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ABSTRACT

This thesis studies polynomial sets {An(x)}:_o satisfying a

FPourier sine series expansion of the form:

-]

1) A (cos 8) w(cos 68) ~ z f sin(n+2k+1)6
n k,n
k=0
on [0,7), where n=0,1, 2 ... . Szegd showed that the ultra-

spherical polynomials have this form.

If the leading coefficient of An(x) is cn, we show that a
necessary and sufficient condition for (An(x)}:_o to be a symmetric
orthogonal polynomial set on [-1,1] with respect to the weight
function w(x), 1s that CnfO,n >0 for n=20,1,2 ... . We find
all orthogonal polynomial sets sati:fying relation (1) such that
there exists a sequence of real numbers {an}:_l , with
fk,n = ap fk-l,n+1 for k 21 ; n 30 . We call this class of

polynomial sets >

The following two ideas are used to find the three term

recursion relation for each polynomial set in zZ .

First, we find that a necessary condition for a polynomial set

to be in 2 , 18 the existence of a set of sequences {{Yi}I-l ’

(1)



(bj};.l ’ {0112.1} satisfying
) Yotk - a) +a, ¥ -1 = 0 (1gn; lgkegm,

where m is the smallest integer such that ap = 0. To solve this
m
finite difference equation we show that we can extend {aplga; to

{u'g}z_l (i.e. ap = a, for £=1,2 .. m) 1in such a way that

(¥;}fa1 » (by)}jay and (Fplp.) satisty
(3) Ypek(bn™! = T) +3 Yo -1 = O (n=1,2;k31:k=1;n31).

We then show that 1f {Yi}:_l , {bj}§_1 and {°£}z-1 satisfy (3),

they also satisfy
Yntk(n™! - T) + T Yo -1 = 0 @31; kal).

From these results we find explicitly the common solution set of
Equations (2) and (3). A number of examples show that not all solutions

of (2) give rise to a polynomial set in S .

Second, in order to find sufficient conditions for a set of
sequences satisfying (2) to yield a polynomial set in <., we introduce
the following wodified moment problem. Given an infinite sequence
{Sk}:-O ; it is required to find a weight function w(x) such that

if {Un(x)}:_0 is the Chebychev polynomial set of the second kind then

(11)




1
I w(x) Up(x) dx = g, (n=0,1,2...) .
1

We find sufficient conditions on (g to insure that the

n n=0

solution of this moment problem has the form:
2 -]
wix) = = /157 kzo gk Uk(x) xe(-1,1).

We also give sufficient conditions on {gn}:_o to make w(x)
continuously differentiable on (-1,1) and satisfy a Lipschitz

condition on [-1,1] .

By using these two ideas we identify each polynomial set in -3
by giving its three term recursion formula. Not only does this
modified moment problem help to find all the polynomial sets in s,
but also we use its results in Chapter V to study some of the

properties of the weight functions of the polynomial sets 1in z .

One of the polynomial sets in S satisfies the same three
term recursion formula as does the Chebychev polynomial sets, but
with a psrameter in the boundary conditions. This suggests
generalizing a result of T. S. Chihara. We investigate the
relationships between two polynomial sets {Bn(x)}:_0 and
{Cn(x)}:_o having the same three term recursion formula but

different boundary conditions. We show

(111)




a) how the zeros of B,(x) interlace those of Cp(x), for
n=1,2,3...,

b) the relative positions of their true intervals of
orthogonality and

¢) relationships between their distribution functions.

In the last chapter we use these results to explore properties

of one of the polynomial sets in s .
At the end of the thesis we study in detail two of the poly-

nomial sets in p , finding their generating functionms, orthogonality

relations, expansions in terms of well known special functions, etc.

(1iv)
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CHAPTER 1

PRELIMINARIES

1.1 ORTHOGONAL POLYNOMIAL SETS. An infinite sequence of real

numbers {sk}:_o is called positive if all the quadratic forms

m
J os,.x (m=0,1,2...)
{ kg TIHI K

are positive definite. One may associate with such a sequence a
linear functional L defined on the linear space of all real poly-

nomials by means of

n
(1.1.1) L(n(x)) = | cs
gm0 11
v 1
vhere w(x) = | cyx .
i=0

In the sequel we will always use w(x) for an arbitrary real
polynomial. One can show (see [2, p. 2]) that L is a positive
functional (i.e. 1f n(x) 2 0, - » < x < ©» and 7n(x) # 0 then

} is positive. s, 1is called

L(n(x)) > 0) if and only if { K

®k’k=0
the kth moment  associated with the functional L. For any positive
functional L 1t is possible to construct (e.g., by using the Gram-
Schmidt process) a sequence of polynomials {An(x)}:_o such that

Ah(x) is of exact degree n, 1its leading coefficient is positive

and the following orthogonality relation holds

(1.1.2) L{A (x) A (x)} = k & (n=0,1, 2 ...)

N



where kn ¢ 0. The polynomials An(x), n=0,1, 2 ,.. are
then called orthogonal with respect to L or orthonormal with
regpect to L |if kn =1, for all n 2> 0. Sometimes we will
call {An(x)}:_o an orthogonal polynomial set and shorten this
to 0.P.S. It is well known that {An(x)}:=0 is orthogonal with

respect to the linear functional L 1if and only if for all n 2 O

'0 (m=0,1, 2 ... n -1)
L(xmAh(x)) -

k (m = n),

where kn ¢ 0.
We will call o(t) a distribution function 1f o(t) is
monotonically nondecreasing and of bounded variation on (- =, =)

such that

J x"do(x) < (h=0,1, 2 ...5
For our purpose we will always require o(t) to have an infinite
number of points of increase.

If w(x) 2 0 almost everywhere on (- », =),

j w(x)dx > 0

and

J xnw(x)dx < » (n=0,1, 2...),

-0

then w(x) 1is said to be a weight funotion.




We shall have several occasions to refer to the Hamburger's
moment problem (we will abbreviate this to H.M.P.) which may be
stated as follows: given an infinite sequence of real numbers

{8, } 0 80 =1 1is it possible to find a distribution function

o(t) satisfying the equations

(1.1.3) 6 - J tXdo(t) (k=0,1,2...)?

-0

Hamburger [21) showed that the H.M.P. has a solution if and only if

a

{sk}k-O 18 positive. Thus, a positive moment functional L defined

._.on the linear space of all polynomials may be represented by

L(n(x)) = I n(t)do(t)

where o(t) 1s a distribution function.

The H.M.P. is said to be determinate if for any two of its solutions
o1(t) and o,(t), there exists a constant c¢ such that op(t) = oo(t) = ¢
at all points where the difference is continuous; otherwise, it is

called indeterminate.

If in Equation (1.1.3) the interval of integration is finite the
corresponding moment problem is called the Hausdorff moment problem.
When a solution exists it is known that it is determinate.

Let [a, B] be the smallest closed interval that contains all
the points of increase of o(t). Then An(x), n=0,1, 2 ..., in
Equation (1.1.2) are said to be orthogonal with respect to the distri-
bution o(t) on the interval (a, B). If o(t) is absolutely continu-

ous on (a, B) then there exists a weight function w(x) such that




]
Isﬂ(t)do(t) - J r(t)w(t)dt.

a [+)

In this case, An(x). n=0,1, 2 ..., in Equation (1.1.2) are said
to be orthogonal on (a, B) with respect to the weight function w(x).

Let i=1,2 ... n, be the n zeros of An(x). It 1is

xn,i’

well known (Szegd [35]) that x are distinct, real and lie 1in

n,i
(a, B). They have the separation property

(1=1, 2 ... n).

Xnt1,1 * *n,i ° Xn4l,141

So that 1if

(1.1.4) 51 = lig*w xn,i and nj = lig*m xn.n-j+1’

then Ci and ny exist in the extended real number system for
i=1,2.... Wecall (g, n;) the true interval of orthogonality
of An(x), n=0,1, 2 .... It is known (see Szegd [35]) that
a=¢ and B =n; and thus the true interval of orthogonality is
the smallest interval containing all the points of increase of oa(t).
Favard [14) showed that a necessary and sufficient condition
for a set of polynomials {An(x)}:_o to be orthogonal on (- =, =)
with respect to a distribution function o(t) having an infinite

number of points of increase is the existence of real sequences

{cn}n-l and {An}n_‘2 such that

Ag(x) =1 Aj(x) = x - ¢,



(1.1.5) An(x) = (x - cn) Ah—l(x) - AnAn_z(x) m=2,3...)

where An >0 for n > 2. We call Equation (1.1.5) the three

term recursion relation associated with {An(x)}:_o.

It 1is easy to show the equivalence of the following three

properties:
D A = (DA (0
2) ®4 "0
3) Ap(x) =1 Aj(x) = a;x
A (x)=axA (- A A, (x)

where An >0 for n 22 and a >0 for n > 1. An Orthogonal
polynomial set having any one of these three properties is called
symmetric. In the case when {An(x)}:=0 is symmetric and ortho-
gonal with respect to the weight function w(x), then w(x) 1is
even and the interval of orthogonality is symmetric about the origin.
Chihara [11) defines a chain gequence as any sequence that can

be written in the form

QA - go)g1, (1 - 81)82, (1 - 82)83 « «

vhere 0 <gp <1, O< gp <1 for p=1,2, 3 ....

Lemma (1.1.1) (Chihara [10]). Let &3, m, ¢ and An be as

n

defined in Equations (1.1.4) and (1.1.5). Let



An+1

% " T D (e 70 (m=1,2, ...

A necessary and sufficient condition for x < &) (x 2 n,) i that

x <c. (x > cn) for all n >0 and {an(x)]:_l i8 a chain sequence.

Let
I I R
(1.1-6) Kl(z) - |z-c1 = Iz—CZ - |Z"C3
1 I AZ An I

(1.1.7) Kn(z,t) =

Iz-c1 |z-c2 |z-cn+t
It is easy to see that the nth convergent for n > 1, of the con-
tinued fraction (1.1.6) equals Qn—l(x)/An(x)’ where {Qﬂ(x)}ﬂ_0

is a polynomial set having the three term recursion relation

Q,(x) =0 Q(x) =1

Qux) = (x = 1y) Q) - A 50

and 1s called the numerator polynomial set of {An(x)}:_o. Also
Qn(x) is the denominator of the nth convergents of the continued
fraction

l, X3' M,l )\5|..
|z=c; ~ |z=c3  |z-cy T |z-cs

Ka(2) =

Definition (1.1.1) (Hamburger ([21}). The continued fraction

®d
K1(z2) converges completely to a function F(z) = I %_(%)- if, for
arbitrary small € > 0 and for every finite closed region @ that
does not contain points of the real axis, there exists a positive

integer N depending only on € and & such that



Ixn(z.t) - F(z)| < ¢

for z e, n=N,N+1.,., and t an arbitrary extended real
number.

Sherman [32] showed that the complete convergence of K;(z)
implies the complete convergence of Ky(z). Hamburger [20] showed
that K;(z) converges completely if and only if the moment problem
associated with {An(x)}:_0 is determinate. Thus we have the

following.

Lemma (1.1.2) (Sherman [32]). If {An(x)}:_0 i8 an orthogonal

polynomial set associated with a determinate moment problem, then

{Qn(x)}:_0 is also associated with a determinate moment problem.

We also need the following two results that can be found in

Akhiezer [2].

Lemma (1.1.3). Let o(t) be a solution of a Hamburger moment

problem. If {pn(x)}:_o i8 orthonormal with respect to the distri-
bution o(t) on the interval (- =, =) then the maximum jump that

o(t) may have at a point x is (] Ipi(x)lz)'l.
i=0

Lemma (1.1.4). Let {pn(x)}:_0 and {qn(x)}:_0 be two

orthonormal polynomial sets such that {qn(x)}:_0 18 the numerator
polynomial set of {pn(x)}:_o. The Hamburger moment problem ig

determinate if and only if for all reai x at least one of

I lp,x)|2 or [ la,(0)|? ie divergent.
n=0 n=0



1.2 HISTORICAL BACKGROUND. A number of papers have appeared

concerning the following type of problem, Find all orthogonal
polynomial sets that satisfy a given condition.

W. Hahn [20] showed that if (A (x)}m is an orthogonal
drA (X) n n=0
polynomial set and if {-——f}-——}m , r a positive integer, is
dx n=r
also an orthogonal polynomial set, then {An(x)}:_o must be the

Jacobi, Hermite or Laguerre polynomial set.
dA_(x)

Angelesco [5), among others, showed that 1if -—%;—— - n_1(x)
and {A“(x)}n_o is an orthogonal polynomial set then {An(x)}n-o
is the Hermite polynomial set.

Meixner [28] and Sheffer [31] determined all orthogonal poly-

nomial sets with the property that there exists a differential

operator

30*0. Dz'd?

1(D) = z akDk+1
k=0

where ai(i = 0,1,2...) are real constants, such that J(D)Pn(x) -
Pn-l(x)' They found that the Laguerre, Hermite, Charlier, and Meixner
polynomial sets were the only polynomial sets that enjoy this property.

In 1968 Chihara [9] found all orthogonal polynomial sets that
have a generating function of the form

A(W) B(x,w) = [ P (x) w"
n=0

where

v k
A(w) = w
oo



k

Bw) = ] bw

k=0

where b $#0 for all n >0 and ap # 0,

Let C = {{Ah(x)}:_0|An(x) is a real polynomial of degree n}.

n=0 R{Qn(x))n-o

Let R be a binary relation on C defined by (Pn(x)}
if and only if there extists (an}:_o @ #0 for alln >0, a¥$ 0,

and b such that Pn(x) - anQn(ax + b). Obviously R 1is an equivalence
relation. When we say we have identified an orthogonal polynomial set
{Rn(x)}:_o with a given property we will mean that we have found its
three term recursion relation. Not all polynomial sets equivalent to
{Rn(x)}:_o will necessarily have the given property. On the other

hand, when we say that we have found all the orthogonal polynomial

sets enjoying a given property, we mean we have found the three term
recursion relation of at least one polynomial set in each of the equi-
valence classes.

Throughout this work we shall denote by Un(x), n=0,1, 2 ...,

the Chebychev polynomials of the second kind defined by means of

sin (n+l)e6
Un(x) sin 6

where x = cos 9. We note that these polynomials have the orthogonality

relationship
1

Il (1-x2)*_(0U_(x)dx = &_

(TE]

We shall denote by Tn(x), n=0,1, 2 ... the Chebychev

polynomials of the first kind defined by means of



10
Tn(x) = cos nbd

where x = cos 6, These polynomials have the orthogonality relationship

m
1 -z-énmnfo

I (1~x2)%Tn(x)Tm(x)dx =
-1

m Go,m

Also, on a number of occasions throughout the thesis we
encounter the Ultraspherical polynomial set of order A. We shall

denote then by Pi(x), n=0,1, 2 .... They satisfy the ortho-

gonality relationship

! 1-2)
I (l—xz)A-&PA(x)pA(x)dx - § 2 nl(n+22) )
-1 noon B (0 (1))2(n+A)T (n+l)

We note that P:(x) is the Legendre polynomial of degree n. We
will denote the Legendre Polynomial set by {Pn(x)}:_o. They satisfy

the orthogonality relation

1 26

n,m
Jan(x)Pm(x)dx = E;:f-°



CHAPTER 1II

2% POLYNOMIAL SETS

2.1 INTRODUCTION. Heine [35, p. 93] gave the following

representation for the Legendre polynomials:

4 2.4.+42n ¢
(2.1.1) P_(cos 8) = - 375 (ont]) kZO £y, nSin(n¥2kel)o
- o 1:3---(2k-1) (n+1) -« « (n+k)
where fo'n 1, fk,n 270, . 2K

(n+ 3) (k) (atiet 3)

Szegl [35, p. 96] generalized this formula to

2A-1 A ® A
(2.1.2) (sin 8) P" (cos 8) = ) f sin(n+2k+1)@
n k=0 k,n

-2

A
2" (as20) (1-0), (a4,

A
- *
where fk,n F(A)F(n+x+1)k!(n+x+l)k , A >0, A not an integer* ,

Equations (2.1.1) and (2.1.2) are the Fourier sine expansion of
the Legendre polynomial Pn(cos 8) and (sin B)ZA-IP:(cos 6) res-
pectively. Because the coefficients are eventually monotonic and
they have a limit zero, it follows that each of these series are
pointwise convergent in (0,7) and uniformly convergent in [e,m-€]
where 0 < ¢ <-%.

If we let x = cos 8 then Equations (2.1.1) and (2.1.2) may

be written in the form,

*We show in appendix II that A could be a positive integer. In this
case the infinite sum reduces to a finite sum.
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4 2¢¢¢2n ’—!- -
(2.1.3) P (X)) = TGt Y kzo £ nVnr2k )

o 1o (2k-1) (n+l1) ..« (n+k)

and
k,n 2eerZk gy %)-- + (n+k+ %)

where fo.n =1, f

@140 xR - I kZo fi,nun+2k(x)

22-2A1 (n+21) (1-1), (n+1)
where f - k k
k,n I‘(A)I‘(n+x+1)k!(n+»\+1)k .

The {Un(x)}:_0 is orthogonal on [-1,1] with weight function
V1-x2. The Legendre polynomial set is orthogonal on [-1,1] with
weight function 1. Also, {Pg(x)}:_o is orthogonal on [-1,1]
with weight function (l-xz)x-g. We also note that 1if {An(x)}:_o
is orthogonal on (a,B), a finite interval, we can always consider
an equivalent polynomial set which is orthogonal on (-1,1) [see
Sec. (1.2)). Thus we can assume without loss of generality that
the interval of orthogonality is (-1,1).

Let w(x) be a weight function on (-1,1) [see Sec. (1.1)]

then we have the formal 'Chebychev expansion'

wix) V1-x2 z a, 0Uk(x)
k=0 ’

where

AN

w(x)Uk(x)dx (k=0,1, ...).
21

&%,0 "
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It is clear from the definition of a weight function that
a o k=0,1, 2 ..., exist.
s
Similarily, if {An(x)}:_o is an arbitrary polynomial set, such

that the degree of An(x) is n, then the following formal expansions
(2.1.5) A (x) w(x) ~ /1-x2 uzo 8y nly (n=0,1...)

where, of course,
1

%" % J A (x)U, (x)w(x)dx (k 20; n20)
e8|

exist.

We may now state the following theorem:

Theorem (2.1.1). Let w(x) be a weight function on [-1,1]

The polynomial set {An(x)}‘:_0 in Relation (2.1.5) constitutes
an 0.P.S. with respect to the weight function w(x) on (-1,1) <if

and only if for all n 2 0

a =0 (k =0,1, 2 ..., n-1)

(2.1.6)

Proof: For all m > 0 there exists @K k=0,1, 2 ... m
?

such that
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vhere % m ¢ 0. Therefore,

1

m
L ul
Il x An(x)v(x)dx 2 120 um,i'i,n'

Thus, for all n 2 0

) 0 (n.o’lgzloon-l)

J x“An(x)w(x)dx -

-1
40

a a

n,n n,n
if and only if Equations (2.1.6) are satisfied. Therefore, {Ah(x)}:_o
is an 0.P.S. with respect to the weight function w(x) 1if and only 1if

Equations (2.1.6) are satisfied.

Q.E.D.

Being motivated by this theorem we shall define the class X to be

the class of all the 0.P.S. with weight function on (-1,1). 1In other words,
if (Rn(x)} belongs to :3' then there exists a weight function w(x)

on (-1,1) such that for all n 2 0

o

(2.1.7) R (x)w(x) /1-x2 kzo rk’nuk+n(x)
where
1
'k,n - % I w(x)kn(x)uk+n(x)dx.

-1



We immediately obtain the following result.

15

Theorem (2.1.2). Let {Rn(x) }:_0 be as given in Relation

(2.1.7). {Rn(x)}:_o is symmetric if and only if ry . o= O

Proof: Since {Un(x) }:_0 is a symmetric polynomial set then

1
J x2k+l V1-x2 dx = 0
=1

and

k
2Ly

a, U (x)-
1=0 1,k 21+l
But by hypothesis

1

I w(x)02k+1(x)dx = 0
=1

Therefore, for all n 2 0,

1
I x2n+1w(x)dx = 0.
=1

Thus, [Rn(x) }:_0 is symmetric.

