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Abstract 

We first propose a nonlinear filtering problem and then derive some novel stochas­

tic filtering equation as well as Bayes factor equations. Next, we obtain robust ver­

sions of these equations and present a novel particle filtering algorithm to implement 

these equations. Moreover, we discuss the fractional Ornstein-Uhlenbeck (FOU) pro­

cess which is driven by the fractional Brownian motion (FBM). We aim to find some 

martingale problem for the historical process of FOU. As the result, we provide a 

sequence of discrete-parameter, computer-workable Markov chains which converge to 

the historical process of FOU and the martingale problems of these Markov chains 

are explicitly given. 

The second part of our work is concerned with the following problems: Is stochas­

tic volatility (SV) present in the microstructure stock market? If so, which of the 

classical SV model best represents the stock prices? We first propose some novel 

microstructure model which is more general and reasonable than the existing mod­

els. Indeed, our model enables us to capture most statistical properties of the price 

process in microstructure market such as cycles, momentum, mean-reversion as well 

as discreteness and clustering (biasing). With the presence of microstructure noise, it 

is not clear if the SV plays an essential role when modeling the stock price in market. 

We use Bayes estimation to show that the SV remains important and model selection 

to establish that Heston's model represents our stock data significantly better than 



the other classical models. The prominent feature of our work is that we provide a 

common framework where different SV models could be tested and by Bayes factor, 

their performances could be evaluated in a consistent way. 
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Chapter 1 

Overview 

1.1 Background and Motivation 

Stochastic filtering theory is of paramount importance to many fields such as math­

ematical finance, electronic engineering, environmental and geographical science, as 

well as biostatistics. In general, the filtering problem can be formulated through a 

pair of processes (X, Y), where X represents the state of the system while Y denotes 

its observations. (X, Y) constitutes the state-observation model which typically ex­

hibits a strongly nonlinear property. The primary goal of the filtering problem is to 

estimate X given the information obtained by Y up to the current time. The stochas­

tic filtering theory provides a sequential Bayesian estimation for the unknown state 

X when they are partially observed with noisy distorted partial observations Y. 

In the last two decades, the study of microstructure market has undergone a 

tremendous growth from both the academic circle and the finance industry. The 

research activities mainly focus on the impacts of trading mechanism to the price 

behaviors. However, the comparisons of competing structure models raised in mi­

crostructure market are also investigated. Much of the emphasis has been focused 

on issues such as: the actual behavior of short-run market; the institutional and 

structural influences on market dynamics; the impacts of trader's heterogeneity to 

the price formation process; the major statistical properties of the microstructural 

data set, etc. These issues have important implications to the market regulation 

and for the design of trading mechanisms. One of the strongest attractions to the 
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microstructure market models is the availability of high (medium)-frequency data 

sets which contain complete trading activities of the market participants. It contains 

all the relevant information about each trade such as transaction times, transaction 

prices and trading volumes. Such data sets make possible an unprecedented view of 

the detailed investigation of financial markets. One advantage of our work is that 

we study the high-frequency data in microstructure market within a continuous-time 

econometric modeling setup. Compared to the traditional discrete time-series setup, 

our set up provides more important insights into the functioning of microstructure 

market. In fact, as discussed in Hasbrouck (1991, 1999), Engle, Russell (1998), 

Dufour, Engle (2000), the time series analysis of high-frequency data involves an 

undesirable information loss as it ignores somewhat the evolution of the market that 

are economically valuable. For example, the time intervals between the trades are 

informative but they are ignored in the time series analysis. In addition, most prac­

tical applications of microstructure models such as volatility measuring and optimal 

order strategy design also prefer the continuous and real-time setup. 

The motivation of this thesis stems from the price formation of microstructure 

markets to model high (medium)-frequency data. For securities traded in the mi­

crostructure market, a market price can always be directly observed at every trans­

action. However, such price deviates from the underlying intrinsic value process, 

namely, it is contaminated by the trading noises. The trading noises maybe be 

defined as a random resource of the price process, which is only caused by the 

microstructure effects (Black (1986), Hansen, Lunde (2006), Duan, Fulop (2007), 

Grothe, Muller (2007)). Some of the commonly seen microstructure effects include: 

non-synchronous trading, the discreteness of the price, the bid-ask spreads, liquidity 

ratios, and asymmetric information. It follows the trading noises are closely related 

to the market efficiency and liquidity. Mathematically, we have: 

(1-1) Yti=F(Xu,Nu,ti), 

where £; denotes the trading time of ith transaction, Y is the market price process 

which is based on the intrinsic value process X but corrupted by some trading noises 

N. The observation mechanism F is some nonlinear functional. 

The above formulation (1.1) is obviously a nonlinear filtering problem, where the 

market price process Y is the partial observation to the latent value process X in the 

presence of trading noises N. This formulation is general enough to subsume many 
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existing models: 

Example 1.1. Nelson, Vestaggard (2000) discuss the stochastic volatility (SV) mod­

els with the following additive noise observation: 

(1-2) Yti = h(Xti) + 8Q, 

where h is some known but general sensor function and {5Q} is a sequence of i.i.d 

Gaussian random variables with variance 8. 

Example 1.2. Duffie and Lando (2001) bridge some connections between the struc­

ture model and reduced-form model in default risk analysis with the following noisy 

accounting observation: 

(1.3) l n y t i = l n X t i + c50. 

where {5^} is a sequence of i.i.d Gaussian random variables with variance 5. 

Example 1.3. Duan, Fulop (2007) discuss structure credit risk models with noisy 

observations: 

(1.4) ]nYu = \nBS(Xu,U;F,T,(T) + 5Ci, 

where {5(i} is also a sequence of i.i.d Gaussian random variables with variance 5, 

BS(-) is the Black-Scholes (BS) option pricing function parameterized by the face 

value F, maturity T and volatility a. 

The above works strongly suggest the existence of trading noise in financial mar­

ket. In particular, the data analysis of Duan, Fulop (2007) demonstrates that the 

ignorance of the trading noise will induce a severe bias to the estimate of volatil­

ity (see "3M" discussed in Duan, Fulop (2007)). The biasing effect of trading on 

volatility estimation is also empirically tested by Hansen, Lunde (2006) when using 

intra-day data. 

It is remarkable that in above examples, the observation noise terms iV = {8Q} 

are all assumed to be a sequence of i.i.d Gaussian random variables. However, the 

empirical evidence reported by Hansen and Lunde (2006) strongly suggests that the 

noise in fact be serially correlated. This finding is the motivation to the work of 

Ai't-Sahalia, Mykland and Zhang (2005) in which the estimator proposed is designed 
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to be consistent with the assumption of serially correlated trading noise. Meanwhile, 

the kernel approach of Barndorff-Nielsen, Hansen, Lunde and Shephard (2007) also 

implies the dependent noise structure. Indeed, there do exist such situations in which 

the estimate to trading noise variance 8 turns out to zero when the trading noises 

are assumed to be independent (see "American Express" discussed in Duan, Fulop 

(2007)). Of course, this doesn't mean there is no trading noise in market. Instead, 

this is because the trading noises are actually autocorrelated and as a result, it is 

absorbed into the volatility estimation of the state process. In fact, as discussed 

in Duan, Fulop (2007): "...the times series structure of the trading noises makes it 

indistinguishable from the underlying state process dynamics...". To characterize the 

correlation of noise, Hansen, Lunde (2006) propose some new model where the noises 

are assumed to be Gaussian random sequence but with stationary covariance and 

finite dependence. However, this model is actually rooted from the discrete-time and 

low-frequency setup thus failed to explain many other important statistical features 

such as: momentum, mean-reversion, as well as discreteness and clustering of price 

process. 

1.2 Contribution and Outline 

In this thesis, we propose some novel yet realistic models to describe the price forma­

tion in microstructure market. The models we proposed can capture the statistical 

properties such as mean-reversion, cycle, momentum, as well as the discreteness and 

clustering of the price. From the trading viewpoint: the mean-reversion refers to 

the market tendency of getting dragged away from the short term fads and back to 

economic reality; the cycle refers to the rise and fall of stock prices according to the 

various time evolutions; the momentum measures the trending of the stock prices 

and indicates the strength and weakness in the stock prices. Some plain words to 

the momentum is as follows: "when the market decides to get greedy or fearful, it 

stays that way for a while". 

To formulate the model, we specify three types of trading noises in microstructure 

market: information noise, discrete noise and biasing (clustering) noise. In particular, 

the information noise corrupts the intrinsic value process X at trading time ti in the 
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following way: 

)nyti = ]nXti + Z* + e{i, 

dZ? = -azZ?dt + dWt
h. 

Here, yti is some intermediate price in the price formation and the (information) 

noise term N consists of two parts: the independent noise part {eQ} is a sequence 

of zero mean Gaussian white noise with standard deviation e thus it coincides with 

the traditional models; the correlation noise part Zh is assumed to be some FOU 

process driven by the FBM Wh with the Hurst index h € [|,1). It includes the 

traditional Brownian motion as a special case (h = \). The information noise term 

can characterize the correlation, seasonality and momentum in microstructure prices 

well. The intermediate price yti can be transferred to the actual market price Yti 

when two other trading noises are added: the discrete and biasing (clustering) noises. 

In particular, these noises take into account tick levels and price biasing to e.g. whole 

dollar trades. Roughly speaking, it can be formulated by the equation of the type 

like: 

Yti=£1-M 
M 

+ (1 - £1)6 • 5M X + ¥ 
5M 

+ ( 1 - & ) ( 1 - 6 ) 6 - 2 5 M 
' - \ ; 1 25M 

yti + - 5 -
25M 

+ ( i - £ i ) ( i - 6 ) ( i - 6 ) & - 5 0 M •yu + — 
50M 

+ (1 - 6) (1 - £2)(1 - 6)(1 - U) • 100M 
yti + 100M 

100M 

where [x] denotes the largest integer no more than x\ M = ^ denotes the penny 

tick level and characterizes the discreteness of the price process; £i> &> &> £4 are inde­

pendent Bernoulli random variables which are introduced to describe the clustering 

of price process. 

The above formulation acts as the starting point of this thesis. Based on it, we 

discuss the Bayes estimation and Bayes model selection problems in microstructure 

markets. As the mathematical preliminary, we first propose a filtering problem in 

continuous-time context where the state process can be characterized by the general 
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martingale problem while the observation process is some marked point process. 

Moreover, we derive the stochastic equations to govern the evolution of the optimal 

filter and Bayes factor. Next, we derive the robust versions of these equations for 

numerical implementations. In addition, we introduce the historical process of the 

FOU process which is driven by the FBM. We then discuss the related martingale 

problems of historical FOU. It is of importance to filtering theory. 

Generally speaking, the contribution of this thesis can be summarized under the 

following headings: 

• Microstructure model: First to bring the long memory (LM) into microstruc-

ture; first bring the mean-reverting into microstructure; novel microstructure 

price model; unlimited tick levels and non-negative prices. 

• Stock market: First to make some comparisons of SV models in the presence 

of trading noises; make the Bayes estimation through SV models. 

• New stochastic filtering and Bayes factor equations; robust filtering and Bayes 

factor equations; novel representations in random measure. 

• New particle filtering method to implement the above equations. 

• Discuss the historical process of FOU process and its martingale problem; some 

approximating Markov chains. 

Accordingly, more details and thesis outline are given as follows: 

Chapter 2 introduces a class of partially-observed models in which the obser­

vation is a marked point process while the state is framed in martingale problem. 

Based on this model, we study the related Bayes estimation problem via nonlinear 

filtering and the model selection problem via Bayes factor. Accordingly, we derive 

the stochastic equations for the Bayes filter and Bayes factor. Furthermore, using 

the "gauge transform" and "path-dependent probability change", we also obtain the 

robust evolution equations for the Bayes filter and Bayes factor. These robust equa­

tions can be updated sequentially with reasonable computation cost and they are 

practically workable in the presence of modeling errors. Moreover, we propose a new 

particle filter algorithm to implement these evolution equations approximately and 

its convergence is also proved mathematically. In addition, we also discuss the histor­

ical process of the FOU process. In this study, we propose a sequence of discrete-time 
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Markov chains which converge weakly to the historical process of FOU. We also de­

rive the corresponding martingale problems satisfied by these Markov chains which 

approximate the martingale problem to the historical process of FOU. Our result 

can be used directly in nonlinear historical filtering and its applications in financial 

econometrics are also discussed later. 

Chapter 3 investigates a new class of partially-observed, trading-noise-corrupted 

microstructure models where the traditional SV models are the value process. The 

trading noise has three components: multiplicative information noises, rounding (dis­

crete) noise and clustering noise, all chosen to reflect observed artifacts in real price 

data. The central questions addressed here are: (i) Is SV still discernable in the 

presence of trading noise microstructure? (ii) If so, which traditional SV models 

matches the observed price data best? We consider six popular SV models and allow 

both momentum and cycles in our trading noise. Bayes factor methods are utilized 

instead of likelihood methods in order to consider volatility models with very differ­

ent structures. Nonlinear filtering techniques are used to provide a convenient means 

to compute the Bayes factor on tick-by-tick data while estimating the unknown pa­

rameters. With few exceptions, our stock price data exhibits strong evidence of 

Heston-type volatility. 
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Chapter 2 

The Nonlinear Filtering and 

Bayesian Model Selection 

2.1 Notation and Assumption 

Without loss of generality, this thesis focuses on the fixed time period [0, T] for some 

T > 0. Let (fi, J7, IP) be a complete probability space on which Af denotes all its null 

sets. For any stochastic process S, its augmented natural filtration is defined as 

Ft
s ±a{Su:0<u<t}VAf. 

For semi-martingales M and N, [M, N] denotes their cross variation or bracket pro­

cess; (M, N) denotes their predictable quadratic covariation process whenever it is 

well defined (e.g., when M, N are locally square integrable). For any Polish space K, 

let B(K) be its Borel cr-field and B{K) the set of all bounded measurable functions 

on it; DK[0,OO) the space of all right continuous and left limit (RCLL) functions 

defined on [0, oo); DK[Q, T] is defined similarly for T > 0; M.CK the space of all finite 

counting measures on K endowed with the Prohorov metric. No denotes the set of all 

nonnegative integers. For any measurable family of pregenerators {At}t>o on Polish 

space K, denote T>(A) C B(K) as its common domain and 7£(A) C'B(K) as its 

range. Now suppose the signal process X € R"x and its parameter 9 € M.ne jointly 

satisfy the following martingale problem: 

Definition 2.1. (X, 0) is the unique solution of Wlx+ne—valued martingale problem 
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for A t with initial distribution fi. That is, /j = P o (X0, 9o) * and 

(2.1) Ml = f(xt,et) - f(x0,e0) - [ Aj(xs,e3)ds 
Jo 

is a Tt ' —martingale for each f 6 T>(A). Moreover, if (X, 6) also satisfies (2.1), 

then (X, 9) and (X, 9) have the same finite dimensional distributions. 

A 1. I? (A) is closed under multiplication. 

Remark 2.1. We can discuss the martingale problem in a general Polish space K 

but here we confine ourself to K — Wlx+ne. Likewise, we can discuss the martingale 

problem for (X, 9) in a filtration larger than Tt ' . 

The observation Y is a marked point process: a double sequence of random 

variables (Tn,Zn, n > 1) where the increasing sequence {Tn}n>i € [0, T] denotes 

the jump times and {Zn}n>i € E some attributes of Tn. Here, the measurable space 

(E, £) is called the mark space. Throughout this thesis, we assume 

£ = N0 

and £ is its discrete a—algebra, namely, the a—algebra generated by all its subsets. 

For each A € £, we can associate the counting measure process Yt(A), defined as 

(2.2) Yt{A) ±Y.l^A)l{Tn<t}. 
n>l 

In particular, if A = E, then we get the underlying total-jump point process: 

(2-3) Y(t)AYt(E) = ^l{Tn<t}, 
n>l 

and for Vj G E, 

(2-4) W) 4 Yt({j}) = J ] l{2.=i>l{T„<t}-
n>l 

This is a generalization of the "multivariate point process" introduced in Bremaud 

(1981, Page 234) in the sense that we have an infinite collection of marks. 

Remark 2.2. Hereafter, to be consistent with the convention, we use uz" instead 
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"j" to denote the element of E. 

Equivalently, we can introduce the random counting measure Y(dz x dt) on E x 

[0,T]by 

(2.5) Y(Lu,Ax(s,t})±Yt(u,A)-Ys(uj,A), Vw € Q, A € £, 0 < s < t < T, 

and for each t G [0,T], the random counting measure y(d2,i) on J51 by 

(2.6) Y(io,A,t)^Yt(uj,A), \/u e fi, A 6 £. 

The random counting measure Y(d.z x dt) and the marked point process Y are 

equivalent (both being called the observation) as they carry the same statistical 

information. Moreover, Y(dz x dt) is a transition kernel from (Q, T) into E x [0, T]. 

Remark 2.3. By convention, we interchange the notations between Y[dz x dt) and 

Y(dz, dt) provided there is no confusions. 

The natural filtration of Y is defined by 

(2.7) Tf ~a{Y3{A)\ A&S, 0<s<t). 

