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Abstract. Spatial memory is key in animal movement modeling, but it has been challenging4
to explicitly model learning to describe memory acquisition. In this paper, we study novel cognitive5
consumer-resource models with different consumer’s learning mechanisms and investigate their dy-6
namics. These models consist of two PDEs in composition with one ODE such that the spectrum of7
the corresponding linearized operator at a constant steady state is unclear. We describe the spectra8
of the linearized operators and analyze the eigenvalue problem to determine the stability of the con-9
stant steady state. We then perform bifurcation analysis by taking the memory-based diffusion rate10
as the bifurcation parameter. It is found that steady-state and Hopf bifurcations can both occur in11
these systems, and the bifurcation points are given so that the stability region can be determined.12
Moreover, rich spatial and spatiotemporal patterns can be generated in such systems via different13
types of bifurcation. Our effort establishes a new approach to tackle a hybrid model of PDE-ODE14
composition and provides a deeper understanding of cognitive movement-driven consumer-resource15
dynamics.16
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1. Introduction. Since 1952, Turing instability Turing induced by random dif-20

fusion has been highly esteemed as the mechanism for the spatial heterogeneous distri-21

bution of species in nature. However, numerous pieces of evidence show that random22

diffusion is insufficient to describe the animal movement as many factors may affect23

the animals’ decision for spatial movement. Some clever animals even have an amazing24

ability to choose their favored habitat. Therefore, animal cognition should be taken25

into account in animal movement modeling [6, 8, 18]. Although specific mechanisms26

are still in debate, most modelers believe that perception (information acquisition)27

and memory (the retention of information) play dominant roles in interpreting com-28

plicated animal movement behaviors. Generally speaking, perception is the process29

by which animals acquire information, while memory is the storage, encoding, and30

recalling of information. Spatial memory is the memory of spatial locations in a liv-31

ing organism’s landscape. A strong motivation for the importance of spatial memory32

in animal movements is the empirical evidence of blue whale migrations presented33

by [1] and discussed by [4]. Much progress has been made in incorporating spatial34

cognition or memory implicitly, such as home range analysis [16,17], scent marks [11],35
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2 Q. SHI, Y. SONG, AND H. WANG

taxis-driven pattern formation [20, 21], information gaining through the last visit to36

locations [22], perceptual ranges [5], and delayed resource-driven movement [7].37

In [5], Fagan et al. proposed a resource-driven movement model to study per-38

ceptual ranges and foraging success, and the delay effect was later considered in the39

resource-driven movement model in [7]. In [35], by assuming that the consumers40

have knowledge of where the resources are, Wang and Salmaniw proposed the follow-41

ing consumer-resource model with an additional term biasing the movement of the42

consumer:43

(1.1)


ut = d1∆u+ u

(
1− u

k

)
− muv

1 + u
, x ∈ Ω, t > 0,

vt = d2∆v − χ∇ · (v∇q̄) + muv

1 + u
− dv, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

44

where u = u(x, t) and v = v(x, t) denote the density of resource and consumer,45

respectively. The attractive potential q̄(x, t) is of the form46

q̄(x, t) =

∫
Ω

g(x− y)q(y, t)dy,47

where g(x − y) is the perceptual kernel and for the biological meaning, g(x) should48

satisfy the following hypotheses [35]:49

(i) g(x) is symmetric about the origin and non-increasing from the origin;50

(ii)
∫
Ω
g(x)dx = 1, and lim

R→0+
g(x) = δ(x).51

The typical example that satisfies the above two hypotheses is the so-called top-hat
function:

g(x− y) =


1

2R
, −R < x− y < R,

0, otherwise,

where R is the perceptual range. Recently, there has been an increasing interest and52

effort in studying the influence of perceptual range on population dynamics [?,35,39].53

In this paper, we explore the limiting scenario when the perceptual range ap-54

proaches zero, i.e., R → 0+. For this local perception scenario, g(x) = δ(x) and55

system (1.1) becomes56

(1.2)


ut = d1∆u+ u

(
1− u

k

)
− muv

1 + u
, x ∈ Ω, t > 0,

vt = d2∆v − χ∇ · (v∇q) + muv

1 + u
− dv, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0.

57

The parameters in (1.2) are all positive constants except for χ ∈ R: d1, d2 denote58

the random diffusion rates for resource and consumer, respectively; k is the carrying59

capacity for resource; m is the predation rate; χ > 0(< 0) implies that the consumer60

follows an attractive (repulsive) movement to the high-density area based on the61

perception of the population density.62

In [35], Wang and Salmaniw proposed that q(x, t) is a cognitive map based on63

the learning and memory waning of the consumer and satisfies either of the following64

two ODEs:65

H1 : qt = bu− γq,

H2 : qt = buv − (γ + ξv)q.
(1.3)66
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LOCAL PERCEPTION AND LEARNING MECHANISMS 3

When the cognitive map q(x, t) satisfies (H1), then Eq.(1.2) becomes67

(1.4)


ut = d1∆u+ u

(
1− u

k

)
− muv

1 + u
, x ∈ Ω, t > 0,

vt = d2∆v − χ∇ · (v∇q) + muv

1 + u
− dv, x ∈ Ω, t > 0,

qt = bu− γq, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,

68

where the growth of q(x, t) follows a constant proportion b > 0 to resource density,69

and q(x, t) has a linear decay at rate γ > 0.70

When q(x, t) satisfies (H2), Eq.(1.2) becomes the following system:71

(1.5)


ut = d1∆u+ u

(
1− u

k

)
− muv

1 + u
, x ∈ Ω, t > 0,

vt = d2∆v − χ∇ · (v∇q) + muv

1 + u
− dv, x ∈ Ω, t > 0,

qt = buv − (γ + ξv)q, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0.

72

The difference between model (1.4) and model(1.5) is that q(x, t) in (1.5) grows pro-73

portionally both to the resource and consumer density, q(x, t) in (1.4) depends only74

on the resource. The assumption in model(1.5) is more reasonable because spatial75

memory is normally gained via interactive learning. Consumers may be able to share76

knowledge between individuals such that a location with high resource density is more77

likely to be remembered by consumers. In addition to a linear decay, we assume that78

q(x, t) can further decay at rate ξ > 0 when the consumers return to an area and find79

a low resource density.80

For χ ∈ R, γ > 0, our main results are stated as follows:81

1. The spectrum of the linearized operator at the constant steady state of system82

(1.4)/(1.5) is point spectrum, and the stability of the constant steady state83

is determined by the linearized eigenvalue problem (2.7)/(3.3).84

2. In system (1.4), there exist χS
N < 0 and χS

M > 0, such that the constant steady85

state is stable when the memory-based diffusion rate χ ∈ (χS
N (γ), χH

M (γ))86

and unstable when χ ∈ (−∞, χS
N (γ)) ∪ (χH

M (γ),+∞), where χS
N (γ) < 0 and87

χH
M (γ) > 0 are the maximum steady state bifurcation value and the minimum88

Hopf bifurcation value, respectively. A series of steady-state bifurcations can89

occur near the constant steady state at χ = χS
n(γ) < 0, and Hopf bifurcations90

occur at χH
n (γ) > 0 for n ∈ N.91

3. In system (1.5), there exist χ−(γ) < 0 and χ+(γ) > 0, such that the92

constant steady state is stable when the memory-based diffusion rate χ ∈93

(χ−(γ), χ+(γ)) and unstable when χ ∈ (−∞, χ−(γ)) ∪ (χ+(γ),+∞), where94

χ−(γ) = χ̃S
N (γ), χ+(γ) = min

{
χ̃H
M (γ), χ̃S

∞(γ)
}
and χ̃S

N (γ) < 0, χ̃H
M (γ) >95

0, χ̃S
∞(γ) > 0 are constants defined in Sect.3. A series of steady-state bi-96

furcations can occur near the constant steady state at χ = χS
n(γ), and Hopf97

bifurcations occur at χH
n (γ) > 0 for n ∈ N. Note that χS

n(γ) could be negative98

or positive for different n ∈ N.99

This paper is organized as follows. We investigate the dynamics and bifurcation100

of system (1.4) in Sect.2 with a description of the spectrum of the linearized operator101

at the constant steady state. In Sect.3, system (1.5) is investigated similarly to in102

