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Abstract 
    In this paper, we present a new mathematical frame-
work for modeling texture images. Under this new 
framework, we prove that the Asymmetric Gray Level 
Aura Matrices (AGLAMs) of a given image have the 
necessary and sufficient information to represent the 
image. Using AGLAMs, a new similarity measure is 
defined, which is a one-to-one metric in the sense that 
zero distance between two images will guarantee that the 
two images are the same. To the best of our knowledge, 
none of the existing measures has this property. Applica-
tions such as learning for image retrieval and texture 
synthesis can be applied using AGLAMs. The experi-
mental results show that the new AGLAM-based dis-
tance measure outperforms existing distance measures in 
the above mentioned applications. 

1 Introduction 
 In statistical image modeling, one of the most popu-
lar and powerful tools is the gray level cooccurrence 
matrix (GLCM) approach. Indeed, image analysis, syn-
thesis, segmentation, and classification have been stud-
ied extensively using GLCMs [3, 5, 11, 13, 14, 19, 38]. 
However, one limitation of GLCMs is that they only 
capture the relationship between two pixels, and thus do 
not work well for structural textures [15]. The problem 
can be resolved by using gray level aura matrices 
(GLAMs) [9, 25, 24], which generalize GLCMs by using 
neighborhood systems to model the relationship between 
a set of pixels. However, in previous studies on GLAMs 
[9, 25, 24, 28], for no obvious reasons other than sim-
plicity, the neighborhood systems are always assumed to 
be symmetric. In the paper, we demonstrate that this 
assumption or restriction must be removed to allow 
neighborhood systems of arbitrary shapes for modeling 
general textures. Our work is the first attempt to give a 
systematic study on GLAMs that are defined on 
neighborhood systems with arbitrary shapes, the ap-
proach of which is called Asymmetric Gray Level Aura 
Matrices (AGLAMs). In fact, our work can be consid-
ered as a generalization of GLAMs for general texture 
modeling. 
 With the above motivation, this paper addresses the 
following problem: given a texture image X, can we rep-

resent it using a set of gray level aura matrices )(XA  so 
that texture analysis (e.g. texture similarity measure and 
texture classification) can be performed on )(XA  only 
and that the original image X can be faithfully synthe-
sized from )(XA ? 
 To further this goal, we have developed a mathemati-
cal framework for modeling texture images using 
AGLAMs. Under this framework, we demonstrate that 
the AGLAMs of a given image have the necessary and 
sufficient information to represent the given image. The 
fundamental theorem we prove in this paper is that: two 
images are the same if and only if their corresponding 
AGLAMs on all possible single site neighborhood sys-
tems are the same. 
 Based on the above theorem, the total number of 
AGLAMs required to accurately represent a given image 
is the same as the total number of pixels in the image. In 
practice, this is computationally expensive. However, for 
texture modeling, we have shown that a small number of 
AGLAMs calculated from a neighborhood system, 
which has a much smaller size than that of the image, 
can be used to effectively represent a texture image. 
 Texture image retrieval and learning as well as tex-
ture synthesis are described using AGLAMs. Other ap-
plications like texture image classification, compression, 
and restoration can be performed under the same 
AGLAM-based framework. In texture image retrieval, 
the similarity between two texture images is measured 
by the sum of the distances between their corresponding 
basic AGLAMs, where the distance of two matrices is 
the Manhattan distance of the two matrix vectors. It is 
proved that the proposed AGLAM-based similarity 
measure is one-to-one in the sense that zero distance will 
guarantee the two images are the same. None of the ex-
isting proposed measures will guarantee this one-to-one 
condition. The experimental results have shown that bet-
ter performances have been obtained with the new 
AGLAM-based distance measure in similarity learning 
for texture image retrieval than existing distance meas-
ures. Additionally, the results also show that it is possi-
ble to perform texture image retrieval without learning 
using the new measure. 
 In texture synthesis, it is shown that for a given input 
texture image, a similar texture can be synthesized by 
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sampling only from the normalized AGLAMs of the 
input. Experimental results have shown that a broad 
range of textures can be synthesized using the proposed 
AGLAMs.  
 In summary, the main contributions of the paper in-
clude: (1) a theoretical framework based on AGLAMs to 
demonstrate that the gray level aura matrices of an image 
have the necessary and sufficient information to repre-
sent the image for the purpose of general texture model-
ing if the asymmetry is incorporated into the neighbor-
hood systems, (2) applications of the approach in texture 
similarity measure and learning, and texture synthesis. In 
both applications, very promising experimental results 
are presented to demonstrate the potential of the 
AGLAM-based framework. 
 The paper is organized as follows. The related work 
is described in the next section. In Section 3, we present 
the AGLAM-based framework for modeling images. In 
Section 4, two applications are described: texture simi-
larity measure and learning, and texture synthesis using 
AGLAMs. The experimental results are also presented in 
this section. Finally, conclusions are given in Section 5. 

