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ABSTRACT

Recent concerns on the adverse effects of steel corrosion have prompted the use of non-
corroding materials, such as Fibre-Reinforced Polymers (FRPs), as alternative to
reinforce concrete slabs. To successfully implement FRP reinforcement in slab
construction, it is necessary to understand the advantages and limitations of FRP as well
as which materials work and which shapes or forms suit best a given application.
Compared to ordinary steel reinforcement, FRP reinforcements display a lower stiffness,
usually have a lower bond strength, and rupture in brittle fashion. Some FRP products
even have a tendency to creep rupture. The effect of these distinctive features on the
structural behaviour of concrete slabs have been just partially identified: the effect of the
reduced stiffness and bond strength of FRP rebars and grids on the evaluation of average
curvatures and average strains to calculate deflections in slabs is relatively well
understood; however, the effects of these properties on the interactive relationship
between crack widths and FRP strains at cracks have not been examined in detail. As far
as shear design of one- and two-way slabs with FRP rebars and grids is concerned,
existing design guidelines are mostly empirical and tests scarce. In regards to slab
strengthening with FRP sheets, there is a need to study the feasibility of bonding FRP

sheets to the slab surface as a rehabilitation vehicle.

This study examines numerous aspects of the flexural, shear and deformation behaviour
of one-way and column-supported two-way concrete slabs reinforced with FRP bars,
grids and sheets. The study identifies the conditions under which FRP deformed bars, 2-
D grids and sheets are either beneficial or detrimental when used either as internal or
external slab reinforcement. Design provisions are proposed to control cracks and
deflections in one-way slabs with internal FRP rebars or grids, and to evaluate the
punching shear capacity of column-supported slabs reinforced with FRP rebars, grids or

sheets.



RESUME

Les inquiétudes récentes sur les effets défavorables de la corrosion de 1’acier ont promu
'utilisation des matériaux non-corrosifs, les polymeres renforcés de fibres (FRP) par
exemple, comme moyens alternatifs pour renforcer les dalles de béton. Afin d’intégrer
avec succes les renforcements de FRP dans la construction des dalles, il est nécessaire de
comprendre les avantages et les limites des FRP et également quels matériaux et quelles
formes s’adaptent le mieux a une application donnée. Les matériaux en FRP possédent
généralement une plus faible rigidité, une résistance a 1’adhérence plus faible, et une
rupture fragile par rapport a I’acier courant. Certains produits en FRP ont méme tendance
a se rompre par fluage. Les effets de ces caractéristiques distinctes sur le comportement
structural des dalles en béton ont partiellement été identifiés. Les effets d’une rigidité
réduite, de la résistance a I’adhérence des barres et des grillage en FRP sur le calcul des
déformations dans les dalles sont relativement bien compris dans I’évaluation des
courbures et des dilatations moyennes. Cependant, les effets de ces propriétés dans les
relations entre la largeur des fissures et la dilatation des FRP sous-jacents n’ont pas
encore été étudiés en détail. Pour le calcul des dalles uni-directionnelles ou bi-
directionnelles avec des barres et des grillages en FRP, les recommandations existantes
sont surtout empiriques et les essais sont rares. Il est donc nécessaire d'étudier I’efficacité
de I’adhérence des plaques en FRP collées a la surface des dalles comme moyen de

réhabilitation.

Cette recherche identifie les conditions ou les barres, les grillages et les plaques en FRP
ont, ou n’ont pas, d’effets bénéfiques lorsqu’ils sont utilisés comme renforcement interne
ou externe. Des recommandations pour le calcul sont proposées pour contrdler les
fissures et les déformations des dalles uni-directionnelles avec des barres et des grillages
internes en FRP, et pour évaluer la capacité en cisaillement au poingonnement des dalles

supportées par des poteaux et renforcées par des barres, grillages ou plaques en FRP.



RESUMEN

Recientemente, debido a los considerables problemas acarreados por la corrosion del
acero de refuerzo, el uso de materiales anticorrosivos como los polimeros reforzados con
fibras (FRP) ha aumentado como una alternativa para reforzar losas de concreto. Para
implementar exitosamente este tipo de refuerzo en la construccién de este tipo de
estructuras, es necesario evaluar sus ventajas y desventajas, asi como también identificar
cudles materiales o formas son los que mejor cumplen una determinada funcion.
Comparados con el acero de refuerzo ordinario, los refuerzos FRP poseen usualmente
una menor rigidez, una menor adherencia al concreto y se fracturan fragilmente. Algunos
productos, incluso, tienden a ceder y fracturarse con el tiempo ante una carga constante.
Los efectos que estas propiedades tienen en el comportamiento estructural de losas
reforzadas con estos elementos no han sido del todo examinados: los efectos que tanto la
reducida rigidez como la baja adherencia de las varillas o mallas FRP tienen en la
evaluacion de curvaturas y deformaciones unitarias promedio para calcular deflexiones
han sido estudiados en el pasado; sin embargo, los efectos de dichas variables en la
interdependencia entre el ancho de las grietas en el concreto y la deformacion en el
refuerzo FRP no han recibido la atencion que deberian. En lo que respecta al disefio a
cortante de losas de concreto armadas en una 6 dos direcciones con varillas o mallas FRP,
las guias de disefio son netamente empiricas y la evidencia experimental escasa. En lo
que respecta al uso de hojas FRP como elementos de refuerzo externo, las condiciones

son igual de desalentadoras.

El presente estudio examina numerosos aspectos relacionados con el disefio a la flexion y
al cortante por punzonamiento de losas de concreto reforzadas con varillas, mallas u
hojas del tipo FRP. El estudio identifica las condiciones bajo las cuales dichos productos
constituyen o no un apropiado vehiculo para reforzar losas de concreto. Igualmente, se
reportan guias de disefio encaminadas a controlar el agrietamiento y la deflexion de losas
de concreto armadas con varillas o mallas de FRP en una direccién, y a predecir la
capacidad ante el punzonamiento de losas soportadas por columnas, reforzadas en dos

direcciones con varillas, mallas, u hojas FRP.
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LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

ACI American Concrete Institute

ASCE  American Society of Civil Engineers
ASTM  American Society for Testing and Materials
CSA Canadian Standards Association

FRP Fibre Reinforced Polymer

SYMBOLS

Roman Symbols

a Depth of compressive stress block at ultimate

a, Shear span

Ay Area of longitudinal FRP reinforcement

Afef Effective area of longitudinal FRP reinforcement
A Area of longitudinal steel reinforcement

Aser Effective area of longitudinal steel reinforcement
b Beam or slab width

by Width of FRP sheet

b; Normalized length of splitting failure line

b, Critical perimeter for punching shear capacity evaluation
c Depth of compressive stress block

Cc Clear concrete cover

Cw Column width

d Effective flexural slab or beam depth

Concrete cover measured from the centroid of the tension reinforcement to
extreme tension surface

E. Elastic modulus of concrete

Ey Elastic modulus of carbon fibre

Ef Elastic modulus of FRP rebars



Eg Elastic modulus of FRP sheets

E; Elastic modulus of steel

fe Average concrete compressive stress

Jefm Tensile concrete stress at the FRP reinforcement centroid at midspan
Jefu Ultimate tensile strength of carbon fibre

Jek Characteristic compressive strength of concrete

Sem Mean compressive strength of concrete

Jor Tensile strength of concrete

Jem Mean tensile strength of concrete

I Stress in FRP

N Stress in FRP at punching

5 Stress in FRP at service load conditions

S Ultimate tensile strength of FRP

fr Concrete's modulus of rupture

Su Ultimate tensile strength of steel

Iy Yield strength of steel reinforcement

fe Specified cylinder strength of concrete

Sfspt Splitting tensile strength of concrete

g Distance from FRP sheet's innermost edge to column face

h Slab thickness or beam full depth

hy Distance from tension reinforcement centroid to neutral axis
h Distance from the extreme tension surface to neutral axis

I Moment of inertia

L, Cracked moment of inertia

L Effective moment of inertia

I, Gross moment of inertia

I; Moment of inertia of the cross-section transformed to concrete
I; Moment of inertia in state I

I Moment of inertia in state II

J Ratio of flexural lever arm to effective flexural depth



m,
m,

My, col

X

o
oq

REEEF

N

s,neg

Ratio of FRP strain at support to FRP strain at midspan at service load level
Bond constant

Tension stiffening factor

Constant for punching shear capacity equation calibration

Modification factor in strip model punching formulation for slabs with internal
FRP

FRP strain-based constant in El-Ghandour et al's punching capacity equation
Constant depending on boundary conditions

Bond coefficient in CSA S806-00 crack control equation

Bond coefficient in Thériault and Benmokrane's crack width equation
Loaded length of slab radial strip

Centre-to-centre slab span in the transverse direction

Transfer length

Clear slab span in the longitudinal direction

Span length

Uncracked beam portion length from support

Bending moment intensity

Panel moment intensity

Bending moment resistance intensity

Bending moment resistance intensity of column strip

Applied moment

Negative moment at column face

Cracking moment

Midspan moment

Negative moment

Statical or panel moment
Positive moment

Nominal moment resistance
Flexural capacity of radial strip

Negative flexural capacity of radial strip



quACt

qu SM

Sf
Sm
Sm,c
Smax

Smin

Positive flexural capacity of radial strip

Strain gauge-based positive moment
Strain gauge-based negative moment at gauge gridline 1
Strain gauge-based negative moment at gauge gridline 2

Ultimate moment

Modular ratio (Steel's elastic modulus divided by concrete's elastic modulus)
Modular ratio (FRP sheets' elastic modulus divided by concrete's elastic
modulus)

Coefficient depending on cement type

Applied point load

Factored load

Flexural capacity of an isolated slab specimen in a punching shear test
Nominal load resistance

Load capacity of radial strip

Uniformly distributed load per unit area

Uniformly distributed load per unit area at ultimate

Uniformly distributed load per unit area at ultimate, according to ACI code
Uniformly distributed load per unit area at ultimate, according to Strip Model
Point reaction in series II test set-up

Crack spacing

FRP reinforcement spacing

Mean crack spacing

Mean constrained crack spacing (not induced by bond)

Maximum crack spacing

Minimum crack spacing

Steel reinforcement spacing

Time

Thickness of FRP sheet

Shear strength of concrete

Bar shear



Ver Shear force at column face

v, Nominal punching shear resistance

Ve Observed punching shear capacity
Uniformly distributed load per unit length

WL Uniformly distributed dead load per unit length

w Uniformly distributed load per unit length acting on radial strip,
for slabs with internal steel reinforcement

Wy Crack width in a beam or slab with internal FRP reinforcement

Wee Uniformly distributed load per unit length acting on radial strip,
for slab with externally bonded FRP reinforcement

Wy Uniformly distributed load per unit length acting on radial strip,
for slabs with internal FRP reinforcement

W Mean crack width

Wonax Maximum crack width

Winin Minimum crack width

Wins Mean crack width on tension surface

Wa,c Mean constrained crack width

Wi Crack width in a beam or slab with internal steel reinforcement

X Distance, neutral axis depth

Xer Distance from support to outermost flexural crack in shear span

X Neutral axis depth in a member with FRP reinforcement at service load level

Xm Neutral axis depth at midspan

Xs Neutral axis depth at a support

Xgs Neutral axis depth in a member with steel reinforcement at service load level

z Crack width control factor

Greek Symbols

a Ratio of slab/beam thickness to effective flexural depth

O Bond coefficient for /, calculation of beams and slabs with FRP

a Ratio of average stress in rectangular compression block to the specified



B
ﬂcc

AYs
Eem
Ees
Eesm
Eess
Eeu
&
Eferm

Efm

concrete compressive strength according to CSA A23.3-94

Combined bond and performance factor in CEB/FIP MC90

Correction factor for Z, calculation of beams and slabs with FRP
Time-dependent coefficient to calculate aging effect on concrete compressive

strength
Concrete stress block factor in CSA A23.3-94; bond factor in CEB/FIP MC90

Performance factor in CEB/FIP MC90

Slip

Beam or slab deflection

Allowable beam or slab deflection

Midspan beam or slab deflection

Deflection at service load level

Beam or slab deflection at ultimate

Normal strain correction due to concrete's tension stiffening effect

Normal strain correction due to concrete's tension stiffening effect under
constrained crack spacing conditions

Curvature correction due to concrete's tension stiffening effect

Mean concrete strain

Concrete strain at service load level

Midspan concrete strain at extreme compression fibre at service load level
Concrete strain at extreme compression fibre at service load level at support
Concrete strain in extreme compression fibre at ultimate

FRP strain

Midspan FRP strain immediately before first flexural cracking

Mean strain in the FRP reinforcement

Strain in the FRP reinforcement at a crack



&
Efom
Eps
&
Em
&
&
Em

Esr

Pr
Pral
Prer
Pr
Pineg
L. pos

FRP strain at service load level

Midspan FRP strain at service load level

FRP strain at service load level at support

Tensile strain in FRP at ultimate (rupture strain)

Mean strain

Reinforcement strain at a crack

Steel strain

Mean strain in the steel reinforcement

Strain in the steel reinforcement at a crack

Steel strain at service load level

Ratio of experimental punching failure load to flexural failure load

Bar diameter

Material reduction factor for concrete

Material reduction factor for FRP

Material reduction factor for steel

Ratio of mean constrained crack spacing to maximum crack spacing
Moment of inertia factor in Razqupur et al's deflection calculation procedure
Ratio of mean to maximum crack spacing

Ratio of mean to maximum crack spacing in a slab with FRP reinforcement
Ratio of mean to maximum crack spacing in a slab with steel reinforcement
FRP reinforcement ratio

Balanced FRP reinforcement ratio

Effective FRP reinforcement ratio

Radial strip's FRP reinforcement ratio

Radial strip's negative flexural FRP reinforcement ratio

Radial strip's positive flexural FRP reinforcement ratio



Psbat
P
Oy
O}’ro
Ofm
Oy
Osro
Osm
Tp
Tho
Tb,max

Tp, sp

Wave
Wer
Win
Yin,ave
Wu

Wi

%

Steel reinforcement ratio

Balanced steel reinforcement ratio

Effective steel reinforcement ratio

Stress in the FRP reinforcement at a crack

Stress in the FRP reinforcement at a crack immediately after first cracking
Mean stress in the FRP reinforcement

Stress in the steel reinforcement at a crack

Stress in the steel reinforcement at a crack immediately after first cracking
Mean stress in the steel reinforcement

Bond stress

Peak bond stress in rigid-perfectly plastic bond-slip formulation
Maximum bond stress

Splitting bond strength

Curvature

Average curvature

Curvature at first cracking

Midspan curvature

Average midspan curvature

Curvature at ultimate

Curvature in state I

Curvature in state I1

Tension stiffening factor in CEB/FIP MC 90

FRP reinforcement index

Stiffness factor



1 Introduction

1.1 Description of the Problem

One and two-way steel-reinforced concrete slabs constitute basic structural forms in
concrete construction. Their design process is similar. The slabs are proportioned to
comply with the ultimate limit states of flexure, shear and torsion, as well as
serviceability requirements. One- and two-way steel-reinforced concrete slab systems
have been successfully built for more than 80 years. Sozen and Siess (1963), and Fiirst
and Marti (1997) document their evolution process in North America and Europe,

respectively.

Rising concerns regarding the adverse effects of steel corrosion in concrete structures
have prompted the introduction of non-corroding materials, such as Fibre-reinforced
Polymers (FRPs), as alternative to reinforce concrete. FRPs are made from thin high-
strength continuous fibres impregnated in a resin. The most common fibre types are
carbon (CFRP), glass (GFRP) and Aramid (AFRP). The ability to tailor FRPs into
different shapes (bars, grids, strips and sheets), together with their superior corrosion
resistance, magnetic neutrality, and high strength-to-weight and stiffness-to-weight ratio,
makes them very appealing for slab construction. Appendix A presents a history of their

development and a summary of their mechanical properties and landmark applications.

To successfully use FRP reinforcement in slab construction, it is necessary to understand
the advantages and limitations of FRPs as well as which materials work and which shapes
or forms suit best a given application. Under direct tension, FRPs display a brittle-elastic
response that is in most cases much more flexible than that of steel. This raises some
questions as to whether existing serviceability and ultimate limit state flexural and shear
design procedures for steel-reinforced concrete slabs can be safely applied to FRP-
reinforced concrete slabs. Due to the reduced stiffness of FRP reinforcement, FRP-
reinforced concrete slabs are also prone to exhibit greater deflections and crack widths at

the serviceability limit state level. From an ultimate strength perspective, the FRP elastic-



brittle nature renders conventional flexural design procedures that rely on any form of

moment redistribution not applicable.

Today, after a decade of using FRPs to reinforce bridge decks, airport compass and radio
pads, and hospital Magnetic Resonance Imaging (MRI) slabs, the effects of the
distinctive features of FRP on the structural behaviour of concrete slabs have not received
all the attention they deserve. Unlike the case of calculating deflections in flexural
members from average curvatures and average strains, the effects of the reduced stiffness
and bond of FRP reinforcement on the relationship between crack widths and FRP strains
at cracks have not been examined in detail. Because of the superior corrosion resistance
of FRP, it is often heard that cracks in FRP-reinforced members should be controlled
based solely on aesthetics reasons. This is a fallacy because, as pointed out by Burgoyne
(1993), the strain concentrations at cracks may lead to excessive FRP strain values for a
given crack width. This is of particular relevance for GFRP-reinforced concrete slabs

under sustained load because GFRP is prone to creep rupture.

As far as shear design of one- and two-way slabs with internal FRP reinforcement is
concerned, existing design guidelines are mostly empirical, relying on a scarce
experimental test result database. In regards to shear strengthening of two-way slabs with
external FRP reinforcement, there is a need to study the feasibility of bonding FRP sheets
to the slab top surface as a strengthening vehicle. Recognizing that the majority of
existing punching shear models do not always explain the true cause of punching of
ordinary slabs, and that no analytical model for punching of newly built or rehabilitated

slabs with FRP has been devised, such examination finds ample justification.

1.2 Objectives, Scope and Limitations

The main objectives of this study are i) to produce test results on two-way concrete slabs
reinforced with internal or external FRP reinforcement, and ii) to examine the mechanism
of load transfer in one- and two-way concrete slabs reinforced with FRP rebars, grids or

sheets, with the ultimate goal of identifying the conditions under which FRP deformed



bars, FRP 2-D grids, and CFRP sheets can be effectively used to reinforce or strengthen

concrete slabs. The following aspects will be examined:

1) The effect of the lower stiffness, bond strength and brittle-clastic nature of FRP
reinforcement on the flexural and shear response of one- and two-way concrete slabs
with internal FRP reinforcement.

2) The effect of bonding FRP sheets in cruciform patterns on the top surface of two-way

concrete slabs as a slab strengthening vehicle.

The observations will lead to the development of design recommendations aimed at
predicting crack widths and FRP strains at cracks in one-way FRP-reinforced slabs,
controlling deflections in one-way FRP-reinforced slabs, and predicting the punching

capacity of two-way slabs with internal or external FRP reinforcement.

Since the examination of the response of FRP-reinforced concrete members will be
directly referred to concepts already established within the framework of steel-reinforced
concrete slabs, this study is also expected to provide a better insight into the behaviour of
ordinarily reinforced concrete slabs, especially on issues related to flexural cracking of
one-way slabs and punching shear behaviour of two-way slabs. The study will also

examine different procedures to repair ordinary concrete slabs that have punched.

This work examines two aspects of slab behaviour. Firstly, the flexural response will be
examined in the context of one-way members with internal FRP reinforcement subjected
to short-term monotonic loads. Temperature effects are not examined. Most of the
attention will concentrate on the serviceability limit state of design. Second, the study
investigates the punching shear behaviour of interior slab-column connections with either
internal or external FRP reinforcement. For slabs with internal FRP reinforcement, most
of the attention is concentrated on GFRP deformed bars and 2-D grids. For slabs with
external FRP reinforcement, only the effects of CFRP sheets bonded to the top slab
surface are assessed. Only punching due to concentric gravity-type loading conditions is

examined. Slabs with shear reinforcement in the form of stirrups or studs are not



considered. The shear behaviour of one-way slabs and beams with internal FRP
reinforcement or surface-bonded FRP sheets is investigated but does not receive as much

attention as that in two-way slabs.

1.3 Organization

Chapter 2 presents a summary of the experimental programs pertinent to this study that
have been reported in the past. The attention is concentrated on those examining the
flexural capacity of beams and slabs with internal FRP reinforcement and the punching
capacity of two-way concrete slabs reinforced with internal FRP rebars and grids, or

strengthened with bonded FRP sheets.

Chapter 3 presents the fundamental principles and theories for the serviceability flexural
design of one-way steel-reinforced concrete slabs and existing analytical and
experimental information for the same type of behaviour in concrete beams and one-way
slabs with internal FRP reinforcement. Based on what is known for ordinary slab design,
the chapter discusses the implications of using internal FRP reinforcement to reinforce

concrete slabs for flexure.

Chapter 4 reports available punching shear test results and design recommendations for
steel-reinforced, FRP-reinforced and FRP sheet-strengthened concrete flat plates. The
chapter discusses the implications of using FRPs as internal or external slab

reinforcement on the punching shear response of concrete flat plates.

Chapter 5 reports details of the experimental program carried out by the author. It
consisted of two test series. The first series examines the punching shear behaviour of
interior slab-column connections with internal FRP rebars and grids. The second series
examines the punching shear behaviour of interior slab-column connections 1)

strengthened with externally bonded CFRP sheets and ii) repaired with concrete patches.

Chapter 6 presents the results, experimental observations and evaluation of results from

series I tests. Chapter 7 reports the same information for series II tests. The results and



observations are used to describe the interaction between FRP reinforcement and

concrete in order to explain the role of FRP and the failure cause of the slabs.

Chapter 8 examines the serviceability flexural behaviour of one-way concrete slabs and
beams with internal FRP reinforcement. It examines the implications that the reduced
stiffness, bond strength and non-yielding nature of FRP reinforcement have on tension
stiffening, crack widths, reinforcement strains at cracks and average strains. A procedure
is presented to predict the load-deflection response of one-way concrete slabs and beams

reinforced with FRP, and calculate crack widths and FRP strains at cracks.

Chapter 9 examines the effect of the mechanical and material properties of FRP
reinforcement on the punching capacity of concrete slabs. It evaluates the adequacy of
existing design rules to evaluate the punching capacity of interior slab-column
connections with FRP rebars or grids, or with bonded FRP sheets. It presents one
empirical and one analytical model to predict the punching capacity of interior slab-
column connections with FRP rebars and grids, and one analytical model to predict the

punching capacity of interior slab-column connections with bonded FRP sheets.

Chapter 10 proposes indirect deflection control procedures in slabs with internal FRP

reinforcement.

Chapter 11 presents a compendium of conclusions, proposed design recommendations

and suggestions for future research.

Six appendices are reported. Appendix A presents a brief history of the development of
FRP reinforcement. Appendix B presents a detailed derivation of the bond-slip
differential equation and the fundamentals of the tension chord model. Appendix C
presents a pictorial of relevant aspects of series II tests. Appendix D presents a summary
of the geometric and material properties of test specimens loaded in four point bending
reported in the literature. Appendix E presents the derivation of an indirect deflection

control procedure for concrete beams and one-way slabs based on a modification of



Branson’s effective moment of inertia proposed by Thériault (1998). Finally, Appendix F
presents a summary of the geometric and material properties of the test specimens
examined by researchers who have studied the punching shear behaviour of two-way

concrete slabs with internal FRP reinforcement.



2 Observed Flexural and Shear Behaviour of Concrete Beams
and Slabs with FRP Reinforcement

2.1 General

This chapter presents a summary of reported experimental observations from tests
studying the flexural behaviour of one and two-way members with internal FRP rebars
and grids, and the punching behaviour of two-way slabs with internal and external FRP
reinforcement. These observations serve as a preamble for background concepts that will

be thoroughly explored in chapters 3 and 4.

2.2 Flexural Tests on Concrete Beams and One-way Slabs Reinforced
with Internal FRP Reinforcement

Complete lists of references on the flexural behaviour of one-way members with internal
FRP reinforcement are provided by ACI Committee 440 (1996) and Hall (2000). The

following provide experimental evidence that will be used later in this study.

The first tests on concrete beams reinforced with glass-fibre rods were reported by Nawy,
Neuwerth and Phillips (1971). They tested beams with 3 mm dia. GFRP straight rods
and beams with 3.2 mm dia. steel rebars with similar reinforcement ratios (0.19 to 0.41 %
for GFRP and 0.22 to 0.45 % for steel). The concrete compressive strength varied from
28 to 35 MPa.

The load-deflection response of the beams with GFRP was essentially bilinear. No
significant difference in the cracking load was observed due to the presence of GFRP.
The flexural stiffness reduced significantly after first cracking. The slope of the load-
deflection response through the elastic-cracked stage increased with the GFRP
reinforcement ratio. At a given load level, the cracks in the GFRP-reinforced beams were
wider than those in the beams with steel reinforcement. (Note: the above observations are
representative of the flexural behaviour of beams and slabs with internal FRP

reinforcement. They will not be repeated).



Nawy et al noted that the beams with GFRP also developed more cracks than those with
steel reinforcement suggesting that the glass fibre reinforcement they used was “capable
of developing good mechanical bond”. At failure, the deflection in the beams with GFRP
was about three times greater than that for similar beams with steel reinforcement.
Provided that long-term conditions do not affect the strength of GFRP, Nawy et al
concluded that a very high factor of safety is available against failure for members

reinforced with FRP.

The previous reference raised considerable discussion. Chandrasekhar (1972) commented
that a comparison between the response of GFRP- and steel-reinforced beams should be
based on the reinforcement index and not on the reinforcement ratio. Huang (1972)
emphasized that the "reserve strength" of the beams with GFRP reinforcement is a
drawback instead of an advantage. Huang added that "unless very high overload can be
reasonably expected to occur... the large load factor cannot be justified, and the unused
strength is wasted". This comment was shared by Kirstein (1972) and Almeida (1972),
who inquired whether the term "reserve strength" should refer instead to an "unavailable
strength". Almeida (1972) noted that the only areas where the high tensile stress of GFRP
could be utilized are in prestressing operations or in the fabrication of precast prestressed
concrete prisms to be used as beam reinforcement. This type of application has been

recently explored by Svecova (1999).

Nawy and Neuwerth (1977) reported additional test results on 14 simply supported

beams over-reinforced with GFRP reinforcement. The GFRP reinforcement ratio was the

main variable, varying from 0.7 to 2.54 %.

In this set of beams, the beams with lower FRP amount developed fewer cracks, which
contradicts previous observations of Nawy et al (1971). Removal of the load resulted in
an almost full closing up of the cracks, as would occur in unbonded post-tensioned
concrete members. At about 35 % of the ultimate load, they found the deflections to be
within tolerable limits. Crack widths fell within allowable limits up to 20 % of the
ultimate load. At failure, the ultimate strength of the GFRP could not be developed.



Nawy and Neuwerth concluded that using GFRP reinforcement should permit higher

tolerable crack widths due to the non-corrosive nature of GFRP.

Faza and GangaRao (1992a and 1993a) presented test results and a summary of design
aspects for members with GFRP. They note that the phenomenon of developing moment
resistance in FRP-reinforced beams is identical to that of beams with steel reinforcement,
provided that adequate bond between FRP and concrete develops. Due to the inability of
the FRP-reinforced beams tested by Nawy and Neuwerth (1977) to develop the full
strength of FRP, Faza and GangaRao recommended using high strength concrete in

lightly-reinforced beams with FRP to maximize their bending resistance.

Nakano, Matsuzaki, Fukuyama and Teshigawara (1993) conducted flexural tests on
ten beams, identical in shape, varying the type of reinforcement (AFRP, CFRP and steel),
the tensile reinforcement ratio (from 0.28 to 3.23 %), and the compressive strength of
concrete (either 29.4 or 76.5 MPa). They concluded that the flexural response of beams
reinforced with FRP bars can be evaluated by means of conventional methods used in

concrete beams with steel bars and noted that compressive flexural failures are preferred.

Nanni (1993) described the conceptual implications of using FRP deformed bars as non-
prestressed reinforcement for flexural members. He remarked on the importance of
controlling deflections in beams with FRP due to FRP’s reduced stiffness. Due to FRP’s
brittle behaviour, Nanni noted that flexural compressive failures are preferred over
flexural tension failures. Moreover, since the flexural strength of an FRP over-reinforced
cross-section depends on the compressive strength of concrete, FRP reinforcement should
be used in combination with high-strength concrete. He noted that the use of FRP rebars
as a non-prestressed reinforcement does not result in material savings and that their use

should be motivated essentially on durability aspects.

Schmeckpeper and Goodspeed (1994) reported tests on five beams with CFRP grids
and five with hybrid carbon/glass (HFRP) grids. The response of these beams was

compared to that of three control steel-reinforced specimens. The main variable was the



FRP content. The governing failure mechanism of the over-reinforced beams with FRP
was either flexural due to concrete crushing or diagonal shear. They concluded that FRP
grids are a potentially viable replacement for steel in concrete structures but warn that the

acceptance of FRP is influenced by its non-yielding nature and its low stiffness.

Based on their test results from eight one-way concrete slabs reinforced with GFRP and
CFRP bars, Michaluk, Rizkalla, Tadros and Benmokrane (1998) remarked that over-
reinforced slabs with GFRP could fail in shear. They warn that further research is

necessary prior to allowing massive use of GFRP as slab reinforcement.

Masmoudi, Thériault and Benmokrane (1998) examined the serviceability and
ultimate flexural behaviour of beams with GFRP. They conducted tests on four sets of
over-reinforced beams with GFRP deformed bars with reinforcement ratios varying from
0.56 to 2.15 %. Concrete compressive strength ranged from 45 to 52 MPa. The GFRP-
reinforced beams with 0.56 % FRP reinforcement were designed to display a balanced

failure.

They observed that the average crack spacing in beams with GFRP is comparable to that
of steel-reinforced beams at load levels below 25 % of the ultimate load. At greater
levels, the average crack spacing was 65 % of that of beams with steel. The cracks in the
beams with GFRP were three to five times wider than those in the companion steel-
reinforced beams. They found that the effect of the reinforcement ratio on the crack
spacing is negligible. According to them, crack widths in members with FRP “should be

controlled only for reason of undesirable appearance”.

Thériault and Benmokrane (1998) further investigated the effect of the reinforcement
ratio and the concrete strength on the flexural response of beams with GFRP. The GFRP
reinforcement ratio was either 1.16 or 2.77 %. Three concrete compressive strengths were
examined for each reinforcement ratio: normal strength, high strength and very high

strength. Each beam was duplicated.
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Despite the fact that all beams were designed to fail due to concrete crushing, those with
lower concrete strength failed in shear. Failure was blamed on the wide crack formation
and the lower dowel action from FRP. One striking observation from this test series is
that in two sets of identical beams (BC2VA-BC2VB and BC4NA-BC4NB), one of the

twin beams failed in flexure due to concrete crushing and the other failed in shear.

Matthys and Taerwe (2000b) reported flexural test results on seven one-way slabs
reinforced with carbon and hybrid carbon and glass FRP NEFMAC grids. The
reinforcement ratio varied from 0.18 to 3.76 %. Six slabs were made out of normal
strength concrete (around 30 MPa), whereas one slab was cast with 96.7 MPa concrete.
Their research work provides a thorough coverage of serviceability and ultimate strength

features of FRP grid-reinforced concrete one-way slabs.

They showed that the design of slabs with FRP is governed essentially by serviceability
criteria. To ensure enough flexural stiffness, higher reinforcement ratios or depths are
needed. They recognized that the full tensile strength of FRP can be rarely used up. For
their over-reinforced slabs, they found that the margin between the service load and the
ultimate load could be much higher than that for steel-reinforced members. They
concluded that crack control in FRP-reinforced members is less restrictive than deflection
control and recommended using FRP materials with good bond characteristics. For the
particular case of FRP grids, they recommended using grids with closely spaced
transverse ribs. Since most of their slabs displayed concrete crushing at strains in the
order of 5500 ue, they suggest that current concrete strain limits for ultimate flexural
design need to be further evaluated. In summary, they concluded that FRP can not be
considered as a complete substitute for steel. Other merits of the material, such as its

corrosion-free nature, low conductivity and low weight should be its assets.

Yost, Schmeckpeper and Goodspeed (2001) evaluated the flexural performance of
simply supported concrete beams with 2-D GFRP grids. The main variable was the
amount of GFRP. Five beam sets of three beams each were designed to fail in flexure.

Three were under-reinforced (pr = 0.0012, 0.0021 and 0.0041) and two were over-
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reinforced (or = 0.127 and 0.135). The cross-sectional beam dimensions were not

constant. A single steel-reinforced concrete beam was tested as a control beam.

All beams failed in flexure except those with pr = 0.0021, which failed in shear. The
shear failure was attributed to a loss in aggregate interlock due to the presence of wide
cracks. The tests show that the grids ensure adequate force transfer to develop the axial
strength of the longitudinal ribs. They report that the flexural capacity of the beams can
be predicted using the concepts accepted for steel-reinforced concrete members and note
that over-reinforced conditions are preferred to compensate for the reduced stiffness and
brittle-elastic nature of FRP. They note that the same conclusions, except those related to

force transfer assessment, should apply to concrete beams with deformed GFRP bars.

2.3 Flexural Tests on Two-way Slabs with Internal FRP Reinforcement

Nawy and Neuwerth (1977) conducted tests on 12 two-way 1067 mm square GFRP rod
reinforced slab panels subjected to a uniformly distributed external pressure. The main
variable was the GFRP content (0.29 to 0.77 %). The response of the slabs was also
bilinear. The slope of the response curve in the cracked stage increased with the amount
of FRP. Reducing the grid spacing led to an increased number of cracks. Cracks were
also narrower. Crack widths increased almost linearly with a load increase. Failure was
defined at the level at which the slabs became thoroughly distorted. At failure, the GFRP

rods still had a significant reserve strength.

2.4 Punching Shear Tests on Two-way Slabs Reinforced with FRP
2.4.1 Two-way Slabs with Internal FRP Reinforcement

To the author’s best knowledge, the only punching shear test results of column-supported
two-way slabs with FRP 2-D grids or deformed bars available in the literature are those
reported by Banthia, Al-Asaly and Ma (1995), Matthys and Taerwe (1997, 2000a and
2000c) and El-Ghandour, Pilakoutas and Waldron (1997, 2000). Ahmad, Zia, Yu and Xie
(1993) reported punching tests on two-way slabs reinforced with 3-D FRP grids.
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Ahmad, Zia, Yu and Xie (1993) reported punching shear test results on four two-way
concrete slab panels reinforced with 3-D CFRP grids and two control slabs reinforced
with steel reinforcement. The slabs were 690 mm by 690 mm square and 76 mm thick.
The effective depth was 41 mm for the slabs with CFRP and 61 mm for the control slabs.
The reinforcement ratio was 0.95 % (for all three directions) for the CFRP-reinforced
slabs, and 1.18 and 1.35 % in the x and y directions, respectively, for the slabs reinforced
with steel rebars. The concrete compressive strength was 30 MPa. The slabs were simply

supported along their sides.

Their test results show that the pre-cracking behaviour and initial stiffness of the CFRP-
reinforced slabs and conventional slabs are similar. However, the slabs with CFRP grids

exhibited a significant stiffness reduction after first cracking.

Banthia, Al-Asaly and Ma (1995) studied the punching behaviour of two-way concrete
slabs reinforced with CFRP NEFMAC grids. They tested four 600 mm square 75 mm
thick concrete slabs under concentric punching. Three slab panels were reinforced with
NEFMAC grids and one with steel. One of the NEFMAC-reinforced panels was built
with fibre-reinforced concrete. The slabs were simply supported along the edges over a
clear span of 500 mm and the load was applied on a 100 mm dia. cylindrical column stub.
The main variables were the slab reinforcement type, the concrete strength and the
presence or not of conventional fibres. Findings related to the effect of conventional
fibres will not be considered herein. In the slabs reinforced with CFRP, the NEFMAC
ribs were 20.54 mm? in cross-section spaced at 102 mm. The effective depth was 55 mm.
Ancillary test results rendered a composite tensile strength of 1200 MPa and an elastic
modulus of 100 GPa. For the slab with steel, a wire mesh with a centre-to-centre bar

spacing of 102 mm and a circular cross-section of 19.62 mm? was used.

Banthia et al found that concrete slabs with CFRP grids absorb less energy than
comparable slabs with steel reinforcement. All of their CFRP slabs failed due to
reinforcement rupture. They suggest that no significant changes are needed to

conventional code design provisions when extending them to FRP-reinforced slabs.

13



The experimental work reported by Matthys and Taerwe (1997, 2000c¢) is the most
extensive test program to date on punching of two-way slabs with FRP grids. They report
tests on 17 1000 mm square slabs reinforced with either deformed steel rebars (series R),
CFRP NEFMAC grids (series C), CFRP sanded rebars (series CS) and hybrid carbon
glass (series H). The slab thickness varied from 120 to 150 mm. Sixteen slabs were cast

with 30 MPa nominal compressive strength concrete, one with high strength concrete.

Matthys and Taerwe concluded that there is a strong interaction between shear and
flexural effects on the slab response. The response was also seen to depend on the bond
behaviour of the reinforcement. For slabs with comparable flexural strength, the FRP-
reinforced slab displayed a lower punching capacity and a less stiff response through the
cracked stage than its steel-reinforced companion. They also observed that increasing
either the FRP reinforcement ratio or the slab thickness leads to a FRP-reinforced slab
response comparable to that of steel-reinforced slabs. They showed that existing

punching shear design procedures need to be modified for the case of FRP-reinforced

slabs.

El-Ghandour, Pilakoutas and Waldron (1997, 1999) reported test results of four two-
way slabs with either GFRP or CFRP reinforcing bars. Two of the slabs had shear
reinforcement (results will not be examined here). The slabs without shear reinforcement,
SG1 (GFRP) and SC1 (CFRP), were 2000 mm square, 175 mm thick and had a 200 x 200
x 200 lower column stub. Slabs SG1 and SC1 had, respectively, 11 and 9 - 8.5 mm dia.
GFRP bars spaced at 200 mm.

El-Ghandour, Pilakoutas and Waldron (2000) reported additional test results on slabs
with FRP with greater reinforcement ratio. Two slabs, SG2 and SG3, were reinforced
with 21 GFRP bars of this kind spaced at 100 mm. SC2 had 19 bars spaced at 100 mm.
They found that bond between FRP and concrete has a tremendous effect on the response
of FRP-reinforced slabs. For the case of slabs with low FRP reinforcement ratio, bond

slip is viewed as the main cause of failure.
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2.4.2 Two-way Slabs Rehabilitated with FRP Sheets

To the author's knowledge, the only punching shear tests available on two-way slab
panels strengthened with FRP-sheets are those reported by Erki and Heffernan (1995),
Chen and Li (2000), and Tan (2000). Gold and Nanni (1998) reported the use of bonded
CFRP sheets in cruciform patterns in the negative moment region for the upgrading a

post-tensioned concrete two-way concrete slab in Winston-Salem, North Carolina (US).

Erki and Heffernan (1995) investigated the effect of slab strengthening using FRP
sheets. They reported test results of one and two-way slab panels with FRP sheets. The
slab panels were 1000 by 1000 by 50 mm. Concrete strength was either 37 or 40 MPa.
One one-way and two two-way slabs were tested as control specimens. The remaining
panels were strengthened on their tension face with unidirectional GFRP or CFRP sheets.
All slabs were subjected to transverse patch loads. The one-way slabs were supported on
two parallel sides whereas the two-way slabs were simply supported on all four sides.
The fibres were orientated at either 0 or 45 degrees, in one or two directions. The width
of the CFRP sheets was 800 mm for all slabs except those with sheets orientated at 45

degrees which had 300 mm wide sheets.

The FRP strengthening led to an increase in slab stiffness and strength. However, Erki
and Heffernan show that the sheet orientation affects the degree of stiffness gain. The

lower stiffness increase came from the slabs strengthened with fibres at 45 degrees.

Chen and Li (2000) conducted tests on 18 interior two-way slab-column connection
specimens strengthened with GFRP sheets. The specimens had a 1000 mm square and
100 mm thick slab with a 150 by 150 by 150 mm column stub. Specimens were divided
in two series: series 1 (0.56 % steel ratio) and series 2 (1.23 % steel ratio). All slabs were
simply supported along the edges and loaded from above at the column stub. Since the

GFRP sheets covered the whole slab surface, slab cracks could not be observed.
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Series 1 control specimens did not punch but rather failed in flexure. The other slabs
punched. At failure, GFRP developed only 40% of their ultimate tensile strength. No
signs of peeling between the sheets and concrete were noticed. Sheet peeling occurred
after re-loading the slabs after the peak load. Chen and Li found that bonding GFRP
sheets increases the punching capacity of the slabs. The effectiveness of GFRP increases
for slabs with lower concrete compressive strength and steel reinforcement ratio. They

also observed that the strength enhancement is not proportional to the number of GFRP

layers.

Tan (2000) tested twelve 1000 mm square 35 mm thick slabs with either bonded CFRP
plates, CFRP sheets or GFRP fabric. The slabs were reinforced internally with 6 mm
diameter welded wire steel mesh spaced at 100 mm in the two directions. The effective
depth of the welded mesh was 22 mm. In the slabs with CFRP plates, the plates were
either 40 or 80 mm wide, spaced at either 125, 155 or 250 mm. For the slabs with CFRP
sheets or GFRP fabric, the FRP covered the entire slab surface. For all three
strengthening techniques, the FRP was applied in one or two directions. For the slabs
with CFRP sheets and GFRP fabric, one or more layers were applied. The slabs were
simply supported and loaded in the centre.

Tan found that unidirectional slab strengthening with FRP does not lead to a significant

punching capacity increase. For the slabs strengthened in two directions, the punching

capacity increased with the reinforcing index of the FRP.
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3 Background on Serviceability Flexural Behaviour of One-
way Concrete Slabs with Internal FRP Reinforcement

3.1 General

This chapter reports existing design rules to control cracks and deflections in one-way
FRP-reinforced concrete slabs subjected to flexure. The chapter starts by discussing the
implications of the lower stiffness and brittle-elastic nature of FRP on the response of
FRP-reinforced slabs. Since most available design procedures have evolved from rules

applicable to steel-reinforced members, a thorough review of the latter is presented.

3.2 Implications of Using FRP in the Flexural Design of One-way
Concrete Slabs

As noted by Nanni (1993) and Matthys and Taerwe (2000b), among others, the design of
FRP-reinforced concrete beams and slabs is mainly governed by serviceability criteria.

The reasoning behind this observation is explained with the aid of Fig. 3.1.

Figure 3.1 shows the load-deflection response of three slabs in flexure. The slabs have
comparable cross-section and concrete strength but different reinforcement type and
content. The curves correspond to an under-reinforced concrete slab with ordinary steel
reinforcement (S), a FRP-reinforced slab (G1) with a FRP mat of lower stiffness than that
of the steel-reinforced slab, and a FRP-reinforced slab (G2) with a FRP mat of similar
stiffness to that in slab S. The plot shows the load level at service conditions, P, the

factored load at ultimate, Py, and the allowable deflection, Ay, at service level.

The response of slab S idealizes typical under-reinforced conditions: it displays the
elastic-uncracked (0-1), elastic-cracked (1-2) and post-yielding (2-3) stages. This slab

fails due to concrete crushing after steel yielding.

The response of G1 and G2 represent the behaviour of slabs under-reinforced and over-
reinforced with FRP. Their uncracked response is identical to that of S1 because a change

in the reinforcing mat stiffness does not have significant implications on the cracking

17



load. However, once flexural cracking develops, the two responses diverge. Due to its
lower flexural stiffness, slab G1 deforms much more than G2 for the same load level.
Since G2 has the same mat stiffness as does S, the slope of the load-deflection curves for
S and G2 in the cracked-elastic stage is the same. Neglecting the plastic deformation of
concrete, the slope of segments 1-1” and 1-2’ in G2 and Gl1, respectively, is constant up
to failure because FRP does not yield. Slab G1 fails due to FRP rupture. G2 fails due to

concrete crushing.

The objective of the slab design is to comply with the following requirements:

[3.1]

A all

A, <
P, <P [3.2]

where A, is the deflection at service load level.

The curves in Fig. 3.1 show that all three slabs, regardless of the amount and type of
reinforcement, satisfy at least the second condition. However, only slabs S and G2 satisfy
the deflection requirement. G1 displays excessive deflections at service load levels. For a
slab with FRP to comply with the serviceability limit state, the slab must have enough
flexural stiffness. This is achieved by either over-reinforcing the slab or thickening it.
Faza and GangaRao (1993b) recommended using high strength concrete to improve the
performance of lightly reinforced slabs with FRP. This may increase the initial stiffness

of the member but, once cracks form, the response is governed by the top mat stiffness.

3.3 Cracking in Steel-Reinforced Concrete Slabs

As noted by Leonhardt (1977), cracks in concrete structures are virtually unavoidable.
Crack control is necessary to limit deflections, maintain appearance and prevent steel
corrosion. Cracking in slabs is a relevant issue because slabs are usually lightly-
reinforced. Since the cracked transformed moment of inertia of a lightly reinforced
member is much smaller than its gross moment of inertia, cracking leads to a significant

loss of stiffness which results in greater slab deflections (Scanlon, 1999).
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The main parameters that characterize cracking in steel-reinforced slabs are the crack
width and the crack spacing. As noted by Gergely and Lutz (1967), it is difficult to
quantify these parameters because of the large scatter inherent to cracking and to the

effects that many variables have on the problem.

