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Abstract

We introduce optimization through protocol selection (OPS) as a technique to improve

bulk-data transfer on shared wide-area networks (WANs). Instead of tuning the

parameters of a network protocol, our empirical results show that the selection of the

protocol itself can result in up to four times higher throughput in some key cases.

However, OPS for the foreground traffic (e.g., TCP CUBIC, TCP BBR) depends on

knowledge about the network protocols used by the background traffic (i.e., other

users). Yet, global knowledge can be difficult to obtain in a dynamic distributed

system like a WAN.

Therefore, we introduce and evaluate a machine-learning (ML) approach for recog-

nizing the background mix of protocols on a shared network. We build and empirically

evaluate several ML classifiers, trained on local round-trip time (RTT) time-series

data gathered using passive probing or active probing, to recognize the mix of TCP

CUBIC versus TCP BBR congestion control algorithms (CCAs) in the background

with an accuracy of up to 95%. Then, a decision process selects the best protocol to

use for the new foreground transfer, so as to maximize throughput while maintaining

fairness (i.e., OPS).

Lastly, we describe the design, implementation, and evaluation of iPerfOPS, the

first tool that uses OPS to perform bulk-data transfer. The new tool is a substantially

modified version of the well-known iPerf tool, and is an end-to-end implementation

that incorporates previous research results. Our evaluation of iPerfOPS shows a

bandwidth utilization close to the fair (i.e., equal) sharing if used with an appropriate

probing pattern.
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Chapter 1

Introduction

Knowledge about the state of a data network can be used to achieve high performance.

For example, knowledge about the protocols in use by background traffic might in-

fluence which protocol to choose for a new foreground data transfer. Unfortunately,

global knowledge can be difficult to obtain in a dynamic distributed system like a

wide-area network (WAN). Therefore, we introduce and evaluate a machine-learning

(ML) approach to network performance, called optimization through protocol selec-

tion (OPS), depicted in Figure 1.1. Using local round-trip time (RTT) time-series

data (Step 1), a classifier predicts the mix of protocols in current use (Step 2). Then,

a decision process selects the best protocol to use for the new foreground transfer

(Step 3), so as to maximize throughput while maintaining fairness (Step 4).

Distributed, cloud-based, computing often requires dozens of gigabytes-to-terabytes

of data (and more in the future, of course) to be transferred between local and cloud

storage. Hybrid public–private clouds and clouds that span geographically separated

data centers can often have WANs connecting key systems. If the data-transfer stages

are bottlenecks, the overall data-processing pipeline will be affected. For example, a

community of over 8,000 physicists across more than 40 countries have been served

with advanced particle physics data, at the scale of petabytes per year, generated at

the Large Hadron Collider (LHC) at CERN [14]. Similarly, the Square Kilometer

Array (SKA) radio telescope project has generated data at approximately 400 Tb/s,
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which is sent to a supercomputer center 1000 km away for analysis [15, 16].

High-performance protocols and tools exist for data transfer over WANs. For

example, GridFTP [17], a well-known tool for transferring files across WANs, was

developed as part of the LHC project at CERN. While much of the related work on

high-performance tools has been in the context of dedicated (non-shared) networks,

many networks are likely to be shared in practice, containing highly dynamic traffic

workloads over any given period of time. Hence, prior performance evaluations on

private networks could not characterize the mutual impact of a tool or protocol (fore-

ground traffic) against other data streams (background traffic) on the same network

path. Yet, there are many scenarios (e.g., cloud systems, or institutional networks)

where not only are the administrators interested in how much performance is possi-

ble in the foreground, but also how large of an impact is made on background traffic.

As a result, applying the existing data-transfer tools, without appropriate protocol

selection and tuning, may result in unexpected behavior or sub-optimal performance

on bandwidth-sharing networks.

The Transmission Control Protocol (TCP) is the backbone of the Internet because

of its ability to reliably transfer data while sharing the network among competing

data streams. TCP achieves this ability through its Congestion Control Algorithm

(CCA), designed to adjust the data sending rate in response to variable network

conditions. The early work on TCP CCA were mainly focused on two goals. First,

managing the traffic flow to efficiently fill the network bandwidth while avoiding from

overloading the network (i.e., congestion). Second, fair sharing of bandwidth against

other TCP users on the network (TCP friendliness). While the proposed CCAs were

adequate for the smaller bandwidths and lower latencies of the networks at the time,

they proved inefficient with the emerge of high bandwidths, non-wired mediums, and

larger scale of cross-country networks. In particular, there are well-known challenges

with using TCP/IP on WANs for transferring large data files [18].

A variety of CCAs (a.k.a., TCP flavors) were developed over the past decades to
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ground Probing (active/passive), (2) RTT Classification, (3) Protocol Selection, (4)
Steady Transfer (cf., Figure 6.1 for more details).

improve different aspects of TCP performance and fairness [19]. Despite proposal

for several new CCAs over the past few years, TCP CUBIC [20] (with a few improve-

ments) is still the dominant CCA on the Internet, because of its ability to efficiently

utilize bandwidth on larger networks (performance) while remaining TCP-friendly

(fairness). More recently, the researchers at Google introduced TCP BBR [21] as a

performant CCA, gaining quick interest and popularity. Instead of blindly pushing

the flow rate and reactively pulling off when packet loss happens, as in TCP CU-

BIC, TCP BBR probes, and aims at, the available bottleneck bandwidth, presenting

promising end-to-end performance improvements on the network. Yet, several fair-

ness concerns are reported on TCP BBR when it competes against TCP CUBIC (or

other BBR streams) [22, 23]. several proposals proposed by the research community

on addressing those inefficiencies with BBR [24–26].

The reported fairness and performance issues with competing streams of different

TCP flavors (CCAs), yet again, emphasizes the importance of protocol selection on

shared networks. Even though the particular issues with BBR could be transient and

get addressed by the BBR v2 [27] 1, the overarching concept of potentially negative

1While BBR version 2 has been under development [28], at the time of conducting this research,
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Table 1.1: Summary of chapters’ (Ch.) topics and highlights.

Ch. Topic Highlights

1 Study introduction, thesis outline,
and main contributions

ML-based BG classification, OPS
for adaptive protocol selection

2 Background and related work on
high-performance data transfer
and shared networks.

Performance challenges on high-
BDP networks, Bandwidth shar-
ing could impact performance

3 Methodology, Emulated testbed,
Traffic generators

Dumbbell topology, High-BDP
paths, Bursty traffic patterns

4 Performance implications of
bandwidth sharing on high-
performance protocols (through-
put, fairness)

Inconsistent performance and
poor fairness of high-performance
protocols (GridFTP vs. UDT) or
CCAs (CUBIC vs. BBR)

5 Active/passive BG probing and
ML-based recognition of protocol
mixture on shared networks

Classifying mixtures of CUBIC
and BBR with 95% accuracy us-
ing RTT time-series

6 OPS decision making strategy
for adaptive protocol selection on
shared networks

Significant throughput and fair-
ness improvement (compared to
worst case) with OPS

7 iPerfOPS: building an iPerf-based
tool for OPS with active probing
with interactive and script modes

Substantial modification to the
well-known iPerf tool, perfor-
mance close to equal bandwidth
sharing using iPerfOPS

8 Concluding remarks, key observa-
tions, lessons learned, limitations
and future work

Effectiveness of adaptive protocol
selection / Future work: expan-
sion of ML classifiers for more net-
works and protocols mixtures
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mutual impact between different data streams and protocols on a shared network still

stands. Nonetheless, global end-to-end knowledge about the of the background traffic

can be difficult to obtain in a dynamic distributed system like a WAN.

In this research, outlined in Table 1.1, we first study the performance implications

of using different data transfer tools and TCP CCAs on a shared network, in the

presence of different profiles of background traffic. We then investigate applying ML

techniques towards identifying the mixture of background traffic, building strategies

and tools for data transfer optimization through protocol selection (i.e., OPS).

Following the introduction to our study in this chapter, Chapter 2 provides the

background and some of the related work from research literature. It will discuss the

high-performance protocols, as well as the fairness implications on a shared network.

In Chapter 3 we introduce our experimental methodologies and the common testbed

configurations used through the following chapters. We setup an emulated network

with a dumbbell topology, allowing us to model competing streams on an end-to-end

WAN path with a bottleneck bandwidth and longer RTT.

In Chapter 4, we compare the performance of a few well-known tools and CCAs

(e.g., GridFTP, UDT [29], TCP CUBIC [20], TCP BBR [21]) over a bandwidth-

sharing, emulated, WAN. We show that GridFTP and UDT, as representative high-

performance data transfer tools, could unfairly affect the competing traffic on a shared

network. In addition to its unfair traits (e.g., Figure 4.9), GridFTP could experience

significant throughput drop in the presence of particular patterns of background traf-

fic. For our benchmarking we study both synthetic and application-generated data-

transfer workloads. A noteworthy result of our experiments is how poorly GridFTP

performs when competing with UDP-based traffic. In particular, GridFTP’s through-

put drops to less than 10% of the theoretical maximum when competing with bursty

UDP traffic (Figure 4.1). Furthermore, the effective throughput of TCP CUBIC when

BBR version 1 is still the only stable version publicly available; hence the one used in this study for
all the experiments and evaluations.
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Figure 1.2: Samples of RTT time-series data generated using non-intrusive (passive)
probing (cf., Chapter 5 for more details).

competing against TCP BBR could drop to less than 10% of its best, representing

the aggressive impact of BBR on CUBIC (Figure 4.5).

Having shown the impact of the distinct background patterns on the performance of

different protocols, in Chapter 5, we build a ML pipeline for identifying the mixture

of the background workload on the network. Considering the mainstream use of

TCP transport on the network, we choose TCP CUBIC versus TCP BBR as the

scope for the ML task. First, we devise two end-to-end mechanisms, intrusive (active

probing) and non-intrusive (passive probing), for capturing representations of the

network signal(s) for distinct patterns of the background traffic. We use end-to-

end latency, namely RTT, as a proxy for workload intensity on the network at any

given time. Measured over regular time intervals it forms RTT time-series, allowing

us to capture both the temporal pattern of the protocol mixture and the intensity

of the background workload (Figure 1.2). Second, we examine several ML models,

training classifiers for recognizing the background traffic on the network by taking

the RTT time-series as the input. The classification performance results of up to 95%

accuracy (Figure 5.7) shows the effectiveness of using RTT time-series for recognizing

the background mixtures of TCP CUBIC, TCP BBR, or both.
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To be clear, for this research we limit the scope of our study to TCP CUBIC and

TCP BBR as the two popular CCAs on the data networks. Generalizing the classifier

models for larger mixtures of streams and different CCAs and protocols (e.g., QUIC)

is a direction for the future extension of this study. Furthermore, evident by the

emergence history of new TCP CCAs, new CCAs are expected to be proposed in the

future. Therefore, the mixture of CCAs on the actual networks would change over

time. New classification models are needed to be trained as new CCAs get emerged

or widespread over time.

In Chapter 6, we discuss OPS for optimizing the end-to-end data transfer per-

formance. Using the trained ML classifiers, OPS recognizes the background traffic,

followed by using a decision model to either pick TCP CUBIC or TCP BBR for data

transfer (Figure 1.1). In OPS strategy we iteratively probe the RTT (Step 1), clas-

sify the RTT time-series (Step 2), and pick a protocol, CUBIC or BBR (Step 3), for

transferring data (Step 4). Furthermore, we introduce constructive active probing

where, instead of dummy traffic, we transfer real user data during the probing phase.

Our early evaluation of OPS shows up to four times improvement compared to the

worst case for throughput (Figure 6.9). At the same time, the fairness measure (Jain

Index) is improved by about 50% when OPS is used for protocol selection compared

to the worst case for fairness (Table 6.3).

Following the promising results of our proof-of-concept for OPS, in Chapter 7 we

describe the design, implementation, and evaluation of iPerfOPS tool as an end-to-

end implementation of OPS strategy for bulk-data transfer. Using a substantially

modified version of the well-known iPerf tool, iPerfOPS incorporates the findings and

results of our previous chapters. iPerfOPS introduces, (1) a reliable data-transfer

capability to iPerf, and (2) an end-to-end implementation of OPS. Our evaluation

results for iPerfOPS shows the importance of the probing pattern when using (con-

structive) active probing, where selecting an appropriate probing pattern could result

in a bandwidth utilization close to the fair (equal) sharing (Figure 7.10).
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It is a challenging task to optimize a data-transfer task for both throughput and

fairness. If throughput is the only deciding metric, we may use a greedy approach

to probe each available CCA and to pick the one with maximum throughput for

steady transfer. However, a greedy approach can hurt fairness. Unlike throughput,

it is not feasible to measure fairness from a local end-point perspective. OPS enables

optimization for throughput-and-fairness (i.e., both throughput and fairness) via its

multi-step process for probing, discovering, and protocol selection, followed by the

steady data transfer.

In a summary, the main contributions of this thesis are:

1. A novel ML-based approach for adaptive protocol selection:

Knowledge about the protocols in use by the background traffic might greatly

influence which protocol to choose for a new foreground data transfer. Yet, such

a global knowledge can be difficult to obtain. We introduce and evaluate OPS,

a novel ML-based approach to network performance. Using either passive or

active probing, a classifier predicts the mix of TCP-based protocols in current

use by the background workload. Then, we use that insight to build a decision

process for selecting the best protocol to use for the new foreground transfer,

so as to maximize throughput while maintaining fairness. The OPS approach’s

throughput is four times higher than that achieved with a sub-optimal protocol

choice. Furthermore, the OPS approach has a Jain fairness index of 0.96 to 0.99,

as compared to 0.60 to 0.62 if a sub-optimal protocol is selected (Section 6.5).

2. An effective passive/active probing method for traffic recognition:

We introduce and provide a proof-of-concept of two network probing profiles,

passive probing and active probing. These probing schemes enable us to gather

representative end-to-end insights about the network, without any global knowl-

edge present. Such an insight could potentially be utilized for different real-

world use-cases, including workload discovery, protocol recognition, performance
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profiling, and more. With passive probing, we measure local, end-to-end RTT

in regular time intervals, forming time-series data. We show that such a non-

intrusive probing strategy will result in distinct time-series signatures for differ-

ent background protocol mixtures. Active probing is an intrusive extension of

passive probing, adding a systematic and deliberate perturbation of traffic on

a network for the purpose of gathering more distilled information. The time-

series data generated by active probing improves our ability to distinguish the

time-series for different workloads, evident by our ML evaluation (Section 5.6).

3. Empirical quantification of the poor performance of the combinations

of some popular network protocols on shared networks:

Many data networks are likely to share bandwidth, carrying data using a mix of

protocols (both TCP-based and UDP-based). Yet most previous work on bulk-

data transfer have (1) focused on TCP-only traffic, and (2) assumed a dedicated

bandwidth, or negligible effect of background traffic. We detail an empirical

study to quantify the throughput and fairness of high-performance protocols

(TCP CUBIC, TCP BBR, UDP) and tools (GridFTP, UDT), in the context of a

shared network (Section 4.1). Our mixed-protocol workload includes TCP-based

foreground traffic with both TCP-based and UDP-based background traffic. In

fact, our unique workload has led to interesting results.

1.1 Concluding Remarks

In this chapter we reviewed the motivation for our study, the performance implications

on bandwidth-sharing networks. We introduced our thesis for OPS as an effective

solution for adaptive protocol selection on shared networks, reviewing the high-level

design for OPS (Figure 1.1) which we will investigate with more details in the following

chapters. We also introduced some of the key contributions and highlight of the results

for the following chapters.
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Chapter 2

Background and Related Work

An important goal of many network protocols, exemplified by TCP, is to provide

reliable data transfer over the network. The main technique for implementing re-

liability is via delivery acknowledgement and resend (a.k.a., re-transmit). If a data

packet is not acknowledged by a specific time-out after sending, the sender will resend

it. Upon receipt of an acknowledgement, the sender may increase the sending rate

toward saturating the network capacity (Figure 2.1a) [30].

TCP wants to maximize the sending rate without causing unnecessary packet loss

due to congestion, so the congestion control algorithm (CCA) of TCP adjusts the

packet sending rate in an effort to match the available bandwidth. CCAs use a

combination of a ramping-up strategy for the send rate, and a strategy for decreasing

the send rate, based on particular events or factors. Examples of those factors include

the receipt of acknowledgements for previously sent packets, when a packet loss is

detected, when end-to-end latency is increasing, and more.

Most of network protocols, or CCAs, directly or indirectly, depend on RTT to

adjust the sending rate and to pace putting data packets on the wire. On the one

hand, the reactive CCAs such as CUBIC are Ack-clocked. Those (re-)adjust their

cwnd every time they receive an acknowledgement (Figure 2.2). The time interval

from sending a packet until receiving the corresponding acknowledgement is bounded

by the end-to-end RTT. On the other hand, proactive CCAs such as Vegas or BBR
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Figure 2.1: Congestion control behavior in TCP. (a) Additive Increase over Time.
(b) Multiplicative Decrease in case of Packet Loss.

rely on the RTT variation as a signal of network congestion to adjust their sending

rate.

One inherent challenge in designing CCA algorithms is to provide efficient band-

width utilization [19, 31]. Based on the described packet delivery acknowledgement,

for higher RTTs it takes longer for the CCA to increase the sending rate. In ad-

dition, the higher the bandwidth, the longer it takes to fully utilize the available

physical bandwidth. As a result, the performance of classic network protocols can be

sub-optimal in the networks with high bandwidth-delay product, so-called high-BDP

networks, identified to have high capacity (i.e., bandwidth), and long latency (i.e.,

delay, represented by RTT) [32].

Moreover, a packet loss aggravates the low-utilization problem in high-BDP net-

works. For some CCAs, a lost packet is used as an indication that the network is

overloaded, so the CCA drops the sending rate to avoid further network congestion

(Figure 2.1b). It is worth noting that, in practice, data does become corrupted or is

dropped due to router buffer overflows, contention, noise or other effects.
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2.1 High-Performance Data-Transfer Techniques

Some common strategies to overcome performance issues in high-BDP networks are

through (1) parallel TCP channels, (2) Custom UDP-based, reliable protocols, and

(3) Enhancing a TCP CCA.

Parallelism and Data Striping: One of the most popular techniques to optimize

data transfers over WANs is to establish multiple connections in parallel, striping data

over them between two ends (Figure 2.3a). As a result, if some streams experience a

decrease in the sending rate due to packet loss, the overall rate will not experience a

significant drop due to other concurrent streams sending at full rate (Figure 2.3b) [33,

34]. This technique is well investigated and widely applied on top of the TCP protocol.

There are several research projects which provide parallel protocol solutions for wide-

area data transfer, ranging from prototypes to full-fledged tools and frameworks.

GridFTP is one of the most popular data transfer protocols in this category [17]. On

a private, non-shared network, TCP can be overly conservative, therefore GridFTP

(in effect) parameterizes the aggressiveness of claiming bandwidth for a specific data

transfer. Specifically, the number of parallel streams used by GridFTP is a run-time

parameter. If the network is private, aggressiveness is not necessarily a problem.
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Parallel Data Streams (PDS) is another tool that stripes data over either clear text

(TCP) or encrypted (SSH) parallel connections [35]. Multi-path TCP (MPTCP) is

another proposal to utilize multiple connections but in a different dimension. Rather

than establishing parallel connections over the same network connection, MPTCP

advocates for creating concurrent connections over different interfaces available to

the host [36, 37].
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UDP-based Protocols: Some reliable data-transfer protocols are based on un-

reliable UDP [29, 38, 39]. Arguably, these approaches use UDP because modifying

the CCA within TCP is more restrictive. A new CCA within TCP might require

kernel-level changes to either the sender or the receiver. Therefore, pragmatically,

layering on top of UDP with a user-level implementation has been popular. UDT is

one of the most popular data transfer protocols in this category [29].

The reliability of the data transfer is implemented as a user-level solution (Figure 2.4a).

