i+l

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontano
K1A ON4

Bibliothéque nationaie
du Canada

Direction des acquisitions et
des services bibliographiques
395, rue Wellington

Ottawa (Ontano)
K1A ON4

NOTICE

The quality of this microform is
heavily dependent upcn the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
¢e la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d’'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a laide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

Routing in Blocking and Non-Blocking Multi-Stage
Networks for Parallel Systems

BY

(‘hin-Hung Lam @

A thesis submitted to the Facuiwy of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF COMPUTING SCIENCE

I'dmonton, Alberta
Spring 1995

l * I National Library Bibliothéque nationale
du Canada

of Canada

Acquisitions and Direction des acquisitions et
Bibliographic Se.vices Branch des services bibliographiques
395 Weilington Street 395, rue Wellington

Ottawa, Ontario QOttawa (Ontaro}

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS 8Y
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROMIT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-01715-X

Canada

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE. PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNI: INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIET1:
DU DROIT D'AUTEUR QUI PROTEGLE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Chin-lung Lam

TITLE OF THESIS: Routing in Blocking and Non-Blocking Multi-Stage Networks

for Parallel Systems
DEGRIEE: Doctor of Philosophy

VEAR THIS DEGRELR GRARNTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single
copics of this thesis and to lend or sell such copies for private, scholarly or scientific

rescarch purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

(Signed) .7 Sl
Chin“Hung Lam
#3A-3015, 112 Street
Edmonton, Alberta

T6G 2C5 Canada

) RN 3
N <5)
Date: ¢](A ’./".f

“The greatest happiness you can have is knowing that
vou do not necessarily require happiness.”
- William Saroyan

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersizned certily that they have read, and recommend to the Faculty of Grad-
tate Studies and Rescareh for acceptance, a thesis entitled Routing in Blocking
and Non-Blocking Multi-Stage thworks for Parallel Systems submitted by
Chin-Hung Lam in partial fulfillment of the requirements for the degree of Doctor of

Philosophy.

o

- (-;/"/:1 77 7 .
’ " © o o { : /////’ o [4)

Ehab Elmallah (Supervisor) ?

Frank Hwang (I\ternal)

/ //ZJ
. // ' "‘/:///\«‘Z\~ /\w\’ S
Jseph Culberson (Exammer)

o

Janelle Harms (Examiner)

b

~ P

- Wemer Joerg (E‘mmmer)

el

a\\& Gburzynski (Examiner)

Duane Szafron (Chair)

l);\t‘v-:')é'.(: /</ .. /{L/?

To my grandparents

Abstract

Interconnertion networks (INs) are critical components of high performance parallel
and distributed systems. Multi-stage INs (MINs) are made of links and switches that
are arranged in stages. MINs are attractive because of their superior scalability, regu-
larity, and cost/performance ratio. However, many routing problems, mostly related
to multi-path MINs, are still open. We study routing problems on four recursively
decomposable networks that ave of practical and thzoretical interest.

After adding k extra stages to a Generalized Cube Network (GCN), 2% paths
become available to each input/output pair of the resulting network, called the k-
GCN. Useful symmetry properties of the k-GCN are shown. Given a traffic matrix
and a 1-GCN, we prove that using the 2 alternative paths between any input/output
pair with equal probabilities minimizes the average packet delay, under a wide range
of practical traffic patterns and some restrictions. A simulation study that verifies
our probabilistic analysis is presented.

We next consider the class of Augmented Data Manipulator (ADM) networks.
ADM nctworks can realize many useful permutations but no known algorithm can
efficiently identify and route all admissible permutations. By exploiting the regu-
larity of the topology, we devise a deterministic, backtracking algorithm for routing
permutations on the ADM network at compile time. The algorithm requires O(N?)
time in the worst case and its average time complexity is almost linear, as indicated
by simulation. An upper bound on the average time complexity is also derived.

High speed multiprocessor systems demand nonblocking networks, but cost con-

siderations typically force the architect to adhere to rearrangeable or blocking MINs.

The notion of a k-nonblocking network is introduced to provide a framework for
bridging the gap between blocking and nonblocking networks with a spectrum of new
networks. A-nonblockingness conveniently quantifies the power of NUNs especially
under unspecified traflic. A systematic scheme for constructing A-nonblocking net
works is presented; together with efficient parallel and sequential routing algorithms.
When & = N. our construction gives a network cheaper than an existing strictly
nonblocking network.

Define the width of a MIN to be the maximum number of 1 is tunning, hetween
any 2 adjacent stages. We show that all strictly nonblocking MEN< of size N st
have width > V. The lower bound on the width of wide-sense nonblocking NMENs wis
unknown, except for N = 4. By proving that a new network, called the Quadrupled.
is wide-sense nonblocking, we conclude that N is a tight lower bound on the width of
wide-sense nonblocking MINs. By cascading a sufficient munber of any rearrangeable
MINs of width N. a wide-sense nonblocking MIN can be obtained. An upper hound
on the number of shuffle/exchange stages needed to attain wide seusc nonblockingness

is also derived. Finally, a new implication of the notion of wiiversality is shown,

Preface

This dissertation documents p e results obtained during my study in the de-
partment of Computing Scienee o the University of Alberta. Fach of Chapters 3 to
6 concentrates on a sub-topic. They are roughly arranged in the order of increasing
depth. (Interesiingly, the weight of mathematics decreases while the weight of com-
puter science increases in that order.) As these sub-topics are “loosely-coupled.”
Chapters 3 1o 6 can be read in any order. although Chapter 6 refers to the k-
nonblocking network concept introduced in Chapter 5. The four sub-topics reveal
different facets of a central issue in the study of MINs, namely routing, which is the
main theme of this dissertation. The emphasis is on routing problems in multi-path
MINs, especially those that allow recursive decomposition. It is hoped that our efforts
would help build a unified theory of routi: g in MINs.

Preliminary versions of Chapters 3, 4 and 5 have appeared in conference proceed-

ings.

A cknowledgements

[received two research topics, which correspond to Chapters 3 and -1 of this dis
sertation, from my supervisor Dr. Fhab Elmallah. As members of my supervisory
committee, Dr. Joseph Culberson and Dr. Janelle Harms are my major sources of
consiructive comments at all stages of this rescarch. T amin debt 1o other members
of my examination committee, including Dr. Frank Hwang from ATLT and Prof.
Werner Joerg, for their careful reading of drafts of this dissertation. Dr. Aunp Basn
kindly served on my candidacy examination committee. Dr. Christopher Smyth at
the University of Edinburgh reviewed drafts of Chapters 2.5 and 6 and gave uselul
suggestions (aund 1 should also thank Prof. Nicholas Pippenger at the University of
British Columbia for putting me in contact with Dr. Smyth). Discussions with my
fellow graduate students has always been rewarding,.

This work is partially supported by NSERC Canada under grant number OGP
36399. The Department of Computing Science at the University of Alberta also
linanced the author through graduate assistantships.

My stay in Edmonton would not have been an enjoyable one without the company

of good friends such as Alice Chan, Ben Wong, and Clement hwok.

Contents

1 Introduction 1
[T Wiy Multi-Stage Intercounection Networks? oo oo o000 00 !
1.2 Architectural Models .0 0 0000000 o o 3
1.3 Romting Problems 0 000000000 o oo 1
[.1 Overview of Qur Research o0 0000 0000000 oo oo Bt
E.h o Organization of This Thesis ..o o000 oo oo oo o000 9

2 Preliminaries 10
2.1 Notation and Terminology oo 10
2.2 Switch and Network Models © . o 0000 o0 0o oo oo il
2.3 Classification 0 L L 13

2.3.1 Benes Classification .. . o 00000000 13
232 Feng's Classification o000 15
2.1 Some Existing Networks oo oo oo i
240 Clos Network o 0 00 o000 o o N
2.2 The Shuflle-Exchange Network 13
203 Cube-Type Networks o o 0 o000 oo oo 19
2.0 Benes” Rearrangeable Network . oo oo 000000000 23
2.5 The Data Manipulator Network 24
2.5 PFquivalenceof Networks . o000 o000 25
2.6 Figuresof Merits . . 0 00000 26
2.7 Complexity of Permutation Routingo 27

3 Routing on Extra Stage Networks

3.1
3.2
3.3
3.4

3.5

3.6

4.1
4.2
4.3

4.4

4.5

4.6

Introduction oL L.,
Switch Model and Notation
Properties of the k-GCN
Load Balancingon the -GCN
3.4.1 Basic Concepts and Definitions
3.4.2 Probability Assignment.
Simuiation Study
3.5.1 Experiment and Simulator Design . . .
3.5.2 Results and Interpretations

Concluding Remarks

Permutation Routing on the ADM Network

Introduction

The Network, the Notation, and the Problem

Routingonthe ADM
4.3.1 Routing One Connection Request . . .
4.3.2 Permutation Routing
4.3.3 The Routing Algorithm
Simulation Experiment
4.4.1 Program Verification
4.4.2 Performance Study
Approximate Time Complexity Analysis . . .
4.5.1 Classification of Permutations
4.5.%2 Cardinalityof W2
4.5.3 Number of Nodes Searched
454 AnUpperBound
4.5.5 Worst-Case Performance
Conclusion.

.............

.............

.............

.............

.............

.............

.............

.............

32
32

36
39
40

5 On a Class of k-Nonblocking Networks

51 Introduction« v it e e e e e e e e e
5.2 k-Nonblockingness
52.1 Definition o e
5.2.2 k-Nonblockingness of some Existing Networks
5.3 Constructing a k-Nonblocking Network
5.3.1 Interpretation and Application.
5.3.2 A Special Case: N-Nonblocking
5.4 Routing Algorithmso oo
54.1 MLP . . . e e e
54.2 FirstFit e
5.5 Removing Dummy Switches oo
56 Conclusion v v v vt e e e e e e e e e e e e

6 Width N Wide-Sense Nonblocking Networks
6.1 Introduction o i i i e e e e
6.2 Width of Strictly Nonblocking MINs
6.3 Definitions and Notations
6.4 Basic Properties of the @ Network
6.5 The Q Network is Wide-Sense Nonblocking
6.6 More About Qn . . - - .« - . L e
6.7 Transforming Qn intoa Proper MIN
6.8 Advanced Results oo
6.9 Concluding Remarks 000

7 Conclusion
Bibliography

A Permutation Routing Complexity: 3-stage INs

84
85
86
86
87
89
93
94
95
95
96
98
99

101
101
105
105
107
111
112
114
118
120

122

124

135

B Row Data from the Simulation of the 1-GCN 138

C Maple Source Code for Computing Sn 145

List of Figures

1.1
1.2
1.3
14

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2,16
2.17

A simple classification of INs. oo
Two multiprocessor configurations: a) PE-PE,b) P-M.
Three key elements in the study of INs.

Scopes of the 4 research sub-topics. oo

States of a 2x2 crossbar switch. o000

Graph models for MINs; a) switches as nodes, b) links as nodes. . . .

Two alternative paths in a 3x3 crossbar network.
Topologies of INs under Feng’s classification.
Three-stage Clos network v(m,n,7)..
A shuffle-exchange network of size 8 (a) and its graph model (b). . . .
An Omega networkof size 8.,
The baseline network (b) and its recursive model (a).
A GOCN of size 8 (a) and its corresponding 3-cube (b).
A size 8 GCN serving a request from input 2 tooutput 4.
An ESC network of size 8.o oo
Benes’ rearrangeable network (b) and its recursive model (a).

An 8-node PM2I network (a) and the corresponding DM network (b).
Special 2x2 switch allowing only one connection.
Constructing the MIN for (a) the variables, (b) the clauses.

Anexamplefor ¢; =Z7+ZTa+ Tn. o+« o v o v oo o e

S v W N

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5

1-GCN and 2-GCN of size 8. o e 33

2x2 switch with unlimited buffer queues. 35
Partitioning switches in a 2-GCN of size 16 into 4 classes. RYS
The scenario in which a conflict mayoccur.. 42
Effect of workload (w) on queue lengths for N=8. 47
Queue lengths at various stages (s)for N=8. 18
Effect of workload (w) on queue lengths for N=16.. 49
Queue lengths at various stages (s)for N=16. 51
Screen dump of simulation run that contains a hotspot at output 10. 52

An ADM of size 16 (redundant links in stage 4 removed for simplicity). 57

A size 8 ADM split into even and odd sub-networks. 58
a) A component, b) 2 components, ¢) p_,d) py,e) p,,) pi. 58
Intermediate permutations for a given admissible permutation. 59
a) Case p; in A;. b-e) Various scenariosin A;. 61
Worst case search tree. L. 66

Average (a) and maximum (b) number of nodes searched per perinu-
tation. L. L e e 70

Average time to process each perrnutation; logarithmic and linear scale. 71

A classification of permutationsfor N ==16. 74
A v-case switch instage 0. 75
Bipartite graphs showing stageOandn. 76
Explanation for the termsin 7., 78
SvandlgN versus N.t i 80
Benes’ network. Existing request: (7,7). New request: (¢/,7').. 87
The third request (6,1) i blocked in Bene3 network. 88

Highlighted switches in C(4, 8) are unusable by any path from 7 to j. 91
Constructing an exactly 3-nonblocking network of size N. 94

Three bit enunding of the stateof aswitch. 97

B0 ONe e e e e 106

6.2 The first quarterof a (@s. «o oo 106
6.3 a) Terminal labeling of a Qn, b) Busy path (a,a’) removed from graph. 107
6.4 Network graphs resulting from the 2 ways to realize (a,). 108
6.5 Network graphs resulting from the 2 ways to realize (b,4). 108
6.6 a) BPPs (a,b') and (b,a’). b) N2 (b, ') requests using their LPPs. . 110
6.7 State transition diagramfor Qn. oo 111
6.8 After remeving 1 stage from @Qn. - .o oL 113
6.9 Bene3’ size 4 wide-sense nonblocking network. 113

6.10 Using dummy switches to eliminate links that bypass stages in Q4. .. 115

6.11 The twisi in a) involves 2 switches while b) involves 4. ¢ and j are

integers, where7 > land 0 <j<m. 116
6.12 Elimination of multiple connections using 2 types of switches. 116
6.13 Elimination of multiple connections using 1 type of switches. 117
6.14 Anextended Closnetwork. oo 119

6.15 SE as a building block for width N wide-sense nonblocking MINs. . . 119

A.1 Possible cases for a request (¢,7).o e 136

List of Tables

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4

7.1

B.1

B.2

B.3

B.4
B.5

Number of ADM-admissible permutations: Leland’s versus our results.

Numerical results produced by Maple V.
Comparison of the ADM and Q networks.
N, (N9 and (N1)%S versus N. oL

TN VELSES Kipax: + « « + o o v o v e h e e e e e e e e e e e e e e

Minimum depth necessary to be k-nonblocking.

Minimum depth required for width N MINs of various capabilities.
Some results in the study of iterated MINs..
Priority assignment for the 4 types of requests.

Switch(es) shared by any 2 requests.
An overview of new results (marked by *) in Chapters 5 and 6.

Uniform traffic: average queue length (over 4 runs) at each stage.

Uniform traffic and N = 8: average queue length, variance, and confi-
denceinterval. Lo o oo
Uniform traffic and N = 16: average queue length, variance, and con-
fidenceinterval. L oo
Hotspot traffic: average queue length (over 4 runs) at each stage.

Hotspot traffic and N = 8: average queue length, variance, and confi-

denceinterval. e e e

69
79
82
82

93
100

102
103
109
109

123

139

140

141
142

B.6 Hotspot traffic and N = 16: average queue length, variance, and con-

fidence interval. i e e e e e e e e e e e e e e

Chapter 1

Introduction

This chapter first gives motivations for the study of multi-stage interconnection net-
works (MINs) in § 1.1. The role of a MIN in a multiprocessor system is examined
in § 1.2. In § 1.3, we highlight the significance of a central issue: routing in MINs,
especially multi-path MINs that are recursively decomposable. An overview of our

research is given in § 1.4. The organization of this dissertation is summarized in § 1.5.

1.1 Why Multi-Stage Interconnection Networks?

Efficient transfer of data between communicating parties is a major challenge shared
by telecommunication and multiprocessor systems [46, 48]. The design of effective
interconnection networks (INs) proves to be a critical part of such high performance
systems (e.g., [88]). Although we will concentrate on INs for multiprocessor systems,
note that many INs serve telecommunication and multiprocessor systems equally well.
For instance, the shared-bus has been widely used on local area networks as well as
multiprocessor systems. The star topology is another example. With the advent
of distributed computing, the border between communication and computation has
become blurred. In fact, the study of INs is rooted in research in telephony [10, 24].

We now examine the role of multi-stage INs (MINs) using the simple classification

tree in Figure 1.1. In direct networks (a.k.a. static [41] or point-to-point networks),

1

CHAPTER 1. INTRODUCTION 2

communicating parties are directly connected by links. Examples include the star
and the hypercube network [26, 41, 51] (comparative simulation studies can be found
in [104, 105]). Special graphs [47] and groups [35) have been proposed as directed
networks. In indirect networks (a.k.a. dynamic networks [41]), switches are employed

such that paths between communicating parties involve alternating links and switches.

INs
/ ™~ e
Direct _~ DN
MINs non-MINs

Figure 1.1: A simple classification of INs.

If the switches in an indirect network can be arranged into stages such that
switches in one stage are only connected to switches in subsequent stages, then it
is a MIN. Examples are given in Chapter 2. Switches in indirect networks that are
not MINs (denoted non-MINs) cannot be arranged into stages. Existerce of feedback
loops (e.g., [74]) and mixing of traffic directions (e.g., [49]) are typical features in
non-MINs. Simplicity, or ease of analysis, makes MINs more popular than non-MINs

in the literature. Other attractive virtues of MINs include:

Scalability: It is relatively easy to expand an existing MIN to accommodate a heav-
ier workload (e.g., a larger number of terminals). In the worst case, the expan-
sion process requires redesigning the entire backbone network or its supporting
software component. In this regard, MINs usually exhibit enough structural

symmetry to make the expansion task relatively simple.

Modularity/reqularity: MINs can be implemented as separate modules in the system.

They can be upgraded/replaced/repaired independently of other components.

Cost/performance ratio: The cost of the switches in MINs is justified by the large

increase in power (measured by, say, connection power! or bandwidth).

1The term connection power generally means the capability of satisfying arbitrary 1-to-1 requests.

CHAPTER 1. INTRODUCTION 3

MINs have been used in a number of multiprocessor systems. For instance, the
butterfly network is used in the BBN system [107]. A number of multi-stage cube net-
works have been used in or proposed for real systems [114]. It is expected that MINs
will remain a critical component of high performance multiprocessor systems, espe-
cially those that operating in SIMD {single-instruction-stream-multiple-data-stream)
mode. MINs have been proposed tor high speed telecommunication systems, such as
integrated services digital networks (ISDNs). See [4, 121] for good surveys. MINs are
also suitable for ATM (Asynchronous Transfer Mode) switching [91].

Some MINs have corresponding direct networks. For instance, the generalized
cube network (GCN) [112, Ch. 5] and the data manipulator network [40] are multi-
stage versions of the direct networks hypercube and plus-minus-2-2 (PM21) [41], re-

spectively. For a brief introduction to the study of MINs see [6, 113].

1.2 Architectural Models

This section examines the role of an IN as the primary commmunication infrastructure

in multiprocessor systems. Two typical configurations are considered [18, 56, 112]:

Processor-to-memory (P-M): A number of processors are connected to a number
of memory units via the IN (Figure 1.2b). Since a party on either side of the
IN never communicates with other parties on the same side, these INs are also
called 2-sided networks [20]. If a uni-directional IN (e.g., an IN operating in
packet-switching mode) is used, then typically 2 identical INs are employed to

facilitate duplex communication.

Processing-element-to-processing-element (PE-PE): A number of processing elements
(PEs) are connected by an IN (Figure 1.2a). Each PE consists of a processor
and local memory. Since every party can communicate with any other party,
these INs are also called I-sided networks [20, 89] and they are understood to
be bi-directional. However, a uni-directional 2-sided IN can serve as a 1-sided

network if the ¢th input and the ith output are both connected to the ith PE.

CHAPTER 1. INTRODUCTION 4

PE | E;zj-.. PE,| P, |P,|P; |==*Pn
l { I T
Interconnection Imer?:tnwe:rtll:on

Network
1 ﬁ_; ﬁ; lllﬁn'
® ®)

Figure 1.2: Two multiprocessor configurations: a) PE-PE, b) P-M.

See [112, Ch. 2] for more details and examples. Hybrid configurations (e.g., the
partitionable SIMD/MIMD? system called PASM in [114]) evolved from the 2 basic
configurations exist but they will not be covered. Some multiprocessor systems have

a dedicated IN for cache coherency [83].

1.3 Routing Problems

In this section, motivations for the study of routing problems in MINs are presented.
We believe that in the study of MINs, a long term goal shared by both computer
scientists and engineers is the complete resclution of the relationship between 3 key
elements: network, routing, and traffic. By traffic we broadly mean a permutation to
be satisfied, or a set of 1-to-1 connections to be made (includes broadcasting), or a
group of packets to be transmitted that satisfy some distribution. Loosely speaking,
a routing algorithm controls the underlying hardware, using full knowledge of the
network topology and current state, so that either the given traffic requirement is
satisfied, or the traffic requirement is rejected as not satisfiable. Figure 1.3 depicts
the central position of routing. A unified theory of the 3 key elements should be able

to solve typical research problems such as:
o Given network A, what routing algorithm can satisfy traffic requirement C?

¢ Given network A and routing algorithm B, what kind of traffic can be handled?

3MIMD means Multiple-Instruction-stream-Multiple-Data-stream.

CHAPTER 1. INTRODUCTION 5

Network Routing

........................

Figure 1.3: Three key elements in the study of INs.
e Given traffic requirement C, what network and routing algorithms are needed?

e Given a new network A, what kind of traffic can be handled and what routing

algorithms are applicable?

Now, the central rcle of routing in the unified theory becomes clear. Note that
some routing problems are intractable (e.g., permutation routing on arbitrary MINs
is an NP-complete problem as shown in § 2.7). We should identify such cases, and
accordingly focus more on tractable routing problems that arise in practice. 'lo
constru~t such a unified theory, we not only need to study the routing algorithms
for individual networks and the kind of traffic they can handle, we also need to
generalize existing network models and routing algorithms to cover a larger class of
networks. These 2 directions can be pursued simultaneously. Chapter 3 and 4 of
this dissertation study routing problems in individual networks while Chapter 5 and
6 attempt to generalize network models and routing algorithms. Unique-path MINs
kav: beenn studied extensively in the literature; so this dissertation focuses on mulli-
watic MINs, especially those that allow recursive decomposition. Therefore, although
our 4 sub-topics seem to be loosely-coupled and have different depths, routing on
recursively decomposable multi-path MINs forms the backbone of this dissertation.
The importance of routing has been recognized in the literature. {75} contains a

comprehensive survey of the subject and a substantial bibliography.

1.4 Overview of Our Research

Based on the above discussions, our research goal is to design, study, and generalize

routing algorithms such that eventually a unified theory of routing can be derived.

CHAPTER 1. INTRODUCTION 6

This thesis emphasizes multi-path MINs that are recursively decomposable.
Although Benes’ classification {13] will not be discussed in detail until Chapter
o it is convenient to illustrate the broad coverage of our work using his scheme. In

order of increasing connection power, INs (of N inputs/outputs) are clas:ified into:

Blocking (B) networks: unable to realize all N! permutations,
Rearrangeable (R) networks: able to realize all N! permutations,

Wide-sense nonblocking (W) networks: can realize any request/release sequence if

path-selection is guided by a rule, and

Strict-sense nonblocking (S) networks: can realize any request /release sequence even

when paths are randomly selected.

Figure 1.4 depicts the . '!...ionship between them. The coverage of the 4 sub-topics

are labeled by its corresponding chapter numbers in the figure.

A

)®

Power

@

Figure 1.4: Scopes of the 4 research sub-topics.

Now, we briefly review each of the sub-topics:

PRouting on Ezxtra-Stage Networks (Chapter 3): This work deals with MINs with
capabilities ranging from blocking to rearrangeable. Our study is motivated by
a more general pi:;blem: given a MIN that provides multiple paths between its
input and output termixsals, and a certain traffic distribution, what packet rout-

ing strategy minimizes the average delay of the network? We focus on traffic

CHAPTER 1. INTRODUCTION 7

patterus that can be described by a matrix L, in which element ;; represents
the probability of generating a packet from input ¢ to output j in a time unit.
A specific network, the 1-GCN, formed by adding an extra stage to the input
side of a Generalized Cube Network (GCN) [112], is considered. Tlie 1-GCN
provides 2 alternative paths between every input/output pair. By identifying
some symmetry properties of the 1-GCN, we show that the average network
delay is minimized when the 2 alternative paths are used with equal probabil-
ities, regardless of the traffic patterns, under some restrictions. This argument
is verified by simulation. The symmetry properties we identified generalize to

k-GCNs, in which k extra stages are added to the input side of a GCN.

Permutation Routing on the ADM Netwerk (Chapter 4): This work concentrates
on a blocking .IN called the Augmented Data Manipulator (ADM) Network
[112, Ch. 6]. T Tnown algorithm can efficiently route permutations through
the ADM [76]. The set of permutations admissible by the ADM have not been
characterized. We devise a deterministic, backtracking algorithm for routing
admissible permutations and rejecting inadmissible permutations. Although in
the worst case, the algorithm takes O(N3), in most cases it apparently takes
linear time. Simulation is used to demonstrate its good performance. An upper
bound on its average time complexity is also derived. The algorithm is suitable

for compile-time routing on SIMD machines.

On a Class of k-nonblocking Networks (Chapter 5): This work basically involves
MINs with capabilities ranging from blocking, rearrangeable, to strici-sense
nonblocking. Although nonblocking networks can satisfy the communication
demand in high performance systems, their high complexity typically forces the
architect to adhere to rearrangeable or even blocking networks. We introduce
the notion of k-nonblocking networks as one that never blocks an incoming re-
quest whenever there are < k existing connections in an N input network, where

1 < k < N. On the theoretical side, the general concept of k-nonblockingness

CHAPTER | INTRODUCTION 3

bridges the complexity gap between blocking and nonblocking networks by a

spectrum of new neoworks, Tt also provides a convenient way to quantify the

connection power of a network under unspecified traffic. On the practical side.

we present a systematic scheme for constructing k-nonblocking networks in the

strict sense. Efficient parallel and sequential algorithms for the proposed net-

works are given. For the case k = N. the coustructed network is cheaper

than an existing nonblocking network [79] that is. like ours. based on Bened

rearrangeable network [12.11].

Wide-Sense Nonblocking Nelworks Made of Square Switehes (Chapter 6): This work

focuses on the class of wide-sense nonblocking networks. The following 2 related

open problems have motivated this rescarch:

The width of a MIN is the maximum number of links running between any
2 adjacent stages. [t can be derived from [14] that the width of any strict-
sense nonblocking MIN of N inputs/outputs must be > V.o In contrast.
the width of any rearrangeable MIN (c.g.. Bened” rearrangeable network
(12, 11]) must be > ¥, Although Benes has given a dxl wide-sense non-
blocking MIN of width 4 in [I4]. it is not known whether wide-seuse non-
blocking MINs can generally have width .\ because Bened network does
not generalize to N > L

Fanpirically, increasing the number of stages in a MIN increases its con-
nectio. power (mentioned briefly in [61]). For instance. a single stage
shii. oxchange (SE) network [117] is very limited in connection power.
But when there are log, N SE stages. the resulting Omega () network
(73] supports many useful permutations although it is still a blocking net-
work. As the number of SE stages reaches 3log, NV —4. the network he-
comes rearrangeable [80]. 1t is natural to ask what is the most powerful
network obtainable by merely adding more stages to a MIN. The previous

paragraph eliminates the possibility of obtaining a strict-sense nonblocking,

CHAPTER 1. INTRODUCTION 9

MIN. The case {or wide-sense nonblocking MINs is still open.

To declare a network as wide-sense nonblocking one must give, or at least prove
the existence of, a routing algorithm that satisties any request/release sequence.
This is in general very difficult. We first propose a width V. recursive network
called the Quadruple (). Then we prove that it is wide-sense noublocking by
giving a routing algorithim. Afterwards, we transform the Q network, which is
not a proper MIN. into a proper one. The open problems are thus solved. A
fundamental difference between wide- and strict-sense nonblocking NENs that s
not obvious from their definitions is identified: the former can have width .V
while the latter must have width > V. We also show that by cascading a hinite
number of any rearrangeable MINs of width Noa wide-sense nonblocking MIN
can be obtained. An itcrafed [13]) MIN uses a single permutation repeatedly to
connect all adjacent stages. We prove that the set of perimutations out of which
rearrangcable iterated MINs can be built is identical to the set of permntations

out of which wide-sense nonblocking iterated MINs can be built,

1.5 Organization of This Thesis

Chapter | of this dissertation introduces the veader to the general avea of MINs and
routing problems. The emphasis is on multi-path MINs that are recursively deconipos
able. Chapter 2 provides some background information on MINs. We cover notations.
terminologies, models. classification schemes, outstanding results. and complexity of
permutation routing on arbitrary MINs. Material specific to cach sub-topic is delayed
to their respective chapters. Fach of Chapter 3 1o 6 discusses a particalar sub-topie
as mentioned before. Although they are roughly sorted by increasing depth, and
Chapter 6 uses the k-nonblocking concept introduced in Chapter 5. these 4 chapters
can be read in any order. Each chapter includes its own concluding remarks. Chapter

7 summarizes this dissertation and discusses some future directions.

Chapter 2

Preliminaries

‘This chapter presents some background information required throughout the thesis.
Some notation and terminology are introduced in § 2.1, foll. - by a description of
common switch and network models in § 2.2. Two well known network classification
schemes are reviewed in § 2.3. Important results on five representative networks in
the literature are highlighted in § 2.1, In § 2.5, we examine the problem of equivalence
of networks. § 2.6 reviews the major factors to be considered in the design of MINs.
In § 2.7, we show that the general problem of permutation routing on an arbitrary

MIN is NP-complete.

2.1 Notation and Terminology

MINs are generally modeled by graphs or digraphs (directed graphs) so we will use
standard graph and network terminology (see for example [21]). An Ni-by- N, (denote
N;xN,) MIN has N; inputs and N, outputs. When N;=N,=N, we say the network has
size N. A MIN is made of switches and links arranged into stages, as in Figure 2.8. All
MINs can be modeled by directed acyclic graphs (DAGs). For ease of analysis, most
MINs proposed are layered. in which switches in one stage are only connected to those
in the next stage [67). All MINs considered in this thesis are layered. Furthermore,

most MINs have at most 1 link between any 2 switches in 2 adjacent stages. If there

10

CHAPTER 2. PRELIMINARIES bl
are multiple physical links between some pairs of switches, it is called a multi-netwark
[7). A dilated netwosk provides multiple links cither logically or physically [I18].

A path is an alternating sequence of links and switches that connect an input and
an output. An input (output) is «dle if it is not used in any existing connections, A
path is idle if it can be allocated to an incoming request without disturbing existing
connections, otherwise, it 1s busy. A MIN is idle if all the paths are idle.

The depth [39] is the maximum number of switches in any path ina non-layered
MIN, or simply the number of stages in a layered MIN. The eross-section width, or
width [8] for short, between 2 stages is the number of links rnnning between then.
The width of a MIN is the maximum width between any 2 stages. The hardware cosl.
or just cost, of a MIN is usually measured by the total number of switches, or more
broadly, the total number of cross-points [10] if the switches are not uniform. By
definition, an axb crossbar switch has ab cross-points.

We denote log, N by lg N n = lg N is the depth of size N cube-type networks
(§ 2.4.3). The binary representation of an r-bit number bis (b, ... byby). Concerning,
traffic patterns, this thesis deals with 1-to-1 requests only and ighores hroadeasting,
and multicasiing. Moreover, all incoming requests are assumed to he valid; that s,
both the input and output in a request are currently idle.

Many applications on SIMD machines involve alignment of data and processors. A
set of simultancous connections between memories and processors, corresponding to
a 1-to-1 mapping of inputs to outputs, is called a permutation. Permutation nelworks

are specifically designed to handle this kind of traffic [57, 60, 78].

