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Abstract

With the progress of genome projects and other high throughput applications, 

bioiogical data have been growing exponentially. Consequently, data management and 

data mining have become indispensable components of biology. Computational analyses 

are being widely used in not only large genomics and proteomics projects, but also in 

studies of individual protein families. In this project, I took an “in silico” approach to 

collect, manage and explore the structural and functional data of voltage-gated potassium 

channels (VKCs). VKCs sense change in transmembrane voltage and open to allow 

potassium ions to pass through an ion-selective pore. They play critical roles in 

electrically excitable cells. Dysfunctional VKCs are related to diseases including epilepsy 

and cardiac arrhythmia. I first collected biological information on available VKCs from 

GenBank, Swissprot, and journal articles. These data and related analyses were stored in 

a relational database, called the voltage-gated potassium channel database (VKCDB 

http://vkcdb.biologv.ualberta.ca). Using the collected data, I then built a predictor using a 

k-nearest neighbor classifier and feature selection techniques. The predictor successfully 

predicts the voltage sensitivity of a VKC based on its amino acid sequence with a mean 

absolute error of 7.0mV, and has been validated by permutation tests and independent 

experimental data. During the learning process, a number of residues were identified as 

being critical structural elements for modulating voltage sensitivity of VKCs. The 

methods I used in constructing VKCDB and building the computational model are not 

specifically tailored for VKCs; they can be easily generalized for study of other protein 

families.
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Chapter 1: Introduction

I. Voltage-gated potassium channels

1. Potassium channels are a family of integral membrane proteins

As an autonomous functional entity of living organisms, the cell is separated from 

its surrounding environment by a highly specialized structure, the plasma membrane. The 

cell membrane not only forms a barrier to separate the cell’s contents from the 

surrounding environment, it is also organized to permit communication with other cells 

and the surrounding environment, and to regulate selective transportation of different 

molecules in and out of the cell (Alberts et al., 2002). To maintain osmotic balance, the 

concentrations of ions and other molecules inside and outside of the cell require tight 

control and maintenance by the cell membrane. However, many cellular processes, for 

example, the electrical signaling of neurons, need a fast flow of ions across the membrane 

(Hille, 2001).

In 1950s, Hodgkin and Huxley published a series of papers on studies of the 

action potential in the squid giant axon (Hodgkin and Huxley, 1952a, b, c, d). They 

concluded that, for the action potential to occur, the permeability of the axon membrane 

to potassium and sodium ions has to undergo changes during the process (Hodgkin and 

Huxley, 1952b). Later, seminal work by Armstrong and Hille demonstrated that it is a 

unique protein pore, namely an ion channel, that allows K+ or Na+ ions to pass across cell 

membranes (Hille, 1970; Armstrong, 1981). Since the first ion channel was cloned (Noda 

et al., 1984), numerous functional studies with many ion channels have been done and 

have provided us with a flood of information on the structure and function of ion

channels (Jan and Jan, 1997a; Wood and Baker, 2001; Sather and McCleskey, 2003).
1
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Moreover, a series of milestone studies on ion channel structures by MacKinnon’s lab 

and others in the past five years are finally bringing us a clear picture on how potassium 

channels selectively permit the passage of only K+ ions at an extremely high efficiency 

(Doyle et al., 1998; Kreusch et al., 1998; Morais Cabral et al., 1998; Gulbis et al., 2000; 

Jiang et al., 2001; Sokolova et al., 2001; Jiang et al., 2002a, b; Jiang et al., 2003a; Kuo et 

al., 2003). The structural data also indicate several possible mechanisms by which 

different K+ channels direct the opening and closing of the channel pore (Choe, 2002; 

Yellen, 2002; MacKinnon, 2004).

2. Potassium channels are highly diversified

Potassium channels are one of the most diverse protein families that we know 

(Jan and Jan, 1997a). They have been shown to exist in both prokaryotic and eukaryotic 

cells. Different potassium channels open and close in response to different cues (Jan and 

Jan, 1997a). In other words, the gating mechanisms are different. Ligand-gated potassium 

channels are activated to allow K+ ions to pass when a specific ligand binds to a certain 

domain of the channel (Zagotta and Siegelbaum, 1996; Wollmuth and Sobolevsky, 2004). 

The probability that voltage-gated potassium channels will open begins to become 

significant when the difference in voltage across the cell membrane reaches a certain 

threshold (Yellen, 2002). Some channels, for example, the Ca2+ activated potassium 

channel, react to both cytoplasmic factors and voltage differences (Wu, 2003). The 

bacterial potassium channel KcsA from Streptomyces lividans is gated by the intracellular 

pH (Schrempf et al., 1995). Other potassium channels, including some inward rectifiers, 

are intrinsically open and are an important component in setting the resting potential of a 

cell (Stanfield et al., 2002).
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Potassium channels play significant roles in maintaining membrane potential and 

shaping the action potential and firing patterns of excitable cells (Jan and Jan, 1997a), 

which are central to numerous physiological processes. Many neurological and cardiac 

disorders are associated with dysfunctional potassium channels (Ashcroft, 2000). A 

number of mutant potassium channel genes are indirectly related to, or directly cause, a 

number of diseases, including cardiac arrhythmia (Jentsch, 2000), epilepsy (Lerche et al.,

2001), diabetes (Smits, 1996), and cancers (Abdul and Hoosein, 2002b). The present 

research is primarily focused on one group of potassium channels, the voltage-gated 

potassium channels.

3. Voltage-gated potassium channels

Typically, the resting membrane potential, the difference in voltage between 

inside and outside of an electrically unexcited cell, is negative (Hille, 2001). In other 

words, the cell membrane is polarized. For example, the resting potentials of human and 

frog cells are normally around -90mV and -80mV, respectively (Hille, 2001).

A voltage-gated potassium channel (VKC) opens and closes in response to change 

in transmembrane potential (Yellen, 2002). For electrically excitable cells, such as 

neurons, some physiological events, usually excitatory input from neighboring neurons, 

can shift the potential inside the cell toward a more positive direction and thus depolarize 

the cell membrane. When the transmembrane potential is depolarized past a characteristic 

threshold, the possibility that a VKC is activated and opens to permit K+ ion flow will 

increase significantly (Figure 1.1). When a VKC opens, K+ ions can pass through at a 

speed close to free flow, yet with a remarkably strict selectivity that favors K+ ions many 

times over smaller monovalent Na+ ions (Yellen, 2002). The molecular mechanisms by

3
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Figure 1.1: G-V curve of a voltage-gated potassium channel (VKC). At the resting 

potential of -90mV in human cells, this VKC remains closed. Indicated by the 

conductance (G), the probability that this VKC will open begins to become significant at 

around -40mV. The half activation voltage (V^), at which 50% of the channels open, is 

OmV, yielding 50% of the maximal conductance (Gmax).
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which voltage gating and potassium selectivity are achieved have been under study for 

decades.

4. Voltage-gated potassium channel is a tetramer

A typical voltage-gated potassium channel (VKC) gene encodes a membrane 

protein of 400 ~ 600 amino acids (Tempel et al., 1987; Stuhmer et al., 1989). 

Computational predictions suggest there are six transmembrane domains (SI -  S6) in 

each VKC gene product (Tempel et al., 1987; Stuhmer et al., 1989). This prediction is 

generally supported by various functional analyses (Monks et al., 1999; Hong and Miller, 

2000; Li-Smerin et al., 2000) and recent structural data (Jiang et al., 2003a).

In the early 1990’s, it was not clear if a VKC functions as a monomer or multimer 

even though a number of VKC genes had been cloned. Mackinnon first solved this 

mystery using simple binomial statistics (MacKinnon, 1991a). If a VKC is a multimer 

and the binding of each subunit encoded by a single VKC gene is an independent process, 

similar to the event of flipping coins, the probability (P) of the presence of a specific 

subunit in a VKC complex will follow the binomial distribution. For example, if A and B 

are two subunits that can combine to form a functional VKC, P(A) and P(B) are fractions 

of each subunit in the cell, the probability of observing n subunits in the VKC complex if 

VKCs are an N-mer can be calculated by:

P = N!P(A)nP(B)N‘7n!(N-n)! Formula 1.1

Mackinnon used a wild type VKC subunit (P(A) = 0.1) and a mutant (P(B) = 0.9) 

that essentially abolishes the binding of scorpion toxin only when all subunits of a VKC

5
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complex are the mutant subunit. In other words, one or more wild type subunits can 

rescue the toxin sensitivity of a VKC complex. Using Formula 1.1, it can be calculated 

that the probability of observing a mutant homomer that is insensitive to the toxin is 0.9,

0.81, 0.729, 0.656 or 0.59, if a functional VKC comprises of one, two, three, four or five 

subunits, respectively. A value of 0.65 was observed in the experiment, which suggested 

that a VKC is a tetramer (MacKinnon, 1991a). Together with evidence from other studies 

(Isacoff et al., 1990; Liman et al., 1992), it became evident that a functional VKC 

consists of four protein subunits (Figure 1.2A).

5. K+ selectivity and voltage sensing of voltage-gated potassium channels

Extensive electrophysiological and pharmacological studies, and, more recently, 

structural determinations of wild type VKCs and VKC mutants have been carried out to 

identify critical structural elements and characterize the structure-functional relationship 

of VKCs (Sigworth, 1994; Yellen, 1998; Bezanilla, 2000; Choe, 2002). Two major 

components of VKC functioning are K+ selectivity and voltage sensing.

The last two transmembrane domains, S5-S6, including a loop between them 

(Figure 1.2B) have often been targeted in structure-functional studies of VKCs. This is 

because a number of mutants in this region drastically altered K+ selectivity, 

conductance, and toxicological features of the channel (MacKinnon and Yellen, 1990; 

Hartmann et al., 1991; Heginbotham and MacKinnon, 1992; Yellen, 2001). In particular, 

mutations within a successive five-residue fragment, TVGYG, significantly change or 

even abolish the K+ selectivity and conductance (Heginbotham et al., 1992; Heginbotham 

etal., 1994). This motif is the K+ specific selective filter and was later called “the

6
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B

Figure 1.2: Voltage-gated potassium channels.

A: There are four similar subunits in a functional voltage-gated potassium channel, and 

they are shown here in different colors. This is the intracellular view of a voltage-gated 

potassium channels (Jiang et al., 2003a). © Nature Publishing Group 

B: There are six transmembrane domains in each subunit. It is generally accepted that S4 

is the voltage sensor with a characteristic charged residue at every third position; S5, S6 

and the linking loop make up the channel pore; SI-S3 are likely to modulate the voltage 

sensitivity of the channel. T1 is the tetramerization domain.

7
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signature sequence” of potassium channels (Heginbotham et al., 1994). This became 

obvious when more voltage-gated potassium channels and other potassium channels from 

different organisms were cloned and sequenced. This signature sequence is the most 

conserved motif across all sequenced potassium channels (Figure 1.3).

The most convincing proof of this came from the first crystal structure o f a 

bacterial potassium channel KcsA (Doyle et al., 1998). This bacterial potassium channel 

has two transmembrane domains and a linking loop, homologous to the S5-S6 helices in 

VKCs, which make up the actual channel pore. The structure of KcsA from Streptomyces 

lividans shows an inverted teepee conformation of the channel pore (Doyle et al., 1998). 

The signature motifs of four potassium channel subunits, TVGYG, line the narrowest part 

o f the pore, which is the selective filter. The carbonyl oxygen atoms of these signature 

residues from four subunits form four continuous cubic cages that coordinate potassium 

ions at the center (Figure 1.4). The physical size of the cage fits snugly with potassium 

ions and discriminates against the smaller sodium ions (Doyle et al., 1998). A recent 

molecular dynamics simulation study indicates the selective filtering of potassium ion 

relies on electrostatic interactions and that potassium ion selectivity is not a consequence 

o f a rigid structural fit but a flexible and dynamic process (Noskov et al., 2004).

However, the picture of voltage sensing and the coupling between voltage sensing 

and channel opening is far from clear. The voltage-sensing component was first proposed 

when the first voltage-gated ion channel was cloned (Noda et al., 1984). It is a voltage- 

gated sodium channel from Electrophorus electricus, consisting of four repeated 

homologous units. Each homologous unit is equivalent to one subunit in a VKC. In each 

unit, the amino acid sequence revealed that there were positively charged Arg or Lys

8
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Figure 1.3: The signature motif of potassium channels. The signature motif, TVGYG, is 

the most conserved motif in potassium channels, as revealed here by a multiple sequence 

alignment of twelve potassium channels from a wide range of species.
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Figure 1.4: Potassium selectivity of KcsA was determined by the signature motif (Chung 

and Kuyucak (2002) Ion channels: recent progress and prospects. Eur Biophys. J. 31: 

283-93, Figure 1. (Chung and Kuyucak, 2002). ©Springer. The carbonyl oxygen atoms 

of the signature residues from four subunits coordinate the passage of K+ ions and 

discriminate against other molecules through the channel pore. Only two subunits are 

shown here. Green circles represent K+ions.

10
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residues at every third position in the S4 domain (Noda et al., 1984; Tempel et al., 1987; 

Stuhmer et al., 1989). The unusual presence of repeated charged residues within a 

transmembrane domain immediately made the S4 domain a strong candidate for voltage 

sensing (Figure 1.2B). A number of subsequent studies with mutations at these charged 

positions were done, and they all reported altered channel opening properties (Liman et 

al., 1991; Papazian et al., 1991). Furthermore, accessibility studies using cysteine 

substitution and more recent fluorescence resonance energy transfer experiments showed 

that S4 moves during channel opening and several S4 residues even appear to move fully 

across the membrane (Yang and Horn, 1995; Yang et al., 1996; Cha and Bezanilla, 1997; 

Starace et al., 1997; Mannuzzu and Isacoff, 2000).

A voltage-sensing model was thus proposed in which, when the membrane 

potential is depolarized, the altered electric field forces the charge-carrying S4 domain to 

slide through the membrane (Catterall, 1986). The movement was described as a 

relatively small “screw-like” turn to accommodate the difficulty of moving within the 

hydrophobic environment of the cell membrane (Figure 1.5A).

Recently, the crystal structure of KvAP, a voltage-gated potassium channel from 

the thermophilic archea Aeropyrum pernix with all six transmembrane domains, was 

published (Jiang et al., 2003a). Based on the structure and a functional analysis, the 

authors proposed a new “paddle” model for voltage sensing (Jiang et al., 2003a; Jiang et 

al., 2003b). In this structure, S3 was found to take a helix-turn-helix conformation and S4 

was located at the periphery of the protein. Upon activation, the second helix of S3 and 

S4 were proposed to “paddle” through the membrane and lead to the movement of S5 and 

channel opening (Figure 1.5B) (Jiang et al., 2003a; Jiang et al., 2003b).

11
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a  Conventional model

b  New model

AV

Figure 1.5: Two models for the movement of S4 during activation (Jiang et al., 2003a).

© Nature Publishing Group.

A: The traditional model positions S4 surrounded by other helices. S4 carries the gating 

charges along the membrane by translocation and rotation, and opens the channel pore.

B: The paddle model positions S4 at the protein/lipid interface. S4 is a part of the “sensor 

paddle” that moves across against the lipid membrane, leading to the opening of the pore.

12
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However, since the S1-S4 structure was determined when it was stabilized by a 

bound Fab fragment, the structure is likely to have been distorted to some extent and 

may not reflect the native conformation of the channel (Laine et al., 2003; Laine et al., 

2004). A number of experiments suggested that the interaction between negatively 

charged residues in S2 (E283 in Shaker) and positively charged residues in S4 (R368 and 

R371 in Shaker) plays a critical role in VKC activation (Tiwari-Woodruff et al., 1997). 

These interactions suggest that S4 is in the vicinity of the S2 helix (Laine et al., 2004). 

The formation of disulfide bonds and salt bridges between S4 and the pore domain in 

recent mutagenesis studies also indicated that S4 is likely located close to the pore 

domain (Laine et al., 2003), contrary to the KvAP structure (Jiang et al., 2003a). 

Additionally, the gating mechanism of an archeal VKC could be unique, compared with 

eukaryotic VKCs. Further study is still needed to clarify the detailed mechanism of 

voltage sensing and the coupling that leads to the channel opening.

For most bacterial potassium channels, each subunit contains only two 

transmembrane domains (Koprowski and Kubalski, 2001). These two domains are 

equivalent to the S5-S6 region in a VKC. A chimeric VKC with its S5-S6 region 

substituted by a two-domain bacterial potassium channel was shown to be properly 

synthesized, assembled, and expressed but failed to behave in a voltage-gated fashion 

(Caprini et al., 2001). It is generally accepted that the voltage sensing and gating of 

VKCs are mediated by two relatively independent modules (Nelson et al., 1999: Patten et 

al., 1999), and that the voltage-gated response relies on a precise coupling mechanism 

(Caprini et al., 2001). Generally, the S1-S4 region is considered the voltage sensing 

module, in which S4 is the main sensing unit and S1-S3 is thought to play an assisting
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and modulating role, while S5-S6 is indisputably the gating module that directly controls 

the passage of K+ ions.

