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LOCAL PERCEPTION AND LEARNING MECHANISMS IN
RESOURCE-CONSUMER DYNAMICS*

QINGYAN SHIT, YONGLI SONG#, AND HAO WANGS#

Abstract. Spatial memory is key in animal movement modeling, but it has been challenging
to explicitly model learning to describe memory acquisition. In this paper, we study novel cognitive
consumer-resource models with different consumer’s learning mechanisms and investigate their dy-
namics. These models consist of two PDEs in composition with one ODE such that the spectrum of
the corresponding linearized operator at a constant steady state is unclear. We describe the spectra
of the linearized operators and analyze the eigenvalue problem to determine the stability of the con-
stant steady state. We then perform bifurcation analysis by taking the memory-based diffusion rate
as the bifurcation parameter. It is found that steady-state and Hopf bifurcations can both occur in
these systems, and the bifurcation points are given so that the stability region can be determined.
Moreover, rich spatial and spatiotemporal patterns can be generated in such systems via different
types of bifurcation. Our effort establishes a new approach to tackle a hybrid model of PDE-ODE
composition and provides a deeper understanding of cognitive movement-driven consumer-resource
dynamics.

Key words. memory-based diffusion, resource-consumer, PDE-ODE model, pattern formation,
Hopf bifurcation, steady-state bifurcation
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1. Introduction. Since 1952, Turing instability Turing induced by random dif-
fusion has been highly esteemed as the mechanism for the spatial heterogeneous distri-
bution of species in nature. However, numerous pieces of evidence show that random
diffusion is insufficient to describe the animal movement as many factors may affect
the animals’ decision for spatial movement. Some clever animals even have an amazing
ability to choose their favored habitat. Therefore, animal cognition should be taken
into account in animal movement modeling [6,8,18]. Although specific mechanisms
are still in debate, most modelers believe that perception (information acquisition)
and memory (the retention of information) play dominant roles in interpreting com-
plicated animal movement behaviors. Generally speaking, perception is the process
by which animals acquire information, while memory is the storage, encoding, and
recalling of information. Spatial memory is the memory of spatial locations in a liv-
ing organism’s landscape. A strong motivation for the importance of spatial memory
in animal movements is the empirical evidence of blue whale migrations presented
by [1] and discussed by [4]. Much progress has been made in incorporating spatial
cognition or memory implicitly, such as home range analysis [16,17], scent marks [11],
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2 Q. SHI, Y. SONG, AND H. WANG

taxis-driven pattern formation [20,21], information gaining through the last visit to
locations [22], perceptual ranges [5], and delayed resource-driven movement [7].

In [5], Fagan et al. proposed a resource-driven movement model to study per-
ceptual ranges and foraging success, and the delay effect was later considered in the
resource-driven movement model in [7]. In [35], by assuming that the consumers
have knowledge of where the resources are, Wang and Salmaniw proposed the follow-
ing consumer-resource model with an additional term biasing the movement of the
consumer:

utdlAu+u(1Z)1T:§_w, ze, t>0,

U

(1.1) vt:dgAv—xV(vaj)—kH_im;—dv, zeQ, t>0,
Opu = Opv = 0, x €I, t>0,

where u = u(x,t) and v = wv(z,t) denote the density of resource and consumer,
respectively. The attractive potential g(z,t) is of the form

oz, 1) = / oz — y)aly. t)dy,

where g(x — y) is the perceptual kernel and for the biological meaning, g(x) should
satisfy the following hypotheses [35]:
(i) g(x) is symmetric about the origin and non-increasing from the origin;
(ii) [ 9(z)dx =1, and Rlirn+ g(z) = ().
—0
The typical example that satisfies the above two hypotheses is the so-called top-hat

function:
1

g(x —y) = { 2R’
0, otherwise,

—R<z—-y<R,

where R is the perceptual range. Recently, there has been an increasing interest and
effort in studying the influence of perceptual range on population dynamics [?,35,39].

In this paper, we explore the limiting scenario when the perceptual range ap-
proaches zero, i.e., R — 0%. For this local perception scenario, g(z) = §(z) and
system (1.1) becomes

ut:dlAu—i—u(l—g)—muv, re, t>0,

B/ L

(1.2) vtzdgAv—XV~(qu)+m—dv, zeQ, t>0,
Opu = Opv = 0, eI, t>0.

The parameters in (1.2) are all positive constants except for x € R: dy, da denote
the random diffusion rates for resource and consumer, respectively; k is the carrying
capacity for resource; m is the predation rate; y > 0(< 0) implies that the consumer
follows an attractive (repulsive) movement to the high-density area based on the
perception of the population density.

In [35], Wang and Salmaniw proposed that ¢(x,t) is a cognitive map based on
the learning and memory waning of the consumer and satisfies either of the following
two ODEs:

H1:q =bu—1gq,

(1.3) H2: ¢ = buv — (v + &v)g.
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LOCAL PERCEPTION AND LEARNING MECHANISMS 3

When the cognitive map ¢(z,t) satisfies (H1), then Eq.(1.2) becomes

Ut:d1AU+U<1—Z)—$LZ, reN, t>0,
14 vt:dgAv—Xv-(qu)JrHim;—dv, reQ, t>0,
qr = bu — ~vq, xeQ, t>0,
Opu = Opv = 0, xed, t>0,

where the growth of g(z,t) follows a constant proportion b > 0 to resource density,
and ¢(z,t) has a linear decay at rate v > 0.
When ¢(z,t) satisfies (H2), Eq.(1.2) becomes the following system:

ut:dlAu—i—u(l—g)—muv, re, t>0,

B Lig
= A — . - Q

(1.5) vy = doAv — XV (qu)+1+u dv, ze€f, t>0,
qt:buvf(7+£v)qv erat>Oa
Opu = Opv =0, x €I, t>D0.

The difference between model (1.4) and model(1.5) is that g(x,t) in (1.5) grows pro-
portionally both to the resource and consumer density, ¢(z,t) in (1.4) depends only
on the resource. The assumption in model(1.5) is more reasonable because spatial
memory is normally gained via interactive learning. Consumers may be able to share
knowledge between individuals such that a location with high resource density is more
likely to be remembered by consumers. In addition to a linear decay, we assume that
g(z,t) can further decay at rate £ > 0 when the consumers return to an area and find
a low resource density.

For x € R, ~v > 0, our main results are stated as follows:

1. The spectrum of the linearized operator at the constant steady state of system
(1.4)/(1.5) is point spectrum, and the stability of the constant steady state
is determined by the linearized eigenvalue problem (2.7)/(3.3).

