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Abstract

Non-chord tone generalized interval systems are a music theoretical tool
for analyzing the roles and functions of non-chord tones in music, independent of
the methods used to label non-chord tones. Based on David Lewin's GIS, they
provide a way to conceptualize changes in textural and motivic patterns of non-
chord tones in terms of intervals. The formal framework of transformational
theory also provides a number of analytical tools that can be adapted to the
analysis of non-chord tones, as well as the capacity to develop new specialized
analytical tools to fit analytical requirements. As a practical demonstration of the
potential of non-chord tone generalized interval systems and some related
transformations, two analytical essays are included: a statistical analysis of
Mozart's variations on “Ah! Vous dirai-je, Maman,” K. 265, and a motivic

analysis of Brahms's String Quartet No. 2 in A Minor, op. 51, no. 2.



Acknowledgements

I would like to thank my advisor, Dr. Klumpenhouwer for his help in
preparing this thesis. I would also like to thank Dr. Gerald Cliff and Dr. Mustafa
Bor for serving on my examining committee and Dr. Jacques Després for chairing
the committee. I would also like to thank my colleagues, Ben Eldon and Andrew
Switzer for their interest and support. I would like to thank my brother, Jonathan
Miersma for answering various mathematical questions in the course of my work
on this thesis. I would also like to thank all my friends and family for their

support and encouragement. Soli Deo Gloria.



Table of Contents

Chapter 1: Introduction

Literature Review: Analysis of Non-Chord Tones
Chapter 2: Non-Chord Tone Generalized Interval Systems

A Brief Introduction to Groups

Generalized Interval Systems

Transformations

A Critique of Condition B

The Conceptual Framework

Formal Considerations

Conclusion
Chapter 3: Analysis of Mozart's Variations on “Ah! Vous dirai-je, Maman”

Analytical Preliminaries

The Theme (Figures 3.1-3.3)

Variation 1 (Figures 3.4-3.6)

Variation 2 (Figures 3.7-3.9)

Variation 3 (Figures 3.11-3.13)

Variation 4 (Figures 3.14-3.16)

Variation 5 (Figures 3.18-3.20)

Variation 6 (Figures 3.21-3.23)

Variation 7 (Figures 3.24-3.26)

Variation 8 (Figures 3.27-3.29)

Variation 9 (Figures 3.30-3.32)

14

18

20

23

24

29

30

30

32

33

35

39

39

40

41

42

42

43



Variation 10 (Figures 3.33-3.35) 44

Variation 11 (Figures 3.36-3.38) 44
Variation 12 (Figures 3.39-3.41) 45
Interval Vectors and Overall Form 46
Some Issues and Alternative Methods 50
Conclusion 51
Chapter 4: An Alternative Non-Chord Tone GIS 53
Formal Considerations: Non-Chord Tone GIS Structures 53
Formal Considerations: Other GIS Structures 61
Lewin's Transformation Graphs and Networks 65
Non-Intervalic Transformations 68
Conclusion 77
Chapter 5: Analysis of Brahms's String Quartet No. 2 in A Minor 78
Analysis: First Movement, Primary Theme 79
Analysis: Transition 86
Analysis: Secondary Theme 87
Analysis: Exposition, Measures 81-119 90
Analysis: Development and Recapitulation 94
Analysis: Second Movement 96
Analysis: Third Movement 99
Analysis: Fourth Movement 100
Conclusion 101

Chapter 6: Conclusions 105



Bibliography

Appendix
Figures for Chapter 1
Figures for Chapter 2
Figures for Chapter 3
Figures for Chapter 4

Figures for Chapter 5

107

109

109

110

111

139

146



Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:

Figure 3.9:

List of Figures
Consonant embellishment from Piston, Harmony, 81.
Non-chord tone analyses of Bach, Invention No. 9, mm. 1-4.
Non-chord tone configurations attached to a C major chord.
A spatial representation of non-chord tone tone configurations.
Mozart, Variations on "Ah! Vous dirai-je, Maman," Theme.
Theme: graph of non-chord tone contours.
Theme: table of configurations and intervals.
Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 1.
Variation 1: graph of non-chord tone contours.
Variation 1: table of configurations and intervals.
Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 2.
Variation 2: graph of non-chord tone contours.

Variation 2: table of configurations and intervals.

Figure 3.10: Retrograde-Inversion Chain.

Figure 3.11: Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 3.

Figure 3.12: Variation 3: graph of non-chord tone contours.

Figure 3.13: Variation 3: table of configurations and intervals.

Figure 3.14: Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 4.

Figure 3.15: Variation 4: graph of non-chord tone contours.

Figure 3.16: Variation 4: table of configurations and intervals.

Figure 3.17: Non-chord tone contour for measure 9 up to Variation 4.

Figure 3.18: Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 5.

109

109

110

110

111

111

112

113

113

114

115

115

116

116

117

117

118

119

119

120

121

121



Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:
Figure 3.30:
Figure 3.31:
Figure 3.32:
Figure 3.33:
Figure 3.34:
Figure 3.35:
Figure 3.36:
Figure 3.37:
Figure 3.38:
Figure 3.39:
Figure 3.40:

Figure 3.41:

Variation 5: graph of non-chord tone contours.

Variation 5: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 6.

Variation 6: graph of non-chord tone contours.

Variation 6: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 7.

Variation 7: graph of non-chord tone contours.

Variation 7: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 8.

Variation 8: graph of non-chord tone contours.

Variation 8: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 9.

Variation 9: graph of non-chord tone contours.

Variation 9: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 10.

Variation 10: graph of non-chord tone contours.

Variation 10: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 11.

Variation 11: graph of non-chord tone contours.

Variation 11: table of configurations and intervals.

Mozart, Variations on "Ah! Vous dirai-je, Maman," Variation 12.

Variation 12: graph of non-chord tone contours.

Variation 12: table of configurations and intervals.

121

122

123

123

124

125

125

126

127

127

128

129

129

130

131

131

132

133

133

134

135

136

137



Figure 3.42: Interval vectors.

Figure 4.1: Non-chord tone configurations.

Figure 4.2: Non-chord tone analysis of Bach, Invention No. 9, mm. 1-4.
Figure 4.3: Non-chord tone networks for Bach, Invention No. 9, mm. 1-4.
Figure 4.4: Direct product networks for Bach, Invention No. 9, mm. 1-4.
Figure 4.5: Motives and NCT intervals in Brahms, String Quartet No. 2.

Figure 4.6: Beethoven, Piano Sonata Op. 14, no. 1, movt. 3, mm. 47-50.

Figure 4.7: Permutation networks.

Figure 4.8: Cayley table for the symmetric group on three letters, R, 3, 5.

Figure 4.9: The Interval Alteration Function represented as a table.

Figure 4.10: Musical application of ALT.

Figure 4.11: Network representation of ALT.
Figure 4.12: Possible and impossible graphs.
Figure 4.13: Network representation of REDUCE.

Figure 4.14: Musical application of REDUCE.

Figure 4.15: Effects of REDUCE on a graph without tree structure.

Figure 4.16: Effects of REDUCE on a graph with tree structure.

Figure 5.1: Brahms, String Quartet No. 2, movt. 1, mm. 1-25.

Figure 5.2: Diatonic network representations of the Motto Subject.

Figure 5.3: Diatonic network representations of the Triad Motive.
Figure 5.4: Diatonic network representations of motive A.
Figure 5.5: Network representation of the primary theme.

Figure 5.6: Network representations of motive A.

138

139

139

139

140

140

140

140

141

141

141

142

143

143

143

144

145

146

147

147

147

148

148



Figure 5.7: The transformation of motive A.

Figure 5.8: Permutation network for the Triad Motive.

Figure 5.9: Network representation of motives in the Transition.

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:

Figure 5.29:

The Triad Motive in the transition, mm. 30-31.

Brahms, String Quartet No. 2, transition to Theme 2, mm. 38-66.

Network representation of Theme 2.

Transformation of the Triad Motive at Theme 2.
Voice leading and motive A, mm. 54-59.

Motives A and B in Theme 2.

Brahms, String Quartet No. 2, mm. 81-104.
Transformation of the Triad Motive, mm. 81-83.
Transformation of the Triad Motive, mm. 94-95.
Brahms, String Quartet No. 2, Codetta, mm. 104-115.

Ambiguity in direct product intervals.

Brahms, String Quartet No. 2, Retransition, mm. 177-184.

Network representation of the Retransition, mm. 177-184.

Brahms, String Quartet No. 2, Coda, mm. 304-335.
Networks in the Coda.

Brahms, String Quartet No. 2, movt. 2, mm. 1-6.
Networks for motive A in movt. 2, mm. 1-6.

Brahms, String Quartet No. 2, movt. 2, mm. 115-124.
Brahms, String Quartet No. 2, movt. 3, mm. 1-7.

Networks in movt. 3, mm. 1-7.

149

149

149

149

150

151

151

151

152

153

153

153

154

154

154

155

156

157

157

158

158

158

159



Figure 5.30: Brahms, String Quartet No. 2, movt. 4, mm. 1-17. 159
Figure 5.31: Networks in movt. 4, mm. 1-10. 160

Figure 5.32: Brahms, String Quartet No. 2, movt. 4, mm. 350-359. 160



Chapter 1: Introduction

Although they are a feature of virtually every theory of harmony, non-
chord tones have generally received less attention when it comes to the analysis of
complete pieces of music. A great deal of energy has been devoted to classifying
and identifying non-chord tones in music, and practically every introductory
music theory text discusses them in some detail. Nevertheless, as a feature of the
music, as something to be discussed and analyzed, they are often overlooked.
Perhaps one reason is the plethora of approaches to defining, identifying, and
labeling non-chord tones. Even terminology is not standardized, for non-chord
tones may also be called figuration tones, non-harmonic tones, unessential tones,
or embellishments, to name a few of the more common terms. Out of these many
alternatives, | have adopted the term “non-chord tone” for this thesis on entirely
pragmatic grounds, since it allows for the easily memorable abbreviation NCT.

Now, it is not the purpose of this thesis to address the problems involved
in identifying non-chord tones. Rather, the goal is to provide a tool that can be
used to analyze the role that non-chord tones play in a piece of music, regardless
of the methodology one uses to identify non-chord tones in the first place. The
task of determining whether or not a particular note is a non-chord tone is a piece
of groundwork that is left to the individual analyst. The theoretical tool which is
to be the subject of this thesis can readily be adapted to work with other
theoretical methodologies in whatever manner a theorist might choose. My
theoretical starting point is David Lewin's work in Generalized Musical Intervals
and Transformations. Since my analytical tool falls squarely within the theoretical
milieu associated with generalized intervals and transformational theory, this
thesis has as its secondary goal an investigation of several aspects of
transformational theory that will arise in connection with my approach to non-
chord tones. Finally, since the purpose of this thesis is the development of a
practical analytical tool, I have devoted two full chapters to analyses of individual
pieces of music.

The thesis has six chapters. The remainder of this chapter is devoted to a

literature review, examining the various approaches taken by theorists to the



problem of identifying non-chord tones and analyzing their role in the music.
Chapter 2 provides background information, explaining some of the mathematics
involved in Generalized Musical Intervals and Transformations. The chapter also
contains an introduction to Lewin's work and concludes with a discussion of the
concept of a non-chord tone interval system, preparing the way for chapter 3.
Chapter 3 is an analysis of Mozart's variations on “Ah! Vous dirai-je, Maman,” K.
265. The analysis employs an approach that might be regarded as a statistical
analysis of texture, using non-chord tone interval systems to examine the role of
non-chord tones in shaping individual variations and overall form. Chapter 4
introduces a second type of non-chord tone interval system, and examines ways in
which the concept can be applied to network analysis. The chapter also develops a
number of related concepts in transformational theory that can apply to tonal
music in general, but are primarily groundwork for the next chapter. Chapter 5 is a
network analysis of Brahms's String Quartet No. 2 in A Minor, demonstrating how
non-chord tone interval systems can be integrated within the broader context of
transformational theory and network analysis. Like chapter 3, chapter 5 stands as
an analysis in its own right, using network analysis to examine themes and
motives in Brahms's string quartet. Chapter 6 briefly summarizes the central
points made in this thesis and provides further suggestions for the application of
non-chord tone interval systems in musical analysis.
Literature Review: The Analysis of Non-Chord Tones

We begin by considering the treatment of non-chord tones at their most
basic level as discussed in two textbooks. Walter Piston's Harmony, an older and
once widely used harmony textbook, gives the following types of non-chord
tones: passing tone, auxiliary tone (neighbor tone), appoggiatura, suspension,
échappée, cambiata, and anticipation.' Piston places great emphasis on rhythmic
factors, arguing that accented passing tones and suspensions in which the note is
repeated rather than tied are both instances of the appoggiatura.” Interestingly, he

begins his discussion by arguing for the melodic basis of non-chord tones and

1. Walter Piston, Harmony, 3rd ed. (New York: W.W. Norton, 1962), 81-93.

2. Ibid., 81, 87-88.



excusing the term “nonharmonic tones,” which he uses, as an anachronism. He
even presents a case, given in figure 1.1, in which the soprano E (in the second
measure of the figure) in a C major chord is considered to be an embellishment of
a suspended D rather than a chord tone.’

A more recent textbook by Kostka and Payne presents a slightly more
elaborate approach. They list a number of types of non-chord tones: passing tone,
neighbor tone, suspension, retardation, appoggiatura, escape tone, neighbor group,
anticipation, and pedal tone. Their criteria for identification is based primarily on
how a tone is approached and left, whether by the same tone, by step, or by leap.*
In addition, they list all the adjectives that may be applied to non-chord tones:
accented/unaccented, diatonic/chromatic, ascending/descending, and
upper/lower.’ Interestingly, they include a very telling footnote: “NCT
terminology is not standardized, and your instructor may prefer that you use
different labels and definitions.”

In both instances, the analysis of non-chord tones means simply their
correct identification. The goal is to distinguish between chord tones, which
belong to the chord label, and non-chord tones, which have their own appropriate
labels. The result is a sort of bookkeeping procedure in which the object is to
account for every note. However, even within this context the labels and
definitions vary slightly, with different factors receiving different weight. There
are, however, theories of harmony that attempt to reduce the number of types of
non-chord tones and explain part of their role in the music.

Schoenberg's Theory of Harmony uses only four categories: suspensions,
passing tones, embellishments (which includes all types of neighbors tones,

appoggiaturas, cambiatas, and the like), and anticipations, all of which he treats as

3. Ibid., 81; all figures are included in the appendix.

4. Stefan Kostka and Dorothy Payne, Tonal Harmony, with an
Introduction to Twentieth-Century Music, 6th ed. (New York: McGraw-Hill,
2009), 182.

5. Ibid.

6. Ibid.



melodic phenomena rather than purely a matter of consonance and dissonance.’
He takes a flexible approach to identification, noting that “accidental harmonies
sometimes result from the simultaneous appearance of passing tones. These can
be regarded as actual chords, as well as combinations of non-harmonic tones.”®
Schoenberg takes great pains to stress that a composer will employ non-harmonic
tones with the same foresight as harmonies and rejects exercises in which a
student is asked to embellish a chorale by adding non-harmonic tones.’ He even
provides a brief analysis of a Bach chorale in which he argues for the essential
role of the non-harmonic tones. Unfortunately, the analysis is rather cursory,
omitting any detailed discussion of the non-chord tones and their role as such.
Schenkerian analysis represents another well-established theoretical
approach to non-chord tones. In Harmony, Schenker only discusses anticipations,
suspensions, and the pedal point, which he limits in scope, although he mentions
passing tones and neighbor tones.'® These latter dissonances receive their most
comprehensive treatment in Counterpoint, where Schenker argues at length for
the restrictions imposed on second species counterpoint, including the use of the
passing tone and the restrictions on the neighbor tone." In the same passage, he
also discusses a variety of passages of music with unconventional non-chord
tones and explains how they can be derived from passing tones and neighbor
tones. In addition, passing tones, and to a lesser extent neighbor tones, are a key
component of Schenker's mature theory. In a passage rejecting the idea that the

tones of the fundamental line are overtones, Schenker says that

7. Arnold Schoenberg, Theory of Harmony, trans. Robert Adams (New
York: Philosophical Library, 1948), 271.

8. Ibid., 277.
9. Ibid., 280, 282-285.

10. Heinrich Schenker, Harmony, ed. Oswald Jonas, trans. Elisabeth
Borgese (Chicago: University of Chicago Press, 1954), 302-319.

11. Schenker, Counterpoint, bk. 1, Cantus Firmus and Two-Voice
Counterpoint, ed. John Rothgeb, trans. John Rothgeb and Jiirgn Thym (New York:
Schirmer Books, 1987), 176—194.
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if, when we hear the tones of the fundamental line in succession,

we nevertheless understand <some of> them as fifth or third of a

particular bass tone, it is only because we recognize in them the

same relationships which establish the octave, fifth, and third of

the harmonic series.... Still less should the passing tones in the

spaces of the arpeggiation be taken for overtones; they are not

contained in the harmonic series at all. It is therefore not

permissible to ascribe the same significance to passing tones as to

the main bass tone; by definition, a passing tone is dependent

upon the consonant tones which surround it."?

In the Schenkerian model of the fundamental line and linear progressions the
space is outlined by consonant intervals or arpeggiations of triads and filled in by
passing tones and neighbor tones. Thus non-chord tones play a significant role in
Schenkerian theory.

Although Schenkerian analysis is dependent on non-chord tone analysis, it
is not always well adapted to the surface analysis of non-chord tones. Schenkerian
analyses tend to cut through the musical surface to examine the background. In
doing so, attention is naturally shifted away from the fine details of the extreme
foreground, including dissonant non-chord tones. Schenkerian analysis tends to
focus on determining which notes are stable consonant elements of the
middleground rather than addressing the ways in which dissonant non-chord tones
are employed.

One example of non-chord tone analysis that perhaps bears the greatest
similarity to my project is Yangkyung Lee's D.M.A. dissertation, which analyzes
non-chord tones in Chopin's Op. 28." Lee’s dissertation presents one of the few
published examples of detailed non-chord tone analysis. However, Yangkyung

Lee's analysis is not systematized in any way. The dissertation examines specific

12. Schenker, Free Composition, trans. and ed. Ernst Oster (New York:
Longman, 1979), 12—-13.

13. Yangkyung Lee, “Non-Harmonic Tones as Aesthetic Elements in
Chopin's Preludes, Op. 28 (D.M.A. diss., University of Cincinnati, 2002).
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moments in terms of aesthetic effect, the harmonic ambiguity that non-chord
tones can produce, and motivic relationships. The framework for the discussion is
technologically ad hoc.

In addition to these more traditional theoretical methodologies, David
Huron has investigated the role of non-chord tones in Bach chorales from the
perspective of music cognition. Huron takes standard non-chord tone analyses of
fifty Bach chorales and uses a statistical model to argue that Bach uses non-chord
tones to contribute to the independence of musical parts, with non-chord tones
helping to draw attention to different voices in turn.'* Huron's approach to non-
chord tones essentially derives from the standard practice of roman numeral
analysis, and involves a complex categorization of dissonances along the lines
used by Kostka and Payne in their textbook; however, this issue is not essential in
his analysis, since he does not deal extensively with the categories of non-chord
tones as such, and his analysis is spread across a sample of fifty chorales without
analyzing any individual passage of music.

While it does not really address detailed non-chord tone analysis, there are
two points that are worth noting in Huron’s article. In the first place, Huron
chooses chorales as the basis of his sample. Because of the simple harmonic and
rhythmic texture, non-chord tones can be easily identified according to fixed
standards without great difficulty, which is not necessarily the case in complex
contrapuntal textures. Secondly, even in this simple context Huron is compelled to
deal with the fact that different analyses occasionally arise. Huron asked several
independent music theorists to provide analyses of the chorales, and his article
discusses an example of disagreement as to which notes are chord tones and
which are not; he ultimately concludes that “there may be no resolution for such
analytic disputes.... Most theorists would recognize these differences as
indicating slightly different analytic styles rather than indicating fundamental
theoretical disagreements.”'> Thus there is always a certain level of potentially

insurmountable disagreement in any non-chord tone analysis.

14. David Huron, “On the Role of Embellishment Tones in the Perceptual

Segregation of Concurrent Musical Parts,” Empirical Musicology Review 2, no. 4
(2007): 123-139.



In order to demonstrate the potential for disagreement and simultaneously
consider what might be said about non-chord tones in a passage of music, let us
examine three different analyses of a passage from Bach's Two-Part Invention No.
9 in F Minor. Figure 1.2 provides the first four measures of the invention, whose
thin, two-part texture allows for several possible analyses. Figure 1.2a gives an
analysis in which very few notes are interpreted as non-chord tones. Passing notes
are marked P; neighbor notes are marked N. Along the bottom of the score, the
figure provides a conventional Roman Numeral analysis. The harmonic rhythm is
very fast, with chords on each sixteenth note in some cases. Although this
particular analysis belongs to a class that is now generally considered too fussy
and would most likely be frowned upon even in undergraduate theory courses, it
is nevertheless a possible analysis of the passage. Figures 1.2b and 1.2¢ are both
more in line with current sensibilities, employing fewer chords and labeling more
notes as non-chord tones. Moreover, there are several other analyses that could be
produced by combining the features of these three analyses in different ways. In
addition, these analyses would change slightly according to the definitions of the
non-chord tones. Following the example of Schenker and Schoenberg, I have
distinguished only between passing tones, neighbor tones, suspensions and
anticipations. However, if we were to distinguish between accented and
unaccented passing tones and include the additional categories of escape tones
and appoggiaturas, the analysis would change again.

Although it may not be possible to definitively settle on one of these
analyses, in each case there is something interesting to say about the non-chord
tones. In figure 1.2a it is apparent that the bass voice contains more non-chord
tones and that the voices typically do not employ non-chord tones at the same
time. This supports David Huron's observation that non-chord tones can
contribute to the independence of musical parts. Examining figures 1.2b and 1.2¢c,
we find that, although some non-chord tones now appear simultaneously, they are
often of different types. Moreover, examining the analysis in figure 1.2b we find

that measures 1 and 2 have exactly the same number of non-chord tones, that

15. Ibid., 127-128.



measure 3 adds one passing tone and one neighbor tone, and that measure four
then drops one neighbor tone. This observation suggests an underlying
consistency in the non-chord tone texture and that the number of non-chord tones
may be increased or decreased as a means of adding design to the phrase. This
design is distinct from the underlying combined rhythm of this passage, which
consists of steady sixteenth notes throughout. Figure 1.2c¢ is similar, although the
design of the phrase is slightly different: each measure contains more non-chord
tones than the last. In addition, both figures 1.2b and 1.2c suggest that there are
two non-chord tone combinations that might be termed “motivic”: a combination
of a passing tone and a neighbor tone in close proximity, which occurs several
times in the upper voice, and a scalar passage with several successive passing
tones, which appears in both voices. Thus, regardless of the method of identifying
non-chord tones, there may be interesting musical observations that can be made
for a particular analysis.

Since the problem of identifying non-chord tones has been solved in so
many different ways, and since my purpose is the development of an analytical
tool that is independent of the criteria for identification, I will not attempt to
justify the criteria that I employ in great detail. However, for the sake of analytical
consistency the following criteria may serve as a general guide. I follow Schenker
and Schoenberg in limiting the types of non-chord tones to passing tones,
neighbor tones (including incomplete neighbors), suspensions, and anticipations.
Both melodic shape and dissonance will be considered as criteria. Notes that are
dissonant relative to the underlying chord will be considered non-chord tones.
With the exception of the dominant seventh, sevenths or ninths of chords will
usually be analyzed as non-chord tones. A consonant note may also be analyzed as
a non-chord tone if it is dissonant relative to an underlying chord that is outlined
in the music, particularly if the note is approached and resolved as a non-chord
tone. Finally, motivic and thematic consistency will be extremely important in

making analytical decisions and will occasionally outweigh other criteria.



Chapter 2: Non-Chord Tone Generalized Interval Systems

Although the concept of a musical interval has traditionally been
associated only with distances between pitches and pitch-classes, and perhaps
beats and beat-classes, the generalizing power of mathematics allows us to apply
the concept in unfamiliar areas. In Generalized Musical Intervals and
Transformations (GMIT), David Lewin demonstrates that traditional interval
systems involving pitches, pitch-classes, beat classes, time-spans, and even
differences in the timbre of instruments all share fundamental structural
properties, expressed formally using a Generalized Interval System (GIS).'® This
generalizing approach can reveal surprising musical relationships and properties
that might otherwise go unnoticed.

In this chapter, we will use GIS structure to construct a non-chord tone
interval system, which we will then expand into a number of related systems. The
goal of the first non-chord tone GIS is to study the textural effects of filling out a
passage by adding or removing non-chord tones of various types. Before
examining the conceptual framework and formalism involved in a non-chord tone
GIS, however, we should introduce the concept of a Generalized Interval System
as developed by David Lewin, along with the mathematics upon which it is based.

A Brief Introduction to Groups

Lewin's work in Generalized Musical Intervals and Transformations
draws heavily on mathematics, particularly some very basic concepts from group
theory. In fact, this mathematical approach is so fundamental a part of Lewin's
work that he frequently states his arguments in terms of definitions, theorems, and
proofs. In order to work with this framework, we must first explain the basic
details of the mathematics involved.

The fundamental mathematical basis for Lewin's work is the mathematical
concept of a group. We can best examine this concept by discussing a definition
of a group:

A group (G, *) is a set G, closed under a binary operation *, such

that the following axioms are satisfied:

16. David Lewin, Generalized Musical Intervals and Transformations,
(Oxford: Oxford University Press, 2007).
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G: Forall a, b, c € G, we have
(a*b)*c=a*(b*c). associativity of *
G»: There is an element e in G such that for all x € G,
e*x=x*e=x. identity e for *

G;: Corresponding to each @ & G, there is an element a’in G

such that
a*a'=a'*a=e. inversea'ofa"

In the first place, we must notice that a group consists of a set. The set can
often be interpreted as a set of numbers, such as integers, rational numbers, or
complex numbers. In addition, functions frequently form the set that is the basis
of a group. Second, there must be a binary operation, denoted by *, and the set
must also be closed under that binary operation. A binary operation combines two
elements to produce a third element. Familiar examples of binary operations are
addition, subtraction, and multiplication. An example of a less familiar binary
operation is function composition. To say that the set G is closed under a binary
operation * means that whenever two elements of G are combined using the
binary operation * the third element produced by * will also be an element of G.
For example, if @ and b are elements of G, G is a group with the binary operation
* and a * b= ¢, then c is also an element of G.

Two familiar examples of groups are the integers under addition, and the
rational numbers under multiplication. Both of these are closed under their
respective operations. For example, consider the equation a + b = ¢, where a and
b are integers (positive or negative). Regardless of which integers they are, ¢ will
also be an integer. An example of a structure that would not satisfy these criteria
would be the positive integers under subtraction. In this mathematical structure 4
— 5 =—1, which is not a positive integer and is consequently outside the set. In
other words, the positive integers under subtraction are not closed.

In addition to this basic consideration, a group must satisfy three axioms.
The first of these is associativity, which means that (a * b) * c=a * (b * ¢). The
integers under addition are associative. For example, (1 +2)+3 =1+ (2 + 3).

17. John Fraleigh, 4 First Course in Abstract Algebra, 6th ed. (Reading,
MA: Addison-Wesley, 1999), 52.
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The integers under subtraction, however, are not. For example, (7 —4) -2 =1,
while 7 — (4 — 2) = 5. Secondly, a group must have an identity element e, such
that e * x =x * e = x. In the integers under addition, the identity element is 0. In
the rational numbers under multiplication, it is 1. That is adding 0 to any number
or multiplying any number except 0 by 1 will produce the same number. Finally,
every element in the group must have an inverse. That is, for every element a in
the group there must a corresponding element @', such thata *a'=a’'*a =e,
where e is the identity element. In the example of the integers under addition, the
negative numbers are the inverses of the corresponding positive numbers. In the
rational numbers under multiplication, the inverse of x takes the form 1/x.

While groups can serve as a generalization of the principles of addition
and multiplication, they can also serve to express relationships among a smaller
finite set of elements, where they often correspond to the symmetries of some
geometric object. A simple example of a finite group is the integers from 0 to 11
under addition mod 12. This system is cyclic and works by dividing every sum by
12 and taking the remainder. For example, in this system 7 + 10 = 5, since we
obtain the result by adding the second number, dividing by 12, and taking the
remainder as follows: first, we take 7+ 10 = 17; second, 17 + 12 =1, with a
remainder of 5; consequently, under addition mod 12, 7 + 10 = 5. This group
corresponds to the rotational symmetry of clockwise movement on a twelve hour
clock, but it can also be used to represent other things, such as chromatic pitch-
classes. Note that the same principles apply to other examples of modular
arithmetic. For example, in the group of integers 0—6 under addition mod 7 the
equation 5 + 4 = 2 would be true.

It is also possible to have groups of functions, with a binary operation of
function composition. This is perhaps less familiar than the previous groups we
have mentioned. Function composition takes two functions and produces a third
function. To make this concrete, suppose that f{x) = 2x + 1 and g(x) = 3x — 2.
Both f{(x) and g(x) are functions: if we take any value of x as the input, then these
functions will output exactly one number. We can combine the functions to create

a third function, which would be equivalent to the result of passing x first through
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one function and then the other. In our example, the result of passing a value
through f(x) and then through g(x) would be a third function A(x). That is, g(f(x))
= h(x) = 6x + 1. We could also reverse the order, passing x through g(x) and then
f(x) to produce i(x). That is, f{g(x)) = i(x) = 6x — 3. Notice that g(f(x)) does not
equal f{g(x)). Function composition is not necessarily commutative, and groups of
functions are not necessarily commutative either.

Function composition does bring up an issue of notation. Transforming x
by f'and then by g might be written as either gf(x) = A(x) or g(f(x)) = h(x), a
notation that is known as left orthography, or as (x)fg = (x)4, which is an example
of right orthography. In both cases, the equation means that f transforms x before
g. Because he thinks it is more familiar to music theorists, Lewin uses left
orthography in most contexts, but uses right orthography in a few cases.'®
Although I will occasionally use left orthography, I will primarily use right
orthography, in a form where each function is separated by square brackets. For
example our equations might be written as [f][g] = [/] or [g][f] = [{]. In both
cases, f then g produces 4; g then f'produces i. I will primarily employ this method
in conjunction with graphs in later chapters, where its use will help to clarify the
order in which transformations are applied.