6. Modulating voltage sensitivity of VKCs

VKCs share a high degree of sequence similarity. The most conserved regions 

and residues are critical in VKC functioning. Many mutations at these conserved 

positions directly interfere with voltage sensing and gating of VKCs and often lead to 

qualitative phenotypic changes (Liman et al., 1991; MacKinnon, 1991c; Papazian et al., 

1991; Heginbotham et al., 1994). Despite the fact that VKCs are highly conserved and 

share the same basic functions, such as voltage sensing and K+ ion permeability, the 

quantitative functional features can be drastically different among different VKCs. The 

half activation voltage (V^) is one of the central electrophysiological parameters of 

VKCs that define the voltage sensitivity of VKCs. V^ is the transmembrane voltage at 

which 50% of the VKCs will open, as shown in Figure 1.1. The known V ,̂ values for 

VKCs range from -40mV to +70mV (Chapter 2) (Li and Gallin, 2004).

Evidently, the structural basis for this diversity in voltage sensitivity resides in 

those varying residues. During evolution, many functionally critical residues remain 

unchanged because of selective pressure. For those residues that vary, some are 

selectively neutral. They are thus fixed by chance (neutral drift) and are typically not 

functionally relevant. However, variations in some residues do not arise by random drift; 

they are selectively favored because they generate functional diversity to yield improved 

phenotypes. It is thus valuable to identify those residues that play “accessory” roles to the 

core function of a protein but generate functional diversity. These variable residues act as 

“principals” in quantitatively modulating and fine-tuning specific functional aspects of
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protein. This project is aimed at identifying structural elements (residues) of VKCs 

whose states (identities) are not critical in essential functionality but contribute to the 

quantitative diversity in the voltage sensitivity of VKCs.

Most mutagenesis and other structure-functional studies of VKCs have focused on 

evolutionarily more conserved residues, which are residues that are vital in voltage 

sensing or channel gating (Liman et al., 1991; MacKinnon, 1991c; Papazian et al., 1991; 

Heginbotham et al., 1994). For example, the unique positively charged residues at every 

third position in S4 have been obvious targets for mutagenesis. Papazian et al 

demonstrated that these charged residues are associated with gating to different extents, 

indicating a voltage sensing role for S4 (Papazian et al., 1991). Three negatively charged 

residues in S2 and S3 are highly conserved among all VKCs, and they have also been 

shown to be involved in channel activation. These residues may form salt bridges with 

the positive charges in S4 in one of the open or closed states (Papazian et al., 1995; 

Tiwari-Woodruff et al., 1997).

More recently, structural and functional analyses have shown that residues in the 

N-terminal tetramerization (Tl) domain also display an ability to alter the half activation 

voltage (Vjq) of VKCs. There are four major VKC subfamilies, Kvl-4. The 

tetramerization domain is responsible for tetramerization of four subunits from the same 

Kv subfamily (Chandy, 1991) to form a functional VKC (Shen et al., 1993). This 

alteration is potentially mediated by a conformational change communicated through the 

loop between T l and SI (Cushman et al., 2000; Minor et al., 2000) or by direct 

interaction with other cytoplasmic loops of the channel protein. The linkage between Tl 

and voltage sensitivity is somewhat unexpected due to the seemingly remote distance
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between the T l domain and the gating unit of VKCs. However, since the N terminal 

cytoplasmic domain of potassium channels has been shown to interact with several 

intracellular signaling molecules (Cachero et al., 1998; Tsai et al., 1999; Eldstrom et al.,

2002), this function of T l can potentially couple the gating of VKCs with cytoplasmic 

signaling and provide a missing link between VKC function and the intracellular 

environment.

Residues in other regions have also been linked to voltage sensitivity including 

the S4-S5 loop and the C terminal end of VKCs (Lu et al., 2002), as might be expected 

for such a highly cooperative process (Bezanilla, 2000).

To understand the dynamic relationship between different residues and the 

resulting variations in voltage sensitivity of VKCs, a typical approach has been to 

experimentally evaluate variations in voltage sensitivity of a limited number of VKC 

mutants (Monks et al., 1999; Li-Smerin et al., 2000; Minor et al., 2000; Yifrach and 

MacKinnon, 2002). The selection of mutants is normally biased by personal view of 

VKC functioning and is limited by available experimental resources. Evidently, the 

resulting conclusions are only based on and restricted by the specific VKC mutants being 

tested and the specific channels in which the mutations are tested. In the present study, 

we have applied machine learning techniques (Mitchell, 1997) to maximally and 

impartially utilize all available structural and functional data from VKCs, to help detect 

the relationship between sequence variations and diversity in voltage sensitivity of VKCs.

II. Machine learning

1. Biological information explosion
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Computational tools have long been used in many branches of biology including 

phylogenetic analysis, quantitative genetics, and epidemiology. Since the human genome 

project was initiated and high throughput sequencing projects started generating an 

exponentially increasing amount of data (Collins et al., 2003; Benson et al., 2004), the 

biological information explosion has made computing technology an indispensable part 

of biology. Many databases, for example, GenBank (Benson et al., 2004), and 

computational tools, such as BLAST (Altschul et al., 1990), were developed to cope with 

the deluge of data.

Designed to handle large volumes of data, machine learning is beginning to thrive 

in its applications to biological data mining (Narayanan et al., 2002; Liu and Wong, 

2003; Kapetanovic et al., 2004). In many genome centers or microarray facilities, 

machine learning is becoming a pivotal tool in their daily operations.

Machine learning identifies and generalizes a pattern from a given set of 

examples. While unsupervised learning, such as clustering, simply looks for similarity 

among available data without pre-defined classes, we will focus on classification 

learning. Classification learning is also called “supervised learning” because the actual 

class of each example is provided in the dataset and the learning is supervised by these 

classified instances to produce a model that fits these classifications. A supervised 

learning algorithm will thus take in a number of classified examples and attempt to 

extract a model from which future instances can be classified (Mitchell, 1997).

2. Training data

Machine learning relies on data examples, sometimes called a training set. In a 

training set, each example or instance is derived from an actual event that is to be
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classified and predicted. Typically, instances are independent from each other in a 

training set.

An instance is defined by a fixed set of features or attributes. The value of a 

feature is a measurement of the quantity or identity of this feature. There are two main 

types of features: numerical features and nominal features. Numerical features are 

described with real numbers whose values have real arithmetic relationships. Nominal 

features are a set of predefined categorical descriptions of the feature. For example, the 

amino acid identities are nominal features if  each residue in a protein sequence is 

considered as a feature. There may or may not be an arithmetic relation among the 

nominal descriptions for a specific feature. In the case of amino acid identity being a 

feature, some amino acid residues are evolutionarily closer to each other and different 

amino acids can be actually compared using an amino acid comparison matrix (Altschul, 

1991; Henikoff and Henikoff, 1992).

In classification learning, each instance is labeled with a predetermined class. As 

with features, classes can also be nominal or numerical. Nominal classification handles 

instances labeled with a predefined set of categories. For instance, to diagnose if  a patient 

has cancer based on his or her gene expression profile, the training instances are likely to 

be labeled with nominal classes: “Yes (Cancer)” and “No (Healthy)”. Instead of discrete 

classes, numerical prediction classifies instances with continuous numerical values. For 

example, numerical prediction will be more appropriate if  a quantitative functional 

parameter of a protein is to be predicted based on its amino acid sequence.

Taken together, a training set for classification learning can be seen as a matrix of 

instances that are characterized by a set of features and labeled with nominal categories
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or numerical values. A training set is the sole source of information input for machine 

learning, so the quality of the training set is critical to learning.

3. Learning algorithms

A variety of learning algorithms have been developed to handle classification 

learning (Mitchell, 1997). The essence of all learning algorithms is to generalize a model 

that can best fit the data by searching through a large but finite hypothesis space. Here I 

introduce a number of learning algorithms that were used in the present study.

3.1 Decision Trees

Decision Trees are among the most intuitive approaches to learn from a set of 

independent instances. Starting from a root, a decision tree grows by adding one layer of 

nodes at a time. At each node, a certain evaluation function based on one or more features 

is applied and only the instances that pass the test can reach this node, otherwise they will 

be directed to other nodes. With a given training set, a decision tree is built in such a way 

that the final tree will correctly classify all training instances to different leaves, with 

each leaf representing each class. Most o f the algorithms that are used to build a decision 

tree employ a greedy search to find the best tree from a hypothesis space of all possible 

decision trees (Quinlan, 1986).

When an “unknown” instance is to be classified, successive tests will be done at 

different layers of nodes, and the instance will move down the tree and eventually reach a 

leaf, where its class will be determined by the class to which the leaf is assigned. An 

example of classification using a decision tree is given in Figure 1.6.
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Features Goodenow Bettman Oilers Fan
Instance 1 Sane Sane Survive Happy

Is Goodenow sane?

NoYea

Is Bettman sane?

No, es

C C o n tin u e ^

C C o n tin u e ^ Should Oilers survive?

Who cares

C C o n tin u e ^

Who cares

C^Continue^)

Should fans be happy?

Figure 1.6: Decision Tree classification on whether the 2004-2005 NHL lockout will 

continue or end. The decision tree checks an instance at every node and allows the 

instance to follow the path only when it passes the test. When an instance gets to a leaf 

node, it will be assigned the class that leaf represents. Based on the given decision tree, 

the example (Instance 1) at the top will get to the “End” leaf, thus meaning that NHL 

lockout will end, believe it or not.
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Decision Trees have been successfully used in many tasks (Masic et al., 1998; 

Selbig et al., 1999; Murphy, 2001; Viikki et al., 2002; Zorman et al., 2002; Jerez- 

Aragones et al., 2003; Kim, 2004a). The decision-making process of a decision tree is 

easy to understand and the relationship between the final classification and the related 

features can be readily extracted from a finished “tree”. This “transparency” of decision 

tree makes it one of the more popular learning algorithms.

However, Decision Trees are susceptible to “overfitting”, meaning the resulting 

classification works poorly on “unseen” instances despite an “excellent” performance 

with the training data (Mitchell, 1997). If there are a limited number of instances and the 

“tree” is allowed to grow deep enough to fit every instance, it tends to generate a model 

that overfits the training data. Thus, a shorter tree is always favored. A number of 

“pruning” methods are also available to alleviate this overfitting problem (Quinlan, 1986; 

Mingers, 1989; Quinlan, 1993).

3.2 Naive Bayes classifier

Machine learning is closely related to statistical analysis. In fact, the famous 

statistical Bayes theorem is the cornerstone of many learning methods including the 

Naive Bayes classifier. Bayes’ theorem calculates the posterior probability of an event 

based on its prior probability and training instances. In Bayes’ theorem:

P ( B | A )  = P ( A | B ) P ( B ) / P ( A )

P ( B I A)  is so-called the posterior probability of event B provided that event A occurs. 

Similarly, P ( A | B ) means the probability that event A happens if  event B exists. P ( A)  

and P ( B ) denote the prior probability of event A and event B, respectively.
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For a typical learning task, an unknown instance with a set of features ( f  x, f  2,

..., f j  is to be classified. In a Bayesian world, we can also rephrase the task as to find

the most probable class (Cmax) among all the possible classes (Cx, C2, ..., C j, given

the set of features ( f  1, f  2, ..., f  J .  It can expressed as:

Cmax =  max P ( Cj  | f  lr f 2, ..., f n) f o r  ( j  =  1 t o  m)

According to Bayes theorem:

Cmax = max P ( f x, f 2, ..., f J C j J P f C j J / P f f , ,  f 2, ..., f n)

Since P ( f  x, f  2, ..., f  n) does not depend on the class label, it needs not to be

calculated. Thus:

Cmax = max P ( f lf f 2, f n |Cj ) P(Cj )

P (C j ) can be easily deduced by simply counting the frequency at which each

class (Cj) occurs in the training data. P ( f lr f 2, ..., f  n | C3), however, is not feasible

to obtain because it requires an unrealistic large number o f instances to get a reliable

estimate. The Naive Bayes classifier, on the other hand, assumes that each feature occurs

independently, therefore:

Cmax = max P ( f x, f 2, ..., f a | c j ) P( Cj )

= max P ( f 1| c j ) P ( f 2|Cj ) ... P ( f n |Cj ) P( Cj )

P ( f ± | Cj ) can be estimated by counting the frequency at which each feature

occurs for a given class (Cj) in the training set. Using this approach, an unknown instance

can thus be classified as the most probable class (Cmax).

Not only is Naive Bayes classification simple, but in many cases, it outperforms

other classification methods. In addition, Naive Bayes classification explicitly handles

and reports probabilities, a feature not found in most other learning algorithms. A

potential problem with Naive Bayes classification, however, resides in its assumption that
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all features are independent of each other. If one or more pair o f redundant or correlated 

features exists in the training data, the performance can suffer (Mitchell, 1997).

3.3 Kernel density classifier

As described in the previous section, the Naive Bayes classifier obtains the 

posterior probability P ( f L | Cj ) by counting the occurrence of each feature for every 

class (Cj). However, this approach is only applicable for nominal features. If features are 

continuous numerical values, the Naive Bayes classifier assumes the values follow a 

Gaussian distribution to estimate the probability. This assumption works well for data 

with features that indeed take a Gaussian distribution. However, for features with a 

different distribution, Naive Bayes sometimes performs poorly.

The kernel density classifier is a variation to Nai've Bayes classification. To 

improve Naive Bayes classification, researchers incorporated kernel density estimation, 

instead of assuming a Gaussian distribution. This implementation yields significantly 

better learning performances when training data with features that have a non-Gaussian 

distribution, and it generates comparable results with data that do have a Gaussian 

distribution (Herbrich, 2002).

3.4 k-nearest neighbor classifier

Instead of generating an explicit model from the training data, the nearest 

neighbor classifier simply stores all instances. When an unknown instance is to be 

classified, the nearest neighbor classifier compares the new instance with all the training 

data, and assigns the class label of most similar training example (neighbor) to the new 

instance (Mitchell, 1997). The k-nearest neighbor classifier assigns the average of the 

closest k neighbors to the new instance (Figure 1.7).
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60

Figure 1.7: KNN (k-nearest neighbor) classification. A KNN classifier maps training data 

onto a multiple dimensional space, with each axis representing one feature. The KNN 

classifier then classifies a new instance based on its “nearest neighboring” class. As 

shown in this figure, training data are mapped onto a three dimensional space. The 

training data from the same class form a cluster (blue, green, and red). The new instance 

(black dot) will be classified as “blue” using KNN classification because its “nearest 

neighbor” is class “blue”.
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Typically, instances with n features can be mapped as points onto the n 

dimensional Euclidean space. The Euclidean distance between two points is used to 

measure the similarity or distance between the two instances. If instances are defined by 

n features ( f  1, f 2r ... t f  J ,  the distance between two instances i and j is:

Since k-nearest neighbor classification does not generalize an explicit model, its 

performance is superior to other methods when the targeted event can not be described by 

a single data model. Many biological events are highly coordinated processes that involve 

multiple factors in a complicated fashion. It is often not possible to generalize the process 

using a simple mathematical function. Therefore, k-nearest neighbor classification has a 

number of advantages in biological data mining (Cabello et al., 1991; Yi and Lander, 

1993; Cedeno and Agrafiotis, 2003; Jain and Mazumdar, 2003; Kim, 2004b).

As with other learning methods, the k-nearest neighbor classifier has its 

shortcomings. Because it utilizes all features to compute distances between training data, 

the existence of a large number of irrelevant features often causes problems. Although 

other methods share the same concern, k-nearest neighbor classification is especially 

sensitive to irrelevant features. In many cases, techniques such as feature selection are 

combined with k-nearest neighbor classifier to produce the best learning performance 

(Mitchell, 1997).

3.5 OneR classifier

OneR classifier selects the single feature that produces the best learning 

performance, and uses only this “best” feature for classification. Surprisingly, it has been

Distance (i, j)
k = 1
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shown to obtain reasonable accuracy for some tasks (Holte, 1993). However, it is often 

primarily used to generate a baseline classification to evaluate other learning performance 

(Witten and Frank, 2000).

4. Feature selection

Machine learning generalizes from training data. Obviously, its performance 

relies on and, at the same time, is also limited by training data. In practice, the most 

common factor that limits learning performance is limited availability of training data. 

