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Abstract

Nanotechnology has advanced in recent years to the extent that custom-tailored struc-

tures of high regularity can now be synthesized with high precision. Single-digit

nanochannels (SDNs), referring to nanochannels with a diameter or conduit width of

less than 10 nanometers, present unique challenges and opportunities for investiga-

tion and application. Due to the complex interplay between electrostatic, entropic,

and surface-dominated phenomena in such confined regimes, new physical properties

emerge. One example is the breakdown of electroneutrality, a situation in which chan-

nel surface charges are no longer exactly balanced by the ions in the channel-filling

electrolyte. In past theoretical studies of charged, nanofluidic channels, electroneu-

trality is usually assumed to hold both globally (i.e. for the entire channel) and locally

(i.e. for cross sections in the interior of the channel). However, recent work by Levy et

al. [1], assuming zero-size ions, indicates that a single channel may not be electroneu-

tral. In this work, we go beyond this initial investigation to examine the breakdown of

electroneutrality in a single nanochannel using finite element-based software, COM-

SOL. Electroneutrality is quantified as the ratio of the ions inside the channel to the

fixed charge on the channel surface. The effects of channel dimensions, surface charge

density, dielectric constant of the surrounding medium, temperature, and bulk ion

concentration on electroneutrality are investigated. The single nanochannel model is

also investigated for finite-size ions to evaluate the significance of the steric effects

within the nanochannel. Furthermore, the limiting trends depicting the convergence

of the electroneutrality breakdown curves for various surface charge densities, dielec-

tric constants, and dimensions of the surrounding medium are studied to understand
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the behavior of the system. The investigation is extended to explore this phenomenon

in a periodic array of nanochannels. Real-world nanostructures often present such

configurations, where the interactions among multiple nanochannels, also referred to

as coupling of nanochannels in our work, could influence the overall system behavior.

Following this, an infinite periodic array of nanochannels is studied along with the sin-

gle nanochannel model to identify and examine the differences in the electroneutrality

breakdown trends for various parameters.

Additionally, the importance of explicitly incorporating the dielectric medium is

highlighted. Levy et al. [1] reported the breakdown of electroneutrality in confined

nanopores embedded in a dielectric medium. A Robin boundary condition was derived

which eliminates the need to include the dielectric medium explicitly when solving

for the electric field within the nanopore. The issues related to the approximations

made during the derivation of the boundary condition are pointed out. The errors

caused by the use of this boundary condition can be significant even for nanochannels

of large aspect (length to radius) ratio, a condition on which the approximations in

Levy et al. [1] are based. Our contributions are aimed at critically expanding the

understanding of SDNs and the roles of various physical parameters in dictating the

behavior of these confined systems.
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Chapter 1

Introduction

Nanofluidics, which investigates fluid transport within structures characterized by

nanometer dimensions, is a significant research area within the broader field of nan-

otechnology [2]. A substantial portion of nanofluidic studies are devoted to compre-

hending and manipulating the transport of ions through nanoscale structures, such

as nanochannels or nanopores. The term “nanochannels” denotes channels having at

least one dimension of 100 nm or less. The intensive study of ion transport within

nanochannels is fueled by the drive to understand the role of biological ion channels

in physiological processes [3], and the potential to harness this property for diverse

biomedical and chemical applications. The applications of ion transport are indeed

extensive and span fields as varied as chemical separation and analysis, molecular

filtering, biosensing, and water desalination [4–15]. The advent of advanced nano-

fabrication techniques has spurred a renewed interest in nanopore-based ionic trans-

port studies in recent years. These advancements allow us to investigate immaculate

nanochannels at a single-channel level, including channels formed from materials like

carbon nanotubes, boron nitrite nanotubes, or silicon [16–20]. Recent experiments,

however, have exposed that our understanding of the fundamental physics of these

processes is still incomplete, and significant theoretical gaps persist [21]. This under-

lines the continuing need for comprehensive studies in nanofluidics and ion transport.

Approaches at different scales have been developed to model ion transport in
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nanofluidic systems, each with its own set of advantages and limitations. At the

smallest scale, the discrete molecular nature of the system is vital, emphasizing the

role of individual molecules and their interactions. Molecular Dynamics (MD) is a

prevalent method used to understand these interactions at the atomic scale. For in-

stance, MD has been frequently used to study ion transport in nanochannels due to its

detailed portrayal of molecular interactions that drive the transport process [22–26].

Direct Simulation Monte Carlo (DSMC) methods, on the other hand, are preferred for

studying ion transport when dealing with significant randomness or uncertainty [27–

31]. To achieve high accuracy, hybrid methods combining these approaches are also

considered [32–34]. Transitioning to the mesoscale, we encounter methods that bridge

the gap between molecular and continuum scales. Here, the focus is less on individual

atoms or molecules and more on collective behavior, patterns, and emergent phenom-

ena. The Lattice Boltzmann Method (LBM) is a widely recognized technique adept at

addressing problems where both mesoscopic dynamics and microscopic statistics play

pivotal roles. By transforming the Navier-Stokes (NS) equations into a discrete set of

lattice models, LBM provides a more efficient and scalable approach to simulations

[35–41]. The Dissipative Particle Dynamics (DPD) method is another approach that

integrates aspects from MD and LBM. It offers a distinctive perspective on simulat-

ing fluid dynamics at mesoscale levels, providing efficient and accurate simulations for

complex fluid systems [42–47]. Finally, at the macroscopic level, continuum theories

form the foundation of our understanding of fluid dynamics. These models ignore the

molecular complexities of gases and liquids, treating the fluid as a continuous medium

characterized by spatial and temporal changes in macroscopic properties such as den-

sity, pressure, temperature, velocity, and other flow parameters. The most well-known

and widely utilized continuum model is governed by the NS equations, which describe

the motion of fluid substances. These equations use principles of conservation of mass

and momentum to define the behavior of fluids. However, at smaller scales, modifi-

cations to the NS equations are often required to account for effects like slip at the
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boundaries [48]. Chan and Horn [49] confirmed, using a Surface Force Apparatus,

that hydrodynamic predictions, explicitly using the Reynolds formula, remain valid

for confinements exceeding roughly ten molecular diameters. This observation was

later corroborated by Georges et al. [50]. In more recent studies, specifically focusing

on water, Klein et al. [51] and E. Riedo et al. [52] demonstrated that water retains

its bulk viscosity up to a scale of approximately 1 − 2 nm. However, when the con-

finement becomes more pronounced, there is a marked shift in behavior, with the

wettability of the confining surface becoming a significant factor [53]. Observations

of analogous behavior have also been noted for other liquids, such as octamethylcy-

clotetrasiloxane (OMCTS) [53, 54]. Hence, the continuum theory of hydrodynamics

remains applicable to simple fluids when confinement exceeds approximately 1 nm,

as stated by Bocquet and Barrat [55]. Up to this point, all the models discussed

have been non-equilibrium models. The most well-known continuum model for elec-

trolytes under equilibrium is governed by the Poisson-Boltzmann (PB) equation and

is commonly used to describe the distribution of ions in a fluid under an electric field.

The equation combines the Poisson equation, which relates the electric potential to

the charge density, and the Boltzmann distribution, which describes the probability

of a particle being in a particular state with a given energy at a certain tempera-

ture. Many works have been performed on the applicability of the PB equation for

nanoscale electroosmotic flows [24, 56–63], highlighting the discrepancy in the results

as compared to the atomistic simulations. However, Wang et al. [64] found that the

PB model is reliable for predicting electroosmotic flows through nanochannels up to

high ionic concentrations (∼ 1M) and produces accurate electric potential profiles

even with strong electric double layer (EDL) interaction. Another approach to im-

prove the accuracy of the PB equation was to modify it to account for the effects not

considered in its classical version. Depending on the nanochannel system, these mod-

ifications include accounting for finite ion size [65], non-electrostatic interactions [66],

solution permittivity changes with field strength [67], wall-related effects [68], and
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unique solvent effects [65]. With these changes, which are largely based on statistical

mechanics, the equation can better predict ion distribution in nanochannels.

Single-digit nanochannels (SDNs), referring to nanochannels with a diameter or

conduit width of less than 10 nanometers, represent an intriguing subfield within the

wider landscape of nanofluidics. With their extremely small dimensions, SDNs present

unique challenges and opportunities for investigation and application. Conventionally,

continuum theories have been widely used to study ion transport in SDNs. These the-

ories, by making assumptions about the properties of the fluid on a macroscopic level,

allow for a simplified mathematical treatment of the transport phenomena. However,

when the confinement reaches the nanoscale as in SDNs, the behavior of fluids and

ions can significantly deviate from bulk behavior. The effects of the confining sur-

face, quantum confinement, and finite-size ions become substantial. These changes

can lead to discrepancies in the predictions of the continuum model, emphasizing the

need for a new theoretical framework that encompasses both discrete and continuum

behaviors. Several pioneering studies have ventured into this complex domain, such

as the study focused on the assumption of electroneutrality within the SDNs. Elec-

troneutrality is a foundational assumption considered in the boundary conditions in

many continuum models, particularly the PB equation [69–81]. It assumes that the

net electric charge within a given volume is zero. Because of this assumption, theoret-

ical studies nearly always take the total charge neutrality (or electroneutrality) inside

nanoconfined regions for granted, and experimental evaluation of electroneutrality

inside nanoconfined regions was lacking [82–85].

The study by Luo et al. [86] explored the breakdown of electroneutrality in nanocon-

fined aqueous electrolytes in a slit-shaped pore. They utilized quantitative nuclear

magnetic resonance (NMR) measurements and numerical calculations based on the

classical PB equation. The findings revealed a significant breakdown of electroneu-

trality inside uncharged nanoconfined regions along with very asymmetric responses

of cations and anions to the charging of nanoconfined surfaces. Following this, sev-
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eral studies focusing on ion transport within SDNs in relation to the breakdown of

electroneutrality were conducted. One notable study by Noh and Aluru [87] em-

ployed molecular dynamics simulations to develop an ion conductance theory that

accurately predicts the experimental data for electrically “imperfect” nanopores with

a constant surface charge. They termed nanopores as “imperfect” when the total

charge of the solution within the pore was insufficient to uphold electroneutrality.

Their ion conductance theory took into account this “imperfectness”. Furthering this

investigation, Ji et al. [88] delved into the dynamics of monovalent ions within SDNs

from the perspective of ion conductance. Their experimental findings using silicon

nitride SDNs substantiated that the breakdown of electroneutrality contributed to

the enhancement of ion conductance within the pore. Another study by Colla et

al. [84] examined a scenario involving two charged plates submerged in water. They

addressed the presence of free ions on both sides of each plate and employed density

functional theory (DFT) for the entire spatial domain. Due to asymmetric screen-

ing, particularly noticeable with a substantial screening length, the accumulation of

charge between the plates can be minimal. This phenomenon is referred to by the

authors as an instance of the local breakdown of electroneutrality.

Building on the concept of electroneutrality breakdown, Levy et al. [1] utilized the

continuum model approach, specifically employing the PB equation, to analyze cylin-

drical nanochannels. They investigated confined ions in electrolytes within charged

cylindrical channels, accounting for the presence of an electric field extending into the

surrounding medium, thereby showing the breakdown of electroneutrality for zero-

size ions. De Souza et al. [89] extended the analysis of electroneutrality breakdown

to an infinite periodic nanochannel array using continuum simulations and discussed

the effects of various physical factors. Using several assumptions and asymptotic re-

lations, the authors presented analytical equations to quantify the breakdown within

an array in the linear regime of PB equation.

Through this discussion, we highlight that while continuum theories inherently
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possess some limitations in capturing every subtlety of SDN behavior, they serve well

as a foundational theoretical framework. Using this framework to study phenomena,

such as the breakdown of electroneutrality paves the way for more specialized models.

As such, they act as a critical stepping stone, which can be refined and adapted more

precisely to understand various aspects of SDNs. Thus, the model by Levy et al. [1]

serves as a cornerstone for our work on SDNs. We undertake a detailed analysis of

electroneutrality within single nanochannels, considering a broad spectrum of physi-

cal parameters. This includes observing the patterns of electroneutrality breakdown

and investigating their underlying causes. Additionally, we consider the role of tem-

perature, comparing trends in two distinct thermal settings. Moreover, we examine

the impact of steric effects on the breakdown process, which justifies the use of the

classical PB equation. Transitioning from single nanochannels, our investigation on

electroneutrality breakdown broadens to encompass an infinite array of nanochannels.

Emphasizing the applicability of the single nanochannel model, we illustrate its use to

represent an infinite array, especially when the distance between channels significantly

exceeds the channel radius. This approach streamlines numerical simulations, offering

notable savings in computational resources and time. In addition to this, we examine

the assumptions made in deriving a Robin boundary condition put forth by Levy et

al. [1]. We emphasize the potential issues linked to using this boundary condition,

particularly in understanding electroneutrality breakdown. Through this discussion,

we highlight the importance of explicitly considering the dielectric medium in the

model.

This thesis is structured as follows:

1. In Chapter 2, we offer a concise review of the continuum modelling of electro-

statics within electrolytes, laying down the fundamental theories and concepts

that govern our study.

2. In Chapter 3, we delve into an in-depth analysis of electroneutrality within
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single nanochannels across a spectrum of physical parameters. This includes a

comprehensive investigation into the trends of electroneutrality breakdown and

a meticulous exploration of the underlying causes for these breakdowns. The

influence of temperature is taken into account as we explore the trends in two

different temperature settings. This chapter also engages with the contribution

of steric effects to the breakdown process, which justifies the use of the classical

Poisson-Boltzmann equation in our study.

3. In Chapter 4, we identify and discuss the problematic assumptions made in

the derivation of a Robin boundary condition introduced by Levy et al. [1]. We

highlight the significant implications that the use of this boundary condition

can have on the understanding of electroneutrality breakdown, emphasizing the

importance of explicitly including the dielectric medium in the model.