Although some collections of functions form groups, this is not always the
case. Some collections of functions form semigroups. A semigroup differs from a
group in that it has no identity element and not all elements have an inverse. So
the only law of combination that applies is associativity. This situation can often
arise when one is working with functions. It is possible for some functions to
produce the same output for more than one input value, which means that the
function cannot have an inverse, since the inverse function would not produce a
unique output for every input. For example, consider a function f, mapping the
real numbers into the real numbers, where f(x) = x*. If we apply this function to 1
and —1, we find that f{1) = 1, and f(—1) = 1. In mathematical terms, this function is
not /-to-1, because two different arguments, 1 and —1, share the same value (they

both produce 1), and it is a mapping info rather than onto the real numbers, since,

18. Lewin, Generalized Musical Intervals and Transformations, 2
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although it always produces real numbers, it cannot produce every element in the
set of the real numbers (i.e. it cannot produce negative numbers). Because of these
features, the function f'does not have an inverse. Taking the square root of x will
result in two values rather than the single element required. Since it does not have
an inverse, this function could not belong to a group. In referring to functions,
Lewin distinguishes between two types: transformations, which are simply into
functions, and operations, which are 1-to-1 and onto functions." Note that every
group of operations is also a semigroup of transformations, since a group
automatically satisfies the less stringent requirements of a semigroup. We will
return to this distinction later when need arises.

It is also possible to form larger groups from multiple smaller groups
through direct product groups. A direct product group combines smaller groups.
Its elements are expressed as an ordered list of elements, for example (a, b, ¢).
Each member of the list belongs to a smaller group and is combined with another
element from the same group. However, each ordered list is a single element in
the larger direct product group, and combining two such lists will produce a third
list that is also an element of the direct product group. For example, suppose a
and b are elements of the group G, and x and y are elements of group H. Suppose
that direct product group of G and H is 1. This would be notated G x H = 1. The
elements of / could be notated as ordered pairs, with each member being an
element of G or H. For example, (a, x), (b, x), (a, ), and (b, y) would all be
elements of /. Furthermore, if a * b = ¢ in group G and x * y =z in group H, then
(a, x) * (b, y) = (c, z) in group 1. Let us make this concrete. The integers under
addition are often abbreviated as Z. Let us consider Z x Z. The elements are
ordered pairs. For example, (1, 4) and (3, —2) are both elements of the group, and
we can combine them as follows: (1, 4) + (3, —2)=(4,2). Weadd 1 + 3 to
produce 4, and 4 + —2 to produce 2, so that the direct product being the ordered
pair (4, 2). This procedure can easily produce complex groups.

Group theory is a highly developed and very complex branch of pure

mathematics. Music theory has only had occasion to use some of the simplest

19. Ibid., 3
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groups. Although I have not discussed every aspect of group theory that will be
employed in this thesis, this introduction serves as a practical background for
Lewin's generalized interval systems.
Generalized Interval Systems

Lewin's generalized interval system uses the concept of a mathematical
group to find underlying similarities in the structure of conventional interval
systems. Lewin distinguishes between several different musical interval systems,
one representing scalar intervals between scale degrees, another for the twelve
chromatic pitch classes, one for harmonic space measured in fifths and thirds, and
others. In each case, he finds that there is a group involved. He formalizes the
general properties of these interval systems as follows:

A Generalized Interval System (GIS) is an ordered triple (S,

IVLS, int), where S, the space of the GIS, is a family of elements,

IVLS, the group of intervals for the GIS, is a mathematical group,

and int is a function mapping S x S into IVLS, all subject to the

two conditions (A) and (B) following.

(A): Forallr, s, and tin S, int(r, s)int(s, t) = int(x, t).

(B): For every s in S and every i in IVLS, there is a unique tin S

which lies the interval i from s, that is a unique t which satisfies

the equation int(s, t) = i.%°

Let us examine this definition in some detail. As we can see, a GIS has
three components. The first of these is the system’s space, which is a family or set
of musical elements. Taking the scalar interval system as an example, the space
comprises letter names (excluding accidentals) and octave designations, arranged
alphabetically. For example, C4, ES, F7, etc. are all elements of this space.

The second component of a GIS is IVLS, a mathematical group of
intervals. In conventional musical interval systems, this group is usually quite
simple or familiar. For example, in the case of the scalar interval system described

above, the group is integers under addition.

20. Ibid., 26, Lewin's italics.
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The third component of a generalized interval system is the function int(s, t),
which maps two elements of the space into the group of intervals. This function
means that there is a certain conceptual gap between the elements of the space and
the group of intervals. They are two distinct things, a set of elements and a group
of intervals, with the int function joining the two. Depending on the interval
system in question, the int function can vary widely. In the case of the scalar
interval system, the function counts the steps from one letter-name to another. For
example, the interval from C4 to E4 is 2 steps, so int(C4, E4) = 2. Notice that,
although the interval from C4 to E4 is conventionally called a “third,” in Lewin's
system the interval is 2. The conventional scalar interval system employs
inclusive counting, which counts all the elements in the span from C4 to E4.
Inclusive counting has complexities: a third plus a third equals a fifth. To avoid
these complexities, Lewin uses standard counting in his int function.

There are two more conditions, (A) and (B), that are necessary for a
musical system to qualify as an interval system in Lewin's definition. The first of
these, condition A, guarantees that the transitive property will hold true. In other
words, combining the interval from s to t and the interval from t to u equals the
interval from s to u. In the scalar interval system, the interval from C4 to E4 (2
steps) plus the interval from E4 to G4 (2 steps) equals the interval from C4 to G4
(4 steps). That is, int(C4, E4) + int(E4, G4) = int(C4, G4). The condition ensures
that our intervals interact with the elements of the space in an intuitive way.

Condition B states that “For every s in S and every 1 in IVLS, there is a
unique t in S which lies the interval i from s, that is a unique t which satisfies the
equation int(s, t) = i.”?' So, take any element in the space. Extend from it any
interval in IVLS. Condition B guarantees that there will an element in the space as
a result of that extension. In other words, there are no elements in the space that,
when combined with any interval in IVLS, will send us outside of the space. This
condition can cause problems when the interval system is finite. We will return to

a discussion of condition B and its problems shortly.

21. Ibid., 26
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In Generalized Musical Intervals and Transformations, Lewin explores
two methods of generating a new GIS from an old GIS. First, one can modularize
a GIS. For example, the scalar interval system that we have discussed takes no
notice of octave equivalence (except that implied in the repeating letter name
designations). Thus the interval from C4 to ES5 is 9. To model the idea of octave
equivalence, Lewin modularizes his system. As an example, let us consider
Lewin's interval system for scalar pitch-class intervals.? In this interval system,
the space consists of the seven pitch-classes denoted by letters. The group consists
of the integers mod 7. The function int(s, t) maps the pitch-classes into the
intervals by counting the number of steps up necessary to get from one pitch-class
to the next. Lewin suggests that this can be visualized by imagining the pitches
wrapped around a 7 hour clock and then counting the number of hours of
clockwise motion necessary to get from one pitch to another. In this system, the
interval from C to F is always 3, while the interval from F to C is always 4,
regardless of whether the music moves up or down.

Second, one can combine two GISes to form a third, direct product GIS, in
which the elements of S are ordered pairs and the intervals of IVLS belong to a
direct product group. We considered an example of such a group earlier when we
examined Z x Z. In this group, ordered pairs are combined to produce other
ordered pairs. For example, equations such as (2, -3) + (4, 1) = (6, -2) simply add
each element separately. Lewin applies the same principle to GIS structure,
defining a direct product GIS as follows:

Given GIS, = (S,, IVLS,, int,) and GIS, = (S,, IVLS,, int,), the

direct product of GIS, and GIS,, denoted GIS, ® GIS,, is that

GIS; = (S;, IVLS;, int;) which is constructed as follows.

S;is Sy X S,, the Cartesian product of S; and S,. That is, the

elements of S; are pairs (si, s,), where s; and s, are elements of S,

and S, respectively.

IVLS; is IVLS, ® IVLS,, the direct-product group of IVLS, and

IVLS,. That is the members of IVLS; are pairs (i, 1»), where 1; and

22. Ibid., 17.
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1, are members of IVLS, and IVLS,; further, the members (i, 1)

and (ji, j») of IVLS; combine (to form a group) under the rule (i,

)(J1, J2) = (11, 1)2)-

The function int;, from S; X S5 into IVLS;, is given by the rule

int;((s1, 82), (t1, t2)) = (inty(s, t), inty(sy, t2)).2

Lewin uses an example of such a product GIS to analyze a piece by
Webern, the opening of the third movement of the Piano Variations op. 27. His
direct product GIS combines the GIS that measures intervals between equal-
tempered chromatic pitch-classes using integers mod 12 with a second GIS that
measures the distance between time points by counting the number of beats from
time-point s to time-point t. Thus the intervals are pairs representing a pitch
interval and a time interval. For instance, in the piece by Webern, the pitch
interval of 11, a major seventh, often occurs in conjunction with two successive
quarter notes, a beat interval of 1. Thus the combined interval (11, 1) takes on a
special significance in this passage, tying together the pitch interval 11 and the
beat-defining interval 1.%* Such direct product intervals can be a powerful
analytical tool, tying together multiple features of a passage of music.

Such a direct product GIS provides a sample of the potential that
generalized interval systems have. The combination of pitch intervals and
temporal intervals into a single entity is something that music theory might
discuss, but without a generalized interval system there is no well defined method
for conceptualizing it. Consequently, such a combination could easily go
unnoticed. The direct product GIS demonstrates that such a combination shares an
underlying mathematical similarity with traditional a interval system. In this way,
the GIS allows us to map the familiar concept of an interval onto the unfamiliar
domain of pitch and rhythm combinations, giving us a means to conceptualize the
combination in musical terms. Lewin exploits this feature on several occasions in

GMIT, introducing several different ways to conceptualize rhythmic features in

23. Ibid., 45.

24. Ibid., 38-39.
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terms of GIS structure. He even introduces timbral GIS structures that can
measure the differences in timbral profile of various instruments.*
Transformations

Lewin defines both transpositions and inversions as transformations on the
space of a GIS. Following Lewin's distinction between transformations and
operations, transpositions are operations in Lewin's terms, because they form a
group rather than merely semigroup. Moreover, the group of transpositions is
isomorphic to IVLS.?® That is, the group formed by the transposition operations
has the same structure as the group of intervals. Likewise, transpositions and
inversions together form a group. In the context of a commutative GIS, a GIS
whose group of intervals is commutative, transpositions of collections of musical
objects preserve intervals, while inversions reverse intervals.?” This is the
behavior we expect from transpositions and inversions. If we transpose a passage
of music, we expect the intervals in the transposed copy to be the same as those in
the original passage. Interestingly, in a non-commutative GIS, this does not hold
true: in a GIS whose IVLS are non-commutative, the associated transpositions
will not preserve intervals.”® However, since we will deal with only one non-
commutative GIS in this thesis, and since we will not use transpositions and
inversions in conjunction with it, we will not pursue this distinction further.

After several chapters discussing transformations that generalize musical
set theory, Lewin eventually arrives at a structure he calls STRANS, which can

replace the idea of a GIS. According to Lewin,

25. Ibid., 81-85.

26. Ibid., 46—47. Technically, Lewin says that the group is anti-isomorphic
to the group of intervals, meaning that the order is reversed so that T;T; = T;. This
distinction between and isomorphism and an anti-isomorphism is only necessary
because Lewin employs left orthography. In the construction T;T}, T; is applied
before T;, while Tj is a transposition by the combined interval ji, where j is also
applied before i. Thus, in both cases j is applied before i.

27. Ibid., 50, 58.

28. Ibid., 58.
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we can replace the idea of GIS structure by the idea of a space S

together with a special sort of operation-group on S. This special

sort of group is what mathematicians call simply transitive on S.

The group STRANS of operations on S is simply transitive when

the following condition is satisfied: Given any elements s and t of

S, then there exists a unique member OP of STRANS such that

OP(s) =t.”

When STRANS replaces GIS structure, the group of operations on S are the
transpositions. We have already noted that transpositions on the space of a GIS
are isomorphic to IVLS. Thus, we can do away with IVLS and int(s, t), and
substitute transposition operations acting directly on musical elements. According
to Lewin, the reason for introducing GIS structures at all is for the cultural-
historical reason that we tend to hear “intervals” between objects, but
“transpositions” between Gestalts.*

For Lewin, the use of STRANS has two distinct advantages. First, it
subsumes intervals under the broader domain of transformational theory, which
can include transformations that do not form groups and transformations that have
nothing in common with traditional intervals. Transformations form the basis for
graphs and networks, which represent transformations in a visual form. Because
transposition operations, which correspond to intervals, and more specialized
transformations all come under the same heading, he can use graphs to portray
either one. Secondly, this shift in thinking toward the “transformational” attitude
also belongs to the anti-Cartesian thread in GMIT.?' For Lewin intervals are static

measurements between points that are “out there,” while transformations are

29. Ibid., 157.
30. Ibid., 158.

31. Henry Klumpenhouwer, “In Order to Stay Asleep as Observers: The
Nature and Origins of Anti-Cartesianism in Lewin's Generalized Musical Intervals
and Transformations,” Music Theory Spectrum 28, no. 2 (Autumn 2006): 277-289.
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active and can be internalized so that the analyst takes a position inside the
music.*
A Critique of Condition B

As we have seen, STRANS can replace GIS structure. Each interval in
IVLS corresponds to a transposition operation in the simply transitive group of
operations on S, STRANS. If we examine the definition of a GIS closely, we can
see that it actually prepares the way for this shift from GIS structure to STRANS.
In particular, conditions A and B in the definition of a GIS must be true in order
for STRANS to be a viable replacement for GIS structure. Let us reexamine these
conditions:

(A): For all 1, s, and t in S, int(r, s)int(s, t) = int(, t).

(B): For every s in S and every 1in IVLS, there is a unique t in S

which lies the interval 1 from s, that is a unique t which satisfies

the equation int(s, t) =1i.**

Condition A is straightforward. It requires that the int function be
transitive and is true of any traditional interval system. This corresponds to the
required transitive property of STRANS. Condition B is also necessary for
STRANS to apply. As we have already discussed, condition B guarantees that S
will hold every element to which one could possibly extend an interval. Because
the operations of STRANS act on S, S must necessarily hold every element that
could be generated by an operation of STRANS. Consequently, condition B is
necessary for STRANS to subsume GIS structure.

Let us suppose, however, that a GIS does not have to lead us to STRANS
or to any of the other tools Lewin develops. Is condition B still necessary in order
for it to reflect our musical intuitions? As a matter of fact, it is not. The int
function could be a mapping that simply generates intervals from notes. There is
no need to be able to go backwards from intervals to notes. The int function could

go from a finite set of elements to an infinite group of intervals. It would not be

32. Lewin, Generalized Musical Intervals and Transformations, 159.

33. Ibid., 26
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able to generate every element in that group of intervals, but it could generate
some intervals, and the group itself could generate the remaining intervals.

In conventional musical interval systems, the space is constrained by
practical limits, such as the number of keys on a piano or what sounds it is
possible to produce on a violin. Some of these limits are even built into the
theoretical system, as is the case in the medieval gamut system, where the
gamma-ut was the lowest note in the space, although its pitch would have varied
according to context. On the other hand, intervals have always been a theoretical
abstraction which could be infinite, even with a finite gamut of notes. Music
theory has been happy to live with this situation for thousands of years. Similar
oddities exist in the conventional naming of musical intervals, which employ
inclusive counting, lack the number 0, and involve a correspondingly unusual
form of arithmetic (so that a third plus a third equals a fifth). All of these
disjunctions and oddities are done away with by Lewin's GIS as it stands. Thus
condition B is a purely mathematical necessity. In fact, it tends to widen the gap
between Lewin's GIS structure and traditional musical intervals.

Moreover, condition B creates problems even for Lewin. In GMIT section
2.2.5 he gives the following example of an interval system:

The musical space is a family of durations. Int(s, t) is the

difference (NB not the quotient) of time units between s and t:

Int(s, t) = (t — s) units. So, if 1, s, and t are respectively 3, 4 and 8

units long, then int(r, s) = (4 — 3) units = 1 unit, int(s, t) = (8 — 4)

units = 4 units, and int(t, r) = (3 — 8) units = —5 units.**

When Lewin reexamines this in the light of GIS structure, he finds that it does not
lead to a GIS:

S, IVLS, and int here cannot satisfy Condition (B) of Definition

2.3.1. For instance, try s = 3 units and i = —8 units; then there is

no duration t in S satisfying int(s, t) = 1. ... S does not contain

“negative durations,” and failing some convention not yet

specified, it is not clear what intuitions we could possibly be

34. Ibid., 24
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modeling, when we stipulate a duration t that lasts not only less

than no time at all, but also measurably less than no time at all.*

Arguably, there is a significant difference between conceptualizing
infinitely subsonic pitches and conceptualizing a negative duration, and this is the
approach that Lewin takes, allowing GIS structures for absolute pitch, but
excluding absolute additive durations. However, it reveals an aspect inherent in
generalized interval systems, namely that they are a more significant abstraction
from our traditional conceptions of intervals than Lewin's discussion of
“Intuitions” might suggest. From a purely practical point of view, the concern
over whether or not some of the theoretical elements in S can be associated with
anything we can actually conceptualize is irrelevant, because we will never
encounter them in the music anyway. On the other hand, from a musical point of
view, Lewin's GIS of 2.2.5 is a useful means of modeling music, and the fact that
it does not satisfy condition B does not make it any less useful.

We have several alternatives to take in regard to condition B. We could
drop condition B in the interest of making GIS structure closer to a conventional
interval system, thus allowing additional possibilities such as the GIS of section
2.2.5. On the other hand, GIS structure will still be a significant abstraction, and
the mathematics necessary for STRANS and many other things will not work out,
leaving the entire edifice of GMIT in a fragmented state. Alternatively, we could
take Lewin's approach and include or exclude a GIS based on how comfortable
we are with conceptualizing impossibilities. Lewin is comfortable with infinitely
supersonic and subsonic pitches, but not with measurably negative durations.
Finally, we could adopt the following approach: first, retain condition B for the
sake of proper mathematics; second, include any kind of impossibility in S by
simply defining things such as “negative durations” to exist without worrying
about how to conceptualize them, since we will never encounter them in the
music anyway; third, acknowledge that a GIS is really a very significant
abstraction relative to traditional intervals no matter how we approach it. This is

the approach that I take.

35. Ibid., 29.
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The Conceptual Framework

The idea behind a GIS of non-chord tones lies in our musical intuition that
if the same chord or note is played with and without some number of non-chord
tones, then, while the note is still recognizable as such, the number and type of
non-chord tones added will change the musical impression of the note or chord in
a distinctive way. Let us consider this in the light of figure 2.1, which provides six
distinct musical situations, labeled a to f. If we compare the six examples, we can
understand each as a C major triad with the same voicing, more or less. Yet, each
one has a distinctive character due to the different arrangements of non-chord
tones, the configurations of non-chord tones attached to the C major chord. The
differences among these configurations are not all the same. For instance, figures
2.1b and 2.1c sound much “closer” to each other than to any of the others because
they both employ one neighbor tone, despite the differences in pitch and rhythm.
The relationship of figures 2.1d and 2.1e to figures 2.1b and 2.1c is more
complex. Figure 2.1e sounds similar to 2.1b and 2.1c, because there is only one
non-chord tone, and because it occurs in the same melodic voice, while 2.1d
sounds similar to 2.1b and 2.1c, because it also employs neighbor tones. Yet,
while both bear some similarity to 2.1b and 2.1c, figures 2.1d and 2.1e are quite
different from each other. If we rephrase this in terms of distance, figures 2.1d and
2.1e are distant from each other, yet each is close to 2.1b and 2.1¢ in terms of a
specific direction. Developing the notion of relational distance, we can conceive
of the relationships as a triangle in which 2.1b and 2.1c are at the same point,
while the lines to 2.1d and 2.1e form the two shorter sides on either side of an
oblique angle and the line from 2.1d to 2.1e forms the third side. While all of
these figures would be relatively close to the point represented by 2.1a, figure 2.1f
would be far removed from any of the others.

Methodologically, this approach runs into a few difficulties. At what point
should we consider two different things to be similar? If we are to have any
precise measure of “intervals” between configurations, then we must follow some
method of generalization that cuts through the complexities of the music. In the

preceding example, we based our consideration of similarity and difference on a
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number of factors: the type and number of non-chord tones involved and the
melodic voice in which the non-chord tones occurred. These distinctions feel
relatively natural and adequately capture traditional ways of approaching non-
chord tones. We can simplify the distinction even more if we consider the vertical
harmony and the melody separately. If we do this in an analytical context, we
could consider two chords each containing a single neighbor tone to be identical
even though that tone might appear in different voices. We could then analyze the
melodic lines separately and point to the differences in the melodic lines created
by the distinction that we had previously ignored.

Before we formalize this approach, we should undertake one final
consideration. What types of non-chord tones should we take into account? Since
there are a variety of approaches to this categorization, we could include quite a
few different types. Since this would potentially lead to a more nuanced view of
the differences between various configurations we will not exclude the possibility
of defining as many types as we wish, but rather build the formal system so as to
allow the number of types to change. In this context, however, the focus will
primarily be on neighbor tones, passing tones, and suspensions.

Formal Considerations

As we have just seen, it is possible to conceptualize differences between
musical entities based on the number and type of non-chord tones without regard
to details such as harmony or rhythm. Rhythm and to a lesser extent harmony
must still play a role in determining the size of the musical entity under
consideration. In figure 2.1, each example consists of a single C major chord
lasting one measure. I called each of these examples configurations of non-chord
tones. The term configuration is useful, because it could refer to the non-chord
tones associated with a single chord or to a metric consideration such as the non-
chord tones in an entire beat, measure, or phrase, regardless of how many chords
are in the beat, measure, or phrase. We will retain the term configuration and
decide on the scope of that configuration when we analyze a piece of music.

Our first non-chord tone GIS will be very general. It will simply count the

number of non-chord tones. This GIS will not distinguish between passing tones,
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neighbor tones, and suspensions; all of them are simple non-chord tones.
However, we will also be developing several more non-chord tone interval
systems using the same principles. At that point, we will begin to account for the
different types of non-chord tones. Our first non-chord tone GIS is NCT-
GIS(NCT); the notation involved in this name will be explained shortly.

NCT-GIS(NCT): Let the space of the system be the family of integers
that count non-chord tones associated with some musical entity, such as a note,
chord, measure, or phrase. IVLS, our group of intervals, consists of integers under
addition. Given two configurations of non-chord tones, s and t, int(s, t) assigns an
element of IVLS to the order pair (s, t) by calculating s — t. In other words, the
relevant IVLS integer counts the number of non-chord tones one must add to s in
order to have the same number of non-chord tones as t.

IVLS is commutative. The GIS satisfies conditions A and B, since both S
and IVLS consist of the integers, and int(s, t) simply uses addition to map S into
IVLS. It is isomorphic to both Lewin's GISs in sections 2.1.1 and 2.1.2 of GMIT,
generalized interval systems for pitch.* Notice that S, the space of the GIS does
contain negative integers, representing configurations with negative numbers of
non-chord tones. We have no way of conceptualizing such configurations;
however, they are mathematically necessary for the GIS to satisfy condition B.

Applying the GIS to the examples in figure 2.1, we represent each
configuration as a positive integer, by counting the non-chord tones. So, we
represent 2.1a as 0, because the configuration in this example has no non-chord
tones. The examples in 2.1b, 2.1c, and 2.1e are all represented by 1; likewise, 2.1d
is represented as 2; and 2.1f as 8. We calculate the member of IVLS appropriate to
the extension from figure 2.1a to 2.1b, that is, from 0 to 1, by subtracting 0 from
1. Accordingly, the GIS assigns the integer 1 as the interval from figure 2.1a to
figure 2.1b. In the same way, the interval from 2.1b to 2.1d is 1, and the interval
from 2.1a to 2.1d is 2. In other words, int(2.1b, 2.1d) = 1 and int(2.1a, 2.1d) = 2.
So far, this GIS is highly intuitive.

36. Ibid., 16-17.
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We must emphasize, however, that unless we define negative
configurations of non-chord tones, it does violate Lewin's condition B, which
states that “for every s in S and every i in IVLS, there is a unique t in S which lies
the interval i from s, that is a unique t which satisfies the equation int(s, t) = 1.”%’
As an example, take the interval from 2.1d to 2.1b, int(2.1d, 2.1b). Since figure
2.1d is 2 and figure 2.b is 1, the interval from 2.1d to 2.1b is —1, int(2.1d, 2.1b) =
—1. If we now extend the interval —1 from 0, the configuration in 2.1a, we find
that the hypothetical configuration must have —1 non-chord tones. This
hypothetical configuration is a member of our space, even though we cannot
conceptualize it. Even though we have no suitable conception of a negative
number of non-chord tones, we have defined our space that way in order to
accommodate the mathematics.

While this does present a technical problem if we wish to invoke Lewin's
model, it does not prevent us from obtaining meaningful analytical results, since
we will simply never encounter configurations with a negative number of non-
chord tones in analysis. As we have already argued, condition B of GIS structure
is a mathematical necessity that tends to create a break with our experience. A
configuration that has a negative number of non-chord tones may bare a greater
similarity to conceptualizing “negative durations,” which Lewin does not allow,
than it does to conceptualizing sub- and supersonic pitches, which Lewin does
allow. However, this does not prohibit practical analysis. The situation is, in fact,
no different than many other cases in which we habitually employ negative
numbers so as to obtain group structure.

Having established the basic principles, we will now explain the label
NCT-GIS(NCT) and develop another GIS, which we will apply in our analysis in
Chapter 3. The label NCT-GIS(NCT) is an abbreviation for non-chord tone
generalized interval system, while the NCT in parentheses indicates the type of
non-chord tone that the GIS measures. In this case, we did not distinguish
between different types of non-chord tones, so we simply used the abbreviation

NCT. We could also substitute a common abbreviation for a specific type of non-

37. Ibid., 26.
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chord tone. For example, passing tones are often abbreviated by the letter P.
Consequently, NCT-GIS(P) would be a GIS that measured only passing tones,
while NCT-GIS(Ant) would count only anticipations. What if we wanted to
measure two types of non-chord tones, such as passing tones and neighbor tones?
In this case, we would label our GIS as NCT-GIS(P, N) to indicate both passing
tones and neighbor tones. There is a distinct difference, however, when we
employ more than one non-chord tone. The resulting GIS is now a direct product
GIS. For instance, NCT-GIS(P, N) would be the direct product of NCT-GIS(P)
and NCT-GIS(N). This method can be used to generate an arbitrarily large direct
product GIS. Let us examine a concrete example.

NCT-GIS(P, N, S). Let S be the family of configurations of non-chord
tones connected to some musical entity. The elements of S are lists of three
integers (P, N, S): P represents the number of passing tones; N, the number of
neighbor tones; and S the number of suspensions in the configuration. IVLS
consists of lists of three integers <i, j, k>, where 1 is an integer measuring
differences in passing tones, j is an integer measuring differences in neighbor
tones, and k is an integer measuring differences in suspensions. Each of these
three combines only with the corresponding member under addition. Note that
throughout this discussion, intervals (elements in IVLS) will be distinguished
from objects (elements in S), by the use of pointed brackets “<>” rather than
ordinary parentheses “( ).” Given two configurations of non-chord tones, s and t,
int(s, t) is the number of non-chord tones of each of the three types that one must
add to s in order to have the same number of non-chord tones of each type as t.
The GIS is commutative.

This GIS is a direct product GIS created from NCT-GIS(P), NCT-GIS(N),
and NCT-GIS(S). Because it distinguishes between three different types of non-
chord tones, it is more precise in the information it gives than NCT-GIS(NCT). If
we consider figure 2.1 again, we now see that 2.1a, which has no non-chord tones
is still equal to (0, 0, 0). Both 2.1b and 2.1¢ have a single neighbor tone, so 2.1b
and 2.1c = (0, 1, 0). Likewise, 2.1d = (0, 2, 0). Because it has one passing tone,
2.1e=(1, 0, 0), while 2.1f = (5, 3, 0), since it has 5 passing tones and 3 neighbor
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tones. In all cases, the number of suspensions is 0. In addition, we can calculate
intervals as follows: 2.1b and 2.1c have the same number of neighbor tones, so
int(2.1b, 2.1¢) =<0, 0, 0>; int(2.1b, 2.1d) =<0, 1, 0>, because 2.1d has one more
neighbor tone that 2.1b; int(2.1b, 2.1e) =<1, —1, 0>, and int(2.1d, 2.1¢) = <1, =2,
0>, because in both cases the number of passing tones increases, while the
number of neighbor tones decreases.

This GIS now gives us information that more closely matches our intuition
regarding the passage as described above, where we compared our
conceptualization with the idea of relational distance. Figure 2.2 gives just such a
representation on a Cartesian coordinate plane, with the X and Y axes
representing passing tones and neighbor tones. Since our GIS includes
suspensions, a complete representation would require a three-dimensional graph.
However, since we have no suspensions in our example, the graph is limited to
two dimensions. The various configurations are plotted on the graph, along with a
selection of intervals. As the graph demonstrates, most of the configurations lie
relatively close to the origin. Only the configuration for figure 2.1f is relatively
distant.

As we have already noted, our system of labeling allows for a large direct-
product GIS representing many different types of non-chord tones. The system
can easily be altered to suit a different focus. We could generate a complex direct
product GIS such as NCT-GIS(P, N, Esc, App, S, R, Ant), which would measure
all the common classifications of non-chord tones. Such a GIS would correspond
to a representation in seven dimensions and could provide a very nuanced point of
view.

There are a number of questions that might be asked in regard to the
approach that I have taken. Why, for instance, is it necessary to invoke GIS
structure? Within the scope of Lewin's GMIT project, the generalized interval
system is ultimately supposed to be superseded by transformations, so why bother
with GIS structure at all? In answer to these questions, the obvious advantage of
invoking GIS structure is that it provides a solid foundation for more detailed

work involving non-chord tone transformations. In addition, GIS structure brings
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with it a variety of other tools that are associated with GIS structure, and which
can be adapted for non-chord tone analysis. Finally, the presentation in terms of a
GIS makes it easy to conceive of configurations of non-chord tones in exactly the
same way we conceive of pitch. This makes it possible to conceive of features
such as thematic sets of non-chord tones that can be transposed, to discuss the
non-chord tone “contour” of a passage, and to adopt any of Lewin's tools for the
analysis of pitch with the assurance that they will work in this context.
Conclusion

In this chapter, I have introduced the basic concepts involved in Lewin's
GMIT project, particularly the idea of a generalized interval system. We have
examined some of the features and short-comings of GIS structure, and provided
a concrete example of how this concept can be extended in the form of non-chord
tone generalized interval systems. Although the methodological and technological
framework provided by GMIT is formidable, the basic idea of a non-chord tone
generalized interval system which simply counts non-chord tones of various types
is relatively simple and intuitive. The formalism inherent in invoking GIS
structure helps to provide a means of conceptualizing non-chord tone structures
by mapping them onto the more familiar domain of pitch. Moreover, since it
brings with it the entire apparatus of GMIT, this method can easily be extended
and adapted by the individual analyst. Having sufficiently discussed these formal
properties of non-chord tone generalized interval systems, we can now turn to

their practical application to musical analysis in chapter 3.
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Chapter 3: Analysis of Mozart's Variations on “Ah! Vous dirai-je, Maman”

In the preceding chapter, we introduced the concept of a non-chord tone
generalized interval system. As we have seen, our analytical tool carries a
substantial theoretical background with it; however, the basic idea of a non-chord
tone GIS is relatively simple, since it merely involves counting non-chord tones.
We now turn to an analysis of Mozart's variations on “Ah! Vous dirai-je, Maman,”
K. 265. The analysis is first of all a practical application of a non-chord tone GIS,
demonstrating the usefulness of the basic feature of such a GIS, namely counting
non-chord tones and conceptualizing the differences between configurations of
non-chord tones in terms of intervals. Secondly, it explores some of the
possibilities for non-chord tone analysis provided by the theoretical apparatus of
Lewin's formalism, including transposition and inversion, retrograde-inversion
chains, and interval vectors.

