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Abstract 

Information and Communication Technology (ICT) is present in many classrooms around the 

world but its effect on student learning is not fully understood. This research investigates the 

relationship of ICT with the mathematics and science scales for 15-year-old students in 47 

countries that participated in PISA 2015. First, a scoping literature review was conducted to 

ascertain which ICT factors supported or hindered mathematics and science achievement. 

Second, two main research questions were posed to explore the impact of students’ countries on 

the relationships between ICT and academic achievement in mathematics and science: (1) To 

what extent does ICT help or hinder students’ mathematics and science learning in Bulgaria and 

Finland, respectively, two countries with different ICT profiles, when controlling for students’ 

socio-economic status? and (2) Are the ICT, science, and mathematics variables measurement 

invariant across the countries participating in the PISA ICT questionnaire? The first question 

was answered using structural equation modelling for both sample countries. The second 

question was answered using the Alignment method on 48 participating countries. Results 

indicated that (1) students’ use and availability of ICT were negatively associated with 

mathematics and science scores, whereas their level of comfort in ICT was positively associated 

with academic scores; and (2) mathematics and science scales were measurement invariant 

across all countries, whereas the ICT scales were not. This research makes the following 

contributions: (1) it shows that comfort and confidence in ICT use is a more critical predictor of 

academic achievement than use and availability of ICT; (2) it reveals that cultural differences 

between countries limit the comparison of ICT scales for large groups; (3) it indicates that 

mathematics and science plausible values are comparable across many countries simultaneously; 

and (4) it presents the results of a scoping review of the association of ICT with mathematics and 

science scores in the PISA data. 
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Chapter 1: Introduction 

Technology is ubiquitous in the digital 21st century, with more technology than ever 

being incorporated into education, from iPads in primary school mathematics classes (Hilton, 

2018) to mobile phone use in graduate classes (Mueller, Wood, De Pasquale, & Cruikshank, 

2012) and laptop use in all levels of education (Sung, Chang, & Liu, 2016). Nowadays, students 

have more access to technology in the classroom than ever before and, as a result, the 

educational landscape is changing (OECD, 2015; Johnson et al., 2014; Tang & Hew, 2017). 

However, pervasive technology does not always lead to enhanced academic achievement. Thus, 

the current research explores the ramifications of students’ increased exposure to technology for 

their academic achievement. More specifically, the current work focuses on the relationship 

between students’ Information and Communication Technology and their academic achievement 

in mathematics and science. This work is conducted within an international scope by examining 

these relationships across multiple countries. 

1.1 Information and Communication Technology  

Information and Communication Technology (ICT) represents digital technology that is 

used for sharing and storing digital information and communicating with others (OECD, 2003). 

Examples of ICT include computers, tablets, internet connection, USB memory storage, eBook 

readers, interactive whiteboards, smartphones, video games, chatrooms, digital media, and more. 

This definition emphasizes that ICT is not a synonym for technology, but rather it includes 

specific criteria. Although ICT and Information Technology (IT) are similar, IT does not include 

the important distinction of technology used for the purpose of communication and sharing 

(Murray, 2011; Daintith, 2009). ICT is defined by PISA as “the use of any equipment or 
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software for processing or transmitting digital information that performs diverse general 

functions, whose options can be specified or programmed by its user” (OECD, 2005). 

Skills in ICT are crucial for global citizens of the digital 21st century (Fraillon, Ainley, 

Schulz, Friedman & Gebhardt, 2014; ICT Council, 2016). The importance of a public versed in 

technology use has been known for some time (Castells & Blackwell, 1998). Both parents and 

teachers recognize this change and support the incorporation of ICT in school learning, as they 

believe it will improve learning and the students’ chances to be employable (European Union, 

2019a). As careers of all types continue to rely on ICT, it is important for people entering into 

the workforce to be proficient in the use of ICT (Bresnahan & Yin, 2017). The current 

employment environment reflects the need for technology-capable workers who will stay 

relevant in the digital 21st century (ICT Council, 2016; Yeganehfar, Zarei, Isfandyari-

Mogghadam, & Famil-Rouhani, 2018; Cussó-Calabuig, Farran, & Bosch-Capblanch, 2018; 

Nordicity, 2017). 

Many countries experience a need for a skilled ICT workforce, including Nigeria, Italy, 

South Africa, and Canada (Onwuagboke, Singh, & Fook, 2015; Lovaglio, Cesarini, Mercorio, & 

Mezzanzanica, 2018; Kirlidog, van der Vyver, Zeeman, & Coetzee, 2018; Nordicity, 2017). For 

example, in Canada, spending on ICT in Alberta schools will be increased by $37 million in the 

next six years to meet this need (Ceci, 2018). The technology-focused country of South Korea 

has placed a great importance on technology inclusion as a way of upgrading their labour 

markets in the near future (Kim, 2000). As a result of this demand, students in all countries are 

expected to have access to more ICT than ever before (OECD, 2015; Johnson et al., 2014; Tang 

& Hew, 2017). However, current ICT access is not consistent across countries (OECD, 2017a). 

For instance, one in five European students attends a school with access to high-speed Internet 
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(European Union, 2019a). Russia provides an example of a country with the potential to achieve 

more integrated ICT use (Dneprovskaya, Bayaskalanova, Ruposov, & Shevtsova, 2018). There is 

a great demand for ICT to be integrated into higher education. However, to date, there is a lack 

of governmental support and organization for this to happen. Moreover, Nordic countries such as 

Finland continue to have better access to technology and be Digital Frontrunners, whereas others 

like Bulgaria remain as Digital Challengers (European Union, 2019a, 2019b, 2019c; Ridao-Cano 

& Bodewig, 2018; Novak et al., 2018). Also, there seems to also be a link to academic 

achievement as Digital Frontrunner countries often have higher classroom achievement than 

Digital Challengers.  

1.2 Mathematical Literacy 

 Mathematics constitutes one of the key domains of academic achievement, as an 

understanding of mathematics is imperative for all functioning members of society (National 

Mathematics Advisory Panel, 2008; OECD, 2017a). As this understanding starts during a child’s 

formative years of education and as it is crucial for individuals when they prepare to enter 

adulthood, the Program for International Student Assessment (PISA) assesses 15-year-olds’ 

mathematical literacy. PISA defines mathematical literacy as 

“... an individual’s capacity to formulate, employ and interpret mathematics in a variety 

of contexts. It includes reasoning mathematically and using mathematical concepts, 

procedures, facts and tools to describe, explain and predict phenomena. It assists 

individuals to recognize the role that mathematics plays in the world and to make the 

well-founded judgements and decisions needed by constructive, engaged and reflective 

citizens.” (OECD, 2013, 2017a). 
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  Mathematics also constitutes the foundation to so many other essential skills, such as 

telling time, understanding distances, cooking, managing money, and problem solving. 

Mathematical literacy and skills are essential for well-adjusted individuals to productively 

contribute to society, as they are foundational for other areas of study, such as physics and 

engineering (OECD, 2017a, 2017b). Despite the importance of mathematical skills for all 

individuals, especially students, the mean mathematics scores of the majority of countries have 

not been increasing significantly in PISA, with only four countries previously above the global 

average continuing to improve (OECD, 2016b). Throughout half of the European Union, more 

than 20% of the 15-year-olds perform below the world average mathematics score (Ridao-Cano 

& Bodewig, 2018). Importantly, in European countries with less access to ICT such as Bulgaria 

or Romania, the percent of low performers increases to more than 33% when compared to the 

average country participating in the Organization for Economic Co-operation and Development 

(OECD). These comparisons are between-country comparisons. Contrasting mathematics scores 

of two countries with different ICT profiles yields results with limited applicability on a national 

scale; between-country comparisons allow making inferences about how different ICT “types” of 

countries are associated with achievement, but do not allow for inferences about how differences 

in ICT within the country are associated with individual achievement. Thus, understanding the 

relationship between the individual factors of ICT and mathematics scores within a country will 

be key for policymakers designing interventions and policies within each country. Such 

knowledge will allow targeted interventions for the specific needs of each country. 

1.3 Science Literacy 

 Science literacy, defined as the reflective citizen’s ability to interact with the issues and 

ideas of science (OECD, 2017b), is essential for evaluating claims made by others or for 
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assessing evidence for those claims (van der Linden, Maibach, Cook, Leiserowitz, & 

Lewandowsky, 2017). In an era in which people are constantly bombarded with facts, opinions, 

and information, consumers of information need to be able to sort through the falsehoods to find 

the truth and avoid being taken advantage of by “flim-flam” (Randi, 1982). In the 21st-century 

digital landscape, ICT becomes an important tool in the process of discerning facts from fiction. 

Importantly, science literacy is the focus of PISA 2015, which constitutes a portion of the data 

for this research.  

 Unfortunately, there has been little change in science performance across OECD 

countries since 2006 (OECD, 2016a). Only six countries have increased their average science 

performance in the last four iterations of PISA. In 2015, 24 countries were measured as 

performing above the OECD science average. Seven countries were not significantly different 

from the OECD means, and the remaining 39 countries perform below the OECD average. 

1.4 ICT and Academic Achievement 

 Empirical evidence from earlier research shows that more technology in schools does not 

necessarily translate into improved student grades (Bulut & Cutumisu, 2017; Cheung & Slavin 

2013; De Witte & Rogge, 2014; Hu, Gong, Lai, & Leung, 2018). For example, studies have 

shown that increased technology availability in schools is associated with decreased academic 

achievement (Brown, 2018; Hu et al., 2018; Cheung & Slavin, 2013; De Witte & Rogge, 2014). 

Yet other researchers report various positive effects of ICT on students’ mathematics and science 

scores (Petko, Cantieni, & Prasse, 2017; Meggiolaro, 2018). Moreover, others have reported no 

significant relationship between types of ICT and mathematics and science scores (Meng, Qiu, & 

Boyd‐Wilson, 2018; Bulut & Cutumisu, 2017). A literature review on this topic uncovers the 

mixed and contradicting body of evidence that links ICT to academic achievement. Thus, an 
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open question remains regarding the effect of increased ICT on academic achievement: What 

aspects of ICT cause increases and decreases in academic achievement?  

1.5 PISA 

The data used in this research was collected by the OECD in 2015, as part of their tri-

annual Programme for International Student Assessment (OECD, PISA, n.d.). PISA is an 

assessment implemented by the Organization for Cooperation and Development (OECD) that 

collects data from 15-year-old students in countries around the world every three years (OECD, 

2017b). The OECD “is an international organization that works to build better policies for better 

lives. [Their] goal is to shape policies that foster prosperity, equality, opportunity and well-being 

for all” (OECD, About, n.d.). Stakeholders include governments, policy makers, and citizens to 

tackle challenges in education, economics, and other areas. These international surveys collect a 

wide variety of data involving 15-year-old students and schools from 72 participating countries 

across the world (OECD, 2017a; 2017b). For this research, data from PISA’s mathematics and 

science literacy tests will be employed, together with the ICT Familiarity Questionnaire (OECD, 

2014a).  

Despite the fact that the OECD participating groups are referred to as countries, some 

identify themselves as separate economies or states. Although some countries are considered 

lower performing or lower ranking on the PISA scale, PISA is a specific measure and countries 

cannot be reduced to their PISA rank. 

1.6 Research Questions 

The purpose of this research is to explore the association of ICT with mathematics and 

science academic achievement for students from different countries in terms of digital 

proficiency. This research explores the association of ICT factors (ICT availability, ICT comfort, 
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and ICT use) with mathematics and science scores of students from around the globe who 

participated in the ICT questionnaire. The main research questions posed in this study are the 

following:  

● To what extent does ICT help or hinder students’ mathematics and science learning in 

Bulgaria and Finland, respectively, two countries with different ICT profiles, when 

controlling for students’ socio-economic status? Specifically, is more access to ICT 

associated with worse mathematics and science performance in each country? 

● Are the ICT, science, and mathematics variables measurement invariant across the 

countries participating in the PISA ICT questionnaire? 

Structural Equation Modelling (SEM) and the Alignment method (Asparouhov & Muthén, 2014) 

will be used to answer the first and second research questions, respectively. To do this, the 

present study examines how ICT is related to academic achievement in different countries 

because students live in a global community and instructors wish to prepare all students to be 

competitive internationally in a digital world. This research is important if the goal is to increase 

students’ academic achievement worldwide. It is crucial to uncover the helpful nature of ICT so 

that teachers can use these to uplift learning through technology. Given the global setting of 

technology, it is also important to know whether these relationships differ based on a student’s 

country. With ICT as a tool in classrooms, it is hoped that mathematical, scientific, and digital 

literacy, as well as computational and critical thinking will improve. Regardless of the results of 

this research, technology will continue to advance and become more incorporated in our lives. 

Thus, this research aims to inform teachers and policy makers on how ICT can aid students’ 

academic performance.  
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1.7 Chapter Summary 

This chapter explores the concept of ICT, its pervasiveness in today's global digital 

society, and its relationship with mathematics and science achievement. It outlines the main 

research questions that explore the impact of ICT inside and outside the classroom on students’ 

academic achievement in mathematics and science, while considering the students’ socio-

economic status and countries. 

Chapter 2: Theoretical Framework 

 This research draws on several theoretical frameworks to conceptualize the relationship 

between ICT and the academic scores in mathematics and science of students from different 

countries. Cultural constructivism puts into perspective the cultural environments of different 

countries and how they might influence the technology available to students and the results of 

these relationships (Cole & Wertsch, 1996; Cobern, 1993). This, in turn, may change the way 

students create knowledge that helps them to succeed in school. Novak et al. (2018) describe the 

differences between countries who are Digital Challengers and Digital Frontrunners and how 

they connect to students’ Science Technology, Engineering, and Mathematics (STEM) learning. 

Self-Determination Theory (SDT) proposes an explanation of the motivation and drive behind 

learning and mastering a skill (Ryan & Deci, 2000). Finally, the Digital Natives narrative is 

introduced to frame the generation that constitutes the focus of this research (Prensky, 2001). 

2.1 Cultural Constructivism 

As students’ countries play an important role in this research, cultural constructivism 

informs the current approach. A key comparison in this study is how the relationship between 

academic scores and ICT differs depending on the student’s country. As seen in cultural 

constructivism, which stems from the Piagetian (1952) constructivist learning theory, the societal 
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and cultural environment can dictate the learning that occurs for those individuals (Cole & 

Wertsch, 1996; Cobern, 1993). For instance, knowledge creation and learning may unfold 

differently as they are deeply influenced by learners’ cultural surround. In this theory, children 

learn through their active construction of knowledge. This can be implemented into the current 

research because students use ICT that is available to them, in their environment, to create the 

knowledge they need for their mathematics and science classes. This directly relates to the 

availability of ICT devices to students in PISA’s ICT Familiarity Questionnaire (OECD, 2014a). 

These subscales provide an insight into the technology in these students’ environment. Also, in 

Vygotsky’s social development theory (1978), learning is a social process that occurs through 

interactions with others. A key aspect of ICT is its use for communication and connecting people 

around the world.  

2.2 Digital Frontrunners and Challengers 

When examining different countries, distinctions can be made between a country’s 

wealth, education quality, available technology, and technology culture. For example, the 

number of computers available to students varies greatly from less than five students per 

computer in some countries to over 40 students per computer in others in the early 2000s (Law, 

Pelgrum, & Plomp, 2008). In the context of technological innovations and advancements, 

countries can be split into two categories, Digital Challengers and Digital Frontrunners (Novak et 

al., 2018). Digital Challengers generally have less advanced technology standards than the 

average country, which means that they display a higher growth potential. According to Novak et 

al. (2018), Bulgaria, Croatia, the Czech Republic, Hungary, Latvia, Lithuania, Poland, Romania, 

Slovakia, and Slovenia are examples of European Digital Challengers. On the other end of the 

scale, more technologically-advanced countries that display a high digitization rate would be 
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considered Digital Frontrunners. These are European countries like Belgium, Denmark, Estonia, 

Finland, Ireland, Luxembourg, the Netherlands, Norway, and Sweden. Novak et al. (2018) 

discuss an important connection between STEM learners and a country’s status as Frontrunner or 

Challenger. The authors explain the need for STEM learners to transform a country from a 

Digital Challenger to a Digital Frontrunner. This supports the present research that investigates 

the important association of mathematics and science education with ICT within the context of 

different countries. The results from this research can inform practice in classrooms across the 

globe. If the proper ICT components that promote mathematics and science education can be 

parsed out, schools could improve the use of ICT to support learning. As a result, this 

transformation could turn a Digital Challenger country into a Digital Frontrunner. According to 

Novak et al. (2018), this would increase a country’s GDP, reduce unemployment, and shorten 

work weeks for a better quality of life. 

2.3 Self-Determination Theory 

 Self-Determination Theory (SDT) posits that an individual's learning is driven by self-

motivation and determination. Specifically, the learner exerts effort to obtain a positive outcome 

(Ryan & Deci, 2000). SDT underlies some of the measurements around students’ ICT 

involvement. There are three basic psychological needs that are tied to SDT: competence, 

autonomy, and relatedness. These are reflected closely in the ICT Familiarity Questionnaire 

(OECD, 2014a) from PISA 2015, which includes questions that assess a student’s perceived 

competence and autonomy surrounding ICT use, as well as ICT as a social topic. Competence 

reflects a student’s level of mastery and control over outcomes when using ICT. Autonomy 

constitutes the student’s desire to make their own choices when using ICT. Relatedness is the 

drive to connect and communicate with others. In the PISA 2015 ICT Familiarity Questionnaire 
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(OECD, 2014a), competence is measured by the COMPICT (IC014) subscale. Students’ self-

reported autonomy around the use of ICT is measured by the AUTICT (IC015) subscale. 

Relatedness is measured by the SOIAICT (IC016) subscale. The subscales in the ICT Familiarity 

Questionnaire are detailed in PISA’s reports (OECD, 2014a; 2017). When these needs are 

fulfilled, they increase an individual's self-motivation. According to SDT, people view their 

actions as self-determined and, when they perform well, this enhances their feelings of 

autonomy. Positive social interactions, competence, and autonomy are conducive to increasing 

intrinsic motivations. With high intrinsic motivation, students will be self-driven to challenge 

themselves with using technology, which creates the conditions where learning is more likely to 

occur (Hamari et al., 2016; Hung, Sun, & Yu, 2015). Like the other theories discussed, SDT also 

explains that a person’s motivation and achievement is influenced by their environment. Optimal 

development and mastering skills can only occur if the individual learns in a nurturing 

environment that supports growth (Ryan & Deci, 2000). This can be tied to Digital Frontrunners 

and Challengers because students who master technology may also learn better when using 

technology, given that they were raised in an environment where ICT is abundant and easily 

integrated into their lives. Conversely, in a Digital Challenger country, fewer connections with 

ICT during development may lead to suboptimal performance with ICT when attempting to learn 

using ICT later in life. 

