactic  
domains. The set of validity functions for a language defines all the “constrain ts” to  which 
its program s have to  conform. They form the  static sem antics  of the language.

For each construct T, the  function M r  denotes its dynam ic semantics w ith a  set of 
m athem atical objects, which is also called its denotation. For each T, D t  represents the  set 
of m athem atical objects; th e  set may vary for th e  various constructs. The set of denotations 
for all th e  constructs of a language defines the  sem antic domains of the language.

M ost of the  M  functions will tu rn  out to  be  “higher order” functions th a t yield functions 
as results. To highlight the  specific n a tu re  of these functions, their argum ents will be 
enclosed in square brackets ra th e r th an  the  ord inary  parentheses, as in My[i].

The following common m athem atical operators will also be used:

1. in d ex in g  : Seq T  x I n t  -+ T: get the  i th  elem ent of a sequence. Syntactically, it is 
w ritten  as s(i), where s is the  sequence and  i the  index.

2. ta il : Seq  T  —> Seq T: get a new sequence from  the  argum ent by removing its first 
element.

3. addxtoJiead : T  x Seq  T  -» Seq T: get a  new sequence whose first element is the
elem ent argum ent and whose ta il is th e  sequence argum ent.

4. (+): “overriding union” of two functions / ,  g: X  -» Y :

h = f t y g  ■
d o m  h  =  d o m  /  U d o m  g;
h(x) = f ( x )  if x  G d o m  /  and  x  £ d o m  g;
h(x) — g{x) if x  € d o m  g.

These no ta tional conventions are adopted  from  M eyer’s book [Mey88].

A .2 Static Sem antics
FCL is strongly typed so th a t  when evaluating an FCL specification, an FCL checker will not 
suffer any run-tim e errors. This is ensured by p u ttin g  a  set of constraints on th e  s truc tu re  
of FCL specifications. T he constraints com prise the  s ta tic  sem antics of FCL.

F rom  O b je c t M o d e l to  T y p e  S y ste m

An object model presents the  entity-relationship m odel w ithin a certain  domain; the classes 
are entities, and  the relationships are m odeled by the  operations th a t the  classes support. 
Given such a model, one can design a logical language for it by assigning a  sort to  each 
entity  and  a total function  to  each operation supported  by the  entity. An inheritance 
relation betw een a pair of classes can be tran s la ted  in to  a  subtype/subset relation between 
their corresponding sorts.

However, sometimes it may not be necessary to  assign sorts for all classes. Fig. 4.1 
depicts the  ob ject model for C + + , and Fig. 9.1 th e  basic types and the subtype relation for
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FCL-spec : = sl: S ta tem ent-list
Statem ent : = D eclaration I Form ula
D eclaration = v: Variable; expr: E xpr

Form ula ::= N egation I C onjunction 1 D isjunction I 
Existential | U niversal I Expr

E xpr ::= Variable 1 C onstan t 1 O peration I Form ula I E xprW ithV ars
N egation ::= f: Form ula
C onjunction ::= fi: Formula; f?: Form ula
D isjunction ::= fi: Formula; fa  Form ula
Existential ::= bVarl: B V ar-D eclarationJist; f: Form ula
Universal ::= bVarl: B V ar-D eclarationJist; f: Form ula
BVar .D eclaration ::= D eclaration
ExprW ithV ars ::= vl: D eclara tionJist; expr: Expr

O peration ::= Set_op I Seq_op I R elational I FCLTct
Set_op ::= Subset | M em berof I union I difference 1 fam ily-union I 

card 1 Set .com prehension I Set_enumeration
Set-comprehension := bVarl: B V ar-D eclarationJist; p: Formula; ele: E xpr
Set -enum eration := exprl: E x p rJ is t
Seq_op := Seqjm em ber I SeqJndexO f
Relational — > | >= | < | <= 1 =

C onstant — tru e  I false 1 Str I Int I global
Variable — id: Str
T J is t :=

Table 9.1: T he A bstrac t Syntax of FCL
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th e  curren t version of FCL. Upon com paring them , one may find th a t, for instance, the class 
cA sgN ode and the class cTyped have no corresponding sorts in FCL. This is because we have 
not found examples where assigning so rts for them  would be necessary. If the operations 
supported  by these classes are useful, we can move them  downwards to  the corresponding 
sorts of their subclasses. For exam ple, retrieving the  context of an  identifier is defined as 
an operation for the class cAsglMode, b u t since the  class is not modeled in FCL, a function 
unit (Table 3.2) has to  be defined on tw o sorts, Name and Exp, which correspond to  two of 
its subclasses, cN am e and cExpGeneralized, respectively.