Sect.2. Finally, we conclude and discuss our work in Sect.4 and compare the two103

models studied in Sects.2 and 3. In the paper the space of measurable functions104
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4 Q. SHI, Y. SONG, AND H. WANG

for which the p-th power of the absolute value is Lebesgue integrable defined on a105

bounded and smooth domain Ω ⊆ Rm is denoted by Lp(Ω) and we use W k,p(Ω) to106

denote the real-valued Sobolev space based on Lp(Ω) space. We denote by N the set107

of all the positive integers and N0 = N∪{0}. Also, λn satisfying 0 = λ0 < λ1 < · · · <108

λn−1 < λn < · · · < +∞ are the eigenvalues of the following equation109 {
∆ϕ(x) + λφ(x) = 0, x ∈ Ω,

∂nϕ(x) = 0, x ∈ ∂Ω,
110

with the corresponding eigenfunctions ϕn(x) > 0 satisfying
∫
Ω
ϕ2n(x)dx = 1.111

2. The dynamics of model (1.4). In this section, we study the dynamics of112

system (1.2) with cognitive map q(x, t) satisfying (H1), i.e. model (1.4), which has a113

constant equilibrium (u, v, q) = (θ, vθ, qθ) with114

θ =
d

m− d
, vθ =

(k − θ)(1 + θ)

km
, qθ =

bθ

γ
,115

provided that116

(2.1) m > d, k > θ.117

By a standard calculation, the linearized Jacobian matrix of the kinetic system of118

(1.4) at (θ, vθ, qθ) is119

J =

 β −d 0
α 0 0
b 0 −γ

 ,120

where121

(2.2) α =
k − θ

k(1 + θ)
> 0, β =

θ(k − 1− 2θ)

k(1 + θ)
< 0.122

One can easily verify that all the eigenvalues of J have negative real parts when123

k < 1 + 2θ such that (θ, vθ, qθ) is locally asymptotically stable concerning the kinetic124

system. Note that k = 1+ 2θ is the critical value for the kinetic system to undergo a125

Hopf bifurcation near (θ, vθ, qθ). Together with (2.1), we always assume the following126

conditions hold:127

(A) m > d, θ < k < 1 + 2θ,128

such that (θ, vθ, qθ) is locally asymptotically stable concerning the kinetic system.129

In the following, we investigate the stability of the constant steady state (θ, vθ, qθ)130

and carry a bifurcation analysis for system (1.4). Moreover, we will show the existence131

of nonconstant positive steady states of model (1.4), which satisfy132

(2.3)


d1∆u+ u

(
1− u

k

)
− muv

1 + u
= 0, x ∈ Ω,

d2∆v − χ∇ · (v∇q) + muv

1 + u
− dv = 0, x ∈ Ω,

bu− γq = 0, x ∈ Ω,

∂nu = ∂nv = 0, x ∈ ∂Ω,

133

where u = u(x), v = v(x), q = q(x).134
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LOCAL PERCEPTION AND LEARNING MECHANISMS 5

2.1. Spectrum of the linearized operator. In this part, we perform a spec-135

tral analysis of the linearized operator at the constant steady state (θ, vθ, qθ) via the136

methods in [3, 13,15]. Define137

(2.4) X =W 2,p
N (Ω)×W 2,p

N (Ω)×W 2,p(Ω), Y = Lp(Ω)× Lp(Ω)× Lp(Ω),138

where139

W 2,p
N (Ω) = {u ∈W 2,p(Ω) : ∂nu = 0 on ∂Ω}.140

We linearize Eq.(1.4) at (θ, vθ, qθ) and obtain the linear operator141

(2.5) L

 ϕ
ψ
φ

 =

 d1∆ϕ+ βϕ− dψ
d2∆ψ − χvθ∆φ+ αϕ

bϕ− γφ

 ,142

where L is a closed linear operator in Y with domain D(L) = X. In the following, we143

provide the results about the spectrum of L.144

Theorem 2.1. Let L : X → Y be defined as (2.5), then the spectrum of L is145

σ(L) = σp(L) = S ∪ {−γ},146

where147

(2.6) S = {µ(1)
n }∞n=0 ∪ {µ(2)

n }∞n=0 ∪ {µ(3)
n }∞n=0.148

Here µ
(j)
n , j = 1, 2, 3 satisfying Re

(
µ
(1)
n

)
< Re

(
µ
(2)
n

)
< Re

(
µ
(3)
n

)
are the roots of149

the following characteristic equation150

(2.7) µ3 +Anµ
2 +Bnµ+ Cn = 0, n ∈ N0,151

where152

An = (d1 + d2)λn − β + γ,

Bn = d2λn(d1λn − β) + γ(d1λn + d2λn − β) + dα,

Cn = γd2λn(d1λn − β) + bdχvθλn + γdα.

153

Proof. For µ ∈ C and (τ1, τ2, τ3) ∈ Y , we consider the nonhomogeneous problem154

(2.8)


d1∆ϕ+ βϕ− dψ = µϕ+ τ1,

d2∆ψ − χvθ∆φ+ αϕ = µψ + τ2,

bϕ− γφ = µφ+ τ3,

∂nϕ = ∂nψ = 0.

155

Case 1: µ ̸= −γ. From the third equation of (2.8), we obtain φ =
bϕ− τ3
µ+ γ

and156

substitute it into the second equation, we have157

(2.9)


d1∆ϕ+ βϕ− dψ = µϕ+ τ1,

d2∆ψ − χvθ
µ+ γ

(b∆ϕ−∆τ3) + αϕ = µψ + τ2,

∂nϕ = ∂nψ = 0,

158
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6 Q. SHI, Y. SONG, AND H. WANG

which is equivalent to159

(2.10) L1

(
ϕ
ψ

)
=

 d1∆ϕ+ βϕ− dψ − µϕ

d2∆ψ − bχvθ
µ+ γ

∆ϕ+ αϕ− µψ

 =

(
τ1

τ2 −
χvθ
µ+ γ

∆τ3

)
.160

As ϕ, ψ ∈W 2,p
N (Ω) from (2.5), and the eigenfunctions {ϕn}+∞

n=0 of −∆ form a complete161

and orthonormal basis for W 2,p
N (Ω), thus we set162

(2.11) ϕ =

+∞∑
n=0

anϕn, ψ =

+∞∑
n=0

bnϕn.163

Substituting (2.11) into (2.10), multiplying the equation by ϕn and integrating it over164

Ω, we obtain165

 −d1λn + β − µ −d
bχvθλn
µ+ γ

+ α −d2λn − µ

( an

bn

)
=


∫
Ω

τ1dx∫
Ω

(
τ2 −

χvθ
µ+ γ

∆τ3

)
dx

 .166

By letting τ1 = τ2 = τ3 = 0, we obtain that Ker(L1) = {(0, 0)T } which implies that167

Ker(L − µI) = {(0, 0, 0)T } and the operator L − µI is injective when the following168

condition holds169 ∣∣∣∣∣∣
−d1λn + β − µ −d
bχvθλn
µ+ γ

+ α −d2λn − µ

∣∣∣∣∣∣ ̸= 0,170

which is equivalent to171

(2.12) (µ+ d1λn − β)(µ+ d2λn)(µ+ γ) + bdχvθλn ̸= 0.172

When (2.12) is satisfied, we may conclude that L1 has a bounded inverse L−1
1 with173

∥ϕ∥W 2,p(Ω) + ∥ψ∥W 2,p(Ω)

≤∥L−1
1 ∥

(
∥d1∆ϕ+ βϕ− dψ∥Lp(Ω) +

∥∥∥∥d2∆ψ − bχvθ
µ+ γ

∆ϕ+ αϕ

∥∥∥∥
Lp(Ω)

)
.

