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ABSTRACT 

 

The repetitiveness and precision of manufacturing tasks has increased the need for robots in the 

automation of the manufacturing industry; however, the complex and varied nature of 

manufacturing production lines poses challenges in terms of applying the rule-based automation 

approach. This has contributed to the trend of employing artificial intelligence-driven robotic 

systems. Previous applications relied on accomplishing a single automated task with its 

specifically designed AI model, and thus failed to provide a scalable AI solution that could 

accomplish a variety of tasks. In the present case study, window hardware installation was 

simulated with a reinforcement learning solution using the soft actor critic algorithm to improve 

model learning efficiency and scalability. Agent training techniques, such as rewarding shaping 

and curriculum training, were introduced into the model’s learning configuration. The proposed 

curriculum guided reinforcement learning structure provides the training agent a gradual and 

effective way to comprehend assigned tasks. The proposed approach further increases the 

potential for artificial intelligence-driven robotic hardware installation systems to be more 

sensitive and flexible to environment change and target hardware variations with the 

implementation of training guidelines. The model’s performance is demonstrated by refined self-

driven motion planning and hardware sensitive decision-making. This application indicates that a 

robust and scalable artificial intelligence model can be realized by thoughtful agent incentives 

and learning pathways, and the case study demonstrates the framework required to facilitate such 

a possibility. 
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1      INTRODUCTION 

 

Robotics play a vital role in the field of modern manufacturing. The use of robotics in the off-site 

construction industry is a natural fit because of improved safety and higher operating efficiency 

compared to manual operation. Currently, the aim of Industry 4.0 is to build an intelligent semi-

automated, or even fully-automated, production line. With the work force aging at an increasing 

rate and given the overall transformation of the market, robots are becoming more and more 

popular. The major challenge of the automated production line is to be adaptive, flexible, robust, 

and economically efficient (Lei, 2017). In the context of window and door manufacturing, a 

common usage of robotics includes a variety of CNC machines to accomplish material 

processing, welding, and accessories conveying. Among the more commonly used robots, the 

robotic manipulator was one of the first robots used in the context of manufacturing. 

 

Many manufacturing tasks require coordination between two or more robotic arms. However, 

such coordination is complicated and poses challenges in real-world application, which explains 

why industrial robotic arms are not yet widely implemented. Due to the potential for increased 

precision and efficiency in industrial applications, the development of end-effectors and the 

adoption of industrial manipulators for combined operation are both becoming a growing trend 

(Evjemo, 2020). 

 

1.1      Automated assembly in window manufacturing 

In the window and door manufacturing industry specifically, the usage of industrial manipulators 

has been introduced to many parts of the production line. Common applications of robot 
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integration include material handling, framing, robotic glazing, palletizing, object lifting, etc. 

Assembly is one of the most complex tasks on the production line. One of the trends in the 

robotic industry reported by the International Federation of Robotics (IFR) is that more smart 

factories are being built to automate assembly lines with industrial robots  (Frankfurt, 2021). 

However, most of the assembly processes are still done manually in many manufacturing 

industries (Wachol, 2020). This phenomenon is generally attributable to the higher initial cost of 

automation, the negative impact on employment rate, and a lack of qualified technical support in 

robotics, which includes translating the products’ manufacturing procedure into robotic 

language. The complexity of the detailed hardware installation tasks and the lack of motion 

planning techniques are also the main technical challenges the manufacturing industry 

encounters.  

 

Humans can learn complex assembly tasks with relative ease compared to a robotic learning 

system. While today’s robots are precise and capable of completing repetitive tasks with a 

precision to within a thousandth of an inch over thousands of hours of operation, such efficiency 

can only be easily achieved within a simple environment with limited variation of the tasks. If 

the error tolerances in the installation process is low, or the dimensions and surfaces of the target 

hardware are not consistent, a conventional robotic system using a position-based robotic control 

strategy based on nominal part dimensions will be ineffective as the positional uncertainty of the 

robot will exceed the assembly error tolerance. With that being said, end-effector sensing and an 

adaptive control scheme must be implemented in order to meet the requirements of the 

automated assembly operation. Plus, window orders have different sizes and varied hardware, 

which means engineers require a lot of time to plan manipulators’ motions for each order, even 
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with a simulator. The critical drawback of these kinds of methods is the rules need to be re-

designed and re-programed when the object is changed. Intelligent robotic motion generation is a 

significant contribution to the field because it automates the robotic motion planning such that 

engineers are not required to manually plan the robotic motion from start to end. Moreover, 

hardware assembly itself is a complex manual task because one hand is typically required for 

holding while a screwing motion is required by the other hand. Often, the assembly process also 

needs real-time control in order to deal with various scenarios such as cooperated robots are 

moving or collision happening.  

 

1.2      Reinforcement learning for assembly tasks 

In the last couple of decades, deep reinforcement learning (DRL) has become an inevitable part 

of machine learning (ML) and artificial intelligence (AI). Recent developments have proven AI’s 

ability to perform 2D (image) object recognition with the aid of deep neural networks trained on 

large datasets of human defined labels. However, the process of data collection is repetitive and 

time-consuming.  

 

The agent from reinforcement learning (RL) framework can learn to complete tedious tasks by 

interacting with the environment and adjusting its policy critically to the rewards given. It 

eliminates the need for labeling and manual collection of data, which could resolve possible 

human error within the process. Since pre-existing domain knowledge is not necessary for the 

agent, reinforcement learning can be applied to different types of robot arms and tasks. 
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Reinforcement learning algorithms garnered attention due to their capability on robotic tasks. 

The general idea is to utilize and reuse the replay buffer to reach sample efficiency through an 

off-policy involved algorithm. For example, the DQN-NAF (Deep Q Network with normalized 

advantage function) can achieve sub-optimal performance in reaching task solutions. TRPO 

(Trust Region Policy Optimization (Schulman et al., 2015)) shows versatility through its reward 

scaling and parameterization of invariance. DDPG (Deep Deterministic Policy Gradient) (Gu et 

al., 2016) is unstable for continuous space tasks, as it has high sensitivity on parameters tuning. 

 

Comparisons were also made among different robotic motion related tasks. Varin (2019) found 

that both the two modern RL algorithms PPO (Proximal Policy Optimization) (Schulman, J. et 

al., 2017) and SAC (Soft Actor Critic) (Haarnoja et al., 2018) have superior performance. One 

can conclude from their results that learning references can increase sample efficiency for a task-

space impedance control agent. 

 

Haarnoja et al. (2018) found that SAC achieves the best performance by comparing with other 

popular algorithms such as DDPG, PO, and TD3 among most benchmarks. Even though those 

benchmarks do not share a direct relation to robot manipulators, the SAC’s superior performance 

and tight fit to the robotic environment make it promising in the robotic field. 

 

In summary, reinforcement learning has gained an increasing amount of attention from 

developers given its great potential. Developers can utilize reinforcement learning to develop an 

AI-driven robotic control system. Digitally simulated manufacturing activities, planning and 

optimization of the robots’ motions, collision and error avoidance, and accurate motion trajectory 
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execution are all made possible by the potential offered by reinforcement learning. Based on 

these benefits, reinforcement learning with the SAC algorithm was chosen as the approach for 

development of an intelligent agent in the present research. 

1.3       Research objectives 

In this research, the motivation is to provide an automated solution of hardware installation to 

window manufacturers. Due to the challenges of robot control in assembly tasks and the lack of 

previous case studies on hardware installation using multiple automated manipulators, this 

research aims to propose a framework of reinforcement learning for automated robot motion path 

planning. To achieve this goal, the specific research objectives are listed as follows: 

• Define a representative scope of window hardware for validation. 

• Apply BIM model to generate window and hardware model. 

• Develop a simulation environment to model the manipulators and hardware. 

• Solve kinematics of manipulators to provide usable action for training purposes and 

implement pick-and-place tasks. 

• Develop an AI agent to meet the requirement of screw and handle motion. 

• Train the agent and execute several tools and self-developed methods of reinforcement 

learning to speed up the training process and improve the success rate. 

 

1.4       Thesis organization 

Chapter 2 introduces the selected simulator and the related reinforcement learning technique be 

implemented. Chapter 3 provides an overview of the research problem, including an overview of 

the structure of different types of windows, an investigation of the working mechanism of the 
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windows under study, the requirements of the industry partner, and also a procedure for 

addressing the problem and for analysis. It was determined that problems faced by window 

manufacturers are able to be automated with the implementation of sets of robotic arm 

manipulators. The requirements of the robot manipulator and hardware involved in the 

installation process were strictly followed. Chapter 3 also describes the preparation work 

undertaken for the development of the simulation, and illustrates the environment and 

manipulator settings for the agent’s initial setup and for the reinforcement learning training, 

while Section 3.5 describes the techniques of reward function shaping and parameter tuning to 

improve the agent’s performance in the early training stage. Section 3.6 proposes the curricular 

guided reinforcement learning structure (CGRLS), which provides a framework for building 

gradual learning for the agent by arranging the related curricula from the simplest to the hardest. 

It also shows the application of the CGRLS framework in the context of two different tasks. 

Chapter 4 analyzes the result after the implementation of reward function shaping, and provides 

experimental results for training on a single-hardware task and a multiple-hardware task. Finally, 

conclusions, research contributions, limitations, and proposed future work are described in 

Chapter 5.  
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2      RELATED WORK 

 

2.1      Webots simulation software  

Webots software is widely used in development of robots control and robotic behavior 

simulation. As shown in Figure 1, the virtual environment is built upon the scene tree located on 

the left. The scene tree is composed of a hierarchy of nodes. Different nodes serve different 

purposes. Solid nodes describe shapes and physical behavior of objects. Transform nodes define 

the position and orientation of a specific base point or object. Physics nodes define physical 

behaviours such as mass, joints, friction, coefficients, etc. Robot nodes follow their attached 

controller script to control the targeted robot behaviour. The combination of nodes gives users 

the ability to build their own simulation environment and robot models to realize situation-

specific simulations. Webots supports programming languages such as Python, C, C++, and 

languages that fit into the universal robots simulation as long as their ROS system is written by 

Python. Webots also comes with the ODE physical engine to be able to simulate precise physical 

behaviour. 