4. In Chapter 5, we expand our study from single nanochannels to an infinite

periodic array of nanochannels. Drawing upon our insights from earlier chap-

ters, we explore the electroneutrality breakdown in this new context, again in

two different temperature conditions. We align our findings with the work of

De Souza et al. [89], further strengthening and validating our conclusions. We

highlight the applicability of the single nanochannel model as a representation

of the infinite array when the inter-channel distance significantly exceeds the

channel radius.

5. Finally, in Chapter 6, a summary of our findings and the contribution to the

understanding of electroneutrality breakdown in nanochannels are discussed.

Additionally, we propose potential avenues for future exploration, aiming to

stimulate further research and advancements in this critical area of nanofluidics.
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Chapter 2

Continuum modelling of
electrostatics in electrolytes

The literature review in the preceding chapter underscores the significance of study-

ing electrostatics within nanochannels, which ultimately aids in comprehending ion

transport mechanisms. In the current chapter, we will undertake a concise review

of fundamental concepts pivotal to modeling the electrostatics in electrolytes using

continuum theory.

2.1 Charged solid-liquid interface

When a solid comes into contact with a liquid, it often carries a surface charge. The

surface charge is typically a result of surface group dissociation or the adsorption of

ions from the solution onto the surface, which does not necessarily involve electron

transfer [90, 91]. The nature of the surface charge on a solid, whether it is positive

or negative, depends on the quantity and type of acidic and basic groups present

in the solution [92–94]. In reality, charged interfaces are a result of the presence

of functional groups on the solid-liquid interface. For example, the surface of silica

hydrolyzes when silica interfaces with an aqueous solution, giving rise to silanol surface

groups. Depending on the pH value of the electrolyte solution, these groups can

be positively charged (Si OH +
2 ), neutral (Si OH), or negatively charged (Si O–).

Another example is metal-liquid interfaces that can be charged upon application of a
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bias potential to a metal electrode. Here, the nature of electron band structure of the

metal gives rise to much smoother (less discrete) surface charge distribution. In the

context of nanochannels, due to their high surface-to-volume ratio, the surface charge

density on the solid-liquid interface can be discrete in nature although in mean-field

approaches, the surface charge density is homogenized.

Surface charges give rise to electrostatic forces, playing a critical role in the long-

range interactions between molecules and surfaces within liquid environments. Hence,

they are instrumental in controlling the transport processes in nanofluidic systems [1,

95].

2.2 Electric double layer and Debye length

In the mean-field approach, owing to the presence of a surface charge on the solid sur-

face, an oppositely charged region of counterions emerges in the liquid in the vicinity

of the surface. A number of theoretical models have been formulated to elucidate the

structure of this region. The Gouy-Chapman-Stern (GCS) model [96], in particular,

is widely used in interfacial science. This model defines the so-called EDL, which

consists of two distinct regions, namely, (i) the ‘Stern layer’ which corresponds to the

compact layer of counterions that have a strong interaction with the surface [97], and

(ii) the ‘diffuse layer’ which is made up of a mixture of co-ions and counter-ions. These

ions are not as restrained and more mobile than the ions in the Stern layer. Elec-

trokinetic phenomena arise due to the presence of the EDL. These phenomena, such

as electroosmosis, electrophoresis, and streaming potential, refer to various behaviors

and motion of liquids that arise due to the presence of an electric field [95].

In simple continuum theories, such as the Gouy-Chapman model, the EDL effec-

tively screens the surface charge, causing the electric field to drop off exponentially

with the distance from the surface. This is referred to as the shielding effect. How-

ever, when the size of the EDL becomes comparable to the size of the nanochannel,

these simple models can overestimate this shielding effect. The size of the EDL can

9



be characterized by the Debye length (λD), defined as

λD =

√︄
ϵkBT

2e2
∑︁

i z̃
2
i c0i

, (2.1)

where c0i is the bulk concentration of the ith type of ions (in m−3) and ϵ is the

permittivity of the fluid. It can be expressed as ϵ = ϵ0ϵr where ϵ0 = 8.854×10−12 F/m

is the vacuum permittivity and ϵr is the relative permittivity of the fluid. kB =

1.38× 10−23 J/K is the Boltzmann constant and T is the temperature.

2.3 Continuum modelling of electrolyte

The continuum modeling approach used in this study is grounded in the Gouy-

Chapman framework. Within this perspective, the interactions between charged

species (counterions and co-ions) and solvents (such as water) hinge on the classi-

cal theory that addresses the interaction of mobile point charges within continuum

media.

From the thermodynamics point of view, it is helpful to consider the Helmholtz

free energy in order to understand how systems evolve and reach equilibrium under

constant volume and temperature. It encapsulates both energetic and entropic ef-

fects, providing a key criterion for spontaneous processes. The idea is that closed (no

mass exchange with the environment) thermodynamic systems at constant volume

and temperature naturally evolve in a way that minimizes the Helmholtz free energy.

The Helmholtz free energy (F) of a system is given by F = U − TS, where U is

the internal energy and S is the entropy. In a state of electroneutrality, the system

minimizes its internal energy. However, as the temperature increases, the system

gains more thermal energy, and the entropy or the measure of randomness or disor-

der of the system also increases. The system will start to favor configurations that

maximize entropy, even if they increase the internal energy. The temperature effec-

tively determines the trade-off between minimizing internal energy and maximizing

entropy. At zero or very low temperatures, the system tends toward electroneutrality,
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Figure 2.1: Schematic diagram of a negatively charged nanochannel containing an
electrolyte as described by a Gouy-Chapman model.

while at higher temperatures the ions are allowed to arrange themselves in ways that

are not strictly electroneutral, but increase the entropy of the system. This balance

between minimizing energy (toward electroneutrality) and maximizing entropy (away

from strict electroneutrality) leads to a state of dynamic equilibrium in the system

as the temperature is varied.

2.3.1 Classical Poisson-Boltzmann equation

We begin with the assumption that the ionic species within the electrolyte domain

are mobile point charges. This domain includes the volumetric interior of the channel,

as shown in Fig. 2.1. In local density approximations, the free energy of each ionic

species at each location in the volumetric domain depends solely on local variables

such as the electric potential ϕ (expressed in units of Volts [V]) and the ionic charge

density ρion

ρion =
∑︂
i

ez̃ici, (2.2)
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where ci (expressed in m−3) represents an averaged local concentration of ions for the

ith species, measured as the number of ions per unit volume. z̃i is the valency of the

ith ion and e is the elementary charge with the value of 1.602× 10−19C.

The Helmholtz free energy in a domain Ω is determined by [98],

F = U − TS, (2.3)

U =

∫︂ [︄
− ϵ

2
|∇ϕ|2 + ρionϕ−

∑︂
i

µ̄ici

]︄
dΩ, (2.4)

−TS =

∫︂
kBT

[︄∑︂
i

ci log
ci
cri

−
∑︂
i

ci

]︄
dΩ. (2.5)

The first term in Eq. 2.4 is the electric field energy, which arises due to the spatial

variation of the electric potential ϕ. The second term in Eq. 2.4 corresponds to the

electrostatic energy of the ions while the third term represents the chemical poten-

tial energy. The electrochemical potential µ̄i is defined as a measure of the energy

change of a system when an additional particle is added, keeping volume and entropy

constant. Note that the electrochemical potential includes the reference chemical

potential at the standard state. In Eq. 2.5, derived from Boltzmann’s foundational

entropy formula [99], cri denotes a reference ionic concentration. cri can be, for in-

stance, the electrolyte’s bulk ionic concentration, thereby coupling the system to a

bulk reservoir. The expression kBT
∑︁

i ci log
ci
cri

represents the entropy of mixing, cap-

turing the change in the entropy of the system when ions deviate from their reference

concentrations, whereas −kBT
∑︁

i ci is the so-called osmotic term [100].

The system will naturally evolve to a state where F is minimized, determined

by minimizing the functional (with variables ϕ and c) Eq. 2.3, using the variational

principle [101]. By taking the variation of F with respect to ϕ and setting it to zero,
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we can determine the free-energy minimum

δF|ϕ =

∫︂ [︂
− ϵ

2
δ
(︁
|∇ϕ|2

)︁
+ ρionδϕ

]︂
dΩ

=

∫︂ [︂
− ϵ

2
δ (∇ϕ · ∇ϕ) + ρionδϕ

]︂
dΩ

=

∫︂ [︁
−ϵ δ (∇ϕ) · ∇ϕ+ ρionδϕ

]︁
dΩ

=

∫︂ [︁
−ϵ∇ (δϕ) · ∇ϕ+ ρionδϕ

]︁
dΩ

=

∫︂ [︁
−ϵ {∇ · (∇ϕδϕ)−∇2ϕδϕ}+ ρionδϕ

]︁
dΩ

= −
∫︂

ϵ∇ · (∇ϕ δϕ) dΩ +

∫︂ (︁
ϵ∇2ϕ+ ρion

)︁
δϕ dΩ

= −
∫︂

ϵ (∇ϕ · n) δϕ dA+

∫︂ (︁
ϵ∇2ϕ+ ρion

)︁
δϕ dΩ = 0, (2.6)

where A represents the boundary surface enclosing the volume Ω. The integrand in-

volving A is derived through the application of the Divergence theorem, which relates

the flux of ∇ϕ across A and the divergence of ∇ϕ within the encompassed volume

Ω. In sufficiently large domains, the surface integral is usually assumed to vanish.

According to Gauss’ law, this implies a balanced net charge within the enclosed sur-

face [102]. Rearranging the integrand of the second integral of Eq. 2.6 results in the

Poisson equation

∇2ϕ = −ρion

ϵ
. (2.7)

This establishes a relationship between a static electric field and the electric charges

that induce it.

Varying the free energy F with respect to the ionic concentration ci gives the

electrochemical potential, which is a measure of the change in free energy as the

amount of that species (with ionic concentration ci) changes. At equilibrium, the free

energy of the system is at its minimum, which implies that any small addition or

removal of any species does not change the free energy. Using Eq. 2.5, the variation

of F with respect to ci yields

δF|ci = 0 =⇒ −µ̄i + z̃ieϕ+ kBT log
ci
cri

= 0. (2.8)
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Rearranging Eq. 2.8, we get

µ̄i = z̃ieϕ+ kBT log
ci
cri

. (2.9)

At equilibrium, the electrochemical potential anywhere in the electrolyte is equal to

the bulk chemical potential,

µ̄i = µ0i. (2.10)

In the bulk, the electric potential ϕ is zero thereby reducing the electrochemical

potential to the chemical potential, given as [99]

µ0i = kBT log
c0i
cri

, (2.11)

where the subscript 0 denotes the bulk. Equation 2.9, Eq. 2.10, and Eq. 2.11 are

solved for ci, leading to the Boltzmann equation. This provides us with the local

concentration of each type of ion in the diffuse layer,

ci = c0i exp

[︃
− z̃ieϕ

kBT

]︃
. (2.12)

By substituting Eq. 2.2 and Eq. 2.12 into Eq. 2.7, we derive the complete PB equation

for zero-size particles. This equation describes how the electrostatic potential varies

with position at equilibrium due to the distribution of ions within the electrolyte

domain,

∇2ϕ = −e

ϵ

∑︂
i

z̃ic0i exp

[︃
− z̃ieϕ

kBT

]︃
. (2.13)

In the case of a binary symmetric z̃ : z̃ electrolyte, where all positive ions have a

valency of z̃ and all negative ions have a valency of −z̃ (with z̃ > 0), and where

c0i = c0 for i = 1, 2, the equation becomes

∇2ϕ =
2z̃ec0
ϵ

sinh

[︃
z̃eϕ

kBT

]︃
. (2.14)

2.3.2 Modified Poisson-Boltzmann equation

One of the major limitations of the classical PB equation is the assumption of point-

like or zero-size ions. This model works well for dilute electrolytes, given that it
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is based on mean-field theory, but it breaks down for high concentrations of ions.

However, it is important to note that the assumption of a continuum of charges

breaks down when the nanochannel becomes highly charged, exhibiting large ion

concentrations, as more complex effects can come into play. These can include ion-

ion correlations, where the ions in an electrolytic solution interact with each other,

and steric effects, where the ions are no longer assumed to be point-like charges. The

latter is critical because ions cannot pack as densely as classical continuum models

would predict [103, 104], which can affect the distribution of ions and hence the

properties of the system. Steric effects are included in some more advanced models,

such as the modified PB equation [105, 106].

Borukhov and Andelman [107] tackled this problem by considering finite-size ions

instead of zero-size ions as used in the classical PB equation. Keeping the contribution

of internal energy the same as in Eq. 2.4, the entropic contribution is modified as

−TS =

∫︂
kBT

[︄∑︂
i

ci log (cia
3)−

∑︂
i

ci + w log (wa3)− w

]︄
dΩ, (2.15)

where w is the concentration of the solvent (such as water) expressed in m−3. The

electrolytic ions and the solvent molecules are assumed to be cubes of equal sizes.

The volume of these ion and water particles is approximated as a3 where a is an edge

of the cube. Equation 2.15 takes into account the additional terms with w that are

absent in Eq. 2.5, representing the entropic contribution of the water molecules.

Assuming that, aside from the ions, the remaining space is occupied by solvent

molecules, we can then proceed as follows

w =
Nw

V
=

Nwa
3

V a3
=

V −
∑︁

i Nia
3

V a3
=

1

a3
(1−

∑︂
i

cia
3), (2.16)

where V is the whole volume of the electrolyte. Nw and Ni are the numbers of solvent

molecules and ions, respectively. Equation 2.16 can be written as

wa3 + a3
∑︂
i

ci = 1, (2.17)
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which simply means the sum of volume fractions of solvent and ions is one. Substi-

tuting Eq. 2.17 into Eq. 2.15

−TS =
∫︁
kBT

[︁∑︁
i ci log (cia

3)−
∑︁

i ci +
1
a3
(1−

∑︁
i cia

3) log (1− cia
3)− 1

a3
(1−

∑︁
i cia

3)
]︁
dΩ.