2. Insystem (1.4), there exist x3; < 0 and x5, > 0, such that the constant steady
state is stable when the memory-based diffusion rate x € (x5 (), x4 (7))
and unstable when y € (—oo, X3 (7)) U (x4 (7), +00), where x3(7) < 0 and
A5 (y) > 0 are the maximum steady state bifurcation value and the minimum
Hopf bifurcation value, respectively. A series of steady-state bifurcations can
occur near the constant steady state at xy = x5 (v) < 0, and Hopf bifurcations
occur at x(y) > 0 forn € N.

3. In system (1.5), there exist x (y) < 0 and x*(y) > 0, such that the
constant steady state is stable when the memory-based diffusion rate x €
(x~(7),x* (7)) and unstable when x € (—00, x™ (7)) U (x*(7), +00), where
X~ () = X%, xT(7) = min {x}7(7), x5 (7)} and XX () < 0, X3 (7) >
0, ¥3,(y) > 0 are constants defined in Sect.3. A series of steady-state bi-
furcations can occur near the constant steady state at x = x2 (), and Hopf
bifurcations occur at x5 (v) > 0 for n € N. Note that ¥ () could be negative
or positive for different n € N.

This paper is organized as follows. We investigate the dynamics and bifurcation
of system (1.4) in Sect.2 with a description of the spectrum of the linearized operator
at the constant steady state. In Sect.3, system (1.5) is investigated similarly to in
Sect.2. Finally, we conclude and discuss our work in Sect.4 and compare the two
models studied in Sects.2 and 3. In the paper the space of measurable functions
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4 Q. SHI, Y. SONG, AND H. WANG

for which the p-th power of the absolute value is Lebesgue integrable defined on a
bounded and smooth domain Q C R™ is denoted by LP(2) and we use W*P?(Q) to
denote the real-valued Sobolev space based on LP()) space. We denote by N the set
of all the positive integers and Ny = NU{0}. Also, A, satisfying 0 = Xg < Ay < -+ <
A1 < Ap < - -+ < 400 are the eigenvalues of the following equation

Ap(z) + Ap(x) =0, z €,
Ond(z) =0, x € 092,

with the corresponding eigenfunctions ¢, (z) > 0 satisfying [, 7 (z)dz = 1.

2. The dynamics of model (1.4). In this section, we study the dynamics of
system (1.2) with cognitive map ¢(z,t) satisfying (H1), i.e. model (1.4), which has a
constant equilibrium (u, v, q) = (6, v, gg) with

_d _(k=0)(1+0) b
G—m_d,ve— km 7%_’7’
provided that
(2.1) m>d, k>0.

By a standard calculation, the linearized Jacobian matrix of the kinetic system of
(1.4) at (0,ve, qp) is

8 —d 0
J=1 a 0 0 ,
b 0 —v
where
k—06 Ok —1—20)
2.2 S _ k=1 =20)
(22) = rtaxe %P Trare <0

One can easily verify that all the eigenvalues of J have negative real parts when
k < 1+ 26 such that (6,vg,qg) is locally asymptotically stable concerning the kinetic
system. Note that k = 1 + 26 is the critical value for the kinetic system to undergo a
Hopf bifurcation near (0, vy, qg). Together with (2.1), we always assume the following
conditions hold:
(Aym>d, § <k<1+26,

such that (0, v, qp) is locally asymptotically stable concerning the kinetic system.

In the following, we investigate the stability of the constant steady state (6, vg, qo)
and carry a bifurcation analysis for system (1.4). Moreover, we will show the existence
of nonconstant positive steady states of model (1.4), which satisfy

u muv
(2.3) doAv — XV - (vVq) + Tra dv=0, ze€q,
bu —~vq =0, T €,
Opu = Opv =0, T € 01,

where u = u(z), v=v(z), ¢ = q(z).
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LOCAL PERCEPTION AND LEARNING MECHANISMS 5

2.1. Spectrum of the linearized operator. In this part, we perform a spec-
tral analysis of the linearized operator at the constant steady state (6, vg, qg) via the
methods in [3,13,15]. Define

(2.4) X = W2P(Q) x W2P(Q) x W2P(Q), Y = LP(Q) x LP(Q) x LP(%),
where
WP (Q) = {u € W2P(Q) : dyu = 0 on 99}.

We linearize Eq.(1.4) at (6, v, gg) and obtain the linear operator

® diAg + o — dyp
(2.5) Ll v |=]| eAY—xvlAptad |,
@ by — v

where L is a closed linear operator in Y with domain D(£) = X. In the following, we
provide the results about the spectrum of L.

THEOREM 2.1. Let L : X =Y be defined as (2.5), then the spectrum of L is
o(L) = 3y(L) = S U {1},
where
(2.6) S = {uP oo UL Yoo U 1o

Here uéj), 7 =1,2,3 satisfying Re (,ug)) < Re (,u,@) < Re (uﬁ{”) are the roots of

the following characteristic equation
(2.7) p? 4+ App® + Bop+Cr, =0, n € N,
where

An - (dl +d2))\n - ﬁ"_’Ya
Bn = d2>\n(d1)\n - B) + ’Y(dl/\n + d2)‘n - ﬂ) + da,
C, = ’Yd2>\n(d1)\n - 6) + bdXUGAn + ’)/dOé

Proof. For u € C and (1,72,73) € Y, we consider the nonhomogeneous problem

diA¢ + Bo — dyp = pg + 11,
da Av) — xvgAp + ap = pup + 2,

(2.8)
b — v = pp + 73,
On¢ = Opp = 0.
. . . bo — 73
Case 1: u # —v. From the third equation of (2.8), we obtain ¢ = e and

substitute it into the second equation, we have

GG+ B9 — i = o+ 7,
(2.9) da Ap — lj%y(bAqs — Amy) + ag = uh + 7,

This manuscript is for review purposes only.
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6 Q. SHI, Y. SONG, AND H. WANG

which is equivalent to

e d1A¢l;i- B —dy — po m
210) L < v ) ~\ de - A Ad o | ( - MX+07AT3 ) '

As o, Y € Wi,’p(Q) from (2.5), and the eigenfunctions {¢,, } ;7> of —A form a complete
and orthonormal basis for W2 (), thus we set

+oo “+o00
(211) d): Zan¢na 7/}: an¢n
n=0 n=0

Substituting (2.11) into (2.10), multiplying the equation by ¢,, and integrating it over

Q, we obtain
/ T1dx
Q

an
bxvgAn
X6 ATQ,) dx
0

—didn+B—p —d
+ « —dg)\n — U (

Bty

" >: /Q<72M+

By letting 71 = 72 = 73 = 0, we obtain that Ker(£;) = {(0,0)”} which implies that
Ker(L — pI) = {(0,0,0)7} and the operator £ — uI is injective when the following
condition holds

*dlAn+ﬂflu‘ —d

bxvgAn
XUe + a —daoAp, — 1
By

# 0,

which is equivalent to

(2.12) (14 didn — B) (4 d2An) (1 + ) + bdxve s, # 0.
When (2.12) is satisfied, we may conclude that £; has a bounded inverse £ with

L”(Q)> .