T y p e  S y s te m  o f  C u r r e n t  F C L

StrName Exp

Type VarUnit

NS Fct CIs

Gen

Undef
(l)Undef is the subtype of all other types 
(2)sub-^-sup: sub is a subtype of sup.

Figure 9.1: Basic types and  th e  subtype relation

T he type system  of FCL includes two kinds of types: basic types (Fig. 9.1) and com­
pound types. Basic types can be fu rth e r divided into “facility” types and  “dom ain” types. 
“Facility” types help form  constrain ts, including Str for string values, Int for integers, and 
Bool for boolean values. “D om ain” types come from the  problem  dom ain of program m ing 
constructs, including Exp for expressions, Var for variables, NS for nam espaces, F ct for 
functions, CIs for classes, Name for nam ed entities, Unit for program  units, Gen for types 
generated  through tem plate  instan tia tions, and Type for types.

T he current FCL covers only a  subset of the  object model; for instance, pointer and 
reference types, arrays, builtin  types, and  generated functions are no t included.

T he set of basic types can be represented  by Type_value_basic defined as follows:
T ype-value.basic =  { Str, Int, B ool, Exp, Var, NS, Fct, CIs, N am e, Unit, Gen, Type, Undef

Com pound types are types for sequences and sets:
S eq .typ e =  { <t> | t  : {Var, Exp, U n it}} , w here <t> represents th e  set of sequences the  

type of whose elem ents is t.
Set_type =  { F  t  | t:Type_value_basic U Set_type }, where F  t  represents th e  power set of 

th e  type  t.
Given a type t, the  function build_set_type creates a new type, w hich is the  set of t: 

build_set_type(f: Type_value_basic U Set-type) =  F  t.
Given a set type of the  form F  t, the  function elem entT ype re tu rn s  its elem ent type: 

elementType(F t) = t.
U ndef is the  type for the  undefined value.
Fig. 9.1 also defines the  subtype relation  between basic types. Besides basic types, 

sub type relations can also exist betw een com pound types. One set type  is th e  subtype of 
ano ther if and only if the base ty p e  of the  form er is the subtype of the  la tte r. Similar 
definition holds for sequence types.

T he subtype relation is necessary for the  set union operation; For a  set union expression 
to  be valid, FCL requires th a t th e  base types of bo th  its operand sets have one and  only 
one common ancestor in Fig. 9.1. T h is notion will be further form alized in section A .3.

Finally, the set of types th a t FC L supports, T ype.value, is defined as follows:
Type_value =  Type_value_basic U S et-typ e  U Seq-type
Given a type, the predicate is-Set can tell w hether it is a set type.
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T y p e  M a p s

W henever one says th a t  an instance of some construct is “correct,” one really means tha t 
it is valid in a certain  context, in which each identifier has a designated type. In compiler 
design, th is notion of context corresponds to  “symbol tab les” , which can be modeled by a 
function T y p e m ia p :

T yp e jm a p  : V ariable  —> T ypejva lue

FCL variables are only implicitly typed; th a t is, one does no t declare a  variable in the 
form of “v: T ”, where T  is a nam ed type. Instead, one writes “v: E xpr”, where the type 
of Expr can be inferred, and  the  type of v is assigned as th a t  of Expr. In  th e  following, we 
will use th e  function typ e ju a l, which evaluates the type of an expression:

typejual : E x p r  x T yp ejm a p  —> T ype-va lue

whose definition will be deferred to  th e  end of this section.
For a  construct T  in th e  context of a  type m ap, the  function ty p in g s  constructs a type 

m ap for the  new variables defined in T :

ty p in g s  ■ T  x T yp ejm a p  - t  T yp e jm a p

where T  can be Declaration, D eclarationJist, BVar-Declaration, BVar-D eclarationJist, or 
Statem ent,