174

Therefore, we know that L − µI has a bounded inverse (L − µI)−1.175

If (2.12) does not hold, that is,176

(2.13)

∣∣∣∣∣∣
−d1λn + β − µ −d

bχvθλn
µ+ γ

−d2λn − µ

∣∣∣∣∣∣ = 0,177

we obtain the dispersal relation as in (2.7) which has three roots µ
(j)
n , j = 1, 2, 3 for178

each n ∈ N0. For j = 1, 2, 3, we put µ = µ
(j)
n into (2.8), one can check that µ

(j)
n are179

indeed eigenvalues of L with eigenfunctions being180

 ϕ
(j)
n

ψ
(j)
n

φ
(j)
n

 =


1

1

d

(
−d1λn + β − µ

(j)
n

)
b

µ
(j)
n + γ

ϕn,181
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LOCAL PERCEPTION AND LEARNING MECHANISMS 7

which implies that Ker(L − µ
(j)
n ) = Span

{(
ϕ
(j)
n , ψ

(j)
n , φ

(j)
n

)T}
.182

Case 2: µ = −γ. Then Eq. (2.8) becomes183

(2.14)


d1∆ϕ+ βϕ− dψ = µϕ+ τ1,

d2∆ψ − χvθ∆φ+ αϕ = µψ + τ2,

bϕ = τ3,

∂nϕ = ∂nψ = 0,

184

which can be solved as185 
ψ =

1

bd
(d1∆τ3 + βτ3 + γτ3 − bτ1) ,

∆φ =
1

bχvθ
(−bγψ + τ2 − ατ3 − bd2∆ψ) .

186

By letting τ1 = τ2 = τ3 = 0, we obtain Ker (L+ γI) = Span{(0, 0, c1x + c2)
T } with187

c1, c2 being constant real numbers, and thus −γ ∈ σp(L). To conclude, we have188

σ(L) = σp(L) = S ∪ {−γ}189

with S defined as (2.6). This completes the proof.190

Based on the spectrum analysis in Theorem 2.1, we obtain the following results191

to determine the stability of the constant equilibrium for Eq. (1.4).192

Corollary 2.2. In system (1.4), the constant equilibrium (θ, vθ, qθ) is locally193

stable when all the roots of the characteristic equation (2.7) have negative real parts,194

otherwise it is unstable.195

Proof. From Theorem 2.1, we see that the spectrum of the linearized operator L196

corresponding to the linearized system of Eq. (1.4) at (θ, vθ, qθ) is σ(L) = σp(L) =197

S ∪ {−γ}. Note that the linear stability of (θ, vθ, qθ) implies its nonlinear stability198

according to [9] as the spectral set is discrete. Since −γ ∈ C−, thus it can be inferred199

that the stability of (θ, vθ, qθ) is determined by the set S which consists of the roots200

of Eq. (2.7), and we reach our conclusion.201

2.2. Bifurcation analysis. From Theorem 2.1 and Corollary 2.2, we know that202

the stability of the constant steady state (θ, vθ, qθ) of system (1.4) can be determined203

by the characteristic equation (2.7). By the Routh-Hurwitz stability criterion, all the204

eigenvalues of (2.7) have negative real parts if and only if205

(2.15) An > 0, Cn > 0, AnBn − Cn > 0.206

The condition An > 0 always holds as β < 0, thus the real parts of the eigenvalues of207

(2.7) may change sign either via Cn = 0 (which implies (2.7) has a zero root) or via208

AnBn − Cn = 0 (which implies (2.7) has a pair of purely imaginary roots). Also, we209

can observe that Bn > 0 always holds as β < 0, α > 0, so Cn = 0 and AnBn−Cn = 0210

cannot occur at the same time.211

Taking χ and γ as the bifurcation parameters, we obtain the steady-state bifur-212

cation points by solving Cn = 0:213

(2.16) χS
n(γ) = −γkd2λn(d1λn − β) + γdα

bdvθλn
,214
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8 Q. SHI, Y. SONG, AND H. WANG

and Hopf bifurcation points by solving AnBn − Cn = 0:215

(2.17)

χH
n (γ) =

((d1 + d2)λn − β)
[
γ2 + γ((d1 + d2)λn − β) + d2λn(d1λn − β) + dα

]
bdvθλn

.216

Some basic properties of functions χS
n(γ) and χH

n (γ) are stated in the following217

lemma.218

Lemma 2.3. Let χS
n(γ) and χH

n (γ) be defined as (2.16) and (2.17), respectively,219

then the following statements are true:220

(i) for fixed n, χS
n(γ) is strictly decreasing with respect to γ and passes through the221

origin, and it is also known that χS
n(0) = 0 and lim

γ→+∞
χS
n(γ) = −∞;222

(ii) for fixed γ > 0, χS
N (γ) = max

n∈N
χS
n(γ), and223

(2.18) χS
N (γ) < −

(
2
√
d1d2dα− d2β

)
γ

bdvθ
,224

where N is an integer such that λN is the closest number to

√
dα

d1d2
;225

(iii) for fixed n ∈ N, χH
n (γ) is strictly increasing with respect to γ;226

(iv) for fixed γ ∈ (0,+∞), there exists M ∈ N such that χH
M (γ) = min

n∈N
χH
n (γ).227

Proof. By the definition of χS
n(γ) given in (2.16), it is easy to see that χS

n(γ) is a228

straight line passing through the origin with the slope229

Kn = − 1

bdvθ

(
d1d2λn +

dα

λn
− d2β

)
< 0,230

then we immediately obtain the results in (i). Also, we see that Kn is a hook function231

of λn, thus it can be known that Kn reaches its maximum at λn =

√
dα

d1d2
, thus the232

conclusion in (ii) is achieved.233

For (iii), it is clear from (2.17) that χH
n (γ) is a quadratic function of γ and can234

be rewritten as χH
n (γ) = a2γ

2 + a1γ + a0 with235

a2 =
(d1 + d2)λn − β

bdvθλn
, a1 =

((d1 + d2)λn − β)2

bdvθλn
,

a0 =
((d1 + d2)λn − β)d2λn(d1λn − β) + dα

bdvθλn
.

236

Immediately, we obtain that a2 > 0, a1 > 0, a0 > 0 and the symmetrical axis237

γ = − a1
2a2

< 0. Thus, it can be inferred that χH
n (γ) is increasing for γ > 0.238

For (iv), we first rewrite χH
n (γ) as the following form by replacing λn by a con-239

tinuous variable p:240

(2.19) χH
p (γ) =

((d1 + d2)p− β)
[
γ2 + γ(d1p+ d2p− β) + d2p(d1p− β) + dα

]
bdvθp

.241

By differentiating χH
p (γ) with respect to p, we have242

d[χH
p (γ)]

dp
=

1

bdvθp2
[
2(d1 + d2)d1d2p

3 + ((d1 + d2)
2γ

−β(2d1d2 + d22))p
2 + βγ2 − β2γ + βdα

]
.

