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ABSTRACT

The sign character for Coxeter groups and the Steinberg character for finite groups
with BN-pair can be expressed as alternating sums of permutation characters. We
show that we can use the corresponding permutation modules to construct modules
which afford these characters.

Further, we consider an analogue of the Steinberg character for GL.(Z/p"Z),
h > 2, given by Hill. Using the same method as for the sign character and Steinberg
character, we construct a module which affords this character. In addition, we show
that this character can also be expressed as an alternating sum of permutation char-
acters over certain subgroups of GL.(Z/p*Z) containing B, the subgroup of upper

triangular matrices.
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Chapter 1

Introduction

The aim of this thesis is to examine particular examples of characters which can be
expressed as alternating sums of permutation characters and to show that we can
construct modules which afford these characters using only permutation modules.
Our main tool for constructing these modules will be self-adjoint idempotents. in
particular the group sums H for subgroups H of G.

Let F be an arbitrary field of characteristic 0 which is closed under complex
conjugation, and let G be a finite group. The group ring F'G can be regarded as
a finite dimensional F-vector space with F-basis {g}seq, thus we can consider the
inner product for finite dimensional F-vector spaces as an inner product on FG

<zagg,zb,z> Yo

g€G z€CG g€G

where - denotes complex conjugation. Further, this inner product is invariant with
respect to multiplication by G and so for any FG-submodule M of FG, the vector
space orthogonal complement M* is also an F'G-module. Hence we get the orthogonal
decomposition of FG,

FG=Moe M*

and, using the orthogonal projection of FG onto M, we show that there is a unique
idempotent e € FG, called a self-adjoint idempotent, such that M = FGe and
Mt = FG(1 —e).

Now, given self-adjoint idempotents ey,...,e, € FG we define other self-adjoint
idempotents e; A---A e, and €, V--- Ve, in FG so that

FGein---NFGe,=FG(ey A+ A eg)

and

FGey+---+ FGe, = FG(e1 V --- V e,).

1



We give some properties of these idempotents and show that they are essentially
independent of the field F. Moreover, in the case where F is a subfield of C we see
that they can be constructed using the idempotents e, ..., e, as

e =. .- k
erA--Aey = lim(e;---en)
and
elv...venzl—lim[(l—-el)"‘(l_en)]k‘
k—oco

In Chapter 3 we examine the link between representation theory and self-adjoint
idempotents. We show that given a self-adjoint idempotent e € F'G, the character
of the corresponding F'G-module FGe is

x(g) = Z €r=1g=lz.
z€CG

Consequently, if the self-adjoint idempotent can be expressed as an F-linear combi-
nation e = aye; + -+ + aqe, of other self-adjoint idempotents e,...,e, € FG, then
we have a corresponding decomposition for the character x,

X=ai1X1+- -+ anXn

where x; is the character of FGe;. In particular, we concentrate on the self-adjoint

idempotents |
H=—Yn
T 2

heH

for subgroups H of G and the corresponding permutation modules FGH.
For Coxeter groups W, Solomon in [18] showed that the sign character € of W
could be expressed as an alternating sum of permutation characters

e=) (=)M(w,)".
Jcs

Using self-adjoint idempotents we show that a module affording this character is given
by the FW-module M in the following orthogonal decomposition

FW=M& Z FWW;.
£JCS

Similarly, for finite groups with BN-pair Curtis in [5] showed that the Steinberg

character St was given by
St = _(=D)M(1w,)°.

Jcs

~n



Again we show that a module affording this character can be constructed as the
FG-module M in the orthogonal decomposition

FGB=Ma > FGP;.
#2JCS

Finally, we look at an analogue of the Steinberg character for G = GL.(Z/p*Z),
h > 2, given by Hill in [11]. We construct certain subgroups K of G analogous to
the subgroups P; for GL,(Z/pZ) and show that the F'G-module M in the orthogonal
decomposition

FGB=M® Y FGK;
9£JCS

affords the character given by Hill. Further, we see that the self-adjoint idempotent
e € FG such that M = FGe is

e=> (-,

Jcs

and so the character given by Hill can be expressed as the following alternating sum
of permutation characters

xu =Y (-)Y(1k,)%,
cs

which is analogous to the expression for the Steinberg character given by Curtis in

[5].



Chapter 2

Geometry of Finite Group Rings

In this chapter we develop certain techniques to investigate the submodule structure of
a finite group ring F'G, with emphasis on idempotents which generate the submodules
as principal left ideals of FFG. In particular, we give a distinguished idempotent
for each submodule and use these to construct idempotents corresponding to the
intersection and sum of a finite number of submodules of FG.

Further, we show that these self-adjoint idempotents are essentially independent
of the field F' and that they give a bijection between FG-submodules of FGe and
S-submodules of S, where S = eFGe and e € FG is a self-adjoint idempotent, which
preserves irreducibility.

2.1 An Inner Product in Finite Group Rings

Let F be an arbitrary field of characteristic 0 which is closed under complex conju-
gation, and let G be a finite group. By the group ring F'G of G over F' we mean the
set of all formal F-linear combinations of elements of G, i.e.

FG={Zagg:ag€F},

9€G
with addition given by
Z agg + Z byg = Z(ag +b)g
9€G 9€G 9€G

and multiplication

<z agg) (Z b,z) Y Y aghe.

g€G z€CG g9€G £€G

4



We will assume the basic definitions and results for rings; see [1] or [13] for partic-
ular emphasis on group rings and their connection to representation theory. However,
we will prove the following result in full since it is used explicitly in a later proof.

2.1.1 Lemma  Endgg(FG) ~ (FG)°P.

Proof:

For each r € FG, define the map ¢, : FG = FG by ¢.(s) = sr for all s € FG,
i.e. ¢, is right multiplication on FG by r. Then for each s,t € FG we have that
dr(s+t) = (s+t)r=sr+tr = ¢.(s) + ¢.(t) and ¢.(st) = str = s¢.(t), impying that
¢- is an FG-endomorphism. Further, if ¢, = ¢, then r = ¢,.(1) = ¢,(1) = ¢ and so
the FFG-endomorphisms ¢, are distinct.

On the other hand, suppose that we have an F'G-endomorphism ¢. For each
r € FG we see that ¥(r) = ry(l) implying that ¥ = ¢y(). Hence every FG-
endomorphism is of the form ¢, for some r € FG.

Finally, for each r,s,t € FG, (¢, + &5)(t) = &:(t) + &s(t) = tr +ts=t(r+s) =
¢r+:(t) and (¢r°¢s)(t) = ¢r(t3) =tsr = ‘bsr(t)v gl‘”ng Or+0s = Grys and ¢,00; = @r.

a

Consider FG as an F-vector space of dimension |G| with basis {g};ec. We can
give FG the corresponding vector space inner product

<Z ag4, Z b:r:-"-'> = Z agg’
g9€G z€G 9€G

where - denotes complex conjugation. Moreover, we see that this inner product is
invariant with respect to the action of G on FG:

2.1.2 Lemma Let r,s € FG and g € G, then (gr,gs) = (r,s) and (rg,sg) =
(r,s).
Proof:

Suppose that r =3 _ ;4.7 and s = 3 .;b:2. Then

gr = za,ga: = z ag-1-T

z€CG z€G
and
gs = Z bzgz = Z bg-1z2,
z€G z€G
thus _
(gr,gs) = z ag-1zby-1, = Z a.b, = (r,s).
z€G z€G



Similarly for multiplication on the right. O

It is this inner product structure of FG that we will use to obtain information
about the F'G-submodules of FG; see [14] for basic definitions and results concerning
inner products in real and complex vector spaces and [10] for F-vector spaces.

In particular, since we have an inner product on F'G, we can define the orthogonal
complement of an FG-submodule of F'G.

2.1.3 Definition Let M be an FG-submodule of F'G and define the orthogonal
complement of M to be

M* ={re FG:{(r,m)=0,Ym e M}.

Further, since the inner product is G-invariant, M'* is also an F'G-module and,
in a result analogous to the vector space case, we have the following orthogonal
decomposition of F'G:

2.1.4 Lemma  M*' is an FG-module, such that FG = M & M*.

Proof:

We know that the orthogonal complement of an F-vector space, is an F-vector
space so we need only show that M* is closed under the action of G. Let n € M*, then
for any g € G and any m € M we see that (m,gn) = (gg~'m,gn) = (g7'm,n) =0
since the inner product is G-invariant and since M is an FG-module. Hence gn € M+
and M* is an FG-module. Finally, the decomposition of F'G follows from the same
result for finite-dimensional F-vector spaces. O

2.1.5 Corollary  Let M be an F'G-submodule of M, then for any F'G-submodule
Nof M,M=N&(NtnM).

We would like to use this orthogonal decomposition to give a distinguished idem-
potent for the module M, i.e. to be able to pick an idempotent e € FG such that
M = FGe and Mt = FG(1 — ¢€). To do this we define the adjoint of an element of

FG and therefore the notion of self-adjoint ring elements.

2.1.6 Definition  Let r =3 ., a,9 € FG, then the adjoint of r is defined to be
rT= Z a,-1g.
9€G
We say that r is self-adjoint if r = r*.

In particular, a ring element and its adjoint are related in the following way:



2.1.7 Lemma  For each r,s,t € FG, (rs,t) = (s,r"t) and (sr,t) = (s, tr*).

Proof:
Note that by Lemma 2.1.2, (gr,s) = (gr,gg™"s) = (r,g™"s). So, if r = 3 s a,9

then
(o))

= z ag (gs, t)

geG

Zag (s,g'lt)

9€G

- {(Z=))

= (s,r7t).

(rs,t)

il

Similarly for multiplication by r on the right. a

Moreover, this shows us that the adjoint of a ring element is related to the adjoint
of the corresponding linear map ¢..

2.1.8 Corollary  (¢r)" = ¢r.

Proof:
This follows from Lemma 2.1.7 and the definition of the adjoint of a linear map.
O

The properties of the adjoint of a linear map then give us corresponding properties
for the adjoint of a ring element.

2.1.9 Corollary Letr,s€ FG and A\, u € F, then
(i) (A\r 4 us)* = Ar" + Gs™;
(ii) (rs)* =s"r".
Now consider an idempotent in e € FG which is also self-adjoint. Then
FG=FGe® FG(1 —e),

the usual decomposition of F'G given by the idempotent e, is in fact an orthogonal
decompostion of FG as in Lemma 2.1.4.



2.1.10 Lemma Let e € FG be a self-adjoint idempotent, then (FGe)t = FG(1—
e).

Proof:

Since e is self-adjoint, for each re € FGe and s(1—e) € FG(1—e), (re,s(l —¢€)) =
(r,s(1 —e)e) = (r,0) = 0. Hence FG(1—e) C (FGe)*. However, we can express any
r€ FGasr=re+r(l —e),and so (re,r) = (re,re) + (re,r(1 — e)) = {re,re) =0
if and only if re = 0, i.e. if r € FG(1 —¢). Thus (FGe)* = FG(1 —e). a

We now show that every orthogonal decomposition of F'G is of this form for some
unique self-adjoint idempotent and so, for each FG-submodule M of FG, there is a
unique self-adjoint idempotent e € F'G such that M = FGe.

2.1.11 Definition Let M be an FG-submodule of FG and define the orthogonal
projection of F'G onto M to be

Py :FG - FG:r—>m

where r is expressed uniquely as r = m +n with m € M and n € M*.

The orthogonal projection Py has the following properties:
2.1.12 Proposition  Let M be an FG-submodule of F'G. Then
(i)
(ii) P¥ = Pu;
(i) Py = Par;
(iv) [ — Py = Pya.
Proof:

Py is an FG-endomorphism;

(i) Let r € FG be such that r = m + n with m € M, n € M*. Then, for
any s € F'G, we see that since M and M+ are FG-modules, sm € M and
sn € Mt and sr = sm + sn. Thus Py(sr) = sm = sPy(r), and Py is an
FG-endomorphism.

(i1} For all m € M, Pp(m) = m by definition. Thus, for all r = m +n € FG with
mée M and n € M*,

PAz,,(r) = Py(Pu(r)) = Py(m) = m = Py(r).