(2.18)

At equilibrium, the system minimizes its free energy. Hence, varying the modified

F with respect to ϕ and setting it equal to zero results again in the Poisson equation

as shown in Eq. 2.7. Similarly, in the equilibrium state, adding or removing species

does not alter the free energy. By varying the modified F with respect to ci and

setting it equal to zero, we obtain

δF|ci = −µ̄i + z̃ieϕ+ kBT

[︄
log (

∑︂
i

cia
3)− log (1−

∑︂
i

cia
3)

]︄
= 0, (2.19)

from which the electrochemical potential µ̄i is obtained,

µ̄i = z̃ieϕ+ kBT

[︄
log (

∑︂
i

cia
3)− log (1−

∑︂
i

cia
3)

]︄
. (2.20)

At equilibrium, the electrochemical potential µ̄i equals the bulk chemical potential

µ0i as the electric potential ϕ is zero in the bulk

µ0i = kBT
[︁
log (c0ia

3)− log (1− c0ia
3)
]︁
, (2.21)

where the subscript 0 denotes the bulk situation. This provides us with ci as

ci =
c0i exp

[︂
z̃ieϕ
kBT

]︂
1− c0ia3 + c0ia3 exp

[︂
z̃ieϕ
kBT

]︂ . (2.22)

By substituting Eqs. 2.2 and 2.22 into Eq. 2.7, we arrive at the modified PB equation

∇2ϕ = −e

ϵ

∑︂
i

c0i exp
[︂
z̃ieϕ
kBT

]︂
1− c0ia3 + c0ia3 exp

[︂
z̃ieϕ
kBT

]︂ . (2.23)

For a binary symmetric z̃ : z̃ electrolyte where c0i = c0 for i = 1, 2, we find

∇2ϕ =
2z̃ec0
ϵ

sinh
[︂
z̃ieϕ
kBT

]︂
1− c0ia3 + c0ia3 cosh

[︂
z̃ieϕ
kBT

]︂ . (2.24)
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Figure 2.2: (a) A schematic diagram of the model featuring a nanochannel (Ω1) with
surface charge density σs, embedded within a dielectric medium (Ω2), and connected
to a reservoir (Ω3) at both entrances. (b) A small volume V with negligible thickness
encompassing the channel wall with n as the outward surface vector. er is the unit
vector normal to the channel wall pointing towards the dielectric medium.

2.4 System to model nanochannel

Figure 2.2a shows the system used to model a single nanochannel in this work, which

is divided into three distinct domains, namely Ω1, Ω2, and Ω3. Here, Ω1 represents

the nanochannel itself with surface charge density σs, embedded within a dielec-

tric medium denoted by Ω2. The entrances of the nanochannel are connected to

the reservoir, Ω3, which ensures the maintenance of chemical equilibrium within the

nanochannel. We model the electric field distribution within the nanochannel and

the reservoirs using the PB equation. For the distribution of the electric field within

the dielectric medium, the Laplace equation is utilized, as presented in Eq. 2.25. This
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is a direct result of the Poisson equation (Eq. 2.7) as the charge density is zero within

the dielectric medium (ρion = 0),

∇2ϕ = 0. (2.25)

The boundary condition at the nanochannel-dielectric interface ensures the continuity

of electric potential and is derived from the Poisson equation (Eq. 2.7). Specifically,

consider a small volume V with negligible thickness at the channel wall (depicted

in Fig. 2.2b), with n being the unit outward surface vector. Integrating the Poisson

equation within this volume yields the total charge,∫︂
V

ϵ∇ · ∇ϕ dV = −
∫︂
V

ρ dV. (2.26)

Using the Divergence theorem, we get∫︂
ϵ∇ϕ · n dA = −σsA. (2.27)

where A represents the boundary surface enclosing the volume V . As the thickness

of volume V tends to zero, the surfaces of the volume collapse on the channel wall

resulting in area A,

ϵin∇ϕin · n1A+ ϵout∇ϕout · n2A = −σsA, (2.28)

where ϕin and ϕout are the electric potential within the nanochannel and the dielectric

medium, respectively. ϵin is the permittivity of the fluid within the nanochannel while

ϵout is the permittivity of the dielectric medium. Considering er as the unit vector

in the radial direction pointing outward from the channel wall towards the dielectric

medium as shown in Fig. 2.2b,

ϵin
∂ϕin

∂r
er · (−er) + ϵout

∂ϕout

∂r
er · (er) = −σs, (2.29)

=⇒ ϵout
∂ϕout

∂r
− ϵin

∂ϕin

∂r
= −σs. (2.30)

Equation 2.30 is the boundary condition on the channel wall accounting for the surface

charge σs. This signifies the discontinuity of the electric displacement on the channel
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wall. Conversely, the electric displacement on the dielectric-reservoir interface is

continuous due to the assumption of an absence of surface charge.

In this chapter, we provided a brief review of the principles of electrostatics within

electrolytes and the framework of continuum modeling. Moreover, we delved into the

theoretical foundation of the system employed to model the nanochannel in this study.

The system and its modified versions are simulated using COMSOL Multiphysics and

the results are presented in the subsequent chapters.
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Chapter 3

Electroneutrality breakdown in a
single nanochannel

In this chapter, we shall employ the continuum modeling of electrolytes to study elec-

troneutrality breakdown within a single nanochannel. Previous research by Levy et al.

[1] explored the confinement of ions in electrolytes inside charged cylindrical channels.

They acknowledged the breakdown of electroneutrality for zero-size ions. Building

upon these findings, our study delves deeper into the impact of different physical pa-

rameters on electroneutrality breakdown within a single nanochannel. These results

are graphically represented via phase diagrams, based on two defining variables (or

parameters). The electric field in the medium surrounding the channel is thoroughly

quantified, shedding light on the reasons behind the extent of breakdown observed.

Additionally, the trends of this breakdown are evaluated at an elevated temperature.

The choice of employing zero-size ions in our study is further validated by introducing

finite-size ions into the investigation.

3.1 Infinitely long, single nanochannel

We begin by establishing the validity of numerical simulations through their compar-

ison with the analytical solution of a one-dimensional model. The one-dimensional

axisymmetric system is depicted in Fig. 3.1a. The system comprises an infinitely long

nanochannel characterized by a radius Rin, a surface charge density σs, and a permit-
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Figure 3.1: Sketch of a one-dimensional nanochannel with (a) the dimensional govern-
ing equations and boundary conditions, and (b) the normalized governing equations
and boundary conditions in the Debye-Hückel regime.

tivity ϵin. ϵin is given by ϵin = ϵ0ϵ
r
in, where ϵ

r
in corresponds to the relative permittivity

within the nanochannel. The nanochannel is embedded within a dielectric medium

with a radius Rout and a permittivity ϵout. The fluid confined within the nanochannel

consists of ions with negligible size.

The electric field distribution within the nanochannel, with a binary symmetric

z̃ : z̃ electrolyte, is governed by the classical PB equation (see Sec. 2.3.1),

1

r

d

dr

(︃
r
dϕin

dr

)︃
=

2z̃ec0
ϵin

sinh

(︃
z̃eϕin

kBT

)︃
, (3.1)

where ϕin is the electric potential within the nanochannel. In contrast, the Laplace
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equation is utilized to describe the electric field in the surrounding dielectric medium,

1

r

d

dr

(︃
r
dϕout

dr

)︃
= 0, (3.2)

where ϕout is the electric potential within the dielectric medium. The system of

equations involving Eq. 3.1 and Eq. 3.2 is solved with the corresponding boundary

conditions (BCs)

dϕin

dr

⃓⃓⃓⃓
r=0

= 0, (3.3)

ϵout
dϕout

dr

⃓⃓⃓⃓
r=Rin

− ϵin
dϕin

dr

⃓⃓⃓⃓
r=Rin

= −σs, (3.4)

ϕin|r=Rin
= ϕout|r=Rin

, (3.5)

dϕout

dr

⃓⃓⃓⃓
r=Rout

= 0. (3.6)

Equation 3.3 is a consequence of the Poisson equation (Eq. 2.7) in the vicinity of r = 0.

The uniform charge density on the surface of the nanochannel is established by Eq. 3.4.

Equation 3.5 ensures continuity of the electric potential across the boundary of the two

domains. The electric field is assumed to vanish at the outer surface of the dielectric

medium as expressed by the BC in Eq. 3.6. This is mainly because the dielectric

medium is much wider than the radius of the channel. In essence, electroneutrality

is imposed globally in the system.

Normalization helps us achieve a dimensionless representation that simplifies math-

ematical analysis and numerical computations. Furthermore, it allows for a clearer

understanding and interpretation of results, as the normalized variables provide in-

sights into the relative magnitudes and influences of different quantities involved.

Moreover, normalization establishes a consistent framework for comparing different

systems, facilitating meaningful comparisons and generalizations. In particular, we
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introduce

ϕ̄ =
z̃eϕ

kBT
, (3.7)

r̄ =
r

Rin

, (3.8)

R̄out =
Rout

Rin

, (3.9)

η =
ϵout
ϵin

, (3.10)

σ̄s =
z̃eσsRin

ϵinkBT
, (3.11)

λ̄D =
λD

Rin

, (3.12)

where λD =
√︂

ϵinkBT
2z̃2e2c0

is the Debye length. With these definitions Eqs. 3.1 and 3.2

become

1

r̄

d

dr̄

(︃
r̄
dϕ̄in

dr̄

)︃
=

1

λ̄
2
D

sinh(ϕ̄in), (3.13)

1

r̄

d

dr̄

(︃
r̄
dϕ̄out

dr̄

)︃
= 0. (3.14)

The BCs now read

dϕ̄in

dr̄

⃓⃓⃓⃓
r̄=0

= 0, (3.15)

η
dϕ̄out

dr̄

⃓⃓⃓⃓
r̄=1

− dϕ̄in

dr̄

⃓⃓⃓⃓
r̄=1

= −σ̄s, (3.16)

ϕ̄in

⃓⃓
r̄=1

= ϕ̄out

⃓⃓
r̄=1

, (3.17)

dϕ̄out

dr̄

⃓⃓⃓⃓
r̄=R̄out

= 0. (3.18)

Figure 3.1b shows the sketch of the non-dimensionalized boundary value problem

(BVP) where the PB equation in Eq. 3.13 is simplified (linearized) to the Debye-

Hückel (DH) equation valid in the weakly-charged regime:

1

r̄

d

dr̄

(︃
r̄
dϕ̄in

dr̄

)︃
=

1

λ̄
2
D

ϕ̄in. (3.19)

The general solution for ϕ̄in and ϕ̄out is given as

ϕ̄in = A1I0

(︃
r̄

λ̄D

)︃
+B1K0

(︃
r̄

λ̄D

)︃
, (3.20)

ϕ̄out = A2 ln (r̄) +B2, (3.21)
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where I0(x) and K0(x) are the zeroth-order modified Bessel functions of the first and

second kind, respectively, and A1, B1, A2, and B2 are constants. Following BC 3.15

and considering the limits I0(x) → 0 and K0(x) → ∞ as x → 0, Eq. 3.20 reduces to

ϕ̄in = A1I0

(︃
r̄

λ̄D

)︃
. (3.22)

Next, the derivative of ϕ̄out vanishes at r̄ = R̄out. From Eq. 3.18, we see that

A2 = 0, (3.23)

and so

ϕ̄out = B2. (3.24)

Considering the BC 3.17, we find

A1I0

(︃
1

λ̄D

)︃
= B2. (3.25)

The final BC 3.16 results in

A1 =
σ̄sλ̄D

I1(
1
λ̄D

)
, (3.26)

where I1(x) is the first-order modified Bessel function of the first kind obtained by

differentiating I0(x) once. Therefore, the expressions for ϕ̄in and ϕ̄out are

ϕ̄in = σ̄sλ̄D

I0

(︂
r̄
λ̄D

)︂
I1(

1
λ̄D

)
, (3.27)

ϕ̄out = σ̄sλ̄D

I0(
1
λ̄D

)

I1(
1
λ̄D

)
. (3.28)

In Fig. 3.2, ϕ̄ is plotted against r̄ computed for this one-dimensional BVP both ana-

lytically and numerically using the electrostatics interface under the AC/DC branch in

COMSOL Multiphysics. The BVP is numerically represented using a one-dimensional

axisymmetric model with a mesh size of 3.35×10−10m. Reference values of Rin, Rout,

λD, ϵin, ϵout, σs, and z̃ are listed in Table 3.1 and employed for the computation. The

excellent agreement between the two curves validates the numerical model of the

BVP which serves as a benchmark for the analysis conducted in the following sec-

tions. Numerical details pertaining to the model simulations in this thesis are given

in Appendix B.
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Figure 3.2: ϕ̄ is plotted against r̄ to compare the analytical and numerical solutions
for a one-dimensional nanochannel embedded in a dielectric medium.

Table 3.1: Reference parameters used for the study.

Parameter Description Value

Rin Radius of the
nanochannel

5 nm

Rout Radius of the
dielectric medium

50 nm

L Length of the
nanochannel

100 nm

λD Debye length 50 nm

ϵin Permittivity of
nanochannel

80ϵ0 F/m

ϵout Permittivity of
dielectric medium

100ϵ0 F/m

σs Surface charge density −1.0× 10−3C/m2

z̃ Valency of the
electrolyte

1

T Temperature 300K
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3.2 Finite, single nanochannel

Figure 3.3 shows a two-dimensional axisymmetric system defined on a r− z plane. It

consists of a long nanochannel (Ω1) with a high aspect ratio, L ≫ Rin (or L̄ ≫ 1),

surrounded by a dielectric medium (Ω2), and connected to two reservoirs (Ω3) at the

entrances, responsible for maintaining chemical equilibrium with the nanochannel.

