
Master of Science in Internetworking

Department of Electrical and Computer Engineering

Project Title:

 Optimized Data pipeline between Google Cloud Platform (GCP)

 and on-premises

Supervisor:

Ali Tizghadam

(Principal Technology Architect -TELUS)

 Provided By:

Sarwar Sulthana

Fall 2021 – Winter 2022

Contents
Contents ... 2

Table of Figures .. 6

List of Tables .. 7

Abstract .. 1

Acknowledgement ... 2

1. Project Architecture ... 3

1.1. Current Architecture: ... 3

1.2. Proposed Architecture: .. 3

1.3. Protocol Details: ... 3

1.4. Components of Data pipeline: ... 4

1.5. Access and Pre-requisites .. 4

1.5.1. Application-level Access: .. 5

1.5.2. Software requirements: ... 5

2. What is Data Pipeline: .. 6

2.1. Why is building a Data Pipeline Important? .. 6

2.1.1. Streaming Processing data pipeline: .. 6

2.1.2. Batch Processing data pipeline: ... 7

2.2. Stages in Data Pipeline ... 8

2.2.1. Data Collection: .. 8

2.2.2. Data Parsing: .. 8

2.2.3. Data Queue: ... 8

2.2.4 Data Transfer: .. 8

2.2.5 Data Ingestion: ... 9

2.2.6 Data Processing: ... 9

2.2.7 Data Warehouse: ... 9

2.2.8 Data Visualization: ... 9

3. Data Collection (Stage 1): ... 10

3.1. Data Source: ... 10

3.2. Pmacct netflow collector: .. 10

3.3. Pmacct/nfacctd config: .. 11

4. Data Parsing (Stage 2) .. 12

4.1. What is filebeat module: .. 12

4.2. Here’s how Filebeat works: .. 12

4.2.1. What is a harvester? .. 13

4.2.2. What is input? .. 13

4.3. How to Configure Filebeat: .. 13

5. Data Queue (Stage 3) ... 16

5.1 Data Stream: .. 16

5.2 What is Kafka: .. 16

6. Data Transfer (Stage 4) .. 18

6.1 Kafka Consumer ... 18

6.2 Consuming the netflow data from topic (Python Client): .. 18

7. Data Ingestion (Stage 5) ... 20

7.1 Google Cloud Platform (GCP) ... 20

7.2 What are Google Cloud Platform (GCP) Services? ... 20

7.3 What are Google Cloud Platform Services used in Data Pipeline Creation? 21

7.4 Selection of resources for Optimized Data Pipeline .. 22

7.4.1 Apache Kafka/Cloud Kafka Vs Google PubSub [18]: .. 22

7.4.2 Google DataFlow Vs Google Data Proc [19]: ... 22

7.4.2 Google BigQuery Vs Google BigTable [20]: .. 23

7.5 Google PubSub: .. 23

7.6 Identity and Access Management (IAM):... 25

7.6.1 Service Account: .. 25

7.6.2 Service Account key: ... 26

7.7 Data Ingestion: ... 27

7.7.1 Pre-Requisites: .. 27

7.7.2 Service account access control: .. 27

7.8 PubSub Topic and Subscription:... 27

7.8.1 Steps to create Pub/Sub Topic [28]: ... 27

7.8.2 Add a Subscription [28]: .. 28

7.9 Publishing Messages to PubSub Topic (GCP Publisher Client): .. 28

8. Data Processing (Stage 5) ... 31

8.1 Google Cloud Dataflow: ... 31

8.1.1 Project Pre-Requisites: .. 31

8.2 Cloud Data flow Functioning: ... 32

8.3 Cloud VPC ... 32

8.4.1 What is VPC: .. 32

8.4.2 VPC Components: ... 32

8.4.3 Steps for creating a VPC [32]: ... 34

8.4 Creating a DataFlow Job template [33]: .. 36

8.3.1 Pub/Sub Subscription to BigQuery:... 37

9. Data Warehouse (Stage 6) ... 38

9.1 Google BigQuery: ... 38

9.1.1 BigQuery Functioning: .. 38

9.1.2 Project pre-Requisites: ... 38

9.2 How to use Google BigQuery: .. 39

9.2.1 Creating Datasets: .. 39

9.2.2 BigQuery Table Creation: ... 39

9.2.3 Schema Creation: ... 40

10. Software Pipeline: .. 43

10.1 Deployment Architecture .. 43

10.2 Deploying to OpenShift Container Platform: ... 43

10.2.1 SSH Keys for GitLab ... 43

10.2.2 Git Push Steps: ... 44

10.2.3 Docker Image and Containerization? ... 45

10.2.3 Deploy applications on OpenShift with GitLab CI: .. 47

10.2.3.2 CI/CD settings: .. 47

10.2.3.3 CI/CD Script: ... 50

11. Testing the Pipeline .. 51

11.1 Testing the functioning of Data Pipeline.. 51

12. TINAA Datastore Adapter .. 54

12.1 TINAA Datastore .. 54

12.1.1 BigQuery Database Adapter.. 54

12.1.2 Python BigQuery Client: .. 54

References ... 56

Table of Figures
Figure 1. 1 Current Architecture (TINAA Pipeline) ..3

Figure 1. 2 Proposed Pipeline architecture ...3

Figure 1. 3 Communication Protocols ...3

Figure 2. 1 Streaming Processing Pipeline (Continuous Flow)..7

Figure 2. 2 Batch Processing Pipeline (Periodic Flow) ..7

Figure 2. 3 Stages in Data Pipeline ...8

Figure 3. 1 Netflow ingestion from PMACCT to Kafka…………………………………………10

Figure 4. 1 Filebeat Functioning ...13