 

 

 

 

 

 

 

Figure 1. Webots interface 
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In addition to the regular robot controller, Webots addresses another type of controller called 

“Supervisor”. The supervisor implements operations that are generally carried out by humans 

rather than by robots. It is able to collect information about every object in the scene and further 

modify them. The supervisor controller acts like a human supervisor who has control on all the 

robots. For example, a supervisor can move a robot or a motor to any position, obtain specific 

object position information, or even reset or finish a simulation. In the case of reinforcement 

learning, the supervisor performs as an agent to observe and command robots to interact with the 

environment. 

 

Webots simulator requires relatively less memory and CPU in comparison to other simulators 

(Ayala et al., 2020). Webots is chosen as the simulation tool in consideration of its user-

friendliness, universal robots programming language fitness, and the enormous real time data 

collection demand. 

 

 

2.2      Reinforcement learning  

2.2.1      Basic concept 

A typical reinforcement learning (RL) framework consists of interactions between an agent and 

an environment. The interaction framework between the agent and the environment is shown in 

Figure 2. The environment is modeled as a Markov decision process (MDP) and is defined by a 

set of states S, a set of actions A, a reward function R(s) which provides the agent incentive, a 

state transition probability P(st+1| st , at ) and a discount factor γ within the range from 0 to 1. The 
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policy parameterized by 𝜃 is indicated as p𝜃. A typical agent goal is to maximize the expected 

discounted total reward return followed, in which the reward relation is shown in Equation (2-1). 

Typically, the policy network will be initialized as the parameter 𝜽’. By sampling with the 

environment, a bunches of trajectories set = (s1, a1, s2, a2, … sT, aT ) will be generalized and 

calculated for the new reward. By using policy gradient method (Sutton et al., 2000) to minimize 

the loss with the former reward, the policy network can be optimized to improve the decision 

making of the action. The policy gradient method is shown in Equations (2-2) and (2-3) where 𝜽 

is the parameter of the policy network; Ƞ represents the learning rate;               is the possibility 

of the distribution to select the trajectory; and ∇ is the gradient ascent calculation. 

 

 

 

Figure 2. Reinforcement learning basic framework  

 

                                            (2-1) 

                        

                                               (2-2) 

   (2-3) 
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2.2.2      The off-policy concept and experience replay 

On-policy algorithms use a single policy network to sample trajectories and finish optimization 

in the same network, while, in contrast, off-policy algorithms make use of two policy networks. 

The behaviour policy network samples trajectories within the environment, then the optimization 

is done by a separate target policy network. Off-policy algorithms have two main advantages 

over on-policy methods (Lilian, 2018). First, due to using two different networks, the agent can 

keep exploring while updating the parameters, which can mitigate the total data collection time. 

Second, the agent can utilize the replay buffer to reuse episodes from the past. Their behaviour 

policy for sample collection is different from the target policy, resulting in more sample 

efficiency. When training with off-policy trajectories, distribution shift problems arise, which is 

defining a way to do importance sampling. Experience replay with the trajectories storage, replay 

buffer, is one key technique which allows the agent to learn from earlier memories generated by 

the behavior agent. The replay of experiences can effectively improve its learning rate by 

providing a high sample efficiency through the reuse of previous data. Such a method saves time 

by reducing the need for trajectory collection of the agent’s interaction with the environment.  

 

2.2.3      Soft Actor Critic (SAC) algorithm 

A basic reinforcement learning structure is to train a policy network called the actor. Actor critic 

algorithms add a critic network on top of the actor in order to criticize its actions taken. Based on 

this concept, Soft Actor Critic (SAC) algorithms utilize one actor network with two critic 

networks (conducted by Q function) under a stochastic policy through an off-policy terminology. 

The main property of the SAC algorithm is the implementation of entropy regularization. The 
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policy is designed to find a trade-off equilibrium between expected return and entropy, a 

measure of randomness. This has a tight relation to the exploration-exploitation trade-off. The 

SAC objective function is presented in Equation (2-4). The notation 𝝅 (at | st) represents the 

distribution of the action at taken by an agent in state st  . When the action is more random, the log 

value is lower. The variable 𝛼  is a non-negative temperature parameter which controls the 

proportion between the expected return (first summand) and the expected entropy (second 

summand). During training, 𝛼 is automatedly adjusted from 0 as an entropy constraint to 

maximize the total objective. High entropy results in more exploration, which can result in more 

random actions, while high expected return means that it can more effectively sample the good 

performance to update the network. SAC maximizes this objective by parameterizing a Gaussian 

distribution actor policy and a Q-function (critic) with a neural network and optimizing them 

using approximate dynamic programming.  

 

(2-4) 

 

 

2.3      Curriculum learning in reinforcement learning 

The approach used to train an agent has an impact on the agent’s efficiency both in real-world 

and simulated scenarios. The main idea of curriculum learning is to train the agent with a 

progressive approach. The training would have gradually increasing difficulty and complexity, 

which is realized by modifying the environment settings to provide opportunities for the agent to 



 

 

12 

adapt to a more confounded environment with its previous knowledge learned from a simpler 

setup. 

 

The idea of training neural networks with curricula was initially proposed by Jeffrey Elman 

(1993). It demonstrated the importance for a gradual increase of training samples’ complexity to 

the agent’s learning. Bengio, et al. (2009) later stated an overview of Task-Specific Curriculum 

learning which addressed the importance of cleaner examples and gradual increase of the 

difficulty. Zaremba and Sutskever (2014) trained a LSTM model to predict the output of a 

Python program. They found that mixing curricula in easy tasks during training can avoid 

forgetting, and they were able to find an optimal curriculum learning strategy. Weng (2018) then 

proposed a curriculum guided reinforcement learning case study which utilizes robotic arms with 

visual input to complete object-grasping automation. Huang (2017) applied a case study of 

grasping tasks with robot manipulator using visual observation. He demonstrated that sequencing 

tasks by curriculum learning is able to increase the learning rate and improve the performance. 

Moreover, Narvekar et al. (2020) proposed a framework that categorizes the elements of 

curriculum guided learning to task generation, sequencing, and transfer learning. They also 

mentioned that the tasks may differ during the transferring policies between tasks. The main 

difference lies in  the aspects of the MDP such as starting states, reward functions, or transition 

functions. 

 

Based on the review of the literature, it was determined that preparations are mandatory in order 

to follow the mentioned curriculum learning approach. In the context of the present research, a 

metric to quantify and sort the difficulty of tasks must first be developed. Then a task sequence 
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with an ascending degree of task difficulty must be provided to the model for training. These 

preparations have the potential to significantly improve the agent’s learning efficiency. 
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3      METHODOLOGY 

3.1      Problem overview 

3.1.1      Window overview 

A large number of window types exist in the market. Each window type serves a different 

purpose. Due to cost-effectiveness and supply chain concerns, the industry partner only produces 

the four kinds of windows shown in Figure 3. The company further welds or mulls these four 

kinds of windows into a combination window according to the customer’s requirements. An 

awning window is a horizontally hung window that can be swung outward upon opening; a 

casement window is a window that can be swung outward and hinged on the side. Both fixed and 

picture windows do not contain moving parts, while the PVC frame profile of the fixed window 

is thicker than that of the picture window. Windows with moving parts such as the awning and 

casement windows consist of an interior skeleton part called the frame, and an openable part 

called the sash. 

 

 

Figure 3. Window types produced by industry partner (Mengni, 2021) 
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Awning windows and casement windows require hardware mechanisms to make the sashes 

openable. As shown in Table 3-1, the types of mechanical hardware are grouped by frame and 

sash. A notable difference between the parts needed to construct an awning window and a 

casement window is that a casement window requires a ramp and an operator bracket (Mengni, 

2021). The amount of screws and exact hardware details used during the hardware installation 

process are shown in Table 3-1. 

 

Based on the CAD design and provided documents, it was determined there are three different 

screw sizes, and most hardware items have more than one screw point. This categorization 

provided direction in terms of selecting the target tasks and choosing an adequate screwdriver 

system in the later section. 

 

Table 3-1: Summary of hardware 

No. Location Hardware 

component

name 

Screw size Number 

of 

screw 

Image 

1  

 

 

 

 

 

 

 

Frame 

Hinge track #10 × 9/16 

in 

4 

2 Ramp #6 × 3/4 in 1 

3 Snubber #10 × 9/16 

in 

2 

4 Tie bar 

connector 

  

5 Multi-lock 

handle 

#8 × 3/8 in 2 



 

 

16 

6 Tie bar + 

Tie bar 

guider 

#6 × 3/4 in 1 

 

7 Operator #10 × 9/16 

in 

6 

8  

 

 

 

 

 

 

 

 

 

Sash 

Operator 

track 

#10 × 9/16 

in 

2 

 

9 Operator 

bracket 

#10 × 9/16 

in 

3 

10 Hinge arm #10 × 9/16 

in 

3 or 4 

11  

 

 

 

Tie bar 

keeper 

 

 

 

 

#10 × 9/16 

in 

 

 

 

 

4 
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3.1.2      Task selection 

                                                                                                      

 

Figure 4. The standard window production line at the industry partner manufacturing facility 

 

As shown in Figure 4, the industry partner already implemented CNC machines at the cutting, 

drilling, welding, and cleaning workstations. One of the opportunities for improving the level of 

automation is installing hardware on frames and sashes. The research began with the 

classification of motions involved with the window hardware installation, which can be 

categorized into 5 categories as shown in Table 3-2. The result shows that the pick-up, insertion 

and handle and screw motions are the most common processes during the installation, which 

makes these three motions economically viable and suitable for automation. The development of 

a “handle and screw” motion automation was the focus of the present research, as the pick-up 

and insertion motion can be done by a single manipulator, and thus their automations are more 

common and mature. Since the “handle and screw” motion involves more than one robotic arm, 

it is more complicated in nature, which means it is a candidate for being executed using AI-based 

methods. 
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In the current model-based robot planning simulator without visual recognition, the traditional 

method for the pick-up and placement of an object is to pre-define a pivot and destination for the 

object. The robot can then calculate self-defined Cartesian coordinates or rotation offset to the 

connection point to adjust accordingly. In the present case specifically, the screwing point is 

known but the connection point is unknown due to unpredictable hardware shape and existence 

of external manipulators. And most importantly, this issue cannot be resolved by a manually 

predefined motion plan. Without visual recognition, manipulators will collide with each other, 

damaging the consistency of the automation. Although the main concern was the automation of 

the “screw and handle” motion, the feasibility of full automation for the remainder of the 

motions involved in hardware installation still need to be considered. It is necessary to make the 

automation flexible and more economically efficient for the whole industrial process. 