A declaration yields a  type  m ap consisting of only one pair, whose nam e is th a t of the 
variable, and whose type  is th a t  of the  expression:

typingDeciarationldd : D eclara tion , tm  : Typejm ap] =  { < dd .v ,typ e jva l[d c l.exp r,tm ] > }

T he type m ap th a t  a  list of variable declarations introduces is th e  “overriding union” of 
the  type  m aps of each of th e  variables, from head to  tail:

typ in g D e c l a r a t i o n J i s t [ v l  ■ D e c la ra tio n J is t ,tm  : T yp e jm a p ] =  

if v l.len g th  =  0 th en  0 
else

given f i r s t T M  =  typ ingDeciaration[vl(0),tm ] 
then

f i r s t T M  (+J typingi>eciarationJist[vl.tail, new T M ]
end

end

B oth quantification form ulas and set comprehension in troduce a  list of bound variables. 
The type  m ap for the list is the  “overriding union” of the  type m aps of all the variables, 
from left to  right:

typ in g b v a r - D e c l a r a t i o n jis t\b V a r l : B V a r -D e c la r a tio n J is t ,tm  :  Typejm ap] =  

if b V arl.leng th  =  0 then  0 
else

given f i r s t T M  =  ty p in g s  Var-Declaration [bV arl (0), tm] 
then

f i r s t T M  l+J typingBVar-DeciarationJist[bVarl.tail , n e w T M ]
end

end

The type m ap of each bound variable is defined as follows:

ty p in g s  v  ar-Declaration [del : D eclaration, tm  : Typejm ap] =  
given se tT yp e  =  typejua l[dd .expr, tm]\

se tE le m e n tT  ype  =  e lem en tT ype(se tT ype);
then

{ <  del.v, s e tE lem en tT yp e  >  }
end
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Note th a t the type of a bound variable is the type of the elem ents of the  set whereas the 
type of a declared variable is th a t  of its expression. For exam ple, in c as classSet;, c has the 
type  of classSet whereas in forall c being classSet holds .... c has the  type of the  element type 
of classSet.

The following is the  typ ing  function for statem ents:

typingstatement[st : S ta te m e n t, tm  : Typejm ap]  =  
case st of

D eclara tion  : typ in g Deciarau on[s t ,tm ]
F o rm u la  : 0

end

If the sta tem ent is a form ula, it does not introduce any new variables th a t  can be used 
by subsequent sta tem ents, therefore, the function re tu rns the  em pty set; Otherwise, it is a 
declaration and the  function re tu rns the new type m ap defined by the  declaration.

An outline of th e  function typejual is as follows:

typem al : E x p r  x T yp e jm a p  -» T ypejva lue

typejval[exp : E x p r , tm  : T yp e jm a p ] =  
case exp  of

V ariable  : tm (exp )
C o n s ta n t : ty p e ju a lConstant[exp\
F o rm u la  : Bool
O peration : t y p e j v a l o p e r a t i o n [ e x p ,  tm]
E x p r W ith V a r s  : typejva l[exp .expr,tm \+ )typ ingDeciaraUonj i st[exp .vl,tm ] ]

end

A .3 Static Sem antic Functions
An FCL specification consists of a  sequence of sta tem ents. T he specification is valid if and 
only if th e  sta tem ents list is valid:

VFCL-spec ■ F C L j S p e C  - »  Bool
Vf c l  spec \P ■ F C L s p e c ]  — Vstatem entJist\P -Sl, 0]

A statem ent list is valid if and only if all of its s ta tem ents are valid:

Vstatement-iist ■ S ta te m e n t l i s t  x T yp e jm a p  -> Bool

VstatementMst[sl : S ta te m e n tJ is t , tm  : Typejm ap]  =  
if s l.len g th  =  0 then  true  
else V state7nent (0): tm] A

VStatementMSt[s l -ta i l’ tm  W typ ing[sl(0 ), tm]]
end

N ote how the  type  m ap for subsequent statem ents is u p d a ted  in th e  above function. 