The electric potential ϕin(r, z) in the regions Ω1 and Ω3 are governed by the two-

dimensional PB equation,

1

r

∂

∂r

(︃
r
∂ϕin

∂r

)︃
+

∂2ϕin

∂z2
=

2z̃ec0
ϵin

sinh

(︃
z̃eϕin

kBT

)︃
. (3.29)

The z-coordinate and the length of the reservoir are normalized by Rin as

z̄ =
z

Rin

, (3.30)

L̄out =
Lout

Rin

. (3.31)

This results in the normalized PB equation,

1

r̄

∂

∂r̄

(︃
r̄
∂ϕ̄in

∂r̄

)︃
+

∂2ϕ̄in

∂z̄2
=

1

λ̄
2
D

sinh (ϕ̄in). (3.32)

The electric potential ϕout(r, z) in the region Ω2 is governed by the Laplace equation,

which in the normalized form reads

1

r̄

∂

∂r̄

(︃
r̄
∂ϕ̄out

∂r̄

)︃
+

∂2ϕ̄out

∂z̄2
= 0. (3.33)

The normalized BCs governing the problem are

∂ϕ̄in

∂r̄

⃓⃓⃓⃓
r̄=0

= 0, (3.34)

η(n · ∇ϕ̄out)
⃓⃓
r̄=1, ,0≤z̄≤L̄

− (n · ∇ϕ̄in)
⃓⃓
r̄=1, 0≤z̄≤L̄

= −σ̄s, (3.35)

ϕ̄in

⃓⃓
r̄=1, 0≤z̄≤L̄

= ϕ̄out

⃓⃓
r̄=1, 0≤z̄≤L̄

,(3.36)

∂ϕ̄out

∂r̄

⃓⃓⃓⃓
r̄=R̄out

= 0, (3.37)

η (n · ∇ϕ̄out)
⃓⃓
1≤r̄≤R̄out, z̄=0

− (n · ∇ϕ̄in)
⃓⃓
1≤r̄≤R̄out, z̄=0

(3.38)

= η (n · ∇ϕ̄out)
⃓⃓
1≤r̄≤R̄out,z̄=L̄

− (n · ∇ϕ̄in)
⃓⃓
1≤r̄≤R̄out,z̄=L̄

= 0,

ϕ̄in

⃓⃓
z̄=L̄+L̄out

= ϕ̄in

⃓⃓
z̄=−L̄out

= 0, (3.39)
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Figure 3.3: Sketch of an axisymmetric nanochannel (Ω1) embedded in a dielectric
medium (Ω2) and maintained in chemical equilibrium with reservoirs (Ω3) at the
ends. All geometrical parameters are normalized with respect to the radius of the
nanochannel.

where n is the unit normal vector pointing outward from the surface of the nanochan-

nel.

A parametric study is performed to examine electroneutrality breakdown, discussed

in the following sections, for a variety of nanochannel systems concerning a wide range

of applications, such as water desalination, biosensors, and biomimetic materials. The

ranges of parameters are listed in Table 3.2 and selected based on the actual materi-

als. For most ion transport systems, Rin is considered to be 5 nm [6, 10, 108, 109].

It is not varied independently since the other geometric parameters in the system

inherently scale with it. Rout ranges from 10 nm to 50 nm. This range is frequently

encountered in applications such as water desalination, nanofiltration, and fuel cells

[110–112]. We vary the nanochannel length L across an order of magnitude, allowing
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Table 3.2: Range of parameters employed for the parametric study.

Parameter Description Range

Rout Radius of the
dielectric medium

10 to 50 nm

L Length of the
nanochannel

10 to 100 nm

λD Debye length 0.5 to 50 nm

ϵout Permittivity of
dielectric medium

ϵ0 to 100ϵ0 F/m

σs Surface charge density −1.0× 10−1 to
−1.0× 10−3C/m2

us to analyze both low and high aspect ratio (L/Rin) nanostructures. A channel

length of L = 100 nm and a radius Rin = 5nm is considered sufficient to repre-

sent an extremely long nanochannel in relation to its radius. Further extending the

length for simulation would only have a marginal effect on the electrostatics within

the channel. We explore systems with a broad spectrum of bulk ionic concentrations

c0, extending from 2.3 × 1022m−3 (≈ 0.04mM) to 2.3 × 1026m−3 (≈ 400mM), as

reported in previous studies [69, 71, 113]. These concentrations, in turn, yield De-

bye lengths λD in the range of 0.5 nm to 50 nm for ϵin = 80ϵ0 F/m, T = 300K, and

z̃ = 1. The dielectric permittivity outside the nanochannel, ϵout, spans from ϵ0 F/m

to 100ϵ0 F/m, encompassing a diverse array of dielectric materials such as polymers,

nanocomposites, ceramics, and metal oxides [111, 112, 114]. The surface charge den-

sity σs considered for this study lies between −1.0×10−1C/m2 and −1.0×10−3C/m2,

representing nanochannel systems with a wide spectrum of surface charge densities

[69, 95, 108, 109]. Note that the limiting trends in AppendixA are also helpful in

selection of the parameter ranges discussed above.

A set of parameter values from Table 3.2 were selected and listed in Table 3.1, as

they led to the highest breakdown. These parameters are collectively referred to as

the reference parameters for the COMSOL simulations.

28



3.3 Electroneutrality Breakdown

Electroneutrality breakdown within a nanochannel is quantified by the ratio

|Qin/Qout| i.e., the ratio of Qin, which is the volume integral over the charge density

within the nanochannel, and Qout, which is the surface integral over the charge density

along the surface of the nanochannel. As the charges within the nanochannel are

related to the electric potential through the PB equation, Qin can be calculated,

mathematically, as

Qin = −
∫︂
V

ϵin∇2ϕindV, (3.40)

where V is the volume of the nanochannel. Using the Divergence Theorem, Qin can

be rewritten into the sum of three surface integrals

Qin = −
∫︂
I

ϵin∇ϕin · n dA−
∫︂
II

ϵin∇ϕin · n dA−
∫︂
III

ϵin∇ϕin · n dA, (3.41)

where boundaries I, II, and III are indicated in Fig. 3.4. Recall that the BC at III

is

ϵout(n · ∇ϕout)− ϵin.(n · ∇ϕin) = −σs. (3.42)

If
∫︁
I
ϵin∇ϕin · n dA,

∫︁
II
ϵin∇ϕin · ndA, and ϵout(n · ∇ϕout) were negligible, it can be

easily shown that Qin equals Qout in magnitude. Specifically, using Eqs. 3.41 and 3.42

with its first term neglected,

Qin = −
∫︂
III

ϵin∇ϕin · n dA

= −
∫︂
III

σs · n dA

= −σs2πRinL

= −Qout.

(3.43)

In other words, electroneutrality is maintained when the entrance effects are negligible

(
∫︁
I
ϵin∇ϕin · n dA =

∫︁
II
ϵin∇ϕin · n dA → 0), in addition to the first term of Eq. 3.42

being negligible, i.e., ϵout(n · ∇ϕout) → 0.
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Figure 3.4: An axisymmetric model of a nanochannel with surface charge density σs

defined on the r− z plane. Boundaries I and II are the top and bottom entrances of
the channel while boundary III is the channel wall with surface charge density σs.

More generally, with the help of Eq. 3.42, Eq. 3.41 can be written as

Qin = −
∫︂
I

ϵin∇ϕin · n dA−
∫︂
II

ϵin∇ϕin · n dA−
∫︂
III

ϵout∇ϕout · n dA−
∫︂
III

σs · n dA

= −
∫︂
I

ϵin∇ϕin · n dA−
∫︂
II

ϵin∇ϕin · n dA−
∫︂
III

ϵout∇ϕout · n dA−Qout

= −2

∫︂
I

ϵin∇ϕin · n dA−
∫︂
III

ϵout∇ϕout · n dA−Qout.

(3.44)

The terms in Eq. 3.44 are computed in Table 3.3 for the reference parameters. |Qin/Qout|

is evaluated to be approximately 0.02, which results in a very high electroneutrality

breakdown for the given BVP in Sec. 3.2. By examining these terms separately,

a more comprehensive understanding of the underlying factors contributing to the

breakdown can be gained. Electroneutrality breakdown occurs when the electric field

leaks into the reservoir (first integral in the last line of Eq. 3.44) or into the surround-

ing medium (second integral). “Electric field leakage” refers to the phenomenon where

electric fields extend into the dielectric medium surrounding a confined electrolyte or

the reservoirs connected to the channel entrances, rather than being fully screened
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Table 3.3: Values computed for the terms in Eq. 3.44 for the set of parameters listed
in Table 3.1.

Term Value

Qin 6.42× 10−20C

Qout −3.14× 10−18C

2
∫︁
I
ϵin∇ϕin · n dA 9.46× 10−20C∫︁

III
ϵout∇ϕout · n dA 2.98× 10−18C

by the electrolyte itself. The integrals in Eq. 3.44 are computed using the gradients

∇ϕin and ∇ϕout obtained from the COMSOL simulation. Qout is computed using the

surface charge density σs employed in the simulation. The last three terms listed in

Table 3.3 can, therefore, be utilized to calculate Qin according to Eq. 3.44. On the

other hand, Qin can also be evaluated directly from the integral in Eq. 3.40 from the

COMSOL simulation, which is the value given in Table 3.3. A numerical error of ap-

proximately 2% is found when compared to the computed Qin according to Eq. 3.44,

using the terms in Table 3.3.

Equation 3.44 can be rearranged into

1 = −q1ex − q2ex −
Qout

Qin

, (3.45)

where

q1ex =
2
∫︁
I
ϵin∇ϕin · n dA

Qin

, (3.46)

q2ex =

∫︁
III

ϵout∇ϕout · n dA

Qin

. (3.47)

q1ex and q2ex signify the excess leakage from the channel entrances and its surface,

respectively1. Thus, electroneutrality is a result of the collective leakage through the

nanochannel entrances and its surface. For an extremely long nanochannel, entrance

effects are usually neglected on the presumption that leakage through the surface of

1Note that Qout

Qin
in Eq. 3.45 is greater than 1 during breakdown, hence q1ex and q2ex can have values

greater than 1 as well.
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the nanochannel dominates [89]. This assumption may not be valid for nanochannels

of arbitrary dimensions as shown in the following sections.

Qin is the total charge within the nanochannel which, as listed in Table 3.3, is only

about 1/3 of the elementary charge. With such small charges within the nanochan-

nel, electrostatic forces will be weakened, resulting in ion-ion correlation effects (see

Sec. 2.3.2). Following the mean-field approach, our model assumes that the behavior

of each ion is independent of the other ions present in the system and, thus, does

not take ion-ion correlations into account. Therefore, the reference parameters from

Table 3.1 do not seem to align completely with the continuum approach, and form an

extreme scenario where the electroneutrality breakdown is significant, with |Qin/Qout|

approaching zero. Nevertheless, these parameters are utilized because of their potency

in revealing significant trends of electroneutrality breakdown. The approach of ana-

lyzing the terms in Eq. 3.45 will continue to be used in the following section to shed

light on the complex interplay of phenomena while inducing the electroneutrality

breakdown.

3.4 Phase diagrams for a single nanochannel

A phase diagram is a graphical representation of a function of two variables that

describes the state of a physical system. For example, in Fig. 3.5a, |Qin/Qout| is

plotted as a function of L̄ and R̄out. As was discussed in the previous section, the

electroneutrality breakdown increases as |Qin/Qout| gets smaller. These diagrams help

visualize the trend of this breakdown as important physical parameters of the system

vary.

Figure 3.5a depicts the effect of channel dimensions on the electroneutrality break-

down. It shows that |Qin/Qout| is negatively correlated with R̄out but positively

correlated with L̄. Figure 3.5b illustrates the effect of properties of the dielectric

media on the electroneutrality breakdown by plotting |Qin/Qout| as a function of η

and R̄out. The figure shows that |Qin/Qout| decreases with increasing η and R̄out.
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Figure 3.5: Log-log plots of |Qin/Qout| as a function of (a) R̄out and L̄, (b) R̄out and η,
(c) λ̄D and σ̄s. The numbers in the four corners of the plots correspond to q1ex in red
and q2ex in black for the four limiting cases of each plot. The other fixed parameters
for each phase diagram are listed in Table 3.1.
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Figure 3.5c portrays the effect of the ionic concentration within the nanochannel and

the magnitude of the charge density on the surface of the nanochannel. It shows that

|Qin/Qout| decreases with increasing |σ̄s|, while it increases with increasing λ̄D.

Each diagram in Fig. 3.5 has four extreme cases for which q1ex (red) and q2ex (black)

are computed and shown in the four corners of the diagrams. In Fig. 3.5a, a shorter

channel facilitates the escape of charges from the channel into the reservoir which

results in lesser charges within the channel. This is indicated by the much higher

q1ex and q2ex for L̄ = 2 compared to a channel with L̄ = 20. q2ex increases with the

radius of the surrounding dielectric medium R̄out. Because the electric field is set to

vanish at the outer boundary of the dielectric medium, a thinner dielectric medium

with R̄out = 2 restricts the extent to which the electric field can leak from the channel

wall, leading to a higher concentration of charges within the channel as compared

to thicker dielectric medium with R̄out = 10. Therefore, the system with a thinner

dielectric medium (R̄out = 2) leans towards maintaining electroneutrality while a

thicker dielectric medium (R̄out = 10) drives the system towards the breakdown of

electroneutrality. Thus, a system with a short nanochannel surrounded by a thick

dielectric medium is more prone to electroneutrality breakdown. This finding has a

bearing on channel coupling in arrays of nanochannels (see Chapter 5).