 

 

Table 3-2. Hardware installation motion category 

 Pick-up Insertion Screw&handle Stuck Punch 

Frame 

Install hinge track √ √ √   

Install snubber √  √   

Install tie bar guiders √   √  

Insert multi-lock handle √ √ √   

Connect tie bar connector √ √    

Connect tie bar √ √    

Punch tie bar guider     √ 

Screw tie bar guider   √   

Install operator √ √ √   

Install ramp √ √    
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Sash 

Install tie bar keeper √ √ √   

Install hinge arm √  √   

Install operator bracket & track √  √   

 

3.1.3      Manipulator and end-effector selection 

For the abovementioned reasons (described in Section 3.1.2), two manipulators with different 

responsibilities were selected. One manipulator was equipped with a vacuum gripper and is 

responsible for all the hardware pick-up, placement, and handling tasks. The other manipulator 

was equipped with a screwdriver that is able to be modified for different types and sizes of 

screws. Since the hardware from the industry partner has a weight range from 0.01 kg to 3.2 kg, 

UR5e Universal robots were used in the simulation for the research. The Robotiq EPick, shown 

in Figure 5 (a), was picked as the vacuum gripper. As for screwdriver, the Easy Pick and Drive 

Screwdriving System by Southwestern PTS was chosen shown in Figure 5 (b). The Robotiq 

EPick will hereinafter be referred to as UR5e-1 and the Easy Pick and Drive Screwdriving 

system will hereinafter be referred to as UR5e-2.  

 

After several trials with two manipulators in the simulation, the results showed that there is the 

least chance for them to collide if they face each other. Therefore, the approach of facing the 

manipulators to each other was selected to achieve optimal results. The frame and sash will be 

transported to a clamp system which is located between the two manipulators in preparation for 

the hardware installation process. Figure 6 shows an illustration of the process. Grey circles 

represent the reachable range of each manipulator. 
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                                                                          (a)                                                    (b) 

 

Figure 5. (a) EPick vacuum gripper, (b) Screwdriving System by Southwestern PTS 

 

Figure 6. Set up of two UR5e and clamp system  

 

3.1.4      Hardware selection 

During the research, three kinds of hardware were employed: hinge track, operator, and ramp, as 

shown in Figure 7. The goal is then to install these three hardware components to the casement 

window frame structure. The hardware components were selected because all three have a 

different size, shape, and possible connection position and orientation. The variety of the 

hardware provides a gradual learning curve for the process of machine learning. The AI started 
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the learning process by first installing a cube-shaped ramp, then a long strip hinge track, then 

finally a T-shaped operator. In addition, the installation position also varied from a single hole, a 

line of holes, to an anomalous pattern of holes. 

 

 

 

Figure 7. Hinge track (Left), Operator (Middle), and Ramp (Right)  

 

3.1.5      Case study method  

Our main goal was to automate an assembly process of installing the three hardware (Hinge 

track, operator, and ramp) that collisions are avoided when using two manipulators. In general, 

the installation process can be divided into two phases: the “pick and place” phase, and the 

screwing phase. 

 

In the first phase, the UR5e-1 was used to pick up the target hardware from a known storage 

position, then place it in the hardware’s final position on the frame. Next, the UR5e-2 fastens the 
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screw through the hardware installation point. In the simulation, the hardware was dramatically 

trembling both vertically and horizontally during the screwdriving. The hardware needed to be 

held in place during the screwdriving, just like workers using one hand to screw and the other to 

handle. Hence, finding a proper handling point of the hardware during the screwdriving became 

the main challenge. 

 

The “pick and phase” motion can be easily executed without the implementation of machine 

learning in the present study; therefore, the hardware fixation and screwdriving procedure at its 

final position was the main focus. The largest barrier was to produce an optimal motion for the 

UR5e-1 to find a handling point and hold it tightly with its vacuum gripper to provide enough 

support for UR5e-2 to finish the screwing motion. Figure 8 illustrates the detailed process of the 

“screw and handle” phase. Based on the number of screw points, the UR5e-2 has to switch to 

other installation spots and UR5e-1 needs to find another handle point when the installation spot 

is changed. This requires the collaboration of two manipulators and careful motion planning to 

find a closest gripping position to avoid collision and uncalculated hardware movement. 

 

It is difficult to use traditional methods to manage the motion planning for such a dynamic 

situation. Hence, a curriculum reinforce learning method was proposed to solve this problem. 

The primary objective was to train a single multi-tasks model to install the hardware components 

described in Section 3.1.4 under various conditions. 
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Figure 8. Screw and handle process 
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3.2      BIM model parameterization and import 

The industry partner provides the customer customizable window types and sizes with an 

enormous amount of choices. The BIM model served not only as a geometric 3D model but also 

as a source for positional data for the hardware on the frame or sash. For training purposes, a 

variety of configurations can also provide a solid training environment sample to make the model 

more robust. In order to meet these demands, a window parameterized configuration adjusting 

system was designed that is a pre-stage preparation before the simulation. A Revit group was 

built that includes the host profiles (frame or sash) and the corresponding hardware. By inputting 

the desired window width, length, and specific hardware usage, the Revit group will 

automatically adjust the hardware type and position based on the parameterized equation. The 

mathematical model translation processes for the three chosen hardware components are listed 

below as Equations (3-1) to (3-4). 

 

To begin, the ramp was determined to be the simplest hardware because it has only one single 

screw point, and it is only applied to the casement window type. The distance Dcr from the inside 

of the frame to the casement ramp is 4 inches (101.6mm). Equation (3-1) and Figure 9 

demonstrate the hinge track screw position calculation for the three kinds of hinge. Dht_si (i = 0-4) 

is the distance from the i screw center to the frame edge. Equation (3-2) explains the rule of 

operator selection based on the window width ww . Equations (3-3) and (3-4) illustrate the 

operator screw position rule of each type of operator. DOCT_six (i = 0-6) represents a set of screw 

locations which is the distance between screw center and the side frame edge. DOCT_sy stands for 

the distance from operator screw center to the frame’s outer vertical edge. Lastly, the three types 

of operator are shown in Figure 10. 
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In this way, the Fbx. file was able to be exported into the simulated environment depending on 

the order’s requirements. The system was also able to generate different configurations of the 

product by inputting variables such as length and width since the parameterization done by the 

BIM model. In this research, the configuration with window length 850 mm and width 600 mm 

was selected as the target model. The information pertaining to the final hardware position and 

all obstacles was also able to be imported into the simulation environment with data provided by 

the window parameterized configuration adjusting system. 

 

 

                                                                                                                                          (3-1) 

 

 

 

Figure 9. Hinge track screw position on frame 

 

 

 

 

 



 

 

26 

 

 

                 (3-2) 

 

 

 

 

 

(3-3) 

 

 

 

 

(3-4) 

 

   

 

 

 

Figure 10. Reversed dyad operator (left), Single arm operator (centre), Dual arm operator (right)  
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3.3      Simulation environment 

3.3.1      Building the simulation environment 

As mentioned in Section 2.1, all training and experiments were done in the simulation tool 

Webots, which provides robot nodes and universal robot series for automation development. 

Universal robot node was utilized to connect the end-effector mentioned in Section 3.1.3. The 

graphical training process was unstable as the imported end-effector model required a large 

amount of computational resources. In order to stabilize the simulation environment, the concept 

of effective shapes was introduced to represent the complex model surface; this concept states 

that a simplified shape is effective as long as the box collider of the simplified shape covers more 

than the original shape. For the vacuum gripper, the true shape of the sucker was retained but the 

connection frame between the sucker and the manipulator endpoint was replaced by a cylinder. 

The screwdriver system was also simplified into two cylinders with a rectangular box to 

represent the screwdriver and connection plates, respectively. 

 

 

 

 

 

 

 

Figure 11. Vacuum gripper simplified model(left), Screwdriver simplified model (right) 
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Based on the method described in Section 3.2, the completed window model, including its frame 

profiles with hardware components secured in their final positions, was imported to Webots from 

Revit. Each hardware component was imported separately for further connect points treatment, 

which will be described further in Section 3.3.4. After all the models were imported, the 

hardware installation workstation was configured. Figure 10 shows a screenshot of the 

configuration. In order to free up computational resources for accelerated reinforcement learning, 

the environment was simplified by eliminating unessential elements such as manipulator table 

bases, clamping system, and hardware storage. 

The grid plane served as the same plane of the manipulator base table and the height of the 

clamping system. Both manipulators’ end-effectors were able to reach all hardware with a 

distance of 1 meter between them. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Hardware installation station: (a) initial storage area, (b) installation area 

(b) 

(a) 
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3.3.2      Kinematics of manipulators 

Forward kinematics (FK) and inverse kinematics (IK) need to be solved for a six degree-of-

freedom (DOF) manipulator to perform specific movements. FK was used to compute the 

position of the end-effector by changing the six joint parameters to specific values. On the other 

hand, the IK were used to compute the joint angle from the specified position and orientation of 

the end-effector. Based on the universal robot configuration document and the summary in the 

user guide, the FK and IK of UR5e were solved with the support configuration, and IK control 

was further utilized to generate different motion types and velocity control.  

 

Two basic motion types, point-to-point (PTP) motion and linear (LIN) motion, were 

implemented in this research. PTP motion moves from one point to another point along the 

quickest path. In other words, PTP motion makes the least total motor movement, and thus has 

an advantage of high energy efficiency. LIN motion moves the end-effector to the end point 

along a straight line, which is able to perform a specific trajectory. The most common practice 

was adopted in the pick-and-place simulation, which is to combine PTP motion and LIN motion 

in a certain order to complete the tasks, as shown in Figure 13. 
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Figure 13. End-effector motion in pick and place phase 

  

Velocity control is a specific method employed to assign specific linear and angular velocity to 

the end-effector to change the end-effector's position by an arbitrary time step. The main purpose 

of implementing velocity control was to limit the end-effector’s action space for easier training. 