We introduce the filtration 

(2.8) n^ryvj?, 

QtAft
x'e\/T?, 

where for T\,Ti C J7, f i V f2 = o~{F\, F2}, the a—algebra generated by T\,Ti-

Now, we make the following assumption: 

A 2. For z 6 E, Yz(t) admits a (P, Ft)-stochastic intensity Xz(Xt, 0t, t) where Xz(x, 6, t) 

is some nonnegative measurable function of (x,8,t) and abbreviated as Xz(t). 

Remark 2.4. Without loss of generality, we assume Xz(Xt,0t,t) is predictable for 

each z € E. For existence and construction of this predictable version, the reader 

may refer Bremaud (1981), Page 31. 

10 



Note that Qt c Ft, so Xz(Xt, 9t, t) is also the (P, Qt)-stochastic intensity of Yz(t). 

Now we can define the measure value process Xt(dz) as 

(2.9) \t({z}) = Xz(t). 

Remark 2.5. If A2 holds true, then set A = E, we know the total-jump point process 

Y(i) admits a total intensity a(Xt,9t,t) satisfying 

(2.10) a(Xt,6t,t) = Xt({E}) = / Xt(dz) = VX z (X t ,6 t , t ) . 

To simplify the notation, we sometimes write a(t) instead of a{Xt,9tlt) when 

there is no confusion. For further deductions, we invoke the following assumptions: 

A 3. There exist constants C\,C<i, C3, s > 0 such that for all x, 9, t, 

00 

(2.11) Cl<a(xAt)<C2, J2 n(vf) ,„« ^ C3-
3 = 0 

(A2(*,0,£))e 

Based on representation (2.1), (2.2), (X,6, Y) is framed into a nonlinear filter­

ing model, where (X, 9) is the signal process which is partially observed through 

the marked point process Y which is of infinite dimensionality. The rest of this 

chapter proceeds as follows: Section 2 studies the regular filtering problem. We 

derive the Duncan-Mortensen-Zakai (DMZ) equations which is driven by the obser­

vation process. In Section 3, we discuss the robust filtering problem and derive the 

corresponding robust filtering equation. Section 4, 5 investigate the model selection 

problem and we obtain the DMZ and robust evolution equations for the Bayes factor. 

In Section 6, we provide a novel efficient particle filtering algorithm for numerical 

implementation. Section 7 introduces the historical process of FOU and studies its 

martingale problems. 

2.2 The DMZ Equation and Regular Filtering 

The available information of (X, 9) is the observation filtration T^ C Tt and the pri­

mary goal of nonlinear filtering is to characterize the Bayesian estimation (posterior 
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distribution) 

(2.12) 7rt(.) = P [ ( ^ , < 9 t ) € - | ^ f ] 

or equivalently, 

(2-13) rtf)=nf(Xt,6t)\F?] 

for / 6 B(M.nx+ne). We need to characterize the normalized filter irt recursively, that 

is, to find some stochastic filtering equation satisfied by the measure-valued process 

7r£. This will enable us to sequentially update our Bayes estimates, which is just the 

posterior distribution. Now suppose for each z € E, KZ > 0 is some constant such 

that 

oo » 

(2.14) K = 2_.Kz = I Kzfn{dz) < oo, 

where m(dz) is the unit counting measure assigned on (E,£), that is 

m({z}) = 1 for z e E. 

Now consider the continuous-time likelihood function 

(2.15) Lt = exp( [ [ ln^^-Y{dz,ds)- [ {a(s,Xs,63)-K)ds 
\Jo JE KZ JO 

which by Ito formula satisfies the stochastic integral equation 

(2.16) Lt = 1 + / / (hlilt _ i } ls_ (Y(dz, ds) - Kzm{dz)ds). ff(-
Jo JE \ K* 

or equivalently the stochastic differential equation 
(2.17) dU = f (^& - l\ U- (Y{dz,dt) - Kzm{dz)dt), 

Proposit ion 2.1. Under A 2, A 3, L^1 is a (P, Ft)-martingale. 
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Proof, 

L;1 = exp(f f ln^j-Y(dz,ds)+ f {a{s,Xs,9s) - n)ds 

which satisfies 

L ; l = i + [ L (̂ V) ~ 0L;1 (y(dz'ds) ~ x°{dz)ds) • 
Thus L^1 is a (P, !Ft)-\ocal martingale and supermartingale. Moreover, 

(2 181 f V «' V+£ X^ < *"+V 
(2-18) Z^\YM • nit x. M ^ TTC3 ' 

2 = 0 
Kit)) a(t,Xt,9t) ~ Cx 

(2.19) f a(s,X3,es)ds<C2t, 
Jo 

where C1,C2,Cs are introduced in A 3. Meanwhile, note that LQ = 1 and for each 

<5 > 0, we have 

(2.20) E{L0exp{SY(T))) = E (E{exp (5Y {T))\F0)) 

= E(exp((e* - 1) / a(s,X3,es)ds)) 
Jo 

< exp((e'5 - 1)C2T) < 00. 

Note that here, Y(T) is the ending point of total-jump point process Y(t). Now we 

can apply the result from Bremaud (1981, T i l , Page 242) by setting 

K2 = Q, 

B{t) = C2t. 

Then combining (2.18), (2.19), (2.20), we have E^L?1 = 1 and this implies Lt
_1 is a 

(P, J"t)-martingale on [0, T]. • 
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Consequently, we can define the reference measure <Q by 

(2.21, I . - * 
Tt 

Proposition 2.2. Assume A2; A3, then under Q, (Yo(t) ,Y\(t), • • •) are indepen­

dent Poisson processes with respectively the intensities (K0, K,\, • • •). (Yo(t),Yi(t), • • •) 

are also independent of (X,6). Moreover, the probability distribution of (X,8) is 

unchanged under measure Q. 

Proof. From the property of the intensity of point process, we know, 

Y{A,t)= [ I Y(dz,ds)- ! f \3{dz)ds 
JO J A JO J A 

is a (P, Qt)-martingale and we can introduce the random measure Y(dz, ds) accord­

ingly. Based on it, we can apply the integration by parts to get 

(2.22) Ml = g(Yt) - g(Y0) - f B3g(Ys)ds 
Jo 

is a (P, Qt)-martingale with 

(2.23) Btg(V) = [ (g(r, + Sz) - g(V)) Xt(dz), 
JE 

where 5Z is the Dirac measure at z. The common domain T>(B) of B t consists of all 

functions on MC
E with the follow form: 

n 

(2-24) 9(.ri) = llv(9i) 

with T) e M% and {#i}™=1 being any continuous, bounded functions on E and n e N. 

Combining with the martingale problem (2.1), we know the joint martingale problem 

for (X, 9,Y) takes the following form: 

(2.25) 

Mt
f9 = (fg)(Xt, 0t, Yt) - (fg)(X0,60, Y0) - f (fBg + gAf) (Xs, 6t, Y3)ds 

Jo 
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is a (P, Qt)-martingale for / € V(A),g € 2?(B). Here, we omit the subscripts of 

time t in test functions to simplify the notations. Note that At({z}) = \z(Xt,9t,t), 

so the martingale problem (2.23), (2.25) both depend on the underlying state process 

(X, 9). Now, we discuss the joint martingale problem of (X, 6, Y) under Q. 

From Proposition 2.1, L^1 is also a (P, Qt)-martingale satisfying: 

(2.26) dL^ = J (^ - l ) L;}Y(dz, dt). 

Apply the Girsanov-Meyer theorem (Protter (1990), Page 109), we know 

(2.27) Y(A,t)- f-Ld[L:\Y(A,s)] 

= [ I Y{dz,ds)- [ [ Xs(dz)ds- f [ (l-^Q)Y(dz,ds) 
J0 J A JO J A Jo JA\ &z J 

= f J hW.Y(dz,ds)- [ J \3{dz)ds 
Jo J A Kz Jo J A 

is a (Q, Qt)-martingale. Consequently, 

(2.28) f [Y(dz,ds)-f I Kzm(dz)ds 
Jo J A Jo J A 

is a also (<Q>, Qt)-martingale. On the other hand, note that L^1 is a finite variation 

process and f(Xt,9t) is RCLL, thus 

(2.29) [f(Xt,9t), LT1} = £ Af(Xa,9s) • AL;1 . 
0<a<t 

However, the assumption A 2 implies f(Xs,9s) and Lt
 x have no simultaneous jumps 

almost surely (see Frey, Runggaldier (2001)), therefore, we have 

(2.30) {f(Xt,9t), L;1)=0. 

Combining (2.30) and (2.1), we have 

(2.31) [Mt
f, L^1] = 0. 
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Note that M/ is bounded so from the Girsanov-Meyer Theorem (see Protter (1990), 

Page 109), it follows M{ is still a martingale under Q. This tells us the martin­

gale problem for (X, 9) remains unchanged thus the distribution of (X, 9) remains 
— • 

unchanged too. Now we know the joint martingale problem for (X, 9, Y) under Q 
takes the form: 

(2.32) 

M{a = (fg)(Xt,9uYt) - (fg)(X0,e0,Y0) - [ (fB*g + gAf) (Xs,9S, Y3)ds 
Jo 

for / e £>(A), g € V(B*) where V(B*) = P(B) and 

(2.33) B*g(V) = f (g(r, + 52) - g(r,)) K(z)m(dz). 
JE 

Note that (2.33) does not depend on the underlying process (X, 9). Meanwhile, from 

the uniqueness of the martingale problem of (X, 9) and the construction of Y, we 

know the joint martingale problem of (X, 9, Y) is also unique. As a result, (X, 9) is 

independent of Y under Q. • 

Bayes theorem links 7rt with the unnormalized filter at by 

(2.34) . , ( / ) = 2 ^ 

for / € B(B.n*+n°), where 

(2.35) <jt(f)Atf*\f(Xt,0t)Lt\f?]. 

Theorem 2.1. Under A 2, A 3, the unnormalized filter at is the unique solution of 

the measure-valued DMZ equation 

(2.36) 

<*(/) = Mf) + / °* (A./ - Ws) - «)/) ds + f J a- ( (^~ ~l) f) Y(dz>ds^ 

forf€V(A). 

Proof. From (2.16) and the integration by parts of semi-martingales (Protter (1990), 
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Page 60), we have 

f(Xt,6t)Lt = f(X0,80)+ f f(Xs_,e3_)dLs+ f Ls-df(Xs,6s) + [f(X,9), L]t 
Jo Jo 

We have 

(2.37) [f(Xt,9t), Lt] = J2 Af(Xs,es) • ALS. 
0<s<t 

Once again, A 2 implies f(Xs,9s) and Lt have no simultaneous jumps almost surely 
thus 

(2.38) [f(Xt,9t), Lt] = 0. 

Combining (2.38) and (2.1), we have 

(2-39) [M/, Lt] = 0. 

Therefore, from integration by parts, we have 

f(Xt,9t)Lt = f(X0,90) + [ La.dMf+ [ LsAJ(Xs,9s)ds 
Jo Jo 

+ J f(X3_,9S_) (J (y& - l\ Ls„(Y(dz,ds) - Kzm(dz)ds)\ 

= f(X0,60) + J* La.dM{ + j * /(Xs_ A_)LS_ J (^& - l\ Y(dz, ds) 

+ J L3 (AJ(XS, Ba) - f(Xa, 9S) f (^& - l) Kzm{dz)\ ds. 

Now, taking expectation under Q on observation filtration T± and by linearity, we 
have 

E® (j(Xu9t)U\Tf) =E^ (j{X,M\?f) +EQ [jQ La_dMl\Tt 

+ E^ ^f{Xa-,eaJ)La.jE{^- - l ) Y{dz,ds)\F?^ 

+ E^ Qf Ls (*.f -fj ( ^ - l) «,m(^)) ds\?f) • 
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Now for 0 < a < b < oo, introduce the notation 

F[aib]±<T(Ya(A)\ Ae£, a<s<b). 

Then under Q, Ffa is independent of F0 = F^9 V Fj thus 

(2.40) E®(f(X0,60)\F?) = E Q ( / (Xo,0o) |^ ]V^o 7 ) = E « ( / ( X 0 , e 0 ) | j f ) = a 0 ( / ) , 

From Proposition 2.2, we know M{ is still a ^-martingale under measure Q and Y 

is compatible with Ft, that is, Yt is adapted to Ft and .Tvf t+si is independent of Ft 

for each s > 0. Moreover, under A 2, A 3, 

(2.41) 

Therefore we have 

(2.42) 

E Q L^dMt < oo. 

EQ(ftLa.dMf\FT>\=0. 

To prove (2.42), first consider a sequence of simple processes Ln which converge to L. 

For each Ln, the stochastic integration fQ Ln{s—)dM{ can be written as a summation 

and we can verify 

EQ([ Ln(s-)dMt\L 

and then extend to the general case Ls_ by approximating arguments. From Fubini's 

theorem, we have 

\F? ] = 0. 

(2.43) E® (J Ls Usf{Xs,es) - f(Xa,0a) J ( ^ - l ) Kzm(dz)\ ds\Ft 

= J E® (LS (Asf(xa,ea)- f(x„ea) J (xz(s)-Kz)m{dz)\ \FA ds 

= J E® Us (AJ(XS, 0a) - f(Xs, 9a) J (Xz(s) - Kz) m{dz)\ \F?\ ds 

= I cr3 (Asf - (a(s) - K)f) ds. 
Jo 
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Here we also use the fact that TT^ is independent of Ta. Finally, 

(2.44) E^ (£ f{X-,e,-)L.-J (^ - l) Y(dz,ds))\^ 

= EQ ( E 1{T„<4} • Lrn- • f(XTn., 9Tn_) ( * * ^ ^ ' ^ 
\n=\ \ KZ-

1 1 W 

*zn J * = EQ L 1 ™ . E ^ n • Lr«- • f(xTn-,eTn-) ( 
\ *°° n=l \-

n=l ^ \ Zn / / 

Azn(T„) A y 

lim^EE^ (l{Tn<t} • LTn_ • /(XTn_An_) ( ^ ® _ i\ \Tl_ 

lim > aT„- I 
n=l v JV— °̂° frf V V Kz, 

^Zn(Tn) _ . 

^//-((^M')™' 
Here, the first and last equalities used the summation representation of the stochastic 

integral to random counting measure; the second equality is because for any fixed 

time t, there are only finite jump times Tn and the limit is in the sense of almost 

surely; the third equality is from the Dominated Convergence Theorem (DCT) of 

conditional expectation (A 3 ensures the existence of such dominated control vari­

able); the fourth equality is just the linearity of conditional expectation; the fifth 

equality is because the independence of o{T^, u > Tn} and ^ T „ - ! the sixth equality 

is from the definition of unnormalized filter. 

Combining the above terms together, we obtain the DMZ equation (2.36). As 

to the solution uniqueness of (2.36), first note that the uniqueness of the martingale 

problem (2.1) implies the Markov property of (X,6), therefore the semigroup of the 

pregenerator A t exists and we denoted by S. Recall T„ is the nth jump time and we 
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can introduce T0 = 0 for convention. From the (2.36), we know 

°tU) = *r„(/) + ( oa (A . / - (a(s) - «)/) ds, 

for t € [ r n , r n + i ) and / € V(A). Now, we can define, 

(2.45) x(t,u f) = o-u(St_u/) + I a s (S t _ s / - (a(s) - K)f)ds 
J XL 

for all / 6 ©(A) and u <t £ [Tn,Tn+1). Then, from the definition of semigroup, we 

know 

Odfi\ dXJt,u f) dau(St„uf) d [* 
(2.46) —j—- = ^ + Tu I ff.CS*-./ - (a(3) - « ) / ) * = 0. 

The remaining procedures are same to that of Kouritzin and Zeng (2005), Appendix 

A. • 

The DMZ filtering equation (2.36) involves some stochastic integration so the 

unnormalized filter at is not the robust filter and it is not easy to be implemented 

in real time especially when the observations are of rapid changes. In the following, 

using the gauge transform and path-dependent probability change, we will show 

how to derive the robust filter through an evolution equation parameterized by the 

observation path. Empirical results show that the robust filter does indeed perform 

favorably when applied to real data problem. Clark (1978) introduces the robust 

filter and some other important works on the robust filter include Davis (1980, 1981), 

where a semi-group approach to robust filter is proposed when the signal is Hunt 

process with additive white noise observation, Pardoux (1979) and Heunis (1990), 

where a stochastic partial differential equation approach are given when the signal 

is multi-dimensional diffusion. However, all of these works are discussed within the 

classical additive white noise observation structure and thus they are not readily 

applicable here. 
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2.3 The Evolution Equation and Robust Filtering 

In the remainder of this section, we let y(-) = {yt, 0 < t < T} denote an arbitrary 

but fixed observation trajectory, in other words, y(-) = Y(-, u) for some u> € Q. 

Definition 2.2. For f G B(Wlx+ne), the gauge transform vt is defined as 

(2.47) i/t(/) ^ E Q f(Xt,9t)Ltexp(- f\n^-Y(dz,t) 

It is equivalent to at in the following sense, 

**(/) = * (/exp (-J]n^Y(dz,t) 

Mf) = "t (7 exp n\n^-Y(dz,t) 

To simplify the notation, we introduce the Lie bracket for operator A t . 