2.4 Digital Natives 

 Finally, as discussed in Prensky’s (2001) seminal paper on digital natives, a large shift 

occurred in the late 20th century on how students need to be taught. Individuals born after the 

1980s (depending on the country) had the opportunity to grow up in the digital age and are 

referred to as digital natives rather than digital immigrants (Palfrey & Gasser, 2011; Prensky 
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2001). This shift sparked a change in how students are taught, which is still being tested and 

investigated by researchers and educators, reflected in the vast amount of current literature on 

teaching styles and on incorporating technology meaningfully to enhance education. However, 

the relationship between academic achievement and ICT is not as straightforward as “more 

equals better.” Recently, digital immigrants are starting to be replaced by digital natives as 

educators in classrooms (Hudgins & Anderson, 2015). It is likely that this process will change 

the way ICT is implemented in classrooms since teachers who are digital natives would have 

higher competence around ICT (Lund, Furberg, Bakken, & Engelien, 2014; Cox & Marshal, 

2008). Even though ICT is available, it does not mean that teachers will include it in their lessons 

if they are not comfortable using it (Empirica, 2006; Ravitz, Wong, & Becker, 1998). Prensky 

(2001) posed the question of how to use computers and calculators in a mathematics class rather 

than whether computers should be simply used. This question is extrapolated to form the base 

research question of this study: What aspects of ICT are important for improving students’ 

academic achievement? 

2.5 Chapter Summary 

 This chapter outlines the various theoretical frameworks that were assembled to provide a 

context for the present research. Cultural Constructivism, Self-Determination, Digital Natives 

and Immigrants, as well as Digital Frontrunners and Challengers provide a theoretical 

background that justifies this research. Growing up in a country that may or may not be 

technologically advanced and being born before or after the technology boom or at the turn of 

the century are two factors that can drive an individual's later interaction with technology. 

Therefore, these factors have the potential to affect individuals’ education. A student’s self-

motivation and drive to create knowledge is also dependent on the environment or country. 
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Chapter 3: Literature Review 

3.1 Literature Review Methods 

A scoping review represents an exploratory method that maps systematically the 

literature on a topic, by identifying key concepts, theories, and sources of evidence, as well as by 

addressing broader research topics where many different study designs might be applicable. 

Rather than exhaustively researching a topic, this type of review explores “the extent, range, and 

nature of research activity in a topic area” (Pham et al., 2014). A five-stage searching and 

selecting method was employed to conduct this review (Arksey & O’Malley, 2005) that includes: 

1) identifying the research questions; 2) identifying relevant studies; 3) selecting studies; 4) 

charting the data; and 5) collating, summarizing, and reporting the results. This allowed us to 

compare and contrast theoretical frameworks, methods and analyses, and results. The purpose of 

this review is not an extensive and comprehensive representation of all research on the topic. 

Instead, it facilitates an understanding of the variety of findings when examining the association 

of ICT with academic achievement in mathematics and science using PISA data. The main 

research question guiding this review is the following: Does students’ involvement with ICT as 

measured by PISA have a positive, negative, or no effect on 15-year-old students’ mathematics 

and science scores?  

To locate studies for this review, a search was conducted in Google Scholar, PsycINFO, 

and Education Resources Information Center (ERIC). The key search terms are included in 

Appendix B. Publication alerts were set up with similar keywords to retrieve new studies relative 

to these topics. A snowball approach was used to probe journals for other useful studies and 

citations. The inclusion criteria narrowed the search to secondary research that was conducted 

with PISA data from any iteration between 2000 and 2015. The studies had to use items or 
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subscales from the ICT Familiarity Questionnaire as predictor variables and either plausible 

mathematics or science values, or both, as outcome variables. Studies that did not conduct 

quantitative statistics on numerical data provided by PISA were not included. 

The query in ERIC returned 30 articles, of which six were used. This search in PsycINFO 

provided three useful articles after removing duplicates. The remainder of the articles were found 

in Google Scholar and through the snowball method. Google Scholar returned 612 results which 

were reduced to 586 when the date was limited to 2000, the year when the PISA assessment 

commenced. Table 1 shows all 22 articles that were included in the literature review. Table 2 is 

split into positive, negative, and null results to help visualize the spread of the results found, 

while Table 3 demonstrates what PISA iterations were used. 

3.2 Description of Studies Used 

Researchers have employed a wide range of methods and angles to examine the relation 

between ICT and students’ achievement. Table 5 includes a list of statistical methods used by the 

22 studies. For instance, Petko et al. (2017) used multiple linear regression (MLR) to examine 

the relationship between ICT and mathematics and science scores for 39 of the participating 

countries in the 2012 PISA database. Hu et al. (2018) uncovered details about the ICT 

relationship with mathematics and science scores at an average OECD level with 44 countries 

using hierarchical linear modelling (HLM) in PISA 2015. Meng et al. (2018) analyzed Chinese 

and German ICT data from PISA 2015 with structural equation modelling. Meggiolaro (2018) 

used PISA 2012 data to explore the intersection of ICT and mathematics in Italian students using 

multilevel models, while Gamazo, Martínez-Abad, Olmos-Migueláñez, and Rodríguez-Conde 

(2018) used the same method and logistic regression to analyze the PISA 2015 data for Spanish 

students. Using Exploratory Factor Analysis (EFA) and HLM on the PISA 2006 data, Luu and 



15 

 

Freeman (2011) compared ICT and science scores of Canadian and Australian students. Bulut 

and Cutumisu (2018) employed structural equation modelling to examine the use and availability 

of ICT for Turkish and Finnish students in the PISA 2012 data. Skryabin, Zhang, Liu, and Zhang 

(2015) reviewed data from 39 countries PISA 2012 as well as other large international databases 

using HLM to explore the links between ICT and mathematics and science scores. Tan and Hew 

(2018) used HLM to study the impact of ICT on mathematics scores in PISA 2012 for students 

in seven Confucian heritage cultures (CHC): Hong Kong, Japan, Korea, Macau, Shanghai, 

Singapore, and Taipei. Using the first iteration of PISA in 2000, Papanastasiou, Zembylas, and 

Vrasidas (2003) implemented regression models to examine the relationship between computer 

use and availability in students from the United States of America. Koğar (2019) reported 

findings linking mathematics and science scores with ICT using the Chi-squared automatic 

interaction detection method on 35 OECD countries from PISA 2015. Zhang and Liu (2016) 

examined PISA data at the OECD level from 2000 to 2012 and reported the connections between 

ICT and academic achievement using HLM. The Reboot Foundation used more broad measures 

of general computer use and computers per student from PISA 2003 to 2015 using correlational 

methods. Other researchers used data mining techniques to uncover patterns in PISA 2015 data 

(Martínez-Abad, Gamazo, & Rodríguez-Conde, 2018). Juhaňák, Zounek, Záleská, Bárta, and 

Vlčková (2018) employed multilevel modelling and included gender as a control variable later in 

their analysis to examine ICT with mathematics and science scores of students in the PISA 2015 

database from the Czech Republic. As part of a large-scale study, Rodrigues and Biagi (2017) 

examined the relationship between low, medium, and high intensity use of ICT and mathematics 

and science for 25 European countries in PISA 2015 using multiple linear regression. Agasisti, 

Gil-Izquierdo, and Han (2017) examined the effects of ICT use at home for school work on 12 
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European countries from PISA 2012 using propensity score matching and instrumental variables. 

Özberk, Kabasakal, and Öztürk, (2017) examined Turkish students from PISA 2012 using two-

level hierarchical linear modelling. Delen and Bulut (2011) examined the PISA 2009 science and 

mathematics scores with ICT availability of Turkish students using hierarchical linear modelling. 

Using multiple models of Spanish students’ ICT data from PISA 2009, Fuentes and Gutiérrez 

(2012) inspected the effects on their and mathematics and science scores. Su (2017) used PISA 

2015 data to explore the effects of ICT on mathematics performance for Chinese and Korean 

students. The researcher used a variety of methods, such as the International Association for the 

Evaluation of Educational Achievement (IEA) international database analyzer, t-tests, and path 

analysis models. Kubiatko and Vlckova (2010) examined Czech students from PISA 2006 using 

ANOVAs (Analysis of Variance) and post hoc pairwise comparisons to investigate the 

relationship between ICT and science scores. 

3.3 ICT Use at School (USESCH) 

Mathematics 

Positive Relations. Meggiolaro (2018) found that Italian students’ mathematics scores 

were positively correlated with several ICT use factors in the PISA 2012 data, regardless of 

whether they take place in their home or school. The strongest correlation occurred with 

moderate rather than extreme use of ICT. Examples of ICT-use factors at school that were 

positively associated with higher mathematics scores were gaming, problem solving, knowledge 

creating, and retrieving, organizing, and managing information. Similarly, the Reboot 

Foundation (2019) reported that moderate ICT users in classes achieved higher scores in the 

PISA 2015 data than their peers who use technology heavily. Interestingly, students with the 

highest reported ICT use at school, although outperformed by students reporting moderate ICT 
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use, achieved higher scores than students who did not use ICT at all. Koğar (2019) uncovered a 

positive relationship between use of ICT devices while at school and mathematics scores in the 

PISA 2015 data. Conversely, Rodrigues and Biagi (2017) found that low-intensity users of ICT 

at school in European countries in PISA 2015 had higher scores than other levels of users. 

Negative Relations. Intensity of computer use at school in mathematics lessons and some 

related mathematics activities were negatively associated with mathematics scores for Italian 

students in the PISA 2012 data (Meggiolaro, 2018). In 2009 and 2015, Spanish students 

performed worse in academics when they used more ICT in school (Fuentes & Gutiérrez, 2012; 

Gamazo et al., 2018; Martínez-Abad et al., 2018). Hu et al. (2018) analyzed 44 OECD countries 

from PISA 2015 and found that, on average, students would drop nearly ten points in 

mathematics with an increase of one standard deviation of ICT use at school. Petko et al. (2017) 

and Skryabin et al. (2015) replicated these results with the same PISA 2012 data. Bulut and 

Cutumisu (2018) examined Finnish and Turkish students from PISA 2012 and also found a 

negative relationship between ICT use at school and mathematics scores. Juhaňák et al. (2018) 

found that Czech students who accessed the Internet for more than one hour per day at school 

showed lower academic achievement in PISA 2015. On average, for European countries, mid-

ICT and high-ICT users held a negative relationship between ICT use at school and mathematics 

scores in PISA 2015 (Rodrigues & Biagi, 2017). Su (2017) found that both Chinese and Korean 

students from PISA 2015 had a negative relationship between mathematics scores and ICT use at 

school. However, the students’ USESCH score did positively predict their self-perceived 

competence. 

No Relations. Although the literature revealed some associations between ICT and 

mathematics, there were also instances in which no associations were found. For instance, Tan 
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and Hew (2018) found no significant relationship between the use of ICT devices at school and 

mathematics scores in the PISA 2012 data. In PISA 2015, researchers found that the use of ICT 

by Czech students in school (USESCH) is uncorrelated with their mathematics performance 

(Juhaňák et al., 2018). However, when the interaction with school type (state funded, church 

funded, or private) is considered, the relationship with mathematics scores becomes significant 

and is stronger. 

Science 

 Positive Relations. Using computers in Australian schools was positively associated with 

science scores in the PISA 2006 data (Luu & Freeman, 2011). For Canadians, browsing the 

Internet at school or at home was also positively linked to higher science scores. European 

students who use low levels of ICT in schools also tend to perform better in science in PISA 

2015 (Rodrigues & Biagi, 2017). 

Negative Relations. Hu et al. (2018), Petko et al. (2017), Bulut and Cutumisu (2018), and 

Skryabin et al. (2015) found a negative relationship between ICT use at school and science 

scores using PISA 2012 and 2015 data. Luu and Freeman (2011) examined the link between ICT 

and science performance for Canada and Australia using the PISA 2006 data and found that most 

facets of ICT use, other than browsing the Internet, were negatively associated with science 

scores. Gamazo et al. (2018) reported a negative relationship for Spanish students in 2015. Very 

high frequencies of ICT use were associated with worse science scores than medium use for both 

Canadian and Australian students (Luu & Freeman, 2011). The academic scores of students who 

spend more than one hour a day at school on the Internet suffer (Juhaňák et al., 2018). Similar to 

the mathematics results, European students in PISA 2015 performed worse in science when they 

used ICT from medium to high levels (Rodrigues & Biagi, 2017). Spanish students in PISA 2009 
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and 2015 with more ICT use performed worse than their peers on mathematics (Fuentes & 

Gutiérrez, 2012; Martínez-Abad et al., 2018). 

No Relations. Luu and Freeman (2011) discussed several mixed results, but specific ICT 

use at school was not associated with science scores for Canadian students in the PISA 2006 

data. In PISA 2015, researchers found that the use of ICT by Czech students in school was not 

correlated with their science performance (Juhaňák et al., 2018). However, as in the case of 

mathematics, when the interaction of school type is included, the relationship becomes 

significant. 

3.4 ICT Use at Home for Schoolwork (HOMESCH) 

Mathematics 

 Positive Relations. Same as for the ICT use at school, Meggiolaro (2018) found a positive 

relationship between mathematics scores and ICT, when ICT was used at home for academic 

purposes in PISA 2012. Opposite to their previous findings, Petko et al. (2017) found a positive 

relationship between ICT use at home for schoolwork and mathematics scores. Tan and Hew 

(2018) also uncovered a positive relationship between ICT use at home for schoolwork and 

mathematics scores in PISA 2012. Rodrigues and Biagi (2017) reported a positive relationship 

between mathematics and ICT use at home for schoolwork but only for European students who 

used relatively low ICT in PISA 2015. 

Negative Relations. Skryabin et al. (2015) found a significant negative relationship 

between students who use ICT at home for school related purposes and lower mathematics 

scores in the PISA 2012 data. Medium and high users of ICT in Europe also had lower 

mathematics scores in PISA 2015 (Rodrigues & Biagi, 2017). Agasisti et al. (2017) also found a 

relationship for European students. In fact, this relationship was slightly stronger for students 
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with higher SES. Spanish students in PISA 2015 also show a negative relationship between 

mathematics and HOMESCH (Martínez-Abad et al., 2018). When examining Chinese and 

Korean students’ mathematics scores from PISA 2015, Su (2017) reported that HOMESCH 

acted as a negative predictor for China, but was not significant for Korea. Also, HOMESCH 

acted as a positive predictor for a students’ self-perceived competence towards ICT in China, but 

once again, was not significant in Korea. 

No Relations. Hu et al. (2018) found no significant relationship between mathematics and 

ICT use at home in PISA 2015. Other researchers found no significant relationship between ICT 

use at home for academics and mathematics scores for Finnish and Turkish students in PISA 

2012 (Bulut & Cutumisu, 2018) and for Czech students in PISA 2015 (Juhaňák et al., 2018). 

Science 

Positive Relations. Petko et al. (2017) observed a positive relationship only for the top-

performing countries in the PISA 2012 data. Same as for mathematics, European students who 

use low amounts of ICT achieved higher science scores in PISA 2015 (Rodrigues & Biagi, 

2017). 

Negative Relations. All countries that were not top performing exhibited a negative 

relationships for ICT use at home for schoolwork and science scores in the PISA 2012 data 

(Petko et al., 2017). Hu et al. (2018) as well as Skryabin et al. (2015) established a negative 

relationship between ICT use at home for school work and science achievement at the OECD 

level in the PISA 2015 and PISA 2012 data, respectively. This negative relationship was also 

found in Australia in 2012 and the Czech Republic in 2015 (Luu and Freeman, 2011; Juhaňák et 

al., 2018). In Europe, medium and high users of ICT performed worse on science assessments 

than low users of ICT (Rodrigues & Biagi, 2017). Agasisti et al. (2017) also found this 
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relationship with European students. The effect was slightly stronger for students with higher 

socio-economic status (SES). Spanish students in 2015 also had a negative relationship between 

science scores and HOMESCH (Martínez-Abad et al., 2018). 

No Relations. The results for science and academic ICT use at home were not significant 

for Canadian students in 2006 as well as for Finnish and Turkish students in 2012 (Bulut & 

Cutumisu, 2018; Luu & Freeman, 2011). 

3.5 ICT Use at Home for Entertainment (ENTUSE) 

Mathematics 

 Positive Relations. When ICT devices are used at home for entertainment rather than for 

schoolwork, some researchers report different relationships with academic scores. Students from 

both Italy and Turkey were found to perform better in mathematics with more ICT use at home 

for entertainment in the PISA 2012 data (Bulut & Cutumisu, 2018; Meggiolaro, 2018). Italian 

students who used ICT for gaming also had higher mathematics scores in the PISA 2012 data. 

For Turkish students, ENTUSE was connected to higher mathematics scores in the PISA 2012 

data (Bulut & Cutumisu, 2018; Özberk et al., 2017). Petko et al. (2017) discovered that students 

in countries with high mathematics scores reported lower levels of ENTUSE in the PISA 2012 

data. Low European users of ICT for entertainment showed higher mathematics scores compared 

to other users (Rodrigues & Biagi, 2017). Like for the USESCH variable, Su (2017) reported 

ENTUSE as a positive predictor for mathematics scores for Chinese and Korean students from 

PISA 2015. ENTUSE also acted as a positive predictor for a students’ sense of self competence 

around ICT. 

 Negative Relations. In contrast to Turkish students, Finnish students’ mathematics scores 

seemed to suffer with higher levels of ENTUSE in the PISA 2012 data (Bulut & Cutumisu, 
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2018). These results are reflected by Petko et al. (2017) and Skryabin et al. (2015) who noticed 

that high levels of ENTUSE were detrimental for countries with higher mathematics scores. 

Students who used the Internet for fewer than 30 minutes or more than 6 hours per day at home 

performed worse than students who accessed the Internet between 31 minutes and 6 hours per 

day (Juhaňák et al., 2018). European students who were high users of ICT showed a negative 

relationship with mathematics (Rodrigues & Biagi, 2017). In PISA 2009 and 2015, Spanish 

students with higher measures of ENTUSE performed worse on the mathematics assessment 

(Fuentes & Gutiérrez, 2012; Martínez-Abad et al., 2018).  

 No Relations. At the OECD level, Hu et al. (2018) again found no significant relationship 

for mathematics scores and ICT use outside of school, even for entertainment. Similarly, Juhaňák 

et al. (2018) reported no relationship between the mathematics scores of Czech students and use 

of ICT for entertainment. Finally, European students with mid-frequency ICT use did not have a 

significant relationship with mathematics (Rodrigues & Biagi, 2017). 

Science 

Positive Relations. Bulut and Cutumisu (2018) found a positive relationship for Turkey in 

the PISA 2012 data for both science and mathematics with ENTUSE. Hu et al. (2018) discovered 

a positive relationship between science scores and ENTUSE. Again, low-intensity users of ICT 

showed higher science scores than their peers (Rodrigues & Biagi, 2017). 