243
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Let244

f(p) = 2(d1 + d2)d1d2p
3 + ((d1 + d2)

2γ − β(2d1d2 + d22))p
2 + βγ2 − β2γ + βdα,245

then one can verify that f(p) has a unique positive zero p = p∗ as246

f ′(p) = 6(d1 + d2)d1d2p
2 + 2((d1 + d2)

2γ − β(2d1d2 + d22))p > 0, for p > 0,247

and f(0) = βγ2 − β2γ + βdα < 0, lim
p→+∞

f(p) = +∞. Also we found that f(p) > 0248

for p ∈ (p∗,+∞) and f(p) < 0 for p ∈ (0, p∗), which implies that
d[χH

p (γ)]

dp
> 0 for249

p ∈ (p∗,+∞) and
d[χH

p (γ)]

dp
< 0 for p ∈ (0, p∗) and χH

p (γ) reaches its minimum at250

p = p∗. By the relation that p = λn, we know that there must exist a M ∈ N such251

that λM is the closest eigenvalue to p∗ and χH
M (γ) = min

n∈N
χH
n (γ).252

Lemma 2.4. Let χS
N (γ) and χH

M (γ) be defined as in Lemma 2.3, then we have253

(i) when χS
N (γ) < χ < χH

M (γ), all the eigenvalues of Eq.(2.7) have negative real254

parts;255

(ii) when χ ≥ χH
M (γ), µ = ±iωn (ωn > 0) is a pair of purely imaginary roots of256

Eq.(2.7) if χ = χH
n (γ);257

(iii) when χ ≤ χS
N (γ), µ = 0 is a root of Eq. (2.7) if χ = χS

n(γ).258

Proof. From Lemma 2.3, when χS
N (γ) < χ < χH

M (γ), we have Cn > 0 and259

AnBn−Cn > 0 for all λn > 0 so all the eigenvalues of (2.7) have negative real parts for260

all n ∈ N0. When χ ≤ χS
N (γ), we have Cn < 0 so the characteristic equation (2.7) has261

at least one eigenvalue with positive real part, and when χ = χS
n(γ), Eq.(2.7) has a zero262

eigenvalue. When χ ≥ χH
M (γ), we have An > 0, Cn > 0 but AnBn − Cn < 0, so not263

all the eigenvalues of (2.7) have negative real parts. In particular, when χ = χH
n (γ),264

Eq.(2.7) has a pair of complex eigenvalues with zero real part.265

From Lemma 2.4, we know that Eq.(2.7) has a pair of purely imaginary eigenvalues266

±iωn (ωn > 0) when χ = χH
n (γ). The following lemma shows that the transversality267

condition holds at χ = χH
n (γ).268

Lemma 2.5. Let χ = χH
n (γ) be defined as (2.17). Then, Eq.(2.7) has a pair of269

roots in the form of µ = δ(χ)± iω(χ) when χ is near χH
n (γ) such that δ

(
χH
n (γ)

)
= 0270

and δ′
(
χH
n (γ)

)
> 0.271

Proof. We only need to show that δ′
(
χH
n (γ)

)
> 0. Differentiating Eq.(2.7) with272

respect to χ, we have273

(2.20) 3µ2 dµ

dχ
+
dAn

dχ
µ2 + 2Anµ

dµ

dχ
+
dBn

dχ
µ+Bn

dµ

dχ
+
dCn

dχ
= 0.274

From the expressions of An, Bn, Cn in Eq. (2.7), it is straightforward to see that275

(2.21)
dAn

dχ
= 0,

dBn

dχ
= 0,

dCn

dχ
= bdvθλn.276

Substituting (2.21), µ = iω0, Bn = ω2
0 and χ = χH

n (γ) into Eq. (2.20), we obtain277

dµ

dχ

∣∣∣
χ=χH

n (γ)
=

bdvθλn
2ω2

0 − 2iω0An
,278
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Fig. 1: The bifurcation diagram of system (1.4) in (χ, γ) plane with d1 = 0.01, d2 =
0.03, m = 1, d = 0.1, k = 1, b = 0.15, Ω = (0, π), and the Turing bifurcation
curves χ = χS

n(γ) can be identified by the dotted curves and Hopf bifurcation curves
χ = χH

n (γ) by the solid curves. The points are parameter values for the numerical
simulations and they are: P1 (0.5, 0.28), P2 (0.5, 0.18), P3 (0.5, 0.15), P4 (−0.3, 0.45),
P5 (−0.3, 0.42), P6 (−0.3, 0.31) and P7 (−0.3, 0.25).

thus279

δ′(χ) = Re
(
dµ

dχ

∣∣∣
χ=χH

n (γ)

)
=

bdvθλn
2(ω2

0 +A2
n)

> 0.280

By Lemmas 2.3, 2.4, 2.5 and Hopf bifurcation theory for partial functional dif-281

ferential equations, we obtain the following results on the stability and bifurcation282

behaviors of the positive homogeneous steady state of Eq.(1.4).283

Theorem 2.6. Assume that condition (A) holds, and let χS
n(γ), χ

H
n (γ) be defined284

as (2.16), (2.17) and χS
N (γ), χH

M (γ) in Lemma 2.3, then we have the following results285

for Eq.(1.4):286

(i) a mode-n Turing bifurcation occurs at χ = χS
n(γ) for γ > 0 and n ∈ N, thus a287

mode-n spatially nonhomogeneous steady state can arise near (θ, vθ, qθ);288

(ii) a mode-n Hopf bifurcation occurs at χ = χH
n (γ) for γ > 0 and n ∈ N, and the289

bifurcating periodic solutions are spatially nonhomogeneous;290

(iii) for a fixed γ ∈ (0,+∞), the positive homogeneous steady state (θ, vθ, qθ) is291

locally asymptotically stable for χS
N (γ) < χ < χH

M (γ) and unstable for χ ∈292 (
−∞, χS

N (γ)
]
∪
[
χH
M (γ),+∞

)
.293

On one-dimension spatial domain Ω = (0, π), the bifurcation diagram of Eq.(1.4)294
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is illustrated in Fig.1 by taking the parameters as d1 = 0.01, d2 = 0.03, m = 1, d =295

0.1, k = 1, b = 0.15. In the following, we perform some numerical simulations based296

on the following initial conditions:297

(I1) u0(x) = θ − 0.01 cos(x), v0(x) = vθ − 0.01 cos(x), q0(x) = qθ − 0.1 cos(x),298

(I2) u0(x) = θ − 0.01 cos(2x), v0(x) = vθ − 0.01 cos(2x), q0(x) = qθ − 0.1 cos(2x),299

(I3) u0(x) = θ − 0.01 cos(3x), v0(x) = vθ − 0.01 cos(3x), q0(x) = qθ − 0.1 cos(3x),300

(I4) u0(x) = θ − 0.01 cos(4x), v0(x) = vθ − 0.01 cos(4x), q0(x) = qθ − 0.1 cos(4x),301

and we will indicate the initial conditions for each figure. Note that we only demon-302

strate the distribution of resources in each figure as the consumers always follow the303

resources and have similar spatial distribution.304

From Fig.1, we observe that the mode-2 Hopf curve is the first Hopf curve and305

we choose some points near the Hopf bifurcation curves to observe periodic patterns306

in system (1.4). In Fig.2, for fixed χ = 0.5, we observe that the steady state (θ, vθ, qθ)307

is stable when γ = 0.28 (corresponding to P1 which is in the stable region). When308

we decrease γ to 0.18 (corresponding to P2 which is under the first Hopf bifurcation309

curve), it is shown that a mode-2 spatially nonhomogeneous periodic pattern arises.310

When γ = 0.15, the mode-2 spatially nonhomogeneous periodic pattern remains sta-311

ble as the mode-2 Hopf bifurcation curve is the dominant Hopf bifurcation curve.312