(iii) For every r = m +n,r’ =m' +n’ € FG with m,m’ € M and n,n’ € M* |
(Pu(r),™) = (m,m'+n')
= (m,m') + (m,n")
= (maml)
= (m,m") + (n,m)
= (m+n,m')

(ry Pu(r")) .

Hence, Py; = Py by the definition of the adjoint of a linear map.

(iv) Suppose that r = m +n € FG with m € M and n € M*, then since M =
(M*)*, we see that Py.(r) =n=r—-m= ([ - Py)(r). a

Thus we can use the orthogonal projection Py to give us the self-adjoint idem-
potent e € FG such that M = FGe.

2.1.13 Corollary  Let M be an FG-submodule of FG, then there exists a unique
self-adjoint idempotent e € FG such that M = FGe.

Proof:

By Proposition 2.1.12(i) Py is an F'G-endomorphism and so, by Lemma 2.1.1,
there is a unique e € FG such that Pyy = ¢.. Further, ¢.2 = ¢ = ¢. implies
that e is an idempotent and ¢.. = ¢ = ¢, implies that it is self-adjoint. Finally,
#e(r) = re € M for each r € FG, so FGe C M, and m = ¢.(m) = me for each
m € M, thus M = FGe.

Suppose now that f € FG is another self-adjoint idempotent such that M = FGf.
Then e € FGf implies that ef = e and f € FGe implies fe = f. However, this gives
f=f=(fe)=ef=ef=e a

Now, since for each FG-submodule M of FG there is a unique self-adjoint idem-
potent e € FG such that M = FQe, this means that in particular, given FG-
submodules M,,..., M, of FG, there must be unique self-adjoint idempotents for
their intersection M; N---N M, and their sum M| +--- + M,.

2.1.14 Definition Let ¢;,...,e, € FG be self-adjoint idempotents and define
the meet, e, A---Ae,, and join, e, V---Veg, of €, ..., e, to be the unique self-adjoint
idempotents in F'G such that

FGeyN---NFGe,=FG(ey A+ Nen)

and

FGey+---+ FGe, = FG(e; V -+ V eg).



Immediately from the definition we see that the meet has the following properties:

2.1.15 Lemma Let ¢, f,z € FG be self-adjoint idempotents, then

(i) eAe=ce;
(i) eAf=fAe;

(iii) (eAf)Az=eNfAz=eA(fAZ)

(iv) fez=eor fr = f,thene(eA f)=eA f=(eA f)e;
(v) fze=z and zf =z, then z(e A f) =z = (e A f)z.
Proof:

(i) FG(e A €)= FGen FGe = FGe;

(ii) FG(eN f)=FGeNn FGf = FGfN FGe = FG(f Ne).

(iii) FG((eA f)Az) =(FGeNFGf)NFGz = FGeN FGfNFGz = FG(eA f A x)
and similarly FG(eA(fAz)) = FGeN(FGfNFGz) = FGeN FGfN FGr =
FG(eA f Az).

(iv) FGe C FGz since ez = e. Hence, FG(eA f) = FGeNFGf C FGe C FGr and
so (e f)x = (eA f). Moreover,e =e" = ((e A f)z)* = z"(e A f)* = z(eA f).
Similarly for the case fz = f.

(v) FGz C FGe since ze = z, and FGr C FGf since f = r. Hence FGz C
FGeN FGf = FG(eA f) and so z(e A f) = z. Also, z =z = (z(e A f))" =
(en f)z"=(eA fz. a

Further, we can express the join €, V --- V e, in terms of the meet of some other
self-adjoint idempotents. To do this we use the orthogonal complement to give the
following correspondence between sums and intersections:

2.1.16 Lemma  Let M, N be FG-submodules of F'G, then (M +N)t = MtNN*L,

Proof:

Let m € M and n € N, then for every r € Mt N Nt we see that (r,m +n) =
(r,m) + (r,n) = 0. Hence, r € (M + N)* and M* N N* C (M + N)*. Now,
suppose that r € (M + N)*, then (r,s) = 0 for every s € M + N. In particular,
since M C M + N we see that (r,m) = 0 for every m € M implying that r € M+,
and since N C M + N, (r,n) = 0 for every n € N implying that r € N*. Hence
re MtNN*tand (M + N C MtN N a

10



2.1.17 Corollary  Let ¢,,...,e, € FG be self-adjoint idempotents, then
etVe--Vea,=1—(1—e)A---A(l —ep).

Proof:
Note that
FG(€1V"'V€") = FG€1+"‘+FG€,;
= [(FGe, +---+ FGe,)*|*
= [(FGe)tN---N(FGe,)*t]*
= [FG(l—e)N---NFG(l —ey)]*
= [FG((1—e)A---A(l-e))]*
FG(L—(1—e)A---A(l—ean)),
and the result follows from uniqueness of the self-adjoint idempotents. O

Consequently, we get the corresponding properties for e, V -+ V en:
2.1.18 Lemma Let ¢, f,z € FG be self-adjoint idempotents, then
(i)
(i) evf=fVve
(iii) (eVfive=eV fVvz=eV(fVz)

eVe=e,

(iv) fze=zorzf =z,then z(eV f) =z =(eV f)z;
(v) fezr=eand fr = fthenz(eV f)=eV f=(eV f)z.

2.2 Changing the Field

Suppose now that we have some field K containing F. FG can be regarded as a
subset of A'G and therefore any F'G-submodule M of FG is also a subset of A'G.
Hence, we can examine the the A'G-submodule of K'G generated by M C A'G.

2.2.1 Definition Let M be an FG-submodule of FFG and define A’ M to be the
K G-submodule of KG
KM =Km;+---+ Km,

for some basis {m;}%, for M over F.

An FG-submodule of FG is absolutely irreducible if, for all fields K containing F',
KM is an irreducible K G-module.

We say that a KG-submodule N of KG is realisable over F if there is some
FG-submodule M of FG such that N = K M.

11



We need to show two things about the definition. The first is that it is well-defined,
i.e. KM does not depend on the basis for M.

2.2.2 Lemma Let M be an FG-module and suppose that {m;}~, and {mi}L,
are two bases for M over F. Then

Kmy+--+Km,=Km)| +---+ Km/.
Proof:

For each 1 <t < n, we can write m; = 2;‘;1 a; ;m’; for some a;; € F. Then we
see that for any k € K we have that

n

km; =Zka.-,jm;- € Kmi+---+ Km..

i=1

Hence Am, +--- + Km, C Km{ + --- + A'm!. Similarly for the reverse inclusion,
and so Km, + -+ + Km, = Km| + --- Km], as required. a

The second thing we need to show is that A'M is indeed a A'G-submodule of K'G.

2.2.3 Lemma Let M be an FG-submodule of F'G, then A’ M is a A'G-submodule
of KG.

Proof:

By definition, A’'M is a K-vector subspace of A'G, so to show that A'M is a AK'G-
submodule of A'G we need only show that it is closed under left multiplication by
G. Let {m;}~, be a basis for M over F. Then, since M is an F'G-module, we have
that for each g € G and for each 1 < i < n, gm; = Y7_, a;,jm; for some a;; € F.
Then, a;; € K and so gm; € KM, for each | < i < n. Hence, since A'M is the
K-linear span of {m;}~,, this implies that K'M is closed under left multiplication by
G. a

Now we restrict to the case where the field A" is also closed under complex conju-
gation.

2.2.4 Lemma Let M be an FG-submodule of FG, then dimp(M) = dimpx (A M).
Proof:

Without loss of generality we may assume that the F-basis {m;}%, for M is
orthogonal, i.e. {(m;,m;) =0ifi # j. Soif ki,...kn € K are such that kym +
++-kom, = 0 then for each 7 we see that

0= (kym; + -+ + knn, m;) = ki (m;, m;)

12



implying that k; = 0. Hence, {m;}%, is a linearly independent set over K, and
therefore is a K-basis for K M. a

As an immediate consequence we have the following result:

2.2.5 Corollary  Let M be an F'G-sumodule of FG and let {m;}, be an F-basis
for M. Then {m;}~, is a K-basis for KM.

i=1
2.2.6 Lemma Let M, N be FG-submodules of FG. Then
(i) K(FG) = KG;
(ii) K(M*)=(KM)*Y;
(iiil) KM+ N)=KM + KN,
(iv) AIMNN)=RMnNKN.

Proof:

(i) This follows immediately from the definition since {g}4ec is both an F-basis for
FG and a K-basis for A'G.

(i) Let {m;}", be an orthogonal F-basis for M and extend it to an orthogonal
basis {m;}'°! for FG over F. Then {m:}& +1 is an orthogonal F-basis for M*.
Now (m;,m;) =0 for all i # j, so for each n + 1 < j < |G| and ky,...,k, € A,

(klml + -+ kg, mj) =k (mhmj) +o+ kn (mna mj> = 0.

So, m; € (Am+---+Km,)* = (KM)* and therefore Kmayy+-- -+ Kmyg =
K(M*) C (KM)*.

On the other hand, since {m,-}'-gll is an orthogonal A’-basis for A'G, so if kym, +
-+ + kigymie) € (KM)* then for each 1 < i< n,

(kymy + - - kigymig), mi) = ki (mi,m;) =0,
ie. ki = 0. Thus (KM)* C Kmugr + - Kmyg = K(M*).

(iii) Let {mi,...,m,} be an F-basis for M N N. Then we can extend it to F-
bases {m),...,Mn,Mn41,-..,m} and {my,...,ma,m,,,...,m;} of M and
N respectively. So, {mi,...,Mu, Mnt1,...,Mr, My ,,,...,my} is an F-basis for
M + N and is therefore a K-basis for K(M + N). Hence we see that
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KM+KN = (Kmy+--+Kmpa+ Kmpg +---+ Km,)
+(Kmy+---+ Kmo+ Kmj,_, +---+ Km})
= Kmy+---4+ Km,+ Kmpy,
+--+Km,+Kmj  +---+ Km,
= K(M+N).

(iv) Keep the notation from the proof of part (iii). In particular, we see that since
{my,...,ma, My, meyml,,...,m,} is a K-basis for K(M + N) it is linearly
independent over K. So, if r € KM N KN thenr = kymy + -+ + kam, +
kntiMagr + -+ kemeand r=kimy+--- +kima+ ki ymi + -+ kim, for
some k;, k! € K. Thus

klml +-- 4+ knmn + kn+lmn+l +-+ krmr
= Ky R R e K

implies k; = 0 forn +1 < i <rand ki =0forn+1 < j < s. Hence
KMNOKN C Kmy+---Km, = K(M N N). On the other hand, clearly
RKMNN)CKMand KIMNN)CKNso K((MNN)CRMNKN. a

Now, if M is an FG-submodule of F'G then there is a unique self-adjoint idempo-
tent ep € F such that M = FGer and, since A’ M is a K'G-submodule of A'G, there
is also a unique self-adjoint idempotent ex € KG such that A M = K Gex. However.
for any self-adjoint idempotent € € F'G then, considered as an element of A'G, it is
still a self-adjoint idempotent. Thus, we would like to be able to show that e and
ex are the same self-adjoint idempotent.

2.2.7 Lemma Let e € FG be a self-adjoint idempotent, then K'(FGe) = KGe.

Proof:

Let {m;}", be an F-basis for FGe. Since e € FGe, e = ) _, a;m; for some
a; € F. Then, a; € K impliesthate = Y"1, a;m; € Km+---+Km, = K(FGe),and
therefore KGe C K(FGe). Conversely, for each 1 < i < n, m; € FGe implies that
m;e = e. Thus for any r € K(FGe),r = kym, +- -+ k,m, for some ky,..., k. € K,
and

re = kymie+---knmpe = kymy +---kym, =r.

Hence, K(FGe) C KGe and so K(FGe) = KGe. a

2.2.8 Corollary  Let M be an FG-submodule of FG, then e € FG is the unique
self-adjoint idempotent such that M = FGe if and only if it is the unique self-adjoint
idempotent in KG such that KM = KGe.
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Proof:

Suppose that e € F'G is the self-adjoint idempotent such that M = FGe, then we
see that KM = K(FGe) = KGe and e € KG is the unique self-adjoint idempotent
such that KM = KGe.