Definition 2.3. For fi,f2 € 2?(A), the Lie bracket for At is defined as 

(2.48) [/i,/2]* = (AtA/2 - AAt/a - f2Atfi). 

The following definition is taken from K. L. Chung (1982). 

Definition 2.4. A measurable stochastic process X satisfying 

lim X?n = XT as., 
n—>oo 

for any increasing sequence of stopping times {Tjjjĵ Lj with the limit T is said to be 

quasi-left-continuous. 

Definition 2.5. For any filtration {Tit}, an adapted stochastic process X is said to 

be a (P, Tit)—special semi-martingale if it admits a decomposition 

X = XQ + M + A, 

where XQ is a TCQ—measurable random variable, M is a (¥,Tit) —local martingale 

while A is a Tit—predictable process with finite variation over each finite interval 

[0,t]. 
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Lemma 2.1. Under A 1, for fu f2 e X>(A), (Mh,Mh) is well defined and 

(2.49) (Mf\Mf*)t= [\h,f2]
3(Xs,9a)ds. 

Jo 

Moreover, for f € T>(A), M/ is quasi-left-continuous. 

Proof. From (2.1), for / e P(A), Af/ is a martingale with M/ = 0. M* is locally 

bounded because / is bounded and for fixed t, JQ Asf(X3,9s)ds is also bounded. 

Therefore, from Dellacherie and Meyer (1978, Page 227), we know the angle bracket 

(Mf\Mh) is well defined. Next, from A 1, f2 € £>(A) and 

(2.50) f2(Xt,6t) = f(X0,e0) + f\sf(X3,e3)ds + Ml2 

Jo 

for some martingale Mt . However, applying Ito's formula and note that (2.1), 

f2(Xt,et) = f2(X0,60) + / 2fAsf(Xs,63)ds + [ 2f(X3-,6s_)dM{ + [Mf,Mf]t. 
Jo Jo 

Therefore, 

/ (2fAsf - Asf)(Xs, 9s)ds + [Mf, Mf]t = Mf - f 2/(X,_, 9t-)dMf
t. 

However, 

is a local martingale and we have 

/ ( 2 / A , / - A3f
2)(X3, 6s)ds + {Mf, Mf)t = Mf - [ 2/(X,_, 0a_)dAf/ - tft. 

It follows that both sides are decompositions of special semi-martingales. In partic­

ular, the left hand side is a RCLL, adapted predictable finite variation process null 

at zero while the right hand side is a local martingale starting from zero. Then, 

from the the uniqueness of decomposition to special semi-martingale (see Jacod and 

Shiryaev (1987), Page 32), both sides have to be constants and note that they are 
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both starting from 0, therefore we have 

(Mf,Mf)t = f (Aj2(xs,es)-2fAj(x3)e3))ds= [\f,fY(x3,es)ds. 
Jo Jo 

Following from the polarization, for / i , f2 £ T>(A), 

(2.51) {Mf\Mh)t= [ [fuf2]s(Xs,6s)ds. 
Jo 

Moreover, M{ is quasi-left-continuous because (M^,M^)t is absolutely continuous 

with respect to the Lebesgue measure for / G £>(A)(see Jacod and Shiryaev (1987). 

Theorem 4.2). • 

To derive the robust filter, we generalize the martingale problem (2.1) to the 

time-space version by first defining a new domain as follows: 

Definition 2.6. Define V{A*) C B(M.n*+nf> x [0,oo)) as the set of all functions: 

f*(x, 9, t) : Rn*+ne x [0, oo) —> R 

which have bounded partial derivative -^- and such that: 

(2.52) Vt€[0,oo), ft 4 / * ( . , , t)eV(A), 

and 

(2.53) Mf ± f*(Xu9t,t)-r(X0,e0,0) - [ A:r(X3,6s,s)ds 
Jo 

is {Tt ' }—martingale where 

(2.54) A*J*(x, 9, t) = ?£(x, 6, t) + A t(/ t)(x, 0). 

This new domain is rich enough to include many time-dependent test functions. 

For example, if we denote Q is the set of all absolutely continuous functions g : 

[0, oo) —• M with bounded derivative g' : [0, oo) —• M, then on V{A) ® Q (recall 

P(A) is the domain of martingale problem (2.1)), we can define the operator Aj on 
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functions of the form /* = g ® / where g € Q and / G 'C(A) by 

(2.55) At*/*(x, 9, t) = «7'(i)/(x, 9) + 5 ( i )A t / (x , 5) 

for t E [0,T], (x, 9) E Rn*+n<>. In fact, apply the Ito formula, it is easy to verify that 

(2.56) Mf =f*(Xt,9t,t)-f*(X0,e0,0)- f A;r(Xs,9s,s)ds 
Jo 

is {F?' e}-martingale for /* € P(A) ® Q. 

Remark 2.6. Hereafter, to ease the notation, we still write A,D(A) instead of 

A*,X>(A*) unless other specified. 

Now we assume 

A 4. Vz € E, there exists a constant Dz such that 0 < Dz < \z. 

A 5. Mz£E, XzeV(A). 

A 6. \/z 6 JB, {MXz}t>o is continuous martingale. 

The following theorem gives the robust filtering equation. 

Theorem 2.2. Assume A 1 — 6 hold true, then Vt{f) satisfies the following evolution 

equation 

(2.57) ut(f) = u0(f) + I vs(A
Yf)ds, 

Jo 

where T>(AY) = V(A) and 

(2.58) AT/ = f A t + K - a(i) + / % ^ ^ ^ ( ^ , t )y (dC, t ) ) / 

a [\z,ff + 2fAt(Xz) , / 0AZ / A t ( A ^ 
A, + A / dt 2A? M ^ z ' ^ -

Unlike the DMZ filtering equation (2.36), the evolution equation (2.57) does not 

involve any stochastic integration. In contrast, its randomness is only expressed 

through the parameterized observation path thus it is the robust equation we are 
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seeking and vt becomes the robust nonlinear filter. One advantage of our robust 

equation is that there has only one time scale ildt" here while in (2.36), there have 

two time scales: "dt" and udYt" which will complicate the numerical computation. 

Meanwhile, it is easier to establish the convergence result when approximating the 

robust filter equation. This is especially crucial to the particle filtering method 

introduced in the sequel. To prove Theorem 2.2, we need some preliminary results. 

Proposition 2.3. For each g G CQ(M), the space of twice continuously differentiate 

functions on R with compact support, and f(x, 9, t) : M.nx+ne x [0, T] —• M such that 

/(•,-,*) € T>(A) for each t € [0,T] and M( is a continuous martingale, we have 

go f e T>(A) and 

(2.59) At(g(f)) = 9'U) • ( | { + A*/) + \g"{f) • [f, f}\ 

Mt
9if)= f'g'(f)(Xs,8s)dMsf. 

Jo 

Proof. From (2.1) and Ito formula, one has that 

dg(f(Xt, et)) = g'(f)(^ + Atf)(Xt, 9t)dt + g'(f)(Xt, Bt)dM{ + \g"(f)d[Mf, M%. 

Note that M( is a continuous martingale. Then, from Lemma 2.1, 

[Mf, Mf]t = (Mf, Mf)t = [ [/, f]'ds. 
Jo 

9f\ tfv n,^ , K'U^s <M, 

Thus, 

dg(f(Xu 6t)) = g\f) (At + -+ J f(Xt, 6t)dt + - / ( / ) [ / , f]\Xu 6t)dt 

+ g'(f)(Xt,0t)dMt
f. 

Introduce Mf}) = f*g'(f)(Xs,6s)dM£. Because / 6 B(Rn*+n<>) is bounded and g' 

is continuous, so we have g'(f) is a bounded function. As a result, the continuous 

local martingale is of bounded cross variation thus it is martingale. Therefore, 

gofe V{A) and we have (2.59). • 
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Proposition 2.4. Assume A 1 — 6 hold true, then for z E E, In Xz E V(A) and 

(2-60) M t
lnA*= [ \-\Xt,6a)dM*', 

Jo 

Moreover, for f E V(A), z, C € E, 

(2.62) [lnAZjlnAcr = % ^ > 
Az\ 

(2.63) pnAa)/]* = l ^ ! . 

Proof. In Proposition 2.3, letting 5 = ln(x) and f = Xz, we have 

(2.64) g o / = l n A , € P ( A ) 

and 

(2.65) A t ln(Az) = ln'(Az) • (^ + AtX2] + l- ln"(Az) • [Az, A,]' 

^ 1 d\z [\z,\zy 
Xz Xz ' dt 2X1 ' 

Now we prove (2.62), (2.63). First, for f,g e Z>(A) satisfying 

(2.66) E / * da < 00, E / J" da < 00, 

we have 

dlnf(Xt,6t)= (jAtf + j%-Jplf>f?) (Xt,9t)dt+jdMt
f, 

dlng(Xt,9t) = (l-Atg + -% - ^[9,9]') (Xt,6t)dt +-dMt
9. 

\9 9 ot 2gz ) 9 
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By integration by parts, we get 

(2.67) 

+ ^ + (\dMl + -dMi] . 
fg \f 9 J 

From (2.66) and boundness of the Lie bracket process, we have 

(2.68) E / \Lff-{Xa,e,)d3 < co, E f \il^l(X3,9s)ds < oo 
Jo J Jo 9 

for t e [0, T], it follows the last term in (2.67) is a martingale, thus we know 

(2.69) lnf-lng€V(A), 

and 

„70) A l ( l n / ,„ 9 ) . !M + ln/(^_l^! + I.|) 

In (2.70), let / = Xz,g = A ,̂ then we have 

(2.71) pnAz,lnAc]' = A t(lnAzlnAc) - lnA, • At(lnAc) - lnAc • A«(lnA,) 

[Az,Ac]« 
A,AC • 

Similarly, we have 

d(ln\2 • /) = (in A, • Atf + / (yAt(Xz) + 

+ (lnXzdMt
f + ^dMt

x^. 

From A 4, we know 

(2.72) [ (lnXz)
2[f,fY(Xs,93)ds<oo, 

ld\z [Xz,Xzf\ [Xz,ff 
xz at 2X2

Z J K 

[tf2[K>2
Xz]s(xa,e3)ds<oo, 

dt 
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thus it follows 

/ lnAzdM/+ f -LdM*' 
J0 J0 Az 

is a martingale. Therefore, In Xz • f E V(A) and 

A , ( 1 „ v / ) . ( h , , l / + / ( ^ + ^ , ,M!) + M). 

It follows 

[lnAz,/f = A t(lnA,/) - lnAzA4/ - /A t l nA , = % ^ - . 

D 

Proposition 2.5. Assume A 1 — 6 hold true, then for z £ E 

(2.73) InXz(Xu9ut)Yz(t)= [ In Xz(Xs,9s,s)dYz(s) + / Yz(s-)X;\X3,9s)dM^ 
Jo Jo 

+ / Yz(s)As(lnXz)(Xs,9s,s)ds. 
Jo 

Here, A,(ln A.) = £ • (%• + A*A,) - % ^ . 

Proof. Note that the quadratic variation process does not change under equivalent 

measures. Meanwhile, from Proposition 2.2, (Yo(t),Y\(t), • • •) are independent Pois-

son processes with intensity (AC0, « I , • • •) and they are independent of (X, 9) under 

Q. Therefore, we have for Vz € E, 

[lnXz(Xt,8t,t), Yt(t)] = 0, 

and by integrations by parts, 

(2.74) lnXz(Xt,9t,t)Yz(t) = [ In XZ(XS, 9a, s)dYz(s) + [ Yz(s-)dlnXz(X3,9s,s). 
Jo Jo 

= [ InXz(Xs,9s,s)dYz(s)+ I Yz(s-)X:\Xs,9s)dM^ 
Jo Jo 

+ [ Yz(s)A3{lnXz)(X5,93,s)ds. 
Jo 

Hence the result. • 
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Proposit ion 2.6. Under Al - 6, for f € V(A), 

(2-75) vt(f) = E®[f(Xt,et)-Sl-n 

where 

(2.76) 

S t
y ^ exp( / - { / A.(ln\z)Y{dz) + (a(s) - K) - [ [-^^-Y(dz, d()}ds, 

J0 JE JEXE A A Z \ 

(2.77) 

Df ^ exp (- f [ Yz(s-)±dM^m(dz) - f [ % ^ Y ( < f e , d()ds 
V Jo JE AZ JO JEXE ^AZ\ 

Proof. From Proposition 2.5, we have 

Lt = exp ( l (In A, - ln^)Y(dz) - [ ( f A(ln Xz)Y(dz) + [a{s) - «] ] ds 

exp (-[ [ Yz{s-)\-z
ldM^m{dz 

Thus, the result follows from the independence of (X, 9) and Y under Q. • 

Lemma 2.2. Under A 1 — 6, Df is a continuous martingale. 

Proof. From A 6, we know the stochastic integration 

/ [ Yz(s-)^-dM*'m(dz) 
Jo JE *Z 

is continuous (see Protter (1990), Page 53) and from the representation (2.77), 

(2.78) Df = - f I BjYz(s)±dM*>m(dz), 
Jo JE AZ 

that D ^ is a continuous local martingale. Meanwhile, we have 

E e x p f / f l^l^l(Xa,e3)Y(dz, s)Y(d(,s)dS) < oo, V*e[0,T]. 
\Jo JExE lAz\ J 

Then, from the Novikov criteria, Df is a martingale. This completes the proof. • 
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After the first probability change Q, the distribution of (X, 9) remains unchanged. 

In contrast, with the second path-dependent probability change, the distribution of 

X is altered and the new distribution can be characterized by some observation-

path-dependent martingale problem. The gauge transform ut will then take the 

form of Feynman-Kac multiplicative functional. Now, we are ready to introduce 

the observation-path-dependent probability change. For given y(-), introduce the 

path-dependent probability QY by 

(2.79) 
d® 

Y 
* = * • 

under which the gauge transform can be characterized in form of Feynman-Kac 

multiplicative functional: 

(2-80) vt(f)=EY[f(Xu9t)E
Y], 

where Ey(-) denotes the expectation under QY. 

Lemma 2.3. Assume A 1 — 6, then under QY, (X, 9) is a solution of the A 

martingale problem 

(2.81) df(Xt, 9t) = AYf(Xt, 9t)dt + dMt
f, 

where V{AY) = V{A) and for f e V{AY), 

(2.82) AYf H / - / l^iHy(dz,t) 
JE AS 

and 

(2.83) dM{ = dM{ + [ l^l^-Y(dz, t)dt. 
JE *z 

Proof For / e V(A), we have 

df(Xt, 9t) = AJ(Xt, 9t)dt + dM{ 

= Atf(Xt,9t)dt - [ [^JlY{dz,t) + dM( + / [^Jly{dz,t) 
JE A z JE Az 

= AYf(Xt,9t)dt + dMt
f. 
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Here, AY and M/ are defined as in (2.82), (2.83). Now we only need to show M[ is 

a martingale under Q y . Due to the continuity of Df, we have 

A[Mf ,BY]t = 0, 

so 

[Mf,BY}t = (Mf,BY)t = - f f DY[f,ln\zYY(dz,s)ds. 
Jo JE 

From (2.63), we have 

(2.84) dM{ = dM( + I }h?J±Y{dz,t)db 
JE *Z 

= &M{ + / [InA,, f]*(Xt, 9t)Y(dz, t)dt 
JE 

= dMt
f-^7d[Mf,DY]t. 

Thus from the Girsanov-Meyer theorem, M( is a local martingale under QY. More­

over, we know M( is locally bounded. Any local martingale that is locally bounded 

is a martingale, (see Protter (1990), Page 35). Hence the result follows directly. • 

Proof of Theorem 2.2 

Proof. From integration by parts, 

d(f(Xt,9t)E
Y) = EYdM{ + AYfBYdt + fSY{- [ (AtInXz)Y(dz) 

JE 

- (a(t) -K)+ f [^£(Xt,9t,t)Y(dz,t)Y(d(,t)}dt. 
JExE Z A 2 A C 

Note that a(x, 9, t) is bounded because of A 3 and it follows Xz is also a bounded 

function. Meanwhile, for any t € [0,T], there are at most finite many jumps (non 

explosion) occurring during [0,t] so Yz(t) is also bounded for any z G E. Combining 

these points together, we know SY is locally bounded. In Lemma 2.3, we already 

prove M/ is a locally bounded martingale under Q y , therefore (see Protter (1990), 

Page 66, Corollary 3), we have 

EY[Mf,Mf}t < oo 
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for any t € [0,T] . Combining these points together , we have 

(2.85) EY{ f SfrfM/, f SfdM/], = EY f (BYfd[W, M% < oo. 
Jo Jo Jo 

Therefore, (see also Protter (1990), Page 66, Corollary 3), we have 

is a Qr-martingale. Then take expectation under Qy, 

"t(f) = Mf) + I vs(A
Yf)ds+ f ua(f{- [ (As\n K)Y(dz,s) - (a(s) - «) 

Jo Jo JE 

+ / ^fy(dz,s)Y(d(,s)})ds. 
JExE ZAZ\ 

Recalling that 

AYf = Atf- mHY(dz,t), 
JE A* 

At(Xz) 1 dXz [A„A,]« 
At(mAz) - — - + y W - - ^ - . 