In Fig. 3.5b, the higher q2ex values for η = 1.25 as compared to η = 0.01 is due to

the direct relationship of q2ex with ϵout in Eq. 3.47. Higher leakage from the channel

wall results in higher electroneutrality breakdown in this case. In Fig 3.5c, for high

|σ̄s|, higher concentration of counterions screen the negative surface charge within

the channel due to higher electrostatic attraction as compared to low |σ̄s|, thus,

maintaining electroneutrality. A similar effect is observed for small λ̄D. The EDL

is thin for small λ̄D, hence the concentration of counterions is high near the surface,

effectively screening the charge of the wall. In a system with higher λ̄D (λ̄D = 10),

the ionic concentration c0 is low and therefore, the ability of the electrolyte to screen

the electric field created by the charged wall is significantly reduced. This, coupled
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with low |σ̄s|, drives the system towards electroneutrality breakdown. Consequently,

this is also established in the DH regime characterized by low σ̄s and high λ̄D. Levy

et. al [1] stated that very high electroneutrality breakdown is found in this regime

which can also be concluded from the above discussion.

Overall, a system is more prone to electroneutrality breakdown when the nanochan-

nel is short (low L̄), containing a dilute electrolytic solution (high λ̄D), separated by

a weakly charged interface (low σ̄s) from a thick dielectric medium (high R̄out) with

high permittivity (high η).

The top left corner of Fig. 3.5a and the bottom right corner of Fig. 3.5b reveal an

interesting insight into the breakdown of electroneutrality. In both cases, |Qin/Qout|

of approximately 0.6 is observed. However, it is important to note that these points

correspond to different parameter combinations, and their impacts on the breakdown

are distinct. The variations become evident when the leakages, denoted as q1ex and

q2ex, are examined for these parameter combinations. In Fig. 3.5a, it is found that

q2ex dominates over q1ex, whereas in Fig. 3.5b, q1ex dominates over q2ex. This shows that

comprehensive information about the electric field distribution around a nanochannel

cannot be provided by the magnitude of |Qin/Qout| alone. In other words, a similar

value of |Qin/Qout| can be obtained from various combinations of q1ex and q2ex. This

underscores the necessity for a deeper understanding of the underlying parameters

and their effect on electroneutrality breakdown in nanochannels.

3.5 Steric Effects

In nanochannels with finite-size ions subject to high bulk concentrations (c0) and sig-

nificant surface charge densities (σs), an accumulation of counterions near the channel

surface occurs, leading to saturation of counterions. This accumulation gives rise to

steric effects as a consequence, where the ions can no longer be considered as point-

like charges (see Sec. 2.3.2). The influence of steric effects on ion transport properties

can be substantial, underscoring the significance of investigating the physical charac-
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Figure 3.6: Radial profile of the concentration of counter-ions predicted from both
the classical and modified Poisson-Boltzmann equations within the nanochannel in
Fig. 3.3.

teristics of nanochannels that contribute to the emergence of these effects [115–118].

The classical PB equation (Eq. 2.14) considers zero-size ions while the modified PB

equation (Eq. 2.24) accounts for the finite-size ions within the nanochannel. Note

that the model utilizing the modified PB equation assumes a0 = 0.3 nm [69, 119].

Steric effects become apparent in the model illustrated in Fig. 3.3 under the con-

ditions of small channel size, high bulk concentration, and high surface charge den-

sity. For instance, Fig. 3.6 displays the radial distribution of counterion concentra-

tion (c) for nanochannels with the following parameters: Rin = 1nm, Rout = 2nm,

L = 100 nm, ϵin = 80ϵ0 F/m, ϵout = 100ϵ0 F/m, λD = 0.5 nm, z̃ = 1 and σs =

−1.0C/m2. The radial distribution curves are obtained from the solutions of the

classical and modified PB equations, respectively. It is clear that the modified PB

equation predicts saturation behavior depicted by plateauing of the concentration

curve near r = 1nm, while the classical PB equation yields concentrations (c) higher

than the saturation curve. This discrepancy highlights the limitations of the classical

PB equation in accurately describing the ion distribution near the channel surface.

Considering the electroneutrality trends discussed in the earlier sections, the system

tends towards electroneutrality under the influence of large σs and c0. Consequently,
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for this particular case, the absolute value of Qin/Qout is approximately 0.93 for both

the classical and the modified PB equations. From this, it can be concluded that

steric effects are significant when the nanochannel is close to being electroneutral. In

other words, steric effects do not play a substantial role when the system, depicted

in Fig. 3.3, deviates from electroneutrality. However, steric effects may play a role

in electroneutrality breakdown outside the applicability of continuum models such as

sub-nanometer nanochannels.

3.6 Effect of temperature

Some devices involving nanochannels operate at elevated temperatures. For exam-

ple, PEM and fuel cells typically function at 353K [120–122]. This motivates an

exploration of the electroneutrality breakdown trends for the range of physical pa-

rameters listed in Table 3.2 at T = 353K for a single nanochannel as discussed in

Sec. 3.2. The left and the right panels of the phase diagrams in Fig. 3.7 show the elec-

troneutrality breakdown trend for the BVP in Fig. 3.3 at T = 353K and T = 300K,

respectively. Figures 3.7a and 3.7b illustrate the |Qin/Qout| trends for varying L̄ and

R̄out for the two temperature settings, which remains the same except for a small

shift towards breakdown for increasing R̄out and decreasing L̄ when the temperature

is higher. This is seen by an increase of the dark blue region (or a decrease in the

yellow region) towards the limiting case of R̄out = 2 and L̄ = 20. Figures 3.7c and

3.7d exhibit the influence of |σ̄s| and λ̄D on |Qin/Qout| for the elevated and the room

temperature, respectively. The pattern of the breakdown remains consistent across

both temperatures, albeit the more likelihood of breakdown at higher temperatures.

This shift is highlighted by the expansion of the blue, green, and orange regions to-

wards |σ̄s| = 27.29 and λ̄D = 0.1. In Figs. 3.7e and 3.7f, |Qin/Qout| is illustrated as

a function of η and R̄out for the two temperature settings. The breakdown of elec-

troneutrality is more significantly influenced by η in Fig. 3.7e as compared to Fig. 3.7f

shown by the expansion of the dark blue region towards η = 0.01 and R̄out = 2.
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The observed shifts towards electroneutrality breakdown can be linked to the rise

in the kinetic energy of ions as temperature increases. With enhanced kinetic energy,

ions can more readily migrate toward the reservoir, leaving behind fewer counterions

within the nanochannel to screen the surface charge on the channel wall. This is

further confirmed by the normalization of ϕ, where a temperature increase results

in a decrease in ϕ̄. In this manner, the system gets closer to the DH regime, as

expressed in Eq. 3.19. As discussed in Sec. 3.4, the system tends towards electroneu-

trality breakdown as it approaches the DH regime.

Further understanding of the effect of temperature can be gained by considering

the Helmholtz free energy of the system. As elucidated in Sec. 2.3, within the context

of the free energy formulation F = U − TS, an increase in temperature (T ) imparts

greater thermal energy to the system and consequently increases the entropic contri-

bution (TS) to the free energy. With this surge in entropic contribution due to ther-

mal fluctuations, ions are unable to maintain strict electroneutrality configurations.

This behavior propels the system towards a state of electroneutrality breakdown.

The model for a single nanochannel in this chapter explicitly incorporates a sur-

rounding dielectric medium, which holds a crucial role in influencing the electroneu-

trality breakdown. In 2020, Levy et al. [1] proposed a Robin boundary condition to

simplify the simulations of single nanochannels by eliminating the dielectric medium

from the model. Despite its simplicity, the assumptions used in the derivation of

the boundary condition are problematic and can have huge implications on the elec-

troneutrality breakdown. In the next chapter, we discuss this issue and emphasize

the need to explicitly include the dielectric medium in the model.
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Figure 3.7: Log-log plots of |Qin/Qout| as a function of (a) & (b) L̄ and R̄out, (c) &
(d) |σ̄s| and λ̄D, and (e) & (f) η and R̄out for T = 353K (left panel) and T = 300K
(right panel). The other parameters are listed in Table 3.1.
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Chapter 4

Need for explicitly modelling the
dielectric medium surrounding the
nanochannel

In recent work, Levy et al. [1] examined an important assumption usually made in

the modeling of electrolytes in a charged nanochannel, namely the electroneutrality of

the nanochannel-electrolyte system. This assumption usually neglects the presence

of the medium surrounding the nanochannel, as the boundary condition imposed

on the surface of the nanochannel implicitly assumes that the electric field in the

surrounding medium is zero. In essence, the surface charge of the nanochannel is

completely neutralized by the counterions in the pore. Via an in-depth investigation,

Levy et al. [1] proved that electroneutrality can be violated either within a cross-

section or even globally on the scale of the entire nanochannel. This work is valuable

and has raised awareness about the important issue of electroneutrality breakdown.

While the work is also comprehensive and valid overall, we discuss a particular issue

of the contribution in this chapter. Specifically, recognizing that the inclusion of the

surrounding medium complicates the BVP, Levy et al. propose a Robin boundary

condition (Eq. 4.1) at the surface of the nanochannel, which offers an opportunity to

eliminate the need to compute the electric field in the surrounding medium:

∂ϕin

∂r
(Rin, z) =

σs

ϵin
− ϵout

ϵin

ϕin(Rin)

RinML/Rin

(4.1)
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Despite its simplicity, in this chapter, we point out that the approximations that lead

to the proposed boundary condition can be flawed and care should be taken when

using it.

Figure 4.1a shows the axisymmetric system under consideration, consisting of a

nanochannel of radius Rin and length L with surface charge density σs and permit-

tivity ϵin, embedded in a dielectric medium with permittivity ϵout. The nanochannel

is connected to and in equilibrium with an external reservoir which has the same

permittivity ϵin and a bulk ion concentration of c0. The electric potential ϕ is gov-

erned by the PB equation in Ω (domain for the nanochannel and reservoir) and the

Laplace equation in the dielectric medium. For the symmetric monovalent electrolyte

considered in [1], the equations are

ϵin∇2ϕin(r) = 2c0e sinh

(︃
eϕin(r)

kBT

)︃
∀r ∈ Ω, (4.2)

ϵout∇2ϕout(r) = 0 ∀r /∈ Ω. (4.3)

In deriving the boundary condition Eq. 4.1, Levy et al. [1] focused on the DH regime

of the PB equation (i.e., weakly charged nanochannel) and considered a simplified

BVP as shown in Fig. 4.1b. Here the external reservoir is removed and replaced by

a Dirichlet condition (ϕ = 0) at the channel opening. κD =
√︂

2c0e2

ϵinkBT
is the inverse

of the Debye length, λD. Using azimuthal symmetry, exact solutions for ϕin and ϕout

exist in the case ϕ → 0 as r → ∞ in the form of series expansions:

ϕin(r, z) =
∞∑︂
n=1

An sin (ωnz)I0

(︃√︂
ω2
n + κ2

Dr

)︃
, (4.4)

ϕout(r, z) =
∞∑︂
n=1

Bn sin (ωnz)K0(ωnRin), (4.5)

where ωn = nπ/L, and I0(x) andK0(x) are the zeroth-order modified Bessel functions

of the first and second kind, respectively. The constants An and Bn are obtained using
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Figure 4.1: (a) Schematic of the system consisting of a nanochannel, surrounding
dielectric medium and an external reservoir. (b) Boundary value problem discussed
in Appendix A of [1] for a weakly charged cylinder embedded in a dielectric medium.
(c) Boundary value problem discussed in Appendix B of [1] which differs from (b) by
the replacement of the dielectric medium with a Robin boundary condition.
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the boundary conditions in Fig. 4.1b, and are given by

An = 4σs

ωnL
K0(ωnRin)

ϵin
√

ω2
n+κ2

DK0(ωnRin)I1
(︂√

ω2
n+κ2

DRin

)︂
+ϵoutωnI0

(︂√
ω2
n+κ2

DRin

)︂
K1(ωnRin)

, (4.6)

Bn = 4σs

ωnL

I0
(︂√

ω2
n+κ2

DRin

)︂
ϵin
√

ω2
n+κ2

DK0(ωnRin)I1
(︂√

ω2
n+κ2

DRin

)︂
+ϵoutωnI0

(︂√
ω2
n+κ2

DRin

)︂
K1(ωnRin)

, (4.7)

where I1(x) and K1(x) are the first-order modified Bessel functions of the first and

second kind, respectively. The above solutions are also presented in Appendix A of

[1], but there are typos in the expressions of An and Bn which are corrected in Eq. 4.6

and 4.7.