(k = 0,

1, 2 ooo).

Q.E.D.

We shall have occasion to consider the 0.P.S. in 3’ which are

symmetric. We shall denote the class of such polynomial sets byA/.
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2.2 A MODIFIED MOMENT PROBLEM. In this section we shall

consider a problem which is related to the Hausdorff Moment Problem
(see Sec. (1.1)].

Given a sequence of constants {gk}:_o. We find sufficient
conditions on {gk}:_o to insure the existence of a Lebesgue
integrable function w(x) on (-1,1) with the property that

1

(2.2.1) jl Uk(x)w(x)dx = 8 (k=0,1, 2 ...).

Equation (2.2.1) may be written as

m
(2.2.2) j sin(k+1)6 w(cos 6)d6 = 8, (k =0, 1...),
0

from which we see that % By is the (k+1)st Fourier coefficient
in the sine expansion of w(cos 6).

A similar moment problem was given by Akhiezer and Krein
[3 p. 65]. They showed that a necessary and sufficient condition

for the existence of a measurable function £(6), which satisfies

the conditions

-Lg f(6) sL

and

n
b, = f £(0) sin(k6)de (k=0,1...)
0

is that the sequence

BO = 2’ Bl. 82. e
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defined by

exp{- %-kzl bkzk) =1+ kzl Bk:k

be non-negative definite on the circumference.
The following two lemmas are required in order to prove our

first result. The proofs are easy and we shall omit them.

Lemma (2.2.1). If we define

N
(2.2.3) Gy = 2 /inZ kZO Uy, () (N=0,1...0
then
(2.2.4) Gy = 2 /i (uy(x))2, (N=0,1...).

For x belonging to (-1,1) we have

1A

(2.2.5) 6y (—122—);; (N=0,1, 2, ...)
m -X

and if -1+ € <xs1l-¢, thenags N+ =

(2.2.6) Gl'q(x) o(N)

dGN(x)
where Gﬁ(x) e :

Lemma (2.2.2). If we define

N
2
(2.2.7) Ho(x) = Y1-x2 kZO Uyppy (X (N=0,1...),
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then
x=T (x)
2N+3 y
(2.2.8) H(x) = (N=0,1...),
N m/1-x2
(2.2.9) I, 0| < -——EL—-1; N=0,1...),
HN 7 (1-x2)

andif -1+e<xsl-¢€, thenas N+ =

(2.2.10) |H§(x)| = 0(N),
dH, (x).
where Hﬁ(x) - ng .

Theorem (2.2.1). If ] (gn - gn+2) i8 absolutely oonvergent
n=0
with g, 0 as n + =, then there exists a function w(x) continuous

on (-1,1) with the properties:

@ wo =2/457 ] g x € (-1,1),
k=0
1
(b) J w(x)U_ (x)dx = g (n=0,1, 2 ...),

-1

) if 7} nlg, - 3n+2| < w, them w(x) 1is continuously
n=0
differentiable on (-1,1).
Proof: Let

n
w, (x) = %'Vl-x2 kzo 8, Uy (%) (n=0,1...)
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so that
) (3 =
(2.2.11) v (x) = 2 /I=x2 gohﬂn“)+£ognq%uﬂ”

- wn(x) + Qn(x),

where wn(x) is the first summation that appears on the right hand
side of Equation (2.2.11) and Qn(x) is the second.
By applying Abel's Transformation to wn(x) we get, by putting
n
m= ['2"]’

m-1
(2.2.12) w (x) = kzo (85) = Bopsp)Cy (%) + 8,6, (x)

where GN(x) is defined by Equation (2.2.3). For any € such
that 0 < ¢ <1 we have by Lemma (2.2.1) Gm(x)is uniformly bounded
for x e [-1 + €, 1 -~ ¢]. By using this fact and the fact that

By * 0O as m + » we see that gszm(x) converges uniformly to
0 on [-1+¢, 1 -¢€]. On the other hand by Equation (2.2.5)

the terms in the sum
I By = 89p.))G, (X)
k=0 2k 2k+2 "k
are majorized by

2|8y, - 840l
w(l-ez)%

(k =0,1, 2 ...).

<

By the hypothesis of the theorem Z Hk converges and thus
k=0
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Lo G T B S ™
converges uniformly on [-1 + ¢, 1 - €]. Hence {wn(x)):_o converges
uniformly on the same interval.

In a similar manner we can show that {Qn(x)}:_o converges
uniformly on [-1 + ¢, 1 - €].

By combining these two results it follows that wn(x) converges
uniformly to w(x) on [-1 +¢€, 1 - ¢€]. From this it follows that
w(x) 1s continuous on (-1,1) and

(2.2.13) w(x) = kZO (823 ~ Baps2)Gi () + uzo (Bya1 = B2pce3)Hy (X0
To prove part (c) one can show by a similar consideration that

{w;(x)}:_o converges uniformly on [-1 + €, 1 - €], so that in this

case
11%*“ w;(x) = w'(x) x ¢ (-1,1).

Now to prove (b) we proceed as follows. For all positive integers
k, {Uk(x)wn(x)}:_o is a sequence of Lebesgue measurable functions such
that {Uk(x)wn(x)}n_0 converges pointwise to Uk(x)w(x) on (-1,1).

And by Lemmas (2.2.1) and (2.2.2):

2k41) ] I8y - Byl
120 01T BiR2
%

" (l-xz)

lu, v (x) | <

Also,
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D T sy - 8l [ - D) T gy - 8yl

i=0

which is finite by the hypothesis. Thus, by the Lebesgue Dominated

Convergence Theorem
1 1

J U, (x)w(x)dx = 1im L Uk(x)wn(x)dx

80 we have,
1 1 a
L U ()vidx = 11g 2 Il /T2 U, (x) zzo 8, U, (x)dx

But because of the orthogonality of {Un(x) }:-0’ we have

Uk(x)w(x)dx -8 (k=0,1, 2, ...).

'h
—

Q".D.

In Chapter III we will also need the following Corollary.

Corollary I. Let (g, };_0 a:d {82n+1}:-0 be eventually
monotonio and 1im g = 0. If | Z = | < =, then there ezists
a oontinuous funotion w(x) such that w(cos 0) belongs to
L'(0,*]) and

1

L v(x)un(x)dx -8,

|
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Proof: It is easy to see that {gn}:;o satisfies the conditions

of Theorem (2.2.1); thus we need only show that w(cos 6) belongs
to L'(0,n].

Without loss of generality we may assume {gzn}:_o and

{‘2n+1};;0 are both monotonically decreasing to zero.

We recall from the proof of Theorem (2.2.1) that

(2.2.14) w(cos 6) = lig*.[w;(cos 8) + ﬂ:(coa 0)]
wvhere
m-1l
(2.2.15) wk(x) = ‘Zo (873 = 85342)6, (®) (@=0,1...),
K=
) -1
@.2.16) 836 = 1 Gy - B (@=0,1...),
n
and m = [5].
Now since

B
G (cos 0) = %kzo s1n(2k+1)0 (@=0,1...),

n
H_(cos 6) = %nzo s1n(2k+2)0 (@=0,1...),

then




. 1
B (cos ) = = (D,y042(0) - D, 42 ("-0))

1
G, (cos ©) = ?'(°2n+1(°) - n2n+1(w-e))

where
n
D (6) = ] sin k.
k=1

It.1is well known (37, p. 68) that as n + =

®
I [p,(6)]de = 1o0g n.
]

Therefore, 88 k + =
I |ck(co- 8)|de = 0(log k)
0
w
I lnk(co- 0)|de = 0(log k).
0
From (2.2.15)

|k (cos 0) | s 8(0)

23
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s(e) = kZO 8y - '2k+2)lck(°°' 0)|.

To show that S(6) 1s Lebesgue Integrable we note from the above

that

2
z ('2k - 'ZHZ)IGK(CO' G)I
k=0 a=0

is a monotonically increasing sequence of functions and

- - -
kzo (8 - 'zwz)Io |6y (cos ) |de < Clkzo (85, = Bopq4p)108(k+1)
s C2 E gzkllos(k+1) - log(k)]
k=1

]
8
< Cs 2 —%5 < ®
k=0

‘where C;, C;, and C3 are constants.
Thus by a theorem of Lebesgue (see{6, p. 27]), we see that

8(8) ¢ L'[0,7]. Thus by the Lebesgue Dominated Convergence

Theorem w*(cos 6) ¢ L'(0,7].
In exactly the same manner we can show that Q*(cos 6) ¢ L'[0,¥].

Thus w(cos 6) belongs to L'[O,w].

Q.E.D.
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In conclusion we wish to find necessary and sufficient conditions
on {sk}k-o so that w(x) satisfies a Lipschitz condition of order a.

We first note the following Lemma:

Lemma (2.2.3). (a) If w(x) € Lip(a) on [-1,1]}, then

w(cos 8) ¢ Lip(a) on [O,n].
(b) If w(cos 6) € Lip(a) on [O,n], then

w(x) ¢ Lip(a/2) on ([-1,1].

Proof: To show that (a) is true we see that the inequality

lwx) - wiy)| < M|x - y|°
where x, y ¢ [-1,1] and M 1is a constant implies

|w(cos 61) - w(cos 85)] <|M cos 8, - cos Ozla

< M-M7|o; - 6,]%

To prove statement (b) we note first that f(x) = c0l-1x is

Lip(%) on [-1,1]*. We then consider
|w(cos 8,) - w(cos 8,)| < M|6; - 85]°.

Hence by putting x; = cos(8;) and x; = cos(6;) we obtain

|wixy) - wixy)]| < Mlcos-lxl - cos-lle < n22-1 M|x; - x2|°/2,

If 0 <a <1, then it is known [6, vol. II, p. 230-231] that if
g, + 0 then w(cos 6) satisfies a Lipschitz condition of order a on [o,7n]
if and only 1if B, = 0(—;%T). By a slight modification in the proof
of this Theorem one canneaaily show that the results still hold if

*We omit the proof that cos-lx is Lip(%ﬂ ou [-1,1] as it is an
easy exercise.
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8, + 0 1is replaced by 8o + 0 and 8on+l + 0. By using this

fact and Lemma (2.2.3) we have the following theorem.

Theorem (2.2.2). Let O0<a<1l, g, +0 and g + 0. If
2n 2n+l

w(x) e Lip(a) on [-1,1] thenmas n + =
(2.2.17) g, - oLy,

Conversely, if Equation (2.2.17) holds then w(x) 1is Lip(%)

on [-1,1].

2.3 PROPERTIES OF POLYNOMIAL SETS IN 15 . In this section and

throughout the rest of the Thesis we shall be mainly concerned with
elements in J If {An(x) }n-O belongs to,J then {An(x) }n-O is
orthogonal with respect to some even weight function w(x) on

(-1,1) and

An(x)w(x) o
(2-3-1) m N o fk,nun+2k(x)'

In order to make some of the further caluclations simpler we

shall use the convention.

Un(x) - —U_n_z(x) (n < 0)
(2.3.2)
U_l(x) = 0.
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so that,

- s sin(n+l)0

U-(coo 0)-—.(ﬂL n=0,21, £2...)
and
(2.3.3) Un(x) - leln_l(x) - Un_z(x) n=0, £t1, £2...).

Lemma (2.3.1). If (U (x)}]_, is as defined by Equation (2.3.2),

then
(2.3.4) (z)‘un-f ") (x)
" $) 0@ = L %2t ™
ad (
mr =
f- (:)"m-zi(’) = 22 ntr ) Uyy (®
1=0 i=0 5 +1+1
(2.3.5) (2070 (x) = 1f oér 1s even,
[EE5Y ro-l
1 f r 2 r
. | Lo (Vh4r-2s ™) - 120 mil Upg-1(®

1f otr 1s odd,

where the void sum is sero and (‘;)-o if 1>r.
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Proof: For any integer n the validity of Equation (2.3.4)
is easily proven by mathematical induction on r. Equation (2,3.5)

follows from Equations (2.3.4) and (2.3.2).

Q.B.D.

Theorem (2.3.1). Let {Un(x)):_o be as defined in Equation
(2.3.2), and {A (x)} _, ad w(x) be ae defined in relation
(2.3.1). Por all integers k and all non-negative integeérs n and

Te

1

Il x'U n+k r(x) A (x)w(x)dx = 0
2¢f k 18 odd, and
k
Il x'U (x) A_(x)vw(x)dx = — f A ¢ - f ¢t
[, wterTa ™m0 Y Fogn e, Y i £
2

if k 1ie even, where ‘I"° if 1>r or 1<0 ad £, =0 if

k< 00

Proof: Since {Ah(x)}:_o belongs to Af and w(x) is even, then

for all n 2 0 we have, /
. 0, 1if k 41s odd

0, 1f <1 <n+%41, k even

1 2 2

3 L Uy ye20(®) Ay (RIV(x)x = ¢

£ o 15%, k even
z° %
-f 1f n+1}+151.k

\ 1-(n+ +1),

+1) n

even.
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Now by using Lemma (2.3.1) we obtain

1

1 r
% Jl(2x)fun+k_r(x)An(x)w(x)dx - 120 (;) % Jl Un+k_21(x) An(x)v(x)dx

4
0 if k is odd

k
% r f r
() £ - () f
(150 1 X -t,n ten+ Eat - LB IR

where k 1is even and (I) =0 if 1>r or 1 <O0.

QQEQD‘
Corollary I.
' Gn n " cnfo n
(2.3.6) IIA‘(x)An(x)w(x)dx - 2n+1
where < is the leading coefficient of Ah(x) and
(
0 if r 1s odd
1
(2.3.7) J x"w(x)dx = 4
-1 ra
s L
r| £ + f - f .
Gl AR EC I SR A 1-1,0}
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Proof: In Theorem (2.3.1) let k=r -n and 0 <r < n. If
r-n isoddor 0 < r <n, then
1

J xrAn(x)w(x)dx = 0,
1

If r = n, then

1
Il xrAn(x)w(x)dx - 2:::-1 fO.n'

Therefore,

1
n
I At(x)An(x)w(x)dx - 2—1_3 fO,n <, Gt.n

-1
where <, is the leading coefficient of An(x).

Since w(x) 1is even we have

1
j xzrﬂ'w(x)dx =0
-1

1

. 3 ¥
I x“ w(x)dx = '2-%{ 120 (zi-jf--i.o - 1.2_._1 F:)fi-l-l.o

=1

- (2w, +‘fl 2m) ¢ - f
22.-0-1 m] 0,0 q=o 11] ['»>-1,0 n-1-1,0{{"

Q.E.D.
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Because {Ah(x)}:_o 1s a symmetric orthogonal polynomial set
there exists real non-zero sequences {b ¥ and {1} such
n n=l n n=2

that
Ag(x) = 1 A (x) = 2b)x
(2.3.8)

A (x) = 2b XA (x) = A A, (x) (=1, 2, 3...),

vhere bn >0 for n21 and A =0, An >0 for all n 2> 2.

Theorem (2.3.2). If {An(x)}:_o belongs to the class J and

satisfies (2.3.1) and (2.3.8), then

(2.3.9) b (n=2,3...),

nfo,n-l - AnfO,n—Z

(2.3-10) fk,l - bl(fk’o + fk...l'o) (k = o. 1. 2 otl),

(2.3.11) fk,n - bn(fk,n—l + fk+1,n-1) - Anfk'l-l,n-Z

n=2,3 ...k =0, 1...).

Proof: We use the three term recursion relation (2.3.3) for
{Un(x)}:_o and the fact that {An(x)}:_o belongs to the class 4!.

Let us consider.
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1
0= I w(x)An(x)Un_z(x)dx (n=2,3.,,.)
-1
1
- I w(x)[anxAn_l(x) - AnAn_z(x)]Un_z(x)dx
-1
1
- I wx)[b A _, (x)(U _,(x) + U3 = A A _,(x)U _,(x)]dx
-1

- % (bnfo n-1 - lnfo'n_z) (n - 2, 3 ooc)-

i.e., bnfo,n-l - Anfo,n-Z' Also,
2 1
fk,n - Jl w(x)An(x)Un+2k(x)dx h=0,1, 2 ,..; k=0,1...)

1
-2 f O B, (0 = Ay 5 (0 ()
1
- %J wx)[b A _; (X)(U o0 (X)) + U oy (X)) - AgA g (U Lo () ]dx.
S|

That is,

f = b (f f £ n=1,2...; k=0, 1...)

ko - Palfi ne1 ¥ fier,n-1) T Pafiel,n-2

Equations (2.3.10) follow from this last equation by letting n = 0

and noting A; = O,

Q.E.D.



33

Theorem (2.3.3). Let w(x) ¢ L'[-1,1], An(x) w(x) satisfy
relation (2.3.1) forn =0, 1, 2 ..., and the leading ocoefficient
of A (x) be c_. {An(x)}:_o belongs to if and only if

cnfo,n >0, for n=0,1, 2, ... .

(] o«
Proof: If {An(x)}n_o belongs to,tj’ then {A.n(x)}n_o is
orthogonal on [-1,1] with respect to the weight function w(x).
By Favard's Theorem {A.n(x)}:_O satisfies a three term recursion
relation of the form (2.3.8) with An/bn >0 for all n 2> 2,
by >0 and A; = 0. But by Theorem (2.3.2) this implies that
c f >0 for all n > 0.
n 0,n

Conversely, 1if cnfo n’ 0, then by Corollary I of Theorem
9

(2.3.1)

1
I [A.n(x)]2 w(x) dx > 0 (n 2 0).

-1

It 1s known (See Akhiezer [2] p. 2) that any non negative polynomial n(x) # 0
on (-=,») can be written as the sum of squares of two polynomials.

Thus

1

I #(x) w(x) dx > 0. ~
-1

From this it is easy to show that w(x) 2 0 almost everywhere

and w(x) # 0. Thus w(x) is a weight function. From Theorems

(2.1.1) and (2.1.2) and the definition of ‘5( it follows that

{‘h(‘)};-o belongs toA!fi
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o - POLYNOMIAL SETS

3.1 INTRODUCTION. If in Equation (2.1.4) we put

a+)_E 2o

A
Pn(x) - n.

we see that

2-2) ®
Al A 2 I (n+2) A
@ - =" Bl = Frrents T2 L 8, aYneac®

n+i+ k=0
vhere

A k=A A
8,n = "k Bk-1,n+l

That is there exists a sequence {ak}:_1 such that

A A
Bk,n = “Bk-1,n+l (k21; n>1)

This suggests the problem of finding the subclass S of A{{ con-
sisting of all polynomial sets (An(x)}:_o which have a weight
function w(cos @) € L'(0,7), such that there exists a sequence

of real numbers {ak}:_l with the property

(3.1.1) fk.n = akfk—l,n+l (1 sk;n20),
so that,

k
(3.1.2) fk,n - 1:1 a 0,0+k (0 £ k; 0 £n)

where
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(3.1.3) M " 7 £, U (x)

°e V=i k=0 k,n n+2k 7"
We note that the Ultraspherical polynomial set {Pg(x)}:_o for
A >0 1is equivalent to {E:‘l(x)}:_o which are elements on.

In this chapter we find all the elements of 2.