Also, if the initial conditions are taken as (I1) and (I3), the solution of system (1.4)313

finally converges to a mode-2 periodic pattern but with a transient oscillation between314

different modes, see Fig.3. In this situation, we see that the spatial distribution of315

resources will periodically change over time.316

In Fig.4, we demonstrate the spatially nonhomogeneous steady state and some317

wandering periodic patterns when χ = −0.3. When we choose γ = 0.45 corresponding318

to P4 in Fig.1, the constant steady state (θ, vθ, qθ) is stable as shown in (a). If we319

decrease γ to 0.42 corresponding to P5 which is below the mode-4 Turing curve, it320

is shown that a mode-4 spatially nonhomogeneous steady state arises as illustrated321

in (b). This situation happens when the environment of the living habitat is steady322

over time so that resources and consumers can keep their dynamic balance. When we323

continue to decrease the γ value, we observe some “wandering” patterns with large324

periods as shown in (c) and (d), which demonstrate a distinguished distribution of325

resources from the periodic patterns (see Fig.2) induced by Hopf bifurcation. These326

patterns are also observed in previous work of Keller–Segel chemotaxis model with327

growth [19] and distributed spatial memory [27]. The mechanism behind these pat-328

terns is to be explored, while it is sure that Hopf bifurcation from a constant steady329

state is not the reason as we have proved that Hopf bifurcation will not occur in the330

parameter region where we observe these “wandering” patterns.331

3. The dynamics of model (1.5). In this section, we investigate the dynamics332

of system (1.5), which admits a constant equilibrium (θ, vθ, q̃θ) with333

θ =
d

m− d
, vθ =

(k − θ)(1 + θ)

km
, q̃θ =

bθvθ
γ + ξvθ

.334

One can easily verify that (θ, vθ, qθ) is locally asymptotically stable concerning the335

kinetic system. In this section, we investigate the stability of the constant steady336

state (θ, vθ, q̃θ) and carry a bifurcation analysis for system (1.5).337
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(a) (χ, γ) = P1,IC=(I2) (b) (χ, γ) = P2,IC=(I2) (c) (χ, γ) = P3,IC=(I2)

Fig. 2: Periodic patterns rising near Hopf bifurcation curves in system (1.4) when
parameters are d1 = 0.01, d2 = 0.03, m = 1, d = 0.1, k = 1, b = 0.15 and
Ω = (0, π). In each figure, the color indicates the value of u(x, t) according to the
color bar.

(a) (χ, γ) = P3, IC=(I1) (b) (χ, γ) = P3, IC=(I3)

Fig. 3: Transient oscillatory patterns between the different modes of periodic patterns
in system (1.4) when parameters are d1 = 0.01, d2 = 0.03, m = 1, d = 0.1, k =
1, b = 0.15 and Ω = (0, π). In each figure, the color indicates the value of u(x, t)
according to the color bar.

3.1. Spectrum of the linearized operator. Linearizing Eq.(1.5) at (θ, vθ, q̃θ)338

leads to the linear operator339

(3.1) L̃

 ϕ
ψ
φ

 =

 d1∆ϕ+ βϕ− dψ
d2∆ψ − χvθ∆φ+ αϕ

bvθϕ+
bθγ

γ + ξvθ
ψ − (γ + ξvθ)φ

 ,340

where α > 0, β < 0 defined as (2.2). Then, we know that L̃ is a closed linear operator341

in Y with domain D(L̃) = X with X, Y defined as in (2.4). In the following, we342

provide the results about the spectrum of L̃.343
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(a) (χ, γ) = P4, IC=(I4) (b) (χ, γ) = P5, IC=(I4)

(c) (χ, γ) = P6, IC=(I4) (d) (χ, γ) = P7, IC=(I4)

Fig. 4: Spatial patterns rising near Turing bifurcation curves in system (1.4) when
parameters are d1 = 0.01, d2 = 0.03, m = 1, d = 0.1, k = 1, b = 0.15, and Ω = (0, π).
In each figure, the color indicates the value of u(x, t) according to the color bar.

Theorem 3.1. Let L̃ : X → Y be defined as (3.1), then the spectrum of L̃ is344

σ
(
L̃
)
= σp

(
L̃
)
= S̃ ∪ {−γ − ξvθ},345

where346

(3.2) S̃ = {µ̃(1)
n }∞n=0 ∪ {µ̃(2)

n }∞n=0 ∪ {µ̃(3)
n }∞n=0,347

where µ̃
(j)
n , j = 1, 2, 3 satisfying Re

(
µ̃
(1)
n

)
< Re

(
µ̃
(2)
n

)
< Re

(
µ̃
(3)
n

)
are the roots of348

the following characteristic equation349

(3.3) µ3 + Ãnµ
2 + B̃nµ+ C̃n = 0, n ∈ N0,350
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with351

Ãn = (d1 + d2)λn − β + γ + ξvθ,

B̃n = d2λn(d1λn − β) + (γ + ξvθ)(d1λn + d2λn − β) + α− χbθvθγλn
γ + ξvθ

,

C̃n = (γ + ξvθ)d2λn(d1λn − β) + bθv2θχλn + dα(γ + ξvθ)−
χbθvθγλn(d1λn − β)

γ + ξvθ
.

352

The proof of Theorem 3.1 is similar to that of Theorem 2.1, thus we put the353

details in Appendix.A.354

Corollary 3.2. In system (1.5), the constant equilibrium (θ, vθ, q̃θ) is locally355

stable when all the roots of the characteristic equation (3.3) have negative real parts;356

otherwise it is unstable.357

The proof is similar to that of Corollary 2.2, thus we omit it here.358

3.2. Bifurcation analysis. From Theorem 3.1 and Corollary 3.2, we know that359

the stability of the constant steady state (θ, vθ, q̃θ) of system (1.5) can be determined360

by the characteristic equation (3.3). By the Routh-Hurwitz stability criterion, all361

eigenvalues of (3.3) have negative real parts if and only if362

Ãn > 0, C̃n > 0, ÃnB̃n − C̃n > 0.363

From the fact that β < 0, we know that Ãn > 0 always holds. Also we know that364

the real parts of the eigenvalues of (3.3) may change sign either via C̃n = 0 (which365

implies (3.3) has a zero root) or via ÃnB̃n − C̃n = 0 (which implies (3.3) has a pair366

of purely imaginary roots). Taking χ and γ as the bifurcation parameter, we obtain367

the steady state bifurcation points by solving C̃n = 0:368

(3.4) χ̃S
n(γ) = − (γ + ξvθ)(d2λn(d1λn − β) + dα)

bdv2θλn − (d1λn − β) bθγvθλn

γ+ξvθ

,369

and Hopf bifurcation points by solving ÃnB̃n − C̃n = 0:370

χ̃H
n (γ) =

((d1 + d2)λn − β)

bdv2θλn + bθγvθλn +
d2bθγvθλ2

n

γ+ξvθ

[d2λn(d1λn − β)

+(γ + ξvθ)((d1 + d2)λn − β) + (γ + ξvθ)
2 + dα

]
.