3.3.1 Mechanics of Crack Formation

The steel-reinforced concrete prismatic member subjected to direct tension shown in Fig.
3.2 will be used to describe the mechanics of crack formation due to imposed loads.
Before cracking, the strains in concrete and steel are compatible throughout the member.
Concrete stresses are equal to f; and stresses in the reinforcement are equal to »f, , where

n is the modular ratio, n = E//E,.

The first crack forms randomly at a weaker spot when the concrete stress exceeds the
tensile strength of concrete, f,,, When concrete cracks, the tensile force carried by the

concrete is transferred to the steel. As shown in Fig. 3.2a, the stress in the steel at the first

crack, O, ; , becomes greater than that immediately before first cracking, nf;, Once the

first crack forms, the concrete tries to spring back to its original state but is restrained by
the steel reinforcement through bond stresses. The transfer of tensile stresses back to
concrete occurs along a distance /, from each side of a crack. This “transfer length”
defines a discontinuity region (Walraven, 2000) in which strain compatibility between
concrete and steel is not maintained. The accumulation of strain differences produces
relative displacements or "slips" between the reinforcement and concrete. The width of a
crack at the level of the reinforcement is the sum of the two slips reaching the crack from
both sides. At this level, the member is said to have entered the "single crack formation"

stage (Balazs, 1993, 1999).

Bond stresses affect the distribution of stresses in both steel and concrete in the crack
vicinity. The contribution of concrete tensile stresses to increase the overall axial stiffness
of the member is referred to as concrete’s tension stiffening effect. This effect depends

largely on the bond-slip interaction between concrete and steel, the elastic modulus of
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steel and the tensile strength of concrete, as noted by Rostasy, Koch, and Leonhardt

(1976), Leonhardt (1977) and ACI Committee 224 (1986).

If the load is increased, concrete stresses exceed £, at a new location, and a second crack
forms at a distance s away from the first crack (see Fig. 3.2b). Concrete is now free from
stress at the two cracks. The distribution of bond stresses near the second crack is
qualitatively similar to that at the first crack except that the slip at the first crack is

greater.

The crack formation process continues until the level of tensile stresses that can be built
up in the concrete between two neighbouring cracks is less than the cracking strength of
concrete. This stage is referred to as the “stabilised cracking phase” (Balazs, 1993, 1999).

In this study, most of the attention will be concentrated on this behavioural stage.

3.3.2 Bond between Steel and Concrete

A detailed description of the mechanics of bond between concrete and steel and
information on different bond test set-ups can be found in FIB Bulletin 10 (2000) and
Alvarez (1998). This section highlights what is meant by “bond” in the context of

cracking resulting from tension or bending.

Working Party 8 of CEB Task Group Bond Models (FIB Bulletin 10, 2000) describes
bond as a complex phenomenon influenced by many parameters which may lead to
different failure mechanisms. Two modes of failure govern bond between deformed steel
reinforcing bars and concrete: i) bar pull-out, and ii) concrete splitting. The former occurs
when concrete between the bar lugs fails in a combination of shear and compression. The
latter occurs when the circumferential component of the bursting forces generated by the
interaction between steel and concrete exceeds the tensile strength of concrete (Tepfers,

1973).

Figure 3.3 illustrates the difference between these two failure modes. The bond-slip

response linked to a pull-out failure is shown with curve A-G. Splitting-driven failure is
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shown as path ABCDF'G'. The peak bond stress is lower in the latter. Any conceptual

bond-slip model should identify the differences between these two failure modes.

Bond stresses are usually estimated from tests. The tests should be conducted on
specimens that are representative of entire structural members in which the behaviour can
be assessed on a relevant aspect of performance. Unfortunately, this is rarely satisfied.
Base (1982) remarks that the concept of bond in reinforced concrete is “nebulous”. The
bond stress is difficult to measure and define because the term “bond stress” means
different things to researchers. For instance, most of the test results have been produced
from pull-out tests. Base (1982) remarks that such a test is of little help in a study of the

relationship between bond and cracks in members subjected to direct tension or bending.

3.3.3 Concrete’s Tension Stiffening Effect in Steel-reinforced Concrete Members

Figure 3.4 shows the stress-strain response of a steel-reinforced concrete prismatic
member subjected to direct tension. The solid line represents the relationship between the
steel stress and the mean strain of the member. The dashed line indicates the response of

the naked steel reinforcement. The strains in the latter refer to those at the crack.

The strain difference, Ag,, between the strain in the steel at a crack, ¢,,, and the mean

strain, £_ , at a given stress level represents concrete’s tension stiffening effect. This

sm ?
"strain correction” is greatest at first cracking and gradually reduces as the load increases

because of bond deterioration (Bresler and Bertero, 1967). According to Rao (1966),

Ag, =k, Ja [3.3]
PE,

where £y is a factor that depends on the steel stress at a crack, the bond stress distribution,

the size of the concrete area in tension, and the distribution of concrete tensile stresses, as

reported by Rostasy et al (1976). Consistent with Eq. 3.3, the tests of Rostésy et al (1976)

and the analyses reported by Masicotte, Elwi and MacGregor (1990) show that concrete’s

tension stiffening effect becomes proportionally more significant when p; reduces.
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The complexity associated with the concepts of bond and concrete’s tension stiffening
suggests that some simplifications are required to treat these two phenomena. The
following sections present different approaches to calculate crack widths and their

spacing in steel-reinforced concrete members subjected to direct tension or flexure.

3.3.4 Crack Width and Crack Spacing Calculation Procedures
3.3.4.1 The Tension Chord Model

This model is set up in terms of a simple yet complete formulation of the deformation
process undergone by a reinforced concrete member by integrating the actual steel and
concrete strains between cracks. Earlier formulations of the procedure were presented by
Bachmann (1970), Bresler and Watstein (1974), Park and Paulay (1975), Rostasy, Koch
and Leonhardt (1976), and Leonhardt (1977). Concepts from these procedures constitute
the basis of the crack width calculation design rules for reinforced concrete members in
CEB/FIP MC 90. The model has been lately the subject of considerable refinement and
simplification by Sigrist and Marti (1994), Alvarez (1998), and Marti, Alvarez,
Kaufmann and Sigrist (1998), who adopted the “Tension Chord Model” name. The

concepts adopted in this study are those defined in the last three references.

A complete derivation of the model is presented in Appendix B. To allow future
comparisons with FRP-reinforced members, the derivation has been performed assuming
that the steel reinforcement remains elastic. Figure 3.5 shows the assumed stress-strain
response of the cracked member in tension, as shown by Alvarez (1998). Figure 3.6
shows the dimensions of the tension chord relative to those of the entire cross-section in

beams and slabs, according to CEB-FIP MC90.

One major feature of the tension chord model is the bond-slip constitutive relationship for
steel. Acknowledging that the exact distribution of stresses in concrete and steel is not of
primary interest as long as the resulting steel stresses and overall member strains reflect

governing influences and match experimental data, Marti et a/ (1998) use a rigid-

22



perfectly plastic bond-slip relationship with a stepped descending branch that depends on

yielding of steel.

Since the amount of slip in steel-reinforced concrete members is not significant at service
load levels, CEB/FIP MC90 proposes a rigid-perfectly plastic bond-slip relationship for

serviceability design of steel-reinforced concrete members:
Tbo = 18 fctm [34]

where f.,, 1s the mean tensile strength of concrete. This model, conceptually similar to

that adopted by Walraven (2000), is the one adopted in Appendix B derivation.

Figure 3.7a (adapted from Alvarez, 1998) shows the distributions of stress for maximum
crack spacing, s, for both steel and concrete. Due to the rigid-perfectly plastic nature of
Eq. 3.4, the stresses vary linearly from the crack location to a point located midway

between cracks. The dotted lines refer to mean stresses.

The stress distributions for minimum crack spacing, S, are shown in Fig. 3.7b. The
model assumes that if the concrete stresses between cracks under maximum crack
spacing conditions reach f;; a new crack will form midway between those spaced at $uqx.
As a result, the mean crack spacing in the stabilised crack formation stage is bounded by

the following limits:

(smin = SmaX j < Sm < Smax [35]
2
or
S
st[ﬂ: "’]slo [3.6]
Smax

where A is a parameter introduced by Marti et al (1998). The mean crack spacing is

1-
s, =5 = 2Lab 1205 g [3.7]
27’-bo ps
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Due to the bond-slip simplification, the tension-stiffened response in the stabilised

cracking stage (see Fig. 3.5) is parallel to that of the naked bar. Accordingly,

AL (=p) ;3.8]

Ag, =
2E p,

s

The tension stiffening effect is maximum for § = §,,,,, and minimum for s = 5.

The factor A is statistical in nature. It depends on the variability of f.,, the bond quality of
the reinforcement and the proximity of cracks. Dedk, Hamza and Visnovitz (1997) show
that the distribution of crack spacing in steel-reinforced concrete members is log-normal.
Walraven (2000) and CEB/FIP MC90 recommend A = 0.75 in steel-reinforced members.
When cracking is not controlled by bond (as would be the case of cracks induced by
curvature accommodation (see Base, 1982) or stress raisers such as stirrups or any other

transverse reinforcement type), the A concept lacks sense since s,, becomes deterministic.

Crack widths can be evaluated by solving the following differential bond-slip equation

(see derivation in Appendix B).

d25(x):4f,,(5(x))(1 L P j [3.9]
dx2 ¢bE5 l_ps

However, the solution of Eq. 3.9 is not trivial for two reasons. First, since the bond stress,
7, 1s a function of the slip, &, a closed form solution is difficult to obtain. Martin (1972)
arrived at a solution but it is too complex for standardization. Second, the solution
depends on whether the member has reached the stabilised cracking stage. If this is the
case, and assuming s < 2/,, the higher steel strains in the stabilised crack formation phase
lead to a non-zero value for the change of slip, &/, midway between cracks. This becomes
an initial condition for Eq. 3.9. As a result, a closed-form solution is difficult to obtain

and numerical integration procedures have to be invoked (Balazs, 1993, 2000).

The tension chord model overcomes this problem by assuming that the mean crack width

in the stabilised cracking stage can be calculated as
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wm = S”Z (gim - gcm ) [3' 1 O]

where s,, is the mean crack spacing, &, is the mean steel strain, both at the given load
level, and &, is the mean concrete strain at the end of the single crack formation phase.

Based on the concrete stress distributions of Fig. 3.7,

_Ata [3.11]
2 E,

cm

which leads to

w, = sngW _iéw] [3.12]
2 E, Ps

Eq. 3.12 evaluates the crack width at the reinforcement level. In slabs, however, the
cracks that matter are those at the tension face. These crack widths can be obtained by
h—xd
d—xd

multiplying Eq. 3.12 by ( j (see Broms, 1965), where xd is the neutral axis depth.

3.3.4.2 The CIRIA Model

Based on observations on flexural tests on steel-reinforced concrete beams and slabs,
Base, Read, Beeby and Taylor (1965) and Beeby (1970) concluded that slip at points
where the bars pass through cracks is not a major parameter controlling crack widths. The
crack tapers from the reinforcement level to the surface but its width is assumed to be
zero at the steel-concrete interface. This concept is the basis for the so-called “no-slip”

theory for crack formation (Base, 1982).

Base (1982) divided flexural cracks into primary and secondary cracks. Primary cracks
(also called “depth-” or “curvature-controlled” cracks) are necessary to accommodate
deformations due to imposed loads. These bond-independent cracks propagate from the
extreme tensile fibre at points where high tensile stresses and local flaws coincide.

Secondary cracks are caused by bond but their spacing is not controlled by a bond
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development length but rather by the cover thickness. This observation is consistent with

experimental evidence gathered by Broms (1965) and Broms and Lutz (1965).

3.3.43 The Gergely-Lutz Equation

Gergely and Lutz (1967) derived the following equation to estimate maximum crack

widths based on a statistical analysis of crack widths measured on the tension face of

steel-reinforced concrete beams.

W, =11x10-"f’2~z=11x10-6h—20”3\/dc7 [SI] [3.13]
hl hl

where 4 is the distance from the extreme tension surface to the neutral axis, A; is the

distance from the tension reinforcement centroid to the neutral axis, oy, is the steel stress

at the crack, d. is the concrete cover measured from the centroid of the tension

reinforcement to the extreme tension surface, and A4 is the effective concrete area in

tension surrounding the reinforcement having the same centroid as the reinforcement

divided by the number of bars.

CSA A23.3-94 does not limit the crack width directly. Instead, it limits the magnitude of
the term z. For thin one-way slabs, the maximum z values are 30000 and 25000 N/mm for
interior and exterior exposure, respectively. These limits correspond to crack widths of
0.4 and 0.33 mm, respectively. The term o is calculated based on the naked steel

response or assumed equal to 60 % of steel yield strength.

3344 ACI318-99

Crack control provisions in ACI 318-99 drift away from the Gergely-Lutz approach,
which was adopted in previous code versions. The maximum bar spacing is now
specified directly as a function of the concrete cover and the level of stress in the steel
reinforcement. The new provisions are “intended to control surface cracks to a width that
is generally acceptable in practice but may vary widely in a given structure”. ACI 318-99

has also abandoned the distinction between interior and exterior exposure conditions.
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3.4 Cracking in FRP-reinforced One-way Concrete Slabs

The formation and evolution of cracks due to imposed tension or flexure in FRP-
reinforced concrete members is conceptually similar to that in steel-reinforced members.
However, major differences are expected due to FRP's lower stiffness and brittle nature.

These reflect in the bond behaviour of FRP and on concrete's tension stiffening effect.

3.4.1 Bond Between FRP Bars or Grids and Concrete

34.1.1 Influential Parameters

According to FIB Bulletin 10 (2000) and Cosenza, Realfonzo and Manfredi (1997), the

most influential parameters on the bond interaction between FRP and concrete are:

1) Cross-sectional shape of FRP reinforcement

2) FRP's elastic modulus in both axial and transverse directions
3) Bar diameter or cross-sectional size

4) Surface conditions

5) Resin type

6) Concrete strength

7 Confinement conditions
8) Poisson’s ratio of FRP

9) Position of the bar in the structural member’s cross-section

10)  Concrete cover

Achillides, Pilakoutas and Waldron (1997) report that square FRP bars develop higher
bond strength than round FRP bars under full confinement conditions. However, flat FRP

bars have a greater tendency to increase splitting.

The effect of FRP's elastic modulus depends on the direction being examined. As

observed by Tepfers (1997), when FRP bars have a transverse elastic modulus similar or
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less than that of concrete, the FRP bar deformations do not create as intense stress

concentrations in concrete as do steel bars.

Achillides et al (1997) and Benmokrane et al (1996) report that bars with larger diameter

develop lower average bond strength compared to smaller diameter bars.

The size, density and inclination of the surface deformations affect both the mechanical
lock and the splitting forces (FIB Bulletin 10, 2000). Small dense surface deformations
provide good bond transfer at low loads but may lead to splitting cracks at higher loads.
For this reason, bigger ribs are preferred. Deformed bars display high bond strength
under full confinement conditions but have lower bond splitting strength than sand coated

bars. Rough surfaces display greater bond splitting strength than smooth surfaces.

Nanni, Al-Zaharani, Al-Dulaijan, Bakis and Boothby (1995) found that the fibre type
does not appear to have a significant effect on bond of FRP rods. Instead, the resin has a
greater effect. Bars with epoxy-based resins display greater bond strengths than those
with vynil ester-based systems. Since the resin shear strength is lower than that of
concrete, bond failure in FRP deformed bars is often driven by the detachment of ribs,

shear lugs or spirals (Daniali, 1992, Malvar, 1994, and Nanni et al, 1995, among others).

Chaallal and Benmokrane (1993) found that the bond strength of GFRP rods with helical
indents embedded in normal-strength concrete is similar to that in high-strength concrete.
According to Achillides (1998), the bond strength of Eurocrete bars (CFRP and GFRP
bars with rough surface produced by a peel ply) does not depend on the concrete strength
for f°. values greater than 30 MPa. For greater concrete strengths the bond failure occurs

in the surface of the FRP bar. For lower strengths, the failure occurs in the concrete.

The effect of concrete cover has significant implications on bond. Intuitively, a reduced
cover may lead to concrete splitting failure. It is often heard from FRP advocates that
reduced covers should be allowed in FRP-reinforced concrete members because of FRP's

corrosion-free nature. This is not prudent because splitting crack development may
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seriously compromise bond between FRP and concrete. In addition, sufficient cover is

required for fire protection of FRP.

3.4.1.2 Bond Tests of FRP-reinforced Concrete Specimens

The majority of the experimental results on bond between FRP and concrete has been
derived from pull-out tests. Figure 3.8 shows typical bond-slip curves from pull-out tests
conducted on prisms of comparable normal strength (in the order of 20 to 30 MPa). All of
the curves except that for the C-bar were drawn based on the data reported by Cosenza et
al (1997). The C-bar’s bond-slip curve was drawn based on the results reported by
Karlsson (1997).

Figure 3.8 shows that both sand-blasted and smooth rods display very low bond
strengths. Grain covered rods show moderate bond strengths (about 10 MPa) but display
a brittle post-peak response. Ribbed and indented bars show bond strengths of about 10
MPa. Sanded deformed bars and C-bars display the highest bond strengths.

Faza and GangaRao (1992) conducted tests using the “inverted half beam” or “cantilever
type beam” set-up to assess the bond strength of rough # 3 and # 8 GFRP bars. The
maximum bond capacity of the # 3 bars was not recorded because the bars ruptured. The
# 8 bars developed maximum average bond strengths of 2.8 and 3.2 MPa. These values

are much lower than those recorded in pull-out tests.

Based also on cantilever type beam tests, Kanakubo, Yonemaru, Fukuyama, Fujisawa
and Sonobe (1993) reported two design provisions evaluating the bond splitting strength
of FRP. The first (influenced by the work of Fujii and Morita, 1982) deals with wedge-
type splitting failure.

7,,, =0.313(0.4b, +0.5)/ £, [3.14]

The second equation accounts for the geometry of bar deformations.
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Ty = 0.67[¢£j Jr [3.15]

where 4/@, is the ratio of lug height to bar diameter expressed as a percentage, and b; is
what they call a “normalised length of failure line”. Equations 3.16 and 3.17 were derived

for different FRP reinforcements but did not deal specifically with C-bars.

Shield, French and Hanus (1999) used the cantilever type beam test set-up to examine the
bond splitting strength of No. 5 C-bars and No. 6 Hughes Brothers bars. The main
variables in the study were the concrete cover and the embedment length. The bond
strength of GFRP rebars was difficult to assess because of the high variability in the
mechanical properties of the products. The embedded length effect could not be observed
due to the large variability in the bar strength. They identify, however, that bond in GFRP
C-bars relies on mechanical interlock whereas bond in GFRP Hughes Brothers rebars

relies heavily on both adhesion and friction.

3.4.1.3 Bond of FRP Relative to Steel

The bond strength of FRP is expected to be less than that of conventional steel because: 1)
the modulus of elasticity of FRP in both radial and longitudinal directions is lower than
that of steel, ii) the resin matrix has a lower shear strength, and iii) the shear stiffness of

FRP is lower than that of steel.

Based on pull-out tests of deformed GFRP rods, Brown and Bartholomew (1993)
conclude that bond between FRP reinforcing bars and concrete is about two-thirds of that

between steel and concrete.
Malvar (1995) examined the bond behaviour of deformed GFRP bars by means of pull-

out tests under different confinement levels. For a given confinement, the bond stress

developed by steel is 20 to 50 % greater than that of the equivalent GFRP bar.
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Chaalal and Benmokrane (1993) reported pull-out test results of GFRP sanded deformed
rods in normal and high strength concrete. The average bond strength of the GFRP rods
embedded in NSC and HSC was, respectively, 72 and 40 % of that of steel.

Benmokrane, Tighiouart and Chaallal (1996) examined the bond of GFRP deformed bars
through hinged beam-type and pull-out tests. The GFRP bars had helically wound
deformations and sand coating. They found that the bond strength from pull-out tests is 5
to 82 % greater than that from the beam tests. The bond strength of GFRP reduces with
increasing the diameter. For a 0.1 mm slip, the bond strength of GFRP bars is 36 to 89 %
of that of steel. For a 0.2 mm slip, the bond strength is 50 to 99 % of that of steel.

The results reported by Achillides ef al (1997) show that Eurocrete CFRP and GFRP bars
can develop bond strengths of 80 % of that developed by steel bars.

Tepfers and Karlsson (1997) examined the effect of cover and bar diameter on the
splitting bond strength of GFRP C-bars. They used a pull-out test array with eccentric bar
placement similar to that presented in Tepfer’s 1973 paper. When there is enough cover
or confinement to prevent splitting, the C-bars are capable of displaying a similar bond-
slip response as that of ordinary steel bars. The cover splitting along the bar is lower for
the C-bar likely because of its softer surface. Nevertheless, when the cover is split along

the bar, the bond strength could be 30 % less than that of steel.

Tepfers, Hedlund and Rosinski (1998) examined the bond of Hughes Brothers GFRP bars
under similar test conditions as those previously examined. These bars have smooth
surface and short spiral deformations wound around the bar. For low load levels, the bars
have high stiffness due to their coarse sand coating. However, the splitting bond strength

is lJower than that of steel and C-bars.

3.4.1.4 Bond of Grid-type FRP

FRP grids are characterised by negligible bond along the ribs. The bond strength is

provided by mechanical bearing of the grid transverse bars against concrete (Makizumi,
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Sakamoto and Okada, 1993, Mochizuki and Udagawa, 1995, and Mochizuki, 1997).

Experimental data on the constitutive bond-slip behaviour of FRP grids is very scarce.

3.4.2 Concrete's Tension Stiffening Effect in FRP-reinforced Concrete Members

Based on the analyses of 31 beams reinforced with internal FRP bars, Razaqpur et al
(2000) concluded that the tension stiffening effect can be ignored in the post-cracking
stages of members with FRP. The Canadian Standard CSA S806-00 adopted their

recommendations for the serviceability design of FRP-reinforced concrete members.

According to the tension chord model fundamentals, the strain correction due to
concrete's tension stiffening is highly influenced by the amount of reinforcement and the
elastic modulus of the reinforcement. The effect of these variables in members with FRP
could be more influential than in steel-reinforced concrete members. If the tension
stiffening effect is important in the context of steel-reinforced concrete members, it does
not seem sensible to neglect it for the serviceability design of FRP-reinforced concrete

members.

3.4.3 Crack Width Calculations in Members with FRP
3.4.3.1 Empirical Approaches

The majority of design provisions to calculate crack widths in members with FRP are
based on modifications made to the Gergely-Lutz equation (see Faza and GangaRao,

1993a,1993b, Thériault and Benmokrane, 1998, and ISIS M04-00).

Faza and GangaRao (1993a, 1993b) propose

Winax ~OO76'———O-f 3Vd [316]
h, E,

where Erand E; are the elastic modulii of FRP and steel, respectively. In the derivation of
Eq. 3.17, Faza and GangaRao assume that the crack width is proportional to strain rather

than stress and introduce the FRP strain at the crack, g = o3 /E;.
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Thériault and Benmokrane (1998) recommend
h
W =th—20'fr31/dc A [3.17]
1

where oy is the FRP strain at the crack at the specified load and K, is an empirical factor.

For C-bars, they propose K, = 40.9 x 10 mm?N.

ISIS M04-00 (2000) suggest

W =11x10"0, K, h—“,/dc A [3.18]
hl

where K}, is a bond coefficient, taken as 1.0 for FRP bars with bond properties similar to

those of steel, greater than 1.0 for FRP bars with inferior bond quality, and less than 1.0

for FRP bars with superior bond quality.

The Canadian Standard for the design of FRP-reinforced concrete structures, CSA S806-

00, controls crack widths by limiting a factor, z, which is defined as

z=Kb—E‘—"0'f,3\/d67A [3.19]
E,

The maximum values for z are 45000 and 38000 N/mm, for interior and exterior
exposure, respectively, and K}, is a bond coefficient equal to 1.2 for deformed FRP bars.
These z values are equivalent to maximum allowable crack widths of about 1.5 times
greater than those allowed for both interior and exterior exposure conditions by CSA
A23.3-94 for the design of steel-reinforced concrete members. The increase in the
allowable crack width limits for FRP-reinforced concrete members has been driven by

the superior corrosion resistance of FRP reinforcement.

In Egs. 3.16 to 3.19, the FRP stress, and therefore the strain, is calculated from the
response of the naked FRP reinforcement. Hall (2000) proposes the following
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relationship to evaluate the FRP strain from the given crack width allowed in members

reinforced with FRP as

€ _ Wy

s W1 [3.20]
& w

55 s

where &; and & refer to the strain in FRP and steel at service load level, and wy and w;

are the crack widths in the member with FRP and steel reinforcement, respectively.

Since the stress in the steel reinforcement at service level is usually taken as 60 percent of

0.6 w,
/s 206 (400) =0.0012 . Assuming a —~ value of 1.5, for
E, 200000 w,

its yield strength, ¢ =

both interior and exterior exposure conditions, Eq. 3.20 leads to

g, =156, = 1.5(0.0012) = 0.0018 as the equivalent serviceability FRP strain level in

FRP-reinforced members.

3.4.3.2 Crack Width Calculation Using the Finite Difference Method

Aiello and Ombres (2000) developed a non-linear procedure based on the finite
difference method to predict crack widths and their spacing in FRP-reinforced concrete
members. The fundamentals of the model are similar to those of the tension chord model
except that a more refined bond-slip model is used (this model is described in
Eligehausen, Bertero and Popov, 1982). Only the ascending branch of the bond model
was used. The procedure assumes that no splitting cracks form along the bars. It renders
good crack width predictions for the one-way GFRP C-bar-reinforced concrete slabs

tested by Cosenza, Pecce and Manfredi (1998).

3.5 Serviceability Limit State of Deflections

Deflection control in FRP-reinforced concrete slabs is necessary due to FRP’s moderate-
to-low stiffness, brittleness, and the tendency of GFRP to creep rupture. The following

sections review existing design provisions to control deflections in concrete slabs with
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FRP. As a reference, design approaches for steel-reinforced concrete slabs are presented

first.

3.5.1 Deflection Control Approaches in Steel-reinforced Concrete Slabs

Slab deflections can be controlled directly or indirectly. Direct control refers to the direct
calculation of deflections and their comparison with allowable limits. Deflection
calculation methods span from classic elastic theory procedures to advanced finite
element analyses. ACI Committee 435 (1974) and Branson (1977) present excellent

summaries of direct deflection control procedures for steel-reinforced concrete flat plates.

“Indirect” deflection control procedures evaluate deflections by determining maximum
span-thickness (or span-depth) ratios, minimum thicknesses (or depths), or minimum
tension reinforcement ratios. The fundamental concept behind these approaches is to
define a limiting curvature that renders a maximum target span-to-deflection value.
Indirect approaches, or “rule-of-thumb” methods, are thoroughly documented by Branson
(1977). Regardless of which method is used, allowable deflection, span-depth, minimum
slab depth and span-to-deflection limits are largely set up based on experience. Branson
(1977) recommends to use the indirect methods for initial proportioning and then to

check deflections by means of a relatively simple deflection calculation method.

3.5.1.1 Allowable Deflections

Allowable deflections refer to maximum deflection limits beyond which a structure
violates its serviceability limit state, ceases to be functional, or becomes aesthetically
unpleasant. Typical deflection limits for structural, sensorial and aesthetic reasons, are
given by ACI Committee 435 (1968). These limits are usually expressed in terms of
span-deflection ratios. Table 3.1 reports allowable 4,/L ratios for slabs according to CSA
A23.3-94. Similar values apply in ACI 318-99. Branson (1977) reports a comprehensive

survey of 4,/L values recommended by different concrete codes of practice.

35



Deflection limits depend on how critical loading conditions are. Deflections in the order
of L/180 are allowed in roof slabs without underside finishing and where water ponding
is not an issue. Deflection limits as stringent as L/750 to L/1000 may be applied in the
design of slabs supporting motion-sensitive equipment. This is very relevant for FRPs
since, because of their magnetic neutrality, FRPs are used in the construction of hospital

MRI rooms, and radio and compass calibration pads.

3.5.1.2 Direct Calculation of Deflections: Branson’s Method

Both ACI 318-99 and CSA A23.3-94 adopt Branson’s effective moment of inertia Eq.
3.21 to calculate post-cracking deflections in steel-reinforced concrete members. The
term I, accounts for the effect of concrete tension stiffening by interpolating between the

gross moment of inertia, /g, and that of the transformed cracked section, Z,.

3 3
L= M| poplio| M| | < [3.21]
e M g M cr g

a

where M,, is the cracking moment based on the gross moment of inertia and M, is the

maximum historic moment associated to M,,. Figure 3.9 illustrates Branson's /, concept.

As noted by Ghali (1993), deflection calculations based on Branson’s /, concept may be
inadequate because it is impossible to find empirical equations that give constant cross-
sectional properties to allow treating cracked members as prismatic. Predictions are
accurate in some cases but largely in error when i) the reinforcement ratio is low, i) My
is not substantially greater than M,,, and iii) the bending moment is constant over the

major part of the span. These features can be considered typical of concrete slabs.

3.5.1.3 Deflection Calculation by Curvature Integration

This procedure is based on the assumption that deflections can be obtained by double
integration of curvatures at target locations along a span. Ghali (1993) has long advocated

its implementation. For an interior continuous span, assuming a parabolic curvature
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distribution with curvatures measured at three slab sections, the midspan deflection, A,,

is exactly
2
Am :—9[/—6—0)”0 +1Ol//b +‘//c) [322]

where L is the span length, y, and y, are the curvatures at the supports and , is the
midspan curvature. For interior spans, the curvature is positive when the strain is larger at
the bottom face than at the top face of the member. Therefore, in a continuous span, both
W, and y. are negative. In general, increasing the number of sections increases the
accuracy in the deflection calculation. Figure 3.10 shows typical deflection equations for

uniformly loaded interior spans for three and five slab sections.

To evaluate average curvatures, the procedure given by the CEB/FIP Model Code (1990)
is often adopted. This procedure is greatly influenced by the work of Rao (1966). The
average curvature in ordinary steel reinforced-concrete members is defined as a weighted
average of the uncracked (stage I) and fully cracked (stage II) curvatures, as shown in the

moment-curvature response of Fig. 3.9.

l//ave = (l_'f) W] +§ l//2 [323]
where y; is the curvature at uncracked section level, calculated based on the entire cross-
section transformed into concrete, including the reinforcement, and ; is the curvature at

fully cracked level, y, = —£ The & factor is an empirical factor that controls
¢t 2

concrete’s tension stiffening effect based on bond properties of steel reinforcement and

the nature of loading.

E=1-4p5, (M”) >0.4 [3.24]
M

where f; is a bond factor, equal to 1.0 for high bond bars, and /3, is a performance factor,
equal to 0.8 for first loading, and 0.5 for sustained loads or large number of load cycles.

Eurocode 2 assumes f; = 1.0. For real-life applications in steel-reinforced concrete
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members, CEB/FIP MC90 recommends S = f;4, = 0.5. In laboratory short-term loading

tests of steel-reinforced concrete members, fis often taken as unity.

The curvature integration approach is advantageous because its formulation depends
entirely on geometrical considerations and not on material properties or load actions
(Ghali, 1993). This is an asset because cracked members behave as members with
variable cross-section. One of the main difficulties linked to Branson’s method is the
determination of the value of /, that best describes the overall conditions of a partially

cracked member for different support and load conditions.

3.5.1.4 Indirect Deflection Control

To comply with a given A,/L ratio, it is required to select an appropriate strain level in
the FRP reinforcement at service load level. This is equivalent to defining a limiting
curvature or a minimum reinforcement ratio. The latter concept is adopted by ACI
Committee 435 (1978). Table 3.2 shows recommended minimum p; values to satisfy
deflection limits in steel-reinforced beams and slabs. Table 3.3 shows values of minimum

thickness for non-prestressed one-way beams and slabs, according to ACI 318-99.

3.5.2 Direct Deflection Control in FRP-reinforced Concrete Slabs

There is limited guidance to control deflections in slabs with FRP reinforcement. Most of
the available design recommendations refer to direct deflection calculations. The majority

of such procedures have evolved from Branson’s concept.
Nawy and Neuwerth (1977) report that deflection calculations using Branson's formula
are unconservative for beams with low percentages of GFRP. However, the deflection

estimates become more realistic as the FRP reinforcement ratio increases.

Benmokrane, Chalaal and Masmoudi (1996) modified Branson’s equation as follows
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3 3
MCI‘ Mcr
I, = [Mmax j Bl +|i1—[MmaX] ]lcr [3.25]
where [, is a correction factor equal to 0.6 for Type 1 GFRP C-bars. Gao, Benmokrane

and Masmoudi (1998) recommend

I R 3.26
B, =a, —E—'*' [3.26]

s

where a; is a bond-dependent coefficient equal to 0.5. Hall and Ghali (2000) recommend
oy = 0.5 for other types of FRP bars until more research becomes available. Other
modifications to Branson’s formula are proposed by Faza and GangaRao (1992b) and

ACI Committee 440 (1996).

Hall and Ghali (2000) define the mean midspan curvature as

WW=MW [3.27]
EI

¢ ave

where I, is the mean moment of inertia that one would obtain by applying the MC 90
tension stiffening formulation, defined as
] 11 2

- 3.28
-8 1,+¢ 1, o

ave
where I; = I, and I, = I,,.. The term I; is the moment of inertia of the uncracked cross
section transformed to concrete. Substituting Eq. 3.28 into 3.25 and rearranging,

]l ]cr

1t+ 1+ﬂ]ﬂ2(Mcr ] (‘[cr_lt)
M

max

[3.29]

[ave,HG =

ISIS Canada design guidelines adopted the value proposed by Thériault (1998), which

was based on a more extensive experimental database. This value is
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11
I, = { e [3.30]

2
I, +/1-05 M., (1,-1,)
Mmax

Review of Egs. 3.29 and 3.30 reveals these two equations are identical.

The use of Branson's method to calculate deflections in members with FRP has been
criticised by Hall (2000). The observations are similar to those exposed by Ghali (1993)
for steel-reinforced members. Hall (2000) demonstrates that the curvature integration
method mixed with the CEB/FIP MC90 approach to evaluate average curvatures leads to
more accurate deflection calculations compared to Branson's approach. The latter
underestimates deflections for load levels slightly greater than the cracking load. Hall

(2000) assumed S equal to 0.5 for slabs with GFRP bars at first loading.

As far as members with FRP grids is concerned, the flexural test results on concrete
beams reinforced with NEFMAC grids reported by Schmeckpeper and Goodspeed (1994)
and Yost, Schmeckpepper and Goodspeed (2001) indicate that Branson’s formula
overestimates the stiffness, specially at loads roughly greater than the cracking load.
Matthys and Taerwe (2000b) show that the tension stiffening model of CEB/FIP MC90

provides reliable deflection estimates in one-way slabs with FRP grids using # = 0.8.

Deflections in CSA S806-00 are based on the curvature-integration procedure developed
by Razaqpur, Svecova and Cheung (2000). Deflections are calculated based on the
idealised moment-curvature response of Fig. 3.11. The model assumes that the response
of beams and slabs with FRP is fully defined in terms of both the uncracked, E.J,, and
fully cracked, E.I,, flexural stiffnesses. The model neglects concrete's tension stiffening

effect.

Figure 3.12 shows closed-form deflection formulas for simply supported beams applying

Razgpur et al’s procedure for three different loading conditions. The term L, refers to the

40



distance from the support to the point where M = M,,. In cantilever beams (case not

shown), L, is the distance from the free end to the point where M = M,,.

3.5.3 Indirect Deflection Control in FRP-reinforced Concrete Slabs

Hall (2000) proposes the following empirical equation to determine the maximum span-

thickness ratio in one-way slabs reinforced with FRP:

5 -8
h / hJs g

where & and g are the strains in steel and FRP at the crack at service load levels. The

equivalent span-thickness ratio for slabs with FRP intends to satisfy the deflection limits
imposed to a steel-reinforced slab with span-ratio (L/A);. The deflection control limits of

Table 3.3 needs to be modified to determine the minimum thicknesses in slabs with FRP.
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Table 3.1 Maximum Permissible Computed Deflections (CSA A23.3-94)

Type of Member

Deflection to be considered

Deflection limitation

Flat roofs not supporting or
attached to nonstructural

by large deflections

elements likely to be damaged

Immediate deflection due to
specified live load

1,/180 *

Floors not supporting or
attached to nonstructural

by large deflections

elements likely to be damaged

Immediate deflection due to
specified live load

1,/360

Roof or floor construction
supporting or attached to

to be damaged by large
deflections

nonstructural elements likely

Roof or floor construction
supporting or attached to
nonstructural elements not

deflections

likely to be damaged by large

That part of the total
deflection occurring after
attachment of nonstructural
elements (sum of the long-
term deflection due to all
sustained loads and the
immediate deflection due to
any additional live load)

1,/480%

1,/240§

Notes: * Limit not intended to safeguard against ponding.
1 Long-time deflections shall be determined in accordance with Clause 9.8.2.5

or 9.8.4.4 of CSA A23.3-94 but may be reduced by the amount of deflection calculated

to occur before the attachment of nonstructural elements.

1 Limit may be exceeded if adequate measures are taken to prevent damage to supported

or attached elements.

§ But not greater than the tolerance provided for nonstructural elements. Limit may be
excedded if camber is provided so that total deflection minus camber does not exceed

the limit.

Table 3.2

Recommended Tension Steel Reinforcement Ratios for Non-prestressed
One-way Members to Render Acceptable Deflections (ACI Com. 435, 1978)

Members Cross section | Normal Weight Concrete | Lightweight concrete
Not supporting or not
attached to Rectangular P, £0.35p,, p, <0.30p,,
nonstructural elements
likely to be damaged “T” or box p, <0.40p,, p, <035p,,
by large deflections
Not supporting or not
attached to Rectangular p, <025p,, P, <020p,,
nonstructural elements
likely to be damaged “T” or box p, <030p,, p, £0.25,,
by large deflections
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Table 3.3

Thickness below which deflections must be computed for nonprestressed
beams or one-way slabs not supporting or attached to partitions or other
construction likely to be damaged by large deflections (CSA A23.3-94)

Minimum Thickness

Simply One end Both ends Cantilever
supported continuous continuous
Solid one-way 1,/20 l,/24 1,/28 1,/10
slabs
Beams or ribbed 1,/16 l,/18.5 1,/21 1,/8
one-way slabs

Note:

Values given correspond to members with normal density concrete.

For other conditions, refer to CSA A23.3-94,
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Fig. 3.1 Flexural Response of Members with FRP
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4 Background on Punching of FRP-reinforced Concrete Slabs

4.1 General

This chapter reports existing punching shear design provisions for interior concrete slab-
column connections with internal or external FRP reinforcement. The chapter starts by
defining the effect of FRP’s elastic-brittle and flexible nature on slab punching capacity.
Since existing punching design rules for slabs with FRP have evolved from conventional

design approaches for steel-reinforced slabs, the latter are reviewed in detail.

4.2 Implications of Using FRP on Slab Punching Capacity

In practice, most punching failures in interior two-way slab-column connections look the
same: the column together with a slab portion push through the slab. In steel-reinforced
concrete slabs, a punching failure may occur before or after a complete yield line
mechanism has formed in the slab. The former defines what is herein called “brittle
punching”. The latter defines what is termed “ductile punching”. Brittle punching is

undesirable because it gives no failure warning.

In slabs with internal FRP reinforcement such a behavioural distinction lacks sense
because conventional FRP reinforcement does not yield. As a result, a different design
criterion needs to be defined. The results reported by Matthys and Taerwe (1997, 2000c)
demonstrate that the amount and stiffness of the internal FRP reinforcement greatly affect
the punching capacity of an interior slab-column connection. For the case of slabs with
similar thickness, as the top FRP mat stiffness increases, the punching capacity increases,
and the slab deformation at ultimate decreases. Since stiffer slabs are also necessary to
comply with serviceability requirements, over-reinforcing the slab seems beneficial at

both the serviceability and punching limit states.

To review and develop design provisions for slabs with internal FRP reinforcement
accounting for the non-yielding elastic and less stiff response of FRP, the obvious frame
of reference is that defined by existing design procedures for steel-reinforced concrete

slabs.
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4.3 Methods for Estimating Punching Capacities in Steel-reinforced
Slabs

Former ACI Committee 426 (1974) and Regan and Braestrup (1985) present a
comprehensive review of different methods for estimating the punching capacity of slabs

reinforced with steel. In this study, only the following will be examined:

a) The Control Surface Method

b) The Yield Line Approach

¢) Kinnunen and Nylander's Approach
d) The Strip Model

4.3.1 The Control Surface Method

This method has been adopted by today's most influential codes of practice. It is
extensively documented by former ACI Committee 426 (1974) and Regan and Braestrup
(1985). The procedure, originally proposed by Talbot (1913), evaluates the applied shear
stress at a surface located some distance from the column face and compares it with a
determined concrete shear strength, v.. Accordingly, the non-factored punching shear

strength of an interior slab-column connection, V}, is calculated as
V,=v, b,d [4.1]

where v, is the nominal shear strength of concrete, b, is the perimeter of the control

surface and d is the average slab flexural depth.

Both the value of v, and the control surface location vary from code to code. Two major
schools of thought exist behind the v, definition: both express v, in terms of the tensile
strength of concrete (typically expressed as the compressive strength of concrete raised to
a given power), but one accounts for the effect of the slab reinforcement ratio and the

other does not.

52



Figure 4.1 shows schematically the effect of the slab flexural reinforcement ratio on the
load-deflection response of slab-column connections brought to punching. The figure is
adapted from Criswell (1974). The term ¢ represents the ratio of the measured failure
load, P,, to the theoretical flexural capacity of the slab, Py . Load levels at first yield of
the slab reinforcement are indicated. The figure shows that a decrease in p; leads to lower
punching capacities and to more ductile behaviour. For the curves with ¢ greater than 1.0,

the slabs display a punching failure after reaching their flexural capacity.

The effect of p, is explicitly accounted for by the British Standard BS 8110-95. In this
code, v, is calculated using a one-way shear strength with the control perimeter measured

at 1.5 d away from the column face.
/4 A
v, 55 =0.79 (100p, V* (@j (QJ [4.2]
’ d 25

where p; is the steel reinforcement ratio, d is the average slab flexural depth, and f is the
characteristic compressive strength of concrete. In BS 8110-95, the critical perimeter is
rectangular regardless of the column shape, as shown in Fig. 4.2. Equation 4.2 is
considered to be a very reliable punching capacity estimator (Regan and Braestrup,

1985). The procedure was empirically derived based on an extensive test result database.

In both the American and Canadian codes, the effect of p; is disregarded. In ACI 318-99,

v, is defined as

v, e =033\f) [4.3]

where /. is the specified cylinder compressive strength of concrete. In CSA A23.3-94, v,

is evaluated as

v, ezt = 0.4/ [4.4]

The effects of column rectangularity and aggregate density on v. (which are accounted

for by both codes) are not reported herein.
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As noted by Afhami, Alexander and Simmonds (1998), the design provisions in CSA
A23.3-94 render factored shear strength predictions that are about 85 % of those in ACI
318-99. This is because CSA A23.3-94 uses a partial material reduction factor for
concrete of 0.6 whereas ACI 318 uses a performance-based reduction factor of 0.85 for
punching. This leads to almost equal central factors of safety because the average load

factor in CSA A23.3-94 is about 89 % of that in ACI 318-99.

Punching shear capacity predictions in ACI 318-99 and CSA A23.3-94 are considered
both conservative and very scattered (Regan and Braestrup, 1985, and Braestrup, 1989).
However, Alexander (1999) demonstrates that both the ACI and CSA code provisions
correctly predict whether the punching capacity is greater or less than the flexural
strength. This is very useful for designers because the design philosophy in ACI and CSA

aims at the occurrence of slab flexural failure before does a punching failure.

Regan and Braestrup (1985) and Hallgren (1996) provide comprehensive reviews of

punching shear design provisions in other codes of practice.

4.3.2 Yield Line Approach for Punching

The yield line approach for punching shear design was first proposed by Gesund and
Kaushik (1970), after recognizing that for many tests reported in the literature as
punching failures their ultimate load does not differ significantly from their flexural
capacity. As a result, they concluded that most punching failures could be explained

using yield analysis.

4.3.3 Kinnunen and Nylander's Approach

The model proposed by Kinnunen and Nylander (1960) (hereafter called the K-N model)
is considered by many as the best analytical tool to predict the punching capacity of
interior slab-column connections. The procedure was originally developed for slabs with
ring reinforcement but was later modified by Kinnunen (1963) to account for two-way

reinforcement.
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The K-N model is based on the equilibrium of forces acting on a polar-symmetric slab
supported by an interior column. Based on test measurements, the model assumes that the
slab portion outside the shear crack rotates as a rigid body. This implies that most of the
slab curvature takes place in the circumferential direction and that there is almost no
curvature in the radial direction. Experimental observations by Anis (1970), Shehata
(1985), Shehata and Regan (1989), and Hallgren (1996), among others, have
corroborated this kinematical feature. In the original K-N model, failure is assumed to
occur when the circumferential strains in the bottom of the slab nearby the face of the
column reach a critical value. The model was originally conceived to render the ultimate
shear capacity of a slab. However, Shehata and Regan (1989) modified the original

model to predict the entire load-deflection response of a connection.