3.2 NECESSARY CONDITIONS. We first find some necessary

conditions for a polynomial set {An(x) }:_0 to be in Z.
Let {An(x)}n-O be in 2 and be associated with {ak)k-l
so that Equations (3.1.1) and (3.1.3) are satisfied. Also let

{An(x) }:_0 have the three term recursion relation

Ag(x) = 1, Aj(x) = 2b; x
(3.2.1)
An(x) = 2bnxAn_1(x) - /\nAn_z(x); bn)\n >0; (n=2,3...).
Throughout the rest of this chapter we will let Y, * J\nb;l for
n21l and A} = 0.
Theorem (3.2.1). If {yn}n-l’ {bn}n-l’ {“n}n-l and
{{fk,n}k-o | n=0,1...} are as defined above then,
1) bn>0 for n21 and yn>0 for n 2 2,
2) the following equations hold:
n+l
(3.2.2) fO,n - 1:2Y" f0,0 (n=1, 2...),
k +k+1
(3.2.3) fk,n -(‘f-rlai) 322 Yj f0,0 (1 <k; 1<n),
\

(3.2.6) v 0l -a) tay, -1=0 Qcnleksm
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where m 1is the smallest integer such that a = 0,

3) {y (b )Y} is a chain sequence,

n-1
k
4 iim 1:1 % Y44 = 0

Proof: 1) We can always choose an equivalent polynomial set
(see Sec. 1.2) such that bn >0 for n2>1 and therefore by
Equations (3.2.1) Yo >0 for n > 2.
2) Equations (3.2.2) follow from Equations (2.3.9)
and Equations (3.2.3) follow from Equations (3.1.1) and (3.2.2).
From Equations (2.3.11) and (3.2.3) we obtain
k +k+1 k n+k k+1 +k+1
nlaJ " Yj f0,0 = b nlai (122Y1)f0.0 +( ™ aJ ™ Yj)fO,O

- J-2 = i=] j.z
k+1 n+k
- A T Q my,l€
nlia1 j=2 j1 0,0

for n>1 and k > 0. This becomes
-1
Yn+k(bn - uk) + Y0, 1=0 (l1<ksgmyn21l),

where m is the smallest integer such that O - 0.
3) Because {An(x)}:_0 is in Z it follows that
{Ah(x)}:_o is orthogonal on (-1,1) with respect to some weight
_lm
function w(x). Therefore, by Lemma (1.1.1) {yn(ébn_l) }n-2 is
a chain sequence.

4) Because w(cos 6) belongs to L'(0,m) and

n k
J w(cos 6) sin(2k+1)6 dé -(‘:luiviﬂ_) f0,0

AN

0
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therefore by the Riemann-Lebesgue Lemma
k

Mg 7 oyvyy = 0.

Q.E.D.

In order to find all the polynomial sets in S we will find

sequences {Yn}n-O’ {bn}n-O and {an}n_0 which satisfy Equations
(3.2.4). We make an investigation into some of their properties in

the next section. In the last section of this chapter we find those

that give rise to elements in 2.

3.3 PROPERTIES OF A CLASS OF SEQUENCES. From Equations (3.1.1)

and (3.2.3) we see that if m is the smallest integer such that
a = 0, then for all k >m and for all n 20, f = 0. This
m k,n

is the case when the infinite sum in Relation (3.1.3) reduces to

a finite sum. That is,

m
Ah(x)w(x) = /1 - x2 kZO fk,nun+2k(x)'
An example of this is the Ultraspherical polynomial set of integer
order.* Thus the values oy for k > m are arbitrary and do not
influence relation (3.1.3) since we have fk n 0 for k > m.
»
Consequently we may assign convenient valuee for ay (k > m) and

this we shall do so that relation (3.2.4) can be extended for all

k. Towards this end we put

*See Appendix II.
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a (1 sksm)

(3.3.1) a -

o @ < k),
1 k-m+1

where m is the smallest integer such that fm 0" 0 or a, " 0.
1]
By extending (uk}:_1 in this manner we will show that it does

not change the class of sequences that satisfy Equations (3.2.4).

Theorem (3.3.1). Let m be the smallest integer such that

fm'o =0 and m > 1. If {bk}:_l. {;k}:-l and {vk}:_l satisfies

Equation (3.2.4) and {&k}:_l i defined by Equation (3.3.1) then

- 1 1
(3.3.2) - — (2 1)
kb n
Y
(3.3.3) Labs Xt (k2 1)

(3.3.4)
for (1) n=1, 2; k 21 t(i1) k=1; n 2 1.

Proof: By letting n =1, 2 in Equations (3.2.4) and recalling

that y; = 0 we obtain

- 1 1
(3.3.5) i 1 (1<ksm
LY
and
(3.3.6) Yeeg G = &) + v -1 =0 (1<ks<m.
2
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By using Equations (3.3.5) to substitute for a,_ in Equations
%k

(3.3.6) we obtain

Y Y
1 ,_n n_ 1

1 1 Y2 Y2'n41 Ya#iP1 Yanl

<

o
lw
[]
o'lv-‘
|

(3.3.7) %—-+—“(;—-
1 Y2 b

for 2 <n<m+ 1.

By letting k = 1 in Equations (3.2.4) we obtain

1 - -
(3.3.8) Yn+1(3;'- al) + Yo% T 1=0 (n21).
We use Equations (3.3.5) with k = 1 to eliminate 51 from

Equations (3.3.8) to obtain

Y Y
-;—-—1—- n_,_n_ ,.1 (n 2 1).

a %1 Y2 YauP1 Yan"2 Yawl

(3.3.9)

o=

By combining Equations (3.3.7) and (3.3.9) we obtain

< =
ol

) (1 <nsgm+1l),

clw

1
(g— -

(3.3.10) 11,— - %— +
n 2 1

1

In Equations (3.2.4) let k = m, we have

(3.3.11) Y = b (n21).

Therefore by using Equations (3.3.5), (3.3.1) and (3.3.11) we obtain
(3.3.12) Yy . B&=-3)+ya -1=0
°o n+k bn k n k

for n=1, k 2 1. Due to Equations (3.2.4) we obtain Equations

(3.3.12) for k=1, n > 1.

} satisfy

e teay and (b )

Equations (3.3.12) for n =2 and k > 1 is more involved.

To show that { }
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We first show that if there exists a smallest integer m > 1
such that a = 0 then bl d b2. Assume b1 = b2. From Equations

(3.3.10) we obtain bm = b1 and from Equations (3.3.11) we obtain

Y'+1 = bl' By letting n=m and k = 1 in Equations (3.2.4) we
obtain

Yoo, G—-a)+ya -1=0

o+l bn 1 ml *
That is,

(Ym - bl) a, = 0.

Thus 51 =0 or ;m-l = 0, This contradicts the fact that m > 1

and is the smallest integer such that Em = 0.

By multiplying both sides of the Equations (3,3.9) by Vo4l

we obtain

1 1 1 1 1
(3.3.13) yn+1(q-—+y—)+yn(;—-;—)-l-0 (n21).

b7 1 Y2
Next multiply both sides of this equation by (%— - %—0 and use
1 2

Bquations (3.3.10) to eliminate Yo+l and Y,» to obtain

1 1 1 1 1 1
5 et Y GG - (
n+l 2 1 n n+l 2

<ngm,

This may be rewritten in the form

1 1 1 1
G-+ i) 4y, G
n+l b2 b1 bn 2 bl

(3.3.14) b -11,—)-1-0 (L1snsm).
n

Now use Equation (3.3.11) to obtain
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11 1 1 1
Yoiwty GO "7t Yty G- 3

) =1=0, (1 £ngm).
2 °1 Ynim 1 Yo

And finally by BEquations (3.3.12) withn =1 and k=n+m we

obtain

1 - -
Ynmz(l_?;_anm)+y2“n+m-l-o (0s<nsm-1).

Thus by hypothesis and from these last equations we have that (3.3.12)
is satisfied for n =2 and 1 < k < 2m - 1. By applying the above
argument with m replaced by 2m - 1 we obtain the validity of
EBquations (3.3.10) for 1 <n < 2m and Equations (3.3.12) for

n=2 and 1 <k £ 3m - 2, The results now follows by an induction

argument and the fact that m > 1.

Q.E.D.

For future reference we state the following obvious Corollaries.

Corollary I. If {bk}:-l’ {;k}:-l and {Yk}:_l satisfy
Equation (3.3.4) then they also satisfy Equation (3.3.2) and
(3.3.3).

Corollary II. If {bk}:-l' {a b, ad {Yk}:-l satisfy

1
Yo G %) FY 170 el Zilsk
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.1_-1_4-1&(1_-1—.) (u-l 2 )
» LI )
by b v By By
then (b}, , (o}, and (v}, satisfy Equation (3.3.4).

If m= 1, that is = 0, and Y4l © bn’ then A =

% n

b b It is easy to show that {An(x)}:_0 in this case, 18

n n-1°
© n
equivalent to {Un(x)}n_o. Actually An(x) = (7 bi) Un(x).
i=]1
From Theorem (3.3.1) it follows that regardless of whether or

not there exists an integer m such that fm,O = 0, 1if {Yn}n-l’

) and {an}on satisfy Equations (3.2.4) then they satisfy

n n=1 n=1
Equations (3.3.4). It turns out that we can solve Equations (3.3.4).

oo

Before we do this, we show that if {y ) (b} and {a_}
n n=1 n

n n=1" n=1

satisfy Equation (3.3.4), then they also satisfy

(3.3.15) L _3)+vya -1=0 (21, k21).

First, we need the following lemma.

n=1
Equations (3.3.4). If there exists an integer s 2 2 such that

Lema (3.3.1). Let (v} |, and {3 ) eatisfy

{b }

(3.3.16) -a ) +v8, ; -1=0 (k=s-1n21),

(1
Yn+s-1 b
n

then

iv

(.31 A -v@a G- 3 = G- a)A - v, 8) @2 D).

nt+s-1 n
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w
[

Proof: Consider the following identity for n 21, and s

Yo=Y Y
2 's+l
(Yn+s-1 - Yn)[——;:——— +1 - EI -1]

Y.<y
n n+s-1
(gyp ~ Yz)[

(3.3.18)

121 e i -
s b1 b1 Ye+1'n YZYnﬂ-ll .

We use Equations (3.3.2) and (3.3.3) to eliminate -;— and ;s-l from
n

Equation (3.3.16) to obtain

Y 1Y Y=Y - Y
(3.3.19) n_+s__1_3 (%_-%_) - _"__“"'_sl... 1 _b_n (n21).
Y2 2 1 Ys 1

Next let us use Equation (3.3.19) in Equation (3.3.18) to obtain for n 2 1,

1 1 1 1
Oogeq =Y =- 7)) — - )
nte-l  'n"by BT Y, YeuY2
1, Yo+s-1"n 1 1 1 Yo Yn+s-1
=G--3 ) [— G-g) - VU+rg -1
Y2 Vet 2 2 "1 1 Y2 Ye#l
Ypan 1Y
By subtracting nts-ln (}— - l--) from each side of this equation and
biva by By

rearranging the terms, we obtain for n 21,

Y
+8-
-y, & -t -+
1 s+l 2 2 1 Y2
- [1 -y (I_-L)][Y_“(l__-l_)...l ]-
n+s-1 bl Y2 Y2 bz bl Y‘+1

By using Equations (3.3.2) and (3.3.3) we obtain the required results.

Q.E.D.
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Theorem (3.3.2). If the eequenoes (yn}:_l, {bn}:-l and

{;n}:-l satisfy Equations(3.3.4) and b, # v, then they eatisfy

Equations (3.3.15).

Proof: The proof is by mathematical induction on k. By

hypothesis,
1 - -
Yotk (;; -a)+yoe -1=0 21, k=1),
Assume

A (-:-;-Ek)+vu8k-1-o 21, k=1, 2...8 - 1),

where s 2> 2.

Therefore,
Tnts (E;:::; =8) + Vg% "1 0 (@ 21).
That 1is,
Yoo —E— -G A -3)+ (v, @ -DE-3)=0 (nz1l)
nts b 1'% s n+s-11 b s ¢
n+s-1 n n

By Lemma (3.3.1) this becomes,

1 - 1 - -
(;;:::I - “1)[Yn+s(§; - 0') + v, - 1] = 0 (n21).

Therefore for each integer n 2> 1,
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or
Y. G-3)+ya -1=0
n+s bn 8 Yn% *
Assume there exists an integer m such that
_E-OQ
Pote-1 1
By using Equations (3.3.2) and (3.3.3) we obtain
(3.3.20) h_'_l_(.l__}_).,.i_-o
Y2 Py By vy
By hypothesis we have
Youo (B=—=a) +Y,a -1=0 k2 1)
24k b, Kk 2%
and
- 1 1
- - (k 21).
x b Yk

Use the latter to eliminate ;k from the former to obtain

Y2

11 _

Yee2 D (3'2'
for k > 1. Thus from Equation (3.3.20) we obtain

1 _1
G—-F)+1=0

L
mt+s-1 Yy 1

By comparing this with Equation (3.3.20) and recalling that Yots-1

we obtain Yy, = b,, which contradicts the hypothesis.
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Therefore,
Yoo G-3)4ya -1=0 (@21)
n+s bn [ ] nes - ‘
Q.E.D.
We next find explicitly all sets of sequences {Yn}n-l. {bn}n-l’ {“n}n-l
that satisfy Equations (3.3.4) and thus by Theorem (3.3.2) in the
case v, ¢ b2 they must satisfy Equations (3.3.15). In Theorem
(3.3.5) we find all sequence that satisfy Equations (3.3.4) when
Y, = bz. By direct substitution it is easy to show that they
satisfy Equations (3.3.15).
Theorem (3.3.3). If the sequences {Yn}n-l’ {bn}n-l
{En}:_l satisfy Equations (3.3.4) and b, = by then,
(a) the following equations hold:
(3.3.21) Y. =by [1- (1 -y, H (hel, 2...)
3. n 1 Y2(b) n ’ ceely
(3-3.22) bn = bl (n Ll 1’ 2 aoo).
(3.3.23) a = (1 b)) H by b)) Hogyyt
.3. a - v2(b)) 1{(1 - va(by) 1]} (=1, 2 ...),
(b) these sequences satisfy Equations (3.3.15).
Proof: (a) In Equations (3.3.4) let n = 2 to obtain
G- 5) 4y -1=0 (x > 1)
kb2 b, T W T V2% 2
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We eliminate a, from these Equations by using Equations (3.3.2)

k
and using the fact that b; = b, to obtain

(3.3.26) Yeaz * 20D - 1D v = v (k 2 0).

This is a first order non-homogeneous finite difference equation
with constant coefficients. A particular solution is Y = b,
k 2 2, y; = 0. The general solution of the corresponding homo-

geneous equation is,

Y2 k-2
Y, = A a- gT) Y2 (k > 2).

Thus the general solution of Equations (3.3.24) is

Y2

=b; +A (1 - 5 )k-zYz (k > 2).

Yk
By applying the boundary conditions we obtain

T2 k-1
Y = b [1- =g (k 2 1).

By using Equations (3.3.2) we obtain (3.3.23), and by using
Equations (3.3.3) and the fact that b); = b, we obtain Equations
(3.3.22).

(b) By Theorem (3.3.2) this set of sequences satisfy
Equations (3.3.15) if by # v,. If by = y, then b) = v,
and from Equations (3.3.23) a, = 0 forall n 21 and y =b)
for all n > 1. By direct substitution we see that a, = 0

n2l; bn =b; n2l; Y, * b, n 2 2; satisfied Equations (3.3.15).

Q.E.D.
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Theorem (3.3.4). If the sequences {Yn}:-l’ (bu}::_1

and {;n}:-l satisfy the hypotheees of Theorem (3.3.1) and

2b; = vy, then (1) either
@) v, =261, b =2 forall n22 and a_ = (2b)"
for all n>1 or,

(b) there exists a smallest integer r > 2 guch that

Y, $ 2b; and
ZkblYt
(3:3.29) w4 " =i k=1, 2,3...),
{(3.3.26) Yo " 2b, m22;ndkr-k+1, k=1, 2, 3 cee)s
2b1-7r+kyt

k=1, 2...),

(3.3.27) b L. = 2b [2(2b1-vr7+kYr]

(3.3.28) bn = 2b; (22, nédkr-k+1, k=1,2...),

_ ky,=2b1y,

(3.3.29) ok " T‘Wr. k=1, 2 .,.,),

L}
[
-
N
.
~

(3.3.30) & = 5%; (M>1;nékr -k, k

(2) These sequences satisfy Equations (3.3.15).

Proof: It is easy to show by direct substitution that
Yo=2b1, b =2 n22 and & = )70 n21 satisty
Equations (3.2.4). Thus we have (la).

(1b) Let r be the smallest integer such that Y, ¥4 2b). We

use
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(3.3.31) e =i 1 x > 1),
Y+l

to eliminate Yie+2 from Equations (3.3.4) with n = 2 to obtain
by

—
1=b1oy 4y

1 - -
(3.3.32) (E; - ak) + Yzak -1=0 (k 2 1).

By letting k = 1 in the Equations (3.3.31) and (3.3.32) and

using the fact that 2b; = y, we get

-1
(3.3.33) Y2 = by = 2b) = (ay) .
In Equations (3.2.4) let k = 1 to obtain

1 - -
Yo+l (E =) +yoa -1= 0 (n 21).

By using Equations (3.3.3) we can eliminate (bu)-l from these

Equations to obtain
Y Y
n n+l

Therefore for each integer n 21 Yo * 2b; or Yo+l * 2b;.

Because r - 1 < m, we have from Equations (3.2.4)
Y G--3 d+ya ,-1=0 (n21)
n+r-1 bn r-1 n r-1 = =0

By the fact that Y, - 2b; for 2 < n <r we obtain

) A 2b)
(—"*—'—1-1)<Y——-1>-o 2

7b, - < 1)

A
-}
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By hypothesis Y, ¢ 2b;, therefore A 2b; for n¢é¢r and

2 <n<2r -1, It is easy to prove by mathematical induction '

on k that Y, " 2b; for n2>22 and ng¢ kr -k +1, k=1, 2 ,.. .
Next we consider the case when n = kr - k +1 for k=1, 2, 3 ... .

When we replace k by r -1 and n by kr -k +1 1in

Equations (3.2.4) we obtain

1
Yoere-k G 7 %) Y Vi T 170 T L2l

We use Equations (3.3.31) and (3.3.3) to obtain

Y
1 kr-k+1 1 1
(3.3.34) Y(k+1)r-k(7— - ——~—;—-0 + (ET - V_QYkr-k+1 -1=0 (k=1, 2...).
r 4b) r
If y; - ykr—(k-l)(Zbl)-l = 0 then it follows from Equations (3.3.34)

that Y, " 2b;. But this contradicts the hypothesis, therefore

Ykr-
1 _kroktl o k=1, 2...).
Yr éb%

Yer- (k-
- ke=(kol) e obain from Equations (3.3.36)

1
By letting Bk 7:- 2

4b) (1 1.2
- i;_
1 1 Ye 1
Bk+1 Z(Yr - 2b1) - Bk (k b 1' 2 ono)o

By Appendix I Lemma (A.1.1) we thus have

(™t @ ™™ - @™
B, = (k=1, 2 ...).

k
o)™+ DT

Therefore,

Zkber

Yk"k‘.‘l bd -—Y—Zbl'.' k-l)yr (k - 1, 2 c-o)o
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By direct substitution of this in Equations (3.3.2) and (3.3.3)

we obtain the required results.

(2) It may be shown by direct substitution that these

sequences satisfy Equation (3.3.15).

Q.E.D.

It 1s interesting to note that in the case Yy, = 2b;, and
there exists a smallest integer r > 3 such that Y, ¥ 2b,,
Equations (3.3.4)are not sufficient to uniquely define a set
of sequences in terms of b), by, yo, and Y, e To see this,
let us try and find Yet2 by using only Equations (3.3.4). We
only have the following two equations

-1
Yr+2(b2 - Gr) +ay; - 1=0

and
Y (b-1 ~-a;)+y ,.a; ~1=0
42" r+l 1 r+l°1
By using the results of Theorem (3.3.4) we obtain

— - -

bz r b

-a) = 0.
r+l

Thus Y2 is not uniquely determined by Equations (3.3.4). This
is the only case we find in which the sequences that satisfy

Equation (3.3.4) cannot be written in a closed form in terms

of b;, b and Yvj,.