Since machine learning is achieved by searching through hypothesis space, the number of 

training data that are required to yield a good classification is often related to the 

complexity of the hypothesis space, which increases exponentially as the number of 

features goes up (Mitchell, 1997). The complexity of the hypothesis space can be 

evaluated by its Vapnik-Chervonenkis (VC) dimension, and the number of training 

instances required for successful learning can be estimated based on the VC dimension of 

the targeted hypothesis space (Blumer et al., 1989).

In many cases including the dataset in the present study, however, the number of 

features is prohibitively more than the number of available instances, which is sometimes 

called “the curse o f dimension” (Mitchell, 1997). For learning with fewer than the 

“required” training examples, several feature selection techniques have been developed to 

lower the complexity of hypothesis space and lift the “curse” (Almuallim and Dietterich, 

1991; Koller and Sahami, 1996; Blum and Langley, 1997; Kohavi and John, 1997; Yang 

and Pedersen, 1997).

Feature selection removes some features and retains only those features from the 

training data that are relevant to the learning task in order to improve the learning
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performance. Individual learning algorithms, for example, Decision Trees (Quinlan, 

1993), have been applied for the sole purpose of feature selection. Typically, a decision 

tree selects only a subset of features to evaluate instances in its final tree. These features 

can thus be considered relevant features and applied in other learning processes. Some 

statistical techniques, such as principal component analysis (Jolliffe, 2002), have also 

been used to compress the feature dimension. In machine learning, the filter and wrapper 

algorithms are two of the main approaches that use classification information for feature 

selection (Blum and Langley, 1997).

A filter algorithm evaluates all features based on training data, without taking into 

account the effects of learning algorithms. It preprocesses data by evaluating each feature 

using some standard (Blum and Langley, 1997). Some select the smallest subset of 

features that are sufficient for classifying training data (Almuallim and Dietterich, 1991); 

some rank features by their mutual information gain scores based on their association 

with the final classification (Koller and Sahami, 1996). The filter approach has 

successfully improved some learning performances, but for some datasets, it did not fare 

well (Blum and Langley, 1997).

Instead of relying on training data alone, the wrapper approach includes learning 

algorithms in its evaluation of features (Kohavi and John, 1997). Its name comes from the 

fact that a wrapper algorithm “wraps” around learning algorithms and selects features 

based on learning performances, instead of examining correlations among data 

themselves. For a typical dataset, a wrapper algorithm performs a heuristic search 

through feature combination space. Searching can be carried out in two ways: forward 

selection and backward elimination. Forward selection starts with one single feature and
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adds one more feature at each round (Figure 1.8), while back elimination begins with the 

full set of features and removes one feature at a time. A heuristic search is typically used 

to select the feature set that generates the best learning performance at each round to go 

to the next. The search is terminated when the learning performance stops improving 

(Figure 1.9).

Due to the involvement of learning algorithms in its evaluation schema, features 

selected by the wrapper algorithm perform well in many cases. However, the 

combination of the learning process with feature selection is also a potential shortcoming: 

biases of a specific learning algorithm can become embedded in feature selection. The 

resulting model may thus overfit training data and yield a disappointing performance with 

new instances. For the purpose of feature selection, however, it may not be a severe 

problem because it is the relative accuracies that determine the selection at each round, so 

the selected features are likely still the true informative features, despite the possibility of 

overestimating performance (Kohavi and John, 1997).

5. Evaluation of learning

The purpose of learning is to formulate a concise description that can be applied 

to all training data, and that correctly predicts the classification of an unknown instance. 

Naturally, the accuracy of classification will be the criterion to evaluate learning. Ideally, 

training data consists of a large number of instances that are statistically representative of 

instance distribution in the real world. The learning performance with ideal training data 

is likely a good indicator of prediction accuracy with future instances.
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Figure 1.8: Forward selection in a wrapper. At each round, one more feature is 

until all features are selected. We used this approach in the heuristic search.
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Figure 1.9: Heuristic search using a wrapper algorithm. Due to the computational 

complexity, not all feature sets can be retained at each round in the heuristic search in 

wrapper. In our study, we kept the top 200 feature sets at each round. The search 

terminates when the learning performance, measured by MAE (mean absolute error) 

using a repeated ten-fold cross validation, stops improving.
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In reality, however, the statistical distribution of the training data is usually not 

known. In many cases, learning performance with training data is excellent but 

classification does poorly with new instances, a consequence called overfitting. 

Therefore, in many studies, a portion of the training data is held out so it does not 

participate in learning. They are only used to evaluate the model learned on the rest of the 

training data. Such a “hold out” process will generally provide a better estimate of the 

classifier’s accuracy. This is being done for datasets with a reasonable number of 

instances.

For a small dataset that has a limited number of instances, however, there are too 

few instances to reserve a holdout set. Cross validation was thus developed to handle 

learning with a small dataset while still providing a reasonably objective estimate for 

future learning with new instances. In cross validation, the training data are divided into, 

for example, ten groups. The learning is carried out with nine groups of data while 

holding out the tenth group for evaluating the resulting classifier. This process is repeated 

ten times with each of the ten different groups as the holdout test set. The average of all 

ten learning performances will be considered as the estimated accuracy of learning with 

new instances. This is called ten-fold cross validation. Cross validation can maximize the 

number of data for training and accomplish a relatively objective evaluation for the 

generalized model.

In practice, different folds of cross validation have been used and results have 

varied depending on the specific datasets. Generally, ten-fold is considered a reasonable 

number to start with, although there is no theoretical basis for this rule. Moreover, if 

computing time is not a concern, a repeated ten-fold cross validation has been applied in
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many learning tasks (Witten and Frank, 2000). Since a single cross validation can be 

influenced by the way the training data are divided, a repeated cross validation with 

different data partitions will likely remove this bias and generate an even better estimate 

of learning performance.

III. Thesis outline

In the present study, I collected structural and functional data of voltage-gated 

potassium channels (Chapter 2) (Li and Gallin, 2004), and attempted to deduce the 

structure-functional relationship of this group of ion channels. Using machine learning 

and feature selection techniques, I was able to identify a number of residues that are 

likely responsible for modulating the voltage sensitivity of voltage-gated potassium 

channels (Chapter 3). This computational model was then validated by permutation tests 

and independent test sets (Chapter 4). Based on these results, I made several VKC 

mutants and the functional characterization of these mutants using electrophysiology is in 

progress to further explorer the roles of these residues.

The current chapter is an introduction to the story of VKCs and the background of 

machine learning. Chapter 2 focuses on the collection of biological data on VKCs and the 

construction o f a web accessible database, VKCDB. Chapter 3 describes the 

computational analysis of the sequence and functional data of VKCs using machine 

learning and feature selection. Chapter 4 details the validation of the computational 

model using both permutation tests and experimental data. Finally, I discuss the 

significance of the present study and potential future work in Chapter 5.
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Chapter 2: Voltage-gated Potassium Channel Database

I. Introduction

Many biologists focus their research on one or a few specific protein families. 

While comprehensive sequence databases, such as GENBANK (Benson et al., 2004), and 

generally annotated databases, such as SWISSPROT (Boeckmann et al., 2003), are freely 

available, intensive studies on protein families are better supported by relatively small, 

focused databases that are developed for specific research needs. Our experience with 

the voltage-gated potassium channel database (VKCDB) provides an example of such a 

small, targeted protein family database. The approaches that we used to create this 

database are generally applicable to building databases for functional studies of other 

protein families.

Voltage-gated potassium channels (VKCs) are intrinsic membrane proteins that 

respond to changes in the transmembrane electrical field by altering conformation and 

selectively allowing potassium ions to pass through the membrane (Yellen, 2002). This 

property is the basis for VKCs’ roles in shaping action potentials in neurons and 

modulating the electrical activity of excitable membranes. Mutations in VKC genes can 

lead to severe diseases, such as long QT syndrome and epilepsy (Towbin and Vatta, 

2001; Kaneko et al., 2002). Thus, VKCs have been considered as possible targets for 

drug design (Cooper, 2001).

VKCs constitute a structurally and functionally diverse protein family. At this 

writing, there are over two hundred described members of this family from more than 35

A version o f this chapter has been published. Li and Gallin 2004. BMC 33
Bioinformatics 5:3.
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organisms. VKC-related structural and functional data, particularly electrophysiological 

and pharmacological parameters, are distributed in dozens of databases and hundreds of 

journal articles. No single database contains structural and functional data for the various 

members of this large protein family. The application of comparative methods to the 

study of VKCs and other protein families depends on ready availability of both structural 

and functional data in an easily accessed database.

Here we report a customized database of VKC-related data that was created using 

semi-automated collection and management. This relational database currently holds 346 

VKC entries. Each entry contains sequences, motifs, references, hyperlinks to other 

databases, and other available structural information. We have also collected available 

electrophysiological and pharmacological parameters for VKCs from several hundred 

published articles. These types of data are not properties of most proteins, and are not 

contained in general protein databases.

II. Construction and content

VKCDB was initially populated by performing a redundant set of searches of 

GENBANK for family members (Figure 2.1). GENBANK was first searched for protein 

sequences similar to the human Kvl.2 protein sequence (Ramaswami et al., 1990) using 

BLASTP (Altschul et al., 1997). The top 200 hits were used to perform BLASTP 

searches against GENBANK and SWISSPROT, yielding a comprehensive collection of 

VKCs. After collapsing all redundant BLASTP results, the top 319 non-redundant hits 

were collected; sequences with lower scores were not VKCs.
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Figure 2.1: Populating VKCDB. VKCDB was populated by searching against 

GENBANK and SWISSPROT databases with 200 seeding VKC protein sequences. The 

redundancies in these results were collapsed, then structural and functional information 

was extracted from different databases and published articles using a combination of 

automated scripts and manual selection.
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A Perl script was used to retrieve information on the 319 VKCs from GENBANK 

and SWISSPROT and store it in a MySQL relational database. A schematic diagram of 

the ER m odel o f  VKCDB can be found at VKCDB w ebsite 

rhttp://vkcdb.biology.ualberta.ca/images/ermodel.gif) (Figure 2.2). Data from redundant 

records in GENBANK and SWISSPROT were combined into a single entry. VKCDB 

entries with very similar sequences were manually checked, and their sequences were 

compared and annotated as “possible isoforms” or “sequence conflicts”. Records for 

splicing variants were cross-referenced. Conflicting sequences that were submitted by 

different authors were cross-indexed as sequence conflicts, unless sequence errors were 

indicated in the literature, in which case the most recently updated sequence was kept. 

Entries labelled as "unknown products" from large sequencing projects that had the 

characteristic sequence pattern of the voltage sensor (a lysine or arginine residue at every 

third position of the fourth transmembrane domain) were used as BLASTP queries and 

annotated as members of a specific family of VKC based on the annotation of most 

similar BLAST results.

Using literature citations from GENBANK and SWISSPROT, we manually 

collected available electrophysiological and pharmacological data from published articles 

for each VKC entry. Conflicting data were all kept and hyperlinked to the references in 

PUB MED (McEntyre and Lipman, 2001).

All sequences were submitted to the TMHMM (Krogh et al., 2001) and PHD 

(Rost and Sander, 1994) servers for secondary structure prediction. Results from both 

analyses were parsed and combined into a single annotated sequence figure. This
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Figure 2.2: The ER model of VKCDB.
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information is currently stored as a graphic because both of the prediction programs are 

not sufficiently accurate to be taken as a definitive result.

Sequences belonging to each of the four Kv families and the KCNQ family 

(Chandy, 1991) were extracted and a multiple alignment for each family was generated 

with ClustalW (Thompson et a l, 1994). Alignments of the highly conserved regions (the 

T1 domain and the six transmembrane domains) were manually adjusted and included in 

VKCDB. Subsets of the aligned sequences can be selected and exported in FASTA 

format.

VKCDB is updated regularly. The “last modified” date of each VKCDB entry is 

compared to the corresponding field in the cognate GENBANK and SWISSPROT 

entries. Information from any of the archival entries that has been changed since the last 

VKCDB update is then parsed and used to update VKCDB. New VKC entries are 

collected by performing a BLAST search of GENBANK and SWISSPROT with all 

entries in VKCDB. The hits are combined into a non-redundant list for each subfamily 

and the top twenty scores on that non-redundant list that are not already entered in 

VKCDB are manually checked to confirm that they are indeed VKCs before adding them 

to VKCDB. If  all twenty hits are VKCs, the next twenty hits are also manually 

evaluated; this process is repeated until non-VKC entries are found. Current entries in 

VKCDB were updated with SWISSPROT Release 43.1 (April 2004) and GENBANK 

entries as of April 2004.
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III. Utility and discussion

At present VKCDB contains 346 VKC entries from 35 organisms. 39 VKCs are 

annotated as having between two and nine different isoforms, although some of these 

might be due to cloning or annotation artefacts. VKCDB can be browsed and searched 

through a web interface by several criteria, including VKC Kv subfamilies (Chandy, 

1991), organism names, GENBANK Protein ID, protein description, reference 

information, and electrophysiological parameters. The VKC entries in all search and 

browse results can be individually selected on the web page to produce a batch sequence 

file in FASTA format for use in other applications. This site also implements a local 

BLAST server for similarity searches against VKCDB entries.

Each VKC entry page contains information such as protein accession number, 

protein name, protein sequence, coding gene name and accession number, SWISSPROT 

function description, references and hyperlinks to other biological databases. On each 

entry page, a button labelled "Electrophysiology" opens a pop-up window containing 

electrophysiological parameters, pharmacological data, and related references 

hyperlinked to PUBMED (Figure 2.3). We will be adding data on synthetic VKC 

mutants to VKCDB in the future, including links to the cognate wild type protein and the 

electrophysiological and pharmacological data. There is also a link to transmembrane 

helix predictions by TMHMM (Krogh et al., 2001) and PHD (Rost and Sander, 1994) on 

each entry page.

Multiple alignments of conserved regions of the four Kv families and of the 

KCNQ family are available on the VKCDB web site (Chandy, 1991), on the tools page

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



|  •« '*• f>] o  @ +  h 't? h ttp .1 

CTlfeBi««emcAH6y$tt»gUi'

VXCD3. V o l t a y - s a i r ^ y g ^ , - -  " VKCo
/*xcdb.btologv.ualberta.ca/cq«-t?«n/en 

r Apf»te . A a u ra a  caay  Yahoo) fti

V / C D - B
Brows-o Search VKCSta&f

E t t n
2

VKC6 B̂icTfocJvtiotoqv̂  'vWicirfiiw ESamaint '

VKCDB ID:

Description:

Organism: 
CcnBank ID: 
Protein AccNom: 
Swissprot ID: 
Protein Name: 
GcncAceNum: 
GcftcXame: 
Protein MW: 
Sequence 
conOkts:

VKC6
Potassium voltagc-gatcd channel niMumilv i 

K v l3 ) (RGK5)(RCK3) <KV3). ‘ ;
Bafflii-auC-CiXitiXKaiu iTa.\ID(XCBt;i:.Uui 
I IM 7 X

PIS3S4 j

eJLSiSa
CIK3_RAT
X lftO O I

KCNA3 I
;

V K C 7 t  V K C T ?  V K C 7 6  

HUNCTION: Mediates the voltage-dcpcndct

VKC6

Activation
Activation 
threshold <mV)
Half activation 
vubagc tmVl 
Activation time 
cosistannmM 
Slope factor < mVte) 1 
Revered potential 
(mV.'dccadcl

-SO

-lit

N/A

5S

Inactivation
Half inactivation 
voltage fmV| 
Inactivation time 
constam intst 
In ac ltv a lio n  s lo p e  

tmV/e)

N/A

N/A

N/A

-.15

-14,1

22+2 i-IOmV{ 
7.X+I1.3 140mV'| 
103 .....

55*:

-33
i 300+67 (-10mV| 
612*53 (40mV |

-45—30

-25,2+7

13,7+6.5 <"<kk;  
rise time) [OmV|
6.6*i"
Ol

-S4.7±42

N .'A

-16=32

Note: Type n K channel.