The K-N model has influenced the work on punching of isolated slabs reported by
Shehata and Regan (1989), Shehata (1990), Marzouk and Hussein (1991) and Hallgren
(1996), and that on laterally restrained slabs reported by Hewitt and Batchelor (1975) and
Newhook and Mufti (1997). All of these punching models have kept the kinematic
features of the original K-N model but have modified the failure criterion: In most cases,
concrete crushing has been retained as the failure mode but using either different critical
strain values or a different failure location. In some cases, additional failure criteria have
been added (Shehata and Regan, 1989). Hallgren (1996) refined the K-N model by
adding failure criteria based on non-linear fracture mechanics. The model assumes that

punching is triggered by concrete splitting in the slab soffit close to the column face.

The concrete crushing-based punching failure criterion has been criticised by Shehata and
Regan (1989). They argue that even some of Kinnunen and Nylander's slabs failed under

tangential concrete strains much lower than those commonly associated with concrete

crushing.

Despite of the fact that the K-N model can be programmed in a spreadsheet, perhaps its

most challenging aspect refers to its highly iterative nature. Simpler codification is
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however possible if some simplifications are made (see Shehata, 1990, and Nylander and

Kinnunen, 1976, as reported by Hallgren, 1996).

4.3.4 Strip Model for Punching Shear
4.3.4.1 Fundamentals

The strip model for punching developed by Alexander and Simmonds (1991, 1992)
determines the punching capacity of slabs by subdividing a slab according to the
dominant mechanism of shear transfer in the connection. Figure 4.3a shows the
idealization of an interior slab-column connection according to this model. The
connection is defined by four radial slab strips that divide the slab into four quadrants.
The radial strips extend from the column to the line of zero shear on the span (for
simplicity assumed as midspan) parallel to the internal slab reinforcement. The model
assumes that the quadrants transfer the load to the radial strips and these in turn transfer

the load to the column.

To define the governing load transfer mechanism in the strips and quadrants, the model
starts from the fundamental definition of shear in one-way members being equal to
bending moment gradient.

_aMm =d(T]d)=Td(jd)+£z’_T_j
dx dx dx dx

v d [4.5]

The first term in the right hand side of Eq. 4.5 refers to arching action shear. This shear
transfer mechanism, typical of disturbed or “D” regions, requires a gradient in the
internal flexural lever arm. The second term refers to beam action shear, typical of
slender beam-type, or “Bernoulli”, or “B” regions. It requires a gradient in tensile force in

the reinforcement.
The model assumes that slab quadrants transfer load to the radial strips by beam action.

In transferring load to the column, and recognizing that the column is a disturbed region,

the radial strips are assumed to behave as deep beams. Both of these shear transfer
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mechanisms are conceptually consistent with the experimental observations made by

Kinnunen and Nylander (1960) and Anis (1970).

Load transfer between the quadrants and each radial strip face is constrained by the
appropriate limits of shear transfer in slender members, i.e., the availability of gradient in
tensile force. Bar force gradients are limited by i) yielding of the slab reinforcement, ii)
bond failure, and iii) a change in slab mechanics. The first mechanism applies only to
slabs with yielding reinforcement. The other two apply to any reinforcement type. By a
change in slab mechanics one refers to the transformation of one shear transfer

mechanism into another depending on the behaviour of adjacent reinforcing bars.

The amount of load transferred by the radial strips depends on their flexural capacity. The
ability of the slab to transfer shear to the column depends then on the interaction between

the slender behavior of the slab and the deep behavior of the strips.

Unlike the control surface approach, the strip model defines a critical section that is
neither fixed nor square nor circular. Instead, the critical section has a cruciform shape, as
shown in Fig. 4.3b. The length “ [ is a function of the flexural capacity of the radial strip

and the amount of one-way shear carried by the slab quadrants.

4.3.4.2 Simplified Mathematical Formulation of the Strip Model

The strip model describes a radial strip as a column-supported cantilever beam with
negative and positive moment capacities, M., and M,., and loaded as shown in the
elevation view of Fig. 4.4. The column reaction P; represents the load transferred by the

strip. The effect of torsional moments is implicitly accounted for in the applied load.

The strip model provides a lower bound estimate for the capacity of a radial strip.
According to Drucker (1960), any lower bound estimate requires that (i) equilibrium
must be satisfied and (ii) that the structure, i.e. the radial strip, cannot be loaded beyond
its flexural capacity. For steel-reinforced concrete slabs, Alexander and Simmonds (1991)

add that the strip's response must be ductile enough to allow moment redistribution.
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In Fig. 4.4, the term w is a lower bound estimate of the one-way shear that can be
delivered by the adjacent slab quadrant to one side of the strip at ultimate. Since each
radial strip has two sides, the total uniformly distributed load on the strip is 2w.

Rotational equilibrium results in

_2wl2

Ms:Mneg+Mpos 9

[4.6]

where M; is the total flexural capacity of the strip and / is the loaded length of the strip.

Vertical force equilibrium leads to
P =2wl [4.7]

Solving Eq. 4.7 for ] and substituting into Eq. 4.6 yields the capacity of a radial strip

P =2 M, w [4.8]

Since an interior connection consists of four radial strips, its punching shear capacity is

P =8 M, w [4.9]

The total flexural capacity is the sum of M, and M, For slabs with remote ends
rotationally free (like most tests in the literature), only M, needs to be calculated. The

term w is taken as

w=0.166 /1. d [4.10]

Analysis of more than 200 tests on steel-reinforced concrete two-way slabs published in
the literature show that the strip model is both a safe and reliable punching capacity
estimator (Alexander, 1999). Its applicability for the punching shear design of FRP-
reinforced or strengthened flat plates will be the subject of analysis in this study. In this
context, it is necessary to evaluate the flexural capacity of the radial strip, M, , and also to
determine what is the maximum force gradient that the FRP bars or the bonded FRP
sheets can transfer. This assessment will determine the best lower bound estimate for the

w term.
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4.4 Existing Punching Shear Design Recommendations for Two-way
Slabs Reinforced with FRP

4.4.1 Punching of Two-way Slabs with Internal FRP Reinforcement

Ahmad et al (1993) found that their test results are underestimated by ACI code
provisions and overpredicted by BS 8110-95. Matthys and Taerwe (2000c¢) found that
current design equations in CEB/FIP MC90, EC2, and BS 8110-95 tend to overestimate
the shear capacity of slabs reinforced with very flexible FRP rebars or grids. The ACI
318-99 equation, which neglects the effect of flexural reinforcement, yielded
conservative estimates for slabs with CFRP and hybrid Carbon/Glass FRP (HFRP) grids

but at the expense of a considerable scatter.

Matthys and Taerwe (2000c) modified the equations expressed in terms of the

E.
reinforcement ratio with the factor p 5 — _ where Er and E; refer to the modulus of
E

elasticity of FRP and steel, respectively. Based on previous work reported by Gardner
(1990), which is conceptually identical to that reported by Regan and Braestrup (1985),
Matthys and Taerwe proposed the following equation to calculate the punching capacity

of a two-way FRP-reinforced concrete slab.

PR
100, z}f]
b,d

V. Ghee =1.36 [ >

g : [4.11]
i

where f., is the mean compressive strength of concrete. Ignoring the modification

E
ratio—~ , Eq. 4.11 is virtually identical to the punching shear equation given by BS 8110-

5

95 except for the resulting constant and the definition of the compressive strength of
concrete. Likewise BS 8110-95, the critical perimeter b, in Eq. 4.11 is assumed to be
rectangular or square regardless of the cross-sectional shape measured at a distance of 1.5

d away from the column face.
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Matthys and Taerwe applied Eq. 4.11 to their test results yielding mean test to predicted
ratios of 1.33 and 1.15 for 8 CFRP and 5 HFRP grid-reinforced concrete slabs,
respectively. Such an improved accuracy is not surprising because the BS 8110 equation

is considered to be the most reliable punching capacity estimator for ordinary slabs.

In an attempt to examine different non-empirical models to predict the punching capacity
of slabs with FRP, Matthys and Taerwe (2000c) also modified the models proposed by
Hallgren (1996) and Menétrey (1996) for steel-reinforced concrete slabs. They found that
the modified-Hallgren (MH) model rendered good predictions whereas the modified-

Menétrey (MM) model was found to be overly conservative.

El-Ghandour et al (1997 and 2000) introduced two design procedures for the punching of

two-way slabs with FRP. One is to modify the reinforcement ratio by the factor

Py L k., where k, is a constant. Since FRP can mobilize strains in the order of 0.0045,

dividing 0.0045 between 0.0025 (assumed yield strength of steel) gives 1.8, which is the

value they propose for £, .

El-Ghandour et al (1999) also proposed the following modification to the ACI equation.

oV
Ve sheraa = 0333/, [E—fj [4.12]

4.4.2 Punching of Two-way Slabs Rehabilitated with FRP Sheets

Tan (2000) found that unidirectional slab strengthening with FRP does not lead to a
significant punching capacity increase. For slabs strengthened in two directions, the

punching capacity increased with the reinforcing index of the FRP, defined as

=A—ff-f’f; [4.13]
bh f.

@,
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where Ay is the area of FRP, b is the slab width, 4 is the slab thickness, /. is the concrete
compressive cylinder strength and 4, is the stress in the FRP reinforcement at punching,
taken as 20 % of its ultimate tensile strength. For slabs with same FRP reinforcement
index, the highest punching capacities were displayed by two-way CFRP sheets, followed
by two-way GFRP fabric and by the CFRP plates.

4.5 Other Strengthening and Repair Schemes for Slab-Column
Connections

When facing a repair challenge, the designer is often pushed to consider the possibility to
take down the structure instead of repairing it. Under current economic constraints,
demolition may be out of the question. Other than using FRP, different techniques have
evolved to enhance the shear response of slab-column connections. For new construction,
conventional procedures include the use of shearhead reinforcement (Corley and
Hawkins, 1968), integral beams with vertical stirrups, shear stud reinforcement (Seible,
Ghali and Dilger, 1980) and steel beams on the slab underside (Ramos, Lucio and

Regan, 2000).

In terms of strengthening existing slab systems, through-thickness prestressing bolts
around the column (Ghali, Sargious and Huizer, 1974, and Ramos, Lucio and Regan,
2000), insertion of through-thickness shear reinforcement and the addition of shotcreted
column capitals and bonding of a steel collar below the slab (Hassanzadeh and Sundqvist,

1999) have been successfully implemented.

To repair punched slabs, Ramos, Lucio and Regan (2000) replaced the damaged concrete
by pouring new concrete around the joint. In this study, this procedure is termed as
“concrete patching”. The concrete-patched slab tested by Ramos et al failed at a load

slightly greater than the original failure load.

4.6 Observations

Based on the design approaches previously reviewed, the following observations arise:
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iii )
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Existing punching shear design provisions either ignore the effect of flexural

reinforcement or assume implicitly that steel reinforcement is used.

Because they do not consider the effects of the slab flexural reinforcement, the
punching design provisions of both ACI 318-99 and CSA A23.3-94 predict the same
strength for two slab-column connections built with the same concrete strength but

with different reinforcement type.

The British Standard BS 8110-95 accounts for the effect of slab reinforcement but
does not offer any guidance as to how to deal with the reduced stiffness and brittle

nature of FRP bars or grids.

As far as Gesund and Kaushik's flexural capacity approach is concerned, it is not
clear how one would define a yield-line mechanism for slabs with non-yielding

reinforcement.

The current formulation of the strip model for punching is not applicable for slabs

reinforced or strengthened with FRP reinforcement.
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S Experimental Program

5.1 Objectives

The experimental program concentrates on the punching shear behaviour of slabs with
internal and external FRP reinforcement. The tests were performed with three objectives:
i) evaluate the punching capacity implications of using FRP reinforcing bars or grids in
new flat plate construction, ii) examine the suitability of bonded CFRP sheets on the slab
top surface to reinforce interior slab-column connections in shear, and iii) examine other

viable repair techniques for interior connections that have experienced punching failures.

The experimental program was divided into two series. The first series examined the
effect of GFRP deformed bars and NEFMAC grids on the punching capacity of interior
flat plate-column connections. The second series focused on the punching shear

reinforcement and repair of two-way flat plates.

5.2 Series I Tests : Punching Shear Tests of Slabs with Internal FRP

5.2.1 Description of Test Specimens

The geometrical and material properties of series I test specimens are shown in Fig. 5.1
and Table 5.1. The slab dimensions (2.1 m square) were selected to simulate the
behaviour of a slab-column connection in a 4.5 m interior span prototype flat plate. The
specimen dimensions match approximately the points of contraflexure along the

prototype span direction.

Four isolated slab-column connection specimens were built. The main variables were the
type, cross-sectional shape and amount of slab reinforcement. Two slabs were reinforced
with GFRP deformed bars, commonly referred to as "C-bars", one with a GFRP
NEFMAC 2-D grid, and one with ordinary steel. The latter acted as the control slab. The
three reinforcement types are shown in Fig. 5.2. The NEFMAC sample observed in Fig.
5.2 was cut out of a NEFMAC grid.
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Figures 5.3 to 5.7 shows elevation and plan views showing the reinforcement details in
all slabs. The control slab, SR-1, had 0.87 % top steel reinforcement ratio. Slabs GFR-1
and GFR-2 had 0.73 and 1.46 % GFRP C-bars, respectively. Slab NEF-1 had 0.87 %
NEFMAC reinforcement ratio. The ratios were calculated based on a nominal cross-
section of 200 mm? for the steel bars and the NEFMAC ribs and 176 mm? for the GFRP
C-bars. All top steel rebars in SR-1 had 180 degree hooks. No end anchors were installed
in the NEFMAC grid. C-bars were provided with specially designed mechanical end
anchors, as shown in Figs. 5.8, 5.11 and 5.12. The anchor consisted of a steel plate-tube
assembly through which the C-bar end passed. The tube was made by welding a 13 mm
diameter conventional prestressing chuck to a 38 mm o.d. 2 mm thick 80 mm long piece
of aluminum electrical conduit. The gap between the tube and the C-bar was filled with a
high-modulus epoxy. The epoxy was poured with the reinforcing bar in vertical position.
Both the joint between the tube and the plate and that between the bar and the plate hole
were siliconed before resin pouring. The goal behind the use of the prestressing chuck
(notice the sloped inner walls in Fig. 5.8) was to prevent the C-bar from drawing-in upon

pulling.

The bottom slab reinforcement was spaced as indicated in the elevation views of Fig. 5.3.
Conventional 10M steel bars were used in SR-1. In GFR-1, GFR-2 and NEF-1, the
bottom reinforcement consisted of # 4 GFRP C-bars. All slabs were provided with
integrity reinforcement. In SR-1, two 15 M steel bars were used in each direction for this
purpose. In GFR-1, GFR-2 and NEF-1, it consisted of two # 5 GFRP C-bars in both
directions. Figure 5.9 shows the handiness of NEFMAC grids. Figs. 5.10 to 5.13 show

the reinforcement mats.

5.2.2 Specimen Fabrication

Specimens were fabricated in pairs. SR-1 was cast simultaneously with NEF-1, and GFR-
1 with GFR-2. Fabrication involved the following steps: First, the column reinforcing
cage was built by welding the longitudinal column reinforcement (2-15M C-shaped bars)
to a 19 mm thick 250 mm square steel plate. The column reinforcement was used as a

hook for lifting purposes. The column reinforcing cage was then inserted through a hole
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left in the slab formwork. The slab reinforcement was placed later. Then, both the lower
column and the slab concrete were cast with concrete mixed in the lab. Two hours later,
the upper column concrete forms were set up and the top column concrete was poured.
The upper column stub forms were carefully supported to avoid disturbing the fresh slab
concrete. Concrete mixing and casting of the two specimens was performed by a three-
men crew in about three hours. The specimens were covered with plastic sheets and cured

for seven days. The slab forms were removed at the time of testing.

5.2.3 Test Set-up

Figures 5.14 and 5.15 show the typical test set-up for series I slabs. The load was applied
from below by pushing the lower column stub up with an 890 kN (200 kip) centre hole
jack. Four 19 mm diameter steel tie rods anchored to the strong floor reacted against this
load. The load in each tie rod was split into two load points by a 5” deep HSS distributing

beam.

This arrangement constrained the load to be symmetric about the diagonal axes.
Symmetry of deflections about diagonal axes was not enforced. An alternative
arrangement using eight load rods to tie each load point directly to the lab floor was
rejected. This scheme would constrain the deflections to be symmetric about the diagonal
axes but would not ensure equal load in each tie rod. Afhami, Alexander and Simmonds
(1998) note that an isolated slab-column connection specimen under constrained

deformations will fail at a higher load than one with constrained loads.

5.2.4 Instrumentation

The column load was measured with an 890 kN (200 kip) load cell. The tie rods
themselves measured slab loads by converting strain readings from gauges attached to

them into loads based on coupon test results.

Slab deflections were measured with LVDTs installed on the slab underside as shown in

Fig. 5.16. The LVDTs were mounted on aluminum frames clamped to the bottom of the
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lower column stub thereby providing a direct slab deflection measurement. Readings

from the LVDTs also provided the basis to calculate rotations of the slab soffit.

Strains in the top slab mats were measured with 120-ohm electrical resistance foil-type
strain gauges mounted as shown in Figs. 5.4 to 5.7. Gauges were waterproofed with a
nitrile rubber coating and a silicone patch. The chosen gauge layouts allow the evaluation
of average strain values at a given location from four symmetrically placed gauges. Strain
gauges in SR-1, GFR-1 and GFR-2 were placed at mat crossing points. Due to the
difficulty to calculate the cross-sectional area at a NEFMAC rib intersection, all of the
gauges in NEF-1 except those at the column face were placed 70 mm off crossings as
shown in Fig. 5.7. Makizumi, Sakamoto and Okada (1993) show that the longitudinal
strain along a NEFMAC rib between two rib crossings is constant over the whole

interval.

5.2.5 Test Procedure

The load was applied from below in 5 to 10 kN increments by pushing the lower column
stub up with the jack. Early in the tests, the loads in the tie rods were equalised by manual
adjustment. The tie rod loads remained equal throughout the reminder of each test. End
anchors, if any, were monitored to check for any bar slippage. Crack widths were
measured at different test stages. The tests were stopped after punching failure was
evident. The test of NEF-1 was suspended at a slab deflection of about 48 mm. Punching
in this specimen is believed to have occurred earlier. The duration of each test ranged

from 4 to 6 hours.

5.2.6 Ancillary Tests
5.2.6.1 Concrete

Specimens were cast in the laboratory with 30 MPa nominal concrete batched in the lab.
The maximum size of the aggregate was 19 mm. Compressive strength tests were carried
out according to ASTM C42-90. As shown in Table 5.1, the concrete compressive
strength at the time of testing was 36.8, 29.5, 28.9 and 37.5 MPa for slabs SR-1, GFR-1,
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GFR-2 and NEF-1, respectively. The age of the slabs at testing time was 39, 19, 28 and
32 days for SR-1, GFR-1, GFR-2 and NEF-1, respectively. Tensile splitting tests were
also conducted on at least three cylinders taken from each slab. The values are reported in
Table 5.1. Both compressive and splitting cylinders were cured likewise their source

specimens.

5.2.6.2 Steel Reinforcement

Properties of steel rebars in tension were obtained according to ASTM 370. Fig. 5.18
shows a typical stress-strain curve for a steel tension coupon. Table 5.1 shows the most
relevant mechanical properties of the steel reinforcement. Yield and ultimate strengths

correspond to static values.

5.2.6.3 GFRP Reinforcement

The stress-strain response of GFRP bars and GFRP NEFMAC ribs in tension was
obtained from coupon tests designed following the recommendations of Castro and

Carino (1998), and Rahman, Taylor and Kingsley (1993).

A typical GFRP tension coupon consisted of a sample with aluminum tubes cast at its
ends as shown in Fig. 5.17. The samples were pieces of either GFRP bars or portions cut
out of a NEFMAC mat. The tubes prevented the sample’s ends from being crushed by the
testing machine grips. The NEFMAC samples were cut from the same grid from which

slab NEF-1 was reinforced.

The ancillary testing program for GFRP reinforcement was divided in two phases. The
first phase (a pilot phase) was conceived to examine the effect of different end sleeve
fillers. The second phase was conceived to evaluate the main mechanical properties of

GFRP.

In ancillary phase 1, two fillers were examined: either a low modulus epoxy resin or

mortar. The epoxy was of the type L700S manufactured by Mitsubishi Corp., which is
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commonly used to bond CFRP sheets to concrete or masonry. The mortar was made by
mixing anchoring cement and water in proportions of 2:1 by weight. Tensile strength
tests were carried out in a MTS 1000 rock testing machine. The specimens were gripped
at the ends with the heads of the testing machine with a 6.9 MPa (1000 psi) gripping
pressure. The load was applied at a rate of about 150 MPa/min. The sample’s free length
and that of the grips were 400 and 250 mm, respectively. Strains were measured with two

strain gauges located at midheight and by a 50 mm (2") gauge length extensometer.

Test results from ancillary phase 1 show that the samples with epoxy filler provided
better end conditions for sample gripping. As a result, the coupon ends of ancillary phase

2 tests were cast solely with epoxy.

In ancillary phase 2, three GFRP NEFMAC rib and six GFRP C-bar samples were tested.
The sample free length and the end grip length were reduced to 330 and 200 mm in an
attempt to save on materials. Unfortunately, these reduced lengths were not adequate and
the sleeves tried to slip relative to the epoxied end at about 50 % of the ultimate load. It is
worth remarking that no slippage between the epoxy and the samples was observed
which suggests that the sleeve dimensions would have worked fine had a better bond
between the sleeves and the epoxy been provided. Taking advantage of FRP’s linear-
elastic response, the slip between the epoxied end and the tube was eliminated by
increasing the gripping pressure to 10 MPa (1500 psi). This pressure level was high
enough to squash the end tubes. The slippage could not be prevented in two tests despite
the pressure increase. These tests had to be terminated prematurely without recording the
failure load. Nevertheless, they provide useful information to evaluate the elastic stiffness
of FRP. For future reference, it is recommended that the same specimen dimensions be

used as in ancillary phase 1 tests.

In the successful ancillary tests, warning of failure was provided by an increasingly
progressive fibre rupture. At failure, the fibres ruptured and splayed out away from the
end sleeves. The average results of the GFRP ancillary phase 2 tensile tests are shown in

Table 5.1. Typical stress-strain curves for GFRP and NEFMAC tension coupons before
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fibre rupture initiation are shown in Fig. 5.18. Their response is compared to that
obtained for one 15 M steel bar. The straight curves for the C-bar and NEFMAC rib tests
show the more flexible and elastic-brittle behaviour of FRP compared to steel. Material

properties were in some cases lower than those reported by the suppliers.

5.3 Series II Tests : Punching Shear Strengthening and Rehabilitating
Tests of Interior Slab-column Connections

Series Il examines the feasibility of using CFRP sheets to strengthen interior slab-column
connections and also studies the quality of other conventional techniques for the
rehabilitation of flat plate-column connections that have failed in punching. Only
concentric punching conditions will be examined herein. The effect of internal shear

reinforcement was not considered.

Series II tests consisted of seven tests performed on three identical full-scale slab-column
connection specimens. The specimens were similar in shape to those of series I but the
slab segments were considerably larger and the experiments were conducted under more
accurate boundary conditions. Each specimen was brought to either punching failure or to
a near punching stage and later was either repaired or strengthened. The original slabs are
referred to as “virgin” slabs. The next sections describe the testing plan for series II slabs,
the rationale behind the virgin slab design, the design outcome and the tests performed on

the slabs.

Table 5.2 describes this testing program series. Three specimens were built: ER1, ER2
and ER3. Two tests were conducted on slab ER-1. In the first test, ER1-VS, the virgin
slab was brought to punching failure. The label "ER" indicates that slab 1, like all of

series II slabs, was “Edge-Restrained”. This slab was the control slab.

Slab ER1 was then repaired by replacing the punched slab concrete with a through-
thickness concrete patch. The concrete patch replaced only the conical portion of
concrete that had punched through the slab. The slab was then re-tested and brought back
to failure. This test was labeled ER1-CP1. The term “CP” indicates that the slab was
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repaired with a Concrete Patch. The next digit indicates the type of patching performed.

Two patching schemes were examined.

Two loading tests were conducted on slab ER2. The first was conducted on virgin slab
ER2-VS. The slab was loaded up to 70 to 75 % of its estimated punching capacity and
then unloaded and strengthened with FRP sheets passing by the column face. Details of
FRP sheet layout, amount, etc... will be covered later. The specimen was then brought to
punching failure. This test was labeled ER2-CS1. The term "CS" indicates that the slab
was strengthened with CFRP Sheets. The next digit refers to the adopted sheet layout,

being 1 that in which the sheets passed beside the column face.

Three tests were performed on slab ER3. The first test, ER3, was a loading test of virgin
slab ER3-VS up to 70 to 75 % of its expected failure load. The load was then removed
and the slab was strengthened with FRP sheets. Later, the specimen was brought to
punching failure. Compared to ER2-CS1, the FRP sheets in this slab were placed farther
away from the column faces. The test was labeled ER3-CS2. After failure, the slab was
unloaded and the FRP sheets were removed to conduct a third test on the plate. This test
was a repair test. The slab was repaired by replacing the damaged concrete from test
ER3-CS2 with a high strength concrete patch. This patch was greater than that of ER1-
CP1. The new concrete covering the full slab thickness was cast within a longer radius.

This test was labeled ER3-CP2.

5.3.1 Virgin Slab Design

Series II virgin slabs were designed to ensure that yield-line mechanisms would form
almost simultaneously in the two directions before a punching shear failure occurred. The
specimens were intended to model a prototype interior flat plate-column connection with
at least three spans in both directions. A prototype interior span of 4.9 m with 400 mm
square columns was selected. The three virgin slabs were similar in shape, concrete

strength and reinforcement amount.
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Unlike series I specimens, series II slabs were rotationally restrained along the edges.
Due to weight constraints of the lab overhead crane, the side dimensions of each slab
were limited to 4.2 m. Due to the impossibility of using an infinitely stiff edge-restraint

system, the 4.2 m slab panel width models in reality a somewhat longer prototype span.

Figure 5.19 shows the geometric properties of a typical virgin slab specimen. Since the
slabs were subjected only to concentric load, the column stubs protruded only 300 mm
above and 330 mm below the slab. The holes on the slab indicate the location where the

loading and edge restraint hardware were installed.

To avoid deflection calculations, CSA A23.3-94 recommends a minimum slab thickness

for two-way flat plates equal to

1,106+ /y
1000

h = 5.1
§,min 30 [ ]

where [, is the clear span between columns and f, is the yield strength of the slab
reinforcement. For /, equal to 4500 mm, and assuming a nominal 400 MPa yield strength
for the steel reinforcement, Eq. 5.1 yields a minimum slab thickness of 150 mm. A

nominal slab thickness of 152 mm (6") was selected.

The specimens satisfied CSA A23.3-94 flexural reinforcement requirements in terms of

cut-off points, anchorage, development length and integrity steel.

The flexural design of the slab specimens followed a rather unorthodox procedure: Since
minimum flexural requirements usually govern the positive moment design of two-way
slabs, the slab was first proportioned for positive reinforcement. Then, based on the
moment distribution percentages given by the direct design method, the amount of slab

negative reinforcement was selected.

Since the main objective of this experimental series was to rehabilitate and repair existing

slabs, minimum flexural reinforcement areas were selected according to an old Standard.
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ACI 318-71 was selected for this purpose. The selected slab thickness also satisfied the
limits stipulated by ACI 318-71. A minimum clear cover of 24 mm was used for both top

and bottom steel.

ACI 318-71 recommends a minimum flexural reinforcement of 0.002 4, , which results

in 304 mm?/m of steel reinforcement. Using 10M bars spaced at 330 mm, yields A4 =
303 mm?*/m, which is adequate. The minimum reinforcement was placed in the direction
with smallest flexural depth (W-E). As far as the top reinforcement design is concerned,
the maximum and minimum theoretical effective flexural depths (for 15M bars) were,
respectively, 120 and 104 mm. For bottom reinforcement calculations (for 10M bars), the
maximum and minimum theoretical effective flexural depths were, respectively, 122 and

111 mm.

According to the direct design method, the total static moment in a panel, M,, is

calculated as

M =120 [5.2]

where q is the uniformly distributed load per unit area, /, is the clear span in the direction
of the moment, and /; is the centre-to-centre spacing between columns in the orthogonal

direction.

Assuming that all bottom reinforcement yields at ultimate, and setting all material

resistance factors equal to unity, the moment capacities can be calculated as

Moo flao AT 53
=4 f, “Ya /b [5.3]

In CSA A23.3-94, ¢; is a stress block factor calculated as

o, =0.85-0.0015 £, [5.4]
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Substituting 4° = 303 mm*/m, f, = 400 MPa, d = /1] mm (positive flexural depth in the

W-E direction), f'. = 30 MPa and ¢; = 0.81 into Eq. 5.3 results in m’ = 13.2 kN.m/m.

Assuming that 65 % of M, is apportioned to the negative, and 35 % to the positive,
bending sections, leads to 0.35 m, = 13.2 kKN/m/m. As a result, the static panel moment
per unit width, m,, is equal to 37.7 kN.m/m. Substituting m, = 37.7 kN.m/m and [, = 4.5
m into Eq. 5.2 results in g = 14.9 kPa, which is the positive flexural capacity of the slab.

Likewise, the negative moment capacity is m, = 0.65 m, = 24.5 kKN.m/m. This moment
is the average of that in the column and middle strips. Allotting 75 % of the panel

moment to the column strip results in m, ., = 0.75 x 24.5 x 2 = 36.8 kN.m/m. Placing

r,col

15M bars spaced at 200 mm ( 4, = 1000 mm?*/m) at d = 104 mm, the unfactored negative
moment capacity in the W-E direction in the column strip is 38.3 kN.m/m. Following the

same rationale, the negative moment capacity of the middle strip, m_,,, ,is 0.25 x 24.5

x2=12.25kN.m/m.

According to Alexander and Simmonds’ strip model, the punching capacity of the

interior connection can be calculated as

P=8 M, w [5.5]
where w=0.167 \/70 d . The term M, is the flexural capacity of the strip, evaluated as

M, =c, (m,_,w, +m, ) [5.6]

K§ r,col

where ¢, is the column width, m__, is the distributed negative moment capacity in the

column strip and m; , is the distributed positive moment capacity in the column strip.

For M; = 0.4 (36.8 + 13.2) = 20 kN.m and assuming d equal to the average top slab
flexural depth, d = 112 mm, leads to an unfactored punching shear capacity of 362.1 kN.
Hence, the uniformly distributed load per unit area that causes punching failure according

to the strip model, g, sus, 1s 20.5 kPa.
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According to ACI 318-99, the unfactored punching shear capacity of the connection is

equal to 0.33 \/70 b, d. Assuming d = 112 mm, and calculating the critical perimeter at

0.5 d away from the column face yields a punching capacity of 414.6 kN, or ¢, 4c; = 23.5
kPa.

Figures 5.20 and 5.21 show the top and bottom reinforcement layouts for series II virgin
slabs. The column longitudinal reinforcement consisted of four C-shaped bars which give
a total of eight 15M steel bars. Likewise series 1 slabs, the longitudinal column
reinforcing bars served as hooks to facilitate the slab lifting procedure. Both the upper
and lower column stubs had three 10M closed-leg stirrups spaced at 100 mm. No stirrups

were left within the joint region.

5.3.2 Slab Formwork and Additional Slab Detailing

The slab formwork was supported by a grillage of transversely braced I-shaped stranded
board wooden joists resting directly on the lab strong floor. Two 19 mm thick plywood
layers covered the grid. To facilitate the specimen’s removal after casting, the bottom

plywood layer was screwed down to the grillage and the upper layer remained loose.

To enable the installation of the loading and restraint hardware, it was necessary to block
out 48 holes in the slab according to the layout shown in Fig. 5.19. This was
accomplished by tying down 50 mm diameter 152 mm high aluminum conduit pieces to
the formwork’s upper layer. The slabs were lifted off the forms after removal of these
tubes. For lifting purposes, four 15M steel hooks were placed in the slab corners during

casting.

5.3.3 Specimen Fabrication

The specimen fabrication procedure followed three major steps. First, the lower concrete
column stub was cast up to the level of the slab soffit far from the slab forms with
concrete at least as strong as that used in the slab. The next day, the column stub was

lifted up and inserted into the slab formwork centre hole. Later, the bottom and top slab
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reinforcement mats were set up. Figure 5.22 shows the reinforcing cage of a typical

virgin slab. Special care was taken to keep the slab flexural depth as originally planned.

The next day the concrete slab was cast. A local supplier delivered the concrete. A crew
of three to four people cast the slab concrete in two hours. Figure 5.23 shows a typical
concreting session. Special measures were taken to protect the slab reinforcement strain
gauges from getting damaged during concrete vibration. The next day, the upper column
forms were mounted on the slab and the upper column stub was cast with a lab-batched

concrete mix. The virgin slabs were built in series.

5.3.4 Test Apparatus
5.3.4.1 Supports

Each slab was tested in a location other than its casting spot. Specimens were lifted from
their casting spot with a 10 Ton. capacity overhead crane and moved over their testing
site. The slab was lifted from both the column stub and the slab corners. To avoid
premature flexural cracking, 60 to 65 % of the dead load was taken first by the slab
corners and the rest by the centre column. Figure 5.24 illustrates the lifting process. The
specimens were then supported on four equidistant pedestals. Once the slab was leveled,
the lifting load was removed from the column and then from the corners. Because of

cracking concerns, the slab was propped up with additional supports between pedestals.

5.3.4.2 Loading Assembly

Figure 5.25 shows a view of a typical slab through the setting-up process. The test set-up
is shown in Figs. 5.26 and 5.27. The test set-up was conceptually similar but far more

elaborated than that adopted in series I slabs.
The lower column stub was pushed up with a 890 kN (200 kip) centre hole jack. Figure

5.28 shows the column support detail. The jack rested on a 50 mm thick 500 mm

diameter steel base plate. A spherical bearing steel support was placed between the jack
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piston and the base of the lower column stub. A 890 kN commercial load cell was placed

in series between the jack and the lower column.

The centre column load was reacted against by four whiffle tree assemblies that were tied
down to the lab strong floor. Each whiffle tree load was split into four points. As a result,
the slab load was simulated by 16 point loads distributed as shown in Fig. 5.26. The
horizontal tree branches were made of HSS sections. The upper vertical branches
consisted of 19 mm diameter thread-ended tie rods. These rods were connected to the
slab by a system of plates, 25 mm (1”) dia. spherical-end Dywidag nuts, and 19 mm
(3/4”) dia. conventional nuts. The Dywidag nuts allowed tie-rod self-adjustment upon the
slab’s rotation. The rods were tied with the 19 mm dia. nuts. Figure 5.29b illustrates this
detail. A 25 mm (1") dia. Dywidag bar played the role of "trunk" in each of the four
loading trees. Each was tied down to the strong floor with a spherical-end Dywidag nut

and a steel plates, as shown in Fig. 5.29.

5.3.4.3 Edge Restraint System

A rotational restraint system was used to properly model boundary conditions on the
slabs. The selected edge restraint system consisted of eight independent frame-type
assemblies (four running in each direction) mounted on top of the slab. This was done to
avoid conflicts with the loading hardware and whatever instrumentation ran underneath
the plate. To have the edge restraint system on the slab meant that the restraint system
would work essentially in tension. This facilitated the setting up process because only a
small tension tie was required to connect the uprights. A compressive-type edge restraint
system, i.e., one installed underneath the plate, would have required horizontal links with
much larger cross-sections. The way the loads are applied through the edge restraint
system uprights to generate positive bending along the slab edges induces in-plane

compressive forces in the slab. However, these forces are not significant.
Each assembly consisted of two uprights and a horizontal tie evenly distributed in the N-

S and W-E directions, as shown in Fig. 5.26, 5.27 and 5.29a. Each upright was a steel

square hollow column tied down to the slab with two 25 mm diameter 350 mm long
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threaded rods. The tie was built by coupling two 25 mm diameter fully threaded A307
grade “Stud stock” steel rods. To monitor the tie load, a 30 kN home-made load cell was
placed in series between the rods. This measurement was essential for calculation of the
positive moment along the edges. To avoid conflicts with the orthogonal edge restraint
system ties, the N-S uprights were somewhat taller than those in the W-E direction.
Dimensions and additional details for the edge restraint system are shown in Figs. 5.26,

5.27 and 5.29a.

Installation of the edge restraint system took about two to three hours for one person to
complete. Prior to removing the slab supports, the transverse ties rested on wooden posts.
At the start of a test, each restraint frame was pretensioned by wrench-tightening the ties
agéinst the uprights. The load level in each transverse tie was determined based on the

approximate distribution of positive moments in the prototype slab under self-weight.

Ideally, the edge restraint system should represent the midspan of the prototype slab, i.e.,
a zero rotation line. However, because the uprights were not infinitely stiff, the specimen

ended up modeling a longer prototype span.

5.3.5 Instrumentation

5.3.5.1 Load Measurement

The column load was monitored with an 890 kN (200 kip) capacity commercial load cell.
The load in each whiffle tree was measured with a home-made 445 kN capacity load cell.
The force in each edge restraint system tie was measured with a home-made 30 kN

capacity load cell built on a 250 mm long 25 mm diameter threaded rod piece.

5.3.5.2 Deflection Measurements

Slab vertical deflections were measured on the slab underside with 10 - 250 mm (10”)
range cable transducers (CTs) installed as shown in Fig. 5.30. The first eight CTs
(running along N and W radial slab strips) were mounted on a metal frame clamped to the

lower portion of the bottom column stub. Cable transducers 9 and 10 rested on the strong
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floor. The upper movement of the lower column relative to the floor level, which is
essential for calculation of slab deflections from the latter two CTs, was measured with
an LVDT. Since all cable transducers were installed after moving each slab to its testing
position, these devices measured only the deflections due to the applied load. Slab
deflections under dead load were obtained by surveying the plate on 20 points at the time

the slab supports were removed.

5.3.5.3 Rotation Measurements

Slab rotations were measured along the slab edges and nearby the column in the radial
direction. Edge slab rotations were measured with 8 pairs of LVDTs. These devices were
mounted horizontally on aluminum arms clamped to the slab as shown in Fig. 5.31. The
LVDTs were connected to wires strung across from opposite arms. The arms were
located as shown in Fig. 5.31. The LVDTs were placed at two levels. Both 25 and 50 mm
range LVDTs were installed at the top level. Only 50 mm range LVDTs were placed at
the bottom. The LVDT location is indicated in the footnote of the figure.

Radial slab rotations nearby the column were measured on the slab underside in the W-E
and N-S direction based on the vertical deflection readings taken by CTs 1, 2, 3 and 5, 6
and 7.

5.3.54 Crack Measurements

Top slab cracks were measured in all four directions at 40, 160 and 500 mm (slab ER1
and ER2 tests) and at 40, 160 and 400 mm (slab ER3 tests) away from each column face
as shown in Fig. 5.32. Top cracks were measured with a 2” Demec gauge and an
illuminated 0.025 mm precision microscope. Top crack width measurements were taken

regularly up to several load steps before failure.

Bottom crack widths were measured with the microscope on the outermost positive
cracks on the column strip at mid-edge (stations H (W-E cracks) and I (N-S cracks)) and
on the middle strip (station J (N-S cracks)).
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The development of the internal shear cracks was also monitored. This was done by
drilling six holes around the connection and injecting a dye cast at 50, 150 and 250 mm
away from the column face along the S and E radial slab strips. The hole depth was
smaller than the slab thickness. The procedure was not successful because the dye cast
ended up diffusing inside the concrete without leaving a well-defined tracking of the

internal crack growth.

5.3.5.5 Strain Measurements on Steel Reinforcement

Both top and bottom slab reinforcing bars were instrumented with 120-ohm electrical
resistance foil-type strain gauges arranged as shown in Figs. 5.20 and 5.21. The gauges
were mounted on the neutral plane of the rebar cross-section and then duly waterproofed.
Gauge wires were taken out of the slab through holes made on the formwork sidewalls.
The chosen top gauge layout allows to measure average strain values from at least two

symmetrically placed gauges.

Top gauges provide information on the circumferential rebar strain distribution along
radial strips and on the radial strain distribution along perimeter bars. The latter is
essential to quantify force gradients developed by the slab quadrant bars. Top strain
gauge readings were also used to evaluate negative moments across the slab at both the
column centreline and the column face. Bottom gauges in the slab periphery provide

information to calculate positive moments.

5.3.5.6 Through-Slab thickness Strains

To further monitor the formation and growth of internal shear cracks in the slab-column
connection region, six through-thickness strain gauges were installed along the N and W
radial strips at 50, 150 and 250 mm away from the column face. The gauges, fabricated in
the lab, consisted of copper strips attached to springs. The devices were installed after

drilling 5 mm diameter holes through the slab concrete.
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5.3.5.7 Data Acquisition

Load cell, strain gauge, cable transducer and LVDT readings were recorded
electronically with one 130-channel Fluke 2400B data acquisition unit connected to a

personal computer.

5.3.6 Rehabilitation Techniques
5.3.6.1 General

One strengthening technique and one repair procedure were examined. The strengthening
technique consisted of adhering CFRP sheets on the slab top surface. This technique was
implemented before punching failure occurred. The repair technique consisted of
replacing the punched slab concrete with new concrete. It was performed after punching

failure occurrence.

The FRP sheet-based strengthening procedure was chosen because i) adhesion of FRP
sheets on a plane surface seems a natural choice for the product, and ii) according to any
shear model that accounts for the effect of the slab flexural reinforcement, bonding FRP
sheets to the slab top surface should enhance both the flexural and punching capacity of
the connection. Carbon fibres (CFRP) were chosen due to their higher stiffness. Two
CFRP sheet strengthening arrays, shown in Figs. 5.33 and 5.34, were implemented.
Figures 5.35 to 5.38 show the typical sheet lay-up process. The concrete patching repair
option was selected as a relatively inexpensive post-punching repair solution. Two

patching schemes were examined (see Figs. 5.39 and 5.40).

5.3.7 Slab-Column Connection Strengthening with CFRP Sheets
5.3.7.1 Material Description

The CFRP sheets used were of the type MRL-T7-200, supplied by the Industrial
Technology Research Institute, ITRI, Taiwan. The sheets were delivered in 500 mm wide
plies wrapped onto cardboard rolls. The fibres were unidirectional, unthreaded and not
pre-impregnated. The supplier’s specifications of the CFRP sheets are shown in Table

5.3.
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The sheets were intended to be used with a two-part primer and epoxy. The primer (to be
applied on the slab surface) was obtained by mixing a primer agent (MRL-A2) with a
hardener (MRL-B2) in a 100-35 proportion by volume. The epoxy (to adhere the sheets
to the slab surface) was produced by mixing a resin (MRL-A3) with a hardener (MRL-
B2) in a 100-35 proportion by volume.

5.3.7.2 Test ER2-CS1: Rehabilitation Procedure

The rehabilitation scheme on slab ER2 was conducted after unloading slab ER2-VS. The
rehabilitation scheme is shown in Fig. 5.33. Each strip of CFRP consisted of two layers

of CFRP. The CFRP installation process is shown in Figs. 5.35 to 5.38.

The FRP installation process followed the recommendations given by CSA S806-00.
First, the slab surface regions where the sheets were to be applied were ground smooth
and then finished with a putty. Then, a primer coat (MRL-A2 + MRL-B2) was applied on
the slab (Fig. 5.35), and left to cure for one day (Fig. 5.36). Eight 250 mm wide 4600 mm
long CFRP strips were cut and left ready for use.

The first sheet was laid out on a polyurethane-covered plywood sheet and impregnated
with a coat of epoxy using a paint roller. Simultaneously, the slab region where the first
layer was to be bonded was given a first coat of epoxy (MRL-A3 + MRL-B2). The CFRP
sheet was then carefully positioned on the slab and pressed against using an epoxy-
soaked paint roller with a foam roller cover. The sheet was continuously rolled up to

remove trapped air bubbles.

The first bands to be installed were those along the W-E direction. The installation of
upper sheets was similar to that of lower sheets except that no epoxy coating was
provided on the sheets below since they were already epoxy-soaked. The N-S bands were

adhered later.
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All bands in slab ER2 were folded over the slab edges. To prevent fibre tearing by the
sharp slab edges, the edges were ground flush, smoothened with putty and primer-coated
the day before. To further prevent premature sheet peeling off, all strips were anchored
with 1550 mm long 250 mm wide single layer strips placed as shown in Fig. 5.33. The
installation of the four CFRP bands, i.e. eight CFRP layers, was carried out by a two-men

crew in approximately 5 hours. The CFRP sheets were allowed to cured for one week.

5.3.7.3 Test ER3-CS2: Rehabilitation Procedure

Figure 5.34 shows the strengthening layout for slab ER3 for test ER3-CS2. The
upgrading technique in this test was similar to that in ER2-CS1 except that the CFRP

sheets were placed away from the column.

The installation process was identical to that previously reviewed. The first layers to be
bonded on the slab were those in the W-E direction. However, unlike ER2-CS1, the strips
in ER3-CS2 were not wrapped over the slab edges. The sheets were interrupted near the

slab edge. No additional sheet anchorage was provided either.

5.3.8 Slab-Column Connection Repair by Concrete Patching

Figures 5.39 and 5.40 show the details of the two concrete patching schemes adopted.
Both connection regions were patched with high strength concrete. This concrete type
was selected for no other reason than its high early strength gain. Due to lab space
constraints, it was required to test the repaired slabs no later than a week after concrete-

patching the connection.