Vstatement ■ S ta te m e n t  x  T yp e jm a p  -> Bool

ystatement [ s t : S ta te m e n t, tm  : Typejm ap] = 
case s t  of

D eclara tion  : VF >e c i a r a t i o n [ s t , t m ]

F o rm ula  : VFormuia[st,tm]
end

The validity of a  declaration is equivalent to  the validity of its  expression:

Vjjeciaration ■ D eclara tion  x T yp ejm a p  —> Bool

V D e c i a r a t i o n [ d d  : D eclara tion , tm  : Typejm ap] =  VExpr[dcl.expr, tm]
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The validity of an expression is the result of following case analyses:

Vexpt '■ E x p r  x T yp e jm a p  —t Bool 
VexpA ^ P  '■ E xpr, tm  : T yp e  snap] = 

case exp  of
V ariable  : V v a,riaUe[sxp,tm]
C o n sta n t : true
F orm u la  : VFormuia[exp ,tm ]
E x p r W ith V a r s  : VBxpTWithVaTS[exPUm]
Set-com prehension  : Vset-comprehension[exp,tm}
O peration : V0peration[exp,tm]

end

Of course, a nam e reference is valid if and only if there  is a variable w ith the same nam e 
in the type map:

Vvariabie ■ V ariable  x T yp e jm a p  —> Bool 

Vvariabie[v ■ V ariable, tm  : T yp e jm a p ] =  v € dom tm

An expression can have a list of local variables. Such an  expression is valid if and  only 
if its expression is valid under the  new type map:

VBxprWithvars ■ E x p r W ith V a r s  x T yp e jm a p  Bool

V E x p r W i t h V a r s [ f i x p  : E x p r W ith V a r s , tm  : T yp e jm a p ] =  
given n e w T M  = tm  1+) typ ing[exp .vl, tm] 
then

VExpr [exp.expr, new T M ]
end

The validity of form ulas are also the  result of case analyses:

VFormuia ■ F o rm u la  x T yp e jm a p  —» Bool

VFormuia[f '■ F o rm u la , tm  : T yp e jm a p ] =  
case f  of

N eg a tio n  : VN egatio n [ f,tm ]
C o n ju n c tio n  : VConjunction [f> tm \
D is ju n c tio n  . Vxji8junction[f ̂ tm]
E x is te n tia l  . VBxistentiai[f tm]
U niversa l . Vjjniversai[f,tm]
E x p r  : VBxpr [f, tm ] A ty p e jv a l[ f,tm ]  =  Bool

end

N ote th a t  for an expression to  be a form ula, it no t only has to  be a  valid expression, bu t 
also has to  be of the  Bool type.

A negation, conjunction, or disjunction is valid if and  only if the ir constituent form ulas 
are valid; we om it the  validity functions since they  are obvious.

T he validity functions of bo th  universal and existential quantifications are the  same, th e  
following only presents the one for existentials:

VExistentiai ’■ E x is te n tia l  x T yp e jm a p  s -  Bool 

Vsxistentiaile-xt : E x is te n tia l, tm  : Typejm ap]  =
V B V a r - D e c l a r a t i o n J i s t [ e x t . b V arl, t m ] A
Vpormuia [ e x t .f , tm  1+) typ ing[ext.bV arl, tm]]

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A set comprehension is valid if and only if all of its three parts, the list of bound variables, 
the "'filter” predicate, and the  “elem ent” function, are valid:

V set.-co m p reh e? isio n  • S I S'i. 071 X I  'jJ])(’ .JTKl jJ t  B o o l  

Vset-comprehension[sc : Se t-C o m p reh en sio n ,tm  : T ypejm ap ] =
if V}SV a r - D e c l o , r a t i o n - l i s t  [-SC.6V a r l , tm] then

given n e w T M  =  tm \* )typ ing[sc .bV arl,tm ]  
then

VFormula[sC.p, n e w T M ] A  

V ExPr[sc .e le ,  n e w T  M ]
end 

else fa l s e  
end

The type of set com prehension is calculated as follows:

type jual S e t - c o m p r e h e n s i o n  ■ S e t -Com prehension  x T yp ejm a p  -» S e t_ ty p e

t y p e - v a l S e t_ c o m p re h e n s io n [sc  : S e t -Comprehension, t m  : T y p e j m a p } =  

given n e w T M  =  tm l+ )tj/pm g[sc.6yari,tm ];
e l e m e n t T y p e  =  t y p e  j v a l E x p r [ s c . e l e ,n e w T M ]

then
b u ild ,se t-typ e (e lem en tT  ype)

end

For a bound variable list to  be valid, all of its elements have to  valid:

V B V a r - D e c l a r a t i o n J i s t  ■ B V  ar-D eclara tion  l i s t  x T yp ejm a p  - »  Bool

^BVar-PecJaration-iistt&Varl : B V a r J ? e c la r a tio n J is t ,tm  : T yp e jm a p ] =  
if bV arl .leng th  =  0 then  tru e  
else

arl(O), tm ]A
VBVar jDeciarationJistibVarl.tail, tm[*)typi,ng[bVar(0) ,tm )\

end

T he definition of a  bound variable is valid if and only if its set expression is valid and
the set expression is of set types:

V B V a r  - D e c l a r a t i o n  ’■ D eclara tion  x T yp e jm a p  Bool

V b v  a r  - D e c l a r a t i o n  \bV ar : D e c la ra tio n ,tm  : T yp e jm a p ] =  
given exprT ype  =  type-val[bVar.expr, tm] 
then

VExpr[bVar.expr, tm] A is S e t(e x p r T y p e )
end

Before discussing the  typing rules for set operations union and set enum eration, th e  lub 
(least upper bound) opera to r for two types has to  be defined first. For two types fi and  f2 ,

lub : T ypejua lue  x  T yp e jva lu e  —» T ype-va lue  
lu b { ti ,t f)  =

if 3 t : (t >  t \  A t  >  <2A /3t' : t' < t  f \ t ’ > t \  / \ t '  > tf)
then  t  else nu ll
end

where t\  <  f2 denotes th a t ti  is a subtype of f2. T he subtype relation is in troduced in 
section A.2.
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Now the validity function for set union can be defined as follows:

I'union '■ union, x T yp e jm a p  —> Bool 
VUnionlu ■ u n io n ,tm  : Typejm ap] =

given t\  =  typ e jva l[u .l,tm ]] t -2 =  typejual[u .r,trn ]; 
then

VB xp r [ u . l , tm ]  A  V Expr[u .r ,  t m ] A

i s S e t ( t i )  A isJ3et(t-2) A lub{t\,to;) yf nu ll
end

And th a t for set enum eration can be defined as follows:

Vset^enumeration '■ S e t-en u m era tia n  x T yp e jm a p  -A Bool 
V s e t - e n u m e r a t i o n [ s e  : S e t-e n u m e ra tio n ,tm  : Typejm ap]  =  

if se .exp ri.len g th  =  0 th en  true
else given e T y p e  =  e le m e n tT y p e ( ty p e ju a l s e t - e n u n ie r a t io n [ s e .e x p r l . t a i l , tm } )  

VE xp r [ s e . e x p r l ( 0 ) ; tm ]  A  Vset-enumeration[se.eX/prl. tail ,  tm ] A
lub(typejva l[se .exprl(0 ),tm ), eType) ^  null

end

typejualset-enumeration '■ S e t-en u m era tio n  x T yp e jm a p  - a  Set_type 
type-valset-enumeration[se : S e t-e n u m e ra tio n ,tm  : T yp e jm a p ] =  

if se .exp ri.len g th  =  0 then  b u ild se t- ty p e (n u ll)
else given t a i l T y p e  =  e le m e n tT y p e ( ty p e j v a l s e t - e n u m e r a t io n [ s e . e x p r l . t a i l , tm ] )

buildse t-type(lub(type-va lE xpr [se.exprl(0),tm ], ta ilT yp e))
end

A .4 D ynam ic Sem antics
S em a n tic  D o m a in s

The dynam ic sem antic dom ain of FCL, V a lue , is defined as follows:

V a lu e  =  { * } U ^  T ypejva lue

* is a special symbol for the  “undefined” value. Each element of th e  set T ype.value, if viewed 
by intent, represents a  type; if, however, viewed by extent, it represents the  set of elements 
th a t are characterized by th e  type. In th e  definition of V alue , types are viewed from the 
extent point of view.