In Appendix B of [1], an attempt is made to further simplify the BVP in Fig. 4.1b

to the one in Fig. 4.1c. For this purpose, the following series of approximations are

made for L/Rin ≫ 1:

K0(ωnRin) = K0

(︃
nπRin

L

)︃
≈ − ln

(︃
nπRin

2L

)︃
− γ, (4.8)

− ln

(︃
nπRin

2L

)︃
− γ ≈ − ln

(︃
πRin

2L

)︃
− γ ≡ ML/Rin

, (4.9)

K1(ωnRin) = K1

(︃
nπRin

L

)︃
≈ L

nπRin

, (4.10)

where γ is Euler’s constant, approximately equal to 0.577. As an alternative to the

derivation in Appendix B of [1], we offer a simple way to see how the approximations

4.8-4.10 lead to the BC in Eq. 4.1. Starting from Eq. 4.5 and using the continuity

of ϕ at the channel wall for all values of z, which implies AnI0

(︂√︁
ω2
n + κ2

DRin

)︂
=

BnK0(ωnRin) from Eqs. 4.4 and 4.5, it can be easily shown that

∂ϕout

∂r
(Rin, z) = −

∞∑︂
n=1

An sin (ωnz)I0

(︃√︂
ω2
n + κ2

DRin

)︃
ωnK1(ωnRin)

K0(ωnRin)
. (4.11)

Now, replacing K1(ωnRin) and K0(ωnRin) using Eqs. 4.8-4.10 reduces the term

ωnK1(ωnRin)
K0(ωnRin)

to 1
RinML/Rin

, i.e., a constant, allowing ∂ϕout

∂r
(Rin, z) to be directly pro-

portional to ϕin. The jump condition in the electric displacement shown in Fig. 4.1b

finally becomes Eq. 4.1.
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Figure 4.2: (a) ωnK1(ωnRin)
K0(ωnRin)

vs. n, compared with its approximation by 1
RinML/Rin

. (b)

Bn (Eq. 4.7) and its asymptote (Bn)a in Eq. 4.12 against n. (c) (ϕout)n at (Rin, L/2) for
odd values of n calculated using Eq. 4.5, Eq. 4.15 and Eq. 4.16. The plots are generated
using Rin = 5nm, L = 100 nm, ϵ0 = 8.854 × 10−12 F/m, ϵin = ϵout = 80ϵ0 F/m,
σs = −1.0× 10−4C/m2, and κD = 2.0× 107 m−1.
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We first examine the approximation of ωnK1(ωnRin)
K0(ωnRin)

by a constant 1
RinML/Rin

. Fig-

ure 4.2a shows that ωnK1(ωnRin)
K0(ωnRin)

is almost linearly dependent on n, which deviates sig-

nificantly from the constant 1
RinML/Rin

(also shown in Fig. 4.2a). In fact, ωnK1(ωnRin)
K0(ωnRin)

tends to infinity as n goes to infinity, which motivates us to investigate the behavior

of the coefficient Bn in Eq. 4.7 as n increases. Figure 4.2b plots Bn vs. n for the same

nanochannel dimension considered in [1], along with σs = −1.0 × 10−4C/m2 and

κD = 2.0× 107 m−1. Also plotted is the asymptotic expression of Bn for large n:

(Bn)a =
4σs exp

(︁
nπRin

L

)︁
π2(ϵin + ϵout)

√︂
n3

2RinL

(4.12)

where the asymptotes of the modified Bessel functions

I0(x), I1(x) ∝
exp (x)√

2πx
, (4.13)

K0(x), K1(x) ∝ exp (−x)

√︃
π

2x
, (4.14)

for large x have been used. Both Fig. 4.2b and the analytical expression in Eq. 4.12

show that Bn diverges as n goes to infinity (note that the asymptotic approximation

in Eq. 4.12 works well even for small n). Therefore, the convergence of ϕout(r, z) in

Eq. 4.5 relies critically on the decaying feature of K0(ωnRin) and approximating it by

a constant on the boundary using Eq. 4.8-4.10 removes this critical feature.

To see this impact, Fig. 4.2c plots (ϕout)n(Rin, L/2) against n where (ϕout)n is

the nth term of the sum in Eq. 4.5. Only odd values of n are considered since

(ϕout)n(Rin, L/2) = 0 for even values of n due to the symmetry of the system. Com-

pared in the same figure are (ϕout)n(Rin, L/2), obtained by using the approximations

taken from the following expressions:

ϕout(Rin, z) = −
∞∑︂
n=1

Bn sin
(︂
nπ

z

L

)︂(︃
log

nπRin

2L
+ γ

)︃
, (4.15)

ϕout(Rin, z) ≈ ML/Rin

∞∑︂
n=1

Bn sin (ωnz). (4.16)

Equation 4.15 is found by using the approximation in Eq. 4.8 whereas Eq. 4.16 is

found by using Eq. 4.9. Clearly from Fig. 4.2c, the bounded values of (ϕout)n in Eq. 4.5
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Figure 4.3: Relative error (in %, see Eq. 4.20) as a function of r and z coordinates
within a nanotube with length and radius of (a) 100 nm and 5 nm, and (b) 300 nm
and 3 nm, respectively.

verify that the divergent values of Bn for large n are compensated by the decay of

K0(ωnRin) with n, while approximations in Eqs. 4.8-4.9 result in divergent (ϕout)n,

which is unphysical.

Intuitively, the divergent behavior of (ϕout)n in Fig. 4.2c should not result in a

convergent ϕout and the problematic approximations in Eq. 4.10 should impact the

jump boundary condition for the electric displacement. In fact, in Appendix B of [1]

an intermediate step is presented before using the continuity condition for the electric

potential at r = Rin to arrive at Eq. 4.1, namely,

∂ϕout(Rin, z)

∂r
= −ϕout(Rin, z)

RinML/Rin

. (4.17)

Under the approximations in Eq. 4.10, ϕout(Rin, z) becomes divergent, making this in-

termediate step unphysical. However, replacing ϕout(Rin, z) with ϕin(Rin, z) by virtue

of continuity accidentally “resolves” this issue, because ϕin is convergent despite the

use of the erroneous approximations in Eq. 4.10. To be more explicit, taking the

general solution in Eq. 4.4 and applying the Robin boundary condition Eq. 4.1, the

coefficient An under this approximation can be obtained, leading to the following
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expression for ϕin:

ϕin(r, z) =
∑︂
n odd

4σs

ωnL

RinML/Rin
sin(ωnz)I0

(︂√︁
ω2
n + κ2

Dr
)︂

ϵinRinML/Rin

√︁
ω2
n + κ2

DI1

(︂√︁
ω2
n + κ2

DRin

)︂
+ ϵoutI0

(︂√︁
ω2
n + κ2

DRin

)︂ (4.18)

The same expression can also be obtained by directly applying the approximations

in Eq. 4.10 to Eq. 4.6 in the calculation of An. The nth term of this sum, for large n

and at r = Rin, has the following asymptotic behavior:

(ϕin)a(Rin, z) =
4σsL

n2π2
sin

(︂nπz
L

)︂
(4.19)

and, hence, the sum is convergent. This is one reason why Levy et al. used Eq. 4.1 to

examine electroneutrality and did not encounter any issues of divergence (see Fig. 5

of [1]).

Another reason why Eq. 4.1 appears to work well in Fig. 5 of [1] is that the cal-

culation of electroneutrality involves the integration of charges in the pore, which

smoothens the inaccuracies. Nevertheless, this does not change the fact that there is

an intrinsic error associated with using the approximations in Eq. 4.10. To examine

the magnitude of the error in the evaluation of ϕin, the following relative error is

computed for ϕin obtained from the exact solution of Eq. 4.4 and 4.6 ((ϕin)exact), and

ϕin obtained from Eq. 4.18 ((ϕin)approx):

Relative error (in %) =
(ϕin)exact − (ϕin)approx

(ϕin)exact
× 100 (4.20)

Figure 4.3a shows the relative error when the radius and length of the nanochannel

are 5 nm and 100 nm, respectively. The first 99 terms in the sum are used for the

calculation of both (ϕin)exact and (ϕin)approx. The error is only plotted for half the

length of the pore (z = 0 to L/2) due to the symmetric nature of the problem. The

largest errors are found near the entrance of the nanochannel (z = 0). In addition,

more than two-thirds of the length of the pore records a relative error above 10%.

Considering that the approximations in Eq. 4.10 are based on the condition of L ≫

Rin, Fig. 4.3b shows the relative error for a nanochannel with an even larger aspect
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Figure 4.4: Electroneutrality breakdown within the nanochannel system with the
Robin boundary condition in Fig. 4.1c and without the Robin boundary condition in
Fig. 4.1a. The pore dimensions are: Rin = 5nm and L = 100 nm.

(L to Rin) ratio: Rin = 3nm and L = 300 nm. Again, more than two-thirds of the

nanochannel exhibits more than 10% error, and over 100% error is observed at the

pore entrance for all r. Having a large aspect ratio does not reduce the error, and the

poor prediction of ϕin near the entrance can have a significant effect on the description

of transport properties.

In their Appendix B, Levy et al. [1] point out that the Robin boundary condition

(Eq. 4.1) is not limited to the linearized DH regime, as long as the channel has a

large aspect ratio, L ≫ Rin. This motivates an exploration of the BVP in Fig. 4.1c

by employing the PB equation for large to small surface charge densities σs, viz.,

−1.0 × 10−1C/m2, −1.0 × 10−2C/m2, −1.0 × 10−3C/m2, and −1.0 × 10−4C/m2.

Following the analysis in [1], the electroneutrality breakdown |Qin/Qout| is computed

for κDRin in the range of 10−1 to 10, and for Rin = 5nm and L = 100 nm, exhibited

in Fig. 4.4. Maximum relative error as large as 100% is observed for the case of high

surface charge density, σs = −0.01C/m2, but low bulk concentration, κDRin = 0.1.

Here, the DH approximation is no longer valid near the channel wall. This clearly

demonstrates that the application of the Robin boundary condition (Eq. 4.1) can, in

fact, result in large errors as one moves out of the DH regime.

48



Last but not least, the Robin boundary condition in Eq. 4.1 causes issues at r = Rin

and z = 0 from a numerical perspective, if one imposes ϕ = 0 at z = 0 for all r, as it

is done in its derivation. Clearly, these two conditions can only be met in Eq. 4.1 if

σs = 0, which is not the physical case one is usually interested in and which was not

assumed in deriving this Robin boundary condition. In other words, for σs ̸= 0, a

self-consistency issue arises that can cause numerical instabilities or errors. However,

the assumption ϕ = 0 at z = 0 is questionable in the first place as it neglects the

double-layer overlap at the channel entrance.

To conclude, this chapter points out fundamental issues associated with the ap-

proximations employed in Appendix B in [1]. While our discussion remains focused

on one specific issue and does not address the other important contributions made

in [1], care should be taken when considering using Eq. 4.1 to replace the medium

surrounding the nanochannel. From a practical perspective, using this boundary

condition may not show a significant impact on the results for the breakdown of elec-

troneutrality (as shown in Fig. 5 of [1]) in the DH regime. However, calculations for

the electric potential can result in errors larger than 100% error at the pore entrance,

even for nanochannels with very large aspect ratios.

The previous chapter, Chapter 3, offered an in-depth exploration of the trends

linked to electroneutrality breakdown within single nanochannels. This chapter sheds

light on the challenges associated with the use of the Robin boundary condition,

aimed at simplifying these models. In this context, the theoretical framework of

single nanochannels was thoroughly investigated. As real-world nanochannel appli-

cations often involve the use of multi-channel nanostructures, it becomes vital to

extend our analysis to these more complex systems. In this context, the next chapter

seeks to delve into the electroneutrality breakdown trends within a periodic array of

nanochannels, a representation closer to practical applications.
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Chapter 5

Electroneutrality breakdown in
periodic arrays of nanochannels

In the preceding chapters, we have examined the occurrence of electroneutrality break-

down within single nanochannels and underscored the necessity of incorporating the

dielectric medium into these nanochannel models. Building upon this knowledge,

this chapter will explore this phenomenon in a periodic array of nanochannels. Real-

world nanostructures often present such configurations [103, 123–126], where the in-

teractions among multiple nanochannels could influence the overall system behavior.

Therefore, our objective is to study a model that encompasses a unit cell representa-

tion of an infinite periodic array of nanochannels. By doing so, we aim to bridge the

gap between fundamental theoretical frameworks and practical nanostructured sys-

tems, offering insights that could direct the design and implementation of advanced

nanoscale devices.

5.1 Periodic array of nanochannels

Figure 5.1a shows an infinite array of nanochannels arranged in a square packing.

These channels are embedded in a dielectric medium and their entrances are connected

to reservoirs. A unit cell, highlighted in red, is outlined in the array, serving as a

representation of the entire structure. Figure 5.1b shows a unit cell of the periodic

array used for COMSOL simulations. Unlike the axisymmetric model of a single
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nanochannel explored in Chapter 3, this model cannot be described using cylindrical

coordinates due to its non-axisymmetric nature. Within each unit cell, there are four

nanochannels, with one positioned at each corner. These channels are characterized by

a radius Rin, length L, surface charge density σs, and permittivity ϵin. These channels

are embedded in the dielectric medium of a length, width, and height of 2Rout, 2Rout,

and L, respectively, with a permittivity denoted as ϵout. Each reservoir is defined

by dimensions 2Rout in length and width, and Lout in height. The nanochannels and

reservoirs confine a fluid consisting of zero-size ions. To make meaningful comparisons

and generalizations, the following normalization scheme is employed for the model.

ϕ̄ =
z̃eϕ

kBT
, (5.1)

x̄ =
x

Rin

, (5.2)

ȳ =
y

Rin

, (5.3)

z̄ =
z

Rin

, (5.4)

R̄out =
Rout

Rin

, (5.5)

L̄ =
L

Rin

, (5.6)

L̄out =
Lout

Rin

, (5.7)

η =
ϵout
ϵin

, (5.8)

σ̄s =
z̃eσsRin

ϵinkBT
, (5.9)

λ̄D =
λD

Rin

. (5.10)

For a binary symmetric z̃ : z̃ electrolyte, the electric field distribution within the

nanochannel and the reservoirs is governed by the normalized classical PB equation,

∂2ϕ̄in

∂x̄2
+

∂2ϕ̄in

∂ȳ2
+

∂2ϕ̄in

∂z̄2
=

1

λ̄
2
D

sinh (ϕ̄in), (5.11)

where ϕ̄in is the normalized electric potential within the nanochannel and the reser-

voir. The normalized Laplace equation is used to describe the electric potential in
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Figure 5.1: (a) Infinite periodic array of square-packed nanochannels embedded in a
dielectric medium, with entrances connected to reservoirs. A unit cell of the array,
outlined in red, is used to represent the entire array. (b) Orthogonal view of the unit
cell with the geometrical parameters. (c) The boundary conditions employed in the
COMSOL simulations of the unit cell. Geometry and equations are in the normalized
form.
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the surrounding dielectric medium,

∂2ϕ̄out

∂x̄2
+

∂2ϕ̄out

∂ȳ2
+

∂2ϕ̄out

∂z̄2
= 0, (5.12)

where ϕ̄out is the normalized electric potential within the dielectric medium.