In test ER1-CP1, the slab was repaired by replacing the slab concrete that had punched.
This test was conducted to study the feasibility of the concrete patching repair involving a
minimum amount of work. The process is shown in Figs. 5.41 to 5.44. To facilitate the
repair process, the middle ERS tie rods were dismantled. Then, the damaged slab
concrete surrounding the joint concrete was crushed with a jack hammer (Fig. 5.41) and

removed by hand. Simulating real-life conditions, where the column in a punched
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connection may be still carrying significant axial load, the joint concrete was left intact.
Concrete removal in the slab bottom level extended only up to 50 mm away from the
column faces. As a result, the bottom face of the punching failure surface served as a
mould for placing the new concrete. Figure 5.39 shows a side view of the approximate

boundary between the new and old concrete.

Because the slab concrete around the column had been removed, it was necessary to
install forms on the slab bottom surface. The forms were bolted together as a collar and
clamped to the lower column stub. It is worth noting that due to the punching failure of
slab ER1 in test ER1-VS, a 35 to 40 mm residual upward displacement of the column up
remained. This is consistent with the fact that in real life, a punched slab would sink

relative to the column.

The old concrete surface was soaked with water before placing the concrete (Fig. 5.42).
No special bonding agent was used. The concrete was batched in the lab. The mix had
coarse aggregate, sand, water and cement proportions of 1000, 870, 145 and 430 kg/m’,
respectively. To improve workability, 15 kg/m® of superplasticizer were added. Two
cylinders were filled at the time of casting. The average cylinder compressive strength

after a week was 57.9 MPa.

Concrete placement, vibration and finishing for ER1-CP1 were difficult because the mix
was very stiff. Particular care was taken to keep the original slab thickness. The slab
bottom forms were removed two days later. The new concrete was allowed to cure for
five days by covering it with water-soaked burlap. A view of the connection after the

patch hardened and the bottom forms were removed is shown in Figs. 5.43 and 5.44.

The repair test ER3-CP2 was similar to ER1-CP1, except that the new concrete occupied
a larger slab-column connection area and a better bond was ensured between the old and
new concrete. Figure 5.40 illustrates the details of this repair. At the bottom, the concrete
patch extended 390 mm away from the column face, which is almost eight times of that

in ER1-CP1. A more vertical interface was chosen to improve the mechanical joint
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between the old and the new concrete. The larger concrete patch required wider forms on
the slab underside. The forms were clamped on the lower column stub and supported on

the strong floor.

Likewise the previous test, the old concrete surface was cleaned and soaked with water
before placing the new concrete patch. The water content of the new mix increased
slightly compared to that used previously to improve workability. The average
compressive strength from two cylinders filled at time of patching was 52.6 MPa. The
slab bottom forms were removed two days later. Curing conditions were similar to those

on repaired slab ER1.

5.3.9 FRP Sheet Instrumentation
5.3.9.1 FRP Sheet Strains

Longitudinal strains in the CFRP sheets were measured with 120 mm foil-type strain
gauges located as shown in Figs. 5.33 and 5.34. These gauges were not waterproofed.
The gauges provided information not only on the longitudinal distribution of CFRP
strains but also on the different mechanisms of moment gradient transfer that could be

provided by the CFRP.

5.3.10 Loading Procedure

Both virgin and rehabilitated series II slabs were subjected to considerable damage not
only to simulate fairly stringent prototype conditions but also to challenge the different
strengthening/repair techniques. Prior to the start of each test, the ERS was prestressed to
provide a positive moment distribution similar to that in a prototype slab under self

weight.

Slab ER1-VS was brought to punching failure after imposing five load cycles. The cyclic
loading was applied to simulate actual conditions in a prototype slab and cause extensive
slab damage. In slabs ER2-VS and ER3-VS, the load was applied in three cycles up to
first yielding of the slab reinforcement and then removed. In tests ER2-CS1 and ER3-
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CS2, the strengthened slabs were loaded cyclically once more and then brought to

punching. In ER1-CP1 and ER3-CP2, the repaired slab was loaded through three cycles

up to punching failure.

5.3.11 Ancillary Tests
5.3.11.1 Concrete for Virgin Slabs

Series II virgin slabs were cast in the laboratory with 30 MPa nominal compressive
strength normal density concrete delivered by a local supplier. The maximum size of the
aggregate was 19 mm. Compressive strength tests were performed on 150 by 300 mm

cylinders.

Table 5.4 shows the concrete compressive strength values for the three virgin slabs and
for each of the two concrete patches at the time of testing. Tests complied with ASTM
C42-90. Tensile splitting tests were also conducted on a minimum of three 150 by 300
mm cylinders cast while fabricating the slabs. These results are also included in Table

5.4.

5.3.11.2 Steel Reinforcement

The properties of steel reinforcing bars under tension were obtained in accordance to
ASTM 370. Table 5.4 shows mean yield, ultimate strength and Young's modulus values
for the steel reinforcement used in series II slabs. Yield and ultimate strength values are

static values.

5.3.11.3 FRP Sheets

The mechanical properties of the CFRP sheets in tension were obtained in accordance to
ASTM D 3039-95a (1995). Tables 5.3 and 5.4 show, respectively, the mechanical
properties of the CFRP sheets according to the supplier and the test results. Taking into
account the variability of the strip thickness, the material properties refer to the fibre
alone. The results show that mechanical properties are close to those reported by the

supplier.
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Figure 5.45 shows a typical stress-strain response of the CFRP coupon and the carbon
fibre subjected to axial tension. For the stress evaluation of the CFRP coupon,
calculations are based on a 20 mm coupon width and an average thickness of 0.5 mm.
The stress in the carbon fibre was evaluated based on the manufacturer’s supplied value
of 0.11 mm. The response in direct tension of a 15 M steel rebar from the same batch

used to reinforce slab ER3 is provided for comparison.
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Table 5.1 Series I Slabs : Properties

Slab Top Reinforcement . p E, fy fou or fry
Type and Spacing | (MPa) | (MPa) | (%) | (GPa) | (MPa) | (MPa)
SR-1 | 15M Steel Rebars @ 200 | 36.8 237 | 0.87 | 1920 | 430 682
GFR-1 | #5 GFRP C-bars @200 | 29.5 2.10 [ 073 | 340 ~ 663
GFR-2 | #5 GFRP C-bars @ 100 28.9 2.10 1.46 34.0 _ 663
NEF-1 GFRP NEFMAC Grid 375 2.49 0.87 28.4 _ 566
with ribs @ 200

Note: p values were calculated based on an average slab flexural depth of 120 mm and
A, =200 mm’ (steel), 4, =200 mm* (NEFMAC) and 4,= 176 mm?® (GFRP C-bars).

Table 5.2 Series I Slabs : List of Tests

Slab Test Test Description
ER1 Loading test of virgin slab ER1
ER1 up to punching failure
ER1-CP1 Loading test of repaired slab ER1
up to punching failure
ER2 Loading test of virgin slab ER2 up to 70 % of its
ER2 estimated punching capacity
ER2-CS1 Loading test of CFRP sheet-rehabilitated slab ER2
up to punching failure
ER3 Loading test of virgin slab ER3
up to 70 % of its estimated punching capacity
ER3 ER3-CS2 Loading test of CFRP sheet-rehabilitated slab ER3
| up to punching failure
ER3-CP2 Loading test of concrete patch-repaired slab ER3
up to punching failure
Notes: 1. ER means series Il slabs were Edge-Restrained.
2. CS1 and CS2 refer to the two CFRP Sheet-based rehabilitation schemes used.
3. CP1 and CP2 refer to the two Concrete Patch-based repair schemes adopted.
4. Test ER3-CP2 was conducted after ER3-CS2 punched (the sheets were removed).
5. Design d values are reported in Figs. 5.20 and 5.21.
6. Measured average d values : d =109 mmandd " = 119 mm.
7. In accordance with measured d values, p ™= 0.92 % in all virgin slabs.
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Table 5.3 Mechanical Properties of CFRP Sheets

Property Supplier U. of A.
Tests
Tensile Strength (N/cm/ply) 4511 3875
Elastic Modulus (N/cm/ply) 252995 247750
Fibre Tensile Strength (N/mm®) 4805 3523
Fibre Elastic Modulus (N/mm®) 230000 230000
Fibre Thickness (mm/ply) 0.11 0.11
Fibre Elongation (%) 2.1 1.52
Notes: 1. CFRP Sheets were of the type MRL-T7-200, supplied by ITRI, Taiwan.
2. Sheets were unidirectional, unthreaded and not pre-impregnated.
3. Material properties from U. of A. tests were obtained based on
20 mm width CFRP coupons (The tests were conducted by M. Kuzik).
Table 5.4 Series II Slabs : Ancillary Test Results
Test E, fy ism | £y, 10m E¢ E¢ feru
(GPa) | (MPa) | (MPa) | (MPa) | (MPa) | (GPa) | (GPa) | (MPa)
ER1-VS 29.8 2.87 _ _ _
ER1-CP1 | 200 428 441 579 4.45 _ _ _
ER2-VS _ _ _
ER2-CS1 | 200 428 441 34.6 291 55.9 230 3523
ER3-VS _ _ _
ER3-CS2 | 200 422 462 30.6 2.50 55.9 230 3523
ER3-CP2 526 | N/A _ _ _
Notes: 1. N/A : Not available.
2. The elastic modulus for both 15M and 10M steel bars was the same.
3. f’.values in ER1-CP1 and ER3-CP2 refer to the concrete patch.
4. Ejand f, values refer to Carbon Fibre (calculated based on a fibre

thickness of 0.11 mm).
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Fig. 5.10 Reinforcing Mat : SR-1

Fig. 5.11 Reinforcing Mat : GFR-1
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Fig. 5.12 Reinforcing Mat : GFR-2

Fig. 5.13 Reinforcing Grid : NEF-1
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Fig. 5.15 Test Set-up : Series | Slabs
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Fig. 5.23 Slab Concreting : Series Il Slabs
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Fig. 5.25 Test Set-up Process : Series Il Slabs
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Fig. 5.27 Test Set-up View from SW Corner : Series Il Slabs

Fig. 5.28 Lower Column Support : Series Il Slabs
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Fig. 5.35 FRP Installation : Surface Finishing (ER2-CS1)

Fig. 5.36 FRP Installation : Finished Surface (ER2-CS1)
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Fig. 5.38 FRP Installation : Final Result (ER2-CS1)
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Fig. 5.42 Concrete Patching : Formwork Detail (ER1-CP1)
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Fig. 5.44 Concrete Patch : Bottom View (ER1-CP1)
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6 Series I Tests: Results, Observations and Evaluation

6.1 Load-deflection Response

The load-deflection response of the test specimens helps to identify major changes in
their behaviour and load carrying mechanisms. Significant behavioural differences are

expected since the slabs were reinforced with completely different reinforcement types.

The load-deflection response of Series I slabs is shown in Fig. 6.1. The curves show the
load variation as a function of the slab vertical deflection at 710 mm away from the
column face. The load includes the self-weight of the slab plus that of the loading
assembly (together amount to 20 kN). Deflection values are average values from
deflections measured in the four radial directions and do not include the dead load

deflection.

The load-deflection curves show that all slabs behaved similarly in the uncracked stage.
The early kink in the load-deflection curves signals the formation of first flexural cracks.

Cracking loads and the corresponding deflections for all slabs are shown in Table 6.1.

In SR-1, GFR-1 and GFR-2, first flexural cracks formed following the layout of the upper
top through-joint bars (W-E direction in SR-1 and N-S direction in GFR-1 and GFR-2).
Later, flexural cracks formed in the orthogonal direction, completing a cruciform crack
pattern. The first flexural cracks in NEF-1 formed simultaneously in both directions

because NEFMAC grids are orthotropic.

As the load increased, the cracks spread from inner to outer slab regions following the top
mat reinforcement layout. First yielding of steel reinforcement in SR-1 was observed at
about a 5.5 mm deflection in a bar passing through the joint at the column face. Yielding
of through-joint bars spread to all column faces at a 10.6 mm deflection. The response of
slabs GFR-1 and GFR-2 in the cracked stage is linear because FRP does not yield.

However, the elastic-cracked response of NEF-1 was different. The load-deflection
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response of this slab was jagged. The load dropped at deflections of 7.5 and 16 mm.
These drops appear to be the result of grid slippage.

Slabs SR-1, GFR-1 and GFR-2 failed in classical punching fashion: the column pushed
through the slab violently, leading to a significant load drop. Their ultimate loads and
deflections are reported in Table 6.1. These slabs were unloaded after punching. The
failure load of NEF-1 was difficult to determine because this slab did not feature either
the sudden load loss or the violent column push-through at ultimate. At first sight, it
appears that the load drop at a 26.7 mm deflection signals punching. This was

inconclusive at the time of testing. The load drop at this level was soft and gradual.

To confirm whether NEF-1 had indeed failed or not at a 26.7 mm deflection, the slab was
further loaded. Through this stage, the applied load never reached its previous peak value.
The test was suspended at a 48 mm deflection to prevent the slab from squashing the
instrumentation installed underneath. At that point, the slab appearance clearly suggested
that NEF-1 had already punched. Whether failure occurred at the 26.7 mm deflection or
at any of the load drops displayed earlier at a 7.5 or 16 mm deflection will be discussed
later. Dissection of NEF-1 shows minor fibre splaying in the ribs near the column. The
forensic inspection revealed that the rib longitudinal layers slipped relative to one another
at crossing points located at 100 and 300 mm away from the column face. Evidence of
full transverse fibre tearing or rupture was not found. Figures 6.2 to 6.5 show crack

patterns for all slabs at ultimate.

Figure 6.6 shows underside slab deflections along the N-S direction in slab SR-1
immediately before punching together with those in slab NEF-1 at deflection levels of
26.7 and 32 mm. The deflected shape of SR-1 was almost straight before punching and
that in NEF-1 was straight at a 26.7 mm deflection. This was also the case of GFR-1 and
GFR-2 (not shown here). The straight deflection profile is consistent with a rigid body
rotation of the slab in the radial direction, as observed by Kinnunen and Nylander (1960).

However, the deflections in NEF-1 at a 32 mm imposed deflection at the slab edge trace a
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broken profile which shows that the outer slab portion deflects less than the inner part.

This observation confirms that punching of NEF-1 occurred earlier.

Figure 6.7 shows the variation of the radial slab rotation as a function of the deflection
for all slabs. Rotations were calculated based on the slab underside deflection readings
and the distance between them. Consistent with Kinnunen and Nylander (1960), the
linear rotation-deflection curves show that the slab deformation in the radial direction is
insignificant regardless of the type and amount of reinforcement. The fact that the slopes
are almost equal reflects that all of the slabs had the same loading geometry. Punching is
indicated at the load level beyond which the rotation starts decreasing. Figure 6.7 clearly

shows that slab NEF-1 punched at a 26.7 mm deflection, as suspected initially.

6.2 Crack Widths

Figure 6.8 shows the variation of load as a function of crack width for all slabs. Crack
widths are average values from crack widths measured at 30 mm away from the column
face on through-joint cracks in all four directions. The load-crack width relationships are
qualitatively similar to the load-deflection curves of the slabs. At a given load, cracks
tend to be wider as the stiffness of the top flexural mat decreases. For instance, at a load
of 160 kN, which may be considered representative of service load conditions for a 4 m
square interior slab panel, the crack width in SR-1 is about 0.3 mm, that in GFR-2 is two

to three times greater, and that in GFR-1 and NEF-1 is about four to five times greater.

The variation of average crack widths at the column face as a function of the imposed
slab deflection is shown in Fig. 6.9. Consistent with the observations made by Nawy and
Neuwerth (1977), crack widths in the slabs reinforced with GFRP vary almost linearly
with the slab deflection. Cracks are narrowest in SR-1. For deflections lower than 4 mm,
the crack widths in the slabs with GFRP are similar. For greater deflections, NEF-1
displays the widest cracks. The increased crack widths in NEF-1 result from the reduced

bond of NEFMAC ribs along the longitudinal direction in between transverse ribs.

127



6.3 Strains in Slab Reinforcement

6.3.1 Notation

To interpret the strain gauge output data, it is necessary to introduce some definitions
with reference to Fig. 6.10. This figure shows a key plan with the strain gauge
distribution in series I slabs. Each gauge represents the location of four gauges mounted
as shown in chapter 5. The gauge grid is defined by the axes r - ¢. Labels "r" and "¢"
mean "Radial" and "Circumferential" directions, respectively. Bars passing through the
joint (bar A) are referred to as joint bars. Those passing outside (bars B to E) are called
perimeter bars. The gauges were lined up in three rows, 1,2 and 3. The distance between
adjacent gauges on the same bar defines an interval. In SR-1, GFR-1 and NEF-1, the
interval width for the perimeter bars coincides with the top rebar spacing, i.e. 200 mm. In
GFR-2, the gauge interval is twice the top mat spacing. In joint bar A, the uppermost

gauge was located at the column face.

6.3.2 Validation of Strain Gauge Readings

Validation of the strain gauge readings will be performed by comparing the flexural
moment estimates about the column face based on load cell reaction readings with those
based on the strain gauges along gridline 1. The slight difference between the column
face axis and the location of gridline 1 gauges will be ignored.

The total load cell-based flexural moment about the column face is

M =025(R, +R,)+0.71(R, +R,) [kN.m] [6.1]

where R; to R, represent the reactions acting on one half of the slab.

The total strain gauge-based moment about gridline 1 in slab SR-1 is approximately

A
My =Y A& E (jd) =) AsgsEs[d—l 7}{ fb] , &E <f, [6.2]

where & is the measured steel strain and £ is the yield strength of the reinforcement. The

summation sign indicates that the total moment is evaluated from the contribution of all
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reinforcing bars across the full slab width. Equation 6.2 gives reasonable moment

estimates only when the slab is fully cracked. Otherwise, the equation overestimates jd .

Taking into account that FRP reinforcement does not yield, the bending moment in the

slabs with FRP can be evaluated as
My, =>A4,6,E(jd) , ¢E <f, [6.3]

where & is the GFRP strain, Eyis the elastic modulus of FRP and fj, is the ultimate tensile
strength of FRP. For simplicity, calculations were made assuming (jd ) = 0.90 d.

Figures 6.11 and 6.12 compare the strain gauge- and load cell-based negative moment
predictions for slabs GFR-1 and NEF-1, respectively. The figures show that the moment
estimates are consistent. The curves for the other two slabs (not shown here) show the

same level of consistency. This indicates that the strain gauge output data can be trusted.

6.3.3 Circumferential Strains

Figures 6.13 to 6.16 show circumferential strain distribution profiles in all slabs along the
radial direction at a deflection of 10.6 mm. This deflection level corresponds to full
yielding of the steel around the column in control specimen SR-1. It provides a metric for

comparing the different slab responses in terms of strains or bar forces.

Consistent with Kinnunen and Nylander (1960), circumferential strains for SR-1 and
GFR-2 and NEF-1 along gridline 1 are inversely proportional to their radial position.
However, strain profiles in GFR-1 are approximately uniform. The circumferential strains
along gridline 1 in SR-1 are smaller than those in GFR-1, GFR-2 and NEF-1. This is
consistent with the smaller crack widths reported for SR-1. The plots also show that the

strain difference among the three profiles is smallest for SR-1 and greatest for NEF-1.

At ultimate (curves not shown), circumferential strains in SR-1 are above yielding
whereas strains of about 35, 29 and 65 % of those at FRP rupture were measured in GFR-

1, GFR-2 and NEF-1, respectively. The higher strains in NEF-1 at the column face are
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consistent with the fact that strain gauges in the NEFMAC grid were bonded on the upper
side of the grid and not on the centroid of the reinforcement as was done in the other
slabs. The greater strains in NEF-1 are also consistent with the wider cracks of this slab.
It is also worth noting that NEFMAC rib strains in the order of 19000 pe were measured
at a 48 mm deflection. This strain level is very close to that at NEFMAC rupture.

6.3.4 Forces in Slab Reinforcement

Figures 6.17 to 6.20 show the force variation in bar C for all slabs along gridlines 1, 2
and 3 against the slab deflection. Bar forces were obtained by converting measured
strains into forces on the basis of tension coupon test results. Bar C was selected to

illustrate the typical bar force variation in a region where slender beam action dominates.

As expected, the figures show that bar forces at upper gauge locations tend to increase
earlier than do those at lower gauge locations. This is consistent with slab flexural cracks
propagating from inner to outer slab regions and also with the fact that moments are
greater at upper gauge locations. For instance, in slab GFR-1 (see Fig.6.18), the bar force
at C-1 starts increasing immediately after first flexural cracks form whereas those at C-2
and C-3 are equal to zero. The bar force at C-2 starts increasing at a 4 mm deflection,
which coincides with a crack passing over C-2. At this level, the bar force growth rate at
C-1 starts decreasing and that at C-3 is still minimal. The bar force at C-3 starts
increasing at a 7.6 mm deflection, which coincides with a crack passing over C-3. At this

stage, the force growth rate at C-2 decreases. This trend applies to all slabs.

The bar force plots of Figs. 6.17 to 6.20 also show a stiffer response in SR-1 compared to
that in GFR-1, GFR-2 and NEF-1. This is because of steel’s greater stiffness.

6.3.5 Bar Force Gradients

Bar force gradients provide a quantitative measurement of the amount of shear
transferred by beam action by the slab reinforcement. A null bar force gradient implies

that shear is carried mainly by arching action.
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Figures 6.21 and 6.22 show the variation of bar force gradients for joint bar A for slabs
SR-1 and GFR-1. In SR-1, the bar force gradient across the first interval reached a peak
of 155 N/mm at a deflection of about 3.5 mm, then remained constant up to a 5.5 mm
deflection and finally dropped steadily to zero. First yielding of bar A was observed at
upper gauge location A-1' at a deflection of about 5.5 mm. This indicates that the force
gradient for bar A across the first interval is limited by yielding of the reinforcement. The
same limitation occurred across the second interval except that a higher peak gradient of

200 N/mm was developed. The corresponding force gradient at failure was 103 N/mm.

Figure 6.22 shows that bar A’s force gradients in GFR-1 were much lower than those in
GFR-1. The highest gradients in GFR-1 were measured across the second interval. Since
FRP does not yield, the force gradient in GFR-1 is not limited by yielding of the

reinforcement. Instead, it is limited by bond failure.

Figure 6.23 shows the bar force gradients for joint rib A in slab NEF-1. The force
gradient across the first interval is high and grows steadily up to failure. The gradient is
high because of high strains concentrated at through-joint cracks. The gradient along the

second interval is much lower.

Figures 6.24 to 6.26 show the force gradients generated by perimeter bars across the
second interval (2-3) for slabs SR-1, GFR-1 and NEF-1. According to Fig. 6.24, bars B
and C in SR-1 developed force gradients of 132 and 150 N/mm before failure. These
gradients are limited by yielding of the reinforcement at upper gauge locations. The
values are lower than the peak 200 N/mm gradients reported by Alexander, Lu and
Simmonds (1995) from tests on two-way slabs with steel bars of similar diameter spaced
at 150 mm and than the peak 200 to 250 N/mm gradients reported by Olonisakin and

Alexander (2000) from tests on one-way slabs with steel bars spaced at 150 mm..

The non-yielding nature of FRP precludes reinforcement yielding as a cause of C-bar or

NEFMAC rib force gradient reduction. Instead, the major governing limitation for force
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gradient development in FRP refers to bond deterioration. As to GFR-1, the bond effect
can be observed in Fig. 6.25 for bar D. The force gradient reaches a peak 87 N/mm value
at a deflection of 7.8 mm and then plummets to zero. Bar D was unable to develop the

117 N/mm peak gradient generated by bar B at failure.

As far as NEF-1 is concerned, Fig. 6.26 shows that the only perimeter rib to display an
increasing force gradient was rib B (90 N/mm at ultimate). The other perimeter ribs
displayed lower force gradients (from 30 to 72 N/mm). The early cusps at a 7 and 13 mm
deflection result from low strain readings at lower gauge locations likely because the

flexural crack that formed along gridline 3 did not cross the gauges.

6.4 Internal Shears

According to Alexander and Simmonds' strip model for punching, the punching shear
capacity of an interior slab-column connection is influenced by the ability of the slab
internal reinforcement to generate shear by one-way beam-action to the radial strips that
frame into the column. To evaluate the shear transferred from the perimeter bars to the

radial strips, two possibilities are considered (see Alexander, Lu and Simmonds, 1995).

The first assumes that the shear is carried by beam action through the first interval. In this

case, the shear force associated to a single bar or simply the “bar shear”, Vi, is

[6.5]

In Egs. 6.4 and 6.5, T, T; and T3 refer to the bar tensile force at gridlines 1, 2 and 3,
whereas jd; is the flexural lever arms at gridline 1. Alexander et al (1995) assume that the
governing value of Vg, is the larger of the two values defined according to Eqgs. 6.4 and

6.5.
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Figures 6.27 to 6.29 show bar shear envelopes for the perimeter bars in slabs SR-1, GFR-
1 and NEF-1, respectively. The figures show higher bar shears in SR-1 compared to those
in GFR-1 and NEF-1. This is consistent with the higher punching capacity of SR-1.

According to the fundamentals of the strip model, the sum of all the bar shears delivered
to the radial strips should equal the applied column load. The total shear transferred by

the slab to the column based solely on strain gauge measurements can be evaluated as
4

Py =83 Vo, [6.6]
i=1

Figure 6.30 shows the variation of the ratio of P, to the applied column load, P, as a
function of the slab deflection for slabs SR-1, GFR-1 and NEF-1. The dead load has been
included in the calculations. In SR-1, the shear contribution from bar F was neglected

because the strain readings at lower gauge locations were excessively low.

The three curves of Fig. 6.30 show essentially the same trend. The early cusp is the result
of Egs. 6.4 and 6.5 overestimating the jd term before the slab can be considered fully
cracked. Once the slabs are fully cracked, the curves drop down to a value of about one.

The fact that the three curves reach unity means that the assumed shear transfer
mechanism of Alexander and Simmonds’ strip model is conceptually correct. Similar
results were obtained by Alexander et al (1995) in the punching capacity evaluation of
slabs with steel and epoxy-coated reinforcement, and by Afhami et al (1998) in punching

shear tests of a two-span slab specimen.

6.5 Influence of Test Variables
6.5.1 Top Mat Stiffness Effect

In this study, the effect of the top mat stiffness was examined by varying the slab
reinforcement content and/or the FRP stiffness. Two main effects could be observed from
the tests. First, an increase in the slab reinforcement ratio leads to a stiffer response in the

elastic-cracked stage. Second, as the top mat stiffness increases, both the punching
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strength increases and the ultimate deflection decreases. These observations are

consistent with the test results reported by Matthys and Taerwe (2000c).

6.5.2 Reinforcement Type Effect

In addition to their elastic stiffness, the main difference between the reinforcements was
related to their bond characteristics. Both steel rebars and GFRP C-bars had a round
cross-section and shear lugs. In addition to its slightly lower elastic stiffness relative to
that of the C-bars, the NEFMAC ribs were rectangular in cross-section and were not
provided with any bond enhancement features. Bond was provided mainly by mechanical

bearing of the transverse ribs against concrete.

According to Fig. 6.1, the response of NEF-1 was significantly different than that of
GFR-1 despite having a similar top mat stiffness. In the elastic-cracked stage, the load-
deflection response curve of NEF-1 was jagged, accompanied by significant slippage of
the NEFMAC reinforcement. The behavioural differences accentuate at ultimate; the load
drop after NEF-1 punched was gradual rather than sudden, as observed not only in slab

GFR-1 but also in the other two slabs reinforced with deformed rebars.

The effect of reinforcement type is also reflected in the circumferential strain profiles of
Figs. 6.13 to 6.16. As shown in Fig. 6.13, the average strain at cracks in SR-1 along
gridlines 1 to 3 is in the order of 1800 to 1900 pe. This average strain is less than that in
the slabs with FRP. Since the strain profiles correspond to the same imposed deformation
of 10.6 mm, and since deflections are obtained by integrating strains, the strains in the
FRP reinforcement between the gauges must get reduced significantly to render the same
overall slab deflection. This suggests that concrete tension stiffening is proportionally

more significant in slabs with GFRP than in steel-reinforced concrete slabs.

6.6 Flexural Bond in Slabs with Internal FRP Reinforcement
6.6.1 Flexural Bond in GFRP C-bars

The bar force gradient plots of Figs. 6.24 to 6.25 are useful to evaluate the effect of
reinforcement type on the flexural bond strength of steel bars and GFRP C-bars. Let us
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compare the response of the steel bars in SR-1 and that of C-bars in GFR-1. At a given
deflection of 10 mm, the average force gradient in the steel bars is about 90 N/mm
whereas that in the C-bars is about half. Dividing the average force gradient by the 200
mm rebar spacing results in an average flexural bond of 0.45 MPa for the steel bars and
0.22 MPa for the C-bars. This shows that, at the given 10 mm deflection, the bond
strength of C-bars is about half of that developed by conventional steel bars. This also
indicates that bond strength estimates from pull-out tests (typically in the order of 10 to
15 MPa for GFRP deformed bars) may be excessively liberal.

6.6.2 Flexural Bond in GFRP NEFMAC Grids

According to Figs. 6.25 and 6.26, the force gradients developed by the NEFMAC grid
were similar to those developed by the C-bars. This indicates the bond supplied by the
transverse ribs in the NEFMAC grid is equivalent to that generated continuously in the

interface between the C-bar and concrete.

Figure 6.31 provides a further insight into the bond characteristics of NEFMAC grids.
Figure 6.31a shows a portion of perimeter rib C bounded by the column centreline
(gridline 0) and the lowermost gauge C-3. The rib is crossed by top flexural cracks #1, #2
and #3. In NEF-1, these cracks formed at deflections of about 0.3, 7.5, and 16.4 mm,
respectively. The variation of rib forces as a function of the slab deflection is shown in
Fig. 6.20. The typical free body diagram of a NEFMAC rib in tension is shown in Fig.
6.31b. Since bond along the ribs is negligible, the force difference AT results from grid

bearing against concrete. This value is taken constant along the interval.

Since the first flexural crack (crack #1) passes along gridline 1, the rib force along
interval 1-2 starts increasing at a 0.3 mm deflection (see Fig. 6.20) and the rib slips at
joint 1. The force along interval 0-1 was not measured. It is assumed, however, to be
greater than that along interval 1-2. As shown in Fig. 6.20, the force along 1-2 (gauge C-

1) increases steadily up to the formation of crack # 2 at a deflection of 7.5 mm.
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The force difference between 7., and T>.; up to crack # 2 formation defines path A-B in
the force differential-slip (47-6) plot of Fig. 6.31c. The formation of crack # 2 and the
slip at gridline 2 lead to an increase in rib force along interval 2-3 starting from zero and
to further rib slip at 1. At this point, the force growth rate at 2 starts decreasing which
leads to a reduction in the slope of the A7-8 curve from B to C. The additional slip at 1 is

a necessary condition for force 1-2 to be greater than that along 2-3.

Later, at a deflection of about 12 mm, the force differential between 1-2 and 2-3 becomes
constant. The force in both intervals increases but no additional bond stresses develop.
This results in a constant AT value (Fig. 6.31c). Presumably, the bond stress shortage is
the result of the gradual rib debonding at joint 1 since the crossings possess the weakest
architecture in the grid. The force differential AT remains constant up to the formation of
crack # 3 at a deflection of 16.4 mm which signals point D in Fig. 6.31c. Beyond this
level, AT further drops and at a deflection of 26.7 mm, the rib slips further at 3 and bond

failure occurs, as indicated by point E in Fig. 6.31c.

6.7 Failure Cause of Series I Slabs

6.7.1 Governing Failure Mechanism

The fact that only four slabs were tested in this series makes it difficult to report a concise
explanation of the reasons behind their failure. However, it must be emphasised that the
experimental variables were well established. As a result, the tests should at least indicate
some basic behavioural trends on which deeper conclusions could be drawn later. The
experimental observations from series I tests are particularly useful to examine
conventionally accepted theories explaining punching failures in ordinary steel-reinforced

concrete slabs.

As observed in Fig. 6.1, the load-deflection response of series I slabs alone does not
provide a conclusive evidence to determine the governing failure mechanism in the slabs
with FRP. The variations in the failure load cannot be explained by the differences in

concrete strength alone, as one would expect using the punching shear capacity design
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provisions in ACI 318-99 and CSA A23.3-94. The load-deflection response of GFR-1
and GFR-2 shows that there is definitely an effect associated with the amount of flexural

reinforcement. This is consistent with the observations of Matthys and Taerwe (2000c).

Figure 6.1 also provides useful information on the failure triggering mechanism linked to
punching of slab SR-1. From this figure, it can be conjectured that the same slope of the
load-deflection curve of SR-1 through the elastic-cracked stage could be displayed by a
slab with a top GFRP mat as stiff as that of SR-1. In the forthcoming discussion, this slab
is referred to as the “equivalent” slab. The stiffness “equivalency” can be ensured by
either spacing the GFRP C-bars tightly, using stiffer reinforcement, or combining a stiffer

reinforcement with a tight spacing.

In accordance with the observations made by Criswell (1974) (see Fig. 4.1), it can be
conjectured based on the response of slabs GFR-1 and GFR-2 at ultimate, that the
“equivalent” slab would punch at a deflection less than that of SR-1 at ultimate. Since
slab SR-1 would then deform more and would carry more load than the “equivalent” slab,
it can be concluded that concrete crushing can not be the cause of failure of SR-1. The
relevance of concrete crushing as a punching failure criteria in concrete flat plates has

also been criticised by Shehata and Regan (1989) for slabs with steel reinforcement.

The relatively low strain values measured at ultimate in the slabs with GFRP constitutes
evidence that punching is not caused by rupture of the GFRP reinforcement either. Since
the slab reinforcement ratios that will be provided in prototype slabs with FRP would be
higher than those supplied in slabs GFR-1 and NEF-1 (to comply with serviceability

requirements), the FRP strain will further reduce.

Having discarded concrete crushing and reinforcement yielding or rupture as dominant
punching failure mechanisms, the major dominant variable appears to be the quality of
bond between the reinforcement and concrete. The significance of bond on the mechanics
of shear transfer from slab to columns has been identified by Alexander and Simmonds

(1991) in the context of steel-reinforced concrete slabs. In series I slabs GFR-1 and GFR-
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2, failure is triggered by the inability of C-bars that frame into the radial strip to continue
generating force gradients. As the bond limit between C-bars and concrete is reached, the

slab punches.

6.7.2 Failure Mechanism in Slabs with GFRP NEFMAC Grids

The high rib force gradients developed by joint rib A shown in Fig. 6.23 initially suggest
that NEFMAC grid ribs transfer shear by beam action in the radial strip. Moreover, the
figure shows that NEFMAC ribs are able to develop much higher rib force gradients than
do C-bars. This is, however, not true for the following reasons. First, the slab-column
region is a highly disturbed region. Second, the high force gradients reported in Fig. 6.23
are “apparent” values in the sense that they only reflect the force difference between the
first and second intervals at the crossing rib. The stepped tension force distribution along
the rib (see Fig. 6.31a) is equilibrated by compression fans framing into the joint, as
shown in Fig. 6.32. This type of shear transfer mechanism is of arching type, which is

consistent with the fundamental assumptions of Alexander and Simmonds’ strip model.

For the case of NEF-1, the compression fans CF; and CF, shown in Fig. 6.32 form,
respectively, at a slab deflection of 7.5 and 16.4 mm. These deflection values signal the
slip of the NEFMAC rib at gridlines 2 and 3, respectively. At a deflection of 26.7 mm,
further slippage at gridline 3 leads to more tension in the interval 2-3. As a result, the
flatter compression arch CF} is not able to equilibrate the vertical column load at the root

of the slab-column joint and the column pushes through the slab.

The existence of compression fans is corroborated by the cross-sectional view of slab
NEF-1 after failure shown in Fig. 6.33, which is also consistent with the punching shear
crack outline shown in Fig. 6.5. As illustrated in Fig. 6.32, it can be hypothesised that the
shear crack ran underneath the NEFMAC rib between gridlines 2 and 3, but surfaced at

gridline 2 after significant deformation was imposed on the slab.
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Table 6.1 Series I Slabs : Test Results

Slab Per P, P, Aer Ay Ay
(kN) (kN) kN) | (mm) | (mm) | (mm)
SR-1 64.6 319.6 | 365.1 0.3 10.6 13.8
GFR-1| 776 _ 199.0 0.3 _ 233
GFR-2 | 725 _ 249.0 0.2 _ 16.4
NEF-1 | 89.4 _ 203.0 0.4 _ 26.7
Notes: 1. Load values include the dead load on the slab (= 20 kN).
2. Deflection values do not include the dead load deflection.
3. Pyand 9, values in SR-1 are those at full top slab

reinforcement yielding at the column face.
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———~ Punching Shear Crack : Not visible at a 26.7 mm deflection

Fig. 6.5 Crack Pattern : NEF-1
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Fig. 6.33 Elevation View of Dissected Slab NEF-1
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7 Series II Tests : Results, Observations and Evaluation

7.1 Objectives

This chapter reports and evaluates the experimental results from series II slab tests. The
structural response of virgin, FRP-strengthened and concrete-patched slabs is described.
The effects of the adopted slab strengthening and repair procedures are discussed and

hypotheses for the role of the sheets and the mode of failure of the slabs are presented.

7.2 Overall Description of Structural Response

Figures 7.1 to 7.5 show the load-deflection response from the seven tests conducted on
the three slabs of series II. Load values correspond to the applied load on the slab divided
by the slab area (17.64 m?). The deflection values correspond to the average of the North
and West mid-edge slab deflections (points 4 and 8 in Fig. 5.30). Neither the load nor the

deflection values include the effect of dead loads.

The dead load on the slab was determined at preliminary testing stages with the column
load cell after the slab was lifted off supports. The dead load on slabs ER1-VS, ER2-VS
and ER3-VS was 5.05 kPa (89 kN jack load), 4.85 kPa (85.5 kN jack load) and 4.82 kPa
(85 kN jack load), respectively. These values include the weight of the loading assembly.

Dead load deflections were obtained by surveying the slab at 20 different locations. The
deflections due to dead load were 1.5, 1.67 and 1.33 mm for ER1-VS, ER2-VS and ER3-
VS, respectively. They were measured at 69, 69 and 51 days, respectively. The virgin
slabs were loaded at 71, 69 and 51 days after casting.

7.2.1 Response of Virgin Slabs

Figure 7.1 shows the response of virgin slab ER1-VS. The thinner curves in Figs. 7.2 and
7.3 show the response of virgin slabs ER2 and ER3. All virgin slabs displayed the

uncracked, elastic-cracked and yield phases commonly linked to prototype flat plates.

The uncracked stage is barely recognizable because first flexural cracks formed shortly

after the full dead load was applied. Flexural cracking loads and corresponding
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deflections are reported in Table 7.1. First flexural cracks formed on the top of the slab,
following the orientation of the two through-joint bars in the N-S direction. These cracks
progressed from the column towards outer slab regions followed by cracks forming in the

orthogonal direction (W-E) completing a cruciform pattern.

Slab ER1-VS was unloaded at a 3.3 kPa applied load after discovering that one data-
acquisition cartridge was accidentally disconnected. To further examine the proper
functioning of both the loading array and the instrumentation, slab ER1-VS was re-
loaded and then unloaded at an imposed load of 5.1 kPa. Adding this load to the dead
load on the slab (about 5 kPa) results in a total 10 kPa load which is the service load for
the slabs. These first two cycles were not applied to slabs ER2-VS and ER3-VS,

As the load increased, the through-joint top cracks reached the slab edges at an applied
slab load varying from 8 to 10 kPa. At this load level, the load-deflection curves of the
three virgin slabs display a kink. All three slabs were unloaded at this stage.

Upon reloading, additional cracks formed on outer slab regions and along the diagonals.
First bottom flexural cracks were observed in the N-S direction at about 370 to 400 mm
away from the slab edges. First yielding of the slab reinforcement was observed around
the column at an applied load of 15 to 17 kPa at a deflection of 15 to 16 mm, as shown in
Table 7.1. First yielding of the bottom reinforcement in ER1-VS and ER3-VS occurred
between 17 and 20 kPa. The formation of bottom slab cracks and the yielding of the

bottom reinforcement constitute evidence that the ERS worked as planned.

After first yielding of the positive reinforcement, slabs ER2-VS and ER3-VS were
unloaded in order to be strengthened with the CFRP sheets. Virgin slab ER1-VS was not
unloaded because it was the control slab. The load on slabs ER2-VS and ER3-VS was not
fully removed. To avoid seating problems, a 0.6 kPa load was left on. At this load level,
the residual deflections in ER2-VS and ER3-VS were, respectively, 10 and 11.7 mm, as
shown in Figs. 7.2 and 7.3.
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Figure 7.6 shows typical top and bottom slab crack patterns at an applied load of 18 kPa,
which corresponds to the load level at which ER2-VS and ER3-VS were unloaded. The
pattern is very similar to that reported by Regan (1999) for prototype slabs. This confirms
that the ERS fulfilled its purpose.

Slab ER1-VS was brought to failure without applying any further cycling. At about a 19
to 20 kPa load, additional top cracks formed along the diagonals close to the column and
additional bottom cracks were observed at inner slab locations. Slab ER1-VS failed in
typical punching fashion at an applied load of 25.6 kPa. The failure was violent and led to
a significant load drop. At failure, the full positive reinforcement had not yielded. Figure

7.7 shows the top and bottom crack patterns for ER1-VS after punching failure.

7.2.2 Response of Slabs Strengthened with CFRP Sheets

The load-deflection response of the CFRP sheet-strengthened slabs is shown with a thick
line in Figs. 7.2 and 7.3. Reloading of the strengthened slabs (tests ER2-CS1 and ER3-
CS2) started at a deflection slightly lower than that recorded at the end of the virgin slab
tests because the 0.6 kPa load that was originally left on the slab dropped. As as a result,
the slabs seated on the supports. After strengthening the slabs, the slabs were brought
back to the original 0.6 kPa applied load level but the seating effect led to smaller

deflections than those previously measured.

Once the loading resumed, the strengthened slabs display a similar cracked stiffness
compared to that of the virgin slabs. This was expected because, in terms of stiffness, the

amount of CFRP sheets bonded on the slabs was relatively small.

To test the rehabilitation schemes, slabs ER2-CS1 and ER3-CS2 were cycled at least
once before taking them to failure. They were unloaded when the applied load reached
the previous peak load on the virgin slabs and then brought to failure. In the first cycle,
the crack pattern was similar to that of ER1-VS at a similar load. The crack pattern

remained unchanged until the 19 to 20 kPa load level, at which cracks nearby the column
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in ER3-CS2 forked. Splitting cracks were also observed in the CFRP sheets' longitudinal

direction in both slabs at a load of 21 kPa. These cracks are mostly resin cracks.

Both ER2-CS1 and ER3-CS?2 failed in typical punching manner at applied loads of 24.2
and 22.2 kPa, respectively. Figures 7.8 and 7.9 show the crack patterns for these slabs
after failure. Punching was not as violent as that of ER1-VS. No transverse fibre rupture
or tearing was observed either. At failure, the CFRP sheets remained very well bonded to

the slabs, as observed in Fig. 7.10 (ER3-CS2).

One interesting observation from these two tests is that, despite the virgin slabs being
similar, the failures of the two sheet-strengthened slabs were markedly different. As
shown in Fig. 7.8, the upper layout of the punching cone in ER2-CS1 almost coincided
with the outermost edge of the sheets. In ER3-CS2, the shear cone top layout was
virtually bounded by the sheets as well, except that the sheet outer edges were placed 425
mm farther away. As a result, the failure mechanism in ER3-CS2 rendered a punching
shear crack much less steep than that in ER2-CS1. According to ACI 318-99 or CSA
A23.3-94, these two slabs should have displayed similar shear failure surfaces and

capacities.

Forensic slab inspection around the column revealed the existence of diagonal top slab
cracks underneath the sheets for slab ER2-CS1 as shown in Fig. 7.8. These cracks formed
at 45 degrees with respect to the orthogonal slab axes. These cracks were not present in
ERI1-VS nor in ER2-CS1. These cracks result from in-plane shear stresses due to the
biaxial tension exerted on the column corners by the CFRP sheets. The sheets behave as
“tension bands”, as conceptually illustrated in Fig. 7.11. The tension forces generated in

the strips are equilibrated by compression struts that frame into the lower joint portion.

7.2.3 Response of Slabs Repaired with Concrete Patches

The load-deflection response of the slabs repaired with concrete patches (ER1-CP1 and
ER3-CP2) is shown in Figs. 7.4 and 7.5. Test ER1-CP1 was conducted after virgin slab
ERI1-VS punched. Test ER3-CP2 was conducted after the strengthened slab ER3-CS2
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punched and the CFRP sheets were removed. For neatness, the response of these

repaired slabs is shown independently of their predecessor tests.

Punching of predecessor slabs ER1-VS and ER3-CS2 led to a minor slab sinking
relatively to the column as would occur in a real-life structure. At the end of these tests,
the permanent depression of the slab top level relative to its original level after full slab
unloading was about 30 to 35 mm nearby the column for both slabs. In Figs. 7.4 and 7.5,

the point of zero deflection refers to this new slab level after the dead load was on.

Consistent with its higher strength, first flexural cracks on the HSC concrete patch in
both slabs formed at applied loads slightly greater than those on the virgin slabs. In both
tests, the slabs were cycled twice with peaks at loads of about 10, 15 kPa and then
brought to failure. The response of ER1-CP1 was essentially linear up to punching failure

whereas that in ER3-CP2 displayed a non-linear response beyond a 18 kPa load.

Slab ER1-CP1 punched suddenly at an applied slab load of 18.2 kPa at a deflection of 13
mm. Punching was violent and led to a significant load reduction. The punching crack

formed right across the interface between the old concrete and the patch (see Fig. 7.12).