Figure 5. 1 Apache Kafka Functioning………………………………………………………..….16

Figure 5. 2 Messages/Events flow in Kafka Topics ...17

Figure 5. 3 Partitions in Kafka Topics ..17

Figure 7. 1 GCP Services…………………………………………………………………... ……20

Figure 7. 2 Google Pubsub basics ..24

Figure 7. 3 End to End functionality of Google PubSub ..24

Figure 7. 4 Identity and Access Management (IAM) policy in GCP ...25

Figure 7. 5 Service Account in GCP ..26

Figure 7. 6 Message Publish and Acknowledgment ...30

Figure 8. 1 End to End Functionality of Google Dataflow……………………………………….32

Figure 8. 2 Cloud VPC hosted within the public environment ..33

Figure 8. 3 VPC network details ..34

Figure 8. 4 VPC network summary ...35

Figure 8. 5 Subnet summary ...36

Figure 8. 6 Dataflow Job Template ..37

Figure 10. 1 Application Deployment (CI Pipeline) ……………………………………………43

Figure 10. 2 SSH Keys for Gitlab ...44

Figure 10. 3 Docker Overview ...45

Figure 10. 4 Docker Image Build and Containerization ...46

Figure 10. 5 Gilab CI Environment variables ...49

Figure 10. 6 CI CD Job run successful and container is running in Openshift platform50

Figure 11. 1 Overview of messages published to PubSub………………………………… ……52

List of Tables
Table 1. 1 Software requirements for Project .. 5

Table 7. 1 Comparison between Apache Kafka and Google PubSub……………………………………...22

Table 7. 2 Comparison between Google DataFlow and DataProc .. 22

Table 7. 3 Comparison between Google BigQuery and BigTable .. 23

Table 10. 1 Gitlab CI Pipeline keywords ... 47

Table 10. 2 Gitlab CI pipeline configurations ... 47

Table 11. 1 Dataflow Job Template values………………………………………………………………...53

1

Abstract

Project Objective:

Create a data pipeline that would run parallel with an existing private cloud pipeline to extract

data from an on-premises network. Then transform, store it using managed Google Cloud

Platform (GCP) services and finally read the data from the TINAA datastore application.

TINAA program (TELUS Intelligent Network Analytics & Automation) has an existing data

pipeline in their private cloud infrastructure. In this pipeline, the NetFlow records get collected

at PMACCT (open source NetFlow collector), then processed using Spark, and then published

to an internal Elasticsearch database.

Now, using the Google Cloud Platform (GCP) offered by Google to provide reliable and high-

performance cloud services, we have developed an optimum and scalable data pipeline as

shown below.

1. Firstly, we run a python based docker container to extract the data by subscribing to an

existing Kafka topic. This data is then published to GCP PubSub Topic.

2. Secondly, we modernized the data pipeline using managed GCP services.

• Google PubSub – Asynchronous messaging service to stream the NetFlow data.

• Google DataFlow – Fully managed streaming analytics service to stream the

NetFlow data from GCP PubSub to BigQuery table.

• Google BigQuery – Serverless, cost-effective and multi-cloud data warehouse to

store the NetFlow data.

3. Finally, we consumed the data stored in BigQuery using a custom database adapter

interface from TINAA datastore service applications.

2

Acknowledgement

I would like to thank the following people, without whom I would not have completed this

Capstone project.

I would like to express my sincere gratitude to my mentor, Prof. Ali Tizghadam, for his

extensive support and guidance, with which I was able to complete this capstone project

successfully. His reviews and suggestions were a real inspiration for me in completing this

project.

 I owe my profound gratitude to our Program director Dr. Mike MacGregor who gave me this

wonderful opportunity to experience this project.

The outcome of this project required a lot of guidance and assistance from TELUS team

members reporting Ali. I would like to thank them for their co-operation in providing all the

necessary information regarding the project and helping me with their skills.

3

1. Project Architecture
1.1. Current Architecture:

Figure 1. 1 Current Architecture (TINAA Pipeline)

1.2. Proposed Architecture:

Figure 1. 2 Proposed Pipeline architecture

1.3. Protocol Details:

Figure 1. 3 Communication Protocols

4

1.4. Components of Data pipeline:

Data Source: Source that generates/ingest Netflow data into PMACCT.