2.2 Switch and Network Models

MINs are somectimes designed with 2x2 crossbar switches as basic building blocks.
Each switch provides 2 states for 1-to-1 connections (Figure 2.1a) and 2 states for
1-to-2 connectioms (Figure 2.1b). The straight (a.k.a. non-crossing) state is usually

the initial, or the “inactive,” state of a switch in permutation networks. The swap

CHAPTER 2. PRELIMINARIES 12
(a.k.a. crossing or czchange) state is typically the “active” state. The upper- and
lower-broadeast states are used in broadcast operations. (One variant of this model

provides an additional state for 1-to-1 connections [128].)

T straight/ | upper
non-crossing \ L broadcast

— lower

— swap/
broadcast

- Crossing

(a) (b)

Figure 2.1: States of a 2x2 crosshar switch.

The above switch model is suitable for MINs operating in circuit-switching mode.
In packet-switching mode, the model should be augmented to account for delays due
to buffering and quening. A number of models have been proposed for this purpose
[81]. A typical one is used in Chapter 3. Basic tools for analyzing systems constructed
from these models, under a given traffic distribution, include queuing theory [19, 29],
petri net, mean value analysis (MVA) and approximate MVA (59, 126].

Two graph-theoretic models are freq iently used for studying the topology of MINs.
In the first model, nodes correspond to switches while edges correspond to links. Input
and output terminals become nodes if they need to be modeled. Figure 2.2a shows

the graph-theoretic model of a typical MIN under this scheme. In the second model,

(a)

Figure 2.2: Graph models for MINs; a) switches as nodes, b) links as nodes.

a link becomes a node in the graph. Each crossbar switch is modeled by a group

CHAPTER 2. PRELIMINARIES 13
of edges that fully interconnect the nodes, cach of which correspouds to a link that
is connected to the switch. Figure 2.2b exemplifies this second model. A typical
application of these graph-theoretical models is for solving How problems [31, 36].
Recently, group-theoretic models have been proposed for exploring the symmetry in

the topologies of MINs [5].

2.3 Classification

Two IN classification schemes are reviewed belav. (Other good classification schemes
exist, such as that in [86].) Bened classification is suitable for theoretical studies

while Feng’s classification allows practical issues to be considered.

2.3.1 Benes’ Classification

Benes’ classification scheme [13] is concerned with the permutation power of INs.
Although this scheme is extensible to broadcast traffic, this dissertation focuses on -
to-1 requests. If we denote the munber of permutations realizable by a size N network
by Sw, then the combinatorial power (a.k.a. permutation power) of the network is
= %,A!L, where 0 < r < 1. In the order of increasing connection power, Benes elassifies

INs into 3 categories:

Blocking networks have r < 1. Thus, some of the N! permutations cannot be
realized even when routing is done off-line (i.e., all N 1-to-1 connection reguests
are knrown at the time routing decisions are made). For on-line routing (i.c.,
a connection request is served immediately upon arrival, putting the network
into a new state), some incoming requests cannot be accommodated hecause
of conflicts with existing connections. In this case, the system is in a blocking
state and the incoming request must wait until some existing connections are

released. The Omega network [73] is an example.

CHAPTER 2. PRELIMINARIES 14

Rearrangeable networks have r = 1, but the permutation must be known in advance
(i.c., off-line routing). For on-line routing, any incoming request can be accom-
modated if the routing algorithm is allowed to rearrange existing connections
when necessary. The system may reach a blocking state, but by rearranging
existing connections it jumps to a safe state that can accommodate the request.

Bened' rearrangeable network [11, 12) is a classical example (Figure 2.12).

Nonblocking networks' have r = 1. Routing can be done either off-line or on-line.
‘The system never enters a blocking state and rearrangement is not needed. Two

sub-classes are identified:

Nonblocking networks in the wide sense: When multiple paths are available to
an incoming request, a path-selection algorithm chooses one such that no
blocking states can be reached. More details can be found in [14]. A 4x4
example network is in Figure 6.9. Interestingly, routing on this class of

networks can be conceptualized as a 2-player (router/blocker) game [39].

Nonblocking networks in the strict sense: When multiple paths are available to
an incoming request, any one can be chosen randomly. That is, there is

no blocking state. Examples can be found in [79, 109] and Chapter 5.

Figure 2.3 illustrates Bened’ classification. It is worthwhile to mention the notion
of self-routing networks, which is not in Beneds classification. In a self-routing net-
work, a message can be routed to its target once the destination address is given. For
instance, the Omega network [73] is self-routing (Figure 2.8). If the network 1s not
self-routing, the routing algorithm needs to know the state of the network to decide
the path. Bened rearrangeable network is an example (Figure 2.12) [102].

Furthermore, a standard-path network (SPN) [49] is a self-routing network in which
the standard path (determined by source and target addresses) is always idle, provided

that all existing connections are using their standard paths. A crossbar [134] is a

'Note that some authors, e.g. [20], use the term “nonblocking networks” to refer to all permuta-
tion networks that have r = 1. Such networks may only be rearrangeable under Benes’ classification.

CHAPTER 2. PRELIMINARIES)

Networks
. \ .
Blocking Rearrangeable Nonblocking
widc-scnse strict-scnsc

Figure 2.3: Benes® classification scheme.

wide-sense nonblocking SPN. Figure 2.4 exemplifies the reason. Two of the many
alternative paths between input 2 and output 3 in an idle 3x3 crosshar are shown. If
path B is randomly chosen, then clearly some subsequent requests witl be blocked.
So the crossbar is not strictly nonblocking. By using path A, no subsequent requests
will be blocked. In general, a request to connect input i and output j can be satistied
by a: tivating cross-point (z, 7), so the path can be computed without considering the

current state of the network.

Figure 2.4: Two alternative paths in a 3x3 crossbar network.

2.3.2 Feng’s Classification

While Bened’s classification concentrates on permutation power, Feng takes desipn
issues into account [41]. In his classification, the cross-product of 4 key design deci-
sions, namely operation mode, control strategy, switching methodology, and network

topology, form a space of INs, Now we discuss the 4 decisions:

Operation mode: Synchronous communication is suitable for SIMD) machines while
asynchronous communication is suitable for MIMD (inultiple-instruction-stream-
multiple-data-stream) machines and ISDN systems. A combination of these 2

modes is also a viable alternative.

CHAPTER 2. PRELIMINARIES 16
Conlrol strateqy: in centralized control, switch states can be set either by signals from
a ceniral controller or by retrieving bits from the globally computed routing

tag that guides a packet throngh the network. In distributed control. each
switeh determines its action based solely on the source/destination addresses in

incoming packets, without consulting other switches or packets.

Switching methodology: Circuit-switching [61, 84] is suitable for bulk data transmis-
sion while packet-switching {100, 121] is efficient for short messages. Integraled-
swilching combines these 2 technigues. Also, circuit-switching and packet-
switching can simulate each other. Recently, wormhole routing, which attempts
to incorporate the advantages of circuit- and packet-switching, has gained pop-
ularity (e.g., [33]). Circuit-switched fized routing [135], which means using a

simple heuristic rule to select paths, is another new alternative.

Network topology: This is a key factor in determining a suitable architectural struc-
ture. The numerous topologies proposed can be categorized into the tree struc-
ture shown in Figure 2.5. Irregular topologies (e.g., [9]) are common for telecom-
munication systems while regular topologies are popular with multiprocessor
systems. Examples of 1-dimensional, 2-dimensional, and 3-dimensional static
networks are the ring, the mesh, and the binary 3-cube network (Figure 2.10b),
respectively. A single stage dynamic network is #lso called a recirculating net-
work because several passes through the network may be necessary before a data

item reaches its target. The shuffle-exchange network (§ 2.4.2) is an example.

2.4 Some Existing Networks

This section reviews some MINs that have been studied extensively in the literature.

(lood surveys of more INs can be found in [4, 20, 41, 86, 121].

(CHAPTER 2. PRELIMINARIES 7

Topology
Regular Irregular
Static dynamic
~ / ~—
one two three hypercube © ® single. multi- och e e
dimension dimension dimension stage stage

l-sided 2-sided

Figure 2.5: Topologies of INs under Feng’s classification.
2.4.1 Clos Network

Clos introduced a 3-stage MIN in [24]. It is the basis of many other well known
networks such as Cantor’s network [23] and Benes’ rearrangeable network {11, 12]. A
size \" = nr Clos network is denoted by v(m, n,r), where mnis a parameter indicating

the number of rx» switches used in the middle stage (Figure 2.6).

nxm rxr mxn
11 1 1 Fla
. |
° . °
® ° °
° ° °
N=
" e o °
° ° °
° ° °
f
1 r m r _]n

Figure 2.6: Three-stage Clos network o(m, n,r).

Every switch in the input stage is connected to every switch in the middle stage
by a link. This gives a full-access pattern. The interconnection between the middle
and output stages mirrors that between the inuput and middle stages. here are
alternative paths, each corresponding to a distinct switch in the middlestap, netween

every input/output pair. Theorem 2.1 relates 1 to the power of the network:

CHAPTER 2. PRELIMINARILES 18
Theorem 2.1 [24]: The 3-stage Clos network v(m,n,r) is rearrangeable for i > n,

and is strictly nonblocking for m > 2n — 1.

The permutation routing problem on a rearrangeable Clos network is equivalent
{0 an m coloring problem on a bipartite multigraph. Given a permutation m to be
routed on a v(m,n,) network, construct a bipartite multigraph G = (V, E) where
V = {uy,uy,...,u-}U{vy,v2,..., 0. }. For each request (¢, j) in the permutation, add
an edge (wpimy, v[jm)) to E. Then, an m-coloring of (i corresponds to a feasible switch
setting for realizing . This equivalence to coloring problems extends to a larger class
of networks that contains the Clos [64, 78]

A variants of Clos’s network can be found in [32].

2.4.2 The Shuffle-Exchange Network

This important network has received much attention since its introduction by Stone
[117]. It is the basic building block for many MINs such as the Omega network [73].

Define the perfect shuffle and exchange functions of an n-bit number (b, . bo) as:

il

shuffle(b,—y ... bp)

exchange(by-1...bo) = (bp-1.. .bo).

(bp—z...boby-1) and

A size N = 2" shuffle-cxchange (SE) network (Figure 2.7a) is formed by cascading a
stage of links implementing the shuffle function (on the terminal labels) with a stage
of ’—:’— 2x2 switches for implementing the exchange function. Each switch performs an
identity function if it is set to the straight state and performs an exchange function
when it is in ¢ swap state. Every switch is controlled independently. Figure 2.7b
shows a graph-theoretic model for the SE network.

The permuiation power of the SE network is very limited, but as shown in [117]
it can perform many useful permutations when used repeatelly. The SE topology
can easily be generalized to all even N (# 2"). Several other generalizations of the

original SE network can be found in: the literature (e.g., [68]).

CHAPTER 2. PRELIMINARIES 19

shuffle exchange

<% exchange
< shuffle

-~

Figure 2.7: A shuffle-exchange network of size 8 (a) aund its graph model (I).

2.4.3 Cube-Type Networks

The Generalized Cube Network (GCN) proposed by Siegel [112, Ch. 5] represents a
class of topologically equivalent (§ 2.5) ne works including the GCN, the Omega, the
flip, the indirect binary n-cube, the baseline, the regular SW-banyan (S=:/'=2), aud
their inverse networks. These networks are now collectively known as cube-type or
hypercubic networks. They have been used in several production systems [H].

Each of the cube-type networks has n = Ig N stages. There are —’:’— 2x2 crosshar
switches in each stage. From any given input, there is exactly one path to any given
output. This is called the banyan property [67]. Since each network can realize only
2% 18N distinct permutations, which is less than N! for all N > 4, cube-type networks
are self-routing, blocking networks.

Networks in this class share many properties. However, it is still instructive to
examine individual networks because they are derived in quite different ways and
they accept different sets of permutations (although the total number of acceptable
permutations are the same). Below we review the Omega network, the baseline

network, and the GCN.

The Omega Network

The Omega (2) network is proposed by Lawrie [73] as an alternative to using the
single stage SE network iteratively [117]. Having Ig N SE stages (Figure 2.8), the

provides full-access capability (any output can be reached from any input in 1 pass)

(‘HAPTER 2. PRELIMINARIES 20
at optimal cost. It is an iterated network [43] because one single permutation is used

between all stages. The modularized structure of the Q simplifies its fabrication.

NN s W =O
IO\ s I =D

Figure 2.8: An Omega network of size 8.

The Q) network can realize many useful? permutations. A hierarchical classification
of the permutations admissible by Q-type networks is presented in [27]. Routing
scheies and other properties can be found in [73]. A formal description of the

topology follows:

I. the inputs to each stage are labeled 0 to N — 1 from top to bottom. Thus, each

switch has a pair o1 iuputs of the form (z,ezchange(z)) for z € {0,...,N — 1},

2. the label of the upper (lower) output of each switch is identical to the label of

its upper (lower) input, and

3. stages are numbered from left to right starting frem 0. Output y of stage &, is

connected to input shuffle(y) of stage k + 1, wherc 0 < k < Ig N.

The Baseline Network

While the © is an iterated network, the baseline proposed by Wu and Feng [128] is a
recursive network. It is constructed by interconnecting a stage of %’- 2x2 switches and
2 Bx& sub-networks by an inverse perfect shuffle (Figure 2.9a). The fully expanded

network is shown in Figure 2.9b. An efficient routing algorithm can be found in [128].

2E.g., useful for the manipulation of matrices and computing fast Fourier transforms [73].

CHAPTER 2. PRELIMINARIES 21

1L N/2XN2

1
o —

- NA2-|
| N2
NN | N2+

" N-1

(a)

Figure 2.9: The baseline network (b) and its recursive model (a).
The GCN

The GCN is proposed by Siegel [112, Ch. 5] as a multi-stage version of the well
known hypercube network. Let the ith binary cube function be cubei(by,_y ... by) ==

(bu=1...b;i...by). The GCN topology can then be described as follows:

1. the label of the upper (lower) output of cach switch is identical to the Tabel of

its upper (lower) input,

2. the two inputs of a typical switch at the 2th stage, where 0 <7 < n — 1, has the

form (z, cube;(x)) for x € {0,...,N ~ 1}.

Note that a perfect shuffle pattern arises on the input side of the network from
the above 2 rules. The ith stage simulates data transfers along the 2th dimension
of a hypercube (Figure 2.10). The inverse GCN (IGCN), which is a GCN traversed
in reverse, is equivalent to the indirect binary n-cube netwock introduced by Pease
I11 [97]. He also gives a remarkable characterization of the permmtations admissible
(realizable in 1 pass) by this network: Let P be a permutation on theset {0,1,... N~
1} of labels that maps an input address X = (iy...x,), where n = g N, to ontput
address Y = (y1...y,). Now P can be described by n functions fy, fo,.. ., [, such

that y; = fi(z1,...,z,) forz = 1,2,... n.

Theorem 2.2 [97]: A permutation P that maps X to Y is admissible by the indireel
binary n-cube network if and only tf y; = ;. + fi(y1y- - Yic1, Tig1y. .5 8) for 1 <1 <

n. Modulo 2 arithmetic is used. (i.e., + = ¢b)

8%
8%

CHAPTER 2. PRELIMINARIES

i I8 .
: Y
2. ‘§ 0 2,
? 9 1 3
() (b)

Figure 2.10: A GON of size 8 (a) and its corresponding 3-cube (b).

Composition of networks is defined before we present the next theorem.

Definition 2.1 Lect (¢ and H be networks of size N. A new network denoted (- H

is obtained by connceting output @ of (i to input i of H fori =0.1...... V-1

Theorem 2.3 [97]: The composite network GON - GCN™' is rearrangeable, where
GONTY is the inverse of GUN.

Theorem 2.3 has bern used to prove the following important result:

Theorem 2.4 [97]: The composite network GCN - GUN - GON s rearrangeable for
zeN >3,

A generalization of Pease 111's work is in [106]. At least 2 well known routing tag

schemes? for the GCN exist [112, Ch. 5]:

I. Erclusive-Or Tags: To go from a source S = (Sn_1...80) to a destination
D = (d,_i...do) of asize N =2" GCN, the switch in stage 7 in the path from
S to I) must be set to swap if s; # d;, and to straight if s; = d;. For instance,
if sp8180 = 010 and dydydy = 100, then S @& D = 110. The switches should be

set to swap, swap, and straight (Figure 2.11).

o

Destination Tags: Regardless of the source, a packet can reach its destination
D = (d,_y ... do) if the packet leaves a switch in stage i using the upper (lower)

output when d; = 0 (d; = 1).

3A routing tag scheme computes routing tags, which guide the packets through the network.

CHAPTER 2. PRELIMINARIES 23

Figure 2.11: A size 8 GCN serving a request from input 2 to outpnt 1.

More properties of the GUN can be found in [112, Ch. 5]. Note that if the switches
labeled (1,3) and (4.6) in stage 1 are swapped without disconnecting any links, the §)
network is obtained (Figure 2.8 and 2.10). This immediately proves that for ¥V =X,
the GCN and the Q network are functionally equivalent (§ 2.5). Interestingly, they
are derived in quite different ways. Siegel introduced fault tolerance to the GCN by
adding an extra stage to the input side [112, Ch. 5]. The Extra Stage Cube (ESC)
network in Figure 2.12 is obtained. Additional hardware is needed in order to seleet,
one of the 2 alternative paths between any input/output pair. Although the ESC s

still blocking, most single faults can be tolerated.

Figure 2.12: An ESC network of size ¥.

CHAPTER 2. PRELIMINARIES 24

2.4.4 Benes’ Rearrangeable Network

Benes derives this important rearrangeable network from a rearrangeable v(n,m,r)
Clos network {11, 12]. He shows that the use of small switches, such as the 2x2
crosshar, can reduce the cost. Large crossbar switches in a size N = nr = 2% (for some
integer k) rearrangeable-Cllos network shouid be recursively replaced by rearrangeable
Clos networks of smaller sizes (Figure 2.13a). The resulting network has 2lg N—1
stages and Nlg N — % switches (Figure 2.13b). Note that its left-most (right-most)

lg N stages form a baseline (inverse baseline) network.

0 o 0

N/2xNP2 ; ! 1

2 2

Clos g % 2

4 4

N/2XN2 2 5 3

2 6 6

Clos N1 9 7
@

[Figure 2.13: Bened’ rearrangeable network (b) and its recursive model (a).

There are ’—;’— alternative paths from any input to any output. The optimal sequen-
tial routing algorithm, the looping algorithm [41], takes O(N log N) time. Permuta-
tion routing on Bened' network is closely related to 2-coloring problems on bipartite
multi-graphs (§ 2.4.1). There are several generalizations of Bene3’ rearrangeable net-

work in the literature (e.g., [87, 132]).

2.4.5 The Data Manipulator Network

The Data Manipulator (DM) network is proposed by Feng [40] as a multi-stage version
of the static network plus-minus-2-i (PM2I). A PM2I network is a chordal ring of N
nodes {0,1,..., N — 1}, in which chords connect each node j to nodes (j + 2Y) mod
N, for 0 < 7 < lgN (Figure 2.14a). All networks in the class of DM networks,
including the Augmented Data Manipulator (ADM), the inverse ADM (IADM), and

the Gamma network, are topologically equivalent (§ 2.5).

CHAPTER 2. PRELIMINARIES 2

-

ive k1 n}\(n
T Sw
1] L
2 2}
) i i—
HE==H
16 | =0
Sy
< in~ “m
|]
(b)

Figure 2.14: An 8-node PM2I network (a) and the corresponding DM network (b).

There are lg N stages of links and 1g N+1 stages of switches in the DM network
(Figure 2.14b). Stages of links/switches are numbered from right to left starting from
0. Switches in each stage are numbered from 0 dowawards. Switch ¢ in stage s+1 is
only connected to switches numbered (i —2°) mod N, ¢, and (242*) mod N in stage s,
where 0 < 7z < N. Every switch in the network, including 1x3, 3x3, and 3x1 switches,
allows at most 1 connection at any time. Furthermore, several switches share one
common control line. The DM can perform many “data manipulation™ functions,
including all GCN-admissible permutations {40].

The ADM network proposed by Siegel [112, Ch. 5] allows every switch to he con-
trolled independently. Efficient algorithms for routing I-to-1 and broadcast requests
can be found in [112, Ch. 5]. Although the number of Jistinct ADM-admissibic
permutations is known [76, 77|, the set of admissible permutations has not Leen
characterized and no polynomial-time routing algorithm was available.

The IADM network studied by McMillen and Siegel [85] is an ADM network
traversed in reverse. The Gamma network presented by Parker and Raghavendra [94]
is an IADM in which every 3x3 switch allows 3 connections to coexist. Regarding
combinatorial power, we have: Gamma > ADM = [ADM > DM. The performance

of DM type networks operating in packet-switching mode is studied in [133].

CHAPTER 2. PRELIMINARIES 26

2.5 Equivalence of Networks
There are two kinds of equivalence relations we want to distinguish [124, Ch. 4]:

Topological equivalence: The corresponding graphs (i.c., switches modeled as nodes

and links modeled as edges) of two networks are isomorphic.

Funetional equivalence: Two networks are able to perform exactly the same set of

permutations, after relabeling the inputs and outputs of a network if necessary.

More formal treatments of equivalence problems of networks appear in [16, 17, 67,
136]. Most studies of equivalence relations among networks concentrate on the class
of log N-stage banyen networks. Using the GCN as the benchmark, Siegel and Smith
[115] show that the Flip, Omega, GCN, and Indirect Binary n-cube networks are
topologically equivalent. Wu and Feng [127] introduce the baseline and prove that
the Flip, Omega, Indirect Binary n-cube, SW-banyan (S= F=2), and inverse baseline
are all topologically equivalent. Pradhan and Kodandapani [101] define an equivalence
relation and show that the Flip, Omega, Indirect Binary n-cube, SW-banyan, and
all of their inverses are equivalent under the defined relationship. Thus, most of the
proposed log N-stage banyan networks are topologically equivalent. However, they
are in general functionally non-equivalent because of the differences in their admissible
permutations, switch architectures, and control schemes (e.g., all DM type networks
are topologically equivalent but they admit different sets of permutations).

Agrawal [3] initially studied the necessary and sufficient condition for topological
equivalence among log N-stage banyan networks. Bermond and Fourneau gave a
concise solution in [15]. Note that, by definition, every rearrangeable, wide-sense
nonblocking, and strict-sense nonblocking network is functionally equivalent to any
other network in the same class. Hardware cost and routing complexity (§ 2.6) become

the primary concerns when selecting networks within such classes.

CHAPTER 2. PRELIMINARIES 27
2.6 Figures of Merits

Like many other engineering exercises, the design of MINs typically involves trade-
offs between conflicting factors. This section presents a collection of typical arcas and

questions of interest for evaluating MINs. More details can be found in |11, 82.

Capability: Is the network blocking, rearrangeable, or nonblocking? What is the set
of admissible permutations? How many passes through the network are needed
to route a given packet? What is the stage lateney (stage-to-stage delay)? s
the bandwidth high enough to handle full traflic load and avoid congestion?
How many transfers can proceed in parallel? Can the network be pipelined?
(Layered MINs are relatively easy to pipeline.) Is it casy to simulate other

networks?

Functionality: Can broadcasting be supported easily? Can the network combine
packets targeting for the same destination to aheviate hot-spot problems? s
the routing algorithm deadlock- and starvation-free [33]?7 Can the network be

partitioned into independent sub-networks?

Reliability: Is the network fault tolerant? How many faults can be tolerated? Can

graceful degradation be achieved and how much disruption will it cause?

Cost: s the number of switches (or links) required acceptable? Is the topology
area-efficient when implemented using VLSI technology? (e.g., ccllular INs (62

are easier to fabricate.) Is the routing algorithm casy to implement and fast?

Flezibility: Can the network adapt to various traffic loads and patterus? Is it possible

to grow the network incrementally? Is the network reconfigurable?

Regularity: Does the network possess a symmetric structure that can he exploited to

solve routing problems? Can the regularity in the topology simplify fabrication?

CHAPTER 2. PRELIMINARIES 28

2.7 Complexity of Permutation Routing

Before we close this chapter, it is instructive to examine the complexity of permu-
tation routing in MINs. This problem has practical significance because one way of
maximizing the throughput of a clocked packet-switching network is to route each set
of traffic requests that constitute a permutation (between the inputs and outputs) in
| pass through the network, whenever possible. A parallel argument holds for MINs
operating in circuit-switching mode where the traffic pattern is a permutation.

Aun efficient algorithm for deciding whether a given permutation 7 is admissible
by a network ¢/ would be invaluable to the design of an efficient routing algorithm
for that network. A direct solution to the above decision problem, however, does not
seem to exist explicitly in the literature. We argue in the following theorem that it
is unlikely that the above problem can be solved efficiently for any arbitrary MIN G.
The 3-SAT problem [44], where each variable appears in at most b clauses, will be
reduced to the above permutation routing problem. The reduction uses a special type
of 2x2 switch that allows exactly | connection to be made (thus, leaving one output

idle). A special switch can be constructed by cascading 2 conventional 2x2 switches

HereIL]

Figure 2.15: Special 2x2 switch allowing only one connection.

(Figure 2.15).

Theorem 2.5 The problem of deciding whether a given permutation 7 is admissible

by an arbitrary MIN G made of 222 (ordinary and special) switches is NP-complete.

Proof: Given an instance of the 3-SAT problem, we construct a corresponding MIN
(i such that (¢ admits the identity permutation if and only if the given boolean
formula is satisfiable. For each variable x;, 1 < 7 < n, we have an input z* and an
output xe*. Connect 2 rows of 5 special switches between z{* and z{** such that 2
disjoint paths exist between " and z?“, corresponding to the true and false values

of the variable x; (Figure 2.16a). Call this part the z-network.

CHAPTER 2. PRELIMINARIES 29

! - - - ot
1 H]-—l HJ—# l»‘ i
1 il 1 { | L
(a) B Normal switch :[l I Special switch (b

Figure 2.16: Constructing the MIN for (a) the variables, (b) the clauses.

For each clause ¢; in the given formula, 1 < j < m, connect a thread of | special

and | normal switches to input ('j-", and another thread of 4 special and 1 normal

out

switches to ¢7*'. These 2 threads are separated (Figure 2.16b). Call this part the
c-network. In both the z- and c-network all switches are numbered from left to right.

Since each variable appears at most 5 times, 5 iterations are needed to finish
the connections. First, construct an undirected bipartite graph I' with variables
Ty, Ty,...,Z, as nodes on the left side and clauses ¢y, ¢y, ..., ¢, as nodes on the right
side. Insert an edge between x; and ¢; for each occurrence of variable @; in clanse
¢j. By coloring I using 5 colors (Vizing’s theorem [21, p. 98]), we can decompose it
into 5 connected components, say v1,72,...,7s. Each conmected component consists
of edges bearing the same color number and all the nodes in I'. In the sth iteration,
we process v,. If there is an edge between x; and ¢; in ~,, connect the output of the
sth switch of the thread associated with c;-“ to the input of the (s+1)-th switeh in
the upper (lower) row of zi" if the occurrence is x; (7). Also connect the ontput of
this switch back to the input of the sth switch of the thread associated with ¢,

In the example in Figure 2.17, the literals Ty, x;, and x, in ¢; are the Ist, 2nd
and 5th occurrence of the variables z,, x,, and z,, respectively. Finally, connect all
the unused inputs and outputs to the ground. The MIN is now complete.

Suppose that the given formula I = ATl ¢; has a satisfying assignment, then it
is easy to see that G admits the identity permutation. This is true since satisfying a
general clause ¢; can be mapped to a path from ¢* to ¢2*.

For the other direction suppose that G admits the identity permutation, then /'

is satisfiable because a truth assignment is directly readable from the routes. For

CHAPTER 2. PRELIMINARIES 30

Figure 2.17: An example for ¢; = F7 + z2 + Z,.

example, if the path between xi* and z3* passes through the upper (lower thread
| 1 2 2 | g PP

associated with variable z,, then x is false (true). This completes the proof. O

Corollary 2.1 The above decision problem is NP-complete cven if every switch is a

28 erossbar and the network has depth 12.

Proof: If every special switch is replaced by an equivalent pair of normal switches
(Figure 2.15), then we get a MIN made of normal 2x2 switches. Clearly, the resulting
MIN has depth 12, O

It is then natural to ask: what is the maximum depth d such that the above
decision problem can be solved efficiently on any arbitrary MIN of depth < d? This
problem scems to be open. In Theorem 2.6 we give a direct solution for d = 2.

Appendix A proves that O(N) time is enough for d = 3.

Theorem 2.6 For a 2-stage MIN of size N, made of 2x2 switches, it takes O(N)

time lo determine whether a given permutation can be satisfied in 1 pass.

Proof: Denote the switch that is directly connected to input/output ¢ by s(t). As-

sume all switches are initially set to a state called unknown (U). Given a permutation

CHAPTER 2. PRELIMINARIES 31
7, it takes O(1) time to identify any of the following 3 exclusive cases for cach 1-to-1

request (z,7) in 7

1. s(2) and s(j) are not connected by any link: so 7 cannot be realized in | pass.

2. One link connects s(7) to s(j): if both s(¢) and s(j) are in the U state then set
them to straight or swap as required. « therwise, if the required setting contlicts
with the current state(s), then terminate with failure. 17 there is no confliet, set

the switch in state U to the required state and proceed to the next request.,

3. Two links connect s{7) to s(j): set s(¢) and s(J) as required if they are in the

unknown state. Otherwise, proceed to the next request.

Hence, the routing time and storage requirement arc both Q(N). O
In light of the above discussion, it is interesting to settle the complexity of routing

permutations on arbitrary MINs of depth d where 4 < d < 11

Chapter 3

Routing on Extra Stage Networks

In this chapter we introduce the class of k-extra-stage Generalized Cube Networks
(k-GGCNs) obtained by adding k extra stages to the class of Generalized Cube Net-
works (GUNs). Networks of this type provide 2* alternative paths between each
input /output pair. Given such a multi-path MIN and a prescribed traffic pattern, we
ask what path-selection strategy minimizes the network delay. § 3.1 gives an intro-
duction to this research area. Switch model and notation are covered in § 3.2. Useful
symmetry properties of the k-GCN are derived in § 3.3. § 3.4 proves that under some
assumptions, distributing the packets evenly over the 2 alternative paths minimizes
the average delay in a I-GCN for all traffic patterns. The simulation experiment

presented in § 3.5 verifies our argument. § 3.5 gives some concluding remarks.’

3.1 Introduction

Multi-peth MINs provide more than one path for some input/output pairs. For ex-
ample, the ESC network (Figure 2.12) provides 2 alternative paths between any in-
put/output pair. The C2SC network [1] has 2 extra stages added to a GCN (§ 2.4.3)

so 4 alternative paths are available. Under the control of fault tolerant routing algo-

'A preliminary version of this chapter was presented at the Seventh Annual Canadian High
Performance Computing Symposium in Calgary, Canada [71].

32

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 33
rithms, such muiti-path MINs can tolerate single or multiple switch or link failures
depending on their capabilities.

When there is no fault in a multi-path MIN operating in packet-switching mode,
the flexibility in path-selection offers an opportunity for improving the network delay,
which is the average number of clock cycles (assume a global clock synchronizes the
transfer of packets between stages) required for a packet to pass through the network.
The price for taking advantage of the alternative paths is that packets resulting from
a long message may not arrive at their destination in order. A procedure called
resequencing [58)] is needed. By using a suitable path-selection strategy, the traflic
load in the network can be balanced to alleviate congestion. Intuitively, an optimal
path-selection strategy depends on the network topology as well as the traflic pattern.
In this chapter, we focus on the following class of recursive networks obtained by

adding | or more extra stages to GCNs:

Definition 3.1 A I-GCN is obtained by connecting a column of % 22 cdlehes lo
the input side of a size N GCN. A k-GCN, where 2 < k < IgN, is constructed by
using a perfeci <huffle permutation [117] to connect a column of § 2e2 switches to

the left side of a (k—1)-GCN of size N.

Figure 3.1 sketches the basic idea for k < 2. In general, any k-GCN provides 2%

link-disjoint paths between every input/output pair of terminals. Interest in the class

BNy v

Figure 3.1: 1-GCN and 2-GCN of size 8.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 34

of k-GCN networks arises from the fact that the 1- and 2-GCNs are topologically
equivalent to the ESC and C2SC networks, respectively. Moreover, adding extra
stages 1o the GCN provides an upgrade path from blocking to rearrangeable networks.
Note that using more than Ig N —1 stages does not increase the number of link-disjoint
paths between any input/output pair.