Slab ER3-CP2 punched at an applied load of 27.2 kPa and a corresponding deflection of
29 mm. Punching was violent and led to a significant load drop. The punching crack
formed outside the boundary between the old and new concrete (see Fig. 7.13). The slab
was subjected to further loading immediately after failure. The post-failure response (not

shown) indicates no significant load increase for an additional 9 mm imposed deflection.

7.3 Measurements

7.3.1 Force and Moment Resultants

The main objectives of this section are: i) to perform a statical check to corroborate
whether externally applied forces and moments on series II slabs compare well with

internally measured forces and moments and ii) examine the behaviour of the ERS.
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The relationships between forces and moments acting on the slab are based on the free
body diagrams (FBDs) of Figs. 7.14 and 7.15. Figure 7.14 shows a plan view of the slab
with acting bending moments and vertical forces. Upper case moments refer to total
moments. Lower case moments refer to average moment intensities or average distributed
moments. Figure 7.15 shows free body diagrams (FBD) for different slab elevations at
arbitrary cross-sectional cuts. These FBDs apply for both the x and y directions. Both
Figs. 7.14 and 7.15 are interrelated. Since each slab is 4.2 m wide, each force R in the
FBD of Fig. 7.15a represents the sum of the four upper whiffle tree reactions lined up at

355 and 719 mm away from the column face, as shown in Fig. 7.14.

Figure 7.16 shows the ratio of applied load to measured reactions for slab ER1-VS. The
applied load is that imposed by the lower column jack. The reactions is the sum of the
four point reactions on the NE, SE, SW and NW slab quadrants measured with load cells.
The effect of the dead loads is not included in either of them. The figure shows good
agreement between the applied vertical force and the sum of all vertical reactions

throughout the test. The same agreement was observed in all the other tests.

According to the FBDs of Figs. 7.15a and that on the right hand side of Fig. 7.15b, the

total negative moment at the column face, M o » about the x or y direction is
M . 1.9)°
My =-M +1.429R+WDL£—2i [7.1]

where M™ is the positive moment applied on the slab edge and wp; is the uniformly
distributed dead load per unit length on the slab segment. In this evaluation, the latter

includes the weight of the loading assembly.

The positive moment applied on the slab edge, M", can be calculated based on either the
tie rod force measurements or the readings from the strain gauges attached to the positive
slab reinforcement along the slab periphery. The total positive moment in each direction

is equal to the sum of the four moments applied by each of the four restraining frames
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mounted in each direction. Each of these moments is calculated as the product of the load
cell-measured tension tie force by the distance between the tension tie and the slab
centroid. For the N-S and W-E directions, this distance is 1.344 and 1.044 m,

respectively. Accordingly,

M}, =1.344 ZTNS, [7.2]

1 i=1

M-

M =

Il

i

M =

Yy

M-

> M, =1.044 ZTWE, [7.3]

In Eqgs. 7.2 and 7.3, the terms Tyg; and Tyg ; refer, respectively, to the load-cell based

tension tie force in the N-S and W-E directions.

Based on the strain gauges mounted on the bottom reinforcing bars on the slab periphery
and setting both load and resistance factors equal to unity, the total positive moment at a

given load level, according to ACI 318-99, can be approximately calculated as

+ + + A:fy
M =47 f, (jd)' =4, /ﬂ-[d —*—.J . S, [7.4]
1.77.b

where A is the total reinforcement area across the slab width, f; is the steel stress at the

given load level, averaged out from the readings of at least two bottom bar strain gauges,
and d" is the flexural depth of the positive reinforcement along either the N-S or the W-
E direction. The measured positive flexural depths after the slabs were cut open were 125
mm (N-S) and 113 mm (W-E). In the jd calculations, it was assumed that the steel yields.
This leads to lever arm depth overestimates before fully cracked conditions apply. In Eq.

7.4, the contribution from the integrity steel bars (15M bars) was accounted for.

To calculate the total negative moment at the column face based on the readings from
gridline 2 strain gauges, it is necessary to solve first for the shear force V.rbased on the

left hand side free body diagram of Fig. 7.15b. From vertical force equilibrium,

v, = g __WL;C_W [7.5]
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where ¢, is the column width. Taking moments about a point at a distance e away from
the column face, and substituting Eq. 7.5 into the resulting moment equilibrium equation

leads to

&+M(cwe+e2) [7.6]

M, =M,
2 2

52,82 -

where M_, , is the strain-gauge based negative moment calculated from gridline 2 strain

gauges, P is the applied jacking load measured by the column load cell and e is the

distance between the gauges and the column face. The moment M w2 can be

approximately calculated as

;
Mo =4 f, (J'd)_=A§fs(d_" sf,yj . fi S, [7.7]
1.7£b

Measured average values for d~ after dissecting the slabs were 117 mm (N-S) and 101
mm (W-E). These values are slightly less than those used in the virgin slab design

because the top mat level lowered during construction.

Figure 7.17 shows the ratio of strain gauge-based versus ERS load cell-based negative
moment intensities at the column face in both the N-S and W-E directions for ER1-VS.
Moment intensities were calculated by dividing the total negative moments from Egs. 7.1

and 7.6 by the full slab width. In Eq. 7.1, the positive moment was calculated according

to Egs. 7.2 and 7.3. In Eq. 7.6, the values of M g2 Wwere calculated by averaging the

readings of two strain gauges.

Figure 7.17 shows that the strain gauge-based calculations significantly underestimate the
negative moment at early test stages. This is expected because the strain gauges in
regions where concrete remains uncracked do not show significant tension. When cracks
further spread out, reasonable agreement between the values is observed. The agreement
is slightly better in the N-S direction. The spikes in the curves at a 5.5 and 10 mm
deflection indicate the unloading and reloading of ER1-VS.
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The comparison between average positive moment intensities based on the ERS load
cells and the strain gauges is shown in Fig. 7.18. The figure shows poor agreement
between the ERS-based and the strain gauge-based positive moment intensities at early
test stages and good agreement for fully cracked slab conditions. The significant
difference between moment values at early test stages confirms how sensitive the gauge-

based calculations are to the extent of concrete cracking.

Figures 7.19 and 7.20 show, respectively, the variation of the negative to panel and the
positive to panel moment ratios versus slab deflection for slab ER1-VS in the N-S and
W-E directions. In Fig. 7.19, the negative moments were calculated based on Eq. 7.1
(using load cell measurements). In Fig. 7.20, the positive moments were calculated
according to Egs. 7.2 and 7.3. The N-S and W-E labels refer to the orientation of the load
cells used to evaluate the positive moments. The panel moment was calculated assuming
a prototype clear span of 4.2 m. This clear span value is “artificial” in the sense that it is
only used to evaluate whether the relative ratios between negative and positive moments
with respect to the panel moment are close to code-stipulated values. Its exact value

cannot be obtained unless the prototype span is accurately estimated.

The spikes in the curves indicate the intermediate unloading and reloading stages. The
initial positive to panel moment ratio of 0.35 was calculated based on an imposed average

positive moment of 3.6 kN.m/m at the beginning of the test.

According to Fig. 7.19, the negative to panel moment ratio in ER1-VS drops from an
initial value of about 0.7 down to about 0.55 measured between the beginning of the test
and a 9 mm deflection. The continuous moment ratio drop results from the moment
redistribution associated with the growth of slab cracking. The reduction in the negative
moment is consistent with an increase from 0.35 to 0.42 in the positive to panel moment

ratio shown in Fig. 7.20 for a similar deflection range.
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At a deflection of 10 mm, slab ER1-VS can be considered to be fully cracked. Beyond
this point, the ratio of negative moment to panel moment increases slightly and stabilizes
at about a 0.6 to 0.62 value up to punching failure. For the same deflection range, Fig.

7.20 shows a reduction in the positive to panel moment ratio down to about 0.33.

Both the 0.6 and 0.33 ratios are relatively consistent with the 0.65-0.35 rule
recommended by direct design method procedures for negative and positive moment
evaluation in interior panels. The two ratios do not add up to 1 because the edge slab
rotation was not zero for reasons already explained. This result shows that the boundary
conditions imposed by the edge restraint system reasonably simulate those in a prototype

slab.

7.3.2 Slab Rotations
7.3.2.1 Edge Slab Rotations

Measurement of edge slab rotations allows determination of the rotational restraint
imposed by the edge restraint system. Figure 7.21 shows average slab rotations for ER1-
VS along the N-S and W-E directions. Each curve is the average of the rotations
measured by each restraining frame. Consistent with their higher degree of prestressing,
the rotations at the two interior frames (not shown) are greater than those measured in the
extremes. This accounts for the fact that most of the bending deformation concentrates

around the column.

Figure 7.21 shows that the rotation increased linearly with deflection up to a 6 mm
deflection. This deflection level corresponds to the point at which top slab cracks reached
the slab edges. Beyond this level, the rotations become almost independent of the slab
deflection. In general, the average W-E rotations are slightly lower than those in the N-S

direction.

Figure 7.22 shows the variation of the positive moments calculated from the restraining
tie rods as a function of the average edge rotation for slab ER1-VS. The initial moment

value indicates the initial positive moment imposed by the edge restraint system at the
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beginning of the test. The rotation values do not show the effect of the dead loads. Figure
7.22 shows that the rotational stiffness in both directions remained virtually constant

through the test up to late test stages.

7.3.2.2 Inner Slab Rotations

Measurement of slab underside rotations at inner slab locations in the radial direction
provide useful information on the slab deformation regime. Figure 7.23 shows inner slab
rotation values as a function of the slab deflection for tests ER2-VS and ER2-CS1. The
radial slab rotations were calculated by dividing the relative vertical slab soffit deflection
readings between cable transducers by the horizontal distance between them. The cable

transducers are located as shown in Fig. 5.30.

The rotation-deflection curves are essentially linear and have the same slope for both
virgin and strengthened slab tests. The second segment slightly offsets that of the virgin
slabs probably because of a slight change in the initial edge restraint prestressing force in
the rehabilitated slab. The abrupt change in the rotation-deflection curves at late test

stages signals punching failure.

The linearity between rotations and deflections at the slab underside implies that a
rotationally restrained two-way slab displays a rigid body rotation in the radial direction
near the column. This observation is consistent with previously available experimental
observations reported by Kinnunen and Nylander (1960) for isolated edge-free slabs. The
observation is also consistent with the experimental evidence gathered from series I test
results. The existence of a rigid body rotation in the radial direction implies that most of

the slab deformation occurs along the circumferential direction.

7.3.3 Crack Widths
7.3.3.1 Slab Surface Crack Widths

Figure 7.24 shows crack widths within the connection region at stations F, F> and F”’ (W-

E crack) and G, G’, G” (N-S crack) for virgin slab ER2-VS. These crack widths are
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representative of those measured at similar locations in the other two virgin slabs.
According to Fig. 7.24, the relationship between the applied load and the crack widths is
essentially linear. The cracks also tend to narrow the farther they are from the column
face. The cracks in the W-E direction (at F, F* and F”’) are slightly wider than those in the

N-S direction at comparable load levels.

Figure 7.24 also shows the residual crack widths at the end of virgin slab test ER2-VS
after the live load was removed. At the column face, the top crack widths span from 0.36
to 0.44 mm in the N-S and W-E directions, respectively. These values are close to the
maximum 0.4 mm stipulated by CSA A23.3-94 for interior exposure conditions. It is
worth noting that before unloading, the slabs were subjected to a load level of about four

times that experienced at service load conditions.

Figure 7.25 shows typical crack width measurements on one of the outermost bottom
cracks running N-S in slab ER3-VS in the middle strip region. The relationship between
the applied load and the bottom crack width is also linear. The figure shows that bottom

cracks could be as wide as those at the top.

Figure 7.26 shows top crack width measurements taken at stations F” and G” before and
after rehabilitating slab ER2. Taking into account that these stations are the closest ones
to the edge of the CFRP sheets, the corresponding crack widths allow examination of the
efficacy of the strengthening schemes in terms of crack width control. Solid and empty
symbols refer, respectively, to crack widths on the strengthened and virgin slab. Crack

width measurements during unloading stages are not shown for neatness.

The four sets of crack widths define straight lines that intersect at about a 14 kPa load.
For greater loads, the cracks in the strengthened slab are slightly narrower than those in
the virgin slab. This suggests that the adopted sheet strengthening layout provides some
benefits as far as crack control is concerned. However, it is worth noting that an imposed

slab load of 15 kPa or greater represents an amount of load that a slab would rarely
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experience at service load conditions. Under load levels of this magnitude, the slab is

approaching its ultimate limit state.

Figure 7.27 shows bottom crack widths at stations H, I and J for the rehabilitated slab
ER2-CS1. These crack widths are comparable with those shown in Fig. 7.25 before slab
ER3 was strengthened. No significant benefit from the adopted rehabilitation scheme in
ER2-CS1 as far as bottom crack width reduction is concerned. This is sensible because

the sheets in ER2-CS1 were not installed on the slab underside.

7.3.3.2 Through-thickness Crack Measurements

Figure 7.28 shows the slab thickening based on the through-thickness strain readings
from gauges installed in the N and W radial strips at 50 mm (gauge # 4), 150 mm (gauge
#5) and 250 mm (gauge # 6) from the column face in ER3-VS. The deformations have

been calculated over a gauge length equal to the slab thickness.

Figure 7.28 shows very low deformations. Gauge # 4 readings (at 50 mm from the
column face) are greater than those at the outer locations, suggesting that an internal
crack formed through the line of measure of the innermost gauge, probably at a 6 kPa
load and then continued to grow. The higher deformations at inner gauge stations suggest
that the internal crack runs from the column to outer slab regions. However, this is
inconclusive because several cracks could have formed across the slab depth. The curves
also show that slab unloading closes the cracks. Slab thickening readings from gauges

installed in the W-E direction show lower values.

7.3.4 Strains in Internal Slab Reinforcing Bars

Strain readings from top reinforcing bar gauges allow plotting of bar force profiles. These
diagrams are useful to monitor the extent of yielding in the slab reinforcement, measure
average bond stresses and most importantly, evaluate the variation of bar force between

two points which is defined as a bar force gradient.
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Figure 7.29 shows gauge key plans for the three slabs against which the strain readings
will be referenced. Figures 7.29b and 7.29¢ show the location of the CFRP bands in tests
ER2-CS1 and ER3-CS2 relative to the gauge grid. The gauges mounted on the CFRP

sheets are not shown.

7.3.4.1 Circumferential Bar Force Profiles

Figure 7.30 shows the circumferential bar force profile (CBFP) along the radial direction
in slab ER3-VS along gridline 1. Bar forces correspond to the last loading cycle at
imposed load levels of 5, 10 and 15 kPa. The force required to yield a bar is also shown.
Consistent with Kinnunen and Nylander (1960), the force profiles show that
circumferential strains are inversely proportional to their radial position at regions inside
the slab inflexion point. The circumferential bar force decay with radial location in slabs
ER1-VS and ER2-VS along gridline 1 was not as pronounced as in ER3-VS. Bar force

profiles were more uniform and almost all top bars yielded.

Figure 7.31 shows the load cycling effect on the circumferential bar force profiles for
gridline 1 gauges in ER1-VS at a 5 kPa applied slab load during the second, third and
fourth cycles. The figure shows a bar force increase as the number of load cycles
increases. The difference is not significant between the second and third loading cycle,
but is considerable between the third and fourth. This suggests that the bar force profiles

of Fig. 7.30 may display lower values when referenced to earlier load cycles.

7.3.4.2 Force Variation Along Perimeter Bars

Figure 7.32 shows the typical force variation in a perimeter bar in slab ER1-VS. The bar
forces were calculated from gauges located at D-1, D-2 and D-3. The development of bar

forces is consistent with that examined for series I slabs.
Figures 7.33 to 7.36 show the bar force variation along perimeter bars B and D in the two

tests conducted on slabs ER1-VS and ER2-CS1, and tests ER3-VS and ER3-CS2. Bar

forces are shown at 100, 300 and 500 mm away from the column centreline. Bars B and
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D were selected because these bars were located immediately belowe the sheets in tests
ER2-CS1 and ER3-CS2, respectively. Strain readings at these locations provide
information on the effect that the strengthening schemes had on the behaviour of these
bars. Bar B is located in a disturbed region whereas bar D is located in a region where
slender beam action is assumed to dominate. The solid lines in Figs. 7.33 to 7.36
represent force profiles measured in the last load cycle at applied load levels of 5, 10 and
15 kPa and at ultimate. The dotted lines represent force profiles at comparable load levels

but at an earlier cycle (4th cycle in ER1-VS and 2nd cycle in both ER2-VS and ER3-VS).

Figures 7.33 to 7.36 show that the loading history has a significant effect on the top
reinforcing bar forces. Bar forces increase as the amount of cycling increases. The force
increase is significant, as can be observed by comparing the force variation from the 2%

to 5™ cycle at a 10 kPa load. The force gain rate reduces as the load increases.

In a bar force profile, a sloping line indicates that shear is mostly transferred by beam
action. Conversely, a flat line indicates that shear is transferred by arching action.
According to the strip model, the shear transferred from the slab quadrants to the radial
strip is delivered at the face of the radial strip. Since the first gauge is located 100 mm
past the radial strip face, and since bar forces were not measured at the radial strip face, it

is more appropriate to evaluate the shear transfer across the second interval.

The bar force profiles for bar B in the control slab (Fig. 7.33) and on ER2-CS1 (Fig.
7.34) show a slight contribution from beam action across the second interval at ultimate.
Conversely, bar B transfers shear by arching action across the first interval. This is
consistent with the fact that this bar is located in a highly disturbed region. This suggests

that readings from gridline 1 may still be useful to assess the source of shear transfer.

Figures 7.35 and 7.36 show the bar force profiles for bar D in virgin slab ER1-VS and
ER3-CS2, respectively. Figure 7.35 shows sloping force profiles across both intervals
which is consistent with beam action-type shear transfer. In contrast, the bar force

profiles in ER3-CS2 are flat across both intervals at ultimate.
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7.3.5 Strains in CFRP Bands

Figures 7.37 and 7.38 show longitudinal strain profiles along the CFRP bands at imposed
loads of 10 kPa, 15 kPa and at ultimate in tests ER2-CS1 and ER3-CS2. In Fig. 7.37, the
strains are the average of the strain readings in the W-E bands. In Fig. 7.38, the profiles

correspond to one of the W-E bands.

The profiles are essentially linear except in ER3-CS2 nearby the column where the strain
drops slightly. The strain profiles in ER2-CS1 are steeper than those in ER3-CS2 because
of the higher slab curvatures around the column. The sheet strains in both slabs became
negligible at about 1000 mm away from the column, which confirms that the slab
inflexion point lies close to this position. This suggests that no special sheet end
anchoring is necessary in this type of application because the sheets can be laid on the
slab for as long as it is required. In their investigation of bond of CFRP sheets to
concrete, Miller and Nanni (1999) measured strain gradients in the order of 88 pe/mm
required to cause peeling of sheets used as positive reinforcement in simply supported
concrete beams. According to Figs. 7.37 and 7.38, the peak CFRP strain gradients are

about 4 to 5 pe/mm, which are much less than those required to cause sheet peeling.

The relatively low ultimate CFRP strain values indicate that rupture of the sheets is not a
concern in this particular type of application. The strains at ultimate at 100 mm past the
column face were 3500 pe in ER2-C1 and 2700 pe in ER3-CS2. These values are about
12 to 17 % of those at sheet rupture. The latter is close to the 20 % value reported by Tan
(2000) from tests on small slab panels strengthened with CFRP and GFRP, but far from
the 40 % ratio reported by Chen and Li (2000) for punching shear tests on small slab
panels strengthened with GFRP.

7.3.6 Force Gradients in Internal Slab Reinforcement

Figures 7.39 to 7.41 show the force gradient variation across the second interval versus

slab deflection in bars B, D, and F for slabs ER1-VS, the two tests on slab ER2 and the
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first two tests on slab ER3, respectively. The end of the curves signals punching failure.
The gradient for bar H was not included because the lower gauges in this bar were

located at uncracked concrete regions resulting in unrealistically high bar force gradients.

According to Fig. 7.39, the force gradients in ERI-VS increase steadily up to a peak
value and then remain relatively constant (D and F) or drop (B). The peak force gradient
in bars B, D and F are, respectively, 160, 90 and 150 N/mm. The first value is consistent
with the peak gradients measured in series I slab SR-1. According to CSA A23.3-94, the
development length of a 15M bar assuming f, = 430 MPa and /', = 30 MPa is about 450
mm. This length is consistent with a bar force gradient of approximately 190 N/mm. The
steady force gradient drop in bar B at a deflection of 23 mm is the result of yielding at the
upper gauge location (B-2). This is consistent with the fact that bars nearby the column
transfer shear mostly by arching action. Unlike bar B, the force gradient in bars D and F

is not limited by yielding of the reinforcement but rather by bond deterioration.

Figure 7.40 shows bar force gradients in slab ER2 before and after bonding the sheets. It
is worth recalling that in ER2-CS1 the CFRP strips passed above bar B. At virgin stages,
the gradients in all bars are similar to those measured in slab ER1-VS. Following the slab
strengthening, reloading of ER2 up to the previous peak load led to force gradients as
high as those measured in bars D and F before unloading. However, the CFRP strips
attenuated the force gradient development in bar B in about 30 %. Later at a deflection of

22.5 mm, the force gradient in bar B further dropped due to yielding at upper gauge B-2.

Figure 7.41 shows the bar force gradients for bars B, F and D in tests ER3-VS and ER3-
CS2. At virgin stages, bars B, D and F reached, respectively, peak gradients of 150, 60
and 125 N/mm which are also consistent with those in ER1-VS. The gradient drop in bar
B at a 17 mm deflection is the result of yielding at upper gauge B-2. The addition of the
sheets led to a force gradient reduction in all bars. The gradient in bar B, which had
started decreasing due to yielding before strengthening the slab, dropped further more,
that in bar D was virtually zeroed and that in bar F reached a peak of only 50 N/mm.
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Bar force gradients in concrete-patched slab ER1-CP1 are not reported since most of the
gauges close to the column did not survive test ER1-VS. Strains in ER3-CP2 were not

measured.

7.3.7 Force Gradients in CFRP Bands

Figures 7.42 and 7.43 show the variation of the CFRP band force gradients as a function
of the slab deflection up to failure for tests ER2-CS1 and ER3-CS2 at the first two
intervals. As a reference, the figures show the deflection value signaling the start of the
tests. The gradients are average values of those measured in the W-E and N-S for ER2-
CS1 and ER3-CS2, respectively. Due to the high non-uniformity of the CFRP strip
thickness, sheet force gradients were calculated based on the fibre properties and not on
the CFRP properties. Gradients were calculated based on a 0.11 mm sheet thickness and a
width of 250 mm. The calculations accounted for the fact that two sheets were adhered
per strip. For completeness, the measured thickness for the two plies including the resin

varied from 1.1 to 1.5 mm.

The figures show similar sheet force gradients at ultimate for both slabs across the first
two intervals. The peak gradients occur at the end of the tests. The peak values are in the
order of 65 N/mm in the first interval and 20 to 30 N/mm in the second interval. These
values are much lower than those developed by the internal steel reinforcement. At
ultimate, the sheet gradients are similar to those developed by the steel bars in ER3-CS2
and less than those in ER2-CS1.

7.3.8 Internal Shears

Figure 7.44 shows the variation of the ratio of the total load calculated as the sum of bar
shears to the total load applied by the column, for tests ER3-VS and ER3-CS2. The dead
load effect and the CFRP sheet contribution are accounted for. Near failure, there is
reasonable agreement between the internally and externally measured load values. This is
an indication that the fundamentals of the strip model for punching in slabs with CFRP

sheets are also correct.
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7.3.9 Influence of CFRP Sheets

The most dominant effect of the CFRP sheets is to reduce the force gradient developed in
the internal slab reinforcement. The sheets transform the intrinsic beam action
behavioural type associated with the internal perimeter reinforcing bars into arching

action.

Figures 7.45 to 7.47 compare the effect of the CFRP sheets on the development of force
gradients in perimeter bars B, D and F along the second interval for slabs ER1-VS, the
two tests on slab ER2 and the two tests on slab ER3. The circles signal the load level at

which virgin slabs were unloaded prior to strengthening the slabs.

As shown in Fig. 7.45, bar B’s ability to generate force gradients is negatively affected by
the presence of the CFRP sheets in both ER2-CS1 and ER3-CS2. In both slabs, the virgin

gradients in bar B are lower than those measured after bonding the sheets.

Figure 7.46 shows the variation of force gradient in bar D. The effect of the sheets in
ER2-CS1 is not noticeable because bar D is located outside the region bounded by the
sheets. Contrary to tests ER1-VS and ER2-CS1, the force gradient in bar D for slab ER3-
CS2 is completely shut down by the sheets.

Figure 7.47 shows the force gradients in bar F. The figure shows no negative effect from
the sheets in ER2-CS1, but shows some harmful effect on test ER3-CS2 despite the fact
that the force gradient had already started decreasing due to yielding before bonding the

sheets.

Taking into account that bars D and F could transfer more shear by beam action in ER2-
CS1 than in ER3-CS2, it can be concluded that the strengthening layout used in test ER3-
CS2 is more adverse than that on ER2-CS1. This is also confirmed by similar force

gradient reductions measured for bars C and E in test ER3-CS2.
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7.4 Behavioural Assessment of CFRP-Strengthened Slabs

7.4.1 Observations

The upgrading of concrete slabs by means of adding externally bonded FRP
reinforcement aims at either a stiffer slab response or a higher capacity, or both. If the
goal is to enhance the stiffness, it is essential to identify the best place and orientation to
install the CFRP sheets, as recognised by Erki and Heffernan (1995). If the objective is
rather to ensure a higher capacity, virtually all existing punching shear models that
account for the effect of the slab reinforcement assume that an increase in that
reinforcement leads to a punching capacity enhancement. For the case of slabs with
bonded FRP sheets, the models proposed by Chen and Li (2000) and Tan (2000), together
with the experimental observations of Erki and Heffernan (1995), support this trend.

In the tests conducted in this study, a significant gain in stiffness was not expected in the
strengthened slabs because the amount of CFRP provided was low. Since the virgin slabs
were designed so that the flexural reinforcement yielded shortly before punching, a

significant load capacity increase was not expected either.

Surprisingly, the load-deflection response of the two upgraded slabs, as observed in Figs.
7.2 and 7.3, show that the addition of CFRP sheets on the slab top surface in cruciform
patterns led to lower punching capacity and less ductility than that exhibited by control
virgin slab ER1-VS. According to Table 7.1, the punching capacity of slabs ER2-CS1
and ER3-CS2 was, respectively, 95 and 87 % of that displayed by ER1-VS.

The following section attempts to explain why the addition of the CFRP sheets in
cruciform patterns on the top slab surface did not lead to a punching capacity
enhancement in the experiments conducted herein. The section describes the role of the
sheets and their interaction with the internal slab reinforcement and provides an
hypothesis to explain the mode of failure of the strengthened slabs. A design procedure
for the punching capacity assessment of slabs strengthened with bonded FRP sheets will

be presented in chapter 10.
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7.4.2 The Role of the CFRP Sheets on the Failure of Rehabilitated Slabs

The experimental evidence reported in this chapter shows that the CFRP sheets affected

the behaviour of the internal slab reinforcement in three major respects:

1) The sheets reduce the force gradients in the internal slab reinforcing bars.

2) The sheets’ presence affects the behaviour of all bars located inside the banded slab
region. The effect is less noticeable the closer the sheets are placed relative to the

column.

3) For the case of reinforcing bars passing nearby the column face, the sheets’ effect on
the internal reinforcement is irrelevant because these bars are located in a highly
disturbed region in which arching action tends to prevail and the force gradient

generation mechanism is already compromised.

The interaction between the bar force gradients developed by the internal and external
slab reinforcement will be studied with reference to Figs. 7.48 and 7.49. Figures 7.48a
and 7.48b show the cross-section and side view of a one-way concrete slab element of
length dx, internally reinforced with ordinary steel and externally reinforced with a
bonded FRP sheet. The element is assumed to be situated in the negative moment region
of a flat plate in a region where slender beam action dominates, e.g. along the
circumferential direction. Figures 7.48¢c and 7.48d show, respectively, the strain
distributions in the cracked stage for a slab element without FRP sheets and with FRP
sheets. For simplicity, it has been assumed that the depth of the neutral axis remains

constant through the cracked stage in both cases.

The free body diagrams of Fig. 7.49a and 7.49b show forces and moments acting on the
section before and after bonding the FRP sheets, respectively. The shear has been
assumed constant on both sections. From equilibrium of forces, the force gradient in the

steel reinforcement for the element without FRP sheets is
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where x is the ratio of the depth of the neutral axis and the flexural depth of the slab for

the case of steel reinforcement only, defined as

x=+pin’+2p,n—p,n [7.9]

For the slab element with bonded FRP sheets, the sheet tension also contributes to the
bending moment. Assuming that the sheet thickness is small relative to the depth of the

member, the change in bending moment in the element with bonded FRP sheets is

x5 d xd
dM =dT,| d - +dT | h- [7.10]
3 3

where xz is the ratio of the neutral axis' depth and the flexural depth of the beam with

FRP. Applying force equilibrium and strain compatibility leads to

Xy = \/(psn+pﬁa)2 +2(psn+pfsa2nfs)—(psn+pfsa) [7.11]
where o, =£f—, a=ﬁ and 7, =&.
bh d E,

Figure 7.50 shows the variation of the ratio x; to x for a change in the external FRP
reinforcement ratio, pg, for a concrete slab with internal steel reinforcement ratio, p; ,
equal to 1 %. The figure shows that x is not necessarily equal to x4. In this case, the depth
of the neutral axis increases when the amount of external bonded reinforcement increases

and when stiffer sheets are installed.

Dividing both sides of Eq. 7.10 by dx, and rearranging terms, the gradient in the internal

steel reinforcement in the element with the bonded FRP sheets is
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Equation 7.12 shows that the force gradient developed by the sheets, —L | reduces the
dx

amount of force gradient developed by the internal reinforcement in the slab with FRP

sheets. However, despite the fact that x; is not necessarily equal to x, the term

X fsd . . xd . .
——-—!is approximately equal to |d-—-—/|. This leads to the following
3 3
approximation
P
dT
(de] z(dej I 3 [7.13]
dv )y \dx ). dx| ks
3

which shows that the force gradient in the internal slab reinforcement in Bernoulli-type

T
regions of a slab with bonded FRP sheets, (LJ , is less than that which would
dx J p

normally develop in a slab with the same amount of internal reinforcement without the
FRP sheets, [%) . This observation corroborates the experimental findings from tests
ER2-CS1 and ER3-CS2. In these tests, the peak force gradient in the FRP sheets across
the second interval varied approximately from 25 to 30 N/mm. The observed force
gradient drop in the internal slab reinforcement in ER2-CS1 and ER3-CS2 is slightly

greater than this range of values.

Further examination of the effect of x5 on Eq. 7.13 shows that an increase in xz leads to a
reduction in the force gradient developed by the internal slab reinforcement. This shows
that the addition of more FRP sheets or the placement of stiffer sheets is not beneficial

either.
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At this stage, it is necessary to emphasize that Eq. 7.13 provides a rational explanation for
the force gradient drop in the perimeter bars running underneath the FRP sheets but does
not explain why the slabs punched at a lower load and at a lower deflection compared to
the virgin slab. Since the shear transferred by the two elements of Fig. 7.49 is the same,
the amount of beam action-type shear transferred by the FRP sheet should, in theory,
compensate for the force gradient loss in the internal reinforcement so that the total
transferred beam action-type shear matches that in the slab without FRP. This was not the
case; even though the sheets somewhat relieved the internal slab reinforcement from
generating force gradients, the additional load path brought about by the sheet bonding
scheme lumped higher shear stresses on the internal reinforcement-cover interface, as
indicated in the FBD of Fig. 7.49b. This shear stress increase together with the
degradation of the concrete cover by the sheets’ tensile action, compromises the ability of

the internal slab reinforcement to generate force gradients, leading to a premature failure.

The additional load path imposed after bonding the sheets relies heavily on the bond
stresses that develop between the sheets and the concrete. This bond mechanism is stiffer
and more brittle than that developing between concrete and conventional steel
reinforcement. As a result, the addition of the sheets leads to a slightly stiffer and brittle
response, as observed in the load-deflection plots of Figs. 7.2 and 7.3, but does not

necessarily result in a punching capacity enhancement, as evidenced in the same figures.

It is also worth noting that the FRP sheets affected not only the behaviour of the internal
bars running directly below but also that of the bars enclosed within the banded region.
The FRP sheets compensate for the internal bar force gradient loss only in slab portions
tributary to the internal bars below the sheets. The sheets cannot supply the extra gradient
required at other locations because there are no FRP sheets bonded at those locations, as
occurred in ER3-CS2. This explains why the small slab panels fully covered with FRP
sheets tested by Erki and Heffernan (1995) and Tan (2000) outperformed those without
FRP sheets, and suggests that the FRP bands in the two tests reported herein were

probably too narrow.

180



The strong influence of bond between both the FRP sheets and the internal reinforcement
and concrete on slab failure is supported by perhaps the most striking feature of tests
ER2-CS1 and ER3-CS2: their punching shear crack outline was completely different
despite the fact that they reached similar failure loads. In both slabs, the shape of the
punching generatrix was constrained by the location of the sheets. The angle of the
punching crack in ER2-CS1 (about 31°) was similar to that in control slab ER1-VS. This,
in turn, was steeper than that in slab ER3-CS2 (about 13°). Since all virgin slabs were
comparable, the location and inclination of the initial diagonal tension crack is expected
to be similar for them, as shown in the sketch of Fig. 7.51a. Once the slabs were
strengthened, the internal crack growth regime was altered by the sheets’ presence. In
ER2-CS1, the additional shear stress demand on the internal reinforcement-cover
boundary imposed by the CFRP sheets led to the formation of a steep punching shear
crack, as shown in Fig. 7.51a. In ER3-CS2, since the sheets were located farther away
from the column, the critical shear conditions in the cover-rebar interface forced the
punching shear crack to zip through at a flatter angle. Readings from the through
thickness gauges installed on ER3-CS2 support the hypothesis that the upper tip of the

initial shear crack(s) runs from inner to outer slab zones.

7.4.3 Behavioural Assessment of Slabs Repaired with Concrete Patches

Due to the fact that most of the internal strain gauges in the slabs with concrete patches
became non-functional after tests ER1-VS and ER3-CS2, the evaluation of the two
rehabilitation techniques examined in tests ER1-CP1 and ER3-CP2 will be performed

based on their load-deflection response.

Among all the rehabilitation tests conducted in this series, the repair scheme implemented
in test ER3-CP2 (after punching of ER3-CS2) was the most efficient. According to Table
7.1, the punching capacity of ER3-CP2 was 6 % greater than that of the control slab. The
ultimate deflection was approximately 84 % of that in ER1-VS. It is worth noting that test
ER3-CP2 started with a residual slab depression of about 30 mm at the vicinity of the

column due to previous punching. The forensic investigation shows evidence that failure
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was not of frictional type between the old and new concrete. Instead, the punching crack

formed below this boundary.

The least invasive concrete patching solution (ER1-CP1) was the least beneficial repair
procedure of all, failing at a 18.2 kPa applied load. This is 71 % of the failure load in
ER1-VS. This value is however, almost four times that which would be applied at service
load level in a prototype plate of similar dimensions. Failure in ER1-CP1 was of
frictional type between the old and new concrete. Both the punching failure cone and the

top crack layout matched that of slab ER1-VS.

Despite the loss of most slab gauges around the column, it was possible to evaluate the
development of bar force gradients in ER1-CP1. The placement of concrete in the joint
did not hamper the slab internal bars to continue transferring shear by beam action.

However, this process was interrupted due to the premature frictional failure.
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Table 7.1 Series Il Slabs ; Test Results

Test Qer Aer Qtop-y Atop-y qbot-y Abot-y Qu Ay Efficiency
(kPa) | (mm) | (kPa) | (mm) | (kPa) | (mm) | (kP2) | (mm) *
ER1-VS 0.4 0.03 16.8 15.9 20.3 20.3 25.6 34.5 1.00
(5.43) (21.9) (25.4) (30.7)
ER1-CP1 - - - - - - 18.2 13.3 0.71
ER2-VS 0.78 0.19 16.0 15.6 16.0 15.6 - - -
(5.63) (20.9) (20.9)
ER2-CS1 - - - - - - 24.2 25.2 0.95
(29.1)
ER3-VS 0.84 0.16 14.6 15.0 16.7 17.2 - - -
(5.88) (19.4) (21.5)
ER3-CS2 - - - - - - 22.2 272 0.87
(27.0)
ER3-CP2 - - - - - - 27.2 29.0 1.06
(32.0)

Notes: 1. Values in parentheses indicate total dead load on slab.

2. top-y and bot-y subscripts refer to first yielding of top and bottom steel.

* Defined as the ratio of the failure load to that of control test ER1-VS.
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The set of top cracks oriented at 45° around the column formed below the
sheets. These cracks became visible only after the sheets were removed.

Fig. 7.8 Crack Pattern at failure : ER2-CS1
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Fig. 7.10 Detail of CFRP Sheets After Column Push-through
(ER3-CS2)

Fig. 7.11 Tension Band Behaviour of CFRP Sheets
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Fig. 7.12 Punching Failure : ER1-CP1

Fig. 7.13 Punching Failure : ER3-CP2
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Fig. 7.14 Plan View of Vertical Forces and Moments
Acting on Slab
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8 Evaluation of the Serviceability Flexural Behaviour of
Concrete Slabs with Internal FRP Reinforcement

8.1 Objectives

The implications on the serviceability behaviour of slabs with FRP brought about by the
lower stiffness, brittle-elastic nature and specific bond features of FRP reinforcement are
felt both globally and locally. Globally, they affect the overall load-deflection response of
the member. Locally, they influence concrete’s ability to shed tension, thereby modifying

the relationships among crack widths, FRP strains at cracks and average FRP strains.

The literature survey of chapter 3 showed that research on “global” effects has received
much more attention than that on “local” effects. As a result, very comprehensive
research studies evaluating “mean” strains and “mean” curvatures to calculate deflections
have been produced (see for instance Hall, 2000). Conversely, studies evaluating the
effect of FRP’s distinctive properties on the relationship between crack widths and strains
at cracks are scarce. This is important because, due to the tendency of commercial GFRP
reinforcement to creep rupture, it is essential to keep FRP strains within safe limits. The
major objective of this chapter is to examine these effects by using a mechanical model
that treats the tension stiffening effect of concrete by explicitly accounting for FRP’s

relevant properties.

In the tension stiffening model of CEB/FIP MC90, which is considered one of the best
tools to evaluate average strains to calculate deflections, the factor B = ;3 represents a
whole set of influencing variables under a single number. The concept is practical and
works effectively for deflection calculations but does not explicitly handle the effect of
FRP amount and elastic modulus. One simple tool that accounts comprehensively for

these effects is the tension chord model formulation developed by Marti et al (1998).

The development of a design procedure to calculate deflections in FRP-reinforced

concrete members is not a major objective of this chapter. However, a simple design
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model will be presented to corroborate the importance of accounting for concrete's

tension stiffening effect in deflection calculations.

The study will be restricted to FRP-reinforced concrete slabs subjected to imposed
monotonic short-term loads. Most of the attention will concentrate on slabs reinforced
with GFRP C-bars and NEFMAC grids along the stabilised cracking stage. Influential
aspects such as flexural bond between FRP and concrete, and the tension stiffening effect
of concrete in members with internal FRP reinforcement will be examined before

applying the tension chord model and the deflection calculation procedure.

8.2 Flexural Bond in FRP-reinforced Concrete Members

The term “flexural bond” refers to those stresses that develop along the interface between
the reinforcement and concrete for a force gradient to be generated by the reinforcement.
The literature survey of chapter 3 revealed that despite the availability of numerous
studies on bond of FRP to concrete, there is limited information on flexural bond of FRP

to concrete.

The most reliable procedure to obtain realistic flexural bond stress estimates is the
flexural or shear test of a one-way slender member. Since the amount of one-way shear
generated by beam action is proportional to the flexural bond, the latter can be evaluated

by measuring the tensile force variation in the reinforcement along the shear spans.

The experimental results from series I slabs provide valuable information on the ability of
GFRP reinforcement to generate bar force gradients. The peak bar force gradients
generated by the GFRP C-bars (slab GFR-1) and NEFMAC ribs (slab NEF-1) for fully
cracked slab conditions is in the order of 100 to 115 N/mm. Since the reinforcement
spacing in these slabs was 200 mm, a peak gradient of 115 N/mm results in an average

horizontal shear stress of 115/200 = 0.58 MPa.

In the steel-reinforced slab (SR-1), the peak force gradient was about 150 N/mm for the
perimeter bars. This value is less than the 200 N/mm peak force gradient reported by
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Alexander et al (1995) from tests on two-way slabs with steel bars of similar diameter
spaced at 150 mm, and the 200 to 250 N/mm peak gradients reported by Olonisakin and
Alexander (1998) from tests on one-way slabs with steel bars spaced at 150 mm. A force
gradient varying from 150 to 250 N/mm for steel bars spaced at 200 mm is equivalent to
an average horizontal shear stress ranging from 0.75 to 1.25 MPa, respectively. For a 150
mm spacing, the 200 N/mm gradient is equivalent to an average shear stress of 1.33 MPa.

These values are about twice those measured in slabs GFR-1 and NEF-1.

As a result, one can infer that flexural bond of GFRP is about half of that of steel
reinforcing bars. The 50 % reduction is qualitatively consistent with Hall’s assumption
that using = 0.5 in the CEB/FIP MC90 tension stiffening model leads to accurate
deflection predictions for slabs with FRP. The reduction is also similar to that observed in

the hinged beam bond tests conducted by Benmokrane et al (1996).

In the context of steel-reinforced concrete members, Marti et al (1998) note that the exact
bond-slip response of the reinforcement is not necessary as long as resulting stresses and
member strains reflect governing influences and agree with experimental evidence. For

simplicity, it will be assumed a rigid-perfectly plastic bond-slip relationship of the form
Tbo =kbof;‘tm [81]

where f.. is the mean tensile strength of concrete, which Riisch (1975) defined as

Som =0.3(f,, )3 [8.2]

Since CEB/FIP MC 90 uses kp, = 1.8 for short term loading of steel-reinforced concrete
slabs, ks, = 0.9 is a conservative estimate for flexural bond in FRP-reinforced concrete
members for first loading. When there is evidence that bond between FRP and concrete is
superior than that between steel and concrete, k;, may even exceed 1.8. This would be the

case of some sanded deformed FRP bars.
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As far as NEFMAC grids is concerned, chapter 6 test results show that the discrete bond
behaviour of NEFMAC grids can be treated as equivalent as that in C-bars. For this
reason, the factor k;, for slabs with NEFMAC grids will be assumed to be 0.9 as well.

At this stage, there is no experimental evidence to allow a more precise definition of &,

for members with GFRP C-bars or grids.

8.3 Concrete's Tension Stiffening Effect in Members with FRP

According to the tension chord model, the normal strain correction due to concrete's

tension stiffening effect, Ag;, in a member with FRP subjected to direct tension is

Ag, = M Sa [ ] [8.3]
2 E N py

where Ay is the ratio of mean to maximum crack spacing in the member with FRP. The
equation applies only to bond-induced cracks. Assuming that cracks in FRP-reinforced
members distribute similarly to those in steel-reinforced members, i.e. Ay = A, = A, the
tension stiffening effect is mostly governed by £y and/or pr. The effect of £, is not key

because similar concrete strengths are used regardless of the reinforcement type.

Leaving pr aside, Eq. 8.3 shows that the tension stiffening strain correction increases as
Ey decreases. Due to FRP's reduced stiffness, most of the bond-induced deformations are
concentrated on the FRP and not on the concrete between cracks, as observed by Nanni et
al (1995) and in series I slabs. On the contrary, leaving Eyaside, a reduction in oy leads to
a proportionally greater tensile contribution from concrete. This effect is consistent with

the findings of Bresler and Bertero (1968) and Masicotte ef al (1990).

However, Eq. 8.3 shows that the combined effect of E; and py is counteractive. A
reduction in E (as would be the case of using FRP compared to steel) counteracts the
increase in pr required for FRP-reinforced slabs to satisfy the same serviceability

requirements as steel-reinforced members with comparable depth.
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The combined effect of these two variables is examined in Fig. 8.1. The figure shows the
variation of Aeg; versus p for three slabs reinforced with steel (E; = 200 GPa), CFRP (E;
= 100 GPa) and GFRP (£;= 40 GPa), assuming /', = 30 MPa and A = 0.67. The figure
shows that for a given reinforcement ratio, the tension stiffening effect increases as the
elastic modulus of the reinforcement reduces. However, this comparison is not adequate
in the sense that, for a given slab depth, one would expect a GFRP mat to be denser than
a CFRP mat and this one, in turn, to be denser than a steel mat. Consider for instance
three slabs with identical cross-section and the same mat stiffness, say pE = 4000 N/mm>.
The tension stiffening evaluation needs to be made for reinforcement ratios of 0.02, 0.04
and 0.10 for the steel, CFRP and GFRP-reinforced slabs, respectively. The corresponding

Aég;s values are about the same regardless of the reinforcement type.

However, as far as typical flat plate systems (4= 150 to 200 mm) is concerned, it is very
difficult to supply GFRP mats that are as stiff as those made of steel unless the slab depth
is increased. Moreover, the GFRP spacing could be so tight that proper concrete
placement is harmed. At best, GFRP-reinforced slabs will be usually provided with
slightly less stiff mats. If this occurs, As; increases relative to that for the CFRP and
steel-reinforced cases. Since the tension stiffening effect of concrete is seldom neglected
for a detailed calculation of deflections in steel-reinforced concrete members, it does not
seem appropriate to ignore it for the case of FRP-reinforced members, in which its

relevance could be significant, as shown previously.