Negative Relations. Bulut and Cutumisu (2018) found a negative relationship between 

ENTUSE and science scores for Finnish students. Petko et al. (2017) revealed a significant 

negative relationship for science scores and ENTUSE at the OECD level. Using earlier data from 

2006, Luu and Freeman (2011) discovered that frequent ICT use for entertainment or school 

work was negatively associated with students’ science scores in Canada, with the exception of 
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browsing the Internet. Czech students who use the Internet for fewer than 30 minutes or more 

than 6 hours per day at home achieved lower science scores than students who use the Internet 

between 31 minutes and 6 hours a day (Juhaňák et al., 2018). Similar to before, in Europe, high-

intensity users of ICT performed worse on science assessments in PISA 2015 (Rodrigues & 

Biagi, 2017). In PISA 2009 and 2015, Spanish students with higher measures of ENTUSE 

performed worse on the science assessment (Fuentes & Gutiérrez, 2012; Martínez-Abad et al., 

2018). 

No Relations. Skryabin et al. (2015) found no significant relationship between students’ 

science scores and their use of ICT for entertainment outside of school in the PISA 2012 data. 

Juhaňák et al. (2018) replicated these results when examining the Czech Republic in the same 

database. Medium users of ICT in Europe did not have a significant relationship with science 

scores (Rodrigues & Biagi, 2017). 

3.6 ICT Availability at School (ICTSCH) 

Mathematics 

 Positive Relations. Limited research revealed that availability of different ICT devices at 

school was associated with higher mathematics scores. This was only the case for Turkish 

students in PISA 2012 and Spanish students in PISA 2009 (Bulut & Cutumisu, 2018; Fuentes & 

Gutiérrez, 2012). 

 Negative Relations. In contrast to the results found for Turkey, ICTSCH was associated 

with lower scores in Finland in PISA 2012 (Bulut & Cutumisu, 2018). Koğar (2019) reported a 

negative relationship between ICT use at school and mathematics scores at the OECD level in 

the PISA 2015 data. The author highlighted eBook reading devices as the strongest negative 

predictor of scores. Overall, the Reboot Foundation (2019) found negative associations between 
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ICTSCH and their PISA mathematics scores. Martínez-Abad et al. (2018) found negative results 

for the number of ICT devices at home and mathematics scores. 

 No Relations. Hu et al. (2018) uncovered no significant relationship between availability 

at school and mathematics scores at the average OECD level in PISA 2015. Tan and Hew (2018) 

also found no relationship between ICTSCH and mathematics scores in PISA 2012. The 

mathematics scores of Czech students in 2015 were not significantly correlated with ICTSCH 

(Juhaňák et al., 2018). A higher ratio of computers to students did not have a significant effect on 

mathematics scores (Reboot Foundation, 2019). 

Science 

 Positive Relations. Similar to results for mathematics, Turkish students from PISA 2012 

and Spanish students from PISA 2009 also achieved increased science scores with higher 

ICTSCH (Bulut & Cutumisu, 2018; Fuentes & Gutiérrez, 2012).  

Negative Relations. Koğar (2019) reported a negative relationship between available ICT 

devices and science scores in PISA 2015. As in the case of mathematics, eBook readers were the 

culprit associated with lowest science scores. Similar to the results for mathematics, the Reboot 

Foundation (2019) found a small negative correlation between the availability of computers in 

schools and science scores. Spanish students’ science scores were lower when they had more 

ICT devices available to them at school (Martínez-Abad et al., 2018). 

No Relations. Analyses of the data from Czech, Finnish, and American students revealed 

a non-significant relationship between science scores and ICTSCH in PISA 2015, 2012, and 

2000, respectively (Bulut & Cutumisu, 2018; Juhaňák et al., 2018; Papanastasiou et al., 2003). 

Similarly, the relation between the science score and ICTSCH was, on average, non-significant 
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for 44 countries who participated in PISA 2015 (Hu et al., 2018). The specific ratio of students to 

computers did not significantly predict science scores (Reboot Foundation, 2019). 

3.7 ICT Availability at Home (ICTHOME) 

Mathematics 

 Bulut and Cutumisu (2018) found a positive relation between mathematics and 

ICTHOME for Turkish students in PISA 2012. Also using Turkish data, but from PISA 2009, 

Delen and Bulut (2011) found a positive correlation between ICTHOME and mathematics 

scores. Similarly, Fuentes and Gutiérrez (2012) also found a positive relationship while 

analyzing Spanish students from PISA 2009. 

Negative Relations. Hu et al. (2018) reported a negative relationship between students’ 

ICTHOME and both mathematics and science scores at the OECD level in PISA 2015. Tan and 

Hew (2018) also found a negative relationship in a sample of students from Asian countries with 

Confucian heritage cultures in PISA 2012. At a single country level, Spanish students held 

negative relationships for higher ICTHOME and mathematics scores from PISA 2015 (Martínez-

Abad et al., 2018). 

No Relation. Research revealed a null relationship between mathematics and ICT 

availability for Finnish and Czech students in PISA 2012 and 2015, respectively (Bulut & 

Cutumisu, 2018; Juhaňák et al., 2018). 

Science 

 Positive Relations. An increase in ICTHOME was associated with an increase in science 

scores for Turkish students in PISA 2009 and 2012 (Delen & Bulut, 2011; Bulut & Cutumisu, 

2018). Papanastasiou et al. (2003) found a positive relationship between the number of ICT 
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devices at home and science scores for American students in PISA 2000. Fuentes & Gutiérrez 

(2012) also found a positive relationship while analyzing Spanish students from PISA 2009. 

 Negative Relations. As before, Hu et al. (2018) and Juhaňák et al. (2018) found a 

negative link between ICTHOME and academic scores in PISA 2015. Similarly, Spanish 

students held negative relationships for higher ICTHOME and mathematics scores in PISA 2015 

(Martínez-Abad et al., 2018). 

 No Relations. No association was found between Finnish students’ science scores and 

ICTHOME in PISA 2012 (Bulut & Cutumisu, 2018). 

3.8 ICT Interest (INTICT) 

Mathematics 

 Positive Relations. Meng et al. (2018) used ICT interest among other personal ICT 

perceptions in Chinese and German students who participated in PISA 2015. They found that 

student interest in ICT was a positive predictor of mathematics and science scores only for 

Chinese students. Hu et al. (2018) report an overall positive relationship between ICT interest 

and mathematics and science scores. An interest in the Internet as a tool was positively 

associated with mathematics scores at the OECD level in PISA 2015 (Koğar, 2019). Finally, 

positive relations between INTICT and mathematics were found for Spanish students in PISA 

2015 (Martínez-Abad et al., 2018). 

 Negative Relations. Research revealed a negative relationship between mathematics 

scores and INTICT for German students in PISA 2015 (Meng et al., 2018). 

 No Relations. Although initially INTICT was not a significant factor for mathematics in a 

PISA 2015 study sampling Czech students, researchers found that, in some cases, gender 

significantly moderated the relation between ICT interest and mathematics (Juhaňák et al., 
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2018). Boys who showed higher interest in ICT had higher scores while girls who showed high 

interest in ICT had lower scores. This effect is, however, stronger for boys than it is for girls. 

Science  

Positive Relations. Hu et al. (2018) found an overall positive link between INTICT and 

science scores for 44 countries in PISA 2015. Meng et al. (2018) replicated this relationship for 

China within the same dataset. Finally, positive relations between INTICT and science were 

found for Spanish students in PISA 2015 (Martínez-Abad et al., 2018). 

Negative Relations. German students who participated in PISA 2015 showed lower 

science scores as INTICT increased (Meng et al., 2018). 

No Relations. Juhaňák et al. (2018) reported no relationship while examining the science 

scores and INTICT from Czech Republic in 2015. The interaction of interest and gender for 

science scores was not significant among Czech students. 

3.9 ICT Competence (COMPICT) 

Mathematics 

 Positive Relations. Similar to the results for ICT interest, COMPICT was found to be a 

positive predictor of mathematics scores in PISA 2015 (Hu et al., 2018). Zhang and Liu (2016) 

reported that confidence in Internet tasks was generally a positive predictor of higher 

mathematics and science scores from 2003 to 2009. Higher mathematics scores were also 

associated with more confidence in high-level ICT tasks in 2006 and 2009, but not in 2003. 

Comfort using unfamiliar ICT devices was a positive predictor of high mathematics scores in 

PISA 2015 (Koğar, 2019). Finally, positive relations between COMPICT and mathematics were 

found for Spanish students in PISA 2015 (Martínez-Abad et al., 2018). Using data from PISA 
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2009, Fuentes and Gutiérrez (2012) found a positive relationship between the attitudes towards 

ICT and ICT skill variables and mathematics scores for Spanish students. 

Negative Relations. Meng et al. (2018) found a negative relationship between COMPICT 

and mathematics scores for Chinese students in PISA 2015.  

No Relations. A null relationship was uncovered for German students’ mathematics 

scores and COMPICT in PISA 2015 (Meng et al., 2018). There was no relation between 

COMPICT and academic achievement in a PISA 2015 study with Czech students (Juhaňák et al., 

2018).  

Science 

 Positive Relations. Confidence in high-level ICT tasks was associated with higher science 

scores in PISA 2009 (Zhang & Liu, 2016). According to Luu and Freeman (2011), more 

confidence in basic ICT skills and in presentation software was correlated with higher science 

scores in Canada and Australia in PISA 2012. Papanastasiou et al. (2003) found higher science 

scores in American students who were comfortable using word processing software to write 

papers in PISA 2000. Finally, positive relations between COMPICT and science were found for 

Spanish students in PISA 2015 (Martínez-Abad et al., 2018). Fuentes and Gutiérrez (2012) found 

a positive relationship between attitudes towards ICT and ICT skill with mathematics scores for 

Spanish students from PISA 2009. 

Negative Relations. Meng et al. (2018) again found a negative relationship between 

COMPICT and science scores for Chinese students in PISA 2015. 

No Relations. For German students, COMPICT did not predict science scores in PISA 

2015 (Meng et al., 2018). In American students who participated in PISA 2000, comfort with 

general computer use and taking tests on the computer was not associated with science scores 
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(Papanastasiou et al., 2003). Similar to mathematics, the science score for Czech students in 

2015 showed a non-significant relationship with COMPICT, after the inclusion of the gender 

interaction (Juhaňák et al., 2018). 

3.10 ICT Autonomy (AUTICT) 

Mathematics 

 Positive Relations. Both Hu et al. (2018) and Meng et al. (2018) found positive 

associations between AUTICT and their mathematics scores in PISA 2015. Another study found 

a significantly positive relationship in PISA 2015 between student performance and AUTICT for 

Czech students (Juhaňák et al., 2018). Spanish students held the same relationship in PISA 2015 

(Gamazo et al., 2018; Martínez-Abad et al., 2018). 

 Negative or No Relations. The literature search did not yield any studies with negative or 

no relations between AUTICT and mathematics. 

Science 

 Positive Relations. A positive relation was also found between science scores and 

AUTICT by Hu et al. (2018), Meng et al. (2018), and Juhaňák et al. (2018) for Czech students in 

PISA 2015. The same relationship was also found for Spanish students in PISA 2015 (Gamazo et 

al., 2018; Martínez-Abad et al., 2018). 

 Negative or No Relations. The literature search did not yield any studies with negative or 

no relations between AUTICT and science. 

3.11 ICT Inclusion in Social Interaction (SOIAICT) 

Mathematics 

 Positive Relations. Martínez-Abad et al. (2018) found a positive association between 

students’ SOIAICT and mathematics performance in PISA 2015 for Spanish students. 



30 

 

Negative Relations. Student enjoyment of social interactions involving ICT was 

negatively connected to student mathematics scores in PISA 2015 (Hu et al., 2018). Similarly, in 

PISA 2015, a negative correlation was found between mathematics scores and social relatedness 

of using ICT for Spanish Czech and Chinese and German students, respectively (Gamazo et al., 

2018; Juhaňák et al., 2018; Meng et al. 2018). 

No Relations. The literature search did not yield any relations between SOIAICT and 

mathematics. 

Science 

 Positive Relations. Martínez-Abad et al. (2018) found a positive association between 

SOIAICT and science performance in PISA 2015 for Spanish students. 

 Negative Relations. Student enjoyment of social interactions involving ICT was 

negatively connected to student science scores in PISA 2015 (Hu et al., 2018). Meng et al. 

(2018) reported a negative correlation between Chinese and German students’ science scores and 

their social relatedness of using ICT in PISA 2015. Similarly, Juhaňák et al. (2018) and Gamazo 

et al. (2018) found negative relationships between science scores and SOIAICT for Czech and 

Spanish students, respectively. 

No Relations. The literature search did not yield any relationship between SOIAICT and 

science. 

3.12 Literature Review Discussion 

This review has summarized the literature exploring the relationships among students’ 

mathematics and science scores with the ICT variables used by PISA, yielding mixed results. 

This is likely due to the very particular nature of ICT influencing students’ scores. There are 

many facets of ICT that intersect with students’ daily lives and each facet can be associated with 
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a different academic outcome. The variation in results may also be attributed to the different 

measures countries included and timeframes used. Even studies that use PISA data can differ due 

to the changes in the ICT Familiarity Questionnaire (OECD, 2014b) since its inception, as 

pointed out by Zhang and Liu (2016). This literature review reflects some of the variety in 

previous findings. 

Researchers found positive, negative, and null relationships when looking into different 

aspects of ICT and their connection with academic achievement. Some researchers included 

several countries, while others focused on pairs or a single country, as shown in Table 2. The 

complexity of the types of relations between ICT and performance led researchers to use the 

methods shown in Table 5, such as multiple linear regression, HLM, structural equation 

modelling, EFA, logistic regression, propensity score matching, instrumental variables, and chi-

squared automatic interaction detection. The data examined in the reviewed publications 

consisted of PISA iterations from 2000 to 2015. The majority of the studies (seven) used HLM 

for their analysis. Five studies used MLR and two studies used Structural Equation Modelling 

(SEM).  

 Given the wealth of literature on the topic of ICT and learning, this review focused on 

studies that used PISA ICT data from 2000 to 2015. Individually or in pairs, 11 countries were 

examined in 12 articles. These countries include Australia, Canada, China, the Czech Republic, 

Finland, Germany, Italy, Korea, Spain, Turkey, and the United States of America. Otherwise, 

eight studies included a large group participating countries, as seen in Table 5. One study 

employed data from the first version of PISA in 2000, two used PISA 2006, two use PISA 2009, 

six used PISA 2012, eight used PISA 2015, one study used data from PISA 2000 to PISA 2012, 

and one study used data from PISA 2003 to PISA 2015, as seen in Table 3. From the 
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publications reviewed, Hu et al. (2018), Areepattamannil & Santos (2019), and Koğar (2019) 

used the most up-to-date version of PISA (i.e., 2015) and analyzed data from all participating 

countries. However, Koğar (2019) did not use the same variables in question as the other studies. 

This highlights the need for large-scale multiple group analysis of the current PISA data. Hu et 

al. (2018) used HLM, but a more robust approach such as structural equation modelling may 

better explain the complex relationships using latent variables and other incorporated methods, 

as demonstrated by Areepattamannil & Santos (2019).  

Results from the studies reviewed varied but some trends were observed. First, Finland 

seemed to have more null results for ICT use and availability when compared to Turkey (Bulut 

& Cutumisu, 2017). Perhaps there is less variation in the ICT scores for Finland, or it is possible 

that ICT effects academic scores in fewer ways. Not many articles were found that discussed the 

impact of AUTICT or use of SOIAICT. However, the two that did (Hu et al., 2018; Meng et al., 

2018) agreed that AUTICT use was positively associated with mathematics and science scores, 

while using ICT as a topic in social interactions was associated negatively with mathematics and 

science scores. Although Meng et al. (2018) found a negative relationship, most other studies 

reported a positive relationship (Koğar, 2019; Hu et al., 2018; Zhang & Liu, 2016 Luu & 

Freeman, 2011; Papanastasiou et al., 2003) and some reported a null relationship (Kubiatko & 

Vlckova, 2010; Meng et al., 2018; Papanastasiou, 2003) between COMPICT and mathematics 

and science dependent on country. INTICT was more frequently found to be positively 

associated with academic scores (Hu et al., 2018; Koğar, 2019; Meng et al., 2018) with the 

exception of Germany (Meng et al., 2018). No reviewed studies found null results for this 

relationship. ICTHOME and ICTSCH held a positive relationship for Turkey and a null 

relationship for Finland for both mathematics and science (Bulut & Cutumisu, 2017). Hu et al. 



33 

 

(2018) reported negative relationships for ICT availability at home and null relationships for 

availability at school. A negative relationship between USESCH and academic scores was found 

by Petko et al. (2017), Hu et al. (2018), Luu and Freeman (2011), Bulut and Cutumisu (2017), as 

well as Skryabin et al. (2015). Only Skryabin et al. (2015) found that USESCH was negatively 

related to mathematics. Petko et al. (2017), Hu et al. (2018), Luu and Freeman (2011), Bulut and 

Cutumisu (2017), and Skryabin et al. (2015) found this negative relationship with science scores 

as well. However, Meggiolaro (2018) and Koğar (2019) found positive relationships between 

USESCH and mathematics scores. Skryabin et al. (2015) was the only study to report a negative 

relationship between HOMESCH and mathematics scores. ENTUSE was also not associated 

with mathematics but it was positively associated with science (Hu et al., 2018). The Reboot 

Foundation (2019) report showed that mild usage of technology available to the students was the 

best predictor for higher mathematics and science scores even after controlling for demographic 

and economic data. Rather than examining science scores, Areepattamannil and Santos (2019) 

investigated how students’ COMPICT and AUTICT related to their thoughts and feelings 

towards science in general, finding a positive relationship between higher COMPICT and 

AUTICT and positive views towards science. These included an interest in science, enjoyment of 

science, self-efficacy of science, and conceptions about science. Therefore, promoting ICT 

COMPICT and AUTICT in school can make a more receptive environment to learning science 

material in the classroom. Students’ COMPICT was examined as a more influential factor, with 

results indicating that an increased USESCH, HOMESCH, and ENTUSE was related to an 

increase in COMPICT in Chinese and Korean students from PISA 2015 (Su, 2017). As seen in 

other studies (Fuentes & Gutiérrez, 2012; Hu et al., 2018; Koğar, 2019; Luu & Freeman, 2011; 

Martínez-Abad et al., 2018; Papanastasiou et al., 2003; Zhang & Liu, 2016), self-perceived 
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competence was a positive predictor for higher mathematics and science scores, indicating that 

the relationship between ICT predictors is as complicated as the relationship with academic 

outcomes. 