In addition to the practical application of a non-chord tone GIS, this
analysis has as its goal a thorough non-chord tone analysis of a complete piece of
music. Thus, I have chosen to discuss the entire piece, including the labeling and
graphing of non-chord tones in each variation, as well as some features that apply
to the overall form. This is necessary partly because I will be taking a statistical
approach to the overall form from a non-chord tone perspective; and partly
because it also serves as a basis for a brief commentary on interesting features in
each variation. As we shall see, non-chord tones in these variations contribute to
both local and global compositional design.

Analytical Preliminaries

As we have already noted, there are many approaches to analyzing non-
chord tones. Consequently, some basic principles employed in this particular
analysis must be outlined. My approach draws fairly heavily on Schenkerian
scale-degree theory, by determining the scale-degree governing a given point and
then labeling other tones as non-chord tones. Following Schenker (and
Schoenberg), we will consider only passing tones, neighbor tones, and
suspensions, rather than the more complex designations often employed in basic

music theory texts. Since the variations contain no anticipations, we need not
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consider them in our model. Consequently, the non-chord tone GIS for this
analysis will be NCT-GIS(P, N, S), in which both non-chord tone configurations
and intervals are expressed as ordered triples.

Before turning to our analysis, we must also briefly define the various
non-chord tones that will be analyzed. A passing tone is approached and left in the
same direction and brings about a dissonant state. The motion involved need not
be stepwise. This means that we can encounter “incomplete” passing tones. For
instance, considered against the tonic triad, the succession 8-6-5 would contain
an incomplete passing tone, 6. A neighbor tone is approached and left in the
opposite directions and brings about a dissonant state. Thus, appoggiaturas and
escape tones will be considered “incomplete” neighbor tones. A suspension
maintains a pitch from the previous consonant state into a dissonant state. Since
many of the seventh chords in this piece arise from chains of suspensions and
other very clear voice-leading features, sevenths of chords other than the
dominant-seventh or fully diminished seventh-chord will generally be analyzed as
non-chord tones unless there is some compelling reason not to do so. In the case
of the conventional cadential six-four, both components will be treated as chord
tones. In some cases, clear instances of compound lines or arpeggiation will be
taken into account in analyzing non-chord tones. Further notes will be appended
to each variation if anything is unclear.

The final consideration in analyzing non-chord tones is the fact that this
piece is a set of variations on a well-known tune. There are a number of cases in
which notes could be treated as chord tones, but can also be heard as non-chord
tones embellishing the underlying theme. In general, consideration of the theme
has the highest priority. Consequently, there will be a few instances of apparent
chord tones that will be treated as non-chord tones for thematic reasons.

The form of K. 265 is straightforward, consisting of a theme followed by
twelve variations. The underlying theme and harmonic structure of each variation

is extremely stable with very few changes between variations. Each variation is in

38. Schenker, Counterpoint, 184—185 discusses this type of passing tone in
detail.

31



ternary form, with A sections beginning in measures 1 and 17, and an eight
measure B section in measures 9—16. It is constructed in square four-bar phrases
with a harmonic rhythm of one or two chords per measure, with clear authentic
cadences in measures 7—8 and 23-24 and a half cadence in measures 15-16.
Because of the ways in which it is generally treated in the variations, the
harmonic rhythm of measures 5—7 and all corresponding passages will generally
be considered to be one chord per beat. However, the configurations of non-chord
tones will be considered to be the number of non-chord tones in a given measure
in both cases, since the harmonic rhythm is still somewhat variable and a measure
by measure approach facilitates comparison between different variations. Finally,
there is a dominant pedal point implied in measures 9—16 of every variation,
which will be ignored when it contradicts the harmonies above it.

For the theme and each subsequent variation, I have provided the score, a
graph depicting the non-chord tone profile with lines, and a table giving the
relevant non-chord tone configurations and intervals, each as a separate figure.
The relevant figures are listed with the heading for each variation. We will have
occasion to refer to these extensively throughout the analysis.

The Theme (Figures 3.1-3.3)

The theme appears in figure 3.1. A graph, which appears in figure 3.2,
amplifies the pattern of non chord-tone configurations throughout the theme. The
bottom of the graph provides measure numbers. The vertical dimension counts the
number of non-chord tones in each configuration, drawing lines between
successive configurations. These configurations are listed in the table in figure
3.3. The dotted line in the graph represents neighbor tones and indicates that only
neighbor tones are present and that they only appear in measures 7, 15, and 23.
This line may be thought of as a contour, similar to the contour of a melody, with
ascending and descending lines representing intervals.

The table presenting the configurations of non-chord tones in each
measure of the theme appears in figure 3.3; it provides the data upon which the
graph in figure 3.2 is based. The table presents our GIS objects in the

configurations column. The corresponding measure numbers appear to the left of
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each configuration. The configuration in measure 1 contains no passing tones, no
neighbor tones, and no suspensions. Accordingly, it is represented as (0, 0, 0), as
are all the measures through measure 6. The table tells us that the next
configuration, the configuration in measure 7, contains a neighbor tone. Looking
at figure 3.1, we see that E5 in the right hand is enclosed in parentheses and
marked with an N. According to the rules we have given, E is an (incomplete)
neighbor, since it is a non-chord tone and since it is approached and left in
opposite directions. There are no passing tones or suspensions, and so we
represent the configuration as (0, 1, 0). The interval that extends from the
configuration in measure 6, (0, 0, 0), to the configuration in measure 7, (0, 1, 0),
appears in the column to the right of the configuration in measure 6 and slightly
offset, indicating that it comes between measures 6 and 7. So applying the interval
<0, 1, 0> to (0, 0, 0), the configuration in measure 6, produces (0, 1, 0), the
configuration in measure 7. The notation captures the idea of adding no passing
tones, one neighbor tone, and no suspension to the configuration in measure 6 to
produce the configuration in measure 7, and applying the interval <0, —1, 0>—
which represents the idea of “add no passing tones, take away one neighbor tone,
add no suspensions”—to configuration 7, produces (0, 0, 0), the configuration in
measure 8.

The theme has an extremely simple non-chord tone profile. Mozart
embellishes the original tune infrequently and then only by way of neighbor
tones. We can also see that the intervals between configurations of non-chord
tones also present a “neighboring” profile, motion in one direction followed by a
change in direction. There are several examples of this: the intervals from
measure 6 to measure 7 and measure 7 to measure 8; measure 14 to measure 15
and measure 15 to measure 16; and measure 22 to measure 23 and measure 23 to
measure 24. There is also a neighbor structure among the three configurations
themselves, from measure 7 to measure 15 and measure 15 to measure 24.

Variation 1 (Figures 3.4-3.6)
As with the theme, variation 1 and the data for its non-chord tone analysis

are given in three figures: figure 3.4, which contains the music with non-chord
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tones enclosed in parentheses and labeled as either passing tones (P), neighbor
tones (N), or suspensions (S); figure 3.6, which gives a table with non-chord tone
configurations and intervals; and figure 3.5, which contains a graph representing
non-chord tone contours in the variation. Notice that the table in figure 3.6 has an
additional column of non-chord tone intervals, giving the interval from a measure
in the theme to the corresponding measure in variation 1. For example, the
interval from measure 7 of the theme to measure 7 of variation 1 is listed as <0,
—1, 0>, because measure 7 of the theme contained one neighbor tone, whereas
measure 7 of variation 1 contains no non-chord tones. In addition, the graph in
figure 3.5 now contains three clear contours, a passing tone contour represented
by a solid line, a neighbor tone contour represented by a dotted line, and a
suspension contour represented by a dashed line. The non-chord tone profile as a
whole is represented by the simultaneous changes in each of these contours.

The labeling of non-chord tones in this variation presents some difficulty,
because of the thin two-part texture. In general, I have analyzed each measure
against the projected underlying harmony, even if not all the notes are present.
Thus, we consider the A5 in measure 4 a suspension, since we take the harmony
in the measure to be C major. In addition, the notes of the original theme are given
precedence. In measures 10 and 14, we consider the Gs on the first and last eighth
note of each measure as non-chord tones although they are actually consonant
relative to the underlying pedal tone G. We do so for two reasons: first, they are
clearly dissonant with the F of the theme; and second, the repeated patterns in the
measures on either side also treat the corresponding notes as non-chord tones.
This suggests that the D and F together should be considered part of a ii chord or
vii chord over the dominant pedal rather than an integral part of a dominant-
seventh.

This variation presents a non-chord tone profile that is very different from
the theme. Whereas in the theme the same interval was consistently employed,
this variation, though it may use the same configuration twice in a row, rarely uses
the same interval twice in succession. The intervals from the corresponding

measures of the theme also feature an interesting situation. While all other
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intervals are positive, the intervals in the measures before each cadence are
negative in the neighbor tone dimension. Accordingly, in those places where the
theme had employed non-chord tones, the current variation has now eliminated or
decreased the number of non-chord tones, and vice versa. This provides further
contrast with the theme, for the only points at which corresponding measures in
the theme and the first variation are identical (i.e. form the interval <0, 0, 0>) are
the cadences. In addition, while the theme embellished the cadences with non-
chord tones, in this variation the largest configurations are in the middle of the
phrase in the A section or at the beginning in the case of section B.

An interesting feature of this non-chord tone profile can be found by
comparing the passing tone contour in the A sections with the neighbor tone
contour in the B section. As figure 3.5 shows, the passing tone contour of
measures 1-8 consists of an ascent to 4 passing tones followed by a descent. This
is paralleled in the B section by a similar contour.

Variation 2 (Figures 3.7-3.9)

As before, the data for variation 2 is labeled on the score in figure 3.7,
graphed in figure 3.8, and listed as a table in figure 3.9. A few choices of non-
chord tones deserve commentary. The sevenths in the V chords on the last beats of
measures 7 and 23 are treated as passing tones. The seventh-chords in measures
5-7 and 21-23 arise from chains of suspensions and are identified accordingly.
The E in measures 12 and 16 is prepared as a suspension despite the intervening
neighbor tone and is dissonant against the V chord. Finally, the trill in measure 17
is treated as a single neighbor tone because of its short duration.

Variation 2 contains a number of interesting relationships created by the
contour of its non-chord tone profile. There is a recurring pattern in which several
pairs of configurations each contain the same interval. That is, measures 1 and 2
are separated by the identity interval <0, 0, 0> because they have the same
configuration of non-chord tones. Likewise, measures 3 and 4 and measures 5 and
6 each form a pair outlining the same interval, <0, 0, 0>. Because all of these
pairs outline the same interval, they are all “transpositions” of the same

underlying configuration.
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We can express this formally using transposition operations in the manner
that Lewin uses in GMIT, with the symbol Tj(s), where i is an interval in IVLS
and s is an element of the space of the GIS.*” For example, we can notate the
transposition of the configuration (0, 3, 0) by the interval <0, 0, 1> to obtain the
configuration (0, 3, 1) as follows: T« o,1=((0, 3, 0)) = (0, 3, 1). This particular
transposition applies to the relationship between measures 1 and 3 and between
measures 2 and 4. Thus, measures 3—4 are the T o 1> of measures 1-2. Likewise,
measures 5-6 are the T« 1 o- of measures 3—4. This example is relatively simple,
for each pair of measures outlines the identity interval, <0, 0, 0>. Since they both
share the same interval, they must be transpositions of each other.*

A similar example is provided by measures 14—15 and measures 16—17.
Both of these pairs of measures outline the interval <0, 2, —1>. Furthermore,
measures 14 and 16 both have the configuration (0, 3, 1), while measures 15 and
17 both have the configuration (0, 5, 1). Since they are the same, the transposition
relationship is transposition by identity, or T« o, o-. While transposition by identity
is relatively trivial, if we think about the domain of pitch (imaging calling any
strict repetition of the same pitches “transposition by identity’’) such a relationship
is more unusual in the domain of non-chord tone intervals, particularly when the
melodic and rhythmic content of the pairs of measures does not involve repetition.

Having discussed non-chord tone transposition operations, we can also
find non-chord tone inversion operations in this variation. While transposition
operations preserve intervals—that is the intervals in a transposed passage will be

the same as those in the original—inversion operations reverse intervals.*' For

39. Lewin, Generalized Musical Intervals and Transformations, 46.

40. In this case, the transposition employs all components of the non-
chord tone interval; however, it would also be possible to look at this as a partial
transposition similar to what Joseph Straus terms relative degrees of uniformity
and smoothness in his article “Uniformity, Balance, and Smoothness, in Atonal
Voice-leading,” Music Theory Spectrum 25, no. 2 (Fall 2003): 305-352.

41. Lewin, Generalized Musical Intervals and Transformations, 50, 58;
This property only holds true in a commutative GIS, such as the conventional
interval system or the non-chord tone interval system under consideration; this
would not be true in a non-commutative GIS.
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example, the interval from C to E is a third up, while the interval from C to A is a
third down. The same feature is true of our non-chord tone intervals. Thus,
measures 14—15 (outlining <0, 2, —1>) and 15-16 (outlining <0, —2, 1>) are
related by inversion. This is true, because the interval found in measures 14—15 is
reversed in measures 15-16; the intervals <0, 2, -1> and <0, -2, 1> are inverses of
each other.

We can take this discussion a step further by invoking a phenomenon that
Lewin calls a retrograde inversion chain, denoted by a transformation called
RICH.* A retrograde inversion chain occurs when a brief fragment of music
overlaps with its own retrograde inverted form. Taking the domain of diatonic
pitch as an example, the retrograde form of the motive C—-D—E-A is A—-E-D—-C.
Inverting this motive around C producest E-A—B—C. Since C—-D—E—-A and E-A-
B-C contain the sequence E-A, they can overlap to form the sequence C—D-E—
A—B—C. Since the new sequence ends with a stepwise ascent and the original
begins with a stepwise ascent, we could overlap a transposed version of the
original with the end. Transposing down one step C—D—E—A produces B-C-D-G.
Since B—C overlaps with the end of the sequence the whole chain can be extended
indefinitely. A depiction of this phenomenon in musical notation appears in figure
3.10.

It is a hallmark of retrograde inversions that their interval succession is a
palindrome. This is because the retrograde form reverses the direction of each
interval and reverses the order in which intervals appear. Inversion reverses the
direction of the intervals. The result is that the direction of each interval is
reversed twice, but the order of the intervals is reversed only once.

If we examine variation 2 closely, we can see that measures 15—17 are the
retrograde inversion of measures 14—16. The configurations of measures 14-16
are as follows: (0, 3, 1), (0, 5, 0), and (0, 3, 1), with the two intervals <0, 2, —1>
and <0, —2, 1>. In retrograde or reverse order these would all be exactly the same,
since the sequence forms a palindrome. If we then invert the intervals we arrive at

<0, -2, 1> and <0, 2, —1>, the same intervals in reverse order. This is what

42. Ibid., 180-184.
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happens in measures 15—17, where we have this sequence of three configurations:
(0, 5,0), (0,3, 1), and (0, 5, 0), with the intervals <0, —2, 1> and <0, 2, —1>,
demonstrating that measures 15—17 are indeed the retrograde inversion of
measures 14—-16. Since these measures overlap, this presents the beginning of a
retrograde inversion chain, Lewin's RICH transformation. This example is very
brief and is broken off after only one RICH transformation; in the familiar domain
of pitch it would be similar to the retrograde inversion inherent in a series such as
C-D-C-D. However, because non-chord tone intervals are much more varied
than pitch intervals, even such a simple phenomenon is not necessarily a trivial
occurrence. Although it is very simple, even this one instance is suggestive, for
retrograde-inversion chains provide forward motion. Thus, this brief retrograde-
inversion chain helps to bring us smoothly into the return of the A section in
measure 17.

Relative to the theme, variation 2 is very similar to variation 1. The largest
configurations occur near the beginning of each phrase, with the configuration (0,
0, 0) occurring only at the end of section A in measures 8 and 24. One feature that
does recall the structure of the theme is the introduction of a single passing tone in
measure 7 and another measure 23. Since these are the only passing tones in this
variation, the passing tone contour of this variation is similar to the neighbor tone
contour of the theme. To see this, compare the solid line in figure 3.8 with the
dotted line in figure 3.2: both have peaks at measures 7 and 23. This was
completely contradicted in variation 1 by the use of (0, 0, 0) in measures 7 and 23.
In addition, one of the most interesting features of variation 2, the retrograde
inversion chain, occurs at the return of section A, which in the theme was
emphasized by the largest configuration of non-chord tones (0, 4, 0), but in
variation 1 was broken by a rather sudden instance of (0, 0, 0). Thus, in addition
to the obvious similarity of the melody, arising from the fact that the
accompaniment now receives most of the embellishment, variation 2 can be seen
as a slight move back toward the theme because of the specific effects created by
the total configurations of non-chord tones.

Variation 3 (3.11-3.13)
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Variation 3 is fairly straightforward. As with the previous variations, the
music and data for the analysis can be found in figures 3.11, 3.12, and 3.13. Like
the preceding variations, it constantly varies the intervals that are employed.
However, it also has a relatively smooth contour and small intervals,
demonstrated in figure 3.12 by the relatively low profile. The fact that the
intervals from the corresponding measures in variation 2 (shown in the first
column of the table in figure 3.13) are almost all negative indicates a substantial
decrease in the number of non-chord tones in this variation, suggesting a gradual
progression away from variation 1 back toward the theme. This conclusion is
further supported by a slight ascent to (0, 0, 2) in the suspension contour at
measures 7 and 23 (demonstrated by the peaks of the dashed lines in the graph in
figure 3.12), followed by a return to (0, 0, 0) at the cadences in measures 8 and
24, reflecting the neighbor tone contour of the theme and the passing tone contour
of variation 2.

The specific features of this variation also connect it with variation 2. As
in variation 2, pairs outlining <0, 0, 0> recur several times. In addition, measures
10—13 are the retrograde inversion of measures 12—15, thus creating the beginning
of another retrograde inversion chain.

In terms of labeling non-chord tones, the Gs in measures 10 and 14 may
be heard as suspensions relative to the underlying theme, a choice that parallels
my analysis of variation 1. In addition, the A in the trill in measure 13 must be
heard as a neighbor tone, while the A in the last beat should be heard as a chord
tone. This hearing involves understanding the second beat of measure 13 as a
secondary dominant-seventh leading to a i1 chord on the down-beat of measure
14, while the G in the bass is understood as part of a dominant pedal point that
underlies the harmonic structure of measures 9—-16 in every variation.

Variation 4 (Figures 3.14-3.16)

The non-chord tone profile of Variation 4 is quite interesting, with several
phrases outlining very clear contours in which the different non-chord tone
contours behave in a more unified fashion. This is demonstrated by the

similarities in the lines of the graph in figure 3.15. If we examine the table in
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figure 3.16, we find that in the first phrase, measures 1 and 2 are paired by the
interval <0, 0, 0>. This pair returns, transposed first by <0, 0, 1> in measures 3—4
and then again by <0, 2, 0> in measures 5—6. The energy created by these
ascending motions is sustained for another bar, before subsiding with the interval
<0, —2, —1> at the cadence in measure 8. This contour reflects the theme much
more closely. The high points of the total number of non-chord tones are now
concentrated near the cadences of section A at measures 7-8 and 23-24. In our
preceding discussion, we found that this same feature was appeared in the
contours of a single type of non-chord tone in the theme, in variation 2, and in
variation 3; however, in the contour for this variation there is no equivalent
phenomenon for the neighbor tones found in measure 15 of the theme, since, as
figure 3.15 demonstrates, the high points in measures 9—-16 occur in the middle of
the phrase rather than at the end.

In terms of non-chord tones, measure 9 represents a key expressive point.
Throughout the preceding variations, the configuration (0, 0, 0) has been rare,
occurring primarily at cadences. It certainly has not occurred at the beginning of
the B section since the original theme. Yet, we find it here in measure 9, prepared
by two clear contours. One of these can be traced through measure 9 across
successive variations as follows: from the theme to variation 1, <0, 4, 0>; from
variation 1 to variation 2, <0, —1, 0>, from variation 2 to variation 3, <0, —2, 0>;
and from variation 3 to variation 4, <0, —1, 0>. This represents a large leap
followed by a slow steady descent to the arrival at (0, 0, 0). This feature can be
found by tracing the interval for measure 9 found in the first column of figures
3.3,3.6,3.9,3.13, and 3.16. This contour appears in figure 3.17, which represents
the configurations found in measure 9 of the theme and each variation in a graph
similar to that employed within each variation. The other contour is the
“thematic” contour of section A, which appears in figure 3.15.

Variation 5 (Figures 3.18-3.20)

Variation 5 continues the process found in variation 4 and approaches

quite close to the theme. The profile is thin: no measure contains more than one

non-chord tone and there are many instances of <0, 0, 0>. As in variation 4 and
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the theme, the non-chord tones tend to appear near the end of phrases, and this
time a similar feature occurs in the passing tone contour of section B, which we
can see in figure 3.19. The key difference that sets this variation apart from all
previous variations is that it is the first variation to end with a non-chord tone
configuration other than (0, 0, 0); the table in figure 3.20 shows that the
configuration in measure 24 is (0, 1, 0), representing the presence of the single
neighbor tone. Thus, although its contour strongly connects this variation back to
the theme and thus represents the end of a section, the instability of ending on the
configuration with a non-chord tone, (0, 1, 0), prepares the listener for a move in a
new direction.

Variation 6 (Figures 3.21-3.23)

Variation 6 does, in fact, turn away from the theme. Like variation 1, the
high points in the non-chord tone contour occur near the beginning of each
phrase, with a descending contour throughout section A. This feature is clearly
visible in figure 3.22, which shows that high points of the neighbor tone contour
occur around measures 1, 9, and 17. Although many of the same intervals recur in
both the A and B sections, this fact is not particularly remarkable because the
thematic material of the counter-melody is fairly consistent in both sections.

Perhaps the most striking feature is the fact that <0, 0, 0> appears only in
the middle of each phrase and between the B section and the return of the A
section in measure 17, thus linking these sections together, even though the
motives employed are different. If we refer to the table in figure 3.23, we find the
intervals <—1, 0, 0>, <0, 0, 0>, and <1, 0, 0> between successive measures in
measures 3—6. The occurrence of the interval <0, 0, 0> between measures 4 and 5
in the middle of the A section links these two phrases (measures 14 and 5-8)
even more strongly, for the preceding interval, <—1, 0, 0>, in measures 3—4 is the
inversion of the following interval, <1, 0, 0>, in measures 5—6. This series of
intervals, <—1, 0, 0>, <0, 0, 0>, and <I, 0, 0>, creates a descending/ascending
contour of the non-chord tones that is the inverse of the melody's pitch contour at
that point.

Variation 7 (Figures 3.24-3.26)
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The contour of variation 7 continues to avoid the contour of the theme. In
the two A sections, the relatively smooth scalar melody begins with a high number
of passing tones—(4, 0, 0)—gradually fades the passing tones out, and introduces
a single suspension that is sustained until the cadence, with a brief excursion in
the neighbor tone direction smoothing out the transition from passing tones to
suspensions. The new melody in section B is even more interesting, for it has a
very clear descending passing tone contour.

We can also discover a retrograde inversion chain beneath the surface of
this non-chord tone contour. Referring to the table in figure 3.26, we find that, if
we ignore the instances of <0, 0, 0> from measures 9-10 and 13—14, considering
them as sustaining the configuration (3, 0, 0), that we have the following two
sequences of intervals: <3, 0, 0>, <—1, 0, 0>, <—1, 0, 0> and <2, 0, 0> in measures
8-13 and <2, 0, 0>, <—1, 0, 0>, <—1, 0, 0> and <3, 0, 0> in measures 12—-17. Since
the second sequence of intervals contains the same intervals in reverse order, the
measures 12—17 are the retrograde inversion of 8—13, creating the beginning of a
retrograde inversion chain. This retrograde inversion chain is more complex than
those which we found in preceding variations. As in variation 2, this feature can
also be heard as providing continuity with the return of the A section within this
variation.

Variation 8 (Figure 3.27-3.29)

Variation 8 is characterized by an imitative texture that produces motivic
repetition at the beginning of each line. In terms of the non-chord tone intervals,
this results in the initiation of several retrograde inversion chains. As we see in
Figure 3.29, measures 1-3 contain the series of configurations (2, 0, 0), (0, 0, 0),
and (2, 0, 1), with intervals <-2, 0, 0> and <2, 0, 1>. The pattern overlaps with its
own retrograde inversion in measures 2—4, where we find the configurations (0, 0,
0), (2,0, 1), and (0, 0, 1) with the intervals <2, 0, 1> and <2, 0, 0>. We can
detect the retrograde inversion because the intervallic succession is palindromic.
A similar process occurs in the altered repetition in measures 17-20 where <—1, 1,
0> and <1, —1, 1> (found between measures 17-19) overlap with <I, —1, 1> and

<-1, 1, 0> (measures 18-20). These relationships could also be explained by
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modeling the opening motive in measures 1-2 with the pair (2, 0, 0), (0, 0, 0) and
considering measures 3—4, containing the pair (2, 0, 1), (0, 0, 1), as a repetition
“transposed by one suspension.” Using Lewin's designation, the relevant
transposition operation is T« ¢, 1>. The same relationship also applies in measures
17-20.

If we view a configuration of two passing tones, (2, 0, 0), as thematic, then
the B section of the variation becomes very interesting. In measures 9—11, we
have the configurations (0, 1, 0), (2, 0, 0) and (0, 1, 0), with intervals of <2, —1,
0> and <=2, 1, 0>. This overlaps with measures 10—12, which contain the
configurations (2, 0, 0), (0, 1, 0) and (2, 0, 0) and intervals <=2, 1, 0>, <2, —1, 0>.
Again, the reversal in the order of the intervals indicates the presence of a
retrograde inversion chain that oscillates between (0, 1, 0) and the more thematic
(2, 0, 0). If it were not for the suspension added to the passing tone in measure 13,
creating the configuration (0, 1, 1) rather than (0, 1, 0), the chain would be
continued through a third application of the RICH transformation. This final
configuration can be profitably be viewed as an extension of the retrograde
inversion chain in which the final configuration has been transposed by T, o, 1>,
which is a thematic transformation drawn from the A section. The B section ends
with a climax in which Mozart begins at (0, 0, 0) in measure 14 and applies T ¢, ¢~
twice in order to arrive at (2, 0 0), the central thematic configuration of this
variation.

Variation 9 (Figures 3.30-3.32)

The imitative texture of variation 9 associates it with variation 8, yet the
non-chord tone profile is now quite reduced. The A sections each maintain a
single configuration, (0, 0, 1), for several bars before closing with an emphatic,
dynamically emphasized leap from (0, 1, 1) to (0, 0, 0) at the cadences. (See the
listing for measures 7-8 and 23-24 in figure 3.32.) The B section provides variety
by introducing different configurations and intervals with almost every measure,
before closing with a progression to the configuration (2, 0, 0) that reflects a
similar progression in Variation 8. Interestingly, the modified return of the A

section focuses very heavily on the configuration (0, 0, 0) rather than (0, 0, 1),
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preparing the way for variation 10. In addition, the neighbor tone contour begins

to reflect the theme again, for the largest non-chord tone configurations (0, 1, 1)

and (2, 0, 0) occur in measures 7, 14, 16, and 23, just before the cadences of the A

sections in measures 8 and 24 and the return of the A section in measure 17.
Variation 10 (Figure 3.33-3.35)

In terms of non-chord tones, Variation 10 is closer to the original theme
than any other variation. Like the original theme, it is almost completely lacking
in non-chord tones. They are only incorporated at the cadences. As the table in
figure 3.35 demonstrates, the only configurations other than (0, 0, 0) are (0, 0, 1)
in measures 7 and 23 and (4, 0, 0) in measure 16. There are, of course, some
significant differences. In the theme the non-chord tones were all neighbor tones,
whereas variation 10 now employs suspensions in the A sections and passing
tones in the B section. These dissonances, particularly the passing tones between
section B and A, are more pronounced than the neighbor tones in the theme,
making these non-chord tone differences quite distinct.

It should be noted that this variation does have a more complex harmonic
progression than the theme and that some of these harmonies, such as the
secondary dominant in measure 10, could be interpreted in terms of non-chord
tones. However, interpreting them as chords in this variation makes more sense.
While some seventh-chords such as those that have often occurred on the strong
beats of measures 5—7 and measures 21-23 are consistently motivated by a clear
chain of suspensions in many variations, the seventh-chords in this variation have
clear harmonic explanations. Moreover, these chords produce chromatic
alterations of the same scale-degree (for example, F# instead of F) rather than
different scale-degrees.

Variation 11 (Figure 3.36-3.38)

The non-chord tone profile of Variation 11 is highly varied. Very few
patterns or intervals repeat. However, if we consider only one non-chord tone
dimension at a time, there are some interesting details in the contour. Examining
measures 4-8 and measures 2024 in figure 3.37, we see that both of the A

sections present a clear arch-like contour in the passing tone dimension. The B
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section opens with a sudden leap to (4, 0, 0), which is paired with a steady, yet
rapid descent through repeated reduction by two passing tones, the first member
of the ordered triples <—2, 0, 0> and <-2, 4, 0>. This is immediately countered a
repeated ascent of 3 passing tones to attain a height of 6 passing tones, which is in
turn followed by another even more extended descent that reaches all the way to
the return of section A. Since some of the individual motives involved are quite
different, this result is not immediately obvious. Since passing tones are very
active non-chord tones, and since this is the most extended use of any NCT so far,
this variation is quite easily heard as being different than anything that has come
before.