(3.5)371

In the following lemma, we give a detailed description of the properties of Turing372

curves χ = χ̃S
n(γ). For the convenience of writing, we define373

Qn(γ) = (γ + ξvθ)(d2λn(d1λn − β) + dα),

Pn(γ) = bdv2θλn − (d1λn − β)
bθγvθλn
γ + ξvθ

.
(3.6)374

Lemma 3.3. Let χ̃S
n(γ) and χ̃

H
n (γ) be defined as (3.4) and (3.5), respectively, then375

the following statements are true:376

(i) there exists n∗ ∈ N such that χ̃S
n(γ) < 0 for all γ > 0 when n ≤ n∗, and χ̃

S
n(γ) < 0377

for γ ∈ (0, γ∗n) and χ̃
S
n(γ) > 0 for γ ∈ (γ∗n,+∞) where γ∗n satisfies Pn(γ

∗
n) = 0378

and n∗ is the largest integer such that λn∗ <
dvθ
d1θ

;379
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(ii) when χ̃S
n(γ) < 0, there exists N ∈ N such that χ̃S

N = max
n∈N

χ̃S
n for a fixed γ > 0;380

(iii) when χ̃S
n(γ) > 0, χ̃S

n is strictly decreasing with respect to n and satisfies381

(3.7) χ̃S
n > χ̃S

∞ =
d2(γ + ξvθ)

2

bθγvθ
,382

moreover, χ̃S
∞(γ) is decreasing for γ ∈ (0, γ∗) and increasing for γ ∈ (γ∗,+∞)383

with γ∗ = ξvθ;384

(iv) there exists M ∈ N such that χ̃H
M (γ) = min

n∈N
χ̃H
n (γ) for fixed γ ∈ (0,+∞).385

One can find the proof for Lemma 3.3 in Appendix.B. In a similar way with386

Lemma 2.4, we can also prove the properties of eigenvalues of Eq.(3.3) as follows.387

Lemma 3.4. Let χ̃S
n(γ), χ̃H

n (γ), χ̃S
∞(γ) be defined as (3.4), (3.5), (3.7), and388

χ̃S
N (γ), χ̃H

M (γ) in Lemma 3.3, we further define389

(3.8) χ−(γ) = χ̃S
N (γ), χ+(γ) = min

{
χ̃H
M (γ), χ̃S

∞(γ)
}
.390

Then we have the following results:391

(i) when χ−(γ) < χ < χ+(γ), all the eigenvalues of Eq.(3.3) have negative real392

parts;393

(ii) when χ ≥ χ+(γ), µ = ±iωn (ωn > 0) is a pair of purely imaginary roots of394

Eq.(2.7) if χ = χ̃H
n (γ);395

(iii) when χ ≤ χ−(γ), µ = 0 is a root of Eq. (2.7) if χ = χ̃S
n(γ).396

Remark 3.5. The boundary curve χ = χ+(γ) for the constant steady state of397

system (1.5) to lose stability consists of two types of bifurcation curve χ = χ̃H
M (γ)398

or χ = χ̃S
∞(γ). When the constant steady state loses its stability via χ = χ̃S

∞(γ),399

there will be infinitely many eigenvalues with positive real parts for the corresponding400

linearized system. This situation also happens in an explicit spatial memory model401

studied in [26].402

Similar to Lemma 2.5, we can verify that the following transversality condition403

for Hopf bifurcation holds in system (1.5) and we omit the proof.404

Lemma 3.6. Let χ = χ̃H
n (γ) be defined as (3.5). Then, Eq.(3.3) has a pair of405

roots in the form of µ = δ(χ)± iω(χ) when χ is near χ̃H
n (γ) such that δ

(
χ̃H
n (γ)

)
= 0406

and δ′
(
χ̃H
n (γ)

)
> 0.407

By Lemmas 3.3, 3.4, 3.6 and Hopf bifurcation theory for partial functional dif-408

ferential equations, we obtain the following results on the stability and bifurcation409

behaviors of the positive homogeneous steady state of Eq.(1.5).410

Theorem 3.7. Assume that condition (A) holds, and let χ̃S
n(γ), χ̃

H
n (γ) be defined411

as (3.4), (3.5), and χ−(γ), χ+(γ) in (3.8), we have the following results for Eq.(1.5):412

(i) a mode-n Turing bifurcation occurs at χ = χ̃S
n(γ) for γ > 0 and n ∈ N, thus a413

mode-n spatially nonhomogeneous steady state can arise near (θ, vθ, q̃θ);414

(ii) a mode-n Hopf bifurcation occurs at χ = χ̃H
n (γ) for γ > 0 and n ∈ N, and the415

bifurcating periodic solutions are spatially nonhomogeneous;416

(iii) if we fix γ ∈ (0,+∞), the positive homogeneous steady state (θ, vθ, q̃θ) is lo-417

cally asymptotically stable for χ−(γ) < χ < χ+(γ) and unstable for χ ∈418

(−∞, χ−(γ)) ∪ (χ+(γ),+∞).419

Taking the parameters as d1 = 0.01, d2 = 0.02, m = 0.5, d = 0.1, k = 1, b =420

0.2, ξ = 0.3, the bifurcation diagram of Eq.(1.5) is illustrated in Fig.5. We see that421
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Fig. 5: The bifurcation diagram of system (1.5) in parameter plane (χ, γ) with d1 =
0.01, d2 = 0.02, m = 0.5, d = 0.1, k = 1, b = 0.2, ξ = 0.3, Ω = (0, π), and
the Turing bifurcation curves χ = χS

n(γ) can be identified by the dotted curves and
Hopf bifurcation curves χ = χH

n (γ) by the solid curves. The points are parameter
values for the numerical simulations and they are: P1 (0.52, 1.05), P2 (0.50, 0.42), P3
(0.48, 0.35), P4 (0.45, 0.27), P5 (−0.2, 0.78), P6 (−0.2, 0.63), P7 (−0.2, 0.40) and P8
(−0.2, 0.10).

the dynamics of (1.5) is different from that of (1.4): i) there exists a limiting Turing422

curve χ = χ∞ corresponding to the infinite mode which destabilizes the system when423

χ > χ∞; ii) different modes of Hopf bifurcation curves can intersect with each other424

such that codimension-2 double Hopf bifurcation occurs. Near the intersection point425

of mode-3 and mode-4 Hopf bifurcation curves, we choose proper parameter values as426

presented in P2, P3, and P4 to perform simulations. When the parameters are taken427

as (χ, γ) = P2 = (0.50, 0.42) which is extremely close to the mode-4 Hopf bifurcation428

curve, we observe that a mode-4 spatially nonhomogeneous periodic pattern arises429

as shown in Fig.6(b). When (χ, γ) = P3 which is in between the area enclosed by430

the two Hopf bifurcation curves and (χ, γ) = P4 which is closest to the mode-3431

Hopf bifurcation curve, we observe a quasi-periodic pattern and a mode-3 periodic432

pattern, respectively, as illustrated in Fig.6 (c) and (d). Compared to the periodic433

patterns observed in system (1.4) (see Fig.2), the spatial distribution of resources is434

more diverse, and even quasi-periodic distribution is possible due to the impact of the435

consumption process on cognition and memory in system (1.5).436

In Fig.7, we illustrate the spatially nonhomogeneous steady state and some wan-437
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(a) (χ, γ) = P1, IC=(I4) (b) (χ, γ) = P2, IC=(I4)

(c) (χ, γ) = P3, IC=(I3.5) (d) (χ, γ) = P4, IC=(I3)

Fig. 6: Periodic patterns rising near Hopf bifurcation curves in system (1.5) when
parameters are d1 = 0.01, d2 = 0.02, m = 0.5, d = 0.1, k = 1, b = 0.2, ξ = 0.3 and
Ω = (0, π). In each figure, the color indicates the value of u(x, t) according to the
color bar.

dering periodic patterns when χ = −0.2. When we choose γ = 0.78 corresponding438

to P5 in Fig.5, the constant steady state (θ, vθ, qθ) is stable as shown in (a). If we439

decrease γ to 0.63 corresponding to P5 which is under the mode-4 Turing curve, it is440

shown that a mode-4 spatially nonhomogeneous steady state arises as shown in (b).441

When we continue to decrease the γ value to 0.40, it can be seen that the mode-442

4 steady state is still stable as shown in (c). Similar to model (1.4), we observe a443

“wandering” pattern with a large period for γ = 0.10 as shown in (d).444

4. Discussion. In [35], Wang and Salmaniw summarized three main categories445

of cognitive processes in animal movement models: perception, memory, and learning.446

Perception means the ability to see, hear, or otherwise become aware of something447

through the senses, while memory is the stability to store, retain, and retrieve informa-448

tion [6,10]. Learning is the information acquisition from an individual experience [10].449

Spatial memory modeled by explicit time delay has received much attention:450

(i) discrete delay: [2, 12,24–26,29–32,34,36–38,40];451

(ii) distributed delay: [14,23,27,33,41];452
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(a) (χ, γ) = P5, IC=(I4) (b) (χ, γ) = P6, IC=(I4)

(c) (χ, γ) = P7, IC=(I3) (d) (χ, γ) = P8, IC=(I2)

Fig. 7: Spatially nonhomogeneous steady state rising near Turing bifurcation curves
in system (1.5) when parameters are d1 = 0.01, d2 = 0.02, m = 0.5, d = 0.1, k =
1, b = 0.2, ξ = 0.3 and Ω = (0, π). In each figure, the color indicates the value of
u(x, t) according to the color bar.