Our path-selection probiem can now be stated as a routing problem, where the
traflic pattern is modeled by an NxN matrix L where [;; in L is the probability
of having a packet generated by input i, which is targeted to output j, during any
clock eyele. Packet generation at inputs are independent Poisson processes. Given a
k-GCN and a traffic matrix L, what packet routing strategy minimizes the network
delay? In this chapter we focus on the 1-GCN. A path-selection scheme is described
by usage probabilitics (explained later) assigned to the alternative paths.

in a k-GCN, the k extra stages and the original GCN can be viewed as 2 sub-
networks, and routing can be broken down into 2 steps: a path-selection step done
at the stages, and a routiug step done in the GCN sub-network. Once a sub-
path be 1 chosen at the extra stages, the remaining part of the path through the
GCN sub-network is readily computable (two efficient routing tag schemes are given
in § 2.4.3). Therefore, we focus on the path-selection step.

Before we proceed, some related work is reviewed. Recently, Elmallah and Cul-
berson [34] studied the multi-commodity flow problem on aunother generalization of
I-GCN, in connection with circuit-switching routing. Their results lead to efficient
algorithm for determining whether a given permutation is admissible in a 1-GCN
where all flow demands and capacitics are 0/1-valued. The performance of some
cirenit-switching MINs is studied in [130] using Markov chain and simulation.

Analytical and simulation models for estimating some important performance
measures, such as network throughput (bandwidth) and end-to-end delays, for packet-
switching unbuffered and buffered networks exist in the literature. Most studies focus
on cube-type networks. To make the analysis tractable, it is often assumed that input

packets are independently directed to each network output. Classical results in this

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 15
area [31., 65, 96. 100] add the restriction that requests from a given input to all out
puts are equi-probable (using our notation, I;, = -{— evervwhere). More recent results
relax this restriction for banyan networks.

Not as many results exist for choosing an optimal ronting strategy for multi
path networks under the general, or even the equi-probable, traflic pattern. Jean
Marie recently [58] show that by assigning a ;& usage probability to each of the 2™
alternative paths in an indirect binary n-cube network (which is a GON traversed
in reverse) with m extra stages, the network delay is minimized. We compare our

approach with that in [58] at the end of this chapter.

3.2 Switch Model and Notation

To analyze our routing problem, assume every switen has 2 first-in-lirst-out. quenes of
unlimited capacity (Figure 3.2). At the beginning of every cyele, if there is a packet
at one of the queue heads, it leaves the switch in that cycle. If there are 2 packets at
the heads of the 2 queues, requiring different outputs, both of them proceed to the
next stage in the same cycle. If the 2 packets at the heads require the same output,
then a conflict occurs. One of the packets advances to the next stage in the eurrent
cycle while the other is delayed to the next cycle. At the end of every eyele, | packet.

may arrive from each input of a switch and join the corresponding quene.

—- -
— e L

Figure 3.2: 2x2 switch with uniisited buffer queucs.

Every switch maintains a priority bit, which is initialized randomly, for resolving
conflicts. When a conflict occurs, the packet in the upper (lower) quene proceeds if
the priority bit is 0 (1). The priority bit is toggled after every conflict, such that if

a conflict occurs at time t, the delayed packet leaves the switch @t v 141, even if

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 36
another conflict ocenrs. Thus, cach packet is delayed by at most 1 clock eyele (since
its arrival to the front of a quene) at each stage due to conflicts.

The binary representation of an n-bit number b is (b, Cobyby). A et ina bit
string signifies a “don’t care™ bit. We adopt the following labeling scheme for the
k-GON. The n + k stages are numbered from right to left starting from 0. The —/;—
switches in cach stage are numbered from top to bottom starting from 0. Switch
inputs/outputs in every stage are also labeled from top to bottom starting from 0.
An example is in Figure 3.3, Under the current labeling scheme. the cube function
implemented by the connection pattern on the left side of stage s. where s < n—1.
in a GCN becomes: cube?(by_y ... bibg) = (buey .. bsyabobs . .. bib,41). At the k extra
stages, a path is numbered ¢ = (teoy -~ - 14ty), where £; = 0 (1) if the upper (lower)
ontput of the switch at stage 7 + n is used. For convenience, we include below a

glossary of symbols used throughout the chapter.

c average number of conflicts experienced by all packets during one cycle

(that is, each conflict adds 2 to the sum).

average number of conflicts seen by a packet from i to j, taking any path.

ek average number of couflicts seen by a packet from i to j, taking path k.

cisks average number of conflicts seen by a packet from i to j at stage s. taking path k.
rie set of switches used by a packet from i to j, taking path k.

pk probability of using path k for a packet from ¢ to j.

probability of generating a packet from i to j in any cycle.

b, set of network outputs reachable from the switch in stage s in 7;;,.

Vo setof network inputs that can reach the switch in stage s in ;5.

3.3 Properties of the k-GCN

Some properties of the k-GCN are captured by the next 2 lemmas (the details in
their proofs are not crucial to the understanding of our analysis in § 3.4.2). Lemma
3.2 uses Lemma 3.1, while the main Theorem 3.3 needs the symmetry property in
Lemma 3.2, Let rjj, be the sequence of switches in path ¢ between input 7 and output

J. Let fi(2,j.1) be the switch number at stage s used by a packet on route r;;;.

(CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 37
Lemma 3.1 In cvery stage s =k b+ 1.... . n =1, a switeh with number y is visited

only by packets that are taking their path labeied y mod 25 where 0 <y < =

B

Proof: Consider an imaginary packet from an arbitrary network input 7 = (0, ...
1120) taking path t = (fi-1...410). After passing the & extra stages. this packet
arrives at the switch input numbered (2,1 ... fifi—y -« toly—k) at stage n -1, where
(Zn—k—=1.--71) becomes a null string if n — k — 1 < . The corresponding switeh is
foci (3, 0,8) = (Fnekmt - - trlk—r .. tily). Since s >k, the bits (by ... b)) are never
affected by the cube’ function (page 36). These positions precisely correspond to the
Fbivsin (Zu—pe1 ... 21tp—1 ... tglu—r). So the set of switches reachable by the imaginary

packet can be described by (ce...ctey ... ty). Therefore, switches in stage s, where
n—k-1
k < s < n, can be partitioned into 2* classes. O

The example in Figure 3.3 shows that switches in stages 2 and 3 can be partitioned
into classes ‘00’, ‘017, *10°, and ‘11.” Lemma 3.2 reveals a useful symimetry property

of the k-GCN. Recently, a similar property has been used to solve flow problems [34].

0 | 0 o 1o

00 00 0 |

\/ "

F3

_

X

01

- S

11

N-R R R~ ST A RN &)
1 i
N
—
8 =
~]
=] . ;
& = =)
™ T
S w)
% - o>

1 X X

L9

10 10
5

i A\ Lo 01 5 {4

s =/ =ETTE y

3] ! 10 10 "

14 | 1 ”’"‘”/ \ / \. N 7 14

' .| 1 i »
5 4 3 2 i)

< GCN —-»

Figure 3.3: Partitioning switches in a 2-GCON of size 16 into 4 classes,

CHAPTER 3. ROUTING ON EXTRA STAGE NE¥TWORKS 38

Lemma 3.2 Leti,j € {0,1,...,N ~ 1} be a network input and a network output.

he a path nwmnber. Let Wijy be the set of network inputs that can reach the switch at
stage s on roule vij,. Similarly, lel D5 e the set of network outputs reachable from

the switeh al stage s on roule vi. Then, for any path numbers v/, 7" & {0,.. ., 2k -1}
I. ‘p,‘]',,rt = \l’,‘j“rl, and
2. (bijsr' - q)i]sr”-

Proof: We prove the two statements in sequence by conducting 2 case analysis.

I. The special case s = n + k~1 is obvious since all (7,7) routes pass through 1
switch, $0 Witpk-1)r = Vijmsr—1)rn. The rest of the proof considers 3 cases.
ixamine the extra stages first. After passing stage ¢, g € {n+k~1,...,n}, a
packet from an arbitrary input i = (4,1 ... %41i0) taking path 7 = (%1 .. .T170)
visits the input (fg—g_y ... 817k=1 ... Tynlq—k) (Lemma 3.1) at stage ¢g—1. The
set, of network inputs that have access to the corresponding switch fo_1(¢,5,7) =

(fg—k—=1 - -11Tk—1 ... Tg—n) can be described by (cc...cig—k-1...11¢). Since this

n+k—gq
bit string does not contain the 7 bits, the same set of network inputs have access

to the switch visited at stage g by the arbitrary packet no matter which path

is taken. Hence. we have W50 = W55, for s € {n+b-1,...,n— 1}.

We now consider ¢ € {n —1,...,k + 1} (skip this case if n — 1 < k+1). This
region covers the left part of the GCN sub-network. After passing stage g,
the arbitrary packet heading to network output j = (Jn-1---J1Jo} enters the
switch input numbered (a1 . .- Jqlgok=1-- - 81Tk=1 - - - Tolq—k) at stage q—1. The
corresponding switch f,_1(2,7.7) = (Ju-1 .- Jolq—k=1-+41Tk=1-..To) 18 accessi-

ble from the set of network inputs described by (cc...cig—k-1...21¢). Again,

n—k—y
the bits 74—y ... 7y are absent from the bit pattern. Hence, ;s = Wyjs.n for

s€{n—~2,...,k}

The third case ¢ € {k —1,...,0} is easy because every switch in this portion

is accessibie frem all network inputs. It could be seen by putting ¢ = k into

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 39

(cc...Clg—k-1-" .i¢) to get all don't care bits. We conclude that, in general,

n—q+k
Wjer = W, for allse{n+hk—-1..... 0}.

9. We study 3 cases again. Consider stage ¢ € {n... -, k+1}.

GCN sub-network. Again, we trace an arbitrary packet

Lo the left part of the

coning from network

input 2 = (Tn—1 Lotdg) U path 7 = (rx=1 .. 7y70), heading to network
output j = (Ju-1-- .J1Jjo, ters the switch mput numbered (fy—k-1 .-

11 Th=1 ...Toln—k) al stage n—1. In generai, after passin

g stage . the packet

enters the switch input numbered (Ju-1 e Jalgek=1 - I Thot - - - Tolg-k) ab stage

g—1. The associated switch is fo=leJ,s) = (Jn-1 o Jgly=k=1 i Tr—t - To)

The set of network outputs reachable from this switch

can be deseribed by

(Jn—1+--JoCC-: .¢), which is dependent on the destination address bul not the

q
path number 7. Thus, we have @i = Pijarr for s € {n

— 1.k}

The second case has g € {k,--, 1}. The packet enters the switch input num-

bered (Ju—1---JqTq-2 ...Toly—1) ab stage ¢ — 1 after passing stage 4. The as-

4

sociated switch is fom1(8,5,7) = (Ju—t - JaTa=2-" .To)-

I'his switeh can reach

network outputs described by (Ja-1---J9CC. - ¢). Applying the same argument

q
as above, we have @5 = B ;5 for s € {k—1,... ,0}.

In the third case s € {n + k—1,...,n}, clearly any switeh in this portion

can access all network outputs. Hence, we conclude that @ = b0 for

se{n+k——l,...,0}. O

3.4 Load Balancing on the 1-GCN

In this section, we first introduce basic concepts and formmulas for solving the path-

selection preblem on the 1-GCN. Then, the main theorem int

Lis chapter is derived.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 40
3.4,1 Basic Concepts and Definitions

Since every input 7 can generate at most I packet per cycle, we have 3°7 YL < L for

all input 2. Onee an input ¢, an ontput j, and a path number £, where /: € {0.1}, are
given, the sequence of switches in the path r;jx can be uniquely determined. Let pyji

be the probability of assigning path k to a packet going from 7 to 7. Clearly:
pijt = 1 = pijo (3.1)

for a 1-GCN. Thus, there is only one independent variable (pijo) for every input/out-
put pair. When a packet going from 2 to j arrives at stage n, the router generates
a 0/1 random integer such that the probability of getting a 0 is pijo. The random
number represents the path assignment.

In steady state, minimizing the average network delay is equivalent to minimizing
the average quene length. Every conflict increments the queue length by 1. Hence,
we focus on the minimization of conflicts. Let ¢ be the average of the total number of

conllicts experienced by all the packets generated in the network in one cycle. Then,

2

N-
= ‘ 1]3 (32)

1 j=0

—-

I
©

where ¢, is the expected number of conflicts experienced by a packet going from input

¢ to output j. ¢ can be written as:

1
Cij = D Pijk * Cighs (3.3)
k=0

where ¢, is the expected number of conflicts experienced by a packet going from ¢
to § if path & is chosen. Finally, we have:
n
Cijk = Z Cijks, (3.4)
=0
where ¢jjr, is the expected number of conflicts experienced at stage s by a packet

going from ¢ to j, taking path k.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 11
3.4.2 Probability Assignment

The main result in this chapter is presented in the following 2 theorems:

Theorem 3.3 In stcady state, sctting pi,o = 0.5 for all input ¢ and output j gives

Jdc
Dl’nﬁo

a stationary point for ¢ (i.e., vanishes at p, o = 0.5), regardless of the traf)ie

pattern.

Proof: Recall that ¢jis is the expected number of conflicts experienced at stage s

by a packet fror i to j taking path k. In steady state, we have:

Cijhks = E Z lmnpmnk- ("))

mG\P:Nk ned):“k

where :jsk = \I/,']'sk — \i’ij(s+l)k- forn > s> 1,
and d)ﬁjsk = q)ij(s—])k- for n 2 S 2 (.

Figure 3.4 depicts how a conflict occurs. For the boundary cases, we define W, =
{0,1,..., N — 1}, Yijmgaye = {i} and ;54 = {7} Following [58], we ignore stage
n, which is the path-selection stage (as explained in [58], the “Bernoulli™ switehes
in stage n are fast because there is no need to examine the packet headers and no
computation is done, so the service time at these switches is small with respeet to the
inter-arrival time. Consequently, packets do not interfere with cach other in stage n,
generally speaking.). We also ignore stage 0 because conflicting packets are tarpeted
to the same output terminal; and this “serialization” of packets is always needed,
regardless of p;jo. (In fact, the delay of packets at stage 0 is connted towards the
cost of resequencing, which is studied in [58].) The expected mumber of conflicts
experienced by a packet going from ¢ to j taking path k is:

1
Z Z lmupm'uk . (:‘(’)

s=1 mE\V:J,k 'nEd):”

n~1 n-—
Cijk = Z Cijks =
s=1 &

The expected number of conflicts experienced by a packet going from ¢ to j, taking
either path, is:
n—1

1 i
Cijks = Z Z PijkCijka

s=1 k=0 s=1

n—

1
Gi =) Pijk
k=0

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 42

Figure 3.4: The scenario in which a conflict may occur.

n—1 n—1

Z CijosPijo + Z Cijls(l - Pijo)-
s=1 s=1

Fquation 3.1 was applied in the last step. Now we apply Equation 3.6 to get:

n—1 n-—1
Gy = Z Pijo Z Z lmnl)mnO + Z l - 1)1_]0 Z Z lmn(l - pmnO)
me\l" ned)u o s=1 mEW’ o nEd)'J 1
n—1i
= Z Piju Z Z lmannO - Z Z lmn(l -]’771710) +
s=1 mEllJ nE‘b.J © mE‘U ne(bu el

Z Z lnm(] - P'an)

me ‘ll | n€ ¢‘:))

Lemma 3.2 allows us to combine the summations inside the square bracket to yield:

n-1

Z{Pt]()[Z Z lmn 27)711110)] + Z Z lmn(l - P'an)}- (37)

me\l' nE(b 'n'E\ll'J 0 7l€¢u <0
The average number of conflicts experienced by all the packets in one cycle is given by
Squation 3.2. To minimize the average number of conflicts we first solve the following

equation:
de

. =0
dpn 30 ’

where 0 < o < N and 0 < 3 < N. Substituting Equation 3.2 for ¢ gives:

ZZ ()(u 1_1 =0.

()[)a,jo

Using Equation 3.7, we obtained:

t 0 mn
5‘ Z Z{[Z z Imn ~ano)j P p 10 + 2]’1]0 Z Z lmn Pn0

m n m n dpﬂﬂo

CHAPTER 3. ROUTING ON EXTRA STAGE NETWGRKS 13

- ZZ [nmg_pﬂ}lm =0

m n GPaso
«— 9 (‘)p,‘j() . = i)l’rrzvnl\ aQ
L_,ZZ{ZZlmn(-Pmn() - l)()p + (l/)iﬂ) — I)LZ[””, 7;1—,———}[,_, = (), (,{_\\)
i j s m n 30 m n H 0

We now see that p,.0 = 0.5 for all »'s and y's is a solution to the above system of
linear homogeneous equations. The same procedure can be repeated for all a's and
)’J‘S. 0

The nature of the point pijo = 0 generally depends on the 1;'s. Note that the
method of Lagrange multipliers is a standard procedure for determining whether a
multi-variable minimization problem has a unique soluti (see, for example, [122,
Ch. 4], [25, Ch. 8], and [28, Ch. 7}). However, this method is too complex exeept for
a small and fixed number of variables. So w» focus on a special case, in which one
slobal pg is used for all inputs and outpnts (using one global py is reasonable because
it reduces software/hardware overhead), such that the nat-ire of the solution py = 0.5

can be readily determined.

Theorem 3.4 [fpijo = po for all i’s and j’s, then ¢ reaches a unique wininwm when

po = 0.5, regardless of the traffic pattern.

Proof: It is easy to see that Equation 3.7 reduces to:

n—1
C; = {(2])6 - P()) }: Z lmn + (I — 7’()) z lmn }
s=1 me‘l'(ﬂo ned; 0 €W, ned)

n—1

= (2")?\ - 27)0 + 1) Z Z Z lmn

s=1 TIIE‘V:),D ne‘b:”o

Therefore, Equatii-is .2 becomes ¢ = (2p%—2py+ 1)K, where K is a positive constant®,
It is straight forward to prove that py = 0.5 is a unique minimum hecause it s a

quadratic equation. O

2K = 0 havpens when the traffic pattern is so good that the packets never coniliet with cacl
other. Thi. ...se is uninteresting but the solution py = 0.5 remains valid.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 44
3.5 Simulation Study

To verify the practicality of Theorem 3.4 and to observe transient hehavior of the
system, we conducted a simulation study. In subsequent sub-sections we present the

experiment design, the results, the observations, and the interpre - ions.

3.5.1 Experiment and Simulator Design

The traffic pattern is either uniform (any input ¢ has equal probabuity to send a
packet to any output j) or it has hotspots (correspond to frequently referenced memory
modules in real systems [98]). Hotspots are modeled by randomly selecting a hotspot
ontput at the beginning of a simulation run. Any input 2 has '/ZV probability to ¢cud
a packet to the hotspot if it chooses te generate a packet in a cycle. Other outputs
are equally likely to be visited.

The quantity to be observed is the average queue length in the 1-GCN. The pri-
mary independent variables are the p;jo’s. To cut the number of independent variables,
we set all pijo = po € {0,0.2,0.4,6.5,0.6,0.8,1.0}. The intensity of the workload is
modeled by a parameter w € {0.2, 0.3, 0.4, 0.5, 0.6}, which is the probability of
generating a packet in a cycle by each input. Two network sizes, N = 8 and 16,
are considered. Every configuration is simulated 4 times and the average response
is calculated. The total number of runs is 7 x 5 x 2 x 2 x 4 = 560. Each run lasts
5.000 cycles. Pilot runs indicate that transient behavior is negligible at the end of
this period.

The simulator is written in C. It has been compiled for MS-DOS and UNIX

machines. Two execution modes are supported.

I. The interactive mode allows the user to monitor all relevant quantities such
as quene lengths at all switches, average queue length in every stage, average
quene length in the network, rouiing tag of each packet, and the number of
packets generated (received) for each input (output). Transient behavior can

be observed easily (Figure 3.9). Cycle-by-cycle execution is also supported.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 15
2. The batch mode allows fast execution by disabling screen output. Execution

terminates after a prescribed number of eveles, with all statistics saved in a e

3.5.2 Results and Interpretations

Eight series of graphs are plotted and grouped into 1 figures. Data and contidence
interval (of the overall average queue length) are given in Appendix B Note that
in some configarations, the combined effect of py and w causes the queue lengths
at certain stages to grow indefinitely, 1.c., the system never reaches steady state,
Consequently, some data points are missing from the graphs.

It is worthwhile to examine the throughput limit of a single 2x2 switeh before we
proceed. Assume unlimited buffer size. evenly distributed traflic and 1 packet arrives
from each input per cycle. There are 2 packets at the heads of the buller quenes
trying to leave the switch at the end of every cycle. Since the probability of a conflict
is 0.5, the best average throughput of a switch is 2 x 0.5+ 1 x 0.5 = 1.5 packets per
cycle, or 0.75 packets per link per cycle.

Below we analyze the graphs qualitatively. In all graphs we plot the quene length
against po. Except a few special cases and fluctuations, the average quene length of
the network is easily seen to be minimal when py = 0.5, In the graphs, w and py are

multiplied by 10 to eliminate the decimal point for better legibility.
1. The effect of workload on queue lengths for N = 8 (Figure 3.5):

Uniform traffic: When w = 2, the workload is too light to create appreciable
congestion so the queue lengths fluctuate at a low level. When w goes
from 3 to 6, it becomes increasingly evident that py = 0.5 minimizes the
average queue lengths. When w is high, even small deviations of py from
0.5 “saturates” the network, i.e., the queune lengths grow indefinitely. For
instance, when w = 5 and po = 0.2 (0.8), switch 2 (switch 0) in stage 2
receives the traffic load 0.5x2x0.8 = 0.8 > (.75, so saturation is inevitable.

Note that the queue length at stage 2 is consistently the longest. The path-

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 16
sclection done in stage 3 causes congestion in stage 2 when pg deviates from

0.5. Stages 0 and 1 are subject to lower packet arrival ra*s.

Hotspot traffic: When w = 2, hotspot congestion occurs in stage 1 when po =0
or 1, and longer quenes (c.f. uniform traffic) emerge. The trend continues
to other graphs in the serics. When w > 4, the queue length at stage |

flattens when py = 0 and 1 becanse the maximum throughput of the 2x2

switch limits the traffic flow from stage 2 into stage 1.

2. Queue lengths at various stages for N =8 (Figure 3.6):

Stage 3: The eurves for uniform and hotspot traffic are similar because the
hotspot effect cannot be seen in this path-selection stage.

Stage 2: Hotspot traffic begins to give slightly longer queues.

Stage 1: In both the uniform and hotspot graph, the curves are still v-shaped
but flattening occurs when pg approaches 0 and 1. Congestion in stages 3
and 2 limits the traffic into stage 1 so the queue lengths cannot rise. Also

note that the hotspot curves are much higher.

Stage 0: The hotspot queues are much longer than that for uniform traffic.
For a high w, more packets arrive at stage 0 per cycle when po approaches

0.5 from 0 or 1, because fewer packets are trapped in thr ;ueues in earlier
stages due to saturation. Hence, queue lengths at stage 0 increase counter-
vuitivel when py approaches 0.5. However, this local phenomenon is

overshadowed by the arger drop in queue lengths at other stages.

5. The effect of workload on que .+ lengths for N = 16 (Figure 3.7): For uniform
traflic, all graphs are similar 1 their counter-parts in Figure 3.5. For hotspot
traflic, curves for stages 4 and ; are similar to those for stages 3 and 2 in Figure
3.5. Quene lengths in stages - to 0 are much longer because when N = 16, ore
packets are sent to the Lio~pot for every w. The inverse-v shape of the curves

for stages 0 and | when e is large is more apparent than that for N = 8.

TWORKS

)
¢

£ N

XTRA STA(

ON E

ROUTING

CHAPTER 2.

o ™] o) -l %
li [il W
w < W [X3 © W

-9 = &) 29 -

g ' g a
—— mmmwmmmmmwnmmww
uibus| enand yibuag) ensnd yibus| snanp yibusgj ananp uibusj enant

Vo] ©

@ o_‘_u © A.n_. ©] il

2 = = =

Sm gsm SDQ.. Asm

< 4~ -

A A g 3 S8 f 3% :EEc§ 3 o8 EOE Oz 3 & 3
yibusj anand yibusj eananp yibus) snanp yibusj snand yibusaj ansnp

Hotspot

PO

-3 -2 a1 =0

Stages

of workload (w) on quene lengths for N = K,

Figure 3.5: Effe -,

(

Queue length

‘HAPTER 3.

Queue length

Queue length

Queue length

ROUTING ON EXTRA

STAGE NETWORKS

43

Queue length

200 AS=O

PUN o

3

el

2

Queue length

100 I

Queue length
T 8§ %2 8 8
1 /

[2 4 5 [

Uniform

10

Workload

20F

Gueue w2nqth

0

4 -3 a2 5 46

Hotspot

Figure 3.6: Queue lengths at various stages (s) for N = 8.

10

CHAPTER 3.

1
o
'
oo b =2 o W=2
=
et £ "
Sorf =4
3 c v
2| 2
3 os ¥ 18]
Sosl 3"
(Y]
o os b = 0
e
02 =t S " > o i - h
8 10 o ? 4 L3
150 PO PO) "
a0
Ewn "I
2 %
Q
; QC) o e
- :
8 QO wf
2
C
o " -
[}] 4 S 8 " ¢ 0 P L
PO ’ ‘e " '
00 100
o
Pl
it
E’ e 4
@
an
(V]
8 oy 4
8 100 =

ROUTING ON EXTRA STAGE NETWORKS

Po

=
£ .
Oyoo -
c o
L, S -
() 2
=))]
g200 8 [
oo =’
o
o Limmm - - 1
2] 5 6 1
PO
50 a0
200 =6 Ao
£ £ =6
glso = e /\ /
-~ 8 wo b —
gmo - —
w g N -
=1 Q
O 8 whe
o 1 Salom——
4 .f Pso [g 4 3
Uniform Stages 434210 Hotspot

Figure 3.7: Effect of workload (w) on queue lengths for N = 16.

19

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS 50
1. Quene lengths al various stages for N = 16 (Figure 3.%): For uniform traffic.
all graphs are similar to their connter-parts in Figure 3.6, For hotspot traffic,
curves for stages 2 to 4 are also similar to their connter-parts in Figure 3.6. At
stages 1 and 0, queues shorten when e is low and pe approaches 0.5 as expected.
When @ is high. deviation of pg from 0.5 causes saturation in earlier stages and

rednces the packet arrival rate at stage 1. hence the inverse-v shaped curves.

When the simulator was running in interactive mode. free saturation (i.e.. switches
that are on the paths leading to the hotspot have noticeably longer quenes than other
switches) had been observed when hotspot traffic was combined with heavy workload.
Figure 3.9 (brackets denote switehes, and numbers in them are queue lengths) is a
sereen dump of a simulation run that has a hotspot at output 10. This phenomenon

has been studied by other researchers [30. 37].

3.6 Concluding Remarks

We recursively defined a class of networks called &-GCNs and studied their symmetry
properties. A path-selection problem on the 1-GCN was considered. We showed that
using the 2 alternative paths with equal probabilities minimizes the average number
of conflicts, and hence the average delay, for all traffic patterns if one global po is
used.

A simulation study verified our solution. Special features. such as tree saturation
and the counter-intuitive increase in queue length at stage 0. were ~tudied. Two pos-
sible extensions to the experiment are: 1. Try multiple hotspots, 2. Use distributions
obtained from statistics of real applications.

We expecet that for irregular networks, such as a 1-GCN with faulty switches,
the path-seleetion problem would be very challenging. Some networks, say the ADM
(§ 2.1.5). provide a different number of paths for different input/output pairs. It is
anticipated that this approach (i.e., computing and then minimizing c) still works,

althongh the analysis would be tedious.

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS

5 20
S=0
il 2 S=0 -
-— -— 150
o =]
c c
3 3
o o™
D >
(V] o]
3 =N
&l &
! o 2 4 Ps [8 1w o JL : “ L] : m
0 PO
» a0
= S=1
L 8_1 £ an
o 15 , -—
o (o))
c c
@ @t
q) AGE w o
% 8 100 .."‘
3 .t jon]
© G \ /
0 o
0 2 4 S 6 8 w0 0 2 4 13 L3 3 [
» Pc tHa po
S=2
g’ g’ln(; 3
2 @
Q [0}
3 3
: g
(@] (&)
CR h
o Ve 4 H " L] "
PO
10
wo b S=3 6 3 S=3
£ £ -
[, 2202 o o |
c c
QD wo} Dot
g 300 B g a0 B
(9] [)]
8 20§ 8 200
100 -\ / 10 -\ “ /
0 o
2 4) 6 8 10 o ? ¢ 4 Iy) 1
. PO Po
F
cof =5
= 3
o (o]
=y § o
Q @
)} o))
8 1 8 i
o o]
g st g.
ki 2 4 PS 6 s W pa ? 0 P‘, ‘.) 1
R Q 0
Uniform Workload o4 +3 a2 —5 4.6 Hotspot

Figure 3.8: Quene lengths at various stages (s) for ¥ = 16,

CHAPTER 3. "OUTING ON EXTRA STAGE NETWORKS 52

1

G, B, 8 18, v 6,8 o 1,9 3. N: 16 g: 5
1i-Logly Uiy 1 é’l a L %J 2 [& path-@ prob: é

2- 1 4 Gy 2 1 2 - 2y 1 1 ocading:

-1 glg glm { gj &6 L glg L iJ eraffic: 3

4~ 1+ 8 1 1 stop at:

el @'y U 1lyn 0 %] : [:14] 6 [;1 hot "spoc: 18

b 4412 33 6 K > ot prob:

By dhas [akg U215 [gly [3] time: 2089
b[3] 1 [28] 1 [35] 8 [315] 8 [2] queue length: 46.49
9- 4 3 134 9 135412 312418 1 average delay:205.89
w-p 315 [333 85 Py 9 57 Pkt count: 19342
T 3l eil1a Ll 59 bkt gen.: 22494
- 1 ! 1 .

P TR o B B ¢ B

0 QRN FA M) AR G 1 by SN S S GY

time=>5008

{ESClquit FfIree run [sltep wise [ulicw awitch [blatch [tliner stfaltisties

Figure 3.9: Sereen dump of simulation run that contains a hotspot at output 10.

Jean-Marie [58] adds extra stages to an indirect binary n-cube network to get
nntltiple paths. However, extra stages and links must be added carefully so that the
re ing network is roughly symmetrical with respect to the central stage. Queuing
theory was applied to compute the optimal usage probability for each alternative
path. The main conclusion is that for a k-extra-stage indirect binary n-cube network,
assigning usage probability ;7 te .. :h alternative path minimizes the overall average
quene length in the network, reg: ‘dless of the traffic pattern. Despite the similarity

in the conclusions, noticeable differences distinguish our approach from theirs:

{. Although the GCN is equivalent to the indirect binary n-cube, no direct proof
shows that after k stages are added to the indirect binary n-cube in the way
described in [58], the resulting network is equivalent to a k-GCN. (Note that

topological equivalence does not conserve on concatenation [124, Ch. 4])

2. The symmetry properties used in [58] to establish and solve the queuing equa-
tions are slightly different from ours. For instance, their topology must be
svmmetrical with respect to the central stage, while the k-GCN evidently lacks
this symmetry. Moreover, our approach clearly exposes the role of each sym-

metry property, as well as its contribution to the final result. In [48], details

CHAPTER 3. ROUTING ON EXTRA STAGE NETWORKS ha

that offer insights into the network are hidden.

3. Our approach works even when the network under censideration does not offer
some or all of the properties mentioned here or in [58]. We can always obtain

an expression for ¢, artthough we may not be able to simplifyv it as we did before.

de
“)Pu/j}.

Still, the equation = 0 can be solved numerically when an analvtical

solution is not easily obtainable.

We speculate that the average queue length in a A-GCN conld be minimized by
setting pijo = = pijaroy) = 7‘; for all traflic patterns under some restrictions.
A formal treatment of this generalization is a good intermediate term research goal.
We also expect that Theorems 3.3 and 3.4 would hold for a broader elass of MINs
that pussess certain symmetry properties. The settling of this issue scems to be an

interesting long term goal.

Chapter 4

Permutation Routing on the

ADM Network

This chapter presents a search-based, deterministic algorithm for routing permuta-
tions on the ADM network (§ 2.4.5) at compile time. If a permutation is realizable in
| pass, the algorithin gives the required switch setting, otherwise, it is rejected. We
formulate the routing problem in § 4.2 and then highlight some topological properties
of the ADM. In § 4.3, the main idea of the algorithm is presented. We show how a
permutation can be routed as a collection of 1-to-1 requests. In § 4.4, the performance
of a sequential version of the algorithm is studied by simulation. Empirically, it takes
almost linear time to process an arbitrary permu.ation. An uppe. bound derived in
§ 1.5 suggests that it takes at most O(.V log N) time on average. No more than O(N?)

time is needed in the worst case. Concluding remarks are given in § 4.6.!