2 Related Work 
 Our work is closely related to statistical texture mod-
eling. One of the most influential statistical approaches is 
the Markov random field (MRF) models [1, 2, 4, 10]. 
Only a limited range of textures can be modeled with 
earlier MRF techniques (e.g. the Ising models) because 
of the small-size cliques and low-order statistics used in 
modeling. To address the above problems, Zhu et al. 
propose the FRAME (Filters, Random Fields and Maxi-
mum Entropy) model, which incorporates filtering the-
ory into the MRF models for general texture modeling 
[36]. The conventional MRF texture models are also 
generalized by Popat and Picard to the cluster-based 
probability model [26] and by Paget to the strong MRF 
model [23] for modeling textures with high order statis-
tics. Different from Zhu et al’s FRAME model, both 
approaches are nonparametric. This nonparametric 
scheme has motivated recent successful texture synthesis 
techniques through pixel-based sampling (e.g. [7, 16, 
35]) or patch-based sampling (e.g. [8, 17, 18]). 
 Textures can also be characterized by features in 
multiresolutions. In the work by Simoncelli and Portilla 
[27, 31], it is shown that texture images can be modeled 
by a set of joint statistics of complex wavelet coeffi-
cients, and that new textures can be synthesized by 
matching the corresponding joint statistics of the input 
and output image pyramids. Rather than using global 
joint statistics, De Bonet and Viola use joint occurrence 
of local features in multiresolutions to model texture 
images [6]. 
 Besides MRF models, another influential class of 
statistical approaches is texture modeling using gray 

level cooccurrence matrices (GLCMs). Research studies 
(e.g. [3, 5, 11, 14, 13, 19, 38]) have shown that GLCMs 
can be used as a powerful tool for texture analysis, syn-
thesis, segmentation and classification. The disadvantage 
of a GLCM is that it only contains cooccurrence infor-
mation between two pixels, and thus cannot capture the 
spatial relationship between three or more pixels in the 
image. This problem can be addressed by using GLAMs 
[9, 25, 24], which incorporate neighborhood systems to 
model the relationship between the target pixel and its 
neighboring pixels, and thus are capable of capturing the 
relationship between any number of pixels. In the recent 
work of Qin and Yang [28], GLAMs have been success-
fully used in the application of texture image retrieval 
using learning , and a significantly better performance 
over existing approaches has been reported.  
 In all the previous studies on GLAMs, the neighbor-
hood systems are assumed to be symmetric, and hence  
cannot model anisotropic textures. Our work demon-
strates that AGALMs, which generalize GLAMs, can be 
used for general texture modeling. 
  Other successful statistical image modeling tech-
niques include the unified statistical framework to visual 
patterns [37], the multiscale structural similarity method 
[34], and the Bayesian framework for image parsing 
[32]. 

3 AGLAM Framework 
 In this paper, an image X is modeled as a finite rec-
tangular lattice S of nm ×  grids with a neighborhood 
system },{ SsΝ s ∈=Ν , where sN  is the neighborhood 
at site s . The neighborhood sN  at site s can be viewed 
as a translation of a basic neighborhood [9, 25], denoted 
by E, which is called the structuring element for the 
neighborhood system N after the terminology in mathe-
matical morphology. A single site neighborhood system 

},{ SsΝ s ∈=Ν  is a system with a structuring element 
that contains a single neighboring site. 