Another trend in results is the frequency of ICT use. Juhaňák et al. (2018) reported that 

Czech students who used the Internet between 30 minutes and six hours a day performed better 

academically than students who spent over six hours or under 30 minutes on the Internet. More 

specifically, students performed worse when they used the Internet at school more often, whereas 

they performed best when they used two to four hours of Internet at home. Luu and Freeman 

(2011) reported that moderate, very high, and very low ICT usage levels negatively affected 

Canadian and Australian academic scores in PISA 2006. The Reboot Foundation (2019) showed 

that students from PISA 2003 to 2015 performed worse if they used either no ICT or high ICT. 

Students with moderate ICT use performed the best on academic assessments. As seen in these 

studies, moderate ICT usage promotes the best academic performance when compared to little or 

no use, or excessive use.  

Rodrigues and Biagi (2017) studied the connection between frequency of use and Socio-

economic status in PISA 2015. Socioeconomic background or Economic, Social, and Cultural 

Status (ESCS) is a factor that can influence both academic scores and ICT in schools. ESCS is a 

continuous latent variable created by PISA that is comprised of wealth and social status 

indicators, such as number of books in the house and number of household possessions that 

reflect wealth (OECD, 2017a). Students with low ESCS have less opportunities to succeed than 

their peers. Students who use low levels of ICT from mid to low ESCS tend to benefit from an 

increase in use at home (Rodrigues & Biagi, 2017). Conversely, students with mid to high ESCS 

who are low frequency users of ICT benefit the most from an increase of ICT use at school. Type 
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of school that the student attends is also a factor that plays a role in understanding academic 

achievement and ICT (Juhaňák et al., 2018). The type of school has been found to mediate this 

relationship. In the Czech Republic, schools known as primary schools, 6-year and 8-year 

gymnasiums have a stronger negative relationship for USEICT than other school types. 

Rodrigues and Biagi (2017) reported that the positive relationship for HOMESCH and science 

scores was stronger for students with low ESCS in private schools with a greater number of 

computers available. 

3.13 Literature Review Limitations 

 This literature review constitutes a first step in elucidating the role of various aspects of 

ICT in students’ mathematics and science academic achievement. Thus, it presents a number of 

limitations, many of which are shared by the reviewed studies. Two types of limitations are 

distinguished: practical and methodological.  

From a practical perspective, this literature review is not as comprehensive as a 

systematic literature review and, therefore, it may not contain all the relevant literature at the 

time of this publication. Also, the present literature review was constrained by the number of 

published articles on this topic, especially as the PISA assessment is only administered every 

three years. However, the current results serve to provide examples of positive relations between 

the ICT variables and achievement, which can potentially be used to enhance student 

achievement.  

From a methodological perspective, several limitations of this review were identified. All 

studies reviewed are correlational and cross-sectional, due to the nature of the PISA data. 

Therefore, limited cause-and-effect relationships can be drawn from these results. Even studies 

that use multiple iterations of PISA cannot be used longitudinally to find causation because the 
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methods, measures, and sample change over the iterations. Using PISA data, the authors are 

unable to discern definitive causes for the differences in positive, negative, or null relationships 

among ICT. The details available about the context of ICT use provided by the ICT Familiarity 

Questionnaire (OECD, 2014b) are limited, as they do not indicate the quality of the devices or 

the meaningfulness or frequency of the use. Quality of ICT use is an important predictor for 

academic achievement and is needed for students to have a positive relationship between ICT 

and quality of learning (Lei, 2010; Lei & Zhao, 2007). The ICT measures are also limited as they 

do not indicate more specific contexts of ICT in school. For example, it cannot be deduced what 

ICT devices are used for mathematics classes or science classes. Unfortunately, the numbers of 

teachers or parents who are skilled in ICT are not included in the Student Questionnaire. This 

would be a valuable covariate to include in analysis (Giacquinta, Bauer, & Levin, 1993; 

Goldhaber & Brewer, 2000). 

All of the reviewed studies are limited by the number of covariates that they can include. 

It would be impossible to identify, measure, and control all the possible covariates that can affect 

academic achievement. It is also ill advised to include any and all covariates that might be 

related to your outcome variable (Achen, 2005). Researchers cannot be certain whether or not 

ICT is the true reason for different levels in academic scores. As mentioned by Meng et al. 

(2018), measurement invariance that has been established in some countries cannot be easily 

transferred to other countries. As a result, measurement invariance would need to be established 

in all countries which would be a laborious task. When it comes to choosing a country, 

theoretical reasons must be explained for the choice. For example, economic state, ICT 

environment, and whether or not the country will be representative of others should be part of the 

decision. The ICT Familiarity Questionnaire in PISA consists of self-reported data, therefore the 
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ICT measures may not perfectly reflect true scores. Another limitation is the sample used in 

these studies. Specifically, several countries do not take part in the PISA surveys fewer 

implement the optional ICT Familiarity Questionnaire. Furthermore, as the participants are all 

15-year-old students, the results are only generalizable to 15-year-olds who are in school. 

In addition, the PISA survey is far from being a perfect measure. The data collection is 

not always completely representative of the country’s indigenous schools or special-needs 

students (C. D. Howe Institute, 2018; LeRoy, Samuel, Deluca, & Evans, 2018). In addition, the 

results provided by PISA must be viewed with a level of uncertainty as they are only able to 

present ranges of results and imperfect methods of analysis (Murphy, 2010; Ercikan, Roth, & 

Asil 2015; OECD “FAQ,” n.d.).  

3.14 Literature Review Recommendations 

Clearly there is a gap in the literature that needs to be addressed. There has been a large 

focus on ICT use measures in the majority of studies to date. As a result, variables like 

COMPICT, INTICT, and AUTICT are more often disregarded. Understanding the factors that 

would make students more comfortable with ICT and the attributes that promote meaningful ICT 

among students should inform decisions regarding how much countries should spend on their 

educational ICT budget. In this review, the most frequently studied variables were HOMESCH, 

USESCH, and ENTUSE. The least frequently used variables were INTICT, AUTICT, and 

SOIAICT. This review found positive, negative, and null results for all variables except AUTICT 

and SOIAICT. AUTICT did not show any negative and null relationships, while SOIAICT did 

not show any null relationships. This could be due to these variables being strongly associated 

with academic achievement. Alternatively, there has not been enough investigation to find the 

situations in which negative and null relationships are found. Either way, more research needs to 
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be conducted to examine the softer measures of the ICT Familiarity Questionnaire (OECD, 

2014b). All avenues of ICT must be understood in order to effectively promote or limit the 

correct types of inclusion that improve education world-wide. 

The mixed results between ICT and academic performance yielded by the literature 

review suggests that more research needs to be done using rigorous statistical methods to 

examine and compare all available countries for a more in-depth comparison and understanding. 

In the near future, when PISA 2018 data is released, this literature review can provide a base of 

knowledge for researchers to guide their future research questions. In an attempt to mitigate the 

limitations mentioned above, research can take steps to ensure quality results. Researchers 

should use theoretical reasoning and other correlational research to pinpoint the ideal covariates 

and psychological factors available in PISA to act as control variables. This is how researchers 

can find more accurate results without over-controlling in their models. Similar methods as past 

studies can be replicated using the same countries in new iterations of PISA to see if the 

relationships change over time. If there are any changes, the authors can attempt to explain it by 

examining any shifts in the educational system. As pointed out by Tan and Hew (2018), it would 

be beneficial to see more use of mixed methodologies when investigating ICT to achieve a 

deeper understanding. 

Given the mixed results revealed by this literature review, it is clear that student 

achievement is related to ICT differently depending on the country of the students and the 

subject that is targeted. A model needs to be constructed to attempt to explain these relationships 

for different countries and subjects, while also including appropriate confounding variables. In 

the near future, policy will need to be crafted on the basis of recent findings. Results from studies 

covered here can contribute to inform practice in schools involving ICT. As context is an 
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important aspect of ICT inclusion in relation to academic achievement, and because the various 

contexts have different relations with mathematics and science scores, policy and practice will 

need to promote the positive and meaningful use, while trying to limit the less helpful aspects.  

Findings of this study also recommend that curricula should not necessarily focus on 

increasing a country’s rankings on the PISA list, given that these measures are very specific and 

do not provide a holistic view of a country’s level of achievement (Rieckmann, 2017; Dall, 

2011). Moreover, rankings are meaningless to a country’s performance because the smallest 

shifts can cause large jumps in placing (Gorur, 2014). Furthermore, placings are often used for 

shaming and blaming countries who cannot top the charts (Grey & Morris, 2018). If a country 

does adopt curricula that match only the needs of PISA, they risk lowering their students’ 

inquiry-based learning skills, concomitantly increasing their anxiety (Davie, 2017; Sjøberg, 

2017). 

3.15 Chapter Summary 

This literature review has explored the relations between ICT variables and academic 

achievement in mathematics and science for 15-year-old students who took the ICT Familiarity 

Questionnaire administered as part of the 2015 PISA assessment. This review makes the 

following contributions: 1) it synthesizes the relevant literature on ICT and performance in 

mathematics and science in PISA, a large international assessment; 2) it highlights the gaps in 

the literature that explores the relation between ICT and performance in mathematics and 

science, including the types of statistical methods used to analyze these relations, the countries, 

and the variables examined; 3) it reveals the need to conduct more research, as it found mixed 

results for most of the variables examined; and 4) it sheds light on the importance of students’ 

autonomy in enhancing their academic outcomes.  



40 

 

Overall, findings revealed mixed results of ICT with performance in mathematics and 

science. Of all the ICT variables, students’ self-reported autonomy around the use of ICT yielded 

only positive performance outcomes. Other variables were a mix of negative, positive, or null 

results, depending on the country. Future work should explore these same relations in multiple 

countries by including all available countries who completed the ICT Familiarity Questionnaire 

in PISA 2015 into a multiple-group model using SEM.  

Chapter 4: Methods 

4.1 Data Sources 

This research employs publicly available data from the 2015 PISA database that contains 

approximately 540,000 students from 72 countries. PISA is designed by experts in measurement, 

evaluation, and various content areas to test student learning and whether students are able to 

apply their knowledge (OECD, 2017b). Additionally, the surveys are used to measure other 

variables related to education such as involvement with ICT, which constitutes the focus of this 

research. The test items are delivered as paper or computer-based questionnaires and quizzes 

every three years. The data used for this research include the ICT Familiarity Questionnaire 

(OECD, 2014a) and the Student Questionnaire (OECD, 2014b) from 48 participating countries. 

These scales were all collected using computer-based questionnaires. 

4.2 Sample Description  

 The sample for the final SEM consisted of n = 11,810 students who attended school part-

time or full-time in their countries (OECD, 2016b; 2017b). Of that sample, 5,928 students were 

from Bulgaria and 5,882 were from Finland. The sample for the mathematics and science 

Alignment models were n = 369,450 and the sample for the ICT Alignment model was n = 

332,522. The age of the students ranges from 15 years and 3 months to 16 years and 2 months. 
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Participants were randomly chosen within their cluster sample of schools. Weighting variables 

were used to compare students from different schools, with the aim to ensure that all countries 

were equally represented. Many of the countries used in this study have contrasting economies 

and implementation of technology, and were partly identified by consulting the Growing United: 

Upgrading Europe’s Convergence Machine report by the World Bank on the European Union 

(Ridao-Cano & Bodewig, 2018). This report uses PISA and economic data to determine the 

divides that exist between European countries. 

4.3 Procedures 

The primary goal of PISA is to test if students can apply concepts learned in school to 

real-world issues. Typical subject areas in PISA include science, mathematics, reading, financial 

literacy, and collaborative problem solving. The results are used to understand the constructs that 

underlie the learning of young students and to influence education policy to promote equitable 

learning for all groups in each country. PISA questionnaires are administered every three years 

to detect changes in outcomes resulting from policy recommendations implemented from 

previous PISA results.  

Data collection for the 2015 PISA main survey started in March 2015 and ended in 

December 2015 (OECD, 2017b). The surveys were split up between schools and administered to 

randomly-assigned students. At least 150 schools were sampled in each country. OECD ensures 

a high quality of standards for composing their surveys including a field trial, multiple reviews, 

National Centre Quality Monitor, PISA Quality Monitor, and revisions and translation analyses 

(OECD 2017a; 2017b). The testing procedures for PISA 2015 mathematics did not vary much 

from 2012, other than moving to mainly computer-based testing. In preliminary trials, the results 

from paper-based or computer-based testing did not differ significantly for each country. 
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Therefore, the results between these two methods were combined for analysis (OECD, 2016b). 

When comparing the final reports of 2012 and 2015, a small correlation of .18 was found 

between mathematics performance and the change between computer-based and paper-based 

testing, which may be explained by a change in a small number of the items. 

4.4 Measures 

 All measures used in this research were obtained from the PISA 2015 database. The 

outcomes or dependent variables are the mathematics and science plausible values. The 

predictors or independent variables are the nine ICT subscales from the ICT Familiarity 

Questionnaire. 

4.4.1 Outcome Variables  

The observed outcome variables in this study are mathematical and scientific literacy. To 

measure these dependent variables, different groups of students were given similar sets of 

parallel, overlapping items from a total pool of 82 mathematics or science items (OECD, 

2017b). PISA compared students’ performance scores using Item Response Theory (IRT) to 

account for several challenges (Mislevy, Beaton, Kaplan, & Sheehan, 1992). Specifically, PISA 

uses complex sample designs (i.e., including unequal probabilities and stratifications) that must 

be taken into account when approximating scores. Distilling many test statistics into fewer 

plausible values enables researchers to add scores to their analyses rather than performing more 

advanced statistics to make the same comparisons. The IRT provides an improved estimation, 

even if the marginal analysis is not ideal. Based on this model, PISA imputed a total of ten 

plausible values for mathematics and science for each student “using information from the 

student context questionnaire in a population model” (OECD, 2017b, p. 128). Proficiency was 

given on a scale of 0 to 1000 with an overall mean of 500 and standard deviation of 100 across 
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all OECD countries. The ten plausible values were drawn as indicators for the latent 

mathematical and scientific literacy variables. For each student, PISA computed ten plausible 

values for mathematics and ten for science based on students’ answers to mathematics and 

science items. The goal is to represent their knowledge in each of the mathematics and science 

competencies measured. As the scale proficiency values for mathematics and science are not 

observed, PISA treated them as “missing” data (Rubin, 1987). Thus, PISA uses plausible values 

calculated by multiple imputation from questions and background information, aiming to 

estimate a students’ academic performance from individual item scores as well as to better 

represent the variability in students from schools, areas, and countries. More details on the 

necessity and use of plausible values are included in the PISA Technical Report (OECD, 2017b). 

As PISA statisticians have already produced the plausible values, each ten plausible values were 

used as latent-variable indicators to get a more accurate estimate of the latent values for 

Mathematics and Science. 

4.4.2 Predictor Variables 

The predictor variables from the ICT Familiarity Questionnaire include nine self-

reported Likert-subscales on a logit scale, where zero represents the OECD average (OECD, 

2014a). Descriptions and examples of these nine items provided by PISA are available in Table 

4. Each question measures a slightly different non-cognitive aspect of ICT use, availability, and 

comfort. Cronbach’s alpha (α) is calculated by OECD and recorded for each subscale to compare 

internal consistencies between countries (OECD, 2017b). A value of 1 signifies perfect internal 

consistency, while a value of .7 indicates acceptable internal consistency. These variables are 

briefly described below and Appendix A shows examples of each subscale. A full list of scale 
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reliabilities for all participating countries is included in Table 16.64 of the 2015 PISA Technical 

Report (OECD, 2017b). 

 ICT use. Three subscales derived from the PISA items were employed to assess ICT use: 

ENTUSE for ICT use outside of school leisure; HOMESCH for ICT use outside of school for 

schoolwork; and USESCH for use of ICT at school in general (OECD, 2017b). In the ICT 

Familiarity Questionnaire, these are recorded as items IC008, IC010, and IC011, respectively 

(OECD, 2014a). For each subscale, students responded to a set of questions such as “How often 

do you use digital devices for the following activities at (or outside of) school.” They were then 

presented with a list including social media, email, video games, and more. Responses were 

given on a 5-point ordinal scale with options of 1 = Never or hardly ever, 2 = Once or twice a 

month, 3 = Once or twice a week, 4 = Almost every day, or 5 = Every day. These three subscales 

are included in Appendix A among all of the nine ICT subscales and their questions. 

 ICT comfort. Four subscales derived from the PISA items were used to inquire about ICT 

comfort and familiarity: COMPICT for students’ perceived ICT competence; AUTICT for 

students’ perceived autonomy related to ICT use; INTICT for students’ ICT interest; and 

SOIAICT for students’ inclusion of ICT as a topic in social interaction (OECD, 2017b). In the 

ICT Familiarity Questionnaire, these are recorded as items IC009, IC013, IC015, and IC016, 

respectively (OECD, 2014a). Each subscale was based on a set of questions such as, “Thinking 

about your experience with digital media and digital devices: to what extent do you disagree or 

agree with the following statements?” Respondents then answered the items on a 4-point scale 

with the options: 1 = Strongly disagree, 2 = Disagree, 3 = Agree, or 4 = Strongly disagree. 

ICT availability. Finally, the two subscales that assess the ICT availability at school 

(ICTSCH) and at home (ICTHOME) were used in the analysis. The subscales were created 
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based on a set of questions on the availability of ICT-related equipment. ICTHOME is the 

availability of ICT in the home and is calculated by the sum of available items answered in 

question IC001 (OECD, 2014a). ICTSCH is derived the same way from question IC014. The 

ICTSCH and ICTHOME subscales were treated by PISA 2015 statisticians as indices that were 

computed as the sum across all their comprising availability items, while the rest of seven 

subscales (e.g., AUTICT, USESCH, etc.) were scaled indices computed based on IRT. For a 

detailed description of these measures and the methods for creating them, see the PISA 2015 

Technical Report (OECD, 2017b). 

 

4.5 Analytic Plan 

All the analyses conducted in this research employed Mplus 8 (Muthén & Muthén, 1998-

2017) and SPSS (IBM, 2019). To answer the first research question, the SEM method was used. 

Specifically, an EFA and Confirmatory Factor Analyses (CFAs) were conducted for Bulgaria 

and Finland, where mathematics and science plausible values were the outcome variable and the 

nine ICT subscales were the predictor variables. The purpose of an EFA is to find the ideal 

number and organization of predictor factors into latent variables (Overall, 1964). A CFA is then 

used to test those latent variables (Kline, 2015). Specifically, four separate models were used for 

the mathematics and science relationships for Bulgaria and Finland. To answer the second 

research question, the Alignment method was employed to build three separate models for 

mathematics, science, and ICT with multiple countries as one large group. Missing values in the 

ESCS and ICT variables were labeled as 99 or 97 in order to be identified by the software. 