4.1 Introduction

This chapter presents a search-based, deterministic algorithm for routing permuta-

tions on the class of Augmented Data Manipulator (ADM) networks (§ 2.4.5). The

YA preliminary version of this chapter was presented at the Sixth International Conference on
Computing and Information in Peterborough, Canada [70].

54

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 5
algorithm is suitable for use by parallel compilers to generate communication etficient
parallel code. If a permutation is edmissible (vealizable in 1 pass), the algorithm pro
duces a list of intermediate permutations (defined in § 1.2), out of which the required
switch setting can easily be computed. Liadmissible permutations are rejected. This
algorithm is attractive because, empirically, the average processing time per permn
tation is almost linear in N (Figure 4.8).

We now give a brief overview of some existing results. Banyan networks (§ 2.1.3),
such as the Q network (§ 2.4.3) and the GCN (§ 2.L.3), provide a unique path for
every input/output pair. One can route a permutation by trving to establish a path
for every 1-to-1 request in the permutation [137]. This straight-forward approach
takes O(N log N) time and space to route/reject a permutation. (O(NV) time for rec
ognizing admissible permutations [52].) As pointed out in {15], the problem becomes
difficult for multi-path networks, such as the ADM. Counting the number of distinet
permutations admissible for multi-path networks is also non-trivial {15)].

Adams and Siegel [2] give upper and lower bounds on the number of distinet per-
mutations admissible by the ADM. These bouuds diverge as N increases. Leland |77
presents recurrence equations for counting the number of distinet admissible permu-
tations. Yet, no efficient characterization of the sct of ADM-admissible permutations
is known. Efficient permutation routing on the ADM remains an open problem. It is
still unclear what complexity class the ADM permutation routing problem helongs to.
By restricting to a particular control algorithin, Varma and Raghavendra [123] iden-
tify several commonly used permutation groups as admissible on the Gamma network
(§ 2.4.5). But because the Gamma. is strictly more powerful than the ADM, their
findings are not directly applicable to the ADM. Three well-known schemes {112},
namely the Natural, Positive-Domunant, and Negalive-Dominant Routing Tags, can
efficiently handle 1-to-1 requests on the IADM network (§ 2.4.5). If any of them is
used for routing pe mutations, then the IADM accepts less permutations than the
) network (details in {76]). The same conclusion holds for the ADM. If an efficient,

algorithin for routing all ADM-admissible permutations is unavailable, Q-type net-

CHAPTER 4. PERMUTATION ROUTING ON TIHHE ADM NETWORK 56
works will utperform the ADM in virtually all respects [76]. We attempt to address
this issue.

If the connection pattern in each stage of links of the ADM is viewed as a bipartite
graph, then a brate-furce algorithm should include all possible maximum matchings
for every stage in its search space. The resulting complexity would be exponential in
N. (Theorem 4.8 states that stage 1 alone allows Fib (N4+1)+Fib (N —1)+2 maximum
matchings [92], where Fib (i) is the ith Fibounacci number: Fib{1) = Fib{2) =1,
Fib (i41) = Fib ()4 Fib (i—1).) Our first objective is to make the maximun number
of matehings to be tried for any stage s dependent c¢n s only, but not o N.

The next section gives more information on the ADM and introduces some nota-

tions. The routing problem is then formulated.

4.2 The Network, the Notation, and the Problem

A size N ADM consists of n = Ig N stages of lit. ... which interconnect 1 + 1 stages
of switches (Figure 4.1). Stages of switches (links) are numbered from right to left
starting from 0 (respectively, 1). Switches within a stage are numbered from top to
bottom starting from 0. Denote switch j in stage 7 by S{¢, 7]. The ADM topology can
be described using the following connections:
Sii = 1, (j + 27") mod N]
At any stage ¢, S[i, 7] is connected to § Sz — 1, j] for0<i<n

Sl = 1,(j — 2') mod N]
and 0 < ¥ < N. Modulus arithmetic is always used in dealing with switch labels so

the “mod™ will be omitted from now on.

We study the ADM topology from a new perspective. Let A, refer to the in-
terconnection pattern formed by the links in stage s. Then A; can be modeled by
a bipartite graph on 2N vertices (Figure 4.3a), which has | connected component.
The corresponding graph for A, has 2 connected components: one covering the odd
vertices and the other covering the even vertices (Figure 4.3b). If the topology A,

is called a component of type ey (since it connects N input vertices to N output

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK AT
4 3 2 0
=0 0 k—2—f0 f 2 A0 \‘/g..-o
TN TN AT T
ioa\ /7\/ ik I
4731 N\ _// ER 37 = 3
Sy \V/iry T anl
NS =1
| ‘_‘ ol »——«/ Y
Ralii eSeasmmal
P_¥] o 7] [
U 9] 9 OO K S R A
T o \g__ 0% Ok o] T
I \ TTRSCASONTK T kel -
) W2 2 2 —slin
i =13 13} 131 13l >3
el — \NEEEK S S}
is] 15 A HNSKE 15 15|
o o pp—
- 2 .
_:?...;// ;7
3 3

Figure 4.1: An ADM of size 16 (redundant links in stage 4 removed for simplicity).

vertices), then A, has 2°7! components of type enjpe-1, where | < s < . Figure
4.3a illustrates the typical structure of any such component (switch numbers have
been removed from the figure for simplicity). Nevertheless, one may verify that in
any such component, the absolute difference between any 2 adjacent switeh labels on
one side of the component is constant, and is determined by the stage s in which the
component resides.

As pointed out in [77], an ADM can be recursively divided into 3 parts: an odd
sub-network, an even sub-network, and an output stage (Fignre 4.2); where each sub-
network is an ADM of size %’- In the rest of this chapter, the ADM topology will he
drawn the same way as before to avoid confusion. It should he neted thal cach of
the 2 components in A, corresponds to the “stage 1”7 of the odd/evei subnet vork
(Figure 4.2). Therefo e, the “component” concept and the “odd/even sub-network”

concept are convertible to each other.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 58

Even subnet

0 0 Full decompasition
2 Z
4 4
6 &~ 6

R—APRD |
/NS

=
. "" {/ %
> Q

(A
7
WA

B N R A & B =]

- W h = NN R O

Figure 4.2: A size 8 ADM split into even and odd sub-networks.

Four hasic permmtations py, p—, p-, and p; (they originate from [2]: p; is obtained
hy changing every upwards (downwards) connection in p. to a downwards (upwards)
connection) realizable by any component are graphically defined in Figures 4.3cH.
They are obviously subgraphs of ey (Figure 4.3a). A connection request from input
s to output d is abbreviated by (s,d). We use ‘ — y’ to mean ‘switch z is routed to

switch y.’

Figure 4.3: a) A component, b) 2 components, ¢) p_, d) py, e) p,, f) pi.

Assumie the given permutation 7 is a vector of N elements (Vo, U15- - -y UN=1),
where v; = j means that input ¢ of the network must be routed to output j. For
s=1,2,....1g N, call p, an intermediatc permutation if it can be performed by the
sub-network consisting of Ay, ..., A; and all switches associgted with them (i.e., the
right-most s stages). In addition, define pg to be the identity permutation p;4. Now,
permutation routing on the ADM can be formulated as follows: If a given permutation
7 is admissible, determine the sequence of intermediate permutations py, ..., p, such
that p,, = 7. Figure 4.4 (in which switch labels have been removed for clarity) shows
how an admissible permutation = = py = (2,9, 12,6,11,10,1,14,5,0,4,15,13,3, 7,8)

is routed on a size 16 ADM using the intermediate permutations py,...,ps. Ulti-

CEAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK Hn
maiaiy, the algorithm must determine what partial permutation should be imple-

mentc:! by every component iu every A, in the ADM.

Py
— 4

3
o

-

=

VI -
\/
/A

T

slo[=l S[=[=[5] o]

EREE lzl“i‘"'l“ Gl el 5 el el

Figure 4.4: Intermediate permutations for a given admissible permntation.

4.3 Routing on the ADM

We start by presenting some properties of the ADM useful for ronting a [-to-1 request.

Then, we show how a permutation can be routed as a collection of N such requests.

4.3.1 Routing One Connection Request

Finding all alternative paths for a given request (7, j) is a special case of a more general
problem: Given any source switch in stage n and any target switch not in stage n,

find all alternative paths between them, if any. Lemma 4.1 tackles this problem.

Lemma 4.1 Given a source switch Sn,i] in stage n end a target switch S[s, 5] in

stage s, where 0 < s < n ~ 2, exactly one of the following is true:

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 60

I. all paths between the source and the target pass through the switch S[s + 1,j]; or

2. no path passes through S[s + 1, 7], but cach of S[s+1,j — 2°] and Sls+1,7+ 29

is used by at least one path; or

3. there is no path between the sourec and the target.

Proof: It is not difficult to verify that the above 3 cases correspond to:
I. |i — 4] mod 277! = 0. (e.g., S[4, 13) — S[0,11] in Figure 4.1)
2. |i = j] mod 2+ # 0 but |7 — j| mod 2° = 0. (e.g., S[4,0] — S[1,2] in Figure 4.1)

3. |1 — j| mod 2°%' # 0 and i — j| mod 2° # 0. (e.g., S[4,13] — S[2,8] in Figure
1.1)

We skip the details because it is a direct enumeration of the hardware. O

When s = n—1, Lemmad4.] still holds except that in case 2 the switches S[s+1, j—
2] and S[s+1,;j + 2°] are the .ame. All alternative paths for 2 sample connections
(¢,7) and (#,j') are given ir ‘igure 4.1. Interested readers can see [90] for other
recently found properties of 1+ ADM. To abstract the routing requirement for each
I-to-1 request in a permutatio. call the target switch S[s, j] an h-case switch if case
I of Lemma 4.1 holds for the req.. st involving S[s, j]. Similarly, call S[s, j] a v-case
switeh if case 2 holds.? Because every switch in stages lg/N < s < 0 can be in the
alternative paths of several l-to-1 requests in a given permutation, a switch can be a

v-case for one request, but an h-case for another in the same permutation.

4.3.2 Permutation Routing

Given a permutation 7 = p, to be routed, we try to determine the sequence py,py, ...,
pn—1 that can lead to the realization of 7. We now provide details of a backtracking

search process to solve the problem.

2The “h” in the term h-case switch stands for horizontal. The “v” in the term v-case switch
refers to the geometrical layout of the paths.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 61

The 1. ~mutation implemented by any A, is the result of merging all the partial
permutations implemented by all the 2°=! componenis in A, For 0 < s ~ n, p,
is obtained by combining the permutation implemented by A, with the intermediate
permutation p,_; realized by the sub-network formed by A,_,... .. 1) (and the associ
ated switches). We now show that at most 4 candidate partial permutations (namely
P+, P—.p , and p; as shown in Figure 1.3¢-f) need to be tried for any componert in

any Ag, regardless of N and s.

Lemma 4.2 Consider 2 adjacent switches in stage 1. If S[1.4] — S[U.7 + 1] and
S[1,i+ 1] — 8[0,7 + 2], then the only candidate for py is py. Similarly. if S[1.:7]
S[0.7 — 1] and 81,7 + 1] — S[0,7], then the only candidale for py is p_.

Proof: Consider the p; case in Figure 4.5a. S[0,7] is only accessible from S[1,¢ - 1]
because S[1,z] — S[0,7+1] and S[1,i-+1] — S[0,7+2]. S[1,7—1] must be routed to S0, 7],
otherwise, Ay will not be implementing a permutation. Repeating this argument lor
S[0,7-1], ..., S[0,i4+3] (wrap around if necessary) completes the proof. The po case

is similar. O

T 3 O - [AE
> -2 2 T Td2
ot L R e N o 8 O o
T H HoH HoF
m S B B O B S
< 4 oH U b E - H

(b) ©) (d) (¢)

Figure 4.5: a) Case py in A,. b-e) Various scenarios in Ay.

The next lemma is a generalization of Lemma 4.2.

Lemma 4.3 Consider 2 adjacent switches in some component expp-y in Ay, where
0<s<n. IfS[s,i] = S[s—1,i +2°7"] and S[s,t +2°7') — S[s — {,i +2°], then the
only candidate for this component is py. Similarly, if S[s,i] — S[s — 1,i —2°"'] and

S[s,i 4+ 2°71] — S[s — 1,14], then the only candidate for this component is p_.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 62
Proof: Similar to that of Lemma 4.2, Details omitted. O

From § 4.3.1, every h-case (v-case) switch in stage 0 has 1 switch (2 switches)
in stage 1 to choose from. Case 3 in Lemma 4.1 is ignored because all outputs are
accessible from any input. A typical scenario at Ay is shown in Figure 4.5b. The
next 2 theorems are central to the proposed algorithm. We give a procedural proof

for Theorem 4.4 to illustrate how the permutation routing algorithm will work.

Theorem 4.4 Given a permutation © to be routed, the intermediate permutation p

has al most 4 candidates. In particular, exactly onc of the following is true:

r
I. py has one unique candidate dictated by 7; or
2. py may be one of py,p_,p,r, and p;, so further tests are necessary; or

4. 7 is an inadmissible permutation, i.c., py has no candidate.

Proof: We show that the existence of even one h-case switch in stage 0 either elim-
inates all candidates for py, or singles out 1 candidate. Suppose S[0,d] is an h-case
switch so it is required that S[1,d] — S[0,d]. If S[0,d—1] is also an h-case switch
(Figure 4.5d), S[1,d—1] must route to it. The next switch S[0,d—2] can be consid-
cred similarly. This process repeats until a v-case switch is found or all switches in
stage 0 have been considered.

Now assume S[0,d] is an h-case switch and S[0,d—1} is a v-case switch (Figure

4.5¢). S[1,d—2} must route to S[0,d—1] since S[1,d] — S[0,d] due to the h-case. If:

I. S[0,d—2] is an h-case switch (not in Figure 4.5¢), then 7 is rejected (case 3
happens) because S[1,d—2] — S[0,d—1] so S[0,d—2] cannot be reached. We

call this situation a conflict.

te

S[0,d—2] is a v-case switch (Figure 4.5¢), then S[1,d—1] must be routed to

S[0, d—2], because if S[1,d—3] — S[0,d—2], Lemma 4.2 requires p; = p..
We have considered S[0, d—2]; S[0, d—3] can be treated in the same way as S[0,d—1].

By repeating the above procedure, either exactly 1 candidate is identified, or 7 is

rejected due to a conflict. Note that every switch in stage 0 actually has at most i

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 63
switch in stage 1 to clivose from. Now we have covered cases T and 3. Case 2 happens

it there is no h-case switch in stage 0 (Figure L.5¢). We see 1 possibilities when 2

adjacent switches in stage 0 are considered:
1. S{l,d+1] — S[0,d] and S[1,d] — S[0.d—1]: by Lemma 1.2, p; must he p_.
2. S[I,d+1] — S[0,d] and S[1,d=2] — S[0,d—1]: py is pp (p) 0 d is even fodd).
3. S[1,d—1] — S[0,d] and S[1,d] — S[0,d—1]: py is p, (p) il d is odd (even).
4. S[1,d—1] — S[0,d] and S[1,d—2] — S[0,d—1]: by Lemnw 1.2, py must he py .
We have enumerated all cases. The proof is now complete, O
Theorem 4.4 is generalized to give the next theorem.

Theorem 4.5 Given a permutation © to be rouled, cvery component in A, where

0 < s < n, has at most § candidate partial permutations to be cramined once p,.y is
’ 1 1

known. In particul:: ~ach component in Ay, cractly one of the following is true:
1. it must in plear i o dque partial permutalion diclaled by m and py.y; or
2. it may tm, one of py, p—, pr, and p;, s0 more tests are needed; or

3. a conflict occurs so no candidate can be scleeled for the component.

Proof: Similar to that of Theorem 4.4. Details omitted. O
Note that = can be rejected only if all candidates for p,_; are rejected by case 3

for some s.

Corollary 4.1 For any As, where 0 < s < n, there are al most 28 candidale per-

mutations to he tried once p,_y is known.

Proof: By Theorem 4.5, each component has at most 4 candidate partial permu-
tations. The 2°~! components in A, are all independent so their candidale partial
permutations combine to give 427" = 22" candidate permutations. O

Hence, an upper bound on the sequential time of the permutation routing algo-
rithm is O(N 1224 22°) = O(N2V~1) because it takes O(N) time, as shown below, 1o

check whether ewch candidate for p,-; can lead to the realization of .

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 64

/* epis a candidate for gy, _y, mis the given permutation */
proc IsRealizable(ep, 2 permutation; N: integer): boolean
for i = 0 to % ~1do /*modulo N arithmetics is used */
if (not ((ith element in ep = ith element of 7) and
((1 + —./:—')Lh olement inep = (14 —.l;_"—)th element of 7)) or
fCith element in ep = (1 + !:,—’)t,h elemment of 7) and
((7 + /.zl')t.ll element in ep = ith element of 7))) then
return(false)
endif
endfor
return{true)
endproc

4.3.3 The Routing Algorithm

Sequential tree-search now becomes a feasible solution to the ronting problem hecause
our findings limit the number of candidate partial permutations for any component
to 4, independent of ¥ and s. In particular. the root of the search tree is po = pid
while the leaves are candidates for p,_;. Level s of the tree enumerates all candidate
permatations for py. where 0 < s < n. We try to determine py, which (by Theorem
1.1} may be a unique permutation dictated by 7, or one of pi. p_, p,, and p;. Then
we try o determine py by first emurerating (by Theorem 4.5) e possible candi-
dates for every compouent in A, based on the current py. The pactial permutations
implemented by the components ate combined with p; to give p,.

This process is applied to every A,. Hence, the tree is traversed sequentially until
a candidate for p,_; that can lead to the realization of p, = 7 is found. Whenever
a conflict occurs, it backtracks to explore the next available alternative at a higher
level in the tree. 7 is rejected if no more candidates for p,_; can be fourd. The
correctness of this al «orithm is evident. Although all main ideas of the algorithm have
been presented. a nseido code version is given below to enable e: sy implementation

and vahdation.

proc main(w: permutation; N: integer): boolean
var plist: list-of-permutations

begin
plist = findp(l. log, V.7, piqd)

CHAPTER 1. PERMUTATION ROUTING ON THE ADM NETWORK th
if (plist = {}) then
return(false) /* rejec perm. */
else
print{piist) /* output intermediate perms. for admissible perm ¥/
return(true)
endif
endproc

proc findp(i, input-stage: integers pi,. prighe permutation): list-of- permutations
/* i is the current stage number */
Var prenpt list-of-permutations; A: set: py, pr permutation
begin
if (1 = input-stage) then /* terminates recursion */
if realizable(p,iyn.. pir. N) then
return({p,.. })
else
return({})
endif
else /* recursive part */
A = {} /* initialize working variable to empty set */
for k =0 to 2"' — I do /* check all components in the curvent stage i ¥/
if J unique partial perm. for the kth component then /* Thm. 1.5 case | */
put the unique partial perm. into pyy
else
if a conflict is found then /* Thm. 1.5 case 3 4/
retnrn({}) /* backtrack */
else /* Thm. 1.5 case 2 */
Add the I'th component in stage i to A
endif
endif
endfor
if (]A] # 0) then /* |A] is tne cardinality of A */
for each p in the 414l candidate partial perm. formed from A do
Add p to piry to form a complete perm. py,,
Premp = Aindp(? + 1, input-stage, pi,, piry) /¥ search 1level deeper */
if (Premp # {}) then /* sulution found, exit loop immediately */
return(Premp|{Pery)) - ° ndd candidate perm. p,, to retarn list */
endif
endfor
else /* | Al = 0, only cne candidate perm. pg, exists */
Ptemp = findp{i + 1, input-stage. pi,, pery) /7 search 1 level deeper */

if (pienip # {}) then
return{prenpl{ery }) /¥ add candidaie perm. py, to return dist */
endif
endif
return({}) /* backtrack */
endif

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 66

endproc

If more than one switeh setting can realize 7, the first solution found is returned.
The worst-case search tree (WCST) is illustrated in Figure 4.6. Note thai nodes at
the same level may have different branching factors. (For instance, not all nodes at
level 1 have branching factor 4% because, say, if p1 = py gives only v-case switches
in both components in Ay, then cach of p; = p; and p, gives only v-case switches in
one component and only hi-case switches in the other component, while pp = p_ gives
entirely h-case switches in both components.) The existence of h-case switches will
typically keep the search tree very small. The shape of the scarch tree is therefore
highly data dependest. This algorithm can be slow on some “bad” permutations, but

¢

yei may perform well in practice.

Figure 4.6: Worst case search tree.

This algorithi can easily be parallelized by searching the sub-trees simultaneously.
Technical issues in optimizing the parallel version is out of our scope.

Note that all branchings iu the search tree are due to the inability to decide which
one of py, po, pry and p; should be used in components that contain v-case switches
only. Leland [76, p. 70} indicaies that no known method can make such a decision at

stage s without leoking ahead into the left side of stage 5.

#She a'so hints that using a backtracking algorithm to route permutations on the ADM would
be extremely ineflicient” due to excessive hacktracking [76, p. 80]. We found that, it is not so bad.

(C'EAPTFER 4. PERMUTATION ROUTING ON THE ADM NETWORK o

4.4 Simulation Experiment

We implemented a sequential version of the above algorithm in (' to study its per
formance. All simulaticn runs have been performed on DOS 186 machines. Such a
single-user environment allows the clapsed real time to be accurately measured but
speed and resources restrictions are tight. Following Leland™s paper [77], we focused
on networks of size N = 2", where 8 < N < 1021, When N = 8 all the 8! per
mutations were tested. For every N > 8, we sampled at least 1 million distinet
permutations. Each simulation run was performed 1 times. So. about -1 millions per
mutations were tested for cach N because duphication (across runs) was negligible.
The average number of admissible permutations over the 4 runs appears in Table 1.1

Since the permutation generation method may bias the vesults, we briefly deseribe
it here (as verified by test rans. the results are insensitive to the permutation gen
eration method as long as it has cnough randomness). The reader may also skip to
§ 4.4.1 now. The generation method is fa- ¥ N > 8) and yet simpe.
Within each run, the generated permutations u. ran La . and distinet.

The ith element of a linear integer array A of size NV is initialhized 1o 7 where
0 <7 < N. Theu, random pairs of elements in A are swapped to give a random “seed”
permutation. Iind the largest ‘nteger & that catisfies N(N — 1)---(N - k)p - 10%,
where 1 < 3 < N — k. Then sei the ith eloment of a lincar array MALDP of size
N — k — 2 to 1. The initialization is now don.. The tollowing recursive procedure is
then invoked by the call gen(N — 1,k,3). A I'near array I3 of size N will be filled in
to give the desired random permutations. Note that MAP is slowly changing, which
allows the randomness to be adjusted.

proc gen(i, k,/3)
case 1|
>N-—-k-2:forj=0to ¥ -1
if (A[j] > 0) call genl(e,5,k,/7)
endfor
=N-k-2:1=0
for j =0to N — 1|
if (A[j1 > 0) and (! < /3) then
call genl(e,7,k,)

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 63

[=141
endif
endfor
«N—-k-2forj=0to N -k-3
Copy the jth non-negative element in A to B]MAP[j]]
endfor
Pass permutation B to the routing algorithm
Randomly swap any 2 pairs of elements in MAP
endcase

endproc

proc genl(, j, k. /3)

Bli| = Alj]

Alj] = -1

gon(t — 1,k i3)

Alj] = Bl
endproc

4.4.1 Program Verification

The credibility of our sequential implementation is established in two ways:

to

For every permutation declared admissible by the program, an independent
procedure checks whether the output list of intermediate permutations cor-
rectly implement the target permutation, based on the underlying hardware.
Throughout the experiment, no admissible permntation failed the check. Note
that it requires an exhanstive search, which is too expensive to incorporate into

our experiment,, to verify that a permutation is inadmissible.

The percentage of admissible permutations for eacli N is compared to existing
analytical results. Leland’s [77] recurrence equations co ¢ the number of dis-
tinet permatations adiissible by the ADM. We fixed some apparent mistakes®
in [77) and used Maple V to generate the figures in column 3 (ADMy) of Table

5.

1.1. The number of permmntations sampled iu each run appears in column
Column 6 (ADMy) gives the average number of admissible permutations ve-

ported by our algorithm. For N = 8, our result exactly matches Leland’s. For

"We worked out a missing boundary condition and corrected several numerical errors. Caution:
Leland’s wrong numbers have been propagating in the literature (e.g.. [120, p. 87 and p. 107]).

CHAPTER 4. PERMUTATION ROUTINC ON THE ADM NETWORK

64

N =16 and 32, the measured percentages of admissible permutations (column

7} agree well with their theoretical connterparts (column 1), Pereentage errors

are +3.85 and +2.68, respectively. For every N > 64, the chance of hitting

an admissible permutation is so small that atl 1 milhon samples were rejected.

The theoretical percentages of admissible permutations (colunin 1) support this

argumernt.
) Leland’s analysis Our experiment
N N ADMy [AR (%) || Tested TADAL AT (%)
8 40,320 26,196 65.7141 10320] 26,196 Gh.T L
16 | 2.092x10" 1.549x10™ 71041 LOIS 320 1 RO60Y | 7.689
32 | 2.631x10% LI69x1053T | 4.443x1077 | 1,726,080 | 7875 | t.he2sto °
64 1.268x10%9 || 3.243x107 1 2558x10- 2 [1209020 1
128 | 3.856x10%1° [[5.919x10™7 | 1.535x10~* {| 1,007.872 ‘
256 | 8578x107%% | 1.110x 27 1 1.204x10-97 || 1,014,180 N
| 512 [3477x100% | 1237 7 U3EE8x10B N 046528 7 - |
L1024 | 5419107 1524 ¢+ ° [2.846x10~%2 [1,000,118 R

Table 4.1: Number of ADM-admissible permutations: Leland’s versus our results.

Because every piece of code in the program have been exercised for N - 16 and

32. we believe that its correctness extrapolates to all N.

4.4.2 Performance Study

The algorithm is evaluated from 2 perspectives. Since it is search-based, we first
study the number of na’ . scarched (each node in the scarch tree corresporids 1o a
candidate permutation attempted for an irtermediate permutation p,). Then, the

practicality of the algorithm is measured by the average processing time (AP1) per

permmutation.

Nun:ber of Nodes Searched

Average case: The average number of nodes visited before the algorithm rejects
or .mits a permutation (lower citeve in Figure 4.7a) sceins Lo approach 1.0

asymptotically. When N is large, most permutations samplied are inadmissible;

CHAPTER 4.

PERMUTATION ROUTING ON THE ADM NETWORK

6 —
—_Admissible + Rejected
St A - Admissible Only
5|
[53
3
n3f
W
()]
32 ’\\
Z
1} e . -
o A, i e e 4 1 L i
8 16 32 64 N 128 256 512 1024
(a)
8
A _Rejected Permutation
E 6 | <Admissible Permutation
£5 |
©
gt
3
83T
251
1} - . . -
0 —— L " " L
8 16

32 64 N128 256 512 1024

0

Figure 4.7: Average (a) and maximum (b) number of nodes searched per permutation.

apparently because no candidate can be found for py. Although every admis-

sible permutation needs at least n nede-searches® before it can be identified,

the rapidly dropping percentage of admissible permutations has a dominating

effect. Now we understand the lower curve. Despite the insufficient number of

data points for admissible pormutations (upper curve), we see that admitting a

permutation rarely takes more than n node-searches.

Worst case: For cach N > 8, the waximun: number of nodes searched (Figure 4.7b)

is taken over the corresponding 4 million samples. When N increases, the curves

are expected to rise but the probability of hitting a “bad” case is so small that

1o keep the program simple and fast, we let p, (= 7) be counted as an “intermediate permuta-
tion” also. In fact, only n — I nodes in the search tree are visited.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK Tl
the curves apparently drop. Our sample size is still too small to allow detinite
conclusions to be drawn. tor N = 8 remarkably, no permutation reguires more

than 1 node-search to reject or 3 node-searches 1o admit.

Real Elapsed Time: APT

The APT is computed by dividing the elapsed real time of cach run b+ the nmmber
of permutations sampled. It includes overheads such as permutation generation and
statistics collection. Because none of these tasks takes more than O(N) time, the
relation in Figure 4.8 is largely due to the routing algorithm. For small N's, therve is
« counter-intuitive drop when N increases. To justify this, recall that an admissible
permutation on average requires more node-searches to process than an inadmissible
permntation (Figure 4.7a). The rapidly diminishing percentage of admissible peemu
taticns overshadows the increase in processing time due to the increase of Ny and this
accounits for the drop. But for cach N > 32, all 4 million samples were rejected and
each sample rarely needs more than 1 node-search (Figure 1.7b). Henee, the inerease
in processing time due to the doubling of N becomes a dominant factor <o the carve
.
rises. When the x-axis is drawn in linear scale, the algorithm seems to tale O V)

time to process a permutation when N is iarge.

7 7 e
i i /
5t 5|
4 g4»

)]
3k E 3t

=

Time (ms)

N
—_
n

T

-
T
-

[i n N

) L " 0 i . s b
8 16 32 64 N 128 256 512 1024 0 200 400 N600 800 1000 1200

figure 1.8: Average time to process cach permutation; logarithmic and jincar seale.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 72

4.5 Approximate Time Complexity Analysis

To consolidate our confidence in the performance of the proposed algorithm, an npper
bound on the average number of nodes searched per permutation, denoted Sw, is
derived in this seetion. If Uy represents the set of all N! possible permutations on
{0,1,..., N — 1}, then by definition:

— t .
Sy = N (Number of node — searches required by p). (4.1)
T pelly

Since every node-scarch takes Gi N) time, the average time complexity of the algo-
rithm is O(NSy). Equation 4.1 - hard to evaluate because the exact relationship
hetween a permutation and the nuiiber of node-searches it requires is not currently
known. However, by classifying permutations into hierarchical sets and then com-
puting the maximum number of node-searches required by any permutation in each
set, an upper bound on Sy can be obtained. Hence, the rest of this section mainly
discusses the classification scheme, the size of each set, and the maximum number of
node-searches for each set. At the end, we point out that if the search is done in a

divide-and-conguer manner, the algorithm takes O(N?®) time in the worst case.

4.5.1 Classification of Permutations

We will need the odd-even sub-network notion illustrated in Figure 4.2; but technical
details, such as how the relabeling is done, do not concern us. We start our derivation

by highlighting a fact that is evident {rom the discussion in § 4.3

Observation 4.1 (Given a permutation m to be routed, the largest search tree arises

only when all switches in stage 0 are v-case swilches as seen by the algorithm.

Due to the recursive nature of the A\DM, a similar observation anplies to any compo-
nent in any stage. Hence, given a permutation 7 to be routed, the WCST arises only
when all components in all stages just contain v-case switches.

The following definition plays a central role in our analysis. A v-component is one

in which all switches in its right half are v-case switches. An hv-component is one in

CHAPTER 4. PERMUTATION ROUTING ON THIE ADM NETWORK 3

which at least one h-case switch is present in its right half,

Definition 4.1 For any stage s, where 1 < s < n =1, and integer t, where O ~

274 et W and Ry be sets of permutations defined by:

LW ={w : w gives t v-components and 2=V — ¢ conflict-free he mponenls in

As: while cach of Ay,..., Aqy conicins conflict-free ho-components only}.

2. Rs = {r : r gives only conflict-free hv-components in vach of Ay, A, \: bul

i As a conflict occurs and causes v lo be rejected).
For s = 1. the st {A\ ..., A1} is empty.

For example, every permutation w € W, is seen by the proposed algorithm to
have unique candidates for py and py, but 4% candidates for py. Note that cach W7
contains both admissible and inadmissible permutations.

We are ready to present our classification scheme. By Theorem Ao, Uy can be
partitioned into 3 disjoint sets: W), W/, and R,. They correspond to cases 1, 2, and
3 in Theorem 4.4, respectively. By applying Theorem 4.5 to Ay, W) can be further

partitioned into 4 disjoint sets described by:

WE: for every permutation w € W2, py has a unique candidate hecause hoth cony

ponents in A; are hv-components,

WE: for every permutation w € WE, p, has 1 candidates becanse one component. in

A, is a v-component while the other is an hv-component.,

W2: for every permutation v € W2, p, has 42 candicates because hoth components
2 19 172

in A, are v-components.