52

Theorem (3.3.5). (a) If the real sequences {;n}n-l'

{v.}

n n=]1
Y2 # 2b;, by $#by, and vy, = by then

and {bn}:_1 satisfy Equations (3.3.4) and

(3.3.35) Y, = b2 (n 2 2)

(3.3.36) b, = b2 (n 2 2)
- 1 1

(3.3.37) R vy (n21),

(b) These sequences satisfy Equations (3.3.15).

Proof: Assume not all Y, are equal to by. Let s be the
smallest integer such that Yo ¥ by. By hypothesis s > 3. 1In

Equations (3.3.4) let k=8 -2 and n = 2 to obtain
y -3 Y+ya . -1=0
8 'b; s-2 2%g-2 ’

We eliminate ;'_2 from this Equation by using Equations (3.3.2)

to obtain

1
Yg-1

1 1 1
S - 2 4
Va7 " b7 Yo-1

)+n<§—l- ) -1 =0,

Vg1 " ba by hypothesis. Therefore,

2

1
Gy = 5D (g = b2) = 0

Therefore 2b; = b, or Yg " b,. The former contradicts the

hypothesis and latter contradicts the assumption. Therefore
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Y, " b, for all n 2 2. Equations (3.3.36) and (3.3.37) follow

directly from Equations (3.3.2) and (3.3.3).

(b) By direct substitution it is easily seen that

these sequences satisfy Equations (3.3.15).

Q.E.D.

Now we have from Theorems (3.3.2), (3.3.3), (3.3.4) and (3.3.5)

the following,

Theorem (3.3.6). If {Yn}:-l' {bn}:-l and {an}:-l satiefy

Equations (3.3.4), then they satisfy Equations (3.3.15).
We have thus shown that the set of solutions of Equations
(3.3.15) and the set of solutions of Equationms (3.3.4) are

the same. Since Theorem (3.3.1) shows that given any solution

{yn}:_l, where m 1is the smallest integer

m
{an}n-l‘ {bn}n-l’

such that a = 0, of Equations (3.2.4), then {an}n-l’ {bn}n-l'

- o

0
{Yn}n-l is a solution of Equation (3.3.4). Therefore, {an}n-l’
{bn}n-l' {Yn}n-l is a solution of Equation (3.3.15). But

it is clear that the set of solutions of Equations (3.3.15) is
a subset of the set of solutions of Equations (3.2.4). It

follows that to find all solutions of Equations (3.2.4), we
need only find all solutions {a_} 1 (b} {Yn}n_1

n n= n n=1" of

Equations (3.3.4).
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Next we consider the case when 2b; ¥ vy, b; ¥ b, and
vy2 ¥ by, Let {hn}:;l be a sequence of numbers satisfying

the equations

(3.3.38) h =1-=5 ne2 3...)
n hn-l

where

(3.3.39) c= b%(bz - v2)(ba(2b; - 72)2)-1-

Theorem (3.3.7). Let {ali., (v }y,, (b aatisfy

E@uationa (3.3.4) with 2b, » Y2.

(1) If vy, ¥ by, then

1 hn(Zbl - 72)
(3.3.40) an-Y—-———— (n=1, 2..,)
2 b1v2

where {hn}:_l satisfies Equation (3.3.38) with h; = 1,
(11) If by #b; and vy ¥ by, then
hkbz(Zbl - Yz) - b1b2

by = by

(k =1, 2...)

(3.3.41) Y

where (h )" satisfies Equation (3.3.38) with h; = byj(2by = y5)~}

n=1
and
h b(2b; - v2) - bby

by - by

(3.3.42) b,

where {hn}:_l satisfies Equations (3.3.38) with h, = bf(bz(Zbl - yz))-l.
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Proof: 1) 1In Equations (3.3.4) let n = 2 to obtain

(3.3.43) yk+2(%;-- a) +yza - 1=0 (k 2 1),
We eliminate Y42 from these Equations by using Equations (3.3.2)
to obtain

b= oy + (v = (b7} - B4y = O (k 2 1).
or
(3.3.44) O = Y2) H e @D 4= de0 k2D,

We see from these Equations that if there exists a positive integer
m such that 1 - v2o = 0 then vy, = b,. This contradicts the
hypothesis. Therefore, for all integers k, 1 - Y2o, ¢ 0. If

we let Bk =1 - V2%, then Equations (3.3.44) become

8
-—kﬂ—q =1- —Bc-—— (k 2 1).
2=y, (b)) k
2-y,(by) 7t

By letting hk = b;(2b; - 72)-18k we obtain the required results.

1i) 1In Equations (3.3.43) eliminate a, by using

Equations (3.3.2) to obtain
Yean Ve n 28 =BT 4 1) =y @ = v,bTh) 4y, (k2 1)
k+2 Y41 1P2 1 K+l 2b) Y2 2 1).

Because b; ¢ b, we can rearrange this and write it as
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(k 2 1)

bybs bibz
Ye+2 ¥ 5170, | Vk+1 t B1-b,

bibz | (2by1-v,)b2 b3b, (v2-bz)
Y+l ¥ 516, ] ~ (b1-bp)

(by-bz)2

From these Equations we note that if there exists an m such
byby

that Yorbl + ET:SZ = 0 then Yy = b, but this contradicts

the hypothesis., If we let
B, = v, * bi1ba(by=b) ™" (k 2 1),

we obtain

-1 bsz(bz-Yz)(bl'bz)_z
Biyp = b2(2b1-v2) (b1-b3) ~ - By (k 2 1),

By hypothesis vy, ¥ 2b;, thus, if we let hk - Bk(bl-bz)[bz(Zbl-YZ)]-l
we obtain the required results.

From Equation (3.3.4) with k = 1 we obtain

-1
Yn+1(bn ma) + Y% = 1=0

for n 2 1. We next eliminate and Y, from these equations

Yn+1
by using Equations (3.3.3) to obtain

-1 -1 -1
bn+1[bn(b2 ’b! ) + 1] = bn[]. - Yzbl ] + Y2 (n 2 1)-

The results now follow by an argument similar to that used for

{v_}

n' n=1"

Q.E.D.
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From Theorem (3.3.7) and Lemma (A.1.1) or (A.1.2) it
is easy to solve Equations (3.3.4) in terms of b;, b, and
Y2 1in the case where 2b) ¢ v, vy, # b, and b; # b, are
satisfied simultaneously. From Theorem (3.3.2) these sequences
must satisfy Equations (3.3.15).

In table (3.3.1) on page 59 we give all possible solutions
of Equations (3.3.15).

We are now interested in conditions that will tell us whether
or not there exists a positive integer m such that O - 0.
From Theorem (3.3.3) we see that if b; = b,, then there exists
an integer m such that a, = 0 if and only if vy, = b;. 1In
this case Yo ™ by, bn = b;, and a = 0 for n=2,3..., .,
For the case 2b; = y, we see from Theorem (3.3.4) that am =0
if and only if there exists a positive integer r and a real
number Yy such that 2b1/yr is a positive integer. In this

case {y )} {bn}oo and {a_} are given by Equations

n'n=2" n=2 n n=1
(3.3.25) to (3.3.30). It is obvious from Theorem (3.3.5) that
if vy, = bz, Y2 ¥ 2b; and b; ¥ by, then there does not exist

a positive integer m such that a = 0.

Theorem (3.3.8). Let {ak}k-l’ {Yk}k-l and {bk}k_1 satisfy

Equations (3.3.4) and ¢ be as defined by equation (3.3.39). If
0 <2b) <y, O0<by#$y, and c < 1/4, then there does not exist

an integer m s8uch that a = 0.
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Proof: From Theorem (3.3.7) part (1) it follows that

hn(Zbl -‘Yz)
unugo——bl;z——— (n-1,2...)

vhere {hn]:_l satisfies Equation (3.3.38) with h; = 1. Therefore,
by Corollary I of Lemma (A.1.3) of Appendix I it follows that

hn >0 for all n 2 1. But by hypothesis 2b; - vy < 0. Thus

e > %; >0 for n=1, 2 ... .

Q.E.D.

In table (3.3.2) on page 60 we indicate the solutions
obtained for all possible combinations of vy, b, and bj.
Also this table exhibits conditions for determining whether or
not there exists a positive integer m such that a, = 0.

We next wish to study the properties of these sequences in order

to determine which of them give rise to polynomial sets in 2.

o 0

Theorem (3.3.9). If {vy_} {b } {an}

n n=1’ n n=1"’ satisfy

n=1

E'quation (3.3.4) with b] ¢ b2, Y2 ¢ 2b,, Y2 ¥ bz, 0.1* 0 and

c > % where c 18 given by Equation (3.3.39), then either there
v o
exists an integer q such that y_ =0 or {2—} i8 an
q bn_l n=2

unbounded sequence.

Proof: From Theorem (3.3.7) part 1, Equation (3.3.2) and

Lemma (A.1.2) part (a) we obtain
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Ref. No. for Yo

b,‘ and o 1in
Iable 3.3.1
bievy ._-o. for m=1,2,3,,. 1
b1#v2 | byed, a- s.t.a =0 1
b1#b2 | 2b3ey2 |Jr s.t. v#lb. n'('r)-l is an integer 3- s.t. oy 0 3
2, (y )7t 18 not an tnteger |Im s.t. a_ = 0

1Y, 8 ot oy 3
Vr22, 7", z- o.t.a *0 2
2b3dyy | vaed, 3 moet.a = 0 4
va#; | ¢>1/4 |Jinteger n s.t. bi(1-2h ) +h =0 Hae.c. a =0 6
ztnnur o s.t. bx(l-nn) + hn" -0 al s.t. a = 0 6

- 2b,
es1/4 1 1s an tnteger | Jm s.t. a_= 0 5

Y2 L]

2b)

= 1s not an integer B- s.t. a_ =0 5
Y2 -

e<1/4 | 2by>y; | Jinteger n e.t. by(1-h )+h v;=C | Jm .. a =0 6
Butogcr a s.t. b,(l-hn)fhnu-o ]- s.t. u.-o 6
ab<y, Hhtqcr ss.c.a = 0 6

(a,)].; 1o uniquely defined by
{fy 0lkeo %4 (£, 1)yoo
R R N T b i

3) %;20,0>0,v3>0

) 0 M)._’.*l:ﬂ‘__r_
a0 a0

vhere ¢ = /1dc.

Note: 1) ® te the smallest integer such that
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(3.3.45 2—oL Ly, —H—-H-““ k-poy 7 @1-v2)
Yedl b1 v sin( (k-2)6 b
where tan 0 = Vic-1,

6 18 either a rational or irrational multiple of .

If 6 1is a rational multiple of =, then there exists
integers p and q such that p and q are relatively prime,
P<q and 6 = El. We note that q > 1. Therefore, for k = q + 2
formula (3.3.45) shows that Yq+3 = 0,

The other possibility is that 6 is an irrational multiple

of n. By using Theorem (3.3.7) part 2, Equation (3.3.4) with

k = 1, and Lemma (A.1.2) (Appendix I), we obtain,

Y, a1 (e=1)4"2c " 2, (2b1-v2) (b1-by) L
LU (n=2,3...)
n-1 cos(nb) cos{(n-1)6-1)

where ¢ 1s given by Equation (3.3.39), tan 6 = vV4c-1, cos 6 = (loc)“]'/2

and tan A = -yZ(Zbl—yz)_l(éc-l)-l/z. Because 6 1is an irrational
multiple of 2m, then by Kronocker's Theorem [22, pp. 375-378] we
have that nf® 1g dense in (0,27r) modulo 27, so that cos n®

attains values arbitrarily close to zero. By hypothesis

a1 (4c-1)b2 (2b l-YZ)

$0
4/c (by-by)

n=2 is an unbounded sequence.

A/
Thus (gg- }
n-1

Q.E.D.
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Remark. It is clear therefore that this case does not lead
to a polynomial set {An(x) }:_0 in 2. For we know from Theorem
(3.2.1) that {Yn(4bn_1)-1}:_2 must be a chain sequence and there-
fore must be bounded and from the fact that {An(X)}:-O is
orthogonal on (-1,1) it follows that Ya ¥ 0 for all n > 2,

We now investigate the case when c¢ < 1/4.

Lemma (3.3.2). Let {Yn}n-l’ {bn}n-l

and {an}n-l satisfy

Equations (3.3.4), 2by #vy,, vy, #b, and by $by. If c 18
as defined in Equation (3.3.39) and ¢ < 1/4, then

Ya 1+/142x sgn(y;~2b)
(a) lig*w ET = - X ’
b
2
() 1ip 2=
o B 1-/142x sgn(yy-2b;)
2b; b,

Proof: By Theorem (3.3.7) part 2 we obtain

h b2 (2b;-v2)=b;b,
n b,-b,

(3.3.46) Y

where h ~satisfies Equation (3.3.38) and h; = b1(2b1-72)-1.
It is easy to show that if h; = 27(1 - /TGc) then b, = by,
but this contradicts the hypothesis. Thus by Corollary I of
Lemma (A.1.1) we have

1+/1-4¢

lig*w hn - 5
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By using Equation (3.3.46) we obtain (a) and from (a) we obtain (b)
by using Equation (3.3.3).

Q.E.D.

We are interested in seeing how the limit in Lemma (3.3.2)

depends on x. Because c < 1/4, we have x > -1/2. If we let

y
(3.3.47) £(x) = g E% o _ 1+/142x ;3211;-2b1,

then we have the following graphs.

f(x)
1
(-1/2,2) \ v/
] /
: (0,1) (v
| (-1/2,2) v
] 1
| ?
' |
| |
N| |
::: for 2bj;-y; > 0 ] for 2b;-y, < 0
| :
0! [}
" '
'| piag. 3.3.1 ) Diag. 3.3.2
Theorem (3.3.10). If (v }__,, (b }" and (a}

satisfy Equation (3.3.4) with vy, $ by, b) ¥ by, 2by~y, < 0,
and c¢ < 1/4, where c <8 given by Equation (3.3.39), then
there does not exist a polynomial set in 3 associated with

these sequences.
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Proof: Assume there exists a polynomial set {An(x)}:_o
with the properties given in the hypothesis. By Theorem (3.3.8)
k
L $0 for n=1, 2 ... . Thus fk,O - 1:101Y1+1 ¥ 0. By
using Equation (3.3.2) we have
k k V1+1

T a,y - 7 ( 1)
{=1 1'1+1 =1

It follows from Lemma (3.3.2) that

n+1

lig_..,l -1]>1
(see Diag. (3.3.2)).
Thus
k
(3.3.47) 1 T a,y $0
e |7 %V101

The results follow from Theorem (3.2.1),

3.4 IDENTIFICATION OF ALL POLYNOMIAL SETS IN 2. In the

last section we have found all sets of sequences that satisfy
Equation (3.2.4) which could give rise to polynomial sets in
2. 1If {An(x)}:_o is a polynomial set in 2 associated with
{ak}:-l and {{fk,n}:_oln =0, 1, 2 ...} and having the three
term recursion relation

Ag(x) = 1 Aj(x) = 2b)x
(3.4.1)

A (x) = 2b xA (x) - A A _,(x)
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then by Theorems (3.2.1), (3.3.1), (3.3.2) and (3.3.5) {v } _,
{bn}:_l and {un):_l (where Y, " An/bn) must satisfy
(3.4.2) ynﬂ((%; —a) +y o -1=0 (m>1, k21).

From the remark following Theorem (3.3.9) and Theorem (3.3.10) we
see that not all sets of sequences {Yn}:-l' {bn}:;l’ {ak}:_l
that satisfy Equations (3.4.2) give rise to polynomial sets in 2.
We wish to obtain some criterion that will allow us to identify
those sets of sequences that lead to polynomial sets in 2. Then
we will consider each set of sequences that was obtained in section

(3.3) and determine whether or not there is a corresponding poly-

nomial set in JE.

Theorem (3.4.1). Let {Yn}:-l' {bn}n-l' {an}:_l satisfy

Equation (3.4.2) and bn >0 n21l, y; =0 Y, 0, n2 2,
If there exists a weight funotion w(x) such that w(cos 6) belongs

to L'[0,n]) and for all positive integers n
p

¥ (a (n = 2k)
1 1=1
J w(x)Un(x)dx -

=1

1Y141)

0 (n= 2k + 1).

then {An(x)}:_o as given by the three term recursion relation (3.4.1)

with Y, An/bn 18 a polynomial set in 2.

Proof: Because w(cos 6) ¢ L'[(0,n], it follows that for all

n>0, xnw(x) € L'[-1,1]). Let us define
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1
Bn,k - J w(x)Ah(x)Uk(x)dx.
=1
We will show by mathematical induction on n that
(a) Bn.k =0 (O<k<n n21),
(®) 8n;n+2k+1 =0 (20, k 20),
and
k +k+1
= 2 k20
(c) Bn.n+2k 1:10 j:z Y (n o’ ) »

where the void product is taken to be 1.
The case n = 0 1is just the hypothesis of the theorem.

For n=1

1

(a) Br,2 = J w(x)A; (x)Ug(x)dx
-]

= b1Bo,1
= 0,
1

w(x)A) (x)U
-1

(x)dx

(®) By k42 = 2k+2

1
b f w(x)[02k+1(x) + 02k+3(x)]dx

b1 8y, 2141 * Bo, 243!

= 0 (kZo)I
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1

(c) Bl,2k+1 - Ilw(x)Al(x)UZk+1(x)dx
1
b Jl w(x)[Uzk(x) + Uzk+2(x)]dx

k [ k+1 k+1 k+2
b na, il Ty, +| 7o Ty
' k=1 i} jm2 3 1=1 Y |qm2 J

k k+l
o1 Y\ 42 YJ) bLLL + 0y Vil (k 2 0).

But b,(1 + °k+1Yk+2] = Yy42° which follows from Equations (3.4.2)

with n =1, Hence we get

k k+2
B =1 o T Y,
1,2k+1 -1 =2 h)

Assume for r=0,1, 2 ... n, Br,k =0 rgkilk <r, Br,t+2k+1 =0
k
for all k>0, and B = | T a ( noy } Consider
r,r+2k (1_1 4 Jm2 b}
1
8n+1,k = J w(x)An+1(x)Uk(x)dx

(1
- J w(x)[2bn+1xAn(x) - An+1An_l(x)]Uk(x)dx

1
- w(x)[bn+1(Uk+1(X)+Uk_1(x))An(x)

=1
(x)Uk(x)]dx

- An+1An-1

for k > 0. That is,
} - (k 2 0).

G.4.3) By Pan (B * Boker} T PanPae1k

From the induction hypothesis and Equations (3.4.3) it is clear that

a1,k © 0 if 0<kc<n-2 and B ., .~ 0. By putting k=n -1 in

Equations (3.4.3) we obtain
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8

8n+1,n-1 - bn+1 n,n An+18n-1,n-1'

By the induction hypothesis Bn,n/Bn-l,n—l = Y41 therefore

Bn+1.n-1 = 0, Hence (a) is satisfied for n replace by n + 1.

If k>0,

B =b

n+l,n+2k+2 n+1(8n,n+2k+3 + Bn,n+2k+1) - An+18n-1,n+2k+2.

Thus by using the induction hypothesis

Bnel,ne2k42 = O (k 2 0).

Hence (b) is satisfied for n replaced by n + 1.

From Equation (3.4.3) and the induction hypothesis

k+l | [n+k+2 n+k+1 k+l | [n+k+l
8 = b mTa Ty - A To Ty
I | PR T j 1_1 _2 Yy o1l 0| 5 T

k : [ntk+l
B 1:1“1} j:2 Y] Posr CrarVntiea2™) = 1%l -

{bJ :_1, {a_}> satisfy

From this and the fact that {y } .
n n n=l

n=1"

Bquation (3.4.2) we obtain

( k ) n+k+2
8 =l7a (k > 0).
n+l,n+2k+1 i= i j-2 j

Thus (a), (b) and (c) are satisfied. From this it follows that for

all n 20,

1
(3.4.4) J v(x)x‘An(x)dx =0 ©<m<n)
-1
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1

(3.4.5) I w(x) x"A_(x)dx # 0,

=1
and

1

(3.4.6) J w(x) x2n+1dx =0.