At the  top  level, a program  can be denoted as a function th a t  m aps from  nam es to 
namespaces:

P ro g ra m  = S tr  -A N S  

I t has only one pair w ithin it, th a t  is, the  global namespace:

P rogram  = {{global, the-globaljnam espace)}

At the  next level, each nam espace can contain zero or more nested nam espaces, types, 
variables, and functions. Thus N S  can be characterized as follows:

N S  =  n s : S tr  -a  N S ] type  : S tr  -A Type; 
var : S tr  -A V ar; f c t  : S tr  -A F  F ct

T h a t is, a nam espace can be formalized as an  aggregate of functions. Note th a t  we do not 
intend to  use th is  equation as a definition of N S ,  for otherwise this would be a recursive 
dom ain equation th a t has no solution under the  usual category of sets. Instead , we intend 
to  use it to  characterize a given N S .

In a similar way one can give o ther constructs denotations. We om it them  because formal 
treatm en ts for these construncts would be quite tedious w ithout increasing th e  clarity of 
presentation; instead, we choose to  explain them  informally in Section 3.2.2.
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D y n a m ic  S e m a n tic  F u n c tio n s

T he dynam ic sem antics of FCL specifications are  characterized by S ta te , a  function from 
FCL variables to  the  elements of V a lu e :

S ta te  : V ariable  —> V alue

T he m eaning of the FCL constan t global is defined as follows:

Mgi0bai '■ P rogram  —> S ta te  
M giobai[p ■ Program ] =  p(global)

An FCL specification consists of zero or m ore constraints. E valuating the specification 
against a given program  yields a sequence of boolean values, one for each constraint. Thus, 
the  m eaning of a specification can be defined as follows:

M pcL spec '■ F C L  s p e c  —t P ro g ra m  —> S e q  Bool 
jSbFCLspec[spec : F C L s p e c ] =  Ap  : Program - 

given s ta r tS ta te  = {(global, M gi0bai\p])} 
then  M statementJist[spec.sl, startS ta te]  
end

T h a t is, th e  evaluation of a specification s ta rts  w ith  the  sta tem ent list and the  startState. 
T he sem antic function for the  sta tem ent list is defined as follows:

Mstatement Mst ■ S ta te m e n t l i s t  x S ta te  —» S e q  Bool 
FtStatem,ent-Hst i$l • S ta te m e n t- lis t, s . State]  — 

if s i.len g th  =  0 then  () 
else case s l(0) of

D eclara tion  . M s tatenient_iiSt[sl.ta il, s \^F tjoeciara,tion\sl{C), s] ]
F o rm u la  . add-to-head(]\Lpormuia^sl(0), s], JV1statement-iist\sl -ta il, s]) 
end

end

T hus, the  notion  of a program  p  being correct w ith regard to  a specification spec can be 
defined as:

Mb G M pcLspec[spec](p) • b 
In the  above definition, the evaluation of each declaration generates a variable associated 

w ith a  value, and  the  evaluation of each form ula generates a boolean value.
The sem antic function for declarations is as follows:

MDeclaration ■ D eclara tion  x S ta te  —» (V ariable —> V alue)
FIDeclaration\dcl : D eclara tion , s : S ta te ] =

{(dcl.v , M Expr[dcl.expr, s])}

T he sem antic function for form ulas is as follows:

FI Formula '■ F o rm u la  x S ta te  —> Bool 
FIFormula [ f ■ F o rm u la , s : State] =  

case /  of
N eg a tio n  :!Mf0rm „io[ / . / ,  s]
C o n ju n c tio n  . A lporm uia \f-fi> A F Iporrnuia{ f.f- 2 ,s]
D is ju n c tio n  . FIporrriui0j f . f \ , s ]  V F tpor7nuia[f.f-2 ,s]
E x is te n tia l : M E x i s t e n t i a l  [/, s]
U niversa l : M Universai[ f, s]

end

An existential form ula is true if and only if th ere  is a t least one assignm ent to  its bound 
variables satisfying the  formula:

FI Existential E x is te n tia l  x S ta te  —t Bool 
F I E xisten tia lis t : E x is te n tia l, s : State] =

given bindings = FIBVar-DeciarationJist[ext.bVarl, s] 
then  \J{F Ip0rmuia[ext.f, s 1+| b] | b G b indings]} 
end
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A universal form ula is true if and only if all of the assignm ents to  its bound variables 
satisfy th e  formula:

My-niversai •' U niversa l x S ta te  -> Bool 
M i!niversai[um : U n iversa l, s : S ta te ] =

given bindings = M B V a r - D e c l a r a t i o n J i s t [uni.bV arl, s] 
then  f \ { M FoTmu[a[uni.f,s\+)b] | b e  bindings)}  
end

A list of bound variable definitions generates a set of “bindings” . Each “binding” is a 
set of nam e-value pairs:

M b v  ar ̂ .Declaration j is t  '■ B V  a r-D ec la ra tio n J is t x Sta,te F  (V ariable  —> V a lu e )
M b v  a r  - D e c l a r a t i o n  j i s t  [dl : B V  ar -D eclara tion  l i s t ,  s : State) =  

if dl.length  =  0 then  0
else given p a irs  — {dl(0).v}  x M Expr[dl(0).expr,s];

7 e s tB m d m g S  — BV a r - D e c l a v a t i o n - l i s t \ d l  .ta il , s |+) p)
then  {{p} 1+) r \ p  £ p a irs  A r e  re s tB in d in g s}  
end

end

Each expression yields a value. T he value depends on the  type of th e  expression:

M Expr : E x p r  x S ta te  V a lu e  
M.Expr\exp : E xp r , s : State] =  

case exp  of
C o n s ta n t: M C o n s t a n t [ e x p , s )

Variable : Mvariabie[exp, s]
F o rm u la  : M Formuia[exp, s]
E x p r W ith V a r s  : M ExprWithVars{exp, s)
O peration . Mioperation\SXp, s]

end

Each constant has a  real value as its  denotation; we om it the ir sem antic functions.
T he sem antics of V ariable  is defined as follows:

Mvariable '■ V ariable  x S ta te  —» V alue  
MvariaUe[v '■ V ariable, s : S ta te]  =  s(v)

T he sem antics of E x p r W ith V a r s  is defined as follows:

MExprWithVars '■ E x p r W ith V a r s  x S ta te  —>■ V a lu e  
AfExprWithVars\exp : E x p r W ith V a r s , s : State]  =

M Expr\pXp.expr, S (+j M D e c l a r a t i o n J i s t  \exp.dl, s] ]

T he sem antics of the declaration list is defined as follows:

MDeclarationJist '■ D e c la ra tio n J is t  x S ta te  —> F (V ariab le  -> V alue)
MDeclarationJist[dl • D ec la ra tio n d is t, s . State] = 

if d l.length  = 0 then  0
else given p a ir  =  {(d l(0).v , M Expr[dl(0).expr, s]}

then  p a ir  (+) M D e c l a r a t i o n Jist[dl-tail, s Impair]
end

end

In the  abstrac t syntax, set and sequence operations, relational operations, and functions 
on the  object model are under th e  category of operations. Since the  sem antics of m ost 
of the  set, sequence, and relational operations are s tandard , we will present the  sem antic
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function for only set com prehension. F C L - fc t  represents all th e  FCL functions on source 
code model; these functions are described in Section 3.2.2.

T he sem antic function of Set-com prehension  is defined as follows:

Mset-comprekension '■ S e t-Comprehension x S ta te  -> Set-type  
M S e t - c o m p r e h e n s i o n [ s c  : S e t-Comprehension, s : State] = 

given bindings =  M B v a r - D e c i a r a u o n - i i s t [ s c . b V a r l , s ]

th en  {ele | M Formuia[sc.p, s 1+) b] =  tr u e , ele = M E x p r [ s c . e l e ,  s t+J b], ele ^  *, b 6 bindings}  
end

Note th a t  if the  result of th e  element function is “undefined,” the  element will not be 
included in  the set. Thus set com prehensions always re tu rn  “valid” sets.
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