Ry: for every permutation r € Ky, ne candid: o for py exists hecause at least one
2 Jy 2

conflict (Theorem 4.5 case 3) occurs in any of the 2 components in Ay,

By repeating a similar argument for all other stages in the network, a classification

tree for all N! permutations can be obtained. The case for N = 16 is illustrated in

CHAPTER 1. PERMUTATION ROUTING ON THE ADM NETWORK 71
Figure 4.9. We gronp the leafl nodes, which represent disjoint sets. into 2 sets:

n-1

k= Wy~ ! U R;), and

Wa = U WD.

Figure 4.9: A classification of permutations for N = 16.

node-searches to admit/reject; and this allows us to focus on the W;’s in Wa. If
N W) denotes the maximum number of node-searches required by any permutation
w e W, then an upper bound on Sy (Equation 4.1) can be written as follows:

_ 1 n—1 22—! ,i
Sn -/7{1—1 AR+ SIS MW - |wj|}}. (4.2)

=1 j=1

4.5.2 Cardinality of W}/

Wo first characterize W] and compute its cardinality, then the result is generalized
to othier possible sets We I w(?) denotes the image of @ under the permutation w,

then W e be characterized by:
Leram 4.6 W/} = {0 : i —w(@)jmod 2= 1,Vi € {0,1,...,N —1}}.

Proof: Without loss of geunerality, let 7 and w(?) be ever and odd numbers, respec-
tively %o path frony input 7 to output w(z) can use any odd switch except at stage 0

because S[n, /] is in the even zub-network. Only 2 even switches in stage 1 have access

CHAPTER 4. PERM{TATION ROUTING ON THE ADM NETWORK T

O odd switch QL O
® cven switch RS

Figure 4.10: A v-case switch in stage 0.

to the odd switch S[0,w(#)]. Se S[0,w(i)] must be a v-case switeh (Figure 110}, Sinee
2 1s arbitrary, this lemmais true for all 7 ¢ {0,1 N—1}.0

We are now ready to compute the cardinalit, of W
rty N 2
Lemma 4.7 |[W}| = [(5)!]°.

Proof: From Lemma 4.6, any permutation w that only maps even inputs to odd
outputs, and only odd inputs to even outputs, would be in W/ Figure 1.11a, which
shows the first and last stages of an ADM in the form of a bipartite graph, depicts
all the possible connections. It has 2 connected components as shown in Figure 4.1 1h
and c. Each of them has % pairs of nodes and allows all (%)! maximum mabchings.
Hence, the total number of permutations allowed by Figure 4.11a is [(/7})!]". 1
Existing results from 2 papers are needed to generalize Lemma 4.7 to any possible
We. If On denotes the set of permutations realizable by Ay, then O'Donnail and

Smith have shown:
Theorem 4.8 [92]: |On| = Fib(N + 1) + Fib(N — 1) + 2.

Let AN/ denote the set of pertautations realizable by a size N ADM whose A, always

implements permutation j. The next theorem is due to Adams and Siegel:

Theorem 4.9 [2, Lem. 7]: ior any j,h € On, if j £ b and 3 ¢ {py,p s pepi),
then AN /j and AN /h are disjoint.

The proof in [2] for Theorem 4.9 allows us to make the following stronger statement.:

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 76

(c)

Figure 4.11: Bipartite graphs showing stage U and n.

Corollary 4.2 Let oy and oy be the unique andidates (i.e., oy € {py.p-,pr.pi} and
ay & {ps p_sprpi}) Jor py when the given permutations wy and w, arc to be routed,

respectively. [f oy # oy, then wy and w, are distinet.

We start. by defining a set of permutations @y = {0 : 6 € On and 0 gives an hv-
component in Ay}, Since onlv 4 permutatioes in On, namely py, p-, pi, and p,, do
not give any h-case switch in stage 0, Theorem 4.8 implies that [dn] = [On| — 4 =
Fib(N + 1) 4 Fib(N — 1) - 2. Let ¢y = |®n] for short. Lemma 4.7 is generalized to.
Theorem 4.10 For any stage 1 < s <n —1 and integer 1 <1 < 271,

=1 ge—1_
W= CF vt ¥

where CF denotes the binomial coefficient Fa o

s—1
a = a(‘.v’ S) — (¢§T’1_'r)2l.-l’
=1
N N ...
V= l/(‘—)-s—-]—) = [(:;';)!]2, alld
N N

n=plsm) =

Proof: When s =t = I, the above equation reduces to Lemma 4.7 if [0, (--+) = L.
In general, o N, s* which denotes the total number of possible settings for the sub-

network that includes Ay,..., A,_;, can be computed using Theorem 4.8, Corollary

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK T
1.20 and the recursive nature of the neiwork. The rvesult is [I52) (o ,31,\"" Lowhere

(o_~_)*

is the number of possible settings for ;. Since exactly £ ont of the 2 ¢
2t—1

components in A are v-components, there are €277 possible selections of these f v

components. The corresponding sub-network of cach of these v-components aflows

. N {: :\-") -y . . .
1/(;;\?) = {[J;—L]'} possible permutations on {0, 1,.... 505 — 1} due to Lemma

- ‘ . . N . ey ey e . .
4.7. So these t sub-networks combine to give [(3\'—)']“" possibilities. Fach of the re

maining 2°7! — { hv-components in A; has a unique candidate, so the correspond

ing sub-network of cach component allows /1(5%) = ¢x [(r_;;},q-\!]"' possible per
. N r oy s— .
mutations on {0, 1,.... 555 — 1}, These 2°71 — £ sub-networks are independent so

, ye=1_ Ay _ oy ey, -
(q‘):zﬁ‘_r)? '[(Tﬁ—l)!ﬁ 26 possibilities are generated. O

4.5.3 Number of Nodes Searched

This sub-section first gives the size of the WOST for an ADM with N inputs, then

N(W?), that is the maximum number of node-searches required by any peranutation

w € WSis computed 7 caote the manber of Teaf nodes in a s-level WES'T:
Theorem 4.11 or 1222, Ty = [Toy + (1-2)%*.

Proof: Si vy eermtation), Ty = 1 follows. Theorem 1.4
implies th- senerating the WCST (see for example Fignre
4.6), we fo -1 = (4 4+ 1% Similarly, T was found to be
((441)2 44 Cthat Ty = (T2 4+ (1722)%)% 1s a candidate for the general

equation. Again, by maanally generating the WCSY, both Ty = (((4 4 1)% 4 1%)* |
(A4+1)H2and Ts = [((A+)2 +4%)2 + (44 1)) + (1 4+ 12+ 49" were found to
agree with the candidate equation.

To verify that the candidate solution precisely matches the recursive model of the
ADM for general [, expand Ty to Ty = TE, + TE T+ T TE, + 11,0 A property
of the WCST mentioned in brackets on page 66 will he used. Recall that the py of
an ADM sub-network that gives a WCST, which has T} leaf nodes, has 4 candidate

permutations. Suppose that when py = py, the “A;” of the two sub-networks are

CHAPTER 1. PERMUTA ION ROUTING ON THE ADM NETWORK TS
v-components so they cach hay 4 candidate permmtations (Figure L12a) This case
gives the T2, termoin 7. When pyp = piothe 47 of the even subnetwork still has
1 candidate permutations as before but the “A47 of the odd-network contains hocase
switches only so it has 1 unique candidate permutation (Figure £12b), Phis case
gives the TR, T—y termoin T Symmetrically, Fignre 120 corresponds to the term
T2 TR, When pyp = o the *A4,7 of both sub-networks contain b case switches only

(Figure 4.12d). This case gives the T3, termin 77, O

< i »

e > <« Vs <« oy
8 i 12 | | 12]
Tl-l' a Tl-ll | '-11 ; '-11
| ! Tl-l. I-J | Tl—ll |
- N |=+nl =5 iy
| iy 0 | Ty
Tl-ll a1 e I Tl-ll il 1. j—
rl-?.l | Tl-?.' |
'— th - e - ' - b J -— e
€ T > <> < 2 < a2
(a) ®) ())

Figure 4.12: Explanation for the terms in 7.
Let I's denote the number of nodes, exeept the root, in a s-level WOST. For s - 0,

r,o= S T. (1.3)
=)

For conv-nience, define I'y = 1. Now, M (W}) in Equation 4.2 can he compnted by:

Theorem 4.12 For 1 <s<n-—1and 1 <t <271,
NWEY = (s = 1) 4+ (s) U Fmgmn 27

Proof: As each of py. ..., ps1 has a unique candidate for any w & W no bhacktrack
ing involves these stages so s—1 node-searches are needed. Tn A, the corresponding,
sub-network of cach of the ¢ v-components requires at most a WCST of size 1, .
These t sub-networks give (I',,_;)" nodes to be examined in total {Corollary 4.2). In
the corresponding sub-network of cach of the remaining 2°7' — 1 hv-components in

A,, the maximum number of possibilities is (I',_,_1)?%, becanse we assumne cach of

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK 79

the 2 sub-networks in each of the 2570 — € sub-networks i A gives a WOST. These
230 snb-networks in A, combine to generate [(F—s-)2]25_]_’ nodes. O
4.5.4 An Upper Bound
Fquation 4.2 now becomes:
gt—=1
- = Wl Rl R i
Sy <S8y = (7'-1)(1——17!—)*’—,‘!21[I-\(”,)'m’j‘]
1= 1=
] n—12'"1 a—1 22t)
= (n= Nl - 57] 1 1[u 0N+ — M “,[Zl NWH W (44)
=1 3= H 1=

Again, we used Maple V (source code in Appendix ') to evaluate Equation 4.4.
By varying N from 8 to 1024, we obtained the results shown in columns | and 2

of Table 4.2 (other columms will be discussed ortly). When plotted in logarithmic

N Sn 7 = Le=lWl Ty W]

& | 2.787500000 4142857143 25 576

16 | 3.212169790 1328671329 1681 1625702400

32 | 1.009019977 || .8849641560x10~2 5317636 A4377631367x1027
61 | 5.000036187 || 3618577238x10* | .6631491470x10" | .6923783735x107!
128 | 6.000000000 || .1735803750x10~° | .8947678120x10%% | .1610029356x10'™
256 | 7.000000000 || .3087342589x10~12 | .1780982607x1057 | .1487031564x10%32
512 | 2.000000000 {| .1410341953x10= | .6664617483x10'13 | .7358513357x 10101
1024 | 9.000000000 || .2159151111x10-8° | .9675705744x1022¢ | .1209154431x10233

Table 4.2;

Numerical resulis produced by Maple V.

seale (Figure 4.13), Sy seems to be consistently lower than Ig N (algebraically proving
that Sy =0(log N) appears to require more participation from the mathematics
Therefore, we expect that the actual average time complexity of the

sblem is likely to lie between O(N) and O(N log N);

comumimnity).
ADM permutation routing -

probably closer to O(N) s sueec by our simulation.

Now we provide an intuitive account of the results. It is evident from Figure 4.13
that the first term in Equation 4.4 dominates (this agrees with simulation results

in Figures 4.7 and 1.8). To reason why the second term diminishes with N, we

n 1° |wl

monitored the quantity Z = i in Table 4.2, which contributes most to the

(CHAPTER 4. PERMUTATION ROUTING ON THIE ADM NETWORK N

«Sy «lgN .

<
~
\
\
\

Number of Node

8 16 32 64 N 128 256 512 1024

Figure 1.13: Sy and lg N versus V.

summation because W is the largest W and the corresponding I,y is also the
largest. Note that Z decreases quickly when N increases, especially for Targe Vs,
Also, T,y roughly squares whenever N doubles (note: one can prove by induction
that I'y_y < 2T,5-1, 0 < s < n). [W} grows faster but less than eubically.

The bound can be tightened in the future by removing 3 pessimistic assumptions.
1. Most r’s in R take | instead of n — | node-scarches to reject (Figure 1.7).

2. Most w’s in W} do not need T',_; node-searches (many inadmissible permuta

tions can be quickly rejected). This argnment applies to other Wit 2 1.

3. The actual search typically does not visit all nodes in the WCST, especially

when there are multiple solutions.

This analysis has also opened the door to improving the performance of the algorithin.
Lemma 4.6 implies an Q(/V) time procedure for identifying the “worst” permutations.
For instance, the “shift-down-by-1” permutation w(7) = (i + 1) mod N gives the full
WCST but there is an obvious way to route w: use downwards links in Ay and

horizontal links in all other A;. The “shift-up-by-17 case is symmetrical.

CHAPY SR 4. PERMUTATION ROUTING ON THE ADM NETWORK Sl

4.5.5 Worst-Case Performance

We now show that the scarch process can be restructveed so that the resulting algo-
rithm takes O(NV?) time in the worst case. Recall that the above algorithm (procedure
findp(), to be exact) invokes itsell recursively to examine Agyy only if all components
in A, arc conflict-free (i.e., at least T candidate for py exists). This policy takes
advantage of the observation that most permutations are inadmissible and they are
typicalis rejected due to confiicts at right-most stages of the network.

In the restructured algorithms, if the Ay of an ADM is conflict-free (e, it has
I or 4 candidates), then partial permutations of length -’:— need to be routed by the
even and odd sub-networks. This routing can be done by 2 recursive calls to the
algorithm itself. In so doing, backtracking in one sub-network no longer affects the
other sub-network. Let Ty denote the time required by the new algorithm to process

an arbitrary permutation for a size N ADM. Then, we have the following recurrence:
In < aN + 4(27'%),

where a is a constant, oN rtepresents all o(N) computations in the body of the
algorithm, and 4(27;) is the maximum time spent on recursive calls. The boundary
condition Ty = | gives the closed form solution: Ty < nNﬂBﬂ—rt%”, where n = log, N.
It simplifies to Ty < nN—’\—'%:l + N3, which means Ty = O(N?).

In comparing the two algorithms, note that a conflict in A; of the odd sub-network
may nullify the work done in the even sub-network because the advantage mentioned
at the beginning of this sub-section is lost. Hence, the divide-and-conquer approach

does not necessary perform better on the average.

4.6 Conclusion

We presented a deterministic, backtracking algorithm for routing permutations on
the ADM at compile time. It is much faster than brute-force search because the

maximum number of permutations to be examined for any A, is independent of N.

CHAPTER 4. PERMUTATION ROUTING ON THE ADM NETWORK N
The algorithm is expected to be easy to paraitelize. A sequential version performed
well irc our experiment hecause “bad”™ cases are rare, especially for large Nso Although
there may still be room for further speedup, large itnprovement is impossible becanse
the current version apparently takes linear time on average. Analvsis snggests that
the algorithm takes at most O(NVlog V) time on average. The worst-case aualy sis
shows that the ADM permutation problem can be solved in polynonmial time.

It is instructive to compare the ADM with the € network in Table 130 Aithough
the ADM is slightly more expensive, both MINs have O(Vlog V) hardware cost,
Leland [77) shows that the number of admissible permutations are roughly (V174
and (N5, respectively {Table 4.4). The superior combinatorial power of the ADM
had not been fully exploited because no polynomial reating algorithin was known.
In contrast, the © just requires O(N) sequential time [52] to recognize an admissible
perinutation, and O(N log N) time [137] (both average and worst case) to ronte an
admissible permutatior. Qur algorithm, which is likely to take O(N log V) average
time to process an arhitrary permutation and never needs more than O(N®) time,

has revived the AD™ as an attractive alternative to the €.

Admissible permutations
~ (N1)®>
~ (N])U.GEM

Routing ('um|)qui7fiij:
O(Nlog N)
O(N log N) (conjecture)

W li ardware cost
YR

O([’\ ;ﬂg }V)
abM ||

(g)

oo 3 Comparison of the ADM and € networks.

‘ o N1 (N!)O.Gfm (N!)O.S
[40320 I571.2 2008
16 2092x10' | 1755x10M A574x 107
52 .2631x10%% | 3815x10% | 5129x10™
64 .1268x10%0 6882x1052 1 3562x10%5
128 1 .3856x1021 | 4i38x10%%7 | .6209x10'0%
266 | .8578x10°07 | 64R3x 10572 | 2928x 102
512 | .3477x10M167 | 379¢x10310 | |1864x 10781
1024 | .5418x102%40 | 9447x10'3%2 | .7361x10'%2"

Table 4.4: N!, (NN and (N')%® versus N.

The algorithm can generate statistical information (e.g., Figure 4.7) which may

help us study ADM-admissible permutations. The algorithm can verify/calibrate new

CHAPTER 4. PERMUTATION ROUTING ON THEE ADM NETWORK 83
heuristics/algorithms. It also provides a basis ont of which efficient heurtstics can be
evolved. A detailed analysis of its exact average time complexity appears to be a
challenging rescarch topic. By carefully combining the divide-and-conquer approach
(% 1.5.5) with the current approach, it is hoped that the average time complexity of

the algorithm can be proven to be between O(N log N) and O(NV).

Chapter 5

On a Class of k-Nonblocking
Networks

In § 5.1, we point out that although high performance multiprocessor systems demand
nonblocking networks, cost considerations typically force the architeet to adbere to
rearrangeable or evin blocking networks. To enable a better balance between cost
and performance, we introduce the general notion of k-noublocking networks in % 5.2
where & is the number of simultancous connections that will not be blocked. The
k-nonblockingness of some existing networks are studied. A systematic scheme for
constructing strict-sense k-nonblocking networks, based on Bened” rearvangeable net

work, is given in § 5.3. The constructed network (with & = N) is cheaper than an
existing strictly nonblocking network. Efficient sequential and parallel routing algo.
rithms for the constructed network are presented in § 5.4. The hardware cost of the

network is computed in § 5.5. § 5.6 contains some concluding remarks.!

VA preliminary version of this chapter was presented at the Eighth Annual Canadian High Per
formance Computing Symposium in Toronto, Canada [72].

84

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 85

5.1 Introduction

The traditional approach to minimizing the cost of the INs in SIMD machines is to
nse low cost blocking networks that support the traflic patterns generated by typical
applications (c.g., using the @ network for matrix manipulation [73}). When a new
application is ported to the machine, the programmer is required to analyze and
re-sehednle the commuuication patterns inherent in the application. This difficult
task restricts the nsefilness of the machine. On the other hand, multi-user MIMD
machines (especially real-time systems) require nonblocking networks because the
communication pattern is not known in advance.

Although high performance systems demand nonblocking networks, cost consid-
crations typically foree the architect to adhere to rearrangeable or even blocking
networks. For instance, the nonb'ocking network proposed by Lin and Pippenger in
[79], which is derived from Beie rearrangeable network (§ 2.4.4), is over 100 times
more expensive than the latter when the size N is only 128. This cost gap widens
with increasing N ([99] has a theoretical study). However, rearrangeable and blocking
networks are too restricted in power.

Sinee the communication demand on a typical multiprocessor system is low most of
the time (i.c.. most of the parallel tasks are running independently), a full fledge non-
blocking network is unnecessary. We introduce the genera: notion of k-nonblockingness
to allow the high cost of a nonblocking network and the long delay of a rearrangeable/-
blocking network to be balanced by a good choice of k. By giving a systematic scheme
for constructing k-nonblocking MINs in the strict sense, and providing efficient rout-
ing algorithms, we show that the nonblocking operation can be achieved at a lower
cost. The cost gap between blocking and nonblocking networks is now interpolated by

a spectrum of new multi-path MINs. We start by defining k-nonblocking networks.

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NITWORKS N§

5.2 k-Nonblockingness

This chapter focuses on MINs with an equal number of input and output terminais,
A MIN with ¥V inputs has size Vo We assume circuit-switching operation with 1 to |
requests only. MINs are made of 2x2 switches unless stated otherwise, Tucoming

requests are handled one at a time,

5.2.1 Definition

We first define k-nonblocking MINs, and then give exaraples.

Definition 5.1 A MIN 5 of size N is k-nonblocking, where 1<k - N, iy never

blocks an incoming request whenever there are less than k established connections,

Evidently, k-nonblockingness is workload-dependent. (workload is defined to be the
number of established connections). When the workload exceeds &, the MIN may still
be nonblocking if the traffic pattern is “good,” otherwise, it i~ rearrangeable (e.e. the
proposed construction scheme in § 5.3) or blocking (e.g., the Clos network in ‘Theorem
5.3 with m < n). Even when the traffic pattern is “bad,” rearcangement /blocking can
be eliminated by dividing each communication step involving more than & conneections
into phases, each involving k or less requests. Clearly, the connection power of a k&
nonblacking MIN grows monotonically with &. Combining with Benes’ classiiication
(§ 2.3.1), we can have wide- and strict-sense A-nonblocking networks.

Although k& = 0 is excluded from Definition 5.1, we can define those networks
lacking the full access (§ 2.4.1) capability to be O-nonblocking, that is, a request, can be
Llocked even when the network is idle. A single stage shuflle-exchange (S15) network
(§ 2.4.2) of size N > 2 i< an example. In general, any size N MIN with less than
lg NV stages is 0-nonblocking Any MIN that possesses the banyan property (§ 2.4.3)
is at least i-nonblocking. The class of cube-type networks [41, 73, 112] is an example,
The k-nonblockingness of some existing networks is studied in § 5.2.2. Obvionsly,

N-nonblocking networks correspond to conventional nonblocking networks.

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS ST
Fhe general notion of k-nonblockingness can conveniently gquantify the power of

a MIN, especially when it is under unspecified 1-to-1 traffic (e.g., Theorem £.7).

5.2.2 k-Nonblockingness ¢i Some Existing Networks

Three theorems about, the k-nonblockingness of existing MINs are pioven i iov for

later reference and comparison. (s.d) denotes a request from input s to ovisnt d.
Theorem 5.1 Bened " rearrange ‘work is strictly 2-nonblocking.

Proof: Benes’ network can be obuained by cascading a baseline network (§ 2.4.3)
with an inverse baseline, and then removing one of the 2 middle stages (Figure 5.1).
However, it is casy to verify that we can keep both middle stages without affecting the
functionalities of the network. We focus on the links that interconnect the 2 halves.

Links are numbered downwards starting from 0.

et le
k Baselinc'1 N

"""" <

< QlogN >

Baseline

Figure 5.1: Bened' network. Existing, request: (z,7). New request: (i', j').

When the network is idle, the first incoming request can always be satisfied. Sup-
pose there exists a connection from input i to output j, using link & at the center.
The second request form ¢ to ;' needs a free link &' # & at the ceater. Due to the
properties of the baseline, input ¢ should be able to access at least]:' free links at
the - enter. The worst case happens when ¢/ and ¢ share a switch at the left-most
stagr. (Each input switch of the baseline can be viewed as the root of a (Ig . ,-level
complete binary tree, if the switches are treated as nodes. Any output is accessible
from the root via a unique path down the tree. A conflict at the root leaves one half
of the outputs inaccessible.) Similarly, output j’ should be reachable from at least

N

iT} free links at the center. Since there are only N—1 free links at the center, the 3

(CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS SN

links accessible from ¢ must have at least one link in common with the } links that
can reach j/. This common link can be selected as &, Henee,a request canalways be
satisfied without disturbing the established connection, if there is one. The network is
therefore strictly 2-nonblocking. It is not strictly 3-nonblocking because the sitnation

shown in Figure 5.2 blocks the next request (6,1). O

T
o
1
1

0
1
2
3
4
5
6
2

e EXisting connections

Figure 5.2: The third request (6, 1) is blocked in Benes network.

Theorem 5.2 The extra-stage-cube (ESC) network is strictly 2-nonblocking.

Proof: Clearly, the ESC (§ 2.4.3) is at least I-nonblocking. Assume there exists a
conneciion when the second request arrives. Lemima 3.1 indicates that switches in
stages 1,2,...,n— 1 can be classified into path-0 and path-1 switches. I the existing
request is using path 0 (1), then path 1 (0) can always satisfly the second request.
Hence, the network is strictly 2-nonblocking. A counter-example similar to that in
Theorem 5.1 can be constructed to prove that it is not strictly 3-nonblocking. O

Note that adding another SE stage to the input side of the ESC, giving a 2-GCN
(Definition 3.1) that provides 4 alternative paths between every input/ontput pair,
still gives a strictly 2-nonblocking instead of a strictly 4-nonblocking MIN.

We now examine the v(m,n,r) Clos network (§ 2.4.1). Let min(a,b,...) be the

minimum of a,b, .., and let s(z) be the switch with which terminal 7 is associated.
Theorem 5.3 v(m,n,r) is m-nonblocking in the strict sense for | < < 2n - .

Proof: Because there are m swit<i-.. i1 the middle stage, e alternative paths are

available for every input/output peic. * request is blocked only when all its 1 paths

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 89
are oceupied. Bach existing connection can only eliminate at most one of an incoming
request (1. 7)s alternative paths. Therefore, v(mon.r) is at least mm-nonblocking 1
the strict sense. N suffices to show that the (im + 1)th request can be blocked 1o
establish that the network is not (rn 4+ 1)-nonblocking in the strict sense.

Label switches in cach stage downwards starting from 0. Evidently, an existing
connection (g, h) eliminates one of (1, j)'s path if s(g) = s(2), or s(h) = s(j). or both.

Let there be § = min(n — 1,m) existing connections using s(j). Consider 2 cases:
m < 1 — 11 All m alternative paths have been eliminated so ¢ cannot reach j.

m > n — 1: ANl m paths leading to s(j) may become unavailable to (i, j) if there are
m — | existing connections using s(¢). Since 0 < m —1 < n, it is always possible

to generate these m — [connections to block the (m+1)th request. O

Theorem 5.3, however, is not a good scheme for constructing k-nonblocking MINs
hecause the Clos network suddenly becomes fully nonblocking in the strict sense when
m reaches 2n = 1 (e.g., a typical choice n = 2 only gives 1-, 2-, and N-nonblocking
MINs). Choosing » = 2 instead of n = 2 solves this “discontinuity” problem but the
resulting network is not cost-effective due to the use of large switches in both stages

I and 3. This motivates the construction scheme given below.

5.3 Constructing a k-Nonblocking Network

This section shows how a class of strictly k-nonblocking networks, where k& > 2,
can be obtained from Bened' rearrangeable network. Existing nonblocking networks,
such as the one constructed in [79] (as a variant of Cantor’s network [23]), generally
have a large number of methodically selected inactive terminals (i.e., no connection
involves them). This may simplify routing and guarantee nonblocking operation (by
limiting the workload) simultaneously. In countrast, we allow more active terminals
while nonblocking operation is guaranteed for workload less than k.

We first define a class of netw.rks C'(M, N), where N is the size and M is a

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS oy
parameter. Then. the relationship between the A-nonblockingness of C(MLNV)Y) and
the parameter A s derived.

C(AM, N) is a Clos-like, 3-laver network. There is a column of NV 1-to- 3 demulti
plexers in the input layer and a celumn of NV M -to-1 multiplexersin the outpnt laver.
In the middle layeris a column of M Vx.V Bened networks. i addition, the network

has the following constraint for all 1 € {1...., V}.

C1: The ith input (output) of each Benesd network in the middle layer is connected

to the /th demultiplexer (multiplexer) in the input (outpat) laver.

A (C(4,38) is shown in Figure 5.3. The stages in cacli Benes network ave labeled
from 1 on the left to 2lg N—1 on the right. The structure of C(M.N) 15 not cegnlar
due to the nature of layers | and 3. But when Af = 2" cach demultiplexer (mul-
tiplexer) can be replaced by an inverse baseline (baseline) network of f'?} le AL 2x2
switches. Only | arbitrary chosen input (output) of cach bascline (inverse baseline) is
kept active. The resulting network is denoted by (7*(M, N). Using existing resulls in
the literature, it can be shown that C*(M, N), counting all active/inactive terminals,
is topologicaily equivalent to a Bened rearrangeable network of size NA* So the
following results on ("(M, N) applies to Benes’ network directly.

Before we proceed, basic properties of Bened' network are reviewed. An N-input
Benes network has 21g N — | stages (§ 2.4.4). There is a nnigue path ranning between
every input and every switch in the middle stage (i.c., stage g V). Analogously, a
unique path runs between every switch in the middle stage and every ontput. Fvery
switch in the middle stage represents a path from any given input 2 to output j.

Hence. there . re XM alternative paths for every input/output pair in C/(M, N).
] y iy]

We will prove (ne nonblockingness of (M, N) in Theorem 5.5 by counting the
number o nsable switches in the central stage. So let 13, where 0 < b < N, be the

maximum number of middle-stage switches (in all Benes networks in layer 2) made

2In fact, our original derivation was based entirely on Benes' rearrangeable network. (((M, N)
was introduced to simplify the proof.

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 9]

Layer | Layer 2 Layer 3

Figure 5.3: Highlighted switches in (7(4,8) are unusable by any path from 7 to j.

inaccessible to any pair of idle input i and output j when there are b busy connections.

Obviously, By = 0. In general:

S TS TS L B N ,
Lemma 5.4 If;,--(§+§+z+z+1+Z-{-g—{---;)?,fm 1 <b< N.
bt;ms

Proof: Given a request involving idle input ¢ and output j. the number of middle-
stage switches made inaccessible to the request (7, j) by an existing connection, due
to the sharing of a switch (with (z,7)) in stage s is z—l\f;, where 1 < s < lgN. By
symmetry, the number of middle-stage switches made inaccessible to the request due
to the sharing of a switch in stage 21g N — s is also 2—’V¢T See Figure 5.3 for an
example. Therefore, By = —’}, corresponding to the sharing of a switch in either stage
| or 2lg N—1. (Note that once a worst case conflict has occurred on one side of
the network, any conflict on the other side of the network only affects middle-stage
switches already made inaccessible by the worst case conflict. Therefore, By # %—{--’Y—)
Similarly, By = By + l‘ = %, corresponding to the sharing of switches in stages 1 and
21g N — 1 (but not necessary within the same Benes network in layer 2).

(C'onstraint C1 guarantees that at most 251 existing connections can share a

switch in stage s (or 2lg N — &) with any path running between ¢ and j. where

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS R
| < s <lg N. Therefore, By = B, + % =(1+1+ 'i\l_, corresponding to the shaving
of 2 switches in stages | and 21g NV — 1, plus 1 switeh o cither stage 2 or 2lg NV 2
By continuing in this direction, we obtained the general expression for i, 61

Remark: the counting argument used in Lemma A0 s similar i principle to
Cantor’s argument [51] with the notable exception that we restrict the workload in
Jie network to at most & calls.

Given M = 2™, the highest degree of A-nonblockingness of C°(MLON) can he com
puted Ly Theorem 5.5, which is the main result in this section.

.

Theorem 5.5 (2™, N) is strictly min(N,2(2- D))-nonblocking.

Proof: It is evident from Lomma 5.4 that 13, increases monotontcally with b ¢'(MLN)

is k-nonblocking if one or more of the MTN middle-stage switehes are aceessible to ev:
ery pair of idle input ¢ and output j whenever there are < b existing connections,

Formally, we have Bi_; < 1_2_ which reduces to:

2 4 R

—— ot

(l+l+l+l+l+l+l+ + o2 (h.1)
27274 T AT) <2 >

e

k—1 terms
due to Lemma 5.4. Let us introduce an integer variable:

1])]
— . ol - ‘)2 . .).K . i
TR AR AR SRR SRk

Since there are k — 1 terms on the left side of inequality 5.1 aud 27 is an integer, the
largest possible &, called hyax, makes the left side an integer and satisties:
2424 2T (P 1) = R !

2|+22+_‘_+2ﬁ—l+2[1

Il

klll:’lx

i

l".lllit

3 X3
‘

Inequality 5.1 can be rewritten as f§ — j5 < 2™, which means < 2™, So:

k
] max) = ym
g(5 +1)

knlax - 2(22"‘ - l) (F)‘Z)

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 93
Sinee kpax 18 bounded by N, we conclude that ¢*(2, N) is k-nonblocking in the strict
sense. where k< min(V. 2(22" = 1)). because no path-selection algorithin is required
to satisfy a request wheneve there are < hmax €Xisting connections. O

Remarkably, Equation 5.2 is independent of N We will omit the subseript in Aypax

whenever it is understood from the context.