Conversely, suppose that e € KG is the unique self-adjoint idempotent such
that KM = KGe. Then, since M = FGf for some unique self-adjoint idempotent
f € FG, KGe= KM = K(FGf) = KGf implies that e = f and so e € FG is the
unique self-adjoint idempotent such that M = FGe. a

Immediately from this we are able to give a necessary and sufficient condition for
a KG-submodule N of K'G to be realisable over F.

2.2.9 Corollary Let N be a A'G-submodule of A'G with corresponding self-
adjoint idempotent e € KG. Then V is realisable over F if and only if e € FG.

Proof:

Suppose that N = KM for some FG-submodule M of FG, then by Corol-
lary 2.2.8, if e € FG is the self-adjoint idempotent such that M = FGe, then it
is also the self-adjoint idempotent such that N = KGe. On the other hand, if
M = KGe with e € FG, we see that FGe is an FG-submodule of FG such that
K(FGe)= KGe= M. a

Further, for any self-adjoint idempotents e,,...,e, € FG we know that there are
self-adjoint idempotents e, A --- Ar e, and e Vg --+ VF e, in FG such that

FGe,N---NFGe, = FG(ey Ar -+ Ar eg)

and
FGey+---+ FGe, = FG(ey VF -+ VF €,).

However, since e,...,e, are also self-adjoint idempotents in A'G, there atre self-
adjoint idempotents e; Ay --- Ax e, and €; Vg -+ Vg €, in A'G such that

KGelﬂ--.ﬂKGe,, = I\’G(e[ AR -+ Ap en)

and
RGe, +---+ KGe, = KG(ey Vi *+- Ak €n).

Again, we would like to show that these self-adjoint idempotents are independent of
the field, i.e. e, Ap---Arpe, =€ Ax---Axe,and g Vp---Vrpe, =€ VK -+ VK €n.

2.2.10 Lemma Letey,...,e, € FG be self-adjoint idempotents, then

eitN\rp - “Arpea=¢€e1Ag - Ag €.
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Proof:

The result follows from the uniqueness of the self-adjoint idempotents in the
following

RG(ey Ar---Arex) = K(FG(eit Ar- - AFen))
K(FGe N ---N FGey,)
K(FGe)N---N K(FGe,)
KGein---N KGe,
KG(ey Ag -+ Ak €qn).

Q
2.2.11 Corollary  Let e),...,e, € FG be self-adjoint idempotents, then
et VFp---Vrpe, =€ Vg -+ Vg €.
Proof:
Using Corollary 2.1.17 we see that
eeVF---Vre, = 1=(1—€)Ar---AF(l —e€a)
= l—=(l—e)Anx- Ak (1l —en)
= € Vi Vi €n.
a

2.3 Subrings eFGe of FG

Let e € FG be a self-adjoint idempotent and define S to be the subring S = eF'Ge
of FG with identity element e € S. In particular, we see that S can also be regarded
as an F-vector subspace of F'G and so has the inner product of F'G restricted to
S. Further, note that for any s € S, s = ere for some r € FG and so s* =
er*e € S. Thus, we can define the adjoint of an element of S in the same way as in
Definition 2.1.6.

Moreover, as in the case of F'G, we can define the orthogonal complement of an

S-submodule of S.

2.3.1 Definition Let N be an S-submodule of S and define the orthogonal com-
plement of N to be

Nt={seS:(s,n)=0,Vn € N}.
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Again, we find that the orthogonal complement of an S-submodule of S is also
an S-module and we get an orthogonal decomposition of S:

2.3.2 Lemma  Let NV be an S-submodule of S, then N* is an S-module such that
S=Na&N*.

Proof:

N+t is an F-vector space so to show that it is an S-module it suffices to show that
it is closed under left multiplication by S. For each n’ € N* and for every n € N,
s € §, we see that (sn’,n) = (n’,s"n) = 0, since s"n € N. Hence sn’ € N* and Nt is
an S-module. Finally, the decomposition of S follows from the same decomposition
for F-vector spaces. a

In particular, when f € S is a self-adjoint idempotent we see that we have the
usual decomposition of S,

S=Sf®S(e-f).
2.3.3 Lemma Let f € S be a self-adjoint idempotent, then (S f)* = S(e — f).
Proof:
The proof is exactly the same as in Lemma 2.1.10. a

Now, to prove that every S-submodule N of S is of the form NV = Sf for some
unique self-adjoint idempotent f € S we could once again define the orthogonal
projection of S onto N. However, it is simpler to use the corresponding result for

FG-submodules of FG.

2.3.4 Theorem  For each S-submodule N of S, there is a unique self-adjoint
idempotent f € S such that N = Sf.

Proof:

Let N be an S-submodule of S. Define M = FGN, then, since N C FGe, M is
clearly an FG-submodule of FGe. Consequently, M = FGf for a unique self-adjoint
idempotent f € FG such that fe = f. In addition, f = f* = (fe)" =" f* =ef and
so f € eFGe = S. Hence, we see that

Sf=(eFGe)f =e(FGf)=eM =eFGN = (eFGe)N =S5N = N.

a

As a consequence of this, the self-adjoint idempotents give a bijection between
FG-submodules of FGe and S-submodules of S.
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2.3.5 Corollary  There is a bijective correspondence between F'G-submodules of
FGe and S-submodules of S given by

FGf <« Sf.

Proof:

Given an FG-submodule M of FGe, M = FGf for some self-adjoint idempotent
f € FG with fe = f. Then ef = f also, so f € S and Sf is an S-submodule
of S. Conversely, given an S-submodule N of S, by Theorem 2.3.4 N = Sf for
some self-adjoint idempotent f € S. Then fe = f and FGf is an F'G-submodule
of FGe. The fact that this is a bijection is due to the uniquness of the self-adjoint
idempotents. a

In particular, this bijection sends irreducible modules to irreducible modules.

2.3.6 Corollary  FGf is an irreducible F'G-submodule of FGe if and only if S f
is an irreducible S-submodule of S.

Proof:
Suppose that 0 C FGz C FGf. Then, since zf = z with £ # 0 and ¢ # f, we
have that 0 C Sz C Sf. Similarly for the reverse direction. a

Note that the bijection also preserves intersections and sums of modules.

2.3.7 Lemma Let fi,..., f. € S be self-adjoint idempotents, then fi A--- A f,
is the unique self-adjoint idempotent such that

SAN---NSfa=S(hirh---Afa)
and f; V---V f, is the unique self-adjoint idempotent such that
Sh+-+Sfa=S V-V fa)

Proof:

Let r € SfiN---NSf,, then rf; = r for each i. Hence, by Lemma 2.1.15(iv),
r(fiNh---Af.)=fandsor € S(fiA--- A fa). Conversely, suppose that r € S(f; A
A fa), then r(fiA--- A fr) = r. So, since for each ¢ f;f; = f;, by Lemma 2.1.15(iii)
(FiN--Afa)fi = fiN- - Afa. Thusrf; =randr € Sf;foreachi,sor € SfiN---NS f,.
Hence SfiN---NSfa=S(finN---A fa).

Similarly for Sfi +---+Sfa=S(fiV---V fa). a
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2.4 Constructing the Meet and Join

By Section 2.1 we know that for self-adjoint idempotents e;,...,e, € FG, the self-
adjoint idempotents ey A---Ae, € FG and ¢;V---Ve, € FG from Definition 2.1.14
exist and are unique. However, we would like to be able to construct them using only
€1y.++9En.

In the particular case where the idempotents commute we have the following
results:

2.4.1 Lemma Let e),...,e, € FG be self-adjoint idempotents such that e;e; =
e;e; for each 1 < 4,7 < n. Then

etN---ANe,=¢€; €.

Proof:

Note that e, - - - e, € FG is a self-adjoint idempotent since (e; -+ €,)? = €?---€2 =
e;---epand (e ---€,)” =€, -€] =€y --€ =¢€, - e, Further, foreachl <1 < n,
we see that (e;---e,)e; = €---€?---e, = €,---€, s0 FG(e,---e,) C FGe;, and
therefore FG(e;---e.) C FGeyN---NFGey. Further, for each r € FGe N---NFGey,
r € FGe; implies re; = r for each i. Thus r(e;---e,) =r and r € FG(e,---e,), L.e.
FGe,n---N FGe, C FG(e,---e,). Hence FGe, N---N FGe, = FG(e,---€,) and
so, by definition, ey A---Ae, =€+ €, a

2.4.2 Corollary Lete,,...,e, € FG be self-adjoint idempotents such that e;e; =
eje; for each 1 <i,j < n. Then

61V"'V€n=1—(1'—61)"'(1—6,,).

Proof:
Note that foreach 1 < i,j <n,(1-e)(l—¢;) = 1—e;—ej+eie; = l—ej—e;teje; =
(1—¢;)(1—¢;). Thus the result follows from Lemma 2.4.1 and Corollary 2.1.17. O

We now construct e;A- - -Ae, and €;V- - -Ve, in general for self-adjoint idempotents
€i,...,€n € FG where F is a subfield of C. Since FF C C, by Lemma 2.2.10 and
Corollary 2.2.11, we saw that if we consider ey,...,e, as self-adjoint idempotents in

CG, then
et N\rp--*Are,=e Ac---Aceén

and
et V- Vre,=¢ V¢ -+ Ve én.

Thus it suffices to consider the case of self-adjoint idempotents e, ...,e, € CG.
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To construct ey A---Ae, and e,V ---Ve, we will use the corresponding orthogonal
projections. In particular, we would like to look at limits of certain sequences of com-
positions of the orthogonal projections, and so we must define a norm on Endg (CG).
First note that the inner product on CG gives rise to the induced norm

lirll = (r,7)
for each r € CG. Thus we can define a norm on Endgg(CG) by
1¥llg = sup{ll¥(r)ll : v € CG, |Ir|| < 1}
for each ¥ € Endeg (CG).

[STd

2.4.3 Lemma Let ¢, ¢ € Endgs(CG), then |[¢ o é||g < |1¥]|g l|9lls -

2.4.4 Lemma Let M be a CG-submodule of CG, then ||Pyl|z = L.

Proof:

Let r € CG, r = m+n with m € M, n € N, Then (r,r) = (m+n,m+n) =
(m,m) + (m,n) +(n,m) + (n,n) = (m,m) + (n,n), i.e. l71)? = {|m|[* +||n||*. Hence
1P (M| = flmll = (lIrI* = lInl*)7 < [Ir. a

We can now prove the following result which describes the orthogonal projection
onto the intersection of CG-submodules M|, ..., M, of CG in terms of the orthogonal
projections Pyy,.

2.4.5 Theorem Let M,,..., M, be CG-submodules of CG with corresponding

orthogonal projections Pyy,,..., Py,. Then limgoo(Prr, 0--- 0 Py, )f = Py where
N=Mlﬂ--'ﬂMn.
Proof:

Let T = (Pp, 0--- 0 Py,) — Py and note that T* = (Py, 0-+-0 Py )f — Py. In
addition, we see that

T=(PM"O---OPMl)—PN=(PMn0'--OPMl)O([—PN)=(PMnO”-OPMl)OPNL,

thus ||T)|z < [|Pstallg -+ || Pos, |l || Pyellg = 1. Hence, for each k, ||T¥||; < |IT|IE =
1and forl >k

Tl = 1T o T{| g < T ||| = |79l -
Suppose that r € CG with r ¢ N1, then by the proof of Lemma 2.4.4,
NT () < IPwe ()]l < Il
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Similarly, if r € M;_; N---0 M; N NL, but r ¢ M;, then
NT ()| < || Pati o Patiy © -+ 0 Pagy Pya(r)|| = 11 Pas ()] < il -

Hence, we see that ||T(r)|| < ||| forallr ¢ M, N---N M NNt =NNNt=0.
Thus if T has eigenvalue A with eigenvector z, then

A lzl] = [1Az]| = 1T ()] < [l=ll

and |A| < 1. So, if T has eigenvalues A,,..., A then, for each k, T* has eigenvalues
A%,..., Xk and, since |\;] < 1 for each i, AF — 0 as k — o0, i.e. the eigenvalues of
T* tend to 0 as k — oo.