One relevant observation on the variation of Ag, is its dependency on A. If the crack
spacing is bond-induced, the tension chord model defines 0.5< 1 <1.0. This leads to a
25 % reduction or a 49 % increase in the Ag; values shown in Fig. 8.1. The A factor is
statistical in nature and strongly depends on the variability of the material properties of

the FRP reinforcement. At present, there are no existing recommendations on how to

treat A in the context of members with FRP reinforcement.
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Without conducting a rigorous statistical analysis to assess A (which would fall outside
the scope of the study), A can be evaluated by comparing the predicted response of FRP-

reinforced concrete members with the observed overall behaviour.

Figures 8.2 and 8.3 show experimental and predicted values of crack spacing at 0.25 and
0.5 M, on selected beams with FRP tested at Université de Sherbrooke (Canada) by
Masmoudi, Benmokrane and Chaallal (1996) (IS and KD Series), Thériault and
Benmokrane (1998) (BC Series) and Masmoudi, Thériault and Benmokrane (1998) (CB
Series). The properties of these specimens are reported in Table 8.1. The first digit in the
beam labels reflects the number of bars, e.g. IS3B1 has 3 GFRP bars. Since the cross-
section has been kept constant for each beam series, an increase in this number expresses
a reinforcement ratio increase. Predicted maximum crack spacing values were calculated

according to

1-p.
s, . = ¢_b _pf_ef [8.4]
2kbo IDf,ef

The prer value refers to the effective reinforcement ratio in the tension zone of the
flexural member whose geometry is defined in Fig. 3.6. In the calculations, k;, was taken
equal to 0.9. The minimum crack spacing, Sum, is half that estimated with Eq. 8.4. The
flexural depth of the members and the stirrup spacing in the beams are also reported as

these variables may influence the crack spacing (Base, 1982).

The most striking feature of Figs. 8.2 and 8.3 is that the observed s,, values are relatively
constant compared to the significant variation in the predicted spq and s, values
according to the model. In the KD and IS beam series, the s, values are very close to the
flexural depth of the beams whereas those in the BC and CB beams are very close to the
stirrup spacing. The former sort of behaviour is what Base (1982) refers to as
"deformation-controlled" cracking. These cracks result from the beams accommodating
the imposed deformations. Their spacing is not controlled by the bond interaction
between FRP and concrete. In the second case, the cracks are initiated by a combination

of the “disturbing” stirrups’s presence and a low concrete cover. For instance, in beam
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CB2B-1, the observed s, is about half the value that the tension chord formulation would
predict for s,,;,,. This crack could not have been caused by any accumulation whatsoever

of tensile stresses in between preexisting bounding cracks.

The observation that the crack spacing is not always driven by bond has important
implications on the evaluation of stresses and strains in a cracked member using the
tension chord model. Under these conditions, the A concept lacks meaning because the

crack spacing is now a constrained value, s,, ., of deterministic nature.

In this case, dividing Eq. B.23 by the elastic modulus of FRP, leads to

Ty §

o [8.5]
BE;

€y = Epy +Agts,c =&y t

where Ag; . is the normal strain correction due to concrete’s tension stiffening effect for

crack spacing constrained by issues other than bond.

8.4 Prediction of the Overall Flexural Response of Slabs with FRP

This section presents a simple model to predict the moment-curvature response of
flexural members reinforced with FRP rebars or grids, accounting for concrete’s tension
stiffening effect in the post-cracking stage. The model makes use of the second moment-
area theorem to predict the load-deflection response of beams and slabs subjected to four
point bending. The approach is conceptually similar to that envisaged by Razaqpur et al
(2000) and Yost et al (2001) except that the tension stiffening effect of concrete is

explicitly accounted for in the post-cracking stage.

The model was conceived to be applied without the use of a spreadsheet or a computer. It
has the following limitations: i) it is not able to describe concrete’s plastic behaviour, ii)
it does not model the slippage of the reinforcement relative to concrete, and iii) it does
not realistically model the tension stiffening effect at load levels much greater than those
at typical service conditions. These drawbacks are minimal because the model is

conceived to predict deflections at service load levels. At this level, concrete usually
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behaves elastically, rebar slippage is minimal and concrete’s tension stiffening effect is

highest.

The predicted response is idealised by determining key points in the moment-curvature
response. Path 0-1-2-3 in Fig. 8.4 shows the idealised moment-curvature (M-y) response
of a flexural member in the uncracked (State I: 0-1), crack formation (1-2), and stabilised
cracking (State II: 2-3) stages. Path 0-3’ represents the response of the naked FRP

reinforcement.

The prediction of the M-y curve depends mostly on the location of points 1 and 3. Point
3 is located from 3’ after quantifying Ag, depending on whether the crack spacing is
bond-induced or not. Point 2 is located by drawing a line parallel to 0-3’ until intersecting
a horizontal line passing through 1. The slope of line 2-3 is assumed constant for two
reasons: i) at low load levels the neutral axis in beams with internal FRP reinforcement
remains relatively constant, as noted by Nanni (1993), Benmokrane et al (1996) and
Thériault and Benmokrane (1998), and ii) to be consistent with the assumption of using a

rigid-perfectly plastic bond-slip constitutive relationship for FRP.

Point 1 is located by defining the cracking moment, M,,, and the curvature at first flexural

cracking, w,,. From the strain diagram of Fig. 8.5a,

2
v, =2 [8.6]
hE

c

where f. and E. are concrete’s modulus of rupture and elastic modulus, respectively.
Based on the findings of Masmoudi et a/ (1998), M., in members with FRP can also be

calculated as

2
M, =L2% [8.7]
6

The slope of the M-y curve along phase 0-1 (state I) is E,J, , where I, is the gross
moment of inertia, calculated according to CSA A23.3-94 or ACI 318-99. In state I
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CEB/FIP MC90 evaluates a moment of inertia, /,, accounting for the steel contribution.
Since the stiffness of most FRP slab reinforcements is similar to that of concrete, it is

reasonable to assume /; = /,.

Point 3’ is located based on the governing failure mode. Unlike conventional steel-
reinforced concrete members, compression failures are preferred in members with FRP to
satisfy serviceability requirements, particularly for rectangular cross-sections. Over-

reinforced T-beams are impractical in the positive moment regions.

Theoretical strain distributions at ultimate for flexural failure due to concrete crushing
and FRP rupture according to CSA S806-00 are shown in Figs. 8.5b and 8.5c,
respectively. These distributions are slightly different from those adopted by the proposed
model, shown in Fig. 8.6. In the latter, the neutral axis depth has been assumed constant

through the cracked-elastic stage.

According to CSA S806-00, the ultimate curvature in over-reinforced flexural concrete

members is calculated as

£ £,
y, = fa o 2 [8.8]

where &, is the concrete compressive strain, equal to 0.0035, & is the FRP strain at

ultimate, ¢ is the neutral axis depth at ultimate, ¢ = %, , where a is the depth of the
1

compressive stress block, and £ is a stress block factor, defined as in CSA A23.3-94.

The factored moment resistance, Mj, is

w1 o) oo

The depth of the compressive stress block, a, can be solved from the quadratic
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[MJ a* +da—Bd* =0 [8.10]
po Erée,,

which results in

a= ¢f pf Efg'cud [\/1_'_ 4a1ﬂ1¢cfcl _1] [811]
2¢ca1fc ¢f’0fEfgc“

From equilibrium of forces,

dao, f,
a2 ds [8.12]
al ¢cfc
Equating Eqgs. 8.11 and 8.12, the stress in the FRP reinforcement at failure, f}, is
E. ¢, '
f, :l: fCeu \/1+ 4o, B4, 1. _l:l [8.13]
2 pPres Ere,,

In the proposed model, the curvature at ultimate for over-reinforced slabs with FRP is

w, =S [8.14]

xd

where &, is the concrete compressive strain at ultimate and xd is the depth of the neutral

axis assuming elastic-cracked conditions. The ratio x is given as

x=\/(npf)2+2npf -np, [8.15]

The ultimate moment, M, , i.e., that at point 3’, is

Mu=c( ifl-j:T(d—ﬁ):Afff (d—ﬁ) [8.16]
3 3 3

From strain compatibility and invoking Hooke’s law, the FRP stress at ultimate in a

compression-type flexural failure is

I-x
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For under-reinforced sections, the curvature at ultimate according to CSA S806-00 is

£y
v, = [8.18]
d-c

where &, is the rupture FRP strain. In limit state design format, the factored moment

resistance, My, for under-reinforced conditions is

M, =T, (d-%}:Am,fﬁ, (d—-;ij [8.19]
with a=2r%% 70 [8.20]
al ¢cfc

In the proposed model, the ultimate moment, M, , is

M, =T(d—%)=/4ffﬁ,d(1—§j [8.21]

The slope of line 0-3’ defines the cracked flexural stiffness, 1,
E.I, = pbd’E, (1 - f)(l ~x) [8.22]
‘ 3

Accordingly, the curvature at ultimate can be obtained as

M

V= ﬁ [8.23]
Pr
where ¢ = Ecbl; [8.24]
Py

Figure 8.7 shows values of ¢ as a function of prand Er.

To locate point 3 it is necessary to evaluate the curvature correction due to concrete’s
tension stiffening effect, Ay, Figure 8.8 shows the strain distribution of a cross-section
under bending action. Dotted and solid lines correspond to the strain distributions of the

naked FRP and the FRP-reinforced member, respectively. The strain and curvature
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difference between the naked FRP and the overall member shows the effect of concrete
tension stiffening. Since the strain in the compression zone is hardly influenced by the
tension stiffening effect (Walraven, 2000), for small deformations the curvature

correction due to tension stiffening under flexural conditions is

Asy [8.25]

Ay, =

For crack spacing induced by bond,
1-p,
Ay, = ii[l/_i] [8.26]

where pr.r is the effective FRP reinforcement ratio, calculated with respect to the

effective concrete area in tension.

For crack spacing not induced by bond,

= Foo%m [8.27]
8,E,d

Ay

s

The load-deflection response can be predicted by applying the second moment-area
theorem. The effect of shear deformations will be disregarded. Figure 8.9 shows the
assumed curvature distribution in a beam or slab loaded in four point bending. As in
Razaqpur et al (2000) and Yost et al (2001), the model assumes that the shear span is
cracked. The dashed line represents the response of the naked FRP. The solid line

represents the proposed curvature distribution. The distance x,, is calculated as

2MCI' MC‘" aV
X = =

. [8.28]
P M

where P is the total applied load on the beam, g, is the shear span, and M is the bending

moment at midspan at a given load level. The curvature at first flexural cracking is

Vo =— [8.29]
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and

M
v _ Ay, [8.30]
El

cr

W, =

with Ay, evaluated using either Eq. 8.26 or 8.27. The curvature at ultimate, v, is
calculated using Eqs. 8.23 and 8.24.

The resulting load-deflection response is shown in Fig. 8.10. The total load at first

flexural cracking, P, and the deflections 4., and 4; are, respectively,

M
P, =—* [8.31]
av
A, =Y (312-4q) [8.32]
24
a 1 M L ?
A, =Yl 0 Ba py (——avj [8.33]
3 2\EIL, 2
At ultimate,
2
p =M, [8.34]
av
2
A, =l M., X2+ M., (av2 +a,x, —2xf,)+ %(xfr —Lj
E1I 6E,1 2 4
3 c g coer [8.35]

+ﬁ(gL2 -al-a,x, —-xf,.j
6 \4

8.4.1 Application of the Overall Response Flexural Model

Figures 8.11 to 8.13 compare the predicted and observed response of beams TB BC2VA
and TB BC4NA tested by Thériault and Benmokrane (1998), and one-way slab MT C3
tested by Matthys and Taerwe (2000). The former were reinforced with GFRP C-bars
whereas the latter was reinforced with a CFRP NEFMAC grid. The specimens, designed
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to exhibit a compressive flexural failure, failed as expected. Ultimate load predictions
were made assuming &, = 0.0035 mm/mm. Since the deflection procedure is very
sensitive to M,,, the predictions were made based on the experimental M., values. For the
case of BC2VA and BC4NA, it was assumed that the crack spacing was not induced by
bond. The curvature correction for these two slabs was calculated assuming a
“constrained” crack spacing, sy ., of 80 and 90 mm, respectively, with kp, = 0.9. Matthys
and Taerwe (2000) reported that the crack spacing in slab C-3 (as the rest of their slabs)
was constrained by the transverse spacing of the CFRP grids (In C-3, the grid spacing
was 100 mm). In the tension stiffening correction calculations for C-3 it was assumed s, .

=100 mm. For comparison, the figures show the response of the naked reinforcement.

Figures 8.11 and 8.12 show that concrete’s tension stiffening effect is important for
proper calculation of deflections in slabs with GFRP C-bars, specially at load levels
roughly greater than the cracking load. The observed responses show that the tension
stiffening effect reduces as the load increases. The model could not capture this
behaviour for reasons already mentioned. The figures also show that the assumption of a

constant slope through the cracked stage for low to medium load levels is reasonable.

Figure 8.13 shows that the tension stiffening effect in slabs with FRP grids is negligible.
Similar responses were observed for the other slabs with NEFMAC grids tested by
Matthys and Taerwe (not reported). This observation is consistent with previous findings
reported by Yost et al (2001). The reduced tension stiffening effect is sensible because
bond between FRP grids and concrete is not provided along the ribs longitudinal

direction but rather mechanically due to transverse rib bearing against concrete.

To further examine the need to account for concrete’s tension stiffening effect in
deflection calculations in the post-cracked state, the experimental deflection
measurements from 25 tests on simply supported beams with FRP rebars under four point
loading were compared with those from the proposed model, the procedure given in CSA
S806-00 and Hall’s procedure (Hall, 2000). The latter uses the empirical tension
stiffening formulation adopted by CEB/FIP MC 90. The properties of the test specimens
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are shown in Appendix D. The deflections were calculated at a load level of twice the
flexural cracking load. Since the predictions strongly depend on the evaluation of M., ,
both the proposed model, CSA S806-00 and Hall’s approach predictions were based on
the observed M., values. In the proposed model’s predictions, the assumption that crack
spacing was not induced by bond was only applied to the BC, CB, IS and KD beam
series. The other references do not provide enough information to infer that crack spacing

was not bond-induced.

The author is aware of the existence of additional test results. However, many of these
are not thoroughly documented, e.g. reinforcement size, bar diameter or reinforcement
content values are not reported. Experiments showing excessive FRP slippage were also

discarded. Specimens with very low FRP reinforcement content were also ignored.

Table 8.1 compares the quality of deflection predictions using CSA S806-00, Hall’s and
the proposed procedure. Deflection predictions using the proposed model demonstrate the
need to account for concrete’s tension stiffening effect at load levels roughly greater than
the cracking load. The CSA S806-00 approach, which disregards the aforementioned
effect in the post-cracking range, gives the most conservative deflection estimates at this

load level (see BC beams). Hall’s model gives the most accurate predictions.

8.5 Cracking Model for Concrete Slabs Reinforced with FRP

This section makes use of tension chord model concepts to predict crack widths in the
stabilised cracking stage for FRP-reinforced concrete one-way slabs subjected to flexure

or direct tension, for crack spacing i) induced by bond, and ii) not induced by bond.

8.5.1 Bond-induced Crack Spacing

Under these conditions, the exact mean crack width and spacing is difficult to estimate.
At best, only the most likely values can be estimated. For this reason, it is more useful for
the designer to define a range of crack widths or crack spacings within which the cracks

are expected to fall.
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To evaluate crack widths in the stabilised crack formation, the axial stress-strain response
of the FRP-reinforced tension chord shown in Fig. 8.14 will be used. The figure is that
presented by Alvarez (1998) except that the terminology now refers to FRP
reinforcement. The dotted line represents the response of the naked FRP reinforcement.
The solid and dotted lines represent the stress-average strain response of the chord

according to the maximum and minimum crack spacing.

Adopting the rationale of CEB/FIP MC90, the mean crack width in the stabilised

cracking stage can be defined as
W = S (Em = Eun) [8.36]

where s, is the mean crack spacing, &, is the mean FRP strain and &, is the mean

concrete strain at oy = Op,. This leads to

As
w = (a,, —iaﬁoj 8.37]
E, 2
where
1—
S = L2 U=pre) [8.38]
2, p 1ef
Since (s,;, =0.55,, )<s, <5, the following equation defines the extreme values for

bond-induced cracks in the stabilised cracking phase.

. (o) . g
Sﬂ(aﬁ - f’"] <w, ssm—m[aﬁ - f’”) [8.39]
2E, 4 E, 2

Equation 8.39 estimates crack widths at the reinforcement level. To calculate crack

widths on the surface, a reasonable assumption is to multiply both sides of Eq. 8.39 by

the gradient ( d] , as proposed by Broms (1965), where xd is the depth of the neutral

d—xd
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axis at service load conditions. This gradient is equivalent to the hy/; ratio used by

Gergely and Lutz (1967).

Recalling that 7,, =k,, f,,, the minimum and maximum crack widths are given as

[ (l_pf,ef) o Ja I+ p,,(n=1) (h—xd)
WE, py T 4L pyy d—xd

J

<w <P (l_pf,ef)[o_ﬁ_Q(l"_pf,ej(n_l)]J(h—xd)

2k, E, Py 2 P d—xd

[8.40]

Figure 8.15 qualitatively illustrates the relationship between the mean crack width and
the FRP stress at a crack for monotonic loading conditions in a member with bond-
induced crack spacing. The solid lines represent the mean crack width accounting for the
tension stiffening effect of concrete. The dashed lines indicate the crack width variation
ignoring this effect. The dashed lines meet exactly at oy = o, which is the FRP stress
immediately before first cracking. Consistent with the assumed bond-slip constitutive
relationship, solid and dashed lines are parallel. The vertical difference between dotted
and solid lines depends on the amount of tension stiffening. Ignoring this effect leads to a
crack width overestimation. There is scarce information reported in the literature as to the
shape of the w-o curve between the first cracking instant and the end of the single crack
formation stage. For this reason, the path has been interrupted in this region. The study of

this aspect falls well beyond the scope of this work.

8.5.2 Crack Spacing not Induced by Bond

The following formulation is useful for estimation of FRP strains at cracks when the
crack spacing is given. It applies only for the case where crack spacing is not driven by

bond.

Figure 8.16 shows the assumed distribution of stresses in FRP and concrete for

“constrained” crack spacing conditions, for the specific case s, <s,, . It has been

assumed that the slope of the stress distribution in FRP and concrete is equal to that for
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the bond-induced crack spacing case (see Fig. B.2). The mean tensile stress in concrete is

defined as
Oon =L 1, [8.41]
2
where
y= Smye [8.42]
S

Solving for &, from Eq. 8.5 and substituting 8.42 and 8.41 into the resulting equation, the
mean constrained crack width, w,,., associated to cracks formed due to deformation

accommodation or to strain raisers is

2
Wy, =5y 6, e Ve [8.43]

2
wm’c _ [sm,cgfr _ 'Z-bosm,c —Z—&Sm’c ](h —de [844]

8.5.3 Application of Cracking Model for FRP-reinforced Concrete Members in
Flexure

This section compares the quality of crack width predictions for beams, one-way and
two-way slabs reinforced with FRP with observed values. Predictions were carried out
based on the tension chord model, the modified Gergely-Lutz equation proposed by
Thériault and Benmokrane (1998) and the design equation given by ISIS M04-00. The

latter two are essentially empirical.

The modified Gergely-Lutz equation proposed by Thériault and Benmokrane (1998) is

Wow =K, -hhiz/ch [8.45]
1
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with K, = 0.0000409 mm?/N for GFRP C-bars.

Maximum crack widths according to ISIS M04-00 are given by

E
W =11x107 E*‘ o, K, h—“,/dc 4 [8.46]

¥

f 1
where K, = 1.2. Equation 8.46 is conceptually similar to the crack control design

provisions of CSA S806-00.

8.5.3.1 Beams Reinforced with GFRP C-bars

Figures 8.17 and 8.18 show observed maximum crack width values for beams TB
BC2VA and TB BC4NA tested at Université de Sherbrooke. Since the crack spacing in
these beams was driven by the stirrups’ spacing, the crack width estimate refers to a mean
constrained crack width. Maximum crack width predictions according to Eq. 8.45 and

8.46 are also shown.

Figure 8.17 shows that the predicted mean crack widths according to the tension chord
model are lower than the maximum observed values. The crack width estimates of the
modified Gergely-Lutz equation are slightly more liberal whereas those using the ISIS
M04-00 equation lead to good crack predictions at low load levels but wider crack values

at higher loads.

Figure 8.18 shows that mean crack width predictions for beam TB BC4NA using the
proposed model are conservative. The slope of the predicted curve is similar to that of the
observed curve at bending moment values below 12 kN.m. Beyond this level, however,
the cracks start closing due to the shifting down of the neutral axis. This cannot be
captured by the proposed model. The modified Gergely-Lutz equation leads to slightly
more accurate predictions but the slope of the moment-crack width line is not consistent
with that of the measured values. The crack width predictions according to ISIS M04-00
are overly conservative which suggests that the recommended %, value of 1.2 seems

excessive,
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8.5.3.2 One-way Members Reinforced with FRP Grids

Figure 8.19 compares the quality of crack width predictions with observed mean values
for one-way slab H3 tested by Matthys and Taerwe (2000b). This slab was reinforced
with a hybrid CGFRP NEFMAC grid. Properties of this slab are as follows: b = 1000
mm, ~ = 150 mm, d = 122 mm, f°. = 26.3 MPa, pr =1.28 %, E; = 44.8 GPa, f; = 640
MPa). Due to lack of experimental evidence, the K, and k; coefficients for NEFMAC in
the modified Gergely-Lutz and ISIS crack width predictions were taken equal to those of
GFRP C-bars. Matthys and Taerwe (2000b) report that the crack spacing in C3 was
constrained by the spacing of the transverse grid ribs (150 mm). As a result, the crack
width predictions based on the tension chord model were calculated according to Eq.

8.44.

The figure shows that the tension chord model crack width predictions are very close to
the observed mean crack width values. The slopes of the lines are virtually identical. The
modified Gergely-Lutz, which provides maximum crack width estimates gives reasonable

predictions at low load levels. The ISIS procedure gives conservative estimates.

8.5.3.3 Two-way Slabs Reinforced with GFRP C-bars

Figure 8.20 shows the mean crack width values measured on series I slab GFR-1. The
experimental crack widths are average values from measurements taken on the slab
surface at 30 mm from the column face in two directions. The crack width predictions
according to the tension chord model were made based on pr.r = 2.5 %. This value was
determined based on an effective concrete area in tension defined as per Fig. 3.6,
assuming pr= 0.733 %, ¢, = 14.9 mm, ¢, = 20 mm and xd = 16 mm. It was assumed ks,
= 0.9. In this slab, as would be the case of a prototype two-way plate, the crack spacing is

constrained by the spacing of the top reinforcing mat (200 mm).

Figure 8.20 shows that the proposed procedure leads to mean crack width predictions that

approach the experimental values in a reasonable fashion in the stabilised cracking stage.
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8.6 Parametric Study

8.6.1 Members in Direct Tension

The equations developed for flexural members with FRP can be applied to members
subjected to direct tension by replacing pss by pr and disregarding the correction
proposed by Broms. In this part of the analysis, it will be assumed that crack spacing is

governed by bond.

Figure 8.21 shows mean crack width predictions in the stabilised cracking phase in terms
of the FRP stress at a crack, oy, for different Ey values, pr= 0.025, f*. = 30 MPa, kp, = 0.9
and A = 0.67. Also plotted is the crack width variation as a function of the reinforcement
stress at the crack for a steel-reinforced member of same concrete strength with p, =
0.025, k3, = 1.8 and A = 0.67. The minimum FRP stress for the different curves shown in

the plot signals o3, (FRP case) and oy, (steel case).

According to Fig. 8.21, the crack widths increase with the FRP stress at the crack. This
has been observed by Nawy et al (1971), Nawy and Neuwarth (1977), Michaluk et a/
(1997), Matthys and Taerwe (2000a) and Alkhrdaji et a/ (2000). The cracks grow at a
faster rate as the reinforcement becomes more flexible. Similar calculations as those in
Fig. 8.22 were made assuming /', = 50 MPa (the curves are not shown). The increase in

concrete strength does not lead to a significant change in the crack width estimates.

The mean crack width variation in the stabilised cracking phase as a function of the FRP
stress at a crack for three different FRP reinforcement ratios is shown in Fig. 8.22. It has
been assumed Ey = 40 GPa (GFRP). The crack widening rate decreases as the FRP

content increases. The initial crack width also decreases as the FRP content increases.

Figure 8.23 shows the effect of FRP’s bond strength on crack widths in the stabilised
cracking phase for a member with 30 MPa concrete, pr= 0.025 and A = 0.67. Mean crack

width estimates correspond to bond strengths varying within a +20 % margin of the
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assumed bond strength of GFRP, calculated assuming k;, = 0.9. At a given FRP stress at

a crack, a bond strength increase leads to narrower cracks.

8.6.2 Slabs in Flexure

The objective of this section is to establish design guidelines to evaluate FRP strains at
cracks as a function of the slab thickness, reinforcement spacing, and material properties,
for specified maximum crack width limits. The study will be confined to bond-induced

crack spacing conditions.

Consider a slab of uniform thickness A, with flexural depth d and concrete cover ¢, with

FRP reinforcement uniformly spaced at sy. Substituting Eqgs. 8.43 and 8.42 results in

w :ﬂﬁ(l—pfﬂ?f) O-fr~i1c_t_{1+pf,ef(n—l)J\] [847]
2 Py \E, 2E

Pref

which can be re-arranged as

k., E - w 1+ n-1
o, = % oL W Prer 4 ifct[ pf,ef( )] 8.48]
Ao¢ (-py) Pry
A, 2
with p,, =0 = "0 [8.49]

S, h, - 4sf h,

where A, is the height of the effective concrete area in tension, defined in Fig. 3.6. Since
the crack width to control is that on the slab surface, the term w,, in Eq. 8.47 needs to be

modified by Brom’s gradient. Accordingly, the FRP strain at the crack is

— 1+ n—1
gﬁ _ —% kbowms (d Xd) pf,ef +£_fﬂ_[ pf,ef( )J [850]

A ¢ (h-xd)(1- pf,ef) 2 E, Pres

where w,,; is the crack width on the slab surface.

Figure 8.24 shows the variation of the strain at a crack as a function of the reinforcement

spacing for three slabs with 2 = 180 mm. The slabs are reinforced with steel (£ = 200
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GPa), CFRP (E; =120 GPa) and GFRP (£, = 40GPa). In the calculations, it has been
assumed f°. = 30 MPa, kp, = 1.8 (slab with steel), &z, = 0.9 (slabs with CFRP and GFRP),
A =0.67 (for both steel and FRP), ¢, = 15 mm, and a clear cover, c., of 25 mm. The strain
values are plotted for maximum allowable crack widths of 0.3 and 0.5 mm. The former is
typical of exterior exposure conditions for steel-reinforced concrete members. The latter
is the maximum value for exterior exposure conditions recommended by ISIS M04-00 for
members reinforced with FRP. The assumed rupture strain values for CFRP and GFRP

are 0.012 and 0.016, respectively.

Figure 8.24 shows that, for the three reinforcement types considered, the strains at the
crack tend to increase at a higher rate as the spacing reduces. This so-called “strain
localization” is not a concern in high ductility steels; becomes problematic in slabs with
CFRP; and is a critical issue in slabs with brittle-elastic reinforcement prone to creep
rupture, such as GFRP. The figure also shows that as the allowable crack width increases,

the strain localization effect increases.

To compare the quality of strain predictions, let us assume that the spacing in the steel-
reinforced slab is 250 mm and that, since a tighter spacing is required in an FRP-
reinforced slab to compensate for FRP’s lower stiffness, the CFRP and GFRP
reinforcement in the other two slabs is spaced, respectively, at 150 mm and 50 mm. For
simplicity, it will be assumed that the latter permits proper concrete placement. The

arrows in Fig. 8.24 show the reinforcement spacing for each slab.

According to Fig. 8.24, the strain at the crack associated with a 0.3 mm crack width for
steel rebars is 0.0016 whereas those for the slabs with CFRP and GFRP rebars associated
with a 0.5 mm crack width are, respectively, 0.0021 and 0.0058. The ratio between the
CFRP and the steel strains is 3.625, which is more than twice the 0.5/0.3 = 1.67 value
that Hall’s Eq. 3.20 would predict. The ratio between the GFRP and steel strains is 1.31,

which is lower than what Hall’s would predict.
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Considering each slab independently, the strain increase associated with a crack width of
0.3 to 0.5 mm for the slab with steel reinforcement is in the order of 50 % which is less
than 0.5/0.3 x 100 = 67 %, which would be the ratio that Hall’s equation would predict.
For the slabs with CFRP and GFRP, the strain increase is, respectively, 50 and 60 %.

These observations lead to the conclusion that Hall’s Eq. 3.20 is not conceptually correct.
Hall’s equation is simple but does not account for the effects that the reduced stiffness
and bond strength of FRP reinforcement have on the relationship between crack widths
and strains at cracks. Moreover, for the slab with GFRP reinforcement, the 0.0058 strain
at the crack is greater than the maximum strain limit allowed by CSA S806-00 (30 % of
Ji 1.6. 0.30 x 0.016 = 0.0048). CSA S806-00 allows crack widths in the order of 0.6 mm
for interior exposure. Such an increased crack width limit would lead to strains at cracks

that would further violate the maximum FRP strain limit.

Figure 8.25 examines the variation in strains at cracks for a crack width of 0.5 mm for
slab thicknesses of 150, 200 and 250 mm. The figure shows that the strain localization
reduces as the slab thickness increases. For # = 200 mm and a GFRP mat spaced at 75
mm, the strain at the crack is about 0.00375, which is about 26 % of the rupture strain.
This value is slightly less than the maximum 30 % limit stipulated by CSA S806-00 and
very close to the maximum 25 % limit allowed by C-bar manufacturers. The strains for a
tightly spaced CFRP grid are of similar magnitude except that CFRP rebars do not creep.
For instance, for the case of CFRP rebars spaced at 100 mm (which would lead to a
stiffer mat and allow proper concrete placement), the strain at the crack for a 200 mm
thick plate is about 0.0028 which is only 23 % of CFRP’s assumed rupture strain. As
shown in Fig. 8.25, the beneficial slab thickening effect disappears as the rebar spacing

increases.

The effect of a variation in the bond strength of the bars on the evaluation of strains at
cracks is shown in Fig. 8.26 for a 200 mm thick plate with either GFRP or CFRP,
assuming a maximum allowable crack width of 0.5 mm. The figure shows that as bond

increases the strain localization effect becomes more acute. The detrimental effect of
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bond between FRP and concrete on FRP strains at cracks was identified by Burgoyne
(1993). This suggests that any improvement of the bond features of FRP reinforcement is
not beneficial. In theory, this suggests that use of FRP grids (whose bond is provided by
transverse rib bearing instead of friction or mechanical interlock between lugs and
concrete) is more helpful for crack control. Unfortunately, there is scarce experimental
evidence studying this effect. Figure 8.26 also shows no significant effect of the FRP type

on the bond effect for very tight mats, which is usually the case.

8.7 Concluding Statements
8.7.1 Deflection Calculations

A comparison between deflection predictions and observed deflection values at load
levels of twice the cracking load for 25 simply supported beams subjected to four point
bending reported in the literature demonstrated the need to account for concrete’s tension
stiffening effect in deflection calculations for slabs with FRP rebars at relatively low

service load levels.

Consistent with the results reported by Matthys and Taerwe (2000b) and Yost et al
(2001), the results from this chapter indicate that the tension stiffening effect of concrete

does not play a major role in the deflection predictions of slabs with FRP grids.

Since current deflection calculation provisions in CSA S806-00 ignore the tension
stiffening effect of concrete in the post-cracking stage, these design provisions tend to be
very conservative for slabs with FRP rebars at load levels roughly greater than the
cracking load. The provisions can be safely used to calculate deflections in slabs with

FRP grids.
Current design provisions in S806-00 are appealing for treatment of boundary conditions

typically found in laboratory conditions but fail to account for realistic prototype loading

cases and boundary conditions.
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The deflection results examined in this study suggest that the deflection procedure
envisaged by Hall (2000), based on the curvature integration method using CEB-FIP MC
90’s tension stiffening approach, gives very accurate deflection predictions at service

load levels.

8.7.2 Crack Control in Slabs with FRP
8.7.2.1 Conclusions Based on Crack Width Estimates

The consistencies among observed overall response, crack spacing and width predictions
with predicted values applying tension chord model principles indicate that the flexural

cracking phenomenon in FRP-reinforced slabs can be handled rationally.

The experimental evidence presented in this chapter shows, as suggested by Base (1982),
that the spacing of flexural cracks is not always governed by bond between the
reinforcement and concrete. Test results from a dozen beams and one-way slabs with
FRP tested in Canada and Belgium show that “deformation-controlled” cracking or
cracking due to strain raisers, such as stirrups or reinforcement running transversely, is

often more dominant,

A procedure to evaluate the tension stiffening effect of concrete and the width of cracks
under conditions not induced by bond is proposed. The procedure intends to predict crack
widths in one-way concrete slabs with internal FRP reinforcement. The predictions
compare well with observed crack width values from experiments. The model is able to
capture the variation of crack width in terms of load or reinforcement strain at the crack

at service load levels.

The modification of the Gergely-Lutz equation proposed by Thériault and Benmokrane
(1998) and the design provisions in ISIS M04-00 for crack width calculations were also
examined. Thériault and Benmokrane’s empirical procedure gave reasonable predictions.
ISIS M04-00 guidelines were found to be very conservative. The limited crack width
evaluation reported herein suggest that K, = 1.2, as used in the current ISIS equation,

tends to overestimate maximum crack width predictions.
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Additional load tests on FRP-reinforced concrete slabs with slender flexural spans with

thorough documentation of mean and maximum crack widths and spacings are required.

8.7.2.2 Conclusions Based on Estimates of FRP Strains at Cracks

The parametric studies revealed that slabs with FRP tend to exhibit strain localization at
cracks for the case of tight reinforcing mats. The effect worsens as the slab thickness
decreases. This problem is critical in slabs with GFRP and less severe in slabs with AFRP

or CFRP since GFRPs are prone to creep rupture.

Hall’s assumption that the relationship between crack widths and strains at cracks is
independent of the reinforcement type is not conceptually correct. The strain growth due
to an increase in crack width is affected by the type, amount and bond strength of FRP.
Hall’s assumption that the increase in FRP strain is a linear function of the crack width
increase is also debated by the results shown in this chapter. Her predictions may lead to

unsafe strains at cracks at service load levels for slabs with GFRP.

The fact that FRP reinforcement performs satisfactorily in corrosive environments does
not imply that wider cracks should be allowed in FRP-reinforced members at service load
levels. The appropriateness of a given crack width limit strongly depends on the slab
depth, and the type and amount of FRP reinforcement. To allow wider cracks may lead to
excessive strains at cracks. In this way, what is thought to be gained in terms of flexural
stiffness when providing dense GFRP mats may turn out to be harmful in situations

where sustained load prevails.

An increase in the bond strength of the reinforcement enhances the strain localization
effect. This means that future generations of GFRP reinforcements should not aim at

improving bond features of bars and grids.

In regards to the role of bond between FRP and concrete in the behaviour of concrete

slabs, Burgoyne’s 1993 key question “should FRP be bonded to concrete?” can be
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answered by stating that bonded FRP reinforcement should be allowed in slab
construction so long as the crack control design philosophy drifts away from the current
belief that wider cracks should be allowed simply because FRPs have superior corrosion

resistance.

The results from this chapter suggest that dense GFRP mats made from C-bars or
NEFMAC grids can be safely used in slabs under sustained load if a minimum slab
thickness of 200 mm is complied with. To facilitate concrete placement, the minimum
FRP transverse spacing shall not be less than 100 mm. The slab thickness and amount of
GFRP and CFRP reinforcement required to satisfy deflection control limits shall be

determined based on the recommendations of chapter 9.
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Table 8.1 Comparison of Deflection Calculations for M =2 M, exp

Ref. | Specimen | Ay | Assos | Apan | Aprop P | T/P | T/P
(mm) (mm) (mm) (mm) S806 Hali Prop

1S2B1 167 | 23.5 | 169 16.9 0.71 0.99 0.99

K2B1 22.1 28.8 | 19.7 22.7 0.77 1.12 0.97

MBC IS3B1 13.2 183 | 134 14.0 0.72 0.99 0.94
KD3B1 11.5 16.0 | 109 12.1 0.72 1.06 0.95

I1S4B1 11.1 17.8 | 10.6 14.0 0.62 1.05 0.79

KD4B1 13.1 157 | 12.6 12.4 0.84 1.04 1.06

BC2NA 6.9 9.2 8.9 8.5 0.75 0.78 0.81

TB BC2HA 9.3 9.4 9.7 83 0.99 0.96 1.13
BC2VA 10.7 9.5 9.5 7.9 1.13 1.13 1.35

BCANA 5.9 6.8 7.0 5.7 0.86 0.84 1.03

BC4VA 8.7 7.6 9.7 5.9 1.14 0.90 1.48

CB2B-1 11.8 19.0 | 13.1 17.2 0.62 0.90 0.68

MTB CB3B-1 13.2 18.4 9.8 16.7 0.72 1.35 0.79
CB4B-1 9.0 125 | 11.8 10.8 0.72 0.76 0.84

CB6B-1 5.0 8.8 7.9 7.1 0.57 0.63 0.70

RC-A3 94 11.5 9.6 10.0 0.82 0.98 0.94

NMFT RC-A4 5.3 6.8 5.7 6.0 0.78 0.93 0.89
RC-A5 2.9 3.8 3.2 3.5 0.77 0.91 0.84

RC-C1 6.4 8.0 6.7 7.2 0.80 0.96 0.89

MRTB 1-200-C 272 | 412 22,6 28.4 0.66 1.20 0.96
LL-200-C | 26.1 328 | 269 24.1 0.80 0.97 1.08

BF6 3.8 6.6 3.1 4.4 0.58 1.23 0.86

NN BF7 4.3 6.8 3.7 4.4 0.64 1.17 0.97
BF9 3.7 5.5 3.0 3.7 0.67 1.25 0.99

BF11 4.9 6.1 4.3 4.3 0.81 1.13 1.15

Mean: 0.77 1.01 0.96

Std. Dev: 0.15 0.17 0.18

COV (%): 19.0 16.5 18.8

Notes: MBC (Masmoudi, Benmokrane & Chaalal, 1995)

TB (Thériault & Benmokrane, 1998)

MTB (Masmoudi, Thériault & Benmokrane, 1998)

NMFT (Nakano, Matsuzaki, Fukuyama & Teshigawara, 1993)
MRTB (Michaluk, Rizkalla, Tadros & Benmokrane, 1997)
NN (Nawy & Neuwarth, 1977).

1.

2.

Deflection calculations were performed based on observed cracking

moment values.

Deflection calculations using Hall’s procedure were performed by integrating
curvatures in three sections (at supports and at midspan). For simple spans, i.e.
all beams listed above, the curvature at the supports is zero.

243



0.0010
f'. = 30 MPa
0.0008 | A =067
0.0006 |
Aeg,
0.0004 | GFRP
B E. =40 GPa
0.0002 }
[ CFRP
A E, =100 GPa
0.0000 b —_ L1 L
0.00 0.02 0.04 0.06 0.08 0.10
Reinforcement Ratio
Fig. 8.1 Effect of p and E, on Tension Stiffening
600
- Note: Beams had stirrups @ 80 mm along shear spans. 'S mean, obs. @ 0.5 Mu
500 I OS min, calc. ||
—_ B S max, calc.
E 400 i B Flexural Depth
= i
£
8 300
Q_ -
« = =
‘N = =
s 20 Y — N\
e - E =
100 [ - BN
O [ N % N R R % N

1S2B-1 KD2B-1 1S3B-1 KD3B-1 1S4B-1 KD4B-
Beam
Fig. 8.2 Crack Spacing : Sherbrooke Beams (1)

244



Crack Spacing (mm)

600

[ [@S mean, obs. @ 0.25 Mu|  Notes:

F | - All beams had GFRP C-bars.
500 L NS mean, obs. @ 0.5 Mu | - BC Beams had stirrups @ 80 mm throughout. ]

L | OS min, calc. - CB Beams had stirrups @ 80 mm along shear spans.

[ | B S max, calc.
400 || EFlexural Depth
300 |
200 |

[
100 _ §

: \

i N

BC2NA BC2HA BC2VA BC4NA BC4VA CB2B-1 CB3B-2 CB4B-2 CB6B-2
Beam
Fig. 8.3 Crack Spacing : Sherbrooke Beams (2)
Member
M, 3 3
e
7
e
7
rd
7
7" |Elg Naked FRP
7
&>
Mcr A1 2 ////
e Concrete's
/// Tension Stiffening Effect
//
s
7
//
— : : b4
Wer W2 WYy

Fig. 8.4 Idealised Moment-Curvature Response According to
Proposed Model

245




— 74
d
Wy
0.5h Yer Wy
SR
- — & En \
EO 2
EC
a) Immediately Before b) Compression Failure c) Tension Failure

Flexural Cracking

Fig. 8.5 Strain Distributions According to CSA S806-00

—~ I
xd
xd

Y,

Yy

7 — Sf gfu \

a) Compression Failure b) Tension Failure

Fig. 8.6 Assumed Strain Distributions at Failure

246



100 T I
------ E = 30 GPa

5 o £ = 40 GPa
80 ¢ E=50GPa |

g E = 120 GPa

E \

¢ x10° :

40 +

N \

L T— —— T
20 T LT
O ST PURPEEY R N N U N T N N PURTEET N R T S O TS T N N P Y WO T T R T ST U N W AN T T T T Y N
0 0.01 0.02 0.03 0.04 0.05
FRP Reinforcement Ratio
Fig. 8.7 ¢ Factor as a Function of pand E
A~ & —A
-
d
K
E€tm A€
8fr

Fig. 8.8 Curvature Correction due to Concrete's
Tension Stiffening Effect

247



248

L/2

Fig. 8.9 Assumed Curvature Distribution for Beam
under Four Point Bending

0 Acr AZ Au

Fig. 8.10 Idealised Load-Deflection Response

Yy



Load (kN)

Load (kN)

120

100 |

(o]
o

(o))
o

N
o

N
o

120

100

0]
(=)

@]
o

n
o

20

Test
------ Naked FRP
With Tension Stiffening

Deflection (mm)
Fig. 8.12 Flexural Model Calibration : Slab TB BC4NA

0 10 20 30 40 50
Deflection (mm)
Fig. 8.11 Flexural Model Calibration : Slab TB BC2VA
[ Test
Naked FRP
—\Nith Tension Stiffening
0 5 10 15 20 25 30 35 40

249



250
Test
e Naked NEFMAC
200 i With Tension Stiffening
= 150 |
X
o
S I
-1 100 F
50 |
O- M S W WY R NV (N NN WY NN SHNS SHN VU SUN U SU NN SH S SUN SU W W SU S S N S SN S
0 50 100 150 200 250 300 350
Deflection (mm)
Fig. 8.13 Flexural Model Calibration : Slab MT C3
Gy 2=0.5
oy T Naked FRP
Chord
Ofo T . Concrete's
e Tension Stiffening Effect
7
e £ U=5))
7
/// / / E/ 4pf
e
//
n ct T g
I | Etr ,Efm
Lo Ly, 1220
E, E, 2p.n

Fig. 8.14 FRP Tension Chord Response (After Alvarez, 1998)

250



A=1.0 A=0.5

/l Concrete's o
/ T.S. Effect

Ignoring Concrete's
Tension Stiffening Effect

Winsio / Accounting for Concrete's
/ . Tension Stiffening Effect
Wixr=05 --——-—-—-;/----,-;f-’-/-‘
,,'//// [Bond-induced Crack Spacing l
:bl, 0-fr
O for O o

f Stabilized Cracking Phase ———>

Fig. 8.15 Crack width - FRP Stress Relationship

Sm,c

T ’cht

Fig. 8.16 FRP and Concrete Stress Distributions
(Crack Spacing not Induced by Bond)

251



25

20 - Mean Crack Wldth—\ /,/

(Proposed)

15 |

10 |

Moment (kN.m)

Max. Observed Crack Widths

_ z A Modified Gergely-Lutz

------ ISIS M04-00
bl T T T
0.0 0.5 1.0 1.5 20 2.5

Crack Width (mm)
Fig. 8.17 Crack Width Predictions : Beam TB BC2VA
25 T
[ Mean Crack Width
| (Proposed)
20 L / >< P

/

Moment (kN.m)
\
N\
‘ \
\

Max. Observed Crack Widths
Modified Gergely-Lutz
------ ISIS M04-00

ol

0 0.5 1
Crack Width (mm)

Fig. 8.18 Crack Width Predictions : Beam TB BC4NA

252



Moment (kN.m)

Crack Width (mm)

60
50 F

40 |

20 |

2.0

0.0

Mean Crack Width
(Proposed)

' -
~
> .

N 7

30 F

»

P
P ,
.
.
’
.
.
.
.
’
P
.
g
B
.
.