 4.5.1 Structural Equation Model 

Prior to attempting the Alignment method, SEM was used to investigate the relationship 

between ICT and mathematics and science, respectively, for each of the two countries with 
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disparate ICT, Bulgaria and Finland. The research question addressed by this analysis was: To 

what extent does ICT help or hinder students’ mathematics and science learning in Bulgaria and 

Finland, respectively, two countries with different ICT profiles, when controlling for students’ 

socio-economic status? Specifically, is more access to ICT associated with worse mathematics 

and science performance in each country? The two chosen countries were Bulgaria and Finland 

because they represent countries with widely different ICT inclusion. As mentioned in the 

Theoretical Framework section, Finland is classified as a Digital Frontrunner, while Bulgaria is a 

Digital Challenger (Novak et al., 2018). On this scale, Finland is on the end of more 

technologically advanced and higher academic performance, whereas Bulgaria lies on the end of 

less technological prowess and lower academic scores on average (European Union, 2019b; 

2019c; OECD, 2016b). Thus, two separate models were prepared for each country (Bulgaria and 

Finland, respectively): one focused on mathematics scores and the other on science scores. 

Step 1: Exploratory Factor Analysis. The purpose of this first step was exploratory. Tests 

of association revealed that some of the predictor variables were correlated with each other, 

warranting a factor analysis, as shown in Table 9 and Table 10. Thus, an EFA was conducted 

with the nine ICT predictors to ascertain the ideal number and configuration of ICT predictors. 

The EFA showed that splitting into two factors resulted in eigenvalues of 1.5 and 1.6 for Finland 

and Bulgaria, respectively, as illustrated in Table 7. With three factors, the eigenvalues were .99 

for both countries. With four factors, the eigenvalues drop to .77 and .66 for Finland and 

Bulgaria, respectively. Thus, the three-factor solution was chosen, as it allowed for the most 

logical combination of factors without dropping significantly under a threshold value of 1. 

Empirically, none of the cross loadings generated by the three-factor solution was alarmingly 

high. After applying the geomin oblique rotation, the nine ICT predictor variables loaded well 
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into three factors (Muthén & Muthén, 2012). The variables with the highest significant values 

were grouped together to create the three latent predictor variables. The final model includes 

three latent predictor factors because the nine variables provided by the PISA 2015 data fit well 

into three factors: ICTUSE (i.e., HOMESCH, ENTUSE, and USESCH) representing students’ 

ICT use at home for schoolwork, for entertainment, and at school; ICTAVB (i.e., ICTHOME and 

ICTSCH) representing students’ ICT availability at home and at school; and ICTCOMF (i.e., 

AUTICT, COMPICT, SOIAICT, and INTICT) representing students’ self-reported autonomy 

around the use of ICT, self-reported ICT competence, inclusion of ICT as a topic in social 

interactions, and interest in ICT.  

The plausible variables for mathematics were highly correlated, as they measured the 

mathematics knowledge of an individual student, likewise for science plausible values. 

Therefore, all ten variables were combined into an overall mathematics and science latent 

variable, named MATH and SCIENCE, respectively. 

Cronbach’s alpha (α) is calculated by OECD and recorded for each subscale to compare 

internal consistencies among countries, as shown in Table 8 (OECD, 2017b). This is useful for 

comparing schools and regions within a country, however more analysis is needed to measure 

the invariance and comparability across more than one country. A value of 1 signifies perfect 

internal consistency, whereas a value of .7 indicates acceptable internal consistency. The values 

are higher in Bulgaria than in Finland for each variable with the average of .89 in Bulgaria 

and .84 in Finland. The variable with the highest α for both countries is HOMESCH and the 

lowest is INTICT. 

Step 2: SEM Confirmatory Factor Analysis. Then, Confirmatory Factor Analysis (CFA) 

models were run using a latent variable represented by the ten plausible values for mathematics 
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and science predicted by all nine scales loaded onto three latent variables. Specifically, separate 

mathematics and science models were designed with the three latent predictor variables, 

ICTUSE, ICTAVB, and ICTCOMF predicting a MATH or SCIENCE latent variable, 

respectively. This model has good model fit, but also showed that some predictor indicators were 

correlated beyond the factor correlations, meaning that some of the observed variables were 

measuring similar constructs. The correlations of all nine observed ICT predictor variables and 

the latent outcome variables are shown in Table 9 and Table 10 for Bulgaria and Finland, 

respectively. 

Step 3: Bifactor Variable Creation. Reviewing the nine subscales, it was clear that they 

were measured in a similar fashion and each one assessed students’ general ICT experience as 

well as unique aspects related to use, comfort, and availability of ICT. Given this, a bifactor 

model was used to partial out and control for the shared variance of all the observed predictor 

ICT variables (Holzinger & Swineford, 1937; Kline, 2015). The bifactor latent variable 

ShareICT was created with the nine ICT predictor variables. The latent outcome variable was 

then regressed onto ShareICT the latent outcome variable was regressed onto the bifactor to treat 

it as a covariate. Thus, the nine ICT predictor variables simultaneously load onto both the 

ShareICT variable and the three specific ICT constructs. In this way, the unique effects for 

ICTUSE, ICTCOMF, and ICTAVB could be distinguished after accounting for general ICT 

experience.  

Step 4: Final SEM. The final models that were designed are shown in Figure 1 and Figure 

2. Two models consisted of the mathematics scores for Bulgaria and Finland, respectively, while 

the other two consisted of the science scores of Bulgaria and Finland, respectively. An index of 

economic, social, and cultural status (ECSC) provided by PISA 2015 was added as a control 
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variable so that students’ economic status would not interfere with the relationship of 

mathematics or science with ICT (OECD, 2017b, p. 339). Many modification indices were used 

to achieve model convergence and to test for invariance. Starting values were achieved from the 

model output of the previous step.  

4.5.2 The Alignment Method 

Measurement invariance is a statistical process of establishing whether or not the same 

construct is being measured across different groups and is necessary to establish before cross 

group comparisons can occur (Vandenberg & Lance, 2000). A review of measurement 

invariance testing by Byrne and van de Vijver (2017) found that researchers acknowledge the 

need for measurement invariance tests for multiple group comparisons. However, the majority of 

studies only used two groups for comparison. The amount of studies further drops as the number 

of focal groups increases. The Alignment method was proposed as a solution to estimate the 

means and intercepts of many groups, while allowing for some flexibility in measurement 

invariance. It outperforms multiple-group techniques, such as multiple-group SEM, as it 

facilitates invariance testing with many groups (Asparouhov & Muthén, 2014). The goal of 

measurement invariance is to test whether or not constructs represent the same underlying 

attributes and measured scores have the same meaning in different conditions or groups (Meade 

& Lautenschlager, 2004). Measurement invariance must be established before means from 

different groups can be compared or else the comparison would not be meaningful (Millsap, 

2012). The Alignment option is a better choice than a CFA because a CFA may fail due to many 

modification indices and poor scalar model fit. Full invariance is rarely achieved in large datasets 

due to troublesome modification indices and complicated models from releasing constraints. The 

Alignment method simplifies and automates invariance testing among groups with expected non-
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invariance (e.g., culture in different countries; Muthén & Asparouhov, 2014; Byrne & van de 

Vijver, 2017). Typically, using SEM to complete a CFA for multiple groups means making 

many one-to-one comparisons, each requiring a baseline model, which would result in a lot of 

tedious work (Byrne & van de Vijver, 2017). For example, over one thousand individual 

comparisons would be needed for the present sample of 48 countries. When studying large 

groups, which are considered as a fixed mode of variation, there is a large degree of 

measurement non-invariance. In the current sample, this is caused by different countries with 

different backgrounds and cultures. This method can be based on either maximum-likelihood or 

Bayes estimation and can be performed with either free or fixed estimation. Free Alignment is 

suggested by Asparouhov and Muthén (2014) as a better option but it is possible that the model 

will not be identified. If that is the case, then fixed Alignment should be used. The difference 

between the two is that either all factor loadings and intercepts are freely estimated or one group 

is selected to have a factor mean set to zero and an intercept set to one. Free estimation allows 

more bias overall across all the parameters and works best when there is about 10% to 20% of 

non-invariant parameters. 

Alignment minimizes the amount of measurement non-invariance by estimating the 

factor means and variances. This is possible despite the fact that these parameters are not 

identified without imposing scalar invariance because a different set of restrictions are imposed 

that optimizes a simplicity function (Muthén & Asparouhov, 2014). The simplicity function is 

optimized at a few large non-invariant parameters and many approximately invariant parameters 

rather than many medium sized non-invariant parameters. According to Muthén and Asparouhov 

(2014, p.2),  
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“Adding a simplicity function gives the necessary restrictions to identify the model. The 

simplicity function minimizes with respect to [factor means] and [factor variance] the 

total loss/simplicity function F which accumulates the total measurement non-invariance 

over the items.”  

There are two steps that occur automatically during the Alignment analysis. The first is 

an estimation of a configural model, where loadings and intercepts are constrained across groups, 

factor means are fixed at zero, factor variances are fixed at one, while factor loadings and 

intercepts are freely estimated. In the end, the final Alignment model will have the same fit as 

this configured model. The second step is Alignment optimization, where factor means and 

variances are assigned values based on a pattern of parameter estimates using a simplicity 

function to minimize the total amount of non-invariance for every pair of groups and every 

intercept and leading using a simplicity function similar to rotations in an EFA. The estimation 

stops when the least amount of non-invariant parameters is achieved.  

The Alignment method works well unless there are small group sizes or a high proportion 

of significant non-invariant parameters. The Alignment method has several disadvantages: cross 

loadings cannot be accommodated, models with covariates cannot be estimated, and 

relationships between variables cannot be estimated (Asparouhov & Muthén, 2014; Marsh et al., 

2018). These limitations restrict the Alignment method to an exploratory tool. The non-

invariance cutoff point is 25% and the minimum number of groups is 30 (Muthén & 

Asparouhov, 2014).  

 The Alignment output provides a table of which groups are invariant for a given 

parameter. The latent means for each parameter are also given for every group. This output also 

shows which groups have a significantly lower mean than the mean of the group being 
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examined. The R-square value is provided for each parameter and demonstrates the variance 

across groups that can be explained by the variation in factor means and variances (Byrne & van 

de Vijver, 2017). A value of one indicates complete invariance because the variability in item 

parameters is completely explained by group mean differences. A value near zero indicates that 

the group mean differences explain none of the variability in item parameters (Asparouhov & 

Muthén, 2014). 

4.5.2.1 ICT Alignment  

Initially, three structural equation Alignment models were devised to explore whether 

mathematics scores, science scores, and ICT factors are measurement invariant across the 48 

participating countries, and to compare means. This method was used to answer the research 

question: Are the ICT, science, and mathematics variables measurement invariant across the 

countries participating in the PISA ICT questionnaire? In these models, the MLR, or maximum 

likelihood estimation with robust standard errors, estimator was used to incorporate the 

weighting variable (W_FSTUWT) to allow for cross country comparisons. The country ID 

variable (CNTRYID) was used to define the 48 countries as latent classes. Table 11 shows all 

country IDs. The default number of iterations was preserved, the number of random sets of 

starting values was set to 60 (double the default), and convergence was restricted to .001, as 

suggested by the Mplus 8 user manual (Muthén & Muthén, 1998-2017). At first, free estimation 

was used to find a reference group for fixed estimation because the models were not identified 

with free Alignment. The reference groups used were the countries with the factor means closest 

to zero, either positive or negative. For the ICT model, the country with the three factor means 

closest to zero was chosen as the reference group. The requested outputs were TECH1 and 

SVALUES for the starting values of the parameters, TECH8 for the optimization history, and 
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ALIGN for factor loadings and intercept comparisons as well as measurement invariance of each 

country for the factors. 

 Several warnings were included in the output after running the ICT model. 

a) “One or more parameters were fixed to avoid singularity of the information matrix. The 

singularity is most likely because the model is not identified, or because of empty cells in 

the joint distribution of the categorical variables in the model.”  

b) “Warning: The sample variance of ICTHOME is 0.000.” 

c) “Warning: The sample variance of ICTSCH is 0.000.” 

d) “Data set contains cases with missing on all variables except x-variables. These cases 

were not included in the analysis. Number of cases with missing on all variables except 

x-variables: 31383” 

The investigation of the source of these warnings revealed that the residual variances of 

ICTHOME and ICTSCH were fixed for Germany (CNTRYID 276). Indeed, Germany was 

missing all values for ICTHOME and ICTSCH and was subsequently removed from the ICT 

Alignment analysis. The new sample size without Germany was n = 362,946. With Germany 

removed from the dataset, a free Alignment model was conducted and The Netherlands 

(CNTRYID 528) was found to have the sum of the absolute values of their factor means closest 

to zero, at .67. Therefore, the model was reconfigured to exclude Germany from the classes, 

resulting in 47 classes. Mplus did not include 30,424 cases because they contained missing 

values on all variables except x variables, which are the outcome variables. This updated model 

only produced one warning: 30,424 cases were not included due to missing on all outcome 

variables. This warning is not a concern, as there are a total of 362,946 observations excluding 

Germany. In the end, 332,522 cases were included in the dataset of 47 countries.  
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4.5.2.2 Mathematics and Science Alignment 

 Two other similar models were created to test the measurement invariance of 

mathematics and science plausible values. These models are the same as the ICT model, except 

that the latent variables “MATH” and “SCIENCE” were created from their respective ten 

plausible values, the fixed country was based on each free Alignment model, and Germany was 

included. For the mathematics model, the fixed country was Croatia (CNTRYID 191) and for the 

science model, the fixed country was Ireland (CNTRYID 372). The plausible values that make 

up the latent variables were divided by 100 to bring them closer to the scale of the ICT items. 

4.6 Other Common Methods 

 As explained in the literature review and illustrated in Table 5, researchers have used 

numerous methods to explore the relationships between ICT and academic scores. Regression is 

the most frequently used and discussed method. Different varieties of regression have been used, 

ranging from linear regression and logistic regression to hierarchical linear modelling (HLM).  

 HLM is a type of Multilevel Linear Modelling that takes into account the nested 

hierarchies within the data (Field, 2018). Thus, this type of regression seems to be the best suited 

form of regression to answer the research questions posed in the present research because PISA 

data is hierarchical (i.e., students are nested within schools, and schools are nested within 

countries). Assumptions of linear, normal, and homoscedastic data need to be met to use this 

method. However, this research has employed SEM and the Alignment method instead of HLM 

for several reasons. For instance, as shown in Table 6, two and four of the ICT predictors are 

kurtotic above the recommended cutoff of ±2 (George & Mallery, 2010; Little, 2013) for 

Bulgaria and Finland. This violates the normality assumption of regressions, which casts a 

shadow on the trustworthiness of the results. The robustness of SEM is a good reason for its use 
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(Kline, 2015). It is a convenient combination of CFA and path analysis with plenty of 

informative outputs on variance and model fit. A main drawback of HLM is the laborious nature 

of manually inputting the hierarchies and repeating the process for all groups. Tan and Hew 

(2018) used this method with full maximum likelihood estimation for seven nested models, 

concluding that a mixed methodology approach should be taken to better understand such 

relationships and that more groups should be included in the analysis.  

4.7 Chapter Summary 

This chapter explains the methodological steps that were taken in this research. First the 

data source and sample were described. Next, an EFA model was used to begin the process of 

designing CFA models. Then, the Structural Equation Modeling (SEM) CFA models with 

increasing complexity were described using Bulgaria and Finland as sample countries. Finally, 

the Alignment method was described as a method of establishing measurement invariance across 

many groups simultaneously. 

Chapter 5: Results 

 In the PISA 2015 dataset, a country’s mean mathematics achievement was compared on a 

standardized scale with the mean of 500 points and a standard deviation of 100 for the 

participating OECD countries (OECD, 2016). Bulgaria achieved a score of 441 (SD = 97), 

placing it under the overall OECD average, while Finland scored 511 (SD = 82), placing it above 

the OECD average. The OECD science performance average, like mathematics, was 500 points 

with a standard deviation of 100 (OECD, 2016). Bulgaria performed below the OECD average 

with a mean score of 446 (SD = 102), while Finland performed near the top with a mean score of 

531 (SD = 96). Finland is much more digitally equipped than Bulgaria, but the two countries 
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exhibit similar computer usage (Ridao-Cano & Bodewig, 2018; Novak et al., 2018). This 

suggests that the effect of ICT is deeper than its sheer usage (European Union, 2019b; 2019c). 

Skewness and kurtosis are presented in Table 6, which also includes information on 

missing data for each variable. The dependent MATH and SCIENCE variables have no missing 

data because those values were all calculated by the statisticians at PISA after the data had been 

collected (OECD, 2016). Normality of the predictor variables as well as the missing data was 

confirmed by examining the skewness and kurtosis of histograms as well as the descriptive 

statistics in SPSS. In Table 6, the bolded values show which variables have significant kurtosis 

beyond the acceptable range of -2 to +2 (George & Mallery, 2010), indicating that there were no 

variables with enough skewness to cause concern. From a PLOT TYPE 3 in Mplus 8, the 

MATH, SCIENCE, and ICTCOMF latent variables were distributed normally for both Bulgaria 

and Finland. The ShareICT latent variable displayed some positive kurtosis. ICTUSE was 

distributed normally for Bulgaria but was positively kurtotic for Finland. ICTCOMF showed 

positive kurtosis in both countries. Even though some of the indicator and latent variables were 

not distributed normally, the results can still be trusted. SEM is a fairly robust method which can 

include components like weighting variables and maximum likelihood estimation with robust 

standard errors. The weighting variable and maximum likelihood estimation with robust standard 

errors can account for skewness and kurtosis and helps achieve more precise standard errors, 

especially for large datasets like PISA (Kline, 2015). The implications of analyzing variables 

with high skewness and kurtosis will be discussed in the limitations section. 

5.1 Structural Equation Models  

The SEM methods were used to answer the first research question: To what extent does 

ICT help or hinder students’ mathematics and science learning in Bulgaria and Finland, 
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respectively, two countries with different ICT profiles, when controlling for students’ socio-

economic status? Specifically, is more access to ICT associated with worse mathematics and 

science performance in each country? Correlations of the nine predictor variables were 

examined for both Finland and Bulgaria. All correlations were below the Kline’s (2015) 

collinearity cutoff of .85, therefore collinearity was not a concern. Four ICT measures in Finland 

were beyond the recommended ±2 standard deviations cutoff for normality, with only two in 

Bulgaria (George & Mallery, 2010; Little, 2013). The unevenly high ICT values in Finland may 

reflect the higher ICT due to their status as a Digital Frontrunner. 

The main model fit statistics used in this study are the Comparative Fit Index (CFI) and 

the Root Mean Square Error of Approximation (RMSEA). The Chi-square test was not used for 

model fit because it is a very sensitive test and provides meaningless results when used with very 

large samples (Hayduk, 2014; Little, 2013). CFI compares the hypothesized model with an 

independent model with no specifications. For CFI, a value of 1 is a perfect fit, while values 

equal to or greater than .9 are a close fit. RMSEA estimates the overall lack of fit, with .06 or 

below being considered as good fit. Some of the predictor variables yielded correlations upwards 

of .63, which enabled the combination of variables into fewer factors.  