Velocity control was not necessary in the pick-and-place phase as all the positions are known, 

and thus can be automated by direct instructions. However, velocity control was needed for the 

screw-and-handle phase as it requires the end-effectors to remain in their action space. The 

concept of action space will be discussed further in Section 3.4.4. 

 

3.3.3      Hardware connect simulation  

The physical properties of the hardware components played a vital role in the present research. A 

specific node called “connector” in Webots was used to simulate a real-world condition that any 

surface can be gripped. Connector nodes were used to simulate mechanical docking systems that 

can dynamically create a physical connection with another device. As shown in Figure 14, when 
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the vacuum gripper’s z-axis (blue line) is aligned with any target device’s connector’s z-axis, the 

hardware can be gripped. If the rotation tolerance is set to 0, it means that not only the z-axis but 

also the y-axis has to be aligned. The connector was evenly distributed to every surface and 

confirmed that the hardware can be gripped even if the vacuum gripper stays at the middle point 

between two connectors.  

 

For single model training purposes, all three hardware components were placed into the same 

observation space. which means the amount of connector had to be the same across different 

hardware no matter their type or size, as they all had to share the same observation space 

dimension. 

In this research, 29 connectors were used for each hardware component. The distribution of 

connectors of the hardware is shown in Figures 15, 16, and 17. The distance tolerance was set to 

15 mm with a full tolerance on rotation to allow a more dynamic connection.  

 

 

Figure 14. Connector axis 
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Figure 15. Ramp connector distribution 

 

 

 

 

 

 

 

 

Figure 16. Hinge track connector distribution 

 

 

 

 

 

 

 

Figure 17. Operator connector distribution 
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3.4      Task specifications 

3.4.1      Agent overview 

As described in Section 3.1.5, the objective was to find a collision-free path to reach a proper 

handling point, which will be primarily implemented by UR5e-1. UR5e-1 was chosen as the 

agent to decide the action based on its observation and reward. UR5e-1 used a supervisor and 

robot combined controller, while UR5e-2 used the only robot controller mentioned in Section 

2.1. The agent on UR5e-1 was able to gain positional and orientational information of the two 

end-effectors and hardware components. Figure 18 shows a detailed environment data flowchart 

for the communications between UR5e-1 and UR5e-2. Both manipulators had their own emitter 

and receiver nodes that were able to send string data to each other. During the simulation, two 

manipulators were allowed to collect their motor position and collision situation and send those 

data to the supervisor through their position sensors and touch sensors, respectively. The 

supervisor can also send motion commands to control both UR5e-1 and UR5e-2. Since the 

hardware is not a robot node, the position and orientation information can only be observed by 

the supervisor. In other words, the hardware data message was directly obtained by the 

supervisor controller.  
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Figure 18. Environment data flowchart 

 

In the supervisor script, the class structure followed the same agent-environment loop as the 

OpenAI Gym framework. In this research, the maximum number of steps epn in a single episode 

was set to 100 during the custom environment creation. The agent will end an episode when 

failure happens or an epn is reached, which can avoid useless steps in simulation. In the 

environment, the agent must contain the reset method (Reset()) and the step method (Step()) to 

execute reinforcement learning. After a custom environment was created, the stable baselines3 

package (Raffin, 2019) was utilized to start the training with the SAC algorithm. The detailed 

content will be demonstrated in the following sections. 
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3.4.2      Reset Method  

The reset method, (Reset()), was called at the beginning of each episode. It initializes the 

environment to be prepared for the upcoming episode, then returns an initial state of the 

observation to the agent.  Figure 19 contains the pseudo code of the reset function. In the 

supervisor controller in Webots, the variable of episode number epn, step number n, and reward 

were first defined and initialized. After that, the agent will reset the simulation to zero seconds 

and ensure that all objects and the physics engine are turned back to the initial state. Next, the 

hardware will be randomly set to a position within the possible configuration to make sure the 

environment has enough complexity during the training process. Finally, Sfinal_hardware will be the 

final state on the frame profile. 

 

In the present research, different curriculum tasks were designed to be conducted by different 

initial states for the two manipulators. Basically, as shown previously in Figure 8, all possible 

scenarios were categorized into two categories: installation of the hardware with one screw point, 

and installation of the hardware with more than one screw point.  

 

In the cases with only one screw point, Sini_ur1 stands for the end-effector initial states of UR5e-1, 

which represents information such as its location, rotation, etc.. Although the distance from the 

end-effector and the hardware will vary depending on the curriculum difficulty, the initial state 

generally stays at a point near the hardware. Then, the Sfinal_ur2  represents the final state of the 

end-effector of UR5e-2, as the target screw point is its only destination. However, in the second 
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category, the Sini_ur2 is needed to represent the initial state of the end-effector of UR5e-2, as it 

will need to move from a random finished screw point to the target screw point. This scenario 

happens when the last screw point is secured and the UR5e-2 end-effector is ready to move to 

the next screw point, which then will be the location of the Sfinal_ur2. Step (1 timestep) was to 

define the simulation graphic output timeframe to a frame per 4-11 milliseconds. This function is 

necessary to implement robot motions in Webots. 

 

With every reset called, the inverse kinematics (IK) solution was first calculated to make sure the 

point is reachable, then they were let go to the assigned position to check if there is any collision 

at the assigned position and the path between the start position and assigned position. Starting 

with a perfect situation is important, or else the training result would be imprecise due to the 

error caused by the beginning position. In the end, the supervisor controller will collect the 

observation and start looping the step function. 
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Figure 19. Pseudo code of reset function 

 

3.4.3      Observation space 

The observation space is the format of valid observations for an environment. The common 

space includes discrete space and box space. The discrete space allows a positive integer to 

represent its related value such as true/false or a value from known choices such as 

North/East/South/West or a colour code within the RGB spectrum. The box space consists of an 

n-dimensional continuous space. The box space is bounded by an upper and lower limit. The 



 

 

38 

value can be any value within the corresponding dimension’s limit; in other words, each 

dimension gives a continuous variable. 

 

In this research, the observation space was set as a 2-dimensional box space with the dimension 

39 × 6. The first dimension with 39 arrays was composed of the states of the two manipulators, 

screw points, and their connectors. All arrays shared the same definition: a second dimension 

containing 6 continuous values. The first three elements represent the cartesian coordinates, x, y, 

z, while the latter three represent the euler angles denoted as α, β, γ. The end-effectors were able 

to be oriented by the known target object position and these 6 positional and orientational values. 

 

Table 3-3 shows a detailed allocation observed by the agent, calculated using relative position 

instead of absolute position except for the observation of the UR5e end-effector end point of its 

own. The reason for this design was to increase the richness of the observation, which was 

beneficial to the agent's cognitive ability to the environment.  

 

The bound varied within the range [-1,1] after normalization using Equation (3-5). 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑖 is 

the center point of the 𝑀𝑎𝑥𝑟𝑎𝑛𝑔𝑒𝑖  , which is the combined reachable range of two manipulators, 

along with the i axis (i = x , y , z). Because observation space was used as an input to a neural 

network, normalizing the input to neural networks is useful for increasing convergence speed, 

improving computer precision, and preventing divergence of parameters, which then leads to 

easier hyperparameter tuning. 
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Table 3-3. Content of observation space 

Amount Target object point 

1 The end point of UR5e-1 end-effector  

1 The end point of UR5e-2 end-effector relative to the end point of UR5e-1 end-

effector  

6 Each motor centre point relative to the end point of UR5e-1 end-effector  

1 Centre point of the UR5e-2 end-effector connect plate relative to the end point of 

UR5e-1 end-effector  

1 Screw point relative to the end point of UR5e-1 end-effector  

29 Each hardware connector relative to the end point of UR5e-1 end-effector  

 

 

 

 (3-5) 

 

 

3.4.4      Action space 

The action space defines the range of valid actions. As for the observation space, this could be a 

discrete number of options, such as open or close for a gripper, or a continuous range such as the 

target velocities for seven joints. In this research, multi-step motion (up to 100 steps) was 

implemented in the whole process. By syncopating the motion into small time periods, the path 

can be optimized in a smooth way and the agent can be sensitive enough to adjust when urgent 

conditions happen.  
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There are three kinds of control methods used to perform manipulators’ actions: motor control, 

IK control, and velocity control. Using motor control, the agent will send commands directly to 

the six motors to rotate assigned distances. Motor control is the least efficient way to navigate 

the end-effector to reach the target objects. Based on the knowledge of IK, the agent can assign a 

random location in the reachable range for the end-effector. The end-effector can reach it by 

moving motors to achieve a calculated distance. This method faces a crucial problem in that the 

interval between steps is unstable. If the location is too far away from the previous one, the 

motors require a large movement and the end-effector may jump. Moreover, the relevance 

between steps is low resulting in inefficient training. Velocity control is an improved version of 

IK control. As mentioned in Section 3.3.2, velocity control assigns a specific linear and angular 

velocity to the end-effector. The end-effector position will then move with the velocity assigned 

in each step, resulting in a stable and smooth motion of the end-effector. 

 

After several trials, the velocity control method was chosen as the path planning rule. Note that 

all parameters in the action space will also need to be normalized to the [-1,1] range as 

observation space for training purposes. The action spaces for the three abovementioned control 

methods are demonstrated in Equations (3-6), (3-7), and (3-8). 

 

  (3-6) 

 

 (3-7) 

 

 (3-8) 
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3.4.5      Step method 

The step method takes an action as input and utilizes the action to interact with the environment 

at each step. At the end of the step function, it has to return observation, reward, done, and info. 

Infos is a dictionary that can be used to return additional data if needed. Reward is a huge part of 

this research which is related to reward shaping technique and will be further introduced in 

Section 3.5.1.  

 

In the observation part, it should return a state that matches the pre-defined observation space as 

mentioned in Section 3.4.3. In the step method, the order of the 29 connector observations was 

shuffled in each step to avoid having the agent only memorize certain gripping motions. This 

design was for the purpose of robust agent training and the ability to recognize the irregularity of 

the hardware component’s shape. 

 

Done is a Boolean value. When the value is True, the episode will be ended and immediately call 

the Reset function. Otherwise, it will keep looping the step function until the step number 

reaches the max episode step (100), which wastes a lot of time in task failure situations.   