Mean Observed Crack Widths

10 |

Modified Gergely-Lutz -

------ ISIS M04-00
1

0.5 1 1.5
Crack Width (mm)

Fig. 8.19 Crack Width Predictions : Beam MT H3

1.5

1.0

0.5

7/
n /
7
Mean Crack Width ,/
(Proposed) —\ /
7
v
7
||
||
]
m Measured Values
2000 4000 6000 8000 10000

Reinforcement Strain (pig)

Fig. 8.20 Crack Width Predictions : Slab GFR-1

253



254

Crack Width (mm)

Crack Width (mm)

2.0

N
(&)

-
o

©
o

00 —=——

2.0

1.5

0.0 Lo

ll ’
’
Pr=25%, ko =0.9 Ef_=BOGPa / ”a
’ ’

E, = 50 GPa e

v’

v’
E;=70 GPa

f'c= 30 MPa

E¢ =200 GPa, p = 2.5 % , kyo = 1.8

X

1 ] 1 i 1 1 1 1 ' ' 2 L 1 i L L L L L L i 1 1 A L I 1 I I i L

100 200 300 400 500 600 700
Reinforcement Stress at a Crack (MPa)

Fig. 8.21 Effect of oy, E; and . on Crack Width

1.0

0.5

pr=2%
pr=3%

Pr=4%

A =0.67 f,=30MPa E;=40 GPa ky, =0.9

100 200 300 400 500 600 700
FRP Stress at a Crack (MPa)

Fig. 8.22 Effect of p; on Crack Width



Crack Width (mm)

FRP Strain at Crack (mm/mm)

2.0
1.5 |
1.0 +
I f'.=30 MPa
05 | E = 40 GPa
- A=0.67
pf =25%
OO A 2 1 L 1 L i . 1 i 1 i 1 L 1 Il A i ' [ i L I 3 1 i 1 A 2 i A I A ]
0 100 200 300 400 500 600 700
FRP Stress at a Crack (MPa)
Fig. 8.23 Effect of FRP Bond Strength on Crack Width
0.015
Steel (E = 200 GPa)
------ CFRP (E = 120 GPa) f'c=30MPa
GFRP (E = 40 GPa) A =067
Ce. =25 mm
0.010 } ¢ =15mm
w=05mm h =180 mm
kpo = 1.8 (Steel)
kpo = 0.9 (FRP)

0.005

e T
w=0.3mm }/CFRP Steel—
0.000 s bt et

50 100 150 200 250

Rebar Spacing (mm)
Fig. 8.24 E; and w Effect on Reinf. Strain at Crack

2535



FRP Strain at a Crack (mm/mm)

FRP Strain at Crack (mm/mm)

256

0.008

—_h=150 mm f,c=30 MPa
------ h =200 mm Keo = 0.9
0.006 h =250 mm A =067
C. =25 mm
dp=15mm
w=0.5mm
0.004
E;=40 GPa
0.002
0.000 N R L
50 100 150 200 250
FRP Spacing (mm)
Fig. 8.25 E;and h Effect on FRP Strain at Crack
0.010
K kbo = 0.9 f'.=30 MPa
A =0.67
0008 - | e kbo =1.8 C. =25 mm
! d,=15mm
h =200 mm
0.006 | 5 w=0.5mm
A E; =120 GPa
0.004 U
0.002 | e
0.000 L e
50 100 150 200 250

FRP Spacing (mm)

Fig. 8.26 Bond Effect on FRP Strain at Crack



9 Deflection Control in One-way Concrete Slabs with Internal
FRP Reinforcement

9.1 Objective

The objective of this chapter is to present different alternatives to control short-term
deflections in one-way slabs with internal FRP reinforcement in an indirect fashion by

specifying maximum span-depth ratios.

Procedures are based on the concepts of limiting curvatures, integrating curvatures, and
Branson’s effective moment of inertia, /. When accounted for, the tension stiffening
effect of concrete has been added to the formulations by adopting either the CEB/FIP
MC90 format or defining an average effective moment of inertia that renders the same

tension stiffening effect as that of MC 90 (see Hall and Ghali, 2000).

9.2 Indirect Deflection Control Procedures

9.2.1 Simplified Procedure Disregarding Concrete’s Tension Stiffening Effect

This indirect deflection control procedure is based on the concept of limiting curvatures.
The procedure is set up independent of the traditional effective moment of inertia concept

and neglects concrete’s tension stiffening effect.

The midspan deflection, 4,, of a one-way slab under a uniformly distributed load,

continuous at one or both ends, is given as

A, =K, (i)(MmLZJ [9.1]
48) | E1

where M, is the midspan moment, L is the span length, E. is concrete's Young modulus

and 7, is the effective moment of inertia. X is a constant that depends only on boundary

conditions,

MO

K =12-02 9.2
! M [9.2]

m
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wl?
8
for fixed-hinged beams and K; = 0.6 for fixed-fixed beams. The moments M, and M,

where M, is the statical moment (M, = ), K; =1 for simply supported spans, K; = 0.8

result from the same loading. Since the objective is to set up a deflection control

procedure that is independent of Z,, Eq. 9.2 can be rewritten as
5 2
48

where s, is the curvature at midspan. Dividing both sides by L results in

% K, (ij v, L [9.4]
L 48

Assuming fully cracked behaviour, the curvature at midspan, v, , is

W, =B [9.5]
d(l - x’ﬂ )

where &, is the midspan FRP strain at service load level, d is the effective flexural depth
of the slab, and x,, is the ratio of the neutral axis depth at service to the flexural slab depth

at midspan. Substituting Eq. 9.5 into 9.4,

S o N T ) [9.6]
L 48\ d(1-x,)

From compatibility of normal strains,

g,
x, = Lem [9.7]
gcsm +8fsm

where &y is the midspan concrete strain at the extreme fibre at service load level, often
taken between 0.3 %i to 0.5 %c— . Substituting Eq. 9.7 into 9.6 and rearranging terms,

[ 4

48 1 A_m [9.8]
5K, € fom F Evem L

Q| t~
IA
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which is independent of the member’s flexural stiffness and the applied load. In Eq. 9.8,
the concrete and FRP strain define a limiting curvature. The maximum span-depth ratio is
defined based on this limiting curvature assuming a maximum value of A,/L. This
approach is conceptually similar to that adopted by ACI Committee 435 (1978) in which
minimum reinforcement ratios for deflection control of steel-reinforced concrete slabs are

defined. These ratios are shown in Table 3.2. Typical 4,/L values are shown in Table 3.1.

To control deflections in terms of span-thickness ratios, Eq. 9.8 can be re-arranged as

L, B ( 1 ]Am [9.9]

h SaK \ &4+ ) L

where o =/ FE In residential and office building slabs, « varies from 0.85 to 0.95.

Figure 9.1 shows the effect of an FRP strain variation at midspan at service load level
from 0.001 to 0.003 on the maximum span-depth ratio of a continuous span for different
support fixity conditions. According to CSA S806-00, the maximum allowable FRP
strain level at service load conditions is 30 % of the FRP rupture strain. Assuming &, =
0.016 leads to &xm max = 0.048. In Fig. 9.1, the effect of support conditions is represented
by the M,/ M,, ratio. For instance, a M,/ M,, value of about 2.0 simulates an edge span
supported by a masonry wall at the edge with the first interior support continuous. In a
typical prototype interior span, M, / M, is about 2.8 to 3.0. Calculations are made for a
maximum deflection/span ratio of 1/360, assuming that the ratio of the neutral axis depth
to the flexural depth of the slab is 0.25. For comparison, the L/d variation for a strain of
0.0012 is also shown. This is a typical strain reference associated to service load
conditions in steel-reinforced concrete members (g, = 0.0012 is about 60 % of the yield

strain of steel).

Figure 9.1 shows that as &g, increases, L/d decreases. The effect of a change in boundary
conditions becomes more noticeable at lower FRP strain levels. For interior span

conditions in a one-way solid slab, Table 3.3 requires a minimum thickness of L/28.
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Assuming a = /d =1.1, the minimum slab flexural depth becomes L/31. According to

Fig. 9.1, for interior span conditions (A, / M,, of about 2.8) the L/3] limit is reached when
&wm 1s about 0.001. If greater strains are sought at service load levels, the slab thickness
for a given span length needs to be increased. For instance, allowing an FRP strain of
0.003 leads to L/d of about 10.5. This means that the slab with FRP needs to be about

three times thicker than a steel-reinforced concrete slab with comparable span.

The need for thicker FRP-reinforced concrete slabs to satisfy deflection limits has
significant economic consequences. The most immediate is that greater amounts of
concrete are needed per unit area. The slab thickening choice is also critical in situations
where there are limits on building height because of the potential reduction in the number
of commercially available floors. It is worth noting that greater span-depth ratios can be
also achieved by shortening the spans. However, this concept is not sensible.
Conceptually, it fosters the belief that a structural system has to be adapted to the
particular characteristics of a reinforcing material. Furthermore, such an approach may
lead to impractical span ranges for certain conditions. For instance, based on Fig. 9.1
data, if only the span is modified for the same deflection limit to apply, its length needs to

be three times shorter.

9.2.2 Simplified Procedure Accounting for Concrete's Tension Stiffening Effect

This procedure is similar to that previously examined except that concrete’s tension
stiffening effect is explicitly accounted for in the indirect deflection control procedure.

The starting point is to rewrite Eq. 9.3 in terms of the average midspan curvature.

_A_l"_ = Kl [ij Wm,ave L [910]
L 48

Adopting concrete’s tension stiffening model of CEB/FIP MC90,

Ve =(1=E)y, +E v, [9.11]
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where y; is the curvature at the uncracked section level, v is the curvature at fully

cracked level, and &is a factor defined as

2
E=1-4,5, [M”’J >0.4 [9.12]
M m
For FRP-reinforced concrete members, Hall (2000) recommends #= f;8; = 0.5 for short-
term first loading. At this point in time, there is no experimental evidence to define a S
value for repetitive or cyclic loading of members with FRP. The adequacy of the 0.4
lower bound in Eq. 9.12 has not been examined in the context of members with FRP

either. Study of these two aspects falls beyond the scope of this study.

Substituting Eq. 9.11 into Eq. 9.10 leads to

A—m:iKlL[(l_é:)V/l*'é:'//z] [913]
L 48

The midspan curvatures y; and y; are defined as

gfcrm
v, = [9.14]
i
2
85”1
W, = —— [9.15]
d(l1-x,)

where &g is the midspan FRP strain immediately before first flexural cracking.

Substituting Eqgs. 9.14 and 9.15 into 9.13,

& &
Ao 5 g p|(-g) frm y g Emm [9.16]
L 48 g T di-x)
2
n cfim
where ¢, = [9.17]
Ef
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In Eq. 9.17, fosm is the concrete stress at the centroid of the FRP reinforcement at midspan

immediately before first cracking. From strain compatibility,

zﬁ(d_ﬁj
N2 [9.18]

fc’ =
! h

Substituting Eq. 9.18 into Eq. 9.17, and setting n = E;/ E,,

h
Zﬂ(d—]
N2 [9.19]
hE

c

¢ Jerm =

Substituting Eq. 9.19 into Eq. 9.16,

A 2 8 sm
Lo O gp|(-g) 2 g b0 [9.20]
L 48 hE,  d(l-x,)
For f, =0.6./f, , E, = 4500\/76' , o= % , X, = ~ Bem__ and rearranging terms,
gcxm +gf$'m
- A
£Sﬁ{g—ﬁ+§(gﬁm+gm)]—m [9.21]
d 5K, 3750 L

Figure 9.2 shows the effect of concrete's tension stiffening on maximum span-depth ratio

predictions for different M,, / M., ratios. Calculations are based on A,/L = 1/360, &, =

O.S—f-i , /e =30MPa, o = 1.1, M,/ M,, = 2.8 (interior span conditions) and S = 0.5, for

4

midspan FRP strains of 0.001 and 0.002.

According to Fig. 9.2, applying Eq. 9.21 leads to curves that approach asymptotically the
values defined by ignoring concrete’s tension stiffening effect. This reflects the bond
stresses deterioration under continuous loading as noted by Bresler and Bertero (1967).
Figure 9.2 also shows that the slab thickening penalty one would expect by ignoring
concrete’s tension stiffening effect in the deflection control formulation is softened for

cases where the midspan moment is up to twice the cracking moment, which is a typical
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upper load limit in prototype residential building slabs. The benefits are proportionally

more notorious as the FRP strain level at service load reduces.

Figure 9.3 examines the effect of a 20 % variation in the assumed concrete strain at the
extreme top fibre at service load conditions for a interior span conditions, assuming &g, =
0.002. The dotted lines reflect the response including concrete’s tension stiffening effect.
The figure shows that an increase in the extreme compressive strain leads to more

stringent maximum span-depth requirements. However, the effect is minimal.

Figure 9.4 shows the effect of the reinforcement's bond quality on the span-depth ratio
predictions under short-term loading. The bond quality has been modeled in terms of the
term = B/, . The value f= 0.5 (Hall, 2000) represents the response of a slab with FRP
with bond performance inferior to that of steel. The value £ = 1.0 represents the response
of a slab with FRP having a bond performance similar to that of steel. The capping off in
the latter curve is the result of the lower limit for Eq. 9.12. Figure 9.4 shows that the

maximum allowed L/d value increases as bond between FRP and concrete improves.

9.2.3 Procedure Based on I, Concept

Two indirect deflection control approaches are proposed in this section. Both are based
on the procedure developed by Branson (1968) and refined by Wang and Salmon (1973)
for beams and slabs with ordinary steel reinforcement. The tension stiffening effect of
concrete is adopted in two manners: i) through a modified 7, value proposed by Thériault
and Benmokrane (1997) for members with FRP, and ii) through a mean I, value that
renders the same tension stiffening effect that one would obtain by applying the CEB/FIP
MC90 tension stiffening model, as proposed by Hall and Ghali (2000) (see chapter 3).

The procedure starts by defining the midspan deflection of a continuous member as per

£l 211,
y

Eq. 9.1. Multiplying and dividing Eq. 9.1 by M, = , results in
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2 fiI
A =k | Ml Sy [9.22]
24\ E,I, |hM,,

Rearranging Eq. 9.23 and setting = % ,

A
L _24ab, | B |(M, )1 [9.23]
d 5 L\fk )\M, )1,

Making use of Branson’s I, concept, Thériault and Benmokrane (1997) recommend the

following 7, definition for members reinforced with FRP.

3 3
M
I =|—=| B, +|1- Mo )1y [9.24]
Ma Ma

where f is a reduction coefficient, equal to 0.6 for type 1 C-bars (Thériault et al , 1997).

Gao et al (1998) recommend

= Efl 9.25
B, =a, E—+J [9-25]

s

where ¢ is a bond-dependent coefficient, equal to 0.5.

In Branson’s original procedure, for the case of simple spans, /I, is usually calculated at
midspan. For continuous spans, /, is calculated as a weighted average of the I, values at
midspan and at supports. In the context of continuous slabs with FRP, there is no
guidance available on how to define Z,. The term M, refers to the historic peak moment
associated with that determining cracking according to the load combination being
examined. For simple spans, M, = M,,. For instance, if the allowable 4,, / L value is
incremental and refers to live loads only, the maximum moment refers to the live load
loading case only. MacGregor and Barttlet (2000) warn that M, should not be taken from

the envelope moment diagram to avoid overly conservative deflection control measures.

Dividing both sides of Eq. 9.24 by the gross moment of inertia, /, , yields
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3 3
I (M M) |1
e | Zea | pog|l-| e |2 [9.26]
M I

g a M, g
3
where I = blxd) +np, bd® (1-x)’ [9.27]
3
Dividing Eq. 9.27 by I, results in
I, 4|x° 2
—L=—|—+3np, (1-x) [9.28]
I, a'L3
where x = \/(pfn)z +2p,n—pn [9.29]
Assuming elastic-cracked conditions for concrete at service load levels,
[9.30]

X X
Ma =Tf(d—g]=pbd2€fsEf[1—gj

where & is the FRP strain at service load level. Dividing both sides of Eq. 9.30 by

2 2
= g—j—ff—b—d— , leads to

cr

6p,. 5 . FE
M, _%Prés f[l-f) [9.31]
MC" azf;' 3

The FRP strain at service load level is estimated either as

M
Ef = g [9.32]
p bd’E, [1 - EJ
' ' 3
or, as a function of the —< ratio, as
Mcr
2
£, = M, @) 1 [9.33]
Mcr 6prf [l_fj
3
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Due to lack of information on how to determine I, for continuous spans with FRP, the
indirect deflection control procedure presented in this section will be applied to simple

spans only. As a result, M, = M,, , x = x,,, and &; = &wm. The procedure is as follows:

1)  Proportion the member for ultimate strength, i.e. select d, n, and py.
2) Calculate x (Eq. 9.29).

3) Determine /., (Eq. 9.27).

4) Calculate g5 (using either Eq. 9.32 or 9.33).

M
5) Evaluate —% (Eq. 9.31).
M

cr

I
6) Solve for —= (Eq. 9.26). This value cannot exceed 1.0.
1

g
7) Calculate the associated span-depth ratio (Eq. 9.23).
8) If the resulting span-depth value is less than the minimum stipulated value, different
values for d, p or n need to be selected. The iterative nature of the procedure results

from the fact that a closed form solution for Eq. 9.26 is difficult to obtain.

As far as slabs with FRP is concerned, Nawy et a/ (1971), Hall (2000) and Hall and Ghali
(2000) found that Branson’s approach tends to underestimate short-term deflections,
specially at load levels roughly greater than the cracking load. Hall (2000) and Hall and
Ghali (2000) recommend using the tension stiffening model of CEB/FIP MC90 for
deflection control of slabs with FRP. Hall and Ghali (2000) derived an expression for the
mean moment of inertia that one would obtain by applying the CEB/FIP MC 90 tension

stiffening formulation. The equation (see derivation in chapter 3) is

L1
_ Lo [9.34]

a2 e
M

max

mean

ISIS M04-00 also provides similar cautionary notes on the applicability of Eq. 9.24 for

deflection calculations because the correction factor 3, in Eq. 9.25 was derived based on
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a limited test database on simple span tests. ISIS M04-00 adopted the I, value developed
by Thériault (1998), which is

I 1
I Lo [9.35]

¢ 2
I, + 1~0.5( M., J (7,-1,)
M

max

which is identical to Eq. 9.34. Applying the concepts presented at the beginning of this

section to Thériault’s Eq. 9.35 leads to (see derivation in Appendix E),

M 1
SgAm[ Ea \J[ cr g [936]
2

1 .
with — calculated according to Eq. 9.28.
1

g

Figure 9.5 shows the effect of a variation in the FRP strain at service load at midspan and
the amount and type of reinforcement required for ultimate strength on the maximum
span-depth ratio of a simply supported slab with FRP. The deflection control curves were
plotted using I, defined according to Eqgs. 9.24 (Thériault et al, 1997) and 9.35 (Thériault,
1998) for a maximum allowable 4,/L limit of 1/360. For comparison, the control curve
for a strain of 0.0012 which represents typical strain conditions at service load levels in
steel-reinforced concrete slabs is also shown. To plot the latter curve, the /. definition

given by CSA A23.3-94 has been invoked.

Consistent with previous findings, Fig. 9.5 shows that the use of higher FRP strains at
service load conditions is also possible if the maximum span-depth ratio decreases, i.e. if
the slab depth is increased. The difference between the span-depth predictions using Eq.
9.29 and 9.38 is significant for low np values and becomes irrelevant for large np values.
For a given span length, L, assuming that np required for strength is 0.025, and assuming

&sm = 0.002, the deflection control procedure based on Thériault’s 7, value leads to a slab
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that is 38 % deeper than that defined using Eq. 9.24. Assuming L = 4000 mm, the
required depth using Eq. 9.38 is 350 mm.

The main advantage of this deflection control procedure is that it allows to identify the
implications of having excess reinforcement at service load levels. The procedure gives
benefit to excess reinforcement since a strain reduction (which would be obtained as pn

required for strength increases) leads to a higher L/d values.

9.2.4 Simplified Procedure based on Curvature Integration

This procedure is based on the concept that deflections can be evaluated by integrating
curvatures. The procedure reported in this section does not account for concrete’s tension

stiffening effect.

Assuming a parabolic curvature distribution along a continuous span, the midspan

deflection, 4,,, evaluated from curvature estimates at three sections is exactly
L2

A, ="y, +10y, +v,) [9.37]
96

where L is the span, y, and y; are the curvatures at the supports and y, is that at
midspan. In Eq. 9.37, the curvature is considered positive when the strain is larger at the

bottom face than at the top face of the member.

Figure 9.6 shows assumed strain distributions at midspan and at a typical interior support

in a continuous span. At midspan, the curvature is calculated as

& & 4 E.. +&
l//m _ ( fsm )= Ssm — csm Sfsm [938]
d{l-x d
m dl1- Eosm
gcsm + gfsm

where x,, is the ratio of the neutral axis depth to the flexural depth at midspan, &, is the

midspan concrete strain and &, is the midspan FRP strain, all measured at service load
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levels. As an approximation, it will be assumed that the FRP strain at the support can be

expressed as a multiple of the FRP strain at midspan. The curvature at the support is

E 4 ke, £ Eom T KE 4
!//s = Sfos - Ssm — fsm — csm Jsm [939]
d(l-x,) d(i-x,) £.s d
dl1- css
£, ke .

where x; is the ratio of the neutral axis depth to the flexural depth at the support, & is the
concrete strain in the extreme fibre at the support, &, is the FRP strain at the support,
both at service load levels, and £ is a factor defined as the ratio of & to & . Substituting
Eqgs. 9.38 and 9.39 into Eq. 9.37, and assuming y, = v, i.e. interior conditions,

L2

A = =216, T ke, )+100E,, o 9.40
” 96d[ (&‘m + ke, ) (.9 +E&, )] [ ]

Since a variation in the concrete strain does not lead to a significant curvature variation,

let us further assume that g, = &, . This results in

2
A, =5 [8e, +e,, (10-20)] [9.41]
96d

Figure 9.7 shows deflection calculations based on Eq. 9.41 for a continuous interior span.
Deflections are expressed as a factor of 96d/L°. Consistent with previous findings, for
members with comparable L and d values, the midspan deflections increase with the
midspan strain. The figure also shows that as the FRP strain at the support increases
relative to that at midspan, the rate of midspan deflection growth reduces. The reduction
is relatively independent of the midspan FRP strain level. For instance, for &, = 0.002,
the midspan deflection reduction by increasing & from 1.0 to 2.0 is 20 %. The reduction

for the same change in k for &g, = 0.003 is only 22 %.

According to Eq. 9.41, midspan deflections could be slightly reduced by allowing &
values in the order of 1.5 to 2.0. However, this is impractical for two reasons: i) the case &
= 2.0 represents full fixity conditions which are rarely achieved in prototype elements, ii)

allowing high strains at supports may not be adequate when using non-yielding
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reinforcement that is susceptible to creep rupture, and iii) allowing high strains at

supports may have negative implications on the deformation of adjacent spans.

In search of a simple indirect deflection control procedure, Eq. 9.41 can be re-arranged as

[9.42]
d L (8¢, +&4, (10-2K))

Figure 9.8 shows the effect of FRP strain at midspan on maximum L/d ratios for k values
of 1.0, 1.5 and 2.0. The curves have been plotted for an allowable midspan deflection of
L/360. Consistent with previous procedures, an increase in the FRP strain at midspan is
only possible at the expense of deepening the slab for a given span length. The effect of
k is not significant. This suggests that shaping the distribution and the amount of slab
reinforcement is not as effective as the slab thickening option. However, as k increases,

the deepening penalty on FRP-reinforced slabs slightly reduces.

9.3 Concluding Statements

This chapter shows that indirect deflection control procedures originally envisaged for

slabs with steel reinforcement can be adopted to control deflections in slabs reinforced

with FRP rebars or grids.

The definition of a maximum span-depth ratio in a slab with FRP reinforcement is
affected by the level of FRP strain at a crack at service load level. The proposed
deflection control procedures show that, for the case of comparable spans, slabs with FRP

need be thickened to satisfy the same maximum deflection-span limit for slabs with steel.

If the tension stiffening effect of concrete is accounted for in the deflection control
procedure, the slab thickening penalty is somewhat softened, specially at load levels
roughly greater than that at first cracking. Load conditions in this range are typical in
residential and office building slabs. In terms of deflection control, the slab thickening

penalty also reduces as the bond strength of the FRP reinforcement increases.
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Experimental evidence studying deflections in FRP-reinforced concrete members under
uniformly distributed loads is needed to examine the quality of the proposed procedures.

Tests on both simple and continuous spans are desired.
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10 Punching of Column-Supported Two-way Concrete Slabs
Reinforced or Strengthened with FRP

10.1 Objectives

The main objectives of this chapter are: i) to evaluate existing design procedures for
determining the concentric punching capacity of concrete slabs with internal FRP
reinforcement, ii) to propose an empirical model for predicting the punching capacity of
slabs with internal FRP reinforcement, and iii) to propose two mechanical models for

predicting the punching capacity of slabs with internal or external FRP.

10.2 Punching of Concrete Two-way Flat Plates with Internal FRP
Reinforcement

10.2.1 Evaluation of Existing Design Procedures

The literature review presented in chapter 4 showed that most researchers have modified

E,
existing punching capacity equations by introducing the elastic modulii ratio —~ as a
E

R

factor. In this section, most of the attention will be centred on the modifications proposed

by Matthys and Taerwe (2000¢) and El-Ghandour ef a/ (1999).

The design equation proposed by Matthys and Taerwe (2000c) is

b2
(100 & J 3
pf E fcm
: b,d [10.1]

Vr,Ghent = 136 d%

where f.,, is the mean compressive strength of concrete at the time of testing.

El-Ghandour et a/ 's modification to the ACI 318-99 punching shear design equation is

Y
V, 9oy =0.33f [EL] b,d [10.2]
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Equations 10.1 and 10.2 will be compared with the test results reported in this study
(Series I slabs GFR-1, GFR-2 and NEF-1) as well as with those reported by Matthys and
Taerwe (MT Series), El-Ghandour er al (EPW Series), Banthia ef al (BAM Series) and
Ahmad et al (AZYX Series). The geometric and material properties of test specimens
under consideration are given in Appendix E. The test results reported by Ahmad et ol
(1994) are used with caution because these slabs were reinforced with 3-D FRP grids.
Since the out-of-plane FRP layer in a 3-D grid acts as shear reinforcement, this may lead
to punching shear capacity enhancements that may not be accurately predicted by means

of ordinary punching shear design procedures.

Because Matthys and Taerwe’s slabs were tested at least 237 days after casting, some
account must be made for the aging effect on the mean compressive strength of concrete,

Jem. Based on the recommendations of CEB/FIP MC90, Matthys and Taerwe (2001) use

Jon @) = PO [ [10.3]

where S is a time-dependent coefficient, and £, is the mean compressive strength of

concrete at 28 days, which will be assumed equal to /.. The £.. coefficient is defined as

B =l P77 [10.4]

where p is a coefficient that depends on the type of cement (assumed equal to 0.25 for
normal and rapid hardening cements) and ¢ is the time in days at which the concrete

strength is evaluated.

Figure 10.1 shows the effect of the concrete compressive strength, f°;, on the punching
shear predictions of slabs with FRP using the format of Eq. 10.1. The points represent the
experimental failure loads for each test normalised with respect to Eq. 10.1 without

including the term £, in the numerator of Eq. 10.1. The solid line represents a best fit of

the reported data. The curve is defined by an equation of the form y = (kv f. )% . The

constant k, is defined so that the average test to predicted ratio for the » test results

reported in the literature calculated according to Eq.10.5 be equal to 1.0.
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According to Fig. 10.1, an increase in the concrete compressive strength leads to an
increase in the punching capacity. Raising f°. to the one-third power, as originally
proposed by BS 8110-95, and as has been suggested by Matthys and Taerwe (2000c),
adequately describes the trend of the available body of data. It is worth noting however,
that there is a lack of experimental results between the 50 and 100 MPa concrete strength
range. As a result, the influence of this parameter is tremendously affected by the single
test result located in the far right of the plot. This result corresponds to a high strength
concrete slab with hybrid Carbon-Glass FRP (slab H1) tested by Matthys and Taerwe
(2000c). There is a need to conduct tests on slabs with concrete strengths ranging from 50
to 100 MPa to further validate the observed effect of the compressive strength of
concrete. However, the fact that the concrete strength effect on the punching capacity of
high-strength concrete slabs with ordinary steel reinforcement is similar to that shown in

Fig. 10.1 permits to expect a similar effect for slabs with FRP.

Figure 10.2 shows the effect of the FRP reinforcement ratio, pr, on the punching capacity
of slabs with FRP. The points represent the observed failure load normalised with respect
to Eq. 10.1 without including the term 100 prin Eq. 10.1. The solid line is a best fit for
the data. The constant £, of the cubic equation is defined according to Eq. 10.6.

> Vo), =1.0 [10.6]

1

! E ). )
1.36/ 100k, p,| =L £, | b,d

d4
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According to Fig. 10.2, and consistent with most European Standards for the case of
steel-reinforced concrete slabs, the punching capacity of a slab with internal FRP
reinforcement increases with the amount of FRP reinforcement. The figure shows that
Matthys and Taerwe’s assumed effect for the FRP reinforcement ratio (raised to the one-

third power) is consistent with the trend displayed by the existing test results.

Figure 10.3 illustrates the slab size effect on the punching capacity predictions of Eq.
10.1 for slabs with FRP. The points indicate values of experimental punching capacities
normalised with respect to Eq. 10.1 without accounting for the flexural depth d in the
denominator of Eq. 10.1. The size effect according to the format of Eq. 10.1 is
represented by the solid line which is a best fit for the reported data. The constant £, is
defined so that

> Vo) =1.0 [10.7]

1
I Ef ‘ 3
136/ 100p,| L |£. | b,d
ES

(kvd)i

i

As shown in Fig. 10.3, the effect of the slab size on the punching capacity of slabs
reinforced with FRP based on the available body of data is not well defined. This is
because the majority of results reported in the figure result from tests conducted on slabs
that are relatively thin (d < 142 mm) whereas thicker slabs have not been tested. Based on
the available test data reported to date, it will be assumed that the size effect for the

punching capacity assessment of slabs with FRP reinforcement is not marked.

E
The effect of the elastic modulii ratio, —Z, on the shear capacity predictions is shown in

E

s

Fig. 10.4 according to Eq. 10.2 (El-Ghandour et al , 1999) in light of the EPW, MT and

series I test results. The ordinates show values of experimental punching capacities
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E.
normalised with respect to Eq. 10.2 by isolating the effect of the —_ ratio. The assumed
E

§

E
effect of the —L ratio (raised to the one-third power, as proposed by El-Ghandour et al ,
E

s

1999) is shown as a lower bound. The reinforcement ratios for the lightly reinforced slabs
are indicated in the figure. The rest of the slabs have greater reinforcement ratios. These
are not shown for neatness. For instance, the four hybrid FRP slabs tested by Matthys and

Taerwe (2000c) have reinforcement ratios of either 1.26 or 3.76 %.

E
The experimental evidence in Fig. 10.4 indicates that an increase in —Z leads to greater
E

test to predicted ratios. However, the predictions based on the assumed lower bound are
overly conservative for slabs with greater FRP reinforcement ratios. This occurs because
Eq. 10.2 does not account for the effect of the FRP reinforcement ratio on the punching
capacity of slabs with FRP. The fact that El-Ghandour et al’s proposed modification to
the ACI 318 equation penalizes the use of FRP in slabs brings a serious limitation to their
proposed design procedure because most real life slabs with FRP need to be over-

reinforced to comply with serviceability requirements.

E
Figure 10.5 shows the effect of the elastic modulii ratio,— , on the punching capacity
E

predictions for the available experimental data based on Eq. 10.1. The slabs with GFRP
and HFRP are circled. All others have CFRP reinforcement. The points indicate

experimental punching capacities normalised with respect to Eq. 10.1 ignoring the term

E.
L in the denominator of Eq. 10.3. The solid line, which is a best fit of reported values,
E

5

5
is of the form y = [kv —f] where £, is a constant evaluated according with Eq. 10.8.

E

s
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2 Viiest):
Z ( u lest ), =1.0 [108]

1

| E )
136/ 100p, | k, —L |£. | b,d
ES

1

d4

i

E.
Figure 10.5 shows that the —Z effect is now simulated better than it was in Fig. 104
E

s

because Eq. 10.1 accounts explicitly for the py effect. To improve the accuracy of the

predictions, an extra curve fit is shown in Fig. 10.5. This curve (shown as a dashed line)

/s
varies with the square root of the elastic modulii ratio. This term, 1.36 [—/J , also
E

R

provides an accurate representation of the trend exhibited by the test results.

10.2.2 Proposed Empirical Model

The previous empirical evaluation demonstrates that the effect of intervening variables on
the punching capacity of slabs with internal FRP reinforcement is reasonably handled by
the design equation proposed by Matthys and Taerwe (2000c). However, since the
available experimental data do not strongly support the existence of a size effect, and

E
accounting for the fact that the —L effect can be better represented as shown in Fig.
E

N

10.5, the following empirical equation is proposed:

Y | E
Vo =277(p, 1) /E—f b.d [10.9]

A
where pris the FRP reinforcement ratio, o ;= =L | calculated as in BS 8110-95 and b, is
bd

the critical perimeter, calculated at 1.5 d away from the column face. As in BS 8110-95,

the control surface is rectangular regardless of the column shape.
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10.2.3 Comparison of the Existing and Proposed Empirical Models

Table 10.1 shows test to predicted ratios for available test results using the following

existing or proposed design provisions:

1) Current ACI 318-99 design equation.
V, =033.f b,d [10.10]

2) Matthys and Taerwe’s Eq. 10.1.
3) El-Ghandour et al's Eq. 10.2.
4) Proposed Empirical Eq. 10.9.

The properties of the test specimens examined are shown in Appendix F. In the equations
expressed in terms of /7., (Eq. 10.2, 10.9 and 10.10), this variable will be interpreted as
the mean compressive strength of concrete, f.m, at the time of slab testing. The
modification of the BS equation proposed by El-Ghandour et al (1999) has not been
included in the analyses because the treatment of influencing variables in this equation is
conceptually similar to that in Eq. 10.1. The design provisions in CSA A23.3-94 are not

examined because of their conceptual similarity with the ACI 318-99 equation.

Table 10.1 shows that the effect of the FRP reinforcement ratio and the FRP elastic
modulus plays a significant role in the punching capacity assessment of two-way slabs
with internal FRP reinforcement. The following are the most representative observations

associated to each of the design equations under scrutiny.

The predictions according to ACI 318-99 overestimate the punching capacity of lightly
FRP-reinforced slabs, e.g. EPW and Series I slabs. Nevertheless, it is worth noting that
prototype FRP-reinforced concrete slabs would be rarely under-reinforced. In fact, the
ACI predictions for over-reinforced slabs with FRP are more conservative, as indicated
by the predictions of the MT slabs with stiffer mats; the predictions, however, are
considerably scattered, with a coefficient of variation of 36.8 %. The scattered nature of

these predictions is consistent with the trend of the ACI punching shear design equation
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applicable to slabs with steel reinforcement, as noted by Regan and Braestrup (1985) and
Braestrup (1989). The modification of the ACI equation proposed by El-Ghandour et al
(1999) leads to much more scatter. This is because the proposed modification considers
only the effect of FRP’s elastic modulus but disregards that of the FRP reinforcement

ratio on shear capacity predictions.

The equation proposed by Matthys and Taerwe (2000c) renders accurate punching
capacity predictions. However, it is worth noting that this equation significantly
underestimates the capacity of the slabs with CFRP NEFMAC mats tested by Matthys
and Taerwe (2000c).

From a statistical viewpoint, Eq. 10.9 is the most accurate of all with a mean test-to-
predicted ratio of 1.00 and a coefficient of variation of 12.2 %. It gives more realistic
capacity predictions for the slabs with CFRP grids in the MT series compared to Eq.
10.1's predictions. However, Eq. 10.7 tends to be very conservative for slabs with flexible
mats, as is the case for all the EPW series. Nevertheless, it is worth noting that slabs with

low FRP content will be rarely found in real life.

One important observation from Table 10.1 is that all of the equations that account for £y
and pr tend to render slightly unsafe predictions for the slabs with 3-D grids tested by
Ahmad ef al (1993). In particular, Eq. 10.7 gives the most liberal predictions. This seems
somewhat misleading because one would expect the vertical grid to act as shear
reinforcement and thereby enhance the punching capacity of the slabs. The reasons for
this discrepancy are likely related to the particular bond characteristics of the 3-D

reinforcing grids. Examination of this aspect falls beyond the scope of this study.

10.2.4 Proposed Mechanical Model
10.2.4.1 Fundamentals

A thorough review of the fundamental concepts behind Alexander and Simmonds' strip
model for punching presented in chapter 3 reveals that the model can be modified to

predict the punching capacity of concrete slabs with internal FRP reinforcement by duly
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accounting for FRP’s brittle-elastic behaviour, reduced stiffness and distinctive bond
behaviour. In this study, most of the attention will be concentrated on two-way slabs with

FRP deformed bars and 2-D grids, placed orthogonally in the slab.

According to the original strip model, the amount of load to be transferred from the slab
quadrants to the radial strips strip is constrained by the appropriate limits of shear transfer
in one-way slender members. These limits are significantly affected by the ability of the
slab reinforcement to develop tensile force gradients. In a slab with internal FRP
reinforcement, these gradients are affected by the distinctive material properties

associated to FRP.

To complete the load transfer process, the radial strips transfer the load to the supporting
column by arching action. In FRP-reinforced slabs, this load transfer mechanism is
constrained by either the compressive strength of the joint or the rupture of the through-
joint FRP reinforcement. A compressive failure is expected to govern the flexural
capacity of the radial strips because, due to the need to comply with serviceability

requirements, most FRP-reinforced flat plates will likely be over-reinforced.

The original strip model provides a lower bound estimate for the punching capacity of an

interior slab-column connection as

P =8 M w [10.11]

where M; is the total flexural capacity of a radial strip framing into the column and w is a
lower bound estimate of the one-way shear that can be delivered by the adjacent slab
quadrant to one side of the strip. Recognizing the elastic-brittle nature, reduced stiffness
and inferior bond strength of FRP reinforcement, there is a need to reevaluate M, and w to

determine the punching capacity of slabs with internal FRP reinforcement.

10.2.4.2 Calculation of the M, Term in Slabs with FRP Reinforcement

The total flexural capacity of a radial strip, M;, depends on the amount and stiffness of

the FRP reinforcement and the quality of concrete. The evaluation of M; is based entirely
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on conventional principles of structural concrete design. There is no empiricism
whatsoever associated with the equations. The total flexural capacity is the sum of the
negative and positive flexural capacities. To calculate the last two, it is necessary to
determine whether the strip is under-reinforced or not in both negative and positive

moment regions.

Theoretically, a radial strip is considered to be under-reinforced if

Pr = Pria [10.12]

. . ) . ) A .
where p5 is the reinforcement ratio of the radial strip, p 5= % d’ and ¢, is the

column width. Neglecting the contribution of integrity steel acting as compression

reinforcement, the balanced FRP reinforcement ratio is given as

fo| _ &
P = Lo L [10.13]
fu gcu + gfu

For under-reinforced conditions, the total nominal flexural capacity of the strip is
Ms = Ms,neg + Ms,pos = pfs,neg f/u .]dz Cw + pj&,pos ffu ]d2 Cw [1014]

where f3, is the ultimate strength of FRP.

To the author's best knowledge, no single punching shear failure among the tests reported
in the literature for lightly reinforced slabs with FRP has been reportedly caused by FRP
rupture at the face of the column. This may raise some doubts on the adequacy of Eq.
10.14 to estimate the M .., term. However, it seems plausible to assume that the level of
FRP stress at punching approaches the tensile strength of FRP. Unfortunately, the
measurement of strains in the FRP reinforcement at the face of the column has been

rarely reported by researchers.

For over-reinforced radial strips, the strip failure mode is governed by concrete crushing.

As a result, both positive and negative flexural strip capacities are calculated as
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a
Mx,posorneg =Afff (d_gj [10.15]

As shown in chapter 8, the depth of the rectangular compressive stress block, a, in an

over-reinforced section is

p.E.&g.d '
a 2&%{—["‘2—— 1+ 4al¢cfc _1 [1016]
2¢ca1fc ¢sprfgcu

and the FRP stress at punching, /= 75, is

E.e '
f/p | S e 1+%_1 [10.17]
2 prfgcu

To evaluate the negative flexural capacity of the strip, &, may be assumed to be greater
than the 0.0035 value adopted by CSA S806-00 and CSA A23.3-94 depending on the
amount of confinement acting on the bottom part of the slab-column joint. For instance,
the test results from one-way slabs failing in flexure due to concrete crushing reported by
Matthys and Taerwe (2000c) show that the peak compressive strain at failure is in the
order of 0.005 mm/mm. This strain limit could be reached in two-way slab-column joints
taking into account the greater confinement conditions applied on this type of

connections.

Recognizing the reduced confinement conditions in positive moment regions, a value of
0.0035 is recommended at these locations. Note that the assessment of the positive
flexural capacity is not required when dealing with isolated slab-column specimens

unless there is rotational restraint applied on the slab edges.

10.2.4.3 Calculation of the w Term in Slabs with FRP Reinforcement

In strip model jargon, the w term controls the amount of shear that can be transferred by
beam action from the quadrants to the radial strips. In order for beam action to develop, a

force gradient between two points along the FRP reinforcement in the slab quadrant
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adjacent to the radial strip needs be developed. Bar force gradients are generated through

bond stresses between concrete and the reinforcement.

The description of the mechanics of bond-slip between different FRP types and concrete
given in Chapter 7 showed that bond between FRP reinforcement and concrete is usually
inferior to that between steel deformed bars and concrete. Since a reduction in bond leads
to a reduction in the ability to generate one-way shear, the term w for slabs reinforced

with internal FRP reinforcement becomes

w,, =kw=k, (0.167J7; d) [10.18]

where k, is a constant less than unity, and w is that originally derived by Alexander and
Simmonds (1991) for steel-reinforced concrete slabs. In accordance with chapter 8, a
lower bound for the flexural bond developed by FRP reinforcement is about half of that
developed by steel. As a result, &, = 0.5 provides a lower bound for the amount of shear

transferred by beam action by perimeter bars in slabs with internal FRP reinforcement.

The amount of available test results to propose a more accurate definition for the w term
in two-way slabs reinforced internally with FRP is insufficient. It is necessary to conduct
experimental tests examining the one-way shear transfer mechanism in i) slabs with
AFRP and CFRP, ii) slabs with FRP reinforcement of different texture compared to that
of C-bars, and iii) high-strength concrete slabs with FRP. This is just a set of possible

case scenarios.

10.2.4.4 Evaluation of Modified Strip Model for Punching of Slabs with
Internal FRP Reinforcement

The last column of Table 10.1 shows test to predicted ratios of punching shear capacity

predictions using the modified strip model in light of available tests reported in the

literature. The results indicate that the proposed modification leads to safe and accurate

punching capacity predictions, with an average mean test to predicted ratio of 1.25 and a

coefficient of variation of 14.2 %. The degree of accuracy compares favourably with the

empirically derived equation recommended by Matthys and Taerwe. The model gives

288



much more accurate predictions than the current ACI 318 design provision. It also gives
safe predictions for the slabs tested by Ahmad et al (1993) and leads to more realistic
predictions for the C series slabs tested by Matthys and Taerwe compared to any other

procedure.

10.3 Punching Shear of Concrete Slabs Strengthened with FRP Sheets

10.3.1 Proposed Model

Figure 10.6 shows a plan view of a slab-column connection reinforced externally with
orthogonal FRP sheets. The figure shows the slab quadrants and the four radial strips
framing into the column. The sheets, of width b, are placed a distance g away from the
column face. According to Fig. 10.6, the FRP strengthening layout used in test ER2-CS1
is defined by g = 0 whereas that in test ER3-CS2 is defined by g = 425 mm. In both tests,
br=250 mm.

The proposed mechanical model to predict the punching capacity of slabs with bonded
FRP sheets is based on Alexander and Simmonds’ strip model for punching. According
to this model, the adhesion of FRP sheets in a cruciform array should affect the load
transfer from the slab to the column in two major respects: i) the FRP sheets may
contribute to both the flexural stiffness and capacity of the radial strips, and ii) the FRP
sheets may interact with the internal slab reinforcement in the process of transferring

shear from the quadrants to the radial strip by one-way beam-action.

The results of series II slabs reported in Chapter 7 showed that the amount of CFRP used
in the tests have a greater influence on the development of force gradients by the internal
slab reinforcement than on the flexural capacity of the radial strips. The bar force
gradient plots for the internal reinforcing steel bars placed immediately below and
adjacent to the sheets show force gradients in the order of 40 % less than those in the
virgin slab at similar load levels. The rehabilitation scheme of ER3-CS2 was particularly
counterproductive because it affected the force gradient development in all the bars

located inside the CFRP banded region around the column. The experimental results also
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show that the force gradient provided by the sheets does not compensate for that lost in

the internal reinforcement.

To apply the strip model to predict the concentric punching capacity of connections with
FRP bands bonded on the top of the slab, it is then necessary to reevaluate the intensity

and the distribution of the forces acting on the radial strip.

Figure 10.7 shows free body diagrams of one-half of a single radial strip framing into the
column for three cases: i) FRP bands passing by the column face, and ii) FRP bands
located away from the column but within the loaded length of the strengthened slab,
defined as /’, and iii) FRP bands away from the column, installed so that their outer edges
coincide with I°. The case of banded sheets located outside the loaded length I’ is not

considered in this study.

The non-uniformity of the loads reflects the effect of the FRP bands as a function of their
position. For sheets passing by the column face, the load wy, is assumed to act over a
width equal to by + 0.5d. Since bonding of sheets away from the column affects the
behaviour of all reinforcing bars located inside the banded region, the load Wy, spreads as

shown in Figs. 10.7b and 10.7c.