Variation 12 (3.39-3.41)

The non-chord tone analysis of Variation 12 requires a few comments. In
the table in figure 3.41, there are two intervals in the right-hand column that both
extend from measure 23, <4, —5, 0>, which connects measures 23 and 24, and <0,
1, 0>, which connects measures 23 and 24b at the second ending. A few analytical
choices also require explanation. Although G on beat 1 of measure 3 could be
labeled as a suspension prepared by an implied voice, it can also be heard as an
incomplete neighbor tone, a choice which produces more interesting results. As in
variations 1 and 3, the initial Gs in measures 10 and 14 are labeled as a
suspension for thematic reasons.

In terms of non-chord tones, this variation is saturated with an unusually
large number of neighbor notes. The new 3/4 meter provides extra space, which
Mozart saturates with neighbor tones. Although most of these are in the
accompaniment, Mozart's choice of melodic neighbor tones creates some
interesting transpositional affects. For example, the series of configurations in
measures 1-3, (0, 7, 0), (0, 7, 0), and (0, 6, 0) which outline the intervals <0, 0, 0>
and <0, —1, 0>, is transposed down by one neighbor tone (T - o-) and repeated
in measures 5—7, creating a slow smooth descent from (0, 7, 0) to (0, 5, 0) across
measures 1-7. The relaunch of neighbor tones in section B results in the unusual
leap of <—4, 11, 0>, which occurs between measures 8 and 9. Within section B,

Mozart also transposes the entire sequence of non-chord tone configurations in
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measures 9-12, (0, 11, 0), (0, 10, 1), (0, 10, 1), and (0, 10, 1), down by three
neighbor tones in measures 13—16. It should be noted that this descending contour
bears a greater resemblance to variation 1, 6, or 7 rather than to the theme or
variations 5 or 10, which have non-chord tone near the end.

The brief coda begins by suggesting a continuation of the same
descending contour. Mozart sustains the energy of this section with beginnings of
a repeating retrograde inversion chain in measures 28-31 by alternating the
configurations (6, 0, 0) and (0, 5, 0) in a manner similar to several examples
which we have already examined. Finally, he gradually dissipates the textural
energy of the non-chord tones by bringing the number of neighbor tones down to
zero through two descending leaps of <0, —3, 0>.

Interval Vectors and Overall Form

In the preceding discussion, we examined non-chord tone relationships
within each variation, demonstrating the ways in which non-chord tones can
function on a very local level. In addition, the relationship of each variation
relative to the theme was briefly considered in order to chart an overall formal
path in which the contours and features of each variation suggest that the theme,
variation 5, and variation 10 are all closely tied together by virtue of their non-
chord tone profiles. The theme and variation 5 are each followed by a radical
departure from that shared contour that is sustained for two variations then
gradually returns toward the same contour in variations 5 and 10. Some of these
relationships can be examined statistically using the concept of interval vectors.

We have already considered transposition and inversion operations on
NCT intervals and have found that they can formally be described in terms of
conventional pitch transposition and inversion. These similarities could be used to
create a “set theory” of non-chord tones. Lewin employs two functions, CANON
and EMB in generalizing musical set theory.” The CANON function represents
“canonical equivalence” Lewin's term for the various possible rules that might be
defined to determine whether or not two sets are considered “equivalent” or not.

The EMB function is a generalized equivalent of an interval vector; it counts the

43. Ibid., 106.
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number of times different forms of the set X occurs within the set Y. When the set
X is a dyad, a set of two elements, it naturally outlines one interval. Thus counting
dyads becomes equivalent to an interval vector that counts the number of times an
interval occurs within a set. If we consider each variation to be a set, we can use
this method to calculate an interval vector for each variation, listing the number of
times each interval appears.

A table with interval vectors for each variation in the entire piece is
presented in figure 3.42. Note, however, that these are not quite equivalent to
interval vectors in the sense that Lewin and Forte's set theory employ them, since
I have listed only intervals between consecutive measures, while a traditional
interval vector (or Lewin's EMB function) would count the intervals by
examining every possible unique pair of elements within a collection. Thus each
variation has 23 intervals rather than 276 intervals. My “interval vectors” are
similar in that they count the number of times certain intervals occur; however,
they are not exactly the same.

I have, however, employed the concept of canonical equivalence. In pitch-
class set theory, transposed and inverted forms are considered equivalent. Since
we have found non-chord tone features analogous to transposition and inversion
the same distinction can be employed. Thus the collection consisting of the
configurations (0, 0, 2) and (0, 1, 0) with the interval <0, 1, —2> would be
considered equivalent to a collection consisting of configurations (1, 1, 0) and (1,
0, 2), with the interval <0, —1, 2>. The latter collection is the inversion of the
former and has been transposed by one passing tone; however, the underlying
change within each collection is the interval <0, —1, 2>. All intervals have been
converted to a set-class that represents a positive total change. Thus we would use
<0, —1, 2> rather than <0, 1, —2>, because the total sum all components of the
former interval is 1, while the latter is —1. We could not use <0, 1, 2>, because it
is inherent in this direct product interval that neighbor tones and suspensions
move in opposite directions. Intervals are sorted from smallest to largest,
calculating first the sum total of all changes, then the total number of changes

both positive and negative, and finally by considering a change in neighbor tones
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to be less significant than a change in either suspensions or passing tones. This
method is intuitive, for the largest intervals are definitely the most audible or
salient.

The modified interval vectors for Mozart's variations are presented as a
table in figure 3.42. Each column represents a variation, while the left most
column lists all of the different non-chord tone intervals that occur throughout the
piece. The numbers indicate the number of times the interval on the left occurs
within the variation listed at the top. Thus we can see that the interval <1, 0, 0>
occurred 6 times in variation 6. Likewise, it is plain that the intervals <0, 0, 0>,
<1, 0, 0>, <0, 1, 0>, and <0, 0, 1> are the most common intervals. The horizontal
lines in the table indicate a division between intervals with different cumulative
changes. For example, the intervals for the first seven rows all have a total
cumulative change of 0, while the next twelve intervals all have a cumulative
change of 1. The largest cumulative change is found in a single interval from
variation 12, <-4, 11, 0>, which has a cumulative change of 7.

We can use this information to make broad formal divisions. There are
three distinct sections, beginning at the theme, at variation 5, and at variation 10
respectively. The progression from the theme to variation 5 is fairly clear. After
the rather sudden diversification of intervals in variation 1, there is a gradual
reduction in the variety of intervals and general size of the intervals employed.
Variations 1 and 2 each employ 10 different intervals. Variation 3 then slightly
reduces the number of different intervals to 9, and as noted earlier, the intervals
from variation 2 to variation 3 are almost all negative, reflecting a progression
back toward the theme. Variation 4 actually employs 10 different intervals, 1 more
than variation 3, but 12 of its intervals sum to a total change of 0, while variations
2 and 3 tend to center on intervals that sum to 1. The progression from variation 5
to 10 is similar, but somewhat staggered, since the interval vector of variation 8 is
clearly more diverse and focused on larger intervals than variation 7. Finally,
variation 9 represents a key step in the process of moving back toward the theme,
since, like variation 4, it has 12 intervals that sum to 0. These processes generally

reflect a “progressive unification,” which is the inverse of the process of
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“progressive diversification” that Lewin found in his application of interval
vectors to rhythmic motives in Chopin's Sonata in Bb Minor.*

It is important to note that the interval vectors here support a relatively
intuitive division of Mozart's set of variations that is supported by other factors.
Variations 1—4 are grouped in alternating pairs in which first the melody and then
the accompaniment is embellished, and there is a rhythmic slowing down in the
use of sixteenth notes in variations 1 and 2 and triplets in variations 3 and 4. This
process is broken at variation 5. Variations 6 and 7 can be grouped into another
pair in which first the accompaniment and then the melody is embellished by
sixteenth note figuration. Variations 8 and 9 can be connected on the basis of their
imitative texture, while variation 10 parallels the theme again. Variation 11 then
stands as a sort of trio section, inserted as if it were hardly a variation at all, while
variation 12 resuscitates the theme in a jubilant coda. This formal division is
further supported by shift from a relatively high number of non-chord tones in
variations 1 and 6 to a relatively low number of non-chord tones in variations 3
and 4 and 8 and 9. This pattern suggests a sort of large-scale cadential progression
of non-chord tones that is repeated across two cycles of five variations each. This
is particularly interesting given the fact that the non-chord tones use or avoidance
of non-chord tones at the cadences is a key factor in who a particular non-chord
tone profile relates to the theme.

The character of the last two variations is also reflected in the interval
vectors. Variation 11 has the most diverse interval vector of any variation: 14
intervals with no more than 4 of any one interval. Variation 11 serves to break the
patterns set up by the earlier variations, providing a formal contrast to the
preceding variations, somewhat in the manner of a trio section in minuet and trio
form. The character of its non-chord tone profile gives strong support to an
analytical judgement that might otherwise be based only on the Adagio tempo
marking.

The interval vector of variation 12 is also rather striking. Although it has a

much larger interval vector, 32 rather than 23 intervals in all, it is not very diverse.
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In spite of one very large interval, most of its intervals are relatively small,
reflecting the strong connection with the original theme. What sets it apart from
variations 5 and 10 are its very large configurations of neighbor tones, which
create a long descending contour in which the tension of the neighbor tones and
non-chord tones in general is brought to a climax and gradually eliminated.
Some Issues and Alternative Methods

One problem with this approach of analyzing intervals between non-chord
tones arises in the very fact of labeling all of the non-chord tones in a piece. There
are many different systems of labeling non-chord tones, and even within the most
rigid frameworks laid out by undergraduate theory textbooks there is usually
some flexibility of interpretation. In the preceding analysis I have tried to be
relatively consistent, yet even within the conditions I have employed there is
room for multiple interpretations. We have already considered this issue in some
detail in chapter 1. However, a brief reconsideration of the problem in relation to
this piece may serve to shed further light on the issue. Moreover, since some of
these possible variant interpretations may significantly alter the data under
consideration it would be appropriate to reexamine a few passages from different
points of view.

One uncertain passage can be found in variation 1, measure 4 (see figure
3.4). Originally labeled (4, 0, 1) in figure 3.6, this measure could also be labeled
as having only two passing tones, (2, 0, 0), by considering the two As as chord
tones, as part of a larger seventh-chord. In this case, the C# in the left hand would
also be considered a chord tone, making a brief V6/5 of ii on the last eighth note
of the measure, while only the right-hand D and B would be considered passing
tones. This alters the intervals preceding and following this measure from <2, =2,
1> and <-1, 0, 0> to <0, —2, 0> and <1, 0, 0>. While <1, 0, 0> is canonically
equivalent to <—1, 0, 0> and changes nothing as far as our interval vector in figure
3.42 is concerned, the interval <0, —2, 0> is already present elsewhere in the
variation, thus reducing the diversification of the interval vector. This change
would not, however, alter the general point, nor would the changes to contour

ultimately be very significant.
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On the other hand, some changes could alter interesting features. For
instance, suppose we were to consider the E in measure 16 of variation 2 (given in
figure 3.7) as a member of an E minor chord in first inversion rather than a
suspension against the overall G major triad. In that case, the beginning of a
retrograde inversion chain spanning measures 14—17, which we have already
discussed, would be altered and shifted to measures 15-18. The relevant intervals
from measures 14—18 would be <0, 2, —1>, <0, —2, 0>, <0, 2, 0>, and <0, —2, 0>
instead of <0, 2, —1>, <0, -2, 1>, <0, 2, —1>, and <0, —2, 0> as originally listed in
figure 3.9.

An alternative approach might involve considering each melody by itself.
Although I have avoided this as being outside the central scope of this chapter, it
could yield many additional interesting results. Let us consider only the right-
hand in measures 1-8 of variation 12 (see figure 3.39). The new configurations
are as follows: (0, 2, 0), (0, 2, 0), (0, 1, 0), (0, 2, 0), (0, 2, 0), (0, 2, 0), (0, 0, 0),
(0, 0, 0); these yield the following intervals: <0, 0, 0>, <0, —1, 0>, <0, 1, 0>,
<0, 0, 0>, <0, 0, 0>, <0, =2, 0>, <0, 0, 0>. The new approach highlights the
motivic nature of the trills, setting measure 3, with a configuration of (0, 1, 0),
apart as a “neighboring configuration,” while the general contour focuses on pairs
of configurations outlining <0, 0, 0> that are sustained and then transposed down
by two neighbor tones after measure 6. In this case, whether we label the G in
measure 3 as a suspension or neighbor hardly affects the results at all. This
alternative pattern can be heard as complementing the more complex relationships
produced when all non-chord tones are considered.

Conclusion

In this chapter, I have applied the concept of a non-chord tone generalized
interval system in order to analyze some interesting features that can be found in
Mozart's variations on “Ah! Vous dirai-je, Maman.” K. 265. Non-chord tones
serve many different musical purposes. In some cases, specific patterns of non-
chord tones or changes between measures create continuity by repetition,
transposition, and inversion of patterns. Specific configurations may even take on

a thematic role. In addition, the general textural contours created by each type of
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non-chord tone certainly serve a purpose in shaping each variation relative to the
theme and contribute to larger formal processes.

In analyzing non-chord tones in this way, I also hope to have demonstrated
that the textural features created by non-chord tones can play a key structural role.
In a piece such as Mozart's variations on “Ah! Vous dirai-je, Maman,” where the
harmony and melody are extremely simple and repeated verbatim several times,
where timbre is unified throughout the piece, and even rhythmic variety is
relatively low, finding variety can be difficult. Much of that variety can be found
in the usage that non-chord tones receive.

By analyzing this variety with a formal model based on GIS structure, I
have also demonstrated the ability of the model to explain and highlight many of
these features. Furthermore, this analysis has only touched the surface of what the
model can show. Because of the flexibility of Lewin's formalism, the model is
highly adaptable. As a matter of fact, this analysis has only scratched the surface
of the potential results that could be realized in this piece alone by applying other
tools that Lewin has developed. Finally, this model has the potential to be
combined with other systems in direct product GISes to generate other formal
analytical tools that can be used in the broader context network analysis, a topic

which will be explored in the following chapters.
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Chapter 4: An Alternative Non-Chord Tone GIS

In the preceding chapter, we found that some very intriguing structural
properties of non-chord tones in Mozart's variations on “Ah! Vous dirai-je,
Maman” could be uncovered simply by counting the non-chord tones in each
measure. While a measure by measure approach may often be applicable to
variation form and was particularly apt for the example by Mozart, there are many
instances in which such an approach might not be as useful. Single chords, notes,
or beats are, in many cases, more relevant in the analysis of non-chord tones than
large expanses such as measures or phrases. This situation highlights an
inadequacy of simply counting non-chord tones, as a basic NCT-GIS does. When
considering large configurations such as a whole measures or phrases, the analysis
can do little more than represent a statistical approach. On the other hand, if the
configurations were to consist of individual chords or notes, with an analytical
focus on a single melodic voice, the configurations would so frequently consist of
such small numbers of non-chord tones that counting them might almost seem
irrelevant.

It is this particular problem of analyzing non-chord tones as local
phenomenon that I will address in this chapter and the following chapter. The
central focus of this chapter is the development of a new non-chord tone GIS,
applicable for motivic analysis. In addition, I will also develop a number of
concepts which are not directly concerned with non-chord tones, but which can
readily be combined with non-chord tone intervals in analysis. As in chapters 2
and 3, the material in this chapter is intended as formal theoretical groundwork,
preparing the way for a detailed network analysis of themes and motives in
Brahms's String Quartet No. 2 in A Minor in chapter 5.

Formal Considerations: Non-Chord Tone GIS Structures

In order to clarify the musical situations that our new NCT-GIS models,
lets us consider another musical example. Figure 4.1 illustrates some of the most
common configurations of non-chord tones that might be attached to a single
note. In each case, the note G is followed by some number of passing tones or

neighbor tones. These can be considered as “attached” to the G because they
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occur in the same beat. Accented passing or neighbor tones would be associated
with the pitch that follows them. In such cases, it is unlikely that any one chord
tone will have many non-chord tones of the same type. Therefore, it might be
more relevant to consider whether a specific note does or does not have non-chord
tones attached to it. From this point of view, figure 4.1b and figure 4.1c are
similar: both involve passing tones only.

Before addressing formal considerations, let us consider exactly which
intuitions this GIS will model. The elements of S provide an answer to the
question “do I hear non-chord tones associated with this note or chord?”
Alternatively, they might model a compositional decision: “what happens when I
add non-chord tones to this note or not?”” The int(s, t) function then asks whether
there is a change from one configuration to the next. It models the compositional
decision to continue to repeat the same pattern (i.e. continue to leave notes
unadorned or continue to embellish each note) or add variety by doing something
different. In other words, it will be a simple yes/no or on/off distinction. Because
it models this type of intuition, it will be helpful to notate the intervals in IVLS as
<N>, meaning “no change,” and <Y>, meaning “yes, there is a change,” rather
than using 0 and 1, the elements of Z,, the group which corresponds to this type of
distinction.

Let us formalize this approach as a GIS along the lines of NCT-GIS(NCT)
from Chapter 2. Our space will consist of configurations of non-chord tones
associated with some note, phrase, or other musical unit, and will contain just two
elements: 0 and NCT. 0 represents a configuration with no non-chord tones; NCT,
represents the presence of at least 1 non-chord tone. IVLS is the group of integers
under addition mod 2. The function int(s, t) maps two members s and t of S into a
member i of IVLS as follows: if s = t then i = <N> and if s # t then i = <Y>. Since
S and IVLS both consist of only two elements, it is fairly obvious that Lewin's
conditions A and B are satisfied. In addition, the GIS is commutative.

Since this approach to describing non-chord tones may not be immediately
intuitive, let us examine some of the intervals in figure 4.1, considering each

configuration to be attached to the chord that spans the measure. In the example,
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the configuration of non-chord tones for the chord in 4.1a is 0, while for 4.1b
through 4.1f the configuration is simply NCT. Remember that we are still only
considering non-chord tones in general, without reference to any particular type.
This distinction is the most basic division that can be made; a particular chord
either does or does not have non-chord tones that occur while it is sounding. From
this perspective, the interval from the chord in 4.1a to any of the other chords
would be <Y>. On the other hand, the interval between any two chords other than
4.1a is always <N>, since no changes take place in the state of the non-chord
tones.

We can also consider configurations of non-chord tones attached to a
single note instead, a distinction which is perhaps slightly more useful. In figure
4.1b, the G has a passing tone attached to it, while the E has no non-chord tones.
We consider the F as attached to G because it occurs in the same beat.
Consequently, the configuration of non-chord tones for G is NCT, while it is 0 for
the E. Thus, the interval from G to E is <Y>. Since we are still ignoring the type
and number of non-chord tones involved, as well as the conventional pitch
intervals, in each example from figure 4.1b to 4.1f the configuration of the note
on the first beat is always NCT, the configuration for the note on the second beat
it is always 0, and the interval from the note on the first beat to the note on the
second beat is always <Y>.

In chapter 2, we introduced a general notation for a direct product non-
chord tone GIS, NCT-GIS(NCT1, NCT2, ... NCTn) where NCT1, NCT2, etc.
were different types of non-chord tones. We will now modify this labeling scheme
to include the type of group involved, so that we can include our new method of
calculating non-chord tone intervals. Each GIS will be labeled NCT-GIS(NCT1,
NCT2, ... NCTn; G), where NCT specifies a type non-chord tone and G specifies
the group that will be used. Thus the GIS employed throughout chapter 3 is NCT-
GIS(P, N, S; Z x Z x Z), since we considered passing tones, neighbor tones, and
suspensions. The added notation (Z x Z x Z) simply indicates that we were
counting the number of each type of non-chord tone. The GIS which we used in

this chapter to examine figure 4.1 is NCT-GIS(NCT; Z,). The notation first
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indicates that we analyzed non-chord tones in general, and hence we use NCT
rather than P, N, or some other abbreviation for a specific type of non-chord tone.
Secondly, it indicates that our group of intervals is isomorphic to the integers
under addition mod 2 (that is, it has only the two elements <N> and <Y>).

This notation also allows for some more unusual GISes such as NCT-
GIS(P, N, S; Z x Z, % Z,). This would be a direct product GIS that counts the
number of passing tones, but not neighbor tones and suspensions. Instead we
would simply consider whether neighbor tones and suspensions are present or not.
An example of an interval from such a GIS would be <3, Y, N>, which would
indicate that the second configuration has three more passing tones than the first
configuration, that the configurations of neighbor tones for the two configurations
are different (one has them the other does not), and that both configurations either
have or do not have suspensions. Although there may be little practical
application for some of these GISes, and although we will not be using this GIS in
this analysis, it is useful to have a notation which allows us to generate a new GIS
which is specially tailored to suit any musical situation we might wish to consider.
Bearing this in mind, we will now introduce the NCT-GIS that will be employed
in our analysis of Brahms's String Quartet No. 2, and consider some simple
musical situations in which it might be useful as an analytical tool by itself.

NCT-GIS(P, N; Z, x Z,): This GIS is a direct product formed from NCT-
GIS(P; Z,) and NCT-GIS(N; Z,) . The space S consists of configurations of non-
chord tones modeled by the ordered pairs (0, 0), (P, 0), (0, N), and (P, N), while
IVLS is isomorphic to the direct product of two instances of Z,. The int(s, t)
function asks whether there is a change from one configuration to the next. As
before, IVLS will employ the Y/N notation.

Before proceeding further let us use this GIS to examine the intervals in
figure 4.1. Our direct product GIS renders the musical situations as follows: figure
4.1a= (0, 0); figures 4.1b and 4.1c = (P, 0); figures 4.1d and 4.1e = (0, N); and
figure 4.1f = (P, N). Because they both contain passing tones but no neighbor
tones, the interval from figure 4.1b to figure 4.1c is <N, N>, the identity element

of our IVLS. So is the interval from figure 4.1d to figure 4.1e. The interval from
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figure 4.1a to figure 4.1b is <Y, N>, because the only change is from no passing
tones in figure 4.1a to a configuration with passing tones in figure 4.1b; however,
the neighbor tone portion of the interval still indicates no change. The interval
from figure 4.1a to figure 4.1d is <N, Y>, indicating the opposite situation, a
change in neighbor tones only. Interestingly, the interval from figure 4.1b, to
figure 4.1f is <N, Y> as well. This implies the possibility of a progression from
figure 4.1a through figure 4.1b to figure 4.1f, first making changes to the passing
tones and then to the neighbor tones. The cumulative change from figure 4.1a to
figure 4.1f involves both passing tones and neighbor tones, since the interval from
figure 4.1a to figure 4.1f is <Y, Y>. At the same time, this system produces some
surprising results, since the interval from figure 4.1b to figure 4.1d is <Y, Y> as
well. Since both figure 4.1b and figure 4.1d involve non-chord tones, we might
not expect that the interval would be the same as that involved in the change from
figure 4.1a to figure 4.1f. At the same time this is not as odd as it might appear,
since there is a substantial alteration of the configuration of non-chord tones in
both cases. The key is that there is a change in both passing tones and neighbor
tones in both cases.

Since we will be using this approach extensively, it is worth considering a
more complex musical example. However, in this case, rather than considering
isolated measures, we look at individual notes and the non-chord tones that may
be attached to them. Figure 4.2 shows the first four measures of Bach's Two-Part
Invention No. 9 in F Minor with passing tones and neighbor tones labeled in the
upper voice The analysis draws on both figures 1.2b and 1.2¢ from chapter 1.
Figure 4.3a presents the upper line as a network of non-chord tone transpositions.

We have not yet discussed the formal properties of networks or graphs,
although we will do so shortly; however, even without detailing the formal criteria
involved in networks it is plain that figure 4.3a presents a visual representation of
the music. Configurations of non-chord tones still appear in parentheses and form
the nodes or vertices of a graph. The arrows represent directed relationships,
motion from one node to another. The arrows are labeled with intervals

designating the relationships that are depicted. In this case, the graphs are
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depicted in temporal order, with all of the arrows pointing forward in time. Thus,
networks are a way of isolating certain elements of the music and highlighting
certain relationships between those elements in a visual format.

This example simultaneously demonstrates some of the analytical
possibilities of this non-chord tone GIS. The network reveals an interesting
property of the first measure: it uses all four possible non-chord tone intervals
exactly once each. Moreover, the same feature occurs from C on the last beat of
measure 3, which is preceded by an accented passing tone, to A} on the last beat
of measure 4. This exhaustion of the non-chord tone intervals in such a short span
points to the melodic variety and fluency of this passage.

This type of analysis also affects the way in which non-chord tones are
analyzed. Notice first of all that the final configuration the network in figure 4.3a
is (Ab, 0, 0). We have excluded any non-chord tones that might come after it from
the network, because the network presents a closed musical thought, and the
neighbor tone is part of the continuation to the next measure. In general terms,
this means that when we make networks of non-chord tones, the non-chord tones
that occur outside the bounds delimited by the first and last chord tones of the
network should be excluded. However, exceptions to this rule might occur in
cases where a passage clearly begins with an accented non-chord tone or is clearly
bounded by rests. In addition, we must consider whether in the case of complete
neighbor tones the return to the original tone after the neighbor tone ought to be
considered as a separate tone. In this example we have not done so; however there
may be cases in which this would be useful.

Figure 4.3b displays the consequences of analyzing non-chord tones in
this way by showing what the melodic line would look like if it were broken into
four separate networks, one for each measure. In addition, the resolutions of
neighbor tones have been excluded as being part of the same configuration. For
example, we count A} on the last eighth note of beat one and A} on the first eighth
note of beat 2 as one note with a neighbor tone attached, while figure 4.3a
examines them separately. In the case of the tied notes that span measures 1-2 and

2-3 the networks present them as having no non-chord tones in relation to the
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preceding measure and as having a single passing tone in relation to the following
measure. Although the results in this case are less interesting than the larger
network that spans the phrase, this method is more useful for motivic analysis.

Some general methodological points regarding NCT-GIS(P, N; Z, x Z,)
require comment. The GIS considers only passing tones and neighbor tones.
Suspensions and anticipations are excluded. In terms of a general non-chord tone
analysis, we may not wish to exclude these classes of non-chord tones. However,
in our analysis of Brahms's string quartet it will be more convenient to limit the
discussion to passing and neighbor tones. Since the focus of this analysis is to be
motivic development, and none of the primary motives under consideration
involve prominent suspensions or anticipations, it seems more efficient to exclude
them.

In the analysis of the Brahms string quartet, NCT-GIS(P, N; Z, x Z,) will
not be used by itself. Instead, some of the motives will be modeled using a direct
product GIS in which the GIS of diatonic pitch intervals is combined with NCT-
GIS(P, N; Z, x Z,).* Thus, the elements of S will consist of pitches plus any non-
chord tones that may be attached to them and will be expressed as ordered triples
(I, J, K), where I is a pitch name, J indicates the presence or absence of passing
tones, and K indicates the presence or absence of neighbor tones. We have already
used this notation for the sake of clarity in figure 4.3. Now our intervals will also
be denoted by an ordered triple <X, Y, Z>, where X is the number of scale steps
from the first pitch to the second and Y and Z indicate whether or not there is a
change in the state of the non-chord tones. As before, the pointed brackets
indicate intervals, while parentheses indicate elements.

Since each combined interval outlines a motive in this analysis, the criteria
for analyzing non-chord tones are based on melodic shape and motivic
association. In general this means that a non-chord tone must be within the
bounds of an interval in order to be analyzed as such, as was the case in figure
4.3. However, incomplete neighbors may sometimes occur outside the bounds of

the diatonic interval if there is a rest or other feature that clearly associates it with

45. The GIS of diatonic pitch intervals in defined in section 2.1.1,
Generalized Musical Intervals and Transformations, 16.
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an interval. In addition, when there is a complete neighbor tone, the repetition of
the chord tone after the neighbor will generally not be considered as separate
tone; the entire event is one note plus a neighbor tone. This later consideration
should be somewhat flexible. In determining whether the resolution of a neighbor
tone is considered independently, rhythmic placement and contextual factors must
ultimately decide the case.

Before moving on to the other formal constructs that will be employed in
this analysis, let us first examine how this might be applied to the example by
Bach and then consider the way it will be applied in Brahms's String Quartet No. 2.
Figure 4.4 presents another network representing the first four measures of Bach's
Invention No. 9, which demonstrates these new direct product intervals. The
intervals are essentially unchanged; only one additional number has been added
representing the diatonic pitch interval. In the case of the invention by Bach, it is
interesting to note that every single interval is either a third (2 or —2) or a sixth (5
or —5); since we are considering the resolution of a neighbor tone to be a
continuation of the same note in this case, even unisons are excluded. On top of
this uniform framework, the relatively rich variety is achieved through the non-
chord tone components of the intervals which are constantly changing.

Like Bach, Brahms also makes frequent use of melodic thirds in
combination with various non-chord tone configurations. In the context of the
String Quartet in A minor, this single interval is treated as a motive, as are the
second and unison. In our analysis, we will be labeling these motives with letters
(motives A, B, and C) in order to distinguish them from some more complex
motives which will receive more definitive names. Figure 4.5 gives us a preview
of these motives, presenting short musical examples of each motive with a
corresponding network. The motives are presented in order of appearance and
importance, although the particular examples given are not necessarily the first or
most frequently found form of each motive.

Although all of these intervals are common enough, and in the case of
motive B almost trivial, this method of presentation actually adds a degree of

resistance. For example, one might consider motives A and C to be similar based
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on a stepwise ascent through a third; however, if we consider whether or not notes
have harmonic support, we find that they are actually quite different. Another
advantage to this method is that we can consider the underlying pitch interval
independently of the non-chord tones with a strong harmonic basis for our choices
of intervals. However, in order to take advantage of the opportunities afforded by
the potential for considering the boundary interval independently, we must leave
the world of non-chord tone GISes and examine several another type of GIS and
several non-intervalic transformations which profoundly influence the thematic
structure of Brahms's String Quartet.

Formal Considerations: Other GIS Structures

In addition to our direct product GIS, two more GISes will be used in this
analysis. One of these is the GIS of diatonic intervals mod 7, which will
occasionally be used in standard networks independent of non-chord tones. This
GIS is fairly straightforward and has been used by Lewin and others in a variety
of contexts. The second GIS is rather less common, though not without precedent.
It employs permutations to compare triadic figures based on the temporal order in
which the root, third, and fifth appear.

Permutational GIS: The space, S, of our GIS will consist of all possible
permutations of the three notes of a triad. The members of S will be represented
by ordered triples, with root, third, and fifth (R, 3, 5) each appearing exactly once
in some order.* IVLS will consist of S;, the symmetric group on three elements.
The function int(s, t) maps s and t into IVLS by finding the permutation that will
map the root, third, and fifth of s onto the root, third, and fifth of t respectively.
The GIS is not commutative.