Functions:

excitable membranes. Assuming opened orgj p^urncactdogv ilD v,,
she v o lta g e  d iffe re n c e  a c ro ss  th e  m c tn h n in c . I - — .................

potassium-selective channel through which K 7 " ^ * ,in^ 11 
tbetr electrochemical gradient. SU B If N IT: H b i ?  
proteitts (Probable). SUBCEU.ULAR LOC CTNinM i 
DOMAIN: The amino terminus may be bnpt DTX t nSl> 
inacuvaikm of the channel while the Ini! may, 
activity and/or targeting of the channel to spe 
DOMAIN: The segment S4 is probahlv the > References 
u series of positively charged amino acids at t 

..., B d o n s to . thcDotjssiiJiii channel lairclv-A(, .. . , Jlcthods

0.4 !40mV)
> 4 0  !4IJmV|

N'A  ......... '
600 |40mV J

Neuron 43/26.630
■ mo

0.3*0.01
1 1 + 0 2

N/A
N.’A ............

jlm raia ig l.
|4 4  4 S 4 l - I S s O

ami
TMVC [22"C) TMVC

1 3  (20k iV | 
50  [2llcny j 

l [ : 0 m M f  
xioo'jateiM)

EMBQJ 
S -3 2 3 S -U  i IQXSQ

TMVC + patch 
damn

Figure 2.3: Screen dump of the entry page of a VKCDB entry. The popup window 

contains the electrophysiological parameters of this entry. The transmembrane helix 

prediction by TMHMM and PHD can also be displayed for each VKCDB entry. Content 

of the entry page is extensively hyperlinked to various databases.
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(http://vkcdb.biology.ualberta.ca/alignment.html). The individual sequences can be 

selected and downloaded, with gaps in place, in FASTA format for use in other 

applications.

The VKCDB web site includes a “submit” page that allows us to communicate 

with users on annotation errors, missing entries, and other information so that we can 

maintain accurate and updated VKC information in our database.

IV. Conclusions

VKCDB contains structural and functional data and related multiple alignments 

for voltage-gated potassium channels in a single database. The VKCDB web page is 

designed to provide easy access and searching through a user-friendly interface. It is also 

designed to interact easily with tools that we are developing to study the structure- 

functional relationship in VKCs using machine-learning approaches. The database 

information is also available as an XML file for users who wish to implement customized 

configurations.

Similar approaches can be taken to construct specific, small-to-medium-sized 

protein family databases, with minimum knowledge of Perl and MySQL database 

management. As a small, customized protein family database, VKCDB is a useful and 

convenient resource for research on VKCs. As our understanding of VKCs increases, 

more annotations and applications will be added to enrich VKCDB so that it can continue 

to serve as a main resource for structural and functional studies of VKCs.
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V. Availability

VKCDB is freely accessible at http://vkcdb.biologv.ualberta.ca. A snapshot of 

VKCDB in XML format can be freely downloaded from the website of VKCDB.
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Chapter 3: Computational analysis of voltage-gated potassium 
channels

I. Introduction

During the evolution of proteins, there is interplay between selective forces acting 

to keep residue identities constant, thus preserving protein function, and selective forces 

that accept new variants of sequence that have altered properties conferring improved 

survival. Thus, when studying the evolution of structure-function relationships in a 

family of proteins, identification of invariant residues within the family identifies parts of 

the protein that are o f central importance to its function. This idea is central to many 

comparative studies of protein structure/function relationships, and the concept has been 

extended to studies of pairs of residues whose identities co-vary in an apparently 

compensatory manner (Fleishman et al., 2004).

However, the converse idea, that varying residues are not centrally important to 

the protein’s function, is not necessarily true. Although it is true that residues that do not 

have a major impact on protein function will show extensive variation over time, it is also 

true that residues that contribute to the quantitative variation in a protein’s properties will 

also vary.

The problem that arises, then, is how to distinguish the residues whose variation is 

responsible for functional variations in the protein from those residues whose variation is 

relatively immaterial to function. These residues will not be detected by evaluating the 

amount of variation in a given residue or in pairs of residues. Rather, the residues will 

co-vary with the property of the protein that they affect. To solve this problem it is 

necessary to use techniques that can detect associations between residue identities at any
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position in the protein and the quantitative value of the parameter of interest. This chapter 

describes an analysis to detect such structure-functional association in voltage-gated 

potassium channels (VKCs) using machine learning techniques.

VKCs are membrane proteins that regulate the passage of potassium ions through 

membranes (Yellen, 2002). When the voltage difference across a membrane reaches a 

threshold, the probability that VKCs will open begins to become significant, allowing 

potassium ions to diffuse through an ion-selective pore in the channel. This voltage- 

regulated potassium ion permeability is critical to cellular excitability. Mutations in 

VKC genes have been shown to be associated with cardiac arrhythmias (Jentsch, 2000), 

episodic ataxia (Cornu et al., 1996), and other diseases (Abdul and Hoosein, 2002a; Koni 

et al., 2003).

A functional VKC consists of four subunits, each containing six transmembrane 

regions, SI through S6 . S4 has been shown to function as the main voltage-sensing 

domain (Yellen, 2002), acting by moving through the membrane upon depolarization 

(Larsson et al., 1996; Jiang et al., 2003b). Through an unknown mechanism, this 

movement causes a conformational change in the region of the pore, likely in S5 and S6 , 

to open the “gate” and allow potassium ions to pass through.

A great deal has been learned of the molecular mechanisms of VKC function in 

the last ten years (Doyle et al., 1998; Bixby et al., 1999; Sokolova et al., 2001; Jiang et 

al., 2002a; Jiang et al., 2003a; Kuo et al., 2003). In the absence of accurate three- 

dimensional structures of various VKCs at different opening/closing stages, mutagenesis 

of individual residues of different VKCs has been the main method for inferring the 

structure-function relationship of VKCs. However, it is prohibitively time-consuming
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and costly to do mutagenesis of all residues individually and in combinations in different 

VKCs. Therefore, computational tools, usually multiple sequence alignment, have been 

used to identify conserved regions of VKCs and limit the priority in mutagenesis 

experiments to evolutionarily conserved residues (MacKinnon, 1991b; Miller, 1991; 

Heginbotham et al., 1992). Unfortunately, details of the elaborate structure-function 

relationship between individual residues and the electrophysiological properties, which 

are mostly continuous quantitative parameters (Hille, 2001), are too complicated to 

understand by simple inspection of aligned VKC sequences. With dozens of VKC 

sequences of a few hundred residues each and continuous electrophysiological variables, 

more mature data mining tools, such as machine learning, are necessary.

Machine learning generalizes the underlying data model by “learning” from the 

existing data using various classification rules. It yields a mathematical model that can 

best describe the existing data and predict classifications of new data (Mitchell, 1997). 

Because of its ability to extract complex models from large datasets, machine learning 

has been successfully applied to many data-rich problems such as marketing reports, 

weather prediction, automatic genome annotation and microarray data analysis (Tag and 

Peak, 1996; Hayes and Borodovsky, 1998; Bose and Mahapatra, 2001; Ringner and 

Peterson, 2003).

Typically, a protein family comprises dozens of members with hundreds of 

residues in each member. Such datasets present a characteristic type of problem for 

machine learning. First, a typical training dataset for machine learning contains 

distinctively labeled “features” in every instance. With protein sequence datasets, all data 

have to be pre-processed to determine which residues of all sequences should be aligned
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with each other to identify homologous residues (features). Second, dozens of sequences 

with hundreds of residues each create a dataset with very high dimensionality, which 

compromises learning performance. Finally, besides generating a classifier with high 

accuracy, it is pertinent to bench biologists to evaluate the biological importance of 

individual residues (features) that contribute to a good learning performance during 

training. Therefore, it is desirable to use learning methods that return the basis for their 

prediction.

I have mined the available VKC sequence and electrophysiological data using 

machine learning and related feature selection techniques, and derived a model that 

predicts one of the central electrophysiological parameters, half activation voltage (V^) 

(Hille, 2001), of a given VKC, based on only its amino acid sequence. The best result 

was obtained using a k-nearest neighbor classifier (k = 1) combined with a wrapper 

algorithm for feature selection (Kohavi and John, 1997), yielding a mean absolute error 

(MAE) between the predicted and published V^ values of 7.0mV in a repeated ten-fold 

cross validation. The training process also provides a rational basis for identifying 

residues potentially critical to the activation of VKCs, and several identified key residues 

are located in regions that have been proposed to modulate VKC activation.

Recently, a complementary computational approach was applied to identify 

residue pairs of VKCs that co-vary during evolution, and some of the identified residues 

have been shown to be “gating-sensitive” (Fleishman et al., 2004). As expected, these 

evolutionarily conserved residues are mostly located in the functionally critical domains 

of VKCs, the S4-S6 (Fleishman et al., 2004). The present study detected those 

evolutionarily varying residues whose variations lead to functional diversity of VKCs. It
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is thus not surprising that they all reside in the S1-S3 helices, which modulate the critical 

voltage sensing and gating function of VKCs but are not part of the ion pore or voltage 

sensor (Yellen, 1998). A similar approach can be used to generate biological hypotheses 

in other protein families and these hypotheses can be practically tested using site-directed 

mutagenesis.

II. Methods

1. Dataset

Data used in this project were drawn from VKCDB, a voltage-gated potassium 

channel database (Chapter 2) (Li and Gallin, 2004). 58 VKC sequences with associated 

half activation voltage (Vx ) values were extracted from VKCDB; most of the sequences 

have more than 500 amino acid residues. All published V^ values used in this study 

were experimentally determined under similar experimental conditions, using a two- 

electrode voltage clamp in Xenopus oocytes (Hille, 2001). Averages were used for those 

VKCs for which different values have been published by different groups (Stuhmer et 

al., 1989; Schroter et al., 1991; Rettig et al., 1992; Scholle et al., 2000).

All sequences were aligned with PepTool (Wishart et al., 1994), followed by 

manual adjustment. Because there is large sequence variation at both termini and some 

loop regions of the VKCs, only blocks of residues that contained relatively few gaps were 

kept for analysis (Dataset 1). These blocks are more conserved and likely contain 

residues that are functionally important to all aligned VKCs, assuming functionally 

critical residues are more conserved during evolution.
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2. Problem formulation

To formulate the problem into a typical supervised learning task, the dataset was 

considered as a training set with 58 instances. Each of the alignment positions was taken 

as one nominal attribute (feature), and all attributes were assumed to be independent of 

each other. The order of residues (features) was not taken into account during learning. 

In numerical prediction analyses, the classes were the real V50 numerical values. In 

categorical prediction analyses, V 5 0  values were divided into seven nominal classes based 

on their values; -50 > V 5 0  > -30mV, -30 > V 5 0  > -20mV, -20 > V 5 0  > -1 OmV, -10 > V50 > 

OmV, 0 > V 5 0  > lOmV, 10 > V 5 0  > 20mV and 20 > V 5 0  > 65mV. The goal is to extract 

the data model that can best describe the relationship between the (attributes) features and 

the labeled classes of these data, and correctly predict the class or the numerical value of 

V 5 0  of any given VKC sequence (Figure 2.1).

3. Basic learning algorithms

The KNN (k-nearest neighbor) classifier was used in both numerical prediction 

and categorical prediction analysis. All KNN classifications were tested with k values of 

1 to 5. The best performances were always obtained when k is 1. Decision Tree, Naive 

Bayes classifier, kernel density classifier and OneR classifier were also used in 

categorical predictions. The algorithms used are implemented in the WEKA package 

3.2.3 (Witten and Frank, 2000).

The prediction accuracies were used to evaluate the learning performance in 

categorical prediction. The mean absolute errors (MAEs), the average absolute 

difference between the predicted values and the published values, were used to assess the 

numerical prediction. All learning performances were evaluated using a repeated ten-fold
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Feature Class

Z eDKLMPMLAACLENIVV V50 = 2 OmV 
AEKKLMPMLAACLENTVV V50 = -5mV 
AEKKLMLMLAACLENIVV V50 = -5mV

  Training set
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A new VKC sequence

Predictor
I Predicted V5o value

Figure 3.1: Problem formulation. Our training dataset contained 58 VKC sequences. Each 

aligned position was one feature. V50 values were the final class that was to be predicted. 

Learning algorithms were trained with these data and generated a predictor (model) that 

could predict the V50 value based on only the amino acid sequence of a VKC.

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



cross validation. In other words, the dataset was randomly split into ten partitions for a 

ten-fold cross validation, and the process was repeated for ten times and the average of 

the MAEs of these ten ten-fold cross validations was used to evaluate the learning.

4. Feature selection

Because high dimensional datasets with large number of irrelevant features can 

compromise learning performance, two feature selection methods, the filter and wrapper 

algorithms, were implemented.

Filter uses information gain as a criterion to rank features in a dataset, and only 

the top-ranked features are used in learning (Almuallim and Dietterich, 1991; Kira and 

Rendell, 1992; Cardie, 1993). Different numbers of top-ranked features were selected for 

learning, and the sets that produced the best learning performance were considered the 

best feature sets using the filter algorithm.

The wrapper approach to feature selection screens features in a dataset and selects 

the “relevant” features based on learning performances (Kohavi and John, 1997). 

Forward selection was used in this approach, in which one feature (residue) was added at 

each round (Figure 1.8), until learning performances stopped improving (Figure 1.9) 

(Kohavi and John, 1997). To avoid having the performance trapped in a local optimum, 

the top 2 0 0  feature sets based on their learning performance were kept at the end of each 

round and were used as starting points for the next round of selection. Despite the 

existence of redundant feature sets, the number of non-redundant feature sets was well 

above 100 at each round. The search was continued for five rounds after the learning 

performance stopped improving to ensure that performance had plateaued.
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5. Residue swapping

I also applied a “residue swap” heuristic, similar to the branch-swapping step used 

to construct phylogenetic trees (Adams, 1972), to try to further improve the prediction 

accuracy. For the best feature set selected by the wrapper, each residue was sequentially 

replaced with every other residue that was not in the final set, and the new feature 

combination was evaluated for prediction accuracy using a repeated ten-fold cross 

validation.

6. Distance matrices in k-nearest neighbor classification (KNN)

A KNN classifier is a set of n-dimensional vectors (where n = the number of 

features) to which new instances are compared (Mitchell, 1997). It classifies a new 

instance by evaluating its distance from each of the classifier instances and chooses the 

class label of the classifier instance that is closest to the new instance as the predicted 

class of the new instance (Figure 1.7). For more than one classifier instance with an 

identical distance to the new instance, one of the class labels of these classifier instances 

is randomly picked and assigned in categorical predictions; averages of equidistant 

classifier instances are calculated for numerical prediction.

The distance between any two vectors is obtained by taking the sum of the square 

of the distances between all pairs of attributes (dimensions). For nominal attributes, such 

as amino acid residues, the KNN algorithm can simply take 1 and 0 as the distance 

between a pair of different and same residues, respectively. I also implemented the KNN 

algorithm to incorporate PAM (Schwartz and Dayhoff, 1978) and BLOSUM (Henikoff 

and Henikoff, 1992) matrices as a measure o f distance between pairs of features 

(residues) of two VKC sequences (Formulas 3.1 and 3.2). Since the scores in amino acid 

comparison matrices go up when two amino acid residues are more similar to each other,
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which is the opposite to distance measurement in KNN classification, I converted amino 

acid comparison scores accordingly (Formula 3.0).

To convert scores in the BLOSUM62 or PAM100 matrix: 

score_range = highest score -  lowest score

converted score; = score_range - (originaI_scorei -  lowest score) (3.0)

n

f1: D= 2  score,-2
1 -1

D: Distance between two instances, 

n: Number of features.

_ f  1 if features of two instances are different . .Identity matrix: score,- = < . . .  .. (3.1)
3 0 if features of two instances are the same v 1

Other matrices: score,-= converted score; from pairwise comparison (3.2)

7. Outlier selection

Va values for the various VKCs have been measured and published by different 

labs. The techniques that were used to obtain are not fully standardized. To 

minimize the effect of possible outliers, another best-first search was performed. One 

VKC sequence was deleted from the training set at each round, and the learning was 

carried out with the remaining VKC sequences. The deleted sequence was considered an 

outlier if the remaining dataset yielded better learning performance than the full dataset. 

The search stopped if the learning performance no longer improved after a further round 

of deletion. Due to computational complexity, the outlier selection was not combined
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with full feature selection of the wrapper algorithm (Kohavi and John, 1997). Instead, 

the best feature set selected by the wrapper algorithm was applied to outlier selection.

8. Final predictor construction

The training dataset contained 58 VKC sequences. Based on the effect of 

individual VKC sequences on the overall learning performance, four sequences were 

identified as possible outliers; the remaining data formed a new dataset (Dataset 2) with 

54 VKC sequences (Figure 3.2). During the training process using Dataset 2, one best 

feature (residue) set was selected by the wrapper algorithm to predict the V^ values with 

an MAE of 7.0mV using a KNN classifier (k = 1). One predictor was then constructed, 

using Dataset 2, the best feature set, the BLOSUM 62 scoring matrix and the KNN 

classification (k = 1).

To predict the V^ value of a new query sequence, the query sequence is first aligned with 

the profile alignment of Dataset 2 using ClustalW (Higgins et al., 1996). The residues at 

the aligned selected positions are extracted to produce a data file for V^ prediction.