-1

Y4l
Also because { b }n_lis a positive sequence, then it follows
n

from Favard's Theorem (see section (1.1)) that there exists a dist-

ribution function o(t) such that

I An(x)Am(x)do(x) - knsn,m (n20, m>2>0)

vhere kn ¢# 0 and ko =1,

For all non-negative integers m there exists %k’ k=0,1, 2 ... m,
1

such that
a m
x = 1§°°n.kAk(x)'
Therefore
1 .
[ P o o (=20
and
1
I x'da(x) - un,O (m20).

-1

Therefore for all polynomials =7(x) 20 and n(x) # 0

1 ®
I m(x)w(x)dx = I n(x)do(x)

=1 —

> 0.
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Thus (see proof of Thm. (2.3.3)) w(x) 2 0 almost every~

where on (-1,1) and w(x) # 0 on (-1,1). Prom this fact and
from Equations (3.4.4), (3.4.5) and (3.4.6) it follows that

{An(x) }:_0 belongs to J and An(x)w(x) has the formal Chebychev

expansion

An(x)v(x) n VTx2 kzo fk,nun+2k(x)

k nt+k+l

where f = % a

k Y 3 Thus there exists a real sequence
B el 1 =2

[_J { )
(ok}k-l such that fk,n - “kfk—l,n+1' Therefore An(x)}n_o is

an element in S.

Q.E.D.

Theorem (3.4.2) Let (An(x) }:-0 have the three term recursion

relation (3.4.1) with by = b, > 0. {A ()} is in Z and is
associated with {a )., and {{f, } o |n=0,1 ...} if and only
if 2by > y2 >0 and

(3.4.7) b, =b; >0 (m21),

(3.4.8) Mgy = P31 - (-v2/b))™) (@20),
-l.n -1.n -1

(3.4.9) a = @ =-vya(b1) ) (b2 - va(b1) ) - 1] (n20),

Proof: If {An(x)}:_o is an element of 2 with b; = by,

then by Theorems (3.2.1) and (3.3.3) (b ). (A )", and (o}

are given by Equations (3.4.7), (3.4.8) and (3.4.9) respectively.




n

Also by Theorem (3.2.1)

k

1 T oa,y = 0,
oo 7 %1141

That 1is,
112’0(-1)k(1-y2(b1)'1)

Therefore, -1 <1 - yp(b;)) > < 1. That 1s 0 < yp < 2bj.

Conversely, we note that bn >0 for n21, y; =0 and

n'n=1’ (a)}

{ n ' n=1

-]
Y, ? 0 for n > 2. By Theorem (3.3.3) {Yn}n-l'

satisfy Equation (3.4.2). Because |1 - Yz(bl)-ll < 1, therefore

v 2 ¢ -1,n(n+l)
TIm oyl = 5 @-y20)™)" <m,
n=l k=1 K Kt n=1

Thus, by the Riesz-Fischer Theorem, there exists w(cos 0) € Lzlo,w]

such that for all non negative integers m
k
m
1 1=1
J w(x)Um(x)dx =
=1

Y141 w = 2k

0 m=2k +1.
Thus w(cos 68) € L'[0,n] by Schwartz's Inequality. Therefore, by

Theorem (3.4.1) {Ah(x)}:_o is an element in 2.

Q.E.D.

The polynomial set {Ah(x)}:_o as defined in Theorem (3.4.2)

is equivalent to {R:(x)}:_o defined by
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Ri(x) = 1 R§(x) = 2x

R = 23 (0 - 1-""HrI_, ) @2 2)

where |q| < 1. We will find some of their properties in chapter V.

For the case 2b; = y, we have from Theorem (3.3.4) two possi-

bilities. The first being

bn = 2b, (n 2 2),
A = 4b3 > 2
a " (n22),
-1
Gn - (Zbl) (n 2 1),
k
From this it follows that @ Yoe1 ” 1, and therefore 11E+m 1:1 Y41 ™ 1.

Therefore, by Theorem (3.2.1) the polynomial set {An(x)}:_0 defined

by
Ao(x) =] Aj(x) = 2b1x
2
Ah(x) 4b)x An_l(x) - “blAn_z(x)

is not a polynomial set in 2 . This polynomial set is equivalent to
{rn(x)}:_0 the Chebychev polynomials of the first kind.
The second possibility is when there exists a positive integer

r such that v_ ¥ 2b;.

Theorem (3.4.3). Let {An(x)):_o have the three term recureion

relation (3.4.1) such that 2b; = y, and there exists a smallest
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positive integer r such that 2b, ¢ Y, {An(x) }:_0 i8 an element

in & and is associated with ({a, } and {{fk n}:_oln =0,1, 2 ...}

k k=1
if and only if 2b; > Y, >0 and
2b, (n#kr - k +1)
(3.4.10) b =
(2b1-yr+kYr)2b1
(n=kr - k +1),
2(2by -y )+ky_
4b? (¥l nékr-k+1)
(3.4.11) A, =(0 (n =1)
4blky_
(n ¢ kr - k)
€3.4.12) a
(n = kr - k),

where k 1i8 a positive integer.

Proof: If {An(x) }:-O is a polynomial set in Z with

2b; = v, and if there exists a smallest integer r such that

2b, ¢ " then by Theorems (3.2.1) and (3.3.4) {bn}n-l’

{( }

n'n=1’

{ }:_l are given by Equations (3.4.10), (3.4.11) and

Qa
n

(3.4.12) respectively. Also,
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kr-k k 1y _-(2by-y)
T oa,y = q —,
=1 P a1 1y 4020y

Therefore by Theorem (3.2.1)

k 1iy_=(2bj-y.)
14 7 —Ee T 0.
o 1=1 1y _+(2b1-y )

Therefore, 2b; > Y 2 0.

. A
Conversely, by Theorem (3.3.4) (Yn}n-l = {gﬂ}n-l' {bn}n-l'
n

and {an}W which are given by Equations (3.4.10), (3.4.11) and

n=]1
(3.4.12) satisfy Equation (3.4.2), and also bn >0 for all n2>1,
Y1 =0 and Yo >0 for all n > 2.

By direct substitution we have that

s k
(3.4.13) Z (ma,y )sin(2k+1)86
k=0 1=l i'i+l
2br _
o g-1 n-( 1 s(r-1)-1
=] | I sin(2e+1)6

8=l n=1 n+(%’l-1 e=(8-1) (r-1)
r

where the void product is 1.

There exists an ng such that for all n 2 n, 2 1

2b,

n-( Y -1) -
2b,

n+(T -1)

r
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and
2b,
k (1-(— -1
k ( . 4(__(_;§.__)_)
T oo,y 1
n 1 1+1) o 1=l
i=] <r Z (i+(YL 1))
keng (r-1) k k=ng Kk
If we let
2b
1 8 n-(y— -1)
a == 7
s s _ 2b, ’
=1 n+(—— -1)
Yr
then
a 2b)
11, 8 ( “-1)=1+2(-—-1)
as-\‘-l Yr:
> 1.
Thus by Raabe's Test (7, p. 39]
2b,
‘f 1 8 [pG—- 1))
a1 8 1= 2b1
s=1 " n=1 “+(y— - 1)

r

o k
converges. Therefore, Z k_l (n aiY1+1’ < », That is,
® k=1 i=]
Z k-l converges and {f } is eventually monotonically
k=1 k,0 k=0

tending to zero. Therefore by Corollary I of Theorem (2.2.1),

k,0

there exists w(cos 6) belonging to L'[0,n] such that for all

n2z20

®"
n

i=]1

%1V141 (n = 2k

1

J Un(x)w(x)dx -<

-1
0 (n =2k +1),

\
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Therefore by Theorem (3.4.1) {An(x)):_o 18 in Z .

Q.E.D.

Let us denote the polynomial set defined in Theorem (3.4.3)
by {Qn(x; Yo r)}:_o. It is orthogonal on (-1,1) with weight

function

2by
o g-]1 n-(;——-—l) s(r-1)-1
) (____I_____ U, (x)

(3.4.14) w(x) = /IxZ|] =
2b, e=(8-1)(r-1) 2e

8=l n=1 nt( -1)
Ye

vwhere the void product is 1. The convergence in Equation (3.4.14)
is pointwise on (-1,1) and uniform on any closed subset of (-1,1).

We will study some more of its properties in Chapter 5.

Theorem (3.4.4). Let {Ah(x)}:_o have the three term recursion

relation (3.4.1) with Y, # 2b;, by # by and vz = b, {A (O} _o
i8 a polynomial set in X associated with {ak}:_1 and

{[fk'n}:_oln =0,1...} ifand only if 2b; > y; > 0 and

(3.4.15) bn =by, >0 (n 2 2)
§ (n 22)
(3.4.16) xn -
0 (n=1)

(3.4.17) a, = w7t - 7 (n 2 1),
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Proof: 1If {An(x)}:_o is in 2 then, by Theorems (3.2.1)

oo

(] @
and (3.3.5), the sequences {bn}n-l’ {An}n_l and {an}n_1
are given by Equations (3.4.15), (3.4.16) and (3.4.17) respectively.

We also have from Theorem (3.2.1)
* Y2 k
1. R LT Hp Gy - L
= 0.
Therefore, 0 < y; < 2b;.
Conversely, we note that b >0 forall n21, A =0

and An >0 for all n 2 2. If O < yz < 2b;, then

- 2 v Y 2k
Z £, V=1 GG—-1)
km0 K007 Lo B

< o

As before, by using the Riesz-Fischer Theorem, there exists w(cos 6)

belonging to L'[O,m] such that for all n > 0

. 0 if n=2k +1
I U (x)w(x)dx =
n
4 k
"
i=]1

@ Y441 if n=2k

Therefore, by Theorem (3.4.1), {An(x)}:_o 1s an element of 2.

Q.E.D.
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If we let s = bl(bg)_l then the polynomial sets found in

ok
Theorem (3.4.4) are equivalent to [Pn(x:s,O)}n_0 defined by
Pp(x:8,0) = 1 P;(x:8,0) = 2sx
Pn(x:s,O) = 2xPn_1(x:s,0) - Pn_z(x:s,O)

where s > 0. {Pn(x:I/Z,G)}:_o and {Pn(le,O)}:_0 are the
Chebychev polynomial sets of the first and second kind respectively.
In order for {Pn(x:a,O)}:.0 to be in 2 s > 1/2. Thus in this
case we know that {Pn(x:s,O)}:_o is orthogonal on (-1,1)
with weight function
(3.4.18) wix) = iz T EHX )
k=0 8 2k

By Theorem (2.2.1) the convergence is pointwise in (-1,1) and
uniform in any closed subset of (-1,1).

Now we are ready to consider the remaining case. That is,
when b; # by, b) ¥y, 2b; ¥y, and y, # b, are simultaneously
satisfied. Let ¢ be as defined in Equation (3.3.39). We have
seen in the remark following Theorem (3.3.9), that there does
not exist a polynomial set in A{ corresponding to the case c¢ > 1/4.
For c¢ = 1/4 we get from Theorem (3.3.7) and (A.1.1) the polynomial

set {An(x)}n_o defined by

*In chpater 4 we consider polynomial sets in which the second parameter
is not zero.
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Ag(x) = 1 Aj(x) = 2b;x

-1)p+l n-1
A (x) = 2(2b1) {{2—;};—2 xh, () - 4vf GEEREL p+2} Ap-2(®)

and

a = np-1
n  2binp

where p = 72(2b1-72)-1. From this it follows that

1
(26)"n!2 5 ()

A (x) = N
&
where P:A)(x) is the Ultraspherical polynomial set of order A.
Thus for {An(x)}:_o to be in X, 1/p > 0.
For ¢ < 1/4, we know from Theorem (3.3.10) that in order to

obtain a polynomial set in z, 2b; - vy > 0.

Theorem (3.4.5). Let {An(x)}:_0 have the three term recursion
relation (3.4.1) with b; ¥ by, by ¥ v, 2b; > yvp, vy ¥ by,
by >0, vy, >0, by, >0 and c¢ <s defined by Equation (3.3.39).
If ¢ < 1/4, then (A (x)}_, is a polynomial set in pa

tf and only if,

1-H
n+l
(3.4.19) a = BTy (n=1, 2 ...),
vb) (y-14H )
(3.4.20) bn - (n=1, 2...),
1-c(2-v) 2y 2-2v+yH_
(byv)?
(3.4.21) An - (n=2,3...),

1-c(2-v) 2y 2-2v+yH_
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where y = yp/b; and

(3.4.22) = LA+ +0-/10)") 2-y)
R O T Ty L NG, s LAl

Proof: 1If {An(X)}:-O is in ‘2: then by Theorems (3.3.1),

{b_} and {A_}

(3.3.7) part (i), and Lemma (A.1.1) {an} n'n=1 atne1

n=1’

are given by Equations (3.4.19), (3.4.20) and (3.4.21) respectively.
Conversely, we have from Theorems (3.3.7) and (3.3.1) that

{a }"

el {bn}n_1 and {y_} where vy = An/bn, satisfy

n n=1"
Equation (3.3.4). Thus by Theorem (3.3.6) they also satisfy

Equation (3.3.15). By using Theorem (3.3.7) we have

h b2 (2b)-y2)-bby

Yk b)-b,

where h; = b1(2b1-yZ)-l and (hk}:_1 satisfies Equations (3.3.38).
It is easy to see that h; > 2'1(1-/T:ZE). Thus by Lemma (A.1.3)
{YZk}:-l and {Y2k—1}:-1 are monotonic. By Lemma (3.3.2) (see
Diag. (3.3.1)) they have a common positive limit. We note that
Yy) =0 and y; > 0, thus Yo > 0, and Yn is bounded above
for n =2, 3, 4 ... . In exactly the same manner we can show
that bn >0 and bn is bounded above for n =2, 3, 4 ... ,

Finally, it is easy to deduce from Theorem (3.3.1) and Lemma
(3.3.2) that

I (o 2
(r a,v,,4)" <=
k=0 1= 1'1H1
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Thus by the Riesz-Fischer Theorem there exists a function w(cos 0)

belonging to L'[0,7] such that for all n 2 0

. 0 h=1, 3...)

J Un (x)w(x)dx =

<1

m (n-2,4...)

Y
oy 1V1#1

Therefore by Theorem (3.4.1), {An(x)}:_o 1s an element of = .

Q.E.D.

It is obvious that the O.P.S. {An(x) }:_0 identified in Theorem

(3.4.5) is equivalent to {Zn(x;c.Y)}:_o defined by

Zy(x;¢c,Y) = 1 21 (x3c,Y) = 2x

2v(v-l+Hn)
Z (x3c,Y) = x 2 _,(x;5c,v)
BT lee@em2yozyem o T

y2
- Z _p(xic,Y)

1-C(2-v)2+v2-2v+vﬂn

where 0 <y <2, ¢ <1/4 and Hn is given by Equation (3.4.22).
In fact, An(x) = (bl)nzn(x;c,y). We also note that {Zn(x;c.Y)}n_o
belongs to Z It can easily be shown that the sequences {ak}:_l

associated with {Zn(x;c,y)}:_o is given by

o =y la-u )

n n+l
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vhere Hn is given by (3.4.22).

In table (3.4.1) we give all possible elements of ZE. In
table (3.4.2) we show under what conditions these polynomial
sets arise for the case m < » and in table (3.4.3) for the case

m=x, where m 1is defined to be the smallest integer such that

m -] -]
(ai}i-l is uniquely defined by {fk,o}k-o and {fk.l}k-O'
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CHAPTER 1V

CO-RECURSIVE POLYNOMIALS

4,1 INTRODUCTION. We showed in Theorem (3.4.4) that if
{An(x) }:_0 is a polynomial set in S having the three term
recursion relation (3.2.1) with y; < 2b;, b; # b, and Yy = by

then
2
Ah(x) = 2b2xAn_l(x) - bzAn_z(x) (n22),
Apg(x) = 1 Ay (x) = 2b)x.
This polynomial set is equivalent to
P () = 2xp _,(x) - p. _,(x) (n 2 2)
po(x) =1 p1(x) = 28x

where s = b;/b,.
This polynomial set satisfies the same recurrence relation
that the Chebychev polynomials Un(x) and Tn(x) do except that

they enjoy different initial conditions. In fact we have
Po(x) = Ug(x) and p)(x) = sy; (x).

Hence the system {pﬂ(x)}:_o constitutes a set of orthogonal
polynomials which, as a function of the parameter s, reduces
to the Chebychev polynomials of the first kind (if s =)

or to the Chebychev polynomials of the second kind (if 8 =1).
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In this chapter, instead of studing this system of orthogonal
polynomials, we shall investigate a more general situation which
at the same time generalizes a problem studied by T. S. Chihara [12].

Let the polynomial set {Rh(x)}:_o satisfy the recurrence

relation
(4.1.1) Yn(x) = (X+Cn)yn_1(x) - Anyn-z(x) (n21),
(4.1.2) y_l(x) =0 yo(x) = 1.

We define the polynomial set {Rn(X;s'r)}n-O so that they

satisfy the relation (4.1.1) and the initial conditions
(4.1.3) Ro(x;8,r) = 1, R (x;8,r) = sR1(x) - r

where 8 and r are fixed real constants with s # 0. Note

that R (x;1,0) = Rn(x)’ (n=0,1, 2 ...), and that because
n

we are dealing with orthogonality in the classical sense (see

section 1.1) s > 0.

Definition (4.1l.1). We call the polynomial set {Rn(x;l.r)}:.o

the (8s,r) oo-recursive polynomial set of {Rn(x)}:_o.

The case s = 1 reduces the problem to that which Chihara
studied in [12].

Before we study the polynomial set {Rn(x;s,r)}:_o we first
establish an important relationship involving the Rn(x), Rh(x; s,r)
and the numerator polynomial Qn-l(x)'

Let {Qn(x)}:_0 be the numerator polynomial set of

{R_ (x; s,r)}w , 8o that they satisfy
n n=0



Q (x) = (xbe, 1))Q 3 (®) = Ay Q5 (%) (2 1),
(4.1.4)
Q&) =0, Qo(x) = 1.

We assert that, for n 2 0,
(4.1.5) Rn(x;s,r) = Rn(x) + [(s-1)R; (x)-r]Qn_l(x).

Indeed, since {Rn(x)}:_0 and {Qn_l(x)}:_0 are two linearly
independent solutions of Equation (4.1.1), so that the right hand
side of Equation (4.1.5) satisfies the recurrence relation (4.1.1)
(or is in the solution space of that difference equation). To
prove the validity of Equation (4.1.5) we therefore only need to

notice that the right hand and left hand sides are equal for n=0

and n = 1.

4.2 THE ZEROS OF R (xjs,r). Let us extend the polynomial

sets (Rn(x)}:_o, {Rn(x;s,r)}:_o and {Qn(x)}:‘:_0 so that they
are defined for all integers (n = 0, +1, +2, ...). For n2 2,
put Q_n(x) = -Qn_z(x); let R_n(x) be defined arbitrarily, and let
Rn(x;s,r) be determined by Equation (4.1.5). With this extension
it is easy to see that Equation (4.1.5) implies that if Bn,k’

m=0,1,2 ...; 0 k= n) are complex numbers with the property

that Bn,k = Bn,n-k then we have for n 2 0
n n
(4.2.1) ) Bn’kkn_zk(x;s.r) = 7 Bn.kRn-Zk(x)'

k=0 k=0
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It 1is well known (see section (1.1)) that for n =1, 2 ... the
geros of Rh(x) and Rh(x;s,r) are all real and simple. Let

and x: n=1, 2 ...; =1, 2, ... n denote the zeros

*n,3 »3
of Rh(x). and Rn(x;s,r) respectively in increasing order of

magnitude. For notational simplicity we will let x = xk = .e
n,0 n,0

= xR -
%a,0+1 © Tn,n+l

(1-8)R}(x) + r, and the constant polynomial have a zero at - =,

+ o for n=1, 2 ...; ¢ be the zero of

Our next results give the relative position of these zeros. First

we need the following lemma.