Therefore we get 

Vt (f) = Mf)+ fv,{AYJ)ds, 
Jo 

where 

AYf = ( A , + K - a(t) + J ^ V±M-Y(dz, s)Y(d(, *)) / 

[Az, /]« + 2/At(Az) / dXz fAt(\p\ 

^ V A2 A, dt 2X1 

This completes t he proof. • 
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2.4 Bayes Model Selection 

The main objective of this section is to use Bayes factor to investigate the model 

selection problem. To use the Bayes factor method, we need only be able to transform 

all observation models of interests into the same canonical process via Girsanov 

measure change. The signal models can be singular to one another. Kouritzin and 

Zeng (2005) discuss the Bayesian model selection problem to determine which of 

a class of financial models best represents given financial data such as stock price. 

However, their work does not use the robust equations and their non-robust equation 

do not strictly apply to our more general models. 

The available information concerning the state is the observation process Y. The 

Bayes factor determines which class of models best fits such observed datum by doing 

pairwise comparisons. Unlike Kouritzin and Zeng (2005), our method is based on 

the robust filter. The underlying robust filtering equation has only one time scale 
udt" so only common calculus formulas are required to derive the dynamics of Bayes 

factor. Suppose there are two models: 

with total intensity function 

aW = aW{X<k\eW,t)= [ \W(dz,t) 

JE 

where the random measure \(k\dz, t) satisfying 

\(k\{z},t) = \W(x{k\e(k\t). 

The generators of the martingale problem are respectively A ^ for k = 1,2. The 

joint likelihood of (X^^^, y W ) at time t is denoted by L\ ' which satisfies 

L?} = l + f j ( % - ^ ) Lis- (y(fc)(^,ds) ~ ̂ )m(dz)ds) . 

Here, we assume 
w (i) - M) 
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for each z € E. The normalized filter -K\\ k = 1,2 satisfies 

*(fc) (/*,*) = 
°W(fk,t) 
a(*)(l,t) 

where for k — 1,2, the unnormalized filter a[ ' is defined as 

and cr(fc)(l,i) is the integrated (or marginal) likelihood of Y^ for k = 1,2. 

Definition 2.7. TTie /i/ier ratio processes are defined as 

(2.86) qi{fl't] = ^ H i ^ y and
 * ^ ' ) = - ^ ) ( M J -

As a sequel, the Bayes factor is defined as 

Definition 2.8. 

(2.87) 512(t) = 5i(i,t); £21(t) = fc(i,t). 

Once the definition of Bayes factor is given, the next step is how to interpret it. 

Here, we refer the work of Kass and Raftery (1995), Kouritzin and Zeng (2005) and 

demonstrate it through the following table. 

Bn 
1 - 3 

3 - 1 2 

12 - 150 

> 150 

Evidence against Model 2 

Not worth more than a bare mention 

Positive 

Strong 

Decisive 

Now, we turn to the issue of how to calculate the Bayes factor. As discussed in 

Kouritzin and Zeng (2005), there exist two alternatives to compute the Bayes factor. 

The first one is calculate the integrated likelihood a^k\l,t), k = 1,2 respectively 

and then take the ratio to get the Bayes factor 

(2.88) B12(t) 
r(l) (M) 

a(2)( l , t ) ' 
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(2.89) *,(«) = ^ M . 

where a^ and a^ are computed by the unnormalized filtering equation. How­

ever, this approach is not always computational efficient or numerically stable. It 

is quite possible that both c^(l,t) and a^(l,t) get very large or very small as 

t increases. For these reasons, we focus on the second approach which consists of 

two steps: firstly, we derive the evolution equation which describes the dynamics of 

Bayes factor; secondly, we develop some particle filter algorithm to implement this 

equation directly. The following equation for filter ratio process generalizes that from 

Kouritzin and Zeng (2005): 

Theorem 2.3. Suppose there are two models M^%\ i = 1,2 satisfies assumptions 

A2 - 3, then 

(2.90) ftW(/) = *«( / ) + / tf>{A«>f _ aMf) + * ( / ) * ( « ) d 3 

Jo ql J(l) 

Jo JE 

In particular, suppose the models M^ = M^2\ then we get the evolution equation of 

normalized filter nt ( / ) : 

(2.91) 7rt(/) = 7T0(/) + / TTS(A/ - a(s)/) + Tra(f)Trs(a(s))ds 
Jo 

+ u(tw-*-- ( / ) | y ( ^ 
rWff\ nT„q ^ (3 -0 / Proof. Use Theorem 2.1, we can get the evolution equation of crt (/) and 07 (1) 

respectively and then apply the Ito formula to \l-\) • Applying (2.90) to the 

equality 7rt(/) = 4ftfJ, we get (2.91). D 
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2.5 Robust Bayes Model Selection 

Recall the gauge transform 

A?' 
«/*>(/*,*) 4 E « w A(#U<fc>)LJfc>axp f - jf l n ^ ( X W , f l W ) y ( d z ) J | ^ t 

Now for A; = 1, 2, we can introduce the notations 

(2.92) 3 ^ e x p U ^ l n ^ Y ( ^ , i ) j . 

From the definition of the filter ration processes, one has 

(2.93) ft(/1>t) = ^ ^ ^ = ^ ( a ) ^ ) = ^ ( / i 5 ( >,*). 

where 

(2-94) 9i(/i,t) = ,2U ,2> ,> and g2(/2,£) -
i/(2)(5(2),£) w " v J / 1 ) ^ 1 ) , * ) ' 

The main result of this section is the following theorem: 

Theorem 2.4. Suppose there are two models M^l\ i = 1,2 satisfies assumptions 

Al — 6, i/ien 

(2.95) 

dUfi, t) = ft (AT'(i)/* - oW/i, t) dt 
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Proof. Note that 

gi(A.*) = f2w f2N -N and 92(/2 , t )-
l/(2)(5(2),t) < " v " ' " ' ^ ) ( 5 ( l ) , i ) -

Moreover, from Theorem 2.2, we have 

^ ( 1 ) CM) = ^(1) (A*1 (1)A - («(1)(5) - «(1))/i,*) dt 

+ -(1) (/i ( - JE AJ1} In AWy(«b) + jT ̂  [ A * 2 ^ ) , t y ^ ) y ^ ) ) ) 

and 

&/«(/2lt) = i/« (A?' (2)/2 - (a(2)(s) - «(2))/2,*) & 

+ ^ (h (- [ A-?] mX^Y(dz) + [ [K'^'tY(dz)Y(dO 
\ \ JE JExE **Z\ 

By the product rule, it follows 

^ ( / l ' i } = WM))2 

_ dU^>{fUt) _ ^(2)^(2), t)^(l)(g(D,t) 
_ i / ( 2 ) ( o ( 2 ) , t ) ^2>(g<2', t) 

i/DCflCD, t) 

Therefore 

A~ ft A- ° y (A'*) _ "w(g(a),t) *(1)(g(1),t) 
a? i t f i , t ; - (2), (2) v ,(»)(„(»),«) 

^ ) f e ( 1 ) / i - ( a ( 1 ) ( « ) - « ( 1 ) ) / i , t ) 
= i Ldt 

1/(2) ( 5 (2) , t ) 

^(1) (A(- L Aj1' In A^y(<k) + j ^ i ^ I y (<fe)y ( W 
J i : '—A+ 

^ l/2) (</(V) 
_ ^(2)(g(2),«) ( j z / (2 ) ( g ( 2 )^ ) 
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Thus 

dqi(fut) = Si (A?' ( 1 )/I - (aW(s) - KW)fu t) dt 

+ qi ( / i ( -

qx(fi,t) 

U9{2),t) 

follows that 

/ A ^ l n A ; 
JE 

„(2)(A?-(2 

I/(2) ( > ( -

)5(2) _ . ( a ( 2 ) ( s ) _ K ( 2 ) ) 5 ( 2 ) j 

-JEA?hnX^Y(dz) + JE 

„(1)( 5 (1) ) 

0 
[A. 

x £ 
:,AC1(2)' ' 
2XZ\ >) dt. 

^ i ( / i , t ) = 5i (A?1 ( 1 ) / I - (a(1)(s) ~ « (1))/i, *) d* 

+ ft ( / : ( - jf A « In A « y (dz) + J ^ " ' V w m ) ) ) * 

- ^ ^ • 92 (A?-(2V2> - (»<»(,) - «<Va), t) dt 

Due to K ^ = K,(2\ then 

(2.96) ^ ( A , i ) -9 2 (^ 2 V 2 ) , t) = q1(^fu t)-92(5 (2 ) , *)> 

we have that 

dgi(/i,t) = ? i ( A ? l ( 1 ) / i - a ^ A , t ) * 

+ & (/i (- J M1)k\WY(dz,t) + J [ A z
2 ^' V(&)y(dc))) * 

_ gl(/l,*) g. / ~ y > (2) (2) _ (2) (2) A ,, 
§2(<7<2M) g 2 V * 5 a g ,tjdt 

W\) 7T (J2) f f A (2), x ( 2 ) V ^ ^ , /" [ A ^ A d ( 2 ) ' ' ^ 
W2>) % •»(*w (" / ,4* - W > + 1 , % ^ ™ ) ) *• 
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Similarly, the following result holds true 

<**(/i, 0 = 92 (A ,* mh - o<2)A, i) it 

+ * (/2 ( - jf A<2> InA?>y(<fa) + jf ^ | A ^ ' ' V ( < f e ) r K ) ) ) a 

- ^ • & ( * . M ° « < " - ( V > , . ) * 

This completes the proof. D 

2.6 Particle Filtering to Bayesian Estimation and 

Model Selection 

Theoretically, Theorem 2.2 and 2.4 solve the Bayes estimation and model selection 

problem in that they already give the corresponding evolution equations. However, in 

numerical applications, we need some efficient and recursive approximation algorithm 

to implement this evolution equation. 

To avoid the "curse of dimensionality," we propose some numerical algorithm 

based on the particle filtering instead of the Markov Chain approximation utilized 

in Zeng (2003) to implement the robust evolution equation (2.57) and (2.95). The 

following algorithm to be proposed is a new particle filter that can be thought of as 

a generalization of Del Moral, Noyer and Salut (1995), Del Moral, Jacod and Protter 

(2001). Similar works discussing the particle filtering methods include Desai, Viens 

and Lele (2003), Viens, Tindel (2004). 

2.6.1 Particle Filtering to Bayesian Estimation 

The key of particle filtering is to construct some particle system whose empirical 

distribution will converge weakly to the robust filter (or gauge transform) vt (which 

is specified in Theorem 2.2) as the number of particles tends to infinity. As discussed 

before, the robust filter has the advantage that it is continuously dependent on the 

39 



underlying observation Y. Thus, we need only to consider the simple TV-equalized 

time partitions 
T iT 

{T0 = 0,n = —,...Ti = —,---TN=T} 

to make particle approximation converge regardless the trading times {t\, t%, • • • } . 

Now, let {yjv(t); t > 0} be a sequence of measure-valued processes which repre­

sent the empirical distributions of the particle system to be constructed. In general, 

the particle filtering algorithm can be divided into three consecutive phases: 

• Initialization, 

• Evolution (prediction), 

• Re-sampling (updating). 

Initialization 

• At r0 = 0, we draw mjv independent particles {PkYk=\ with the equal weights 

^- from the joint prior distribution TT0(-) of (X0;9) 6 Rn*+"*. The states of 

these particles at time t are denoted as {PkYk=v Here, mjv is some positive 

integer that satisfies 

lim ?7Zjv = oo. 
N—>oo 

The empirical (occupation) measure of this particle system at TQ = 0 is 

MO) * - £ < * < • > . 

which satisfies 

lim (<^(0), / ) = Mf) V/ € B(Rn*+n°). 

N—>oo 

Here, <5X(-) is the Dirac measure at x. 

Remark 2.7. Note that La — 1 and Yj(0) = 0 for all j = 0,1, • • • thus 

Mf) = Mf) = Mf) v/ G £(Rn*+n*). 
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Remark 2.8. As there has no special information, it is convenient to assign 

the uninformative prior, that is, the uniform distributions to (X0; 6) where the 

range [aXQ,f3x0] C R"x and [ag,(3g] C Rnfl are determined from empirical study. 

Evolution 

• During the interval [T^I, TJ), i = 1,2, • • • , iV, all particles move independently 

according to the same law of [X; 9). In the case 8 is time-invariant, it suffices to 

consider only the dynamics of X during these intervals. From Lemma 2.3, the 

particles evolve according to the following path-dependent martingale problem 

df{xl ek) = AYf(xk, ek
t)dt + dM(>\ 

where V(AY) = V{A) and for / € V(AY), 

A?f±Atf- [[^lY(dz,t) 
JE AZ 

and 

dM['k = dM(M + [ ^^-(Xk, ek)Y{dz, t)dt. 
JE *Z 

is a martingale. 

Testing Particle Weight 

• For k = 1,2, ••• ,mjv, each particle is given a weight W*(TJ) at the ending 

point Tj based on the likelihood of the observation depending on its trajectory 

realized on {T^X,^) : 

(2.97) w*(r4) 4 exp( T / [-A3(ln \z)(X
k,6k,s)Y(dz,s) - (a(s) - «)] 

Jn-i JE 

Note that the parameter vector 6 is time variant. 

Remark 2.9. In practice we can replace E by En = {1, 2, • • • n} /or some Zarge n. 
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Then, we have 

(2.98) W*(rO = exp( T {- £ fcMAOnA^Ptf.fl*,*)] 

- (a(Xa
fc,03

fc,*) - n ) + J2 -Y(s)\}nXiM^K^,ek
s,S)}d3). 

2 
t , i= i 

Moreover, for numerical computation, a discrete version of the weight function is 

n 

(2.99) w*(r() = exp(-J] [^(r^OAOnA,-)^,,^.^-!)] ' ̂  ~ T^) 

-(aC^.^.r^O-n).^-^) 

2 
» j = i 

Re-sampling 

For k — 1,2, • • • , TOJV, i = 1,2, • • • , JV, we already discussed how to give each 

particle a weight W*(TJ) at Tj. These weights are stored along with the states of 

particles before re-sampling. The average weight at r< is 

i mN 

(2.100) ^fo) A _L £„*(,.) 
fc=l 

plays an important role in the re-sampling procedure. 

Remark 2.10. To simplify the notation, we rewrite aJi(ri) = Ui\ W^(TJ) = u\ 

and ignore the partition symbol Ti whenever there has no confusion. 

We are ready to demonstrate the re-sampling procedure. Roughly speaking, if 

a particle has a weight wf = ruii + z, where r € {0,1,2, • • • } and z € (0,CJJ) 

before the re-sampling, then there will be r or r + 1 particles at this state 

after the re-sampling with a probability selected in order to leave the system 

unbiased. To illustrate the re-sampling explicitly, it is helpful to describe its 

pseudo code in detail. 
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Pseudo Code of Re-sampling 

• In what follows, for k = 1, • • • ,mjv, denote Pt
fe the state of the kth particle at 

time t. In particular, P£_ the state of the kth particle prior to the re-sampling 

(but after the evolution) and P* the position when the re-sampling is done. 

Here, the re-sampling time is set to be T;. We reorder the particles { P ^ - } ^ 

according to their weights u>\ (beginning from the highest weight) and calculate 

Ui as in (2.100). 

• m = 0; for I = 1 to m^ : 

• While w* > Ui : then wf = wf - Ui, m = m + 1; P™ = Pj._. 

• Evaluate the remaining weight: W = (mjv — Tn)wj. 

• Re-sample the rest particles for evolution: for / = m + 1 to mjv, Wj = 0; r is 

sampled uniformly from [0,1]. 

• For k = 1 to mjv, if r € [f, ^ £ ) , then P'f = P * _ , ^ = ^ + w*. 

An useful example is as follows. Suppose prior to resampling, there are 5 particles: 

Particle 

P 1 

T f c -

P2 

T f c -

P3 

T f c -

P4 

T f c -

P 5 

•* T f c -

Weight 

1 

0.5 

0.25 

0.125 

0.125 

Then tuk = 0.4 and after the first part of the resampling we would have 

Particle 

P 1 

P 2 

Tfc 

P3 

* Tfc 

Weight 

0.4 

0.4 

0.4 

Site 

P 1 

P 1 

P2 

and there would be two more independent particles to be randomly positioned at the 
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sites according to: 
Site 

P1 

i-k-

P2 

Tk-

P 3 

Tfc_ 
p4 

Tfc_ 

P5 

Probability 
1-0.8 _ 1 
2-1.2 4 

0.5-0.4 _ 1 
0.8 8 

$f = °-3125 

^f = 0.15625 

0.15625 

with each also given the weight 0.4. Note that the expected weight of each particle 

site before and after resampling is the same. That is, 1 = 2 x 0.4 + 2 x \ x 0.4. 

Also, the weight of 0.4 is the same for all particles after resampling and as such is 

irrelevant. Therefore, the weight can be set to one and thrown out. 