Figure 5.1c illustrates the BCs enforced upon the model. The symmetry condition

is employed on the four lateral boundaries of the unit cell ensuring that it represents

the entire periodic array. A uniform surface charge density σ̄s is enforced on the

nanochannel-dielectric interfaces,

η(n · ∇ϕ̄out)− n · ∇ϕ̄in = −σ̄s, (5.13)

where n is the surface normal vector pointing outward from the nanochannel towards

the dielectric medium. The continuity of the electric potential across the nanochannel-

dieletric interfaces is ensured by

ϕ̄in = ϕ̄out. (5.14)

The uncharged surfaces separating the dielectric medium and the reservoirs are rep-

resented by

η(n · ∇ϕ̄out)− n · ∇ϕ̄in = 0. (5.15)

The reservoirs are much longer than the Debye length and, hence, the electric potential

is set to zero at its ends.

5.2 Model validation

During our simulations of the system in Fig. 5.1, a similarity was observed with the

work of De Souza et al. [89]. These authors conducted simulations for a unit cell that

represented a periodic array similar to ours. Given this, their results serve as valida-

tion for our model. De Souza et al. [89] used COMSOL Multiphysics for simulations of

the unit cell shown in Fig. 5.2a. Their chosen unit cell, detailed in Fig. 5.2b, represents

the entire array, with its governing equations and boundary conditions. Despite the
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(a)  (b)

Figure 5.2: (a) Simulation configuration in COMSOL showing a nanochannel, a di-
electric medium, and reservoirs. (b) A cross-section of the unit cell representing the
entire periodic array of nanochannels. This cross-section includes the axis of the cylin-
drical pore, describing the domains and equations utilized in the simulations. Here,
R, σs, ϵin, ϵout correspond to Rin, σs, ϵin, ϵout in this thesis, respectively. Reprinted
figure with permission from ref [89]. Copyright 2021 by the American Physical Soci-
ety.

difference in the choice of the unit cell, the governing equations and boundary condi-

tions employed in both models are the same, ensuring consistency in the approach to

simulate electroneutrality breakdown. In De Souza et al. [89], the electroneutrality

breakdown curves are presented in dimensionless forms against the center-to-center

spacing between channels (2Rout) normalized by length L as 2Rout/L.

In Fig. 5.3, the COMSOL simulation results are compared for the models depicted

in Figs. 5.1 and 5.2 under the conditions of L = 100 nm, Rin = 1nm, σs → 0, ϵin =

80ϵ0 F/m, ϵout = 10ϵ0 F/m. Note that the exact value of σs was not mentioned in

De Souza et al. [89] when the limit of σs → 0 was considered. Through multiple

tests with various σs values, it was deduced that the model in Fig. 5.1 aligns with

the observed electroneutrality breakdown when σs = 1.0 × 10−5C/m2. Figure 5.3a

illustrates the function |Qin/Qout| in terms of 2Rout/L considering three different bulk

ionic concentrations. The curves with star markers are results from our simulation

of the unit cell in Fig. 5.1, which overlap the circle markers from De Souza et al.

[89] except for an error of approximately 4.5% at 2Rout/L = 0.02 and c0 = 0.01mM.
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Figure 5.3: |Qin/Qout| vs. 2Rout/L for (a) ϵout = 10ϵ0, σs = 1.0 × 10−5C/m2 and
three different c0 (b) c0 = 1mM, σs = 1.0 × 10−5C/m2 and varying ϵout, and (c)
ϵout = 10ϵ0 F/m, c0 = 1mM, and three different σs. The circle markers are the
COMSOL simulation results by De Souza et al. [89] for their model in Fig. 5.2 while
the star markers are our COMSOL simulation results for our model in Fig. 5.1. The
channel dimensions are L = 100 nm and Rin = 1nm with ϵin = 80ϵ0 F/m.
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Figure 5.3b shows |Qin/Qout| with respect to 2Rout/L for three different permittivities

of the dielectric medium. Again, the curves with star markers align well with the circle

markers, with the exception of an error of about 1%, observable at some points on

the blue and red curves. Finally, in Fig. 5.3b, |Qin/Qout| is depicted as a function of

2Rout/L, now exploring three surface charge densities. In this case, the star marker

curves align extremely well with the circle markers. The remarkable agreement with

the previous work [89], marked by only minor deviations, underscores the validation

of our modeling approach employed in COMSOL Multiphysics.

The underlying causes of the electroneutrality breakdown, as depicted in these fig-

ures, are already discussed in Section 3.4. Additionally, it is observed in Fig. 5.3 that

the system tends towards electroneutrality as the channels are brought closer together

in the array by decreasing 2Rout/L. This trend is attributed to the interaction be-

tween the nanochannels in the array, referred to as the “coupling of nanochannels” in

this work. Such coupling leads to an increase in the magnitude of the electric potential

inside the channels, and consequently an increase in the concentration of counterions

within the channels. Higher concentration of counterions leads to more screening of

the surface charge on the channel, thereby driving the system towards electroneutral-

ity. Drawing from the analysis of single nanochannels in Chapter 3, a detailed study is

undertaken to study the electroneutrality breakdown across an infinite periodic array

of nanochannels, considering a range of parameters listed in Table 3.2. In contrast,

De Souza et al. [89] focused their findings on distinct parameter values such as c0,

ϵout, and σs.

5.3 Comparison between a periodic array of

nanochannels and a single nanochannel

Phase diagrams are generated as a result of the parametric study for an infinite peri-

odic array of nanochannels in a similar fashion as discussed in Sec. 3.4. A comparative

analysis is performed between these newly obtained phase diagrams and the phase di-
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Figure 5.4: Log-log plots of |Qin/Qout| for an infinite periodic array of nanochannels
(left panel) and a single nanochannel (right panel) as a function of (a) & (b) η and
R̄out, (c) & (d) |σ̄s| and R̄out, and (e) & (f) λ̄D and R̄out. The other fixed parameters
for each phase diagram are listed in Table 3.1.
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(a) (b)

(c)

Figure 5.5: Log-log plots of difference (in %) in |Qin/Qout| between an infinite periodic
array of nanochannels and a single nanochannel as a function of (a) η and R̄out, (b)
|σ̄s| and R̄out, and (c) λ̄D and R̄out. The other fixed parameters for each plot are
listed in Table 3.1.
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Table 5.1: Comparison of electric field leakages, q1ex and q2ex, for both the nanochannel
array and the single channel models. Values are provided for specific parameters:
η = 1.25, |σ̄s| = 0.27, λ̄D = 10, and both R̄out = 2 and R̄out = 10.

Nanochannel array Single channel

R̄out = 2 R̄out = 10 R̄out = 2 R̄out = 10

q1ex q2ex q1ex q2ex q1ex q2ex q1ex q2ex

0.15 0.57 1.63 53.86 0.13 0.37 1.46 45.46

agrams of a single nanochannel in Fig. 5.41. Upon close inspection, subtle differences

are noted in the corresponding phase diagrams. To better understand these discrep-

ancies, the difference in |Qin/Qout| (absolute difference reported in % for more clarity)

between the diagrams of the nanochannel array and the single channel is graphically

represented in Fig. 5.5 using contour plots. Figure 5.5a captures the variation in elec-

troneutrality breakdown with respect to η and R̄out. Similarly, Fig. 5.5b showcases

the differences as a function of |σ̄s| and R̄out, while Fig. 5.5c shows the differences

influenced by λ̄D and R̄out. Collectively, it becomes evident that the disparities can

be as significant as 8% for R̄out = 2, while being as subtle as 1% for R̄out = 10. This

calls for an exploration of the electroneutrality trends for R̄out being 2 and 10 for both

the nanochannel array and the single channel.

Figure 5.6a and Fig. 5.6b show |Qin/Qout| vs. η for R̄out = 2 and R̄out = 10, respec-

tively, for both nanochannel models. Similarly, Figs. 5.6c and 5.6d show the effect of

|σ̄s| on |Qin/Qout| while Figs. 5.6e and 5.6f highlight the ramifications of varying λ̄D.

Two primary observations emerged from this comparison. First, a more pronounced

electroneutrality breakdown was observed for the nanochannel array compared to the

single channel. Second, while the breakdown curves for both models closely aligned

for R̄out = 10, a divergence was noted for R̄out = 2.

The models were further investigated for the parameter set exhibiting the most

1No-flux boundary conditions for the electric field are imposed on the lateral surfaces for both
the unit cell of the array and the single nanochannel.
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Figure 5.6: |Qin/Qout| against (a) & (b) η, (c) & (d) |σ̄s|, and (e) & (f) λ̄D for R̄out = 2
(left panel) and R̄out = 10 (right panel) for a single nanochannel and a nanochannel
array. The other fixed parameters for each plot are listed in Table 3.1.
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pronounced difference in |Qin/Qout|, specifically η = 1.25, |σ̄s| = 0.27, λ̄D = 10,

and R̄out = 2. It is also compared with the models with R̄out = 10 keeping all the

other parameters fixed. Leakages q1ex and q2ex associated with these parameters were

recorded and subsequently compared in Table 5.1. Elevated levels of leakages were

observed in the nanochannel array, thereby inducing a more prominent breakdown

in electroneutrality compared to the single channel. The electric potential and ion

concentration are studied along certain coordinates within the nanochannel to further

investigate the breakdown of electroneutrality. In Fig. 5.7a, a quarter section of the

nanochannel array is highlighted by dashed black lines on the x−y plane with z̄ = L̄/2.

In this figure, coordinate x1 is defined along the horizontal edge, and coordinate x2 is

defined along the diagonal, forming an angle of 45◦ with the horizontal. Re-examining

Fig. 5.1, it is clear that both x1 and x2 serve as a line of symmetry. As a result, the

electric field at any point on x1 is entirely along x1 and does not have a component

perpendicular to x1. The same applies to x2. Such a feature is similar to the electric

field at any points on the radial axis (r, depicted in Fig. 5.7b) in the single nanochannel

model where, due to axisymmetry, the electric field is entirely along the r axis. This

similarity in the behavior of the electric field along coordinates x1, x2, and r facilitates

the comparison between the array and the single channel models. Figures depicting

the electric potential ϕ̄in and ion concentration c were generated along these lines and

presented in Figs. 5.8a and 5.8c for R̄out = 2, and Figs. 5.8b and 5.8d for R̄out = 10.

Lower magnitudes of ϕ̄in were noted for the nanochannel array along x1 and x2 in

comparison to the single channel along r, resulting in a reduced concentration of

charges. This further reinforced the observation that the nanochannel array displayed

a stronger inclination towards electroneutrality breakdown.

The electric field E is calculated along x1 and x2 in the array, and r in the single

channel and normalized to Ē in Fig. 5.8e for R̄out = 2 and Fig. 5.8f for R̄out = 10.
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Figure 5.7: (a) Coordinates x1 and x2 originating from the center of the nanochannel
extending along the edge and the diagonal, respectively, on the mid-cross section
(z̄ = L̄/2) of the quarter section of the array. (b) Coordinate r originating from the
center and extending along the radius of the mid-cross section (z̄ = L̄/2) of the single
nanochannel.

The normalized electric field, Ē, is defined by

Ē =
z̃eRin(E · n)

kBT
. (5.16)

where n is the direction of the coordinates x1, x2 and r. For both R̄out = 2 and

R̄out = 10, Ē approaches zero along each specified direction (x1, x2 and r), though

at different distances. For the array shown in Fig. 5.7a, the convergence of Ē to zero

was noted at the intersections of x1 and x2 with the dashed black lines, at points A

and B. For the single nanochannel shown in Fig. 5.7b, Ē = 0 at the outer surface

of the dielectric medium due to the BC (Eq. 3.37). Since non-zero electric field in

the dielectric medium is a major contribution to leakage and hence electroneutrality

breakdown, two hypothetical single channel models, labeled as 1 and 2, were proposed

and depicted in Fig. 5.9. Models 1 and 2 share the same physical parameters as

the array except the radii of their dielectric media. Specifically, the radius of the

dielectric medium of model 1 is R̄out, while that of model 2 is
√
2R̄out. The BCs

on the outer surface of their dielectric media, respectively, align with the electric

field conditions at points A and B of the nanochannel array model. Given the three-
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Figure 5.8: (a) & (b) ϕ̄in, (c) & (d) c, and (e) & (f) Ē plotted along the coordinates,
shown in Fig. 5.7a and Fig. 5.7b, of the nanochannel array and the single channel,
respectively, normalized by Rin. The left panel corresponds to R̄out = 2 while the
right panel is for R̄out = 10. The other parameters are η = 1.25, |σ̄s| = 0.27,
λ̄D = 10. Ē is plotted in the direction of these coordinates for the entire quarter
section highlighted by the dashed black lines in Fig. 5.7a whereas ϕ̄in and c are plotted
within the nanochannel only.
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Figure 5.9: The hypothetical single nanochannel models, labeled 1 and 2, whose
boundary conditions on the outer surface of the dielectric medium match the condition
of the electric field at points A and B of the nanochannel array model, respectively.
The radius of the dielectric media of model 1 is R̄out and of model 2 is

√
2R̄out.

dimensional geometry of the array, the volume of the dielectric medium encompassing

a nanochannel is situated between the volumes of the dielectric media in models 1 and

2. Consequently, this implies that the electric field leakage values of the nanochannel

array should also be intermediate to those of the two models. This is confirmed when

the leakages within the array in Table 5.1 are compared to the leakages within the

single channels for R̄out equal to 2, 2
√
2, 10, and 10

√
2, listed in Table 5.2. The array

registers higher leakages than the single channel for R̄out equal to 2 and 10 but lower

for R̄out equal to 2
√
2, and 10

√
2.

In Fig. 5.6, disparities in the Qin/Qout curves for R̄out = 2 are more pronounced

than those for R̄out = 10. According to Table 5.1, for R̄out = 2, q2ex in the array

surpasses that of the single channel by a significant 54%. This pronounced difference

is noted for only 36.4% increase in the volume of the dielectric medium in the array

than the single channel. On the other hand, for R̄out = 10, despite a large 3114.2%

increase in the volume of the array compared to the single channel, q2ex surpasses the

single channel by a relatively modest 18.5%. Note that these percentage differences

were calculated with q2ex of the single channel used as the reference. In Sec. 3.4, it was
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Table 5.2: Electric field leakages, q1ex and q2ex, for a single nanochannel with R̄out equal
to 2, 2

√
2, 10, and 10

√
2. The other parameters are η = 1.25, |σ̄s| = 0.27, λ̄D = 10,

and L̄ = 20.