Compared to TCP-based tools, one of the strengths of this approach is the flexibility

and wider range of design options, which provides a platform for applying different

ideas and heuristics toward improving the data-transfer performance. As an exam-

ple, the congestion control algorithm for one UDP-based protocol, Reliable Blast UDP

(RBUDP) [39], is illustrated in Figure 2.4b. The pitfalls of all UDP-based approaches

include, first, both end hosts must be configured by installing the user-level protocol
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stack prior to data transfer. User-level changes are easier than kernel-level changes,

but still require configuration. Second, sub-optimal design decisions and implemen-

tations may result in high resource requirements and CPU utilization from user-level

procedures and task handlers. Furthermore, UDP-based protocols may not be able

to take advantage of various hardware-based TCP offload engines and mechanisms.

Enhanced TCP CCAs: Another approach to solving the under-utilization prob-

lem is to modify TCP, improving the efficiency of CCA algorithms. This approach has

been addressed by many research papers and several high-performance TCP variants

were proposed, such as NewReno, High-speed TCP, BIC, Compound TCP (CTCP),

CUBIC [40], Proportional Rate Reduction (PRR) [41], BBR [21], LoLa [42], and

Copa [43]. Modifying TCP is effective and at the same time challenging, because of

the possible compatibility problems with the middleboxes along the path and deploy-

ment challenges.

2.2 Bandwidth Utilization Models in WANs

One important property of computer networks is the distinction between dedicated

and shared bandwidths. In this section, we briefly review common network utilization

models.

Dedicated Networks. In this model, a private network is constructed between

two or more end-points. This approach is only feasible for a niche sector in research

or industry. Examples of this approach include Google’s B4 private world-wide net-

work [44] and Microsoft’s private WAN resources [45].

Bandwidth Reservation in a Shared Network. Another approach to establish

dedicated bandwidth, is to employ scheduling and bandwidth reservation techniques

as a means to provide dedicated bandwidth over a common network path. For exam-

ple, the On-demand Secure Circuits and Advance Reservation System (OSCARS) is

one technique for bandwidth reservation [46]. An example of the state-of-the-art re-

search in this category is the On-demand Overlay Network. This framework provides
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dedicated bandwidth using bandwidth reservation techniques [47]. In this model, ag-

gressiveness is a desired property for the network protocols for the efficient utilization

of the reserved (dedicated) bandwidth.

Shared Bandwidth. In contrast to dedicated bandwidth, bandwidth-sharing

networks are still the common practice for a large portion of research and industry

users. Two common challenges are attributed to shared WANs. First, network re-

sources are being shared between several users at a time, which results in dynamic

behavior and workloads on the network. One consequence of this dynamic behavior

is the emergence of periodic burstiness of the traffic over the network [48, 49]. This

burstiness may result in various levels of contention for network resources, which

could lead to an increased packet loss rate and therefore decreased bandwidth uti-

lization. Second, in the networks with shared bandwidth, the criteria changes for an

ideal data-transfer tool. In this case, aggressiveness is not necessarily considered a

good quality and there are some implications which have to be taken into account.

The protocols should provide a good trade-off between efficiency and being fair to

other traffic (i.e, background traffic).

2.3 Does Background Traffic Matter?

Networks are not always private. Bandwidth-sharing networks are still the common

case for a large number of research and industry users. The workload on shared net-

works tends to be highly dynamic. At any given time, a varying number of endpoints

would be transporting traffic on the network. Each endpoint may be running one or

more applications, concurrently communicating data on the network.

When utilizing the shared network, different users, and possibly different applica-

tions per user, may aim for distinct, sometimes contradicting, performance metrics.

For example, a backup service trying to copy a database snapshot to a NFS-mounted

network drive would prioritize throughput. At the same time a video-conferencing ap-

plication, or a VoIP service, utilizing the same bandwidth would give priority to lower
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latency and minimized jitter. Such a distinct requirements and performance criteria,

would motivate different protocol settings and end-host configuration. For example,

following the provided scenario, the backup service would use TCP transport, pos-

sibly conducting parallel TCP streams (as in tools such as GridFTP and Apache

Hadoop’s DistCp) to maximize the throughput. In contrast, the video-conferencing

service may use UDP-based transport, optimized for low-latency communication as

opposed to high-throughput. In such a condition, the use of different protocols and

tools optimized for different use-cases could cause drastic impacts on each other,

causing applications to experience degraded performance.

While the TCP transport tends to predominate the network traffic, different hosts

might be configured with different, sometimes inconsistent, default CCA algorithms,

causing degraded, potentially unfair, network allocation. In addition, from a band-

width management point of view, the contention among end-hosts and applications

could amplify the congestion situation, diminishing the aggregate bandwidth utiliza-

tion while increasing end-to-end latency.

Furthermore, UDP-based traffic tends to increase by the presence and evolution of

UDP-based data transfer tools (e.g., UDT, QUIC), as well as the emergence of priori-

tizing low-overhead, low-latency, communication over reliability and high-throughput

(e.g., video conferencing, VoIP, streaming).

2.4 Fairness in Bandwidth-Sharing Networks

Fairness, at a high level of abstraction, is defined as a protocol’s tendency and com-

mitment toward utilizing an equal share of bandwidth with other concurrent traffic

streams. In general, fairness is a desired quality for data transfer tools and protocols

on a shared network. For example, in proposing new TCP CCAs the fairness against

the other TCP variants is studied and referred to as TCP Friendliness.

In particular cases, when, and if, allowed by service level agreements (SLA), and

for short periods of time, it is useful to have a tool that can aggressively utilize the
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available bandwidth on the WAN, even if the sharing is unfair for a limited amount

of time. The ability to utilize all of the available bandwidth is a matter of having the

right mechanism or tool. Choosing to be unfair in sharing bandwidth is a matter of

policy.

There are a number of proposals for quantifying fairness. Jain fairness is one well-

known fairness index which serves as a measure of how fair are the traffic streams

in sharing network resources [50]. The value of this metric falls between zero and

one, representing the worst and the perfect fairness, respectively. The Jain index

is calculated using the equation provided in Equation (2.1), where xi represents the

allocated resource (i.e., bandwidth) to the i-th consumer (i.e., traffic stream).

J (x1, x2, ..., xn) =
(
∑︁n

i=1 xi)
2

n.
∑︁n

i=1 x
2
i

. (2.1)

2.5 Dynamic Workload and Latency Variation

The presence of background traffic of various patterns on the network could cause

unexpected impacts on the throughput performance, both for plain TCP streams

(iPerf) and high-performance data transfer tools (GridFTP and UDT).

This performance variation, could be attributed to the dynamic workload on the

shared networks. The presence of competing workloads on the network could over-

whelm the bottleneck link (i.e., the link on the path with the lowest bandwidth),

causing the buffer build-up at the routers and increasing the end-to-end RTT. The

constant addition and removal of data streams will result in RTT variation.

To showcase the variation in network latency (i.e., RTT) caused by dynamic work-

load on the shared networks, we conducted a simple end-to-en experiment, quantifying

the effect of network congestion on latency, using the standard ping tool. We trans-

port constant traffic on the network transferring data using TCP CUBIC, and at the

same time transporting the square-wave pattern background traffic through the same

bottleneck link. Figure 2.5 depicts the variation in end-to-end RTT on our testbed
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over a 5 minutes time window. While the static RTT on the network is 128 ms, the

observed latency experienced increases of up to 100 ms (i.e., between 128 ms and

228 ms) as a result of network congestion. This increased RTT could have a further

negative impact on the network utilization. The study of RTT dynamics in shared

networks and its impact on performance metrics constitutes one of the interesting

directions for extending this study.

As earlier discussed, most of the network protocols, or CCAs, directly or indirectly,

rely on RTT as a signal to adjust the sending rate and to pace putting data packets

on the wire. On the one hand, the reactive CCAs such as CUBIC are Ack-clocked.

Those (re-)adjust their cwnd every time they receive an acknowledgement. The time

interval from sending a packet until receiving the corresponding acknowledgement is

bounded by the end-to-end RTT. On the other hand, proactive CCAs such as Vegas

or BBR rely on the RTT variation as a signal of network congestion to adjust their

sending rate.

In either case, the observed RTT variation would cause inconsistent impact on

CCA algorithms, making under- or over-estimation of the RTT. As a result, different

CCAs, depending on their internal logic and their reliance on the RTT, will manifest

different types of performance degradation.
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Figure 2.5: RTT Variation (via ping) over Time, Due to Congestion.
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2.6 Modelling the Network Topology

Network topology defines how end-nodes are connected through network links and

intermediate nodes. The layout, capacity, and bandwidth of the intermediate elements

in a path will impact the performance of the network traffic. Therefore, it is important

to identify and appropriately model network topology for studying various aspects of

a networked system.

Depending on the type of the study, different levels of abstraction might be needed

to build representative topology models. For example, in end-to-end performance

studies, a simple dumbbell model would represent a network path, including an

end-to-end RTT and a global bottleneck bandwidth as the contributing factors to

a data stream performance [51]. Alternatively, in performance studies where internal

network signals are in use, a more detailed network model might be needed to ap-

propriately distinguish the properties of different network segments and hops (RTT,

Bandwidth, contention, etc.) [52].

2.7 High-Performance Data-Transfer Tools

The literature on high-performance, bulk-data transfers on WANs can be categorized

into three main areas: (1) application-layer data transfer tools, (2) high-performance

TCP variants, and (3) network design patterns.

2.7.1 Application Layer: Large Data-Transfer Tools

Application-layer bulk-data transfer tools run on top of the underlying transport

protocols without any modifications to the base protocols. These tools are based on

either TCP or UDP transport protocols.

TCP-based Tools

As we mentioned earlier, GridFTP is the most well-known and widely used TCP-

based tool. It extends the File Transfer Protocol (FTP) to provide a secure, reli-
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able, and high throughput file-transfer tool based on parallel TCP connections. The

three most important parameters of GridFTP are (1) pipelining for transferring large

datasets consisting of small files, (2) parallelism for achieving multiples of the through-

put of a single stream for a big file transfer, and (3) concurrency for sending multiple

files simultaneously through the network channel [17].

GridFTP originally used a naive round-robin scheduling approach to assign appli-

cation data blocks to outgoing TCP streams. Thus, different transmission rates of

individual TCP streams will cause significant data block reordering and requires a

large buffer memory at the receiver to handle out-of-order data blocks. A weighted

round robin scheduling algorithm is proposed in [53] to solve this problem while pre-

serving the throughput of parallel TCP connections.

Determining the optimal number of TCP streams is also another challenge ad-

dressed by several proposals [33, 54, 55]. Those proposals try to find a model that

estimates the throughput of data transfer based on RTT, message size, and packet-loss

rate of each TCP stream. Then, an optimization process is applied for maximizing

the throughput, towards finding the optimal number of parallel TCP connections.

There exist other TCP-based high-performance tools. Those tools mainly use

the same technique of establishing parallel TCP connections to improve throughput

performance. Fast Data Transfer (FDT) [56] and BBCP [57] are two of the popular

tools in this category.

UDP-based Tools

The most important challenge of using UDP for large data transmissions in WANs

is that it is not a reliable protocol. It means that there is no guarantee that the data is

completely received at the destination. To solve this, several research works propose

implementing UDP-based tools such as UDT [58] and RBUDP [39] that utilize UDP

transport while implementing reliability at application layer.
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2.7.2 Network Design Patterns

The Science DMZ [59] is a network design pattern to address different bottlenecks

for data-intensive science. The authors separate the network to LANs and WANs.

Since LANs are general-purpose, they add some overheads to bulk-data transfers

(e.g., firewalls). To reduce these kinds of overheads, they separate the path of bulk-

data traffic from the other traffic in the network and use a set of dedicated nodes

called Data Transfer Nodes (DTNs) along the path to fully optimized them for high-

performance data transfers. Together, the design pattern and tools form a set of best

practices for high-performance data transfers across WANs, and how to implement

the interface with the LANs are often the destination for the data.

The Science DMZ design pattern has been implemented at various institutions,

including the University of Florida, the University of Colorado, the Pennsylvania State

University and National Energy Research Scientific Computing Center (NERSC) [60].

2.8 Effects of Sharing Bandwidth

While a significant part of literature concerns the performance optimization of data

communication over dedicated networks, there are a relatively small number of re-

search projects in which, directly or indirectly, the network environment is considered

to be shared. One example of such research projects is the study of distributed sys-

tems in the context of shared network environments [61]. This work argues the im-

portance of considering background traffic when evaluating distributed systems which

are deployed on top of a shared network.

Another area of research which has considered the shared nature of networks is the

research of estimating available bandwidth, where the notion of cross traffic (e.g., a

mix of foreground and background traffic) has been investigated [62].
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2.9 Traffic Generators

While a parameterized synthetic traffic generator could represent a wide range of

states in terms of traffic patterns and other characteristics, it is desirable to expose

tools and techniques to the mixture of data traffic running across real networks. There

are a range of tools in the literature, which are developed to capture the packet traffic

going across a network, and to replay the recorded trace in another environment.

Such a technique is quite useful to run traffic patterns from the real world, and at

the same time being able to reproduce the exact same patterns using the same set of

traces. There are a large number of research projects which investigate the problem

of capturing and generating network traffic, either to serve as workload in evaluation

of end-point systems or to generate traffic in network studies. One category of such

tools are designed to capture the observed network traffic and to replay the exact same

trace in the future, such as Epload [63]. Another interesting group of projects in this

category concern creating representative models of network traffic. Such a model is

then used to generate traffic patterns which adhere to the statistical characteristics of

captured traces and, at the same time, are not exactly replaying the same trace [64,

65].

2.10 Big Data Transfer: High-Profile Use Cases

An increasing number of real-world projects exist in which timely high-performance

data transfer is essential to project efficiency and success. These projects usually

involve gathering or generating large amounts of data which needs to be transferred

to high-performance computing and research centers around the world for processing.

In the area of earth system and climate change studies (http://www.ipcc.ch/index.

htm accessed on 8 June 2021), the Coupled Model Intercomparison Project (CMIP-5)

generates large amounts of data which incorporates collecting environmental measure-

ments of temperature, carbon emission, and other factors. This data, at the scale of
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terabytes and petabytes, is to be communicated with several research groups around

the world. In a particular case, a 10 TB subset of this dataset was collected from

three sources, namely ALCF, LLNL, and NERSC, and transferred to Portland, Ore-

gon over a 20 Gb/s network [66]. The maximum achieved bandwidth is reported as

15 Gb/s using GridFTP over a dedicated (virtual circuit) network.

In another case, the Large Hadron Collider (LHC) project from the high-energy

physics community relies on GridFTP for sharing the collected collisions data with

research centers around the world over its computing grid infrastructure [67]. A

dedicated optical-fiber network, called LHC Optical Private Network (LHCOPN),

connects CERN to each of the Tier 1 centers around the world. This network provides

near real-time access to LHC generated data, which scales up to 15 petabytes for every

year. The Worldwide LHC Computing Grid (WLCG) is claimed to be the world’s

largest computing grid [14].

2.11 Machine Learning for Networking

Two common challenges in networking problems include, first, probing the network

to discover the existing workload and available resources, and, second, efficient uti-

lization of the available resources (i.e., bandwidth). Probing the available network

resources and workload is a key insight for the efficient utilization of the network.

This probing is ideally performed from an endpoint perspective, viewing the network

as a black box. Estimations could range from probing available bandwidth, to infer-

ring the workload and the type of the traffic on the network. There are a number of

studies in this area, mainly investigating the possibility of applying ML techniques

for bandwidth estimation in high-speed networks [62, 68]. In a different vein, ML

techniques have been used for designing or optimizing network protocols. Remy used

simulation and ML to create a new TCP CCA, via a decentralized partially-observable

Markov decision process (dec-POMDP) [51]. The resulting RemyCC is a look-up ta-

ble to help end-nodes decide to either send data packets to the network or wait [69].
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Performance-oriented Congestion Control (PCC) is another recent study where an

online learning approach is incorporated into the structure of the TCP CCA [70].

Online convex optimization is applied to design a rate-control algorithm for TCP,

called Vivace [71].

2.12 Concluding Remarks

In this chapter we have reviewed the background and related work for this study.

We reviewed the basics of flow control and reliable data transfer in TCP, followed

by discussing well-known techniques and tools for high-performance data transfer on

WANs. In addition to the throughput performance of data transfer, we discussed

the fairness considerations on a bandwidth-sharing network. Following the concepts

discussed here, in the next chapter we will introduce the networking testbed and our

methodology for evaluating protocols on an emulated shared WAN.
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Chapter 3

Testbed Network Design and
Methodology

In this chapter, we introduce our methodology to investigate the performance impacts

of cross traffic on bulk-data transfer in the context of shared high-BDP networks.

Our methodology consists of the set up and configuration of the testbed as well as

designing test scenarios for conducting background traffic across the network.

There are some simplifications in our current methodology. First, we limit our

study to the well-known dumbbell network topology. Second, we only use a maximum

of two streams of background traffic (of different protocols). A study of larger numbers

of background streams remains to be done in the future work. Third, we limit the

type of background traffic to constant or bursty synthetic patterns. Web traffic or

other application-traffic patterns are also outside the scope of this research.

3.1 Testbed Configuration

While the ideal environment for our network experiments is a real WAN, it does not

offer enough control for the exploration and tuning of different network parameters

and to study their effect. Therefore, we designed an emulated high-BDP testbed,

implemented on a research computing cluster at the University of Alberta. The

experiments are being conducted over a physical network, making sure we capture

the full impact of the network stack at the end-nodes, while emulating the bandwidth
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Figure 3.1: Testbed Network Architecture. (a) Physical Network Configuration.
(b) Overlay-1: Logical Dumbbell Network (BW = 1 Gb/s, BtlBW = 500 Mb/s).
(c) Overlay-2: Logical Dumbbell Network (BW = 10 Gb/s, BtlBW = 1 Gb/s).
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capacity and RTT delay for the high-BDP bottleneck link (Figure 3.1). Our physical

testbed configuration is depicted in Figure 3.1a. All nodes are connected using a

1 Gb/s connection, while a subset of nodes are also interconnected using a 10 Gb/s

connection over a separate NIC interface.

Our high-BDP testbed employs a dumbbell topology, implemented as a logical

overlay network over our physical infrastructure. We deploy two configurations of the

overlay network: Overlay-1 (Figure 3.1b), and Overlay-2 (Figure 3.1c). The network

specification for the two overlay networks are provided in Figure 3.2a. Each overlay

network consists of 7 or 8 end-nodes grouped into 2 virtual LANs, and 2 machines as

virtual router nodes. The virtual routers are configured to relay traffic between the

two LANs, while applying the desired configuration for bandwidth and delay to the

network link, emulating a high-BDP path.

Dummynet [72], a well-known open-source network emulator, is deployed on nodes

R1 and R2 for implementing the router functionality. We use the latest stable version,

tag ipfw-2012, from 16 January 2015 1. Our configuration mimics a high-BDP network

between the two LANs. We simultaneously transfer various traffic patterns between

Si/Di node pairs where different traffic streams compete for the bandwidth on the

emulated link (i.e., R1 to R2).

The network configuration parameters are summarized in Figure 3.2a. For Overlay-

1, all links (except the intended bottleneck) are rated at 1 Gb/s and the emulated

bottleneck bandwidth between R1 and R2 is set to 500 Mb/s. For Overlay-2, network

links (except the intended bottleneck) are rated at 10 Gb/s, and the emulated WAN

bandwidth between R1 and R2 is 1 Gb/s. While 40 Gb/s and faster WANs are

currently available as the state-of-the-art, our observations and results are mainly

orthogonal to the raw bandwidth of the underlying network (e.g., Sections 4.1 and

4.2).