III. Results

1. Learning without feature selection

A dataset containing 296 aligned positions from 58 VKC sequences (Dataset 1) 

was used to train different learning algorithms to predict the V5o value of a given VKC 

sequence (Figure 3.3A). V50 values were divided into seven nominal classes. The best 

categorical learning performance was below 30% accuracy (Figure 3.3A). The MAE of 

the best numerical prediction of V50 values with the KNN classifier (Figure 3.3B) was 

close to 18mV. Evidently, these learning algorithms alone do not produce an acceptable
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Figure 3.2: Flow chart of procedures followed to evaluate factors contributing to optimal 

V50 prediction. Different feature selection methods were tested with different learning 

algorithms. The best learning performance was obtained using a KNN classifier with a 

wrapper algorithm for feature selection, combined with outlier selection.
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Figure 3.3: Learning performances with different algorithms and different 

implementations. All bars represent results of a repeated (ten time) ten-fold cross 

validation.

A: Categorical learning with different learning algorithms without feature selection. The 

Vsq values were divided into seven classes based on their values; the learning was done 

without feature selection.

B: Improvement of KNN prediction accuracies in different implementations. Results of 

KNN classification without feature selection, with the filter algorithm, with the wrapper 

algorithm, and with outlier selection are shown. Both feature selection algorithms 

improved learning performance. The best learning accuracy was obtained using the KNN 

classifier combined with wrapper. It yields a mean absolute errors of 7.0mV with the 

new dataset (Dataset 2) of 54 VKC sequences after four possible outliers were deleted 

from the original dataset (Dataset 1).
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model for prediction if  they are trained with such a high dimensional dataset of less than 

60 instances.

2. Learning with a filter algorithm

To improve learning performance with this high dimensional dataset, I added 

feature selection, using a filter algorithm, before learning. All residues (features) were 

ranked based on their information gain scores (Almuallim and Dietterich, 1991; Kira and 

Rendell, 1992). Based on the ranking, different numbers of residues were used for 

learning. The best learning performance was obtained using only five features (residues) 

with top ranking, and the accuracy improved to 36%. The MAE of the numerical 

prediction of V50 values with a KNN classifier was now at 15mV (Figure 3.3B). While 

dimension reduction by the filter algorithm did appear to yield a better learning 

performance, the prediction accuracy was still not satisfactory.

3. Learning with a w rapper algorithm

I also applied the wrapper algorithm, a more learning performance-driven feature 

selection method than the filter algorithm (Kohavi and John, 1997). From a large number 

of sets of residue (features) combinations, a wrapper algorithm selected the residue set 

that yielded the best learning performance. The prediction accuracies with all categorical 

learning algorithms improved, with the best classification of 60% accuracy using the 

KNN classifier. When the KNN classifier (k = 1) was combined with the wrapper 

algorithm to predict a numerical value based on a VKC sequence, the MAE of 

prediction improved to 9.5mV from 17.8mV (Figure 3.3B). The best prediction accuracy 

was obtained with six residues (features).
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I used a transformed BLOSUM62 amino acid matrix for distance measurement in 

KNN classification (Formula 3.1 and 3.2). I also tried the PAM100 matrix and a simple 

identity matrix (Formula 3.1 and 3.2). The best MAEs remained unchanged in a repeated 

ten-fold cross validation. Compared with results using the BLOSUM62 matrix, different 

but overlapped sets o f features (residues) were selected using the PAM 100 and identity 

matrices (Table 3.1).

4. Learning combined with outlier selection

Since the dataset has only 58 VKC sequences, a small number of outliers or 

incorrect class labels might have greatly affected the training process and thus led to poor 

learning performance. I evaluated the effect of deleting each sequence from the dataset, 

by training the KNN classifier with each of the 58 possible sets of 57 sequences. The top 

50 subsets with 57 VKC sequences that produced the best learning performances using a 

repeated ten-fold cross validation were kept and the pruning procedure was then repeated 

with each of the 50 subsets as a starting point (Figure 3.4A). The six feature set that gives 

the best learning performances using Dataset 1 (MAE = 9.5mV) was used during outlier 

selection. Despite the plateau in Round 1 and 3, there were significant improvement of 

learning accuracies in Round 2 and Round 4. After four pruning rounds the improvement 

in accuracy significantly slowed down in the following rounds (Figure 3.4B). Thus, we 

believe that Round 1-4 represents informative gains in accuracy from deleting true 

outliers, whereas the improvement in later rounds was likely due to overfitting.

During the pruning process, four VKC sequences, VKC8 (Kvl.3 mouse), VKC98 

(Kvl.4 dog), VKC 149 (Kv2 squid), and VKC171 (Kv4.3 mouse) (Chapter 2) (Li and 

Gallin, 2004), were consistently selected as “outliers” from Round 1-4, although the order
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Distance matrices Selected residue sets
BLOSUM62 9 7 ,100,  i l l ,  125, 135,154

PAM 100 83, 95, 9 7 ,100,  H Z ,  131, 141,154
Identity matrix 83, 92, 9 5 ,100,  103, 123, 135,154,  273

Table 3.1: “Best” feature (residue) sets selected by the wrapper algorithm with different 

distance matrices in a KNN classifier. Residues that were selected with more than one 

matrix were underlined, and residue 100 and 154 were selected with all three distance 

matrices.
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Figure 3.4: Schematic of the process of outlier selection, and the variations in MAEs 

during outlier selection using KNN classifier.

A: Each instance of Dataset 1 was individually deleted to select the resulting datasets that 

produce improved learning performances. The top 50 new subsets were kept at each 

round, and individual deletions were repeated. The best feature set selected by the 

wrapper algorithm as described in the paper was used in training.

B: Variation of learning performance using KNN classifier during outlier selection. The 

mean absolute errors of prediction improved with selective removal of putative outlier 

instances. There was a significant improvement of learning accuracies at Round 2 and 4 

(highlighted in solid dark). After Round 4, the improvement of learning performances 

slowed down significantly.
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by which they were “deleted” varied. I therefore deleted them to create a new dataset of 

54 sequences (Dataset 2). The new dataset was used to construct the KNN final classifier, 

for which the best MAE improved to 7.0mV (Figure 3.3B). I also re-ran the wrapper 

algorithm with Dataset 2, and exactly the same feature set was again selected, yielding 

the best MAE of 7. OmV.

5. Identification of functionally critical residues

The wrapper algorithm identifies a relatively small number of residues that are the 

primary determinants of accurate learning. With both Dataset 1 (58 instances) and 

Dataset 2 (54 instances), six residues were consistently selected to produce the best 

learning performances (Table 3.1), using a KNN classifier and BLOSUM62 matrix. I 

reason that the residues that were identified as most informative in learning are more 

likely involved in the physical activation process of VKCs. Selected residues were 

mapped onto a schematic of the S1-S6 structure (Figure 3.5). All of them reside in S1-S3, 

a region that likely plays a modulating role in VKC functioning (Yellen, 1998; Treptow 

et al., 2004).

IV. Discussion

1. Learning with high dimensional data

Data with high dimensionality are a “curse” to learning performance. As a rule of 

thumb, the number of instances should be no less, and preferably more, than the number 

of features to obtain a reasonable learning accuracy (Kohavi and John, 1997). Even with 

a large number of instances, a large number of irrelevant features can still compromise 

the learning performance (Kohavi and John, 1997). For biological data, however, enough
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Figure 3.5: Informative residues identified by wrapper. The six residues selected by the 

wrapper algorithm yielded the best learning performance (MAE = 7.0mV). All six of 

them are located in S1-S3 helices, a region that is considered to play secondary roles in 

voltage sensing.
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examples with relatively small dimension are not always achievable. Without dimension 

reduction or feature selection prior to data analysis, learning performances with high 

dimensional data are poor. Many dimension reduction methods have thus been applied to 

improve learning performance, including principle component analysis and linear 

discriminant analysis (Mendez et al., 2002; Nguyen and Rocke, 2002).

I faced this problem in my analyses. There are fewer than 60 VKC sequences 

with published values, and there are nearly 300 residues in each sequence alignment 

after trimming poorly conserved regions. Most residues likely have little or no role in 

determining values, and thus are “irrelevant features”. Training without feature 

selection using several machine learning algorithms yielded prediction accuracies 

consistently lower than 30% (Figure 3.3A).

Application of the filter algorithm before learning improved the accuracy 

marginally (Figure 3.3B). The filter approach is a pre-learning data processing method; it 

is based on pre-learning evaluation of the information content of the dataset, and thus is 

independent of the training process. It has been successfully used in other tasks to obtain 

better learning performance (Almuallim and Dietterich, 1991; Kira and Rendell, 1992). 

However, it may or may not select all the true relevant features depending on the datasets 

and the selection criteria. Considering the number of features and number of instances in 

the datasets, some irrelevant features may well correlate with the final class labels by 

chance and display a high information gain potential, which will not be distinguished by 

filter. It is thus not very surprising that the filter algorithm did not perform well with this 

dataset.
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I then applied a wrapper algorithm to select features during the learning process. 

The wrapper algorithm uses a heuristic search to select the feature combinations that 

yield the best learning performance (Kohavi and John, 1997). It “wraps” around the 

learner and selects the best feature sets based on learning accuracies. To avoid being 

trapped in local optima during heuristic search, I selected the top 200 residue 

combinations at each round, used them all as starting points for the next round of 

searching. Best-first searching was continued until learning performance stabilized. The 

learning accuracies with the wrapper algorithm increased greatly for all learning 

algorithms I used. The best categorical result was obtained with the KNN classifier (k = 

1) with an accuracy of 60%. To generate a predictor that can predict a numeric value 

from a query sequence, I also trained the KNN classifier combined with a wrapper 

algorithm for numerical classification; the mean absolute error of prediction improved to 

9.5mV from 17.8mV (Figure 3.3B).

Since the wrapper algorithm does not use an exhaustive search and does not 

guarantee optimal feature selection, I applied “residue swapping” to identify residues that 

yielded better results in the context of the finally selected residue set. However, residue 

swapping did not produce any new feature sets that yielded better predictive 

performance. On one hand, as an empirical operation, branch swapping does not 

guarantee the global optimum in phylogenetic analysis (Adams, 1972). On the other 

hand, although I could not use an exhaustive search in wrapper, the 200 top feature 

combinations were kept at each round of best-first search, to increase the possibility of 

achieving a close-to-optimal solution even without residue swapping. The best feature 

(residue) set remained unchanged after residue swapping, which provided another piece
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of evidence supporting the idea that residues selected by the wrapper algorithm are likely 

true “relevant” features that establish the final classification.

Thus, using the wrapper algorithm greatly improved the learning accuracies with 

the dataset. However, since the wrapper algorithm selectively searches the feature space 

based on the learning performance from the previous round, I can not entirely exclude the 

possibility of some degree of overfitting, in spite of the evaluation by a repeated ten-fold 

cross validation.

2. Outlier selection

Typically, with a sufficient amount of data, classification using machine learning 

is expected to be relatively insensitive to outliers. However, a low number of instances 

relative to features of structural and functional data can increase susceptibility to outlier 

effects.

The V50 values in the dataset were obtained from publications from dozens of 

labs. I used averages for three V 5 0  values in the datasets because different investigators 

have published different V 5 0  values for the same VKC sequences. The difference in V 5 0  

values of the same VKCs from different labs sometimes exceeds 15mV or more (Stuhmer 

et al., 1989; Schroter et al., 1991; Rettig et ah, 1992; Scholle et ah, 2000). Thus, it is 

almost certain that some VKCs in the datasets compromise learning because they are 

incorrectly labeled.

I evaluated the prediction accuracies with datasets from which one sequence was 

pruned at each round of training (Figure 3.4A). Based on the variations in learning 

performances, I stopped at Round 4 (Figure 3.4B). At both Round 2 and 4, learning 

performances displayed an improvement of MAE of almost 1.5mV (Figure 3.4B). The
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improvement o f learning performances after Round 4 decreased significantly (Figure 

3.4B).

One sequence was deleted in each round of pruning. Creating the best learning 

performance from the remaining data, the top fifty such “remaining” sequence sets were 

all used as starting points for the next round of searching. Four sequences were 

consistently selected for “deletion” in the first four rounds, although sometimes in 

different order. The best learning performance produced a MAE of 7.0 mV with the new 

dataset of 54 VKC sequences (Figure 3.3B), after deleting four potential outliers.

Outliers may arise from experimental errors or the channels may be activated by 

different mechanisms so V50 values would be affected by different set of residues from 

the non-outliers. In the latter case, the “deleted” outliers become interesting research 

targets (Overturf et al., 1994; Holmqvist et al., 2002a). However, I could not rigorously 

exclude the possibility that they were selected as outliers due to the specific dataset I used 

and possible data overfitting in the training. More experimental work needs to be done to 

clarify these issues.

Among the four deleted “outliers”, two different values of V50 were reported in 

the paper that characterized VKC8 (Kvl.3 mouse) (Grissmer et al., 1990), which could 

be due to errors from experiments or other sources. VKC 149 is a squid Kv2 channel. Its 

G-V curve, which was used to obtain its V50 value, had to oddly fit with two Boltzmann 

functions, adding another layer o f complexity to its gating mechanism (Patton et al., 

1997). Both VKC171 (Kv4.3 mouse) (Holmqvist et al., 2002b) and VKC98 (Kvl.4 dog) 

(Vogalis et al., 1995) are fast inactivating Kv4 channels. Their activation might overlap
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their inactivation, which makes it difficult to obtain an accurate V50 value (Holmqvist et 

al., 2 0 0 2 b).

3. Identification of biologically important residues (features)

While I have focused on building a model that can predict the V50 value of a given 

VKC sequence with reasonable accuracy, I am equally interested in identifying the 

residues that are involved in modulating voltage sensitivity of VKCs. Statistical modeling 

has long been used to solve problems in different fields. It is still debatable, however, if 

optimized data models reflect underlying mechanisms and if features used in data models 

are indeed the contributing factors in reality (Breiman, 2001). Evidently, where the truth 

lies depends on the nature of the problem and the datasets at hand.

In the training using a KNN classifier with a BLOSUM62 matrix, different 

feature (residue) sets were selected by the wrapper algorithm and screened to identify the 

feature set that yielded the best learning performance (Figure 3.5). In a forward selection 

approach, one feature (residue) was added at each round. Although different features 

were sequentially selected in different orders during the first five rounds, the feature set 

that produced the best learning performance converged to six residues. These six residues 

are the best features in predicting the V 5 0  value of VKCs based on their amino acid 

sequences. Likely, these residues are central to functional determination of the voltage 

sensitivity of VKCs.

Despite similar learning performances, different but overlapped residue sets were 

selected when using different distance matrices including PAM 100 (Table 3.1). It is 

possible that, due to the non-exhaustive nature of heuristic search, feature selection 

results by the wrapper algorithm were not the optimal ones, and thus not all the true
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“best” features were identified. However, residues that were insensitive to distance 

matrices and consistently selected are evidently more likely to be biologically important 

(Table 3.1). I will focus my discussion on the six residues selected when using 

BLOSUM62 matrix in KNN classification.

Some functionally important residues may not be identified using this approach. 

If a group of residues co-vary because they interact with each other to affect V50 values of 

VKCs, for example, after one residue is identified, the addition of the other residues may 

not further improve learning performances, and thus they would not be selected. 

However, no feature co-varied precisely with the six selected features in a covariation 

study (Gallin, unpublished result). Also, the datasets contain a tiny subset of all the VKCs 

in nature, which may not be an unbiased representation of all VKCs, so the residues that 

are selected may be only pertinent to the specific datasets. The quality of the 

experimental data are also a factor, indicated by the different V50 values obtained by 

different research labs for the same VKC (Stuhmer et al., 1989; Schroter et al., 1991; 

Rettig et al., 1992; Scholle et al., 2000). Outlier selection may have helped alleviate the 

problem, but it is still a potential error source. Nevertheless, the combination of the 

selected residues should be a good indication of potentially functionally important 

structure elements.

In a recent study, evolutionarily conserved residue pairs, which are presumably

involved in the essential functions of VKCs, were computationally identified and most of

these residues are located in the so-called core functional elements (S4-S6) (Fleishman et

al., 2004), the pore region and the voltage sensor. In contrast, the approach to

structure/function analysis in this thesis is aimed at identifying structural elements that

modulate the voltage sensitivity, not those that are essential for voltage sensitivity. While
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S4 is considered the main voltage-sensing unit, S1-S3 is thought to play a modulating 

role in the voltage sensitivity of VKCs (Yellen, 1998; Treptow et al., 2004). Consistent 

with their functionally modulating roles, all residues selected in this study are indeed 

located in S1-S3 region (Figure 3.5). It is not surprising that several other residues in the 

S1-S3 region that were not selected in the present study were also shown to modulate the 

voltage sensitivity of VKCs (Gallin, unpublished result and (Papazian et al., 1995; 

Tiwari-Woodruff et al., 1997)). Most of these residues were demonstrated to interact 

directly with the positively charged key residues in the voltage sensor (S4 helix) and 

closely involved in the movement of the voltage sensor. They are thus a part of the core 

structural element, which is indirectly supported by the fact that they are highly 

conserved among VKCs. Consequently, there is not enough variation in the dataset at 

these positions to associate them with the functional variation.