This GIS is similar to the system proposed by Klumpenhouwer for studying
the registral arrangement of voices, pitches in pitch-class sets, or fugue subjects.
The key difference is that this GIS is concerned with the temporal order in which

root, third, and fifth appear, rather than registral order. In terms of notation, the

46. This notation bears some similarity to one employed by Rosemary
Killam, “An Effective Computer-Assisted Learning Environment for Aural Skill
Development,” Music Theory Spectrum 6 (Spring 1984): 52—62, who uses the
notation 1-3-5 to denote the order components of a triad are played in the context
of ear training and difficulty of perception of various triadic inversions.
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intervals of this GIS will employ both the rounded parentheses often used for
permutations and the pointed brackets that indicate intervals in this study. For
example, <(R35)> indicates that, in terms of temporal order, the root of the
second triad takes the place that the third had occupied in the first triad, the third
the place of the fifth, and the fifth the place of the root. That is, it would take the
element (R, 3, 5) and turn it into (5, R, 3). Note that the use of a comma separated
list does not indicate a direct product group in this context.

The combination of two intervals is also slightly unusual. Consider the
combination of <(R35)> and <(R3)>. In combining them, we first map R to 3,
according to the first permutation. We then map 3 back to R according to the
second permutation. Since R maps to itself, it is excluded from the final
permutation. We now map 3 to 5 according to the first permutation and 5 to 5
according to the second permutation (the absence of 5 indicates that 5 maps to
itself). Finally, we map 5 to R in the first permutation and R to 3 in the second.
We now have the permutation <(35)>, which indicates that R is mapped to R, 3 is
mapped to 5 and 5 is mapped to 3.

Let us consider a few examples of how this GIS works. Figure 4.6 shows a
transitional passage from the last movement of Beethoven's Piano Sonata Op. 14
No. 1. The figuration in the right hand consists entirely of triads. Even in cases
where the full harmony is a seventh-chord the melodic figuration represents a
diminished triad, which we will consider independently. Throughout this analysis,
foreground seventh-chords which cannot be explained as melodic dissonances
will be analyzed as the overlapping or combination of two triads. Although this
approach is slightly unusual, it facilitates permutational analysis. Moreover, it is
not without historical precedent, being rooted in nineteenth-century German
Harmonic theory. Consequently, each figure can be represented as a triad
according to the order in which root, third, and fifth enter. Figure 4.7 models this
passage as two networks of triadic permutations.

From an analytical standpoint these networks demonstrate that Beethoven

uses primarily 2-member permutational cycles such as <(R3)>, <(R5)>, and

47. Henry Klumpenhouwer, “A Generalized Model for Voice-leading for
Atonal Music” (PhD diss., Harvard University, 1991), chap. 2:14, 4:12.
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<(35)>. He employs the 3-member cycles <(R35)> and <(R53)> and the identity
interval <()> primarily in preparation for the strong V—I progression at the end of
each pair of bars.

This brings up some interesting properties of permutational groups in
general and S;, the group of intervals under consideration, in particular. In a
symmetric group all permutations can be written as the product of one or more 2-
members cycles, which mathematicians designate as transpositions. Because of
this property, it is possible to make a distinction between permutations that are the
product of an even number of transpositions (2-member cycles) and permutations
that are the product of an odd number of transpositions.** Obviously <(R3)>,
<(R5)>, and <(35)> can all be written as the product of an odd number of
transpositions since each consists of exactly one 2-member cycle. On the other
hand <()>, <(R35)>, and <(R53)> are all even permutations, since they can be
written as the product of two transpositions (for example <(R3)><(35)> =
<(R53)>). This is slightly counter-intuitive since in this case the odd permutations
<(R3)>, <(R5)>, and <(35)> all have 2 numbers, while the even permutations
<()>, <(R35)>, and <(R53)> have either 1 or 3 numbers. However, this property
can easily be seen by examining the Cayley table for S; in figure 4.8. This table
lists every element of the group along both the top and the side. We can find the
combination of any two elements in the group by finding the first element in the
list of rows along the left side of the table and then moving along that row until
we arrive at the column labeled by the second element; the element that occurs at
this intersection is the combination of these two elements.

As the Cayley table demonstrates, the even permutations <()>, <(R35)>,
and <(R53)> form a subgroup within S;. That is, if we take only these elements
from the group and use the same protocol for combining them the result is also a
group. This subgroup is the alternating group Aj;. In fact it is a general property of
a symmetric group S, that all of the even permutations will form a subgroup,

which is the alternating group A,..* This way of partitioning S; is particularly

48. Fraleigh, A4 First Course in Abstract Algebra, 111-113.

49. Ibid., 114.
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interesting, because it creates a factor group or quotient group isomorphic to Z,.%°
This factor group is highlighted by the shading of the table in figure 4.8. The
elements in the area with the white background are the even permutations, which
form the subgroup A;. The table includes all possible combinations,
demonstrating the group properties of associativity, the identity element, and
inverses for each element. The elements in the shaded area are all odd
permutations.

Practically, this means that combining any two even permutations
produces an even permutation. On the other hand, combining an even permutation
and an odd permutation will produce an odd permutation (i.e. either <(R3)>,
<(R5)>, or <(35)>). This can be seen visually by examining the different
combinations in the table in figure 4.8.

While this may seem rather abstract, it can be very concretely related to
triadic arpeggiations and inversions. The alternating group A; which contains the
even permutations <()>, <(R35)>, and <(R53)>, corresponds to the traditional
model of triadic inversion. If each triadic figure appears as an ascending or
descending arpeggiation, then as long as the permutations between successive
triads belongs to A; the arpeggiations will all continue to ascend or descend.
However, if the composer introduces one of the odd permutations from the coset
(<(R3)>, <(R5)>, or <(35)>) then the direction of the arpeggiations will be
reversed.

This is demonstrated in figures 4.6 and 4.7. Although Beethoven does not
use strict ascending and descending arpeggiations, we can relate each triad to an
ascending or descending arpeggiation by raising or lowering some notes by one
octave. If we were to do so, we would find that he consistently alternates
ascending and descending arpeggiations on each beat except at the V—I
progressions, where he repeats descending arpeggiations. This hidden reversal of

shape lends a sense of balance to each figure and intensifies each cadential

50. Fraleigh, Abstract Algebra, provides an interesting discussion of the
relationship between subgroups and cosets with S; as an example (120-124), and
the properties of factor groups (Lewin's quotient groups), particularly the factor
group S,/A, (170-175, 181).
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progression. It is this feature of the passage that the permutational networks in
figure 4.7 highlight. As we shall see in our analysis, Brahms also exploits this
permutational feature of triadic arpeggiation. However, he does so in a very
different way, employing permutations that are members of A; to lend consistency
to the shape of a triadic motive, and using odd (2-member) permutations for
contrast and conflict.

Lewin's Transformation Graphs and Networks

In addition to the GISes used in this study there are two non-intervalic
transformations that will be employed in our analysis of Brahms's String Quartet.
Both transformations are functions that apply to the same type of operation
graphs. Since they both involve the formal properties of networks and graphs as
outlined by Lewin, let us briefly examine the formal properties of operation
graphs.

Lewin distinguishes between three structures, which he designates
node/arrows systems, graphs, and networks respectively. In doing so he adopts
slightly different terminology than that normally employed in graph theory. In
Lewin's approach the most basic level is a node/arrow system which he defines as
follows:

By a node/arrow system we shall mean an ordered pair (NODES,

ARROW), where NODES is a family (i.e. set in the mathematical

sense), and ARROW is a subfamily of NODES x NODES, i.c. a

collection containing some ordered pairs (N;, N,) of NODES. We

say that N, and N, are “in the arrow relation” if the pair (N, N,) is

a member of the collection ARROW. For present purposes, we

shall stipulate that every node is in the arrow relation with itself.

That is, we assume that (N, N) is a member of ARROW for every

node N.”!

This definition is essentially equivalent to what would be termed a
directed graph or digraph in graph theory.* In graph theory, what Lewin calls

nodes are called vertices, while arrows are called arcs. Note that a graph or

51. Lewin, Generalized Musical Intervals and Transformations, 193.
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node/arrow system can actually be represented as two sets, without any visual
representation. However, it is conventional to draw pictures in which the nodes or
vertices are represented by dots and the arrows or arcs by arrows leading from one
dot to another. Notice that the nodes or vertices are simply dots, they do not
inherently have any meaning. Likewise, the arrows or arcs represent relationships,
without specifying what those relationships are. Finally, note that Lewin's
node/arrow system is directed. In graph theory, there are undirected graphs as well
as directed graphs. In undirected graphs, vertices are connected by edges, which
are unordered pairs (i.e. it does not matter in what direction you approach the line
connecting two dots of the graph). Every directed graph can be converted into an
undirected graph, called the underlying graph, by ignoring the direction in which
the arrows point. This distinction is useful, because we may occasionally wish to
consider the structure of the graph without reference to the direction of the
arrows.

Lewin's second category is a transformation graph. He provides the
following definition:

A transformation graph is an ordered quadruple (NODES,

ARROW, SGP, TRANSIT) satisfying criteria (A), (B), (C), and

(D) below.

(A): (NODES, ARROW) is a node/arrows system.

(B): SGP is a semigroup.

(C): TRANSIT is a function mapping ARROW into SGP.

(D): Given nodes N and N', suppose that Ny, Ny,..., N; is an arrow

chain from N to N'. Suppose that My, M,,..., My 1s also an arrow

chain from N to N'. For each j between 1 and J inclusive, let x, =

TRANSIT(N;-;, N;j). For each k between 1 and K inclusive, let y;

= TRANSIT(M-;, My). Then the semigroup product x; ... XX, is

equal to the semigroup product yx ... y»y;.”

52. W. D. Wallis, 4 Beginners Guide to Graph Theory, (Boston:
Birkhauser, 2000), 4-6.
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This definition essentially adds one feature to a node/arrow system: it
labels every arrow in the graph with an element of a semigroup. Lewin refers to it
as a transformation graph because the elements of the semigroup will usually be
transformations, functions that satisfy semigroup properties. As we recall from
chapter 2, Lewin distinguishes between semigroups of transformations and groups
of operations. Thus an operation graph is a transformation graph in which the
semigroup of transformations is a group of operations. Thus, many of the graphs
used by music theorists to describe intervallic relationships are actually operation
graphs, although the term transformation graph is more frequently used.

In spite of the complex description, Lewin's condition D is actually very
simple. It guarantees that if you take two nodes, N and N', and have two different
paths, or arrow chains as Lewin calls them, leading from one to the other, then the
transformations labeling the arrows will add up to the same thing. This prevents
situations where one could, for instance, label arrows along one path with 3 and 5
and arrows along the other path with 2 and 4. Doing so would violate condition D
because 3 + 5 does not equal 2 + 4. Rather, if the arrows on one path are labeled
with 3 and 5, the arrows on the other path would have to be labeled by some
combination that adds up to 8, such as 1 and 7 or 2 and 6. We will have occasion
to deal with this issue shortly.

Lewin's final structure is a transformation network (and a corresponding
operation network), which adds contents from a set to each node of the graph,
along with appropriate conditions guaranteeing that the transformations labeling
the arrows and objects in the nodes will interact properly.** Lewin also defines
isomorphisms and homomorphisms on each of these types of graph. An
isomorphism guarantees that the node/arrow system will have exactly the same
structure via a function called NODEMAP, while an isomorphism of a graph adds
additional conditions guaranteeing that there is also an isomorphism (SGMAP or

GMAP) for the transformations or operations.”> When it comes to networks,

54. Ibid., 196-197.
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Lewin uses the term isographic to refer to networks that have the same graph (i.e.
the graphs of the two networks are isomorphic).

Lewin's node/arrow and graph homomorphisms guarantee that two
node/arrow systems or graphs will have similar structures, rather than precisely
the same structure. His key distinctions are between homomorphisms that are
either into, onto, or I-to-1. To this end he gives the following definition:

Given node/arrow systems (NODES, ARROW) and (NODES',

ARROW'), a mapping NODEMAP of NODES into NODES' is a

homomorphism of the first system into the second if

(NODEMAP(N;), NODEMAP(N,)) is in the ARROW' relation

whenever (N, N,) is in the ARROW relation. NODEMAP is a

homomorphism onto if it maps NODES onto NODES' in a special

way: Whenever N'; and N', are in the ARROW!' relation, there

exist N, and N, in the ARROW relation such that N', =

NODEMAP(N)) and N, = NODEMAP(N,). A homomorphism

NODEMAP is -to-1 as a homomorphism between systems if it is

1-to-1 as a map of NODES into NODES'.*

Although Lewin uses a significant amount of formalism to define these
graphs, networks, and functions, the end result is usually relatively intuitive if we
are considering actual graphs. The visual presentation of labeled arrows leading
between named objects is something that we find in many domains of experience,
such as maps, charts, and diagrams. The formalism serves to give the application
of such graphs to music a solid basis for analysis, allowing definite statements
regarding the properties of some musical structure.

Non-Intervalic Transformations

Having discussed the formal properties of graphs and networks as defined
by Lewin, we can now proceed to discuss the non-intervallic transformations
which we are developing with a view to the analysis of Brahms's string quartet.

This discussion of the formal properties of graphs was necessary, since both of

56. Ibid., 201.
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these transformations act on operation graphs, altering them in various ways. Let
us define and discuss each of them in turn.

Interval Alteration Function [ALT]: Suppose we have two operation
graphs G and G' with the following properties:

(A): The group of operations consists of the diatonic transpositions mod 7.

(B): The node/arrow systems are connected and have exactly one path of
forward or backward pointing arrows between any two nodes, provided each
arrow from any node N to itself is ignored. In terms of graph theory, condition B
states that the underlying graph—the graph considered without reference to the
direction of the arrows—will be a tree.”” A graph with tree structure is one in
which, given any two vertices or nodes, there will be exactly one path that can be
traced between those two nodes. When considering whether or not a graph
conforms to tree structure, we ignore the direction of the arrows, since the
directionality of the arrows has no effect on the function we are considering. We
must also ignore the loops on each node of the graph, which are assumed to be
present, since Lewin stipulates that every node is in the arrow relation with
itself.”® This feature of Lewin's networks is useful, but it means that no graph will
have tree structure. Since these loops do not cause any problems in our model, we
will simply ignore them when considering whether or not a graph has tree
structure.

The interval alteration function ALT(G) = G' maps the operation graph G
onto G' according to these two conditions:

(C): The mapping of nodes and arrows from G onto G' is identity;

(D): The mapping GMAP mapping family of the integers mod 7 into itself
in the following manner: 0 maps to 0, 1 maps to 3, 2 maps to itself, 3 maps to 5, 4
map to 2, 5 maps toitself, and 6 maps to 4. This function is presented as a table in
figure 4.9. Note that this mapping is simply a mapping from the integers mod 7

into itself; it is not an automorphism.

57. Wallis, A Beginner's Guide to Graph Theory, 43.
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This transformation has some interesting properties. First of all, it maps
non-triadic diatonic pitch networks into triadic networks by simply altering some
of the intervals. In order to see how this works, let us examine the music in figure
4.10 and corresponding networks in figure 4.11. Figures 4.10a and 4.11a show a
typical and easily recognizable use of ALT: an incomplete seventh-chord is
mapped to a triad, which is in turn reduced to a simple third. Interestingly, this
example partially reflects common patterns by which notes are occasionally
omitted from seventh-chords and triads in four-part voice-leading. Figures 4.10b
and 4.11b demonstrates the application of ALT to a musical passage which
includes all the mod 7 intervals in no particular order, while in figures 4.10c and
4.11c we apply ALT to a diatonic scale above its tonic. Although they are
certainly less musically relevant, these later examples demonstrate three
properties of ALT quite clearly: it can only be applied twice before any further
application would be redundant; the mapping will always produce intervals of a
third or sixth; and, depending on the arrangement of arrows in the graph, the final
result can be somewhat haphazard, although it often produces a triad or third.

It is this behavior of ALT, its capacity for indiscriminately exchanging
one interval for another without regard to the whole network, that necessitates
condition B regarding graph structure. By stipulating that the graph have a tree
structure, we avoid confronting a problem posed by condition D in Lewin's
definition of a transformation graph, which requires that for two nodes N and N'
the semigroup product of two different arrow chains must be equal.”® If we were
to apply ALT to an operation graph that has more than one path between any two
nodes, we could easily create an impossible graph. Figure 4.12 demonstrates this
by presenting two pairs of graphs each representing the result of ALT when
applied to an operation graph. The second graph in 4.12a is clearly impossible,
while the graphs in 4.12b which lack the <5> arrow are both possible. Note that
the tree graphs upon which ALT operates do not violate Lewin's definition. On the

contrary, one could hypothetically add additional arrows to any graph to which it

59. Ibid., 195.
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applies or to any graph which it produces and thus demonstrate that it meets
Lewin's condition D.

While ALT may seem to be a unusual transformation, it has definite
analytical significance in relation to Brahms's String Quartet No. 2. As we shall
see, there are several clear instances in which the same motive appears two or
more times in such a manner that the intervals in the successive instances of the
motive are altered according to this transformation. Moreover, it has more general
application to tonal music, since the transformation of a non-triadic motive into
some form of triad is not an uncommon musical phenomenon.

The second transformation that we will consider is the Graph Reduction
Function, REDUCE for short.

Graph Reduction Function [REDUCE]: Given two operation graphs G
and G', the graph reduction function REDUCE(G) = G' maps G into G' such that
GMAP is the identity mapping of the group of operations onto itself and
NODEMAP has the following properties:

(A): Given any nodes N,, Ny, and N, in G, suppose that any of the
following properties are true:

1. (N, Np) is a member of ARROW and TRANSIT(N,, N;) = identity;
2. N, and N, are not in the arrow relation but (N,, N;) and (N, N.) are
members of ARROW and TRANSIT(N,, N;) = TRANSIT(Ns, No);
3. N, and N, are not in the arrow relation, but (N., N,) and (N, Ny)
are both members of ARROW and TRANSIT(N,, N,) =
TRANSIT(N,, Ny);
In any of these cases, NODEMAP will map the two nodes N, and N,, into a single
node N'in G".

(B): Suppose NODEMAP maps two nodes N, and Nj, into N', then for all
nodes besides N, and Ny, NODEMAP is an identity mapping of nodes and arrows
into corresponding nodes in G' other than N'.

(C): Suppose that N, is either N, or N, that N, is a node other than N, or
Ny, that NODEMAP(N,) = N', that NODEMAP(N,) = N,, and that (N,, N,) is a
member of ARROW. Then (N', N,') is a member of ARROW'.
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(D): The graph reduction function always acts repeatedly, so that
conditions A, B and C are applied as many times as possible. Thus, we might
imagine a series of intermediate graphs between G and G'.

One of the primary features of the graph reduction function is that when it
is applied to a graph G, G' will be a homomorphic image of G. Specifically, it will
be a homomorphism of G into G'. This is relatively easy to prove. Lewin's
definition of a homomorphism of a node/arrow system states that a mapping
NODEMAP is a homomorphism into if (NODEMAP(N,), NODEMAP(N,)) is in
the ARROW' relation whenever (N, N,) is in the ARROW relation.® If nodes N,
and N, are already in the ARROW relation, mapping both nodes into N' will
continue to maintain the ARROW relation, since Lewin considers every node to
be in the arrow relation with itself.®' Condition B requires an identity mapping of
nodes that are not reduced. Condition C requires that whenever two nodes are
mapped into one node the arrows to any other nodes be preserved. Essentially,
this generalizes a type of homomorphism between graphs that Lewin occasionally
uses in his analyses.®” Rather than stating how a specific instance of NODEMAP
works and examining whether it is a homomorphism, the graph reduction function
outlines criteria that shape NODEMAP differently in each case.

We can see what this function does by examining figure 4.13. Graph A is a
complex graph of mod 7 transpositions in which many nodes contain the same
scale-degrees. We do not know what scale-degrees they contain, but we can
identify instances of the same scale-degree by looking for places in which a T,
arrow could be added. Graph B is the output of REDUCE(Graph A) and is a
homomorphic image of Graph A. It eliminates many of the nodes whose content
was the same by mapping them into the same node. However, it does not
eliminate every instance of repeated scale degrees, but only those that are related

to each other or that are related to another node by the same arrow. Thus nodes A,

60. Ibid., 201.
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62. Ibid., 235.
72



and A; contain the same scale-degree and are both mapped into node B,, but A,
and A5 also contain the same scale-degree and are mapped into nodes B, and Bg
respectively. If A, and A; were in the arrow relation with a <0> arrow, Graph B
would look quite different. Thus, the choice of musical relationships that are
placed in the arrow relationship has a key effect on the nature of the graph. In
musical terms, the graph reduction function eliminates closely related repeated
notes from the graph.

Having noted that the arrow relationships displayed in a graph have a
profound effect on this transformation, let us examine the application of
REDUCE to a more complex graph of a concrete musical situation. Figure 4.14
presents a chord progression in a very thick texture, and several related musical
examples which can be generated by REDUCE depending on the construction of
the graph of figure 4.14a, while figures 4.15 and 4.16 present the corresponding
graphs. Figure 4.15a presents the musical example as a complex graph in which
every note generates both the note in the voice above and the next note in the
same voice, creating a graph with a total of 45 nodes and 76 arrows. Let us apply
REDUCE to this graph in two stages to produce the graph in figure 4.15b. The
first stage removes all <0> arrows, producing a simpler graph which we can
easily work with. Now if we apply conditions B and C, we find that we eliminate
any duplicate nodes. If we start at the large C representing the middle voices, we
find that the Gs on either side of the A must be mapped to the same node, because
they both connect by <3>. Now we find that the last C in the middle voice
belongs with the first C, since both are generated from the G. Furthermore, the
bass Cs belong together and, since we have a <3> arrow representing the final
descent of the bass, all of the Cs belong in one node connected to G by a
bidirectional <3>/<4> arrow. Since both Fs are generated by <3> from C, and all
Es by <2>, these must also be mapped to single nodes. The result is that each note
occurs exactly once, and several of the arrows become bidirectional arrows
representing <1>/<6> or <3>/<4>, This graph is difficult to represent musically,
but figure 4.14b gives one possible realization: a sustained C major chord, with

other notes appearing on top of it.
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REDUCE makes a very dramatic change in the graph of figure 4.15a
primarily because figure 4.15a relates each node to several others, with several
different paths between any two nodes. Consequently, pitches that have the same
letter name are all directly related. If we present the music in figure 4.14a as a
graph with fewer arrows, however, REDUCE will not eliminate so many features.
Figure 4.16 presents another graph of figure 4.14a along with its reduction. The
graph primarily connects adjacent voices within chords. It also connects the notes
of the bass line and the upper voices in the cadential six-four chord, but otherwise
avoids voice-leading connections. If we apply REDUCE to this graph, the
resulting graph eliminates repeated chords and doublings, but leaves the
progression intact. This reduction is represented in musical notation in figure
4.14c. Note that the graph in figure 4.16 is one of the few ways to leave this
progression intact after the application of REDUCE. For example, if we had
chosen to connect the G to the C within the cadential six-four chord rather than
connecting C and E to the following B and D, then we would have had to place
that C and the final C in the bass in the same node, since both are connected to the
G by a <3> arrow. Consequently, the placement of arrows in a graph has a
significant impact on the way that REDUCE will alter it.

In the graphs of figure 4.16 both graphs conformed to tree structure; they
had only one path between any two nodes. This highlights another property of
REDUCE. Whenever the REDUCE is applied to a graph with tree structure
(ignoring the loop from each node to itself) then the resulting graph will also have
tree structure. This is true because every subgraph of a tree is a tree, and the only
alterations that REDUCE makes to a graph involve first deleting an arrow (edge)
and then joining the remaining subgraphs so that they share one node (vertex).
Every edge in a tree is a bridge, and the deletion of a bridge by definition
produces a graph with two components that are not connected.” When each of
these components is joined by REDUCE, they are joined at only one vertex, so

the result can have no cycles and must therefore also be a tree.
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This has profound consequences. If we limit our operation graphs to
graphs with tree structure, then the sets on which both the interval alteration
function (ALT) and the graph reduction function (REDUCE) operate will be the
same. Together these two functions form a semigroup of transformations under
function composition operating on the set of operation graphs with tree structure.
It should be noted that they do not form a group of operations, since neither
function is 1-to-1 or onto and neither function has an inverse. Nevertheless, they
both have significant musical implications and form a semigroup, which allows
them to be used in transformation networks.

Furthermore, we could combine this semigroup with the group of
automorphisms of these networks. Automorphisms are functions that map a group
into itself so as to preserve the group product. In the context of mod 12 pitch-class
space, automorphisms have frequently been used in Klumpenhouwer networks to
create recursive networks. As Lewin demonstrates, the automorphisms of the T/I
group used in K-nets are multiplication by 1, 5, 7, or 11 mod 12 combined with a
second number that is added to inversions.** If we limit the multiplication
operations to multiplication by 1 or 11, the automorphisms are isomorphic to the
T/1 group. Thus, most analyses have limited the automorphisms to these two
numbers and have, in fact, used notation that corresponds to the T/I group.
However, multiplication by 5 or 7 would be equally possible. This derives from a
well-known fact of group theory, which states that “if a is a generator of a finite
cyclic group G of order n, then the other generators of G are the elements of the
form a’, where r is relatively prime to n.”% In the case of Z,, this means that 1, 5,
7, and 11 are generators of the group and consequently, that multiplication by
these four numbers mod 12 will produce a group of automorphisms on Z,. If we
apply this same fact to Z;, we find that 1, 2, 3, 4, 5, and 6 are all generators.
Consequently, these elements form a cyclic multiplicative group of

automorphisms on the diatonic transpositions mod 7. As a result, we can establish
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isographies between some of our operation networks using these automorphisms,
and we can combine them with ALT and REDUCE in a transformation
semigroup.®

Although they are useful, these automorphisms do pose a problem, for
most of them have little conventional musical meaning, beyond their ability to
preserve group product. The exceptions are multiplication by 1, which
corresponds to identity, and multiplication by 6, which corresponds to inversion.
Although ALT and REDUCE do not commute with each other, both of them do
commute with inversion, since ALT maps each pair of transpositions related by
inversion into another pair related by inversion and REDUCE does not alter
intervals. Using these transformations, we can make transformation graphs of our
operation graphs in order to describe relationships between different variations of
a motive within a larger theme.

The final methodological issue involves the distinction between processes
that operate between different motives and processes that operate between
different variations of the same motive. As we shall see, ALT, REDUCE, and the
automorphisms of the diatonic intervals mod 7 all occur primarily between
different motives. The intervals of our direct product GIS and permutational GIS
operate exclusively between different variations of the same motives. While it
might be possible to incorporate non-chord tones into the larger thematic model, it
would hinder the clarity of presentation for both the larger theme and the
individual motives.

Moreover, if we had decided to use transpositions mod 7 rather than the
absolute distance up or down in our direct product GIS, it would be too easy to
find isographic relationships between networks with only two nodes. If we use
group automorphisms to create recursive networks of networks that use the direct
product GIS, this will limit the possible automorphisms to identity and inversion
for the pitch component and Y or N for each type of non-chord tone. If we were to
use mod 7 transpositions in the direct product GIS, we could theoretically find an

isography between any two two-node networks, which would become virtually

66. Ibid., 58. Technically, the algebraic structure is a monoid rather than a
semigroup, since it includes identity.
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meaningless. In any case, we can still establish a network homomorphism
between any network of direct product transpositions and a network of mod 7
transpositions with an isomorphic graph if we can find a homomorphism between
the two groups.®’ This would be relatively easy, since there is always a group
homomorphism from Z into Z,, and we could use the trivial homomorphism to
exclude the non-chord tone intervals.®® Thus, clarity of presentation demands a
sharp distinction between these two types of processes, while the requirement that
a given motive must be able to be represented in two different ways adds a slight
degree of resistance that will help to establish connections in empirical and
phenomenological terms.
Conclusion

In this chapter we have outlined an alternative non-chord tone GIS, as well
as a permutational GIS and a number of non-intervallic transformations. Although
these latter tools do not directly relate to non-chord tones, they are all necessary
groundwork for the analysis of Brahms's String Quartet in Chapter 5. However,
even taken by themselves these transformations form a useful unit for musical
analysis. By taking non-chord tones into account with our direct product GIS the
underlying diatonic intervals between consonant chord tones will often be thirds
or fourths belonging to some triadic structure. Our permutational GIS can model
relationships between different triads, while the ALT function will transform any
motive into a triad and ultimately a third, thus making a connection between non-
triadic and triadic forms of a motive. The REDUCE function is of general use,
since it simply generalizes a transformation that Lewin uses in particular cases.
Thus, although their primary goal is to facilitate the analysis in the following

chapter, these transformations may be useful in other contexts as well.

67. Lewin, Generalized Musical Intervals and Transformations, 202.

68. Fraleigh, Abstract Algebra, 162, 164.
77



Chapter 5: Analysis of Brahms's String Quartet No. 2 in A Minor

In chapter 4 we outlined a new type of non-chord tone GIS along with
several indirectly related transformations. Although there may be a more general
application to tonal music, all of these formal tools are directly related to the
thematic structure of Brahms's String Quartet No. 2. We now turn to a detailed
analysis of that quartet.

As a whole, Brahms's String Quartet in A minor has not received much
attention from analysts in recent years. However, there are some detailed analyses
of particular passages. Schoenberg's analysis of the beginning of the second
movement has drawn a great deal of attention.” In addition, Arnold Whittall has
offered a formal and harmonic analysis of the last movement, comparing it with
the finale of Op. 51, no. 1.7 Rainer Wilke's motivic analysis is the only detailed
analysis of the entire piece.”' As a general rule, Wilke's analysis is fairly eclectic
and informal. He focusses on literal repetition of some combination of pitch,
rhythm, contour, and even dynamics. Thus, he finds a total of six different
motives in the first 12 measures and adds to that number from later portions of the
work. There is a certain amount of positivism in Wilke's analysis, a rejection of
anything that could be called “subjective,” which has been the subject of criticism

by Friedhelm Krummacher.”” However, in spite of its defects, as a description of

69. Arnold Schoenberg, “Brahms the Progressive,” in Style and Idea (New
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1996): 384-388.
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thematic and motivic processes which encompasses many factors, Wilke's
analysis is useful, and his treatment of several of the motives is quite thorough.

The analysis that follows takes a slightly different perspective and differs
from Wilke's approach in several respects. First, I have strictly limited the
analysis to pitches and intervals. Part of the problem with an informal motivic
analysis such as Wilke's is that, although it is easy to find relationships between
themes, it is very difficult to describe the differences in concrete terms that can
relate the thematic structure to form in a meaningful way. Consequently, the
analysis has difficulty in showing, for example, why the second theme belongs
where it is. By taking a transformational approach I hope to provide concrete
grounds for comparison of similarities and dissimilarities between themes.