The hardware configuration for Overlay-1 and Overlay-2 nodes are provided in

1https://github.com/luigirizzo/dummynet accessed on 8 June 2021.
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Parameter Overlay-1 Overlay-2

LAN Bandwidth 1 Gb/s 10 Gb/s

WAN Bandwidth 500 Mb/s 1 Gb/s

RTT (Chapter 4) 128 ms (R1 ⇔ R2)

RTT (Chapters 5-7) 65 ms (R1 ⇔ R2)

Router buffer size 6 MB (R1 & R2)

TCP CCA CUBIC, BBR

(a)

Node(s) CPU (Model/Cores/Freq.) RAM

S1, D1 AMD Opt. 6134 / 8 / 2.30 32 GB

S2, D2 Intel Ci3-6100U / 4 / 2.30 32 GB

S3, D3 Intel Ci3-6100U / 4 / 2.30 32 GB

S4, D4 AMD E2-1800 / 2 / 1.70 8 GB

R1, R2 AMD A8-5545M / 4 / 1.7 8 GB

(b)

Node(s) CPU (Model/Cores/Freq.) RAM

S1, D1 AMD Opt. 6134 / 8 / 2.30 32 GB

S2, D2 Intel Xeon E5620 / 16 / 2.40 32 GB

S3, D3 Intel Xeon X3323 / 4 / 2.50 4 GB

S4 Intel Xeon E5620 / 16 / 2.40 32 GB

R1, R2 Intel Xeon X3323 / 4 / 2.50 4 GB

(c)

Figure 3.2: Testbed Hardware Configuration. (a) Parameter space. (b) Overlay-1:
Nodes Configuration. (c) Overlay-2: Nodes Configuration.
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Figure 3.2b and Figure 3.2c respectively. All the nodes run Linux CentOS 6.4 Linux,

using kernel version 4.12.9-1.el6.elrepo.x86 64. Unless otherwise mentioned,

CUBIC is the default TCP CCA in use by all the nodes.

For both Overlay-1 and Overlay-2 networks, the end-to-end delay (i.e., RTT) are

set to either 65 milliseconds (ms) or 128 ms between the two local networks. For all

the experiments in Chapter 4 the RTT is fixed to 128 ms, taken from a real network

path connecting a computational center in Eastern Canada (located in Sherbrooke,

Quebec) to a research center in Western Canada (located at the University of Al-

berta). In contrast, the RTT is fixed to 65 ms for all the experiments in the rest of

the chapters (i.e., Chapters 5, 6, 7), representing a wider range of mid- to large-size

networks.

The router queue buffer size at R1 and R2 are set to 6 MB for both Overlays.

The 6 MB is roughly equal one BDP for the Overlay-1 network (0.8×BDP with RTT

128 ms and 1.5×BDP for RTT 65 ms), which would prevent the effects of a shallow

buffer (<< BDP) while avoiding the extended delays resulting from a deep queue

size (>> BDP). Due to technical issues with the unmodified Dummynet library for

Linux, we were not able to adjust the buffer size beyond 6 MB to match the BDP for

the Overlay-2 network. However, the buffer size does not appear to be the primary

rate-limiting bottleneck in our Overlay-2 experiments, since Overlay-2 foreground

throughputs are greater than 500 Mb/s (for example, in Figure 4.2, to be discussed

below). For the future work we are looking to overcome this limitation.

Pragmatically, the (C3, C4) and (H1, H2) node pairs were used as routing nodes in

Overlay-1 and Overlay-2, respectively, to avoid having to change Dummynet param-

eters between 1 Gb and 10 Gb experiments. The Dummynet and routing parameters

are left unchanged for (C3, C4) and (H1, H2), and only the overlay network changes

between experiments. We confirmed that the 8 GB of RAM for Overlay-1 routing

nodes and 4 GB for Overlay-2 routing nodes are sufficient our experiments. Even

with our most intensive workloads, we observed no memory paging on the routing
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ip addr add 192 .168 .253 .11/24 dev eth0
route add −net 192 . 168 . 254 . 0 netmask 255 . 255 . 255 . 0 gw coo l06

(a)

ip addr add 192 .168 .253 .16/24 dev eth0
ip addr add 192 .168 .252 .16/24 dev eth0
route add −net 192 . 168 . 254 . 0 netmask 255 . 255 . 255 . 0 gw coo l07
#d i s ab l e ICMP r e d i r e c t packets
echo 0 | t e e /proc / sys /net / ipv4 / conf /∗/ s e nd r e d i r e c t s

(b)

Figure 3.3: Emulated network configuration commands for (a) end-nodes. (b) virtual
router nodes.

nodes (i.e., C3, C4, H1 and H2), with memory utilization at around 20%.

We transfer 14 GB worth of data, which is large enough of a transfer for the

protocols to reach steady state in terms of throughput. The specific value of 14 GB

of data was a practical limit, given the available main memory on our testbed nodes,

and our desire to perform memory-to-memory data transfers. All data transfers

are from memory-to-memory, to avoid disk I/O as a possible bottleneck. Unless

otherwise mentioned, all reported results are the average of five runs, with error bars

representing the standard deviation from the average.

Figure 3.3 lists the set of commands for configuration of the end-nodes (Figure 3.3a)

and the virtual router nodes (Figure 3.3b).

3.2 Foreground Traffic

We experiment with a variety of sources for foreground traffic. To quantify the

impact of different protocols, we use both TCP- and UDP-based traffic, generated

using standard tools and applications. It includes iPerf, NFS-based data transfers,

GridFTP, and UDT. We also extend this list to include popular TCP CCAs, namely

CUBIC and BBR.
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BG-TCP-Const. 10 / 0 iPerf-TCP2
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Figure 3.4: Characterization of Synthetic Background Traffic. (a) Generated traffic
pattern. (b) Configuration settings for generated traffic.

3.3 Background Traffic

One important requirement for studying shared networks is the ability to generate

various (and, arguably, representative) background traffic patterns. One important

property of background traffic is the adjustable burstiness of data streams at different

time scales [61]. Here we investigate scenarios with both synthetic and application-

based background traffic.

Synthetic Traffic. For this study, we developed a traffic generator script which is

capable of creating traffic with adjustable burstiness at different time scales. A syn-

thetic workload can be easier to describe, automate and reproduce than application-

generated workloads. The features of our traffic generator are summarized in Fig-

ure 3.4. It can be set to create constant or parameterized square-wave traffic patterns,

using either TCP or UDP transport channels.

32



Our study uses the following tools:

1. Netperf [73]: used as a standard benchmarking tool.

2. iPerf [74]: used as another standard benchmarking, capable of conducting multi-

stream traffic.

3. GridFTP: the multi-stream TCP-based protocol.

4. UDT: the UDP-based reliable protocol.

5. RBUDP: a high-performance UDP-based data transfer tool [39]

We developed the following bandwidth-sharing scenarios to study the effect of

background traffic on data-transfer tasks. The use of a square waveform is intended

to be a simplified approach to non-uniform, and bursty traffic pattern. The key

patterns of the background traffic, summarized in Figure 3.4b, are:

1. No background: as with data transfers on dedicated networks.

2. Uniform TCP (BG-TCP-Const): A constant, single-stream TCP connection

between two LANs.

3. Square-waveform UDP 1 (BG-SQ-UDP1 ): A square waveform of 10 s data

burst followed by 10 s of no data, using iPerf-generating UDP traffic.

4. Square-waveform UDP 2 (BG-SQ-UDP2 ): same as previous scenario, except

that data bursts are generated using RBUDP transferring a 1 GB file between

two LANs.

5. Square-waveform TCP (BG-SQ-TCP): same as previous scenario, except that

data bursts are generated using iPerf-generating TCP traffic.

6. Variable length bursty UDP (Bursty-UDP(x,y)): the UDP traffic is generated

based on a square waveform pattern while data burst and gap time lengths are

parameterized as user inputs.
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Application Traffic. While synthetic traffic could represent a wide range of real-

world traffic patterns, we further extend our experiment scenarios to conduct real

application traffic patterns. We employ NFS for generating the patterns of applica-

tion traffic. There are no standard benchmarks or workloads for background traffic;

NFS has the advantage of being familiar to many Unix-based environments, it is

representative of classic client-server systems, and it is easy to set up without a lot

of additional software or data files. Although NFS is not a typical WAN workload,

many WAN data transfers will span a local-area network (LAN) segment shared with

client-server applications, such as NFS.

We use cp, filesystem copy, to generate network traffic between an NFS client and

server. This configuration enables us to study (1) the effect of NFS as background

traffic on foreground traffic, and (2) the impact of other data-transfer tasks as back-

ground traffic on NFS performance as foreground traffic.

Historically, NFS used UDP as the transport protocol. However, for many years

now, NFS can be used over TCP links. For our experiments, we use NFS over TCP

because we had issues with repeatability of results when using NFS over UDP.

3.4 Concluding Remarks

In this chapter we have introduced our emulated WAN as the testbed for conducting

benchmarking and evaluation experiments in the rest of this study. We created a

dumbbell topology as an overlay network on top of a computing cluster, allowing us

to emulate the bottleneck bandwidth and RTT, as present in WANs. We prepared

two different configurations for our testbed, Overlay-1 and Overlay-2, using 1 Gb/s

and 10 Gb/s network connections. This will enable us to study different impacts of

cross-protocol competition at different rates of end-host and bottleneck bandwidth.

Moreover, in order to enable us studying the impact of background traffic on different

protocols, we presented several synthetic profiles of TCP- and UDP-based workloads

with square-wave or configured bursty patterns.
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Chapter 4

Protocol Benchmarking on Shared
Networks

As previously discussed (Section 2.3), the performance of a protocol on a shared

network may experience degradation depending on the presence of background traffic

of different protocols and patterns. The performance degradation may manifest in

terms of different performance metrics, such as throughput or fairness.

In this chapter, we evaluate a few popular TCP-based and UDP-based protocols

and CCAs for their performance on a shared network. Our benchmarking reveals the

notable throughput inefficiency for those tools in the presence of different patterns

of background traffic introduced in Chapter 3. Furthermore, we show the unfair

impact of different TCP CCAs, CUBIC and BBR in particular, when competing for

the bandwidth. We will discuss throughput and fairness as the two main metrics of

performance.

In particular, we look at four different scenarios, studying the inter-operation of

heterogeneous workloads and the performance impact of the cross traffic (i.e., back-

ground traffic) on a shared network path:

1. Throughput: high-performance tools. We examine GridFTP (TCP-based)

and UDT (UDP-based) data transfer tools and the impact of different patterns

of background traffic on their performance. While GridFTP presents better

performance against TCP-based background traffic, it tends to suffer signifi-
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cant throughput degradation in the presence of UDP-based bursty traffic. In

contrast, UDT manifests a higher throughput running against UDP-based back-

ground mixture.

2. Throughput: TCP CUBIC vs. TCP BBR. We investigate the impact of

heterogeneous TCP CCA algorithms on each other. In particular, we look at

the two popular CCA algorithms: CUBIC as the default CCA in most of the

Linux and Windows machines, and BBR as a modern BDP-based CCA widely

used recently. Our results show the unfair behavior of BBR against CUBIC

when competing for bandwidth.

3. Fairness: NFS workload for data upload. We study the impact of bulk-

data transfers and high-performance protocols on NFS client-server communi-

cation. Our results show that transferring bulk data using GridFTP and UDT

could significantly degrade the NFS network users who share the same band-

width.

4. Fairness: high-performance tools impact on iPerf. We study the impact

of data-transfer tasks on the performance of a regular TCP-based, single-stream,

user. We quantify the throughput and fairness impact on the user, further

showing the unfair attributes of GridFTP and UDT.

As we will see, in the context of a shared network, the throughput performance of

a protocol or tool may experience drastic degradation, up to 80% in some cases (Fig-

ure 4.1, 4.5), depending on the presence of background traffics of different protocols

or varying patterns. At the same time, the use a bandwidth-aggressive tool could

substantially affect the fairness in a collaborative network, a Jain fairness index of

0.65 (Table 4.2).

A summary of all the results and the corresponding testbed in use is provided in

Table 4.1.
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Table 4.1: A summary of experimental results provided. Overlay-1 and Overlay-2
network testbeds used from Figure 3.1.

# Figure(s) Network Protocol
Mixture

Background Traffic

1 Figure 4.1 Overlay-1 TCP vs. UDP Synthetic Bursts

2 Figure 4.2 Overlay-2 TCP vs. UDP Synthetic Bursts

3 Figure 4.3 Overlay-1 TCP vs. UDP
NFS-over-TCP

Application (NFS)

4 Figure 4.5 Overlay-1 CUBIC vs. BBR Synthetic Bursts

5 Figure 4.6 Overlay-2 CUBIC vs. BBR Synthetic Bursts

6 Figure 4.7 Overlay-1 CUBIC vs. BBR Constant (iPerf)

7 Figure 4.8 Overlay-1 TCP vs. UDP Constant (iPerf, GridFTP,
UDT)

8 Figure 4.9a Overlay-1 TCP vs. UDP Constant (iPerf, GridFTP,
UDT)

9 Figure 4.9b Overlay-2 TCP vs. UDP Constant (iPerf, GridFTP,
UDT)

4.1 Throughput: High-Performance Data Trans-

fer Tools on Shared Networks

To investigate the behavior of two high-performance data-transfer tools, namely

GridFTP and UDT, in the presence of background traffic, we experiment with differ-

ent synthetic patterns of TCP- and UDP-based background traffic. The performance

numbers for transferring data over a single TCP connection (iPerf) is provided as the

baseline. For GridFTP, we conduct the data-transfer tasks in two configurations with

8 and 16 parallel connections, denoted by GridFTP-8 and GridFTP-16 respectively.

Scenario One. In the first scenario (Figures 4.1a and 4.2a), we transfer 14 GB

worth of data between S1 and D1 (Figure 3.1), while using our synthetic traffic gener-
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Figure 4.1: (Overlay-1) Effect of TCP and UDP traffic competing for bandwidth
(BW = 1 Gb/s, BtlBW = 500 Mb/s, RTT = 128 ms). (a) Scenario One: Square-
wave pattern background traffic. (b) Scenario Two: Bursty UDP background traffic.

ator (Section 3.3) to run background traffic between S2 and D2, traversing the same

bottleneck. The background traffic patterns include constant TCP stream, square-

wave TCP and UDP streams, and square-wave RBUDP stream (cf., Figure 3.4b). In

all cases, the background traffic is a single stream, periodically cycling ON and OFF

in square-wave mode (Figure 3.4a).

The performance in absence of background traffic (No-BG) is also provided as

a performance baseline. Both GridFTP and UDT have robust performance in the

presence of TCP-based background traffic, comparable to the baseline of No-BG.

However, when competing with UDP-based background traffic patterns, GridFTP

and UDT start to experience significant performance degradation. UDT, as compared

to GridFTP, claims a higher throughput in the presence of UDP-based background

traffic. The results for the first scenario under Overlay-1 and Overlay-2 testbeds are

provided in Figures 4.1a and 4.2a, respectively.

Scenario Two. UDP traffic constitutes a non-trivial share of Internet traffic in

terms of telephony, media streaming, teleconferencing, and more, reinforced by the

recent surge of people working remotely from home [75]. In addition, using UDP

as the basis for designing new transport protocols (e.g., QUIC) is common [76]. In

the second scenario (Figures 4.1b and 4.2b), to further investigate the performance
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Figure 4.2: (Overlay-2) Effect of TCP and UDP traffic competing for bandwidth
(BW = 10 Gb/s, BtlBW = 1 Gb/s, RTT = 128 ms). (a) Scenario One: Square-wave
pattern background traffic. (b) Scenario Two: Bursty UDP background traffic.

inefficiencies in the presence of bursty UDP traffic, we expose the same foreground

data transfer to more dynamic UDP-based background traffic patterns.

To generate this background traffic, we use our traffic generator in parameterized

mode (Section 3.3), denoted by UDP(x, y), under several configurations. The re-

sults are depicted in Figures 4.1b and 4.2b for Overlay-1 and Overlay-2 networks,

respectively. We included four configurations of UDP(1,1), UDP(1,2), UDP(1,5),

and UDP(1,10), where the UDP-based traffic cycles ON every 1, 2, 5, and 10 seconds

respectively, transferring a 1-second burst of UDP traffic before cycling OFF. This

scenario further uncovers the sensitivity of GridFTP traffic to the bursty UDP cross

traffic, experiencing a drop in throughput as low as 10% of its best case. In summary,

the observed performance drop is the typical behavior of multi-stream TCP-based

protocols in the presence of UDP traffic bursts. UDT proves to be more robust than

GridFTP in this scenario, which makes UDT a better option for shared networks with

considerable UDP-based traffic over the network. In this scenario Netperf is used as

a baseline, representing a single TCP stream (similar to iPerf).

Scenario Three. In the third scenario (Figure 4.3), we use application-based

traffic, generated using NFS, as the background traffic. The nodes D2, D3, and D4
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Figure 4.3: (Overlay-1, Scenario Three) Effect of NFS background traffic on through-
put. NFS(x) refers to x parallel NFS clients.
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Figure 4.4: Scenario Two: NFS mount-point over network.

are the NFS servers, while S1, S2, and S3 are NFS clients (Figure 4.4). We deploy

several configurations with a variable number of NFS clients, between 1 and 16, all on

nodes S1, S2, and S3. To generate traffic over the network, we copy 1 GB worth of

data from local memory to the NFS mounted folder. This workload could represent a

file-backup workload, file transfer between remote folders, or other use-cases of NFS.

By design, GridFTP and UDT aggressively contend for network bandwidth, to the

point of being unfair, and are not experiencing performance loss with NFS background

traffic. The performance results of the effect of NFS as background traffic on GridFTP

and UDT are presented in Figure 4.3 for Overlay-1 network. This experiment was

only conducted on Overlay-1 network, but we expect the results to be qualitatively

similar for Overlay-2 network. We revisit this scenario in Section 4.3 to study the

impact of bulk-data transfers on NFS performance.
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4.2 Throughput: TCP CUBIC vs. TCP BBR

So far, we have been utilizing CUBIC as the default TCP CCA for all the experi-

ments. In this section, we study the impact of different TCP CCAs on each other

by introducing TCP BBR into the network. BBR is a relatively new CCA designed

at Google and has been gaining popularity over the past few years [21]. Instead of

blindly pushing the flow rate and reactively pulling off when packet loss happens,

as with reactive TCP CUBIC, the BDP-based design of TCP BBR probes, and aim

at, the available bottleneck bandwidth, presenting promising end-to-end performance

improvements on the network. Yet, there are several fairness-related concerns, and re-

ported issues, with TCP BBR design when competing against TCP CUBIC (or other

BBR streams) [22, 23]. Here, we try to quantify that impact in terms of throughput

performance. Instead of GridFTP, we establish a similar configuration using the iPerf

tool, with a variable number of parallel streams.

The foreground performance results for the TCP BBC and TCP CUBIC interop-

erability on Overlay-1 and Overlay-2 networks are provided in Figures 4.5 and 4.6,

respectively. The results are provided under two scenarios for background traffic:

first, constant TCP stream (Figures 4.5a and 4.6a), and second, square-wave TCP

stream (Figures 4.5b and 4.6b). Furthermore, Figure 4.7 provides the throughput

results for both background and foreground streams for the mixtures of up to three

streams of constant TCP CUBIC versus TCP BBR competing for bandwidth. Note

that iPerf is used for conducting constant traffic, where foreground traffic (FG) is

started with some delay compared to the background traffic (BG).

The results follow a similar pattern across both testbeds. For both constant and

square-wave background patterns, TCP BBR manifests an adverse impact on TCP

CUBIC, used either for the foreground or background streams.
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Figure 4.5: (Overlay-1) TCP CUBIC versus TCP BBR competing for bandwidth.
(a) Background traffic: Constant TCP. (b) Background traffic : Square-wave TCP.
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Figure 4.6: (Overlay-2) TCP CUBIC versus TCP BBR competing for bandwidth.
(a) Background traffic: Constant TCP. (b) Background traffic: Square-wave TCP.
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Figure 4.7: (Overlay-1) Constant TCP CUBIC versus TCP BBR using iPerf (FG has
less live time). (a) Two competing streams (b) Three competing streams.
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4.3 Fairness: NFS Performance on Shared Net-

work

In this section, we investigate the effect of bulk-data transfers on the performance

of NFS client-server communication. Our approach is identical to the third test

scenario in Section 4.1, but instead we consider the NFS as foreground traffic. We

only present the configuration with 16 concurrent NFS connections and streams. We

also experimented with fewer than 16 streams but the performance characteristics are

similar to the case with 16 streams. The choice of 16 NFS streams matches GridFTP-

16’s use of 16 TCP streams. The choice of three node-pairs is the maximum possible

on our testbed.

In our test scenario, a total of 16 NFS connections are established between three

pairs of nodes (S2, D2), (S3, D3), (S4, D4), repeatedly transferring 1 GB files over

the network (copying file to NFS mount points). Each NFS foreground data transfer

is one iteration. The baseline, copying a local 1 GB file to a mounted NFS folder,

takes about 20 s (at 410 Mb/s) in our Overlay-1 network, with no background traffic.