Now, since ||T¥||; < 1 for each k, {T*}{2, is a bounded sequence in Endes(CG)
and so has a convergent subsequence {T%}%2,, say T® — S as j — co. However, by

the above, all the eigenvalues of S are 0 and this implies that 5™ = 0 for some m.
Thus

lim T™5 = lim (T%)™ = (lim T’%) =S5™ =0,

J~roo J=roo j—roo

i.e. {T*} has a subsequence converging to 0. Without loss of generality we may
therefore assume that S = 0. So, for each ¢ > 0, we may pick k; such that ||T"J [ |E <e.
Thus, for every k > k; we see that

Tl < 1IT5]lg <&
i.e. TF = 0 as k — oco. Hence the result. a

As a consequence of this we are able to construct e; A- - - Ae, from the self-adjoint
idempotents ey,...,en.

2.4.6 Corollary Let ey,...,e, € CG be self-adjoint idempotents, then
et Ac- - Acen = lim(er---en).
k=00

Proof:
From Corollary 2.1.13 and Theorem 2.4.5,

ey Ac -+ Ncen = Poge A--OCGen (1)
= lim (Poge, © - - 0 Poge, )¥(1)
k—ro0

lim (ey - - - q)".
k=00



2.4.7 Corollary Let ey,...,e, € FG be self-adjoint idempotents, then
etNF - -Ape, = lim(el-ne,.)k € FG.
k—+0o

Proof:
This follows from Lemma 2.2.10.

2.4.8 Corollary Let ¢),...,e, € FG be self-adjoint idempotents, then
“o = |i - — “ee — k
et VF---VFén klggl [(1—-e)--(1 —en)".

Proof:
Use Corollary 2.1.17.

Note that in general we do not necessarily have (e, A --- Ae,) = (e,---

any k, as the following example shows:

2.4.9 Example Let G = S, the symmetric group on 3 letters. Define

A+ 2)and f=2(1-(1 3),

tvlv—'

then e and f are clearly self-adjoint idempotents in FG. Further, if we let

1

e=g(l+(1 2-(1 3~ 3 2)

a

e, ) for

then we see that r is also an idempotent in F'G, which is not self-adjoint, but is such

that ef = 3z. Consequently,

3 \* 3\* 3\*
- =1 - k =l - =
hm(ef) hrn (4:1:) kllglo (4) T klgrolc <4) z =0,

and so e A f = 0. However (ef)* = (%)kz # 0 for each k.



Chapter 3

Permutation Modules

We now examine the connection between self-adjoint idempotents and representation

theory. In particular, we look at permutation modules and their corresponding self-
adjoint idempotents.

3.1 Representations and Characters

Before proceeding any further we introduce some basic concepts from representation
theory. We will only use a few basic results, but for more detailed results concerning
representations see (9], [16] or [12] for characters.

3.1.1 Definition Let G be a group, then an F-representation of G is a homomor-
phism

p:G—-GL(V)
where V is a finite dimensional vector space over F'. The trivial representation of ¢
is the homomorphism p; : G = GL(F) given by p1(g) = Idr for each g € G.

3.1.2 Remark  F-representations of G and F'G-modules are related in the follow-
ing way. Suppose that we have an F-representation p : G — GL(V), then we can
make V into an FG-module by defining the action of G on V' by g-v = p(g)v for each
g € G, v € V. Conversely, given an FG-module M, we have an F-representation of
G, p: G = GL(M) where p(g) is left multiplication on M by g.

3.1.3 Definition Let p : G — GL(V) be an F-representation of G, then the
F-character x of p is the map

x:G = F; x(g) = trlp(g)]-

The trivial character 1¢ of G is the character of the trivial representation p;.
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Let M be an F'G-module, then xas, the character afforded by M, is the character

of the corresponding representation. Further, xar is irreducible if M is an irreducible
FG-module.

3.1.4 Remark In the particular case where the representation p : G — GL(F')
is 1-dimensional, we have that p(g) € F is a 1 by 1 matrix for each g € G. Thus,
since the trace of p(g) is p(g), x(9) = p(g) for each g € G, i.e. for 1-dimensional
representations there is no dlfference between the representation and its character.

3.1.5 Lemma Let M and N be FG-modules. Then
(i) >
(i) x

(iii) xmen = xM + XN;
v)

(iv

3.1.6 Corollary  Let ¢ be an F-character, then ¢ can be expressed uniquely as

M(l) dimp(.'\/[);

( ) = XM(g);
xm = xn if and only if M ~ N.

¢= Z a;X;
i=1

for some irreducible F-characters x; and positive integers a;.
3.1.7 Definition  Let x, ¢ be F-characters of (¢ and define
R Ep Z
Then we see that this gives an inner product on the F-space spanned by the

F-characters of G.
3.1.8 Lemma Let x, X, (,(’ be F-characters and A,u € F. Then

() (Ax + ex's¢) = Alx: €) + #(X's);

(i) (x:A¢ + p¢') = Mx, ¢) + B, ¢')

(i) (x,¢) = (¢ x)

(iv) (x:x) > 0.



Moreover, Corollary 3.1.6 shows that it is spanned by the irreducible F-characters

of G and below we see that the irreducible F-characters in fact form an orthonormal
F-basis.

3.1.9 Lemma Let x,( be irreducible F-characters of G. Then

+_ )1 ifx=¢
(X,Q)—{O if x # C.
3.1.10 Corollary  Let ¢ be an F-character of G, then

¢=> ({x)x

where the sum is over the irreducible F-characters x of G.

3.1.11 Definition Let p: G = GL(V) be an F-representation of G and H be a
subgroup of G, then the restriction of p to H is

Res$p = p |u: H = GL(V).
If x is the character of p, then the character of the restriction Res$p is denoted xg.

3.1.12 Definition  Let H be a subgroup of G and M be an F' H-module, then the
induced FG-module is defined to be

IndSM = FG @pu M.

If x is the character of M, then the character of the induced module is denoted x°.

The following result is immediate from the definition of induced modules and it
gives a necessary and sufficient condition for an FG-submodule of F'G to have been
induced from an F H-submodule of F H.

3.1.13 Lemma Let H be a subgroup of G and e € F H a self-adjoint idempotent.
Then

Ind$ FHe = FGe.

Further, if M is an FG-submodule of FG such that M = FGe for a self-adjoint
idempotent e € F'H, then
M = Ind§, F He.



3.2 Characters and Idempotents

We know that for each character of G there is an F'G-submodule of F'G which affords
this character and, further, corresponding to this module there is a unique self-adjoint
idempotent. We would like to be able to explicitly construct this idempotent knowing
only the character. Unfortunately this is not possible except for certain special cases.

3.2.1 Lemma Let x be an absolutely irreducible F-character of G, then

2 (Ux(g™")g € FG

yeG

is the self-adjoint idempotent such that the F'G-module FGe, affords the character
x(1)x

Proof:
See [12] Theorem 2.12. a

In particular, in the case where we have a linear character of G, i.e. a character
afforded by a 1-dimensional representation of G, we get the following result:

3.2.2 Corollary Let A : G — GL(F) be a l-dimensional representation of G.
Then

Mg YgeF
u= | Gl Z g€ FG
9€G
is the self-adjoint idempotent such that FGu affords the character A.

Proof:
For each £ € G we have that

Tu= Z Nzg = Z/\ (g7'z)g = Z Mg~ HA(z)g = AMz)u.
IGI g€G yeG IGl g€CG
Thus FGu = Fu affords the character A. Further,
Mz Yzu = Az HA(z)u = =
,Z() IGIZ()) GZ;

r€G z€G

and so u € FG is an idempotent. Finally, u is self-adjoint since A(g~"') = A(g) for all
g€G. O

We can then extend this to induced characters A® using Lemma 3.1.13.
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3.2.3 Corollary Let H be a subgroup of G and A : H — GL(F) be a 1-
dimensional representation of H. Then

u= =S Ah k€ FG
Hl &

is the self-adjoint idempotent such that FGu affords the character AC.

On the other hand, for each self-adjoint idempotent e € F'G we can easily con-
struct the F-character afforded by the FG-module FGe.

3.2.4 Proposition Let e € FG be a self-adjoint idempotent and y the character
afforded by the FG-module FGe. Then, for each g € G

Y(g) = Z Cr-lg-lig-
re€G

Proof:
Consider the linear map S : FG — FG given by r — gre. Then for each h € G.

S(h) = ghe = gh Z exT = Z ezghr = z €(gh)=tz-

z€CG reCG reG

Hence, the trace of S with respect to the basis {g}4ec is

tI‘[S] = Z €(gr)-tr = Z €r-lg~tz.

r€CG ze€CG

Now suppose that {m,...,m,} is an orthogonal basis for FGe. Since FGe is an
FG-module, gm; = }__, a;;m; for some a; ; € F', and then

n

x(9) =) aii

=1

Further, using the Gram-Schmidt othogonalisation process we can extended this basis
to an orthogonal basis for FG, {my,...,Mmn, May1,...,Mg}. In particular, we have
that {mn4+1,...,MG} is an orthogonal basis for (FGe)* = FG(1 — e). Thus, for
1<i<n,m; € FGeand so mie =e,and forn +1 <i < |G|, m; € FG(1 —€) and
so m;e = 0. Therefore, for each m;

Ve omew | Zimeigm; ifl1<i<n,
S(m,)—-gm.e—{o ifn+1<i<|G
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Hence, with respect to the basis {m,,...,mn, May1,...,mg} of FG, we also have
that

n

tr[S] = Zai,i = x(9)-

i=1

Hence the result follows. 0O

Consequently, we can find the dimension of the FFG-module F'Ge immediately.
3.2.5 Corollary Let e € FG be a self-adjoint idempotent. Then
dimg(FGe) = |Gle;.

Proof:
From Lemma 3.1.5(i), if x is the character afforded by F'Ge, then we have that
x(1) = dimg(FGe). Then, by Proposition 3.2.4, this gives

dimp(FGe) = x(1) = )_ez-uz=)_er = |Gler.

z€G re€G
a

Further, if we have a decomposition of the self-adjoint idempotent e € FG into
a linear combination of self-adjoint idempotents then we can express the character
XFGe as a corresponding linear combination of characters.

3.2.6 Corollary Let e € FG be a self-adjoint idempotent which can be expressed
as e = a,e; + -+ + aqe, for some self-adjoint idempotents e;,....e, € FG and
ay,...,an € F. Then

XFGe = Q1XFGe; +*** + QnXFGen-

Proof:
For each g € G we see that

XFGe(g) = Zez-‘g"l:

r€G
= Z (ar(e1)z-1g-1z + - + @n(€n)z-tg-12)
z€G
= 4 Z(el)z—lg-lt +e-+an Z(en)r‘lg‘h'
IEG IGG

= a1XFGe,(g) +*+ + AnXFGen(9)-



3.3 Group Sums and Permutation Modules
We now concentrate on a particular case of self-adjoint idempotents.

3.3.1 Definition Let S be a subset of G, and define

Then, when we have a subgroup of G, by Corollary 3.2.3 we get the following
result:

3.3.2 Lemma  Let H be a subgroup of G, then H € FG is the self-adjoint idem-
potent such that F GH affords the character (1) of G.

3.3.3 Definition  Let H be a subgroup of G, then we call the self-adjoint idem-
potent H € FG the group sum of H, the FG-module FGH the permutation module
of G on H and the corresponding character (1)C the permuation character of G on

H.

3.3.4 Lemma Let H and K be subgroups of G, then HR = HK.
Proof:

For each z € R we see that

2K = 1,Zk = th=—S k=R
|A] . a
and so if H < K then we have that HK = K and

HR = Z hK =

R=RK=HRK.
1Hl &, Z

|H| &

Suppose now that H £ K and let 7 be a left transversal for H N A" in H. Then
we see that HK = UiertK, but if t,s € T are such that tK” = sK then ¢ = sk for
some k € K. Thus k = s™'t € H implies that K € H N K and so t = s. Hence
HK =|],e7tK and

HR = hK
lmg,;

- T Tk

te’l" zeHNK
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- HeK s ugokR

e

_ |HnK|Z
teT
- TR LT
teT kek
1 2 ¢
|HK| &=
= FIT\,
since |HK| = |H||K|/|H N K]|. a

Note that if we do not assume that H and K are groups then this is not in general
true.

We now prove some basic results about permutation modules which we will need
later.