 

To accelerate the training progress, four different scenarios will return True to the done function 

and halt the step function: 1) reach any connect point; 2) any collision happens; 3) one of the 

manipulator end-effectors gives no IK solution; and 4) exceed max episode step. With the 

aforementioned setup, the training process yielded episodes of various lengths, which saved an 

enormous amount of time and provided a useful method to validate the training result. 
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Figure 20 shows the pseudo code of the step function. As mentioned in Section 3.1.5, when the 

number of hardware screw points is larger than 1, the agent will send commands to UR5e-2 to 

make its end-effector move to the assigned screw position Sfinal_ur2 at the first step. Action space 

A  is automatically generated by the agent and is used for calculation of the next state.  

 

 

 

Figure 20. Pseudo code of step function 
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3.5      Reward shaping and model architecture  

3.5.1      Reward shaping 

Reward shaping is a technique to transfer domain knowledge into reinforcement learning. As 

mentioned in Section 2.2, reward will make the agent define the quality of certain performance. 

Moreover, effective reward shaping can lead to high sample efficiency and speed up the agent’s 

training process. In this section, we will define the reward function used in this research and 

discuss the derivation. With respect to the modification of the reward function, the experiment 

results will be discussed further in Section 4.1. 

 

According to the step method, the agent should return a value of reward with the function 

get_reward () as shown in Figure 18. It is defined as successful if the end-effector got closer to 

any hardware connector in each step to provide an incentive for the agent to locate a handle point 

at the end. Equations (3-9) and (3-10) show the first version of the reward function. R1 is the 

reward function of the first version. In the first row of Equation (3-10), a penalty is given on 

collision and reaching a point out of range. Moreover, in order to encourage the agent to reach 

the goal, 10 points were given whenever it succeeded. The agent was allowed to earn more 

points when it connected the hardware closer to the force point. However, if the agent was 

unlucky did not succeed once, this led to sparse reward situations and was hard to converge. 

Some bonus points were thus added to gain more points when getting closer to the hardware 

during exploration. D_eci is the distance between UR5-1 end-effector and one of the 29 

connectors connectori . The variable eularD_ecm represents the eular distance between UR5-1 
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end-effector and the connector that has the smallest distance between it and the end-effector. 

D_cs represents the distance between the connection point and the screw point. 

 

(3-9) 

 

 

 (3-10) 

 

This reward function turned out to be ineffective, as most episodes ended with either a collision 

or no IK solution. Most of the time, the end-effector chose to wander around until it reached the 

episode step limitation. The equations were then modified to Equations (3-11) and (3-12) to 

flatten the reward to ensure the agent will not be heavily punished on failures. With the modified 

reward function, the sum of reward was more regularly distributed and had less jump value. The 

variable rt  represents the current reward. When failure happens, it will first give a penalty epmax 

which is equal to the max episode step, and then set the reward for the remaining steps to the 

current reward. This design avoided the extremely low reward while remaining a lower sum of 

reward than the situation in which the end-effector was closer to the handle point. Exponential 

normalization was also used for the distance-related reward to make the agent more sensitive to 

the distance between the end-effector and the handle point. 

 

 (3-11) 

 

 

                                                                                                                     (3-12) 
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The second version strongly improved the performance compared to the first. However, there 

were two different problems which led to frequent failure. Firstly, when the end-effector was 

close to entering the connection range, the next step movement was often too fast such that the 

sucker crushed into the hardware. Secondly, due to the nature velocity control being written by 

IK, the manipulator sometimes chose to move motors in an inefficient way. For example, a 

motor’s rotation range is from -6.28 degrees to 6.28 degrees. A path was created which required 

the motor to move from -6 degrees to 6 degrees. The moving distance was small but it took a 

long time to make an entire motor revolution. To solve the problem, a velocity factor (when an 

episode is terminated) and a penalty of the motor rotate distance MotorDj were added to the 

equation shown in Equation (3-13). The result showed an increased success rate and will be 

discussed further in the later section 4.1. 

 

                  (3-13)           

                                                                                                                       

 

3.5.2      Parameter tuning 

Parameter tuning can have significant effects on the training result. A proper neural network size 

is vital for machine learning: a model with low capacity will not be able to learn. On the 

contrary, a model with too much capacity can learn the training dataset too well, resulting in an 

overfit phenomenon. Big architecture also takes more time to update the networks which 

increases the training time. Two fully connected layers of 400 × 300 neurons were used and the 
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network architecture was shared with both actor and critic networks. MlpPolicies, which are 

made for other types of features such as robot joints, sets of vectors, was chosen. The minibatch 

size for updating the network each time was set to 256. Replay buffer size was set to 106. A 

discount factor of 0.99 was used, in which case the future reward will be discounted by a 

coefficient of 0.99. The coefficient τ, which relates to the soft update rate, was set to 0.02.  

 

Learning rate is an important variable in deep network training that represents the update weight 

in the stochastic gradient descent. It was determined a higher learning rate in the early training 

stage can boost the network updating speed, while a smaller learning rate in the late stage can 

further improve the success probability. 

 

Most of the time spent on this part of the research was to find an optimal learning rate—it was 

dynamically tuned during the training period. At first, a common practice was adopted to 

schedule the learning rate to decrease linearly from training step. Because the training step varied 

from 10,000 steps to 1,000,000 steps, the change of learning rate became negligible in terms of 

affecting the training process when the number of training step got too long. Figure 21 shows the 

approach taken to tune the model’s learning rate (LR). 

 

Different learning rates will be set under the approach illustrated in Figure 21 to start training 

according to the task difficulty at the beginning. If the success rate increases, the learning rate 

will then be minimized when the success rate is over 0.75 and 0.95 based on the experience. 
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Figure 21. Learning rate tuning strategy 

 

 

3.6      Curricular learning and task design  

3.6.1      Curriculum guided reinforcement learning structure (CGRLS) 

One of the most critical challenges machine learning faces in real-world application is the time 

resources required for training. That is why curricular learning is an essential tool as it reduces 

training time. Curriculum learning involves a gradual ascending learning procedure. The training 

would start from a simple setting and task, then the difficulty and complexity will increase after a 

successful trial. In this way, the agent can apply its experience from the basics to a more 

advanced setup to ensure a smooth learning curve. A curriculum guided reinforcement learning 
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structure (CGRLS) was proposed and implemented into the application. The following concepts 

are the main guideline the CGRLS followed: 1) The scale of objectives matters in the curriculum 

design. 2) The training starts from a simple environment. 3) The model increases the training 

environment’s complexity and difficulty gradually. 4) The model avoids catastrophic forgetting 

by providing previous experience. Figure 22 shows an overview of the proposed method. 

 

 

Figure 22. Curriculum tree with two layers 

 

First, the scale of the objectives was defined. The agent will be able to solve a problem only if 

the objectives are pre-defined. The next step was to build a curriculum tree based on the 

objectives’ definitions. The vertical tree layers represent the hierarchy of the sub-curriculum. In 
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the first layer, the objective can be a single task or can include multiple different but similar tasks 

horizontally. If there is only one objective, then it leads to its vertical sub-layer. If not, the task 

curriculum will be listed and ordered by their difficulty from C1 (task with the easier difficulty) 

to Cn (task with the hardest difficulty) horizontally, while n represents the total number of tasks. 

This process was repeated in every horizontal layer until it reached the bottom. In the bottom 

layer, depending on the program complexity, a number of influential parameters  Cij will be set. 

For example, it could be the pole length in the Cart-pole environment or x-axis space of the Atari 

game. After defining each parameter, the sub-curriculum Cijk of each parameter is then arranged 

from easy to hard, again horizontally, to finalize the curriculum tree. The amount of sub-

curriculum needed for each parameter can be different, but the increases in difficulty should be 

as even as possible. The more sub-curriculum is in the parameter, the flatter the difficulty growth 

rate is. 

 

The final step was to group sub-curricula according to the selection rule and combine them to the 

final curriculum stage. The curriculum tree stage design was then completed by the following 

procedures. First, at least two top-curriculums were selected to focus on the top layer starting 

from C1. Among the focused curricula, all sub-curricula start from the difficulty level Cxy1 (the 

easiest curriculum), which becomes the curriculum stage 1 for training. After that, at least two 

parameters of each top-curriculum were picked to increase difficulty for the next stage. The rate 

of difficulty growth depends on the number of the final curriculum stage, as the intent was to 

spread the knowledge growth among parameters as evenly as possible.  

Note that all parameters had to be updated at least once before any parameter’s sub-curriculum 

was completed. This ensures a similar rate of growth between parameters and to avoid the agent 
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forgetting an early finalized parameter experience. The selected sub-curriculum then went to the 

next final curriculum stage, and the previous final curriculum stage then became the starting 

point. These procedures were repeated until every sub-curriculum was selected. During the 

process, additional top-tasks can be added to the pool to provide a flexible learning model. 

 

The training results indicated that if a certain final curriculum stage was not able to achieve its 

first success within its first 5,000 episodes, its success rate for the upcoming curriculum stages 

was near to zero. This phenomenon indicates that the difficulty growth rate has to be flattened if 

the agent is not capable of completing a given curriculum stage within a certain amount of time. 

In summary, a flattened difficulty growth rate with a smoother path can provide a more efficient 

training experience for the agent. However, there is no hard rule to determine the optimal 

timeframe and the number of curriculum stages that can yield the most efficient results: A 

smoother curriculum can provide the agent an easier learning pathway; however, it will require a 

much more complicated model processing procedure, resulting in a more time-consuming task 

for the developer. 

 

Figure 22 shows a curriculum tree sample of 2 vertical sub-layers with i proposed tasks. The 

white arrow shows the increase in the degree of difficulty of the tasks within parameters. The 

white dot represents the sub-curriculum of a particular parameter. In the parameter variable Cijk , 

i is the number related to its top tasks; j represents the number related to the parameters of each 

top task; k stands for the total number of sub-curriculums of each parameter. This variable is 

used to further illustrate the change in difficulty of each parameter. Note that parameter C11 

consists of a curriculum stage with an increased amount of curriculum. This implies that the 
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agent failed to succeed once with its first 5,000 trials during the direct path from C111 to C11k, so 

that the curriculum stage C112 needs to be introduced to smoothen the learning difficulty growth 

rate. Figure 22 illustrates an optimal progress with evenly distributed parameter knowledge 

growth represented by a similar vertical distance travelled by the final curriculum stages. 