Step 1: Exploratory Factor Analysis. The results for the EFA were used to guide the 

methods for the second, third, and fourth steps. These EFA results are discussed in the Analytic 

Plan section. 

Step 2: Confirmatory Factor Analysis. The initial CFA of the second step had the three 

latent predictor ICT variables predicting the MATH or SCIENCE latent dependent variables, 

respectively. This model had an RMSEA of .04 and a CFI of .98 for mathematics, whereas 

science had an RMSEA of .04 and a CFI of .98. See Table 12 for the global model fit of all steps. 
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This model explained 12.6% and 3.8% of the variation in mathematics scores for Bulgaria and 

Finland, respectively. The science model explains 15.4% and 4.8% variation in scores for 

Bulgaria and Finland, respectively. The standardized results of the Bulgaria model show us that 

mathematics scores are negatively associated with ICTUSE and ICTAVB with respective 

coefficients of -.23 and -.17. ICTCOMF, however, was positively associated with mathematics 

scores, with a coefficient of .33. All three of these relationships were significant with a p value 

of .00. The Finland model is slightly different with ICTUSE, ICTCOMF, and ICTAVB 

coefficients of -.20, .36, and .06 respectively. For Finland, ICTAVB is not significant, with a p 

value above .05. These same results are mimicked in the science model with significant 

coefficients for ICTUSE, ICTCOMF, and ICTAVB in Bulgaria as -.25, .36, -.19, respectively. In 

Finland these coefficients are -.23, .22, and .03 respectively, where ICTAVB is not significant 

with a p value over .05. Table 13 shows the standardized regression coefficients for the three 

latent variables for Finland and Bulgaria in the CFA models. 

Step 3: Bifactor Variable Creation. In this third step, the ShareICT latent variable was 

created to control for the shared variance of the ICT predictors. This step also showed good 

model fit for both countries and subjects. In the mathematics model, the RMSEA was .03 and the 

CFI was .99. In the science model, the RMSEA was .03 and the CFI was .99. This model 

explained 19.2% and 5.3% of the variation in mathematics scores for Bulgaria and Finland, 

respectively. The science model explained 22.2% and 5.3% of the variation in science scores for 

Bulgaria and Finland, respectively. The only change in relationships was that the relationship of 

ICTAVB became non-significant in both countries and both subjects. 

Step 4: Final SEM. The final bifactor SEM models of the fourth step included ESCS and 

as a control on the latent dependent variable. This model continued to show good model fit with 
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a RMSEA and CFA of .036 and .98, respectively, for math. The science model also showed good 

model fit with a CFI and RMSEA of .99 and .04, respectively. This model controlling for ESCS 

explains the mathematics and science scores better. The percentages of variation in mathematics 

scores explained by this model for Bulgaria and Finland are 34.3% and 19.4%, respectively. The 

percentages of variation in science scores by this model are 36.9% and 17.1% for Bulgaria and 

Finland, respectively. All path estimates are shown in Figure 1 and Figure 2. For mathematics, 

the ICTUSE, ICTCOMF, and ICTAVB coefficients for Bulgaria were -.27, .10, and -.17, 

respectively. The Finnish coefficients were -.08, .18, and -.07, respectively. For science, Bulgaria 

had coefficients of -.25, .36, and -.19, respectively and Finland had -.11, .18, and -.08, 

respectively. Interestingly, the ICTAVB relationships with mathematics and science scores 

became significant where they were not significant in Step 3. When the latent science variable 

was regressed onto the ESCS control variable, Bulgaria and Finland had coefficients of .41 

and .34, respectively. The mathematics ESCS and ShareICT results were similar to those for 

science. For ESCS, Bulgaria had a coefficient of .41 and Finland had a coefficient of .38.  

The major difference in the results in the CFA steps is that the relationship between 

ICTAVB became  fully non-significant in Step 3 then became significant in Step 4 for 

mathematics and science in both countries. In the end, the relationships between ICTAVB and 

mathematics and science scores were negative for both countries (see Table 6). The relationships 

between ICTUSE and mathematics and science scores were also negative for both countries. 

Unlike the other associations, the relationships between ICTCOMF and mathematics and science 

scores were positive. For the multiple CFAs, there were issues preventing the model to converge. 

To combat this, starting values were taken from the no-convergence model and added to the 
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updated CFA model. Some constraints on intercepts were also necessary to achieve model 

convergence and to obtain estimated latent means. 

5.2 ICT Alignment 

The Alignment methods were used to answer the second research question: Are the ICT, 

science, and mathematics variables measurement invariant across the countries participating in 

the PISA ICT questionnaire? The Alignment model shows which item intercepts and factor 

loadings are invariant in all of the groups. Table 14 presents the non-invariance percentages of 

the factor loadings and intercepts of the nine ICT items. If Muthen and Asparouhov’s (2014) 

cutoff of 25% as the maximum amount of non-invariance is surpassed, then the latent mean 

estimation may be untrustworthy. All of the 9 ICT items have high amounts of non-invariance, 

with an average of 68.60% for intercepts and 34.8% for factor loadings. The finding of fewer 

non-invariant factor loadings than intercepts follows the trend of previous researchers (Crane, 

Belle &Larson, 2004; Meiring, van de Vijver, Rothmann & Barrick, 2005; Byrne & van de 

Vijver, 2017). The factor intercepts of all 9 ICT items were above the 25% cutoff. The least non-

invariant intercept parameters were ICTHOME and ICTSCH with 42.60% non-invariance and 

the highest parameter was SOCIAICT with 87.20% non-invariance. The factor loadings were 

more mixed for non-invariant parameters, with five of nine being over the cutoff. The invariant 

factors were the loadings of ICTHOME (6.40%), HOMESCH (12.80%),  ICTSCH (14.90%), 

and COMPICT (23.4%). The factors with the lowest amount of non-invariance would be the 

most useful when comparing countries. All of the factors have significant non-invariance in all 

47 countries. Table 14 shows the R-square values for each of the nine ICT scales. The R-square 

value of ICTHOME was congruous with the non-invariance output as it was the highest at .94, 

which means that it is the most invariant parameter. According to the R-square, COMPICT was 
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the next-most invariant, which is similar to the non-invariance output. With this high amount of 

non-invariance, the latent mean estimates or their comparisons in other models cannot be trusted 

using this data. 

5.3 Mathematics and Science Alignment 

 The invariance output of the mathematics and science model had extremely low non-

invariance in both factor loadings and intercepts. All plausible values included in the separate 

mathematics and science Alignment models were invariant. Mathematics intercepts and factor 

loadings had an average of 9.40% and 6.0%, respectively. Science was even lower with 

intercepts and factor loading percentages of .83% and 1.0%, respectively. These levels of non-

invariance are well below the 25% cutoff, which suggests that the plausible values provided by 

PISA are invariant and can be used when comparing mathematics and science knowledge across 

countries. Consequently, the factor means are comparable across the 48 countries included in this 

study. According to both the present results and those from PISA 2015 results (OECD, 2016b), 

Singapore is by far the leading country in mathematics and science proficiency. The comparisons 

of the country means for mathematics and science scores match those from PISA identically. 

Table 15 and Table 16 show the ranked order of countries by factor means. 

5.4 Chapter Summary 

 This chapter outlines the findings of the present research. For the first research question, 

proper CFA model estimates were established using a bifactor SEM. With ESCS and shared ICT 

experience as covariates, ICTUSE and ICTAVB were negatively associated with mathematics 

and science scores in both of the example countries. Unlike the other two latent predictor 

variables, ICTCOMF was positively associated with mathematics and science scores in both 

countries. For the second research question, using the Alignment method revealed that, for the 47 
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participating countries, ICT was not measurement invariant. However, the mathematics and 

science plausible values were measurement invariant.  

Chapter 6: Discussion 

6.1 Structural Equation Models 

Research Question 1: To what extent does ICT help or hinder students’ mathematics and 

science learning in Bulgaria and Finland, respectively, two countries with different ICT profiles, 

when controlling for students’ socio-economic status? Specifically, is more access to ICT 

associated with worse mathematics and science performance in each country? 

 The purpose of the SEM CFAs were to assess the impact of various aspects of ICT on 

mathematics and science achievement for 15-year-old students in Bulgaria and Finland. It is 

important to understand how the ICT, mathematics, and science relationships vary within the 

context of the cultural technological landscape of that country, especially as results suggest that 

the models account for different amounts of variation according to country. For instance, the 

SEM CFA models created here can explain more of the variation in mathematics and science 

scores for Bulgaria than Finland . The present findings suggest that there are both helpful and 

harmful possibilities for ICT in relation to education. In both countries, a student’s perceived 

competence and autonomy, use in conversation, and ICT interest were positively associated with 

higher mathematics and science scores, while the use and availability of ICT at home and at 

school for schoolwork or entertainment were found to negatively associated with mathematics 

and science scores. The current study adds to the existing literature by providing supporting 

evidence that increasing a student’s exposure and use of ICT at home and at school may have a 

negative impact on their academic achievement. Also, the present study found that students from 

both countries who are more autonomous, independent, competent, and use ICT more in their 
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social interactions were associated with higher mathematics and science scores. Cultural 

constructivism might explain some of these results because of the disparity of the findings 

between the two countries. Specifically, it is likely that cultural differences led to unequal 

amounts of variation accounted for in the Bulgarian models. Furthermore, the ICTCOMF 

findings are supported by both social-cognitive theory (Bandura, 1986) and self-determination 

theory (Ryan & Deci, 2000) that emphasize the relationships of performance with individuals’ 

sense of autonomy, relatedness, competence, and confidence in their own abilities to successfully 

perform a behaviour. Indeed, researchers have associated a range of affordances for ICT use in 

mathematics and science education, with ICT promoting innovations in four major ways: 

cognitive acceleration, range of experience, self-management, and data collection and 

presentation (Webb, 2005). Moreover, the physical attributes of the learning environment could 

alter students’ sense of autonomy in relation to ICT (Zandvliet, 2012). In essence, both teachers 

and parents need to gain a deeper understanding of the learning environments as well as 

students’ self-regulated learning processes when using ICT to support student learning.  

The current research shows both positive and negative associations between ICT and 

academic scores, which is consistent with the trend of mixed results previously discussed in 

Chapter 3. Findings indicated ICTCOMF (i.e., greater comfort and familiarity with ICT) was 

associated with increased mathematics and science scores across both Finland and Bulgaria. This 

partly aligns with the results from Hu et al. (2018) where higher interest, perceived autonomy, 

and perceived competence around ICT were associated with higher mathematics and science 

scores. Zhang and Liu (2016) also reported a positive relationship between mathematics and 

science scores with ICT competence throughout several iterations of PISA. Similar to the 

findings of Bulut and Cutumisu (2018), the current study revealed that ICTAVB and ICTUSE 
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were not beneficial to mathematics and science scores. Petko et al. (2017) studied the impact of 

ICT use on mathematics and science scores. Their results are generally in concordance with the 

current findings. In contrast, they found that top-performing countries with students who use 

more ICT at home also achieved higher scores. A positive relationship between ICT use at home 

and scores was expected in Finland but not in Bulgaria. Instead, the present results showed a 

negative relationship in both countries. There were no large-scale differences between the two 

target countries in the current study other than varying strengths of the predicting variables or the 

percentages of science score variance accounted for by each model.  

In contrast to Bulut and Cutumisu’s (2018) findings, results from the current research 

yielded significant relationships between ICT availability and academic achievement. 

Similarities with Meng et al. (2018) began and ended with AUTICT results. The current research 

found a positive relationship for the ICTCOMF latent variable, contrasting the SOIAICT 

negative relationship findings from Hu et al. (2018) or Meng et al. (2018). Contrary to the 

current findings, Meggiolaro (2018) reported a positive association between ICT use and 

mathematics. 

Similarities between Bulgaria and Finland included the increase in ICTUSE and 

ICTAVB associated with lower mathematics and science scores. This aligned with Hu et al. 

(2018) for USESCH and ICTHOME, but not for HOMESCH, ENTUSE or ICTSCH, which 

revealed no relationship to mathematics scores. Petko et al. (2017) found similar negative 

associations for ICT use at school and ICT use for entertainment, while they also found ICT use 

for homework was positively associated with higher mathematics achievement. Bulut and 

Cutumisu (2017) found that ICT availability was not associated with mathematics scores in 

Finland, but was positively associated in Turkey, suggesting that the availability of ICT devices 
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to students has different effects depending on the cultural context of technology in their country. 

In other studies, researchers have found positive, negative, and null associations with many of 

the ICT subscales and academic scores. 

Interestingly, PISA reports a small correlation between increased ICT use and better 

mathematics performance from 2012 to 2015 for 38 countries and economies (OECD, 2016). 

However, this did not account for differences in demographics or other possible confounds, 

including general levels of mathematics achievement in each country.  

As ICT has become ubiquitous in the classrooms and in students’ homes, the present 

study contributes to clarifying the role of several ICT variables to uncover their effects on 

students’ academic achievement learning. This endeavor is important, as findings signal that ICT 

is currently not used to its full potential for learning and innovation, despite becoming essential 

in every sector of the economy of the 21st century. 

An explanation for the association of ICT use and ICT availability with lower academic 

scores is that, perhaps, ICT use is a distraction for students who may also spend a lot of time 

engaging in activities at the expense of classroom learning. It could also be that students may be 

using technology for its own sake, rather than to support and uplift their learning (Martin-

Perpiñá, Viñas i Poch, & Malo Cerrato, 2019; Naumann, 2015). Previous research has found that 

ICT can be misused by students and can result in deleterious effects for learning. Students who 

text and use social media take 62% fewer notes than other students and perform worse on a 

memory recall test (Kuznekoff & Titsworth, 2013). Moreover, students who take notes using 

ICT often fail to condense and catalogue new information (Mueller & Oppenheimer, 2014). In 

addition, laptop note takers perform worse on assessments and do not achieve a deeper 

understanding when compared to students who take notes by hand (Mueller & Oppenheimer, 
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2014). Another explanation could be that these students are unfamiliar with ICT and, thus, they 

spend more time learning how to use it rather than actually using it to advance their learning. 

Turning to the current results regarding ICT comfort, it is possible that comfort with 

technology leads to better academic achievement, as students who enjoy using ICT and are 

comfortable with it are more likely to seek opportunities to use ICT as a tool to learn 

mathematics and science in class and to advance their education. This echoes Lee and Wu’s 

(2012) positive correlation findings among ICT enjoyment, reading literacy, and engagement 

from the 2009 PISA data. Similarly, Singer (2015) found that teachers reported improved 

students’ attitudes and productivity following an implementation of an iPad program in 

elementary mathematics classes. As students become more comfortable with ICT, it is possible 

that they become better prepared to use the ICT that is available to them to effectively learn the 

class material. These results make sense in light of SDT because students who are more 

comfortable and capable performing ICT tasks can better fill their three basic psychological 

needs of competence, autonomy, and relatedness. Students who scored highly on these aspects, 

measured by the PISA ICT Familiarity Questionnaire (OECD, 2014) and represented as ICT 

comfort in this study, are better able to use ICT to construct the necessary content knowledge to 

increase their achievement. Vygotsky’s theory of social development (1978) is also reinforced 

here, as the communication and sharing aspect around ICT comfort, including ICT as a topic in 

social conversation, predicts higher mathematics scores. The inclusion of ICT as a topic in social 

interactions may solidify the learning process. Moreover, without the skills to use ICT 

effectively, more availability and use become detrimental to academic achievement. In part, this 

could be due to spending more time trying to learn these skills instead of class content or being 

distracted by ICT. However, the inverse is also a possibility: students who are proficient in 
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mathematics or science may be drawn to using more ICT, for general use or classroom problem 

solving, and are thus more comfortable with it. Based on these results, it seems that if students 

are more comfortable with ICT, they are able to use it better and improve their mathematics and 

science achievement as a result. 

Teaching for innovation is an intentional process and teacher preparation cannot be 

compensated by a technologically-rich learning environment. Teachers who embed technology 

in their instruction reinforce their pre-existing practices (Cuban, 2001). Finally, it could be that 

the pervasiveness of ICT precludes students from engaging in deeper problem-solving activities, 

as they can find most answers readily available online through web searches or by posting 

questions on social media. These results are in concordance with findings showing that ICT in a 

middle-school classroom restricted rather than promoted inquiry, as the mere presence of 

computers detracted from meaning-making activities, focusing students on individual 

accountability (Waight & Abd-El-Khalick, 2007). 

Taken together, these results suggest the possibility that ICT that is not meaningfully 

integrated into students’ learning, either at school or at home, is in fact hindering their 

mathematics and science learning. Information about teachers’ lesson plans and pedagogy was 

not available in the PISA data but it could shed more light onto these findings. Specifically, more 

information on students’ and teachers’ views on technology within their particular learning 

environments may shed more light onto their perceived effectiveness for learning. It is vital to 

understand that teachers are unable to teach what they do not know, this is coined as the Peter 

Effect (Applegate & Applegate, 2004). This was first explained as teachers being unable to 

convey the importance of reading to their students if they did not appreciate reading. This was 

then extrapolated to teachers in the subject of the english language (Binks-Cantrell, Washburn, 
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Joshi, and Hougen, 2012) and phonological awareness (Hayward, Phillips, & Sych, 2014). This 

theory could further extend to ICT. Where, if teachers are not competent and autonomous in their 

ICT use, they would be unable to effectively pass ICT comfort to their students. 

Interestingly, the relationship between academic scores and available ICT for Finnish 

students was not significant before controlling for ESCS. However, this relationship became 

negatively significant after controlling for ESCS. One possible reason is that ESCS and 

technology may have a strong theoretical connection which would result in ESCS influencing the 

analysis if not controlled. Therefore, similarly to previous work (Hu et al., 2018; Meggiolaro, 

2018; Petko, Cantieni, & Prasse, 2017; Luu & Freeman, 2011), ESCS was included as a control 

variable in the present research. The same pattern of results emerged after controlling for ESCS 

between Finland, a Digital Frontrunner, where the majority of students have wide access to a 

variety of technologies, and Bulgaria, a Digital Challenger, where most students do not have as 

many devices at their fingertips. This suggests that the “digital divide” encompassing the global 

(i.e., the Internet access gap between industrialized and developing societies), social (i.e., the 

information gap between a nation’s rich and poor), and democratic (i.e., the digital resource use 

gap in civic engagement) divide may not be a factor when it comes to students’ mathematics and 

science performance (Norris, 2001). Although they are different in terms of ICT, Bulgaria and 

Finland are two countries that belong to the European Union, where a lot of programs support 

teaching and learning in the digital era. Also, young people are now well anchored in social 

media around the world, actively participating in society as well as producing and consuming 

information. Perhaps changing the way available technology is used to teach mathematics and 

science may yield different results in future PISA administrations. Targeted pedagogy with 

technology programs offered by the European Union could contribute to diminishing the 
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deleterious effects of ICT use and availability on students’ academic performance. It is also 

possible that these results could change when controlling for some of the demographic variables 

collected via the PISA assessment and that factors such as ICT autonomy and interest could be 

culturally mediated (Zandvliet, 2012). 