[@llwzre + [¢llw2r@

bxvg
Kty

da Aty — Agp+ag

<[leT <|d1A¢ + B¢ — dllLe(e) + ’

Therefore, we know that £ — uI has a bounded inverse (£ — puI)~!.
If (2.12) does not hold, that is,

—di A+ B—p —d
bxveAn -
(2.13) X Vo —doA, — 1 0,
B+

we obtain the dispersal relation as in (2.7) which has three roots MSP, j=1,2,3 for
each n € Ny. For j =1,2,3, we put u = ugf) into (2.8), one can check that ugf) are
indeed eigenvalues of £ with eigenfunctions being

. 1
i 1 ()
: = (—dihn + B —
9 = d< Do+ 8= i) n,
6) b
©n

il 4+

This manuscript is for review purposes only.
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LOCAL PERCEPTION AND LEARNING MECHANISMS 7

, , ) NT
which implies that Ker(L — /17(1])) = Span {( %),wﬁﬂ), 4,053)> }
Case 2: = —v. Then Eq. (2.8) becomes

d1A¢+ Bp — dip = pe + 71,
d2 At) — xvgAp + ap = up + 2,

2.14
(2.14) bo = 73,
On = Optp = 0,
which can be solved as
1
= b (dyAtg + 13 + 13 — bT1),

1
Ap=—— (=byy + 10 — a3 — bda A)) .
bxve

By letting 7 = 75 = 73 = 0, we obtain Ker (£ +~vI) = Span{(0,0,ci1x + c2)T} with
¢1, ¢z being constant real numbers, and thus —y € 0,(£). To conclude, we have

o(L) = op(L) = SU{=7}

with S defined as (2.6). This completes the proof. a

Based on the spectrum analysis in Theorem 2.1, we obtain the following results
to determine the stability of the constant equilibrium for Eq. (1.4).

COROLLARY 2.2. In system (1.4), the constant equilibrium (0,ve,qg) is locally
stable when all the roots of the characteristic equation (2.7) have negative real parts,
otherwise it is unstable.

Proof. From Theorem 2.1, we see that the spectrum of the linearized operator £
corresponding to the linearized system of Eq. (1.4) at (0, vg,qe) is 0(L) = 0,(L) =
S U{—~}. Note that the linear stability of (6, vy, qp) implies its nonlinear stability
according to [9] as the spectral set is discrete. Since —y € C~, thus it can be inferred
that the stability of (6, vy, gg) is determined by the set S which consists of the roots
of Eq. (2.7), and we reach our conclusion. d

2.2. Bifurcation analysis. From Theorem 2.1 and Corollary 2.2, we know that
the stability of the constant steady state (6, vg, qg) of system (1.4) can be determined
by the characteristic equation (2.7). By the Routh-Hurwitz stability criterion, all the
eigenvalues of (2.7) have negative real parts if and only if

(2.15) A,>0 C,>0, A,B,—C, >0.

The condition A,, > 0 always holds as 8 < 0, thus the real parts of the eigenvalues of
(2.7) may change sign either via C,, = 0 (which implies (2.7) has a zero root) or via
A, By, — Cp, =0 (which implies (2.7) has a pair of purely imaginary roots). Also, we
can observe that B,, > 0 always holds as 3 <0, « > 0,s0C,, =0and A,B,—C,, =0
cannot occur at the same time.

Taking x and « as the bifurcation parameters, we obtain the steady-state bifur-
cation points by solving C,, = 0:

7'ykd2)\n(d1)\n —fB) + vda
bdvg Ay, ’

(2.16) Xn(7) =

This manuscript is for review purposes only.
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8 Q. SHI, Y. SONG, AND H. WANG
and Hopf bifurcation points by solving A, B, — C,, = 0:

(2.17)
((dy + d2)An — B) [¥? + v((dy + d2) A — B) + don(di A, — B) + da

H —

Some basic properties of functions x (v) and xZ (v) are stated in the following
lemma.

LEMMA 2.3. Let x5 (v) and xH () be defined as (2.16) and (2.17), respectively,
then the following statements are true:
(i) for fived n, x5 () is strictly decreasing with respect to vy and passes through the
origin, and it is also known that x5 (0) = 0 and VEIEOO X3 () = —oo;

(ii) for fived v > 0, X3 (7) = max xo(y), and

(2v/didada — doB)

2.1 3 -
(2.18) Xx () < hivn 7

da
where N is an integer such that Ay is the closest number to ﬁ;
102

(iii) for fived n € N, xH () is strictly increasing with respect to v;
(iv) for fized v € (0,+0o0), there exists M € N such that xL(y) = mi&l XH ().
ne

Proof. By the definition of x5 (v) given in (2.16), it is easy to see that x~(7) is a
straight line passing through the origin with the slope

1 da
K,=——(dido\, + — —d 0,
bdv9<12 +)\n 2,6)<
then we immediately obtain the results in (i). Also, we see that K, is a hook function
[ d
of A, thus it can be known that K, reaches its maximum at A, = ﬁ, thus the
1d2

conclusion in (ii) is achieved.
For (iii), it is clear from (2.17) that xZ(v) is a quadratic function of v and can
be rewritten as 2 (v) = aay? + a1y + ag with

4y = (di +d2)An — 57 ay = ((d1 + d2)An — 5)2,
bdvg Ay, bduvg A,
0y = ((dy + da) A, — B)daAn(di A, — B) + da.
bdva)\n
Immediately, we obtain that as > 0, a; > 0, ap > 0 and the symmetrical axis
v = 72?712 < 0. Thus, it can be inferred that x () is increasing for v > 0.

For (iv), we first rewrite x(v) as the following form by replacing ), by a con-
tinuous variable p:

~ ((dy+d2)p = B) [v* + y(dwp + dop — B) + dap(dip — ) + da]

H

By differentiating Xf () with respect to p, we have

dlxy ()] 1 5 >
Zp ~ bdvgp? [2(d1 + da)drdop® + ((di + d2)*y

—B(2d1d> + d3))p* + By* — By + Bda] .