Second, I make no claim to objectivity. Although the transformations
introduced in the preceding chapter have general application, they ultimately
derived their inspiration from a particular hearing of this piece. Thus, the
theoretical technology itself is in some sense a component of the analysis. The
basic goal of this analysis is to first show how the opening motive can be
transformed into two motivic tonal events in the first theme and second to show
how these motives are transformed throughout the form of the string quartet.

Analysis: First Movement, Primary Theme

Having outlined the formal properties of the transformations which we
will be considering in chapter 4, we will now proceed to examine the ways in
which they shape the motivic structure of Brahms's String Quartet No. 2. The
primary theme and the beginning of the transition are given in figure 5.1. Three
motives are labeled on the score: M.S., which represents the Motto Subject; T.M.,
which represents the Triad Motive; and motive A, which is characterized by the
interval of a third plus varying configurations of non-chord tones. Although some
of these motives and an additional new motive also appear after the cadence in
measure 12, we will confine our attention to the first twelve measures, since the
motivic material of the cadential section after measure 12 is primarily rhythmic,

and the focus of this analysis is on pitch factors.
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In addition to the labels for the motives, motive A has been marked by an
arrow leading from one configuration to another and labeled with the appropriate
direct product GIS interval. Taking the first instance in measure 3 as an example,
we find an arrow pointing from F to D, labeled with the interval <-2,Y, N>. This
indicates that the interval from F to D is —2 (two steps down) and that there is a
change in the number of passing tones from F to D but not in the number of
neighbor tones. The single passing tone in question is the E between F and D.
Because it occurs in the same beat with F, E is considered “attached” to it, making
the configurations (F, P, 0) and (D, 0, 0). Because we will always be dealing with
such small intervals and configurations, many of which are the same, and to avoid
cluttering the score unnecessarily, we have not indicated the configurations on the
music, since they can easily be spotted by looking at the point in the music where
the arrow begins and ends. When detailed discussion of these motives and the
non-chord tone intervals is necessary, the configurations and intervals will appear
in separate graphs such as that found in figure 5.7.

Returning to a discussion of the motives, we notice that the first of these
three motives is labeled as the “Motto Subject,” so called because three of its
notes, F-A-E, suggest Joseph Joachim's motto, “Frei, aber einsam.”” This motive
in particular has been the subject of much attention in motivic analyses of this
work. Rainer Wilke, in his motivic analysis of this quartet, demonstrates that this
motive can be found in the contour of almost every theme in the first movement
and that it can also be connected with the opening themes of the third and fourth
movement.” Wilke's method involves isolating specific notes that correspond to
this motive or some variation of it and identifying them in each theme. In

considering this motive, Wilke addresses only variations in which all four notes

73. Friedhelm Krummacher, “Reception and Analysis: On the Brahms
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focus of this analysis.
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are present, although he does briefly touch on one example in which he finds both
a shortened and full length version of the motive in measures 299-300 of the first
movement.” Although he does discuss other motives, particularly in the first
movement, Wilke is generally more concerned with the rhythmic component of
these motives. In particular, he often draws attention to the series of eighth notes
in the pickup to measure 5.

In this analysis, we will consider the Motto Subject (M.S.) and other
motives from the perspective of pitch. Figure 5.2 represents the motive as an
operation network. The operations in this case are diatonic intervals. The motive
is presented as a four-node network (5.2a), reflecting the first four notes as they
first appear in the music, and as three-node network (5.2b), which excludes the
initial A and represents a graph reduction of the four-node network
(REDUCE(5.2a) = 5.2b). In this figure the arrow labeled by REDUCE is
effectively creating a network of networks, with figures 5.2a and 5.2b as the node
contents. The transformation is musically relevant, for there are a number of
instances in which the first note and interval are clearly omitted or repeated,
particularly in measures 291-304, all of which can be reduced to 5.2b. Moreover,
this focuses more attention on the key motto notes, “F-A-E.”

Although other arrangements of nodes and arrows would be possible, such
as an arrow chain reflecting the temporal order of the notes, the particular
arrangement of the nodes and arrows in the graph has been chosen for both formal
an interpretive reasons. The formal reason is that the graph must have tree
structure in order to comply with our transformations. In terms of interpretation,
the arrangement suggests that F moves to both A and E, with the high A somewhat
detached from the E. In addition, the high A in the four-node network is generated
by the initial A through octave transposition. This suggests that the F and E
belong to a different, lower voice than A; that the lower voice is temporarily
superimposed above the F, and that key motion from one voice to the other occurs
from the F to the A within the “F—A—E” motto. This interpretation has the

advantage of bringing out a connection just below the musical surface, as well as
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highlighting the letters “F—A—E.” It represents a more dynamic and interesting
reading than a simple temporal arrangement. Furthermore, this interpretation can
actually be realized in performance by playing the high A as a harmonic and
changing bow direction on the E, rather than at the barline as many performers do.

The second motive we will consider initially appears as a fairly obvious
transformation of the Motto Subject, appearing in retrograde motion with the
intervals altered so that all of the notes belong to a B, major triad. This form
appears in measures 7—8 and is labeled as the “Triad Motive” (T.M.). A four-node
network representing this motive is presented in figure 5.3a. In addition, two clear
triadic figures also appear in the first violin line in measures 10 and 12 and are
represented as three-node networks in figure 5.3b and 5.3¢c. As with the Motto
Subject, the three-node networks are reductions of the four-node network. In all
cases, the networks are represented so that the third and fifth of the triad are
generated by the root, and in the case of the four-node graph, the high D is also
generated by the low D. It should be noted that although its notes are part of a
larger dominant-seventh chord, the motive in measure 10 is still modeled as a
diminished triad in accordance with its melodic shape.

The third motive we will consider consists of a third surrounding a passing
tone. In other words, it consists of the single interval <—2, Y, N>, together with
“variations” of that interval, such as <2, Y, N>. It appears in each of measures 3—
6. It appears again with both a neighbor tone and a passing tone in measures 9 and
11, creating the interval <2, Y, Y>. This motive is labeled as motive A.
Throughout this analysis motives that consist of a single direct product interval
will be labeled by letters, as a opposed to the more complex motives, the Motto
Subject and Triad Motive, which have more descriptive names. Although the
direct product intervals are marked on the score, and are in fact the substance of
motive A, we will ignore the non-chord tones for the present and focus our
attention on several networks of diatonic transpositions mod 7 that can also be
used to model this motive. By focusing our attention on the pitch interval and

ignoring the non-chord tone component, we can relate motive A to the other
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motives; we will return to the direct product intervals when we discuss different
variations of motive A.

Figure 5.4 presents the first versions of motive A, found in measures 3 and
4, as networks of two to five nodes, including an alternative segmentation (figures
5.4c and 5.4d). In general, the segmentation into networks of five nodes or two
nodes seems the most sensitive reading, although the four-node and three-node
networks also have advantages. Again, the arrangement of arrows has been
chosen so as to produce tree structure; however, it is not without interpretive
value. For example, in the five-node network representing measures 3 and 4 the
arrows suggest that the F is somewhat independent of the first D and that the
second D receives its impulse from both the preceding D and the F. Meanwhile,
the absence of arrows between the third, fourth, and fifth nodes highlights the
staccato articulation, and the arrows from the F to the third and fourth D suggest
that they still have their origin in that note. This is a much more dynamic reading
than figure 5.4e, which has too many arrows, or figure 5.4f, which is not
particularly interesting. Finally, it should be noted that all of the graphs reduce to
the two-node graph (figure 5.4b) through some combination of the REDUCE
function and inversion.

We can now examine the relationships of the theme as they appear in
figure 5.5. The figure is a network of networks, with individual operation
networks depicting each motive and transformations between networks indicating
relationships between different motives. It is important to distinguish between the
transformations that employ solid arrows and are labeled with pointed brackets,
such as <I>, and those using dashed arrows and square brackets, such as [E]. The
former are part of operation graphs transforming pitches, while the latter are part
of a single transformation graph, whose nodes consist of the operation networks.
Although it would be possible to enclose each network in a circle indicating that it
is a node in the larger network, this would clutter the graph and significantly
increase the space required. The visual distinction is further clarified by the fact
that transformations between networks do not touch individual nodes of the

operation networks. Notice too, that all of the operation graphs have tree
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structure, while the larger transformation network does not. Finally, notice that
some of the transformations are labeled with multiple transformations, such as [A]
[R]. These are functions combined using right orthography. In other words, the
transformation [A][R] indicates that we first perform ALT and then REDUCE.

Figure 5.5 demonstrates the application that the ALT and REDUCE
functions have to Brahms's string quartet. If we apply ALT to the graphs of either
the four-node graph representing the Motto Subject or the three-node graph it will
produce graphs that are identical to the four-node and three-node graphs of the
Triad Motive. In addition, if we apply ALT again, it will produce two more
graphs, a four-node graph and a three-node graph, which are identical to the four-
node and three-node graphs of motive A in figure 5.4. Since ALT, REDUCE,
inversion and identity form a semigroup, we can model the first 12 measures of
Brahms's string quartet as the transformation network given in figure 5.5.
Although there are several other ways of representing the primary theme through
these transformations, particularly if we include the alternative segmentation of
motive A, the network in figure 5.5 captures the formal symmetry and
antecedent/consequent relationship within the opening 12 measures while
remaining quite close to the most intuitive segmentation. In particular, this graph
highlights the way in which each motive is derived from the Motto Subject. While
motive A' is derived from the Motto Subject, it is also derived from motive A. In
this reading, the initial appearance of motive A represents a separate entity distinct
from the Motto Subject. It is only in motive A', when both motives have gone
through the REDUCE function, that they generate a common motive. Hence there
is no arrow leading to the first appearance of motive A. In addition, there are
strong parallels between measures 1-6 and 7—12 which are emphasized by the
relatively simple transformations that link these two parts.

The variation between different forms of motive A goes beyond what the
transformation graph in figure 5.5 can capture. It involves the treatment of non-
chord tones, which we have ignored in presenting the larger theme and the
relationships between different motives. We can now consider their effect on

different variations of the same motive by modeling motive A through the direct
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product GIS of diatonic pitch intervals and NCT-GIS(P, N; Z, x Z,). Figure 5.6
presents the variations of the reduced form of this motive as simple networks
using the direct product GIS and as networks of diatonic pitch intervals.
Examining the formal properties of these networks, we see that there are some
clear advantages to representing this motive using a direct product GIS that
incorporates non-chord tones. While the networks using direct product intervals
are all isographic, the same clearly cannot be said of the networks that use only
diatonic operations. The network derived from the direct product GIS takes the
neighbor tone into account and reflects the subtle difference that it makes, while
maintaining an isographic relationship with the networks for the other motives.
Moreover, it highlights the connection between motive A and its presentation in
the larger network of the theme, in which non-chord tones were excluded.

We can also examine the relationships between different variations of
motive A within the primary theme by creating a network of these networks. This
is presented in figure 5.7, which further emphasizes the formal development that
takes place between the antecedent and consequent through the changes that take
place in the non-chord tones. While the first instances of the motive use only
passing tones, the motives in the consequent add neighbor tones. As in figure 5.5,
the dashed arrows and transformations in square brackets indicate transformations
between networks. In this case, the transformations are automorphisms of our
direct product GIS. For example, the transformation [E, N, Y], which connects
two networks with the intervals <2, Y, N> and <2, Y, Y> respectively, compares
the intervals in the two networks and indicates that in the second network the
diatonic component and the passing tone components are unchanged, while the
neighbor tone component has changed.

In addition to the variation among different forms of motive A found
within the primary theme, the Triad Motive is also subject to substantial variation.
As we have already seen, it can be modeled as a network of diatonic intervals.
However, the number of networks representing this motive that would be
isographic is too high to properly capture the most significant transformations that

it undergoes, since the distinctions would primarily be captured by the shape of
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the graphical representation. In order to capture the permutational effect of the
transformations on the motive, we will apply the permutation GIS instead.

The permutational GIS does not model the intervals within motives but
rather the relationship between variations of the triadic motive. Thus its intervals
parallel the automorphisms between the networks for different forms of motive A.
The network of variations of this motive presented in figure 5.8 suggests a subtle
connection among all three forms of the motive. In terms of group theory, the
three transformations presented in the network, <()>, <(R35)>, and <(R53)>, all
belong to As, the unique subgroup of order three in S;. If we consider the temporal
order in which the root, third, and fifth of a triad appear in the music, this means
that a series of triads separated by permutation intervals that belong to this
subgroup will either consist of only ascending arpeggiations or only descending
arpeggiations; a mix of ascending and descending arpeggiations would require
other permutation intervals. In this case, however, not all the triads descend; the
form which appears in measures 7 and 8§ combines both. Thus, the connection
between the three forms of the Triad Motive goes deeper than the fact that the
figures in measures 10 and 12 both descend.

Analysis: Transition

As Wilke notes, the transition contains a new motive, whose metric pattern
is derived from the closing bars of the primary theme, and which is combined
with the motive from measure 4 (motive A'), which he considers as a series of
eighth notes.” The transition motive and motive A', which appear repeatedly in
this section, are marked on the score in figure 5.1. While the rhythmic
connections are fairly obvious, there is a deep underlying connection between the
first instance of the transition motive and the opening, which is demonstrated by
the network of networks in figure 5.9. The double stops in the second violin
strongly connect the A with F# and E to create a variation of the Motto Subject,
while the repeated A at the beginning of motive A suggests a retrograde version of

motive A rather than the inversion A'. Thus, the transition motive does have a
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strong connection with the primary theme but is treated with considerable
freedom, leading away from the principle thematic material to create variety.

The Triad Motive also appears extensively in the transition. Beginning in
measure 30, the first violin plays descending arpeggiations of a diminished-
seventh chord, while the second violin and viola use both motive A and the Triad
Motive in an accompanying stream of eighth notes. Figure 5.10 shows this pattern
as it first appears in the violins in measure 303 1. Interestingly, almost every
triadic figure that appears throughout the entire primary theme and transition
appears in descending form, and those few that do not tend to have an
accompanimental role. Thus almost every possible permutational interval within
the primary theme and transition is one of <()>, <(R35)>, or <(R53)>. Even some
ascending accompanimental figures such as the cello figure in measures 40—41
(figure 5.11) maintain this pattern by appearing in open form.

The solo violin line in measures 43—45 leading into the second theme is
particularly interesting. Figure 5.11 provides the relevant excerpt. The descending
figures in the violin combine motive A with the Triad Motive, for one of the thirds
in each triadic figure is filled in with a passing tone. In addition both motives are
presented in their original form, namely, <—2, Y, N> for motive A, and (5, 3, R)
for the triad. In terms of its thematic role, the passage helps gradually to bring
back thematic material in preparation for the second theme. In his analysis, Wilke
makes a similar argument. He points to measure 38—39 as the starting point,
noting several rhythmic factors that connect this passage with the theme.”’
Although in terms of the pitch factors that are the focus of this analysis measures
38-42 have little connection with the theme, my analysis finds these in measures
43—45 which have little rhythmic connection with the theme. Consequently, the
transition can be heard as dissecting the theme into its separate components and
preparing the way for new combinations in the second theme.

Analysis: Secondary Theme
Figure 5.11 also contains the secondary theme, which appears in the first

violin in measures 46—61. The viola repeats it in measure 62. As the labels on the

77. Ibid., 38-39.
87



score indicate, many of the same motives appear in both the primary theme and
secondary theme. In fact, the only new motive is labeled motive B, and consists of
a repeated pair of lower neighbor tones outlining the identity interval <0, N, N>.
Since motive B always appears in conjunction with motive A in this context, and
since the graph reduction function eliminates identity intervals, we can consider
motive A and motive B to be part of the same network relative to the Triad Motive
and Motto Subject. Consequently we can represent the secondary theme with
several different networks, including a network, given in figure 5.12, that models
the connections between motives found in this passage and networks given in
figures 5.13 and 5.15, modeling the transformation of individual motives.

Figure 5.12 demonstrates how the secondary theme can be derived using
the same transformations and motives found in the primary theme. In this
example, measures 54—57 are ignored since they are derived entirely from motive
A and require a more detailed explanation. There are striking similarities and
differences between these networks and that presented in figure 5.15. In the first
place, the Motto Subject is completely absent from the first part of the secondary
theme, although it is outlined within the contour.”™ Secondly, the transformations
are simpler and more loosely organized. Whereas the motives in the primary
theme could more easily be connected with other motives, most of the motives in
the second theme are transformed directly into the reduced form of motive A with
few other possible connections. This reflects the fact that the secondary theme
focuses on one basic shape, which it varies in length, while the primary theme
employs several short, clear motives that are repeated only a few times and varied
in more complex ways.

The second theme also includes a four measure closing phrase (measures
58-61) that strongly contrasts with the previous material. This is presented as a
network in figure 5.12b. Interestingly, it is at this point that we find a reduced
variation of the Motto Subject in inversion, followed by several repetitions of the
Triad Motive. Since the preceding measures employed motive A almost

exclusively, this sudden shift contributes to a sense of a new beginning. If we
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remember that there are no transformations in our semigroup that will lead us to
the Motto Subject, only transformations leading from the Motto Subject toward
motive A, this is particularly interesting.

The treatment of the Triad Motive within the second theme also
demonstrates the importance of the factors that we have discussed so far. Figure
5.13 shows the transformations that this motive undergoes from the end of the
transition to measure 61. While the transformations of the Triad Motive in the
primary theme and transition were derived almost exclusively from <()>,
<(R35)>, and <(R53)>, at the beginning of the second theme on the anacrusis to
measure 46 we find the transformation <(R5)> leading to a motive of the form
(R, 3, 5). Furthermore, the interval to the following motive (5, R, 3) in measure 53
1s <(R35)>. In terms of group theory, this means that, as in the primary theme and
transition, the intervals within this theme all belong to A, the alternating
subgroup of S;, which includes the permutations <()>, <(R35)>, and <(R53)>,
while the intervals from any motive in primary theme to any motive in the second
theme will be odd permutations (that is, they will be one of the two member
cycles <(R3)>, <(R5)>, or <(35)>).

However, the second theme also sets up a certain degree of opposition
within itself, since the motives in measures 59—60 are all separated from the rest
of the second theme by 2-member cycles and consequently are implicitly united
with the primary theme and transition. At the same time, these motives also
employ an overall ascending shape that connects them with the second theme,
although the order of root, third, and fifth is derived from the first theme. This
joint connection further supports our argument that the closing phrase of the
second theme appears almost as a new beginning and represents an opposing
musical impulse.

The division at measure 58 is further borne out by the treatment of motive
A. Figure 5.14 presents the underlying voice-leading of the first violin line in
measures 54—57, while networks for motives A and B appear in figure 5.15. In
terms of basic features, the main differences besides organizational structure

between the graph of motive A in the secondary theme (figure 5.15a) and the
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corresponding graph of the primary theme, given earlier in figure 5.7, are that the
second theme uses inversion only once, and the changes in the non-chord tone
component of the intervals are more prominent. In addition, the network for
motive B (figure 5.15b) is quite simple; we could find similar networks in the
primary theme by examining the repeated notes independently. Consequently,
from one perspective, the differences between the two themes are not great. At the
same time, the phrase in measures 54—57 presents an anomaly. We can find the
structure of motive A in measures 55—-56 by analyzing the violin melody as a
compound line with two instances of the motive. However, if we attempt to
analyze measure 54 in the same way, we find that each interval is broken off or
interrupted by a repetition. We could analyze this measure as a neighbor tone
figure instead; however, this would not capture the complexity of the situation,
nor would it reflect the fact that the theme has been eliminating repeated neighbor
tones and reducing motive A. Rather, measure 54 poses a problem that is only
partially solved by measure 55. Thus, in spite of the smooth lyrical character of
the line, measures 54—57 create a break in thematic continuity that sharply
distinguishes this theme from the primary theme. This may also help to explain
why the repetition of this theme by the viola expands the corresponding passage
in measures 70—76 by two bars.

Although they are decidedly different themes, the second theme shares
many motives and transformations with the primary theme. Our network approach
allows us to see exactly how the two themes are related, demonstrating both
similarities and differences. In the process of comparing the two themes in this
way, we have also isolated several factors that appear to have a significant bearing
on the overall structure of the movement and the piece as a whole. The way in
which the Motto Subject is used, the permutations of the Triad Motive, and
treatment of motive A all have structural meaning that will be further examined
throughout the course of the piece.

Analysis: Exposition, Measures 81-119
The remainder of exposition comprises two sections, a continuation of the

second theme, which extends to measure 104 and appears in figure 5.16, and a
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third codetta theme in figure 5.19. Finally, at measure 120, a short passage
consisting of the Motto Subject in canon connects the exposition with its own
repetition and the beginning of the development.

Although there are other interesting features that we could discuss, the
thematic aspect that most stands out in the continuation of the second theme is the
striking treatment of triadic permutations. Two brief passages, measures 8§1-83
and 94-95, are sufficient to demonstrate this, since they are subjected to
considerable repetition and variation. Permutational networks of these passages
appear in figures 5.17 and 5.18. Both networks visually distinguish different
instruments by placing permutations of the Triad Motive at different heights. In
measure 81, the first violin's accompanimental pattern in eighth notes, which had
previously employed a variety of intervallic patterns, is transformed into a triadic
pattern that bears a certain resemblance to the motive in triplet quarter notes from
the second theme, which appears in the viola part in measure 81. The transformed
motive is subsequently passed around among the various parts and juxtaposed
against the original triplet version. It is the contrast between two motives that is at
the heart of the conflict in this passage.

Although there is an obvious rhythmic conflict of 4 against 3, there is a
more subtle conflict based on the permutation that each motive employs. The
motive in eighth notes always introduces an extra note on its ascent, producing a
clear ascending arpeggiation, while the triplet motive continues to maintain an
underlying descending contour. This is portrayed in figure 5.17. The permutation
<(R3)> appears twice between successive motives in the first violin part, once at
the transition to a triadic pattern and again when the violin adopts the triplet
motive. Likewise <(R5)> appears in the viola part between the triplets of measure
81 and the eighth notes of measure §83. In addition, the arrows connecting the two
parts contain mostly 2-member cycles. As in the contrast between the first and
second themes, the use of 2-member cycles can be read in terms of conflict,
underscoring the sense of rhythmic conflict and connecting it with other processes

in the exposition.

91



The same feature can be found in measures 94-95, represented in figure
5.18. Here the first violin and viola are unified, having agreed on descending
permutations. It is only the second violin, projecting a permutation of (5, R, 3)
with its quarter notes, that weakly struggles against the overwhelming force of the
descending permutations. Given the tumultuous ascending arpeggiations between
measures 83 and 94, and the ultimate adoption of descending permutations by the
second violin at the cadence in measures 102—103, it is easy to read this passage
as a failed attempt on the part of the second theme to achieve a true space for
itself and its ascending permutations against the first theme and its descending
permutations, which had even ventured to invade the second theme with
descending permutations in measures 58—60. (figures 5.11 and 5.13).

While the first and second themes are clear cut and opposed, the codetta
theme that begins in measure 104 is characterized by a profound ambiguity which
is derived from several aspects of the theme. In the first place, although the theme
clearly begins and ends in C major, there is a pronounced shift toward A minor
and D minor within each phrase. However, an even more pronounced ambiguity
arises in the analysis of non-chord tones. In addition to figure 5.19, which
contains the full score of this passage, two phrases of the first violin line been
isolated in figure 5.20, with non-chord tone intervals presented on the music.
Within the ascending line in measures 105 and 111, each tone is supported by a
triad, thus we do not have to hear non-chord tones at all. However, the melodic
shape suggests that B and, perhaps, A could be heard as passing tones within the
overall outline of an A minor or C major triad. B is supported by a dissonant
diminished triad and can easily be heard as passing tone. A on the other hand is
supported by an F major triad and, given the fact that the C and E are supported
by A minor and E major triads respectively, it is possible to hear either a C major
or A minor triad underlying the melody here.

Whether the underlying triad is C major or A minor, the appropriate
permutation of the underlying triad, (R, 3, 5) for A minor or (5, R, 3) for C major,
ascends, contradicting the conclusion of the struggle between ascending and

descending permutations that led to the cadence in measure 104. By promptly
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opposing the descending arpeggiations, this theme helps to open up a space for
the development. Note that this is not the case when this theme reappears at the
end of the recapitulation. Although a phrase corresponding to measures 104—109
does appear in measures 272-277, it is immediately contradicted by a passage in
which the ascending line is inverted and transformed into a clear descending
arpeggiation.

The final feature of the codetta theme that deserves note is the ambiguity
of the non-chord tone intervals in measures 107—-109 (figure 5.20a) and the
change that takes place in measures 113—115 (figure 5.20b). At first glance, the G
in measure 108 would appear to be stable, the goal of an ascending third with a
passing tone, <2, Y, N>, which is then complemented by a descending third and
passing tone <-2, Y, N> from (F, 0, 0) to (D, P, N). However, a hearing that takes
all voices into account (figure 5.16) would find that the G and C# in measure 108
are part of a C# diminished-seventh chord juxtaposed against the bass D and that
these resolve to a D minor chord on the eighth note anacrusis to measure 109. If
we hear the preceding F in measure 107 as anticipating this resolution, then the G
becomes a large-scale neighbor tone and the underlying interval is <1, N, Y> from
(E, 0, 0) to (F, 0, N). This latter interval is much more clearly articulated in
measures 113—115, where the high B} is a dissonant neighbor tone and the A is
clearly stable. Moreover, the interval <1, N, Y> is repeated in measures 114—115
from (A, 0, 0) to (B, 0, N), provided we hear the C in the cadential six-four as a
dissonant neighbor.

By this rather subtle shift, presenting three ascending notes first as the
interval <2,Y, N> and then as part of <1, N, Y>, Brahms introduces the interval
<1, N, Y> as a new motive, which we will designate as motive C. From a motivic
standpoint, motive C actually introduces a musical problem. All previous motives
appeared in some form in the primary theme and were the result of the
transformations ALT and REDUCE. Even motive B, which contains the identity
interval <0, N, N>, could be found in the repeated notes in the theme, although it

did not gain any prominence until the second theme. Motive C, however, cannot
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be so easily found; it is something foreign to the basic substance of the theme.
Moreover, this problem is not musically resolved in this movement. Although it
does reappear occasionally, Brahms tends to ignore this motive. Even in the
recapitulation, although the rhythmic component and contour reappear they tend
to be presented as examples of motive A, the interval <2, Y, N> rather than <1, N,
Y> which distinguishes the melodic substance of motive C.

Analysis: Development and Recapitulation

Although the motives which we have been considering constantly appear
in interesting and suggestive ways throughout the entire first movement, it is
neither possible nor desirable to treat each in detail. Moreover, in the development
it is relatively easy to discern the connections between motives and variations,
since they usually retain other features of the three primary themes such as
rhythm and articulation. In addition, many portions of the recapitulation are
transposed repetitions of the exposition. Thus we will briefly discuss only two
passages, the retransition and the coda.

Figure 5.21 shows measures 177-184, the end of the development and the
first two measures of the recapitulation. The Motto Subject appears every two
bars in first violin part, while the viola responds with an inverted form of the same
motive. Likewise, the second violin and cello exchange a small accompaniment
figure. The structure of this figure is particularly interesting, especially in the
three instances that appear in measure 181-184, which are represented as
networks in figure 5.22. Figure 5.22a employs direct product intervals to
distinguish between chord tones and non-chord tones, while figure 5.22b employs
a network of mod 7 networks to represent the transformations between the
different motives. As the networks demonstrate, although from the perspective of
contour and rhythm each of the accompanying motives is essentially the same,
each of these motives is different when we take harmonic stability into account.
Underlying the motive in the second violin part is the Motto Subject, which is
altered to become the Triad motive in measures 183—184. In the cello part, on the
other hand, the E is stable, creating motive A instead. The harmonic flexibility of

this accompaniment motive allows it to be associated with either the Motto
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Subject or motive A, and Brahms takes full advantage of its harmonic
possibilities. By choosing this harmonically flexible motive, Brahms prepares the
recapitulation by bringing back the accompaniment pattern from the exposition
and simultaneously creates a densely motivic texture which we can associate with
the primary themes and motives.

The coda contains some particularly interesting features that further
support the argument we have been making regarding motivic processes. Figure
5.23 shows the final portion of the coda, measures 304—335. Briefly, the thematic
features are as follows: in measures 304—-307, the first violin plays a rhythmically
condensed version of the opening theme in which many of the pitches are
repeated exactly; starting in the first violin line at measure 312 and in the other
parts at measure 315, the primary motive is the Triad Motive, which consistently
appears in ascending form according to the underlying permutation, even when
the overall line descends; finally, the Motto Subject appears in canon in measure
321, accompanied by ascending triads. The final phrase in the first violin part is
particularly important. Figure 5.24 presents two networks for this passage, a direct
product network of variations of motive A for measures 327-332, and a network
of motives from measure 325-332 in figure 5.24b.

One analytical question regarding these networks concerns the analysis of
non-chord tones in measures 329 and 331. Although both G and F are
harmonically supported on the most local level and the first G in measure 329 is
part of a six-four chord, it is preferable to designate G as the stable tone. Not only
does this analysis reflect the local melodic contour, but points to the underlying
voice-leading. Beginning in measure 321, A is reinforced and supported as the
highest note in the underlying harmony. G appears as a lower neighbor through
the tonicization of C major in measures 323 and 324 and again in measure 327.
The final progression involves a chromatic shift from G, supported by C major or
its dominant, through the leading tone G# and the dominant of A minor. Thus,
Brahms maintains a harmonic conflict between A minor and C major until the
very end, which is also evident in the overlapping Triad Motives in measures

327-328.
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In terms of thematic content (figure 5.24b), this passage thoroughly rounds
off the piece. The three motives appear in order, connected by a combination of
ALT and REDUCE. In addition, the overlapping Triad Motives in measures 327—
328 both descend, contradicting the ascending triads that predominated in the
preceding section. However, while this passage can be heard as an appropriate
resolution to the thematic conflicts of the movement, it also introduces something
which we have not heard before, an overlapping of a neighbor-tone variant of
motive A (the interval <—2, N, Y>) and the descending Triad Motive. This
combination of a descending arpeggiation with neighbor tones packs the thematic
material of the Triad Motive and motive A into a very small space and is of great
significance for the entire work. By introducing it at the end of the first
movement, Brahms leaves the work open for continuation. We need to hear that
combined motive played out to its logical conclusion. As we shall see, Brahms
reserves this for the last movement.