3.1 Background Knowledge 
 Aura: [9] Given two subsets SBA ⊆, , the aura of A 
with respect to B for neighborhood system 

},{ SsΝ s ∈=Ν , denoted by ),( NABϑ (or simply 
)(ABϑ ), is given by: 

)(),()( BNAA sAsBB ∩∪==
∈

Nϑϑ .   (1) 

 Aura Measure: [9] With the same notations as in Eq. 
1, the aura measure of A with respect to B, denoted by 

),,( NBAm (or simply ),( BAm ), is given by: 
∑
∈

∩==
As

s BNBAmBAm ||),,(),( N ,  (2)  

where for a given subset SA ⊆ , || A  is the total number 
of elements in A . 
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Gray Level Aura Matrix (GLAM): [9] Let N be the 
neighborhood system over S, and }10,{ −≤≤ GiSi  be 
the gray level sets of an image over S, then the gray level 
aura matrix of the image over N, denoted by )(NA  (or 
simply A), is given by: 

)],([)],([)( ji SSmjia === NAA , (3) 
where G is the total number of gray levels in the image, 

}|{ ixSsS si =∈=  is the gray level set corresponding 

to the thi  level, ),( ji SSm is the aura measure between 

iS  and jS given by Eq. 2, and 1,0 −≤≤ Gji . 
    Intuitively, the aura )(ABϑ  gives an interpretation of 
how a subset B is present in the neighborhood of subset 
A. The aura measure ),( BAm  evaluates the amount of 
mixing between subsets A and B. A large value of 

),( BAm  implies that the subsets A and B are mixed to-
gether. A small value implies that A and B are separate 
from each other. 

3.2 AGLAM Concepts  
 In previous studies on GLAMs [9, 25, 24], the 
neighborhood system is assumed symmetric (i.e. for any 

Sts ∈, , tNs ∈  if and only if sNt ∈ ), by which anisot-
ropic textures cannot be well captured. To address this 
problem, the concepts of asymmetric neighborhood sys-
tems and AGLAMs are introduced below. 
  Definition 1 The neighborhood system N is asym-
metric if its structuring element E is not symmetric. 
 Definition 2 Let Ssrr ∈,', , r  and 'r  are symmetric 
to each other with respect to s if  )'( srsr −−=−  (i.e. 

rsr −= *2' ).  
 In the above definition, sites 

Ssrr ∈,',  are viewed as points 
with two coordinates in 2D space. 
The figure to the right gives an 
explanation of the relationship 
between r and its corresponding 
symmetric site 'r . From the figure, 
one can see that the condition of r and 'r  being symmet-
ric to each other with respect to s is equivalent to 

)'( srsr −−=− , i.e. rsr −= *2' . 
 
 
 
 
 
 

Figure 1: Examples of asymmetric and symmetric 
neighborhood structures. From left to right, the first six 
structures are asymmetric, and the last is symmetric, 

where ''•=s  is the target pixel and ''o=r  is a neighbor-
ing pixel of s. 

 Figure 1 gives some examples of asymmetric and 
symmetric neighborhood structures. The definitions of 
AGLAM and basic AGLAM are given below. 
 Definition 3 Given a lattice system S, an AGLAM on 
S is a GLAM computed from an asymmetric neighbor-
hood system N. 
 Definition 4 A basic AGLAM is an AGLAM com-
puted from a single site neighborhood system. 
 Definition 5 Given an arbitrary neighborhood system 
N over S with a structuring element E, its single site 
neighborhood system decomposition is a set of single site 
neighborhood systems defined over E as: 

},{ Err ∈N , 

where },{ SsN r
sr ∈=N  and }{ rsN r

s += . 
 In the rest of the paper, we use SGALM, AGLAM, 
and GLAM to represent a gray level aura matrix com-
puted using symmetric, asymmetric, and arbitrary (i.e. 
either symmetric or asymmetric) neighborhood systems, 
respectively. We assume that all texture images have the 
same size, i.e. they are defined on the same lattice S. 
This assumption will not cause any loss of generality 
because for texture images of different sizes, normalized 
aura matrices can be used. 

3.3 AGLAM Theory 
 Textures cannot be effectively differentiated using 
SGLAMs. Two images with different textures may have 
the same SGLAMs (see Figure 2). In this subsection, we 
prove that a set of basic AGLAMs can give the neces-
sary and sufficient information to differentiate between 
images. 
 