(iii) nonlocal delay: [28].453

Through these studies, we can gain some insight into the effect of explicit memory454

in delayed form on animal movement. However, there is little analysis completed for455

implicit memory that is described by a learning equation [?, 35]. In this paper, we456

consider resource-consumer models with implicit spatial memory by incorporating an457

additional biased diffusion term which shows an attractive movement of consumers458

to the resource. The difference between these two models lies in the cognitive poten-459

tial function q(x, t) satisfying two different learning ODEs. System (1.4)/(1.5) is a460

PDE-ODE coupled system whose linearized system has a more complicated spectrum461

than a classical reaction-diffusion system. We first performed a spectral analysis for462

each system and found that the spectral set of the corresponding linear system for463

(1.4)/(1.5) is discrete, which implies that the stability of the constant steady state is464

still determined by the corresponding eigenvalue problem. Next, we took the memory-465

based diffusion rate χ ∈ R as a bifurcation parameter and performed a bifurcation466

analysis for system (1.4)/(1.5).467
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In systems (1.4) and (1.5), steady-state bifurcation and Hopf bifurcation can both468

occur. From the bifurcation diagram in Figs. 1 and 5, we observe that the constant469

steady states are stable for a small memory-based diffusion rate (either attractive or470

repulsive), while a large memory-based diffusion can destabilize the systems and in-471

duce rich spatial patterns. The outcome differences between these two models mainly472

lie in the following two aspects.473

1. All the steady-state bifurcation curves lie in the left half plane in χ− γ plane474

in system (1.4). In system (1.5), there exists an n∗ defined in Lemma 3.3475

such that the steady-state bifurcation curves move to the right half plane476

when n ≥ n∗. In particular, when n → +∞, we found a limiting Turing477

curve χ = χ̃S
∞ such that the linearized system at the constant steady state478

has infinitely many eigenvalues with positive real parts for χ > χ̃S
∞.479

2. In system (1.4), the dominant mode for Hopf bifurcation will not vary with480

different memory-based diffusion rates when the other parameters are fixed.481

For example, we observed that the mode-2 Hopf bifurcation is stable when the482

parameter values are taken as in Fig. 1. However, it is shown that there are483

different dominant modes for different memory-based diffusion rates in system484

(1.5), even two different modes of Hopf bifurcation curve can intersect with485

each other such that a codimension-2 double Hopf bifurcation occurs, see486

Figs.5&6.487

Based on the above theoretical reasons, the dynamics of system (1.5) are richer, for488

instance, different modes of stable periodic patterns and quasi-periodic patterns can489

be found in system (1.5). From a biological perspective, these results indicate that the490

distribution of the resource/consumer seems more spatially diverse when the cognitive491

map q(x, t) follows the more realistic learning equation (H2).492

This paper considered local perception when the cognitive kernel g(x) is a delta493

function which is the limiting case when the perceptive range is extremely narrow.494

However, the actual situation is that the animal has a restricted habitat and wide495

perceptive range, therefore it is more realistic when the kernel function is taken as a496

top-hat, Gaussian, or exponential form.497

Appendix A: The proof of Theorem 3.1. For µ ∈ C and (τ1, τ2, τ3) ∈ Y , we498

consider the nonhomogeneous problem499

(4.1)



d1∆ϕ+ βϕ− dψ = µϕ+ τ1,

d2∆ψ − χvθ∆φ+ αϕ = µψ + τ2,

bvθϕ+
bθγ

γ + ξvθ
ψ − γφ = µφ+ τ3,

∂nϕ = ∂nψ = 0.

500

Case 1: µ ̸= −γ − ξvθ. From the third equation of (4.1), we can obtain φ =501

bvθϕ+
bθγ

γ + ξvθ
ψ − τ3 and substitute it into the second equation, we have502

(4.2)


d1∆ϕ+ βϕ− dψ = µϕ+ τ1,

d2∆ψ − χvθ
µ+ γ + ξvθ

∆

(
bvθϕ+

bθγ

γ + ξvθ
ψ − τ3

)
+ αϕ = µψ + τ2,

∂nϕ = ∂nψ = 0,

503
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which is equivalent to504

L̃1

(
ϕ
ψ

) d1∆ϕ+ βϕ− dψ − µϕ

d2∆ψ − bχvθ
µ+ γ + ξvθ

∆ϕ+ αϕ− µψ

 =

(
τ1

τ2 −
χvθ
µ+ γ

∆τ3

)
.505

By a similar argument as in the proof of Theorem 2.1, we know that L̃1 has a bounded506

inverse L̃−1
1 with507

∥ϕ∥W 2,p(Ω) + ∥ψ∥W 2,p(Ω)

≤∥L̃−1
1 ∥

(
∥d1∆ϕ+ βϕ− dψ∥Lp(Ω) +

∥∥∥∥d2∆ψ − bχvθ
µ+ γ + ξvθ

∆ϕ+ αϕ

∥∥∥∥
Lp(Ω)

)
,

508

when µ ∈ C satisfies the following inequality509

(4.3)
(µ+d1λn−β)(µ+γ+ξvθ)[(µ+d2λn)(γ+ξvθ)−ξvθbθγ]+dα(µ+γ+ξvθ)+dbχv2θλn ̸= 0.510

Therefore, we know that L̃ − (µ+ ξvθ)I has a bounded inverse
(
L̃ − (µ+ ξvθ)I

)−1

.511

If (4.3) does not hold, then it can be inferred that µ satisfies the dispersal relation512

(3.3) which has three roots µ̃
(j)
n , j = 1, 2, 3 for each n ∈ N0. For j = 1, 2, 3, we513

put µ = µ̃
(j)
n into (4.1), one can check that µ̃

(j)
n are indeed eigenvalues of L̃ with514

eigenfunctions being515

 ϕ̃
(j)
n

ψ̃
(j)
n

φ̃
(j)
n

 =


1

1

d

(
−d1λn + β − µ̃

(j)
n

)
dbvθ(γ + ξvθ)− bθγ

(
d1λn + µ̃

(j)
n − β

)
(
µ̃
(j)
n + γ + ξvθ

)
(γ + ξvθ)

ϕn,516

which implies that Ker(L̃ − µ̃
(j)
n ) = Span

{(
ϕ̃
(j)
n , ψ̃

(j)
n , φ̃

(j)
n

)T}
.517

Case 2: µ = −γ − ξvθ. Then Eq. (4.1) becomes518 

d1∆ϕ+ βϕ− dψ = (γ + ξvθ)ϕ+ τ1,

d2∆ψ − χvθ∆φ+ αϕ = (γ + ξvθ)ψ + τ2,

bvθϕ+
bθγ

γ + ξvθ
ψ = τ3,

∂nϕ = ∂nψ = 0,

519

which can be solved as520 
d1∆ϕ+

(
β − γ − ξvθ +

bdvθ(γ + ξvθ)

bθγ

)
ϕ = τ1 +

d(γ + ξvθ)τ3
bθγ

,

ψ =
(γ + ξvθ)(τ3 − bvθϕ)

bθγ
,

∆φ =
1

χvθ
(d2∆ψ + αϕ− (γ + ξvθ)ψ − τ2) .