3.3.5 Lemma FGH has F-basis {tF[ }ter where T is a left transversal for A in
G.

Proof:

Clearly, FGH is spanned by {gf[ }sec. Let T be a left transversal for H in G,
then for any ¢ € 7 and g € {H we see that g = th and so QH thH = tH. Hence,
{tH}ge‘T spans FGH and, further, the coefficient of gin tH is 0 if g ¢ tH and non-
zero if g € tH. So {tH }teT must be linearly independent, since the left cosets of H
in G are disjoint, and therefore is a basis for F’ GH. a

3.3.6 Lemma Let H, K be subgroups of G. Then
(i) FGH C FGK if and only if K < H;

(i) FGH N FGR = FG(H, K);

(i) FGH + FGR c FGANK.

Proof:

(1) Suppose that K < H, then by Lemma 3.3.4, HR =HR = H 1mply1ng that

FGH c FGR. Conversely, if FGH c FGR, then H = BR = HR so
HK =H,ie. K<H.
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(ii) Since H < (H, K) and K < (H,K), by by part (i) we see that FG(ﬂ) C
FGH and FG(H K) C FGR, so ) FG(H, K) C FGH N FGK. Now, for any
r € FGHﬂFGKweseethatrH—ra.ndrI\ = r. Thus, for any h € H,
rh=rHh =rH =r and, similarly, for each k € K, rk = rKk=rK =r. So,
since each z € (H, R') can be expressed as = = hyk, --- h,k, for some h; € H
and k; € K, we see that rz = rh\k; --- hok, = r. In particular this means that

o e, 1

1
r(H, Ky = o rE= r=r
K = a2, ™~ &R 2

z€(H,R)

andsor € FG(H, K). Hence FGHNFGK ¢ FG(ﬁ) and therefore FGHN
FGK = FG(H, K).

(i) HNK < H and HN K < K implies that FGH ¢ FGHNK and FGR C
FGHNK by (i). Thus FGH + FGKR c FGHNK. 0

3.4 Infinite Products of Group Sums

By Lemma 3.3.6(ii), for subgroups H,,..., H, of G we have that

FGH,N---N FGH, = FG(H,...., H.),

and so,
Hl/\"'/\Hn=(H1,...,HH>.

In this section we will demonstrate how we can use Corollary 2.4.7 to prove this
result, i.e. we will show that

lim (B, --- Ha)* = (Hi,-.., Ha).
k=00
In fact, we will prove a stronger result about arbitrary products of group sums.

Let {Hi}, be a sequence of subgroups of G such that for each k£ > 1 there is
some | > k with H; = H;. Further, denote by H the subgroup of GG generated by
{He}2,

Suppose that

—

Hi---Hi=Y) a,k)g,

9€G

and

He---Hi=) by(k,l)g
geCG
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for each [ > k. Then, we see that

H - HiHeH = (Zag(k)g) (Zb,(kﬂ,t)g)

9€G r€G

Z Z aq(k)bz(k + 1,l)gz

9€G r€G

= Z (Z age-1 (k)b (k + 1.1)) g

9€G \reG

and so

ay(l) =) agem(k)ba(k + 1,1).
€@
As a special case of this we see

Gk +1) = i 3 ageni(k).

!Hk'HI T€H

Hence, since ) . a4(l) = ll‘hl Y rew, 1 = 1 we see that for each k,

Zag(k+1)=lHk Y ) (k) = Z Y agk) =) alk)=1.

9€G geG c€Hk 4 yGG €H k4 g€G

Similarly, for each { > k we also have dec by(k,l) = 1.

3.4.1 Lemma  For each k, a4(k) = 0if g ¢ H,--- H; and a4(k) > 0 if g €
H,--- Hg.

Proof:

Clearly, a4(1) = 0if g ¢ H, and a,(1) > 0if g € H,. Now suppose that a,(k) =0
if g ¢ Hy---H, and a4(k) > 0 if g € H,--- Hi. In particular this means that
ag(k) > 0 for all g € G. Note that if g ¢ H, --- HiHyyy, then gz=! ¢ Hy -+ Hy for all
T € Hiyy, since gz~' € H, --- Hy with z € Hy,, impliesg =gz~'z € H,--- HiHiyy-

Thus k)
Q-
agk+1)= Y —r——‘-—l =0.
z€Hk41 k+1

On the other hand, if g € H,--- HiHiy, then g = ¢’z for some ¢ € H, --- Hi and
z € Hy,and so gz~ ! = ¢’ € H, --- Hi. This then gives

ak+1)= Y g (k) o

e | Hy1|

and the result follows by induction. a
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3.4.2 Corollary  For each [ > k, by(k,l) =0if g ¢ Hi--- Hy and by(k,l) > 0 if
g€ He---H.

3.4.3 Lemma  There exists some n such that H,--- H, = H.

Proof:
Since G is finite, the increasing chain of subsets

H, C H1H2C"'CH1"'HL-C"'CG
must stabilise, i.e. there exists some n such that for each m > n,
Hy---HoHppr - Hu = Hy -+ H,.

In particular this means that for all m > n, H,--- HaH», = H;--- H, and, since for
each k < n there must be some m > n with Hy = Hp, (Hy--- Ha)(Hy--- Hyn) =
H,---H,. Hence (H,---H,) = (Hy,...,H,) = H. O

3.4.4 Corollary  For any k, there exists some n such that Hy -+ Heyn = H.

By Lemma 3.4.1 and the definition of H, a,(k) = 0 for all g ¢ H and all &, so we
would like to examine limy_o an(k) for each A € H. Clearly, for all h € H and for
each k, mingeg{ay(k)} < an(k) < maxzec{a,(k)}. Thus

klgg grém{ag(k )} < hm an(k) < llm rgleaéc{ag )}

Further, by Lemma 3.4.3 we know that for some n and for all k > n, ax(k) > 0 so we
can instead consider min eG{ag(ls:)} the minimum over the non-zero a4(k). Thus, if

we can show that limye minj.s{as(k)} = limye maxgeg{ag(k)} we can then find
limgeo ah(k) for all h € H. To do this we first prove the following properties of the
max and min™ of the a4(k):

3.4.5 Lemma  For each k,

(i) maxgec{ag(k+1)} < maxsec{as(k)};

(i) minfeg{ag(k+1)} > lHk T, ming reclag(k)} if Hy--- He # Hy - HeHep;
(iti) minteg{a,(k+ 1)} > minteq{a,(k)} if Hy--- He = Hy -~ HeHinrs

where min* denotes the minimum over the non-zero terms.
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Proof:
We see that for each g € G,

ag(k+1)= Z aﬂ—_l_(ﬂs Z manEG{ag(k)}zr;leaéx{ag(k)}

ey, Henl = G [Hew

so maxgeg{ag(k+1)} < maxzec{a,(k)}. Further,if ag(k+1) > Otheng € H, --- Hiy,
and so, by the argument in Lemma 3.4.1, there is some = € H with gz~' € H, - -- Hy,
i.e. agz-1(k) > 0 for some z € Hi. Thus, if a,(k+ 1) > 0,

Z g1 (k) _ minjeg{ag(k)}

= >

as(k+1) | Hi 41 | Hegr|
z€H 4

and so mingec™ {ag(k + 1)} > IH lmm_,,ea t{a,(k)}.

Suppose now that H,---H, = H,--- HgHgyy. For each g € Hy--- HeHiyy
and r € Hiy, we see that g € Hy--- Hi and 27! € Hjy, implying that gz~! €
Hy---HHyey = H,--- He. Hence, if ag(k + 1) > 0 and then for each z € Hiq.,
agz-1(k) > 0 and so

ag(k + 1) = Z aﬁTL(Ii). > Z min9€G+{a9(k)} - m1n+{ag }

o, | Henl = &2 | Her| 9€G

Consequently, mingeg* {ag(k + 1)} > mingec™ {ay(k)} a
Similarly, we have the following results for the max and min* of the b,(k,!):
3.4.6 Corollary  For each [ > &,
(i) maxgec{bs(k,! + 1)} < maxsec{by(k,!)};
(ii) minf q{bg(k,l+1)} > IHx T, ming +ec{bg(k, )} if He--- Hy # Hi - HiHiyy;
(iii) minjeg{bg(k,! + 1)} > minf ;{by(k,!)} if Hi--- Hi = Hy -+ HiHi1;
where min* denotes the minimum over the non-zero terms.

Using this we can obtain a uniform lower bound for min] {bg(k,l )}

3.4.7 Corollary  For each k,l with [ > k, min} ;{bs(k, 1)} > > e

Proof:
Consider the increasing chain of subsets of G

H. C HyHyyy C - CHy---H; C--- C Hy--- H,.
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Wecan pickk=k; <--- <k;j<--- <k, <!lsuchthat foreach: > 2, Hy-- - Hy,_y #
Hy--- Hy,_ Hy, and for each j # k; for any ¢, Hy--- Hj—y = Hy--- Hj_, H;. This gives
us a maximal strictly increasing subchain

Hkl g Hkl "'Hkg C... ngl Hk g ,C. Hk\"'Hk

-~ {1 r

where
Hy - Hgy = Hi, - Hi_ He v =+ = Hy - - Heor © Ho o+ Hy,.
Thus, by Corollary 3.4.6(ii)

int : ot _
min* {b,(k, k)} 2 rmin® {by(k, ki — 1)}

|Hk| €

and, by Corollary 3.4.6(iii),

ot . i+ —9)}>..- > mint .
min {by(k, ki — 1)} Zgrgg {by(k, ki —=2)} >+ 2> min {bs(k, ki-1)}.

Hence, |
. Al > it .
min {bg(k, k:)} > AR {bg(k. ki-1)}

and so, since min;'ec{bg(ka k)} = |T};‘|v

1 l
o+
————min" {b,(k, k)} = ——————.
e Helsd R = TR
The result then follows since any strictly increasing chain of subsets of G can contain
at most |G| subsets, each of which has size at most |G|. a

b .
min® {by(k, 1)} 2 min™ {b,(k, k)} 2

3.4.8 Theorem limi,e iI\l .. ﬁ; = H.

Proof:
Define a sequence {n;}2, by no =0 and, for each i > 1, n; > n;_; is such that

Hns-x+l - Hp, = H.
Note that such a sequence must exist by Corollary 3.4.4. Since by definition
Hl et Hn‘-l = Hn._|+l ot Hn.' = H7

for each i > 1, we have that a4(n;-;) > 0 and by(ni-y + 1,n;) > 0 for all g € H and
ag(ni—1) = 0 and by(n;—y +1,n;) =0 for all g ¢ H. Thus, for any g,h € H we have
that

Z (agz-l(ni—l) — Gpe-t (n,--l)) = Z agz—l(n.‘_l) - Z ah::-l(ni-l) =1-1=0

zeH z€G r€G
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50 @gz-1(ni—1) — @Gaz-1(ni—1) < 0 for at least one z € H. Thus, if we let T C G be the
set of all z € H such that ag.-1(ni-1) — @rz-1(ni—1) > 0 we see that

ag(n;) — an(ni)
= ) (ge(nic1) = Gre-t(nim1)) be(mict + 1,0:)

zeH
< Y (@gem1(nicy) = @pe-1(rict)) be(nicy + 1,my)
€T
< (r,peag{ah(nf-x)} - [’}éi}[{l{ah(ni—l)}) (;bx(ni-n + Lm))

< (r;xea,:,«{ah<ni_l>} . ggi;;{aun.--l)}) (1 = mig® {b,(nics + 1,m))

< (?tleaf}f({ah(ni-”} - Eg}}{ah(ni-l)}) (1 - TZ,TTTGT) ’

and so for each ¢ > 1,

. 1 .
mastanni} - mipfon(na)} < (1= ) (mastontrscs)} - piplantmcnl})
Consequently, '
. 1 '
[,flea'ff{ah(ni)} - ggg{ah(ni)} < (1 - |—5|TG—‘>
and

lim max{an(n;)} — min{an(n;)} = 0.