In the original strip model formulation, the loaded length of the radial strip is dependent
on the flexural capacity of the strip, M, and the uniformly distributed load acting on the
radial strip, w. For the case of connections with bonded sheets, the loaded length, [, it
will be assumed that the FRP contribution to M, is negligible. To determine Wy , results
from chapter 7 show that the overall effect of the sheets is more detrimental than
beneficial. The reduction in the internal bar force gradients is in the order of 40 %
whereas the sheets are able to restore only about 25 % of the gradient that a single bar is
capable of supplying. To represent the detrimental effect of the sheets, the term Wy in

slabs with external FRP reinforcement can be conceptually defined as

w,, =k, w=k, (01677 d) [10.19]
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where k, is a factor less than unity, that varies depending on the location of the sheets.

For the first case (Fig. 10.7.a), since the sheets reduce the internal force gradient in the
bars located within b + 0.5d, the net value of wy, acting over this width, expressed as a
‘weighted average of the sheets detrimental and beneficial effects, assuming by =250 mm

and an average d "= 109 mm, is

(b, +0.5d)-0.4(pb, +0.5d)+0.25b, s
b, +0.5d

[10.20]

w,l

For case 2 (Fig. 10.7b) and 3 (Fig. 10.7¢), since the sheets affect the behaviour of all the
bars located within the distance g + b7+ 0.5d from the column face, the weighted average

assessment leads to &, , = 0.68 and k, ; = 0.68 as well. Such an equality is fortuitous.
The loaded length, I’ , also varies according to the sheets location. For case 1, from
vertical equilibrium of forces, and considering that a single radial strip has two faces,
P, =2['w—(b, +0.5d)w-w,,)] [10.21]

To solve for /’, it is necessary to consider moment equilibrium and make use of the

principle of superposition. This leads to

2 b, +0.5d)
M, -2 +2(w—wfe)(—/———)—=0 [10.22]
2 ’ 2
Solving for I’ from Eq. 10.22 results in
.M+ (w-w, )b, +0.5d)
w

Substituting Eq. 10.25 into 10.21, and recognizing that four radial strips frame into an
interior column gives the punching capacity of a connection with bonded FRP sheets

passing by the column face as

P =3 [\/(M +w=w, )b, +0.5d) Jw (b, +0.5d)w-w,, )} [10.24]
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Following the same procedure, for case 2,

/o \/MS + (w— W, )(g +b, + O.Sd) 10.25]
w

and

P =8 [\/(M +w=w, Ng+b, +0.5d) Jw—(g+b, +0.5d)(w—w,, )] [10.26]

For case 3, since the load wy. 1s uniformly distributed over the entire loaded length /[,

['= [s [10.27]
Wf’e

and
P =8,/Mswf,e [10.28]

Table 10.2 compares the load predictions for series II slabs using the proposed model and
ACI 318-99 and BS 8110-95. The strip model for punching has only been used to predict
the response of virgin slab ER1-VS. According to the sheet layout, tests ER2-CS1 and
ER3-CS2 fall in the first and second cases shown in Fig. 10.7, respectively.

The results show that both ACI 318-99 and BS 8110-95 punching shear capacity
predictions are conservative. However, these design provisions do not recognize the
effect that the FRP bands had on the behaviour of the internal slab reinforcement. The
strip model gives, in turn, a reasonable capacity prediction for ER1-VS. The proposed
modification to the strip model yields safe and more accurate predictions for the two

slabs with bonded sheets.

Additional test results are required to further validate the proposed design model. Tests of
slab panels of realistic size and subjected to realistic boundary conditions are preferred.
For the case of bonding FRP bands to the top slab surface in cruciform patterns, bands
wider than those used in this study are desired. The effect of bonding FRP sheets on the

bottom slab surface needs also be investigated. According to the strip model
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fundamentals, this would lead to an increase in the flexural capacity of the radial strips

and would therefore lead to an increase in the shear capacity of the connection.
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Table 10.1 Test to Predicted Ratios : Punching Tests on Slabs
with Internal FRP Reinforcement

Matthys
Ref. Slab Vi test ACT & El-Ghandour Eq. Mod.if.
(kN) 318-99 | Taerwe et al 10.9 Strip
(2000¢) (1999) Model
(Eq. 10.1) (Eq. 10.2)

CFRC-SN1 93 1.30 1.07 1.57 0.96 1.38
CFRC-SN2 78 1.07 0.88 1.29 0.79 1.13

AZYX | CFRC-SN3 96 1.18 1.03 1.43 0.93 1.29
CFRC-SN4 99 1.26 1.09 1.52 0.98 1.38

BAM I 65 0.90 1.20 1.13 1.13 1.45
II 61 0.75 1.04 0.94 0.98 1.28

Cl 181 1.22 1.51 1.58 1.25 1.39

cr 189 0.95 1.33 1.24 1.10 1.17

C2 255 1.77 1.36 2.27 1.12 1.54

c2’ 273 1.42 1.22 1.81 1.01 1.32

C3 347 1.66 1.60 2.15 1.24 1.61

MT c3 343 1.26 1.37 1.63 1.06 1.28
CS 142 1.03 1.19 1.14 0.91 1.14

cs’ 150 0.81 1.05 0.90 0.81 0.96

H1 207 0.79 1.19 1.38 1.15 1.17

H2 231 1.75 1.16 2.98 1.13 1.43

H2’ 171 1.83 1.03 3.11 1.00 1.45

H3 237 1.22 1.12 2.03 0.99 1.16

H3’ 217 1.50 1.19 2.47 1.04 1.45

SG1 170 0.46 1.03 0.76 0.87 1.13

SC1 229 0.61 1.09 0.74 0.79 1.30

EPW SG2 271 0.62 1.13 1.02 0.96 1.14
SG3 237 0.67 1.14 1.10 0.97 1.12

SC2 317 0.91 1.18 1.11 0.86 1.24

GFR-1 217 0.68 1.17 1.23 1.08 1.03

Series | GFR-2 260 0.83 1.12 1.49 1.04 1.08
I NEF-1 206 0.58 1.03 1.10 0.98 0.87
Mean : 1.07 1.17 1.52 1.00 1.25

G 0.397 0.155 0.622 0.122 0.178

CoV (%) : 36.8 13.2 40.8 12.1 14.2
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Table 10.2 Test to Predicted Ratios : Series II Slab Tests

Test | Vu e | ACI BS Strip | Prop. | (T/P) | (T/P) | (T/P) | (T/P)
(kN) | 318-99 | 8110-95 | Model | Model | ACI | BS | Strip | Prop.

&N) | KN) | &N) | &N) Model | Model

ERI-VS | 540.7 | 399.8 357.4 495.6 N/A 1.35 1.51 1.09 N/A
ER2-CS1 { 512.4 | 430.8 375.7 N/A 4758 | 1.19 1.36 N/A 1.08
ER3-CS2 | 4759 | 405.1 360.6 N/A 408.6 | 1.17 1.32 N/A 1.16

Notes: 1. Calculations based on p~ = 0.92 % for all slabs, and measured average flexural
depths d =109 mmand d " = 119 mm.

2. Material properties for the slabs are reported in Table 4.4,

3. For ER2-CS1 and ER3-CS2, the modified strip model calculations rendered values

of M;=38.7 and 38.1 kN.m, £, = 0.8 and 0.68, and /’= 616 and 741 mm,

respectively. For the M, calculations, the positive moment resistance of the radial
strip was evaluated assuming A, = 400 mm? (area of the two integrity steel bars).
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11 Conclusions and Recommendations

11.1 General

In this study, numerous aspects of the behaviour of one and two-way concrete slabs
reinforced with FRP bars, grids and sheets have been examined. In the following,
conclusions reached regarding the flexural, shear and deformation behaviour of these

systems are presented.

11.2 Flexural Behaviour

11.2.1 Slabs with Internal FRP Reinforcement

1. The tension stiffening effect in one-way concrete slabs reinforced internally with FRP
bars is proportionally more significant than that in steel-reinforced concrete slabs.

Ignoring this effect may lead to a deflection overestimate.

2. The tension stiffening effect is negligible in one-way concrete slabs reinforced with

FRP grids.

3. Crack control in slabs reinforced with FRP bars and grids is as relevant as deflection
control. Slabs reinforced with internal FRP rebars and grids exhibit strain localization
at cracks for tight reinforcing mats (sy < 100 mm) and thin slabs (% < 200 mm). The
problem is particularly critical in slabs reinforced with GFRP since this material is

prone to creep rupture.

4. The strain localization problem increases as the bond strength of the FRP

reinforcement increases.
5. The strain localization increases as the slab thickness reduces.
6. To allow wider cracks in slabs reinforced with GFRP simply because of its superior

corrosion-resistant nature is not prudent. The appropriateness of a given crack width
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10.

11.

302

limit must be judged by ensuring that the FRP strain at a crack will not exceed a

critical limit.

The tension chord model provides a comprehensive description of the tension
stiffening effect and reasonably models the strain localization effect by reflecting the
influence that the properties of FRP reinforcement have on the cracking behaviour of

one-way concrete slabs at service load levels.

The relationship between crack widths and strains at cracks proposed by Hall (2000)
is not independent of the type of reinforcement. Moreover, for the case of FRP-
reinforced members, the strain increase in the reinforcement resulting from a crack
width increase is not linear relative to the crack width ratio. The relation depends on

the elastic modulus, bond strength, and amount of FRP reinforcement.

The spacing of flexural cracks is not always governed by bond between the
reinforcement and concrete. This applies to both FRP and steel-reinforced concrete
members. The disturbing effect of stress raisers such as stirrups or any other form of
transverse reinforcement, and the tendency of a member to accommodate
deformations due to imposed load are often more dominant than the bond interaction

between the reinforcement and concrete.

A procedure based on the tension chord model was developed to predict crack widths
in members where the crack spacing does not result from the bond interaction

between the reinforcement and concrete,

For comparable spans, a slab with internal FRP reinforcement needs to be thickened
to display a deflection at service level similar to that reached by a slab with steel
reinforcement. The slab thickening reduces as the bond strength of the FRP

reinforcement increases.



11.3 Punching Shear Behaviour

11.3.1 Slabs with Internal FRP Reinforcement

12.

13.

14.

15.

16.

Concrete two-way slabs with non-yielding reinforcement display the same kinematic
features that the Kinnunen and Nylander model identifies for steel-reinforced

concrete slabs.

The punching failure of concrete slabs reinforced with internal FRP bars and grids is
significantly affected by the flexural stiffness of the reinforcing mat. For a given slab

thickness, the punching capacity increases with the top mat stiffness.

The punching capacity of slabs with internal FRP reinforcement is also affected by
the quality of bond between FRP and concrete. The use of FRP grids leads to more
slip than that associated to GFRP C-bars and, therefore, to a less stiff response in the
service life of a structure. At ultimate, a slab with GFRP NEFMAC grid displays a
more gradual load drop than does a slab with GFRP C-bars.

Test results from series I slabs suggest that concrete crushing does not appear to be a
dominant factor in determining the source of punching shear failure in either FRP or

steel-reinforced concrete two-way slabs.

The strip model for punching proposed by Alexander and Simmonds (1991) for steel-
reinforced concrete slabs was modified to predict the punching capacity of slabs
reinforced with internal FRP bars or grids. The proposed modification reasonably
predicts the punching shear capacity for the totality of tests reported in the literature,

to date,

11.3.2 Slabs with External FRP Reinforcement

17.

Bonding FRP sheets in cruciform patterns to the slab top surface does not necessarily
lead to an increase in the punching shear capacity of two-way concrete slabs. The

FRP sheets reduce the force gradients in the internal slab reinforcement and impose

303



18.

severe shear stresses on the internal reinforcement-concrete cover interface which
eventually triggers the punching failure. The sheets’ effect becomes more significant

the farther away the sheets are bonded relative to the column.

The strip model for punching proposed by Alexander and Simmonds (1991) for slabs
with internal steel reinforcement was modified to predict the punching capacity of
slabs reinforced with bonded FRP sheets in cruciform patterns. The modified model

accurately predicts the shear capacity of the two tests reported in this study.

11.3.3 Miscellaneous Rehabilitation Techniques

19.

20.

Concrete patching is an inexpensive repair technique that seems feasible for repairing

concrete slabs that have experienced punching failures.

For the case of interior slab-column connections, the concrete patch may restore the
full virgin slab punching capacity and even increase it, if the patch extends at least

200 mm beyond the column face at the lower joint portion and an almost vertical

junction with the old concrete is provided.

11.

4 Design Recommendations

11.4.1 Slabs with Internal FRP Reinforcement

1.
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To avoid strain localization problems at cracks, the minimum recommended thickness
for concrete flat plates slabs with tight mats of GFRP C-bars and NEFMAC grids is
200 mm. To ensure proper concrete placement, the minimum FRP mat spacing shall

be 100 mm.

The serviceability design philosophy of ISIS M04-00 and Hall (2000) which ensures
that FRP strains at service level remain below a maximum limit relies heavily on an
unrealistic crack width limit definition. The selected FRP strain level is, in turn, used
later to select the appropriate slab thickness. Crack widths and the FRP strain at the

crack can be predicted according to the model proposed in chapter 8.



3. Manufacturers of future generations of FRP deformed bars prone to creep rupture,

such as GFRP, should aim at producing reinforcing elements with reduced bond

enhancing features in order to attenuate the strain localization effect.

This study supports the model presented by Hall (2000) to calculate deflections in

flexural members with internal FRP reinforcement.

Design equations in ACI 318-99, CSA A23.3-94 and BS 8110-95 evaluating the
punching capacity of slabs with internal FRP bars or grids need to be modified to
account for both the amount and stiffness of the FRP reinforcing mat. This study
proposes an empirical equation and a theoretical procedure that render reasonable
punching capacity predictions based on available experimental evidence. The
equation proposed by Matthys and Taerwe (2000c) was found to be an accurate

predictor as well.

The punching capacity of slabs with bonded FRP sheets in cruciform patterns on the
top slab surface can be estimated according to the modification of Alexander and

Simmonds’ strip model presented in chapter 10.

11.5 Recommendations for Future Research

1.

Flexural tests on beams and one-way concrete slabs with internal FRP with detailed
measurement of strains at cracks, mean crack widths, maximum crack widths and
crack spacing are required to further calibrate the proposed model. Tests enforcing
bond-induced and bond-independent flexural crack regimes are preferred to further

examine Base's “no-slip” crack control theory.

There is a need to conduct further flexural tests to better identify the differences

between FRP grids and rebars in terms of crack control.
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There is a need to evaluate more thoroughly the height of the effective concrete area

in tension, A, for members with internal FRP reinforcement.

Experiments on the flexural behaviour of continuous beams or slabs with internal
FRP subjected to uniformly distributed loading are required to further calibrate the

indirect deflection control procedures presented in chapter 9.

Bond tests under conditions typical of slabs in flexure, representing the effects of
reduced covers and bar diameter, are needed to determine the bond strength of the

different FRP reinforcement families more accurately.

As recommended by Hall (2000), flexural tests assessing long-term effects are also

needed.

Punching shear tests on slabs with internal FRP reinforcement are required,
preferably on: i) slabs with concrete strength greater than 40 MPa, and ii) slabs with
thickness greater than 200 mm to better examine the effect of both the concrete

strength and the slab size, respectively, on their punching capacity.

Punching shear tests on concrete slabs with externally bonded FRP sheets in
cruciform patterns are required to further examine this strengthening scheme. For the
case of sheets bonded to the top slab surface, FRP bands that are wider than those

used in this investigation are preferred.

Punching shear tests assessing the effect of bonding sheets on the bottom of the slab

are also necessary to explore this strengthening scheme.
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APPENDIX A

Fibre Reinforced Polymer (FRP) Reinforcement :
Description, History, Properties, Landmark Applications

A.1 Description

The last decade witnessed an unprecedented growth in the use of the so-called Advanced
Composite Materials (ACMs) in the Civil Engineering infrastructure. Fibre Reinforced
Polymers (FRPs) form part of this material family. FRPs are composite materials made
from thin, high-strength continuous fibres impregnated with a polymeric binder or
matrix. The term "polymer" refers to the product of combining a large number of small
molecular units called monomers to form long-chain molecules by a chemical process

known as polymerization.

The basic component in FRP manufacturing is the single fibre or filament. These terms
are often considered as synonymous, although many consider a fibre to be a filament with
a length of at least 100 times the diameter (Bakis, 1993). The fibres are the principal
source of strength, stiffness and stability. Fibres are very fine, approximately 7 to 12 um
in diameter. In general, the thinner the fibre the higher the strength. A bundle is defined
as a bunch of parallel fibres or filaments. A strand or tow, is a straight, untwisted bundle.
A yarn is a collection of twisted filament bundles. A roving is a set of strands or yarns
collected into a straight or almost straight bundle. The fibres can be natural, such as
carbon (CFRP) and glass (GFRP), or synthetic, such as aromatic polyamides, commonly

known as Aramid (AFRP).

The matrix binds the fibres together, transfer stresses to them by adhesion and/or friction
and protects them from physical and chemical attack from the outside. It is fabricated out
of polyester, vinylester, polyimide or epoxy resins, which can can be thermoset or
thermoplastic. Thermoset resins cannot be softened or remoulded with subsequent
reheating. Thermoplastic resins, on the other hand, can be heated and reformed but have

weaker mechanical properties.
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The resulting product is shaped into rods, flat bars, deformed rounded bars, 2-D grids, 3-
D grids, sheets, strips, plates and laminates. The final properties of FRP depend on the
design of the composite, which is influenced by the available materials, material shapes
and manufacturing techniques available (Bakis, 1993). ACI Committee 440 (1996)
presents a very comprehensive description of the properties of FRP’s constituent

materials.

A.2 History

FRPs have been the centre of attention since the development of lightweight, high-
strength and high-stiftness fibres circa World War II. Because of their high costs, the
fibres were originally designed for use in high-tech applications where weight was of

primary concern, such as the aerospace industry.

The implementation of FRP in the Civil Engineering infrastructure has followed an
empirical path plagued by trial-and-error experimentation. Since most of the knowledge
on fibre behaviour came from research in the aerospace industry, the performance
requirements of the materials needed to produce FRP for concrete reinforcement had to
be reassessed. For instance, ensuring that non-prestressed FRP reinforcing bars bond

adequately to concrete is unique to the use of FRP in concrete construction.

Schmeckpeper and Goodspeed (1994) report that one of the earliest examples of using
FRP bars as reinforcement for concrete is the 1941 Jackson patent application. In the
1950's, the U.S. Army Corps of Engineers were interested in long glass fibres for
reinforced and prestressed concrete applications (Dolan, 1993). Crepps (1951) is credited
as one of the pioneers behind the use of glass fibre tendons for prestressed concrete.
Rubinsky and Rubinsky (1954) noted that creep and shrinkage losses in prestress would
be reduced by using glass-fibre tendons instead of conventional steel. Kajfasz (1960) and
Somes (1964) also contributed experimental work on the behaviour of concrete beams
prestressed with GFRP tendons. Somes (1964) noted that GFRP could be used for

prestressing purposes provided that limiting strains were not exceeded at stress transfer.
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Wines and Hoff (1966) and Wines, Dietz and Hawley (1966), as reported by Nawy and
Neuwerth (1977), successfully tested concrete beams reinforced and prestressed with
GFRP rods and tendons. They recognized the FRP merits in terms of energy absorption
and recommended that GFRP tendons could be used together with ordinary steel shear

reinforcement and that shallow beam depths should be avoided.

In the 1970's, Nawy, Neuwerth and Phillips (1971) and Nawy and Neuwerth (1977)
explored the concept of using non-prestressed glass fibre reinforcing bars in concrete
beams and two-way slabs. Their research had no immediate or apparent impact within the
profession likely because of the intense discussion generated by their 1971 paper. Details

about this subject are covered in Chapter 2.

In the mid 70's, corrosion of concrete bridge decks and car parking slabs became a
subject of considerable attention among civil engineers. Corrosion may cause or increase
cracking in the structure, and over time, may even reduce its safety because of the
gradual loss of reinforcement. In North America, this phenomenon is accelerated by the
use of deicing salts in parking buildings and bridges and by significant changes in
temperature. Millions of dollars were spent in repairs and some initiatives were taken
towards the development of strategies to reduce the susceptibility of concrete structures
to corrosive environments (Dolan, 1993). Nevertheless, continued high fibre
manufacturing costs and the lack of a viable continuous FRP fabrication process hindered

the application of FRP in the concrete infrastructure.

By the late 70's and early 80's, the use of FRP reinforcement increased thanks to progress
made in enhancing the durability properties of fibres and in reducing production costs.
Main applications settled in two major areas: new construction and repair or
rehabilitation of existing structures. In Japan, massive research and development began
on production techniques for FRP deformed bars, tendons and sheet-type reinforcement
for concrete structures. The potential of sheet-type FRP for seismic strengthening of
concrete columns was first studied in Japan, by Yamamoto and Kawakubo (1978). In

1978, the German companies Strabag Bau-AG and Bayer AG developed the so-called
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“Polystal” cable for stay cable bridge use. The first highway bridge prestressed with
“polystal” cables was built in Dusseldorf in 1986 (Taerwe, 1998). In 1983, a composite
element known as “Arapree” (Aramid Prestressing Element) was fabricated in Holland
by the firms AKZO (chemical producer) and HBG (contractor) with aramid fibres.
However, commercial applications were limited to the fabrication of thin elements such
as posts, noise barriers and piles. In Switzerland, Maier (1987, 1992), Kaiser (1989) and
Maier and Kaiser (1991) pioneered the use of FRP sheets to post-strengthen concrete
bridges and slabs. The city hall of Gossau St. Gall, Switzerland was the first building
where CFRP strengthening was used (Meier and Winistorfer, 1995).

Structural engineers then embraced FRP as an alternative material to reinforce, prestress,
strengthen or repair concrete structures. Applications have long surpassed laboratory
limits. Recent landmark applications include: The Beddington Trail/Centre Street bridge
in Calgary, Alberta, opened in 1994, the first prestressed concrete highway bridge with
some of their girders pre-tensioned by CFRP tendons built in Canada (Rizkalla and
Tadros, 1994); The Salmon River bridge, completed in 1995 in Nova Scotia, Canada, the
world’s first bridge with a steel free concrete deck (Newhook and Mufti, 1996); The
Chalgrove bridge, near Oxford, England, which in 1995 became the first GFRP-
reinforced footbridge opened to service (Taerwe, 1998); The Buffalo Creek bridge,
opened to service in 1996 in McKinleyville, Brooke County, West Virginia, considered
the first vehicular bridge in the U.S. to use FRP reinforcement in its concrete deck
(Thippeswamy, Franco and GangaRao, 1998). More examples of recent FRP applications
in concrete structures worldwide are reported by Burgoyne (1999), Karbhari and Seible

(1999), Erki (1999) and Fukuyama (1999), among others.

The flexibility to shape the composite constituents together with their excellent corrosion
resistance, magnetic neutrality, and high stiffness-to-weight and high strength-to-weight
ratios are assets that have caught the eye of the construction industry. However, these
apparent benefits are accompanied by the necessity of understanding what the bounties
and limitations of FRP are and which materials or which shapes are more appealing for a

given application.
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A.3 FRP Forms for the Civil Engineering Infrastructure

Table A.l1, adopted from Fukuyama (1999), presents a classification of FRP
reinforcement from a shape viewpoint. The most popular FRP forms for use in civil
engineering structures are the deformed bars, rods, tendons, 2-D grids, 3-D grids, strips
and sheets. Deformed bars and grids are used as internal reinforcement, rods and tendons
for conventionally or externally prestressed concrete structures, and strips for
strengthening or repair purposes. Sheets are wrapped around or placed on different types
of structural elements to provide strength enhancement or repair. FRP rods or tendons

will not be examined in this study.

A.4 Fabrication
A.4.1 FRP Reinforcing Bars and Grids

FRP bars and grids are fabricated by a process known as the pultrusion method. In this
process, indicated schematically in Fig. A.1, the fibres are drawn from creels through a
resin bath. Fibre content per volume may range from 40 to 70 %. For the case of bars, as
the fibres emerge from the resin, they are pulled through a shaping die, which shapes
them into a rounded bar. The bar then passes through a curing chamber to harden the
resin. The bar is later cut to the desired length and then stored. To develop a good bond
between concrete and the rods, bars are usually sanded or provided with a ribbed surface.
Rib deformations are made by wrapping the bar with an additional strand of resin-soaked
resin in a 45 degree helical pattern. The shape of the resulting bar resembles that of an
epoxy-coated deformed steel bar. The average production output of FRP in the pultrusion

method may range from 300 to 1500 mm per minute (Faza and GangaRao, 1993b).

For the case of grids, the fibres are bundled in a pin-winding process forming large cross-
sectional or three-dimensional grid shapes. These grids are known as NEFMAC (New
Fibre Composite Material for Reinforced Concrete). NEFMAC grids are commonly
fabricated with carbon or glass fibres. Carbon NEFMAC grids are more expensive.

Sugita (1993) reports that 60 to 180 m”> of NEFMAC can be produced per hour. A more
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detailed description of the pultrusion method for FRP bar manufacturing is given by Faza
and GangaRao (1993b), Bakis (1993) and Dolan (1993). Sugita (1993) and Bakis, Engel,
Nanni and Croyle (1997) provide a detailed exposition on the FRP grid manufacturing

process.

A.4.2 Fibre Reinforced Polymer Sheets

FRP sheets are planar structures made by arranging fibres, yarns or rovings. Fibres can be
aligned in one direction to form strips or tapes, woven to form a fabric, or simply pressed
to form a non-woven fabric (Bakis, 1993). Continuous fibres, yarns and rovings can also
be arranged randomly in planar forms called mats. Unidirectional strips or tapes are
available in various widths. They have the most anisotropic properties of all FRP forms

due to the high degree of fibre alignment.

Woven fabrics are designed to be wrapped around complex contours. Woven fabrics are
produced by a braiding process. The degree of fibre waving varies according to the
application. Unidirectional tapes can be obtained dry or pre-impregnated (prepreg) with
resin. Tapes are of variable thickness (usually 0.08 to 0.25 mm) and have fiber
approximate volume fractions varying from 50 to 75 % (Bakis, 1993). Commercial
woven fabrics have thicknesses of 0.17 to 0.34 mm and fiber volume contents around 60
%. Thin layers of woven or unidirectional tape can be stacked at specific orientations to
form laminates. The mechanical properties of a laminate depend on the stacking sequence

and fibre orientation. In this study, much of the attention will be focused on

unidirectional tapes.

To fabricate an unidirectional tape, the resin is first infiltrated into the reinforcement
forming a thin sheet. Resins are usually of the thermoset type because processing
temperatures are lower than those associated with thermoplastic prepregs (Bakis, 1993).
Later, the resin is cured, the sheet wound onto rolls with interleaved silicone paper to
prevent self-adhesion and then the product wound onto cardboard rolls for shipping.
Their installation procedure on the concrete surface is described, for instance, by Cheng

and Lau (2000) and CSA S806-00.
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A.5 Mechanical and Durability Properties of FRP

The mechanical properties of FRP reinforcements are affected by the properties of both
constituent fibres and resin, the fibre content, the cross-sectional shape and the method of
surface processing, among other other factors. The mechanical properties of available
commercial fibres vary widely. In general, carbon fibres have higher stiffness, higher
strength and excellent resistance to acidic attack and to freeze-thaw effects. However,
they tend to have low toughness and low impact resistance. Glass fibres are usually
tougher than CFRP and AFRP, have good freeze-thaw resistance, but they are susceptible
to alkaline attack and to creep rupture. In fact, the use of GFRP in prestressed concrete
applications is not permitted because of the latter. Aramid fibres are as tough as glass,
have excellent freeze-thaw resistance, but have less magnetic permeability than carbon
and glass. Their strength may also be reduced due to excessive ultra-violet ray (UVR)
exposure. As far as costs are concerned, carbon and aramid are more expensive than glass

fibres. Uomoto (2000) provides a comprehensive study on durability properties of FRP.

Figure A.2 shows typical stress-strain relationships for FRP and its constituents. Since the
fibres provide the strength of the composite, their rupture governs the response of FRP. In
other words, the composite will fail when its longitudinal strain reaches the ultimate
tensile strain of the fibre. ACI Committee 440 (1996) recommends that the minimum

fibre volume content for the fibres to provide strength to FRP must be 10 %.

Figure A.3 shows schematic stress-strain curves of CFRP, GFRP and AFRP bars under
direct tension compared to that of a conventional steel reinforcing bar. The response of
the three fibre types is essentially linear-elastic up to failure. The fibres are less stiff than
steel. Tables A.2 and A.3 show typical mechanical and physical properties of
commercially available FRP bars, grids and sheets. More details can be found in ISIS M-

04-00 or at selected internet websites.

Additional description of material properties of FRP deformed bars is given by ACI
Committee 440 (1996), ISIS M04-00, Bank (1993), Faza and GangaRao (1993b) and
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Dolan (1993), among others. As far as NEFMAC grids is concerned, Fujisaki, Sekijima,
Matsuzaki and Okamura (1987), Sekijima and Hiraga (1990), Sugita (1993) and
Mochizuki and Udagawa (1995) provide useful information on NEFMAC's mechanical

properties.

330



Table A.1 Classification of FRP Reinforcement (After Fukuyama, 1999)

Fibre Types
— Carbon —[ Pan-based
Inorganic Pitch-based
— Glass —T Alkali-resistant
E-Glass
— Aramid
Organic — Polyvinil Alcohol
- Polyacetal
Others
Binder Types
Epoxy
Organic Vinyl Ester
Unsaturated Polyester
Others
Inorganic —— Specialised Cements
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Table A.2 Typical Mechanical Properties of Some Commercially Available
FRP Reinforcing Bars and Grids (After ISIS M04-00)

Product Fibre S E;
(MPa) (GPa)
C-bar® Glass 680-713 42
Aslan 100 GFRP Rebar Glass 680 42
ISOROD™ Glass 635-747 | 37-43
ISOROD™ Carbon 1596 111
NEFMAC™ 2-D Grid Aramid 1300 54
NEFMAC™ 2-D Grid Glass 600 30
NEFMAC™ 2-D Grid Carbon 1200 100
NEFMAC™ 2-D Grid Hybrid (G-C) 600 37
LEADLINE™ Round Carbon | 22452265 | 147
LEADLINE™ Indented Spiral Carbon | 22452255 | 147
LEADLINE™ Indented Concentric Carbon 2250-2265 147

Notes: 1. C-bar® is a Trademark of Marshall Industries Composites Inc.
2. Aslan 100 GFRP Rebar is produced by Hughes Brothers, Inc.
3. ISOROD™ is a Trademark of Pultrall, Inc.

4. ROTAFLEX™ is a Trademark of Rotafix Northern Ltd.

5. NEFMAC™ is a Trademark of Shimizu Corp.

6

. LEADLINE™ is a Trademark of Mitsubishi Chemical Corp.

Table A.3 Mechanical Properties of Some Commercial FRP Sheet Systems
(After ISIS M04-00)

Product Fibre Thickness T Ey
(mm) (MPa) (GPa)

Mitsubishi Type 20 Carbon 0.111 3400 230
Mitsubishi Type 30 Carbon 0.167 3400 230
MBrace™ CF 530 Carbon 0.165 2940 372
MBrace™ CF 130 Carbon 0.165 3480 80
MBrace™ EG 900 Glass 0.353 1730 26.1
SikaWrap™ Hex 100G Glass 1.0 600 26.1
SikaWrap™ Hex 103C Carbon 1.0 960 73.1

Notes: 1. MBrace is a Trademark of Master Builders Inc.
2. SikaWrap is a Trademark of Sika.
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APPENDIX B

Derivation of the Bond-Slip Differential Equation and
Formulation of the Tension Chord Model for Linear-Elastic

Reinforcement

Consider the differential concrete element of Fig. B.1 reinforced with purely elastic
reinforcement subjected to a tensile axial force N. Let us first define the reinforcement

2%

ratio p, = A, / A,. The subscripts “ r ” and “ ¢ ” refer to the “reinforcement” and

"concrete", respectively. The term A, refers to the area of the gross cross-section (4, = 4.

+ 4,).

From equilibrium of forces on the element, the tensile axial load, N, is equal to
N=Ao,+4o0, [B.1]

From equilibrium of forces on the reinforcement,

2
v, 7, dv =do, ”f” [B.2]

which leads to

r

do, _4% [B.3]
x4,

where 7; is the average bond stress and ¢b is the diameter of the reinforcement.
According to Eq. B.3, the sign of the bond stress diagram is determined by the slope of

the reinforcement stress distribution.

Likewise, from equilibrium of forces in the concrete element,

dO'C =_4Tb[ pr ] [B4]
dx ¢b l_pr
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The slip, J, between the reinforcement and concrete is defined as the difference between

the reinforcement and the concrete displacements.
o =u, —u, [B.5]

The change of slip along the length dx is the difference between the reinforcement and

concrete strains.

@=i(u,.—uc)=8r —¢, [B.6]

dx  dx

Differentiating Eq. B.6 once more results in

d*s _ de, _ de,
dx? dx  dx

[B.7]

Assuming linear elastic behaviour in both the reinforcement and concrete, and

substituting Egs. B.3 and B.4 into B.7, one obtains the differential equation for the slip.

2
d’s _ 41, N 4z, | p, [B.8]
dxz ¢bEr ¢bEc 1-—pr

which can be further re-arranged as

dZa(x>=4fb<5<x»[l+ np, J [B.9]
dx2 ¢bEr l_pr

The solution of this differential equation gives the slip on each crack side. The crack
width at the reinforcement level is simply the sum of the slips on each side. To facilitate

the estimation of crack widths, the bond stress will be assumed independent of the slip.

Assuming 7, = 73, and integrating Eq. B.10 once results in

ds(x) _ 4z, [1+p,(n-1) x4 C [B.10]
dx ¢k, 1-p,

The constant C; is the initial value for the difference between the reinforcement strain

and the concrete strain. For a member in the single crack formation phase, this value is
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zero. To simplify the integration procedure for the stabilised cracking phase, let us

assume that C; is equal to zero.

Integrating Eq. B.10 once more gives the slip

50x) = 27, [1+p,.(n—1)] e (B.11]
¢bE}‘ l—pr

For a member in the single crack formation stage, the independent variable x is

equivalent to the transfer length, /,, on each side of the crack.

Taking into account that concrete tensile stresses cannot exceed the tensile strength of
concrete, £, the following restriction for a stabilised crack pattern (Alvarez, 1998) needs

be applied to Eq. B.4.

smax/ 2
i[L} [r,, ax <7, [B.12]
¢b 1- 10 r 0

where $yq is the maximum crack spacing. Performing the integration and re-arranging

terms, one obtains the maximum crack spacing as

5 = 2200 122 [B.13]
2Tbo pr

Since bond stresses are assumed slip-independent, the stresses in the reinforcement and
concrete vary linearly from the crack location to a point located midway between two

cracks, as shown in Fig. B.2.

In Fig. B.2a, the dotted lines show the mean stresses in both the reinforcement and
concrete. If the concrete stress reaches f;, a new crack will form midway between those
spaced at Spge. This means that the minimum crack spacing, Sy, , is equal t0 Spye/2 .
Stress distributions in the reinforcement and concrete for this condition are shown in Fig.

B.2b.
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Consequently, the mean crack spacing in a fully developed crack pattern is bounded by

the following limits:

(sm = Sm—j <s, s [B.14]
2
or
S
OSS[lz ”’)310 [B.15]
Smax

where A is essentially an statistical parameter that relates the mean crack spacing to the

maximum crack spacing.

Combining Eqgs. B.13 and B.15, the mean crack spacing, s, is

m

b [ 1P | hs<acr0 [B.16]
22—[)() pr

Substituting x = 0.5 s,, into Eq. B.11 gives the slip for the single crack formation phase

as
2

5(JC): 2Tbo 1+pr(n_1) (/’{‘Smax) [B17]
¢bEr l_pr 2

which can be re-arranged as
A (14 p,(n—-1

o= laf L2202l |y [B.18]
4TboEr pr

Figure B.3 shows a free body diagram of a tension chord immediately after first cracking.
From equilibrium, the reinforcement stress at the crack immediately after the formation

of the first crack, c;,,, is

- =ifc,+n ’ [B.19]
4

Fro

r
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Since p, = A4, /( A.+A, ), the reinforcement stress at the crack is related to the tensile

strength of concrete as

O-N'D ¥

[y =2l [B.20]
1+ p,(n~1)

Substituting Eq. B.20 into B.18 and recognizing that the mean crack width is twice the

slip which develops on either side of the crack, results in

s Pt (=)

m rro

4TboEr pr

[B.21]

This equation applies only for the single crack formation stage. To calculate crack widths

in the stabilised crack formation phase, i.e, for o, >0o,,,, it is necessary to examine the

axial stress-strain response of the tension chord in full detail.

Figure B.4 shows the variation of the stress in the reinforcement as a function of both the
average chord strain and the strain at the reinforcement. The figure has been adapted
from Alvarez (1998). The dashed line represents the response of the naked reinforcement.
The solid and dotted lines represent the reinforcement stress-average chord strain

response for both maximum and minimum crack spacings.

The straing,, = Ja signals first flexural cracking. At this instant, all the stresses taken by
E,

concrete are suddenly transferred to the reinforcement, resulting in a reinforcement stress

Orro » Which can be determined from Eq. B.20.

At this level, the single crack formation stage starts. In theory, any increase in strain
beyond this stress level under imposed load conditions should be accompanied by a slight
increase in stress. For simplicity, the model treats the crack formation phase as a flat line.
The model assumes that the mean strain of the cracked chord increases up to a point

defined by the degree of tension stiffening offered by the cracked concrete.
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The tension stiffening effect can be evaluated based on the stress distributions of Fig.
B.2. For a fully developed crack pattern, with average crack spacing s,,, the reinforcement

stress at a crack can be expressed as

S
Tho (mj 7 @,
O, =0t __.._.4— [B22]
T
— 4,
4
or
o, =, + ton [B.23]
&,

where o, is the mean stress in the reinforcement, s, is the average crack spacing in the

stabilised cracking stage, and ¢ is the bar diameter.

Substituting Eq. B.16 into Eq. B.23 and dividing the reinforcement stress by the modulus
of elasticity of the reinforcement, the reinforcement strain at the crack, for the stabilised

cracking stage, i.e. o, greater than g;,,, becomes

£, =&, +Ag, =¢ +£ff’—(L:—p—’—) [B.24]

" 2E  p,
The term Ag; represents the strain correction due to concrete's tension stiffening effect in
the stabilised cracking stage. As illustrated in Fig. B.4, the tension stiffening effect
becomes greater when the crack spacing is maximum, i.e. A = 1, and becomes minimum
when the crack spacing is minimum, i,e. 4 = 0.5. Since the tension chord model
formulation is based on a constant slip-independent bond strength, the slope of the
reinforcement stress-average strain curve in the stabilised cracking phase matches that of

the naked FRP bar, i.e. the tension stiffening effect is constant.

Following the philosophy of CEB/FIP MC90, the mean crack width in the stabilised

cracking phase can be calculated as
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wm = Sm (glm —gcm) [B'25]

where s,, is the mean crack spacing, &, is the mean reinforcement strain at the given load
level and &, is the mean concrete strain at the end of the single crack formation phase.

According to Fig. B.2, the mean concrete strain can be evaluated as

_AJa [B.26]
2 E,

&

Substituting Eqgs. B.24 and B.26 into B.25 results in

— [grr _ i&(iﬂ:l)lj [B.27]
2 E, P,

Since the mean crack width is bounded by the minimum and maximum crack spacing

limits, Eq. B.27 can be expanded out as

bt (l—p,](g L (1+p,(n—1))J <

4 AE
Tbo pr ¥ pr [B28]
S¢bfct l—pr & - _/;‘t (1+pr(n_]‘))
2Tbo pr "’ 2E'r pr
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Fig. B.2 Crack Spacing-dependent Stress Distributions According to
Tension Chord Model (After Alvarez, 1998)

343



0.5 Ac fct —-——
Arn fct -—
0.5 Ac fct ——

Ar Orro
—>

First Crack

Fig. B.3 Tension Chord Forces After First Cracking

Cyr A=0.5
e
X— Naked Reinforcement

O 7T

, ‘ Chord
Omo T Tension Stiffening Effect

//
///
e = Ag
//
//

///

nf T
Ct } Sr )Sm

S Q 1+1_2pr
E E 2p.n

c c

Fig. B.4 Stress-Strain Response of Tension Chord
(After Alvarez, 1998)

344



APPENDIX C

Selected Pictures of Experimental Program

Fig. C.2 Typical Test Set-up (Virgin Slab)
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Fig. C.3 Whiffle Tree Detail

Fig. C.4 Edge Restraint System Effect
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Fig. C.6 Test ER1-VS (After Punching)
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Fig. C.8 Test ER2-CS1 : Slab Punching
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S

Fig. C.10 Test ER3-CS2 : Slab Punching

349



Fig. C.11 Slab Repair (Test ER3-CP2)

Fig. C.12 Concrete Patch (Test ER3-CP2)
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APPENDIX E

Derivation of Indirect Deflection Control Procedure for
Concrete Beams and One-way Slabs with Internal FRP
Reinforcement Using Branson’s Concept, According with
Thériault’s Definition of 7,

The maximum span-depth ratio for a member subjected to a uniformly distributed load

associated to a maximum allowable deflection-span ratio, using Branson’s I, concept, is

£SZA_m( E, J[M J[I_J [E.1]
d 2L \fK )\ M, U,

According to Thériault (1998),

I = I L, [E.2]

e = 2
Lo+1-05] Me | @ -1.)
Mmax

Assuming that J; = I; and dividing both sides of Eq. E.2 by I, results in

I
Lt £ [E.3]

2
I, I
£ 81, +|1-05 M, (1,-1,)
Mmax

The moment of inertia of an elastic cracked rectangular cross-section with FRP is

3
I =b("—d)+np, bd® (1-x)’ [E.4]
3

cr

Setting o = h and dividing Eq. E.4 by I, results in
d

Lo =il:%;—+3npf (l—x):)} [E.5]

3
Iga
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where x = \/(pfn)z +2p,n—-pn [E.6]

Substituting Eq. E.3 into E.1 and rearranging terms, results in

A E M I
_l_‘s_a___r_n_[ c J[ cr] g 5 [E7]
d 2 L \f.K )\M,,
‘ ]"+[1—0.5( M, J (1—1"]]
I, M. I,

with Lo defined according to Eq. E.5.
1

g
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APPENDIX F

Properties of Punching Test Two-way Slab Specimens with
Internal FRP Bars or Grids

Table F.1 Properties of Punching Test Two-way Slab Specimens with

Internal FRP Bars or Grids

Ref. Slab C * d f cm T FRP Type pf (%) Ef fﬁl
(mm) | (mm) | (MPa) § (GPa) | (MPa)
CFRC-SN1 S 75 61 42.4 3-D C Grid 0.95 113.0 1330
CFRC-SN2 S 75 61 44.6 3-DC Grid 0.95 113.0 1330
AZYX | CFRC-SN3 S 100 61 39.0 3-D C Grid 0.95 113.0 1330
CFRC-SN4 | S 100 61 36.6 3-D C Grid 0.95 113.0 1330
BAM I C 100 55 41.0 C NEF 0.31 100.0 1200
I C 100 55 52.9 C NEF 0.31 100.0 1200
Ci C 150 96 30.4/36.7 C NEF 0.26 91.8 1690
cr C 230 96 30.4/37.3 C NEF 0.26 91.8 1690
Cc2 C 150 95 29.6/35.7 C NEF 1.05 95.0 1340
c2 C 230 95 29.6/36.3 CNEF 1.05 95.0 1340
C3 C 150 126 | 28.0/33.8 C NEF 0.52 92.0 1350
MT c3 C 230 126 | 28.0/34.3 C NEF 0.52 92.0 1350
CS C 150 95 27.2/32.6 CS Rods 0.19 147.6 2300
CS’ C 230 95 27.2/33.2 CS Rods 0.19 147.6 2300
H1 C 150 95 |196.7/118.0 GC NEF 0.64 373 665
H2 C 150 89 29.3/35.8 GC NEF 3.78 40.7 555
H2’ C80 89 29.3/359 GC NEF 3.78 40.7 555
H3 C 150 122 | 26.3/32.1 GC NEF 1.21 44 .8 640
H3’ C 80 122 | 26.3/32.1 GC NEF 1.21 44 .8 640
SG1 S 200 142 333 G Rebars 0.22 45.0 600
SC1 S 200 142 34.7 C Rebars 0.18 110.0 100
EPW SG2 S200 | 142 46.6 G Rebars 0.47 45.0 600
SG3 S 200 142 303 G Rebars 0.47 45.0 600
SC2 S 200 142 29.6 C Rebars 0.43 110.0 1000
GFR-1 S 250 120 29.5 G Rebars 0.73 34.0 660
Series GFR-2 S 250 120 28.9 G Rebars 1.46 34.0 660
I NEF-1 S 250 120 37.5 G NEF 0.87 28.4 570
Notes: AZYW : Ahmad, Zia, Yu & Xie (1993), BAM : Banthia, Al-Asaly & Ma (1995),

MT : Matthys & Taerwe (2000c), EPW : El-Ghandour, Pilakoutas & Waldron (1997, 2000).

*  Shape of column stub / load patch and corresponding diameter or width.
C = circular, S = square.

§ NEF =NEFMAC Grid, G = Glass, C = Carbon, S = Sanded.

Tt fem values for EPW slabs were obtained from cube test results, assuming fo,, = 0.8 fupe .
The two f ., values for MT slabs are those at 28 days and at testing time, respectively.
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