This manuscript is for review purposes only.
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LOCAL PERCEPTION AND LEARNING MECHANISMS 9
Let

f(p) = 2(dy + d2)didap® + ((d1 + d2)*y — B(2drds + d3))p® + By* — B2 + Bda,

then one can verify that f(p) has a unique positive zero p = p, as

F'(p) = 6(d1 + da)didap® + 2((dy + do)*y — B(2d1d2 + d3))p > 0, for p > 0,

and f(0) = By? — 8%y + Bda < 0, BEI_I f(p) = +o0. Also we found that f(p) >0
p oo

dlx ()]

. > 0 for

for p € (ps«,+00) and f(p) < 0 for p € (0,p.), which implies that

dixg' (7))
dp
p = p«. By the relation that p = \,,, we know that there must exist a M € N such
that Aps is the closest eigenvalue to p. and x4 (v) = mi&l XH (7). 0
ne

p € (p«,+00) and < 0 for p € (0,p.) and x}'(v) reaches its minimum at

LEMMA 2.4. Let x3.(v) and x5 (v) be defined as in Lemma 2.5, then we have

(i) when x3(7) < x < X3 (), all the eigenvalues of Eq.(2.7) have negative real

parts;

(i) when x > xi(v), p = Fiw, (w, > 0) is a pair of purely imaginary roots of

Eq.(2.7) if x = X} (7);

(iii) when x < x% (), p =0 is a root of Eq. (2.7) if x = x5 (7)-

Proof. From Lemma 2.3, when x%(v) < x < x4 (7), we have C,, > 0 and
ApB,—C, > 0forall \,, > 0 so all the eigenvalues of (2.7) have negative real parts for
all n € Ng. When x < x%(7), we have C,, < 0 so the characteristic equation (2.7) has
at least one eigenvalue with positive real part, and when x = x3 (), Eq.(2.7) has a zero
eigenvalue. When x > x5 (v), we have 4, > 0, C,, > 0 but A, B,, — C,, <0, so not
all the eigenvalues of (2.7) have negative real parts. In particular, when y = xZ (),
Eq.(2.7) has a pair of complex eigenvalues with zero real part. ]

From Lemma 2.4, we know that Eq.(2.7) has a pair of purely imaginary eigenvalues
+iw, (wn, > 0) when x = xZ (7). The following lemma shows that the transversality
condition holds at x = xX (7).

LEMMA 2.5. Let x = xH(v) be defined as (2.17). Then, Eq.(2.7) has a pair of

roots in the form of p = 8(x) £ iw(x) when x is near x£ (v) such that 6 (xH(v)) =0
and &' (xH (7)) > 0.

Proof. We only need to show that & (xZ(v)) > 0. Differentiating Eq.(2.7) with
respect to x, we have

dp  dA, dp  dB, dp  dC,
2.20 3l + =2 4 24, u— B,,— =
(2.20) W b g T B

From the expressions of A,,, B,, C, in Eq. (2.7), it is straightforward to see that

2.21 =0, — =0, — = bdvg\,.
( ) dX 07 dX 07 dX Vo

Substituting (2.21), u = iwg, B, = wg and x = xZ(v) into Eq. (2.20), we obtain

du C bduph,
dX x=xH (v) o 2w§ — 21'(4.]()14”7

This manuscript is for review purposes only.
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0.7 . Diagram .
L\ = = n=1Turing
W n=1 Hopf |
06 t\\\ n=2 Turing
\\\ n=2 Hopf
05 W = = n=3 Turing 8
\ Wepy n=3 Hopf
| WP5 = = n=4 Turing
o4 v N\ n=4 Hopf
< \;\\\ = = n=5 Turing
03F~ P6% n=5 Hopf
W — = n=6Turing P1°
R7e W 9
\ = n=6 Hopf
02} W
W
|
01F - - LY
S~ o \ )
0 =
0.5 0

Fig. 1: The bifurcation diagram of system (1.4) in (x,~) plane with d; = 0.01, dy =
003, m=1,d =01, k=1, b = 0.15, Q = (0,7), and the Turing bifurcation
curves X = X5 (7) can be identified by the dotted curves and Hopf bifurcation curves
X = X2 () by the solid curves. The points are parameter values for the numerical
simulations and they are: P1 (0.5,0.28), P2 (0.5, 0.18), P3 (0.5,0.15), P4 (—0.3,0.45),
P5 (—0.3,0.42), P6 (—0.3,0.31) and P7 (—0.3,0.25).

279 thus
d bdvg A .
1% Vg An
250 5 :Re< >=>0.
W =R achaniin) ~ 2+ A7)
281 By Lemmas 2.3, 2.4, 2.5 and Hopf bifurcation theory for partial functional dif-

282 ferential equations, we obtain the following results on the stability and bifurcation
283 behaviors of the positive homogeneous steady state of Eq.(1.4).

284 THEOREM 2.6. Assume that condition (A) holds, and let x5 (), xH () be defined
285 as (2.16), (2.17) and x3(7), x& (7) in Lemma 2.3, then we have the following results
286 for Eq.(1.4):

287 (i) a mode-n Turing bifurcation occurs at x = x5 () for v > 0 and n € N, thus a

288 mode-n spatially nonhomogeneous steady state can arise near (0,vg,qs);

289 (ii) a mode-n Hopf bifurcation occurs at x = xH(v) for v > 0 and n € N, and the
290 bifurcating periodic solutions are spatially nonhomogeneous;

291 (iii) for a fized v € (0,+00), the positive homogeneous steady state (0,vg,qg) is
292 locally asymptotically stable for x3(v) < x < x&(v) and unstable for x €
203 (=00 x%(M] U [xdr(7), +00).

294 On one-dimension spatial domain = (0, 7), the bifurcation diagram of Eq.(1.4)
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is illustrated in Fig.1 by taking the parameters as d; = 0.01, dy =0.03, m =1, d =
0.1, k=1, b=0.15. In the following, we perform some numerical simulations based
on the following initial conditions:

(I1) up(z) = 6 — 0.01 cos(x), vo(x) = vy — 0.01 cos(z), qo(x) = qp — 0.1 cos(z

(I12) up(z) = 6 — 0.01 cos(2x), vo(z) = vg — 0.01 cos(Qx) qo(z) =

(I8) uo(xz) = 0 — 0.01 cos(3x), vo(x) =wvg — 0.01cos(3z), go(x) = g¢ — 0.1 cos(3x)

(I4) up(z) = 6 — 0.01 cos(4x), vo(z) = vg — 0.01 cos(4x), qo(z) = qp — 0.1 cos(4x),
and we will indicate the initial conditions for each figure. Note that we only demon-
strate the distribution of resources in each figure as the consumers always follow the
resources and have similar spatial distribution.