Analysis: Second Movement

Although we will not discuss each movement in great detail, it is worth
examining the primary themes of each movement to show how they connect to
the first movement and consequently how each movement is positioned within the
overall process of the piece. Consequently, we will examine the opening 8 bars of
the movement, which are presented in figure 5.25. This particular passage has
received a great deal of attention in Schoenberg's analysis in “Brahms the
Progressive,” to which a number of authors, including Walter Frisch, John
Rothgeb, and Pieter van den Toorn, have responded. Wilke, on the other hand,
does not discuss the second movement in great detail; however, he does note that
the opening motive of the Second Movement is derived from measure 113 in the
First Movement (motive C in our terms), a connection which we will discuss
shortly.”

Schoenberg's analysis can be summed up as follows.* All the motives in

the theme can be derived from the interval of a second, found in the first two

79. Ibid., 49, 216.

80. Arnold Schoenberg, “Brahms the Progressive,” 88—89.
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notes. Each subsequent motive is explained as the combination of one or more
seconds, or as derived from the previous motives. Thus, Schoenberg finds a
motive that consists of a fourth, which combines two successive seconds, in the
descent from E to B in the second measure. He then derives other motives from
this interval as well. In total, he finds six different motives, all derived from the
interval of a second.

John Rothgeb, in a review of Brahms and the Principle of Developing
Variation by Walter Frisch, objects to Schoenberg’s analysis and Frisch's
apparently uncritical reception of it.*! Rothgeb's Schenkerian account of the
passage argues that the passage is based on neither the interval of a second nor the
interval of a fourth. Instead, he calls the D in measure 1 a passing tone within a
third and labeling the E in measure 2 as a neighbor tone within a D-E-D motion,
while the descent from D to B is another third. Rothgeb's account is primarily
concerned with giving priority to the stable underlying tonal events that form the
basis of a Schenkerian account. Thus he observes that “Brahms's music, although
it undeniably involves developing variation (in a way different from that claimed
by Schoenberg), is founded on the horizontal unfolding, by voice-leading and
diminution of triads.”®*

While Rothgeb's concern for harmonic stability and melodic unfolding is
highly relevant for our discussion of non-chord tones, his assertion that the E in
measure 1 is stable while the initial D is a passing tone obscures a clear motivic
association with measure 3. A slightly more balanced approach can be found in
Pieter van den Toorn's commentary.® Van den Toorn presents a modified
Schenkerian reading in which D in measure 1 is stable while E is a neighbor tone.

He then argues in favor of certain aspects of Schoenberg's analysis, particularly

81. John Rothgeb, review of Brahms and the Principle of Developing
Variation, 205-208; Walter Frisch, Brahms and the Principle of Developing
Variation, 6-9.

82. Rothgeb, review of Brahms and the Principle of Developing Variation,
207 (Rothgeb's italics).

83. Pieter van den Toorn, “What's in a Motive?” 384-388.
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the neighbor tone figures D-E-D in measures 1-2 and E-F#—E in measure 3 that
Schoenberg identifies as motivic repetition.

While it may not be desirable to derive this passage from the interval of a
second in exactly the way that Schoenberg does, it is possible to find an highly
organized motivic reading of this passage using our direct product networks. In
this way, we can take tonal stability and diminution into account. Furthermore,
although we cannot derive every motive from one interval as Schoenberg does,
we can show how this passage is connected to the first movement. Figure 5.26
presents two networks, a direct product network of the entire theme and a
corresponding network of unconnected subnetworks that highlight each motive as
heard in isolation. As these networks demonstrate, this passage involves a very
tight overlapping of each of motives A, B, and C. Some of these motives do
appear slightly behind the foreground, such as motive C in measures 2—3, the
interval <1, N, Y> from (D, 0, 0) to (E, 0, N); however, such motions are
relatively obvious and appear in both the Rothgeb’s and Schoenberg’s accounts of
the passage.

In terms of motivic process this passage also reveals the fundamental
substance of the second movement. The first movement in its continuous
progression from the Motto Subject to motive A presented a constant reduction of
motives, in which the theme was essentially compressed into its smallest
elements. Further, we must recall that there is no transformation that will take us
back to the Motto Subject, since both ALT and REDUCE have no inverse. In
addition, Brahms had introduced motive C, which had no precedent, and was left
hanging without appropriate development. In the second movement, Brahms
reverses this trend by taking those same small elements and tightly knitting them
together to form a larger theme. He avoids motivic triads in the melody at the
beginning of the second movement, and the Motto Subject is nowhere to be
found, a fact which partly explains Wilke's scant treatment of this movement. This
construction can also explain the fact that Brahms gradually introduces more and

more descending arpeggiated triads in the repetition of the A section until we find
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that they saturate the texture in measures 116—120, just before the final chords
(figure 5.27). In short, the second movement has two goals, the resolution of
motive C through a more thorough treatment and the gradual reconstruction of the
Triad Motive from smaller elements.

Analysis: Third Movement

That the third movement lays hold on the descending Triad Motives found
at the end of the second movement and develops them should come as no
surprise. Having restored the triad as a viable motive, Brahms does not again
abandon it. Instead, the third movement begins to deal with the potential to
integrate the smaller motives, particularly motives A and B, into the Triad Motive.
This possibility appeared occasionally in the first movement and appeared
prominently at the end of the coda. Nevertheless, the combination was left
hanging, without significant development. The third movement explores one
possible way of integrating these motives.

Examining the opening theme in figure 5.28, we see that both the non-
chord tone motives and the Triad motive are present. Descending A minor triads
support the beginnings of each of the phrases in measures 1-3 and 4—6. Within
these triads the non-chord tones create several different variants of motives A and
B. Networks for both types of motive appear in figure 5.29. In figure 5.29a, both
triads are descending, and the connecting interval naturally belongs to the
alternating subgroup As.

Even more importantly, the networks in figure 5.29b demonstrate that the
predominating direct product intervals are <—2, Y, Y> and <—2, N, N>. This
represents a shift from the first two movements, which tended to emphasize
<-2,Y, N> and <2, Y, N>. In addition, the interval <—2, N, Y>, which occurred
prominently in the coda of the first movement, is also absent. In other words, the
motivic thirds in the first movement tended to involve a single passing tone. In the
coda of the first movement, thirds which encompassed a single neighbor tone also
appeared, posing a problem for the motivic consistency of the piece. The third
movement avoids a return to the primary form of motive A by including both

neighbor tones and passing tones or by employing unadorned thirds. Both of these
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intervals clarify the underlying triad by leaving a gap and emphasizing the stable
third. The intervals <—2,Y, N> and <2, Y, N> do not clarify the underlying third
in the same way. In fact, they are potentially ambiguous and can easily be
interpreted as <1, N, Y>, as was the case at the introduction of motive C in the
first movement. The interval <—2, N, Y> strongly emphasizes the third and was
used in the first movement to create the overlapping with C major and A minor
triads in the final bars of the coda. However, Brahms continues to leave that
possibility unexplored in this movement. Instead, we find the combination of
motive A with the Triad motive explored through <-2,Y, Y> and <-2, N, N>.

The third movement needs little further commentary. As is often the case
with Minuets, there is a great deal of literal repetition. Moreover, the interested
reader who takes a cursory glance through the score will quickly see that there
many different rhythmic variations on the phrase from measures 1-3 and that
motive A, as defined by the interval <-2,Y, Y>, saturates the movement.

Analysis: Fourth Movement

The finale brings the quartet to a logical close by grappling with the
structural problem posed at the close of the first movement, namely, the
integration of the Triad Motive and motive A, particularly motive A as defined by
the direct product interval <—2, N, Y>. Although there are other processes at work
in the last movement as well, we cannot fully discuss them in this context.
However, since the movement is in sonata-rondo form, a brief examination of the
primary theme will suffice to show the primary ways in which the same motives
and transformations are still at work in this movement.

Figure 5.30 shows the primary theme, which extends to measure 13, where
it is repeated by the viola, while figure 5.31 presents three networks that represent
the theme from different perspectives. Note that the anacrusis figure has been
analyzed as a third rather than a fourth; this reading considers these figures as
belonging to implied secondary dominants each leading to the following bar,
which is particularly apt for the pickups to measures 4 and 7. As these networks
demonstrate, the theme consists entirely of triads and intervals of a third, which

may encompass some type of non-chord tone. In many cases, the Triad Motive
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and motive A overlap, producing a synthesis that can be connected with the
preceding movement but more directly reflects the end of the first movement by
employing the interval <—2, N, Y>. An additional factor that connects this theme
with the first movement is its tight construction; practically every motive can be
connected with those around it. As in the first movement, the primary theme
employs only descending triads, which the network in figure 5.31b demonstrates
by including only permutation intervals from Aj;.

Figure 5.32 shows how the processes that have operated in this piece are
finally resolved in the last eight bars. For six bars before the final chords, there is
nothing but the repetition of thematic synthesis, the overlapping of the Triad
Motive with motive A as defined by <—2, N, Y>. The eighth note C on the last
beat of each bar from measure 350 to 353 creates a bare ascending triad that leads
into the next bar. As a result, the descending triad (5, 3, R) is juxtaposed with the
ascending triad (R, 3, 5), thus creating the odd permutation interval <(R5)>, until
in measures 354-355 all the parts join in a two octave descent through the
synthesized motive. Thus Brahms maintains thematic tension until the very end,
employing the processes which we have discussed until they drive the thematic
material into the tightest possible combination, arriving at a point from which no
further development would be possible.

Conclusion

The analytical approach which we have taken in examining Brahms's
string quartet is one that can be loosely characterized as Schoenbergian.
Schoenberg's analytical thought is not a fixed system, but consists of a number of
key ideas and ways of thinking which appear piecemeal in Schoenberg's writings.
In my analysis there are several points of contact with Schoenberg's ideas, and in
discussing the overall significance of my analysis it will be worthwhile to
examine the ways in which it reflects Schoenberg's ideas.

One of the central aspects of Schoenberg's musical thought is the concept
of Grundgestalt or “basic shape.” The Grundgestalt is itself intimately connected
with the concept of the idea in music. According to Schoenberg, idea can be

synonymous with theme or motive but ultimately can be considered to be the
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totality of a piece. He goes on to clarify this statement by defining idea as the
method by which balance is restored in a composition, over against the imbalance
naturally created by tonal and rhythmic forces.* Patricia Carpenter treats the
Grundgestalt as “the concrete technical aspect of the idea,” a memorable shape
that encompasses harmony, motive, and rhythm.® Likewise, David Epstein argues
that “the Grundgestalt denotes a configuration of musical elements that is
significant to the form and structure of a work and is manifested throughout the
work in differing guises and on various structural levels.”*

In my analysis, the various motives and the transformations which can be
applied to them may be taken as a partial description of the thematic and motivic
aspects of the Grundgestalt. It is in this context that the abstraction inherent in
network analysis is helpful. We need not take the musical passage in bars 1-12 of
the first movement as the Grundgestalt. Instead, the combination of the Motto
Subject, Triad Motive, and Motives A, B, and C, together with the semigroup of
transformations that mediates between motives (ALT, REDUCE, and inversion),
as well as the operations that apply to individual motives (permutations and direct
product automorphisms) may all collectively be taken as the Grundgestalt as it
applies to melodic and intervallic features of the music.

The treatment of motives in Brahms's quartet as described in this analysis
can also be compared with Schoenberg's discussion of the motive: “The motive
generally appears in a characteristic and impressive manner at the beginning of a
piece. ... Inasmuch as almost every figure within a piece reveals some

relationship to it, the basic motive is often considered the 'germ' of the idea.”*’

84. Schoenberg, “New Music, Outmoded Music, Style and Idea,” in Style
and Idea, 49.

85. Patricia Carpenter, “Grundgestalt as Tonal Function,” Music Theory
Spectrum 5, no. 1 (Spring 1983): 15.

86. David Epstein, Beyond Orpheus: Studies in Musical Structure
(Cambridge, MA: MIT Press, 1979), 19.

87. Arnold Schoenberg, Fundamentals of Musical Composition (London:
Faber and Faber, 1967), 8.
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Musically, the Motto Subject fits this description, while our analysis takes it as a
point of origin from which other motives are derived. In this context the fact that
ALT and REDUCE are transformations with no inverse is helpful, because it
clearly describes the Motto Subject as a source—input rather than output. The
transformation of the Motto Subject into simpler tonal motives also exemplifies
what Schoenberg calls liquidation: “Liguidation consists in gradually eliminating
characteristic features, until only uncharacteristic ones remain, which no longer
demand continuation. Often only residues remain, which have little in common
with the basic motive.”®® This is locally true within many of the themes we
examined, in which motives A, B, and C often appeared after the more complex
motives. Liquidation also applies to the entire piece, with the gradual elimination
of the Motto Subject in favor of the tight combination of motives found in the
final bars, producing a tendency toward closure. This reflects Schoenberg's
statement that “the purpose of liquidation is to counteract the tendency toward
unlimited extension.”® This also resonates with the characterization of idea and
Grundgestalt as forces that provide balance and logical closure.

A final aspect of my analysis that reflects Schoenberg's thematic thinking
is the characterization of the music in terms of dialectical oppositions, which
Michael Cherlin argues are a significant aspect of Schoenberg's musical thought,

including the Grundgestalt concept.”

Schoenberg often describes musical
processes in terms of problems that must be solved arguing that “every succession
of tones produces unrest, conflict, problems. ... Every musical form can be
considered as an attempt to treat this unrest either by halting or limiting it, or by
solving the problem.”" It is exactly this kind of problem solving aspect of form

that I have tried to explicate in my analysis, presenting oppositions between

88. Ibid., 58.
89. Ibid.

90. Michael Cherlin, “Dialectical Opposition in Schoenberg's Music and
Thought,” Music Theory Spectrum, 22, no. 2 (Autumn 2002): 170.

91. Schoenberg, Fundamentals of Musical Composition, 102.
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themes, motives, and variations of motives in terms of oppositions and problems
that must be resolved, and demonstrating the ways in which the music solves
those problems.

As my analysis has also demonstrated, non-chord tone GISes can easily be
employed in network analysis. They can be integrated with other types of
operation networks and more complex transformations in the context of a musical
analysis. The analysis itself demonstrates the applicability of these types of
networks to motivic analysis, allowing us to examine both the motives and
process in Brahms's quartet. Although the networks can only present a portion of
the thematic aspect of the Grundgestalt, and even these could be examined in
other ways, this particular method of description nevertheless offers several
advantages including clear graphical presentation, the flexibility and precision of
mathematical definitions, and the ability to capture dynamic aspects of the
Grundgestalt through the use of non-intervallic transformations. Even the level of
abstraction inherent in the approach is useful, for it allows us to present this
thematic aspect of the Grundgestalt in terms of a set of motives (graphs) and
several associated groups and semigroups of transformations rather than linking

the Grundgestalt to one particular manifestation in the music.
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Chapter 6: Conclusions

In this thesis we have examined a new approach to the analysis of non-
chord tones using the theoretical work in Lewin's Generalized Musical Intervals
and Transformations as the underlying methodology. In doing so, we have not
only been exploring non-chord tone analysis but also the technical features of
Lewin's system. Because the approach we have taken involves so many small
digressions into the formal properties inherent in the GMIT project as well as a
great deal of attention to the details of Mozart's variations on “Ah! Vous dirai-je,
Maman,” K. 265 and Brahms's String Quartet No. 2, we can perhaps best
conclude our study by enumerating some of the essential points.

First, the non-chord tones in music are worthy of analytical attention as
non-chord tones. Music theory has a tendency to label non-chord tones and then
omit them from the discussion of the music. Even Schenkerian analysis, which
does occasionally discuss the role of non-chord tones as part of the counterpoint,
often does this by focusing on the middleground without dealing with the details
of the foreground. However, as our analyses have demonstrated, non-chord tones
can play a key role in themes and motives and even in overall formal structure,
particularly in a set of variations.

Second, our system of non-chord tone analysis is designed to be adaptable
to many different types of analysis. We explored a statistical approach in chapter 3
and a Schoenbergian motivic approach in chapter 5. However, non-chord tone
generalized interval systems could be applied in other ways as well. Although we
have avoided Schenkerian analysis, since it does already present a way of dealing
with non-chord tones, non-chord tone interval systems could easily be combined
with Schenkerian graphs. Since most of the prominent features of Schenkerian
analysis, such as the Zug, include notes that are technically expanded passing
tones, we could find application for non-chord tone intervals on a background
level. It is a key feature of non-chord tone interval systems that they do not
depend on any one way of labeling non-chord tones and can thus be adapted to
other analytical methods. Moreover, they build extensively on Lewin's work in

transformational theory, which is itself a framework of theoretical tools that can
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be applied in almost any music theoretical context. The thesis ultimately expands
that framework to include a sophisticated method for dealing with non-chord

tones, along with other tools for analyzing tonal music.
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Appendix

Figures for Chapter 1
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Figure 1.1: Consonant embellishment from Piston, Harmony, 81.
U

Figure 1.2: Non-chord tone analyses of Bach, Invention No. 9, mm. 1-4.
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Figures for Chapter 2

Figure 2.1: Non-chord tone configurations attached to a C major chord.
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Figure 2.2: A spatial representation of non-chord tone tone configurations.
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Figures for Chapter 3

, ||| (A
o M S U
3
< .|| N
o SAUR 123% n?»
BN = 4lll
, || (A
g
g o N Y
nMa J Ul AR YEiR
Pw, o ol b | L1
L vy
e
“A.w. 1 ol !
v [N | el
25
> v\g I L1E L1
m N || N || 'r\\ LLV\
: n V|| ol (18
o
S Nl el ol el
%)
m Ul i N el
m ol W+
..an Ul ‘|l —
« | wll M
m = TJ nmj
M Ly L1 - m} W/
M LYRRRRE HEAH n%.
= IR
— ] ey
on I N
ol el
m I
.mu Mt o N
(\IAE—
F R SH| ¢
DN AN NP F
S—— P ——

Figure 3.2: Theme: graph of non-chord tone contours
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Figure 3.3: Theme: table of configurations and intervals.

Measure Theme: Intervals Between
Numbers Configurations =~ Measures
M. 1 (0,0, 0)

<0, 0, 0>
M. 2 (0,0,0)

<0, 0, 0>
M.3 (0,0, 0)

<0, 0, 0>
M. 4 (0,0, 0)

<0, 0, 0>
M. 5 (0,0, 0)

<0, 0, 0>
M. 6 (0,0, 0)

<0, 1, 0>
M. 7 (0, 1,0)

<0, -1, 0>
M. 8 (0,0,0)

<0, 0, 0>
M. 9 (0,0,0)

<0, 0, 0>
M. 10 (0,0, 0)

<0, 0, 0>
M. 11 (0,0,0)

<0, 0, 0>
M. 12 (0,0,0)

<0, 0, 0>
M. 13 (0,0, 0)

<0, 0, 0>
M. 14 (0,0, 0)

<0, 4, 0>
M. 15 (0,4, 0)

<0, -4, 0>
M. 16 (0,0, 0)

<0, 0, 0>
M. 17 (0,0, 0)

<0, 0, 0>
M. 18 (0,0,0)

<0, 0, 0>
M. 19 (0,0, 0)

<0, 0, 0>
M. 20 (0,0, 0)

<0, 0, 0>
M. 21 (0,0,0)

<0, 0, 0>
M. 22 (0,0,0)

<0, 3, 0>
M. 23 0,3,0)

<0, -3, 0>
M. 24 (0,0, 0)
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Figure 3.5: Variation 1: graph of non-chord tone contours
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Figure 3.6: Variation 1: table of configurations and intervals.

Measure Intervals from  Variation 1: Intervals Between
Numbers the Theme Configurations Measures
M. 1 <0, 4, 0> (0,4,0)

<0, 0, 0>
M. 2 <0, 4, 0> 0,4,0)

<2,-2, 0>
M. 3 <2,2,0> 2,2,0)

<2,-2, 1>
M. 4 <4, 0, 1> 4,0, 1)

<-1,0, 0>
M. 5 <3,0, 1> (3,0, 1)

<0, 0, 0>
M. 6 <3,0, 1> (3,0, 1)

<-3,0,-1>
M.7 <0, -1, 0> (0,0,0)

<0, 0, 0>
M. 8 <0, 0, 0> (0,0,0)

<0, 4, 0>
M. 9 <0, 4, 0> (0,4, 0)

<0,-1, 1>
M. 10 <0, 3, 1> 0,3, 1)

<0, 0, 0>
M. 11 <0, 3, 1> 0,3, 1)

<0, 0, 0>
M. 12 <0, 3, 1> 0,3,1)

<1, -1,-1>
M. 13 <1, 2, 0> (1,2,0)

<0, -1, 1>
M. 14 <1, 1, 1> (L, 1, 1)

<0, 0, 0>
M. 15 <1, -3, 1> (L, 1, 1)

<-1,-1,-1>
M. 16 <0, 0, 0> (0,0, 0)

<0, 3, 1>
M. 17 <0, 3, 1> 0,3, 1)

<0, 1, -1>
M. 18 <0, 4, 0> 0,4,0)

<2,-2,0>
M. 19 <2,2,0> (2,2,0)

<2,-2, 1>
M. 20 <4,0, 1> 4,0,1)

<-1,0, 0>
M. 21 <3,0, 1> (3,0, 1)

<0, 0, 0>
M. 22 <3,0, 1> (3,0, 1)

<-3,0,-1>
M. 23 <0, -3, 0> (0,0, 0)

<0, 0, 0>
M. 24 <0, 0, 0> (0,0,0)
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Figure 3.7: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 2.
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Figure 3.8: Variation 2: graph of non-chord tone contours
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Figure 3.9: Variation 2: table of configurations and intervals.

Measure Intervals from  Variation 2: Intervals Between
Numbers Variation 1 Configurations Measures
M. 1 <0, -1, 0> (0,3,0)

<0, 0, 0>
M.2 <0, -1, 0> (0,3,0)

<0, 0, 1>
M.3 <2,1, 1> 0,3, 1)

<0, 0, 0>
M. 4 <4,3,0> 0,3,1)

<0, -1, 0>
M. 5 <3,2, 1> 0,2, 1)

<0, 0, 0>
M. 6 <-3,2,0> 0,2, 1)

<1, 0, 0>
M. 7 <1,2, 1> 1,2, 1)

<1, -2, -1>
M. 8 <0, 0, 0> (0,0, 0)

<0, 3, 0>
M. 9 <0, -1, 0> 0,3,0)

<0, 0, 1>
M. 10 <0, 0, 0> 0,3, 1)

<0, 2, -1>
M. 11 <0, 2, -1> 0,5,0)

<0,-3, 1>
M. 12 <0, -1, 0> 0,2,1)

<0, 1,-1>
M. 13 <1, 1, 0> 0, 3,0)

<0, 0, 1>
M. 14 <-1,2, 0> 0,3,1)

<0, 2, -1>
M. 15 <-1,4,-1> 0,5,0)

<0, -2, 1>
M. 16 <0, 3, 1> 0,3,1)

<0, 2, -1>
M. 17 <0, 2, 0> 0,5,0)

<0, -2, 0>
M. 18 <0, -1, 0> (0,3,0)

<0, 0, 1>
M. 19 <2,1,1> 0,3,1)

<0, 0, 0>
M. 20 <-4,3, 0> 0,3, 1)

<0, 1, 0>
M. 21 <-3,2,0> 0,2, 1)

<0, 0, 0>
M. 22 <-3,2,0> 0,2, 1)

<1, 0, 0>
M. 23 <1,2, 1> (1,2, 1)

<1, -2, -1>
M. 24 <0, 0, 0> (0,0,0)

Figure 3.10: Retrograde-Inversion Chain
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Figure 3.12: Variation 3: graph of non-chord tone contours
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Figure 3.13: Variation 3: table of configurations and intervals.

Measure Intervals from  Variation 3: Intervals Between
Numbers Variation 2 Configurations Measures
M. 1 <0, -3, 0> (0,0,0)

<2,1, 0>
M.2 <2,-2,0> 2,1,0)

<-1, 0, 0>
M. 3 <1, -2,-1> (1, 1,0)

<-1,0, 1>
M. 4 <0, -2, 0> 0,1, 1)

<0, -1, 0>
M. 5 <0, -2, 0> 0,0, 1)

<0, 0, 0>
M. 6 <0, -2, 0> 0,0, 1)

<0, 0, 1>
M.7 <-1,-2, 1> 0,0,2)

<0, 0, -2>
M. 8 <0, 0, 0> (0,0, 0)

<0, 1, 0>
M. 9 <0, -2, 0> 0,1,0)

<0, 0, 1>
M. 10 <0, -2, -1> 0,1, 1)

<0, 0, 0>
M. 11 <0, -4, -1> 0,1, 1)

<0, 0, 0>
M. 12 <0, -1, 0> 0,1, 1)

<0, 1, -1>
M. 13 <-1,-2,0> 0,2,0)

<0, -1, 1>
M. 14 <0, -2, -1> 0,1, 1)

<0, 0, 0>
M. 15 <0, -4, -1> 0,1, 1)

<0, -1, -1>
M. 16 <0, -3, -1> (0,0, 0)

<0, 0, 0>
M. 17 <0, -5, 0> 0,0,0)

<2,1, 0>
M. 18 <2,-2,0> 2, 1,0

<-1,0, 0>
M. 19 <1,-2,-1> (1, 1,0)

<-1,0, 1>
M. 20 <0, -2, 0> 0,1, 1)

<0, -1, 0>
M. 21 <0, -2, 0> 0,0, 1)

<0, 0, 0>
M. 22 <0, -2, 0> 0,0, 1)

<0, 0, 1>
M. 23 <-1,-2, 1> 0,0,2)

<0, 0, -2>
M. 24 <0, 0, 0> (0,0,0)
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Figure 3.14: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 4.
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Figure 3.15: Variation 4: graph of non-chord tone contours
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Figure 3.16: Variation 4: table of configurations and intervals.

Measure Intervals from  Variation 4: Intervals Between
Numbers Variation 3 Configurations Measures
M. 1 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 2 <-2,-1, 0> (0,0,0)

<0, 0, 1>
M. 3 <-1,-1, 1> (0,0,1)

<0, 0, 0>
M. 4 <0, -1, 0> 0,0,1)

<0, 2, 0>
M. 5 <0, 2, 0> 0,2, 1)

<0, 0, 0>
M. 6 <0, 2, 0> 0,2, 1)

<0, 0, 0>
M. 7 <0, 2, -1> 0,2, 1)

<0, -2, -1>
M. 8 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 9 <0, -1, 0> (0,0,0)

<1,1, 1>
M. 10 <1, 0, 0> (1,1, 1)

<0, 0, 0>
M. 11 <1, 0, 0> (1,1, 1)

<1,0,-1>
M. 12 <2,0, 1> (2,1,0)

<-2,-1,0>
M. 13 <0, -2, 0> (0,0,0)

<1,1, 1>
M. 14 <1, 0, 0> (1,1, 1)

<0, 0, 0>
M. 15 <1, 0, 0> (1,1, 1)

<-1,0, -1
M. 16 <0, 1, 0> (0,1,0)

<0, -1, 0>
M. 17 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 18 <-2,-1,0> (0,0,0)

<0, 0, 1>
M. 19 <-1,-1, 1> (0,0,1)

<0, 0, 0>
M. 20 <0, -1, 0> 0,0, 1)

<0, 2, 0>
M. 21 <0, 2, 0> 0,2, 1)

<0, 0, 0>
M. 22 <0, 2, 0> 0,2, 1)

<0, 0, 0>
M. 23 <0, 2, -1> 0,2, 1)

<0, -2, -1>
M. 24 <0, 0, 0> (0,0,0)
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Figure 3.17: Non-chord tone contour for measure 9 up to Variation 4.

0
e,
0

ey,

LTy

.
e,
.

v,

“,

Var. 2 Var. 3 Var. 4

*Neighbor ==Suspension

Var. 1
—Passing **

Theme

Figure 3.19: Variation 5: graph of non-chord tone contours
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Figure 3.20: Variation 5: table of configurations and intervals.

Measure Intervals from  Variation 5: Intervals Between
Numbers Variation 4 Configurations Measures
M. 1 <0, 0, 0> (0,0,0)

<0, 0, 0>
M.2 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 3 <0, 0, -1> (0,0,0)

<0, 0, 0>
M. 4 <0, 0, -1> 0,0,0)

<0, 0, 1>
M. 5 <0, -2, 0> 0,0, 1)

<0, 0, 0>
M. 6 <0, -2, 0> 0,0,1)

<0, 0, 0>
M. 7 <0, -2, 0> 0,0,1)

<0, 0, -1>
M. 8 <0, 0, 0> 0,0,0)

<0, 0, 0>
M. 9 <0, 0, 0> 0,0, 0)

<1, 0, 0>
M. 10 <0, -1, -1> (1,0,0)

<0, 0, 0>
M. 11 <0, -1, -1> (1,0,0)

<-1, 0, 0>
M. 12 <-2,-1,0> (0,0,0)

<1, 0, 0>
M. 13 <1, 0, 0> (1,0,0)

<0, 0, 0>
M. 14 <0, -1, -1> (1,0,0)

<0, 0, 0>
M. 15 <0, -1, -1> (1,0,0)

<-1,0, 0>
M. 16 <0, -1, 0> 0,0,0)

<0, 0, 0>
M. 17 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 18 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 19 <0, 0, -1> 0,0, 0)

<0, 0, 0>
M. 20 <0, 0, -1> (0,0,0)

<0, 0, 1>
M. 21 <0, -2, 0> 0,0, 1)

<0, 0, 0>
M. 22 <0, -2, 0> 0,0,1)

<0, 1, -1>
M. 23 <0, -1, -1> 0,1,0)

<0, 0, 0>
M. 24 <0, 1, 0> 0, 1,0)
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Figure 3.21: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 6.
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Figure 3.22: Variation 6: graph of non-chord tone contours
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Figure 3.23: Variation 6: table of configurations and intervals.