 

 

3.6.2      Curriculum task design 

This section will illustrate how the CGRLS technique was used to design the curriculum stage of 

the two tasks. The objective of Task 1 was to train an agent who was able to guide UR5e-1 to 

locate a ramp handling point. Table 3-4 shows the curriculum tree of this objective. Because 

there was only one single task, the top layer number was set to 1. The set of parameters is 

represented as Ci, and the sub-curriculum will be named Cij . The geometry display of the 

parameters of Task 1 is shown in Figure 23. The final curriculum stage is introduced in Table 3-

5. The bold font represents the update by picking sub-curriculums of each parameters when 

making a new curriculum stage. 
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Table 3-4. The curriculum tree of Task 1 

Objective Locate ramp handling point 

Parameter C1  = UR5e-1 initial X 

distance from ramp 

C2  = UR5e-1 initial Y 

distance from ramp 

C3  = UR5e-1 initial Z 

distance from ramp 

Sub- 

curriculum 

C11
 = 0.03 C21

 = 0 C31
 = 0 

C12
 = [0, 0.01, 0.02, 

0.03 ] 

C22
 = [-0.02, -0.01, ...,  

0.04 ] 

C132
 = [-0.03, -0.02, ...,  

0.03 ] 

C13
 = [0, 0.01, 0.02, ...,  

0.1 ] 

C23
 = [0, 0.01, 0.02, ...,  

0.16 ] 

C33
 = [-0.08, -0.07, ...,  

0.08 ] 

C14
 = [0, 0.01, 0.02, ...,  

0.2 ] 

C24 = range(0, 0.3) C34 = range(-0.15, 0.15) 

C15 = range(0, 0.3)   

Parameter C4 = UR5e-1 initial Rz 

rotation 

C5 = UR5e-1 initial Ry 

rotation 

C6  = Ramp initial Z 

position  

Sub- 

curriculum 

C41 = 0 C51 = 0 C61 = 0 

C42 =[-10o, 0, 10o] 

 

C52 = [0, 10o, 20o] 

 

C62 = [-0.2, -0.1, ..., 0.02] 

C42 = [-30o, -20o, ..., 30o] C52 = [0, 10o,..., 50o] C63 = range(-0.2, 0.2) 

C43 = [-60o, -50o, ..., 60o] C53 = range(0, 90o)  

C44 = range(-90o, 90o)   

Parameter C7  = UR5e-2 moving 

requirement  

  

Sub-

curriculum 

C71 = No movement 

required 

C72 = From offset  

[-0.1, 0, 0.2] move to the 

screw point 
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Table 3-5. The final curriculum stage of Task 1  

Final curriculum 

stage of Task 1 

Combination of sub-curriculum 

Stage 1 C11 , C21 , C31 , C41 , C51 , C61 , C71 

Stage 2 C12 , C21 , C31 , C41 , C51 , C62 , C71 

Stage 3 C13 , C22 , C4-11 , C41 , C51 , C62 , C71 

Stage 4 C14 , C23 , C33 , C41 , C51 , C62 , C71 

Stage 5 C14 , C23 , C33 , C42 , C51 , C62 , C72 

Stage 6 C14 , C23 , C33 , C43 , C52 , C62 , C72 

Stage 7 C15 , C24 , C34 , C43 , C52 , C63 , C72 

Stage 8 C15 , C24 , C34 , C44 , C53 , C63 , C72 

 

 

 

Figure 23. Parameters of Task 1 
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After the experience of a single hardware task, an attempt was made to implement the learning 

from multiple hardware tasks to a single agent. Task 2’s objective was to train an agent to guide 

UR5e-1 to locate a ramp, a hinge track, and an operator handling point, respectively. The top 

task layer number became 3 as there were three different hardware components as the top tasks 

in Task 2. Tables 3-6 and 3-7 show the curriculum sub-tree of the top tasks, hinge track and 

operator. These sub-trees were combined with the top task ramp to form a complete curriculum 

tree. With one more layer added, one more dimension of parameters is created as Cij, and the sub-

curriculum is presented as Cijk. A geometric illustration of the parameters of Task 2 is shown in 

Figures 24 and 25. The final curriculum stage is introduced in Table 3-6. 

 

Table 3-6. The combined curriculum tree for Task 2 

Objective Find hinge track, operator, and ramp handle point  

Top layer 

task 

C1 = Find hinge track handling point 

Parameter C11  = UR5e-1 initial Y 

position from hinge 

track 

C12  = UR5e-1 initial X 

position from hinge 

track 

 

C13  = UR5e-1 initial Z 

position from hinge track 

 

Sub- 

curriculum 

C111
 = 0.03 C121

 = 0 C131
 = 0 

C112
 = [0, 0.01, 0.02, 

0.03 ] 

C122
 = [-0.03, -0.02, ...,  

0.03 ] 

C132
 = [-0.03, -0.02, ...,  

0.03 ] 

C113
 = [0, 0.01, 

0.02, ...,  0.1 ] 

C123
 = [-0.08, -0.07, ...,  

0.08 ] 

C133
 = [-0.08, -0.07, ...,  

0.08 ] 

C114
 = [0, 0.01, 

0.02, ...,  0.2 ] 

C124 = range (-0.15, 

0.15) 

C134 = range (-0.15, 0.15) 

C115 = range (0, 0.3)   
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Parameter C14 = UR5e-1 initial 

Rx rotation 

C15 = UR5e-1 initial Rz 

rotation 

C16  = UR5e-2 initial screw 

point 

Sub- 

curriculum 

C141 = 0 C151 = 0 C161 = 3 

C142 =[-10o, 0, 10o] 

 

C152 =[0, 10o, 20o] 

 

C162 = 3, 4 

C143 = [-30o, -20o, ..., 

30o] 

 

C153 = [0, 10o,..., 50o] 

 

 

C163 = 1, 2, 3, 4 

C144 = [-60o, -50o, ..., 

60o] 

C154 = range (0, 90o) C164 = 1, 2, 3, 4, 5, 6 

C145 = range (-90o, 90o)  C165 = random (1, 2, 

3)→random(1, 2, 3), 

random(4, 5, 6)→random(4, 

5, 6) 

  C166 = random (1, 2, 3, 4, 5, 

6)→random (1, 2, 3, 4, 5, 6) 

Parameter C17 = UR5e-2 pass 

outer space or not  

  

Sub- 

curriculum 

C171 = No  

C172 = Stay at a point 

with offset [range (-

0.1,-0.1), range 

(0.05,0.35), range (-

0.1,0.1)] 

C173 = Move from a 

point with offset 

[range (-0.1,-0.1), 

range (0.05,0.35), 

range (-0.1,0.1)] 

Top layer 

task 

C2 = Find operator handling point 

Parameter C21  = UR5e-1 initial Y 

position from hinge 

track 

C22  = UR5e-1 initial X 

position from hinge 

track 

 

C23  = UR5e-1 initial Z 

position from hinge track 

 



 

 

56 

Sub- 

curriculum 

C211
 = 0.03 C221

 = 0 C231
 = 0 

C212
 = [0, 0.01, 0.02, 

0.03 ] 

C222
 = [-0.03, -0.02, ...,  

0.03 ] 

C24-11
 = [-0.03, -0.02, ...,  

0.03 ] 

C213
 = [0, 0.01, 

0.02, ...,  0.1 ] 

C223
 = [-0.08, -0.07, ...,  

0.08 ] 

C233
 = [-0.08, -0.07, ...,  

0.08 ] 

C214
 = [0, 0.01, 

0.02, ...,  0.2 ] 

C224 = range (-0.15, 

0.15) 

C234 = range (-0.15, 0.15) 

C215 = range (0, 0.3)   

Parameter C24 = UR5e-1 initial 

Rx rotation 

C25 = UR5e-1 initial Rz 

rotation 

C26 = UR5e-2 initial screw 

point 

Sub- 

curriculum 

C241 = 0 C251 = 0 C261 = 2,3 

C242 =[-10o, 0, 10o] 

 

C252 =[0, 10o, 20o] 

 

C262 = 1, 2, 3 

C243 = [-30o, -20o, ..., 

30o] 

 

C253 = [0, 10o,..., 50o] 

 

 

C263 = 1, 2, 3, 4 

C244 = [-60o, -50o, ..., 

60o] 

C254 = range (0, 90o)  

C245 = range (-90o, 90o)   

Parameter C27 = UR5e-2 initial 

screw point Z offset 

C28  = Hinge track initial 

Z position  

C29 = UR5e-2 pass outer 

space or not  

Sub- 

curriculum 

C271
 = 0 C281

 = 0 C291 = No  

C272
 = [-0.01, 0, 0.01] C282

 = [-0.02, -0.01, ...,  

0.01 ] 

C293 = Stay at a point with 

offset [-0.1,0.1,0] 

C273
 = [-0.03, -0.02, ..., 

0.03] 

C283
 = range (-0.02, 

0.01) 

C293 = Stay at a point with 

offset [range (-0.1,-0.1), 

range (0.05,0.35), range (-

0.1,0.1)] 

 C282
 = range (-0.03, 

0.03) 

 C294 = Move from a point 

with offset [range (-0.1,-0.1), 
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range (0.05,0.35), range (-

0.1,0.1)] 

Top layer 

task 

C3 = Locate ramp handling point 

Parameter C31  = UR5e-1 initial X 

distance from ramp 

C4-11  = UR5e-1 initial Y 

distance from ramp 

C33  = UR5e-1 initial Z 

distance from ramp 

Sub- 

curriculum 

C311
 = 0.03 C4-111

 = 0 C331
 = 0 

C312
 = [0, 0.01, 0.02, 

0.03 ] 

C4-112
 = [-0.02, -0.01, ...,  

0.04 ] 

C34-11
 = [-0.03, -0.02, ...,  

0.03 ] 

C313
 = [0, 0.01, 

0.02, ...,  0.1 ] 

C4-113
 = [0, 0.01, 

0.02, ...,  0.16 ] 

C333
 = [-0.08, -0.07, ...,  

0.08 ] 

C314
 = [0, 0.01, 

0.02, ...,  0.2 ] 

C4-114 = range (0, 0.3) C334 = range (-0.15, 0.15) 