From Fig.1, we observe that the mode-2 Hopf curve is the first Hopf curve and
we choose some points near the Hopf bifurcation curves to observe periodic patterns
in system (1.4). In Fig.2, for fixed x = 0.5, we observe that the steady state (6, vg, qg)
is stable when 7 = 0.28 (corresponding to P1 which is in the stable region). When
we decrease v to 0.18 (corresponding to P2 which is under the first Hopf bifurcation
curve), it is shown that a mode-2 spatially nonhomogeneous periodic pattern arises.
When v = 0.15, the mode-2 spatially nonhomogeneous periodic pattern remains sta-
ble as the mode-2 Hopf bifurcation curve is the dominant Hopf bifurcation curve.
Also, if the initial conditions are taken as (I1) and (I3), the solution of system (1.4)
finally converges to a mode-2 periodic pattern but with a transient oscillation between
different modes, see Fig.3. In this situation, we see that the spatial distribution of
resources will periodically change over time.

In Fig.4, we demonstrate the spatially nonhomogeneous steady state and some
wandering periodic patterns when x = —0.3. When we choose v = 0.45 corresponding
to P4 in Fig.1, the constant steady state (0,vg,qs) is stable as shown in (a). If we
decrease vy to 0.42 corresponding to P5 which is below the mode-4 Turing curve, it
is shown that a mode-4 spatially nonhomogeneous steady state arises as illustrated
in (b). This situation happens when the environment of the living habitat is steady
over time so that resources and consumers can keep their dynamic balance. When we
continue to decrease the v value, we observe some “wandering” patterns with large
periods as shown in (c¢) and (d), which demonstrate a distinguished distribution of
resources from the periodic patterns (see Fig.2) induced by Hopf bifurcation. These
patterns are also observed in previous work of Keller-Segel chemotaxis model with
growth [19] and distributed spatial memory [27]. The mechanism behind these pat-
terns is to be explored, while it is sure that Hopf bifurcation from a constant steady
state is not the reason as we have proved that Hopf bifurcation will not occur in the
parameter region where we observe these “wandering” patterns.

)

)
x)=gqy — 0.1 cosEZx)

3. The dynamics of model (1.5). In this section, we investigate the dynamics
of system (1.5), which admits a constant equilibrium (6, vg, gp) with

d _(k=0)140) _ _ bOuy

0=—— = .
y Vo km y 4o ’)/+€U9

One can easily verify that (0,vg,qg) is locally asymptotically stable concerning the
kinetic system. In this section, we investigate the stability of the constant steady
state (0, vp, gp) and carry a bifurcation analysis for system (1.5).
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j02 025
’ 02
0.15
F i 015
o1 . 0.1
005
005 .

05 1 15 2 25 3 0.5 1 15 2 25 3 0.5 1 15 2 25 3
Space x Space x Space x

(a) (x,7) = P1,IC=(12) (b) (x,7) = P2,IC=(12) (¢) (x,7) = P3,1C=(12)

Fig. 2: Periodic patterns rising near Hopf bifurcation curves in system (1.4) when
parameters are d; = 0.01, do = 0.03, m =1, d = 0.1, £k = 1, b = 0.15 and
Q = (0,7). In each figure, the color indicates the value of u(z,t) according to the
color bar.

u(x,t)

"I
0 1 2 3

1
Space x Space x

(a) (x,v) = P3, IC=(11) (b) (x,v) = P3, IC=(I3)

1 2 3
2 Space x

Fig. 3: Transient oscillatory patterns between the different modes of periodic patterns
in system (1.4) when parameters are d; = 0.01, do = 0.03, m =1, d = 0.1, k =
1, b = 0.15 and © = (0,7). In each figure, the color indicates the value of u(z,t)
according to the color bar.

3.1. Spectrum of the linearized operator. Linearizing Eq.(1.5) at (6, vy, Gp)
leads to the linear operator

p diA¢ + B — dip
(3.1) Ll v | = da At — xvgAp + agp
,}/ b
® bvg + 7erw— (v + Eva)yp

where a > 0, 8 < 0 defined as (2.2). Then, we know that L is a closed linear operator

in Y with domain D(£) = X with X, Y defined as in (2.4). In the following, we
provide the results about the spectrum of L.
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400 400
0.2 0.2
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(¢) (x,7) = P6, IC=(14) (d) (x,7) = P7, IC=(14)

Fig. 4: Spatial patterns rising near Turing bifurcation curves in system (1.4) when
parameters are d; = 0.01, do =0.03, m =1, d=0.1, k=1, b=0.15, and Q = (0, 7).
In each figure, the color indicates the value of u(z,t) according to the color bar.

THEOREM 3.1. Let £ : X — Y be defined as (3.1), then the spectrum of L is

o (E) =0y (ﬁ) =SU{—v — vy},
where
(3.2) S = {a oo U {3 Yo U {a }oto,

where ﬂﬁi), j=1,2,3 satisfying Re (ﬂ%1)> < Re (ﬂf)) < Re (ﬂg’)) are the roots of
the following characteristic equation

(3.3) 13+ App® + Bop+Cp, =0, n e N,
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with

Ap = (dy + d2)A — B+ + Evg,

. bOugy )\,

By, = dadn(didn — B) + (7 + €vg)(didn + dody, — B) + o — X200 A0

v+ Evg
~ bOvgy A, (di Ay, —
Coo = (3 + €08)daAn(di An — B) + bV An + da(ry + Evg) — X2V A 1A = B)
v+ &vg
The proof of Theorem 3.1 is similar to that of Theorem 2.1, thus we put the

details in Appendix.A.

COROLLARY 3.2. In system (1.5), the constant equilibrium (0,ve,qGy) is locally
stable when all the roots of the characteristic equation (3.3) have negative real parts;
otherwise it is unstable.

The proof is similar to that of Corollary 2.2, thus we omit it here.

3.2. Bifurcation analysis. From Theorem 3.1 and Corollary 3.2, we know that
the stability of the constant steady state (6, vg, Gp) of system (1.5) can be determined
by the characteristic equation (3.3). By the Routh-Hurwitz stability criterion, all
eigenvalues of (3.3) have negative real parts if and only if

A, >0, C,>0, A,B, —C, >0.

From the fact that 8 < 0, we know that A,, > 0 always holds. Also we know that
the real parts of the eigenvalues of (3.3) may change sign either via C,, = 0 (which
implies (3.3) has a zero root) or via A,B, — C,, = 0 (which implies (3.3) has a pair
of purely imaginary roots). Taking x and 7 as the bifurcation parameter, we obtain
the steady state bifurcation points by solving C,=0:

. + &vg) (daoAp(di Ny, — B) + da
(3.4 €)= -t Ll ~ R da),
Ao — (o — )

and Hopf bifurcation points by solving A, B, — C,, = 0:

- di+da)A, — B
Xrl;,l( = 2 (( ! 2) d21)20‘yv9)\2 [d2>\n(d1)\n - ﬁ)

+(v + &ug) ((d1 + d2) A — B) + (v + Evg)* + da] .