Lemma (4.2.1). If X4 " t then segn Rl"(xn’j;l,t) -

sgn “ﬁ(‘n.j) ¥ 0. where f£'(x) <& the derivative of f(x) at

Proof. We obtain from formula (4.1.5) that there exists a

k such that x = x% K" { and also

n,J n,
(4.2.2) R;(xn’j;a,r) = R;(xn'J) + (s-l)Qn_l(xn’j).

Because s > 0 we see from Equation (4.2.2) that in order to

prove the lemma we need only show the following two things:

(a) sgn {R;(xn’j)} = sgn {Qn-l(xn.j)}
and
(®) IR;(xn.J)l 2 IQn_l(xn.j)l-
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From Equations (4.1.1) and (4.1.3) we obtain

n

4.2.3) Rn(x)Rn_l(x;s,r) - Rn_l(x)Rn(x;s,t) - (1‘1:2 A‘}(l-s)xl(x) + r]

for n > 1, where the void product is equal to one. By evaluating
the derivative of both sides of this equation at X j we obtain
]

n
(4.2.4) R;(xn’J)Rn_l(xn,j;s,r) - Rh-l(xn.J)R;(xn, ;8,r) = ( n Ai)(l-.).

From Equation (4.1.5)
Rn-l(xn,j;s'r) - Rh-l(xh,j)'
If we combine this with Equations (4.2.4) and (4.2.2) we obtain

R'(xn.J)Rn_l(xn’j) - Rn_l(xn’j)(Rr"(xn,j) + (s-l)Qn_l(xn.j))

n
n
= oA (1-8)
g2 1

That is,
n
(4.2.5) Rn-l(xn,j)qn-l(xnd) ) 1:2 K

It is well known (see Szeg¥ [35, p. 46]) that the zeros of

R _;(x) interlace the zeros of R (x). Thus sgn {Rn-l(xn,j)} - (-1)™4,

Also because the zeros of Rn(x) are simple sgn R;(xn J) = (-l)n+j.

From Equation (4.2.5) and the fact that An >0 for all n > 2
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sgn {Rn-l(xn,j)} = sgn {Qn-l(xn,j)}' Thus sgn {R;(xn’j)} -
sgn {Qn-l(xn,j)}’ which proves part (a).

From the Christoffel -~ Darboux formula for {Rn(x)}::_.0 we obtain

n i

R'GR . (x) - R (X)R! | (x) = 121 (m o Agoge) [Ry g (12,
= J_-z
Thus
n
Rn(xn,j)nh-l(xn,j) 2 122 Ai'

By using Equation (4.2.5) we obtain the required results.

Q.E.D.

Theorem (4.2.1). Let n be a positive integer. If there exists

an integer j 8uch that 0 < j <n and e[xn y* %, j+1) then

(a) if 1 -8>0,

* * * *
xn,l < xn,1<"' xn,j = xn,j < xn,j+1 < xn,j+1<"' xn,n < xn,n ’
(b) Zif 1 -8<0

* * * *
2,1 < *q,1<° *q,3 = X, 3 < Xn,3+1 < Xa,341<°°° *n,n < Xa,n

(¢c) 2if 1 -8 =0, thenif r >0, a4 < x;’j and if r <0

then xn’J > x;’j for j =1, 2 ... n. Where in (a) and (b)

n, 4 if and only if X0,y " z.

x* = x
n,J
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Proof: From Equation (4.2.3) it follows that if 1 < j < n
and ¢ ‘Ixn,j’ xn,j+1] then Rn(x;s,r) has one and only one zero

in (xn,J’ xn’j+1). Also in exactly the same manner we see that

* *
if ¢ t[xn’j, xn,j+l] then Rn(x) has one and only one zero in
* *
Ot 3,540
For the proof of (c) see (Chihara [12]) Thm. 1). We note that
L 1 r
{R.n(x)}n_0 is the (;, - 8) co-recursive polynomial set of
{Rh(x;s,r)}:_o. Therefore, (b) follows from (a). Thus
we need only prove (a). In order to do this we consider the follow-
ing three cases. First, if sgn[(l-s)Rl(xn 1) + r] = -1, then
?
from Equation (4.2.3) we obtain sgn{Rn(xn 1;s,r)} = (—1)n+1. Thus
*
xn,l < xn,l' By the hypothesis xn,j < g < xn’j+1. Now from Lemma
(4.2.1) and Equation (4.1.5) there exists a &6 > 0 such that
sgn{Rn(x)} = sgn{R,(x;8,r)} # Ofor all x e(g-8, ¢). Thus Rn(x)

and Rn(x;s,r) both have the same number of zeros in (-=, ¢ - §/2).

Therefore,

x* < x <.uoo X* <X

n,l n,1l n,j < xn,j+l

where the equality holds if and only if X j = . From Equation

* = - *
(4.2.3) sgn{R_(x , ;8,r)} 1. Thus x , < x , and therefore
* * * *
x 1 < x BALER x . < x i < x L3+l < x L x , < x 0’

Second, 1if sgn[(l-s)RI(xn 1) + r] = 0. From Equation (4.1.5) it
follows that Rn(c;s,r) = 0. From Equation (4.2.3) and the fact

that s -1 > 0 we obtain sgn{Rn(xn n;s,r)} = -1, Thus
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Rn(x;‘,r) has a zero in (xn n? w). Using these facts and the fact
»
that Rn(x;s,r) has one and only one zero in (xn’j, xn’j+1) for

2 £j <n we obtain,

* = * *
*n,1 ~ *n,1 < ¥n,2 < xn,2<°'° < Xa,n < Xa,n°
Third, if sgn[(l—s)Rl(xn 1) 4+ r] =1, then from Equation (4.2.3)
9
] n
it follows that sgn{Rn(xn’l,s,r)} = (-1)" and sgn{Rn(xn,n;s'r)} - -1,
Thus Rn(x;s,r) has an odd number of zeros in (xn n’ =) and none

or an even number of zeros in (-«, X 1). Thus
»

X < x*% < x

< x* <.l X < x* .
n,l n,l n,2 n,2 °°

n,n n,n

Q.E.D.

From Chihara's work [loc. cit.] it follows that for fixed s,
the zeros of Rn(x;s,r) are increasing functions of r and for

r; ¥ ro the zeros of Rn(x;s,rl) and Rn(x;s,rz) interlace.

Corollary I. Let r be fized.

(a) If x:'j < -¢y (x;‘;r._1 >-¢1), then x:.j increases (decreases)
with increasing s.

(b) The zeros, which are less than -c) or which are greater
than -c, of two different co-recursive polynomial sets interlace.

Proof: Let (R (x)}m be the (s,,r) co-recursive polynomial
— n,1 n=0 i s
2

® ® 82
set of {Rn(x)}n_o. Thus { Rn,Z(X))n-O is the (;T , r(1l - ;T))
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)
co-recursive polynomial set of {Rn,l(x)]n-O' If we let Xn, ]
J=1,2...n be the zeros of R, i(x) and take 0 < 8; < 82
’

then we obtain from Theorem (4.2.1)

Q.E.D.

Corollary II. Let (Qn(x)}:_o be as defined in the three term
reoursion relation (4.2.1) and Yo-1.4° i=1, 2 ... n -1 denote
the zeros of Qn_l(x). If there exists an integer J 8uch that
0<3j)sn and ¢ belongs to [xn,j' xn,j+1) then

(a) if 1-8>0

L] * *
XA <%0 S Yae1,1 %,2 %2ttt Mng 2 %, S Y-l MR IS

* *
x:,j+1 < e Xpn-1 < x n,n-1 < Ya-1,n-1 © Xa,n < x ,n’
() Zf 1 -8<0
* * < xk *
xn,l < xn,l < yn-l,l < xn,2 < xn,2<"' xn,j = xn,j < yn-l,j < xn,j+1 <
X < ees XX < x <y < xk < x ,
n,j+l n,n~-1 n,n-1 n-1,n-1 n,n n,n

(c) if s=1, thenif r >0 and if

b'e < x% <
n,j xnoj yn_ltj

* =
r <0 then X, < x < Yp-1,3 for n=2,3... and

] n,J
j=1,2,3 ... n-1.
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Proof: The results follows directly from Theorem (4.2.1) and

the well known fact (see Wall [35)) that for 1 < j < n,

xn,j < yn-l,j < xn,j+1

and

] *
3 Yn-1,5 ¢ *¥'n,341°

Q.E.D.

Let us denote the true interval of orthogonality (see Sect. (1.1))
o . - -] @ * *
of {Rn(x)}n-O' {Rn(x,s,r))n_o and {Qn(x)}n_0 by [a,b] [a*,b*]
1 1 - =
and [a',b'] respectively. That is, a lig»wxn.l, b lig_mxn’n
etc. From Corollary II of Theorem (4.2.1) we can obtain a number of
interesting results about the relative position of a, a*, al, bl, b*

and b. First, if [ e¢(-~, a] and 1 -8 > 0; or ¢z e[b,”) and

l1-8<0; or s=1 and r > 0 then
a < a%* < al < b! < b < b¥%,

Second, 1f ¢ e¢[b,») and 1 -8 >0; or [ e(-~», a] and 1 - 8 < 03
or s=1 and r < 0; then
a* < a < al <bl <bk¢cb.

And third, if ¢ ¢(a,b), then 1f 1 -8 > 0

a* < a <al <bl <b< b
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and 1f 1 -8 <0
a<at<al <bl cb* <b.

We wish to obtain criterion that will enable us to replace <

by either < or =.

Theorem (4.2.2). For all integers n 2 0,

1) Rn(x;s.r) has all of its seros in (a,») if and only if

R (a)
1im __E—_-T zA<r - (s-1)Rj(a),

e Qn-l(a

and (11) Rn(x;s,r) has all of its seros in (-=,b) if and only if

- Rl‘l (b)
r - (s-1)R;(b) s B = lim TR O)

n-1

where A(B) must be replaced by -=(+*) in the case a = -o(b = 4+=),

Proof: From Equations (4.1.1), (4.1.3) and (4.L.4) we obtain

n
Rn-l(x) _ Rn(x) . 112 M
Q,_,(®) Q. (® Q,_,(x)Q _, (x)

(46.2.6)

Thus for all n 2 2 and x 2 Db

R _; (0 . R (x)

Q,_p(x) Q,_; ()

> 0.

Thus B exists and by Equation (4.1.5)

Rn(b;s.r) Rn(b)

Qa1 ® " ®

+ (s-1)R;(b) - r.
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Therefore, if B 2 r - (s-1)R;(b), then for alln 21
Rn(b;l.r)/Qn_l(b) > 0 and therefore, Rn(x;s,r) has all of its
zeros in (-=,b).

Conversely, 1f for all n 2 1 Rh(x;l,r) has all of its zeros
in (-»,b), then Rn(b;s,r)lqn_l(b) > 0 and therefore by Equation

(4.1.5) for all n 21
Rn(b)
Gy

Therefore B 2 r - (s-1)R)(b).

+ (s=1)R;(b) - r > O,

The proof of (1) 1s similar and is thus omitted.

Q.E.D.

4.3 DISTRIBUTION FUNCTIONS. From the theory of continued

fractions it follows that Qn_l(z)/Rn(z) and Qn_l(z)/Rh(z;a.r)

are the nth convergents of the continued fractions

SN U IOt IR RO
(4.3.1) K@) = 17257 < |3, |7es
and
. 1 Az I A3
(4.3.2) K*(z) = |s(z4c))-r ~ |z#c; ~ |z+e3

respectively. Qn(z) is the denominator of the nth convergentof

the continued fraction
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D N
z4cy - |z+c3 - |z+c..

4.3.3)  Ki(2) =

We will denote by o(t), o*(t) and o;(t) the solution of the
moment problem associated with {Rn(x)}n_o, {Rn(x;s,r)}n_o and

(Qn(x)}:_o respectively.

Theorem (4.3.1). If o(t) <8 the solution of a determinate

moment problem, then go ts o*(t) and oy(t). In this case if ¢
i8 the aero of (s-1)Ry(x) - r then,(a) no two of the three
distributions have a common point of discontinuity except possibly
at £; (b) o(t) has a discontinuity at ¢ if and only if o*(t)
has a discontinuity at ¢. If o(t) has a discontinuity at ¢

then o)(t) does not have a discontinuity at ¢.

Proof. Because o(t) 1is the solution of a determinate moment
problem, then by Lemma (1.1.2) o;(t) 1is also the solution of a
determinate moment problem. Hamburger [21]) showed that K(z) con-
verges completely if and only 1f o(t) 1is the solution of a deter-
minate moment problem (see Shohat and Tamarkin (34, Thm. 2.10]}).
Thus K(z) converges completely. By Carleman's Thm. (see Shohat
and Tamarkin (34, pp. 59-60]), K*(z) also converges completely.
Thus o*(t) 1is the solution of a determinate moment problem.

Let us define,

n+l 1/2

T L I

(x)
1=3 1

n-
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n+l 1/2
p(x) = | n 2 R_(x)
n {m2 i n
n+l 1/2
PA(x) = | n A R (xis,r)-
1=2
[ oo -]
*
la, ()} 2o» (P ()} _, and {p*(x)} _, are the polynomial sets
orthonormal with respect to the distribution function o(t), a(e)
and o*(t) respectively. Because o(t) 1is the solution of a
pa 2
determinate moment problem then by Lemma (1.1.3) ) lpn(x)l
n=0
diverges at all points of continuity of o(t) and converges at
all points of discontinuity of o(t). The same is true for
bog 2 pos 2
Z ]qn(x)l and Z |p:(x)| with respect to the distributions
n=0 n=0
o1(t) and o*(t).
By Equation (4.1.5), it follows that if (1-8)R}(E) - r # 0 and
@ 2 pot 2 pat 2
any two of ) Ipn(ﬁ)l ) |qn(€)| or J lpz(i)l converge,
n=0 n=0 n=0
then the other one must also converge. Thus if any two of o1(t),

o(t) or ox(t) ?ave a common discgntinuity € and (1-8)Rj(£) - r ¢4 0
then ] Ipn(c)l and ) an(E)I both converge. This contradicts
n=0 n=0

Lemma (1.1.4). Thus part (a) is proven.
By Lemma (1.1.3) o(t) has a discontinuity at ¢ the zero of

had 2
(1-8)R1(x) - r if and only if [ lpn(()l < », But by Equation (4.1.5)
n=0

we have,

® 2 ® 2
p )] = T |p* (0)] -
nZO n n=0 °

Therefore, o*(t) has a discontinuity at ¢ if and only if o(t)

has a discontinuity at .
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- 2 - 2
By Lemma (1.1.4) [ Ipn(x)l and ] an(x)l don't both
n=0 n=0
converge together. Therefore, if o(t) has a discontinuity at =z,

then ol(t) does not have a discontinuity at =z,

Q.E.D.

Next we construct an integral representation of o*(t). From
here to the end of the Chapter we assume that o(t) is the solution
of a determinate moment problem. Thus by Hamburger [21] K(z),

K*(z) and K;(z) converge completely to

(4.3.4) F(z) = J dote)

(4.3.5) FH(z) = j éggésl

(4.3.6) F)(z) = J do1 )

respectively. From Equations (4.3.1), (4.3.2) and (4.3.3) we have

F(z) = [R1(z) - ApF (2)])7}

F*(z) = [8R;(z) - ¢ - Aztl(z)]'l.

By eliminating F);(z) from these last two equations we obtain

F(z) .
1+[(s-1)R, (z)-r])F(z)

(4.3.7) F*(z) =
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We now use the same procedure as Sherman [29] to prove the following

theorem.

Theorem (4.3.2). If the analytic continuation of F*(z) ie

regular on (xg,x) then
X0

1 F(u)
o*(x) - a*(xg) = 3 I Im T G-DR, @)-tIF ) du.
X

Proof: By using the Stieltjes Inversion Formula (see Shohat and

Tamarkin [34, p. xiv]) we obtain.

. J Im F*(u+iy)du
y+0 x

EN

X0
(4.3.8) o*(x) - o*(xg) = 1lim

vhere o#*(t) has been normalized by

ore) = ZAEH)04 ()

Now consider the rectangle R with vertices xp, x, x + iy,
x9 + iy. PF*(y) 1s known to be regular in any closed region of the
complex plane that doesn't contain the real axis (see Hamburger [21])
and by hypothesis F*(z) 1is analytic on [xg,x]. Thus by Cauchy's
Integral Formula we have

X0 .
y x 0

I P& (u)du + I F*(xq + iv)dv + I F*(u+iy)du + I FA(x+iv)dv = 0.

x

0 x0 y

Because F*(z) 1is analytic in the rectangle R we have
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y
lim I Fé(xg+iv)dv = 0
y0 ‘0

and

0
lim J FP*(x+iv)dv = 0.
y+0 y

Therefore, by Equation (4.3.7)
X0

o*(x) - o*(xg) = lim %J In F*(utily)du
y+0 x

ER

X0
I Im F*(u)du
x

x, 4
- F(u)
L Im {1—0-[(.-1){1(0)4]1'(\1)} du.

A=

Qo ‘.Do

We obtain from this last theorem that if

F(u)
1+[(s-1)R; (u)-r]F(u)

is analytic on [a*,b*] then {Rh(x;s,r)}:_o has the weight function

o < F(u) }
1+[(s=1)R; (u)-r]F(u)["*

Let us denote the Spectrum of a(t) by Sp(o(t)) and define it by
Sp(o(t)) = {x € R'|o(x+e) - o(x-€) > 0, ¥ € > O},

It is easy to show that Sp(o(t)) 1is a closed set in R). The next

theorem gives us some properties of Sp(o*(t)).
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Theorem (4.3.3). If o(t) is the solution of a determinate

moment problem and is constant on the interval [a,B8], then:

(a) If ¢ the zero of (1-8)Ri(x) + r does not belong to
(a,B), then there is at most one point of Sp(o*(t)) in (a,B);
if ¢ does belong to (a,B), then there is at most two points of
Sp(o*(t)) in (a,B).

() Let £ ¢ (a,B). € € Sp(o*(t)) <if and only if
Res FA(t) > 0 and F(E) = (x-(s-1)R ()7L,

t=§
() If € e (a,8) D Sp(a*(t)) then

F(t)

ok (E40) - o*{(£-0) = Esz 1+((s-1)R) (t)-r]F(t) °

Proof: By Theorem (4.3.1) o*(t) 1is the solution of a determinate
moment problem.

(a) The first and second part of (a) are proved similarily. We
shall only prove the first part. That is, let ¢, the zero of
(1-8)R; (x) + r, not belong to (a,B). If the number of pointe in
(a,8) ) Sp(o*(t)) is greater than one, then ty noting the construction
of the natural representation for o*(t) we obtain the existence of
a positive integer ng such that for all n 2 n, Rn(x;s,r) has
two or more zeros in (a,B8). If we let (a,B) be the largest open
interval containing (a,8) such that o(t) 1is constant, then by
Theorem (4.2.1) and by noting the construction of the natural repre-
sentation of o(t) we have that for all n 2 ng Rn(x) has two or
more zeros in (5,5). This is a contradiction (see Szegd [35]) Thm.

(3.4.12)).



104

(b) Let & e Sp(o*(t)) () (a,B). Because o(t) is constant
in [a,B] it is well known (See Szego [35] Thm. (3.41.2)) that
Rn(x) has at most one zero in (a,B). Therefore by Theorem (4.2.1)
R:(x) has at most 3 zeros in (a,B). Because o*(t) 1is the
solution of a determinate moment problem and by noting the construct-
ion of the natural representation of o*(t) we have that (a,8) N
Sp(o*(t)) has at most three points. Thus £ is an isolated point
in Sp(o*(t)). Choose x; and x belonging to (a,B8) such that
(€} = (x0,x) Vsp(o*(t)). Let x + 1y, xq + 1y, xo - iy, x - iy,
where y > 0, be the corner points of a rectangle R. From Equation
(4.3.5) we see that F*(z) 1is analytic everywhere in and on R
except at £. Now apply Cauchy's residue theorem to F*(z) on the
boundary of the rectangle R. We obtain

XQ

y
(4.3.9) J [F*(u+iy) - F*(u-iy)]du + { J [FA(x+iv) - F*(xg+iv)]ldv
x
=y

= 271 Res F*(z).
z=f
It follows from Equation (4.3.5) that F*(Z) = F™Z ; thus Equation

(4.3.9) becomes

m
% J [F* (x+1iv)-F* (xg+iv)]dv.

z=§ 0

1 [ *o
p Im F*(u+iv)du = Res F*(z) +
x

By using Equation (4.3.8) and the fact that F*(z) is analytic on

the rectangle R, we obtain
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(3.3.10) o*(x) - a(xg) = Res {1'0-[(--1)9:8;-:]?(27}

g=§

> 0.