We will study how this performance is affected in the bandwidth-sharing scenario.

For background traffic, we conduct a series of bulk-data transfers between S1

and D1 over the same high-BDP path, consecutively transferring 14 GB data using

iPerf-TCP (1 stream), GridFTP-8 (8 streams), GridFTP-16 (16 streams), and UDT

(not based on streams). Therefore, each background run transfers 56 GB in total

(i.e., 4 × 14 GB) and the progression from iPerf-TCP to UDT represents a growing

aggressiveness of the background traffic. As in previous test scenarios, we run the

same set of tests three times. Therefore, the foreground NFS traffic is a series of

iterations of 1 GB data transfers. The background traffic is three runs of 56 GB data

transfers.

The results are presented in Figure 4.8. For better readability, the results are

aggregated per NFS node-pair of foreground traffic.
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Figure 4.8: Impact on NFS: Throughput of NFS-over-TCP with TCP and UDP
background traffic (Overlay-1 Network). (a) Average NFS Throughput, Per Node-
Pair. (b) Aggregate NFS Throughput, Per Node-Pair.
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Figure 4.8a reports the average throughput of NFS foreground data transfers be-

tween each node-pair. The x-axis corresponds to time, specifically consecutive itera-

tions of NFS data transfer in the foreground. The y-axis is throughput (in Mb/s). The

individual three lines represent the throughput for a given node-pair of NFS server

and client (i.e., three node-pairs: S2-D2, S3-D3, S4-D4). Note that the number of

streams varies between node-pairs.

The average throughput of each NFS stream (i.e., average of either 4 or 6 streams)

is approximately 29 Mb/s in the best case (marked as circle-‘A’ in Figure 4.8a),

dropping to less than 10 Mb/s in the worst case (marked as circle-‘B’ in Figure 4.8a).

The three peaks (marked as circle-‘A’) correspond to the start of each three back-

ground runs, starting with iPerf (only a single TCP CUBIC stream). As shown in

earlier experiments, TCP CUBIC is fair in bandwidth sharing. Recall that we are

using NFS over TCP CUBIC, so this is a scenario of sharing between TCP CUBIC

streams. The 3 troughs (marked as circle-‘B’) correspond to the extreme case of

transferring data using GridFTP-16 and UDT. As discussed before, GridFTP-16 is

aggressive in capturing bandwidth, and is unfair in sharing the network with the

foreground NFS traffic. The total accumulated throughput of the NFS streams are

reported in Figure 4.8b. The orange line (the highest curve) represents the overall

bandwidth utilization of 16 NFS connections. One caveat on utilizing NFS in our

experiments is that the NFS is not designed to be used over high-BDP networks; so

it might not be optimized for such a testbed. However, its communication pattern

could be representative of various TCP-based application traffic over the network,

with the same impacts from the bulk-data transfer tasks.

To summarize this test scenario, we observe that the GridFTP and UDT could im-

pose considerable performance degradation on standard network traffic, which could

hurt the notion of fairness over the shared networks. We further discuss the fairness

issues in Section 4.4.
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Table 4.2: Throughput (Mb/s) and Jain fairness (0∼1) of well-known protocols on
Overlay-1 Network. As evident by calculated Jain indices, GridFTP and UDT are
considerably unfair to single TCP streams, GridFTP representing the lowest fairness
index.

Type Stream no bg bg iperf bg gftp16 bg udt

Dedicated
Background - 478 473 481

Foreground (iPerf) 474 474 474 474

Shared
Background - 238 415 398

Foreground (iPerf) 474 253 75.6 85.3

Jain fairness - 1 0.68 0.7

4.4 Fairness: Impact of High-Performance Tools

on iPerf TCP

As discussed in Section 2.4, fairness is a measure of how consistently a network

stream shares the bandwidth with other streams, either of the same or heterogeneous

protocol. One form of ideal fairness is that all traffic streams consume the same

amount of shared bandwidth.

To verify the effect of GridFTP and UDT on background traffic in shared networks,

we conducted a series of test for benchmarking the effect of these tools (as background

traffic) on a single, classic TCP stream (as foreground traffic). CUBIC CCA is used

for all TCP-based streams. The results for Overlay-1 and Overlay-2 networks are

presented in Figure 4.9a,b, respectively. The foreground single TCP connection is

established using the iPerf tool. The performance of this connection is measured

in four different scenarios in terms of background traffic type: no background (no -

bg), single TCP (bg iperf), GridFTP with 16 concurrent TCP streams (bg gftp16),

and UDT (bg udt). For each scenario, the foreground connection was running for

300 seconds while the background traffic was a file transfer of 14 GB (which takes

roughly the same time when run by itself).
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Figure 4.9: Throughput of a standard TCP CUBIC stream in the presence of various
background traffic for (a) Overlay-1 Network. (b) Overlay-2 Network.

47



Table 4.3: Throughput (Mb/s) and Jain fairness (0∼1) of well-known protocols
on Overlay-2 Network. As evident by calculated Jain indices, the fairness issues
with GridFTP and UDT are consistently manifested regardless of the varying BDP
(bottleneck-bandwidth and RTT).

Type Stream no bg bg iperf bg gftp16 bg udt

Dedicated
Background - 848 811 625

Foreground (iPerf) 872 872 872 872

Shared
Background - 412 738 591

Foreground (iPerf) 872 485 109 161

Jain fairness - 0.99 0.64 0.75

The quantified throughputs along with the calculated Jain fairness index are rep-

resented in Tables 4.2 and 4.3. It is worth noting that the background connections

were established with a 10 s delay from the foreground traffic, which is represented

with a vertical dashed line in Figure 4.9.

The extreme effect of the GridFTP and UDT protocols on the foreground protocol

is significant. For example, in Figure 4.9, notice how the green and orange lines

drop well below under 100 Mb/s after 60 seconds, because the background traffic

is aggressively occupying the whole available bandwidth. Both GridFTP and UDT

protocols tend to occupy more that 80% of available bandwidth, allowing less than

20% of bandwidth to be used by the other concurrent traffic stream.

While this behavior is consistent with the design principles of those tools, from a

traffic-management point of view this is not a fair resource allocation between two

or more concurrent connections over the network. Not only does it affect the other

traffic using the shared WAN, it also may result in poor performance of other network

applications running on the LANs. One immediate remedy to this last issue is to make

a separation between the traffic going over a WAN and the LAN, as discussed in [77].
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4.5 Concluding Remarks

In this chapter we showed that background traffic can reduce the throughput per-

formance and fairness for foreground traffic. We studies the impact of a variety of

synthetic and application (i.e., NFS) background traffic patterns on the performance

of data transfer tools (iPerf, GridFTP, UDT) and TCP CCAs (CUBIC vs. BBR).

We showed that, in the context of a shared network, the throughput of a data trans-

fer could experience drastic degradation, up to 80% in some cases, in the presence of

bursty background traffic (e.g., GridFTP vs. bursty UDP traffic, Figure 4.1). Fur-

thermore, in case of all-TCP traffic mixture, the utilization of heterogeneous CCAs,

CUBIC versus BBR, may yield undesired performance impacts such as unfair band-

width sharing (e.g., TCP CUBIC vs. TCP BBR, Figure 4.5). Finally, the presence

of throughput-oriented tools such as GridFTP and UDT may impose high impacts

on the performance of NFS-based application data transfers (e.g., Figure 4.8).

In conclusion, when communicating data on a shared network same high-performance

tool or CCA may not always result in the best performance. Whether on a collab-

orative network (e.g., a university campus) or a competitive network (e.g., multiple

organizations sharing bandwidth) the performance priorities might change, for ex-

ample pure throughput versus throughput-and-fairness (i.e., both throughput and

fairness matter). But for all cases, based on different type and patterns of the back-

ground traffic, one should consider using different tools and protocols for optimizing

on their desired performance metrics.

One major challenge in deciding on a data transfer tool or protocol is that the type

of background traffic is mostly unknown to the end hosts. In the following chapter we

will examine the possibility of recognizing the type of background traffic on a shared

network, followed by an effort to adopt such an insight towards adaptive protocol

selection.
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Chapter 5

Machine-Learned Classification of
Network Protocols

As discussed in the previous chapter (e.g., Table 4.1), in the context of a shared net-

work, the throughput and fairness of protocols could experience drastic degradation,

depending on the mixture and patterns of the background traffic. Hence, obtaining

knowledge about the type and mixture of the background traffic could enable us to

utilize more appropriate protocols, better suiting the network conditions and yielding

better performance. In other words, if we can recognize the mixture of background

traffic, instead of using a static foreground protocol, we could adaptively choose the

foreground protocol in a way to improves throughput and fairness.

In this chapter, we investigate building method and tools for recognizing the type

and mixture of the background traffic on a network, from an endpoint perspective.

Such knowledge would then enable us to make informed decision on the use of ap-

propriate protocols and tools for the foreground. For example, knowing a bursty

UDP-based background traffic is present, one could decide to, instead of GridFTP,

use UDT for bulk-data transfer (Section 4.1). Or in the case of different TCP CCAs, in

the context of a collaborative shared bandwidth, the knowledge about a TCP CUBIC

background traffic would imply using TCP CUBIC, acquiring optimum1 bandwidth

1In this context, optimum bandwidth is not defined as maximizing the throughput (pure through-
put). It is defined as obtaining a fair share of bandwidth, equal to the other traffic streams on the
network (throughput-and-fairness).
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while keeping fair with the other users on the network (Section 4.2). In contrast, in

the presence of TCP BBR background traffic, one could decide to use TCP BBR for

a new data stream, keeping up to the speed with the other traffic.

However, global knowledge can be difficult to obtain in a dynamic distributed

system like a shared network. Probing the available network resources and workload

is a key insight for the efficient network utilization. Pragmatically, such probing

should be performed from a local perspective, viewing the network as an end-to-end

black box.

Can ML classify the background traffic in bandwidth-sharing networks? This ques-

tion serves as our main motivation to design a ML pipeline for recognizing the mixture

of traffic workload on a shared network. The characterization of network background

traffic is a novel approach in our study, discussed in further detail in upcoming sec-

tions. We start by defining target classes for TCP-based traffic mixtures (Section 5.1).

Note that UDP-based protocols are not studied from this point on. Then we in-

troduce our passive/active probing techniques for capturing representative network

signals to be used for classification (Section 5.2). Our ML pipeline starts by prob-

ing the background traffic, gathering RTT training data (Section 5.3) followed by

data pre-processing and preparation (Section 5.4). Then, we present and discuss our

classification models trained for identifying the mixture the background traffic (Sec-

tion 5.5). We wrap up this chapter by presenting the classification performance for

the trained models, gaining up to 95% accuracy (Section 5.6).

5.1 Scope: TCP CUBIC vs. TCP BBR

While a diverse collection of reliable and unreliable tools and protocols are in use

on the Internet, TCP-based protocols are the predominant type of traffic on data

networks. For the purpose of building our classification models, we only consider

TCP-based background traffic, under the simplified assumption that TCP CUBIC

and TCP BBR are the only protocols available.
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(C1-C1)
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(B1-B1)

1 CUBIC Streams
1 BBR Streams

(B1-C1)

Figure 5.1: Six classes of background traffic to be recognized. Mixtures of up to two
streams of TCP CUBIC, TCP BBR, or both (bold boxes).

In particular, we will consider six distinct classes of background traffic to train

a classifier for them, depicted in Figure 5.1 (bold boxes). These six classes include

various mixtures of up to two streams of TCP CUBIC and TCP BBR, where either

or both are present on the network.

Generalizing the classifier models for larger mixtures of streams and different CCAs

and protocols (e.g., QUIC) is a direction for the future extension of this study. Fur-

thermore, evident by the emergence history of new TCP CCAs, new CCAs are ex-

pected to be proposed in the future. Therefore, the mixture of CCAs on the actual

networks would change over time. New classification models are needed to be trained

as new CCAs get emerged or widespread over time.

5.2 Recognizing Background Workload: Passive

vs. Active Probing

Recognizing the available network resources and workload could provide key insights

towards efficient management and utilization of the network. Probing network work-

load is ideally performed without requiring global information, viewing the network
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Figure 5.2: Passive and Active Probing: RTT measurement (ping) combined with
probing pattern based on bandwidth interference (iPerf).

as an end-to-end black box. Such an insight could potentially be utilized for differ-

ent real-world use-cases, including workload discovery, protocol recognition, perfor-

mance profiling and more. In our particular use-case, such knowledge would allow

better, more-efficient data transfer through choosing the appropriate protocol for

data-transfer tasks (cf., Chapter 6).

We introduce two probing techniques, passive (non-intrusive) and active (intru-

sive), trying to generate representative end-to-end signals for the network workload

(Figure 5.2). As we will see active probing outperforms passive probing. Both prob-

ing techniques, as discussed below, generate RTT time-series as the representative

signal for the network workload. Samples of generated RTT time-series using both

techniques are presented in Figure 5.3. We later use those signals in a ML task to

build and train classification models for recognizing the background workload.

Passive Probing. Network protocols may follow different, sometimes contradic-

tory, design principles. As such, we hypothesize that different mixtures of protocols

would imply distinct workload patterns on the network. To quantify those work-

load patterns, we adopt RTT as the representative, end-to-end signal for the network
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Figure 5.3: Illustrative examples: active vs. passive probing impact on RTT signal:
90 s time-series signatures per traffic mixture. Active probing changes time-series
patterns. Note the different ranges for Y -axis across columns.

workload over time. We periodically measure local, end-to-end RTT in regular time

intervals, forming time-series data (Figure 5.2, top section). Passive probing is a

non-intrusive mechanism, solely relying on a minimal RTT measurement through

end-to-end pinging. It does not involve interfering the network traffic in any notice-

able way. As we will see, such a probing strategy will result in distinct time-series

signatures for different background protocol mixtures.

Active Probing. As an extension of passive probing, we add a systematic and

deliberate perturbation of traffic on a network (i.e., intrusive mechanism) for the

purpose of gathering more discriminative information (Figure 5.2, bottom section).
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We conduct active probing in the form of short bursts of traffic, while concurrently

RTT is being probed. To trigger background streams to reveal their unique patterns,

as opposed to a single traffic burst, we use a sequence of short traffic bursts with

different configurations (e.g., different CCAs). We refer to such a sequence of short

bursts as an active probing pattern, illustrated as dashed boxes in Figure 5.2. The

time-series data generated by active probing improves the ability to distinguish the

time-series for different workloads, evident by our ML evaluation (Section 5.6). As

we will discuss in Chapter 6, the data bursts of active probing can be read from the

data file(s) staged to be transferred, hence making it constructive perturbation of

bandwidth. We refer to such setting as constructive active probing (cf., Section 6.3).

5.3 Gathering RTT Training Data

For a classification problem, we need to gather sufficient data for training our model.

We generate RTT time-series using both passive and active probing schemes (Sec-

tion 5.2). Our target classes to be decided are different mixtures of CCAs in back-

ground workload per Figure 5.1. We designed a controlled experiment to gather

RTT data as a time-series, with a 1-second sampling rate, over a one hour period of

time. To smooth out the possible noise in the measured RTT value, each probing

episode consists of sending ten ping requests to the other end-host, with 1 ms delay

in between, and the average value is recorded as the RTT value for that second. We

repeated this experiment for the six traffic combinations in Figure 5.1.

For gathering data, we use the Overlay-1 testbed (Figure 3.1b) to conduct traffic

between the two LANs, sharing the same bottleneck bandwidth. We conduct the

background traffic between the S1 and D1 pair of nodes. In the cases where we need

a second stream of background traffic, the S2 and D2 pair of nodes are used. Finally,

the S3 and D3 nodes are used to probe the end-to-end RTT. For all data-transfer

tasks, we used the iPerf tool for generating TCP traffic of the desired CCA. Samples

of the generated time-series data are presented in Figure 5.3.
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Figure 5.4: Classification Models for Background Traffic Classification. (a) Inference
Workflow. (b) Network Structure for MLP neural network.

In the case of active probing, we defined the active probing pattern as a sequence of

three segments of traffic bursts (CUBIC for 5 s, BBR for 5 s, CUBIC for 5), followed

by a silence period of 5 s. We use the abbreviation C5-B5-C5-S5 for referring to this

pattern. Each traffic burst will send data to the network at full speed as regulated

by the CCA in use.

5.4 Data Preparation and Pre-processing

To prepare the gathered data (cf., Section 5.3) for ML, we partition the one-hour RTT

time-series into smaller chunks. We developed a script to partition the data based on

a given parameter w, representing a window size measured in data points (which also

corresponds to a window in seconds, given the one second gap between RTT probes).

We experimented with both non-overlapping and overlapping (or sliding) windows.

Due to sub-optimal performance of our trained models with overlapping (sliding)

windows, we only present and discuss results using non-overlapping windows.

5.5 RTT Time-Series Classification

In this section we train a few classifiers for recognizing the mixture of the background

traffic (Figure 5.4a). Classification is a common technique in ML [78]. Here we inves-

tigate several supervised classification models, namely k-nearest-neighbors (K-NN),
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a multi-layer perceptron (MLP) neural network, Support Vector Machines (SVM),

and naive Bayes (NB) [78]. For this study, we train classification models for RTT-

based representations of the workload, generated using passive and active probing

schemes (Figure 5.3). Even though time-series RTT data violates the assumption of

independent features in the feature vector, we still evaluate SVM and NB.

K-NN. For K-NN classification, the k closest training samples to the input time-

series are selected and then the class label for the input is predicted using a majority

vote of its K-nearest-neighbors’ labels. k is the input parameter to this model. As we

will discuss shortly, we use K-NN along with DTW as the distance measure. DTW

has a warping parameter for which we tested different values, settling on 10.

MLP. A multi-layer perceptron (MLP) is a type of feedforward artificial neural

network, consisting of one or more fully-connected hidden layers. The activation

output of the nodes in a hidden layer are all fed forward as the input to the next

layer. While more sophisticated models, such as LSTM and ResNet, exist for time-

series classification [79], for the purpose of building a proof-of-concept model we limit

our study here to a simple MLP (Figure 5.4b). Our MLP network consists of two

fully-connected hidden layers of size 64. The input layer is of size w (the length

of RTT time-series vector) and the output layer consists of six nodes, generating a

on-hot-encoded prediction (one for the predicted class and zero for the rest). The

nodes of the hidden layers employ Rectified Linear Unit (ReLU) activation, while the

output layer uses a Softmax activation.

SVM. In Support Vector Machine (SVM), a hyperplane or a set of hyperplanes, are

constructed in high-dimensional space. The hyperplanes are then used to classify the

unseen data-points to one of the predefined classes. The hyperplanes are constructed

in a way to maximize the marginal distance with the training samples of each class.

Our implementation of SVM follows the default configuration from the scikit-learn

library, using Radial Basis Function (RBF) as the kernel.

NB (GNB). A Naive Bayes (NB) classifier is a probabilistic model, assigning a
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probability for each class conditional to the feature values of the input vector. No-

tably, the NB model assumes the features to be independent, while for time-series

data the data-point values could be dependent on the previous ones. Yet, we in-

clude NB as another point of comparison. We use the Gaussian Naive Bayes (GNB)

implementation from scikit-learn library.

Distance Measure. Time-series classification is a special case where the input

data being classified are time-series vectors. While Euclidean distance is widely used

as the standard distance metric in many ML applications, it is not well-suited for

time-series data, since there is noise and distortion over the time axis [80]. More

sophisticated approaches are needed for comparing time-series data. Two common

approaches for handling time-series data are, (1) quantizing a time-series into discrete

feature vectors [81], and, (2) using new distance metrics [82].

For the K-NN classification model, we utilize the well-known dynamic time warping

(DTW) distance metric for the time-series data. DTW was originally used for speech

recognition. It was then proposed to be used for pattern finding in time-series data,

where Euclidean distance results in poor accuracy due to possible time-shifts in the

time-series [83, 84].

To estimate accuracy and overfitting, we use 5-fold cross-validation, where 20% of

the data from each traffic class are in a hold-out set, not used for training, and then

tested with classifier. The reported results are the average accuracy over the five folds

on the cross-validation scheme. The classification performance results for all models

are provided and discussed in Section 5.6.