C315 = range (0, 0.3)   

Parameter C34 = UR5e-1 initial 

Rz rotation 

C35 = UR5e-1 initial Ry 

rotation 

C36  = Ramp initial Z position  

Sub- 

curriculum 

C341 = 0 C351 = 0 C361 = 0 

C342 = [-10o, 0, 10o] 

  

C352 = [0, 10o, 20o] 

 

C362 = [-0.2, -0.1, ..., 0.02] 

C342 = [-30o, -20o, ..., 

30o] 

 

C352 = [0, 10o,..., 50o] 

 

 

C363 = range(-0.2, 0.2) 

C343 = [-60o, -50o, ..., 

60o] 

C353 = range(0, 90o)  

C344 = range(-90o, 90o)   

Parameter C37  = UR5e-2 moving 

requirement  

  

Sub-

curriculum 

C371 = No movement 

required 

  

C372 = From offset    
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[-0.1, 0, 0.2] move to 

the screw point 

 

Table 3-7. The final curriculum stage of Task 2 

Final curriculum 

stage of Task 1 

Combination of sub-curriculum 

Stage 1 C111 , C121 , C131 , C141 , C151 , C161 , C171 , 

C211 , C221 , C231 , C241 , C251 , C261 , C271 , C281 , C291 

Stage 2 C111 , C122 , C14-11 , C141 , C151 , C162 , C171 , 

C211 , C222 , C24-11 , C241 , C251 , C261 , C272 , C282 , C291 

Stage 3 C112 , C123 , C14-11 , C141 , C151 , C163 , C172 , 

C212 , C223 , C24-11 , C241 , C251 , C262 , C272 , C282 , C292 

Stage 4 C113 , C123 , C133 , C142 , C152 , C164 , C172 , 

C213 , C223 , C233 , C242 , C252 , C262 , C273 , C282 , C291 

Stage 5 C114 , C123 , C133 , C143 , C152 , C165 , C172 , 

C214 , C223 , C233 , C243 , C252 , C262 , C273 , C282 , C293 

Stage 6 C114 , C123 , C133 , C143 , C152 , C165 , C172 , 

C214 , C223 , C233 , C243 , C252 , C262 , C273 , C282 , C293 

C311 , C4-111 , C331 , C341 , C351 , C361 , C371 

Stage 7 C114 , C123 , C133 , C143 , C152 , C165 , C172 , 

C214 , C223 , C233 , C243 , C252 , C262 , C273 , C282 , C293 

C312 , C4-111 , C34-11 , C341 , C351 , C361 , C371 

Failed to merge harder ramp sub-curriculums from here, so the ramp task 

was abandoned in favour of returning to Stage 6. 

Stage 8 (modified 

stage 6) 

C115 , C123 , C133 , C143 , C152 , C165 , C172 , 

C215 , C223 , C233 , C243 , C252 , C263 , C274 , C282 , C293 

Stage 9 C115 , C124 , C134 , C144 , C153 , C165 , C172 , 

C215 , C224 , C234 , C244 , C253 , C263 , C274 , C282 , C293 

Stage 10 C115 , C124 , C134 , C144 , C153 , C166 , C172 , 

C215 , C224 , C234 , C244 , C253 , C263 , C274 , C283 , C293 

Stage 11 C115 , C124 , C134 , C144 , C152 , C166 , C173 , 

C215 , C224 , C234 , C244 , C252 , C263 , C274 , C283 , C294 
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Figure 24. Parameters of the top task C1 for Task 2 

 

 

Figure 25. Parameters of the top task C2 for Task 2 
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4      EXPERIMENTS 

 

4.1      Reward shaping results  

Successful model training requires a proper incentive for the agent to explore possibilities for a 

solution. After defining the environment, a reward shaping technique was introduced to improve 

the performance and success rate. As described in Section 3.5.2, three versions of the reward 

function were designed within the same environment.  

• The first version of  reward function R1: The basic hardware approach version  

• The second version of  reward function R2: Fail and success reward flattened and distance 

emphasized version 

• The third version of  reward function R3: Velocity slow down and motor efficiency 

function added version).  

The environment was defined such that the end-effector of UR5e-1 was set to the location from 

the hardware [0.06, 0.03, 0] and the sucker pointed at the hardware surface perpendicularly 

without rotation difference. Figure 26 shows the success rate every 100 episodes using the first 

version reward function R1. Although the agent was able to reach its goal, it was not stable in 

terms of a gradual success rate improvement, which indicated a poor training flow. The graph 

shows no positive relation between the y-axis (success rate) and x-axis (episodes) under the first 

reward version, illustrating that the extreme success rate values from the first reward function 

prevented the agent from finding a suitable approach. The “jumping” extreme values were 

caused by the large difference in reward given by success and failure trials. The reward 

difference was evident over a broad range of episodes. The agent also lost incentive in terms of 
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trying to reach the hardware if no penalty was given at the maximum episode step because it was 

punished by collision more often than getting rewarded by successful trial. 

 

Figure 27 shows the success rate every 100 episodes using the second version reward function  

R2. The more extreme success rate after a successful trial was able to be solved by flattening the 

sum of reward. The success rate improved steadily after the first success; however, the model 

failed to surpass the 0.55 success rate even after the learning rate was reduced. Further 

modification was needed in order to reach the expected 0.95 success rate.  

 

In the third version of the reward function R3, the velocity of the end-effectors and the motor 

efficiency were adjusted as described in Section 3.5.1. The modified model reduced the end-

effectors’ velocity when it started to reach a proximate distance to the hardware. Moreover, the 

end-effector took a smoother path with less rotational time, which could reduce energy costs in a 

real-world manipulator implementation. Figure 28 shows an early increase in the success rate 

with a more continuous uptrend towards the 1.0 success rate. This result proved that the reward 

shaping modification did not only improve the performance of the agent, but also implemented a 

predictable change in the agent’s behaviour by specific reward modification given by the 

developer. 
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Figure 26. Training result for the first version of reward function R1  

 

 

Figure 27. Training result for the second version of reward function R2 
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Figure 28. Training result by the third version of reward function R3 

 

4.2      Parameter tuning experiment 

The parameters were then tuned with the intent to find a hyperparameter for this case. The 

parameter tuning trial was completed with six different setups in terms of model size under the 

same environment described in Section 4.1 for two layers and three layers of neurons, i.e., 64 × 

64, 256 × 256, 400 × 300, 64 × 64 × 64, and 256 × 256 × 256. Table 4-1 shows the results of all 

setups on which the experiments were conducted. Based on the results, it was determined that the 

400 × 300 network was the optimal model size for this case because it contained a sufficient 

amount of neurons to reach the goal without costing too much in terms of time to update. This 

balance provided a favorable environment for the agent to train efficiently without overfitting to 

the dataset. 
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The learning rate can be adjusted during the training; however, the effect of modifying the 

coefficient tau was negligible. The approach we took was to instead modify the learning rate as 

mentioned in Section 3.5.2. The results suggested that an effective improvement can be achieved 

at the end of the training process by modifying the learning rate. 

 

Table 4-1. Experiment results under different model size setup 

Model size 

(neurons) 

Number of episodes 

required to achieve 

30% success rate 

Time needed to 

achieve 30% success 

rate (mins) 

Episode-to-time 

needed ratio 

64 ×  64 36394±2912 183.12±10.12 198.74 

256 ×  256 10982±1117 12.17±1.61 902.38 

400 ×  300 2429±205 2.38 ±0.19 1020.59 

512 ×  512 2121±181 2.88±0.29 736.91 

64 ×  64 ×  64 1512±185 3.09±0.35 488.27 

256 ×  256 ×  256 1269±149 2.25±0.15 563.14 

 

 

4.3      Task 1: Single hardware curriculum learning 

With respect to curriculum task design, as described in Section 3.6.2, the final goal of Task 1 

was to guide the UR5e-1 end-effector from its initial state within a range of 30 cm × 30 cm × 30 

cm box range and arbitrary rotation to reach the target hardware, while the agent had to 

determine whether to move UR5e-2 or not according to its initial state. First, Task 1 is trained 

without curriculum learning. If the model was trained directly with the final goal of Task 1, the 

model would have had a dramatically lower chance of achieving its first success. Even if the 
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model were able to perform a successful episode, the experience would not be able to be 

replicated. The performance even worsened in some scenarios.  

 

From the success rates of Task 1 without curriculum training as shown in Figure 29, the success 

rate was close to zero even after 80,000 episodes of training. The reason for this was explored 

through performance measurement by the sum of reward. The reward flow in Figure 30 shows 

that the agent failed to find a successful path.  

 

Loss flow were logged to compare with the reward flow in order to ensure the training progress 

is normal. Actor loss represents the model’s inability to perform a rewardable action. Critic loss 

stands for the model’s inability for the agent to distinguish between good performance and bad. 

Figure 31 shows a downtrend of critic loss while the actor loss and reward procedure did not 

improve. Such a phenomenon illustrates that the critic network was unable to define a good 

action or approach. The model’s size and learning rate were adjusted, and, unfortunately, it 

resulted in a similar failing outcome. It was concluded, from the loss function logs, that it was 

highly possible that it was due to a low success frequency, resulting in a low learning efficiency. 