More discussion on the possible functional roles of these identified residues in 

VKC activation can be found in Chapter 5.

V. Conclusions

Machine learning methods have been widely used in biological analyses because 

of their capacity for dealing with data-rich tasks. Using a dataset of 58 VKC sequences 

with their V ^ values, I built a predictor of the V^ value of a given VKC based on its 

amino acid sequence. Despite the limited number of training data and uncertain quality 

o f physiological data, an MAE of prediction of 7.0mV was obtained using a KNN 

classifier combined with a wrapper algorithm for feature selection (Figure 3.3B). The 

prediction was evaluated by a repeated (ten times) ten-fold cross validation. As more data 

become available from ongoing isolation and characterization of VKCs, better prediction
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is expected. During training, four possible outliers were singled out and removed from 

the training set to improve the learning performance (Figure 3.4). Several residues with 

potential biological implications were identified for further study (Figure 3.5).

The analysis presented in this chapter demonstrated that machine learning 

methods can be productively applied to structure-functional study with datasets of limited 

size. The preliminary analyses of this type of question will provide biologists useful 

tools to predict certain biological functions with a reasonable accuracy. With knowledge 

of the structural and biochemical properties of selected residues, this analysis will help 

them screen and filter out the potentially functionally important residues and direct their 

experimental design.
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Chapter 4: Validation of computational analysis using 
permutation tests and experimental data

I. Introduction

For the past twenty years, computational analysis has been extensively used in 

supporting biomedical research and exploring biological data. Its applications range from 

simple sequence motif matching to complicated simulation of biological systems. Among 

all computational tools, machine learning has become a flagship technique gaining swift 

popularity in biological data mining (Baldi and Brunak, 1998). We are one of the first 

groups to apply machine learning to understand the relationship between protein amino 

acid sequences and a quantitative functional property (Chapter 2) (Li and Gallin, 2004). 

My research target is a diverse membrane protein family, voltage-gated potassium 

channels (VKCs).

VKCs sense and react to the change in voltage difference across the cell 

membrane. Their operations are gated by the transmembrane voltage (Bezanilla, 2000). 

The S4 helix, with a characteristic charged residue at every third position, has been 

demonstrated to be the voltage sensor (Liman et al., 1991; Papazian et al., 1991). While it 

is still a matter of hot debate, several hypotheses have been proposed to explain how the 

voltage sensing by S4 is coupled and conveyed to the S5-S6 gating module (Catterall, 

1986; Jiang et al., 2003b; Cuello et al., 2004). Besides the S4 domain, a number of 

residues in S1-S3 helices have also been implicated in voltage sensing of VKCs 

(Papazian et al., 1995; Tiwari-Woodruff et al., 1997). Although they do not directly sense 

the change in voltage, the S1-S3 helices appear to modulate the voltage sensitivity of 

VKCs (Yellen, 1998; Bezanilla, 2000).
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Many of these findings were based on functional characterization of VKC wild 

types and mutants. The design of VKC mutants was based on a combination of prior 

knowledge of VKC functioning and researcher-specific hypotheses.

I collected 58 VKC sequences and their half activation voltage (V50) values from 

a voltage-gated potassium channel database (Chapter 2) (Li and Gallin, 2004). Using 

machine learning techniques, I extracted a computational model that depicts the 

relationship between amino acid sequences of VKCs and their voltage sensitivities 

(Chapter 3). The study used an unbiased collection o f all collected VKC structural and 

functional data. The mean absolute error between predicted V50 values and V50 values 

determined experimentally in the study is 7.0mV, using a repeated (ten time) ten-fold 

cross validation (Chapter 3).

Although cross validation is considered a standard operation in evaluating 

performance of learning classifiers (Witten and Frank, 2000), I wanted to achieve a more 

objective assessment of the computational analysis. In this chapter, I take two approaches 

to obtain an independent validation of the predictor. First, I ran permutation tests with the 

training dataset, which help validate the statistical significance of the computational 

prediction. Secondly, I collected a group of VKCs wild types and VKC mutants whose 

V50 values were determined using experimental approaches. Using these data as an 

independent test set, I was able to get an objective estimate of the prediction accuracy of 

the predictor.
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II. Methods

1. Computational model and dataset

A computational model (predictor) was obtained using a KNN classifier 

combined with a wrapper algorithm for feature selection (Chapter 3). The model predicts 

the half activation voltage (V50) of a VKC based on its amino acid sequence, with a mean 

absolute error (MAE) of 7.0mV. The dataset with 54 VKCs that was used to obtain this 

predictor (Chapter 3) was the original dataset in permutation tests.

2. Permutation test I

This test was designed to test the performance of the final predictor, compared to 

the null hypothesis that it is no better than random selection of values from the 

training dataset. The class labels (V50 values) of VKCs in the original training set were 

shuffled and then randomly reassigned to these instances. With the predictor that was 

obtained using a KNN classifier (Chapter 3), these “permutated” instances were 

reclassified and assigned to a predicted V^, value. The MAE and SD between the 

predicted V ^ values and their permutated “true” V ^  values were calculated. The 

procedure was repeated 10,000 times. Results were compared with the MAE and SD of 

the predictions with the original training data using the predictor. Student’s t-test in both 

Permutation test I and II was carried out using SigmaPlot 9.0 (Systat Software, Inc).

3. Permutation test II

This test evaluates whether there is significant information linking the sequence 

of a VKC to its V 5 0  value. In this test, I also randomly shuffled the classes of each 

instance in the original training set. With the new “permutated” training data, I repeated 

data training using KNN classification combined with the wrapper algorithm, with
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identical parameters and settings as in the original training (Chapter 3). This process was 

repeated 100 times. The best learning performance from each of the 100 repeats were 

compared with the original best performance (MAE = 7.0mV).

4. Test datasets with experimental data

To obtain a more objective assessment of the predictor, thirteen new VKC 

sequences and their V50 values were collected. Most of them were extracted from the 

voltage-gated potassium channel database (Chapter 2) (Li and Gallin, 2004). They also 

included VKCs that were newly cloned and characterized by our lab and other groups 

(Fry et al., 2004; Salvador-Recatala et al., 2004). These VKC sequences were sent to the 

predictor for V 5 0  prediction. The MAE between predicted V 5 0  values and the V 5 0  values 

o f these new VKCs determined experimentally was used to estimate the performance of 

the predictor on new channel sequences.

I also obtained sequences and V50 values of six VKC mutants with mutations at 

one of six residues that were selected by the wrapper algorithm during the original 

learning process (Chapter 3). These mutants were a part of an alanine scanning 

mutagenesis experiment by Li-Semrin et al (Li-Smerin et al., 2000). The MAE of 

prediction of V50 values of these mutants was also used to evaluate the performance of 

the predictor.

III. Results

1. Permutation tests

I first performed a simple permutation test to quantify the statistical significance 

o f the computational prediction. A “permutated” dataset was acquired by randomly
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shuffling the V50 values among these VKC sequences. In 10000 trials, the MAEs between 

predicted V50 value by the predictor and the “permutated” V50 value range between 

15.5mV and 27.8mV with SDs between 20.6mV and 34.3mV. The performance of the 

predictor on the original training set (MAE = 7.0mV and SD = 5.1 mV) is significantly 

better than the mean MAE and SD in this permutation tests (P < 1 O'10) (Table 4.1).

Using the same approach, I obtained another 100 “permutated” datasets. With the 

same parameters and settings with which I obtained the predictor (Chapter 3), I applied 

KNN classification combined with the wrapper algorithm for feature selection on each 

one of these permutated dataset. Different sets of residues were selected for different 

datasets and the MAEs with the permutated datasets range from 9.9mV to 15.4mV (mean 

= 13.3mV). Again, the performance of the predictor with the original dataset (MAE = 

7.0mV) is significantly better (P = 2X10'10) (Table 4.1).

2. Evaluation with VKC wild type data

Thirteen wild type VKCs were input into the predictor for V50 predictions. The 

MAE of these predictions, compared with the experimental data, is 9.7mV (Table 4.2). 

However, within this test set, a VKC from Hirudo medicinalis (Weiss et al., 1999; 

Salvador-Recatala et al., 2004) generated a prediction error over 27mV (Table 4.2). 

When this sequence is removed, the MAE of the remaining eleven VKCs is 8.3mV.
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Permutation test I Predictor P values

Mean MAE 22.3 (15.5 ~ 27.8) MAE 7.0 < 10‘10

Mean SD 28.6 (20.6 ~ 34.3) SD 5.1 < 1 0 '10

Permutation test II

Mean MAE 13.3 (9 .9-15 .4) MAE 7.0 2X1 O’10

Table 4.1: Permutation tests validated the performance of the predictor.

Expression
systems Channels Published V®, 

(mV)
Predicted V®, 

(mV)
Myocyte K vl.2 rabbit -19.6 -16.5
Neuro-2a K vl.4 pig -17.0 -18.9

RBL K vl.4 frog -26.0 -18.9
Cos7 Kvl. 7 mouse -8.0 -16.5

Xenopus
oocytes K v l .8 human 3.6 -3.8

Xenopus
oocytes K vl. 10 frog -11.3 -8.0

CHO Kv3.3 human 11.0 6.5
HEK Kv3.3 fish 15.6 6.5

Xenopus
oocytes Kv4 lobster -19.0 -7.4

HEK Kv4.2 human -3.2 -7.4

HEK Kv4.3 rat 5.0 -7.4
Xenopus
oocytes Kv4 ciona 2 0 .0 -7.4

MAE 8.3

HEK *Kvl leech 8.3 -19.0

MAE 9.7

Table 4.2: Prediction of independent VKC data using the predictor. The MAE for all 

thirteen VKCs is 9.7mV, and it is 8.3mV after taking out Kvl Leech, an evolutionarily 

distant VKC from any other channel in the training set.
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3. Evaluation with VKC mutant data

I also evaluated the predictor by comparing the predicted V50 values of six VKC 

mutants with the experimental data from an Alanine mutagenesis scanning of Kv2.1 rat 

by Li-Smerin et al (Li-Smerin et al., 2000). The comparison was shown in Table 4.3. The 

MAE between the predictions and data obtained experimentally is 7.5mV, which agrees 

with the estimated MAE of 7.0mV using cross validation (Chapter 3). Prediction 

improves significantly (MAE = 1.35mV, n = 2) if  only the residue types that VKC 

mutants were mutated to exist at the same positions in the dataset (Table 4.3).

IV. Discussion

1. Statistical evaluation using permutation tests

A permutation test is a special case of randomization tests. With a small sample of 

data, it helps generate a distribution for statistical inference. To assess the statistical 

significance of the computational model with a MAE of 7.0mV (Chapter 3), I first tested 

the null hypothesis that this predictability occurs simply by chance. In permutation test I, 

the mean MAE and SD with 10000 permutations of the original data are 22.3mV and 

28.6mV, respectively (Table 4.1). Both values are significantly higher (P < 10'10) than 

that with the original training (MAE = 7.0 and SD = 5.1mV), thus rejecting the null 

hypothesis that the computational prediction of original dataset is generated by chance. In 

other words, there is almost a 100% possibility (P < 10'10) that the predictor does reflect a 

true relationship between VKC sequences and their V 5 0  values.

7 6
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Ala scan 
(Kv2.1)

Published
(mV)

Predicted
(mV)

Wild type 
(mV)

L97A 0 .6 -7.2 -4.9

*I100A -7.3 -7.2 -4.9

L117A -1.6 -7.2 -4.9

*V 125A -4.6 -7.2 -4.9

L135A 1.5 -7.2 -4.9

A154Y 7.0 27.5 -4.9

MAE 7.5

Table 4.3: Published mutant data and predicted values. * The residue mutated to Ala 

at this position exists at the same position in the dataset (Li-Smerin et al., 2000).
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The same approach was extended to repeat the full process of KNN classification 

and feature selection with 100  permutations of the original dataset, using the 

same parameters used to obtain the computational model (Chapter 3). In this test 

(Permutation test II), 100 different computational models were generated with 100 

different sets of features (residues). Tailored to select a feature set that provides the best 

learning performance for a specific permutated dataset, the best and worst MAEs among 

these permutation learning are 9.9mV and 15.4mV, respectively, with a mean MAE of 

13.3mV (Table 4.1). The mean MAE is significantly worse than the predictor with the 

original dataset (P = 2X1CT10). Since both KNN classification and feature selection 

process were involved in Permutation test II, each test yielded a “best” model that 

mathematically correlates a set of residues with “permutated” V50 values. It is the fact 

that the original model (MAE = 7.0mV) significantly outperforms any of the 

“permutated” models that strongly supports that the original learning is likely to have 

detected true signals and revealed a valid association between structural elements of 

VKCs and their activation properties, represented by V 5 0  values.

Permutation tests have been widely used in biomedical and other areas including 

microarray analysis, SNP research, and clinical studies (de Lichtenberg et al., 2004; 

Listgarten et al., 2004; Potter, 2004). Compared with other statistical analyses, a 

permutation test works well with small sample sets and it does not require a normal 

distribution, which many small samples do not have. Some researchers have even 

proposed that permutation test should be used in all cases (Routledge, 1997).

Both permutation tests clearly indicated the predictor summarizes a legitimate 

connection between certain residues of VKCs and their V 5 0  values. This is particularly
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significant in Permutation test II, in which features were reselected from about 300 

residues to optimize learning performances with permutations of the original dataset, 

because, with 300 residues, the likelihood that a few of them correlate with any given set 

o f V 5 0  values and thus yield a good prediction by chance is not trivial. The fact that the 

best MAE in Permutation test II improved to 9.9mV also supports this notion. However, 

Permutation test II, with a mean MAE of 13.3mV, effectively rejects the possibility that 

the prediction by the computational model occurs by chance (P = 2X1 O'10). Therefore, the 

selected residues are likely biologically important in modulating V50 values of VKCs; the 

model for prediction likely contains mechanistic information of VKC activation.

2. Evaluation of predictor using independent experimental data

The goal of machine learning is to extract a model from available data and use 

this model to accurately predict future instances. In any learning task, ideally, there is a 

training set for initial training of learning algorithms; there is also a test set that is not 

“seen” by learning algorithms and exclusively used to evaluate the learning model 

generated with the training set.

Due to the limited number of data, I did not retain a portion of data as an 

independent test set when constructing the predictor. Instead, I used a repeated ten-fold 

cross validation to estimate prediction errors on new instances (Chapter 3). Subsequently, 

I located another thirteen VKCs with functional characterization including VKCs that 

were recently cloned (Salvador-Recatala et al., 2004). They formed an independent test 

set for the predictor. Using the predictor, the MAE of predictions of all thirteen new VKC 

instances is 9.7mV (Table 4.2), which is higher than what I estimated using a repeated 

ten-fold cross validation (7.0mV) (Chapter 3).
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An independent test set normally produces a more objective evaluation of the 

learning performance with future instances, provided that the test set has the same data 

distribution as the training set. However, superposition of the test VKC data on the 

distance tree of the training data clearly showed an unequal distribution in the sequence 

space (Figure 4.1). Among the thirteen test VKC data, one VKC is from Hirudo 

medicinalis (Weiss et al., 1999). The prediction error of this VKC using the model is 

27.3mV (Table 4.2). The computational model was obtained using a KNN classifier, 

which classifies an instance based on its “nearest neighbor” in the training set. Having 

not being trained with VKCs from some species and thus possibly having no “close 

neighbors” to compare with (Figure 4.1), it is thus expected that the predictor will not 

perform well with VKCs from them, mostly evolutionarily distant species, such as 

Hirudo medicinalis in the test set. On the other hand, the MAE of the remaining eleven 

VKC instances in the test set is 8.3mV, indicating that the estimate of prediction accuracy 

of the predictor using cross validation is reasonable (Chapter 3).

In the training set, all V50 values were determined when the channels were 

expressed in Xenopus oocytes (Chapter 3). In the test set, however, I also included VKCs 

that have V50 values determined in other cells, such as HEK and CHO cells (Table 4.2) 

(Rae and Shepard, 2000; Fry et al., 2004). Although it is known that the experimental V50 

values of VKCs often vary if  they are measured in different cells, the difference is often 

not significant, as shown by experimental data of several VKCs that have been 

characterized in both Xenopus oocytes and other cells (Table 4.4). Therefore, I believe 

that the test set can serve as a valid independent test set. In fact, I speculate that a 

more optimistic estimate will be obtained if  all test instances are measured in Xenopus
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Figure 4.1: Distance tree of training data superimposed by the independent wild type 

VKC test data. The branches of the independent wild type VKC type data are in red. 