5.6 Evaluation: Classification Performance

In this section, we provide and discuss the performance evaluation results of the

developed classifier for characterizing the mixture of background traffic (out of the

six classes of background traffic in Figure 5.1). We first discuss the classification

performance when passive probing is used. We then introduce and compare the
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Figure 5.5: (Passive Probing) Performance of classification models for varying time
length w of the input time-series (5-Fold Cross-Validation). (a) Classification accu-
racy. (b) Box Plot for classifiers accuracy.

results for classifiers trained using the time-series of active probing.

Selecting the appropriate time-length parameter w is a trade-off between the amount

of information provided to the classifier and the RTT probing latency. On the one

hand, the larger the w becomes, the more information will be provided to the clas-

sifier, providing a better opportunity to recognize the traffic pattern. On the other

hand, a larger w means it would take more time for the probing phase of a real system

to gather RTT data to use as input to a classifier. To make an appropriate decision

about the parameter value w, we do a parameter-sweep experiment where we calcu-

late the classification accuracy for all the classifiers, varying parameter w from 5 s to

60 s, with a 5 s step.

Passive probing. Figure 5.5a represents the average accuracy per window size

w (in seconds), calculated for 1-NN, MLP, GNB, and SVM classifiers. We include

the box plot for each classification model in Figure 5.5b. In a box plot, the dashed

lines mark the minimum and maximum value, where the solid box range represents

the 25th and 75th percentiles respectively. The horizontal line crossing the solid box

marks the median value.

For the K-NN model, we examined three different configurations with k equal to

1, 5, or 10, where the 1-NN represents a better overall accuracy. Hence, we use K-NN

with k = 1, where the single closest neighbor to the input would be used for predicting
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Figure 5.6: (Passive Probing) K-NN (DTW) Performance (w = 10, k = 1) (5-Fold
Cross-Validation). (a) Confusion Matrix. (b) Classification Report on Accuracy-
related metrics.

the class label. So for the comparison in Figure 5.5 only 1-NN variation is provided.

Comparing performance of different classifiers, the 1-NN classifier outperforms the

other models in most cases. According to the box plot, 1-NN presents the most

consistency in accuracy for varying window sizes, with a narrow variation in observed

performance. SVM tends to have the best performance after 1-NN for smaller window

sizes. However, its accuracy drops significantly as we increase the time-series length.

MLP and GNB show a similar accuracy pattern, following 1-NN with a slight margin.

For reference, the detailed confusion matrix and classification report for a single

configuration (1-NN, w = 10) are provided in Figure 5.6.

Active probing. We now introduce the performance results for classifiers trained

using active probing. As discussed before, K-NN outperforms the rest of the classifiers

for all windows sizes. So for the rest of discussions we only provide results for K-NN
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Figure 5.7: (Active Probing) Accuracy of classification models for window size w
of the input time-series with Active Probing (5-Fold Cross-Validation). 1-NN-PSV
represents Passive Probing performance as the baseline (Figure 5.5). (a) Classification
Accuracy per window size. (b) Box Plot for Classifiers Accuracy.

classifiers of different k parameter (1, 3, 5). Across all the figures, best viewed in

color, corresponding colors are used to highlight the corresponding variation of the

K-NN classifier model.

The accuracy results for different classifiers per time length w of the input time-

series are provided in Figure 5.7. Along with the results for classifiers trained using

active probing, the results for the 1-NN classifier with passive probing (labelled as 1-

NN-PSV) are also provided for reference and comparison. All active probing classifiers

outperform passive-probing classifiers by between 7% (for w = 5) to 16% (for w =

50) (depending on window size) (Figure 5.7a). This performance improvement verifies

our hypothesis that systematic perturbation using active probing will reinforce unique

patterns in RTT time-series for different background traffic mixtures.

Across different configurations for active probing classifiers, the 1-NN tends to offer

a better overall accuracy (Figure 5.7a). According to the box plot, 1-NN presents

the most consistency in accuracy for varying window sizes, with a narrow variation

in observed performance (Figure 5.7b).

To further analyze the performance consistency and variation, the accuracy results

along with accuracy variation across five folds are provided in Figure 5.8 for all four

classifiers (1-NN, 3-NN, 5-NN with active probing, and 1-NN with passive probing).
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Figure 5.8: Accuracy variation (BoxPlot) of classification models for varying time
length w of the input time-series per k in K-NN with DTW—with and without
Active Probing (5-Fold Cross-Validation). (a) 1-NN w/ DTW with Active Probing.
(b) 3-NN w/ DTW with Active Probing. (c) 5-NN w/ DTW with Active Probing.
(d) 1-NN w/ DTW with Passive Probing.

For better interpretability, instead of standard error bars, the box plot is provided

across five folds for each window size. In most cases, 1-NN (Figure 5.8a) outperforms

3-NN (Figure 5.8b) and 5-NN (Figure 5.8c) with active probing.

To better realize the classifiers’ performance and their challenges in predicting

traffic classes, the confusion matrices for w = 10 are provided in Figure 5.9, corre-

sponding to the four classifiers in previous figures. As expected, the classifiers with

active probing consistently manifest more diagonal confusion matrices, representing

more accurate predictions across 6 classes. 1-NN with active probing (Figure 5.9a)

and 1-NN with passive probing (Figure 5.9d) correspondingly represent the highest

and lowest performance across all classifiers.

To take a close look at how active probing helps improve the quality of prediction,

the isolated version of confusion matrices for 1-NN with and without active probing
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Figure 5.9: Confusion Matrix for classification models for w = 10 of the input time-
series per k in K-NN with DTW, with and without Active Probing (5-Fold Cross-
Validation). (a) 1-NN w/ DTW with Active Probing. (b) 3-NN w/ DTW with Active
Probing. (c) 5-NN w/ DTW with Active Probing. (d) 1-NN w/ DTW with Passive
Probing.
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Figure 5.10: K-NN (DTW) Performance (w = 10, k = 1) with Active Probing. (a)
Confusion Matrix. (b) Classification Metrics.

along with other classification reports are provided in Figures 5.10 and 5.11, respec-

tively. As one concrete observation, active probing has resolved the confusion in mak-

ing a distinction between B1-C1 and B1-B1 classes (annotated in Figure 5.11a). The

distinction between these two classes is important, since it affects our ability to decide

if we have homogeneous or heterogeneous protocols in use by the background traffic.

With active probing, the confusion in determining CCAs is mostly eliminated, and

only the less critical confusion remains the distinction between the number of streams

of the same protocol running on the network (annotated in Figure 5.10a).

5.7 Concluding Remarks

In this chapter we examined the ability to recognize the type and mixture of back-

ground traffic on a shared network. We have developed techniques to probe the end-

to-end network path, producing RTT time-series data. We then put those time-series
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Figure 5.11: K-NN (DTW) Performance (w = 10, k = 1) with Passive Probing. (a)
Confusion Matrix. (b) Classification Metrics.

data towards training classification models to identify the mixture of background traf-

fic based on the observed end-to-end RTT time-series. Our evaluation results showed

that, for the mixtures of TCP CUBIC and TCP BBR, a classification model is able

to identify the mixture of the protocols in use with up to 95% accuracy.

One future direction to expand on this chapter is to train classifiers for a larger

number of streams. Moving towards larger mixtures of background traffic, the target

classes for training the classifier might be adjusted to subjectively represent different

aspects of the aggregate behavior of protocols in use (e.g., proactive vs. reactive

CCAs), as opposed to predicting the exact mixture of CCAs present on the network.

In the next chapter we will try putting our classification model towards an adaptive

protocol selection to optimize the data transfer on a shared network.
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Chapter 6

OPS: Optimization through
Protocol Selection

In this chapter we discuss optimization through protocol selection (OPS) as a strategy

for optimizing data transfer performance through a decision making process (i.e.,

protocol selection) on shared networks. As discussed in Chapter 4, knowledge about

the protocols in use by background traffic might influence our choice of protocol

for new foreground data transfer. In Chapter 5 we devised a ML-based method for

generating such knowledge about the protocol mixture in the background traffic. OPS

uses the classifiers from previous chapter to build an iterative strategy for optimizing

the data transfer throughput, while maintaining fairness, through protocol selection

(Figure 6.1).

Informed by the scope of our available classifiers, we build OPS to handle mix-

tures of TCP CUBIC and TCP BBR as the background. Clearly, the same strategy

may be extended for a wider range of protocols in the future. Our proof-of-concept

implementation of OPS shows up to four times improvement compared to the worst

case for throughput (Figure 6.9a, middle vs. right bars). At the same time, the fair-

ness measure (Jain Index) is improved by about 50% when OPS is used for protocol

selection compared to the worst case for fairness. (Table 6.3).

We start by providing detailed insights about OPS operation cycle (Section 6.1).

Then we discuss the decision making process in Step 3 (Section 6.4), as well as the
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Figure 6.1: Iterative OPS operation cycle, comprised of four main steps: (1) Back-
ground Probing (§ 6.1.1), (2) RTT Classification (§ 6.1.2), (3) Protocol Selection
(§ 6.1.3), (4) Steady Transfer (§ 6.1.4) (This is an extended version of Figure 1.1).

data transfer stages in Step 1 (i.e., active probing) and Step 4 (Section 6.3). Finally

we build and evaluate a proof-of-concept implementation for OPS (Section 6.5).

6.1 OPS Operation Cycle

As depicted in Figure 6.1, OPS iterative design consist of four steps: (1) probing

background through periodic RTT probing (passive or active), (2) classifying the

generated RTT time-series, (3) deciding on a protocol for data transfer, and (4) an

episode of steady data transfer.

6.1.1 Step 1: Background Probing

Probing the RTT is the first step in recognizing the mixture of background traffic.

As discussed in Section 5.2, passive or active probing policies are available to use for

this step. For passive probing the only task is to periodically probe the end-to-end

RTT at every second, forming a RTT time-series to be used by the following step

for classification. For all OPS implementations in this research we rely on the ping

utility provided by the operating system for probing RTT.

For active probing, parallel to the periodic RTT probing, we conduct an segment-
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wise data transfer using the specified probing pattern (e.g., C5-B5-C5-S5). As we will

discuss in Section 6.3, in conducting the active probing we use data from the intended

file for data transfer, hence we refer to it as constructive active probing. Assuming

a large data file, in each episode of active probing we only transfer a fraction of the

whole file. Hence we need to keep track of the last byte offset transferred, so we could

resume the data transfer in the Step 4 (tracked as “Next Byte Offset” in Figure 6.1).

Depending on the configured active probing pattern, or w parameter for passive

probing, the time length of this phase will be determined. Under the current configu-

rations the length of this step will be 20 s. However, the length of probing phase may

be reduced through applying more sophisticated probing patterns, or via gathering

more metrics than RTT alone. We will further discuss this topic as part of the future

work in Chapter 8.

6.1.2 Step 2: RTT Classification

In this step we use one of the ML models from Chapter 5 (Figure 5.4a) for classifying

the background mixture. It will take the resulting RTT time-series from Step 1 as

the input and predict the class of background mixture.

It is important to note that depending on the use of passive or active probing, and

specific probing length (w) or probing pattern, a separate classifier model should be

trained. The classification model is composable, meaning that it may be replaced by

alternative models for the future without impacting the rest of the steps. Further

details on the design and training of classifiers are available in Chapter 5.

Depending on the classification model the inference time might be slightly different.

Using the classifiers we trained the length of this step (i.e., inference time) should be

about 1 second or less.

68



6.1.3 Step 3: Protocol Selection

This step consists of a decision making model to map the classification result from

Step 2 to one of the available protocols (i.e., CCAs) to be used for data transfer.

The presence of this step provides an opportunity to compose a simple or complex

decision logic towards protocols selection. In more complex scenarios this decision

making could rely on an external context, in addition to the classification result, for

protocol selection. For the scope of this research we only use the classification result

to select a protocol. We will use a simple one-level decision tree for this step. We will

discuss more details on building this decision model in Section 6.4.

Considering the simple design for the decision model in our study, it only takes a

fraction of a second for this step.

6.1.4 Step 4: Steady Data Transfer

Employing the protocol decided at Step 3, the main episode of data transfer takes

place in Step 4. It includes transferring data for Y seconds, where Y is a configuration

parameter for OPS. At the beginning of this phase the file offset is set according

to the “Next Byte Offset” if available from last iteration, or from Step 1 in the

case of active probing. This will set the data transfer to resume transferring data

towards completion. If Y seconds expire before reaching the end of file, the transfer

is interrupted, passing the last byte offset of transferred data to the next iteration.

The length of this step is equal to parameter Y, and we use OPS-Y notation to

refer to the OPS invocation of different values for Y parameter.

6.2 OPS Conceptual Overheads

Following the introduction to the OPS operation cycle, in this section we discuss the

conceptual overheads of the OPS operation cycle per Figure 6.1.

1. Step-wise overheads. For the Step 1, assuming active probing is in use, we
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transfer data for the whole period of probing phase except for the silence seg-

ments, denoted by S in the probing pattern. The silence segment is an overhead

since no data is being transferring during this time. The other overhead in this

step is the change of CCA in use across segments of data transfer, causing a

transient decrease in sending rate when transitioning to new CCAs.

For Step 2 and Step 3, they each only take a fraction of a second to execute.

in our current design (1-NN w/ DTW in Step 2 and 1-level decision tree in

Step 3). This sub-second latency is negligible compared to the time spent for

steady data transfer (i.e., Step 4). If more complex classification and decision

models are going to be used in the future, more sophisticated inference runtime

environments, hardware or software, might be considered to keep the latency of

these steps minimal.

Finally, after deciding about a CCA to use, in Step 4 we will transfer data

without any control intervention required from OPS until the steady transfer

expires after Y seconds.

2. Amortized overhead. The end-to-end performance gain of informed protocol

selection outweighs the overhead of individual steps through the OPS cycle.

Still, the amortized overhead of the Steps 1 through 3 may be further controlled

through adjusting the Y parameter, the length of steady data transfer for Step 4.

The total length of time spent for Steps 1 through 3 is near constant. Hence,

increasing the Y parameter will decrease the amortized overhead of the rest of

the steps in the end-to-end OPS operation cycle. As we will see in Chapter 7

we will use values of up to 360 seconds for Y parameter, making the amortized

overhead of the silence segments of probing pattern and sub-second latency of

classification and decision steps relatively negligible (cf., Figure 7.10, OPS-360).

It is worth noting that picking the right value for Y parameter is a trade-off.

Larger values for Y would reduce amortized overhead by reducing the frequency
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of the probing cycle. However, it would also degrade OPS responsiveness on

networks with highly dynamic workloads. In contrast, smaller values for Y

would imply more frequent iterations of OPS cycle which increases the overhead.

However, more frequent iterations improves the OPS latency in response to a

changing mixture of background traffic (cf., Figure 7.10, ALT-30).

6.3 Constructive Active Probing for Data Transfer

Active probing is an intrusive method which includes conducting traffic on the network

(Section 5.2). It perturbs the current traffic on the network through short bursts of

data transfer (i.e., probing pattern), triggering the existing streams to better reveal

the unique signatures of their underlying CCA. However, sending such random traffic

on the network (even in small bursts) could be considered as unproductive use of

bandwidth, wasting the available network resources.

Constructive active probing is a mechanism for addressing the wasteful use of band-

width in active probing. It uses real user data (instead of random dummy traffic) for

the short bursts of active probing, hence the term constructive. One approach to re-

alize this mechanism is to define a global offset variable during the data-transfer task,

tracking the next byte offset in data file to be used for either active probing (Step 1)

or steady transfer (Step 4). This is marked as “Next Byte Offset” in Figure 6.1.

When initiating each data transfer segment (for either Step 1 or Step 4), the offset

variable value is used as the data file offset to start transferring data. At the end of

each data transfer segment the offset variable is updated to track the next byte offset

to be used by subsequent data transfer segments for resuming the file transfer. We

should note that if passive probing is configured, the offset variable will be only used

by Step 4 across iterations towards completing the file transfer.

We will implement constructive active probing mechanism in Chapter 7 for building

iPerfOPS.
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6.4 Decision Making for Protocol Selection

As earlier discussed, a decision making model is needed in Step 3 of OPS for applying

the classification output (Step 2) towards selecting an appropriate protocol for data

transfer (Step 4). In other words, we need to map the recognized traffic class to one

of the protocols available for data transfer. In this section we review such decision

making model in more details. We introduce two alternative decision models built on

top of classifiers’ output from previous chapter, as summarized in Table 6.1. Then

we pick one model as the decision model for protocol selection in OPS.

6.4.1 Two Decision Scenarios

The ultimate goal for building a traffic classifier is to generate useful insights, support-

ing better decision making under different networking scenarios. In this section, we

define two decision making scenarios, as it might arise. We then study how accurately

the discussed classifiers would perform in decision making. For both scenarios, we

take the direct output of the background classifiers (with active probing) and reduce

it to generate the desired decision results.

Table 6.1: Recognizable background mixtures via classification models. Six classes of
up to two streams of TCP CUBIC or TCP BBR (cf., Figure 5.1).

Traffic Class BBR Stream# CUBIC Stream#

B0-C0 0 0

B0-C1 0 1

B1-C0 1 0

B1-C1 1 1

B1-B1 2 0

C1-C1 0 2
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Figure 6.2: Decision Scenario 1: Is BBR present or not? Accuracy of classification
models for varying time length w with Active Probing (5-Fold Cross-Validation)

Decision Scenario 1: Is BBR Present or Not?

In the first scenario, we consider the problem of deciding whether any TCP BBR

traffic exist in the background mixture or not. The motivation for this decision is

that there is a known fairness issue when TCP BBR competes against TCP CUBIC

on a shared network, as discussed in Section 4.2. As a result, identifying whether

TCP BBR traffic exist on the network would help both end-users (to decide on which

protocol to use) as well as network administrators (for example, to define regulations

for bandwidth allocation).

We used the classification performance from Chapter 5 to generate the accuracy

results for this decision model. The accuracy performance and sample classification

metrics for this decision scenario using active probing are provided in Figure 6.2 and

Figure 6.3 respectively. The accuracy of this decision scenario is between 95% and

99%, representing near perfect performance in identifying if BBR CCA is present in

the network or not. While this is a simplistic scenario, the promising, near-perfect,

results yield a great opportunity in scaling and deploying this model for decision

making.

73



No-B
BR

Is-B
BR

Predicted label

No-BBR

Is-BBR

Tr
ue

 la
be

l

155 1

3 153

3-NN w/ DTW (5F-CV), W=30

20

40

60

80

100

120

140

(a) Confusion Matrix

Pr
ec
is
io
n

Re
ca
ll

F1
-S
co
re

Su
pp
or
t

No-BBR 0.99 0.98 0.99 156

Is-BBR 0.99 0.98 0.99 156

Avg / Total 0.99 0.98 0.99 312

(b) Classification Metrics

Figure 6.3: Decision Scenario 1: Is BBR present or not? K-NN w/ DTW performance
(w = 30, k = 3) with Active Probing

0 10 20 30 40 50 60
Sampling Window Size (Seconds)

0.980

0.985

0.990

0.995

1.000

1.005

1.010

Ac
ur

ac
y 

(N
or

m
al

ize
d)

1-NN
3-NN
5-NN

(a) Classification Accuracy per window size

1-NN 3-NN 5-NN
Classification Model

0.980

0.985

0.990

0.995

1.000

1.005

1.010

Ac
cu

ra
cy

 (N
or

m
al

ize
d)

(b) Box Plot for Classifiers Accuracy

Figure 6.4: Decision Scenario 2: Homogeneous or Heterogeneous CCAs? Accuracy
of classification models for varying time length w with Active Probing (5-Fold Cross-
Validation)

Decision Scenario 2: Homogeneous or Heterogeneous CCAs?