Thus, since for each k there is some n; > k and
max{an(n;)} — min{aa(ni)} 2 max{as(k)} — min{an(k)},

we also have
lim r’flea.}}c{a;,(k)} - ngr}{ah(k)} =0.

k—+co
Finally, since maxsenr{an(k)} > g7 > minen{an(k)},
. 1 .
Jim max{ax(k)} = il Jlim min{ax(k)},

and therefore, since a,(k) =0 for all g ¢ H and for all &,

4+ ifge H
: =) H "9
am aq(k) {o ifg¢ H,

ie. limk_,.ooffl---fli\k=ﬁ. a
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3.4.9 Remark  This result essentially follows from the theory of finite Markov
chains and inhomogeneous products of non-negative matrices (see [2] and [17]). First
note that without loss of generality we may assume H = G. For a subgroup H; of
G, the matrix corresponding to right multiplication by H; on FG is a non-negative
dﬁl&l stocE_a\stnc matrix. Further, if we let M, be the matrix corresponding to
H,, ,+1--- H,, then, by Corollary 3.4.7 and the definition of ni, the M are uni-
formly Markov. Hence, we have weak ergodicity at a geometric rate in the product
limgyoo Mg -+ My, ie. [Mi--- My)is—[Mi--- My};s = 0 foreach i, jand s as k — 0.
Thus, this shows that for each g,h € G, a4(n;) — ax(n;) = 0 as : — 0. Finally, by
Lemma 3.4.5, this in turn implies that a4(n) — ax(n) =+ 0 as n — 0.

3.4.10 Corollary  Let { Hi}2, be an arbitrary sequence of subgroups of G, then

-~

lim Hy,---He = H,--- H,H

k=00
for some n such that for each ¢ > n there exists j > i with H; = H; and where H is
the subgroup generated by {Hx}32 ...,

Proof:

It suffices to show that such an n exists since then the result follows from Theo-
rem 3.4.8 using the sequence {Hx}2 ..

Let K be an arbitrary subgroup of G, then either there exists some m(A’) such
that H; # K for all j > m(K) or, for any i, there exists j > i with H; = K. Since
there are only a finite number of subgroups of G we can set n = maxg m(A’), where
the maximum is taken over the subgroups of the first type. Then we see that for any

subgroup H; with i > n, H; must be of the second type, i.e. there exists some j >
with Hj = H,'. (W]
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Chapter 4

Application to Coxeter Groups and
Finite Groups with BN-pair

In this chapter we give two examples of well known irreducible characters which can
be expressed as alternating sums of permutation characters, the sign character for
Coxeter groups and the Steinberg character for finite groups with B N-pair, and show
that we can use permutation modules to construct FG-modules which afford these
characters.

4.1 Coxeter Groups
4.1.1 Definition A Cozeter group is a finite group W with a presentation
W = (s1,...80: (sis;)™ =1,1<¢,5 <n),
where the {m;;} are positive integers such that
(1) mi;=1;
(ii) m;; > 1if ¢ # j; and
(iii) mj; =m;; forall 1 <1,5 < n.
Let S = {s1,...,Ss}, then the pair (W, S) is called a Cozeter system.

4.1.2 Example Let W = S,,,, the symmetric group on n + 1 letters. For 1 <
i < n,define s; = (i ¢+ 1) then W has a presentation given by

W = (s1,...,80 : (sis;)™ =1,1 <1,5 < n)
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where
m.-,,-={ 3 ifli—jl=1,

2 otherwise.

The following are standard definitions and results for Coxeter groups; see [3]
Chapitre VI or [8] for proofs.

4.1.3 Definition Let w € W, then the length of w, denoted I/(w), is the minimum
number of factors needed to express w as a product the s;, i.e.

[(w) =min{r:w=s;,---s; withs;,...,s; € S}.

The expression w = s;, - - - ;, is said to be in reduced form if r = {(w).

In particular we have that I(s;) = 1 for each s; € S and [(1) = 0. Further, {(w)
satisfies the following properties:

4.1.4 Proposition Let w,w’ € W. Then
(i) w™') =(w);
(i) {(ww') < l(w) + {(w');
(iii) {(ww') 2 [l(w) = (')},
4.1.5 Corollary Let we W and s€ S. Then l(sw)=I{(w) £ 1.

We now define certain subgroups of W generated by elements of S.

4.1.6 Definition Let (W,S) be a Coxeter system and let J be a subset of S.
Define W; to be the subgroup W; = (J). In particular Wy = {1} and Ws = W.

Then we see that the subgroups W, have the following properties:
4.1.7 Proposition  Let (W, S) be a finite Coxeter system and [,J C S. Then
(i) Wy < W;ifand only if I C J;
(it) WinW; = Winy;
(iii) (Wi, Wy) = Wi
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4.2 The Sign Character

4.2.1 Definition Let W be a Coxeter group, then the sign character e : W — F
is defined to be
e(w) = (~1)

foreach w e W.

By Corollary 3.2.2, we know that if we define u € FW to be the self-adjoint
idempotent

1 w

weW

then ¢ is afforded by the FW-module FWu. We will now construct this module using
permutation modules.

4.2.2 Definition  Let (W, S) be a Coxeter system and let M be the FIW-module
in the orthogonal decomposition

FW=M®o (Z FWW{,,}) :

=1
4.2.3 Theorem M = FWu.
Proof:
For each ¢, let W; = W(,,;. By Lemma 2.1.16,
M=FW({1-W)n---nFW( = W,).
and so M = FWe wheree = (1 — V/IZ)/\-'-/\(I - I/’V\n). Now, since

(1= =si(3-3%) = ps—3 = (1) (3 - 35) = (-0 -,

- L4 4

we see that . R
sie = si(1 — Wy)e = (—1)(1 - W)e=(—1)e.

Thus, for any w = s;, - - - 85, € W,

we = S - Siy,, 6= (=1)---(-l)e= (—1)’('”)6.

Hence, we see that FWe = Fle, i.e. dimp(M) < 1.
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On the other hand, since wu = (—1)"®)y for each w € W, we see that for each
1<i1<n

= 1 1 1 1 1 1
(1-Wu= (5—531)u=§u—§slu=;2-u+§u=u.
Thus, by Lemma 2.1.15(iv), ue = u and FWu C FWe. Hence M = FWu. a

4.2.4 Remark  Solomon, in [18], expressed the sign character as an alternating
sum of permutation characters

e= 3 (-1 (1w,)¥;

Jcs

see, for example, {8] Section 66.

4.3 Finite Groups with BN-pair

4.3.1 Definition Let G be a finite group, then it has a B.V-pair if it has subgroups
B and N such that

(1) G=(B,N);
(if) BN N is normal in V;

(iii) W = N/(B N N) is generated by a set S = {sy,--+,s,} of elements such that
st=1

(iv) sBw C BuBU BswB for all s € S and w € W;
(v) sBs€ Bforalls€S.

Since the double cosets BwB are independent of the choice of coset representative
w for w we denote them simply as BwB.

4.3.2 Example Let G = GLn4+,(Z/pZ) and define
B = {[m;;] € G :m;; =0,i > j}
and
N = {[m;;] € G :for each 1 <i < n, m;; # 0 for some j and m;x =0 for k # j}.
Then we find that these give a BN-pair for G, and further

W = {[mi;]€G:foreach1<i<n,m;=1for some j and m;x =0 for k # j}
~ Sn.
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Again, the following are standard definitions and results for finite groups with
B N-pair; see [3] Chapitre IV, [4] or [8].

4.3.3 Theorem Let G be a finite group with B N-pair, then

G = |_] BwB.

weW
4.3.4 Lemma (W,S) is a Coxeter system, and further for all s; € S and w € W,
(i) If {(s;w) 2 [(w), then s;Bw C Bs;wB,;
(i) If {(sjw) < l(w), then s;Bw € Bs;wB.
4.3.5 Corollary W has a presentation W = (sy,--+ ,sn : (8i8;)™ = 1).

Since the (B, B)-double cosets of G are parameterised by the Coxeter group W,
we can use the subgroups W, of W to construct subgroups of G containing B.

4.3.6 Definition Let J C S5, and define Py = BW;B.

We see that the subgroups P; have properties similar to the properties for W
given in Proposition 4.1.7.

4.3.7 Proposition Let [,J C S, then
(i) Pr<Psifandonly if I < J;

(ii) Pr0 Py= Pras;

(iii) (Pr, Ps) = Proy.

Further, we define a particular subring of F'G which is related to the group ring
FW of W.

4.3.8 Definition  Let G be a finite group with BN-pair and define the Hecke ring
Hr(G, B) to be L
Hr(G,B) = BFGB.

In a similar way to Lemma 3.3.5 we see, Hp(G, B) has an F-basis given by the
(B, B)-double cosets of G.



4.3.9 Lemma  Hg(G, B) has F-basis {8, }wew where

Bw = q(w)BwB
and \BuwB|
w
) =g

In particular, multiplication of the basis elements is given in the following way:

4.3.10 Theorem Foreachs;€Sand we W,

8, B, = { By if I(s;w) > l(w),
BT a(8i)Bew + (q(8i) — 1)Bu if [(siw) < [(w).

This in turn leads to a presentation of the Hecke ring in terms of generators and
relations which is obtained from the presentation of W as a Coxeter group.

4.3.11 Theorem  Hg(G, B) is generated by the elements {3,,},es with relations

B2 = q(si)L + (q(si) — 1)Bs,

and
(ﬁagﬂs, )k.-,, = (.Bs,ﬁs.')ku if mi; = Qki.j»
(,Bs.,@s, )ki"ﬂaa = (Bs,ﬂs.)k"’ﬂs, if mij =2k +1.

4.4 The Steinberg Character

4.4.1 Remark In [19], Steinberg defined for GL.(F,) an irreducible subrepresen-
tation of Ind$p, with degree ¢"("~!)/2 i.e. the highest power of q dividing the order of
GL.(F,). Later, in [20], Steinberg extended this construction to other linear groups
and in [21] gave a corresponding CG-submodule of CGB for all finite groups with
BN-pair. Curtis, in [5], then gave a construction for the character St of this module
using a correspondence between the irreducible characters of G and of W. In partic-
ular, he showed that the Steinberg character corresponded to the sign character of
W and so, using Solomon’s formula, that it could be expressed as an alternating sum

of permutation characters
St=)_(-1)(1g,)°.
Jcs

The construction of the Steinberg character which we will use was given by Curtis,
Iwahori and Kilmoyer in [7].
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We first state some standard results which we will need for the construction; see
[6] for proofs.

4.4.2 Theorem Let ¢ be an irreducible character of CG such that (¢, (15)%) >
0. Then the restriction {y.(c,p) is an irreducible character of Hc(G, B) of degree
(¢,(18)°). Conversely, each irreducible character ¢ of Hc(G, B) is the restriction to
Hc(G, B) of a unique irreducible character ¢ of CG.

Note that this is essentially a character theoretic version of Corollaries 2.3.5 and
2.3.6. In the case where ¢ is a linear character, the following result gives us a con-
struction for the corresponding self-adjoint idempotent.

4.4.3 Theorem Let ¢ : Hc(G,B) = C be a homomorphism. Then ¢ is the
restriction to He(G, B) of a unique irreducible character ¢ of G such that (¢, (15)¢) =
1. Moreover,

"= 5Bl X O

weW
is a primitive idempotent in CG such that CGu affords ¢.

Now, consider the homomorphism ¢ : Hc(G, B) — C given by

$(Bu) = (~1)")

for each w € W. Using the presentation for Hc(G, B) given in Theorem 4.3.11
it is clear that this is indeed a homomorphism. Thus, by Theorem 4.4.2 it is the

restriction of a unique irreducible character of G, the Steinberg character St. Further,
by Theorem 4.4.3 St is afforded by the CG-module CGu where

_ Su(1)
IG : Bl £ Z

We now prove that the ¢ is afforded by the Hg(G, B)-module Hp(G, B)u and
therefore that the Steinberg character is afforded by the F'G-module FGu with u €
F G defined above.

)l(w)

4.4.4 Proposition u € FG is the self-adjoint idempotent such that Hg(G, B)u
affords the character ¢ : Hp(G, B) — F' defined by

$(Bu) = (=1)".



Proof:

First fix 1 < i < n and denote by W’ the set of all w € W which cannot be
expressed in reduced form as w = s;w’ for some w’ € W. Then, clearly we have that
W = W' U s;W’, since if w € W is such that w = s;u’ is in reduced form for some
w' € W, then we must have that w’ € W’.