R̄out = 2 R̄out = 2
√
2 R̄out = 10 R̄out = 10

√
2

q1ex q2ex q1ex q2ex q1ex q2ex q1ex q2ex

0.13 0.37 0.17 0.98 1.46 45.46 1.96 70.37

discussed that the electric field leakage through the channel wall is confined by the

dielectric medium. R̄out = 2 provides stronger confinement and as a result, a small

increase in dielectric volume (from single channel to array) can cause a large relaxation

of the confinement leading to significantly increased leakage. This emphasizes the

critical role of the dielectric medium in governing the electroneutrality breakdown.

5.4 Effect of temperature

The interesting results found for single nanochannels at T = 353K in Sec. 3.6 have

sparked an investigation into the behavior of nanochannel arrays of square packing,

under similar conditions. De Souza et al. [89] concluded that the array with square

packing is a good approximation for a variety of channel arrangements by comparing

it with the nanochannel array with a hexagonal arrangement. Figure 5.10 shows

one such arrangement of a nanochannel array with hexagonal packing where a unit

cell representing the entire array is outlined in red. The nanochannel arrays with

square and hexagonal arrangements are investigated to analyze the electroneutrality

breakdown within interacting nanochannels with a fixed R̄out of 2, while varying

η, |σ̄s|, and λ̄D, at an elevated temperature of T = 353K. These results are also

compared to that of the single channel for a better understanding of the trends.

The impact of η on |Qin/Qout| is illustrated in Figs. 5.11a and 5.11b at T = 353K

and T = 300K, respectively. Figures 5.11c and 5.11d depict the influence of |σ̄s|

on |Qin/Qout| at T = 353K and T = 300K, respectively. Figures 5.11e and 5.11f

highlight the effect of λ̄D on |Qin/Qout| at T = 353K and T = 300K, respectively.
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Table 5.3: Electric field leakages, q1ex and q2ex, for a single nanochannel with R̄in = 1
and L̄ = 20 at T = 353K and T = 300K. The other parameters are η = 0.13,
|σ̄s| = 0.27, λ̄D = 10, and R̄out = 2.

T = 353K T = 300K

Square packing Hexagonal packing Square packing Hexagonal packing

q1ex q2ex q1ex q2ex q1ex q2ex q1ex q2ex

0.16 0.92 0.15 0.53 0.15 0.57 0.13 0.44

The leakages at both temperature settings are quantified for the parameter set of

η = 0.13, |σ̄s| = 0.27, λ̄D = 10, and R̄out = 2. Note that, as established in Sec. 5.3,

the electroneutrality breakdown trends of the nanochannel array with square packing

align very well with that of the single channel for R̄out = 10, thus the effect of

temperature is studied for R̄out = 2 only. The electric field leakages q1ex and q2ex

are computed for these parameters for the nanochannel arrays with both square and

hexagonal arrangements and compared in Table 5.3. Two observations can be made

from the leakages as well as the figures in Fig. 5.11. Firstly, the nanochannel arrays

exhibit higher leakages at the elevated temperature resulting in more pronounced

electroneutrality breakdown. This supports the discussion in Sec. 3.6 where the single

channel is shown to depict a similar trend of electroneutrality breakdown at the

two temperatures. Secondly, the square-packed nanochannel array exhibits higher

Figure 5.10: A periodic nanochannel array with hexagonal packing. A unit cell
employed in the COMSOL simulation, representing the entire array, is indicated with
a red outline. The reservoirs connected to the channel entrances included in the
COMSOL model are not indicated in the figure.
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Figure 5.11: |Qin/Qout| against (a) & (b) η, (c) & (d) |σ̄s|, and (e) & (f) λ̄D for a
single nanochannel and a nanochannel array with square and hexagonal packing at
T = 353K (left panel) and T = 300K (right panel). The other parameters are listed
in Table. 3.1.
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Figure 5.12: Diagram showing a multi-dimensional visualization of electroneutrality
breakdown governed by six key parameters of our study. For each axis, the location
of the intersection of the polygon with the axis indicates the direction (increasing or
decreasing magnitude of the respective parameter) in which electroneutrality break-
down increases as all other parameters are held constant.

leakages when compared to the hexagonal-packed array for both temperature settings,

listed in Table 5.3. This can be explained by the fact that an array with square packing

has a coordination number (number of surrounding nanochannels) of 4 while it is 6

for a hexagonal arrangement. A higher coordination number implies more coupling

among the channels, thereby directing the system toward electroneutrality, depicted

in Fig. 5.11. Thus, the role of channel coupling is highlighted through this observation.

However, further investigation at various temperatures is necessary before any definite

conclusions can be drawn.

A visual summary of the trends for increase in electroneutrality breakdown caused

by each physical parameter, namely L̄, R̄out, η, |σ̄s|, λ̄D, and T , is illustrated by a

multi-dimensional “surface” in Fig. 5.12. Note that all the parameters are normalized

except T . The intersection of the red polygon with each axis indicates the contribution

of the specific parameter towards an increase in electroneutrality breakdown keeping

the other parameters fixed. For example, when T is increased while all the other

parameters remain the same, electroneutrality breakdown is more pronounced in the
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system. Similarly, increasing λ̄D (or R̄out or η), while keeping all other parameters

fixed, increases electroneutrality breakdown. For L̄ and |σ̄s|, the trend is the opposite,

i.e. decreasing their magnitudes enhances electroneutrality breakdown.
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Chapter 6

Conclusion and future work

In this final chapter, the main findings of the work are summarised and discussed, and

suggestions are presented for future studies. Chapter 3 establishes a comprehensive

investigation of electroneutrality breakdown within single-digit nanochannels (SDNs)

utilizing COMSOL Multiphysics. This exploration is initiated with an analytical and

numerical examination of an infinite, single nanochannel, which serves as a validation

for the numerical model. The one-dimensional model is followed by the modeling of a

finite, single nanochannel in an r−z plane, a key step in understanding the intricacies

of electroneutrality within the nanochannel. The electric field leakages through the

channel wall and entrances are revealed as contributing factors to electroneutrality

breakdown. An array of physical parameters is examined for their influence on elec-

troneutrality breakdown, leading to the creation of a set of phase diagrams. These

diagrams depict |Qin/Qout| as a function of combinations of two physical parame-

ters, such as L̄ and R̄out, η and R̄out, and |σ̄s| and λ̄D. It is demonstrated that a

system comprising a short nanochannel, filled with a dilute electrolytic solution and

separated by a weakly charged interface from a thick dielectric medium with high per-

mittivity, tends towards electroneutrality breakdown. The influence of steric effects

on electroneutrality breakdown is analyzed by considering finite-size ions. Results

suggest that while steric effects may not significantly impact the deviation from elec-

troneutrality, they might have an influence on breakdown scenarios that fall outside
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the applicability of continuum models, such as in sub-nanometer nanochannels. Ac-

knowledging the potential influence of temperature on electroneutrality breakdown,

the model is analyzed under two distinct temperature conditions, viz., T = 300K

and T = 353K. It is observed that an increase in temperature, which translates to

higher kinetic energy for the ions of the electrolytes, can promote the deviation from

electroneutrality driven by entropy.

Chapter 4 emphasizes the vital role of incorporating the dielectric medium into

the model. In their work, Levy et al. [1] proposed a Robin boundary condition at

the surface of the nanochannel, which offers an opportunity to eliminate the need to

compute the electric field in the surrounding medium. Through a detailed analysis,

the fundamental issues associated with the approximations employed in the deriva-

tion of the proposed boundary condition are pointed out. These approximations can

give relative errors as large as 100% in assessing the electric potential and the charge

distribution within the single nanochannel. The implications of these findings are

profound and considerable caution is required when deciding to utilize a boundary

condition to represent the medium enveloping the nanochannel. Inaccurate represen-

tations can skew our understanding of ion transport within nanochannels, leading to

potentially erroneous predictions and conclusions.

Chapter 5 represents a significant stride towards translating the theoretical frame-

work to practical nanostructured systems, extrapolating from the insights gained in

earlier chapters. The nanochannel array model employed in our study is validated

by its alignment with the |Qin/Qout| curves presented by De Souza et al. [89]. Find-

ings suggest that the interaction between nanochannels becomes apparent when the

inter-channel distance is on par with the radius of the channel. As the channels

are progressively brought closer, a trend toward electroneutrality becomes evident.

Our investigation branches into a comparative analysis between the electroneutrality

breakdown trends observed for the nanochannel array and the single channel mod-

els. It is found that even though the interaction between the nanochannels leads the
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array towards electroneutrality, the propensity for breakdown is still higher in the

array when compared to a single channel. Analysis of the electric potential, the ion

concentration, and the electric field leakages showed that the pronounced breakdown

observed in the array can be ascribed to greater electric field leakages. This increased

leakage is facilitated by the increased volume of the dielectric medium of the array

when compared to a single channel. Notably, a slight volume augmentation highly

affects the electric field leakages in case of lower R̄out in an array due to restriction in

leakage caused by a thin dielectric medium. However, with less restricted leakage for

higher R̄out, an increase in volume does not significantly increase the leakage. This

results in the disparity between |Qin/Qout| of the nanochannel array and the single

channel at R̄out = 2, while at R̄out = 10, the curves align very well. This suggests that

a single channel can approximate a nanochannel array when the influence of channel

coupling diminishes. At an elevated temperature of T = 353K, the nanochannel ar-

ray displays a distinct inclination towards breakdown for both arrangements, namely

hexagonal and square. The hexagonal arrangement exhibited a reduced tendency

towards electroneutrality breakdown, attributed to its increased coupling from being

surrounded by more nanochannels compared to the square arrangement. However,

similar breakdown patterns were observed for both configurations at T = 300K and

T = 353K.

For future endeavors, several avenues of investigation emerge from this study. One

such area involves the scrutiny of electroneutrality breakdown at elevated temper-

atures, which can provide a more comprehensive understanding of the behavior of

both single nanochannels and nanochannel arrays under higher thermal conditions.

Another interesting exploration could be to model the surrounding medium as a semi-

conductor. Semiconductors, with their unique and controllable electrical properties

imparted through techniques such as doping or voltage application, offer a realm of

possibility for diverse applications. Further inquiry may also extend to studying both

single and array systems under conditions of flow through the channels, enabling the

72



analysis of electroneutrality breakdown’s influence on conductivity and capacitance

[89]. Lastly, implementing Molecular Dynamics simulations could provide a more

nuanced and accurate representation of the model’s physics. This approach could

account for more complex factors, such as hydration shells and correlation effects,

thereby enriching the understanding of the underlying dynamics.
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Appendix A: Limiting trends for
electroneutrality breakdown

Limiting trends refer to the convergence of electroneutrality breakdown curves as a

specific parameter increases or decreases while all other parameters are held constant.

The study of limiting trends is crucial for a parametric study in order to understand

the behavior of the system. The limiting trends for electroneutrality breakdown

are observed for the parametric analysis of |σ̄s|, η, and R̄out. FigureA.1a shows

|Qin/Qout| as a function of 1/λ̄D and |σ̄s| across four orders of magnitude. Merging

of the curves for lower |σ̄s| = 0.273, 0.0273, 0.00273 constitute the limiting curves for

this case. In other words, |Qin/Qout| is independent of |σ̄s| for |σ̄s| smaller than 0.273,

corresponding to σs = −1.0 × 10−3C/m2. The effect of η is exhibited in Fig.A.1b.

The curves corresponding to η = 1.25, 1.875, and 2.5 are in close alignment, though

not fully converged. Similarly, Fig.A.1c illustrates the trend of electroneutrality

breakdown for different R̄out. The limiting behavior of the system is depicted by

the curves corresponding to R̄out = 10, 15, and 20 for this case.
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Figure A.1: Limiting trends emerge in the log-linear plots of |Qin/Qout| as a function
of 1/λ̄D for different (a) σ̄s, (b) η (c) R̄out.
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Appendix B: Numerical modeling

The systems depicted in Figs. 3.3 and 5.1 are modeled using the electrostatics inter-

face under the AC/DC module in COMSOL Multiphysics. Leveraging the symmetry

of each system, only the upper half above the mid-cross section is modeled, as shown

in Fig. B.1a for the single nanochannel and Fig. B.1b for the nanochannel array. Tri-

angular and tetrahedral meshes with quadratic Lagrange elements are utilized for

the discretization of the single nanochannel and the nanochannel array, respectively.

The nanochannel (domain Ω1) being the area of interest, has the smallest element

size, followed by the dielectric medium (domain Ω2) and the reservoirs (domain Ω3).

The time-independent nonlinear BVPs are solved using the Newton-Raphson method

maintaining a residual of 1.0× 10−4. An average CPU time of 1 second is consumed

for each simulation of the single channel whereas the nanochannel array consumes 2

minutes and 30 seconds.

To ascertain the reliability of the models, mesh convergence analyses are under-

taken using reference parameters, listed in Table 3.1. The analyses, as depicted in

Figs. B.2a and B.2b, illustrate the convergence of the ratio |Qin/Qout| against the total

number of elements in the system. Notably, |Qin/Qout| converges for approximately

2.0 × 104 elements in the single nanochannel while it converges for approximately

2.0× 105 elements in the nanochannel array
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(a)

(b)

Figure B.1: Discretization of the (a) single nanochannel and (b) nanochannel array
models employed in COMSOL Mutliphysics for the system depicted in Figs. B.1a and
5.1, respectively.
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Figure B.2: Mesh convergence analysis for |Qin/Qout| against the total number of
elements in the (a) single nanochannel and (b) nanochannel array models.
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