Therefore, from Equation (4.3.7) we also have that
i -1
(4.3.11) F(E) = (r-(s-1)R1(E)) "

This shows that 1f £ ¢ (a,B8) N Sp(o*(t)) then Equation (4.3.10)

is satisfied and Res F*(z) > 0. The proof of the converse is
2=£

similar and is thus omitted.

Part (c) follows directly from Equation (3.3.10).

Q.!.DI

From Theorem (4.2.2) we see that if r - (s-1)R;(b) > B =
%ig Rh(b)/qn—l(b) then there exists an N such that the largest
gero of RN(x:s,r) is in (b,»). Therefore b < b* and from
Theorem (4.2.1) for all n 2> N, Rn(x;s,r) has one and only one
of its zeros in (b,b*). Thus o*(t) 1is constant in (b,b%)
and therefore o*(t) must have a jump at b*. This jump can be
found by using the results of the last Theorem.

We will use some of these results in the next chapter to study

one of the }E polynomial sets.




CHAPTER V

SOME PROPERTIES OF THE POLYNOMIAL SETS IN X

5.1 GENERAL PROPERTIES. In this chapter we wish to give some

relationships that the polynomial sets in 2. satisfy. In the last
part of the chapter we will study in some detail two of the poly-
nimial sets in L.

We first give some general properties that a number of the
polynomial sets in < satisfy. In Chapter III we have found for

all polynomial sets {An(x)}:_o that belong to Z the sequences

(bn}:_l, {An}:_z and {an}:_l such that
Ao(x) =1 Al(x) = 2b1x
(5-1.1)
A (x) = 2b xA (%) - A AL (X) (n22)

and for n 2 0

® g n+k+l
(5.1.2) w(x)A_(x) ~ k-zlo(izlai)( A Ay /By Loy ().

where w(x) 1s the weight function for {An(x)}:_o. If we take

n=0 1in relation (5.1.2) we obtain

f if n = 2k
1 k
I Un(x)w(x)dx =

-1
0 if n=2k +1
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k ©
where f = izlui)‘i+l/b1+1. By checking the sequence {fk}k-l for
L]

each of the elements in & it is easy to see that {fk}k-o is
eventually monotonic and liﬂwfk = 0, Thus it follows that
z (fn - fn+1) is absolutely convergent and therefore by Theorem

n=0
(2.2.1) w(x) 1is continuous and has the representation

w(x) = % mk-z-o kaZk(x) (-1 < x < 1),
For some of the polynomial sets we can say more about their
weight function. By checking the {fk}:-l for each of the elements
in 2 one finds that

o0

I ol -f | <=

n=0
for all elements in S except {Qn(x; Y, 1:)}:_o where 4/3 <y < 2
and P:\(x) where 0 < A < 1/2, Thus by Theorem (2.2.1) part (c)
it follows that if {An(x)}n_o € 2 and {An(x) }n-O is neither
{Q (x; vy, r)} where 4/3 <y < 2 nor {Px(x)}w where 0 < A < 1/2

n n n=0 -

then the weight function for {An(x) }:_0 is continuously different-
iable on (-1,1). But we know that the weight function for

A-1/2

{Pg(x) }:.0 1s  (1-x2) which is continuously differentiable

on (-1,1) for 0 < A. Thus we have the following theorem.

Theorem (5.1.1). (i) If (An(x)}:_o e 2 and {An(x)):_o

i8 not {Qn(x; Y, r)} where 4/3 < y < 2 then the weight function

for {An(x)}:_o i18 oontinuously differentiable on (-1,1).
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(11) The veight funotion assooiated with {Q_(x; v, D} g
where 4/3 <y < 2 1is continuous on (-1,1).
(111) For all {A_ (0} _o ¢ 5 its veight function w(x)

has a representation

w(x) = i ixZ } £,Uy () (-1¢<x< 1),
k=0
where fk - 1:1°1A1+1/b1+1’

This theorem gives us some properties of the weight function

in (-1,1). We wish to investigate what Lipschitz condition the

weight function satisfies on [-1,1]. We first need the following

Lemma.

Lemma (5.1.1). If

Ax? ] £U,, (x) (-1 ¢ x<1)
k=0

w(x)

T k|| <=
k=0 K
then w(x) satisfies Lipschits condition of order 1/2 on [-1,1].

Proof: From well known properties of the Trigonometric

functions it follows that

o0
2] |f, cos(2k+1)e sin(2k+1)h|
k=0

|w(cos(8+h)) - w(cos(6-h) |

A

A

2|n| [ (ke (£, |
k=0

A

M|h|.
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Thus w(cos 8) satisfies a Lipschitz condition of order 1 on [0,7].
Thus by Lemma (2.2.3) w(x) satisfies a Lipschitz condition of

order 1/2 on ([-1,1].

Q.E.D.

Again by checking the sequences {fk):-o for each of the

elements in £ it is easy to show that
k§0k|fk| <

for all elements of J_ except {Qn(x; Y r)}:_o with y > 1/2 and
(Pg(x)}:_o with O < A < 1. Thus by Lemma (5.1.1) it follows
that the weight function in these cases must satisfy Lipschitz
condition of order 1/2 on (-1,1]. For {Pi(x)}:_o we know that
the weight function is (l-xz)A-llz. Thus, for 1/2 < A <1,
the weight function satisfie Lipschitz condition of order X - 1/2
on [-1,1] and for A = 1/2 the weight function satisfies
Lipschitz condition of order 1 on [-1,1] and thus satisfies

(]
Lipschitz condition of order 1/2 on [-1,1]. For {Qn(x; Y, r)}n_o

it can be shown that

-26
fn’o = 0(n ) as n *+ =,

vhere 6§ = lil. This follows from the fact that

k

£ - 311 -}—;—2— (kr-ksn< (k+1) (r-1))
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and therefore

¢ <_z{&£l
n~- TI(96) 28
n
where TI(x) 4is the Gamma function and y is the Euler constant.

It can be shown that for all ¢ > 0

1 as n > @,
£, f 0(n2(6+e))

Thus by Theorem (2.2.2) the weight function does not satisfy a
Lipschitz condition of 1/2 on [-1,1] for y > 1. From these

remarks we have the following theorem.

Theorem (5.1.2). Let {An(x) }:-0 be a polynomial set in Z.

(A ), i neither (Q (xi v, o with v > VZnor I "

with A ¢ (0,1/2)U(1/2,1) if and only if (A ()} o has a weight

function that satisfies Lipschita condition of order 1/2 on ([-1,1].
The results of this last theorem are not sharp. That is,

there exists polynomial sets in 2 that are neither {Qn(x; Y, r)}:_0

with v > 1 nor (PA(0)) .o with X e (0,1/2)U (1/2,1) whose

weight function satisfies a Lipschitz condition of order greater

than 1/2. For example {Pi(x)}:_o with A > 1. We do not pursue

this problem any further.

From Chapter III we know the sequences {bn}n-l’ {An}n_2

and {an}m for each of the polynomial sets in S.. Thus by using

n=1

the results of section (2.3) one can easil¥ find the moments,

orthogonality relation (ie the value of J (An(x))zw(x)dx), and
ol

the three term recursion relation that each polynomial set in p

satisfies.
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5.2 THE POLYNOMIAL SET {R3(x)}__ . We showed in Theorem

(3.4.2) that 1if {An(x)}:_o is a polynomial set in 2. that

satisfies the three term recursion relation (5.1.1) with b; = bz

then
Ag(x) = 1 Aj(x) = 2b)x
A G = 2byxh (0 - B3[1-Cov2/b) T NIA 0 (@2 D),
and
(1-y,/b1)*
%-

b, [(1~y,/b;)%-1]

vhere |1 - Yz’bl| <1 and vy, = A2/b2. This polynomial set is

ﬂ [ ]
equivalent to { n(x)}n_0 defined by
n
Kl(x) = A (x)/ (b)),
Thus {Rg(x)}:_o has the three term recursion relation

Rg(x) -1 Rg(x) - 2x
(5.2.1)

e = 288 (0 - (1-¢""HRL 0 @2 2).
{l:(x) ):_0 1s a polynomial set in 2 with

o = 99/(a"1).
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Theorem (3.2.1). {R:(x)):_o has the following generating
funotion,

q n
o Ri(x)t ®

n = 1 (1 - 2q1xt +q
n=0 [q]n i=0

21,2y-1

where [qly = 1; [al = (1-0)(1-q?) .-+ (1-q) for n2 1.

Proof: From the three term recursion relation (5.2.1) we

have
: RY, o™ .5 2283 ()™ e -g"R3_; ™
n=0 [q]n n=0 [qln n=0 la],
i.e.
® n+l,..q n+l q n q n-1
(1-q )R _(x)t o RI(x)t © R _(x)t
n+l - 2xt Z n - ¢2 z n-1 .
n=0 al 4 n=0 ([q] =0 [q] _,
i.e.
o (-qMrRI)" o gI0)t" o pdx)e"
n = 2xt n - tn Rn
n=0 lal, n=0 (q] n=0 [q]
If we let
q n
o gp-(x)t
P(x,t) = ] — .
n=0 [q]
we obtain
F(x,qt)
P(x,t) =

1-2xt+t?
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This becomes

F(x,t) = = (1-2qj'xt-0-qzj't:2).l
1=0 n
- R:(x)t

=0 [q]

Q.E.D.

If we let x = cos 6 in the generating function we obtain

q n
o R'(cos 06)t o _ _
n - 7 (l-qm(eie+e 1e)t+q2mt2) 1
n=1 [q]n m=0
- (l-qmeiet)-l(l-qme-iet)-l
m=0
© n (n-2r)6
-7 J "

n=0 r=0 [q] _ [4],

Therefore,
q T om
Rn(cOI 0) = rzo [r]an_zr(x)

where {Tn(x)}:-O is the Chebychev polynomial set of the first

kind, T 00 = T,() for k21, and [ = (4] /Cla)_ [a]).
From Theorems (2.1.1),(3.4.2) and (5.1.1) it follows that

{R:(x)}:_o is orthogonal on [-1,1] with respect to the continuously

differentiable weight function w(x) that has the following represent-

ation.

w(x) = /1-x2 Z (-l)qu(k+l)/2U2k(X) (-1 <x<1).
k=0
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By Theorem (2.3.2) and Corollary I of Theorem (2.3.1) we have the
following orthogonality relationship for {R:(x)}:_o
1

J P:(x)P:(x)w(x)dx - am’n% [al

and the moments associated with w(x) are given by,

. 0 if r=2n+1

J xrw(x)dx -

-1 " 2m\ m-1l [2m a1 et
p2mtHL + 1 (-1)7 "la) g+ ) 1f r = 2m.
m i=0 \1

5.3 SOME PROPERTIES OF (P_(x; 8, r)}__,. We shoved in

Theorem (3.4.4) that if {An(x)}:_0 is a polynomial set in Z
and {An(x)}:_o satisfies the three term recursion relation

(5.1.5) with b; ¥ b and by = Ap/by < 2b; then
Ag(x) = 1 A;(x) = 2b)x
2
An(x) = 2b2xAn-1(x) - bzAn_z(x) (n 2 2),
and
-1 -1
a (by) = - (b2) .
1f we define the polynomial set (P“(x; 8, r)}:_o by
Pop(x; 8, r) =1 P;(x; s, r) = 28x - r

P (x; 8, r) = 2xP , (x; s, r) - P _,(x;s, 1) (n 2 2),
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(] @
we have that {An(x)}n_o 1s equivalent to {P (x; s, }ao
if r=0 and s> 1/2. In fact A (x) = (b2)"_(x; bi/bz, 0)
for n=0,1,2.... Thus if s > 1/2, then (P _(x; s, O} g
is orthogonal on [-1,1] with respect to the weight function

given by (see Theorem (2.1.1), (3.4.4) and (5.1.1))
(5.3.1) v = Az | A% U, (-1 < x < 1).
k=0 °

From Corallary I of Theorem (2.3.1) we have the orthogonality relation

. 8 %'Gn,m (n, m > 0)
(5.3.2) J Pn(x; s, O)Pm(x; s, 0) w(x)dx =
- 7 a0 (m 2 0),
and the moments are given by
0 (r = 2m + 1)

1
J xtw(x)dx -

A 2 -1 2@, . im-1-1
! sy ')+1—-£z"z '\ﬂ“ ., (r=2m)
2 m ® 120 \1 8

where m =0, 1, 2 ... and 8 > 1/2,
Horadam (see [24], [25] and [26])) introduced a sequence of

numbers {wn(a, b:p, q)} defined by
Wo = a W]'b

a© PYp-1 T Wn_2°
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Therefore Pn(x; s, r) = wn(l, 28x - r:2x, 1). From Horadam's
work (Loc. cit.) one can easily deduce a number of identities
that {Pn(x; s, r)}:_o satisfy.

For example,

T . n 1+(2(s-1)x-r)t
(5.3.3) nZo P (x; 8, D)t TS .
(5.3.4) Pn+n(x; s, r) - [2x(.—1)-t]Pn+m_l(x; s, r)

=P (x; s r)P (x; 8 r)-P , (x;s, ©)P _,(x;s, 1),

(5.3.5) Pn(x; s, r) = % i(x + /x2-D™ + (x - /x2-nH)"

¢ 28=D)xr L T L (x - E2SDM)).

Vx2-1
By letting x = cos 8 we obtain from Equation (5.3.5)
(5.3.6) Pn(x; 8, r) = sUn(x) - rUn_l(x) + (s—l)Un_z(x).

Of course Equations (5.3.3), (5.3.4), (5.3.5) and (5.3.6) are
valid for all values of 8 and r. We know that Pn(x; s, r) 1is
orthogonal on (-1,1) 1if r =0 and s > 1/2. Thus by using
Equation (5.3.6) and Equation (A.2.4) we find the weight function

for {Pn(x; 8, 0)}:_0. 8 > 1/2, to be
wix) = s(1-x2)1/2[48(s-1)x2 + 1]-1.

By combining this with Equation (5.3.1) we obtain
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susa-Dx2 + D7F = [ (-0 /) B, 00),
k=0

which converges uniformily on [-1,1].

We now wish to relax the condition r = 0 and s > 1/2 and
use some of the results of Chapter IV to obtain the weight function
and the true interval of orthogonality of {Pn(x; s, r)}:_o. Let

us adopt the notation used in Chapter IV. Thus, Rn(x) = Z-nUn(x) -

Qn(X).

Ro(x; 8, r) = 1, Ry(x; 8, r) = 8x - %-,
Rn(x; s, r) = an_l(x; s, r) - % Rn_z(x; 8, r) (2 2),
R_.(z) 2U0 . (2)
(5.3.7) F(z) = lim n-l 7, lm “n-17
Rn(z) Un(z)

and
Paz) = F() [1+[(s-D)z - SIF ()]

where z ¢ [-1,1). Because Rn(x; 8, r) = Z-nPn(x; s, r), therefore
the true interval of orthogonality of {Pn(x; 8, r)}:_o and
{Rn(x; 8, r)} are equal and also they are orthogonal with respect
to the same distribution function. By Theorem (4.2.2) and because
the set of all zeros of Un(x) for all n > 1 are dense in [-1,1]
a necessary and sufficient condition for the true interval of
orthogonality of {Pn(x; 8, r)}:_0 to be [-1,1] is that

R_(-1)

n r
lig*c 6;:I?:IY 3¢ (s-1)
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and

must be satisfied simultaneously. Thus the true interval of
orthogonality of {Rn(x; s, r)}:_o is [-1,1]) 1f and only

if
(5.3.8) -(28-1) < r <28 - 1.

Let us first consider the case where the true interval of
orthogonality of Rn(x; s, r) 1is [-1,1]. That is relation (5.3.8)
is satisfied. In order to find the distribution function o*(t)
we analyse F#*(z). From Equation (5.3.7) and the well known formula

Un(z) = gin(n+l)6/8in 6, where <cos 6 = z, we obtain

[z+(22-1)1/2)"-[2-(22-1)1/2)"
[2+(22-1) /2] (- (22-1)1/2)

F(z) = 2 11%+m poo gl
It is easy to show by letting z = cos 6 that 1f =z ¢ [-1,1], then
|z + /22-1| # |2z-vzZ-1|. Therefore F(z) = 2(z+(z2-1)1/2)"1  yhere
the sign of the radical is plus if |z + Vz2-1| > |z - /z2-1| and
minus if |z + vz2-1| < |z - /2Z-1|. That is, the Riemann Surface
for the function z + (z2-1)!/2 has two sheets; we will adopt the
convention that for all z ¢ [-1,1), z + (z2-1)1/2 winl represent
the branch with maximum modulus. Therefore, we have from Equation

(4.3.7)
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(5.3.9) F*(z) = 2[2(s-1)z - ¢ + z + (22-1)}/2)7L,

The analytic continuation of F#*(z) 1is regular on [-1,1]. Thus
by Theorem (4.3.2) the weight function of {Pn(x; 8, t')}::.° in

(-1,1] is
In{2[(2s-1)x - r + (x2-1)1/2]7}},
vhich equals
2/T=xZ [4s(s-1)x? - 2(28-1)rx + r2 + 1]°L,

Therefore, {Pn(x; s, r)}:_o is equivalent to one of the Bernstein-
Szego polynomial sets, (See Szegs [35], pp. 31-33).

Now let us consider the case when the true interval of ortho-
gonality [a*,b*] of {Rn(x; 8, r)}:_o is not [-1,1]. We know
from Theorem (4.2.1) that there can be at most one zero of Pn(x; 8, r)
greater than 1 and at most one zero less than -1. Therefore, we obtain
from Theorem (4.3.3) o*(t) has at most one point of its spectrum
in each of the sets (-», -1) and (1, «). By using the same
technique as we used to obtain Equation (5.3.8) we have that the

spectrum of o*(t) has a point in (-», -1) 1if and only if
1-28>r
and it has a point in (1, =) if and only if

r>2s ~-1.
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From Theorem (4.3.3) we know that the points in the spectrum of
og*(t) that are not in ([-1,1] are located at the poles of order
one of F*(z). First let us consider the case s ¥ 1. The

possible poles of F*(z) are

L= (28-1)r + vr2-4s(s-1)

(5.3.10) z

4s(s-1)

and

(5.3.11)

By noting that
(28-1)z, -t + (zi-1)1’2 -0 (1=1, 2)

and by using Equations (5.3.10) and (5.3.11) we obtain that

z, + (zi-l)ll2 equals either

r - /r2-4s(s-1) 4f i=1
28

(5.3.12) -2(s-1)z, + T = {

r + Vr2-4s(s-1)

s 1f 1 =2

\

or

(¢ + /iTha (o)

2(s-1) it 1=1

(5.3.13) 2u1 -r= 4

r - /r2-4s(s-1)

3le-1) 1f 1 =2,
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If we rationalize the denominator of F#*(z) we obtain from Equation

(5.3.9)

2[28z-r-(z+(z2-1)1/2)]
48 (8~1)z2-2(28-1)zr+r2+1

F*(z) -
By comparing this with Equation (5.3.12) and (5.3.13) we see that
F2(z) has a pole of order one at zi(i =1, 2) if and only if
-1)¥2 =_2(e-
z, + (z1 1) 2(s 1)z1 + r,

Now by using the fact that F*(z) is the branch of

2[28z-r- (2+(z2-1)1/2)]
4s(s-1)z2-2(28-1)zr+r2+l

(5.3.14)

which corresponds to the maximum modulus of 2z + (22-1)1/2 we

obtain that F*(z) has a pole of order one at z; 1if ard only if

r + /ré-4s(s-1) 8

r - /r2-4s(s-1) s-1

(5.3.15) <1

and a pole of order 1 at 2z, 1if and only 1if

r - /r2-48(s-1) s _
r + /ré-4g(s-1) s-1

< 1.