Thus, for each w € W’ we see that

Bsi(q(5:)Bw = Bsw) = q(5:)Bs;Bw — Bs,Bs,w
= q(si)Bsiw — 9(5i)Buw — (q(si) — 1)Bs,w
= (—1)(q(st).3w - ﬂs.w)-

In addition,

_ S - (D (=
“SC Bl 2 qw) IG BIZ

so we see that

l)l(w)
q(siw)

3 )Bw - s.w)a

Sl - D
,B.y,u = IG : BI w;' q(S, ) ﬂs. Q( :),Bw .Bs.w

St(1) (—1)")
G Bl 2 qeww)
= (-1)u.

(_1)(Q(si)ﬂw - ,Bs.w)

Thus, since it is true for each 1 <i < n, for any w = s;, - - 85, € W we get

Buu = ﬂs" ...ﬂ,i'(w)u =(=1)---(~lu= (_l)l(w)u.

Hence Hf(G, B)u = Fu affords the character ¢. Now, u is clearly self-adjoint and

l(w)
v o= |cs:tfg|§v(ql But
|gtflé|§v(ql (=1)tu
- (ét%%ﬂ(;))“
So B
y (lgtflz)aluqu(tu)) "



must be the self-adjoint idempotent such that Hg(G, B)u' affords ¢. Consequently,
u’' € FG must also be the self-adjoint idempotent such that FGu' affords the Stein-
berg character St. Therefore, by Corollary 3.2.5,

S5t(1) = |Glu}

= |G| (,(S;(IBI 2 x )

weW q

~ St(1) St(1) L
= 'G'(IG:BI ;Vq(w)) G BI[B]

Thus, we must have that v’ = u, i.e. u € FG is the self-adjoint idempotent such that
Hr(G, B)u affords the character ¢, and further that

-1
1
=|G: B (W;Vm) :

which corresponds to the formula given in [6] Theorem 3.1. a

4.4.5 Corollary u € FG is the self-adjoint idempotent such that FGu affords
the Steinberg character St.

In an analogous way to the sign character for Coxeter groups, we construct the

Hr(G, B)-module affording ¢ using modules of the form Hg(G, B )P for subgroups
P of G containing B.

4.4.6 Definition Let G be a finite group with BN-pair and define X to be the
Hr(G, B)-submodule of Hr(G, B) in the orthogonal decomposition

He(G,B) =X & Y Hr(G, B)Ppay.

i=1
4.4.7 Theorem X = Hg(G, B)u.

Proof:
If we define P; = P(,,}, we see that

X =Hp(G,B)B-P)N---nHe(G,BYB-Fn)
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and so X = Hr(G, B)e where e = (B Pl) -A (B P, ) In particular, we see
that for each 1 < i < n, B(B - P)— B.-P —Oa,ndso Be= P(B - P)e=0.
Now P; = P(,;y = B(s;) B = BU Bs;B. Thus,

P S LR D = am )

So, since P.e = 0 for each i, (81 + B, )e =0 and B,.e = (—1)(B1)e = (—1)e. Hence,
for any w = s, -+ - 55, €W

ﬂwe = ﬂ"l .o .‘B,"(w)e = (—1) .. '("‘1)6 = (_I)I(w)e.
So Hr(G, B)e = Fe, i.e. dimp(X) < 1.

Further, since (3,,u = (—1)u for each ¢, we see that

(B-Byu = (Mgl__l_g )u

P, : B 5B ™
|P;: B| -1 1
BB T
|P,':B|—1 1 ’
7B “TiE-B"
= u.

Thus, by Lemma 2.1.15(iv), ue = u, and Hp(G, B)u C Hr(G,B)e. Hence X =
Hr(G, B)u. a

Immediately from this result we can construct the F'G-module affording the Stein-
berg character using only permutation modules.

4.4.8 Definition  Let M be the FG-module in the orthogonal decomposition

FGB=M@) FGP.

=1
4.4.9 Lemma M = FGu

Proof:
Again, we see that

M=FGB-P)n---nFG(B-P,)

and so M = FGe where e = (§ —ﬁ) A---N(B —’P:). By Theorem 4.4.7 we see that
He(G, B)e = Hp(G, B)u and thus, by the uniqueness of the self-adjoint idempotents
e=u,ie M= FGu. a
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Chapter 5
Application to GLy(Z/ phZ)

In a similar way to Chapter 4, we examine the irreducible character of GL,(Z/p"Z)
given by Hill in [11] as an analogue of the Steinberg character for GL,(Z/pZ). In
particular, we construct certain subgroups of GL,(Z/p"Z) and use them to construct
an F'G-module which affords this character and then express the character as an
alternating sum of permutation characters.

5.1 Preliminaries

Define R = Ry = Z/p"Z, then R, has a unique maximal ideal pR; and every ideal of
Ry is of the form p® R, for some 0 < a < h. We can define a map v: Ry, = {0,..,h}
by v(r) = a if and only if r € p® R and r # p**' Ry, and v(0) = k. In particular, the
map v satisfies the following properties:

5.1.1 Lemma Let r,s € R;. Then
(i) v(r) =0 if and only if r € Ry;

(i) v(rs) = min(v(r) + v(s), h);

(ifi) o(r + ) 2 min(v(r), v(s));

(iv) If v(r) # v(s) then v(r + s) = min(v(r), v(s)).

More importantly, we can define a ring epimorphism

r ifv(r)<a

A,,:R;,—)Ra;rr—){ 0 ifu(r)>a.

Then, ker A, = p®R), and so |p*Rx| = p*~
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Now define G = G(h) = GL(n, R,) to be the group consisting of all invertible n
by n matrices with entries in Rx. Then A, induces a group epimorphism

da : G(h) = Gla); [rij)ij = [Dalri))iy

which has kernel K(a) = {I + M,(p*Rx)}. By definition K(a) is a normal subgroup
of G(h) and G(h)/K(a) ~ G(a).

5.1.2 Lemma |G(h)| = p"z"'"("*'l)/2 HZ:n(Pk - 1).

Proof:
G(h)/K(a) ~ G(a) implies that |G(k)| = |G(a)|- |A'(a)|. In particular for e = 1
we get that

IG(R)| = |K(1)]-|G(1)|

2(h=1) .nl{n— n
= pPh=Upnn=0/2(pn _1)...(p—1)

nz —\n
= pPhmtH IR TT(pF - 1),
k=1

a
Similarly, define B = B, = {[r:;];; € G : ri; =0 for j > i}, i.e. the subgroup of
G consisting of upper triangular matrices. By restriction we get a group epimorphism

e : B(h) = B(a) with kernel B(h)N K(a) and so, B(h)/(B(h) N K(a)) ~ B(a).
5.1.3 Lemma  |B(h)| = pMr+ih/2-n(p — )m.

Proof:
Again, B(h)/(B(h) N K(a)) ~ B(a) implies that [B(k)| = |B(h) N K(a)| - |B(a)|.
In particular, fora =1,

|B(k) = |B(R)N K(1)]-|B(1)]

= pn(n-l—l)(h-l)/2pn(n—l)/2(p _ I)n

= pn(n+1)h/2-n(p _ l)n.

5.1.4 Corollary  |G(k) : B(h)| = p"*=VB-U2TR2 (0" + p*~L +--- + 1).
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5.2 The n =2 Case

We now investigate the case n = 2 fully and decompose the permutation module
FGB into irreducibles. Since FGB has F-basis {t B}:cT where T is a left transversal
for B in G, we will first find the left cosets of B in G.

5.2.1 Lemma  The left cosets of B in GG are [71. (1)] B, forr € Ry, and [f (1)] B,
for v(s) > 0.

Proof:
Let [r;;] € G. Then if v(r,) =0,

1 0| |11 T1,2 —|Tur T2
-1 -1 -
rearin” L} [0 ra—maTirereg ra1 T22

and if v(ry,;) > 0 then we must have that v(rz,;) = 0 and v(r;r2,1""') > 0, in which

case .
rarz” 1 |2 ra,2 _ [T T2
1 0] | 0 ria—riarantra2 a1 T22
Now, since |G : B| = p* + p"*~! these must all be distinct left cosets. a

Similarly, since we will again be considering the subring BFGB of FG, we also

find the (B, B)-double cosets of B in G.

5.2.2 Lemma  The (B, B)-double cosets in G are
1 0 10
ole o= Lk 12
v(r)=a
for 1 <a<h, and
10
B [1 1] B=

UESsu ;e

v(r)=0 v(s)>0

Proof:
Let v(r) = 0 and 0 < a < h, then we see that

e P R P

and, for a = 0 and v(s) > 0,

O I e
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Hence, we see that for 1 <a <h
U [1 O]BcB[la O]B
r 1 p* 1
y(r)=a
and for a =0,
1 0 s 1 10
L [r 1] L [1 o]BCB[l 1]3'
v(r)=0 v(s)>0

I[n particular, this means that

fall o0
G=UB[pa 1]3.

a=0

Finally, suppose that [b; ;],[b;] € B, then for 0 <a < h

[bl.l b1.2] [1 0 bll.x b’m] = I:blvlb’l.l+pabl.2b,l,l bl.lbll.2+bl,2b’2.2'*‘Pabl.zb'l,z]
0 bo2f [p* 1y [0 by p2ba2b} | ba2b3 5 + pbaaby '

So, since v(p®ba2b} ,) = a, the double cosets must be distinct. a
P 02201,

Note that we can characterise the ( B, B)-double cosets in the following way:

5.2.3 Corollary For 0 <a < A,

1
B [p,, ?] B= {[:;I :;Z] €G:v(ra) = a}.

Now, we can use the (B, B)-double cosets to define subgroups of (¢ containing B.

5.2.4 Definition For each 0 < a < h, define

h
1 0
H,,=|__|B[pk I]B.
k=a
5.2.5 Lemma  For each 0 < a < h, H, is a subgroup of G.

Proof:
From Corollary 5.2.3



Thus, for any [r;;], [si;] € Ha,

[7'1.1 Tl.z] [-5‘1.1 31,2] _ [7‘1,131,1 + 712821 T1181,2 + T1282,.2

€H,
21 T22| |S2,1 S22 T2,181,1 + 722821 T2,151,2 + 72,252,2

since v(r2,181,1 + T2,282,1) > min{v(ra,1) + v(s1,1), v(r22) + v(s2,1)} 2 a. O
In particular, the subgroups H, have the following properties:
5.2.6 Lemma Let 0 <a,b<h, then
(i) H, < H, if and only if a > b;
(ii) Ha NV Hy = Hnax(ab);
(iﬁ) (Ha, Hb) = Hmin(n.b)-

Proof:
These results are clear from the definition of H,. a

Using these subgroups we construct the following F'G-submodules of FG B.

5.2.7 Definition For each 1 < a < h define M, to be the FG-module in the
orthogonal decomposition

FGH, = M,® FGH,_,

and define My = FGHy = FGG.

We will show that these are irreducible FG-modules. To do this, in the same way
as for the Steinberg character, we consider the subring BFGB of FG.

5.2.8 Definition  Define the Hecke ring Hr(G, B) to be
Hr(G, B) = BFGB.

Again, the Hecke ring has an F-basis parameterised by the (B, B)-double cosets
in G.

5.2.9 Lemma  Hg(G, B) has F-basis {3,}"_, where
~f1 o] ~
.Ba - an [pa, 1] B
withgg=p", a=1land g =p** —pt2lforl <a<h-1.
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Proof:
Since Hr(G, B) = BFGB it is clearly spanned by {§z§ } . However, for each

reG

g € Bz B there exist b,b' € B such that g = bzb/, and so BgB = Bbzb'B = BzB.
Thus, Hr(G, B) is spanned by {Ezﬁ} R where D is a complete set of (B, B)-double
coset representatives in G. Further, by iernma 3.34

BzB = BxBz 't = BzBr-'z = B:TB?“:B = @

Thus, since the coefficient of g in Bz B is 0 for ¢ ¢ Bx B and non-zero for g € Bz B,

we must have that {§z§ } R is linearly independent and therefore is an F-basis for
€

‘Hr(G, B). The result then follows from Lemma 5.2.2. O

We now use the subgroups H, to define the Hgr(G, B)-modules corresponding to
the FFG-modules M,.