Most test VKC sequences are clustered with some training data except a VKC from 

Hirudo medicinalis (LeechKvl), which is underlined. The MAE of this VKC is 273mV 

and the MAE of the remaining channels is 83mV.
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Channels Xenopus 
oocytes (mV)

Other cells 
(mV)

Variations
(mV)

K vl.l mouse -26.6 -6.0 20.6

Kvl.5 rabbit -4.9 -8.7 3.8
Kvl.5 pig -1.4 -5.0 3.6

Kvl aplysia -21.6 -21.1 -0.5

Table 4.4: Variations of Wx  values measured in different cell hosts.
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oocytes because it will remove the variation due to difference cell hosts.

Besides a test set with wild type VKC data, I also compared experimental data 

from a mutagenesis scanning study by Li-Smerin et al with predictions by the predictor 

(Li-Smerin et al., 2000). Consistent with experimental data, little variation of voltage 

sensitivity from the wild type (Kv2.1 rat) was predicted for most of these VKC mutants 

(Table 4.3). These mutants were shown to have little impact on voltage sensitivity if they 

were mutated to Ala in Kv2.1 (Li-Smerin et al., 2000). One mutant, A154Y of Kv2.1 rat, 

displayed a large shift of of over lOmV (Li-Smerin et al., 2000), and the predictor 

also predicted a large positive shift in its V^, value (Table 1). Although this is the largest 

margin between the predicted V^ and the experimental data, the correct prediction of 

direction in V^ shift by the predictor is encouraging.

It is also expected that the predictor will perform better with certain instances 

(mutated VKCs, in this case), if the “new” mutated residues (features) exist in one of the 

sequences in the datasets, and thus have been “seen” by the predictor. Two of the VKC 

mutants I compared fell into this category and yielded a MAE of 1.35mV between 

published and predicted V50 values (Table 4.3), indicating that prediction accuracy will 

further improve with more training data available.

Despite using test sets comprising results from VKC mutants and the presumably 

drastic difference between data distributions of two test sets and the original training set, 

prediction by the predictor is consistent with experimental results from the study (Table 

4.2 and 4.3). This strengthens the conclusion that the estimated prediction error of 

7.0mV is close to the true error.
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V. Conclusions

I generated a computational model to predict values of VKCs based on its 

amino acid sequences (Chapter 3). The MAE of prediction is 7.0mV, estimated using a 

repeated ten-fold cross validation. In the present study, I used permutation tests to further 

validate the model. Two permutation tests demonstrated that the computational model 

likely reflects the true connection between amino acid residues of VKCs and the 

activation process. The model was also validated by two independent test sets including 

wild type VKCs and VKC mutants. Therefore, the model I generated can provide valid 

information on critical structural elements and functional properties of VKCs.
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Chapter 5: General discussion and conclusions

I. Biological data collection and management

1. Information explosion

Traditionally, experimental results acquired from bench work and biological data 

collected by field observations were recorded in researchers’ lab notebooks. There was 

no centralized storage of biological data. To find relevant information, printed papers and 

personal communication were the main channels.

In 1965, Dayhoff collected all 65 available protein sequences and organized them 

in the “Atlas of Protein Sequence and Structure”. This was the first protein sequence 

database, in the form of a book (Dayhoff et al., 1965). In 1982, GenBank, the central 

repository for DNA sequences, was launched (Benson et al., 2004). Although GenBank 

quickly outgrew the capacity of floppy disks, DNA sequences and related information 

from GenBank could still be distributed to researchers in the form of CD-ROMs up to the 

mid 1990’s. Soon, however, the exponentially increasing number of DNA sequences in 

GenBank, driven by availability of high throughput sequencing techniques and the 

growth of the human genome project, exceeded the capacity of available low cost 

portable data storage devices (Benson et al., 2004). As of Oct 2004, there were 

approximately 43,194,602,655 bases in 38,941,263 sequence records deposited in 

Genbank (Figure 5.1). Data storage and management have become a critical part of 

biology now.
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Figure 5.1: The growth of GenBank. The number of base pairs of DNA sequences 

GenBank has been growing exponentially.

♦

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2. Protein family databases

Besides archival databases, such as GenBank, a variety of specialized biological 

data such as information on specific protein families are collected and managed in 

centralized database systems (http://www3.oup.co.uk/nar/database/cap) (Galperin, 2004). 

One such example is the voltage-gated potassium channel database (VKCDB) (Chapter

2) (Li and Gallin, 2004). Biolgocial database have also extended from simple flat file 

formats (Benson et al., 2004) to more organized relational databases (Chapter 2) (Li and 

Gallin, 2004) or object-oriented databases (Harris et al., 2004). These specialized 

databases often focus on one specific protein family. Most of them contain specialized 

biological data that can not be found in generic archival databases. As with GenBank, 

most of these specialized databases are web accessible. Many of them also provide 

specialized tools that are specifically tailored for this group of proteins to help users 

browsing, searching, or mining available data based on structural and functional criteria. 

Despite their relatively small scale, they serve a focused purpose and have a targeted 

audience; therefore, they have been valuable resources for their specific research 

communities.

Although data collection for many small protein family databases has been done 

manually, most databases nowadays are populated with a combined automatic collection 

and manual curation approach. For VKCDB, specialized eletrophysiological and 

pharmacological data of voltage-gated potassium channels (VKCs) had to be collected 

from journal articles. In order to assure accurate information, manual collection was used. 

The main protein structural and functional information of VKCDB was automatically 

parsed and populated from GenBank (Benson et al., 2004) and Swissprot (Boeckmann et
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al., 2003). The fact that VKCs share high degree of sequence similarity enables us to 

perform a BLAST search (Altschul et al., 1990) using a seeding VKC sequence to obtain 

all VKCs that are stored in these archival databases.

By definition, members of most protein families will score high in a BLAST 

search if  a protein sequence from this family is used as the query sequence. Thus, this 

approach can be readily modified to build and populate databases of other protein 

families. Attempts to build a generic tool to construct such protein family databases have 

been published (Horn et al., 2001). They took an essentially similar approach to what was 

used for construction of VKCDB, using a more generic framework to allow immediate 

application. Several such databases have been constructed using this approach (Horn et 

al., 1998; Horn etal., 2001).

Although a generic tool is simple and convenient, a specialized protein family 

database usually needs more specialized features to make it a better resource than a 

simple information cluster that can be also obtained from archival databases with some 

effort. In fact, databases that were constructed using generic tools have all added their 

own specialty implementations later (Horn et al., 1998; Horn et al., 2001). Every protein 

family has its own structural and functional characteristics and its own biologically 

significant analytical information. A good protein family database should provide the 

specialized knowledge that is pertinent to this family. VKCDB incorporated a number of 

features that are of great interest to VKC researchers. For example, users can browse 

VKCDB by Kv family (Chandy, 1991) and electrophysiological parameters to help 

comparative study of VKCs. A number of VKC-specific information and tools are also 

available for the specialist users. All these specialized features distinguish VKCDB from
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being a simple generic data collection, and provide VKC researchers rich VKC-specific 

biological data (Chapter 2) (Li and Gallin, 2004). Since it was made public accessible last 

year, it has received almost 4000 visits, averaging about 25 hits on a typical working day.

3. A comprehensive resource for VKC research

Many improvements can be made to enhance VKCDB as a complete database for 

VKC research. As a resource for structure-functional study, some VKCDB entries have 

hyperlinks to protein data bank structure entries (Bourne et al., 2004), but structural data 

are not stored locally. With recent exciting progress in structural studies of potassium 

channels (Doyle et al., 1998; Kreusch et a l, 1998; Morais Cabral et al., 1998; Bixby et 

al., 1999; Gulbis et al., 1999; Cushman et al., 2000; Gulbis et al., 2000; Jiang et al., 2001; 

Sokolova et al., 2001; Jiang et al., 2002a, b; Jiang et al., 2003a; Kuo et al., 2003; Liu and 

Lin, 2004; Zhou et al., 2004), a centralized storage of available structural data including 

homology modeling data will greatly facilitate structural comparison and refinement and 

structure-functional study of VKCs.

Collection of available structural data and subsequent data processing can be 

carried out automatically. Structural data should be stored separately in the relational 

database schema with links to VKCDB entries wherever applicable (Chapter 2) (Li and 

Gallin, 2004). All original structure files will be kept as they are. CGI scripts can be 

developed to allow users to browse, search, and compare structural information of 

individual domain across multiple structures. Both original structural data and related 

information of individual domains will be available on the web.

Besides browsing and searching capacity with structural data, I can also 

implement structure-related analytical tools on the VKCDB web portal. VADAR, a
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structure analysis tool developed by the Wishart group (Willard et a l, 2003), for example, 

can be implemented as a web server at the VKCDB website. Because many of the 

primary users o f VKCDB are biologists without extensive structural analysis or 

computing experience, the analytical output of VADAR can be parsed and presented in a 

user-friendly manner with options of selecting only relevant information that is of interest 

to specific users. For example, users can be allowed to select only residues that are close 

to certain atoms or likely involved in hydrogen bonding.

If  I can make structural information of each individual domain of VKCs available, 

it will be valuable to implement another useful structure tool, SuperPose (Maiti et al., 

2004), on the VKCDB site. SuperPose calculates protein structure superpositions using a 

modified quaternion approach. It generates structure alignments, PDB coordinates, 

RMSD statistics, and other analytical results (Maiti et al., 2004). A great deal of our 

understanding of VKCs comes from comparative studies of the structures and functions 

of individual domains of VKCs. With SuperPose, users can easily superpose and compare 

structures of specific domains from structures of different potassium channels in real 

time, and identify functionally important structural motifs.

Currently, VKCDB contains mainly biological data of wild type VKCs. As we 

know, site-directed mutagenesis and characterization of protein mutants have provided us 

with great insight into molecular machinery for protein functioning. Numerous 

experiments (Heginbotham et al., 1994; Sigworth, 1994; Yellen, 1998; Bezanilla, 2000) 

have been done with VKC mutants. Therefore, adding information about VKC mutants 

into VKCDB can further enrich the value of this database. An ion channel mutational 

database was set up a few years ago, but it is a simple data collection repository and relies
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on input from users (http://hoshi-o.physiology.uiowa.edu/cgi-bin/Mutations.pl). I can use 

their information on VKC mutants as a starting point, and further populate mutational 

data of VKCs by combining automatic mining of published articles and manual checking. 

Several tools are available to extract biological information and mutational information 

from the literature with reasonable accuracies (Donaldson et al., 2003; Horn et al., 2004). 

These tools can be tested and tuned to fit our needs on VKC data mining. Mutational data 

should be linked to their wild type cognates in VKCDB. The addition of VKC mutational 

data will undoubtedly further expand the scope of VKCDB.

Specialized databases, such as VKCDB, have been important resources for studies 

of protein families. With structural data, mutational data and related data mining tools 

being integrated into VKCDB, VKCDB can become one of the first specialized databases 

that serves as a central repository for complete biological information about a specific 

protein family, including primary sequence information, structural data, functional 

information on wild type and mutants, as well as a collection of computational tools. 

VKCDB provides researchers with a fast and ready access to a comprehensive resource 

for VKC research and helps users mining these data to generate hypotheses that will 

assist their experimental design.

II. Computational analysis of biological data

1. Machine learning can help

Much of biology is a hypothesis-driven science. Hypotheses are typically derived 

from a combination of various prior experimental results, observations, and individual 

researcher’s understanding of the problem at hand. In molecular structure-functional
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studies, protein sequences are some of the most critical structural data. Sequence 

comparison using multiple alignments has revealed interesting sequence motifs that have 

led to exciting findings. In the early 1990’s, a highly conserved motif was identified by 

aligning sequences from a number of potassium channels including VKCs, ligand-gated 

potassium channels, and other types of potassium channels. This five-residue motif, 

TXGXG, is conserved among all aligned potassium channels, and was immediately 

hypothesized to be the signature motif of potassium channels (Heginbotham et al., 1994). 

Characterization of mutants within this motif confirmed that it is the motif that 

determines the potassium selectivity o f potassium channels (Heginbotham et al., 1992; 

Heginbotham et al., 1994). Similar analyses of sequence data as well as functional 

characterization have helped identify other important structural elements of VKCs, 

including the voltage sensor, the S4 helix (Liman et al., 1991; Papazian et al., 1991).

Although successful hypotheses can be formulated by inspection of sequence 

alignments, this approach is limited by the complexity of available data. For residues that 

are not well conserved but play significant roles in functional diversity, it becomes 

difficult to identify them and hypothesize on their roles based on inspection of multiple 

alignments o f sequences. If  the structure-functional relationship is to be studied, 

functional characterization has to be included to obtain a detailed map of structure- 

functional association, making the dataset too complex to understand by simple 

inspection. On the other hand, machine learning, a data mining tool that is built to 

identify rules of feature-class relationships (Mitchell, 1997), such as structure elements 

and functions, is an appropriate technique for tackling this type of problems.
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Machine learning generalizes a given data set and extracts a model that describes 

how attributes of these data determine their classifications. Using data extracted from 

VKCDB, I have successfully applied machine learning techniques and generated a 

classifier that predicts the half activation voltage (V^) values with a mean absolute error 

of 7.0mV, using only the amino acid sequence of a VKC (Chapter 3).

2. Quality and quantity of training data

Learned from the training data, the final classifier is limited by the quality and 

quantity of the training data. The dataset contains only 58 VKC sequences and their V^ 

values. Compared with a typical dataset for machine learning, the dataset has a very 

limited number of instances. A dataset with more instances will undoubtedly help 

improve the learning. I tested a dataset of 44 instances earlier using the same approach 

and the best learning performance was ll.OmV. The dataset of 54 instances improved the 

learning performance to 7.0mV (Chapter 3). As more and more VKCs are identified and 

characterized each year, an update of the dataset by collecting more VKC sequences with 

characterized Wx  values is likely the simplest and the best method to improve the 

learning performance. Besides manual browsing, automatic literature searching can be 

tested, using text mining tools to extract literature that contains functional information of 

VKCs to help collect more values (Donaldson et al., 2003; Horn et al., 2004).

In addition, the small size of the dataset implies that the training data are not 

likely to include the same number of channels from all species. Limited by experimental 

techniques and varying abundance of different VKCs, the training data I collected are not 

a well-balanced sample set; most o f the training data come from human and model 

organisms (Chapter 2) (Li and Gallin, 2004). A distance tree of the channels used in
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constructing the predictor illustrates the uneven representation of channels in sequence 

space (Figure 5.2).

The final predictor was built with a KNN classifier (Chapter 3). In KNN 

classification, a close “neighbor” from the training set will be used as a template to 

classify a new instance. If the training data are not evenly distributed in the instance 

space, some areas contain fewer instances with larger empty space than others, as shown 

in the distance tree of the training data (Figure 5.2). Evidently, instances that are in these 

sparse areas will likely not be accurately classified, since they do not have “close” 

neighbors. In fact, a VKC in the independent test set falls into such category (Figure 4.1), 

and the predictor performed poorly (MAE = 27.3mV), while a better prediction was 

achieved with the rest of test data (MAE = 8.3mV) (Table 4.2) (Chapter 4). Therefore, a 

more phylogenetically diverse selection of channels should improve performance.

Data accuracy of the dataset is another issue. Because the values in the 

datasets were measured in different labs over a span of two decades (Chapter 2) (Li and 

Gallin, 2004), there are likely quantitative errors of varying magnitude in this dataset. 

The complicated nature of voltage sensing, the unstandarized experimental procedures 

and human errors can all lead to noisy data. I found that several labs reported different 

Vso values for a single VKC (Stuhmer et al., 1989; Schroter et al., 1991; Rettig et al., 

1992; Scholle et al., 2000). In fact, the V^ values of a VKC that were determined in 

different experiments by the same lab were still 5mV apart (Monks et al., 1999; Hong 

and Miller, 2000). Since many factors and conditions are involved in an 

eletrophysiological experiment, a well-standardized experimental technique is not likely 

to emerge in the near future. The reliable approach is to verify these data by
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VKC14* 3.7 ....

\

A/v

Vertebrate
/  is *

/  S  V*61? W i

\ —  VKC26-7Ji 

VKC210-40

oasas. .
! l p 5  \

/

Vertebrate Kv2 VXC2183°
/

/
/ \ \ ---

VKC19 M S O JB S ig S ft* -’ VKC&9-tt

vXS5?Us:i,?
v A A ., " A /  Vertebrate Kv1
w W e f o » M 7  V W & * 0 fea» .6 ,

• 0.5 changes

Figure 5.2: The distance tree of all training data. It shows an uneven distribution samples 

in sequence space.