In the following lemma, we give a detailed description of the properties of Turing
curves ¥ = X5 (7). For the convenience of writing, we define

Qn(7) = (v + &vo) (d2An(di A, — B) + dav),

bOyvg Ay,
Po(y) = bdv2 A, — (dihn — ﬁ)ﬁ.

(3.6)

LEMMA 3.3. Let X5 () and X2 (v) be defined as (3.4) and (3.5), respectively, then
the following statements are true:
(i) there exists n, € N such that X5 (y) < 0 for all y > 0 when n < n., and X5 () < 0
fory € (0,7%) and X5 (7) > 0 for vy € (v, +00) where 7% satisfies P, (%) =0
and n, is the largest integer such that X\, < o .

d10’
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w
x®

) (i) when X5 () <0, there exists N € N such that {3, = max X5 for a fized v > 0;
n

381 (41) when X5 () > 0, X5 is strictly decreasing with respect to n and satisfies

s s _ da(y+Evg)?
382 3.7 S>x8 =
(3.7) Xn > Xoo b,

383 moreover, X5 () is decreasing for vy € (0,7.) and increasing for vy € (s, +00)
384 with v, = &vg;
385 (iv) there exists M € N such that X3 (v) = mi&l XH (v) for fized v € (0,+00).

ne
386 One can find the proof for Lemma 3.3 in Appendix.B. In a similar way with
387 Lemma 2.4, we can also prove the properties of eigenvalues of Eq.(3.3) as follows.
388 LEMMA 3.4. Let X3 (v), X2(v), XL (7) be defined as (3.4), (3.5), (3.7), and
380 Xn(V), XA () in Lemma 3.3, we further define
300 (3.8) X~ () = Xx(), x*(7) = min {x37 (1), X5 (1)} -
391 Then we have the following results:
392 (i) when x~(v) < x < xT(7), all the eigenvalues of Eq.(3.3) have negative real
393 parts;
394 (i) when x > xt(7), p = Fiw, (w, > 0) is a pair of purely imaginary roots of
395 Bq.(2.7) if x = X} (7);
396 (iii) when x < x~ (), u =0 is a root of Eq. (2.7) if x = X5 (7).
397 Remark 3.5. The boundary curve x = xT(v) for the constant steady state of

398 system (1.5) to lose stability consists of two types of bifurcation curve x = x4 ()
309 or X = X5 (7). When the constant steady state loses its stability via x = Y3 (v),
400  there will be infinitely many eigenvalues with positive real parts for the corresponding
401 linearized system. This situation also happens in an explicit spatial memory model
402 studied in [26].

103 Similar to Lemma 2.5, we can verify that the following transversality condition
404 for Hopf bifurcation holds in system (1.5) and we omit the proof.
405 LEMMA 3.6. Let x = X2 (v) be defined as (3.5). Then, Eq.(3.3) has a pair of

106 roots in the form of p = 8(x) +iw(x) when x is near X (v) such that 6 (xH (7)) =0
7 and &' (xH (7)) > 0.
408 By Lemmas 3.3, 3.4, 3.6 and Hopf bifurcation theory for partial functional dif-

409 ferential equations, we obtain the following results on the stability and bifurcation
410 behaviors of the positive homogeneous steady state of Eq.(1.5).

111 THEOREM 3.7. Assume that condition (A) holds, and let X3 (), X2 () be defined
412 as (3.4), (3.5), and x~ (), xT(7) in (3.8), we have the following results for Eq.(1.5):
113 (i) a mode-n Turing bifurcation occurs at x = X5(y) for v > 0 and n € N, thus a

414 mode-n spatially nonhomogeneous steady state can arise near (6,vg,ds);

115 (i) a mode-n Hopf bifurcation occurs at x = X2 (y) for v > 0 and n € N, and the
416 bifurcating periodic solutions are spatially nonhomogeneous;

417 (i) if we fix v € (0,400), the positive homogeneous steady state (0,vg,qp) is lo-
418 cally asymptotically stable for x~(v) < x < xT(v) and unstable for x €
419 (=00, X~ (7)) U (xT(7), +00).

420 Taking the parameters as d; = 0.01, d2 = 0.02, m =05, d=0.1, k=1, b=

421 0.2, & = 0.3, the bifurcation diagram of Eq.(1.5) is illustrated in Fig.5. We see that
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1.5 Diagram
' Wit — = Turing n=1 ~ ﬁ
W Hopf n=1 : "
W Turing n=2
W Hopf n=2 :
W = = Turing n=3 ]
l W Honn=3
W = = Turing n=4
Hopf n=4
w = = Turing n=5
- \“. P5 Hopf n=5
\\} pg Turing n—->c0
W
0.5 W
*\P7
" P4
L
*' P8
0 -
-0.5 0
X

Fig. 5: The bifurcation diagram of system (1.5) in parameter plane (x, ) with d; =
0.01, d2 = 0.02, m =05, d =01, k=1, b=02 & =03, Q= (0,7), and
the Turing bifurcation curves x = x5() can be identified by the dotted curves and
Hopf bifurcation curves x = x2(y) by the solid curves. The points are parameter
values for the numerical simulations and they are: P1 (0.52,1.05), P2 (0.50,0.42), P3
(0.48,0.35), P4 (0.45,0.27), P5 (~0.2,0.78), P6 (—0.2,0.63), P7 (—0.2,0.40) and P8
(—0.2,0.10).

the dynamics of (1.5) is different from that of (1.4): i) there exists a limiting Turing
curve X = Xoo corresponding to the infinite mode which destabilizes the system when
X > Xoo; ii) different modes of Hopf bifurcation curves can intersect with each other
such that codimension-2 double Hopf bifurcation occurs. Near the intersection point
of mode-3 and mode-4 Hopf bifurcation curves, we choose proper parameter values as
presented in P2, P3, and P4 to perform simulations. When the parameters are taken
as (x,7v) = P2 = (0.50,0.42) which is extremely close to the mode-4 Hopf bifurcation
curve, we observe that a mode-4 spatially nonhomogeneous periodic pattern arises
as shown in Fig.6(b). When (x,7) = P3 which is in between the area enclosed by
the two Hopf bifurcation curves and (x,7y) = P4 which is closest to the mode-3
Hopf bifurcation curve, we observe a quasi-periodic pattern and a mode-3 periodic
pattern, respectively, as illustrated in Fig.6 (c) and (d). Compared to the periodic
patterns observed in system (1.4) (see Fig.2), the spatial distribution of resources is
more diverse, and even quasi-periodic distribution is possible due to the impact of the
consumption process on cognition and memory in system (1.5).