Hence, curricular reinforcement learning was necessary to aid the agent to learn from milestones 

in order to reach the final goal. In this case, we implement curricular learning concepts and use 

CGRLS to train the agent from simple to hard. 
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Figure 29. Success rate of Task 1 without curriculum learning 

 

Figure 30. Mean reward of Task 1 without curriculum learning 

 

 

 

 

 

 

Figure 31. Actor and critic loss of Task 1 without curriculum learning 
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Under the curriculum tree shown in Tables 3-4 and 3-5, which were created using the CGRLS 

methodology mentioned in Section 3.6.1, curriculum Stage 1 was designed to be a stage where 

the UR5e-1 will be able to point at the ramp hardware without rotation variation. Then 

curriculum Stage 2 was designed to be a little bit more complexed: the initial distance along the 

x-axis from the UR5e-1 to the ramp was changed from a fixated C11
 = 0.03 to a randomized pick 

from C12
 = [0, 0.01, 0.02, 0.03 ], while the ramp’s initial Z position was changed from a constant 

C61 = 0 to a pick from C62 = [-0.2, -0.1, ..., 0.02]. After that, the distance between UR5e-1 and 

the ramp along all three axes was increased, which expanded the range of distance along the x-

axis throughout Stages 3 and 4. Stage 5 introduced a movement requirement for the UR5e-2 to 

locate the ramp within an offset randomly picked from [-0.1, 0, 0.2] to the screw point. Then, the 

difficulty was further increased in Stage 6 by randomizing the initial Rz and Ry rotation of 

UR5e-1 so that they were randomly picked from C42 = [-10o, 0, 10o] and C52 = [0, 10o, 20o], 

respectively. Note that all parameters had been updated once; hence, the requirement for any 

parameter to advance to its final curriculum was fulfilled at the end of this stage. At Stage 7, we 

advanced C1   to its final curriculum C15, which means that the initial distance along the x-axis 

started to be a randomized value from the continuous range (0, 0.3). The same was done to C2 , 

C3 , and C6 at the same stage. Finally, C4 and C5 were advanced to their final curriculum, 

finalizing the final goal of Task 1 such that the model was able to install the ramp hardware to 

the frame within a 30 × 30 × 30 box range and arbitrary rotation, no matter at what distance they 

initially were. 
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Figure 32 and Figure 33 show the episode reward averages as the model training proceeded 

under curriculum learning. It can be concluded that the agent was able to determine a suitable 

approach to tackle the assigned curriculum, as the reward average shows a steadily upward trend. 

 

The actor loss and critic loss functions shown in Figure 34 states that the models’ inability to 

perform rewardable and critical action was decreasing. In other words, the model learned to 

tackle the given task with critical decisions. 

 

Finally, the success rate of Task 1 had a strong upward learning trend with a peak of around 98% 

success rate, as shown in Figure 35. 

 

Figure 32. Mean reward of Task 1 with curriculum Stages 1–4 
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Figure 33. Mean reward of Task 1 with curriculum Stages 5–8 

 

 

Figure 34. Actor and critic loss of Task 1 with curriculum Stages 1–4 
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Figure 35. Success rate of Task 1 with curriculum Stage 8 (final) 

 

4.4      Task 2: Multiple hardware curriculum learning 

The successful Task 1 model was then used as the training agent for the multiple top task 

environments. The downward episode reward mean trend shown in Figure 36 indicates that the 

model had a low learning performance with the multiple top tasks environments. The results 

remained the same even after the sub-curriculum of the new tasks were set to their easiest 

difficulties. It could be that the agent overfit into the pre-existing experience, and the brand new 

curriculum forced the agent to change its parameter abruptly, causing poor performance on both 

the previous curriculum and newly-introduced curriculum. Thus, it was necessary to define all 

the objectives at the beginning and train every top task before any task was completed. 
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Figure 36. Mean reward of combined hardware environment using Task 1 model 

 

 

 

 

 

 

Figure 37. Actor and critic loss of combined hardware environment using Task 1 model 

 

Based on the reason mentioned above, all the training of multiple top tasks must be started 

simultaneously under the rule outlined in Section 3.6.1. A new curriculum tree was then 

constructed with three tasks at the top layer as mentioned in Section 3.6.2. More curriculum 

stages were needed as more sub-curriculums were involved. However, the success rate shown in 

Figure 38 indicates a performance divergence between the hinge track/operator/ramp 

(HT/OP/RP) curricula. The divergence illustrates the difficulty the model experienced in terms 

of learning hardware components with different connector directions. The hinge track and 
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operator shared a similar connector direction, so that their corresponding curricula had identical 

trends of high success rate and learning pattern. Unfortunately, the RP curriculum was not able 

to be learned efficiently by the agent in the beginning. 

 

Figure 38. Success rate selecting all hardware appearing 1:1:1 using their first sub-curriculum 

 

The approach used to solve this problem was to rearrange the HT and OP curricula to start 

training in early stages, then to introduce the RP curricula in later stages. Figure 39 and 41 show 

the success rate of the Stage 1, and Stages 1–5, respectively. Figure 40 shows the mean reward of 

curriculum Stage 1–5 with the HT and OP curricula being the focused tasks. The agent 

performed as well as expected in the early stages. Note that at the end of Stage 5, all parameters 

had reached their penultimate stages. The RP curriculum needed to be merged in order to 

continue the learning process; therefore, the RP curriculum was introduced into the agent’s 

training at that point.  
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Figure 39. Curriculum Stage 1 of Task 2 

 

Figure 40. Mean reward of Task 2 with curriculum Stages 1–5 
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Figure 41. Curriculum Stage 5 of Task 2 

 

The newly merged RP curriculum followed the rules mentioned in Section 3.6.1, which were for 

all its sub-curriculum to start from the easiest difficulties. The learning process was unstable and 

time-consuming. 

 

Next, variations were experimented with in terms of the proportions between the HT/OP 

curricula that the agent had already started training and the RP curriculum that the agent had 

never seen before. Figure 42 shows results of different proportions of the RP curriculum being 

introduced in Stage 6.  

 

Experiment results indicate that a large amount of the RP curriculum disturbed existing HT/OP 

curricula’s knowledge, while a small amount of RP curriculum did not provide sufficient 

learning experience to the agent, causing sample inefficiency. It was determined that a 60% new-
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curriculum-introduction proportion is optimal for the agent to focus on learning a slightly 

different curriculum before putting its original curricula into their final curriculum stage.  

 

The performance measurements shown in Figure 43 show that the agent struggled to emerge 

from pre-existing knowledge to the newly-introduced curriculum at the beginning. The 

performance decreased during the implementation of Stage 7, where the distance was changed 

along the x-axis and the initial z-position were changed from constants to variables. It was 

concluded that the agent failed to adapt to the RP curriculum, and a decision was made to 

remove the RP curriculum from the top curriculum layer. Stage 8 was a modified version of 

Stage 6 with the absence of RP curriculum. 



 

 

76 

As shown in Figure 44, the agent’s learning rate then improved rapidly at Stage 8 after the 

removal of the RP curriculum. Finally, the agent’s success rate on Task 2 shown in Figure 42 

reached nearly 100% on mixed curriculum at the end of its final curriculum stage. 

 

Figure 43. Success rate of Curriculum Stage 6 for Task 2 with new-curriculum-introduction 

proportion of (a) 20%, (b) 40%, (c) 60%, (d) 80% 
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Figure 44. Mean reward of Task 2 with curriculum Stages 6, 7 

 

 

Figure 45. Mean reward of Task 2 with curriculum Stage 8–11 
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Figure 46. Success rate of Task 2 with curriculum Stage 11 (final) 

 

Although the RP curriculum was absent in the final curriculum stage, the agent successfully 

learned to adapt to the change of target hardware and environment. In the final stage, the agent 

was able to guide the UR5e-2 from one screw point to another while guiding the UR5e-1 to go 

around if it was blocked by the UR5e-2. The stable and efficient performance presented by the 

model shows that complex hardware installation is able to be automated by robots using AI. 

With the application of reinforcement learning with CGRLS techniques, real-time adjustment of 

the model training is also possible, which indicates that robotic automation has huge potential in 

the manufacturing industry. 
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5      CONCLUSION 

The purpose of the present research was to propose an automated hardware installation solution. 

The present research provided a case study which explored the automation of the hardware 

assembly process for window production. The “screw and handle” motion was identified as the 

most frequent action through task and hardware selection. However, the automation of such 

motions experienced a bottleneck due to the complexity of problems that could not be simply 

solved by rule-based robot motion planning. This was the motivation behind the adoption of 

reinforcement learning to accomplish the research objectives, and it was found to have great 

potential for a possible solution to the automation bottleneck. 

 

5.1      Summary 

The research was accomplished through simulating the window hardware installation process by 

exporting the processed parameters according to the order in the BIM model. An agent was 

created with the reinforcement learning OpenAI Gym structure to define an environment for the 

AI’s observation, action, and interaction.  

 

Past experience provided justification in terms of applying techniques like reward function 

shaping and parameter tuning to improve the model’s performance. However, the performance 

was poor due to a common phenomenon in reinforcement learning called low sample efficiency. 

The low sample efficiency caused uncertainties and long learning time at the early research 

stage.  
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To tackle this issue, a powerful strategy was proposed, herein referred as CGRLS, based on the 

concept of curricular learning. The CGRLS is a curriculum system, a tree system that can train 

multiple tasks with the same nature. The proposed curriculum system improved the agent’s 

efficiency and ability to learn. 

 

In the experiment, two trials were executed, Task 1 and Task 2, where main tasks were assigned 

to the model to learn. The first task consisted of a single ramp installation curriculum. The 

second task consisted of a combined ramp, hinge track, and operator installation curricula. The 

first task was fully completed with great success, while the second task achieved only partial 

completion.  

 

5.2      Research limitation 

One limitation of the proposed method is that all task features must be trained evenly for an 

effective learning process. This condition greatly limits the method’s flexibility and scalability. 

Furthermore, as the failure in Task 2, if the observation of one task is much different than others, 

the agent may need lots of training time and even fail to succeed. 

 

5.3      Research contribution 

This research provides a specific example using the case study of window hardware installation 

by AI in simulation. The definition and solution to the problem are defined, and a guided 

framework is proposed.  
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More specific contributions are as follows:  

● Provided an automated robotic solution to automate the pick-and-place and handle-and-

screw motion to offer manufacturers and researchers with a framework in terms of 

approaching production line automation. 

● Addressed the design of reward function shaping and analyzed performance parameters 

of the reinforcement learning agent. 

● Proposed a powerful curriculum guided reinforcement learning structure (CGRLS) to 

design a smoother learning pathway with curriculum stages for the agent in reinforcement 

learning. 

 

5.4      Future work 

Although the model’s current outcome is satisfactory, the framework has not reached its full 

potential yet. Future efforts could create a more efficient model for full automation of the 

window hardware installation process. Future expansion of the model to other hardware parts 

and even to the sash of a window is expected as the model was designed to be scalable.  

 

Although the proposed CGRLS method can effectively boost the agent’s training efficiency and 

yield a better training result, it lacks the ability to transfer the model’s knowledge to another 

similar task with slightly different properties under a multi-task condition. In the future, a more 

robust automatic hardware installation agent model could be provided via the combination of the 

method and the theory of policy distillation and policy reuse. 
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