In second scenario, we aim to answer a more general question: whether the mixture

of background traffic consists of homogeneous or heterogeneous protocols. Similar to

the last scenario, this scenario would have potential use-cases among users, admin-

istrators, or infrastructure providers. Similar to the Scenario 1, applying our K-NN

based model with active probing yields promising, near perfect, performance in this

scenario as well. The results are provided in Figure 6.4 and Figure 6.5.
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6.4.2 OPS Decision Model

One key step in the OPS workflow (i.e., Step 3) is to decide on a protocol to be used

for data transfer for optimizing the overall performance. This decision making should

be informed by the result of the background classification (Step 2). We need to map

each predicted class to an appropriate action, namely, to choose a protocol from the

catalog of available CCAs (Figure 6.6). For the scope of this study our catalog of

available protocols includes TCP CUBIC and TCP BBR.

In the last section we reviewed two possible decision making scenarios. We employ

the first decision scenario, whether BBR is present in the background or not, for OPS

protocol selection. This decision scenario is directly applicable to output of RTT

classification, allowing us to answer the question about TCP BBR presence with high

75



Figure 6.7: Interaction matrix for TCP CUBIC vs. TCP BBR.
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Figure 6.8: Binary decision model for choosing a CCA for new data transfer.

accuracy (Figure 6.2). We could then use the answer to this question along with our

findings from Chapter 4 to inform our protocol selection.

Per Section 4.2, the interaction between TCP CUBIC and TCP BBR could be

summarized as the matrix presented in Figure 6.7. Following the balanced throughput

and fairness when we have homogeneous CCAs on the network (all CUBIC or all

BBR) we build our ultimate protocol selection model to pick TCP BBR if BBR is

already present in the background. Otherwise we will use TCP CUBIC to maintain

a CUBIC-only mixture on the network. This decision logic is presented in Figure 6.8

as a one-level decision tree. Evident by the ML research literature, a model as simple

as a one-level decision tree could perform sufficiently well in many cases [85, 86].

The intuition behind this decision strategy is as follows: BBR significantly hurts

CUBIC performance on the network (cf., Figure 4.7). Hence, if we discover that the
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Table 6.2: Steps configuration for evaluating OPS performance.

Step Configuration Parameters

(1) Background Probing Passive Probing
RTT Resolution = 1 s

RTT time-series length = 20

(2) RTT Classification K-NN w/ DTW
k = 1

max-warping = 10

(3) Protocol Selection One-Level Decision Tree
If BBR present, use BBR

Otherwise, user CUBIC

(4) Steady Transfer Single-stream TCP Length of transfer = 60 s

existing traffic on the network includes at least one BBR stream, we use BBR for the

new data-transfer task; BBR will be fair to the other BBR traffic on the network, and

it also will be able to claim a fair share of bandwidth for data transfer. In contrast,

if we predict the network traffic to be CUBIC only, we choose CUBIC for the new

data transfer. This scheme will claim a reasonable share of the bandwidth from the

network, while not hurting the other users.

The performance results of applying this decision model to a data-transfer tasks

will be discussed in Section 6.5.

6.5 Evaluation: OPS for Protocol Selection

In this section, we put all the steps together to build a proof-of-concept OPS pipeline

for protocol selection. The configuration used for OPS steps in this section are sum-

marized in Table 6.2. For background probing (Step 1), we limit the scope for OPS

evaluation in this section to passive probing. The active probing evaluation will be

discussed in the next chapter where we build a stable implementation of OPS (i.e.,

iPerfOPS).

For RTT classification (Step 2), we evaluate OPS performance based on the 1-NN

classifier with passive probing. Notably, higher accuracy for active probing implies
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that the overall performance of our OPS software when extended to use active probing

will be at least similar to, and more likely to be better than, the results we present in

this section. For consistency with the active probing configuration in the future, we

use w = 20 as the length of RTT time-series (i.e., length of probing). Per Figure 5.5a

the classification accuracy for 1-NN with w = 20 is 82%. It presents a reasonable

accuracy relative to the size of training data we used, and we predict that by increasing

the size of training data, or training more sophisticated models, this accuracy would

gradually increase.

For protocol selection (Step 3), we use the one-level decision tree as discussed

in Section 6.4.2. It decides either TCP CUBIC or TCP BBR based on whether

TCP BBR is already present on the network or not. The decided CCA is then used

for steady data transfer (Step 4), where iPerf tool is used for transferring data for

60 seconds, i.e. OPS-60.

Using the discussed configuration (Table 6.2), we conducted a series of experiments,

running a 30 min long static (i.e., non-changing) traffic over the network as the

background traffic of either TCP CUBIC or TCP BBR. We repeated this test three

times, each time using one of the following strategies for sending foreground traffic.

(A total of six experiments were conducted with a combination of two background

and three foreground schemes.):

1. Fixed: CUBIC. Always TCP CUBIC is used for data-transfer phase.

2. Fixed: BBR. Always TCP BBR is used for data-transfer phase.

3. Adaptive (i.e., OPS): Dynamically determines which protocol to be used for

each data-transfer cycle.

Figure 6.9 presents the average throughput of background (BG) and foreground

(FG) streams per each combination, also provided along with fairness measure in

Table 6.3. In Figure 6.9a, by introducing BBR traffic in Fixed:BBR (middle bars) the

78



shared bandwidth of background CUBIC drops drastically, resulting in poor fairness

with a Jain index of 0.62. In contrast, the Adaptive (OPS) mode (right-hand-side

bars) dynamically probes the network condition and adjusts the network protocol,

reclaiming four times more bandwidth, comparable to the ideal case of Fixed:CUBIC

scenario with a Jain index of 0.99. Similarly, in Figure 6.9b, the Fixed:CUBIC mode

(left-hand-side bars) suffers from extreme unfair bandwidth sharing in presence of

background BBR (Jain index: 0.60). Using the Adaptive (OPS) (right-hand-side

bars) significantly improves on fairness, again reclaiming four times more share of the

bandwidth (Jain index: 0.96).

While the accuracy of the particular classifier we utilized is 82% (Passive Probing,

Figure 5.5a), the outcome is quite satisfactory, compared to the extreme cases of

blindly choosing a sub-optimal protocol for data communication over the network.

On the one hand, choosing CUBIC to use over a BBR-present network will signif-

icantly degrade our data-transfer performance. On the other hand, choosing BBR

over a CUBIC-only network would severely hurt the other network users sharing

the same organizational or research bandwidth. This in turn might imply negative

consequences to other traffic flows of our own, such as, delaying a whole data com-

munication pipeline because of an aggressive traffic stream over the network.
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Figure 6.9: Average throughput of fixed versus adaptive (OPS) foreground proto-
col selection, in the presence of static (non-changing) background. (a) Background
Traffic=CUBIC, OPS improves fairness while maintaining a reasonable bandwidth
by using CUBIC in foreground. (b) Background Traffic=BBR, OPS maintains fair
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Table 6.3: OPS performance: throughput vs. fairness for different combinations of
TCP CUBIC and TCP BBR for background (BG) and foreground (FG)

BG FG Throughput (BG,FG) Jain Fairness Figure

CUBIC

CUBIC 265 Mb/s, 254 Mb/s 0.99 Fig. 6.9a, left

BBR 62 Mb/s, 474 Mb/s 0.62 Fig. 6.9a, middle

OPS 243 Mb/s, 258 Mb/s 0.98 Fig. 6.9a, right

BBR

CUBIC 465 Mb/s, 49 Mb/s 0.60 Fig. 6.9b, left

BBR 280 Mb/s, 258 Mb/s 0.97 Fig. 6.9b, middle

OPS 328 Mb/s, 221 Mb/s 0.96 Fig. 6.9b, right

6.6 Concluding Remarks

In this chapter, we introduced OPS as new model for dynamic protocol selection in

the context of shared networks. In OPS operation model we periodically probe the

background traffic on the network using regular RTT probing and use a classification

model to classify the resulting time-series, hence identifying the mixture of traffic

in terms of protocol and CCAs. The identified background mixture is then used

in a decision making process (decision model) to select an appropriate protocol or

CCA to improve data transfer performance (throughput and fairness) on the under-

lying shared network. We have implemented a complete proof-of-concept OPS cycle,

evaluating the performance using synthetic data-transfer tasks.

It is worth noting that while the particular CCAs we used here for OPS evaluation

might get evolved, or deprecated in favor of others, the OPS strategy for adaptive

protocol selection (as opposed to fixed protocol) would still remain relevant. It could

significantly contribute to the performance of data-transfer tasks at any time assuming

appropriate classification model and sufficiently-sized protocol catalog are available.

In the following chapter, we will introduce and discuss iPerfOPS, our end-to-end

implementation of OPS as a Linux-based data transfer tool.
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Chapter 7

iPerfOPS: An Adaptive Protocol
Selection Tool

Following the OPS proposal from previous chapter, in this chapter, we describe the

design, implementation, and evaluation of iPerfOPS, the first tool that uses OPS to

perform bulk-data transfer. End-to-end evaluation of iPerfOPS yields a throughput

improvement of more than double compared to the worst case (CUBIC used against

BBR). Furthermore, the cross-stream fairness is improved, reaching close to the fair

(equal) sharing for some configurations (e.g., OPS-100, 100 denotes length of steady

transfer in seconds).

iPerfOPS is a substantially modified version of the well-known iPerf tool [74].

It is an end-to-end implementation that incorporates the results from the previous

chapters. In brief, we adopt iPerf due to its extensive benchmarking insights and its

highly configurable fixed-time and fixed-size traffic conduction. Moreover, iPerf is a

well-optimized open-source tool, with great portability across different platforms.

Through this chapter, we present the high-level design as well as implementation

details of iPerfOPS. First we provide a more in-depth discussion on adopting iPerf as

the underlying data transfer tool and the extensions we added to iPerf to support OPS

use-cases. Then we provide the high-level architecture of iPerfOPS as a standalone,

end-to-end, data transfer tool. Finally, we conduct evaluation and provide end-to-end

performance results for iPerfOPS.
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7.1 Development Strategy: Adopting iPerf Library

In our efforts to implement OPS as an end-to-end, production-ready, data-transfer

tool we considered two options: First, build OPS from scratch, using the native Linux

interfaces and libraries (e.g., network sockets, files). Second, leverage an existing tool

with a programmable API or library, and reuse its high-level data transfer constructs

and abstractions. While the first option provides finer control for building underlying

constructs and workflows from scratch, the second option empowers us to take benefit

from a wide range of well-designed and stable community-provided tools. The use of

existing tools could also positively contribute to the overall quality of our resulting

tool, while saving us on required development efforts. For the second option, building

on an existing tool, there are two main categories: data-transfer tools, and network

benchmarking tools.

Since OPS is designed to improve data transfer efficiency, the data transfer tools

seem to be the best fit for this purpose. TCP-based tools, such as GridFTP [17], are

immediately capable of serving as the data transfer channel of a given TCP CCA.

Furthermore, UDP-based data transfer tools, such as UDT [29], provide ultimate

flexibility in fine tuning and customization of CCAs to be used for data transfer.

Meanwhile, the lack of two important features in data transfer tools renders them

insufficient for building OPS.

First, data transfer tools are incapable of conducting fixed-time transfers. They

are mainly built for transferring a full file to the completion. While they may be

tweaked, by the means of I/O redirects or otherwise, to partially transfer a file, they

will still function based on the byte-count and size of file (i.e., fixed-size). However,

the OPS strategy requires the capability of transferring data blocks in a fixed-time

fashion to allow conducting different patterns for active probing, and to transfer data

for a fixed period of time before re-probing the background traffic.

Second, data transfer tools usually function as black-box tools, merely providing
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any insights or metrics of the data transfer performance. In most cases, the end-

to-end throughput, reported directly or via the proxy of transfer time, is the only

performance metric available. Those tools usually use various internal metrics and

counters to optimize the data transfer, but such metrics remain internal to the tool

and are not accessible, or meaningful, to be used as performance proxies to the outside

world.

Network benchmarking tools, contrary to data transfer tools, mostly provide flexi-

bility in terms of end condition (fixed-time and fixed-size). In addition, those tools by

design provide a larger range of performance metrics. Some of the well-known tools in

this group include Netperf [73], Nuttcp [87], and iPerf [74]. The available performance

metrics based on the tool in use could include average throughput, instantaneous (in-

terval) throughput, jitter, latency, and more. The presence of described properties

makes this group of tools a desirable candidate to be utilized for implementing the

OPS.

iPerf is a network benchmarking tools with active community and on-going devel-

opment and maintenance. In addition, iPerf serves its full functionality via an API

library, making it a great networking software for building new tools. Lastly, iPerf is

an open-source software, enabling us to make any necessary adjustment to its source

code. Hence, we decided on using iPerf as the underlying library for implementing

OPS. We should note that iPerf has a legacy version known as iPerf2, which is now

replaced with iPerf3. Throughout this chapter any references to iPerf means iPerf3,

unless otherwise mentioned.

For OPS, iPerf has two limitations, one functional and one performance-related.

First, the functional inadequacy, is the lack of reliable file transfer. iPerf supports

reading data from a file for probing the network. However, it does not implement

reliability in file transfer, and terminates the data transfer socket as soon as the termi-

nation criteria is reached on the sender (specified byte-count or seconds-length). Sec-

ond, the performance inadequacy, is that iPerf creates and destroys network sockets

83



per invocation, making it I/O-intensive if there are multiple subsequent invocations

happening (e.g., in active probing patterns for OPS). In the following section we will

discuss and report on our approach on modifying and extending iPerf to address these

inadequacies.

7.2 iPerf-DT: iPerf for Data Transfer

As discussed in the previous section, iPerf contains two inadequacies to accommodate

OPS implementation: The lack of reliable file transfer (functionality), and the lack of

network socket reuse (performance). Since the two inadequacies are internal to iPerf,

we need to address and fix them in the iPerf source code. We first provide a detailed

report and analysis on the internal architecture and operation cycle of iPerf. Then

we present our solution to the inadequacies in the following sections. For distinction,

we use iPerf-DT to refer to our modified version of iPerf.

7.2.1 iPerf Architecture and Operation State-Machine

iPerf design follows a client-server model, operating based on a stateful application-

level protocol and using distinct control channel and data channel(s) for client/server

coordination. The operation sequence of a standard iPerf data transfer benchmarking

is provided in Figure 7.1. The iPerf state-machine is also provided in Figure 7.2.

iPerf client and iPerf server use control channel for three distinct use cases:

1. Initial test setup: swapping test parameters and initiating the task.

2. Ongoing sync: during the test client and server use control socket to inform and

prompt the other party to transition to a new state.

3. Communicating results: at the end of the data transfer client and server swap

their statistics before terminating the task.

First, the iPerf is started on in server mode on destination node. iPerf server by

default binds and listens to port 5001 (which may be customized). Once the server

84



Client Server

Ctrl

Ctrl

Data

Data

Data

Data

Ctrl

Ctrl

Srv

Srv

IPERF_START

Connect + Send Cookie

Accept

PARAM_EXCHANGE

PARAM_EXCHANGE

PARAM_EXCHANGE

Parameters (JSON)

CREATE_STREAMS

CREATE_STREAMS

CREATE_STREAMS

Adjust

Create

Connect

Accept

TEST_START

TEST_START

TEST_START

TEST_RUNNING

TEST_RUNNING

TEST_RUNNING
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Figure 7.1: iPerf operation sequence diagram. The yellow labels indicate what the
active state is at each point during the operation for client and server (Figure 7.2).
Annotations in green color indicate the new extensions in iPerf-DT (vs. original
iPerf), addressing functional (§ 7.2.3) and performance (§ 7.2.4) inadequacies.
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NormalLifeCycle

IPERF_START PARAM_EXCHANGE CREATE_STREAMS

TEST_STARTTEST_RUNNINGTEST_END

EXCHANGE_RESULTS DISPLAY_RESULTS IPERF_DONE

Signalled

CLIENT_TERMINATE SERVER_TERMINATE

[Client] [Server]

Error

SERVER_ERROR ACCESS_DENIED

[Server Socket Error] [Permission Error]

SIGINT, SIGTERM, SIGHUP On Error

Figure 7.2: iPerf State Machine. Both client and server follow the same state transi-
tions. The state transitions are mostly coordinated by the server (Figure 7.1), except
for TEST END and IPERF DONE, or if client is signalled (CLIENT TERMINATE).

is up, the other nodes may run iPerf in client mode taking the server IP for traffic

conduction. Then, iPerf client starts by communicating the server instance. After an

initial hand-shaking between the client and the server, data channel(s) are created

and the requested benchmarking takes place which involves a fixed-time or fixed-size

data transfer using the provided configuration. A few of relevant iPerf configurations

include the following:

1. Transport protocol: it supports TCP, UDP, and SCTP. Default is TCP.

2. Number of data streams: it supports single or parallel data streams for data

transfer. Default is a single stream.

3. Congestion Control (CCA): in case of TCP and SCTP transports, the CCA

could be selected. The available options and default CCA are the same as the

host running iPerf.
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4. Data direction: the data transfer might be directed from client to server, or vice

versa. Default is from client to server.

5. Data source: the data on the sender could be randomly generated on the fly, or

a file may be used to read data from. Default is random data.

6. Data destination: the received data on the receiver could be discarded, or a file

may be specified for writing the received data. Default is discarding the data.

7. End condition: a byte count (fixed-size) or the time length in seconds (fixed-

time) may be specified as end condition. Default is fixed-time for 10 seconds.

The relevant iPerf configuration options, along with the configuration we will use

for OPS are summarized in table 7.1.

Table 7.1: Relevant iPerf configuration options for implementing iPerfOPS. (C is for
Client, S is for Server)

Configuration Options Default iPerfOPS

Transport Protocol TCP, UDP, SCTP TCP TCP

# of Data Streams Single or Parallel 1 1

CCA Same as host Same as host CUBIC, BBR

Direction C → S C → S C → S

Data Source Random, File Random File

Data Destination Discard, File Discard File

End Condition Bytes, Seconds 10 Seconds Seconds

iPerf server is designed as a single-tasked service, meaning that it could only engage

in a single data transfer at any given time. As soon as a client request arrives and the

connection is accepted as a control channel, the server becomes unavailable and any

new clients trying to connect while the current server engagement is not completed will

get denied with an error message. Once the current experiment is completed, both

client and server communicate results and then terminate all sockets and cleanup.

Server then goes back to listen for new incoming connection requests.
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For both fixed-time and fixed-size data transfers, the sender puts data on the data

channel socket(s). When the termination condition is reached, client sends a signal

for server (TEST END state) indicating the end of test. at this point server immediately

closes the data sockets (without waiting for the whole data to be received), and signals

the client that it’s ready for exchanging the results (EXCHANGE RESULTS state). This

behavior on the server side is the core cause for the unreliability of data transfer in

iPerf (i.e., the functional inadequacy).

As introduced in the earlier sections, iPerf does not support keeping the connection

open between client and server for conducting more than one data transfer. Even for

the same pair of client and server nodes, they will both create and destroy network

sockets (control and data channels) per each data-transfer task, which could become

a performance overhead for transfers with several subsequent data transfer between

the same pair of client and server node (i.e., the performance inadequacy).

With this brief review on iPerf internals, we will discuss our solutions for the two

inadequacies in the following sections.

7.2.2 Bug Fixes for the Original iPerf

While working on the iPerf source code to identify and fix the inadequacies specific to

OPS, we identified a few logical and implementation bugs in the official iPerf project

source code [8–12, 88, 89]. Those bugs were not specific to OPS logic, rather generic

logical bugs which have not been identified by the iPerf development community yet.

On the one hand, those bugs were within the scope of the official iPerf project.

On the other hand, fixing those issues are necessary to allow us implementing our

OPS-specific adjustments and extensions to iPerf. So we have addressed and fixed

those bug, and our bug fixes were merged back into the mainstream (master branch)

repository for iPerf project.

In this section we briefly review those bug fixes.

Missing features in the API library. iPerf library offers its functionality
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through two alternative interfaces: CLI use and Library access. Some of the features

already available through CLI use were identified to be missing int the library. In

particular, the important missing features for our project were the functions to get

or set the CCA through library access. We have added the missing functionality to

the iPerf API library [8].

Incorrect termination test in bytes/blocks mode. While running iPerf tests

in bytes or blocks mode (i.e., fixed-size mode), we identified that iPerf tends to send

a larger number of bytes than specified as the termination condition. After careful

inspection and code review, we discovered a logical bug in the main data transfer

loop were causing iPerf to not stopping right at the desired bytes count. We have

adjusted the logic for termination test which fixed the problem [9].