Bayesian Estimation 

Note that 

vt(fexp(fEln(^)Y(t,dz)) 

Therefore, the particle system approximating the normalized filter TT(-) is 

E £ i f(Pt) *MfE H^)(Pt
k,t))Y(t, dz)) 

*N,t(f) 

for a l l / € B(Rne+n*). 

Z?^MfEH^)(Ptk,t))Y(t,dz)) 

2.6.2 Particle Filtering to Model Selection 

The evolution equation of the Bayes factor also admits no explicit form solution, thus 

we also apply the particle filtering method to solve it numerically. The procedures 

are similar to that of the Bayes estimation problem and we introduce the particle 

pair as {Pt
(kl\ Pt

(k2)}T=v It is notable that now the weight takes the form as follows. 
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Evaluate the Weights 

• During the interval [ r^ i , ^ ) , i = 1,2, • • • , N, the particles {P£
(fel),Pt

(fc2)}™ii 

move independently according to the law of model M^kl\ M^ given by Lemma 

2.3. Intuitively, the particle system explores the state space following the law 

of the state process. 

• For i = 1,2,-•• ,N, the particles {Pt
(fcl)}™ii 

are respectively given a weight 
{LO\ Yk=i a t time rt based on its trajectory realized on [ r^ j ,^) : 

ui. 
(ki),k __ nr^ki) 

= Ti*1J(rO ^•"(Tt) • exP( f { f [-A(]n\M)Y(dz)] 

where 

-a{xM l , e i - f c , s) + / [ A ; . ' 7 Jy(dz)y(dc)}cfa) 

T< > (.) = exp I - J^ ^ ^ is 

W w - K £ S s ( f c 2 ) 

Here, 

r r \X (A:2) A ( f c2 , l 

r(fco A _ / A<fc2)inA^y(dz) + / [ ' _ ' c Jr(dz)y(dc). 

Note that both T f x)(i) and AJfcl)(i) does not depend on A; thus can be omitted 

in re-sampling step and thus the weight coincides with that given in Section 

2.6.1. 

For i = 1,2,-•• ,JV, the particles {Pt
(fca)}™ii are given a weight { w f 2 ^ } ^ 

similarly. The remaining procedures of particle filtering are just an analog of 

that given in Section 2.6.1 and we make the re-sampling step to successively 

incorporate the new information into the Bayes factor. Here we ignore the 

deduction details to save space. 
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2.7 Historical Process and Long Memory Process 

There is an increasing amount of literature which provide strong evidence of the long-

memory dependence and self-similarity exhibited in numerous fields (see Mandelbrot 

(1971)). The continuous-time fractional Brownian motion (FBM) proposed by Man­

delbrot and Van Ness (1968) can be employed as the building block of stochastic 

models to capture these statistical properties. FBM is one of the simplest stochastic 

process exhibiting the long-memory dependence and self-similarity. It seems very de­

sirable to extend the classical stochastic systems driven by the Brownian motion to 

analogues in which the driving process is FBM. For example, the stochastic processes 

satisfying the linear stochastic differential equation driven by FBM. Among them, 

one of the most important is the fractional Ornstein-Uhlenbeck (FOU) process. 

However, it is well known that the FBM and FOU are both non-Markovian except 

its special Brownian motion and Ornstein-Uhlenbeck (O-U) process cases. Due to 

this reason, the traditional stochastic filtering theory fails to work directly because it 

is no longer possible to characterize FBM or FOU through some type of martingale 

problem. Instead, inspired by Dawson and Perkins (1991), Dynkin (1991), as well as 

Kouritzin, Long and Sun (2003), we switch to the historical process of FBM or FOU 

process. This is because for any stochastic process S, we can introduce its historical 

process SH which is definitely Markovian and it is possible to investigate the related 

martingale problem. 

In the sequel, we construct a sequence of discrete-parameter Markov chains which 

converge point-wise to the historical process of FOU. Then we derive the martingale 

problems satisfied by these Markov chains and these martingale problems can be used 

to approximately characterize the martingale problem of the historical FOU which 

we are interested. It is worthwhile to remark here that our results can be generalized 

to any stochastic process provided its finite-dimensional distribution is given. In 

particular, to any Gaussian process where the finite-dimensional distributions are 

determined by its covariance and mean functions. 

2.7.1 Fractional Ornste in-Uhlenbeck Process 

Definition 2.9. The fractional Brownian motion (FBM) B^,t G [0,oo) of Hurst 

index H € (0,1), is a centered Gaussian process starting from zero with covariance 
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function RH : 

(2.101) RH(t, s) = E[5f Bf ] 4 ht2H + s2H - \ t - s\2H) 

for any 0 < s,t < oo. 

Proposition 2.7. The FBM with Hurst index H 6 (0,1) is of stationary increments 

and self-similarity in the sense 

~SBat ~ Bt 

for a > 0 and t > 0, where "= " means equal in distributions. 

Proof. For any 0 < s,t < oo, Bf — Bf is a central Gaussian random variable. 

Moreover, from (2.101), it follows immediately that 

E[(5f - Bf )2] = E[(B? f + {Bf)H - 2B?B?} 

= E ( £ f )2 + E(J9f )2 - 2E(5f 5 f ) 

= l * - s | 2 H . 

Therefore the FBM has stationary increments. On the other hand, B^t = B^t — Bff 

is a Gaussian random variable with mean zero and variance 

E[(Sft)
2] = E[(5* )2 + ( 5 f )2 - 2 5 f 5 f ] = {atfH = (c^)2*2* = (a*) aE[(5f )a]. 

Hence the FBM is self-similar. • 

Proposition 2.8. The FBM with Hurst index H € (0,1) admits a version which is 

(3—Holder continuous almost surely for j3 < H. 

Proof. By the self-similarity and stationarity of the increments we have, for a > 

0,t > s, 

E\Bt
H - B?\a = E\B*L3\

a = (t- s)aHE\B?\a = (t - s)aCa, 

where the constant Ca is the a"1—absolute moment of standard normal random 
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variable. Then, the result follows immediately directly from the Kolmogorov-Centsov 

theorem. • 

In what follows we shall always use such Holder continuous version of the frac­

tional Brownian motion. 

Proposition 2.9. The FBM with Hurst index H £ (0,1) is a Markov process if and 

only of H = | . 

Proof. From Proposition (11.7) of Kallenberg (1997), we know a Gaussian process is 

Markovian if and only if its covariance function RH satisfies 

RH{t,t) 

However, this is true if and only if H = \ by noting 2.101. • 

Remark 2.11. If H > | , then Bf is a long memory process in the sense that 

oo 1 oo 

Y^nB^B^-B^^-Y^iin + i r + {n-ir -2n™} = <* 
1 = 1 2 = 1 

for all n > 1. The LM suggests the correlations between long lags observations are 

not negligible. 

Definition 2.10. The fractional Ornstein-Uhlenbeck (FOU) Process XH is defined 

as 

(2.102) dXf - a{fi - Xf)dt + adB?, 

X0 — x0 

for a, a > 0, fi is the asymptotic mean and Bf is a FBM with Hurst index i7 e ( | , 1). 

Here, the fractional stochastic integration is introduced in Duncan, Hu and Pasik-
Duncan (2000) using the wick product (unlike the pathwise integration introduced 
in Lin (1995)). The FOU process can capture both the LM and mean reverting 
properties. 
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Proposition 2.10. The FOUprocess defined in (2.102) can be represented explicitly 

as 

•t 

<*t i , r„—at / "a3f]p}H (2.103) Xt
H = ft + (x0 - fi)e-at + ae~at [ 

Jo 

Proof. Let Yt
H = Xf* • eat, then apply the fractional Ito formula (see Duncan, Hu 

and Pasik-Duncan (2000)), we have 

(2.104) dYt
H = a • eatXt

Hdt + eatdXt
H 

= eatafidt + aeatdBf. 

Then it follows that 

Yt
H = x0 + an [ easds + a f easdB, 

Jo Jo 

= x0 + ii{eat - 1) + a [ easdB* 
Jo 

Jo 

Hence the result. • 

Proposition 2.11. The FOU process (2.102) is a continuous Gaussian process with 

the mean function 

(2.105) m(t) = E(Xf) = n + (x0- M K * * , 

and for 0 < s, t < oo, covariance function 

(2.106) Cov(Xt
H,X*) = a2e-a{t+s) [ [ eaueav<p(u,v)dudv, 

Jo Jo 

where the kernel <p : [0, oo) x [0, oo) —• R be given by 

(2.107) <p{s,t)±H{2H-l)\s-t\2H-2. 
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In particular, the FO U has the variance function 

(2.108) Var(Xt
H) = a2e'2at [ f eaueav<p(u,v)dudv. 

Jo Jo 

Proof. From the construction of fractional stochastic integration of Duncan, Hu and 

Pasik-Duncan (2000), we know the fractional stochastic integration is a Gaussian 

process with continuous sample path when the integrand is deterministic. Thus 

from (2.103), we know for fixed t, Xf is Gaussian random variable. The expectation 

of the fractional stochastic integration is zero mean (see Hu, 0ksendal and Sulem 

(2003)) and for for 0 < s,t < oo, the covariance function is 

Cov(XH
t X?) = E (X? - EX*) {X? - EX?) 

= (j2e-a( t+s)E [ f eaudW" • / emdW.H 

a e 

o Jo 
2e-a(t+s) f J e<*ue«v^ vYudv. 

Jo Jo 

Here, the kernel (p : [0, oo) x [0, oo) —> R is given by 

tp(s,t)±H{2H-l)\s-t\2H-2. 

Here, (2.106) is from Duncan, Hu and Pasik- Duncan (2000). It is the generalized 

form of the fractional Ito isometry in Hu, 0ksendal and Sulem (2003) which gives 

the variance function 

(2.109) Var(Xt
H) = a2e~2at j I eaueav<p(u,v)dudv. 

Jo Jo 

Hence the result. • 

O-U Process 

An useful special case is when H = | and XH becomes the O-U process. For notation 
consistency with later chapters, we use Z instead X to denote the O-U process. 

Proposit ion 2.12. The solution to the O-U equation 

dZt - -azZtdt + azdWt, Z0 = 0 
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is a central Gaussian process with covariance function 

p(s, t) 4 Cov(Zs, Zt) = Y (e-Qz(4- s ) - e~az^) 

Proof. Let Yt = Zt • eazt, then from the Ito formula, we have 

olYt = az • eaztZtdt + eaztdZt = az • eaztdWt. 

Thus 

Zt = az- e'aztYt = az • e~azt [ eazsdWs. 
Jo 

This is a Gaussian process with mean function 

E[Zt] = 0 

and 

Var(Zt) = ^ (1 - e-2az<) • 

Moreover, for 0 < s < t < oo, the covariance function is 

p(a )t) = ^ ( e - a * < t - « > - e - a * < t + ' ) ) . 

• 

2.7.2 Historical Process of FOU 

Although we can derive the explicit form of FOU process, however, except H = \, 

the FBM and FOU is neither semi-martingale nor Markov process. This makes 

the stochastic analysis to them becomes more infeasible. Following Dynkin (1991), 

Kouritzin, Long and Sun (2003), for any stochastic process S, we can introduce its 

historical process S whose state at time t is the path of S over time interval [0,i\. 

The principle property of historical process is that, for any 0 < t < oo, the a-algebra 

o-(St) coincides with Tf. From now on, we confine our attentions to the historical 

process X of the FOU XH. Its historical process can be introduced through its 
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historical variant which is defined path-by-path, that is, for u 6 Q, the realization 

of XH(-,u), the historical variant of X is defined at time t as 

(2.110) Xt(r) = { Tt - -
\X", for t < r < op. 

It follows directly that any historical process is a Markov process because its current 

status includes all information of the whole past trajectory. In general case, for 

stochastic process S with state space K and right continuous left limit (cadlag) 

sample paths, the state space of its historical process is DK[Q,OO), the space of all 

right continuous left limit (cadlag) functions. In case of the FOU process, the state 

space of its historical process is CR[0, OO), the space of all real-valued continuous 

functions on [0,oo). Hereafter, for notation simplicity, we write X instead XH to 

denote the FOU process with Hurst index H. In the same way, we write X instead 

XH to denote the historical process of FOU. 

Here, we aim to derive the martingale problem satisfied by the historical process of 

FOU process. Keep this in mind, we first introduce a sequence of discrete-parameter 

Markov chain which point-wise converges to the historical process of FOU process. 

Using the transition function of the Markov chain, we can characterize its evolution 

through some discrete-time martingale problem. 

General Partition 

For n € N, we introduce the partition In of [0, oo), an ordered subset 

(2.1H) / n = { « , - • • } C[0,oo) 

satisfying 

0 = tj < q < • • • < tn
k < • • • < oo, 

and 
lim i£ = oo. 

fc—>oo 
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The mesh of /„ is defined as 

| / n | ^max{ | t " ,-t%j = 0, ! , • • • } . 

Note that {/„, n € N} is a sequence of partitions of [0, oo) and for each n, we let 

t", j = 0,1, • • • denote the members of /„. To ease the burden of notation, we omit 

the superscript n in t™ below whenever the meaning of /„ is clear from the context. 

Remark 2.12. A particular and simple case is the following equalized partition 

(2.112) In = {0, 
iT 

) ! 
n n 

, . . . } c [ 0 , o o ) . 

Now define the discrete-parameter chain XIn = {XIn(j),j = 0,1, • • • } where 

(2-113) XI«(j) = Xtj forj = 0,l,---

We know XIn is not Markov because it is the discrete-parameter sampling of FOU. 

Alternatively, we can introduce the historical chain XIn = {Xl",k — 0,1, • • • } where 

XT
k
n G R°° is defined as 

(2.114) 

That is, 

(2.115) 

xtn(j) = 
Xtj, for0<j<k, 

Xtk, iov j > k. 

Xkn — {Xt0, Xu, • •" , Xtk, -X'tfc, • • • }• 

Now we can embed XIn into some right continuous-time process Xt" with cadlag 

sample paths through 

(2.116) X!" = J2xullu,ti+l)(t)={ 
i=0 

X0, ifteto,*!), 

Xtl, if * e [*i,*2), 

X-to if t € [tj, tj+i), 
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and introduce its historical process Xt
n by 

(2.117) Z/"(r) = £ x t i l M i + l ) ( i A T ) = 
i = 0 

X0, i f tAre fO. tx ) , 

Xtl, iftAr€[t1,t2), 

Xti, if t AT e[ti,ti+1), 

Because the sample paths of the FOU process X are almost surely continuous on 

[0, oo), thus we have path-wise convergence, that is, 

(2.118) xt Xt 

in CK[0, OO) when limn >00 |/„| = 0. Therefore, the martingale problem of the his­

torical process Xt should be approximately determined by the martingale problems 

of {X/n}„gf!j- Meanwhile, from its definition, it follows that Xf" is equivalent to Xjn 

in the sense that they carry the same information. Here, j satifies t e [tj,tj+i). 

Therefore, we limit our attention to the martingale problem of XIn in the following. 

It is obvious that XIn is a discrete-parameter Markov chain because its historical 

<T—algebra 

is generated by Xl£. To derive its martingale problem, we need specify the one-step 

transition function of XIn from k to k + 1. For k € N, we can introduce 

(2.119) R£° = {x e M°° such that xk+j = xk for Vj e N}, 

and the A;—dimensional projection 11̂  for x — (x\, x%, • • •) € M°° : 

(2.120) 

for T C R°° 

Ukx = (xi,--- ,xk), 

(2.121) n f cr= {ukx,xev). 
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Moreover, for x € M°°, T C M°°, we can define the k—section set of T at x: 

(2.122) Tk/+1±{y: (Ukx,y) eUk+1{TnRf+1)}. 

Remark 2.13. / / r n R j ° + 1 = 0, then Tk'k+1 = 0. 

Now, for x € R°°, T € tf (M00), 

(2.123) p(k, k + 1, x, T) 4 P(x£« € 1 ^ , £ f r i € r | ^ " = x) 

= ¥(xt € Mr, Hfc+i-̂ jfei e n*+i(r n R ^ ) ^ - = x) 
= ¥(xi" e Mr, xt+1(k +1) e r^+1 |x,7" = x) 

= F{Xl" e Mf, ^"(fc + 1) € Tk/+1\Xl" = x) 

l{:reRoo}p(y|nfc x)dy. 
Jvi 

Here, p(y|-) is the conditional probability density function of XIn(k + 1) = y given 

IifcX^". Note that (IikXk
In,XIn{k+l)) is a Gaussian random vector with mean \i — 0, 

thus we have: 

(2.124) p(y\Ukx) = p(y\x1,x2,--- ,xk) 
Dk^ _p-^[(Ukx,y)D-}l(nkx,yy-nkxD^1Ukx'} 

1 c ) 
2n\D fc+il 

where for each k € No, Dk is determined by the covariance function of FOU process 

which is given in (2.106). It is easy to check that (2.123) is a one-step transition 

function to the Markov chain {Xln}. With the transition function in hand, we can 

show the martingale problem satisfied by Xjp. For fceN, define the time-invariant 

operator A{n : 5(M°°) —• 5(M°°) by 

(2.125) Ajrf(x) = J f(y)^k, k + l,x, dy) - f(x). 