6.2 Alignment 

 Research Question 2: Are the ICT, science, and mathematics variables measurement 

invariant across the countries participating in the PISA ICT questionnaire? As outlined in the 

Results chapter, the ICT predictor variables displayed a large amount of non-invariance 

according to the Alignment output. The factor loadings of ICTHOME, HOMESCH,  ICTSCH, 

and COMPICT were the only predictors that fell below the acceptable cutoff, which means that 

they would be the most trustworthy and useful in comparing means across all the participating 

countries. However, only the factor loadings of these four items are measurement invariant, 

meaning strong invariance cannot be established and factor means can not be compared (Millsap, 

2012). The other five indicators are not invariant across the participating countries, which means 

that they cannot be compared as well. It is possible that these ICT predictors do not measure the 

same constructs in these vastly different countries. However, this does not mean that these 

countries cannot be compared by their ICT predictors. As a group, the ICT profiles of these 47 

countries are not similar enough to be compared or to trust that their scales are measuring the 

same constructs. Alternatively, if the countries were organized into subgroups based on their 

similar cultural involvement with technology, then the PISA representation of ICT may be 

measurement invariant. This could result in organizing countries based on their place on the 

Frontrunner-Challenger scale. If more similar countries are compared, then measurement 

invariance could be established. 
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 Conversely, the mathematics and science plausible values had very low levels of non-

invariance across 48 countries. As a result, both mathematics plausible values and science 

plausible values can be reliably compared across countries. Therefore, when comparing the 

countries on a scale, based on the means of their plausible values, these results can provide the 

confidence that they represent the same knowledge constructs despite being measured in 

culturally different countries. It is important to note the contrast in measurement invariance 

between the mathematics and science outcome variables and the ICT scales. The mathematics 

and science questions and scales have received more attention since the inception of PISA as 

compared to the ICT Familiarity Questionnaire that was added in 2003 (OECD 2003, 2005, 

2014a, 2017). The main difference, however, is that the ICT scale tests a construct that is more 

directly linked to culture than the more homogenous mathematics and science knowledge.  

6.3 Limitations 

Several limitations of the CFA and the Alignment methods, as well as the research design 

and source of data of the current research are discussed. Given that the PISA data are self-

reported for the ICT indicator variables, they are subjective and may not accurately represent the 

true scores of the students. Aboriginal and special needs students are frequently under-sampled 

in the PISA assessments which may lead to an inaccurate representation of a country's 

population (Richard, 2018; LeRoy, Samuel, Deluca, & Evans, 2019). 

The CFAs only considers two of the 72 countries that participated in PISA 2015. As a 

result, limited generalizations can be made until more populations are assessed and more in-

depth analyses are conducted. Of the participating countries, only 47 completed the ICT 

questionnaires. Further analysis of the ICT data for all 72 countries could add to the collective 

understanding of the relationship between ICT and academic achievement.  
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As with any correlational research in social sciences, other variables may have had an 

effect on the outcome of the current results but causality could not be determined using the PISA 

data. For example, it is possible that particular ICT habits cause a change in students’ scores, but 

it is also possible that having a certain score drives ICT involvement.  

As the ICT scales are capped, some very highly-rated responses may be restricted to the 

limit of the scale, thereby causing a ceiling effect. The ICT scales could benefit by extending to 

higher levels of use and exposure for technologically-advanced countries. 

 The purpose of the Alignment method (Asparouhov & Muthén, 2014; Marsh et al., 2018) 

as an exploratory tool constitutes one of the limitations of this work. Specifically, covariates and 

cross loadings cannot be included and path estimates cannot be calculated, restricting the 

Alignment method to an exploratory method.   

6.4 Implications 

The practical and theoretical implications of this research are described in detail in the 

next subsections. These implications have direct bearing in educational situations and future 

cross-cultural research on ICT. 

The current research draws on cognitive theories of learning, aiming to understand how a 

broader set of factors beyond country and ICT can affect learning. The current findings shed 

some light onto the mixed findings of prior research, providing a better understanding of the 

complex relationship between ICT and students’ mathematics and science proficiency. These 

results can be paired with Piaget’s constructivist theory (1952), which posits that children are 

active rather than passive learners because they are able to guide their own learning processes. 

Similarly, students take ownership of their learning processes, especially in environments that 

foster their comfort and enjoyment of ICT, to create new knowledge in the subjects of 
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mathematics and science. If students are comfortable with ICT, then it is likely that they are able 

to use their prior knowledge to build upon their knowledge in class. Because the majority of ICT 

predictors were non-invariant, it appears that technology is treated differently depending on the 

country. These could be due to different cultural relationships with technology or nuanced 

differences in measuring these interactions with technology. Either way, ICT interactions cannot 

be broadly compared across large groups of countries. Conversely, mathematics and science 

scores are measurement invariant and can be compared across countries when measured by 

PISA. This implies that mathematics and science learning is either more universal than ICT or 

more effort was put into the design of those measures. 

The findings offer ways to improve the instructional effectiveness of technology for 

mathematics. For instance, mathematical computer-based games and simulations have been 

found to enhance mathematics ability in a meta-analytic study compared to conventional media 

(Mayer, 2018). These technology-infused interventions can improve relevant cognitive skills and 

student learning. Thus, more effort could be invested in training educators on the most effective 

forms of ICT as well as on integrating technology into their pedagogy. Mathematics and science 

models were mirrored throughout the current analysis, which indicates that these results can be 

more broadly generalized to STEM education. According to these results, mathematics and 

science proficiency are affected similarly by interactions with ICT and are comparable across 

large groups of culturally different countries. 

Chapter 7: Conclusions 

The goal of this research was to elucidate the relation between ICT and academic 

achievement in mathematics and science in two countries with opposite ICT profiles, as well as 

the level of measurement invariance of ICT, mathematics, and science from PISA for the 
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selected countries. To explain the relation between Finnish and Bulgarian students’ ICT and their 

scores in mathematics and science, an EFA was used to inform the design of a CFA. The nine 

ICT subscales were organized into ICT use, ICT availability, and ICT comfort as the latent 

predictor variables that explained the latent dependent variable made up of either mathematics or 

science plausible values. When ESCS was added as a covariate, mathematics and science scores 

showed the same relationship with ICT for both countries. ICT use and availability were 

negatively associated with mathematics and science scores, whereas ICT comfort was positively 

associated with students’ academic scores. To ascertain whether these relationships could be 

tested in larger groups of countries, the measurement invariance of mathematics, science, and 

ICT were examined using the Alignment method. Mathematics and science values are 

measurement invariant and can be compared across all participating countries. However, ICT 

was not measurement invariant and should be compared in smaller groups. 

The findings show that ICT comfort predicts higher mathematics and science 

achievement in 15-year-old students in two countries with contrasting ICT levels. Thus, it seems 

that if 15-year-old students in these countries are more comfortable with ICT, they can use it 

better and improve their academic achievement as a result. The current study also confirmed that 

an increase in ICT use and availability is negatively associated with mathematics and science 

scores when ESCS and general ICT are controlled for. Thus, adding more technology into the 

school system may not necessarily increase students’ performance in the classroom, as the 

present results showed for the 15-year-old students in Bulgaria or Finland. These findings 

provide an emphasis on the discrepant factors amenable to interventions that may equalize 

mathematics and science performance across the two countries. In the past, very few studies have 

connected all nine ICT variables that were included in this study to science performance. So far, 
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only Hu et al. (2018) and Juhaňák et al. (2018) compared scores based on all nine forms of ICT. 

However, neither study employed structural equation modelling, which makes the contributions 

of the current research unique and valuable. More steps must be taken so that investments in new 

technology spaces can benefit areas beyond ICT literacy. Given that the present results also 

showed a discrepancy in the percentage of explained variance of Bulgarian and Finnish 

mathematics and science scores, with more variance being accounted for in Bulgarian scores, it 

is possible that the role of ICT in explaining students’ academic performance will diminish as it 

has in Finland, as Bulgaria transitions to becoming a Digital Frontrunner. Taken together, the 

results suggest that more in-depth research needs to be conducted into factors that influence 

students’ science performance. Also, there is potential for improving student outcomes under the 

right ICT conditions. Once the intricate relationship of students’ ICT and their academic 

achievement is understood, tailored changes to how technology is used in schools can be 

implemented, aiming to minimize the undesirable effects and to maximize the helpful effects of 

ICT use in education. 

The means of all the countries that participated in the PISA ICT Familiarity 

questionnaire cannot be reliably compared because it is possible that the ICT measure is not 

homogeneous for all countries. Given that measurement invariance of ICT was not established 

for the group of 47 countries, it may be possible to compare smaller, more similar groups with 

acceptable measurement invariance. On the other hand, the mathematics and science plausible 

values that were used as dependent variables were confirmed as measurement invariant across all 

countries. For instance, the quizzes used to collect the mathematics and science knowledge as 

well as the IRT methods to determine the plausible values were successful in creating the same 
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scales across differing cultures. Therefore, mathematics and science means can be confidently 

compared across the countries used in this research. 

7.1 Future Directions 

The next step in this research is to organize groups of countries with similar ICT profiles 

that will display measurement invariance for the PISA ICT subscales. Once this is achieved, the 

AwC method can be used to obtain estimated means and model estimates because comparing 

multiple countries simultaneously to assess the relation between ICT and academic achievement 

may present a methodological challenge. To address this challenge, more complex methods such 

as AwC are required to optimally perform this complex analysis (Marsh et al., 2018). In the 

future, the Alignment within CFA (AwC) method will be used instead of the Alignment methods 

to address this limitation, as it offers a confirmatory aspect to measurement invariance testing. 

The AwC approach can be used to extend the Alignment method used in SEM analyses into a 

confirmatory tool to address a multitude of issues such as covariates and latent variable 

relationship estimates, as it is a combination between the Alignment and CFA methods (Marsh et 

al., 2018). As the Alignment method only deals with variance and means of factors, the AwC 

method allows for regression estimation of multiple groups. This method can test for 

measurement invariance across populations using the relaxed-fit style of the Alignment method 

and it can also provide model estimations. The AwC model has the same degrees of freedom, 

goodness of fit, and parameter estimates as the Alignment model, but it acts as a CFA method. 

Furthermore, once the PISA 2018 data is made public, this analysis can be replicated to monitor 

any change in ICT variables, academic scores, and their associations. Future studies will focus 

on research involving adolescents, exploring the relationship between ICT and academic 

achievement in more ecologically-valid settings. With the results of ICT comfort positively 
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associated with mathematics and science scores, an ensuing research question could be whether 

or not ICT comfort acts as a moderator between academic achievement and ICT use or 

availability. These effects seem to be more prominent in low technology countries compared to 

high technology countries. 

7.2 Chapter Summary 

The present research found that comfort in ICT use is the most important positive ICT 

predictor for higher mathematics and science scores. Concomitantly, mathematics and science 

were measurement invariant across 48 PISA 2015 countries, whereas ICT was not across the 

subset of countries that participated in the ICT Familiarity Questionnaire. The current results, 

limitations, and suggestions will inform future researchers and will serve as a starting point into 

ascertaining whether ICT holds similar relationships with academic achievement in other 

countries.  
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Figures 

 

Figure 1. Bifactorial Structural Equation Model of ICT and Mathematics for Both Finland and 

Bulgaria with ESCS as a Covariate. 
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Figure 2. Bifactorial Structural Equation Model of ICT and Science for Both Finland and 

Bulgaria with ESCS as a Covariate. 

 

 

 

 

  



79 

 

Tables 

Table 1  

Articles Included in the Literature Review. 

Reference APA Reference of Reviewed Articles 

[1] Petko, D., Cantieni, A., & Prasse, D. (2017). Perceived quality of educational 

technology matters: A secondary analysis of students' ICT use, ICT-related 

attitudes, and PISA 2012 test scores. Journal of Educational Computing Research, 

54(8), 1070-1091. 

[2] Hu, X., Gong, Y., Lai, C., & Leung, F. K. (2018). The relationship between ICT 

and student literacy in mathematics, reading, and science across 44 countries: A 

multilevel analysis. Computers & Education, 125, 1-13. 

[3] Meng, L., Qiu, C., & Boyd‐Wilson, B. (2018). Measurement invariance of the ICT 

engagement construct and its association with students’ performance in China and 

Germany: Evidence from PISA 2015 data. British Journal of Educational 

Technology. 1-19. doi:10.1111/bjet.12729. 

[4] Meggiolaro, S. (2018). Information and communication technologies use, gender 

and mathematics achievement: evidence from Italy. Social Psychology of 

Education, 21(2), 497-516. 

[5] Luu, K., & Freeman, J. G. (2011). An analysis of the relationship between 

information and communication technology (ICT) and scientific literacy in Canada 

and Australia. Computers & Education, 56(4), 1072-1082. 

[6] Bulut, O., & Cutumisu, M. (2017, June). When technology does not add up: ICT 

use negatively predicts Mathematics and Science achievement for Finnish and 

Turkish students in PISA 2012. In EdMedia+ Innovate Learning (pp. 935-945). 

Association for the Advancement of Computing in Education (AACE). 

[7] Kubiatko, M., & Vlckova, K. (2010). The relationship between ICT use and science 

knowledge for Czech students: A secondary analysis of PISA 2006. International 

Journal of Science and Mathematics Education, 8(3), 523-543. 

[8] Zhang, D., & Liu, L. (2016). How does ICT use influence students’ achievements 

in math and science over time? Evidence from PISA 2000 to 2012. Eurasia Journal 

of Mathematics, Science & Technology Education, 12(9). 

[9] Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development 

level and usage influence student achievement in reading, mathematics, and 

science. Computers & Education, 85, 49-58. 

[10] Tan, C. Y., & Hew, K. F. (2018). The impact of digital divides on student 



80 

 

mathematics achievement in Confucian heritage cultures: A critical examination 

using PISA 2012 data. International Journal of Science and Mathematics 

Education, 17: 1213. https://doi.org/10.1007/s10763-018-9917-8 

[11] Papanastasiou, E. C., Zembylas, M., & Vrasidas, C. (2003). Can computer use hurt 

science achievement? The USA results from PISA. Journal of science education 

and technology, 12(3), 325-332. 

[12] Koğar, E. Y. (2019). The investigation of the relationship between mathematics and 

science literacy and information and communication technology variables. 

International Electronic Journal of Elementary Education, 11(3), 257-271. 

[13] Reboot Foundation (2019). Does educational technology help students learn? An 

analysis of the connection between digital devices and learning. Retrieved from 

https://reboot-foundation /does-educational-technology-help-students-learn. 

[14] Juhaňák, L., Zounek, J., Záleská, K., Bárta, O., & Vlčková, K. (2018). The 

relationship between students' ICT use and their school performance: Evidence 

from PISA 2015 in the Czech Republic. Orbis Scholae, 12(2). 

[15] Gamazo, A., Martínez-Abad, F., Olmos-Migueláñez, S., & Rodríguez-Conde, M. J. 

(2018). Evaluación de factores relacionados con la eficacia escolar en PISA 2015. 

Un análisis multinivel 1. Assessment of factors related to school effectiveness in 

PISA 2015. A multilevel analysis. Revista de Educación, 379, 56-84.  

[16] Su, M. (2017). The influence of information and communication technology (ICT) 

on Chinese and Korean students' math achievement in PISA 2015. Doctoral 

dissertation. State University of New York at Buffalo. 

[17] Rodrigues, M., & Biagi, F. (2017). Digital technologies and learning outcomes of 

students from low socio-economic background: An Analysis of PISA 2015. 

European Commission’s Joint Research Center Science for Policy Report. 

Publications Office of the European Union, Luxembourg, http://dx. doi. 

org/10.2760/415251. 

[18] Martínez-Abad, F., Gamazo, A., & Rodríguez-Conde, M. J. (2018, October). Big 

data in education: Detection of ICT factors associated with school effectiveness 

with data mining techniques. In Proceedings of the Sixth International Conference 

on Technological Ecosystems for Enhancing Multiculturality (pp. 145-150). ACM. 

[19] Agasisti, T., Gil-Izquierdo, M., & Han, S. W. (2017). ICT use at home for school-

related tasks: what is the effect on a student’s achievement? Empirical evidence 

from OECD PISA data. Retrieved from https://mpra.ub.uni-

muenchen.de/81343/1/MPRA_paper_81343.pdf.  

[20] Özberk, E. H., Kabasakal, K. A., & Öztürk, N. B. (2017). Investigating the factors 

affecting Turkish students’ PISA 2012 mathematics achievement using hierarchical 

linear modeling. Hacettepe Üniversitesi Journal of Education, 32(3). 544-559. doi: 



81 

 

10.16986/HUJE.2017026950. 

[21] Delen, E., & Bulut, O. (2011). The relationship between students' exposure to 

technology and their achievement in science and math. The Turkish Online Journal 

of Educational Technology (TOJET), 10(3), 311-317. 

[22] Fuentes, M. D. C., & Gutiérrez, J. J. T. (2012). Does ICT improve Spanish 

students’ academic performance? In Investigaciones de economía de la educación, 

7. 955-975. Asociación de Economía de la Educación. 

 

  



82 

 

Table 2  

Relationships Between ICT and Scores in Mathematics and Science for the Articles Included in 

the Literature Review.  