9 5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



independently repeated experiments. Using the average of values of the same 

channel from multiple experiments, which is expected to lower the variance and obtain a 

Vso value that is close to the true value, should alleviate this problem. It is also possible 

that the MAE of 7.0mV that we obtained is the best result we can achieve with this 

dataset if the values in the training set are imprecise.

I used a heuristic and intuitive approach to identify four possible outliers. They 

were selected based on their negative effect on the overall learning performance (Chapter

3). Misclassification is commonly seen with outliers. Two of the four selected outliers are 

Kv4 channels (Vogalis et al., 1995; Holmqvist et al., 2002a), and their fast-inactivating 

nature could lead to inaccurate measurement. On the other hand, due to the drastic 

difference in abundance of different VKCs and experimental preferences, the dataset is 

unbalanced. A few hundred VKCs have been found and they carry out a variety of 

functions in different organisms, but VKCs from some species are less abundant and 

naturally under-represented, which could result in them being selected as outliers.

One possible solution to the problem o f scarce VKC data is to incorporate 

mutational data in the dataset. I did a few tests with some mutational data from several 

mutagenesis scanning studies (Li-Smerin et al., 2000; Minor et al., 2000; Yifrach and 

MacKinnon, 2002), and they did improve learning performances to some extent. 

However, this could be problematic because mutagenesis scanning was done with one 

single channel. Dozens of mutants from one channel added into a dataset with less than 

60 instances will significantly over-represent this branch of VKCs. The final result will 

be overly biased toward this channel and thus difficult to generalize. Designed by 

researchers, these mutants may also distort the natural mechanism of wild type VKC
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functioning and mislead us in VKC study. Therefore, extra caution is needed in mining 

VKC mutant data. However, with a reasonable number of mutants from a few channels, I 

can certainly test for possible misleading effects by separately training data from mutants 

of individual channels. A model that can best describe structure-functional association of 

a specific channel might be obtained, if  there is enough variation in structures and 

functions among these mutants.

3. Enrichment of training data

The functional form of a protein is a three-dimensional structure, and the 

connection between primary sequences and their 3D organization is still far from clear. 

Precise functional prediction using only amino acid sequence is thus a doubly challenging 

problem. To achieve better functional prediction, I can also incorporate 3D structural 

information into the dataset. Parameters extracted from homology models based on 

solved structures of VKCs can be included in the training set, including accessible 

surface areas, secondary structures, hydrogen bonding information, salt bridge formation 

and other parameters.

Besides 3D structural data from solved structures, some biochemical properties 

and secondary structures of VKC residues in the dataset could also be included. These 

parameters, including hydrophobic moment, polarity, and secondary structure prediction, 

can be approximately calculated using computational tools (Eisenberg et al., 1982; Krogh 

et al., 2001). This can be achieved by a Perl script that allows automatic submission of 

query sequences to and parsing of results from related web servers.

This resulting new dataset would contain not only quantitatively more data but 

also data with structural information. It would present significantly more informative
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structural attributes for machine learning modules than primary sequence alone. It can 

thus potentially compensate for the limited size of the dataset.

4. Learning algorithms

In Chapter 3, several different learning algorithms were trained. The KNN 

classifier (k = 1) yielded the best result (Chapter 3). As one of the “lazy” learning 

algorithms, the KNN classifier simply stores all the training data during training and 

leaves the computational work to the classification stage, when it compares the new 

instance with the training data and assigns the new instance the class of its closest 

neighbor (Mitchell, 1997).

Determination of voltage sensitivity of VKCs is a highly coordinated process 

(Bezanilla, 2000). Many residues are involved. Some of them are critical in voltage 

sensing and others may play a modulating role (Bezanilla, 2000). Extensive interaction 

among some residues and their interaction with membrane lipid molecules have been 

reported (Larsson et al., 1996; Tiwari-Woodruff et al., 1997; Alvis et al., 2003; 

Williamson et al., 2003). It is possible that a single model can not include all the factors 

and accurately describe the voltage sensitivity of a VKC.

The KNN classifier is a simple learning method. However, it often works well, 

especially for complex problems that can not be explained by a simple model. Unlike 

some other learning algorithms, the KNN classifier does not generate a single description 

that fits all training data. In a sense, it is almost equivalent to having each training 

instance as a model and classifying new instances by comparing it with all these models, 

which is possibly part of the reason the KNN classification performed well with the 

dataset.
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While KNN classifier generated the best predictor, the Naive Bayes classifier and 

the decision tree did not perform as well (Chapter 3). Evidently, different learning 

algorithms have different intrinsic weaknesses. For a given dataset, different algorithms 

might perform differently, as evidenced by the results (Chapter 3). It is thus possible that 

prediction accuracy may further improve if  a different learning algorithm is trained.

Developed by Vapnik, based on his learning theoretical study (Vapnik, 1995), the 

support vector machine approach (SVM) is attracting more and more attention, especially 

in its applications to mining biological data (Byvatov and Schneider, 2003; Bhasin and 

Raghava, 2004; Mika and Rost, 2004; Yan et al., 2004). Instead of trying to fit all 

training data, SVM relies on only a small portion of the data that are instrumental in 

classification, the so-called support vectors, to classify instances (Vapnik, 1995). 

Therefore, SVM is relatively insensitive to overfitting, a universal problem in machine 

learning, particularly for small datasets (Vapnik, 1995).

However, since all features are required to be continuous real numbers in SVM 

learning, the amino acid sequences, features in the dataset, have to be recoded into real 

numbers that reflect their biochemical relationships among each other, which could 

complicate the problem. Nevertheless, SVM has been successfully used in many 

biological applications, so it can be tested with the dataset if  a good method is located 

that can meaningfully recode amino acid sequences into real numbers.

5. Feature selection

The curse of dimensionality led to development o f several feature selection 

techniques (Blum and Langley, 1997). Typically, there are a few hundred or more 

features in a protein with each amino acid residue as a feature. Because of experimental
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constraints, often only a few dozens of proteins of interest have been sequenced and 

functionally characterized for comparative study of the structure-functional relationship. 

Reducing the number of features becomes essential.

Some statistical techniques have been used in reducing dimension of data, such as 

principle component analysis (PCA) (Jolliffe, 2002). However, PCA does not include 

classification information and is thus “unsupervised” in nature. Consequently, it may not 

optimize the learning model. In addition, PCA does not necessarily select individual 

relevant features. Instead, it generates “superfeatures” that consist of multiple features 

(Jolliffe, 2002), which may not be appropriate if  identification of important individual 

features (residues) is critical, which is the goal of many analyses with protein datasets.

I tested two “supervised” techniques that incorporate information of classification 

in their analyses: the filter and wrapper algorithms (Chapter 3). The wrapper algorithm 

outperformed the filter algorithm with the VKC dataset. I used a forward stepwise 

selection of features, adding one feature at each round of training (Figure 1.8). Due to the 

computational complexity, the feature space could not be exhaustively searched. I applied 

a greedy search and advanced only a portion of the feature sets at each round (Chapter 3). 

A “residue swapping” test was done at the end and the best feature set remained 

unchanged (Chapter 3). Although it is likely I located the true global optimum, the 

possibility of having reached only a local optimum could not be formally excluded.

Despite its relative simplicity, the wrapper algorithm has been successfully 

applied to many biological data mining problems (Jelonek and Stefanowski, 1997; 

Degroeve et al., 2002; Inza et al., 2004; Mao, 2004). Some studies indicated that it 

performs as well as other, more complicated, techniques (Weber et al., 2004). The
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permutation tests and experimental data from other groups also indirectly supported the 

conclusion that residues selected by the wrapper algorithm in the present study are likely 

functionally important in determining voltage sensitivity of VKCs (Chapter 4).

6. Evaluation of learning

The number of training data was small, so it was difficult to hold out a portion of 

data for evaluation. Instead, I used a repeated ten-fold cross validation (Chapter 3). Ten

fold cross validation is the de facto standard in evaluating learning performance (Witten 

and Frank, 2000). I used a single ten-fold cross validation in the earlier trials. Despite 

using the average score of ten tests with each of the ten-folds, the final results did not 

seem to converge. I obtained slightly different results from each run. Evidently, the 

instability came from the bias on how training data were divided into ten groups. I then 

chose to use a ten times ten-fold cross validation, which involved random dividing of 

training data ten times to minimize the bias. This approach generated consistent outputs 

(Chapter 3).

As with any typical protein dataset, the class distribution of the training data is 

likely skewed. A better schema for cross validation is to create cross validation partitions 

in a way that the proportion of each class remains the same in each partition (Braga-Neto 

and Dougherty, 2004). For the continuous values in the dataset, I can achieve this by 

approximately dividing training instances into several groups based on the magnitude of 

their values. Bootstrapping can also be tested to obtain a better estimate of learning 

performance (Zhao et al., 2001; Draghici et al., 2003).

An independent evaluation of the classifier was done by comparing predicted 

values using the classifier with experimental data that were obtained independently. Both
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a wild type VKC test set I collected and a VKC mutant test set by Li-Smerin et al (Li- 

Smerin et al., 2000) showed consistent prediction using the predictor, with MAEs that are 

close to the estimated MAE by cross validation (Table 4.2 and 4.3) (Chapter 4). Although 

it is certain that the distribution of wild type VKCs and VKC mutants is rather different 

from the training data, as independent test data that were not used in training, the 

successful prediction of these instances gave us a reasonably objective assessment of the 

present predictor. They indicated the prediction accuracy of future instances using the 

predictor should be close to the MAE I estimated using cross validation, 7.0mV (Chapter 

3).

7. Biological significance of identified residues

During the learning process, the wrapper algorithm identified six informative 

residues that are likely to be involved in modulating the voltage sensitivity of VKCs 

(Chapter 3). Within the dataset, the variation of the six selected residues are mostly 

limited to nonpolar, hydrophobic residues including He, Leu, Val, Phe, and Ala, with the 

exception of His at residue 117 for all Kv3 (Shaw) channels (Jan and Jan, 1997b) (Table 

5.1). Some residues, such as 117, 125, and 154, can potentially interact with residues 

from S3, S5 and S6, assuming the KvAP structure model is correct (Jiang et al., 2003a). 

A number o f residues from S5 and S6 are within 5 A of position 117 on SI and position 

125 on S3 (Figure 5.3B). Some residues at the S3 turn loop and S3b helix also are in 

close proximity (<5A) to position 154 in the C terminus of S3a (Figure 5.3B), calculated 

using MolMol (Koradi et al., 1996). Although no hydrogen bond was identified among 

the selected residues and their “close” neighbors, hydrophobic interactions can certainly 

occur among some of them.
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Positions Residue types in the dataset
97 *C, F, I, L, V, *Y
100 A, *F, *G, I, *L, *T, V
117 H, I, L, V
125 A, *C, *F, I, L, T, V
135 I, L, *T, V
154 A, *C, *F, I, L, *M, V

Table 5.1: Amino acid residues at selected positions in the dataset.

* These residues appear in only one or two VKCs in the dataset of 58 VKCs.
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Figure 5.3: Residues selected as informative features by a wrapper algorithm and 

mapped onto VKC structures.

A: The six residues selected by the wrapper algorithm were approximately mapped onto a 

schematic of a VKC. All six of them are located in S I-S3 region, a “non-critical” and 

“modulating” region in voltage sensing. Residue 117, 125, 135 and 154 are all exactly 

two residues away from a relatively conserved negatively charged residue, marked by 

asterisks and underlined indeces (115,127,137 and 152).

B: Selected residues were mapped onto the structure o f KvAP (Jiang et al., 2003a) in 

ball-stick mode. Residues that are located within 0.5nm from selected residues are also 

shown in green CPK mode. This is the cytoplasmic view down the axis of S5 and S6. 

This figure was prepared using MolMol (Koradi et al., 1996).
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Hydrophobic interaction has been known to play important roles in many 

physiological processes. One of the examples is the N type inactivation of VKCs, in 

which a hydrophobic fragment and its nonspecific hydrophobic interaction were shown to 

mediate the fast inactivation of some VKCs (Murrell-Lagnado and Aldrich, 1993).

Many residues of VKCs that are responsible for voltage sensing and selective ion 

permeation are charged or polar amino acids, generating relatively strong ionic 

interaction (Yellen, 1998). Variations of residues involved in strong ionic and bonding 

interactions often lead to, drastic variation or inactivation in function (Yellen, 1998). 

Hydrophobic interactions between nonpolar residues, on the other hand, are often 

energetically of lower magnitude and thus have quantitatively smaller effects in the 

overall function of protein. They can potentially generate interactions with a continuous 

range of directions and magnitudes. Variations among involved residues are not expected 

to cause functional disruption but fine-tune the directional and quantitative 

characteristics. They are likely to play “secondary” roles in VKC functioning and help 

tuning and shaping the sensitivity of different functional properties. The nonpolar 

hydrophobic features of identified potential voltage sensitive residues are consistent with 

their roles in modulating the targeted functional feature, the voltage sensitivity of VKCs.

I mapped these residues onto their homologous positions in the structure of KvAP 

(Figure 5.3B) (Jiang et al., 2003a). Based on their positions, some of them could be in 

contact with lipid molecules. It has been demonstrated that the lipid bilayer has an 

influence on the orientation and positioning of potassium channels and other membrane 

proteins, possibly by interaction between lipid molecules and protein residues (Alvis et 

al., 2003; Williamson et al., 2003). Certain functions of potassium channel will likely be
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modulated by this interaction (Alvis et al., 2003; Williamson et al., 2003).

Interestingly, four of the six selected residues are exactly two residues away from 

relatively conserved negatively charged residues in primary sequence (Residue E45, D62, 

D72, and E93 in KvAP) (Jiang et al., 2003a) (Figure 5.3A), which means that they are on 

opposite faces of the predicted helices (Figure 5.4). All these charged residues have been 

known to closely relate to voltage sensing and gating, mostly by interacting with residues 

with positive charges from the core structural domains (S4-S6) to assist activation, 

inactivation, or the transition process (Yellen, 1998; Laine et al., 2004). Because of their 

proximity, it is possible that the selected residues modulate these “critical” residues and 

their influences on voltage sensitivity by a weak interaction such as hydrophobic 

interaction, whose magnitude varies based on the physical structures of and the distance 

between residues that are involved. Further study is needed to clarify this issue.

III. Conclusions

Most biologists work with one or a few specific protein families. The amount of 

sequence and functional data on members of protein families is increasing rapidly with 

the growing application of high throughput experimental methods to functional protein 

studies. Computational data management and data mining become necessary for 

biologists.

To utilize available sequence data and functional data of voltage-gated potassium 

channels in comparative study, a voltage-gated potassium channel database (VKCDB) 

was constructed (Chapter 2) (Li and Gallin, 2004). It was populated through iterative 

BLAST search of GenBank and Swissprot. Annotations for all voltage-gated potassium
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Figure 5.4: Selected residues and neighboring charged residues on a schematic axial view 

of the S I-S3 helices. Among the six selected residues, four o f them are two residues 

away from a negatively charged residue in primary sequence. When they are mapped 

onto the S1-S3 helices, the selected residues (117, 125, 135, and 154) and their 

neighboring charged residues (115, 127, 137, and 152) are approximately located on the 

opposite faces of S I-S3 helices.
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channels were selectively parsed and integrated into VKCDB. Electrophysiological and 

pharmacological data for the channels were collected from published journal articles. 

Transmembrane domain predictions by TMHMM and PHD are included for each 

VKCDB entry. Multiple sequence alignments of conserved domains of channels of the 

four Kv families and the KCNQ family were also included. VKCDB can be browsed and 

searched using a set o f functionally relevant categories. Since it was made available on 

the web, it has become an important resource for potassium channel research community.

Using collected amino acid sequences and electrophysiological data, several 

machine learning algorithms were trained to produce a predictor that can predict the half 

activation voltage, one of the central electrophysiological parameters, of a given VKC 

based on only its amino acid sequence with a good accuracy (MAE = 7.0mV). Prediction 

was verified by permutation tests and independent experimental data from several 

research groups (Table 4.2 and 4.3) (Chapter 4). During the process, a number of residues 

were shown to be correlated with quantitative features of VKCs. They are thus likely 

functionally critical in VKC activation. VKC mutants have been made based on 

computational predictions, and their functional characterization is underway to further 

study their roles in VKC functioning.

The approach I used to build VKCDB and the methodology I used for 

computational analysis of structure-functional relationship of VKCs are not specifically 

tailored for VKCs. They can be easily generalized and modified for studies of other 

protein families.
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