 
 
 

Figure 2: An example of the inefficiency of SGLAMs 
for differentiating textures. The right stripe-texture im-
age is a rotation of the left image by 90 degrees, and both 
images have the same SGLAM that is shown in the mid-
dle. Both images are binary, and the nearest four-
neighbor neighborhood system is used to compute the 
SGLAM. 

 Theorem 1 Any GLAM can be represented as a sum 
of basic AGLAMs.   
 Proof: Let S be the lattice, A be a GLAM over an 
arbitrary neighborhood system N with a structuring ele-
ment E, },{ Err ∈N  be the single site neighborhood 
system decomposition of N (see Definition 5, which im-
plies that r

sErs NN
∈
∪=  for any Ss ∈ ), and rA  be the 
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gray level aura matrix computed from the neighborhood 
system rN , Er ∈∀ . By the definitions of aura matrix 
and aura measure, we have 1,0)],,([ −≤≤= Gjiji SSm NA , 
where 

||

|||)(|

|)(|||),,(

j
r
s

Er Ss

j
r
s

Ss ErSs
j

r
sEr

Ss
j

r
sErSs

jsji

SN

SNSN

SNSNSSm

i

ii

ii

∩=

∩=∩∪=

∩∪=∩=

∑ ∑

∑∑∑

∑∑

∈ ∈

∈ ∈∈ ∈

∈ ∈∈
N

. (4) 

For any Er ∈ , we have 1,0)],,([ −≤≤= Gjirjir SSm NA , 
where 

||),,( j
r
s

Ss
rji SNSSm

i

∩= ∑
∈

N .                (5) 

By Eq. 4 and 5, we have ∑
∈

=
Er

rAA . Since each rN  is a 

single site neighborhood system, each rA  is a basic 
AGLAM.    ■ 
 Lemma 1 Let 1X  be an image defined on S, s be a 
given site in S, and N be any single site neighborhood 
system. Suppose image 2X  is obtained from 1X  by 
changing the intensity value of s from 1g  to 12 gg ≠  (all 
other pixels’ intensity values remain unchanged). Let 1A  
and 2A be the AGLAM of 1X and 2X  over N, respec-
tively, then 21 AA ≠ . 
 Proof: Only the outline is given below, and the de-
tailed proof can be found in the supplemental material 
that accompanies the paper. Let )],([ 11 jia=A  and 

)],([ 22 jia=A  as given in Eq. 3, r be the only neighbor-
ing pixel of s (note that N is a single site neighborhood 
system), and 'r  be its symmetric site of r with respect to 
s (see Definition 2). Let )(1 rg X=  and )'(' 1 rg X=  be 
the gray levels of r and 'r , respectively, in 1X . It can be 
shown that 2A  can be obtained from 1A  in the following 
two steps:  

1) Initialize 2A  as 1A , i.e. 12 AA ← . 
2) Update 2A : 

  

1),'(),'(
1),'(),'(

1),(),(
1),(),(

2222

1212

2222

1212

+←
−←

+←
−←

ggagga
ggagga
ggagga
ggagga

             (6) 

 For all possible values of g and 'g , after checking 
each step in Eq. 6 and by noting 21 gg ≠ , one concludes 
that  21 AA ≠ .    ■ 
 Theorem 2 Two images are the same if and only if 
their corresponding GLAMs on all possible neighbor-
hood systems are the same. 

 Proof: Suppose that two images 1X  and 2X  are 
defined on S, and that they are the same, i.e. 

)()( 21 ss XX =  for any Ss ∈ . It is obvious that their 
corresponding GLAMs on all possible neighborhood 
systems are the same. 
 Suppose that the corresponding GLAMs of 1X  and 

2X  on all possible neighborhood systems are the same, 
we have to show 21 XX = . This is equivalent to prove 
that if 21 XX ≠  then there exists a neighborhood system 
N such that the corresponding GLAMs 1A  and 2A  of 

1X  and 2X  over N are not equal (i.e. 21 AA ≠ ). 
 Assume that 21 XX ≠ . Let DCS ∪=  be a partition 
on S, where )}()(|{ 21 ssSsC XX =∈=  is the region in 
which each site has the same gray level in 1X  and 2X , 
and )}()(|{ 21 ssSsD XX ≠∈=  is the region in which 
each site has a different gray level in 1X  and 2X . Since 