Therefore, from Ethier and Kurtz (1986), the discrete-time martingale problem for 
XIn 

can be described as follows: 
k 

(2.126) f{Xt) = f{Xt) + J2 Mnf(*h + M['In. 
i=0 
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Consequently, the martingale problem to the historical process of FOU process can 

be described as follows: 

(2.127) f*(Xt) = f*(X0) + f A,r(Xs)ds + Mf, 
Jo 

where the test function /* € B(DR[0,OO)) takes the following form: there exists 

0 < ti < t2 < • • • < tk < • • • < co, / e B(R°°) such that 

(2.128) r(Xt) = fo(ntl,7rt2,---,7rtk,..)(Xt) 

= fin^Xt, irt2Xt, ••• , TTtkXt, •••) 

— f(XtAtx i XtAt2, • • • XtAtk , • • • ) . 

Here, for s G [0, oo), n3 (note that it is not the unnormalized filter defined in (2.12)) 

is the projection operation on B(DR[0,OQ)) at s such that 

(2.129) vrsX{ = Xs 
Xa, for s < t, 

Xt, for s > t. 

Consequently, the generator As is defined as: for all /* which is of the form in 

(2.128): 

(2.130) 

where 

oo 

A</* = E rrr— Ar/* • i[w)(*), 
*!=i ^fc — tk-\ 

(2.131) / " = {0 = t 0 < h < • • • < h < • • • < o o } . 
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Chapter 3 

Microstructural Stock Market 

3.1 Introduction 

In principle, the financial market can be modeled by the micro- or macro-structure 

approaches. The macrostructure (macro-movement) refers to daily, weekly or monthly 

closing price which are of the low frequency. In contrast, the microstructure (micro-

movement) refers to high-frequency transaction (trade-by-trade) prices. The avail­

ability of such high frequency data provides researchers an opportunity to study the 

market at any scale. There is a large amount of literature discussing microstruc­

ture financial markets (see Black (1986), Chan and Lakonishok (1993), Hasbrouck 

(1996, 1999), Engle and Russell (1998), Engle (2000), Bandi and Russell (2006) etc.). 

Unlike the macrostructure market, the trading noises in microstructure market are 

not negligible thus the intrinsic value of the asset can not be observed directly. In 

this paper, we introduce a class of partially-observed microstructure models where 

the asset price can be formulated as distorted, corrupted counting measure observa­

tions of a macrostructure value-process model. Previously, Zeng (2003) studied the 

Duncan-Mortensen-Zakai (DMZ) equation while Kouritzin and Zeng (2005) derive 

their Bayes factor equation for a motivating yet more-limited microstructure model. 

In this chapter, we discuss the model selection problem in microstructure market. 

The motivation is to evaluate which of the competing stochastic volatility models 

best fits the observed transaction data. Our Bayes factor method, provides an effec­

tive means to conduct our statistical comparisons since it provides real time empirical 
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evidence as to which model best fits the market data while allowing the value-process 

model components to be mathematically singular to one another. When applying 

the Bayes factor method, we need only transform all observation model components 

into the same canonical process via Girsanov measure change. The interested read­

ers may refer to Kass and Raftery (1995) for a comprehensive survey of Bayes factor 

and model selection. Kouritzin and Zeng (2005) discuss the Bayesian model selec­

tion problem to determine which of a class of financial models best represents given 

financial data such as stock price. However, their work is based on a far cruder 

model with obvious limitations and the DMZ filtering equation instead of the robust 

filtering equation. One advantage of our robust equation is that there is only one 

time scale udt" here while in the DMZ filtering equation, there have two time scales: 

"dt" and udYt" which complicate the numerical computation. 

Our use of robust filter is both practical and novel. To the best of our knowledge, 

neither the linear nor nonlinear robust filter has ever been applied to the research of 

microstructure financial market before. We fill this gap and also first characterize the 

Bayes factor of model selection in terms of the robust nonlinear filter. The rest of this 

paper proceeds as follows: Section 2 lays out the partially-observed microstructure 

model to explain the existing price bias in intrinsic value. Section 3 discusses the 

Bayes estimation problem and presents the evolution equations that characterize the 

Bayes filter. We also provide a novel efficient particle filtering algorithm to implement 

these equations. Some numerical results are reported. Section 4 investigates the 

model selection problem using Bayes factor method to test which SV model best fits 

the observed price data. 

3.2 The Partially-Observed Microstructure 

Model 

3.2.1 Construction of the State Process 

Our goal is to evaluate and compare SV models within the microstructure framework. 

Throughout this paper, we assume the financial state X G R"x with its parameter 

6 e Rn" jointly satisfy the martingale problem (2.1). 

Remark 3.1. The martingale problem technique proposed by Stroock and Varadhan 
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(1979) provides a general formulation of the Markov processes. See Ethier and Kurtz 

(1986) for more details of the general martingale problem and the associated operator 

approach. 

The formulation (2.1) covers most of the interesting financial quantities, e.g., 

stock price, interest rate, exchange rate or commodity price. Although we focus 

on the stock price throughout this paper, the methods proposed here can just as 

easily be applied to other classes of financial assets. In our paper, the state process 

X consists of two components: the equilibrium price (intrinsic value) S and the 

possible stochastic volatility V. Both are latent variables. The most commonly seen 

example of (2.1) in finance is the geometric Brownian motion (GBM) arising from 

the classical Black-Scholes (BS) option pricing formula. 

3.2.2 Stochastic Volatility Models 

Example 3.1. (GBM model) ('see Black and Scholes (1973), Merton (1973)) 

(3.1) ^± = fxdt + adWu 

where nx = l,ng = 2, Xt = St, 9 = {/J-jCr) and Wt is standard Brownian motion. 

The generator A^ is 

(3.2) A«/(S, 6) = \°2s2^(s, 9) + »sfs(s, 9). 

To account for the well-known volatility smile (see Jackwerth, J. and Rubinstein, 

M. (1996) for a detailed survey) observed from the market option prices, the GBM 

model is generalized to stochastic volatility (SV) models, where the volatility a itself 

also follows some stochastic process. In the sequel, S and V will be used to denote 

the stock value and its volatility respectively. Then, some of the popular SV models 

include: 

Example 3.2. (Hull &White model )(see Hull & White, 1987) 

(3.3) ^=fjdt + VtldWt, 
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(3.4) -/ = vdt + KdBu 

where nx = 2,ng — 3, Xt = (St,Vt), 9 = (JJ,,I/,K) and Wt and Bt are independent 

standard Brownian motions. The generator A^ is 

(3.5) A^f(s, v, 9) = \vs2^(s, v, 0) + ^ ( s , v, 9) + | « V 0 ( S > v, 9) 

+ uv—(s,v,9). 

Example 3.3. (Logrithmetic Ornstein-Uhlenbeck model) (see Scott, 1987.) 

(3.6) -^. = fidt + VtdWt, 

(3.7) dVt = Vt (y
2 - e(ln Vt - w)\ dt + KVtdBt, 

where nx = 2, ng = 5, Xt — (St, Vt), 9 = (fi, u, g, w, K) and Wt and Bt are independent 

standard Brownian motions. The generator A ^ of this model is 

(3.8) A<3>/(5, v, 9) = \v2s2^(s, v, 9) + ̂ ( s , v, 9) + ^ « V 0 ( s , v, 9) 

1..2 .,,_.. _C\df, + v[~v -g(lnv-w)j — (s,v,9). 

Example 3.4. (GARCH (1,1) diffusion model) (see Nelson, 1990.) 

(3.9) ^ = /xdi + V ; W t , 

(3.10) dVt = (i/ - gVt)dt + KVtdBu 

where nx = 2,ng — 4, Xt = (St,Vt), 9 = (fj,,u,Q,K) and Wt, Bt are independent 

standard Brownian motions. The generator A^ of this model is 

(3.11) A^f(s, v, 9) = \vs2^(s, v, 9) + ^ ( s , v, 9) + | « V 0 ( a , v, 9) 

df 
+ {v- gv) — (sJv,9). 
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Example 3.5. (Heston model) (see Heston, 1993.) 

(3.12) d^± = lMdt + VhdWt) 

(3.13) dVt = {y- gVt)dt + Kv}dBt, 

where nx = 2,ng = 4, Xt = (St,Vt), 9 = ((J,,V,Q,K) and Wt, Bt are independent 

standard Brownian motions. The generator A^ of this model is 

(3.14) A(5)/(5, v, 9) = \vs2^(s, v, 9) + ^ { s , v, 9) + \*2v^(s, v, 9) 

+ {v- gv) — (s,v,9). 

Example 3.1 — 3.5 can be summarized by the following "generalized diffusion 

stochastic volatility " (GDSV) model (see Nielsen and Vestergaard, 2000): 

(3.15) dst = b1(st,vt,e)dt + c1(suvt,e)dwt, 
(3.16) dVt = b2(St,Vt)9)dt + c2(St,Vt,9)dBt, 

Xo = (So,V0). 

where (X0,90) G M™«+2, /j, = P o (XoA) - 1 , Wt and Bt are independent standard 

Brownian motions. The coefficients 61,62 and c1(C2 satisfy the regularity conditions 

so the existence and uniqueness of the strong solution is known for all these examples. 

The generator A in this general case is time-invariant and satisfies 

(3.17) Af(s,v,9) = ^c2(s,v,e)^(s,v,9) + bl(S,v,9)^(s,v,9) 

1 d2 f df 
+ -4{s,v,9)-^(s,v,9) + b2(s,v,9)-^(s,v,9), 

where V(A) is the set of all bounded second-order continuously differentiable func­

tions on M™s+2. For comprehensive comparison, we also consider the following jumping 

stochastic volatility geometric Brownian motion (JSV-GBM) model. 

Example 3.6. (JSV-GBM model)(see Kouritzin and Zeng, 2005.) 

(3.18) ^=ndt + VtdWu 
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(3.19) dVt = (JNt_+1 - Vt_)dNt, 

where Wt is a standard Brownian motion, Nt is a Poisson process with intensity 

A; {Jj} is a sequence of independent random variables independent ofWt,Nt and 

uniformly distributed on a range [aj,/3j]. Here, Wt and Nt are also independent and 

in this case nx = 2,ng = 4, Xt — (St,Vt), 6 = (/j,,\,aj,Pj). The generator A ^ of 

this model is 

(3.20) A^f(s,v, 9) = \v2s2^(s, v, 9) + ̂ ( s , v, 9) 

+ \f J(f(s,z,e)-f(s,v,9))—± dz. 

In summary, we have 

SV Model 

GBM 

Hull & White 

Log O-U 

GARCH Diffusion 

Heston 

JSV-GBM 

Example 

1 

2 

3 

4 

5 

6 

State X 

S 

(S,V) 

(S,V) 

(S,V) 

(S,V) 

(S,V) 

State Parameter 9 

(M,cr) 

(H, v, K) 

(fi, V, Q, ZU, K.) 

(H, v, g, K) 

(M, v, g, K) 

(fi,\,aj,pj) 

Generator 

A(D 

AW 

A (3) 

A « 
A (5) 

AW 

To derive the full benefits, we give the following remarks: 

Remark 3.2. In Example 3.3, applying ltd formula to Vt* — In Vt, we get the follow­

ing formulation 

(3.21) ^ = pdt + evfdWt, 

(3.22) dVt* = (o + bVt*)dt + cdBu 

where 8 = (n, a, b, c) satisfies a = \v2 + gw — ^K2; b = —g; c = K. It follows that V* 

is a mean-reverting 0- U process. The generator becomes 

1 f)2 f 8f 1 r)2 f 
(3.23) A*f(s, v*,9) = _ e 2 " V ^ ( S , v\9) + ̂ ( s , v*,9) + ^ - ^ ( s , v\ 8) 

+ (a + bv*)^?(s,v\6). 
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Remark 3.3. The GARCH diffusion model in Example 3.4 is the continuous-time 

limit of many classical GARCH-type discrete-time processes as discussed in Nelson 

(1990), Drost and Werker (1996). 

Remark 3.4. The volatility drift parameters {y, g,uy) in Example 3.3, {y, g) in Ex­

ample 3.4,3.5 are introduced to capture the mean-reverting nature of the volatility 

process whereas Example 3.1,3.2,3.6 are not mean-reverting. 

Remark 3.5. The Example 6 is closely related to the asset price models with Markov 

modulated volatilities discussed in Elliott, Malcolm and Tsoi (2003). 

The above SV models account for the random behaviors of implied and historical 

variances of the asset return rate from numerous empirical studies. Meanwhile, 

the SV models are also crucial for the derivative pricing and hedging in financial 

markets. A naturally raised but important issue is the parameter estimation of these 

SV models and model specification. However, estimating the above SV models poses 

substantial difficulties. One difficulty is that their transition probability functions are 

hard to get in closed form thus it is not easy to implement the maximum likelihood 

estimation (MLE) except a few special cases (see Ait-Sahalia, Kimmel (2007)). Even 

when we can get the closed-form of transition function but it usually turns out to be 

irregular. Hence, in this paper, we choose the Bayesian filtering approach due the 

following properties: (1) The Bayes estimate is the least mean square error estimates 

and does not require the availability or regularity of the likelihood function. (2) The 

Bayes estimate can be computed recursively. (3) The Bayesian hypothesis testing 

procedures can be conducted through the Bayes factor that is the ratio of conditional 

likelihoods and easily computable. Most importantly, it does not require the signals 

X in our examples 3.1 — 3.6 to be equivalent in the sense of Girsanov measure change, 

which they are met. 

3.2.3 Construction of the Observation Process 

Now we turn to the construction of the transaction price Y in microstructure mar­

ket. It is the observation process in our problem. For illustration purpose, we present 

Figure 3.1 by plotting the transaction prices of Microsoft (MSFT) in March, 1994. 

The data are extracted from the database of Trade and Quote (TAQ) distributed 

by New York Stock Exchange (NYSE).There are three prominent features of Y im-
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Figure 3.1: The transaction prices of MSFT in March 1994. 

plied in Figure 3.1: (1) As well documented in Black (1986), Chan and Lakonishok 

(1993), Engle (2000), there exist significant trading noises within the market's mi-

crostructure which make the transaction price Y deviate from the equilibrium price 

S. (2) Compared to the state process X which takes value in continuous space, the 

observation process Y resides in a discrete space 

(2/o = 0 , 2 / l = - l , . . . 2 / , = A ) . . . ) 

given by the multiples of the minimum price variation -^ for some positive integer 

M. We called such minimal variation in financial market the "tick" *. Herein, 

we take M = 100 unless otherwise stated. (3) Unlike the macrostructural price, 

price changes occur only at irregularly spaced trading times (see Engle (2000)): 

(Ti, T2, • • •). Its total intensity a(Xt, 9t,t), representing the trading activity, is a time-

varying measurable function of x and 6. 

Incorporating Trading Noises 

Now we show how to incorporate trading noises into Y. Firstly, it is apparent from 

Figure 1 that prices are restricted on the grid of ticks and that there are a significant 

number of outliers representing trading noise. Secondly, it is clear that there can be 

1The tick size in NYSE was switched to $ ^ from $g in June 24, 1997 and then further adjusted 
to $0.01 beginning from January 29, 2001. 
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Figure 3.2: The strong clustering of MSFT stock prices in March 1994 where M = 8. 

price biasing to certain "more whole" prices. For example, a price of $25 may be more 

common than $24| or $25|. This effect can be seen from Figure 3.2, the histogram 

of transaction prices of MSFT in March 1994, where the transactions whose tick 

fraction part is 0 is significantly more than other ticks. Note that here we use older 

data (March 1994) in these figures for expository reasons. In the sequel, we will also 

consider more recent data. Our microstructure model is constructed according to 

the following lines: at each trading time Ti} the price Yt{ is 

(3.24) Yr^FiX^T,) 

where y = F(x, t) is a random transform with some transition probability function 

p(y\x,t). The formulation (3.24) is similar to that of Hasbrouck (1996): X is the 

intrinsic and permanent component while F acts as the transitory component due 

to the existence of the trading noises. In general, there are three trading noises in 

microstructure market: discrete, clustering and non-clustering. As a result, we move 

from the value X to price T in three steps. 

• To incorporate the non-clustering noise. For the ^—transaction with trading 

time Ti, we define the intermediate variable y^ as: 

(3.25) \uyTi=lnXTi + Z^+eQ, 

(3.26) dZ* = -azZ?dt + dW?, Z% = z0, 

lui 
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where the observation noise consists of two components: Zh and £. Here, Zh 

is the correlation component of the non-clustering noise while £ = {Ci}£i *s a 

sequence of white noise with variance e > 0. The correlated noise component 

Zh satisfies the FOU velocity process; its initial value ZQ is independent of Wh. 

Here, Wh is a fractional Brownian motion with Hurst index h e (0,1) that is 

independent of the state process X; az > 0 is the mean-revering parameter 

of the FOU process. Here, the non-clustering noise is introduced to represent 

all trading noises due to unequal information etc. that can not be explained 

by the discrete and clustering noises. If h — | , the driven process Wh reduces 

to the classical Brownian motion. Our non-clustering noise is more reason­

able than that of Zeng (2003) in that: (1) We can preclude the possibility of 

negative price; (2) The long memory structure in our noise term can capture 

the empirical feature of momentum observed in transaction prices. Recall the 

momentum measures the rate of rise or fall in stock prices and it indicates 

the trending of the stock prices. (3) The mean-reverting structure of the FOU 

process captures the cycles property of prices, (see Black (1986)). 