ICT Math Science 

 Positive Negative Null Positive Negative Null 

HOMSCH [1] ([4] ITA) 

([10] CHC) ([17] 

EUR-low use) 

[9] ([16] QCN) 

([17] EUR-

mid,high use) 

([18] ESP) ([19 

EUR) 

[2] ([6] FIN, 

TUR) ([14] 

CZE) ([16] 

KOR) 

([1] high score 

countries) ([7] 

Czech mid use)([17] 

EUR-low use) 

[2][1] ([5] 

AUS)[9] ([14] 

CZE) ([17] 

EUR-mid,high 

use) ([18] ESP) 

([19] EUR) 

([5] CAN) ([6] 

FIN, TUR) 

USESCH ([4]ITA) [12] 

([17] EUR-low 

use) 

[1] [2] ([6] FIN, 

TUR) [9] ([15] 

ESP) ([16] QCN, 

KOR) ([17] EUR-

mid, high use) 

([18] ESP) ([22] 

ESP) 

([10] CHC) 

([14] CZE) 

([5] CAN, browse 

Internet) ([17] EUR-

low use) 

[2][1] ([5] CAN, 

frequent use, 

AUS) ([6] FIN, 

TUR) [9] ([15] 

ESP) ([17] EUR-

mid, high use) 

([18] ESP) ([22] 

ESP) 

([5] CAN) ([14] 

CZE) 

ENTUSE ([4] ITA) ([1] 

low score 

countries) ([6] 

TUR)([17] EUR-

low use) ([20] 

TUR) 

([1] high score 

countries) ([6] 

FIN) [9] ([16] 

QCN, KOR) ([17] 

EUR-high use) 

([18] ESP) ([22] 

ESP) 

[2] ([14] CZE) 

([17] EUR-mid 

use) 

[2] ([5] CAN, AUS, 

browse Internet) ([6] 

TUR) ([17] EUR-

low use)  

[1] ([5] CAN, 

frequent use, 

AUS most use) 

([6] FIN) ([17] 

EUR-high use) 

([18] ESP) ([22] 

ESP) 

[9] ([14] CZE) 

([17] EUR-mid 

use) 

ICTHOME ([6] TUR) ([21] 

Tur) ([22] ESP) 

[2] ([10] CHC) 

([18] ESP)  

([6] FIN) ([14] 

CZE) 

([6] TUR) ([11] 

USA) ([21] 

Tur)([22] ESP) 

[2] ([14] CZE) 

([18] ESP) 

([6] FIN) 

ICTSCH ([6] TUR)([22] 

ESP) 

([12] eBook 

readers) [13] 

([18] ESP) 

[2] ([6] FIN) 

([10] CHC) 

([14] CZE) 

([6] TUR)([22] ESP) ([12] eBook 

readers) [13] 

([18] ESP) 

[2] ([6] FIN) 

[11] USA) 

([14] CZE) 

INTICT [2] ([3] QNC) 

([12] Internet) 

([18] ESP) 

([3] DEU) ([14] 

CZE mod by 

gender) 

 ([14] CZE) [2] ([3] QNC) ([18] 

ESP) 

([3] DEU)  ([14] CZE) 

COMPICT [2] [8] ([12] 

unfamiliar 

device) ([18] 

ESP) ([22] ESP, 

attitudes and 

skill) 

([3] QNC)  ([3] DEU) 

([14] CZE) 

[2] ([5] CAN, AUS, 

basic skills, 

presentation 

software) ([8] 2009) 

[11] USA, writing 

papers) ([18] ESP) 

([22] ESP, attitudes 

and skill) 

([3] QNC)  ([3] DEU) [7] 

([11] USA, 

general use, test 

taking) ([14] 

CZE) 

AUTICT [2] ([3] QNC, 

DEU) ([15] ESP) 

([14] CZE) ([18] 

ESP) 

- - [2] ([3] QNC, DEU) 

([15] ESP) ([14] 

CZE) ([18] ESP) 

- - 
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SOIAICT ([18] ESP) [2] ([3] QNC, 

DEU) ([14] CZE) 

([15] ESP) 

- ([18] ESP) [2] ([3] QNC, 

DEU) ([14] 

CZE) ([15] ESP) 

- 

 

Note: AUS - Australia; CAN - Canada; QCN - China; CZE - Czech Republic; EUR - European; 

FIN - Finland; DEU - Germany; ITA - Italy; KOR - Korea; ESP - Spain; TUR - Turkey; CHC - 

Confucian Heritage Culture (Hong Kong, Japan, Korea, Macau, Shanghai, Singapore, and 

Taipei). 
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Table 3  

PISA Iterations Used by the Studies in the Literature Review. 

PISA 

Year/ 

Iteration 

2000 2003 2006 2009 2012 2015 

Single 

iteration 

used 

[11]  [5] [7] [21] [22] [1] [4] [6] 

[9] [19] 

[20] 

[2] [3] [12] 

[14] [15] 

[16] [17] 

[18]  

Multiple 

iterations 

used 

[8] [8] [13] [8] [13] [8] [13] [8] [13] [13] 
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Table 4 

Observed Predictor Variables from the PISA 2015 ICT Familiarity Questionnaire (OECD, 

2017b). 

 

Measure Description Example 

HOMESCH ICT use outside 

of school for 

school work 

“Browsing the Internet for schoolwork” and “Doing 

homework on a computer” 

ENTUSE ICT use outside 

of school for 

leisure 

“Playing collaborative online games” and “Downloading 

music, films, games or software from the Internet” 

USESCH General ICT use 

at school 

“Playing simulations at school” and “Using school 

computers for group work and communication with other 

students” 

INTICT The student’s 

personal interest 

and enjoyment 

of ICT 

“I am really excited discovering new digital devices or 

applications” and “I really feel bad if no Internet connection 

is possible” 

COMPICT The student’s 

perceived 

competence with 

ICT 

“When I come across problems with digital devices, I think 

I can solve them” and “If my friends and relatives want to 

buy new digital devices or applications, I can give them 

advice” 

AUTICT The student’s 

perceived 

Autonomy 

related to ICT 

use 

“I use digital devices as I want to use them” and “If I need a 

new application, I choose it by myself” 

SOIAICT Use of ICT as a 

topic in the 

student’s social 

interaction 

“I like to meet friends and play computer and video games 

with them” and “I learn a lot about digital media by 

discussing with my friends and relatives” 

ICTHOME Availability of 

ICT at home 

“Desktop computer” and “Internet connection” 

ICTSCH Availability of 

ICT at school 

“Data projector, e.g. for slide presentations” and 

“Interactive whiteboard” 
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Table 5 

Analysis Methods Used by the Studies in the Literature Review.  

Statistical 

Method/ 

Country 

HLM SEM MLR 

Logistic 

regression EFA 

Linear 

regression CHAID 

Path 

analysis 

IEA 

international 

database 

analyzer 

Data 

Mining 

Propensity 

score 

matching 

Instrumental 

variable 

analysis ANOVA 

Australia [5]    [5]         

Canada [5]    [5]         

China  [3]      [16] [16]     

CHC* [10]             

Czech 

Republic [14] 

         

  [7] 

Finland  [6]            

Germany  [3]            

Italy   [4]           

Korea        [16] [16]     

Spain   [15] [15]  [22]    [18]    

Turkey [21] [6] [20]           

United 

States of 

America 

     

[11] 

    

   

Europe 

  ([17] 

25) 

      

 ([19] 12) ([19] 12)  

PISA 2000 

all [8] 

         

   

PISA 2003 

all [8] 

    

 

    

   

PISA 2006 

all [8] 

    

 

    

   

PISA 2009 

all [8] 

    

 

    

   

PISA 2012 

all 

[8] 

([9] 

39) 

 

([1] 

39) 

  

 

    

   

PISA 2015 

all 

([2] 

44) 

    

([13] 30) 

([12] 

35) 

   

   

Note: For multi-country studies, the number of countries sampled by each reference is included 

in parentheses following the reference.  
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Table 6 

Skewness, Kurtosis, Valid, and Missing values for Finland and Bulgaria.  

  HOMESCH ENTUSE USESCH INTICT COMPICT AUTICT SOIAICT ICTHOME ICTSCH 

BGR Skew. .44 .69 .65 .40 .01 .40 .09 -.54 -.13 

 Kurt. 2.10 4.14 1.17 1.19 0.40 0.39 0.68 0.12 -0.82 

 Valid 4831 4986 4841 4766 4690 4705 4584 4719 4551 

 Mis. 1097 942 1087 1162 1238 1223 1344 1209 1377 

  

FIN Skew. .30 1.53 1.15 .56 .17 .23 .23 -.68 -.87 

 Kurt. 2.99 10.50 5.88 2.30 0.56 0.50 0.81 0.84 0.87 

 Valid 5464 5547 5480 5441 5407 5398 5374 5281 5254 

 Mis. 418 335 402 441 475 484 508 601 628 

 

Note: Bolded values indicate kurtosis above the acceptable range of [-2, 2].  
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Table 7  

Geomin Rotated Loadings.  

   Bulgaria Finland 

Number of Factors 1 2 3 4 1 2 3 4 

HOMESCH .82* -.01 .16*   .68* -.04* .18*   

ENTUSE .54* .27* -.011*   .48* .34* -.01   

USESCH .54* .02 .32*   .67* .04* .18*   

INTICT .16* .60* -.046*   .19* .55* -.13*   

COMPICT -.009 .84* .007   -.02 .82* .05   

AUTICT -.01 .74* .13*   -.02 .77* -.01   

SOIAICT .17* .54* .15*   .16* .60* .066*   

ICTHOME .08* .006 .51*   .007 .12* .40*   

ICTSCH -.003* -.15* .76*   .01 -.004 .48*   

EIEGENVALUES 3.50 1.58 .99 .66 3.29 1.50 .99 .77 

 

Note: Eigenvalues are included to show that a three-factor model is the strongest solution. 

*p<0.05, bolded is final factor grouping.  
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Table 8  

Cronbach's Alpha (α) Values for Bulgaria and Finland Calculated by PISA (OECD, 2017b).  

 Bulgaria Finland 

HOMESCH .95 .92 

ENTUSE .87 .80 

USESCH .93 .85 

AUTICT .88 .84 

COMPICT .87 .85 

SOIAICT .87 .85 

INTICT .85 .79 

Note: A value of 1 signifies perfect internal consistency, while a value of .7 indicates acceptable 

internal consistency. For the α of other countries, see the PISA 2015 Theoretical Report (OECD, 

2017b)  
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Table 9  

Correlation Matrix of Bulgaria with Means and Standard Deviations of All Observed Predictor 

Variables and the Latent Dependent Variables.  

 

Bulgaria 1 2 3 4 5 6 7 8 9 10 

1.HOMESCH           

2.ENTUSE .54***          

3.USESCH .57*** .39***         

4.INTICT .30*** .41*** .26***        

5.COMPICT .28*** .38*** .23*** .58***       

6.AUTICT .27*** .37*** .23*** .43*** .63***      

7.SOIAICT .37*** .37*** .32*** .44*** .50*** .53***     

8.ICTHOME .24*** .15*** .26*** .06** .09*** .18*** .14***    

9.ICTSCH .19*** .03 .30*** 3.24 -.03 .04** .1*** .39***   

10.MATH -.1*** .07*** -.20*** .15*** .18*** .17*** .003 -.07***  -.20***  

11.SCIENCE  -.10*** .07*** -.24*** .16*** .19*** .18*** .01  -.08***  -.22***   

Unstandardized 

Mean 

.41 .33 .41 -.14 -.042 -.14 .22 8.15 6.03 0 

SD 1.22 1.39 1.20 1.16 1.02 1.04 1.00 2.20 2.76 89.92 

*p<.05, **p<.01, ***p<.001         
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Table 10  

Correlation Matrix of Finland with Means and Standard Deviations of All the Observed 

Predictor Variables and the Latent Dependent Variables.  

 

Finland 1 2 3 4 5 6 7 8 9 10 

1.HOMESCH           

2.ENTUSE .40***          

3.USESCH .57*** .44***         

4.INTICT .17*** .39*** .24***        

5.COMPICT .17*** .38*** .22*** .49***       

6.AUTICT .12*** .36*** .20*** .43*** .63***      

7.SOIAICT .28*** .40*** .22*** .39*** .54*** .50***     

8.ICTHOME .18*** .17*** .19*** .06** .14*** .10*** .16***    

9.ICTSCH .20*** .09*** .21*** .02  .06** .02 .07*** .21***   

10.MATH -.02  -.04*  -.076*** .08*** .11*** .13*** .006 -.17 .01  

11. SCIENCE -.05** -.06*** -.11*** .08*** .08*** .13*** .00 -.06*** .01  

Unstandardized 

Mean 

-.52 .04 .11 -.12 -.09 .14 .12 8.67 6.92 70.26 

SD 0.95 0.86 0.74 0.91 0.91 0.91 0.93 1.57 2.14 75.97 

*p<.05, **p<.01, ***p<.001  
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Table 11  

List of the 48 Countries Included in the Analysis, with Latent Class Label, Country ID, and 

Three-Letter Code. 

Latent Class CNTRID Country  Latent Class CNTRID Country 

1 36 AUS  25 392 JPN 

2 40 AUT  26 410 KOR 

3 56 BEL  27 428 LVA 

4 76 BRA  28 440 LTU 

5 100 BGR  29 442 LUX 

6 152 CHL  30 446 MAC 

7 158 TAP  31 484 MEX 

8 170 COL  32 528 NLD 

9 188 CRI  33 554 NZL 

10 191 HRV  34 604 PER 

11 203 CZE  35 616 POL 

12 208 DNK  36 620 PRT 

13 214 DOM  37 643 RUS 

14 233 EST  38 702 SGP 

15 246 FIN  39 703 SVK 

16 250 FRA  40 705 SVN 

17 276 DEU  41 724 ESP 

18 300 GRC  42 752 SWE 

19 344 HKG  43 756 CHE 

20 348 HUN  44 764 THA 

21 352 ISL  45 826 GBR 

22 372 IRL  46 858 URY 

23 376 ISR  47 970 QCH 

24 380 ITA  48 971 QES 
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Table 12  

Global Model Fit for the Three Steps in the SEM Analysis.  

Step Model Subject SRMR RMSEA CFI TLI 

2 Mathematics .05 .04 .98 .98 

  Science .06 .04 .98 .98 

3 Mathematics .05 .03 .99 .99 

  Science .04 .03 .99 .99 

4 Mathematics .05 .04 .98 .98 

  Science .05 .04 .99 .99 

Note: All cases display good model fit.  
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Table 13  

Standardized Regression Model Results for the Second, Third, and Fourth Step of the SEM.  

Subject Country Step ICTUSE ICTCOMF ICTAVB Rsquare 

Mathematics Bulgaria 2 -.23*** .33*** -.17*** .126 

  3 -.36*** .16***  -.005 .192 

   4 -.27*** .10*** -.17*** .343 

 Finland 2 -.20*** .21*** .06 .04 

  3 -.07*** .20*** .002 .05 

   4 -.083*** .18*** -.069*** .194 

Science Bulgaria 2 -.25*** .36*** -.19*** .154 

  3 -.34*** .18***  -.079 .222 

   4 -.26*** .14*** -.24*** .369 

 Finland 2 -.23*** .22*** .03 .05 

  3 -.1*** .20***  -.009 .05 

   4 -.11*** .18*** -.088*** .17 

Note: Mathematics and Science latent dependent variables are regressed onto the latent ICT 

predictor variables.  

*p < .05, **p < .01, ***p < .001  
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Table 14 

R-square and Non-Invariance Percentage Values for the 9 ICT Scales from the Alignment 

Method. 

 R-Square % non-invariant factor 

loadings 

% non-invariant 

intercept 

ENTUSE .10 25.5 66.0 

SOIAICT .16 51.1 87.2 

AUTICT .25 46.8 70.2 

ICTSCH .30 14.9 42.6 

USESCH .67 87.2 85.1 

INTICT .76 44.7 66.0 

HOMESCH .78 12.8 72.3 

COMPICT .83 23.4 85.1 

ICTHOME .94 6.4 42.6 

Note: R-Square values closer to 1 indicate more invariance, while a value close to 0 indicates 

less invariance for that parameter. A higher percentage indicates more non-invariance for that 

parameter. The ICT items are arranged from smallest to largest R-Square value. 
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Table 15 

Mean Comparison of the MATH Latent Variable for 48 Included Countries from the Alignment 

Model. 

Rank Country Factor 

Means 

 Rank Country Factor 

Means 

 Rank Country Factor 

Means 

1 SGP 1.23  17 IRL 0.49  33 LTU 0.18 

2 HKG 1.03  18 AUT 0.40  34 HUN 0.16 

3 MAC 0.98  19 NZL 0.38  35 SVK 0.14 

4 TAP 0.96  20 RUS 0.37  36 ISR 0.07 

5 JPN 0.84  21 SWE 0.37  37 HRV 0.00 

6 QCH 0.82  22 AUS 0.37  38 GRC -0.13 

7 KOR 0.74  23 FRA 0.35  39 BGR -0.28 

8 CHE 0.70  24 GBR 0.35  40 CHL -0.51 

9 EST 0.68  25 CZE 0.35  41 URY -0.56 

10 NLD 0.59  26 PRT 0.34  42 THA -0.60 

11 DNK 0.58  27 ITA 0.31  43 MEX -0.69 

12 FIN 0.58  28 ISL 0.29  44 CRI -0.78 

13 SVN 0.56  29 QES 0.27  45 COL -0.91 

14 BEL 0.53  30 ESP 0.27  46 PER -0.95 

15 DEU 0.51  31 LUX 0.27  47 BRA -1.07 

16 POL 0.50  32 LVA 0.22  48 DOM -1.67 
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Table 16 

Mean Comparison of the SCIENCE Latent Variable for 48 Included Countries from the 

Alignment Model. 

Rank Country Factor 

Means 

 Rank Country Factor 

Means 

 Rank Country Factor 

Means 

1 SGP 0.63  17 IRL 0.00  33 HRV -0.32 

2 JPN 0.42  18 BEL -0.01  34 LTU -0.32 

3 EST 0.37  19 DNK -0.01  35 ISL -0.35 

4 TAP 0.35  20 POL -0.01  36 ISR -0.42 

5 FIN 0.33  21 PRT -0.02  37 SVK -0.49 

6 MAC 0.31  22 AUT -0.09  38 GRC -0.56 

7 HKG 0.25  23 FRA -0.09  39 CHL -0.65 

8 QCH 0.18  24 QES -0.09  40 BGR -0.67 

9 KOR 0.16  25 SWE -0.11  41 URY -0.79 

10 NZL 0.13  26 CZE -0.11  42 THA -0.96 

11 SVN 0.12  27 ESP -0.11  43 CRI -0.98 

12 AUS 0.09  28 LVA -0.15  44 COL -1.02 

13 GBR 0.08  29 RUS -0.19  45 MEX -1.02 

14 DEU 0.08  30 LUX -0.23  46 BRA -1.20 

15 NLD 0.07  31 ITA -0.26  47 PER -1.25 

16 CHE 0.04  32 HUN -0.30  48 DOM -2.01 
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Appendices 

 

Appendix A 

ICT questions taken from 2015 PISA ICT Familiarity Questionnaire which are used to 

determine the predictor variables (OECD, 2017b). 

 

ICTHOME: ICT available at home    
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ICTSCH: ICT available at school 
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ENTUSE: ICT use outside of school for leisure      
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COMPICT: Students’ perceived ICT competence 
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USESCH: Use of ICT at school in general     
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INTICT: Students’ ICT interest 
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SOIAICT: Students’ ICT as a topic in conversations    
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AUTICT: Students’ perceived social interaction and autonomy related to ICT use   

  

 

 

 

 

  



120 

 

HOMESCH: ICT use outside of school for schoolwork 
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Appendix B 

Search terms used for literature review. The asterisk in “Technolog*” allows for the search 

engine to auto complete the word with any possible endings. This enables us to shorten the 

syntax of the search while matching technology, technologies, technological, and more. 

(ICT OR “information and communication technolog*”), AND 

(mathematics achievement OR science achievement), AND (PISA 

OR “program for international student assessment”), AND (ICT 

use OR ICT availability OR ICT interest OR ICT competence OR 

ICT autonomy OR ICT social interactions OR ICT social 

relatedness OR ICT attitudes) 

 

 

 