Inefficient test termination condition. Since iPerf provides both fixed-size

and fixed-time modes, its test termination check should carefully cover all possible

cases. In particular, when the tests were conducted in fixed-time mode where source

data were read from a file, the termination test condition were causing incorrect stop

point to end the test. We have updated the test termination logic and simplified it

to sorely rely on a test-done flag which would cover all the existing test modes, while

making it straightforward in the future to add new termination logic specific to each

mode [10].

Incorrect data transfer size in file mode. When transferring data from a file,

the iPerf reads data from file into a buffer and sends data from buffer to the network,

repeating this cycle until done. The main logic for sending data from file was not

accurately considering the end-of-file condition, hence sending an incorrect amount of

data in the last iteration (last chunk of file in the buffer). We have fixed the logic to

test for the end-of-file and appropriately handle the non-full buffer while accurately

setting the test-done flag [11].

Auto adjusting test end condition in file mode. In this case we implemented

an enhancement for tests where data is read from a source file. As earlier mentioned,
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the two standard modes for test termination in iPerf are fixed-size and fixed-time.

In the case of transferring data from a file we have added a new mode, allowing the

iPerf to auto adjust the length of the data-transfer task to match the file size [12].

For distinction we refer to this new mode as fixed-file.

7.2.3 Functional Extension: Reliable File Transfer

The bug fixes reviewed in the previous section were necessary building blocks in order

to get iPerf sending the exact number of bytes from a source file to the network.

However, as we discussed in Section 7.2.1, the iPerf’s operation logic on the server

side is designed to prematurely terminate the data channels without waiting for the

full data to be received. To fix in inadequacy and closing the loop on reliable file

transfer, we have made two modifications.

First, in the beginning of a data transfer in the fixed-size (including fixed-file mode),

we send the total bytes count from client for the server. As a result, the server will

know the size of data it is expecting to receive from the client.

Second, we have adjusted the operation cycle on the server for handling the TEST -

END prompt sent by the client. The adjustments are highlighted in Figure 7.1, as the

green wait box on the server side between TEST END and EXCHANGE RESULTS labels.

Upon receiving the TEST END prompt, the server enters a timeout loop and periodically

checks the number of bytes successfully received on the data channel. It delays closing

data channel until the full data is successfully received. The server, then, terminates

the data channel and sends EXCHANGE RESULTS prompt for the client. It is worth

noting that in order to avoid interfering with the expected behavior in the original

iPerf, the reliable data receive is only triggered if a new flag is set (using switch -r

on the CLI, or a new library function.

Furthermore, in order to accommodate partially transfer data from a file on the

client through different intervals (as with the OPS probing patterns), we added a new

functionality to iPerf, allowing the sender to partially send data from a file by seeking
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# s t a r t s e r v e r
r e c e i v e r $ . / i p e r f −s −F /path/ to / d e s t i n a t i on . f i l e , append −r

(a)

# send f i l e
sender$ . / i p e r f −c r e c e i v e r −F /path/ to / source . f i l e ,15000 −t5

(b)

Figure 7.3: iPerf-DT Sample CLI use for reliable file transfer (a) Starting the server,
specifying a file to write the received data, setting the flag to append data to the file
instead of rewrite (",append") and requesting reliable transfer ("-r"). (b) Initiating
transfer on the client, specifying a file to send data from after seeking to specific offset
in file (",15000"), and transferring data for 5 seconds ("-t5"). It will finish after 5
seconds of transferring data, or if end of file is reached in less than 5 seconds. When
duration flag omitted it will send the whole file and then terminate.

to a location and sending specified bytes count. We also adjusted the server to add a

mode to append the received data to the end an existing file, rather than replacing

the existing file as implemented in the original iPerf.

As a result, the iPerf is now fully reliable in transferring data and writing them to

the file on the server. A sample of using iPerf-DT for reliable file transfer is provided

in Figure 7.3, seeking to an offset in the source file on the sender along with appending

data to file on the server side.

Motivated by making it available to the larger iPerf community, we initially tried

to merge the reliability feature into the iPerf mainstream repository. However, the

corresponding pull requests to the official iPerf repository were dismissed by the

owner, due to adding new scope to the project and requiring extra maintenance and

support effort [88, 89]. Hence, we have made the reliable iPerf-DT available as an

open-source software on GitHub [13].

7.2.4 Performance Extension: Pooling Network Sockets

The periodic probing interval in the OPS and the idea for constructive active probing

implies a sequence of short data transfer episodes until the data transfer is completed.
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As such, the efficiency of creating those short data transfer episodes is a critical quality

towards achieving production-ready performance.

However, as we already discussed in Section 7.2.1, iPerf creates, configures, and de-

stroys control and data sockets per each transfer which makes it inefficiently resource-

intensive for our use-case. The green circles numbered one through four in Figure 7.1

indicate the points where sockets of different types (Control or Data) are being cre-

ated or accepted during an iPerf data transfer. So we started investigating on how to

eliminate this inefficiency. We plan to use iPerf as a library in OPS, using instances

of its client and server for data transfer episodes until the transfer is completed. As

such, if we manage to preserve the network sockets when initially created, they will

be kept alive for the whole duration of a OPS invocation.

One common pattern to predictably control the overhead in applications with high

frequencies of socket use is to establish a Socket Pool. In this pattern a special data

structure takes the ownership and accounts for creating, maintaining, and reusing

network sockets. When our application requires a socket it will request the socket

pool. If an open and unused socket is available to the desired destination it will be

allocated for the use. Otherwise a new socket is created. When we are done with

the socket, it will be returned to the socket pool and marked as available for any

subsequent request for a socket.

While a socket pool seems to be the right fit to optimize the socket use in iPerf,

there exists a challenge in adopting this pattern with iPerf: iPerf concurrently uses

control and data socket(s) between a client-server pair of nodes, following significantly

different semantics for each of control and data sockets. So we need to coordinate

client and server on which existing socket to be used for control or data channel for

a new episode of data transfer. Furthermore, due to the relatively complex state-

machine in iPerf and the highly formalized use of control socket for communicating

the state transitions, we ideally should not disrupt the client-server control protocol

as it might make it incompatible with the original iPerf library for the future updates.
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Table 7.2: The wrapper functions implemented for socket operations in iPerf-DT

Wrapper Function Behavior Adjustment

TSocket() If a socket of requested type is available in registry it will
be marked as in-use and returned. Otherwise a new socket
is created, added to registry and returned.

TAccept() If a socket of requested type is available in registry it will
be marked as in-use and returned. Otherwise a new
connection is accepted, added to registry and returned.

Close() The in-use flag is removed for the socket (It does not get
closed)

Bind() If this is a re-used socket we skip as it is already binded,
otherwise we call bind()

Connect() If this is a re-used socket we skip as it is already
connected, otherwise we call connect()

Getsockopt() only for logging purpose. It calls getsockopt()

Setsockopt() If new socket call setsockot(). If a re-used socket skip
except for setting TCP CONGESTION option

Listen() only for logging purpose. It calls listen()

Select() The most heavy wrapper logic. Based on the direct
information from SocketRegistery and which socket types
are in use it decides on the order of checking FDs for
availability and overrides FD flags if needed.

In order to overcome the challenge of coordinated socket reuse, we have devised

a Typed Socket Pool, where each socket will be identified as either Control or Data

socket. Since we exactly need one of each socket type for any data transfer, it would

then suffice to keep track of one instance of each socket type to be reused through

the lifespan of an OPS invocation. In addition, to minimize the refactoring efforts

and divergence from original iPerf, we intend to keep this socket pooling and reuse

mostly transparent to the iPerf modules and functions.

In our ultimate solution we have created wrapper functions for the basic socket

library functions. The wrapped library functions are summarized in table 7.2. Each

wrapper function named and signature is identical to its corresponding library func-
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tion, but named with Capital case initial letter. For the two special functions that

create a new socket, socket() and accept() we also created typed wrapper func-

tions (TSocket() and TAccept()) which take an additional parameter SocketType.

The types methods help the wrapper functions to return the existing socket of the

desired type when requested, which enables the wrapper functions to remain agnostic

about the iPerf internal logic of control versus data channels. We also implemented a

data structure SocketRegistry for pooling typed sockets. It is worth noting that the

SocketRegistery is a simplified version of socket pooling for the special case of iPerf

library where we only need one of each socket type at a time, and we only have a sin-

gle data-transfer task at any given time. Further implementation details are omitted

here, but might be inspected in the public open-source iPerf-DT repository [13].

7.3 iPerfOPS Architecture

iPerfOPS is designed as a modular software and following a client-server model. The

high-level modular design of iPerfOPS is provided in Figure 7.4. The state chart for

iPerfOPS is also provided in Figure 7.5. Upon invocation, iPerfOPS starts an infinite

loop of data transfer episodes until the end of file is reached. Each data transfer

episode, consists of two phases, probing phase and Steady transfer phase. The probing

phase follows passive or active policies (cf., Section 5.2) based on the provided CLI

parameters. The result of probing is then used to classify the background traffic and

selecting a CCA (e.g, CUBIC or BBR) to be used for the subsequent steady phase.

The steady phase uses the provided CCA for transferring data from the file for a

configured time length of Y seconds (Figure 7.5. The longer the steady state, the

fewer and longer transfer episodes it will take for a file transfer, which in turn implies

less frequent probing phases. We will further discuss the impact of steady phase

length in the Section 7.6.

In discussing iPerfOPS we take iPerf-DT as a black box dependency, being a reliable

and high-performance data transfer library used for implementing iPerfOPS. We will
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Figure 7.4: iPerfOPS Client/Server Architecture

next review the structure and functionality of the server and the client and their

corresponding modules.

7.3.1 iPerfOPS Server

The server relies on iPerf-DT to accept incoming connections, and to reliably write the

received data to the user-specified file. It operates to append-mode, always appending

data to the end of the target file. Server design follows a simpler logic compared to

the client. It is run by providing a port number as well as the file path for storing

the received data. The server remains agnostic about the state of the data transfer

whether it is in probing phase or steady phase of data transfer. The client handles

the logic for different episodes of data transfer.
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iPerfOPS Operation Cycle

Probing Phase Steady Phase

CCA Decided

Y seconds timeout

File Transfer End-of-File

Figure 7.5: iPerfOPS state chart (coordinated an the client side)

7.3.2 iPerfOPS Client

The iPerfOPS client orchestrates the episodes of data transfer, interleaving steady

phases of data transfer with periodic probing phases, as discussed in Chapter 6 (c.f.,

Figure 6.1). It relies on the ping utility provided by the operating system for probing

RTT and generating RTT time-series (Step 1). The RTT time-series are then passed

to the classification module (Step 2). The classification results are then passed to

protocol selection module (Step 3) where a decision is made on the CCA to be used

for the following steady phase of data transfer (Step 4). At the end of each data

transfer segment, the last byte offset of the partially transferred file is passed to the

next data transfer segment for continuing the data transfer.

While our current implementation contains a minimal viable version of functional-

ity, the modular design of iPerfOPS allows us to independently extend and improve

each module independently in the future. For example, the classification module,

which now operates based on the 1-NN with DTW (Section 5.5), may be extended

in the future to use more sophisticated classic or deep time-series classification mod-

els. Similarly, the action module which currently contains a simple logic may be

extended with more advanced decision making models for picking a transfer protocol,

considering more parameters such as network configuration, policies, and more.
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# Server CLI Options
Usage : . / i p e r f op s−s e r v e r −p <s e rve r−port> [ opt i ons ]
−h ( show help )
−d ( enable debug mode)
−f <de s t ina t i on− f i l e −path>

(a)

# Cl i en t CLI Options
Usage : . / i p e r f op s−c l i e n t [ opt ions ] [ −− <ops−command> ]
−h ( show help )
−d ( enable debug mode)
−V ( enable Verbose mode)
−s <s e rve r−host>
−p <s e rve r−port>
−c <cca>
−k <k−f o r−knn>
−S <steady−durat ion> ( ze ro f o r one−time probing )
−P <act ive−pattern>
− l <log− f i l e >[,< log−l i n e−l abe l >]

(b)

Figure 7.6: iPerfOPS CLI options for (a) server and (b) client. if <ops-command> is
provided for the client it will be invoked in script mode, otherwise it will start the
interactive prompt.

7.4 Usage: Interactive and Script Modes

We have implemented iPerfOPS with two possible operation modes to better fit

different use-cases: the interactive mode and script mode. The CLI options for and

usage guide for invoking iPerfOPS are provided in Figure 7.6 and a sample invocation

commands (in script mode) are provided in Figure 7.7. On the server side the file

path should be provided to store the received data, and optionally enabling debug

mode to see execution details. On the client side, there is a wider range of possi-

ble options to configure different aspects of OPS data transfer. When invoking the

client (Figure 7.6b), if <ops-command> is provided it will be invoked in script mode,

otherwise it will start the interactive prompt.

Interactive mode. The interactive mode starts a REPL (read, evaluate, print
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# s t a r t s e r v e r
r e c e i v e r $ . / i p e r f op s−s e r v e r −p 5555

(a)

# s t a r t c l i e n t ( sending f i l e )
sender$ . / i p e r f op s−c l i e n t −s r e c e i v e r −p 5555 −S 0 \
− l /path/ to / l o g f i l e , b1c0−s0 −V −− send adapt ive \
/path/ to / source . f i l e

(b)

Figure 7.7: Sample iPerfOPS invocation in script mode. (a) Starting server on port
5555. (b) Starting the client. As <ops-command> is provided, the client will run
in script mode, running the provided command and terminating. The listed client
command will only do a single data transfer episode (-S 0), meaning it will only
probe once and then indefinitely running in steady phase using the decided CCA
until the end of file transfer.

result, loop) prompt, allow the user exploring its features and trying different opera-

tions. A sample screenshot of the iPerfOPS interactive user-interface is provided in

Figure 7.8. Interactive mode provides commands for setting options configurations,

as well as commands for probing background traffic or transferring files. If the con-

figurations (server IP, port, CCA, etc.) are provided through the initial invocation

they will be set and available in the interactive prompt. Otherwise all the options

are configurable through the iPerfOPS prompt too. It is worth noting that since the

data transfer is coordinated through client, the interactive mode is only available on

the client side.

Script mode. If <ops-command> is provided during the client invocation (Fig-

ure 7.6) the iPerfOPS will run in script mode. The provided invocation in Figure 7.7

includes a command, hence it will be executed in script mode. In script mode the

provided OPS command is executed and then iPerfOPS is terminated immediately.

In the script mode all the required configurations must be provided through CLI ar-

guments, server host and port at the minimum. The script mode is ideal for use-cases

where the exact task is known for data transfer, and it well supports automation

through scripting.
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Figure 7.8: iPerfOPS client interactive mode

7.5 OPS Runtime Overheads

In Section 6.2 we reviewed the conceptual overheads of the OPS cycle. In this sec-

tion we discuss how those overheads extend to iPerfOPS. Furthermore, we review

the system-level runtime overheads, and their potential impact on scalability, of our

iPerfOPS implementation.

1. Data-transfer steps. For Step 4 we conduct traffic to the network using

different CCAs. As discussed, the system and TCP 3-way handshake overheads

are minimized through a socket pooling mechanism. However, when switching

between CCAs (i.e., CUBIC and BBR) the internal state and counters of the

TCP socket might be in a cold-start state (e.g., small cwnd). Nonetheless, this
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CCA transition only happens every Y seconds at the most. We use Y values

between 100 s and 360 s for evaluation (cf., Figure 7.10). As discussed before,

there is trade-off in setting the Y parameter. For example, setting Y to 360

implies the best case of amortized overhead compared to lower Y values. At the

same time, in the worst case it would imply up to 360 s of using a wrong CCA

for steady data transfer (caused by inference error in classification or decision

steps, or a change in the background CCA mixture).

Changes to the CCA in Step 1 have similar effects on the internal state of

network sockets as discussed above for Step 4. Furthermore, the CCAs are

switched more frequently during Step 1, corresponding to distinct segments

of the active probing pattern. However, as we will discuss in Chapter 8, one

direction for the future work is to simplify the probing phase to take less time

and fewer switches between CCAs.

2. Classification and Decision steps. Each of the classification (i.e., Step 2)

and decision-making (i.e., Step 3) steps only take a fraction of a second to exe-

cute, making them negligible compared to the steady data transfer. For Step 2,

we currently utilize a Python implementation of 1-NN w/ DTW classifier. The

efficiency of the classifier may be further improved by a new implementation in a

compiled language such as C or C++. For Step 3, we use a 1-level decision tree

which uses the classification of Step 2 to choose a CCA for Step 4. Considering

Step 3 simple structure, it only takes a fraction of a second to execute.

3. System-level overheads. OPS incurs minimal CPU and memory overhead.

Data-transfer tasks during Step 1 (probing) and Step 4 (steady transfer) are

exactly the same case as writing data to a socket in typical network applica-

tions. In Step 2 our current 1-NN w/ DTW incurs minimal CPU overhead for

the classification inference. In Step 3 the 1-level decision tree is a simple if

statement. The computation for Steps 2 and 3 take a fraction of a second and
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is negligible compared to the 20 seconds of Step 1 and the Y seconds of Step 4.

If more complex classification and decision models are to be used in the future,

additional software and hardware optimizations can be considered.

After choosing a CCA to use, Step 4 of OPS transfers data using the standard

network socket until the Y seconds expires. During the steady data transfer,

the only overheads are the usual user-space to kernel overheads associated with

network sockets.

7.6 End-to-End Evaluation

In this section we discuss data-transfer experiments and report on the end-to-end

performance results for iPerfOPS.

7.6.1 Experimentation Setup

We use the same testbed as presented in Chapter 3, and the same test scenarios as

discussed in Section 6.5.

Background traffic. In our previous OPS evaluations (Section 6.5) we have

studied the OPS performance in the presence of a constant background pattern,

either CUBIC, BBR, or a mixed of both. To further study the adaptive end-to-end

performance of iPerfOPS, we add new test scenarios where the background traffic

alternates between CUBIC and CCA in regular time intervals. We use ALT-X to

identify those configurations, where X represent the time interval in seconds that one

CCA runs before toggling the CCA.

All the reported results in this chapter present data-transfer tasks, transferring

14 GB data files. The average throughput over five runs are provided, and the error

bars present standard deviation.

Probing Patterns. While both passive and active probing policies are supported

by iPerfOPS, in this section we only present and discuss constructive active probing
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Figure 7.9: iPerfOPS Performance in presence of dynamic (alternating) background
traffic. (a) Active probing pattern: C5-B5-C5-S5 (non-effective) (b) Active probing
pattern: S5-C5-S5-B5 (effective). All results are average over five runs, transferring
14 GB random file. The results correspond to ALT-30 background pattern (single
constant TCP stream of background traffic, toggling between CUBIC and CCA every
30 seconds). OPS-Y represents foreground traffic of probing network followed by
sending data steady for Y seconds and repeat.

policy as it outperforms passive probing policy in terms of higher classification ac-

curacy (Section 5.6). So far we have introduced the C5-B5-C5-S5 as the only active

probing pattern available during our evaluations in Section 6.5. However, in order to

better study and identify the importance and capability of distinct probing patterns

to drive classification and decision making, in this section we add a second probing

pattern to better identify the impact of silence periods in the probing patterns. The

new probing pattern is S5-C5-S5-B5, where we have 5 seconds silence period before

sending 5 seconds of CUBIC or BBR traffic as part of the probing pattern. With this

new pattern we aim to better identify the RTT pattern of background traffic without

our probing interference. The performance results will be provided in the following

section.

7.6.2 Results: The Impact of Distinct Probing Pattern

Figure 7.9, especially part (b), shows the throughput improvement gained by using

iPerfOPS. In (b), all of the (dynamic) OPS-[100,360] bars have much higher through-
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put (all between 210 and 305 Mb/s) than the CUBIC bar (about 50 Mb/s). Given

the 500 Mb/s bottleneck bandwidth, the 250 Mb/s level represents a fair share of the

network. At 50 Mb/s, the CUBIC bar represents much less than a fair share of the

bandwidth, and is the result of a static choice of CUBIC for the foreground CCA.

The BBR bar (almost 350 Mb/s) shows how unfair BBR is against CUBIC, in

which the ALT-30 background traffic alternates between CUBIC and CCA every 30

seconds.