In Fig.7, we illustrate the spatially nonhomogeneous steady state and some wan-
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Fig. 6: Periodic patterns rising near Hopf bifurcation curves in system (1.5) when
parameters are dy = 0.01, do =0.02, m=0.5, d=0.1, k=1, b=0.2, £ = 0.3 and
Q = (0,7). In each figure, the color indicates the value of u(z,t) according to the
color bar.

dering periodic patterns when x = —0.2. When we choose 7 = 0.78 corresponding
to P5 in Fig.5, the constant steady state (0,vg,qq) is stable as shown in (a). If we
decrease v to 0.63 corresponding to P5 which is under the mode-4 Turing curve, it is
shown that a mode-4 spatially nonhomogeneous steady state arises as shown in (b).
When we continue to decrease the v value to 0.40, it can be seen that the mode-
4 steady state is still stable as shown in (c). Similar to model (1.4), we observe a
“wandering” pattern with a large period for v = 0.10 as shown in (d).

4. Discussion. In [35], Wang and Salmaniw summarized three main categories
of cognitive processes in animal movement models: perception, memory, and learning.
Perception means the ability to see, hear, or otherwise become aware of something
through the senses, while memory is the stability to store, retain, and retrieve informa-
tion [6,10]. Learning is the information acquisition from an individual experience [10].
Spatial memory modeled by explicit time delay has received much attention:

(i) discrete delay: [2,12,24-26,29-32, 34, 36-38, 40];
(ii) distributed delay: [14,23,27,33,41];
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Fig. 7: Spatially nonhomogeneous steady state rising near Turing bifurcation curves
in system (1.5) when parameters are d; = 0.01, do = 0.02, m = 0.5, d = 0.1, k =
1, b=102, £ =03 and Q = (0,7). In each figure, the color indicates the value of
u(x,t) according to the color bar.

(iil) nonlocal delay: [28].

Through these studies, we can gain some insight into the effect of explicit memory
in delayed form on animal movement. However, there is little analysis completed for
implicit memory that is described by a learning equation [?,35]. In this paper, we
consider resource-consumer models with implicit spatial memory by incorporating an
additional biased diffusion term which shows an attractive movement of consumers
to the resource. The difference between these two models lies in the cognitive poten-
tial function ¢(x,t) satisfying two different learning ODEs. System (1.4)/(1.5) is a
PDE-ODE coupled system whose linearized system has a more complicated spectrum
than a classical reaction-diffusion system. We first performed a spectral analysis for
each system and found that the spectral set of the corresponding linear system for
(1.4)/(1.5) is discrete, which implies that the stability of the constant steady state is
still determined by the corresponding eigenvalue problem. Next, we took the memory-
based diffusion rate x € R as a bifurcation parameter and performed a bifurcation
analysis for system (1.4)/(1.5).
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In systems (1.4) and (1.5), steady-state bifurcation and Hopf bifurcation can both
occur. From the bifurcation diagram in Figs. 1 and 5, we observe that the constant
steady states are stable for a small memory-based diffusion rate (either attractive or
repulsive), while a large memory-based diffusion can destabilize the systems and in-
duce rich spatial patterns. The outcome differences between these two models mainly
lie in the following two aspects.

1. All the steady-state bifurcation curves lie in the left half plane in x — v plane
in system (1.4). In system (1.5), there exists an n, defined in Lemma 3.3
such that the steady-state bifurcation curves move to the right half plane
when n > n,. In particular, when n — 400, we found a limiting Turing
curve ¥ = Y5, such that the linearized system at the constant steady state
has infinitely many eigenvalues with positive real parts for y > f(fo
2. In system (1.4), the dominant mode for Hopf bifurcation will not vary with
different memory-based diffusion rates when the other parameters are fixed.
For example, we observed that the mode-2 Hopf bifurcation is stable when the
parameter values are taken as in Fig. 1. However, it is shown that there are
different dominant modes for different memory-based diffusion rates in system
(1.5), even two different modes of Hopf bifurcation curve can intersect with
each other such that a codimension-2 double Hopf bifurcation occurs, see
Figs.5&6.
Based on the above theoretical reasons, the dynamics of system (1.5) are richer, for
instance, different modes of stable periodic patterns and quasi-periodic patterns can
be found in system (1.5). From a biological perspective, these results indicate that the
distribution of the resource/consumer seems more spatially diverse when the cognitive
map ¢(z,t) follows the more realistic learning equation (H2).

This paper considered local perception when the cognitive kernel g(z) is a delta
function which is the limiting case when the perceptive range is extremely narrow.
However, the actual situation is that the animal has a restricted habitat and wide
perceptive range, therefore it is more realistic when the kernel function is taken as a
top-hat, Gaussian, or exponential form.

Appendix A: The proof of Theorem 3.1. For € C and (71,72, 73) € Y, we
consider the nonhomogeneous problem

diA¢ + Bo —dp = po + 11,
da Av) — xvgAp + ap = pp + 2,

4.1 b6
(4.1) bugp + 7 b —yp = pp + 73,
v+ &vg
Ond = Opth = 0.

Case 1: pu # —y — &vy. From the third equation of (4.1), we can obtain ¢ =

bo~y
bvgo +
o® v+ &ve

1) — 13 and substitute it into the second equation, we have

diAG + B — dip = pgp + 71,

XVg
4.2 doAp — —=—" A (b
(4.2) 289 w7y + Eug (WH

On¢ = O =0,

bO~y

’Y+€U9¢_Tg> +a¢ = pp + 79,

This manuscript is for review purposes only.



508

510

(SIS, B 1|
— = —
[SL NN w N —

516

at
~

518

519

520

20 Q. SHI, Y. SONG, AND H. WANG

which is equivalent to

(6 diA¢ + B — dip — po T
Ly ( ) bxve = 5 X9 AL ]
A+

v )\ b - T Ag + a9 —

lllw2ew + [[¥]w2r @)

bxve

do Aty — —22
289 w7y + Evg

AP+ ag

<|ILeHl <|d1A¢+ B — d|Lr o) + ‘

By a similar argument as in the proof of Theorem 2.1, we know that L1 has a bounded
inverse £; ' with

LP(“)) 7
when p € C satisfies the following inequality
(4.3)

(ndi A —B) (n+v4Ev9) [(+dadn) (Y+Eve) — Evgb0y]+doar(p+y+Evp) +dbxvi Ap # 0.