For the noise component Z£, we can introduce its historical process Zj* as in 

(2.110) and its martingale problem exists and computer workable approxima­

tions can be generated. This makes it possible for us to simulate the evolution 

of the noise term Z and it plays an important role in the particle filtering to 

come. To ease the notation, hereafter we fix i and write 

U = Ti}x = Xu,y = Yti,z = Z*,z = Zh
u 

in the following arguments whenever no confusion occurs. For tick price level 

2/j = /^, J = 1,2, •• - , consider the interval [y, - ^,Vj + ^)- Suppose yti 

falls into the j"1—interval, then if there has no clustering (biasing) noise, the 

trading price Yti is just y-j. Note that 

e C ^ m ^ - l n ^ - ^ . 

Therefore, if 
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then it is equivalent to 

ln {Vj ~ m) -lnXt* - z£ -eCi -ln {yj + 2^) ~lnXti ~ z^ 
or expressed through the historical process of Zh as 

ln (y> ~ 2 ^ ) " l n X t i ~ ̂  -eQ -ln {yj + m) ~lnXu ~ **%• 
Recall here, for t £ [0,T], 7rt is the projection at t. So the probability of trading 

at yj given Xti, Zf*. would be 

„2 
(3.27) R(yj\Xu,e,Z^U) 4 f W < V 1 e-&(fUi 

•/inI ».rw V2TT-2TT6 

or equivalently 

in I
 M;+m 

(3.28) R^X^ZlU) = / /Xti*7 V -4-e"^rf«. 
•A„ "J-gfe- V 27T6 

It follows 

fin ^ x-ez J 
(3.29) R(yj\x,9,*,*)=/ / *T / - ^ e - ^ d « 

J ln(y;-gw) V27re 

R(yj\x,9,z,t)^ I y * J -=^e %*du 

Here, the noise term Z can be incorporated into the state vector. The advantage 

of this formulation is that it is possible for us to estimate Z thus Z jointly with 

other state components using the filtering method. 

Finally, incorporating the clustering noise to capture the clustering phenomenon. 
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Note that M = 100, it is convenient to introduce the following notations: 

(3.30) Di = {The integers in (0,100] that are not multiples of 5}, 

Di = {The integers in (0,100] that are multiples of 5 but not of 25}, 

D3 = {25,75}, D4 = {50}, D5 = {100}. 

If the fractional part of the price y is in D\, then it will stay in the same level 

with probability 1 — a and moves to the closest multiple of 5 cents, that is, 

the closest tick level in D2UD3UD4U D5 with probability a; if the fractional 

part of the price y is in D2, then it will stay in the same level with probability 

1 — (3 and moves to the closest tick level in D3 U D4, U D$ with probability /?; 

if the fractional part of the price y is in D3, then it will stay in the same level 

with probability 1 — 71 — 72 and moves to the closest tick level in D4 with 

probability 71, or the closest tick level in D5, with probability 72. In summary, 

the transition probability function is obtained iteratively by 

Case 1. If the fractional part of yj belong to D\, 

(3.31) p(yj\x,B,z,t) = R(yj\x,9,z,t)(l -a). 

Case 2. If the fractional part of y^ belong to D^, 

(3.32) p(yj\x,9,z,t) = R*{yj\x,8,z,t){l- f3), 

where 

(3.33) 

R*{Vj |z, #, z, t) - R{Vj k , #, z,t) + a (R(yj-i\x, 6, z, t) + R{yj_2\^, 6, z, t)) 

+ a (R{yj+i \x,9,z,t) + R(yj+2 \x,9,z,t)) 

Case 3. If the fractional part ofyj belong to D3, 

(3.34) p(yj\x,e,z,t) = R»(yj\x,e,z,t)(l-'yi-'y2), 

where 

(3.35) 

R**(yj\x,9,z,t) 4 R*(y.|x,9,z,t) + (3{R*{yj^\x,9,z,t) + R*(yj_10\x,9,z,t)) 
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+ (3{R*(yj+5\x, 9, z, t) + R*(yj+1Q\x, 9, z, t)). 

Case 4. If the fractional part of yj belong to D\, 

(3.36) 

p(yj\x, 9, z,t) = R**(yj\x, 9, z,t) + 7i(JR**(yj_25|z, 9, z,t) + R**(yj-2s\x, 9, z, t)). 

Case 5. If the fractional part of y^ belong to D$, 

(3.37) 

p{yj\x, 9, z, t) = R**(yj\x, 9, z, t) + 72(-R**(%-25!^, 9, z, t) + R**(yj+2s\x, 9, z, *)). 

Moreover, 

Case 6. For j = 0, 

(3.38) 

p(yj\x, 9, z, t) = R(y0\x, 6, z, t) + cc(R{yx\x, 9, z, t) + R(y2\x, 9, z, t)) 

+ (3{R*(V5\x, 9, z, t) + R*{y10\x, 9, z, t)) + 72^(2/25^, 9, z, t). 

Our clustering setup is more reasonable than that of Zeng (2003) in that we 

capture the feature that the likelihood of clustering on one specific tick level is 

continuously changed. 

Remark 3.6. The parameters in the above micro structure model can be classified 

into two categories: the nonclustering noise parameter (az,h,e) and the clustering 

noise parameters (a,/?,71,72). 

The empirical studies suggest that the tick size ^ plays an important role in mi-

crostructure market analysis. For example, Huang, Stoll (2001) found the tick size is 

closely related to many key microstructure characteristics such as the price cluster­

ing, market depth, bid-ask spread, trading volume, etc. For these reasons, we recall: 

the NYSE converted all 3525 listed securities to decimal pricing in January 29,2001. 

The NASDAQ began its decimal test phase with 14 securities in March 12,2001, 

followed by another 197 securities in March 26,2001. All remaining NASDAQ secu­

rities are converted to decimal trading in April 9,2001. Such tick size adjustments 

(from M = 8 or 16 to M = 100), enable the bid-ask spread as small as one cent and 
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provide a fairer market for the individual investors. Price clustering plays a central 

role in microstructure market and is necessary to examine this characteristic in both 

pre- and post-decimal pricing for comprehensive understanding. 

Before the tick adjustments, the price clustering occurred between the eighthes. 

Our study shows NYSE stocks exhibit the clustering on even-eighth. This is consis­

tent with the study of Huang, Stoll (2001), Chung, Van Ness (2004), Chung, Kim, 

Kitsabunnarat (2005). Moreover, the degree of price clustering in NYSE is relatively 

weaker than that of NASDAQ. Figure 3.3 shows the typical moderate clustering ob­

served from the two-month tick data of General Electronic (GE), February-March, 

1995. Its fraction of even eights is approximately 53%. This is consistent with Barclay 

(1997) where he examined 472 stocks from NASDAQ before and after their listing 

in NYSE or American Stock Exchange (AMEX): before the listing, the average frac­

tion of even-eights is 78% while after listing, it drops to about 56%. To examine 

Figure 3.3: The moderate tick clustering of GE in Feb.-Mar. 1995 where M = 8. 

the price clustering after the tick size adjustment (M = 100), we sample 16 NYSE 

listed stocks for one month, Mar. 2005, and examine their tick price behaviors with 

the associated microstructure characteristics. These 16 stocks are selected based on 

the criteria of cross-section, market capitalization and liquidity. They are tabulated 
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with their symbols as follows. 

NYSE Stock 

American Express 

AT&T 

Boeing 

Citigroup 

Exxon 

General Motors 

Goldman Sachs 

Goodyear 

Ticker Symbol 

AXP 

T 

BA 

C 

XOM 

GM 

GS 

GT 

NYSE Stock 

Home Depot 

Honeywell 

IBM 

Pepsi 

Pfizer 

Walmart 

Walt Disney 

Xerox 

Ticker Symbol 

HD 

HON 

IBM 

PEP 

PFE 

WMT 

DIS 

XRX 

Based on the transaction price data of these 16 listed stocks, we examine the cluster­

ing with the tick as 1 cent and our study shows there exist moderate clustering at the 

multiples of 5 cents as shown in Figure 3.4 plotting in terms of pennies and Figure 

3.5 in terms of mode 25. Our clustering model (3.31) — (3.38) can well characterize 

this phenomenon. Based on the 16 listed stock prices, the clustering parameters can 

oJRH 
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« 
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Figure 3.4: The Clustering on Pennies for 16 NYSE stocks on March 2005. 
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i l n n 
j 

Figure 3.5: The Clustering in Nickels for 16 NYSE stocks on March 2005. 

be estimated using the relative frequency analysis as follows. 

Clustering Parameters 

a 

P 
7i 

72 

Estimate 

0.060475 

0.046883 

0.03883 

0.16525 

3.3 Nonlinear Filtering and Bayes Estimation 

Another approach of constructing the price process is to formulate it as a marked 

point process Y: a double sequence of random variables Y = (U,Yti, i > 1) where 

U € [0,T] denotes the trading time of ith—trade and Yti the corresponding trading 

price. As discussed in Chapter 2, the mark space is (E, £) where E = N0 and £ is 

its discrete a—algebra. Here, j € E corresponds to the jth—tick level j ^ . For each 

A E £, we can associate the counting process Yt(A) 

(3.39) Yt(A)^Y,l{Y^A}l{ti<t} 
i > l 
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to denote the accumulated trades that occurred in tick level set A. In particular, for 

Vj G E, 

Yj(t) = Yt({j}) = ^2kY^}Mu<t} 

denotes the total trades at jth—tick level i . As discussed in Chapter 2, we can also 

define the random counting measure Y(dz x dt) on [0,T] x 5 by 

y(w, i4x[0 , t ] )^y t (a ; ,A) , Vw 6 fi, ,4 G f, £G[0,T]. 

Alternatively, we have 

(3.40) \Z{XU 9t, t) = a(X t l 0t) t) • p(yz\Xt, 9t, t), 

where X = (S,V) and p(yz\x,0,t) is the transition probability function from the 

state x to yz at time t, conditional on the parameter d. The equivalence of these two 

constructions can be established heuristically as follows: 

l i m F(Yz(t + h) -Yz(t) > (TO) = .p(yM\XtA,t) = UXu6ut). 
h—»0 tl 

Thus this structure of intensities makes these two constructions statistically equiva­

lent. In the following, we focus on the nonlinear filtering approach and demonstrate 

how to derive the robust filter from it: 

*t(-) = F[(xt,et)e-\r?] 

or equivalently, 

irt(f)=E[f(Xuet)\tf] 

for / G B(Rnx+ne). As discussed in Chapter 2, we have: 

Theorem 3.1. Under A 2 — 3, the unnormalized filter at is the unique measure-

valued solution of the stochastic filtering equation 

*t{f) = <f)+f°> (Af - «s) - K)f)ds+[ jE
a°- [Jc^T ~ 0 f) Y(dz>ds^ 

fort>0 and f G X>(A). 

To utilize the robust filter, we can verify the regularity conditions A 1, A 5, A 6 
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for Examples 3.1 — 3.6. A 1 is obvious because the domain T>(A^), k = 1, • • • , 6 

in these examples is just the set of all twice continuously-differentiable functions 

which are closed under multiplication. Recall here A ^ is the pregenerator of the 

martingale problem for Examples 3.1 — 3.6. Moreover, the total intensity a(St, Vt,t) 

is a smooth deterministic function of t. So, for Vz € E and t € [0, T] fixed, the tick 

intensity function Xz = Xz(-,-,t) is a twice continuously differentiable function of 

x — (s,v). It follows Xz 6 V(A^). Meanwhile, {MXz}t>0 is continuous martingale in 

Example 3.1 — 3.6. The following theorem gives the evolution equation of the robust 

filter. 

Theorem 3.2. Assume A 1 — 6 hold true. Then ut(f) satisfies the evolution equation 

(3.41) Vt(f) = Mf) + / ua{AYf)ds, 
Jo 

where V(AY) = V(A) and 

(3.42) AYf = ( A , + K - a(t) + f ^fY(dz, t)Y(d{, t)) f 

" / . ( 

[A„/] ' + 2/A t(A,) _ /A t(A^)' y ( ^ ty 

Az 2XZ 

The above evolution equation does not involve any stochastic integration. In 

contrast, its randomness is just characterized through the parameterized observa­

tion path thus it is just the robust equation we are seeking and vt becomes the 

robust nonlinear filter. Theoretically, Theorem 3.2 solves the Bayes estimation prob­

lem in that it gives the evolution of the posterior distribution of (X, 6) conditional 

on the observation Y. However, in real applications, we need some efficient and re­

cursive approximation to implement this evolution equation. To start, recall the 

path-dependent probability Q y introduced by (2.79): 

Ft. 

D Y A 
t = e x p / / Yz(s-)dM^m(dz) - [ [ [-^l^Y(dz, s)Y(d(, s)ds 

JE JO Jo JExE ZAZ\ 

Proposition 3.1. Suppose X satisfies the GDSVmodel (see (3.15), (3.16)j and Xz = 

Xz(s,v,9) given by (3.40), then under QY, X is governed by the path-dependent 
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diffusion equation 

(3.43) dSt = b\ (5 t ) Vu9)dt + Cl(St, Vu 0)dWt, 

(3.44) dVt = %{St, Vt, 6)dt + c2(5 t ) Vu 6)dBt. 

Here, Wt, Bt are independent Brownian motions and 

(3.45) 6r(5t,Vt)fl) = fe1(5t,Vt,fi)-c?(5t)Vt)fl)-^l^(JS't)Vt)5)y(dz,t)J 

(3.46) ^(5 t iy t , (9) = 6 2 ( 5 t l K , ( 9 ) - c i ( 5 t ( K , » ) - j ^ ^ ^ ) ( 5 ' t ) V ; > e ) y ( d z , t ) . 

Proof. It suffices to show that under Q y , (S, V, 9) is a solution of the A martingale 

problem with generator 

AYf(s, v, 6) = l-c\{Sl v, 0 ) 0 ( S , v, 9) + ±c2
2(s, v, 0 ) 0 ( S , v, 9) 

+ (b2(s,v,9) - cj(s,v,9) • J^ ( ~ £ ) (s,v,9)Y(dz, S ) ) ^(s,v,9). 

From Lemma 2.3, under Q y , (S,V,9) is a solution of the AY martingale problem 

with 

A T / 4 A * / - [ [In \zJ?Y(dz,t). 

JE 

Define 

I ^ A ( l n A , - / ) . 

It follows 

T , g( lnA,- / ) , , 0(InA z- /) , 1 2 d 2 ( lnA z - / ) , 1 23 2 ( lnA 2 - / ) 
1 = 6 l ds + h dv + 2 C l ft* + 2 C 2 ft," 

= 6i In A, • — + 61/ • x - + b2 In Az • — + b2f • ^ ~ 
os Xz os ov \z av 

1 2, > 5 V 1 ^ / 1 5A* 1 2df 1 dXz 
+ 2 1 ' a s 2 + 2 1 a s Az a s + 2 C l 3 s A, ft 

1 J_ ^ _ l ^ _ W ^ a 

+ 2 l J A z ftc2 2 l7A? I ds 
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1 2 d2f 1 2df 1 d\z 1 2df 1 dXz 
+ 2C2inXz'~d^ + 2C2fo'T2'~fo+2C2~fo'T2'^ 

1 2 2 , 1 92AZ 1 2 1 / S A / 2 

+ 2 C 2 V / A / dv2 2 C 2 / A | ' V&T 

Similarly, we have 

n 4 b A , - A / = I n A . - ^ + l n A . - i ^ 

9 f 1 d2f 
+ I n V ^ + l n V - c 2 ^ . 

Note that 

A(lnA,) = t l . _ . _ + t l . _ . _ + ^ _ . _ _ _ ( 4 _ ^ _ j 

1 2J_ #^£_1 2_1 f ̂ V 2 

+ 2 ° 2 A / dv2 2C2X2
z\dv 

It follows 

= / • A(ln Aa) = f-h--- — + f-b2- — - — + f- - q — 

•> 0 C 1 \ 2 \ X„ ~<~ J r,C2\ a . . 9 J 0 C 2 \ 2 

Az ds J A* 5u •* 2 *AZ 9s2 

_ _ 1 2J_ ^X±_ 1 2_1_ /dAz 

2^A2 ' V 95 ; " ^ ' 2C2A, ' ch;2 ; ' 2°2A2 ' V S« 

Combining the above steps together, we get 

p.^.I_n-m.^.(^)^.g.(^) 
Therefore 

AYf = Af-j[lnKJ]Y(dz,s) 

i 292/ i 2a2/ / j / i s u 
= 2 ° 2 ^ + 2 C i a ^ + ( * - c i A U ^ J ( 's) ds 

Thus 

•M / . 0£K ' 0& 
A^ = A y . 
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Hence the result. D 

It will become clear that in this paper, we focus only on the case 

Xz = Xz(s,9), 

that is, the tick intensity does not depend on v, thus ^ = 0 and 

Corollary 3.1. Suppose X satisfies GDSV and Xj — Xj(s, 9), then under Q y , X is 

governed by the path-dependent equation 

(3.47) dSt = bY(St, Vt, 9)dt + C l (5 t , Vt, 6)dWt, 

(3.48) dVt = b2(Su Vt, 9)dt + c2(St, Vt,9)dBt, 

where 

(3.49) b\ (St, Vt, 9) = b^St, Vt, 9) - c\{Su Vt, 9) . JJl-^l\ (St, 9)Y(dz, t). 