Figure 7.9(b) shows that OPS can detect, classify, and then select an appropriate

CCA for the foreground traffic that is effective in maximizing throughput. Note

that the OPS task is non-trivial because the background traffic dynamically changes

CCA (between CUBIC and CCA) every 30 seconds. Also, an important practical,

implementation detail is that a S5-C5-S5-B5 active probing pattern (part (b)) is

required for OPS to be effective.

In contrast, the probing pattern C5-B5-C5-S5 (Figures 7.9(a)) is ineffective in

improving performance, presenting virtually identical performance as fixed CUBIC,

the probing pattern S5-C5-S5-B5 (Figures 7.9b) is effectively improving the data-

transfer performance by several orders of magnitude compared to fixed CUBIC CCA,

while treating the cross traffic more fairly compared to the aggressive BBR.

The distinct results between the two different active probing patterns shows the

effect, and the importance, of the probing pattern in use by the OPS for probing phase.

The probing pattern C5-B5-C5-S5 which was effective in improving performance in

our proof of concept experiments (Chapter 6), proves ineffective in our end-to-end

evaluation of iPerfOPS. In contrast, the pattern S5-C5-S5-B5 improves the ability

of generated RTT time-series in identifying background mixture, hence improved

throughput performance compared to CUBIC and better fairness compared to BBR.

We may attribute, among other reasons, the improved performance for S5-C5-S5-B5

to the added silence periods prior to conducting traffic using different CCAs. This

enables the generated RTT time-series to better manifest the unique patterns for
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different types of background traffic.

Furthermore, increasing the steady state length, improves the performance for

the effective pattern S5-C5-S5-B5 (Figure 7.9b). The longer steady state periods

mean less silence periods in total,hence better throughput performance. However,

there is a trade-off when setting the steady state length for OPS. The shorter the

steady state, the more frequent probing phases will be, and OPS sooner gets the

opportunity to identify the changes in the background traffic patterns and adjust the

CCA accordingly. In contrast, the longer the steady state, the less time is spend on

probing phase, hence less time in silence periods and overhead of segment-wise active

probing patterns. Hence the performance could improve if the background traffic is

not changing too often.

One general rule of thumb is to set steady state to longer values if the frequency of

the change in background traffic is low. For example on private networks or institution

bandwidths where the pattern and type of bandwidth usage is more predictable.

However, for public shared bandwidths or networks with a larger number of users

the shorter steady state could help OPS to better adapt to frequent changes to the

background traffic.

To further study the effect of the frequency of alternating background CCA, we

have conducted the same experiment for different configurations for X in ALT-X

background traffic pattern. The results for X values of 30, 60, 120, and 300 are

provided in Figure 7.10. The throughput performance is calculated in presence of fixed

and alternating background traffic. All results are average over five runs, transferring

14 GB data files containing random binary data. ALT-X represents background traffic

of alternating CUBIC and BBR every X seconds. OPS-Y represents foreground traffic

of probing network followed by sending data steady for Y seconds and repeat.

Figure 7.10(a) presents results in probing pattern C5-B5-C5-S5 in use, while Fig-

ure 7.10(b) presents results for probing pattern S5-C5-S5-B5. While there are through-

put variations based on the standard deviation (error bars), the overall performance
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Figure 7.10: iPerfOPS Performance in presence of dynamic (alternating) background
traffic. (a) Active probing pattern: C5-B5-C5-S5 (non-effective) (b) Active probing
pattern: S5-C5-S5-B5 (effective). All results are average over five runs, transferring
14 GB random file. ALT-X represents background traffic of alternating CUBIC and
BBR every X seconds. OPS-Y represents foreground traffic of probing network fol-
lowed by sending data steady for Y seconds and repeat.
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trend remains the same across different configurations of ALT-X for the background

traffic.

Once again (as with Figure 7.9), Figure 7.10(b) shows that OPS is effective in

achieving fair throughput against dynamically changing background traffic, this time

with greater interval variability. And, once again, the probing pattern of S5-C5-S5-B5

is key to enabling OPS to properly detect, classify, and perform OPS.

While in current OPS design the steady state length is specified as a user-provided

configuration, one possible improvement for the future is to auto-adjust the steady

state length. So when OPS identifies changes in background traffic in subsequent

probings, it should decrease the steady state length to better capture dynamic pat-

terns of background traffic. But if subsequent probing phases result in the same

background traffic class, this implies less dynamic background patterns and hence we

should increase the steady state length.

7.7 Concluding Remarks

Prior to this chapter we have been discussing motivation and the effectiveness of

background classification through proof-of-concept experiments. In this chapter, we

have demonstrated the effectiveness of OPS for data transfer in a real tool and un-

der end-to-end empirical evaluations. We have discussed the design, implementation,

and evaluation of iPerfOPS, an implementation of the OPS strategy. We show that

iPerfOPS provides a tangible performance improvement for end-to-end data transfer

when configured with appropriate probing patterns. Our tool extends the function-

ality of the original iPerf with the OPS functionality, but we also add both reliable

and efficient data transfers.

Our empirical evaluation of iPerfOPS shows the effectiveness of OPS. It also re-

veals the importance of the probing pattern when using (constructive) active probing.

While selecting an appropriate probing pattern (i.e., S5-C5-S5-B5) could result in a

bandwidth utilization close to the fair (equal) sharing, other patterns (e.g., C5-B5-
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C5-S5) could result in sub-optimal performance.

One future direction for this study is to further explore the impact of different

probing patterns on the classification and end-to-end data transfer performance. The

distinct performance of the two probing patterns in this chapter reveals the oppor-

tunity to further improve the end-to-end performance by crafting new combinations

of protocols, and silence periods, for the probing pattern. Furthermore, our current

study included up to three data streams on the network (one foreground and two

background). Another future direction is to study a larger number of streams on the

network, possibly with different schedules for the stream inter-arrival timing.
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Chapter 8

Concluding Remarks

We have introduced OPS, optimization through protocol selection, as a technique to

improve bulk-data transfer on shared WANs. Instead of just tuning the parameters

of a network protocol, our empirical results show that the selection of the CCA and

the network protocol itself can result in up to four times higher throughput in some

key cases (e.g., Figure 6.9b, foreground throughput for Adaptive (i.e., OPS) versus

Fixed:CUBIC).

It is a challenging task to optimize a data-transfer task for both throughput and

fairness. If throughput is the only deciding metric, we may use a greedy approach

to probe each available CCA and to pick the one with maximum throughput for

steady transfer. However, a greedy approach can hurt fairness. Unlike throughput,

it is not feasible to measure fairness from a local end-point perspective. OPS enables

optimization for throughput-and-fairness (i.e., both throughput and fairness) via its

multi-step process for probing, discovering, and protocol selection, followed by the

steady data transfer.

OPS for the foreground traffic depends on knowledge about the network protocols

used by the background traffic (i.e., other users). Unfortunately, global knowledge can

be difficult to obtain in a dynamic distributed system like a shared WAN. Therefore,

we trained ML models for classifying the local RTT time-series data, gathered using

passive probing and active probing, to recognize the mix of network protocols in the
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background, with an accuracy of up to 95% (e.g., Figure 5.8a, w = 50 s).

Finally, we built an end-to-end data transfer tool based on OPS strategy, iPer-

fOPS, implemented as a substantially modified version of the well-known iPerf tool.

iPerfOPS operates in two interactive and script modes, providing flexibility to be

used in automated data transfer pipelines as well as for interactive and exploratory

networking probing and data transfer. The evaluation results for iPerfOPS shows

that, depending on the use of appropriate probing pattern, iPerfOPS offers improved

cross-stream fairness, reaching close to the fair (equal) sharing.

In the following sections we review some of important observations in our study, as

well as the key lessons learned. We wrap up this research by discussing the limitations

of this work, followed by proposing a few directions for the future work.

8.1 Throughput vs. Fairness on Shared Networks

Decades of research and tuning of network protocols (e.g., TCP) and congestion

control algorithms (e.g., CUBIC, BBR) have been in the service of fair sharing with

high performance of foreground and background network traffic. Our empirical results

show that sharing is not fair under some combinations of use-cases and protocols. In

particular, due to specific design decisions, various TCP CCAs could be unfair to

each other. An example of this unfair sharing includes BBR streams’ unfair behavior

against CUBIC streams. Furthermore, the interaction of TCP and UDP traffic can

lead to unfair sharing and low performance. Tools that have been built on top of

TCP (e.g., GridFTP) and UDP (e.g., UDT, QUIC) to address various performance

problems, can aggravate the sharing and performance problem for other traffic.

As a result of our experiments, here we provide two main observations regarding

throughput and fairness:

1. Throughput: A poor choice of foreground protocol can reduce throughput by

up to 80% (Figure 4.1a, GridFTP reduced throughput versus UDT). Different

109



combinations of protocols on shared networks have different dynamic behaviors.

One might naturally assume that all network protocols designed for shared

networks interact both reasonably and fairly. However, that is not necessarily

true.

The mixture of CUBIC and BBR, both based on TCP, can lead to poor through-

put for CUBIC streams competing against BBR (e.g., Figures 4.5 and 4.6).

Using TCP for the foreground, with UDP as the background, results in poor

foreground throughput (e.g., Figures 4.1 and 4.2). For example, our empirical

results show that if the competing background traffic is UDP-based, then UDT

(which is UDP-based itself) can actually have significantly higher throughput

(Figure 4.1a, BG-SQ-UDP1 and BG-SQ-UDP2; Figure 4.1b all except for No-

BG).

2. Fairness: Jain fairness (Section 2.4) varies by up to 0.35 (Table 4.3, between

0.64 to 0.99) representing poor fairness for some combinations of tools and pro-

tocols. On the one hand, using an aggressive tool would highly degrade the

performance of the cross traffic (e.g., Jain index of 0.68 in Table 4.2, and 0.64

in Table 4.3 for GridFTP). On the other hand, depending on the type of back-

ground traffic, the performance of a traffic stream would be impacted (e.g., iPerf

foreground in Tables 4.2 and 4.3) . Of course, using GridFTP is a voluntary

policy choice, and we quantified the impact of such tools on fairness. GridFTP

can have a quantifiably large impact on other network traffic and users. Anec-

dotally, people know that GridFTP can use so much network bandwidth that

other workloads are affected. However, it is important to quantify that effect

and the large dynamic range of that effect (e.g., a range of 22 Mb/s, from a

peak of 30 Mb/s to a valley of 8 Mb/s of NFS throughput, due to GridFTP;

discussed above and in Section 4.3). Similarly, in a purely TCP-based mixture

of traffic, TCP BBR has a large impact on other TCP CCAs, TCP CUBIC in
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particular (Figures 4.5 and 4.6).

8.2 Fixed vs. Adaptive Protocol Selection

While global knowledge about the mixture of traffic on a shared network is hard to

obtain, our ML-based classifier with passive probing is able, with up to 85% accu-

racy, to identify different mixtures of TCP BBR and TCP CUBIC background traffic

(Figure 5.5). Furthermore, active probing (as compared to passive probing) improves

ML-based classifiers to better distinguish between different mixtures of TCP-based

background traffic, with up to 95% accuracy (Figure 5.7).

Without OPS, selecting a fixed protocol or tool might yield sub-optimal per-

formance on different metrics of interest (throughput, fairness, etc.). In contrast,

through investigating the background workload (e.g., using passive or active probing

techniques) and adaptively selecting appropriate protocol (i.e., OPS) we could gain

overall performance improvement (Figure 6.9).

While the particular CCAs we used in this research for OPS evaluation might get

evolved, or deprecated in favor of others, the OPS strategy for adaptive protocol

selection (as opposed to using a fixed protocol) would still remain relevant. It could

significantly contribute to the overall performance of data-transfer tasks at any time,

assuming appropriate classification model and sufficiently-sized protocol catalog are

available.

8.3 Discussion

Throughout this research we have studied and discussed a few aspects of high-

performance data transfer on bandwidth-sharing networks. In this section we re-

iterate our key findings and provide a summary of lessons learned from this research:

1. One protocol’s throughput might significantly degrade depending on

the background mix of protocols. Despite the conventional wisdom about
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using particular protocols, such as GridFTP, for achieving the best performance,

each protocol might differently react to distinct mixtures of background traffic

on a shared network. Hence, one tool or protocol that offers great performance

in one use-case might suffer significant under-performance in some other sce-

narios. For example, GridFTP is not always the highest performing tool for

bulk-data transfers on shared networks. Our results show that if there is a

significant amount of UDP background traffic, especially bursty UDP traffic,

GridFTP is negatively affected, dropping to 10% of the theoretical maximum

(Figure 4.1).

2. Fairness should to be accounted for as a trade-off with the aggressive-

ness of data-transfer tools. Unless bandwidth reservation capabilities are

present for allocating dedicated bandwidth for a data-transfer task, the more

aggressive the protocol gets, the larger the impact on the other network users

would become. For example, the use of GridFTP with a large number of paral-

lel streams would drastically impact the users accessing their data on an NFS-

mounted network drive(Figure 4.8). In a collaborative network environment

where groups of users belong to the same institution, the wise choice of proto-

col set for a shared network could help to improve the overall performance (per

user and aggregate throughput) while allowing appropriate bandwidth share for

the rest of the traffic (Fairness), resulting in a better performance equilibrium.

Furthermore, in a purely TCP-based mixture of traffic, the partial upgrade to a

new TCP CCA while other nodes still use older CCAs could drastically degrade

the user experience for a group of users. For example, TCP BBR has a large

impact on other TCP flavors, TCP CUBIC in particular (Figures 4.5 and 4.6).

3. Periodic RTT probing could expose the nature of the traffic on an

end-to-end path. The internal logic of how a network protocol operates is

not available to the outside world. However, as a protocol pushes traffic to the
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network or decides to pull off for any reason it directly impacts the size of data

queued at the routers. Moreover, the queue build up at the routers is directly

impacting the observed end-to-end latency, measured by RTT. So, assuming we

know the baseline latency of the network, probing the RTT at any given time

could provide insights about how congested is the network, representing the

instantaneous network load. While there is no clear way to capture the baseline

latency, when we regularly measure the RTT it reveals the latency variation,

potentially representing the temporal patterns of the network load over time

(e.g., Figure 2.5). In contrast, the particular state transitioning and behavior

model of a network protocol (or a mix of protocols) could result in particular

patterns of latency. Hence, the periodic RTT probing, forming RTT time-series,

providing the opportunity to capture the unique patterns of particular mixtures

of protocols, exposing the nature of the traffic to be analyzed, through machine

learning or otherwise (e.g., Figure 5.3).

4. Adaptive protocol selection aids optimization for throughput and fair-

ness on shared networks. When transferring data over a shared network,

it is beneficial, or even necessary, to investigate the mix of background work-

load. Distinct settings of background workload could manifest different levels

of impact on different protocols. Hence selecting a fixed protocol or tool might

yield sub-optimal performance on different metrics of interest (throughput, fair-

ness, etc.). In contrast, through investigating the background workload (e.g.,

using passive or active probing techniques) and adaptively selecting appropri-

ate protocol (e.g., using OPS) we could gain overall performance improvement

(Figure 7.10).
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8.4 Limitations and Future Work

Limitations. In this research study we strove to build models sufficiently sized to

validating our hypotheses and verifying our design decisions. Yet, there are a few

limitations of this research which we would like to call out in order to inform the

direction for possible improvement and extension in the future work:

1. In applying ML for background recognition, we have limited the scope to TCP

CUBIC and TCP BBR only. However, more realistically there are more diverse

ranges of CCAs running on a shared network, either TCP-based or UDP-based.

2. Our study is limited to a maximum of two streams of traffic in the background,

while the streams on a real network may count up to tens or hundreds of stream.

With larger number of streams it could tend to be harder to recognize the

mixture, particularly identifying the exact mixture of protocols.

3. In building our classification models we have gathered training data from a single

network with fixed bandwidth and RTT properties. This could be limiting

the capability of the trained model if deployed for a networks with different

properties. We have not verified this limitation as we have used the same

network for evaluating the trained models.

Future Work. Informed by those limitations, there are a few areas of improve-

ment which we recommend to be considered for the future work:

1. Diversifying the training data for a wider range of networks. The

training data we used for building classification models were limited to a fixed

network bandwidth and RTT configuration. This could limit our model perfor-

mance on the networks with different bandwidth and RTT properties. CCAs

tend to behave differently as the BDP on network path varies, hence manifest-

ing distinct signatures of RTT time-series. Therefore, one potential direction
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to expand this study is to gather lager training datasets collected over a wider

range of network BDP configurations (i.e., bottleneck bandwidth and RTT),

combined with a parameter sweep for the buffer size at the bottleneck router.

2. Enhancing ML models to deal with larger mixtures of streams and

CCAs. The classification models in this research were designed to predict the

exact mixture of the background traffic of up to two streams, of either TCP

CUBIC or TCP CCA. While this was sufficient to prove the effectiveness of

OPS mechanism, on real shared networks there could exist a larger number of

streams sharing the bandwidth.

Moreover, even though TCP CUBIC and TCP BBR are among the most popu-

lar TCP CCAs on the Internet, the emerge of newer TCP CCAs (e.g., Copa) or

even UDP-based protocols (e.g., QUIC) increases the possibility of facing those

protocols on the networks. Hence, another direction for future work consists of

gathering data and training models for traffic mixtures with a larger number of

streams, and of better diversified protocols in the mixture, possibly with differ-

ent schedules for the stream inter-arrival timing. When moving towards more

complex mixtures of background traffic, the target classes might be adjusted

to represent the type of protocols in use (e.g., proactive vs. reactive CCAs)

rather than predicting the exact streams and CCAs present on the network.

Furthermore, more advanced classification models (e.g., Deep networks, LSTM,

ResNet) may be used to better generalize for unseen RTT signatures.

Additionally, inspired by the premise of reinforcement learning, the classifica-

tion and decision process of OPS may be further optimized. A feedback loop

may be established from Step 4 to Step 2 and to Step 3 for sharing the ob-

served performance of the decided protocol. Then, using an appropriate reward

function we could incrementally improve the classification and decision-making

performance. Since the sender end-point could only measure throughput (and
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not cross-stream fairness), additional caution should be taken to ensure the

decision-making process is not gradually evolving towards throughput-only ob-

jective (as opposed to the desired objective of throughput-and-fairness).

3. Alternate design choices for OPS. There are some interesting variations of

the basic 4-step OPS cycle presented in this research.

First, the Step 1 (Background Probing) probing pattern does not need to be

a simple sequence of known CCAs, nor does it need to be fixed at 20 seconds.

In fact, the CCAs used in the probing pattern do not necessarily have to be

the same CCAs as in current use. Moreover, one might consider a new or

modified CCA (not just vanilla CUBIC or BBR) designed specifically to improve

classification accuracy. Such a special-purpose CCA could still constructively

transfer data during Step 1, while reducing the time and overhead of the step,

and lead to a better classification in Step 2.

Although we have not yet experimented with the idea, it is future work to

try a progressive probing pattern, with early termination. If a classifier (i.e.,

overlap Steps 1 and 2) already has high confidence in the class of the background

CCA, the pattern can be stopped before all four segments. Assuming 5 seconds

per segment, Step 1 could be abbreviated to just 5, 10 or 15 seconds. Even the

5 second parameter itself is not necessarily fixed, other than in our experiments.

Also, classification accuracy in a shorter time-frame might be improved by using

more features than just an RTT time-series. Other metrics, such as throughput,

latency, or packet loss count can be considered.

Second, the Y parameter in Step 4 (Steady Transfer) does not have to be a

constant. Similar to how congestion windows grow if there is a steady state,

the value of Y can vary and grow larger if the background CCA is observed to

be unchanging. But, if the background CCA is changing more frequently, Y

can be reduced, thus trading-off the amortization benefits of a larger Y for the
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dynamic responsiveness of a smaller Y.

Third, especially when using multiple features, other classifier algorithms might

be re-considered in the future. As discussed previously, we chose 1-NN w/ DTW

for Step 2 because it met our needs. We experimented with MLPs and other

options (Chapter 5) and chose the simplest algorithm that worked. However, a

progressive probing pattern, multiple features, and a special-purpose CCA for

classification might benefit from a more sophisticated machine-learning strategy

in our future work.
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