5.3.1 Interpretation and Application

I an (%)—nunl»lm'king network. where N = 2 is needed. then substituting k = 2"~

It

into Theorem 5.5 yields:

on—2 < 22"'

A
0

n—2
n-—-1 < 2"
So m > lg(n — 1) is sufficient, for n > 2. Table 5.1 shows the first few values of m

and the corresponding kpax. When m = 0, we have a Benes network of size NV with

all terminals being active, for which kyax is 2. [t precisely agrees with Theorem 5.1.

m | Kmax
0 2

1 6

2 30

3 510

4 | 131,070

Table 5.1: m verses knax-

Table 5.1 suggests that, in the proposed construction, a slight increase in m causes
Kuax lo rise sharply. For instance, to build a MIN with £ = 7, m = 2 is needed
which actually gives a 30-nonblocking MIN. Although the straight-forward approach
illustrated below by example is not cost-effective, it demonstrates that any precisely

k-nonblocking MIN can be explicitly constructed.

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETTWORRS 0

To build a 3-nonblocking NN of size NV, we can connect in parallel one Benes and
one baseline network, both of size N\ new stage of vV demultiplexers (multiplex
ers) are connected to the input (output) side to allow any input {output) to access

either network. The resulting network {(Figure 5.1) is exactly 3-nonblocking because

2 requests can use Bened network while | request can be directed to the baseline.

a

Benes

Baseline

Figure 5.4: Constructing an exactly 3-nonblocking network ol size N.

5.3.2 A Special Case: N-Nonblocking

The case & = N = 2" is examined here because (""(M,2") can be compared with
existing nonblocking MINs. We first compute in Corollary 5.1 the w for an N-

nonblocking C*(2™, N). Our result essentially coincides with Cantor’s result {54].
Corollary 5.1 When m >lglg N, C*(2™,N) is strictly nonblocking, wheve N2 4,
Proof: By substituting & = N into Theorem 5.5 we get:

211-[< 22"‘
n—1 < 2"

m > lglgN. O

Therefore, we can construct a conventional strictly nonblocking MIN of size N by
retaining any one of every lg N terminals of a Benes network of size Nlg N. Lin and

Pippenger’s nonblocking network {79] has a parameter similar to 1. But in order to

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 95

prove the nonblockingness and sustain an acceplable routing time, they strategically

set 1o [lg8n]. Thus, the proposed construction produces cheaper networks,

5.4 Routing Algorithms

It remains to show that the network constructed above can be controlled efficiently.

We devised 2 routing algoiithms® for C*(M.N): MPL and FirstFit. The former is a

probabilistic parallel algorithm whiie the latter is a deterministic sequential algorithm.

5.4.1 MLP

Idea: MLP (Modified Lin-and-Pippenger) is a dircct adoption of the probabilistic

algorithm in [79] (will be reviewed below). except that it is applied only when

there are < k existing connections (otherwise, it may not terminate).

Data structure: Requires O(N(log N)?) space as shown in [79].
Input: A bateh of f connection requests. Each request is an ordered pair (7,).
Outpul: Route assignment for the { requests.

Algorithm: Starting {rom the given input and output terminals for each request,

make random routing decisions at the switches so that the left and right halves
of a path (the left half of a path cuts through layer 1 and the first half of a
Bened network in layer 2) are produced. If the probability that the left (right)

half of the path is free is > %, then the probability that the full path is free

s 3xd= 2>

TS At such a high success rate, a trial-and-error approach is

-

effective. After a number of rounds, most of the ¢ requests should have been

satisticd. See [79] for details.

Analysis- For simplicity, assume (C*(2™, N) is 2P-nonblocking, where 0 < p < n.

From Theorem 5.5, we need m > lgp. The number of links leaving the middle

3A third deterministic algorithm called Parallel DFS, which takes O(N) time, is not covered.

(CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS ap
stage (towards the outputs) is 24 When the network is idle, all of them are
accessible from every input. The number of inaccessible links in the worst case
(i.e., when k—1 established connections are present) is p2* =t Thus, the number

of accessible links leaving the middle stage is:
2m+n _ 1)211—1 — 211—](2 Lom_ P) — zit—l(gl’ . ,“) = N l]’-

The chance of hitting a free path when tryving randemly from either the wnpat

or output side is:

2=ty »
DJui+n - an{—l

!
5
which is worse than the 2 in [79]. Thus, random search takes a longer time (com
paring with that in [79]) to find a free path because ("™(M, N) has fewer alter
native paths as a result of allowing a higher ratio of active terminals. However,
it is worthwhile to relax m slightly to keep the ratio of free paths > 2. In doing
this, both of the probabilistic and deterministic algorithms in |79} will serve
C*(M,N) at their original near-optimal speeds, O((log N)?) and O((log N)*),

respectively. The condition is:

2m+n _])2"_1 3
Yt Z ?

(Vv

which simplifies to m > 1 +1gp. Therefore, by increasing i by [, all algorithms
in [79] will work on C*(M, N} at the above mentioned speeds. ‘To achieve these
speeds, an N-nonblocking network needs m > 1g 2n which is still smaller than
the m = |lg8n] in [79]. Hence, we actually obtained a slightly cheaper network
without sacrificing routing time (n.h., their network is already “weakly optimal”

[79] so large saving is not possible).

5.4.2 FirstFit

Idea: Try to search for a usable switch ¢ in the middle stage and then verify thet

the two path segments from input ¢ to ¢, and from ¢ to output j, are free.

CHAPTER 5. ON A CLASS OF K-NONBLO('KING NETWORKS 97
Data strueture: Use 3 bits to encode the state of every switeh (Fig e 5.5) not in the
first/last 1 stages. O(N{log N)?) spare is needed, which equals that in [79].1

000 001 010 011 100 101 111

Figure 5.5: Three bit encoding of the state of a switch.

Inpul: A connection request (¢,7).

Output: Middle-stage switch ¢ which specifies the path uniquely.

Algorithm: Function headers and main program are presented in pseudo code:

int nstate(c); /* returns the status of middle-stage switch ¢ */

bool leftfree(i, ¢); /* returns true if all switches in the unique path between
input ¢ and middle-stage switch ¢ allow the connection, otherwise false */

bool rightfree(e, 7); /* -eturns true if all switches in the unique path between
middle-stage switch ¢ and output j allow the connection, otherwise false */

void foundpath(e, i,7); /* updates the data structure to reflect the path assignment
defined by input 4, 1iddle-stage switch ¢, and output j */

int MSB(2); /* returns the most significant bit of */

int function FirstFit(z,j) /* assume C-like semantics for operators */

1 forec=0to 2"+t 1 _1step 1 do /* loop for all middle-stage switches */

2 if ((mstate(c) == 7) or (((MSB(4) << 1) | MSB(j)) == mstate(c))) then
/* ¢ is usable if it is idle or it’s state is compatible with the request */

3 if (leftfree(i, ¢) and rightfree(c,j)) then
4 foundpath(c.1,J)
) return(c)
endif
endif
endfor
6 return(-1) /* no free routes, probably because workload > k */
endfunc

Analysis: mstate() and MSB() clearly take O(1) time. Each of leftfree() and
rightfree() checks the status of O(log V) switches so they take O(log V) time.

Similarly, foundpath() takes O(log N) time. Hence, every iteration of the

4Their deterministic algorithm requires more space than ours due to a large constant factor.

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS us
main loop in FirstFit takes O(log V) time. The complexity of FirstFit is thus
02"t log N). However, ¢ in line 1 can be incremented in a better way: when
ever leftfree() or rightfree() reports a contlict with an existing connection when
they scan the network from outside towards the center, all other middle stage
switches accessible from the switch output at which the conflict occurs can he
skipped. Now the main loop iterates at most & timcs so the complexity reduces
to O(klog N). If k is a constant, FirstFit takes only O(log V) tune. A is O(N)
then the complexity becomes O(N log V). When & is small, First it could he

faster than the O((log NV)*) time of the deterministic MLE [79].

5.5 Removing Dummy Switches

When m > 1, some unused switches can be removed from (" (M, N). The number of

removable switches. and the precise cost of the network is given helow:

Corollary 5.2 The number of removable switches in (™*(2",2"), where e > 1, s

(7” _ 2)2n+1n + 2n+1 .

Proof: There are 2" active terminals on cach side of (*(2",2"). The number of
stages on the input side that can have switches removed is casily seen to be - 10 1f
the stages (in all layers) are numbered from left to right, starting from 1, then there
are 2"~ 1 switches for every active input in stage 1; so 2"(2™~1 — 2") switches in stage
1 are removable. 2° is the number of switches accessible from the active input and

hence cannot be removed. In general, the total number of removable switehes is:

m-—1
2[2n Z (27rz—l _ 23—])] — (7” . 2)2n+m + 27L+l. O

s=1

The actual cost of the network measured by the number of switches is:
[2(” + 77L) _ l]2n+1u—l _ [(7ll _ 2)2'n+m + 2u+l] — (2" + 3)211-{-1/“-] _ 27L+|.

When 2™ = n, which results in an N-nonblocking network, the cost is 2*71(2n% +

3n—4); and that is still O(N(log N)?).

CHAPTER 5. ON A CLASS OF K-NONBLOCKING NETWORKS 09

5.6 Conclusion

We accomplished 3 tasks in this chapter. First, the general notion of k-nonblocking
networks provides a conceptnal framework for achieving nonblocking operation at
lower cost. Rearrangement/blocking can be eliminated by choosing a large k (for
MIMD machines) or by dividing each communication step that involves > k connec-
tions into phases (for SIMD machines). The idea applies to both wide- and strict-sense
nonblocking MINs. We also studied the k-nonblockingness of some existing MINs.

Second, a systematic scheme for constructing strictly k-nonblocking MINs, based
on Benes’ network, is given. If one ont of every 2™ terminals of a Bened network
is kept active, then a suitable m can be computed to guarantee k-nonblockingness.
We allow the highest ratio of active terminals while & limits the workload to sustain
nonblocking operation. Hence, computation tasks should not be distributed if exten-
sive communication is constantly needed. Note that other approaches to constructing
k-nonblocking networks exist.

Third, efficient routing algorithms were devised. Since the parallel algorithm MLP
is near optimal, we actually obtained a nonblocking network slightly cheaper than that
in [79] without sacrificing routing time. Thus, parameterizing nonblocking networks
by k does not necessary incur cost/routing overheads. FirstFit is a good sequential
algorithm for small or fixed A’s.

One open problem is the construction of wide-sense k-nonblocking MINs. (We
already found that a v(m,n,r) Clos network is wide-sense m-nonblocking for 0 <
m < n 4 min(n,r) — 1 [69].) Another interesting direction arises from a review of
some MINs we considered. Table 5.2 shows the minimum depth required for any
MIN to be k-nonblocking when the width (§ 2.1) is kept at N. The ‘7’ entries
k=3.1,...,N, correspoud to open problems. Chapter 6 solves some of them.

A second interesting direction is the design of low cost MINs to achieve nonblock-
ing operation for prescribed traffic patterns. For example, it is not difficult to prove
that the rearrangeable network in [60, Figure 10] is wide-sense nonblocking under

first-in-last-out traffic (i.e.. the most recent request is released first) [69]. It is not

CHAPTER 5.

ON A C'LASS OF K-NONBLOCKING NETWORKS

k-nonblockingness

Minimuam depth

Fxample

0

[

N

> 1 (but <lgN)
>lg N
>lg N+1
9

?

SE (§5.2.1)
baseline (§ 5.2.1)
50 (Theorem 5.2)
"

?

Table 5.2: Minimum depth necessary to be k-ncablocking,

known whether it is wide-sense nonblocking under first-in-first-out trathe too.

100

Chapter 6

Width N Wide-Sense Nonblocking
Networks

This chapter mainly discusses the synthesis of nonblocking networks made of square
switches (where the width of a size N network is also N). We first show in § 6.2
that no width N MIN can be strictly nonblocking. In § 6.3, a width N multi-path
recursive network called the Quadruplet (Q) is introduced. Important properties of
the () network are given in § 6.4. We prove that @ is wide-sense nonblocking in § 6.5.
More information about @ is presented in § 6.6. By transforming @ into a proper
MIN in § 6.7, we uncover a fundamental difference between wide- and strict-sense
nonblocking MINs: the former can have width N but the latter cannot. § 6.8 proves
that a wide-sense nonblocking MIN can be built by serially cascading a number of

shuflle/exchange stages. A new implication of the notion of universality is also shown.

6.1 Introduction

Mauy existing MINs are made of small, square switches. For example, the 2x2 crossbar
is the major building block in [41] and [111]. The 3x3 crossbar is used in the Gamma
network [123] while the 4x4 crossbar is used in [50]. Due to their wide-spread use,

MINs made of square switches deserve our attention. The width (§ 2.1) of a size

101

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 2
N MIN made of square switches is NV because the number of links between any 2
adjacent stages 1s V. This chapter mainly discusses this kind of MINs. If the width
of a network is not V, it is understood that non-square switches have been used.
Our work is motivated by two related open problems. We now discuss the lirst one.
Intuitively, a more powerful MIN can be constructed if a larger width is allowed while
the depth is fixed, or a larger depth is allowed while the width is fixed. The former
case is well covered in the literature (e.g., [120] has a probabilistic study; Theorems
2.1 aud 5.3 for the Clos network form another example) because limiting the depth
improves the end-to-end delay of a MIN. The latter case is an interesting arcn for
theoretical studies. If the width is fixed at N. then the minimum depths required to
construct networks having various capabilities are given in Table 6.1. The 7" entries

correspond to open problems (c.f. the last row in Table 5.2).

Minimum depth Network obtainable Sxample
1 blocking, non-full-access | SE (§ 2.4.2)
lg N blocking, full-access 2 (§2.14.3)
2lg N — 1 Rearrangeable Benes (§ 2.1.4)
? wide-sense nonblocking ?
? strict-sense nonblocking 7

Table 6.1: Minimum depth required for width N MINs of various capabilitics.

S«sed on Bened’ work, we show in § 6.2 that strictly nonblocking MIN cannot
have width N. It is not known whether width N wide-sense nonblocking MINs exist,
except an example network of size 4 (Figure 6.9) given by Benes [14]. This network
does not generalize to NV > 4. We resolve this issue by proving that N is a tight lower
bound on the width of wide-sense nonblocking MINs. Although a width N MIN
cannot be strictly nonblocking, what is the highest strict-sense k-nonblockingness
(Definition 5.1) attainable? This question is addressed too.

We now examine the second motivation. Some definitions are given first. The
universality of a MIN is the number of passes it requires to perform an arbitrary per-
mutation {110, 118]. For example, the universality of the GCN is 3 (§ 2.4). An ileraled

MIN [43] uses one permutation to interconnect all adjacent stages. The universality

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 103

of iterated MINs has received extensive attention because any target permutation can
be performed by recirenlating it through a MIN with only a few stages. Table 6.2
summarizes some impertant results in this direction. A permutation p is universal
if a rearrangeable iterated MIN can be built using p. Since the introduction of the
perfect shuffle in [117] as the first universal permutation, the question “How many
shuflle fexchanges (SEs) are needed to attain rearrangeability?” (124, Chapter 4] has
interested many researchers. The current confirmed! upper and lower bounds are
3n—4 and 2n—1, respectively, where n = lg N. The set of universal permutations has
been characterized in [43] and all elements in the set are equivalent (i.e., it « stages

of SE is rearrangeable, so is @ stages of any other universal permutation).

Researchers Year Achievements
Stone [117] 71 n* stages of SE is rearrangeable, algorithmm given
Parker [95] '80 3n stages of SE is rearrangeable, no algorithm
Wu and Feng [129] 81 3n—1 stages of SE is rearrangeable, algorithm given
Kothari et. al. [66] '83 3n—3 stages of SE is rearrangeable (N = 16 or 32)
Huang and Tripathi [53] 86 2n—1 stages of SE are necessary,

3n—3 stages are sufficient for rearrangeability
Raghavendra and Varma '86 3n—4 stages of SE are sufficient for rearrangeability,
[103] algorithm given for a 5-stage SE with N =8
Linial and Tarsi [80] 89 3n—4 stages of SE is rearrangeable, algorithm given
Cam and Fortes [22] 90 2n—1 stages of SE are both necessary and

sufficient for rearrangeability, no algorithm
Fiduccia and Jacobson [43] '91 Characterized the set of universal permutations
Kim and Raghavendra [63] 91 A better algorithm for a 5-stage SE with N =8
Feng and Seo [42] 94 2n stages of SE is rearrangeable, algorithm given

Table 6.2: Some results in the study of iterated MINs.

Now, it becomes natural to ask “How many SEs are needed to attain nonblock-
ingness?” Hwang [55] has proven that a strictly nonblocking MIN cannot be obtained
by serially cascading SE stages. However, the case for wide-sense nonblockingness is

an open problem. Note that one can declare a MIN as rearrangeable without giving

YIn 1994, Varma and Ragl.avendra [124, Chapter 4] claimed (without explanation) that the proof
in [22] (see Table 6.2) is incorve.t They also pointed out the mistake in Sovis’s attempt [116] to
prove that 2n—1 stages of SE are su‘izient for rearrangeability. To exercise caution, we are not using
Feng and Seo's [42] new result (see iable 6.2) here. But once the correctness of [42] is confirmed,
our result in Corollary 6.2 can easily be updated by changing all 3n—4 to 2n.

CHAPTER 6. \WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 104
a routing algorithm (exhaustive search can alwavs find a solution). But to declare
a MIN as wide-sense norblocking, one must give, or at least prove the existence of,
a routing algorithm that can satisfy any valid request/velease sequence.® This is in
general a very difficult task. For example, Benes exhausively enumerates ali possible
states of his 4x4 network [I1]. This method suflers from “state explosion™ when N s
large.

We have covered our two motivations. To avoid state explosion, we designed a
recursive network, called the Quadruplet (Q). as the vehicle for expressing the idea
of our routing algorithm (traditionally, routing algorithms are designed for existing
networks). Hence, (2 is wide-sense nonblocking. By transforming (2 into a proper MIN
of width N, a fundamental difference between wide- and strict-sense nonblocking
MINs not obvious fr- - their definitions is identified: the former can have width
N while the latter ca ot ([38] gives another dificrence concerning the cost). By
subsiituting sub-networks in @@ with SE stages. we derive an upper bound on the
number of SE stages sufficient for wide-sense nonblockingress. Both open problems
that motivated us are thus solved.

The major task in this chapter is to show that @ is a wide-sense nonblocking
network. Properties of the Q network are highlighted. Beside solving the two open

problems, we also extend the primary result to conclude that:
1. Any width N MIN can at most be strictly (N —2)-nonblocking.

2. By serially cascading a certain number of any rearrangeable MINs of width N,

a wide-sense nonblocking MIN can be obtained.

3. The set of (universal) permutations that can produce rearrangeable iterated
MINs is identical to the set of permutations that can produce wide-sense non-

blocking iterated MINs.

2A wide-sense nonblocking network has control-dependent-nonblocking capability {131].

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 105
6.2 Width of Strictly Nonblocking MINs

This scetion shows that the width of a strictly nonblocking MIN (not necessary made
of square switches) of size N must be > N. Theorem 6.1 1s the main conclusion of
Benes' 1981 paper on wide-sense nonblocking MINs made of square switches. Busy

parallel paths (BPPs) are paths that are busy, and they do not share any switch,

Theorem 6.1 [14]: Any nclwork made of squarc switehes is wide-sense nonblocking
if and only if there erists a routing algorithm that makes all network states that contain

BPPs unreachable.
Theorem 6.1 allows us to claim that:

Corollary 6.1 Any strici-sense nonblocking MIN (not necessary made of square

swilches) of size N must have width > N.

Proof: Note that parallel paths exist in all width N MINs that do not have an Nx.V
switch. By definition, a strict-sense nonblocking MIN allows any available path to be
Chosen randomly. Hence, it is easy to generate a pair of BPPs in such networks (an
example that illustrates the idea is given below). The existence of BPPs implies that
a blocking state is reachable [14]. Therefore, a MIN of width N cannot be strict-sense
nonblocking. Obviously, no MINs of width < N can be strict-sense nonblocking. In
conclusion. strict-sense nonblocking MIN of size N must have width > N. D

In Benes' - ctwork (§ 2.4.4). if the top-most links are randomly assigned to a
request from input 0 to output 0, and the bottom-most links are randomly assigned

to a request from input N—1 to output N—1, a pair of BPPs is formed (Figure 5.2).

6.3 Definitions and Notations

We focus on circuit-switching operation with 1-to-1 requests only. A connection
request is abbreviated by (a,b), where a and b are idle input and output terminals,

respectively. The state of a 2x2 switch is either swap or straight (§ 2.1). The state

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS L6
of a network is composed of the states of all the switches. In diagrions, an Vx N

switch /sub-network is marked V", We define the Quadruplet () network vecursively:
Definition 6.1 A size 2 Quadruplet network, denoted by Q. is a 202 crossbar switeh,

Definition 6.2 4 Q~. where N > 3, is a network with N inputs and N oulputs

made of § Q~_1’s. as illustrated in Figure 6.1.
} [/

IN-1

jeaall..

N-1

ioe .
‘oo
.

0 1

(387
-

Figure 6.1: Q~.

Because of the link between stages 0 and 2 (or 1 and 3), Qn is not considered a
proper MIN. The width of Qn is N. Switches/stages are numbered left-to right
starting from 0. In fact, every (N—1)x(N —1) sub-network in the Qn network can be
any switchi/sub-network that is nonblocking. The inputs/ontputs of the sub-networks
are indistinguishable and hence their labeling order is immaterial. Figure 6.2 depicts

the structure of the first quarter of an expanded Qs.

Figure 6.2: The first quarter of a (J5.

We now describe our routing model. The current state of a width N network
decides what permutation it is implementing. If the current permutation cannot
accommodate an incoming request, the states of some idle switches are changed such
that the network implements a new permutation which can accommodate the request.,
Note that busy paths are never disturbed if the network is nonblocking. Links along

the used path are marked as busy. The input to the routing algorithm is cither a

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCK!NG NETWORKS 107
connection request or a release. For a request, the algorithm generates as output the
path assigned to the request. The status of the network is updated accordingly. For
a release, the network status is updated with no output eenerated. A pathis uniquely

specified by the sequence of switches it uses.

6.4 Basic Properties of the Q Network

Three lemmas in this section highlight properties of the) network used by the main
theorem in next section. The inputs (outputs) of Qn can be classificd into 2 types:
the single input @ (output ') and the set of indistinguishable inputs B (output B')
(Figure 6.3a). All outputs in B’ are equivalent in the sense that given any input ¢,
the same st of alternative paths are available for any reque.,b'), where V' € B’

Similarly, all inputs in B are equivalent.

! P
B{ﬂm e N1 | s N[g [N E]B' sivt | s INa[e N2 | g N e
0 i 2 3 0 ! 2 3
(a) (b)

Figure 6.3: a) Terminal labeling of a Qn, b) Busy path (a, a’) removed from graph.

Lemma 6.2 After serving an arbitrary connection request, Qn reduces to a network

with at least one embedded Qn -1, where N > 3.
Proof: (lonnection requests for @ can be classified into 4 types:

(a.a"): The only feasible path involves switches 1 and 2 (Figure 6.3a). After the

connection is established, the rest of the network is depicted in Figure 6.3b.

(a.b'): There are 2 ways to realize this type of request. The first path uses switches

I and 3 (Figure 6.4a). The second path uses switches 1, 2, and 3 (Figure 6.4b).

(b,a'): Symmetrical to the (a,b') case. Two possible paths exist.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS tox

T T —] T // > ’ > s
g P = = =] - , . «\ e
elNa | e |N2| e NG| e [N2fe N e IN2[TeN2 [TN e
0] 2 : o 1 2 =
@ (W)

Figure 6.4: Network graphs resulting from the 2 ways to realize (a,b').

(b,%): There are 3 possible paths. Path A involves switches 0, 1 and 3 (Figure
6.5a). Path B, which is a mirror image of path A, involves switches 0,2, and 3.

Path C involves switches 0, 1, 2, and 3 (Figure 6.5h).

T Ny
oIN2| o IN2| ¢ [N o [N2|® eIN2[e iN2[e N2 [¢ IN2]e
— -
0 1 2 3 0 1) 3
@) (b

Figure 6.5: Network graphs resulting from the 2 ways to realize (b,).

Clearly, whenever < 3 sub-networks are used to satisfy the request, the resulting
network has at least 1 free (N—1)x(N—1) sub-network (i.c., Qn-1). Only path €
in the (b,V') case uses all 4 sub-networks in Qn. Yet, the network in Figure 6.50)
is exactly a Qn_1. Therefore, after randomly assigning a free path to an incoming
request, Qn always gives a network with at least 1 embedded Qn_y, where N > 3. 0

Next lemma supplements Lemma 6.2.

Lemma 6.3 After serving an arbitrary connection request, Qg reduces to a network

with at least one Q, embedded, if path C is not used to roule vequests of Lype (b1).

Proof: Similar to the proof of Lemma 6.2, whenever <3 switches are nsed in satis-
fying a request, Q3 always reduces to a network which has 1 or more Q;’s. Ouly path
C in case (b, b') uses all 4 switches in Q3. A pair of parallel paths is created if it is
chosen. So we avoid using path C to route requests of type (b,0'). D

An outline of the algorithm for routing requests on the @ network is given below.
The nonblockingness of @Qn hinges on the priority scheme in Table 6.3, of which
Lemma 6.3 is a special case. To satisly a request, the high priority path (HPP) is

used whenever possible, otherwise, the low priority path (LPP) is taken.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 109

Request Switch usage
Type | high priority path | low priority path
(a,d') 1,2 N.A.
(a,b') 1.23 1.3
(b,a’) 0,1,2 0,2
(b,b') 0,1,30r 0,2,3 0,1,2,3

Table 6.3: Priority assignment for the 4 types of requests.

proc QRoute(Qn, s,t) /* (s,1) is the connection request */
if (N < 3) then /* 2x2 switch, routing is trivial */
update network status to record busy path (s,1)
else
consult Table 6.3 and select a path P for (s,1)
for every sub-network Q (of type Qn_1) in path P do
call QRoute(Q, s',1') /* (s',1') is the request to be satisfied by Q */
endfor
endif
endproc

For example, to route (a,a’), the @n-1’s in stages 1 and 2 receive requests of
types (a,b') and (b,a’), respectively. Therefore, routing is a recursive process with
branching factor < 4.

Any pair of 2 arbitrary requests fall into one of the 16 combinations in Table
6.4. Except for impossible combinations (indicated by ‘-’), each table entxy gives the
labels of the switches always shared by the 2 requests, no matter what paths (HPP
or LPP) they are using. The ‘7’ case is discussed in Lemma 6.4 {only one ‘7’ case

needs to be examined because of symmetry).

(e,a") [(a,b)|(ba)| (b)])
(a,a") - - - 1 and/or 2
(a,b) - - ? 3
(b,a") - ? - 0
(b,0") | 1 and/or 2 3 0 0 and 3

Table 6.4: Switch(es) shared by any 2 requests.

Lemma 6.4 For N > 3, if Qn is initially in a safe state® and all subsequent requests
Y q q

are routed by QRoute, then any 2 busy paths in Qn share at least | switch.

3A state from which no blocking state is reachable under the routing scheme.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS Lo
Proof: Ounly the *?7" case in Table 6.1 requires our attention. A pair of BPPs s
generated if and only if both (a,d) and (b, ") use their LPPs (Figure 6.6a). We show

that our priority scheme avoids this situation if Qx is initialized properly.

a
) ><—
L
BlLejvi o Na] g vt g
0 T2
(a)

Figure 6.6: a) BPPs (a,b") and (b, «'). b) N -2 (b, V') reguests using their LPDPs.

We examine how the pair of BPPs is formed. Without loss of generality, let (a,0')
be an existing connection when the requesi {#, a') arrives. Since the HPP for (b, d")
uses switches 0,1, and 2, the LPP using switches 0 and 2 is chosen only if either all
N—2 links between switches 0 and 1 a2 busy, or all N—2 links between switches |
and 2 are busy, or both. Hence, there must be N—2 existing connections of type
(b,b'), all using their LPPs (Figure 6.6b), to force (b, ') to use its LPP,

Let (bi,)) be the most lately arrived request among the N—2 requests of type
(b,b"). (b, b%) is forced to take the LPP (switches 0, 1, 2, and 3) only if the direet links
between switches 0 and 2, and that between | and 3, are bhoth busy. This requires
both of the busy paths (a, b') using switches 1 and 3, and (b, a’) using switches 0 and 2,
to be present. We now see a “circular dependency.” In summary, (b, «') uses its LPP
only if all N—2 (b,¥) connections are using their LPPs. The most recent request
(bi, b;) among the (b,b')’s uses its LPP only if both (a,V') and (b,a") arc existing
connections and are using their LPPs.

In general, once the system is in a safe state (e.g., an idle network), BPPs cannot
be created by the routing scheme. So any 2 busy paths share at least | switch, 0O

PRemarks: if the system is initialized to an unsafe stale, say, N—2 busy connec-
tions of type (b,d') all using their LPPs, then there exists request/release sequences,

say, request (a, a’) or (b,b'), that can force the system into a blocking state. Yet, some

4A state from which a blocking state is reachable even if the routing algorithin is in control.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 111
request/release sequences may drive the system from an unsafe state to a safe state.

Now. it becomes clear that the *?” in Table 6.4 should be ' and/or 2.

6.5 The Q Network is Wide-Sense Nonblocking

This section uses Lemmas 6.2, 6.3, and 6.4 to prove that the @ network is wide-sense
nonblocking. We require 2 new definitions: @, is a single link (or a series of links)

and Qq is a null graph. Qq, @1, and Q) are considered wide-sense nonblocking.
Theorem 6.5 (n is a wide-sense nonblocking network, where N 2 3.

Proof: The network state space is simplified to give the transition diagram in Figure
6.7. A transition from Q; to @i, where N > i > 1, means that on arrival of
an arbitrary request, QRoute can satisfy the request and the resulting network has
at least one Qi-, embedded. A transition from Q;_; to (; means that if one of
the N—i+1 busy connections is released, the resulting network has at least one Q:
embedded. To conclude that a given physical network Qn is wide-sense nonblocking,

it suflices to show that every transition can be realized by QRoute.

N A /\B/\ ‘....,/{'I'vm/\ ;
1QN QN-IOOO Q4 Q3Q2 . Ql QO .

Figure 6.7: State transition diagram for Qn.

For cach Q; — Q;_; transition in area A, where N > ¢ > 3, Lemma 6.2 guarantees
that a path (passing through the Q; embedded in Qu) can be found to satisfy an
arbitrary request, leaving behind a free Q;—, embedded in Qn (Lemma 6.2 also ensures
that the Qi_1's used in the path can handle their corresponding requests). Every
Qi—y — Q transition in area A, where N > i > 2, is realizable because by removing
from (Qn. one at a time in arbitrary order, the N — 7 paths that remains busy after

the release, a (Q; can be obtained due to Lemma 6.2. Lemma 6.3 is customized to

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 12
handle transition B. Transition (' is realizable due to Lemuma 6.1 as explained below.
Suppose 8 is the free path (in 1) and 7 is the path to be released. Although ¢ s a
free path, 8 and 7 must share at least one 2x2 switch, which becomes the Q) we need
once 7 is released. Hence, we can always get from @ to (2. All transitions in area
‘Trivial® are obviously realizable. Since QRoute can satisfy all valid request /release
sequences, Qn is wide-sense nonblocking. O

Intuitively, Theorem 6.5 holds because Lemma 6.4 provides a strategy for avoiding
BPPs while Lemmas 6.2 and 6.3 ensure that the current network contains at least
one () network for the strategy to work on. Alternatively, the proof for Theorem 6.5
may be built on top of Theorem 6.1 and Lemma 6.4, but then Theorem 6.7 ahead
will require a separate proof QRoute has been implemented in ¢ and verified (by

simulation experiment) to work correctly for N < 8.

6.6 More About Qy

This section discusses the simplicity, building block, width, depth, and power of the ¢
network. Lemma 6.6 hints that the number of stages in Oy cannot be reduced. Non-
exhaustive experimentation shows that Qn ceases to be nonblocking when smaller
switches (e.g., an (N—=2)x(N —2) switch in parallel with a 2x2 switeh) are nsed at any
stage. Hence, @y seems to be the simplest recursive wide-sense nonblocking network

of width N (a recursive rearrangeable network of width N is in [60]).
Lemma 6.6 The 3-stage network graphically defined in Figure 6.4 is nol nonblocking.