21 XX ≠ , we have φ≠D . Let nD =||  and 
}1|{ niSrD i ≤≤∈= . Choose a neighborhood system 

N such that its structuring element E is large enough to 
contain D, i.e. DE ⊇ . Let 1A  and 2A  be the GLAMs 
of 1X  and 2X  over N, respectively. Using Lemma 1 
and mathematical induction, one can prove that 21 AA ≠  
based on the fact that 2A  can be obtained from 1A  by 
iteratively applying the update process (see Eq. 6) de-
scribed in the proof of Lemma 1 on each site in D.    ■ 
 The above theorem indicates that two images can be 
differentiated by their corresponding GLAMs over a 
specific neighborhood system (either symmetric or 
asymmetric). From the proof, in the worst case, the 
structuring element of the neighborhood system could be 
as large as S. It is impractical to test all possible 
neighborhood systems on S since the number of possible 
neighborhood systems is exponential with respect to the 
size of S. However, by Theorem 1, any GLAM can be 
represented as a sum of basic AGLAMs that are 
AGLAMs defined on single site neighborhood systems. 
The following corollary indicates that two images can be 
differentiated by their corresponding basic AGLAMs 
over a set of single site neighborhood systems, by which 
the computation cost can be significantly reduced. 
 Corollary 1 Two images are the same if and only if 
their corresponding basic AGLAMs on all possible sin-
gle site neighborhood systems are the same. 
 Proof: Suppose 1X  and 2X  are two images over S, 
we only have to prove that if  21 XX ≠  then there exists 
a single site neighborhood system rN  such that 

21 AA ≠ , where 1A  and 2A  are the AGLAMs of 1X  
and 2X  over rN , respectively.  
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 Suppose 21 XX ≠ , then by Theorem 2, there exists a 
neighborhood system N such that their corresponding 
GLAMs )(1 NA  and )(2 NA  are not equal. Let 

},{ Err ∈N  (where E is the structuring element  of  N) 
be the single site neighborhood system decomposition of 
N (see Definition 5), then by Theorem 1, we have: 

∑
∈

=
Er

r )()( 11 NANA , ∑
∈

=
Nr

r )()( 22 NANA  (7) 

 Since )()( 21 NANA ≠ , there must exist Er ∈  such 
that )()( 21 rr NANA ≠  because otherwise we have 

)()( 21 NANA =  by Eq. 7.     ■ 
 In the worst case, the total number of basic AGLAMs 
required to accurately represent a given image is the 
same as the lattice size. In practice, this is still computa-
tionally expensive. However, we found that only a small 
number (much smaller than the image size) of basic 
AGLAMs are required to effectively represent a texture 
image for satisfactory outputs. As an example, for the 
texture similarity measure and learning described in the 
next section, we use 80 AGLAMs to represent a 64x64 
image, which are calculated from a square window of 
size 9x9 around a target pixel. 

4 Applications 
 Two applications of using AGLAMs: texture similar-
ity measure and learning as well as texture synthesis are 
described in this section.  

4.1 Texture Similarity Measure and Learning 
 Given two texture images 1X  and 2X  defined on S, 
let N be a neighborhood system, E be its structuring ele-
ment, },{ Err ∈N  be the single site neighborhood sys-
tem decomposition of N (see Definition 5), and irA  be 
the basic AGLAM of iX  over rN  for 2,1=i . The 
similarity measure between 1X  and 2X  is defined by 
the following distance function: 

∑
∈

−=
Er

rrd ||||),( 2121 AAXX ,  (8) 

where for a given matrix 1,0)],([ −≤≤= GjijiaA , its norm is 

computed by ∑
−

=
=

1

0,
|),(|||||

G

ji
jiaA . 