(5.3.16)

By using standard techniques it is easy to show that if z; 1is a

pole of F%*(z), then
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Res F*(z) = = + (28-1) /rZ2-4s(s-1)
z=z) 28(s-1) /r2-4s(s-1)

and {f z, 1s a pole of F*(z), then

Res F*(z) = —=F (28-1) /r2-4s(e-])
z=22 2s(s-1) /r2-4s(s-1)

Thus by Theorem (4.3.3) o*(t) has a jump at 2z, equal to the
ge!IF*(z) if and only if s and r satisfy Equation (5.3.15)
and it has a jump at z, equal to the gsng*(z) if and only
if s and r satisfy Equation (5.3.16).

Next let us consider the case when s = 1. In this case

the only possible pole is at

z3 = 2-1(t + r-l).

z3 + (z%-l)l/2 is equal to r or r’l. From the fact that F*(z)

is given by (5.3.14) with s = 1 we see that F*(z) has a pole
of order one at z3 if and only if |r| > |%|, that is |r| > 1.
If z3 1s a pole of F*(z) then

(5.3.17) Res F#(z) = 1 - —15 )

Z=Z3 r
Thus by Theorem (4.3.3) o*(t) has a jump at %(r + %) equal

to 1 - —%— if and only if
r

le] > 1.
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By Equations (5.3.8), (5.3.15) and (5.3.16) we have the follow-
ing two criterions for the true interval of orthogonality of
{Pn(x; s, r)}:_o to be [-1, 1];

(1) - (28-1]) < r <28 -1

and
(11) (r - /r2-4s(s-1)) (s-1) <1
(r + /r2-48(s-1)) s
and

( + /TG (eI g--u‘ 1

(r - /rZ-4s(s-1)) s )
In (11) for the case s = 1 we take the limit as s + 1 to obtain
the required criterion. It can be shown directly by considering a
" number of cases (0 < s < 1/2, 8 =1/2,1/2 <8 <1, 8=1, 8>1;
and r <0, r=0, r > 0) that criterion (i) and (11) are equivalent.

Next we wish to obtain the differential equation which Pn(x; 8, r)

satisfies. By using the well known differential equation and three
term recursion relation the Un(x) satisfies and by Equation (5.3.6)

we obtain for n > 2,

(1-x?)P"(x; 8, 1) - 3xP(x; 8, T)
(5.3.19) .
= [r(n2-1) - 2x(sn?+28n)]U__, (x) + n(4s+n-2)U _, (x).

By using the well known equation

(l-xz)U;(x) + nxUn(x) = (n+1)Un_1(x) (n21)
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we obtain

(1-x?)P!(x; s, r) + nxP_(x; 8, r) = (28-1-rxtn)U__, (x)
(5.3.20)
+ n((a-1)2x-r)Un_2(x) (n > 2).

From the three term recursion relation that {Un(x)}:_o satisfies

and Equation (5.3.6) we obtain
(5.3.21) Pn(x; 8, r) = (st-r)Un_l(x) - Un_z(x) (n 2 2).

Next we combine Equations (5.3.20) and (5.3.21) to obtainm,

(l-xz)P;(x; s, r) + n[(2§-l)x-r]Pn(x; 8, r)
(5.3.22)

= [28-1-rx+n+n(28x-r)[2(s—l)x-r]]Un_1(x),
and by combining Equations (5.3.19) and (5.3.21) we obtain

(l-xZ)P;(x; s, r) - 3xP;(x; 8, r) + n(n+és—2)Pn(x; s, r)
(5.3.23)

= - [r(1+48n-2n) + 8(1-s)nax]Un_1(x).

Let 28 - 1 = v. By combining Equations (5.3.22) and (5.3.23) we

conclude that Pn(x; s, r) satisfies the differential equation
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(1-x2) [n+v4n (v2-1)x2-r (x+2nvx-nr) )y"
- {x(3v+2nv24n(v2-1)x2) - r[(1+2x2) (142nv) - 3norx]ly’

+ n{ (n+2v) (n+v) + n2(vZ-1)x - r[3nx+2n2vx-r(n2-1) ] }ly=0.

We next find a Rodrigues' type formula for Pn(x; s, r).

The Schlaefli's representation for Un(x) is

1" @+)! @-22)"12

2n+1(2-1)n+1(1-x2)1/22n1 T (z-x)n+1

v, (x) =

where T 1s any simple closed curve containing x. By using
Equation (5.3.6) we obtain the Schlaefli's formula for Pn(x; 8, r)

to be

" ] _a! 4; [1n+1)s(1-z2)“*1’2
n+l

P (x; 8, r) = v — 1
n 2" a-x)1/2 ] ont (20+1) (20-1) (z-x)

. r(l_zz)n—l/Z . (‘_1) (l_zzln-3/2 ds
(2n-1) (z-x)® n(z-x)*"!

where I 1is any simple closed curve containing x. Thus the

Rodrigous type formula is

n+l/2

Pn(x; 8, r) =

(-1)" d®  |s(n+1) (1-22)
e a2 ¢t | @ad1)2a-1)

+

r-22)" M2 | (s—l)(l-zz)“‘3’2(z—x12] ,
(2n-1) n
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By letting t = z-l in the generating function (5.3.3) we obtain

the integral representation

n

+. -1)-

Pn(x; g8, r) = E%I ;; t [t+2x(s-1)-r] dt
c 1-2xt+t2

where C 1is any simple closed contour about the origin oriented
in the positive direction and not containing x % /xZ-1.

It is easy to deduce from Equation (5.3.6) that
(5.3.24) Pn(x; s, r) = Tn(x) + [x(23-1)-r]Un_1(x).

Thus,
|Pn(x; s, r) | <1+ | x(2s-1) -r | n (-1 < x<1).

If we let 6 v=1],2...,n, be the n zeros of

n,v’
Pu(cos 8; 8, r) then from Equation (5.3.6) we obtain

cot né
n,v

= r csc O - (28-1) cot © .
1 n)v n

'V

As a final result we obtain a separation property for the
zeros of a special class of polynomials expanded in terms of
k- @ ]
{Pn(x; s, r)}n_o. Let us extend {Pn(x; 8, r)}n_o to {Pn(x; 8, r)}n__a

by extending {Tn(x)}:_0 to {Tn(x)} by Tn(x) = T_n(x);

(x)

n-—w
{Un(x)]n_0 to {Un(x)}n--m by U_l(x) =0 U_n(x) = - Un-2
and by using Equation (5.3.24). Let

n

Fn(c00 6) = kZoukan_kPn_ZR(co. 6; 8, r).
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If a > 0 and aj/ag, az/o; ... un/un_1 are increasing, then

v-1/2 w+1/2
n+l ’  n+l

exactly one zero of Fn(cos 8). 1If al >0 and a is completely

monotonic then the Vth zero ev of Fn(cos 6) satisfies

each interval ( ), v=1,2 ... n, contains

(v-1/2) T s 8 < o7 v=1,2.. [BD.

The first result follows from Equation (4.1.5) and a Theorem due to
Szeg8 (See Szegt [35) Theorem (6.5.1)). The second follows from
Equation (4.1.5) and a Theorem due to Fejér (See Szeg8 (35], Theorem

(6.5.2)).
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APPENDIX I

SOLUTION OF A FINITE DIFFERENCE EQUATION

In this Appendix we wish to exhibit some of the properties

of the solution of

h -1--°h—- (n21)
(A.1.1)

hl-f.

Lemma (A.1.1). If {hn}n-l

(a) if c ¥ 1/4

satisfies Equation (A.1.1) then

(d-1+2£) (14+d) ™+ (d+1-2£) (1-d)"

(A.1.2) h R
2{(d-1+zf)(1+d)“'1+(d+1-zf)(l-d)“'ll

n

where d = Y1-4c;

() if c=1/4

1 [1+(2f-1)n
(A.1.3) hy 5‘1{:2§?ZTT%Ei1)1 ’

Proof: Let hn - An/An_l. Therefore, we obtain from Equation

(A.1.1)
An+1 = Ah - CAn—l (n21)
where Ap = 1 and A = f. By the standard techniques for

solving finite difference equations we obtain the desired results.

Q.E.D.
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Corollary I. Let {h“}::_1 and c be as defined in Lemma
- 27Y a-AT0) if

hy = 27 01-/I%0) and lim h = 27 (14/TGc) otherwise.

(A.1.1). If c < 1/4 then lig*mhn

Proof: The result follows directly from Lemma (A.l.1).

Lemma (A.1.2). If {hn}°°

n=1 satisfies Equation (A.1.1) then

(a) if c > 1/4, then

hn = r[cos(nd® - A)]/cos((n-1)6-1),

Wh‘r‘ r s JE, tan 6 = m. and tan A = 1-2f ;
v4c~-1
(b) Zf 0 <c < 1/4, then
h =r cosh(nb-2)
n cosh ((n-1)6-1) °’
Wh‘l'e rs= /E’ tanh 0 = m and tanh A = 1-2f :
/1-4c¢

(¢) if ¢ <0, then

cosh (2n6-1)

h2n " T sinh ((2n-1)6-))

sinh ((2n+1)6-1)

th+1 = T T Cosh (2n6-1)
where r = /=c, coth 8 = Y1-4c and tanh ) = -2 .
Y1-4¢

Proof: Let

l+d.n 1-d\n
Bn = (d-1+2f)(—2-) +(d+1-2f)(T) .

This may be rewritten in the form



133

A1) B = 20D + d5hHm - LED (A7 - 5.

(a) If we let tan 8 = v4e-1, ¢ > 1/4, d = V1-4c and r = /e

ve get

Bn - 2d{%-tn(eine + e-ine) _ (1-2f) rn(eine - e-ine)}

2d
- 2drn{cos né + 1-2f sin né}.
vb4e-1
If we let tan A = 1-2¢ and k = 1 we obtain
Voe1 cos A

Bn - 2kdrncos(ne-l).

By using Equation (A.l1.2) we obtain the required results.

(b) If we let O <c < 1/4, d = /I=bc, r = /c and
tanh 6 = vYl-4c, then
Bn - 2d{%_rn(en6+e-ne) _ il%%ﬁl (ene_e—ne)}

1-2f

3 sinh ne}.

= 2drn{cosh nd -
If we let tanh A = d~1(1-2f) and sinh A = k™1, cthen

Bn = derncoah(ne-X).

By using Equation (A.1.2) we obtain the required results.

(¢) If we let ¢ <0, d= Vl-bc, T = /=c and coth 8 = Y1-4c,

then
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Bn - 2d{% rn(en9+(_l)ne-n0) - ° Ll%%gl (enﬂ_(_l)ne-ne)}

2n{cosh 2n6 - a-2f) sinh 2n6}

an = 2dr 3
B, ,; = 24r°"*!{stnh (20+1)6 - =20 con (204126},

1-2f 1
If we let tanh A = -3 k= “osh 1 then

B n " 2kdt2n cosh(2n6-1)

2

2n+l
an+1 2kdr sinh((2n+1)6-1).

By using Equation (A.1.2) we obtain the required results.

Lemma (A.1.3). Let c < 1/4, x; and x, be the emallest

and largest root of x> - x+c =0, and {hn}:-l satisfy

Equations (A.1.1).

(1) If 0<c < 1ll4 then (a) if x)< h} < xz, then
h <h ., and x) <h <X for all integers n 21, and

(b) if h; > x, then h > h and x; < h for all integere

n2>1.

(11) If ¢ <0 then (a) if 0 < h; < xp, then th-l <
<x, and h, > x; for all

hont1® P2n > Pops2r O < Popn 2n

positive integers n; and (b) if hy > xp, then h, >

hon < Pone2r Popnl

n.

Q.E.D.

h2n+1’
> x, and 0 < hy, < %2 for all positive integers
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Proof: The proofs of part (a) and (b) in (i) and (ii) are
similar. We will only prove part (a) of (ii).

We first note that xyx; = c and x; + x = 1. Let 0 < h; < xj3.

C [

hp =X =1 -§= -5
>1-c l—-+ 1
X2 X1
x; + x;
=l-elsm

= 0.

Thus h; > x;. In a similar manner it is easy to show that

x; < hy < x;. Also,

C
ha-hl-l"h—z'-hl

hp - ¢ - hjhy
- > 0.

hy

Thus hj3 > h;. From this we obtain

1 1
h“-hz--c E;—hl)

< 0.

Therefore h, < h,.

The results follows by an induction argument suggested by the

above.

Q.E.D.
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Corollary I. Let {hn}n_1 satisfy Equation (A.l.1).

(a) If 0 <c < 1/4 then h > 0 forall n>1 if and
only if h; 2 271 (1-/1%0).

(b) If ¢ <O then h >0 for all n>1 if and only if

hl > 0:
Proof: Let 0 <c < 1/4 and hn >0 for all n > 1. Assume
ny < 271 -/17%0).

Let x; and x; be as defined in Lemma (A.1.3). That is h; < x;.

- hy - c - h}
2 1 hl
<°.
Thus h; < h;. But
c(hn-l-hn-Z)
L ) .
n-1 n-2
Because hn >0 for n=1,2 ..., and hy; < h;, therefore
{hn}:-l is a monotonically decreasing sequence. But this contra-

dicts Corollary I of Lemma (A.1.1) that says

lim__ h_ = x,
nr>e n

if h) ¢ x;.
The other parts of the Corollary follow directly from Lemma

(A.1.3).



APPENDIX II

AN EXTENSION OF SOME RESULTS OF GERONIMUS

Let {An(x)}n_0 and {Bn(x)}n_o be two polynomial sets
orthogonal on an interval (a,B8) finite or infinite with weight

function w(x) and r(x) respectively. Geronimus [17] showed

that
8
(A.2.1) B (x) = izoun'iAn_i(x) n=0,1,2...),

where s 1s independent of n and A_k(x) =0 for k=1, 2 ...,
if and only if there exists a real polynomial P(x) of degree s

.such that
(A.2.2) w(x) = r(x)P(x).

We shall now investigate the relationship between w(x) and
r(x) in the case where s may depend on n, 80 that a generalization
of Geronimus' result may be found.

Suppose,

s§n)
(A.2.3) Bn(x) = 1_0°n,1An-1(‘) n=0,1,2...),

where 0 < 8(n) <n and a ¥ 0. Because {An(x)}:.o and

n,s8(n)
(Bn(x)}:_o are 0.P.S. on (a,B) with weight functions w(x)

-1
and r(x) respectively, it follows that w(x)An(x)(t(x)) has

the "formal {Bn(x)}:_o expansion"
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e g .
A.2.4)  w@A @ @EE)T Dl R T
vhere
8
(A.2.5) r, - j (Bn(x))zt(x)dx (a=0,1...),
a
[}
(A.2.6) “ - J (An(x))zw(x)dx (@=0,1...),
a
and °n+k,k =0 1f k > s(n+k).

‘Theorem (A.2.1). If m <is the smllest integer such that

forall n2>m, s(n) <n, then e(n) <m for all n > m.

Proof: By letting n = 0 1in Equation (A.2.4), 1t is
easy to show that w(x) (t(x))-l is a polynomial of degree

m almost evetywharé. Thus,

-1 -1
(A.2.7) A (x)w(x)(r(x))™" = ugom“(r“**) an+k’knh+k(x)
wvhere unh"anndam’k-Oifk>n. Thus
-
’n(x) - Z an,iAn'i(x) (II bd 0, 1 ooo).

k=0

vhere A_k(x) =0 for k=1, 2, ... .

Q.E.D.
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As an example of Equation (A.2.7) we shall show that if

A 1is a positive integer then

A-1
(-x2)*" /2R () = /I Lo £y Vs
vhere
22221 (q422) (1-2), (a+1),
(A.2.8) fk.n - me-}l)k!(n"'kfl)k

and (Un(x)}n_o, {P:(x)};;o are defined in section (1.2). Because
(l-xz)x-l/2 is the weight function for {P:(x)}:;o and both

V(P:(x)}:;o and {Un(x)}:_o are symmetric, we have

A-1
12" 2 x) - /T 1 £ ez ®  @=0,1..0,

wvhere
1

A -2 _e2yA-1/2,)
‘k,n - Il(l x2) Pn(x)Un+2k(x)dx.

By using mathematical induction on A and the two well known

equations (35, p. 84],

A
dP” (x)
2— -l
and
du_(x)

(-x?) —— = H2)u__, () - v, (0},
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it is easy to show that f: n is as given by Equation (A.2.8).
L]

Is there an example of when s8(n) = n for an infinite number
of integers n but not for all n? Suppose w(x)Aﬂ(x)(r(x))‘-1

" o "
has the "formal {Bn(x)}n_o expansion

(A.2.9) wGOA (0 (r() T v kzofk-n°n+*(“)
where,
-1 (8
fk,n - (tn+k) J W(x)An(x)Bn+k(x)dx (k 20, n20).
a
Then
e -1
B (x) = kzornfk,n_k(wn_k) A, () (n=0,1...),

where L and w, are given by Equations (A.2.5) and (A.2.6). By

noting that
1 -
j Q) V20 0y oax = Bm T2
4 " (F(20))2(n#2)T (n+1)
we obtain
r E P (x) (n=0, 2, 4 )
k-Ohk'n n-k % n s 2, e
U (x) =
n-1
In P (h=1,3,5...,
\ k=0 n 0
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where, 1f we put = = [“i"],

0 (k=1,3,6 ...; n=0,1,2 ...)

ben ™
(l-l)mF(A)(u-2n+A)F(n—n+1)
(k =0,2, ...; n=20,1 ..:).

U a'T(a-mhr+l)

In this case )\ 1s not an integer we see that r(n) = n 1if n is
even and r(n) = n -1 1f n 1s odd.

If instead of starting with Equation (A.2.3) we start with the

"formal {Bn(x)}:_o expansion"
-1 rfn)
w(x)A (x)(r(x)) = ~ Lo fk’nﬂnﬂ(x) ’

vhere f 40, fon"o and

r(n),n ’

1 (B
fk,n - (rn+k) 1 I w(x)An(x)Bn+k(x)dx
a
for n20 and k 2 0; r is given by Equation (A.2.5).

Theorem (A.2.2). If there existe integers m and q such that

r(m) = q, then forall n >0

(A.2.10) A (x)w(x) e kgofk.n'nﬂ(’) (a > 0).

Proof: By hypothesis Bquation (A.2.10) is true for n = m.
Thus w(x)(r:(x)).1 is a polynomial of degree q almost everywhere.

Thus Equation (A.2.10) follows.

Q.Ek.D.
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Theorem (A.2.3). If there exists a positive integer s such
that Equation (A.2.1) is satisfied, then there does not exist an

integer s;, independent of n such that
8]
A (x) = 1§oﬁn’13n_1(8)

where B_ (x) =0 for k=1,2....

Proof: If such an s, did exist then from the above
v(x)(r(x))"1 and (w(x))-lr(x) would both be polynomials

almost everywhere. This is a contradiction.

Q.k.D.

A simple example of the results of the above Theorea is provided

by the following well known relations for the Chebychev polynomial sets

of the first and second kind.

Tn(x) - Tn+2(x)

2/1-x2

AT U () =

T, = 27 @ - U, m).

By noting that {Un(x)}:;o and {Tn(x)};_o have weight functions
(1-:2)1/2 and (1—:2)-1/2 respectively and both are orthogonal

on (-1,1), then there does not exist a positive integer s

independent of n such that



s
Indeed, it is known [10] that

2
3To(x) +2 ) T, (x)
olx |‘leh

U (x) =
o a-1

2 T (x)
kzo 2kl
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(=0, 2...)

(a=1, 3...).