Proof: The following request/release sequence forces the network into a blocking
state no matter how the requests are routed: N—1 requestsof type (b, V') are presented
to an idle network. The connection (b, b)) that occupies the direct link hetween

switches 0 and 2 is released. The next request (e,b’) is blocked. D
In general, Qn can use any mxm crossbar switches (m > 2) as building blocks
without affecting previous results. That is, Defiition 6.1 now defines @, to be an

mxm switch. Definition 6.2 remains the same for N > m. Although the regularity

(CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 113

AT
N1| 3 NI

0 1 2

=<)
— ®

Ioooil
Z.
=
os,
~
w

Figure 6.8: After removing 1 stage from Qy.

of Oy will suffer, Definition 6.1 may also define Q4 to be Bened’ 4x4 wide-sense

nonblocking network [14] (Figure 6.9). Definition 6.2 still defines Qn for N > 4.

Figure 6.9: Benes’ size 4 wide-sense nonblocking network.

Although Qn is not meant to be a practical network, it is interesting to know how
its depth relates to its size. Let the depth d,,(:V) be the number of stages of mxm
switches in Qn. Definition 6.2 directly implies d,,,(N) = 4d,,(N—1). This recurrence
equation has a simple solution d,,(N) = 4¥=™ for the boundary condition din(m) = 1
(if Benes' 4x4 network is used as the building block, we have dg(N) = 4N-3 for
the boundary condition dg(4) = 4). Note that d,,(N) is also a measure of the cost
because there is only one® row of mxm switches in Qn.

Recall that a network is k-nonblocking in the strict-sense (§ 5.1) if it appears to be
strictly nonblocking whenever there are < k existing connections, where 1 < k < N.
Although no width N network can be strictly N-nonblocking (Corollary 6.1), @n has

the highest strict-sense k-nonblockingness possible:

Theorem 6.7 For N >3, Qn is strictly (N—2)-nonblocking. N—2 is a tight upper

bound on the strict-sense k-nonblockingness of any network made of square switches.

Proof: Lemma6.2 guarantees that all transitions in area A in Figure 6.7 are realizable
even if requests are satisfied by randomly assigning free paths to them. Without the

simple routing scheme in Lemma 6.3, transition B in Figure 6.7 is still realizable

5Two rows of 2x2 switches if Benes’ 4x4 network is used as the blocking block.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS [
although a pair of parallel paths may be generated instead of a Q3. Therefore, Q n
is strictly (N—2)-nonblocking. Note that if a width N network is strictly (N —1)-
nonblocking, it must also be strictly .V-nonblocking because the last pair of idle
input/output in a network carrying N—1 busy paths must be connected by a free
path. Since a network made of square switches cannot be strictly N-nonblocking, it
cannot be strictly (N —1)-nonblocking either. So N —2 is a tight upper bound on the
strict-sense k-nonblockingness of any network made of square switches. O

Notably, Theorem 6.7 implies that Qn almost becomes a fully nonblocking network

in the strict sense as NV goes to infinity.

6.7 Transforming @y into a Proper MIN

The ¢ network violates the definition of standard MINs in 2 ways as follows:

1. Non-adjacent stages in Qn are connected. In a S-stage MIN (we require MINs

to be layered (§ 2.1)), stage s is connected to stage s+1 only, where | < s < 8.

2. @~ has multiple links between 2 adjacent Qn_;’s. In a MIN, at mosi. 1 link

connects any 2 switches.

We show that by adding dummy switches, Qn can be transformed into a proper MIN.
The transformation technique in Lemma 6.8 is required by subsequent, theorems. If
N # km in Lemma 6.8, we can set N’ = [N/m]m and disable N’ — N terminals at

the top of @n+. But now the width of the network is N’ instead of N.

Lemma 6.8 For N = km, Qn can be transformed into a proper MIN of depth

dm(N) =2-4N-" — 1, where m is the switch size and k > 1 is an wleger.
Proof: Two transformations remove the 2 violations in sequence:
|

1. To remove the first violation we apply a recursive procedure. Assume (2, 1s a
valid MIN and Qn.,, can be transformed into a valid MIN. Since Qn s made

of 4™ QN-m’s, there are m links bypassing every Qn—,. (see Figure 6.2 for an

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 115

example where m = 2). In Qn, one row of 4™ - d,,(N —) mxm switches can be
introduced to encapsulate these links. The principle is illustrated in Figure 6.10.
The shadowed switches are dummy switches permanently set to straight. Ouly

switches in the lowest row participate in routing. If all switches are counted,

— _l!4N—m

m

the network cost (nimber of switches) is ¢ (V)

Figure 6.10: Using dummy switches to eliminate links that bypass stages in Qq.

2. Figure 6.2 exemplifies that (for m = 2) after adding dummy switches, the con-
nection pattern between any 2 adjacent stages is dominated by the identity
permutation, except that 2 adjacent links are twisted. The twist may involve 1
or 2 pairs of switches (Figure 6.11). Two alternative remedies, both involve in-
serting a new stage between every pair of adjacent stages, for removin nultiple

connections in Figure 6.11 are considered:®

(a) If 2 types of switches are allowed, a dummy stage of m kxk switches,
k = %, can be inserted between every 2 adjacent stages. A full-access
pattern (§ 2.4.1) connects the dummy stage to the 2 original stages. The
dummy stage, together with the 2 original stages, form a Clos rearrange-
able network [24], so any permutation can be performed (using the algo-
rithm in [93]). The 2 cases in Figure 6.11 can be handled as follows. In
Figure 6.12a, all the switches in the dummy stage are set to straight. In

Figure 6.12b all switches in the dummy stage are set to straight except 1.

(b) If only one type of switches is allowed, then a more tedious procedure is

needed. We assume that m < k (if m > k, exchange m and k). Similar to

SSometimes, such as the Q4 in Figure 6.10, redistributing the links between 2 adjacent Q3’s in
Q4 climinates muitiple connections without adding dummy stages. We study the general case only.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS L6

m| & |m
[] []
¢ |m

A
L] : [] .
o im
m e ilm l
S s+l

(b)

Figure 6.11: The twist in a) involves 2 switches while b) involves 4. 7 and j are
integers, where ¢ > 1 and 0 < j < m.

(@ (b)

Figure 6.12: Elimination of multiple connections using 2 types of switches.

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 117
the previous case, insert a dummy stage of k mxm switches between every

2 adjacent stages. Since N > m?, 2 cases are considered:

m? < N < 2m? Number the switches in every stage from 0 to k—1
downwards. Number the inputs/outputs of each switch from 0 to
m—1 downwards. Connect output j of switch ¢ in stage s to input j of
switeh (i47) mod kin the dummy stage. Connect input j of switch ¢ in
stage s+1 to output j of switch (i+7) mod k in the dummy stage. The
above 2 patterns are mirror images of each other. The resulting 3-stage
sub-network between stages s and s+1 has no multiple connections.
Now the 2 cases in Figure 6.11 can be handled as shown in Figure 6.13

(which has N = 12 and m = 3).

(a) {b)

Figure 6.13: Elimination of multiple connections using 1 type of switches.

N > 2m?*: Arbitrarily select m pairs of switches in stages s and s+1
connected by the identity permutation. Use the full-access pattern to
connect them to the m corresponding switches in the dummy stage.
Set all m switches in the dummy stage to straight such that the identity
permutation is realized. Repeat this process until there are < 2m?
pairs of switches. Apply the above procedure for m?* < N < 2m? to

handle the remaining switches that contain the twist.

CHAPTER 6. WiDTH N WIDE-SENSE NONBLOCKING NETWORKS LS
The depth of Qn now becomes d,,(N) = 2.4V~ If only mxm switches are
used, the cost is ¢, (N) = X(2- 4N ~1). If kxk switches are also allowed, the

cost measured by the number of cross-points is ¢, (N) = 24V =" L 2N 1),

Hence, @n can be transformed into a proper MIN by inserting dummy switches, 0
The network resulting from Lemma 6.8 case 2a is called the crtended Clos. Since
the wide-sense nonblocking network (n can be transformed into a proper MIN, and

obviously no wide-sense nonblocking MIN can have width < N, we conclude that:

Theorem 6.9 N is a tight lower bound on the width of wide-sense nonblocking MINs.

6.8 Advanced Results

In the introduction we raised the question “How many stages of SE are needed to get

9 »

a wide-sense nonblocking MIN?” The solution is based on Theorem 6.10.

Theorem 6.10 By serially cascading a finite number of any rearrvangeable MINs of

width N, a wide-sense nonblocking MIN is obtainable.

Proof: Without loss of generality, assnme every width N rearrangeable MIN p has
an mxm switch in its input stage (otherwise, the idea that a Qn can he obtained from
4 Qn-1’s allows us to ‘simulate’ large switches using smaller ones). In the extended
Clos (Figure 6.14) which has 2 - 4V =" —1 stages, every 3 consecutive stages form a
Clos rearrangeable network. While all shadowed switches have fixed settings, only
the remaining mxm switches participate in routing. Every sub-network I8, can bhe
replaced by a MIN p, whose rearrangeability allows it to perform the fixed (partial)
permutation realized by R;. The mxm switch in the input stage of p becomnes the
‘active’ mxm switch in the first stage of R; (relabel p if the mxm switeh in its input
stage is not at the bottom). Now it is clear that 4V~™ p’s are needed to have Qn

embedded. O

Corollary 6.2 At most (3n — 4)(4V=% — 1) + | stages of SE are needed Lo construct

a wide-sense nonblocking MIN, where n =g N.

CHAPTER 6. WIDTii N WIDE-SENSE NONBLOCKING METWORKS 119

“Clos Clos Riv Ry
A = —
dm NAENAm NgET"
F—Y AN
i NI
N=km 3 g\ /7« \\faim [2\/]
:! : . i : . o\
\L °| m o ° L -.m. 'Lg] .. "-
P e T S

Figure 6.14: An extended ('los network.

Proof: A size N rearrangeable MIN made of 3n—4 stages of SE [80] can be used as
the pin Theorem 6.10 (Figure 6.15). (Note that the last stage in Qn does not require

31u—4 stages of SE to simulate.) O

Figure 6.15: SE as a building block for width N wide-sense nonblocking MINs.

The set of universal permutations U is defined by {7 = {u: a rearrangeable iterated
MIN can be built using «}. Similarly, define W = {w:a wide-sense nonblocking

iterated MIN can be built using w}. Then we have:
Theorem 6.11 ! = W".

Proof: Since all universal permutations are equivalent to the perfect shuffle [43],
Corollary 6.2 implies that 7/ € W. W C U is also true because every wide-sense

noublocking MIN is rearrangeable. O

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 120
Therefore. although a universal MIN [43, 110, 118, 119, 129] is defined as one that
can simulate a rearrangeable MIN (of a larger depth) using multiple passes, actually

it can also simmlate a wide-sense nonblocking MIN,

6.9 Concluding Remarks

We introduced a width N multi-path recursive network called the Quadruple! (())
as a vehicle for expressing our routing algorithm. For N > 34, Qx was shown to
be wide-sense nonblocking. The simplicity of Q’s structure suggests that it has just
captured some critical properties of wide-sense nonblocking networks. In addition, Q
is strictly (N —2)-nonblocking, which is also the highest strict-sense k-nonblockingness
any width N MIN can attain. By transforming 0 into a proper MIN, we uncovered a
fundamental difference between wide- and strict-sense nonblocking MINs: the former
can have width N but the latter cannot. By serially cascading a certain nnmber of
any rearrangeable MINs of width N, a wide-sense nonblocking MIN can be obtained.
It is then shown that at most (3n —4)(4V =2 — 1)+1 stages of SE are needed to attain
wide-sense nonblockingness. At the end, a new implication of the well known notion
of universality was presented.

Finding the tight lower bound on the width of strictly nonblocking MINs appears
to be a challenging problem. Note that Qn is not a standard path (§ 2.3.1) wide-sense
nonblocking network because its routing algorithm is not oblivious.” A standard path
wide-sense nonblocking MIN [69] derived from the crossbar network (Figure 2.4) has
width 2N —2, which is the current minimum. We expect that the tight lower hound
on the width of standard path wide-sense nonblocking MINs to be > N. This is yeb, to
be proven (lower bounds on the cost of standard path wide-sense nonblocking MINs
can be found in [49]). Finding the tight lower bound on the number of S stages
needed to attain wide-sense nonblockingness (or rearrangeability) is difficult becanse

the complexity of the routing algorithm usually increases as the hardware hecomes

7An oblivious routing algorithm uses solely the source and target addresses to route a request,

CHAPTER 6. WIDTH N WIDE-SENSE NONBLOCKING NETWORKS 121
more compact.® Moreover, the exercise will not be rewarding because at least O(N)®
stages of SE are needed, resulting in a MIN more expensive than an NxN crossbar.

Optimizing the cost of v(m,n,r) Clos-type wide-sense nonblocking MINs by mak-
ing trade-offs between width and depth is another interesting direction. In the ex-
tremes, the sufficient depth is 2-48¥=™ — 1 when the width is N, but the sufficient
width is 2n—1 when the depth is 3 (Theorem 2.1).'° Does an optimal point exist

between the extremes?

8{124, p. 108]: “It is rcasonable to expect that any saving in hardware gained by improving the
number of stages required for rearrangeability will more than be offset by the additional complexity
of routing.”

®In a wide-sense nonblocking MIN of width N, every request must share a switch with every
other request {Theorem 6.1). Since any request can share a switch with only m—1 other requests at
any stage (mxm switches are used), the depth must be at least O(N).

10|38 is the sufficient width when » = 2 [10]. In general, width n+min(n, r)—1 is necessary [69].

Chapter 7

Conclusion

This thesis examines 4 sub-topics related to routing on multi-path, recursively de-
composable MINs. Before specific routing problems are addressed, Chapter 2 points
out that, in general, permutation routing on arbitrary MINs of depth > 1245 an NP-
complete problem. While the problem can be solved in O(N) time for MINs of depth
< 3, the complexity landscape for MINs of depth between 4 and 11 is mnknown.

Chapter 3 introduces the k-GCON and presents some of its symmetry properties,
We show that by using the 2 alternative paths in a 1-GCN with equal probabilities,
the average packet delay can be minimized, regardless of the traflic patterns, under
some restrictions. We anticipate that this result can be generalized to a k-GCN,
where 1 < k < N. Identifying the symmetry property necessary for other multi-path
MINs to share a similar conclusion is an interesting future direction.

Chapter 4 presents a search-based deterministic algorithm for routing permuta-
tions on the ADM network at compile time. By exploring the regularity in the ADM
topology, a sequential implementation of the algorithm performed well in our experi-
ment. Empirically, it takes linear time to process an average permutation. An upper
bound on the average time complexity is also derived (but no closed-form solution is
known). The complexity of the ADM permutation routing problem is likely to lie be-
tween O(N log N) and O(N). After restructuring the scarch process, the worst-case

complexity for our algorithm is shown to be O{N?).

122

CHAPTER 7. CONCLUSION 123

(‘hapter 5 introduces the notion of k-nonblocking networks as a framework for in-
terpolating the cost gap between blocking and nonblocking networks with a spectrum
of new networks. k-nonblockingness can conveniently quantify the power of a network,
especially when it is exposed to unspecified (circuit-switching) traffic. A systematic
scheme for constructing k-nonblocking network in the strict sense is given. By giv-
ing cfficient parallel and sequential routing algorithms, we show that A-nonblocking
networks do not require extra hardware/routing overheads.

The main result in Chapter 6 is that a new, multi-path, recursive network called
the Quadruplet () is wide-sense nonblocking. By turning Q into a proper MIN of
width N, we conclude that strict-sense nonblocking MINs cannot have width N but
wide-sense nonblocking MINs can. The number of SE stages sufficient for wide-sense
nonblockingness is also derived. A uew implication of the notion of universality is
uncovered. By merging Tables 5.2 and 6.1, new results yresented in Chapters 5 and

6 are summarized in Table 7.1. More research is needed to complete the table.

Minimum Network obtainable k-nonblocking in the
depth (Bened’ classification) wide sense | strict sense Examples
1 Blocking, non-full-access 0 0 SE (§ 2.4.2)
lg N Blocking, full-access 1 1 Q (§ 24.3)
lg N+1° : 2 2 ESC (§ 2.4.3)
? : 3 3 ?
2lg N -1 Rearrangeable : : Benes (§ 2.4.4)
? : : : ?
2-4N~2_1* || Wide-sense nonblocking N-1I,N N-2 Extended Clos*
00* Strict-sense nonblocking - N-1, N None*

Table 7.1: An overview of new results (marked by *) iu Chapters 5 and 6.

In general, to achieve the ultimate goal of building a unified theory of routing,
more research on the generalization of existing network/routing models is needed.
Using recursive network models tyj.ically simplifies analysis (e.g., [125]). Designing
“generic” routing algorithms that are applicabic to a wide range of network models

is also a promising direction.

Bibliography

[

[2]

3]

[5]

[6]

[7]

[8]

[9]

[10]

A. A. Abonamah, F. N. Sibai, and N. K. Sharma. Conflict resolution and
fault-free path selection in multicast-connected cube-based networks. MW
Transactions on Computers, 43(3):374-380, March 19491,

George B. Adams I11 and Howard Jay Siegel. On the number of permutations
performable by the augmented data manipulator network. IIEEE Transaclions
on Computers, 31(4):270-277, April 1982.

D. P. Agrawal. Graph theoretical analysis and design of multistage intercon-
nection networks. IEEE Transactions on Computers, pages 637 648, 1983,

Hamid Ahmadi and Wolfgang E. Denzel. A survey of modern high performance
switching techniques. [EEE Journal on Selected Arcas in Conanuwmicalions,

7(7):1091-1103. September 1989.

S. B. Akers aud B. Krishnamurthy. A group-theoretic model for symmetrie
interconnection networks. IEEE Transactions on Compulers, 38:55 H67, April

1989.

G. S. Almasi and A. Gottlieb. Interconnection networks. In Highly Paral-
lel Computing, pages 276-299. Benjamin/Cummings Publishing Company Ine.,
1989.

S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path sclection in
a nonblocking network. In Proceedings of the Annual ACM Symp. on Theory
of Computing, pages 149-158, 1990.

Shay Assaf and Eli Upfal. Fault tolerant sorting network. In Proceedings for
the 31st Annual Symposium on Foundations of Computer Seience, volume |,
pages 275-284, 1990.

P. K. Bansal, Kuldip Singh, and R. C. Joshi. Routing aud path length algorithm
for a cost-effective four-tree multi-stage intercennection network. Iuternational
Journal of Electronics, 73(1):107-115, July 1992.

V. E. Benes. Heuristic remarks and mathematical problems regarding the the-
ory of connecting systems. Bell System Technical Journal, 41:1201 1247, 1962,

124

BIBLIOGRAPHY 125

(1]

12)

(3]

[14]

[15)

[16]

[17]

(18]

[19)

V. E. Bened. Optimal rearrangeable multi-stage connecting networks. Bell
System Technical Journal, 43:1641-1656, 1964.

V. E. Benes. Permutation groups, complexes, and arrangeable connecting net-
works. Bell System Technical Journal, 43:1619-1640, 1964.

V. E. Benei. Mathematical Theory of Connecting Networks and Telephone
Traffic. Academic Press, New York, 1965.

V. E. Bened. Blocking states in connecting networks made of square switches
arranged in stages. Bell System Technical Journal, 60:511-520, 1981,

Jean Claude Bermond and Jean Michel Fourneau. Independent connections:
An easy characterization of baseline-equivalent multi-stage interconnection net-
works. Theoretical Computer Science, 64:191-201, 1989.

Jean Clande Bermond, Jean Michel Fourneau, and Alain Jean-Marie. Equiva-
lence of multi-stage interconnection networks. Information Processing Letters.
26:45-50, September 1987.

Jean Claude Bermond, Jean Michel Fourneau, and Alain Jean-Marie. A graph
theoretical approach to equivalence of multi-stage interconnection networks.

Discrete Applicd Mathematics, 22(3):201-214, March 1989.

.. N. Bhuyan. Interconnection networks for parallel and distributed processing.
IEEE Computer, 20:9-12, June 1987.

L. N. Bhuyan, Qing Yang, and Dharma P. Argawal. Performance of multi-
processor interconnection networks. [EEE Computer, pages 25-37, February
1989.

G. A. De Biase. Interconnection structures and parallel computing. Advances
in Parallel Computing, 1:241-271, 1990.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier
Science Publishing Co. Inc., North Holland, 1976.

Hasan (‘am and Jose A. B. Fortes. Rearrangeability of shuffle-exchange type
networks. In IEEE Symposium on the Frontiers of Massively Parallel Compu-
tations, pages 303-309, 1990.

D. G. Cautor. On nonblocking switching networks. Networks, pages 367-377,
1972,

Ctharles Clos. A study of non-blocking switching networks. Bell System Tech-
nical Journal, 32:406-424, 1953.

Lawrence J. Corwin and Robert H. Szezarba. Multivariable Calculus. Marcel
Dekker Inc., New York and Basel, 1982.

BIBLIOGRAPHY 126

[26]

[29]

(30]

31]

[32]

(33

W. J. Dally. Express cubes: Improving the performance of A-ary n-cube in
terconnection networks. [IEEE Transactions on Computers, A0(9): 1016 1023,
September 1991,

Nabanita Das, Bhargab B. Bhattacharva, and Jayvasree Dattagupta. Hierarchi
cal classification of permutation classes in multistage interconnection networks,
IEEE Transactions on Computers, 43(12):1439 1144, December 1994,

J. Dunning Davies. Mathematical Methods for Mathematicians, Physical Sei-
entists, and Engineers. Ellis Horwood Lid., 1982,

Perter J. Denning and Jeffrey P. Buzen. The operational analysis of quencing
network models. Computing Survey, 10:225 259, 1978,

D. M. Dias and M. Kumar. Preventing congestion in multi-stage networks in the
presence of hotspots. In IEEFK International Conference on Parvallel Processing,
volume |, pages 9-13, 1989.

Daniel M. Dias and J. Robert Juinp. Analysis and simulation of buffered delta
networks. IEEE Transactions on Compulers, C-30(1):273 282, April 1981.

B. G. Douglass. Rearrangeable three-stage interconnection networks and their
routing properties. [IEEE Transactions on Compulers, 42(5H):559 567, May

1993.

J. Duato. On the design of deadlock-free adaptive routing algorithms for mnlti-
computers: theoretical aspects. In Proceedings of the 2nd Furopean Conference
on Distributed Memory Computing, pages 234 243, April 1991.

Ehab Elmallah and Joseph Culberson. Multicommodity flows in simple multi-
stage networks. Networks, 25(1):19-30, January 1995.

G. E. Carlsson et. al. Small diameter symmetric networks from linear groups.
IEEE Transactions on Computers, 41:218-220, February 1992.

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-
commodity flow problems. SIAM Journal of Compuling, 5:691 703, December
1976.

Mathew Farrens, Brad Wetmore, and Allison Woodrufl. Alleviation of tree
saturation in multi-stage interconunection networks. In Proceedings of Super-
computing, pages 400-409, 1991.

Paul Feldman, Joel Friedman, and Nicholas Pippenger. Non-blocking networks.
In Proceedings of the Annual ACM Symnp. on Theory of Compuling, pages 247
254, 1986.

BIBLIOGRAPIY 127

[39]

(10]

[11]

12]

[13]

m

45

[16]

[47]

[18]

[19]

[50]

[51]

[52]

Paul Feldman, Joel Friedman, and Nicholas Pippenger. Wide-sense non-
blocking networks. SIAM J. Disc. Math., 1(2):158-173, May 1988.

T. Y. Feng. Data manipulating functions in parallel processors and their im-
plementations. [EEE Transactions on Compulers, c-23:309-318, March 1977.

T. Y. Feng. A survey of interconnection networks. [EEE Computer, pages
12 27, December 1981,

Tse-Yun Feng and Seung-Woo Seo. A new routing algorithm for a class of
rearrangeable networks. [EEE Transactions on Computers, 43(11):1270-1280.
November 1994,

Charles M. Fiduecia and Elaine M. Jacobson. Universal multi-stage networks
via linear permutations. In Proceedings of Supercomputing, pages 380—389,
1991.

Michacl R. Garey and David S. Johnson. Computer and Intractability: An
Introduction to the Theory of NP-completeness. W. H. Freeman and Company,
1979.

Isracl Gazit and Miroslaw Malek. On the number of permutations performable
by extra-stage multi-stage interconnection networks. In /EEE International
Conference on Parallel Processing, pages 461-471, 1937.

W. Morven Gentleman. Some complexity results for matrix computations on
parallel processors. Journal of the ACM, 25(1):112-115, January 1978.

A. Ghafoor and T. R. Bashkow. A study of odd graphs as fault-tolerant inter-
connection networks. [EEE Transactions on Computers, 40:225-232, February
1991,

Allan Gottlieb and J. T. Schwartz. Networks and algorithms for very-large-scale
parallel computation. IEEE Computer, pages 27-36, January 1982.

L. Halpenny and (. Smyth. Minimal nonblocking standard-path networks.
Electronics Letters, 28(12):1107-1109, June 1992,

A. Harissis and A. Ambler. A new multiprocessor interconnection network
with wide sense non-blocking capabilities. In Proceedings of IEEE Midwest
Symposium on Circuits and Systems, pages 923-926, 1989.

J. Heequard and R. Acharya. The PSMH: a pyramid of fractional dimension. In
IEEE Symposium on the Frontiers of Massively Parallel Computations, pages
AT5-478, 1988.

Calvin J. A. Hsia and C. Y. Roger Chen. Permutation capability of multi-
stage interconnection notworks. In [EEE International Conference on Parallel
Processing, volume 1, pages 338-346, 1990.

BIBLIOGRAPHY RN

(53]

[62]

[63]

[64]

[65]

[66]

Shing-Tsaan Huang and Satish K. Tripathi. Finite state model and compati
bility theory: new analysis tools for permutation networks. [FEE Transactions
on Computers, 35:591-601, July 1986.

Joseph Y. Hui. Switching and Traftic Theory for Integrated Broadband Nel-
works. Kluwer Academic Publishers, Boston, 1990,

F. K. Hwang. A mathematical abstrac on of the rearrangeability conjecture for
shuffle-exchange networks. Operations Research Letters, 8:85% 87, April 1989,

K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing.
Computer Organization and Architecture. MeGraw-1ill, 1985,

Ching Yuh Jan and A. Yavuz Oruc. Fast self-routing permutation switching on
an asymptotically minimum cost network. [I'EE Transactions on Compulers,
42(12):1469-1479, December 1993.

A. Jean-Marie. Re-routing and resequencing in multi-stage interconnection net-
works. In IEEE International Counference on Parallel Processing, pages 463
460, 1987.

Hong Jiang, L. N. Bhuyan, and Jogesh K. Muppala. MVAMIN: mean value
analysis algorithms for multi-stage interconnection networks. Journal of Par-
allel and Distributed Computing, 12:189 201, 1991.

A. E. Joel Jr. On permutation switching networks. Bell System Technical
Journal, 47:813-822, May-June 1968.

1 A. E. Joel Jr. Circuit switching: Unique architecture and applications. [EEL

Computer, 12:10-22, June 1979.

William H. Kautz, Karl N. Levitt, and Abraham Waksman. Cellular intercon-
nection arrays. IEEE Transactions on Compulers, 17:443 451, May 1968.

Kichul Kim and C. S. Raghavendra. A simple algorithm to route arbitrary
permutations on 8-input 5-stage shuffle/exchange network. In Proceedings of
the Fifth International Parellel Processing Symposiun, pages 398 403, 1991,

David G. Kirkpatrick, Maria Klawe, and Nicholas Pippenger. Some graph
coloring theorems with applications to generalized connection networks. SIAM
Journal of Algebraic and Discrete Methods, 6(4):576 582, October 1985,

I. Koren and Z. Koren. Discrete and continuous models for the performance
of reconfigurable multi-stage systems. [KEL Transactions on Compulers,
40(9):1024-1033, September 1991.

C. K. Kothari, S. Lakshmivarahan, and H. Peyravi. A note on rearrang-able
petworks. Technicui report, School of Engineering and Computer Science, Uni-
versity of Oklahoma, November 1983.

RIBLIOGRAPHY 129

[67)

[6%)

[69]

[70]

(7]

[72]

[73)

[74]

(73]

(79]

Clyde P. Kruskal and Marc Snir. A unified theory of interconnection network
strncture. Theorctical Computer Science, 48:75-94, 1986.

V. . Kumar and S. M. Reddy. Augmented shuffte-cxchange multi-stage inter-
connection networks. IEEE Computer, 20:30-40, June 1937.

C. . Lam. Unpublished research nete, December 1992.

(. . Lam. An algorithm for routing permutations on the augmented data
manipulator network. Journal of Computing and Information. Special Issue:
Proceedings of the Sirth International Conference on Computing and Informa-
tion, 1(1), 1994.

C'. 1. Lam and E. Elmallah. Load-balancing on the extra stage generalized cube
network. In Proceedings of the Seventh Annual Canadian High Performance
Compuling Symposium, pages 429-436, 1993.

C. 1I. Lam and E. Elmallah. On a class of k-nonblocking networks. In Proceed-
ings of the Eighth Annual Canadian High Performance Computing Symposium,
pages 226- 233, 1994,

Duncan H. Lawrie. Access and alignment of data in an array processor. [EEE
Transactions on Computers, 24:1145-1155, December 1975.

K. Y. Lee and H. Yoon. The b-network: a multi-stage interconnection network
with backward links. IEEE Transactions on Computers, 39:966-969, July 1990.

Thomson Leighton. Methods for message routing in parallel machines. In
Proceedings of the Annual ACM Symp. on Theory of Computing, pages 77-96,
1992,

Mary Dianc Palmer Leland. Properties and Comparison of Multi-stage Inter-
connection Networks for SIMD Machines. PhD thesis, University of Wisconsin,
December 1983,

Mary Diane Palmer Leland. On the power of the augmented data manipulator
network. In IEEE International Conference on Parallel Processing, pages 74—
78, 1985.

(3. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for
routing in permutation networks. [EEF Transactions on Computers, 30:93-
100, February 1981.

(. Lin and N. Pippeunger. Parallel algorithms for routing in nonblocking net-
works. In Proceedings of the Annual ACM Symp. on Parallel Algorithms and
Architectures, pages 272-277, 1991.

BIBLIOGRAPHY 130

[30]

[81]

[36]

[87]

(83]

[89]

[90]

[91]

[42]

N. Linial and M. Tarsi. Interpolation betwe -t bases and the Shutle Exchange
network. European Journal of Combinatoric~ 10:29 39, 1989,

Y. S. Lin and S. Dickey. Simulation and analysis of enhanced switeh archi-
tectures for interconnection networks in massively parallel shared memory ma-
chines. In IEEE Symposium on the Frontiers of Massively Parallel Computa-
tions, pages 487-490, 1988.

M. Malek and W. W. Myre. Figures of merit for interconnection networks. In
Workshop on Interconnection Networks for Parallel and Distribuled Processing,
pages 74-83, 1980.

D. E. Marquardt and H. S. AlKhatib. C2MP: a cache-coherent, distributed
memory multiprocessor system. In Super Computer Conference, pages 166

475, 1989.

G. M. Masson, G. C. Gingher, and S. Nakamura. A sampler of cireuit switching
networks. IEEFE Computer, 12:32-48, June 1979,

R. J. McMillen and H. J. Siegel. MIMD machine communication using aug-
mented data manipulator network. In Seventh Annual International Symposicm
on Computer Architecture, pages 51-58, May 1980.

Robert J. McMillen. A survey of interconnection networks. In [EE (Global
Telecommunications Conference, pages 105113, 1984,

Riccardo Melen. A general class of rearrangeable interconnection networks.
IEEE Transactions on Communications, 39(12):1737 1739, December 1991,

Bernard L. Menezes. Interconnection networks for fifth-generation computers.
In IEEE Symposium on the Frontiers of Massively Parallel Compulalions, pages
503-506, 1988.

Chris Mitchell and Peter Wild. Ounc-stage one-sided rearrangeable switching
networks. [EEE Tronsactions or. Communications, 37(1):52 56, January 1989,

Wayne G. Natiop and Howard Jay Siegel. Disjoint path properties of the data
manipulator network family. Journal of Parallel and Distributed Compuling,
pages 419-423, September 1990.

P. Newman. ATM technology for corporate networks. [EEE Communicalions
Magazine, 30(4):90-101, April 1992.

Michael J. O’Donnell and Carl H. Smith. A combinatorial problem coneern-
ing processor interconnection networks. IEEE Transactions on Compulers, C-

31(2):163-164, Febrnary 1982.

BIBLIOGRAPHY 131

(93]

[04]

[95]

[96]

[97)

[98]

[99]

[100]

[101]

[102]

[103]

[104)
(105)

[106)

). . Opferman and N. T. Tsao-Wu. On a class of rearrangeable switching
networks: I and 11. Bell System Technical Journal, 50:1579-1618, May 1971.