 It is a standard requirement that a distance measure is 
metric by satisfying the properties of non-negativity, 
symmetry, and triangle inequality though the necessity 
of the triangle inequality is argued (doubted) by some 
researchers (see [29]). It is easy to check that the dis-
tance measure defined in Eq. 8 is metric.  
 Most importantly, one unique property of the new 
distance measure is that it is one-to-one. Namely, if the 
neighborhood system N used in Eq. 8 is large enough, a 
distance measure of zero will guarantee that the two im-

ages are the same. This can be easily proved using Cor-
ollary 1. As far as we know, none of the existing similar-
ity measures is one-to-one. 
 Similarity learning using AGLAMs can be performed 
using a SVM (Support Vector Machine)-based approach 
similar to the one used in Qin and Yang’s work [28]. 
However, the learning in our approach is performed on 
AGLAMs calculated directly from images without using 
filters, while in Qin and Yang’s work, the learning is 
performed on SGLAMs calculated in image pyramids 
(i.e. multiresolutions), which require filters.  
 Using SGLAMs in multiresolutions, a significantly 
better performance over existing filter-based approaches 
(e.g. [12, 20, 21]) has been reported in Qin and Yang’s 
work. In this paper, we compare our approach with theirs 
although comparisons with other approaches are interest-
ing and will be carried out in the future.  
 The Brodatz texture database, which is used for our 
experimentation, contains 112 texture classes, each of 
which is a 512x512 image. For the ease of comparison, 
we use the same experimental set-up as in Qin and 
Yang’s work [28]. More precisely, each texture image, 
which is called a class, is divided into 49 subimages of 
128x128 pixels each overlapping with other subimages, 
whose central pixels are on a 7x7 grid over the original 
image. The first 33 subimages are used as the training 
set, and the rest of them (16 images) are used for re-
trieval, in which one of them will be used as a query 
image. Therefore, we have a database of 3696 images for 
learning, and a database of 1792 images for retrieval. 
The 112 texture image classes are grouped into 32 clus-
ters manually, where each cluster consists of perceptu-
ally similar textures (i.e. a set of classes). 
 Given a query image, to find all images in the re-
trieval database that look similar to the query image, the 
first step is to learn the cluster information from the 
learning database using a SVM algorithm (e.g. [33]). In 
this step, the texture feature space is represented by the 
set of all AGLAMs computed from the texture images in 
the learning database. The second step is to classify the 
query database and the query image based on the cluster 
information learned from the first step. In the third step, 
all images in the query database that are in the same 
cluster as the query image are retrieved. Finally, all re-
trieved images are ranked based on their AGLAM-based 
distances defined in Eq. 8 to the query image. 
 Figure 3 gives the evaluation results in texture image 
retrieval between our AGLAM-based approach and the 
SGLAM-based approach [28]. For a given query image, 
the average retrieval accuracy is defined as the average 
percentage of the number of texture images retrieved in 
the same class as the query image in the total number of 
images retrieved. For example, in Figure 3, for a given 
query image X, suppose 20 images have been retrieved 
from the database, among them 12 images are in the 
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same class as X, then the retrieval accuracy is 12/15 = 
80% because there are a total of 15 other texture images 
in the same class as X. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Retrieval performance evaluation. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Performance evaluation of retrieving similar 
textures. 

 Figure 4 gives the results of performance evaluation 
in retrieving similar textures (i.e. textures in the same 
cluster as the query image) for the two approaches. 
Given a query image, let 20 images be retrieved. If 15 of 
the 20 retrieved images are in the same cluster as the 
query image, then the percentage of retrieving similar 
patterns is 15/20 = 75%. Figure 7 gives some examples 
of retrieving similar textures for a given query texture. 
 With learning, both approaches have obtained a re-
trieval accuracy of 100%. Without learning, the 
AGLAM-based measure outperforms the SGLAM-based 
measure. In similarity ranking as shown in Figure 7, the 
new measure has better performance over the SGLAM-
based measure. In all the examples shown in this subsec-
tion, a SGLAM is computed from the steerable pyramid 
[30] of an image with 5 levels, while an AGLAM is 
computed from the image itself with a neighborhood size 
of 99× . 
 Interestingly, as shown in Figure 4, without learning, 
the AGLAM-based measure has obtained a retrieval ac-
curacy of above 75% no matter what is the number of 
images retrieved, and the performance becomes stable 

when the number of retrieved images increases. This 
suggests that  the AGLAM-based measure may be used 
for image retrieval without learning, more evidence 
needs to be given by future research. 