Therefore, we know that £ — (1 4 €vp)I has a bounded inverse (ﬁ —(n+ fvg)I)

If (4.3) does not hold, then it can be inferred that u satisfies the dispersal relation
(3.3) which has three roots ﬂg), j =1,2,3 for each n € Ny. For j = 1,2,3, we
put pu = [LS ) into (4.1), one can check that g% ) are indeed eigenvalues of £ with
eigenfunctions being

1
s 1 P
5(51 d (_dlAnﬂLﬁ—ug))
(i _ )
1{)?]‘) dbuyg (’7 + E’U@) — b97 (dl A + M%J) . B) On,

$n 0
(7 + 7+ €vo) (3 + €va)

. . PN NT
which implies that Ker(L — ;155)) = Span {( 53), 7(3), c,b%”) }
Case 2: u= —v — &vy. Then Eq. (4.1) becomes

d1Ad+ B —dib = (v + Evg)d + 71,
do At — xveAp + ad = (v + §ug)Y + T2,

bo~
bvgop + = T3,
o s gvelﬂ 3
On¢ = Oy =0,
which can be solved as
bdvg (v + &v d(y 4 &vg) T
diAG + 5_7_§U9+M ¢:TI+M7
bl bO~y
(v +&vg) (13 — bugo)
’(/} - 9
) bo~
Ap=— (A% + ag — (v + Evg)yp — 72) .
XVo
By letting 41 = 7 = 73 = 0, we know that the first equation only has trivial
bdvg (v + €vp)

solution ¢ = 0 when 8 — v — &vg + Z {\n}22,. Also, we have

bO~y
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1 = 0 from the second equation and ¢ is an arbitrary constant, which implies that
Ker (L + (v+ §v91> = Span{(0,0,1)T} and thus —y — vy € ap(ﬁ). Ifp—vy—Evg+
bdvg (v + Evg)

bo~y

N

—~

= A\, holds for some n € N, then we have

(b:(l;n:dl(b,,“ wzﬁn:_W7

1
0= @n= d1davg (v + Evghn + ad10y + dive(y + Eve)?) P
X0vey

. . . T
Then we have —y—&vg € 0,(L) with Ker (£ +(v+ 5119[) = Span { (qﬁmwn, ¢n> }

To conclude, we have
a(£) = 0p(L) = SU{—v — Evp}

with S defined as (3.2). This completes the proof.

Appendix B: The proof of Lemma 3.3. By the definition of ¥~ (v) given in
(3.4), we see that X5 (v) = Qn(7)/Pn(y) with Q,.(7) and P, (7) defined as in (3.6). It
can be verified that @Q,,(y) > 0 for all v > 0, therefore, the sign of Y5 () is determined
by the sign of P,(v). By letting P,,(v) > 0, we have

dvg(y + Evp) dvg
4.4 _— —
(4.4) A < 40 € d19’+oo ,

d
HUZ’ and n, € N is the
d”l)e

largest integer such that \,, < P When n < n,, X3 (7) < 0 holds for al v > 0.
1

which implies that P,(y) > 0 holds for all v > 0 when A,, <

when n > n,, we have

P, (0) = bdvg\, >0, lim P,(y) = —(di )\, — B)bOvgA, < 0,

y—4o00
and

dy (7 + &vo)? ’

thus there exists v > 0 such that P,(v}) = 0, and P,(y) > 0 for v € (0,7) and
P,(v) <0 for v € (v}, +00). By the fact the @, (v) > 0, we obtain the results in (i).

As for (ii), we need to know the monotonicity of Y3 () with respect to n, thus
we first rewrite Y5 () as the following form by letting p = \,:

Sy = (5 £00)(dap(dip — B) + do)
b bdvgp — (dip — B)2zer

Taking derivative with respect to p, we have

2dad; bOyvy da(bdv3 (v + Evg) + BbOyvy)
didabduip? + - .
R T T ) (7 + €vo)

x5 (7)] _ Y +&ve
dp Pz(v)
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d[x5 ()] d[x; ()]

From the expression of , we see that is a quadratic function of p

with positive coefficients for quadratic and linear terms. However, the constant term is
d oS

negative as bdvZ(7y + &vg) + Bbyvg > 0 when Y75 () > 0, which implies that w
p

d[x; (7)] d[x; (7)]
dp dp

p € (p*,4+00) and )Zﬁ(’y) reaches its maximum at p*. Let N € N be the integer such

that A, is the closest eigenvalue to p*, then we have x%(v) = max X5 () for a fixed

ne

v > 0.

has a unique zero p* such that > 0 for p € (0,p*) and < 0 for

g . : dix,(M] .
When x: (y) > 0, the constant term in the expression of —g positive, thus
P
dlxy (7)) o } g
we know that —dn < 0 from the discussion in the proof of (ii). Therefore, x. ()
P
is strictly decreasing with respect to n and we have
o o da (v + €v3)

4. Sy)y =1 S(y) = o2,
(4.5) min x;/(y) = lim x5, (7) bog

Define the limiting Turing curve as X3 in (3.7), and it can be known that x5 (v) is
first decreasing and then increasing function of v and reaches its minimum at v = +,.
This proves the conclusions in (iii).

To prove (iv), we rewrite Y2 () as

() = ((dy +d2)p — B)

B bdvgp ~+ bOvyvgp + %

+(v + €vg) ((dy + d2)p — B) + (7 + €vp)* + dar] .

[dap(dip — B)

where \,, in Y2 () is replaced by p. Taking the derivative with respect to p, we obtain

dixy (M) _ F()
dp H2(v)’

where

E,(v) =Hp(v) {(d1 + d2) [dap(dip — B) + (v + Eve) ((dr + d2)p — B) + (v + Evp)?
+da] + ((dy + dao)p — B)(2d1dap — B+ (di + d2)(7y + Eve)) }
2dab0yvgp
= Qp(7) <bdvg + byvg + ’Y"‘f”@) )
and
Qp(7) =((d1 + d2)p — B) [dap(dip — B) + (v + &ve)((d1 + da)p — )
+(7 +€vp)® + da]
dabfyvep?
Y+ Evg

By a tedious calculation, one can verify that F,(y) is a quartic polynomial of p, that
is,

Hy(v) =bdvgp + bOyvep +

Fy(v) = as(0)p* + as(v)p® + a2 (v)p* + a1(7)p + ao(7)

This manuscript is for review purposes only.



LOCAL PERCEPTION AND LEARNING MECHANISMS 23
with

dq + dy)d,d3b0
a4(”y) _ ( 1 +,}/2j_ £11)02 YVo > 0,

ag(y) = B(bdvj + byve)[ar + (v + Ev)® — By + Evp)] < 0.

Therefore, it can be inferred that there exists at least one positive zero p = p** of
F,(v) such that )Zf (7) reaches its minimum at p = p**. Therefore, we may take
M € N such that Ay is the closest eigenvalue to p**. This completes the proof.
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