). S. Parker and C. S. Raghavendra. The Gamma netwerk: a multiprocessor
network with redundant path. In Ninth Annual International Symposium on
Computer Architecture, pages 73-80, April 1982.

D. Scott Parker Jr. Notes on shuffle/exchange-type switching network. [EEE
Transactions on Computers, 29:213-222, March 1980.

Janak H. Patel. Performance of processor-memory interconnections for mul-
tiprocessors. [EEE Transactions on Computers, C-30(10):771-780, October
198]1.

M. C. Pease 111, The indirect binary n-cube microprocessor array. [EEL Trans-
actions on Computers, 26:458-473, May 1977.

G. F. Pfister and V. A. Norton. “Hot Spot” contention and combining in
multistage interconnection networks. IEEE Transactions on Computers, pages
943--948, October 1985.

N. Pippenger. On rearrangeable and nonblocking switching networks. Journal
of ("ompuler and System Sciences, 17:145-162, 1978.

o1 ortsis, J. Vlahavas, and C. Halatsis. On the performance of packet
s. ' .ginterconnection networks for multiprocessor systems. In International
Conference on Parallel Processing and Applications, pages 421-428, 1987.

D. K. Pradhan and K. L. Kodandapani. A uniform representation of single-
and mnltistage interconnection networks used in SIMD machines. IEFE Trans-
ections on Computers, C-29:777-791, September 1980.

C. S. Raghavendra and R. V. Boppana. On self-routing in Bened and
shuflle-exchange networks. IEEE Transactions on Computers, 40(9):1057-1064,
September 1991.

C. S. Raghavendra and A. Varma. Rearrangeability of the 5-stage shuf-
fle/exchange network for n = 8. In IEEE International Conference on Parallel
Processing, pages 119-122, 1986.

D. A. Reed. A simulation study of multi-microcomputer networks. In IEEE
Tutorial: Advanced Computer Architecture, pages 226-228, 1983.

D. A. Reed and Dirk C. Grunwald. The performance of multicomputer inter-
connection networks. IEEE Computer, 20:63-73, June 1987.

Arch D. Robison and Danny Soroker. An algebraic framework for edge-disjoint
permutations on hypercubes. In IEEE Symposium on Parallel and Distributed
Processing, pages 214--221, 1992.

BIBLIOGRAPHY 132

[107]

[108]

[109]

[110)

[111]

(112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

G. E. Schmidt. The Butterfly parallel processor. In Proc. of the Second Inter-
national Conference on Supercomputers, volume 1, pages 362 365, 1987,

Robert E. Shannon. Systems Simulation: the Art and Science. Prentice-Hall,
1975.

Dong-Jye Shyy and Chin-Tau Lea. log,(n, m, p) strictly nonblocking networks.
IEEE Transactions on Communications, 39(10):1502 1510, October 1991,

H. J. Siegel. The universality of various types of SIMD machines intercon-
nection networks. In Proceedings of the Jth Annual Symposium on Computer
Architecture, pages 70-79. 1977.

H. J. Siegel. Interconnection networks for SIMD machines. [FEE Computer,
pages H7-65H, June 1979.

H. J. Siegel. [Interconncction Networks for Large-Scale Parallel Processing.
Computer Organization and Architecture. McGraw-Hill, second edition, 1990.

H. J. Siegel and W. T. Y. Hsu. Interconnection nctworks. In Computer Arehi-
tecture: Concept and Systems, pages 225-264, 1988,

H. J. Siegel, W. G. Nation, C. P. Kruskal, and L. M. Napolitano. Using the
multi-stage cube network topology in parallel supercompnters. Procecdings of

IEEFE, 77:1932-1953, December 1989.

H. J. Siegel and S. D. Smith. Study of multistage SIMD interconnection net-
works. In Fifth Annual International Symposium on Compuler Arvchitecture,
pages 223-229, April 1978.

I'. Sovis. On rearrangeable networks of the Shuffle Exchange type. Compulers
and Artificial Intelligence, 7(4):359-373, 1988.

H. S. Stone. Parallel processing with the perfecy shutfle. [EEE Transactions on
Computers, 20:153-161, February 1971

T. H. Szymanski and V. C. Hamacher. On tie sniversality of multipath multi-
stage interconnection networks. Journal of { ¢ litl and Distributed Compuling,

7(3):541-569, December 1989.

Ted H. Szymanski. On the universality of mnltistage interconnection networks.
In IEEE International Conference on Parallel Processing, pages 316 323, 1986.

Ted H. Szymanski. On Interconnection Networks for Parallel Processors. Phl)
thesis, University of Toronto, 1988.

Fouad A. Tobagi. Fast packet switch architectures for broad-1. .« mtegrated
services digital nctworks. Proceedings of IEEE, T8(1):131-167, January 1990.

BIBLIOGRAPHY 133

[122)

[123]

[124]

[125)

[126]

(127)

[128]

[129]

(1:30]

[131]

[132]

[133]

(134)

Williamm F. Treneh and Bernard Kolman. Multivariable Calculus with Linear
Algebra and Series. Academic Press, New York and London. 1972.

Auujan Varma and (. S. Raghavendra. On permutations passable by the
Gamma network. Journal of Parallel and Distributed Computing, pages 72-
91. March 1986.

Anujan Varma and C. S. Raghavendra. [Intcrconnection Networks for Multi-
processors and Multicomputers: Theory and Practice. IEEE Computer Society
Press, 1994.

(.. Della Veeehia and (. Sanges. Recursively scalable networks for message
passing architectures. In International Conference on Parallel Processing and
Applications, pages 3340, 1987.

Darryl Lawrence Willick. Mean value analysis medels for multi-stage inter-
connection networks. Master’s thesis, University of Saskatchewan, November
1990.

(‘huan-Lin Wu and Tse-Yun Feng. Routing techniques for a class of multi-
stage interconnection networks. In IEEE International Conference on Parallel
Processing, pages 197-205, April 1978.

(huan-Lin Wu and Tse-Yun Feng. On a class of multistage interconnection
networks. [EEE Transactions on Computers, c-29(8):694-702, August 1930.

(‘huan-Lin Wu and Tse-Yun Feng. The universality of the shuffle-exchange
network. [EEE Transactions on Computers, 30:324-331, May 1981.

Chuan-Lin Wu and M. Lee. Performance analysis of multi-stage intercon-
nection network configurations and operations. [EEE Transactions on Com-
puters, 41:18-27, January 1992,

Y. Yang and G. M. Masson. Nonblocking broadcast switching networks. [EEE
Transactions on Computers, 40(9):1005-1015, September 1991.

Yao-Ming Yeh and Tse-Yun Feng. On a class of rearrangeable networks. [EEL
Transactions on Computers, 41(11):1361-1379, November 1992.

Hyunsoo Yoon, Kyungsook Y. Lee, and Ming T. Liu. Performance analysis
and comparison of packet switching interconnection networks. In [EEE Inter-
national Conference on Parallel Processing, pages 542-545, 1987.

H. Y. Youn and C. C.-Y. Chen. A comprehensive performance evaluation of
crossbar networks. [EEE Transaction on Parallel and Distributed Systems,
1(5):481-489, May 1993.

BIBLIOGRAPHY 131

(135] Abdou Youssef. Off-line permutation scheduling on circuit-switched tixed rout
ing networks. In IFEE Symposium on the Fronticrs of Massively Parallel Comn-
putations, pages 339-396, 1992.

[136] Abdou Youssef and Bruce Arden. Equivalence between functionality and topol
ogy of log n-stage banyan networks. [EIE Transactions on Computers, 30820
832. June 1990.

(137} Abdou Yeussef and Bruce Arden. Topology of efficiently controlfable hanvan
multi-stage networks. Microprocessing and Microprogramming, 16(1):3 13,
1992.

Appendix A

Permutatiorn Routing Complexity:

3-stage INs

To prove theorem A.l, an algorithm that takes O(N) time is given in pseudo code.

The algorithm is tedious but yet straight forward so its correctness is evident.

Theorem A.1 : For a 3-stage MIN, it takes O(N) time to determine whether a

given permulation 7 is admissible, where N is the number of inputs/outputs.

Proof: Denote the switch that is directly connected to input/output ¢ by s(t). As-
sume all switches are initialized to a state called unknown (U). Given a valid =, it
takes O(1) time to identify one of the 3 exclusive cases (Figure A.1) for each request

(1,7), where j = w(¢), in the permutation:

l. s(i) and s(j) are not connected via any switch in the middle stage: We conclude

that the permutation cannot be realized in one pass.

2. s(i) and s(J) are connected via exactly one switch in the middle stage: Four
sub-cases are possible as shown in Figure A.1. We present 3 procedures below

because cases b) and ¢) are symmetrical.

e Case 2a: Apply the following O(1) procedure:

135

APPENDIX A. PERMUTATION ROUTING COMPLEXITY: 3-STAGE INS 136

20, [} | {so)

n @] @

o) i o J
>) e sl

i
T e C

case | case 2 case 3

T2

Wil

.
B0 smﬁ?\ it
] y | i

Figure A.1: Possible cases for a request (¢, 7).

if (StateOf(s(z)) = StateOf(w) = StateOf(s(j)) = V) then
/* otherwise, they are properly set already */
set s(7) and w to straight
set s(j) according to the request (z,)

endif
o Case 2b: Apply the following O(1) procedure:
if (StateOf(s(z)) = StateOf(w) = U) then

set s(z) to straight

set w according to the request (7,7)

setswitch(s(3),2,7)

else

if (s(i) and w are in states compatible with the request (7,5}) then
setswich(s(j),¢,7)

else
conclude that the permutation cannot be realized

endif
endif

where the subroutine setswitch() is defined helow:

proc setswitch(z:switch, z:input, j:output)
if (StateOf(x) = U) then
set x according to the request (z,7)
else
if (StateOf(r) is compatible with the request (7, 5)) then
return
else
conclude that the permutation cannot be realized
endif
endif
endproc

APPENDIX A. PERMUTATION ROUTING COMPLEXITY: 3-STAGE INS 137
o (lasc 2d: Execute the following O(1) steps:

setswitch(s(1),7,7)
setswitch(s(y),2,7)
setswitch(w, 7, 7)

3. s(i) and s(j) are connected via 2 switches in the middle stage: Apply the

following (1) procedure:

if (StateOf(s(2)) = StateOf(s(j)) = U) then
case (m(i') is associated with output switch) of
z1: set s(¢) and r according to the request (2', (')
setswitch{y,2,7)
setswitch(s(7),2,7)
2: symmetrical to the previous case, skipped
s(J): set s(2) to straight
set s(7) according to the request (z,j)
setswitch(z, 1, j)
setswitch(y,, 7)
otherwise: conclude that the permutation caanot be realized
endcase
else /* StateOf(s(s)) # U or StateOf(s(j)) # U or both */
if (StateOf(s(z)) # U7) then
if (s(7) connects 7 to x) then
setswitch(ae, 2, §)
else
setswitch(y.,J)
endif
setswitch(s(j),,5) /* using «x or y, whichever is available */
else /* StateOf(s(i)) = U and StateOf(s(j)) # U */
if (s(j) connects j to z) then
setswitch(ax, 2,)
else
setswitch(y,7,7)
endif
set s(i) according to request (¢,7) /* usng x or y, whichever is available */
endif
endif

te

Since no loops are involved and every statement takes O(1) time, the entire routing

process takes O(N) time. Storage requirement is also O(N). O

Appendix B

Row Data from the Simulation of

the 1-GCN

The average queue length at every stage i (denoted () in the I-GCN is measured
in the simulation experiment and tabulated in Tables B.1 and B4 for uniform and
hotspot traffic, respectively. The average queue length (denoted Q) of the network,
which is the variable to be observed, is tabulated together with the variance (denoted
Var.) and the 95% confidence interval (denoted C.1) in Tables B.2, B.3, B.5 and B.6.
Q is computed by:

1 4

.C_J = ZZQH
=1

where Q; is the average queue length in the ith simulation run. Furthermore,
1 n-1
Q= ——7 2 ¢
n 1=1
where ¢;; is the average queue length at stage j in the ith simulation run (we noticed
O sti inm = 0.5 even i = A .
that @ still reaches minimum when pg = 0.5 even if Q; = 7 Y7oy ¢i;). From [108]

we extracted the following equation:

().1.95% = @ + t0_975'ﬁ = Q + 318'\}_‘;,
< - .

where tg.975 = 3.18 is the critical value of ¢ in student’s ¢ distribution, s is the standard
deviation and A = 4 is the sample size. In all tables, C.I. equals 3.187’5 and w

represents the workload factcr.

138

APPENDIX B. ROW DATA F..OM THE SIMULATION OF THE I-GCN 139
Stages (N =8) Stages (N = 16)

w po |3 2 I 0 4 3 2 1 0

6 4 151575 211.81 22405 228 | 4.8575 221.97 20 15.235 2.297
6 5 13375 39675 525 4.0625 | 219 32775 4.78 517 4.6l
6 6 |4.02 22513 1853 278 | 4.06 22467 14.378 13.685 2.642
5o 1725 519.91 19.063 0.8125 | 4.9225 516.49 15.718 10.125 0.702
5 4 1131 394 3.655 16225 | 11 3.97 3.4825 3.9825 1.297
5 5 | 11225 1.595 144 1.345 [0.8275 1.295 136 | 1.42
56 | 0.81 29675 3.8425 1.44 | 1.315 4.2025 439 3.545 153
5 8 |6.1875 518.84 19.935 0.9375 | 5.97 523.31 17.253 13.283 0.767
10 |21 600.47 17.967 0.2825 | 21.645 608.94 18.033 12.83 0.44
4 210905 126.63 15.653 0.655 | 1.1275 124.16 16.748 14.173 0.64
4 40655 072 05625 075 [0.72 1.065 1.125 1 0.797
4 5 0595 06575 0.5925 0.625 |0.845 0.7975 1.0475 0.845 0.702
4 6 104675 0.655 0.875 0.9075 | 0.765 1.1075 0.8725 0.875 0.902
4 8 |1.0325 119.62 16.75 11275 | 1.0025 130.55 19.515 9.5475 0.877
4 10 |24.375 617.69 16.69 0.3775 | 18.315 604.64 18.423 13.735 0.347
30 | 0.6875 139.72 9.5 0315 |0.8125 130.8 1689 14 0.345
3 2 | 05025 09075 1.065 0.4675 | 0.485 0.825 0.955 1.1875 0.47
14]0685 05925 0.565 0.375 |0.47 0.7025 0.44 0.5625 0.595
3 51056 0375 0.5 0.6225 | 0.4375 0.4675 0.455 0.4825 0.375
3 ¢ 0345 0655 0.4375 0.75 |0.56 0.455 0.6575 0.6075 0.56
3 8 |047 09675 0.7825 0.625 |0.6075 0.83 1.3725 1.6075 0.5
3 1006875 126.87 20315 0.41 09375 13514 15.14 15.622 0.362
20 |0.3475 0.7825 0.685 0.345 | 0.4225 0.9675 0.7975 0.61 0.252
9 21041 031 03425 0.185 |0.3625 0.485 033 0.4875 0.347
2 4 0345 04725 03475 022 |0.4225 033 044 0.3625 0.357
9 5 |04375 044 028 0.185 |0.3625 0.405 0235 036 0.36
v 6 02825 03125 044 0.3125 | 0.4225 03125 0.3925 0.2975 0.39
2 8 |0.3425 05975 0.5925 0.2175 | 0.375 0.39 - 04675 0.595 0.312
2 10]0.6275 0655 0.7825 041 | 03775 0.625 053 0.7325 0.327

Table B.1: Uniform traffic: average queue length (over 4 runs) at each stage.

APPENDIX B. ROW DATA FROM THE SIMULATION OF THE 1-GCN BRIV

B Q. Q3 Q. Var. 0 S
i 125.63 113.185 107.12 1225 5121205 1I7.1088 [3.51806
5065 5.31 5.56 2.5 L.A12905 -LGORTH 2.258251
117.375 120 120.5 120435 20.99271 (208275 812028
269.13 264.62 270.125 274.065 11.20506 269.185 6.170361
4.315 6.625 1.685 2.56H 3.5610 3.7975 3.16-1628
1.065 0.91 1.75 235 030708, 15176 017103
1.75 3.25 6.37 2.25 3.222075 3405 329058949
271435 256.06 27431 275.75 6L.6317T3 2693887 1L AI347

309.875 315.38 305.06 306.56 15.68895 309.2188 7.272161
7275 63.75 71.56 70.5 24.70755 T1.14 9.126018
0.685 0.56 0.38 0.94 0.041505 0.64125 0.374037
0.565 0.565 0.685 0.685 0.003u 0.625 0.110158
0.56 1 0.935 0.565 0.041538 0.765 0.371185
69.62 63.5 66.5 73.125 12.81282 68.1862% G.57186K8
319.185 310.94 3245 314.13 26.46055 317.1888 9444217
65.06 76 86.88 70.5 65.1449 71.61 11.81858 |
0.75 0.875 0.88 [.44 0.071342 0.98625 0.490388
0.44 0435 0.625 0.815 0.024467 (.57875 0.287I83
0.315 0.56 0.5 0.375 0.009456 04375 0.178536

PR ICRR IOk IS NG N SO SO SO 2 T S B B | e i S

— - - r— o . — - . - . PN
OOZO)VWANOOOO@\J%NOGOOC}U\ANOmmulﬁtvav -

3 0.62 0.25 0.685 0.63 0.029867 0.54625 0.317295
3 0.75 1.25 0.75 0.75 0.046875 0.875 0.3975

3 72.31 74 83.565 64.5 45.98379 73.59375 12.44999
2 0.75 1.185 0.56 0.44 0.080092 0.73375 0.519591
2 0.185 0.185 0.5 0.435 0.02048 0.32625 0.262741
2 0.33 0.315 0.315 0.63 0.016837 0.41 ().2382:3H
2 0.:7% 9.25 0.44 0.375 0.004737 0.36 (0.126369
2 0.5 0.31 0.315 0.38 0.005867 0.37625 0.140631
2 0.565 0.5 0.565 0.75 0.008713 0.595 0.171371
2 0.685 0.315 1.25 0.625 0.113792 0.71875 0.619331

Table B.2: Uniform traffic and N = 8: average queue length, variance, and confidence
interval.

APPENDIX B. ROW DATA FROM THE SIMULATION OF THE 1-GCON 141

w o | Oy Q. Qs Qs Var. Q ci)
6 4 | 86.14333 83.23 89.98 R3.58667 1.2692%1 85.7°5 4.95008
6 5 |4.06 3706667 4.873333 4.996667 0.2000% 4.4C707 0.99551 |
6 6 | 87.29333 82.27333 85.83 81.58333 5.694125 84.24% 4.381068
R 2 | 1787267 18277 181.8967 179.71 2.642013 180.7758 2.984242
54 | 3.52 3.333333 4.123333 4.27 0.155269 3.811667 0.723452
56 | 1.206667 1.25 1.373333 1.043333 0.013947 1.218333 0.216825
o6 | 4.5 4.5 2476667 4.706667 0.82788 4.045833 1.670514
5 8 | 184.69 188.5833 183.8967 181.2933 6.825691 184.6158 4.79657
10 121006 215.7533 215.4167 211.8333 5.785791 213.2658 4.416191
4 2 | 53.97667 45.56333 49.91667 57.31333 19.38286 51.6925 8.083054
4 4 |0.896667 1.063333 1.376667 0.916667 0.036867 1.063333 0.35252
45 0773333 1.02 0.813333 0.98 0.011078 0.896667 0.193238
4 6 {0.8l 1.143333 0.833333 1.02 0.018869 0.951667 0.252201
4 8 |49.02333 54.85333 55.10333 53.83 6.049402 53.2025 4.515675
410 { 211.8767 211.6233 211.1467 214.4167 1.610719 212.2658 2.33011
3 0 | 58.41667 51.23 53.75 52.18667 7.6217% 53.89583 5.G68678 |
32 | 1.063333 1.373333 0.793333 0.726667 0.065085 0.989167 0.468391
34 10.54 543333 0.753333 0.436667 0.013247 0.568333 0.211314
3 5 1048 0.54 0.416667 0.436667 0.002236 0.468333 0.086819
36 |0.48 0.623333 0.543333 0.646667 0.004372 0.573333 0.1214
38 | 1.353333 0.896667 1.603333 1.226667 0.064828 1.27 0.467463
310 | 52.96 55.43667 52.85333 59.95667 8.291247 55.30167 5.2866
2 0 10.79 0.5 1.023333 0.853333 0.035636 0.791667 0.346587
9 2 10416667 0.606667 0.356667 0.356667 0.010519 0.434167 0.188299
2 4 | 0.356667 0.44 0.396667 0.316667 0.002102 0.3775 0.084177
2 5 10293333 0.21 0.54 0.29 0.01535 0.333333 0.227468
9 6 |0.2093333 0.356667 0.333333 0.353333 0.000635 0.334167 0.04628
2 8 | 0.396667 0.54 0.376667 0.623333 0.010424 0.484167 0.187452
2 10 | 0.58 0.686667 0.52 0.73 0.006352 0.629167 0.153082

Table B.3: Uniform traffic and N = 16:

dence interval.

average queue length, variance, and confi-

APPENDIX B. ROW DATA FROM THE SIMULATION OF THE 1-GCN 142
Stages (N = 8) Stages (N = 16)
w po |3 2 1 0 1 3 2 I 0
6 4 [4.155 231.78 129.53 148 3.6425 21138 119.02 13242 1774
6 5 |2.81 4.875 124.09 224.22 | 2.6075 1.7 [13.61 21008 176.7
6 6 {3 243.94 124.6 152,06 | 3.4675 23433 12313 L0710 1747
5 2 [88125 540.12 119.91 12.402 | 6.61 510.69 11718 109.98% 53.39
5 4 10905 3.6225 87.25 95.003 [0.9675 .53 86.938 109.53 1515
5 5 | 1.0625 1.25 1935 129.91 {0.937Hh 1.205 2.0625 127.31 1751
5 6 | 17775 3.5 79875 93.938 | 12325 4.5325 82998 115.63 119.1
5 8 |6.78 545.75 125.16 7.875 |5.4375 531.67 12034 1105 19.61
40 [22.595 626.13 127.72 0.4075 | 17.75 615.03 116.55 113.58 0.317
4 21094 138.06 125.69 1.405 |0.9875 139.27 120.06 11294 35.01
4 4105 0.625 1.375 17.158 1 0.78 0.7975 1.22 60.53 1041.
4 5 (0875 0.9375 0.7825 2.625 |0.6125 0.6075 0.9675 2.105 1488
4 6 109725 0.8725 1.125 19 0.7975 0.845 12825 63.613 1131
4 8 10875 147.1 11981 2 1.14 149.28 118.14 109.88 36.86
4 1020375 615.19 122.12 0.315 |22.092 61881 123.69 109.59 0.315
3 0 09975 137.75 12269 0.3475 | 0.67 140.61 112.25 110.06 0.297
3 2106575 1.2475 3.31 0.785 | 0.5 10175 3.1275 95188 23.09
3 4 (044 0.6575 0.53 0.5025 | 0.4525 0.4975 0.5775 0.8 19.62
3 5105 0.535 0.4375 0.5925 | 0.56 047 0.4075 0.44 41.57
3 610345 053 053 0.435 |0.5 0.7675 0.8275 0.8425 49.55
3 8 (06225 1.5 2565 0.81 [0.47 0.675 4.58 90.608 25.09
3 10]0.8425 141.47 118.66 0.3475 | 0.64 143.95 12647 112,78 0.327
2 0 [0.5325 0.6575 1.8125 0.315 [0.345 0.7025 0.735 64.72 0.297
2 2 103425 0.6225 0.41 0.2825 1 0.3275 0.28 0.4225 0.6375 1.095
2 4 10.3425 03775 0375 0.345 | 0.375 0375 0.345 0.5325 0.657
2 5 (6155 0.185 02175 043751036 033 0315 033 0.36
2 6 /02825 047 03475 0.437510.33 0.3275 0.3275 0425 0.282
2 8 |0.185 047 0375 0.3775 | 0.345 0.3775 0.6725 0.53 0.702
2 10(0.345 1.095 1.5925 0.2825 | 0.53 0.8575 1.28 59.688 (.28

Table B.4: Hotspot traffic: average quene length (over 4 runs) at cach stage.

APPENDIX B. ROW DATA FROM THE SIMULATION OF THE I-GCN 143

w Py (J 1 (J; (J'} (,)4 Var. Q C.1.

6 4 | 184.31 179.5 186.81 172 31.87152 180.655 10.36497
6 5 |64.25 65.5 62.37% 65.81 1.823292 64.48375 2.479103
6 6 | 188.625 180.315 185.185 18294 9.30353 184.2663 5.60003

52 | 316.44 338.185 330.685 334.75 68.47466 330.015 15.19258
5 4143 49.06 44.685 45 4.955392 45.43625 4.087008
500 [1935 2.06 1.5 0.875 0.214806 1.5925 0.850922
5 6 | 41.88 40.56 48.75 36.06 20.69837 41.8125 8.352848
5 8 | 33656 338.565 334.815 331.87 6.038731 335.4525 4.511691
4 0 |370.5 383.62 373.81 379.75 25.94685 376.92 9.352093
4 2 |140.31 129.31 139.62 118.25 80.83852 131.8725 16.50729
4 1 [1.2> 0.935 0.875 0.94 0.021488 1 0.269128
4 5 |0.68) 1.065 0.69 1 0.030288 0.86 0.31952

4 6 |0.87 0.94 1.065 1.12 0.00978 0.99875 0.181564
4 8 | 13225 129.875 127.875 143.815 38.1836 133.4538 11.34501
4 10 | 376.685 371.75 360.31 365.875 37.85684 368.655 11.29636

0 | 132.065 137.435 129.69 121.685 32.14684 130.2188 10.40964
2 13.75 2.62 1.435 1.31 0.982855 2.27875 1.820167
4 105 0.5 0.75 0.625 0.010742 0.59375 0.190239
5 1 0.815 0.315 0.315 0.5 0.04173 0.48625 0.37505
6 | 0.62 0.76 0.56 0.38 0.0081 0.53 0.165238
8 |1 2.75 3.63 0.75 1.444419 2.0025 2.206546
135.25 133.5 125.125 126.375 19.17578 13C .625 8.039759
0 1238 1.125 0.685 0.75 0.465213 1.235 1.252253
9

!

I N N (L N S N .
<

0 "6 n.5 0.565 0.44 0.002592 0.51625 0.093476
S VR 0315 0.5 0.25 0.009767 0.37625 0.1814438
S| 0185 0.375 0.06 0.185 0.012667 0.20125 0.206636
6 | 044 0.315 u 5 0.38 0.00473 0.40875 0.126265

to ¢
£
.

0.62 0.25 0.8 0.44 0.017719 0.4225 0.24439
10§ 1.63 0.375 2.5 0.685 0.81335 1.34375 1.655769

te

Table B.5: Hotspot traflic and N = 3: average queue length, variance, and confidence
mterval.

APPENDIN B. ROW DATA FROM THE SIMULATION OF THE 1-GCN

144

w po | @ Q2 Qs Q4 Var. Q Ci

6 4 |163.27 162.18 165.02 166.31 223206 161.27 271051
6 5 | 111.3333 111.1233 112.3933 108.3333 2.253019 110.7958 2.750H308
6 6 |159.8333 17317 166.4767 164.77 22.79029 166.0625 S.7GIT8S
5 2 | 255.98 2 v 966,27 249.7067 1812102 255.917H 7T.88059
5 4 16335333 6 68.25 70.80333 8.06TI8 66.99917 5211676
5 5 1479 39, of 44 12.83 0264483 13.52667 5H.588266
5 6 170 71.39333 65.37667 64.10333 9.315814 6771833 5.603726
5 8 | 254.1867 259.1433 251.71 251.6467 9.288281 2541717 5505139
40 | 28156 282.2033 284.44 27R.5833 4397847 2817192 3.850229
4 2 12577 129.4167 123.27 117.8933 17.56671 124.087H 7.695054
4 4 |19.81 17.79333 23.02333 22.77 4708647 2084917 3.983956
4 5 | 1.146667 1.143333 0.77 29246667 0.305572 1326667 1.01.19
4 6 | 2354333 18.54333 21.75333 23.81333 4.41235 2191333 3.856GHT2
4 8 | 127.0433 120.5833 124.6433 130.79 13.74814 125765 6.807513
4 10 | 284.54 280.6033 283.2733 287.7067 6.523141 284.0308 1.689158
370 | 118.1233 124.3567 124.8133 116.6033 13.35299 120.9742 6.708967 |
3 2 |31.60333 32.21 33.79333 34.83667 1.632091 33.11083 2.345517
3 4 |0.646667 0.54 0.376667 0.936667 0.041625 0.625 0.371579
3 5 1048 0.313333 0.44 0.523333 0.006147 0.439167 0.14:394
3 6 |0.666667 0.813333 1.103333 0.666667 0.03178 0.8125 0.327297
3 8 |34.10333 36.33667 29.98 2739667 12.12334 3195417 6.392602
310 | 129.4167 132.9767 126.3967 122.1467 15.83092 127.7342 7.304989
2 0 | 21.39333 24.83667 21.77 20.25 2.884774 220525 3.118332
2 2 |0.476667 0.44 0.456667 0.413333 0.000539 0.446667 0.04262
2 4 [0.44 0.52 0.396667 0.313323 G 005574 04175 0137076
2 5 10.21 0.376667 0.376667 0.336667 0.004675 0.325 0.125533
2 6 |0.44 0.416667 0.356667 0.226667 0.00685 0.36 0151954
2 8 |0.46 0.52 543333 0.583333 0.001994 0.526667 0.081993
2 10| 22.89667 19.58 19.60333 20.35333 1.842247 20.60833 2.491956

Table B.6: Hotspot traffic and N = 16:

dence interval.

average quene length, variance, and confi-

Appendix C

Maple Source Code for
Computing Sy

Maple V source code for computing Sy in chapter 4:

fib := proc (N) option remember;
if N < 2 then
N
else
fib(N - 1) + fib(N - 2)
fi
end;
phi := proc (B) local N; option remember;

N := round(B);
fib(N + 1) + fib(N - 1) - 2
end;

returns the cardinalitvy of the set w"a_b.
w := proc(N, a, b) local acc, i; option remember;
acc := binomial(2-(a - 1), b) * ((N / (27a))!)~(2%b);
acc := acc * ((N / (2°(a+1)))!)"{2"a-2%b);
for i from 0 te (a - 2) do
acc := acc * phi(N / (271))7(271)
od;
acc * (phi(N / (2°(a - 1)))"(27(a - 1) - b);
end;

returns the number of leaf nodes in a s level worst-case Search tree
t := proc(s) option remember;
if s = 0 then

145

APPENDIX C. MAPLE SOURCE CODE FOR COMPUTING Sy 16

1
elif s = 1 then
4
else
(t(s - 1) + t(s - 2)"D"2
fi
end;

returns the number of nodes in a s level worst-case search tree

tau := proc(s) local i, acc; option remember;
if s <= 0 then
i
else
acc := 0;
for i from i to round(s) do
acc := acc + t(i)
od;
acc
fi
end;

returns the number of node-searches for each w(a,b)
NS := proc(a, b, 1nN) option remember;

a-1+ (tau(lnN - a)~b) * (tau(lnN - a - 1)°2)"(2°(a - 1) - b)
end;

Wall := proc(N, logN) local acc, i, j; option remember;
acc := 0;
for i from 1 to (round(logN)-1) do
for j from 1 to (2°(i-1)) do
acc := acc + w(N, i, j)
od;
od;
acc
end;

sn(N) returns the average number of nodes searched for
each permutation by the ADM permutation routing algorithm.
snl := proc(N, logN);
(logN - 1) * (1 - (Wall(N, logN) / N!))
end;

sn2 := proc(N, logN) local i, j, acc;
acc := 0;
for i from 1 to (logN - 1) do
for j from 1 to (2°(i - 1)) do

APPENDIX (. MAPLE SOURCE (CODE FOR COMPUTING Sv 147

lprint(i, j, evalf(w(N, i, j)), evalf(Ns(i, j, logN)));
acc := acc + w(N, i, j) * NS(i, j, logN);
od;
aod;
acc / N!

end;

sn := proc(N) local logN;

logN := round(logl2](N));

lprint(N, evalf(sni(N, logN) + sn2(N, logN)));
end;