521

By letting τ1 = τ2 = τ3 = 0, we know that the first equation only has trivial522

solution ϕ = 0 when β − γ − ξvθ +
bdvθ(γ + ξvθ)

bθγ
̸∈ {λn}∞n=1. Also, we have523
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ψ = 0 from the second equation and φ is an arbitrary constant, which implies that524

Ker
(
L̃+ (γ + ξvθI

)
= Span{(0, 0, 1)T } and thus −γ− ξvθ ∈ σp(L̃). If β− γ− ξvθ +525

bdvθ(γ + ξvθ)

bθγ
= λn holds for some n ∈ N, then we have526

ϕ = ϕ̃n = d1ϕn, ψ = ψ̃n = −d1vθ(γ + ξvθ)ϕn
θγ

,

φ = φ̃n =
1

χθvθγ
d1d2vθ(γ + ξvθλn + αd1θγ + d1vθ(γ + ξvθ)

2)ϕn.
527

Then we have −γ−ξvθ ∈ σp(L̃) with Ker
(
L̃+ (γ + ξvθI

)
= Span

{(
ϕ̃n, ψ̃n, φ̃n

)T}
.528

To conclude, we have529

σ(L̃) = σp(L̃) = S̃ ∪ {−γ − ξvθ}530

with S̃ defined as (3.2). This completes the proof.531

Appendix B: The proof of Lemma 3.3. By the definition of χ̃S
n(γ) given in532

(3.4), we see that χ̃S
n(γ) = Qn(γ)/Pn(γ) with Qn(γ) and Pn(γ) defined as in (3.6). It533

can be verified that Qn(γ) > 0 for all γ > 0, therefore, the sign of χ̃S
n(γ) is determined534

by the sign of Pn(γ). By letting Pn(γ) > 0, we have535

(4.4) λn <
dvθ(γ + ξvθ)

d1γθ
∈
(
dvθ
d1θ

,+∞
)
,536

which implies that Pn(γ) > 0 holds for all γ > 0 when λn <
dvθ
d1θ

, and n∗ ∈ N is the537

largest integer such that λn∗ <
dvθ
d1θ

. When n ≤ n∗, χ̃
S
n(γ) < 0 holds for al γ > 0.538

when n > n∗, we have539

Pn(0) = bdv2θλn > 0, lim
γ→+∞

Pn(γ) = −(d1λn − β)bθvθλn < 0,540

and541

d[Pn(γ)]

dγ
= − (d1λn − β)bθξλnv

2
θ

(γ + ξvθ)2
< 0,542

thus there exists γ∗n > 0 such that Pn(γ
∗
n) = 0, and Pn(γ) > 0 for γ ∈ (0, γ∗n) and543

Pn(γ) < 0 for γ ∈ (γ∗n,+∞). By the fact the Qn(γ) > 0, we obtain the results in (i).544

As for (ii), we need to know the monotonicity of χ̃S
n(γ) with respect to n, thus545

we first rewrite χ̃S
n(γ) as the following form by letting p = λn:546

χ̃S
p (γ) = − (γ + ξvθ)(d2p(d1p− β) + dα)

bdv2θp− (d1p− β) bθγvθp
γ+ξvθ

.547

Taking derivative with respect to p, we have548

d[χ̃S
p (γ)]

dp
= −γ + ξvθ

P 2
n(γ)

[
d1d2bdv

2
θp

2 +
2dαd1bθγvθ
(γ + ξvθ)

p− dα(bdv2θ(γ + ξvθ) + βbθγvθ)

(γ + ξvθ)

]
.549
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From the expression of
d[χ̃S

p (γ)]

dp
, we see that

d[χ̃S
p (γ)]

dp
is a quadratic function of p550

with positive coefficients for quadratic and linear terms. However, the constant term is551

negative as bdv2θ(γ+ ξvθ)+ βbθγvθ > 0 when χ̃S
n(γ) > 0, which implies that

d[χ̃S
p (γ)]

dp
552

has a unique zero p∗ such that
d[χ̃S

p (γ)]

dp
> 0 for p ∈ (0, p∗) and

d[χ̃S
p (γ)]

dp
< 0 for553

p ∈ (p∗,+∞) and χ̃S
p (γ) reaches its maximum at p∗. Let N ∈ N be the integer such554

that λn is the closest eigenvalue to p∗, then we have χ̃S
N (γ) = max

n∈N
χ̃S
n(γ) for a fixed555

γ > 0.556

When χ̃S
n(γ) > 0, the constant term in the expression of

d[χ̃S
p (γ)]

dp
is positive, thus557

we know that
d[χ̃S

p (γ)]

dp
< 0 from the discussion in the proof of (ii). Therefore, χ̃S

n(γ)558

is strictly decreasing with respect to n and we have559

(4.5) min
n>n∗

χ̃S
n(γ) = lim

n→+∞
χ̃S
n(γ) =

d2(γ + ξv2θ)

bθγvθ
.560

Define the limiting Turing curve as χ̃S
∞ in (3.7), and it can be known that χ̃S

∞(γ) is561

first decreasing and then increasing function of γ and reaches its minimum at γ = γ∗.562

This proves the conclusions in (iii).563

To prove (iv), we rewrite χ̃H
n (γ) as564

χ̃H
p (γ) =

((d1 + d2)p− β)

bdv2θp+ bθγvθp+
d2bθγvθp2

γ+ξvθ

[d2p(d1p− β)

+(γ + ξvθ)((d1 + d2)p− β) + (γ + ξvθ)
2 + dα

]
.

565

where λn in χ̃H
n (γ) is replaced by p. Taking the derivative with respect to p, we obtain566

d[χ̃H
p (γ)]

dp
=

Fp(γ)

H2
p (γ)

,567

where568

Fp(γ) =Hp(γ)
{
(d1 + d2)

[
d2p(d1p− β) + (γ + ξvθ)((d1 + d2)p− β) + (γ + ξvθ)

2

+dα] + ((d1 + d2)p− β)(2d1d2p− β + (d1 + d2)(γ + ξvθ))}

−Qp(γ)

(
bdv2θ + bθγvθ +

2d2bθγvθp

γ + ξvθ

)
,

569

and570

Qp(γ) =((d1 + d2)p− β) [d2p(d1p− β) + (γ + ξvθ)((d1 + d2)p− β)

+(γ + ξvθ)
2 + dα

]
,

Hp(γ) =bdv
2
θp+ bθγvθp+

d2bθγvθp
2

γ + ξvθ
.

571

By a tedious calculation, one can verify that Fp(γ) is a quartic polynomial of p, that572

is,573

Fp(γ) = a4(γ)p
4 + a3(γ)p

3 + a2(γ)p
2 + a1(γ)p+ a0(γ)574
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with575

a4(γ) =
(d1 + d2)d1d

2
2bθγvθ

γ + ξvθ
> 0,

a0(γ) = β(bdv2θ + bθγvθ)[α+ (γ + ξvθ)
2 − β(γ + ξvθ)] < 0.

576

Therefore, it can be inferred that there exists at least one positive zero p = p∗∗ of577

Fp(γ) such that χ̃H
p (γ) reaches its minimum at p = p∗∗. Therefore, we may take578

M ∈ N such that λM is the closest eigenvalue to p∗∗. This completes the proof.579
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