Measure Intervals from  Variation 6: Intervals Between
Numbers Variation 5 Configurations Measures
M. 1 <0, 4, 0> (0,4,0)

<1, -2, 0>
M. 2 <1, 2, 0> (1,2,0)

<1,0, 1>
M.3 <2,2,1> (2,2, 1)

<-1,0, 0>
M. <1,2, 1> 1,2, 1)

<0, 0, 0>
M. 5 <1,2,0> (1,2, 1)

<1, 0, 0>
M. 6 <2,2,0> 2,2, 1)

<2,0,-1>
M. 7 <0, 2, -1> 0,2,0)

<0, -2, 0>
M. 8 <0, 0, 0> (0,0,0)

<0, 4, 0>
M. 9 <0, 4, 0> (0,4,0)

<1, -2, 0>
M. 10 <0, 2, 0> (1,2,0)

<1, 0, 0>
M. 11 <1, 2, 0> (2,2,0)

<-2,2,0>
M. 12 <0, 4, 0> 0,4,0)

<0, 0, 0>
M. 13 <1, 4, 0> 0,4,0)

<1, -2, 0>
M. 14 <0, 2, 0> (1,2,0)

<1, 0, 0>
M. 15 <1, 2, 0> 2,2,0)

<-2,2,0>
M. 16 <0,4, 0> (0,4,0)

<0, 0, 0>
M. 17 <0, 4, 0> (0,4,0)

<1, -2, 0>
M. 18 <1, 2, 0> (1,2,0)

<1,0, 1>
M. 19 <2,2,0> 2,2, 1)

<-1,0, 0>
M. 20 <1, 2, 0> (1,2, 1)

<0, 0, 0>
M. 21 <1,2,-1> (1,2, 1)

<1, 0, 0>
M. 22 <2,2,-1> 2,2, 1)

<2,0,-1>
M. 23 <0, 1, 0> 0,2,0)

<0, -2, 0>
M. 24 <0, -1, 0> (0,0,0)
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Figure 3.24: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 7.
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Figure 3.25: Variation 7: graph of non-chord tone contours
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Figure 3.26: Variation 7: table of configurations and intervals.

Measure Intervals from  Variation 7: Intervals Between
Numbers Variation 6 Configurations Measures
M. 1 <4, '4, 0> (47 05 0)

<0, 0, 0>
M. 2 <3,-2,0> 4,0,0)

<-2,2,0>
M.3 <0, 0, -1> (2,2,0)

<-2,-1, 1>
M. <1, -1, 0> 0,1, 1)

<0, -1, 0>
M. 5 <-1,-2,0> (0,0, 1)

<0, 0, 0>
M. 6 <-2,-2,0> (0,0, 1)

<0, 0, 0>
M. 7 <0, -2, 1> (0,0, 1)

<0, 0, -1>
M. 8 <0, 0, 0> (0,0,0)

<3, 0, 0>
M. 9 <3, -4, 0> (3,0,0)

<0, 0, 0>
M. 10 <2,-2,0> (3,0,0)

<-1,0, 0>
M. 11 <0, -2, 0> (2,0,0)

<-1, 0, 0>
M. 12 <1, -3, 0> (1,0,0)

<2,0, 0>
M. 13 <3, -3, 0> (3,0,0)

<0, 0, 0>
M. 14 <2,-2,0> (3,0,0)

<-1,0, 0>
M. 15 <0, -2, 0> (2,0,0)

<-1,0, 0>
M. 16 <1, -4, 0> (1,0,0)

<3, 0, 0>
M. 17 <4, -4,0> (4,0,0)

<0, 0, 0>
M. 18 <3,-2,0> 4,0,0)

<-2,2,0>
M. 19 <0, 0, -1> (2,2,0)

<2,-1, 1>
M. 20 <1, -1, 0> 0,1,1)

<0, -1, 0>
M. 21 <-1,-2,0> (0,0, 1)

<0, 0, 0>
M. 22 <-2,-2,0> 0,0, 1)

<0, 0, 0>
M. 23 <0, -2, 1> (0,0, 1)

<0, 0, -1>

.24 <0, 0, 0> 0,0,0

M b b ( 9 ) N/A
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Figure 3.28: Variation 8: graph of non-chord tone contours
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Figure 3.29: Variation 8: table of configurations and intervals.

Measure Intervals from  Variation 8: Intervals Between
Numbers Variation 7 Configurations Measures
M. 1 <-2,0, 0> (2,0,0)

<2,0,0>
M.2 <-4,0, 0> 0,0,0)

<2,0, 1>
M.3 <0, -2, 1> (2,0,1)

<-2,0, 0>
M. 4 <0, -1, 0> (0,0, 1)

<1, 0, 0>
M.5 <1, 0, 0> (1,0, 1)

<-1,0, 0>
M. 6 <0, 0, 0> 0,0, 1)

<0, 0, 0>
M. 7 <0, 0, 0> (0,0, 1)

<0, 0, -1>
M. 8 <0, 0, 0> (0,0,0)

<0, 1, 0>
M. 9 <2,1,0> 0,1,0)

<2,-1,0>
M. 10 <-1,0, 0> (2,0,0)

<2,1,0>
M. 11 <2,1,0> 0, 1,0)

<2,-1, 0>
M. 12 <1, 0, 0> (2,0,0)

<-2.1,1>
M. 13 <3,1, 1> 0,1, 1)

<0, -1, -1>
M. 14 <-3,0, 0> (0,0,0)

<1, 0, 0>
M. 15 <-1,0, 0> (1,0,0)

<1, 0, 0>
M. 16 <1, 0, 0> (2,0,0)

<0, 0, 0>
M. 17 <-2,0, 0> (2,0,0)

<-1,1, 0>
M. 18 <-3,1, 0> (1,1,0)

<1,-1, 1>
M. 19 <0, -2, 1> (2,0, 1)

<-1,1, 0>
M. 20 <1, 0, 0> (1,1, 1)

<0, -1, 0>
M. 21 <1, 0, 0> (1,0, 1)

<-1,0, 0>
M. 22 <0, 0, 0> (0,0,1)

<0, 0, 0>
M. 23 <0, 0, 0> 0,0,1)

<0, 0, -1>
M. 24 <0, 0, 0> (0,0, 0)
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Figure 3.30: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 9.
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Figure 3.31: Variation 9: graph of non-chord tone contours
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Figure 3.32: Variation 9: table of configurations and intervals.

Measure Intervals from  Variation 9: Intervals Between
Numbers Variation 8 Configurations Measures
M. 1 <-2,0, 0> (0,0,0)

<0, 0, 0>
M. 2 <0, 0, 0> (0,0,0)

<0, 0, 1>
M. 3 <-2,0, 0> (0,0,1)

<0, 0, 0>
M. 4 <0, 0, 0> 0,0,1)

<0, 0, 0>
M. 5 <-1,0, 0> 0,0,1)

<0, 0, 0>
M. 6 <0, 0, 0> 0,0, 1)

<0, 1, 0>
M. 7 <0, 1, 0> 0,1, 1)

<0, -1, -1>
M. 8 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 9 <0, 1, 0> (0,0,0)

<0, 0, 0>
M. 10 <-2,0, 0> (0,0,0)

<0, 1, 0>
M. 11 <0, 0, 0> 0,1,0)

<0, -1, 1>
M. 12 <-1,0, 0> (0,0, 1)

<0, 0, -1>
M. 13 <0, -1, -1> (0,0,0)

<0,1, 1>
M. 14 <0, 1, 1> 0,1, 1)

<1,-1,-1>
M. 15 <0, 0, 0> (1,0,0)

<1, 0, 0>
M. 16 <0, 0, 0> (2,0,0)

<-2,0, 0>
M. 17 <-2,0, 0> (0,0,0)

<0, 0, 0>
M. 18 <1, -1, 0> (0,0,0)

<0, 0, 0>
M. 19 <-2,0,-1> (0,0,0)

<0, 0, 0>
M. 20 <0, -2, -1> (0,0,0)

<0, 0, 0>
M. 21 <-1,0, -1> (0,0,0)

<0, 0, 0>
M. 22 <0, 0, -1> (0,0,0)

<0,1, 1>
M. 23 <0, 1, 0> 0,1, 1)

<0, -1, -1>
M. 24 <0, 0, 0> (0,0,0)

130



o)

= ==

T 7

J

=

fo
p
i

4

4

J

J

Figure 3.33: Mozart, Variations on ”Ah! Vous dirai-je, Maman,” Variation 10.
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Figure 3.34: Variation 10: graph of non-chord tone contours
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Figure 3.35: Variation 10: table of configurations and intervals.

Measure Intervals from  Variation 10: Intervals Between
Numbers Variation 9 Configurations Measures
M. 1 <0, 0, 0> (0,0,0)

<0, 0, 0>
M.2 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 3 <0, 0, -1> (0,0,0)

<0, 0, 0>
M. 4 <0, 0, -1> (0,0,0)

<0, 0, 0>
M. 5 <0, 0, -1> (0,0,0)

<0, 0, 0>
M. 6 <0, 0, -1> (0,0,0)

<0, 0, 1>
M. 7 <0, -1, 0> 0,0,1)

<0, 0, -1>
M. 8 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 9 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 10 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 11 <0, -1, 0> (0,0,0)

<0, 0, 0>
M. 12 <0, 0, -1> (0,0,0)

<0, 0, 0>
M. 13 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 14 <0, -1, -1> (0,0,0)

<0, 0, 0>
M. 15 <-1,0, 0> (0,0,0)

<4, 0, 0>
M. 16 <2, 0, 0> (4,0,0)

<-4, 0, 0>
M. 17 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 18 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 19 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 20 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 21 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 22 <0, 0, 0> (0,0,0)

<0, 0, 1>
M. 23 <0, -1, 0> 0,0, 1)

<0, 0, -1>
M. 24 <0, 0, 0> (0,0,0)
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Figure 3.36: Mozart, Variations on "Ah! Vous dirai-je, Maman,” Variation 11.
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Figure 3.38: Variation 11: table of configurations and intervals.

Measure Intervals from  Variation 11: Intervals Between
Numbers Variation 10 Configurations Measures
M. 1 <0, 0, 0> (0,0,0)

<0, 0, 0>
M.2 <0, 0, 0> (0,0,0)

<0, 0, 1>
M. 3 <0, 0, 1> 0,0,1)

<0, 0, 0>
M. 4 <0, 0, 1> 0,0,1)

<2,1, 0>
M. 5 <2, 1, 1> 2,1,1)

<1,0, 0>
M. 6 <3, 1, 1> G, 1,1

<-1,0, -1>
M. 7 <2,1,-1> (2,1,0)

<2,1,1>
M. 8 <0, 2, 1> 0,2,1)

<4,-2,-1>
M.9 <4,0, 0> 4,0,0)

<-2,0, 0>
M. 10 <2,0, 0> (2,0,0)

<-2,4,0>
M. 11 <0, 4, 0> 0,4,0)

<3, -3, 0>
M. 12 <3,1, 0> (3,1,0)

<3,1, 0>
M. 13 <6, 2, 0> 6,2,0)

<-3,-2,0>
M. 14 <3, 0, 0> (3,0,0)

<-1,0, 0>
M. 15 <2,0, 0> (2,0,0)

<0, 2, 1>
M. 16 <2,2,1> 2,2, 1)

<-2,-2,-1>
M. 17 <0, 0, 0> (0,0,0)

<0, 0, 0>
M. 18 <0, 0, 0> (0,0,0)

<0, 0, 1>
M. 19 <0, 0, 1> 0,0,1)

<0, 0, 0>
M. 20 <0, 0, 1> 0,0,1)

<2,1,0>
M. 21 <2,1, 1> 2,1,1)

<1, 0, 0>
M. 22 <3,1, 1> 3,1,1)

<-1,0, -1>
M. 23 <2,1,-1> (2,1,0)

<2,1,1>
M. 24 <0, 2, 1> 0,2, 1)
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Figure 3.40: Variation 12: graph of non-chord tone contours
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Figure 3.41: Variation 12: table of configurations and intervals.

Measure Intervals from  Variation 12: Intervals Between
Numbers Variation 11 Configurations Measures
M. 1 <0,7,0> 0,7.0) <0,0, 0>
M.2 <0,7, 0> (0,7, 0) <0, -1, 0>
M. 3 <0, 6,-1> 0,6,0) 0.0, 0>
M. 4 <0, 6, -1> (0, 6,0) <0,0, 0>
M. 5 <2,5,-1> (0,6, 0) <0, 0, 0>
M. 6 <3,5,-1> (0,6,0) <0, -1, 0>
M. 7 <2,4,0> 0,5,0) <4,-5,0>
M. 8 <4,0, 0> (4,0,0) <-4,11, 0>
M. 9 <-4, 11, 0> (0, 11, 0) <0,-1, 1>
M. 10 <2,10, 1> (0,10, 1) <0, 0, 0>
M. 11 <0, 10, 1> (0,10, 1) <0,0, 0>
M. 12 <3,9, 1> (0, 10, 1) <0,3.-1>
M. 13 <0,7,0> (0,7,0) <0,-1, 1>
M. 14 <3,6,0> (0,6, 1) <0, 0, 0>
M. 15 <2,6, 1> 0,6, 1) <0,0, 0>
M. 16 <2,4,0> (0,6, 1) <0, 1,-1>
M. 17 <0, 7, 0> 0,7,0) <0,0, 0>
M. 18 <0, 7, 0> 0,7,0) <0,-1, 0>
M. 19 <0, 6, -1> 0,6,0) <0,0, 0>
M. 20 <0,6,-1> (©0,6,0) <0.0,0>
M. 21 <2,5, 1> (0,6, 0) <0,0, 0>
M. 22 <3,5,-1> (0,6,0) <0, -1, 0>
M. 23 <2,4,0> (0,5,0) <4,-5,0>
M. 24 <4,0, 0> (4,0,0) <0, 1,0>
M. 24b N/A (0,6,0) <0,0, 0>
M. 25 N/A (0, 6,0) <0, 0, 0>
M. 26 N/A 0, 6,0) <0, -2, 0>
M. 27 N/A 0,4,0) <6, -4, 0>
M. 28 N/A (6,0, 0) <6,5,0>
M. 29 N/A 0,5,0) <6, -5, 0>
M. 30 N/A (6,0,0) <6,5,0>
M. 31 N/A (0, 5, 0) <0, -3, 0>
M. 32 N/A 0,2,0) <0, 1, 0>
M. 33 N/A 0,3,0) <0, 0, 0>
M. 34 N/A (0,3,0) <0, -3, 0>
M. 35 N/A (0,0, 0)
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Figure 3.42: Interval vectors.

Interval

<0, 0, 0>
<0, 1,-1>
<l1,-1,0>
<-1,0, 1>
<2,1,1>
<2,-2,0>
<3,-3,0

Theme
17

Var. 1

Var. 2

Var. 3
5
2

Var. 4
10

Var. 5 | Var. 6

15
1

4

Var. 7
9

Var. 8
3

Var. 9

Var. 10

Var. 11

Var. 12

<0,1,0>

<0,0, 1>

<1,0, 0>

<1,2,0>
<0,2,-1>
<1,1,1>
<1,-1, 1>
<2,-1,0>
<2,0,-1>
<4,-2,-1>
<4,5,0>
<6,-5, 0>

<0, 2, 0>
<0, 1, 1>
<1,0, 1>
<0, 0, 2>
<2,0,0>
<0, 3, -1>
<2,1,-1>
<2,4,0>

<0,3,0>
<0,2, 1>
<1,1,1>
<2, 1,0>
<2,0, 1>
<3,0,0>
2,2, 1>

<0, 4, 0>
<0, 3, 1>
<3,1,0>
<1,2, 1>
3,0, 1>
<4, 0, 0>

2,2, 1>
<3,2,0>

<-4,11,0>
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Figures for Chapter 4

Figure 4.1: Non-chord tone configurations.
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Figure 4.2: Non-chord tone analysis of Bach, Invention No. 9, mm. 1-4.
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Figure 4.3: Non-chord tone networks for Bach, Invention No. 9, mm. 1-4.

a.
Y <N, Y> <N, N> <Y, N> <Y, Y> <N, Y> <N, N> <Y, N> <N, N> <Y, N>
- P e e e e e e e i
(C,P,0) (Ab, 0, N) (Ab, 0, 0) (F, 0,0) (Db, P, 0) (Bb, 0, N) (B, 0, 0) (G,0,0)  (Ei P,0) (G, P, 0)
<Y, N> <N, N> <N, N> <Y, N> <N, N> <Y, Y> <Y, N> <N, Y> <Y, Y> <N, Y>
. e e e e P e N e
(B, 0,0) (G,0,0) (Es, 0, 0) (C,P,0) (A5, P, 0) (Ab, 0, N) (C,P,N) (Ab, P, 0) (F,0,N) (Ab, 0, 0)
b. Measure 1 Measure 2
<Y, Y> <N, Y> <N, N> <Y, Y> <N, Y> <N, N>
(C,P,0) (A, 0,N) (F, 0,0) (Db, 0, 0) (Db, P, 0) (Bb, 0, N) (G, 0,0) (E3, 0, 0)
Measure 3 Measures 4-5
<N, N> <Y, N> <N, N> <N, N> <Y, N> <N, N> <N, Y> <Y, Y> <N, Y>
T T T ————a ——— —_ T —
(B,P,0) (G,P0) (B~0,0) (G000 (E50,00 (C,P0) (A, P,N) (C,PN)  (A»P0)  (F0,N) (A% 0,0)

For ease of identification, the chord tones to which non-chord tone configurations
are attached have been included as the first element in each configuration.
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Figure 4.4: Direct product networks for Bach, Invention No. 9, mm. 1-4.

(B, 0, N)

(C,P,N)

(D5, 0, 0) (Dv, P, 0)
(C,P,0) wY>
&\i‘p
(Ab, 0, N)
(F,0,0)
(B, 0,0)
<2.Y.N> Xﬁ N, N>
(G, P,0) (G, 0,0)
<2, N, N> \iN N>
(EX, P, 0) (EX, 0,0)
<2,Y, N>
CPRO <« N N>
(Ab, P, N)

(E%, 0, 0)
<5, N, N>
&N‘ Y>
(G, 0,0
<2,N, Y>
(Ab, P, 0) Ab, 0, 0)
<2,N,Y>

(F, 0,N)

Figure 4.5: Motives and NCT intervals in Brahms, String Quartet No. 2

Motive A (m. 9) Motive B (mm. 46-47)

Motive C (mm. 113-114)

N n n ./,-_&\ﬁ)n(bpf
ﬁgﬁt%ﬁw === G—— G———"—+— —]
v o0 EoN Y BN »(E.0.N) * >N
(C,P,0) — 0N <0, N, N> G0.07 Ny
<2,Y,Y>
Figure 4.6: Beethoven, Piano Sonata Op. 14, no. 1, movt. 3, mm. 47-50.
E _— —_—— = T e P e
6 e ESESsess = es——_——
, -
raxr:l 3ﬂ r i T T I m r i m‘ -‘
) e e, - - z — I
% 3 = - -
Figure 4.7: Permutation networks.
mm. 47-48
<Gsp <(R3)> <(RS)> <G5> <R3 <RS3)> <>
P
R, 3,5) R,5,3) (3,5 R) (3,R,9) (5,R,3) (5,3,R) (R,5,3) (R, 5,3)
mm. 49-50
<G5> <(R3)> <(R5)> <35)> <(R3)> <> <R35>
(R, 3,5) R,5,3) 3,5,R) (3,R,95) (5,R,3) (5,3,R) (5,3,R) (3,R,5)
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Figure 4.8: Cayley table for the symmetric group on three letters, R, 3, 5.

0 (R35) [(R53) [(R3) |(R5) J(35)
0] 0 (R35) [(R53) |(R3) [(R5) |(35)
®53) [R53) [0 ®R35) [R3) [35) [R3)
®35) [R35) [R33) [0 35 |®3) [®R53)
(R3) JR3) JRS) GBS O (R35) |(R53)
(R5) JRS) [(B5) |(R3) [(RS3) |0 (R35)
(35 J35) [(R3) J(R5) J(R35) |(R53) |0

Figure 4.9: The Interval Alteration Function represented as a table.

Input Output

AN N | D W |—=|O
BN DN N|W O

Figure 4.10: Musical application of ALT

|
—
P~ —

CQ;SND

Qﬁ’kb

I
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Figure 4.11: Network representation of ALT.

®
®|<6> ® |<a> ®
<2> <> <2> o>
© © ©
—_ 7 — 7
[ALT] [ALT]
b. c
<0> <0>
[ALT]
o ()
<5>
<0> <0>
@)
® <t
<5>
<2>
[ALT]
[ALT]
Q
<0> <0>
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Figure 4.12: Possible and impossible graphs.
a.

[ALT]
<3> <> <> <>
<5> <5>
Impossible Graph
b.
[ALT]
<3> <2> <> <>
e, >0 O >0
Possible Graph

Figure 4.13: Network representation of REDUCE.

[REDUCE]

a b.
Nlﬁ‘ N7 Ny <0> Niz Ni
<> <>
N2 <6> N2 <6>
N3
N
<6> <I> 1 =2 <5
<5> N3
Ny
O

Figure 4.14: Musical application of REDUCE.
b.

a. C.

0
s e — | f | | | f
\.jv‘x o o ® & = — i g 17 = = > = 7z = I
- % -y S — 4 (e :) 'J :\ J T 77 2
g I 3 _a—_ T T T T =
7 i i T T T T (0] (o] ] O 173 T

L 3 T T I I I I i T
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Figure 4.15: Effects of REDUCE on a graph without tree structure.

<0>

Partial reduction (remove <0> arrows)
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[Reduce]




Figure 4.16: Effects of REDUCE on a graph with tree structure.

[Reduce]
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Figure 5.2: Diatonic network representations of the Motto Subject.

[REDUCE]

<0> e

T

Figure 5.3: Diatonic network representations of the Triad Motive.

S NN

Figure 5.4: Diatonic network representations of motive A.

Motive A b. Motive A'
Motive A d. Motive A'
Motive A Motive A

®/.\.—.—.
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Figure 5.5: Network representation of the primary theme.

Motto SUbjeCt ‘:\ Motive A .--==mm Tl

Motlve A'
G 03 ®
> @ __________________________________________
[AIR][A]R] [E]
[A] 4
(E] (E]
Triad Motive !
Triad Motive
<4> <>
A ©
Notes: (E]
[E] = Identity
[1] = Inversion
[A] = Interval Alteration Function
[R] = Graph Reduction Function
Square brackets and dashed arrows indicate transformations of graphs,
while pointed brackets and solid arrows indicate diatonic transpositions mod 7.
Combined transformations should be read using left-to-right orthography,
although function composition is the understood composition.
Figure 5.6: Network representations of motive A.
a. b. c.
Motive A: m. 3 Motive A": m. 4 Motive A: m. 9
<2,Y,N> <2,Y,N> <2,Y,Y>
(F, P,0) ———— > (D,0,0) (B, 0,0) (D, P, 0) (C, P, ) ———(E,0,N)
() <1>
<-1> <-1> <1> <l> <1> <1> \
F ——E) ——>D) (®) (©) > (D) © > (D)
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Figure 5.7: The transformation of motive A.

[E,N,N]
"""""""""""""""""""""""""" > .
(FPRO) T [N, N] (G 70) <2,V N> (L. N, NJ
2 YN e [LN,N] \ -------------
oo T P (E, 0,0) N
> 0, N Pl <2, Y, N>
QYN (D, P, 0)
e (CR0,0)
(8,0, 0) ; TIERNN
PEN,Y] i
Y <2,Y,Y> Y
Notes: CRO) T e T
[E] = Identity, corresponding to multiplication by 1. [E,N,N]

[1I] = Inversion, corresponding to multiplication by -1.

Square brackets and dashed arrows occur between subnetworks
and indicate automorphisms of direct product intervals, while
pointed brackets and solid arrows indicate direct product intervals

Figure 5.8: Permutation network for the Triad Motive.
Triad Motive: mm. 7-8 Triad Motive: m. 10 Triad Motive: m. 12
>

<(R35)> <(R53
R33) (3,R,5) R’ (5,3,R)

(5,3,R)

<()>

Figure 5.9: Network representation of motives in the Transition.
Motto Subject (NRJ[AJ[A]

Notes:

[E] = Identity

[1] = Inversion

[A] = Interval Alteration Function

[R] = Graph Reduction Function

Square brackets and dashed arrows indicate transformations of graphs,

while pointed brackets and solid arrows indicate diatonic transpositions mod 7.

Combined transformations should be read using left-to-right orthography,
although function composition is the understood composition.

Figure 5.10: The Triad Motive in the transition, mm. 30-31.

T.M. T.M.
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——T— "+ 1 1 e 7 e
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Brahms, String Quartet No. 2, transition to Theme 2, mm. 38-66.

Figure 5.11
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Figure 5.12: Network representation of Theme 2.

a. mm. 46-54 [E] [TI[A][R]
------------------------------- Rl oo
, Motive A/B R] T N
------------------ - Motive A
® 0 >©) 5 <0> <5>
<0>
__________ >
[TI[A][R]
b. mm. 58-60
[E] .
------------- Triad Moti
__[.I.].[él _____ > Triad Motive ra otive Q
Motto Sul;j_ect @ i
<2> @
<1> 0
®
<5> @
Notes:

[E] = Identity

[1] = Inversion

[A] = Interval Alteration Function

[R] = Graph Reduction Function

Square brackets and dashed arrows indicate transformations of graphs,

while pointed brackets and solid arrows indicate diatonic transpositions mod 7.

Combined transformations should be read using left-to-right orthography,
although function composition is the understood composition.

Figure 5.13: Transformation of the Triad Motive at Theme 2.

Transition: mm. 43-45 1 Secondary Theme 1 mm. 59-60
1 1
<> <> <> 1 <(R5)> m. 45 b. 2<(R35)> m. 53 1<(35)> <> <(R35)>
(5,3, Ry=>(5, 3, R)—>(5, 3, )—>(5, 3, R)1 (R, 3,5) (5, R, 3)T (5,3, R)=>(5, 3, R) 3,R,5)
1

Figure 5.14: Voice leading and motive A, mm. 54-59.

<- >
2wy — A
P 8w T 8w e e Ny A
& = =t = i P = B
o } } ¥ } ¥ :
<2,Y, N> 2.Y. V>
n J’—\ — H J/ﬁ/ """"""""""" *—.q /\
- - : R R ,_—,-_ R
© | | | — e &
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Figure 5.15: Motives A and

a. Motive A [E, N, N]

B in Theme 2.

(C,P,0) <-2,Y,N>
T
[E,N, Y] .o > (A, 0,0)

SR |

(F,P,0) <-2,Y,Y> e
(E, 0,0) (E,P,0) <-2,Y,Y>
(D, 0,N)
(C,0,N)
- E,N,N
Interruption Tt . [EN.N] — [E, N, N]
(A,P,0) <> (A,P,0) <2,Y,N> T o
x—> () — > (F%,0,0) (F&P,0) <2, Y, N> e
? [I,N,Y]\ (D,0,0) (D,P,0) <2,Y,N>
RO X /(F"’ oN) (B,0,0)
(D, P, 0" <2,Y,Y>
b. Motive B
[E, N, N]
................................. [E,N,N]
""""" S _..-------""'“"“"'“'"-----.._______‘

0 <0 NN~ 0 <0,N,N
E,0,N)—>(E,0,N , N, N>
( ) ) (D, 0, Ny—>(D, 0,N)

Notes:
[E] = Identity, corresponding to multiplication by 1.

[I] = Inversion, corresponding to multiplication by -1.
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Figure 5.16: Brahms, String Quartet No. 2, mm. 81-104.

81

A )
A it w ik M 0 i
1 ==<
] A M “uﬂr
| L
s e N . v
ol A [ 4 S e
gl e e T iR il
s Ul re e
o\ TR oLl o e i
Al I HR \\nx.!j il Il ‘\HJ' L ki
“n N h.mw [Yalak f M * h V h
il 1 .mH* ba - " =
1 N N
i R I re-
& JEia JMHH i A sl al b
Mo W N e A s e O Ml
lu ’m.u ’HW M mll M (TN fr. T +
N |2 rlqw r\ui guin / N H%v I
1 i i) ¢ b M i
T_. WH_.. A ,
SRR L bt i gl
R b i ] 3 ol "
ﬁuﬁv\\ T \ \\»ﬂVv \\\v ELN I 9 I - ﬂw
kil Y e a1 )]
| i
.ﬂ i ik} i ™ b )
i o T et S
it F it 4 (hey
e R ¢
Q] o Hh i ] e
L% ([T]® N o LIl AN i) N
il S N Nl (AR
aiil i O o A N - T .
#} ! il W T o L
| I h & ; i it
A.{ ) | e N ™ v.
il (] M & 4 LR 0
1 mw 3\ i d ALY LI Y (e A v LYl v
Sl oo A Ny A A #T i
N \M ot | Al Iy i S i s ]
N A S 1 I
N B2 6N L 20N e 22 M s g N .

Figure 5.17: Transformation of the Triad Motive, mm. 81-83.
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Figure 5.18: Transformation of the Triad Motive, mm. 94-95.
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Figure 5.20: Ambiguity in direct product intervals.
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Figure 5.19: Brahms, String Quartet No. 2, Codetta, mm. 104-115.
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Figure 5.21: Brahms, String Quartet No. 2, Retransition, mm. 177-184.
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Figure 5.22: Network representation of the Retransition, mm. 177-184.

Motto Subject Motive C + Triad Motive
<0, N, N> LN F,0,N)
(C, 0, Ny——"C, 0, Ny 3, N, Y> (€. 0. Np—¢ 2N, Y>
D, 0,0
A0ORLNN \*i NN
A, 0, 0)
Motive A/B
<0, Y, N>
(E, 0, N—>E. P, N%&
C40,0)
. AJ[R
Motto Subject s
0> N T T —
C Q(@ ------------ J_/}_]_[_]}] [I[AJ[R]
@ % o
©
A Motive A
O <
Notes: )

[E] = Identity

[1] = Inversion

[A] = Interval Alteration Function
[R] = Graph Reduction Function

Square brackets and dashed arrows indicate transformations of graphs,

while pointed brackets and solid arrows indicate diatonic transpositions mod 7.
Combined transformations should be read using left-to-right orthography,
although function composition is the understood composition.
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Figure 5.23: Brahms, String Quartet No. 2, Coda, mm. 304-335.
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Figure 5.24: Networks in the Coda.

a. Motive A in mm. 327-332

[E.Y,Y]

S N 5\ . R e
G,P,0)™ e T (G,0,0) (G,P,0) ™
<-2,Y, N> <2YN> <2, Y, N>
(E,0,0) (E,P, O) E, 0,0)

b. Motives in mm. 325-332

Overlapping Triad Motive
Motto Subject [A][R] verapping friad Aotives

<0>

[Al[R]

Notes:

[E] = Identity

[1] = Inversion

[A] = Interval Alteration Function

[R] = Graph Reduction Function

Square brackets and dashed arrows indicate transformations of graphs such as automorphisms,
while pointed brackets and solid arrows indicate transformations within graphs.

Combined transformations should be read using left-to-right orthography,

although function composition is the understood composition.

Figure 5.25: Brahms, String Quartet No. 2, movt. 2, mm. 1-6.
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Figure 5.26: Networks for motive A in movt. 2, mm. 1-6.
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Figure 5.29: Networks in movt. 3, mm. 1-7.
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Networks in movt. 4, mm. 1-10.

Figure 5.31
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Figure 5.32: Brahms, String Quartet No. 2, movt. 4, mm. 350-359.
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