5.2.10 Definition  Define N, to be the Hg(G, B)-module in the orthogonal de-
composition

He(G, B)H, = N, ® He(G, B)H.,
and Ny = Hr(G, B)Ho = Hr(G, B)G.
Note that M, = FGe, and N, = Hp(G, B)e, where

. - H, -H,_, ifa#0
¢ H, ifa =0,

and so N, is indeed the Hg(G, B)-module corresponding to the F'G-submodule M, of

FGB in the sense of Corollary 2.3.5. Further, the Hg(G, B)-module N, is irreducible
for each a by the following:

5.2.11 Lemma Hp(G, Ble, = Fe,.

Proof: N R

In the case where a = 0 we see that g = G and so Hg(G, Bleg = FG. So, we
will now assume that a > 0.

Let b > a, then we see that

_— ——

~11 0} — —
ﬂbeu =@ (B [pb 1] B) (Ha -H —l) = Qb(Ha - Ha-l) = Qh€q-

Now, for any b < a, -
Hye, = Hy(H, — H,—,) = 0.
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In addition,

1 0
Hy=Hy, U (B [Pb 1] B) R

s0 f = p*~*Hy — p*~*~'Hyy1. Thus

h—a H
e SR - e, ifb=a-—1,
,Bbea =Ph beea —Ph b le-(-lea = { P ¢

0 ifb<a-1.
a
Thus we see that we can decompose Hg(G, B) into irreducible Hg(G, B)-modules.

5.2.12 Corollary Hg(G,B)= Ny @ --- 3 No.

Proof:
Clearly N, N N, = @ for a # a' since e, # eq, and so the result follows since
dimg(N;) = 1 by Lemma 5.2.11 and dimg Hp(G, B) = h+1 by Lemma 5.2.9. a

Further, we must have that each M, is an irreducible FG-module.

5.2.13 Corollary  For each a, M, is an irreducible FG-module with character

[ (1g)¢ = (ln,,)¢ ifa#0,
Xa=1 1¢ ifa=0

Proof:
Irreducibility follows from Corollary 2.3.6 and the character from Corollary 3.2.6.
a

Hence, we get the following decomposition of F GB into irreducible FG-modules.

5.2.14 Corollary FGB = My&®- - & M,.

Proof:
This follows from the corresponding decomposition for Hr(G, B). a

Now consider the following F'G-submodule of F’ GB.

5.2.15 Definition For each £ define

M= MidMu_28---®&My if h=0 mod 2,
T My O My 2®---@ M ifh=1 mod 2.

5.2.16 Lemma  xa = Y*_,(-1)"*(1x,)°.
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5.2.17 Corollary  xum(1) = p*.

5.2.18 Remark Lees, in [15], constructs a virtual character Sg, which is an ana-
logue of the Steinberg character for GL.(Z/p*Z), and that can be expressed as an
alternating sum of permutation characters

So =Y (-1)®N(1p,,)°
(k)

where Hx) are certain subgroups of G containing B. For the case where n = 2, these
subgroups are exactly the subgroups H, constructed above and we see that S¢ = xum.

5.3 The Subgroups K

Now, for the general case we construct certain subgroups of G which contain B in
a manner similar to the construction of the subgroups P; for a finite groups with
BN-pair. First we start by constructing subgroups of G which are analogous to the
subgroups W;.

5.3.1 Definition For each 1 <i < n —1 define
[iy
zi(r) = }. (1)
Iny—i
and, in particular, for each | <i < n -1, let o; = z;(p""!).
Clearly, the z;(r) satisfy the following properties:

5.3.2 Lemma Let r,s € R, then

(i) zi(r)zi(s) = zi(r +s);

(i) zi(r)a;(s) = a5(s)ai(r) if li = 1 > 1;
(iit) zi(r)zip1(s) = zig1(s)zi(r) if rs = 0.
5.3.3 Definition LetJC S ={l,...,n—1}, and define V; = (0 : j € J).
5.3.4 Lemma Let JC S, thenif J = {j,...,Jk}, with j; <--- < ji,

Vi = {zj(r1)---zjlre) s v(ri) 2 h = 1}
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Proof:

By Lemma 5.3.2, for each i, j, 0i0; = 0;j0; and, for each a, 0] = z;(p*'a). Con-
sequently, each element of V; is of the form z;,(p*'a,)-- -z, (p"~'ax). Conversely,
if u(r) > h — 1 then r = p*'a and z;(r) = 0% € V. o

5.3.5 Corollary  |V;| = pVl.

Immediately from Lemma 5.3.4 we see that the subgroups V; satisfy the following
properties:

5.3.6 Lemma Let [,J C S, then
(i) Vi<Vyifandonlyif I C J;
(ii) VinVy = Vi
(iif) ViVy = Viuss
Using the subgroups V;, we define subgroups of G which contain B.
5.3.7 Definition Let J C S and define Ay = BV;B.

5.3.8 Lemma K;=V;B.

Proof:
Clearly, V;B C BV;B = K;. Now, let m denote the n — j by j matrix with
(1,7)-th entry p*~! and 0s elsewhere. Then for any v(p"~'r) > h —1,

[, 0
z;(p"'r =[ I ]
i(p ) rm o
Further, for each b € B;, mb = b,m and for each 6" € B,_j, b'm = b_; ,._,m.
/
Hence, for each [b b,] € B,

0 o
b ][ 0
0 '] [rm [n-;
_ C b+ brm ¥
I P
_ i I 0 b+ brm b
- _(bl’l)"lbﬁ_j.n_jrm I, 0 b - (bl'l)‘lbﬁ_j'n_jrmb’

and so, for each b = [b; ;] € B we have that

bz;(p*~'r) = z(p"trby,1 " 0a )b
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for some b’ € B, where v(by,1 7 b, ») = 0. Consequently, for any z; (1) - -z (r%) € Vi
we see that

bmil(rl) Tt zjk(rk) =T (r,l) T zik(r;:)b’

for some &' € B and some v(r}) = v(r;). Hence BV; C V;B and K; = BV;B C V;B.

d

5.3.9 Corollary K} is a group.
Proof:

K;K;=(V;B)(V;B)=V;(BV,;B)=V;V;B=V;B = Rk}. a
5.3.10 Corollary  |K,| = pM!|B]|.
Proof:

Suppose that z;,(ry)- - zj,(r&)B = z;,(s1) - - - Tj,(sk) B then

(ziy (r1) - i (r)) "'z (81) -+ -z (sk) = 25 (s1 = 1) -z (sk — %) € B
and r; = s; for each . Hence
Ky=ViB=||gB
geV;

and |Ky| = |Vi| - |B| = pI| B]. O

In particular, we see that the subgroups A; satisfy properties similar to those in
Lemma 5.3.6.

5.3.11 Lemma Let [,J C S, then
1. Kt < K;ifand only if I C J;
2. KinK; = Kins;
3. KiK; = K.

Proof:
The results follow directly from the corresponding results for V. a

Clearly the subgroups K are not all the subgroups of G containing B. In partic-
ular, consider the following definition from [15]:

5.3.12 Definition Let (k) = (ki,...,kn-1) be such that 0 < k; < h for each ¢
and define k; ; = max{k, : j <r <i}for1 <j<i<n. Then let

H(k) = {[m,—,,-] € G . v(m,-'j) = k’,"j fOl’ 1 S] < @ S n}.
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The H(x) are also subgroups of G containing B, by [15] Lemma 4.4, but as we see
from the following example, K is not necessarily of the form Hy) for some (k).

5.3.13 Example

Ppoy =

a:
azi

Let n =3 and h = 2, then the subgroup Py, z} is given by

a2 a13
Q22 a3

€ G :v(az,1),v(asz2) 2 1

a32 asgs

whereas the subgroups Hx) are

Hiz

Hz,1

H 2

H1y)

Ho,1)

Hio,0)

Q) e e N, s et e e, et e, e N, et e, oy}

a2
az2,2
G32
a2
az2
0
a2
az,2
az1
Q1,2
az2
a3,2
ay,2
az,2
0
a2
Q2,2
az,1
a2
@22
az,

a3

a3
az3

a3
az3
az3

a3
a3

as3
b

a3
az3
az3
a3
a23

G33
=

a3
a3

(13'3=

a3
a23

a3,3]

€G:v(aszq) 21

€ G . U(ag.l) 2 I

€ G : v(az,),v(as,),v(az,;) > 1

€G

€G

€ G :v(az,),v(az:) > 1

€ G : v(a3,1),v(a2'1) Z 1

Thus we see that Py 3 is not of the form Hy) for any (k).

5.4 An Analogue of the Steinberg Character

In [11], Hill defines a character Sts, which is an analogue of the Steinberg character for
GL,.(Z/p"Z) but is different from the character given by Lees in [15]. In particular,
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Hill shows that St is an irreducible character such that

and, further, that
Sth(l) = p(h-l)n(n—l)/2-(n-l) ﬁ(pk _ 1).
k=2
We will now construct an FG-module which affords this character and use the corre-

sponding self-adjoint idempotent to show that St, can be expressed as an alternating
sum of permutation character over the subgroups K defined in the previous section.

5.4.1 Definition Let M be the FFG-module in the orthogonal decomposition

n-1
FGB=M®Y FGKg.

i=1
5.4.2 Lemma  The self-adjoint idempotent ¢ € F'G such that M = FGe is
e=Y (VK.
JCS

Proof:
From Lemma 5.3.11(iv), for each I,J C I\ [\[[\J = [\Iuj = [\J[\[ Thus, by

Lemma 3.3.4 we ha.ve the snmllar result tha.t I\[I\J = l\;u,, = I\JI\ ; and hence, we
must also have that (B [\’[)(B K; )- (B K )(B K ). In partlcular this shows

that for each 1 < i, < n, (B I\{, )(B K{J}) (B - [\{,})(B I\{ 1) and the
result then follows from Lemma 2.4.1 since we know that M = FGe where

e = (B-Ku) A~ NB-EKp)
= (3 -Kuy)---(B—Kpn-yy)
= Z > (-1 Kpy - Ky

k=0 i) <---<ig
n-1

k=0 i1 <---<ik

= ) (-MK.

JcS
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Now, since we can express the self-adjoint idempotent for M as an alternating
sum of group sums, we must therefore also be able to express the character afforded
by M as a corresponding alternating sum of permutation characters.

5.4.3 Corollary  xum = Y s(—1)VI(1k,)C.

Proof:
This follows from Corollary 3.2.6. a

Further, note that the degree of this character is the same as the degree of the
character given by Hill.

5.4.4 Lemma yu(l)= p("-l)"("-l)/z-("-l)(pn ~1)---(p*=1).
Proof:

From Corollary 5.4.3, we see

xu(l) = Y (=M1,

Jcs
= D (-G Kyl
JCS
|G : B|
= ) (-)MHM—=—=
Z; |Ks : B
_ |G Bl )Mlptn=0=1]
= ( ]_ ("
k=0
G:B e
= Ipn_1 I( -1)~h
So, using Corollary 5.1.4, we get
n-1
xm(l) = (P("‘”“‘"'”” [[*+p +- + 1)) p " V(p— 1)
k=1

n
—_ p(h—l)n(n-l)/Z—(n—I) H(pk _ 1)
k=2

a

Consequently, we see that the character afforded by M is in fact the character
constructed by Hill.
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5.4.5 Corollary  Sti = xu.

Proof:
We see that

(Sta,xm) = (Sta, »_(—1)M(1k,)%)
jcs

= Y (=1)¥)(Sta, (1))

JcS
(Sth, (1B)G)
L.

Thus, by Corollary 3.1.10, since St is an irreducible character,
xm =Sth +¢

for some character { of G. Further, xar(1) = Sti(l) implies that (1) = 0, i.e. we
must have that yus = Sts. a

5.4.6 Remark Since St; is an irreducible character which is afforded by W, W
must be an irreducible FG-module. More importantly, we see that we can express
the character constructed by Hill as an alternating sum of permutation characters

Sta = Y _(-1)M(1k,)C,

Jcs
which is analogous to the formula given by Curtis in [5] for the Steinberg character
of a finite group with B N-pair.

Further, since e € FKs we must have that M is induced from the irreducible
F Ks-module F Kse. In particular, we see that

G
Sty = (Z("l)“l(lr\',)KS) .

Jcs

Note that this is not true for the Steinberg character of a finite group with BN-pair,
since by the construction of u € FG, the self-adjoint idempotent such that FGu
affords the Steinberg character, u ¢ F H for any proper subgroup of G. a
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