4.2 Texture Synthesis 
  In texture synthesis, for a given input texture image, 
a similar texture can be synthesized by sampling from 
the normalized AGLAMs of the input only (an aura ma-
trix njiji SSa ≤≤= ,0)],([A  is said to be normalized if 

∑
=

=
n

ji
ji SSa

0,
1),( ). This is done by iteratively modifying 

the gray level of each pixel in the output image until the 
distance (defined in Eq. 8) between the corresponding 
normalized AGLAMs of the output and those of the in-
put is small enough.  
 
 
 
 
 
 
 
 

Figure 5: Examples of texture synthesis of the  
AGLAM-based algorithm compared with existing algo-
rithms, where images in column (a) are the input sam-
ples, and images in the next four columns ((b) – (e)) are 
the synthesized results for the AGLAM-based algorithm, 
the Heeger and Bergen algorithm [16], the Wei and 
Levoy algorithm [35], and the Paget and Longstaff algo-
rithm [22]. The images in (f) are synthesized by sam-
pling the SGLAMs of the input textures. 

 During the synthesis process, the AGLAMs of the 
output and the distance between the corresponding 
AGLAMs of the input and output can be iteratively up-
dated in an efficient way without the recalculation using 
an updating process as described in Eq. 6 in the proof of 
Lemma 1. 
 The above is the outline of the AGLAM-based algo-
rithm for texture synthesis. Because of space limitations, 
we will not describe the details of the algorithm, nor 
compare it with existing techniques in this paper, as they 
will be presented in another paper. 
 Figure 5 gives some comparison results of texture 
synthesis. More examples of texture synthesis of the 
AGLAM-based algorithm can be found in Figure 6 and 
in the supplemental material that accompanies the paper. 
One can observe that the results are very encouraging.  
 Our experiments have shown that a wide range of 
textures can be faithfully synthesized by sampling from 
AGLAMs of input textures. It is noteworthy that 
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SGLAMs are inappropriate for texture synthesis as 
shown in Figure 5 (f). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: More examples of texture synthesis using the 
AGLAM-based algorithm, where the smaller images are 
the input and the larger ones are the output. The sizes of 
the input and output images are 64x64 and 128x128, 
respectively, and a neighborhood size of 21x21 is used 
for calculating AGLAMs for all images in this figure. 

5 Conclusions 
This paper presents a mathematical framework for 

modeling texture images based asymmetric gray level 
aura matrices (AGLAMs). It is shown that the basic 
AGLAMs of an image have the sufficient and necessary 
information to represent the image. Based on this fact, a 
new distance measure is defined using a set of basic 
AGLAMs, which is one-to-one in the sense that zero 
distance will guarantee the two images measured are the 
same. To the best of our knowledge, none of the existing 
measures guarantees this one-to-one condition.  
 Two applications of the new framework are dis-
cussed: texture similarity measure and learning for image 
retrieval as well as texture synthesis. Experimental re-
sults have shown that better performances have been 
obtained with the new AGLAM-based distance measure 
in similarity learning for texture image retrieval than 
existing distance measures. Experiments also suggest 
that it is possible to perform texture image retrieval using 
the new measure without learning, which needs future 
study to confirm this finding. For texture synthesis, we 
have shown that a wide range of textures can be faith-
fully synthesized by sampling only from AGLAMs of 
input textures without requiring additional information 
elsewhere. 
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Figure 7: Examples of retrieving similar texture images for a given query image, which is the first image located at the 
top left corner in each picture with label D35-0. The textures in the top picture, which contains 48 texture images, are 
obtained by the AGLAM-based measure, and are ordered (ranked) by their AGLAM distances to the query image. The 
textures in the bottom picture are obtained by the SGLAM-based measure, and are ordered by the SGLAM distances to 
the query image. One can see that the AGLAM-based similarity ranking method is more accurate than the SGLAM-based 
ranking method. For example, texture images in the top picture whose labels contain D36 look more similar to the query 
image than the ones whose labels contain D87 are successfully retrieved by the AGLAM-based measure, but not by the 
SGLAM-based measure. On the other hand, D87-type texture images, which are less similar to the query image than 
D36-type texture images, are retrieved and ranked incorrectly with higher similarity degrees by SGLAM-based measure.