Remark 3.7. Note that the distribution of V does not change in this case. 

As to the JSV-GBM model, we have an analogous result 

Proposition 3.2. Suppose X satisfies the JSV-GBM model and Xz — Xz(s,9), then 

under Qj , X is governed by the path-dependent equation 

(3.50) dSt = /xY(St, Vt, 9)dt + StVtdWt, 

(3.51) dVt = (JNt_+1 - Vt-)dNf 

Here, the Brownian motion Wt, Poisson process Nt are independent and 

(3.52) nY(St,Vu6) = pSt - Vt
2S? • jT ( ^ ^ ) (St,9)Y(dz,t). 

Proof. The proof is similar to that of Proposition 3.1 as we still have 

[In XZJY = 1 - 1 1 - 1 1 1 
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where 

I = A<6>(lnA,-/) 

I I = ( l n A , ) . A ( 6 ) / 

I I I - / - A ' 6 ' (In A,), 

and the generator of Example 3.6 is 

A ( 6 ) / (s , v, 9) = ^ V 0 ( s , v, 9) + M S ^ ( s , v, 9) 

+ A [ \f(s,z,9)-f(s}v,9))-^ dz. 
Jaj PJ - OCJ 

Note that Xz = Xz(s,9) does not depend on v. Therefore, we have 

I = A(6>(hiA,-/) 

1 2 2<92(lnA, • / ) . „, d{\nXz-f). ., 
= 2VS ds2 ( 5 'V ' ] + ^ ds ( S ' " ' } 

+ A / ' ((In A, • /)(*,*, 6>) - (In A, • f)(s,v,9)) ~^—dz 
Jaj PJ ~ aJ 

1 2 2d
2(\nXz- / ) , n. d(lnXz-f). 

= 2VS ds* ( s ' u ' e ) + ^ a , ( s ' v>d) 

+ A • In A,(s, 0) / ' (/(S) 2 ,0) - / ( s , t;, 0)) -=-^ dz. 
J a, PJ ~ aJ 

II = (lnXz).A^f 

1 d2 f df 
= In Xz • -v2s2-^(s,v, 9) + In A, • A ^ ( s , v, 9) 

+ lnAz • A / ' (f(s,z,9) - /(S ,u,0)) -^—dz 
Jar PJ- ® J 

I I I - / - A ( 6 ) ( l n A z ) 

Combining above terms together, it follows that the integration terms of pure jump-
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ing component are canceled. Thus, we still have 

Hence the result. • 

Our new particle filter that can be thought of as a generalization of Del Moral, 

Noyer and Salut (1995). Note that the state process Xt = {St,Vt) and the pa­

rameters to be estimated consist of two components: the state parameter 8 6 W1" 

and microstructure noise parameter (a,/?,71,72; az,h,e). In this paper, the cluster­

ing noise parameter (a, /3,71,72) are estimated empirically by the relative frequency 

analysis as discussed before while the magnitude parameter az,h,e can be estimated 

jointly with (X, 6) through the particle filtering. For sake of convenience, introduce 

•d = (6; OLZ, h, e) E M"9+3 as the augmented parameter vector that will be estimated 

through the particle filtering. 

Consider the simple ^-equalized time partitions 

T iT 
(3.53) {To = 0, rj = —, . . . Ti = —,••• TJV = T} 

to make the particle approximation converge regardless the trading times {t\, t2, • • • }. 

Now, let {(pjf(t); t > 0} be a sequence of measure-valued processes which stands 

for empirical distributions of the particle system to be constructed. In general, the 

particle filtering algorithm can be divided into three consecutive phases: initializa­

tion, evolution (prediction) and re-sampling (updating). 

Initialization 

• At T0 = 0, we draw m^ independent particles {Pk}'^f1 with the equal weights 

^- from the joint prior distribution 7r0(-) of (So, VQ; •&) E M"9+3. The states of 

these particles at time t are denoted as {- f f}^- Here, mjv is some positive 

integer that satisfies 
l im mjv = 00. 

JV—>oo 
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The empirical (occupation) measure of this particle system at To = 0 is 

(3.54) M0) = —EM'), 

which satisfies 

lim ( ^ ( 0 ) , / ) = *„(/) V / sB(B"» + 3 ) . 
N—>oo 

Here, Sx(-) is the Dirac measure at x. 

Remark 3.8. Note that L0 = 1 and Yj(0) = 0 for all j = 0,1, • • • thus 

Mf) = *o(f) = Mf) V/ € 5(IT*+3). 

Remark 3.9. H /̂ien i/iere is no special information, it is convenient to assign 

uniform distributions to (5o,Vo;i?) where the range [as0,Ps0], [ay0,/3y0] C K. 

and [a,j, /?,>] C K™9+3 are determined from empirical study. 

Evolution 

During the interval [ r ^ , n), i = 1,2, • • • , JV, all particles move independently 

according to the same law of (S, V;#). Considering T? is time-invariant, so it 

suffices to consider only the dynamics of (5, V) during these intervals. Suppose 

X satisfied the GDSV model, then from Proposition 3.1, the particles {Pk = 

(Sk, Vf,6k)}™^x evolve according to the following diffusion 

(3.55) dSk
t = b\ (Sk, Vt\ 9k)dt + Cl(S

k, Vt
k, 6k)dWk, 

(3.56) dVk = b^(Sk, Vk,6k)dt + c2(S
k, Vk,9k)dBk 

for k = 1,2, • • • ,mjv. Here, {W*}]^, { 5 * } ^ are independent Brownian mo­

tions. Instead, if X satisfied the JSV-GBM model, then from Proposition 3.2, 

the particles evolve according to the following diffusion 

(3.57) dSk = //(Sk, Vk, 6k)dt + SkVkdWk, 

(3.58) dVk = {JNt+i-V
k_)dNk. 
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for k = 1,2, • • • , mjv- Here, the Brownian motions {W5}]™^ and Poisson pro­

cesses {Nk}^1 are independent and 

/j, (s, v, 6) = fis — v s .2„2 

JE\^ 

d\2 

ds 
(s,9)Y(dz,t). 

Testing Particle Weight 

• For k = 1, 2, • • • , mjv, each particle Pk. is given a weight W*(TJ) at the ending 

point Tj based on the likelihood of the observation depending on its trajectory 

realized on [T;_I,TJ). Note that our filter is robust filter, so we can just make 

the simple time partitions regardless the trading times. Therefore, from the 

representation (2.80) of ut, we have 

"fW * exp(/ { 

+ / 

[ A(lnXz)(S
k,^ 

.JE 
Vk,6k,s)Y(dz,s) + a(s)-K 

%4r(5"'^'^'s)}ds)-
• If there is no trade occurring within [r^-i, n) , then Yi: Yj stay unchanged. The 

trajectory of each particle is determined by the Proposition 3.1 or 3.2. Suppose 

X satisfied the GDSV model, then from the Proposition 3.1 and Euler scheme, 

for k = 1,2, • • • , mjv, a discrete version of the diffusion processes (Sk, Vk) is 

(3.59) 

ASk.= 
JE 

+ c1(S
k
i_i,V

k_i,6
k)AWk

i, 

Yidz^T^) An 

(3.60) 

AVk USt.VU ~ cKS^VU • JE {~^) Y{dz,n.x) • Ar,: 

+ c2{Sk
i_vV

k_v6
k)ABk

Ti 

where AW* ~ 7V(0, AT*), ABk. ~ JV(0, An) for i = 1, 2, • • • ,N. 
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• Instead, if X satisfies the JSV-GBM model, then from Proposition 3.2, 

(3.61) AS* = [ ^ - ( S t x K t J 2 • j E (YZ~) Y(dz,n^ • AT, 

+ cl(S
k
n_i,e

k)AWk, 

VI. = J\tk 

where AWk. ~ N(0, AT,) ; Nk = 0, Nk. — Nk._x is a Poisson random variable 

with intensity A(ATJ); and each Jn is uniformly distributed on [aj,(3j] for 

i = l,2,---,N. 

• For the details of the re-sampling step, we refer Chapter 2. 

3.3.1 Numerical Results 

The particle filtering algorithm is extensively implemented on real data to calibrate 

the SV models 1 - 6 of Section 3.2. The data is still the one-month (March, 2005, 

23 business days) transaction price of the listed NYSE stocks. Here, to simplify 

the analysis, the total intensity function a(x,9,t) is confined to be the deterministic 

case a(x, 6, t) = a(t) where the intensity function a(t) is estimated through the 

inter-trade durations of the tick data. Figure 3.6 plots histogram of the inter-trade 

durations of 8 stocks from the listed NYSE stocks. As discussed before, the clustering 

noise parameters are estimated through the relative frequency method. The relative 

frequency method is a variant of the method of moments thus it follows that the 

relative frequency estimates are consistent and asymptotically normal, as discussed 

in Zeng (2003). The state parameters 6 and the remaining microstructure noise 

parameters are estimated via the particle filtering algorithm and the final Bayes 
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(a) American Express 

(c) Citigroup 

(e) IBM 

(b) Exxon 

(d) GM 

(f) Pepsi 

(g) Pfizer (h) Walmart 

Figure 3.6: The Histogram of Intertrade Times of Some NYSE Stocks, March 2005. 
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estimates (in seconds) are reported in the following tables. 

PEP 

/* 

<7 

V 

Q 

w 

K 

A 

aj 

PJ 

HW 

-2 .235 - 8 

-5 .555 - 8 

-

-

2.99E - 3 

-

-

-

LOU 

- 1 . 8 6 5 - 8 

4.895 - 4 
3.395 - 8 

2.485 - 4 

5.055 - 3 

— 

-

-

Nelson 

- 2 . 6 9 5 - 8 

6.045 - 9 
4 . 5 6 5 - 8 

-

5 . 4 1 5 - 3 

— 

-

-

Heston 

- 2 . 2 1 5 - 8 

5.505 - 10 

4.905 - 8 

-

8 . 9 1 5 - 8 

-

-

-

JSV 

-3 .775 - 8 

— 

-

-

-

4.685 - 6 

1 . 405 -5 

6 . 1 8 5 - 5 

XRX 

A* 

(7 

V 

Q 

VJ 

K 

A 

otj 

0J 

HW 

- 2 . 8 6 5 - 8 

-9 .455 - 8 

-

— 

3.725 - 4 

-

— 

-

LOU 

-3 .405 - 8 

1 .805 -4 

3.895 - 8 

1.255 - 4 

1.345 - 4 

— 

— 

— 

Nelson 

-3 .805 - 8 

5 .125 -10 

1 .785 -7 

-

3.685 - 4 

— 

— 

— 

Heston 

-3 .355 - 8 

4 . 1 3 5 - 1 1 
1 . 0 1 5 - 7 

— 

6 . 6 1 5 - 8 

— 

— 

-

JSV 

-3 .735 - 8 

— 

-

-

-

3.625 - 6 

2 . 1 0 5 - 5 

1 .095 -4 

The parameter estimations of GBM model are respectively: PEP, (fj,, a) = (—3.375— 

8,3.475 - 5); XRX, (/x,a) = (-1.575 - 8,6.005 - 5). The data we used here are 

respectively the market transaction prices of Pepsi and Xorex (March, 2005). The 

estimation of the intrinsic value, volatility based on the market prices of Pepsi, 

Xerox are reported respectively in Figure 3.7 — 3.10. The noise estimations are given 

in Figure 3.11 — 3.12. It can be seen that these five SV models can track the volatility 

changes in the transaction prices and give some real-time updated to our posterior 

estimations of the value and volatility processes. However, their tracking speeds are 

different. Thus, it is necessary to compare their behaviors within a unified framework 

and this will be done in the following section using Bayes model selection. 
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Figure 3.7: The Value Estimation for SV models of Pepsi, March. 2005. 

Figure 3.8: The Volatility Estimation for SV models of Pepsi, March. 2005. 
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Figure 3.9: The Value Estimation for SV models of Xerox, March. 2005. 

Figure 3.10: The Volatility Estimation for SV models of Xerox, March 2005. 
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Figure 3.11: The Noise Process Estimation for SV models of Pepsi, March 2005. 

Figure 3.12: The Noise Process Estimation for SV models of Xerox, March 2005. 
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3.4 Bayes Model Selection of Stochastic Volatility 

Models 

3.4.1 Bayes Factor and Model Selection 

The available information in microstructure market is the observation process Y 

which represents the cumulative transaction records throughout all tick price levels. 

The Bayes factor determines which class of models best fits such observed datum by 

doing pairwise comparisons. Our methods is based on the robust filter derived in 

Section 3.3. The underlying robust filtering equation has only one time scale "dt" 

so only common calculus formulas are required to derive the dynamics of the robust 

Bayes factor. Suppose there are two microstructure models 

with total intensity function a^ = af-k\ tick intensity {Xi } % 0
 an<^ generators A(fc) 

for k = 1,2 respectively. The filter ratio processes are defined in Chapter 2 and the 

following result holds true: 

Theorem 3.3. For i = 1,2, (§1, §2) *s the unique solution to 

dqi(fu t) = qt (AT {i)fi - oW/i, t) dt 

+ 5 ( / ( ( - fE A!<> u w w + l £ J ^ w w)) * 

Now we consider the problem of selecting the best of our 6 microstructure volatil­

ity models: 
•fofik) A f^(k) Q(k) ~y{k)\ 

with the total intensity a^k\ tick intensity {X\ }£L0 and generators A^fc' for k = 

1, 2, 3,4, 5, 6 respectively specified as in Section 3.2. We compare these 6 models in 
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pairwise to determine which one can best represent the market data. The above 

equations do not have a closed form solution. Instead, we describe the particle fil­

ter system which approximates the pair of measure-valued processes (q^, q~k2)> where 

<ffci, %2
 a r e respectively the Bayes factors of model M^, M^. The particle filter sys­

tem for Bayesian model selection is similar to that of Bayesian estimation discussed 

in Section 3.3. Following the same lines, we consider the following N equally-spaced 

partitions on [0,T]: 

(3-62) { r o = o,r1 = ^ , . . . r i = ^ , - . . r i V = T} 

and let { ( V ^ W , # ( * ) ) ; * > 0} be the sequence of empirical measure process 

of particle system which converges to (qkx,qk2) weakly as the number of particles 

converges to infinity. Here, for k € {1,2,3, 4, 5,6}, note that LQ — 1 and Yj (0) = 1 

for all j = 0,1,2, • • • , then we have 

(4k),f) = (4k\ /) = (&,/) 

for / e B(M"«+4). 

Evolution 

• During the interval [Ti_i.r0, i = 1,2, • • • , N, the particles {Pt
{hl),Pt

{k2)}^i 

move according to the law of model M^^M^ given by Proposition 3.1 or 

3.2. Intuitively, the particle system explores the state space following the law 

of the state process. 

• For i = 1,2,--- ,N, the particles {Pt
(fcl)}™ii 

are respectively given a weight 
{<-o\ Yk=i a* trme Ti based on its trajectory realized on [TJ-^TJ) : 

w(*i).* = T (* 1 ) ( - i ) . A (*x) .* ( T i ) . e x p ( r { _ 1 7 AQn\™)Y(dz,s) 

_ .(*<*) , kf e ) > kf s) + 1^ ]^^Yidz)Y(dC)}d8), 
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where 

(fcl) i /' Er=i(5 ( f c 2 )r ( f c 2 ))(xi f c 2 )' f c ,#2 )' f c
j S) 

(3.63) 

f 
Jr" E r i i 9{k2) (xisk2)' fc» ̂  \ s ) 

Here, 

r<*> 4 - / A™ mA )̂y(dz) + / L^Uy(dz)y(dC). 
JE J EXE ZAZ A,* 

• For i = 1,2,--- ,iV, the particles {P^}^ are given a weight { w f 2 ) , f c } ^ 

similarly. The remaining procedures of particle filtering are just an analog of 

that given in Section 3.3 and we make the re-sampling step to successively 

incorporate the new information into the Bayes factor. 

3.4.2 Numerical Results 

The particle filtering algorithm proposed is extensively tested on real data to study 

the model selection between the microstructure models. The candidate models in­

clude the GDSV model (Example 3.1 - 3.5) and JSV-GBM model (Example 3.6). 

The data is the transaction price of Pepsi and Xerox, March, 2005. We use the GBM 

model as the calibration model for our model selection. The evolution of the Bayes 

factor are reported by Figure 3.13 — 3.14 and according to the interpretation table 

given in Section 2.4, we know the Bayes factor enables us to capture the volatility 

movement and prefer the Heston's model based on these two stock prices. 
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Figure 3.13: The Bayes Factor Estimation for SV models of Pepsi, March 2005. 

Figure 3.14: The Bayes Factor Estimation for SV models of Xerox, March 2005. 
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