PMACCT: A set of passive network monitoring tools to measure, account, classify,

aggregate and export IPv4 and IPv6 traffic

Filebeat: It is a lightweight, efficient, relatively easy to use shipper for forwarding and

centralizing log data. It is generally used for gathering, parsing, and saving logs.

Apache Kafka: Open-source distributed event streaming platform used for high-performance

data pipelines, streaming analytics, data integrations

Elasticsearch: A distributed, free, open search and analytics engine for all types of data.

Docker: Docker is a software platform that allows you to build, test, and deploy applications

quickly. Docker packages software into standardized units called containers that have

everything the software needs to run.

Cloud PubSub: Google Pub/Sub is a fully managed real-time messaging service that allows

you to send and receive messages between independent applications

Cloud DataProc: Fully managed and highly scalable service for running Apache Spark.

Cloud DataFlow: Fully managed streaming analytics service that minimizes latency,

processing time, and cost through autoscaling and batch processing

Cloud Big Query: BigQuery is Google’s fully managed enterprise data warehouse that helps

you manage and analyze your data. It is a serverless cloud storage platform for large datasets.

BigTable Plugin: An interface to TINAA subscription service application to be able to read

data from BigTable and test it.

1.5. Access and Pre-requisites

Request Access for TELUS Lab VPN

1. Pulse Secure VPN: To access TELUS Lab environment.

2. Cisco AnyConnect: to access TELUS Network.

Access is two types

1. XID: For Staff access

2. VID: For Vendor access

5

1.5.1. Application-level Access:

1. GitLab: To access Gitlab on Lab environment connect to Lab VPN→ Provide

XID credentials→ Create a project (ensure you have Maintainer role)

2. OpenShift Container Platform: Project access (Developer Access)

3. Kafka Web Server: Toll Environment (Access to the Topic with netflow records)

4. Google Cloud Platform: Enable required Cloud resources

a. Google PubSub: (PubSub Admin role)

b. Cloud DataFlow:

c. BigQuery: (BigQuery Admin role)

5. TINAA google project access

1.5.2. Software requirements:

Software Version

Docker Version: 1.13.1

Docker Desktop Installer

Python Version: 3.9.1

 Installation: docker pull python

 Pip: Python package manager

 Pip Version: pip 22.0.3

 Visual Studio Code Editor Visual Studio Code 1.64.2

Filebeat Filebeat: 8.0.0
Installation: docker pull docker.elastic.co/beats/filebeat:8.0.0

PMACCT (for POC) Version: latest

 Installation: docker pull pmacct/pmacctd

 configuration file: /etc/pmacct/pmacctd.conf:

 For Project use the existing TINAA PMACCT collector.

Gitbash/Terminal git version 2.34.1.windows.1

 Terminal: windows /command prompt

Microsoft Office MS Word, One Note

Table 1. 1 Software requirements for Project

6

2. What is Data Pipeline:
A data pipeline is a set of tools and processes used to automate the movement and

transformation of data between a source system and a target repository.

Source systems often have different methods of processing and storing data than target

systems. It is a set of actions that ingest raw data from disparate sources and move the data to

a destination for storage and analysis. More specially, a data pipeline is an end-to-end process

to ingest, process, prepare, transform, and enrich structured, unstructured, and semi-

structured data in a governed manner [1] .

Therefore, data pipeline software automates the process of extracting data from many

disparate source systems, transforming, combining, and validating that data, and loading it

into the target repository.

2.1. Why is building a Data Pipeline Important?

Deploying the data pipeline will help companies build and manage workloads in the cloud

efficiently. Organizations can improve data quality, connect to diverse data sources, ingest

structured and unstructured data into cloud data lake, and manage complex multi-cloud

environments [2].

Data Pipelines are categorized based on customer use cases.

 There are two types of data pipelines [3]:

2.1.1. Streaming Processing data pipeline:

Streaming data pipelines are used when the analytics, application or business process

requires continually flowing and updating data. Instead of loading data in batches,

streaming pipelines move data continuously in real-time from source to target.

• Data is sourced, manipulated, and loaded as soon as it’s created.

7

Figure 2. 1 Streaming Processing Pipeline (Continuous Flow)

2.1.2. Batch Processing data pipeline:

Historical data is typically used in BI and data analytics to explore, analyze, and gain

insights on activities and information that has happened in the past. Therefore,

traditional batch processing where data is periodically extracted, transformed, and

loaded to a target system is sufficient. These batches can either be scheduled to occur

automatically, can be triggered by a user query or by an application. Batch processing

enables complex analysis of large datasets [3].

• Source data is collected periodically and sent to the destination system.

Figure 2. 2 Batch Processing Pipeline (Periodic Flow)

NOTE: In this project we are streaming continuous Netflow records from Kafka to google

cloud for real-time processing and analytics. So, we are creating a streaming data pipeline

8

2.2. Stages in Data Pipeline

 Figure 2. 3 Stages in Data Pipeline

2.2.1. Data Collection:

This is the first stage of data pipeline, where the data is collected from source, formatted,

or parsed appropriately, and ingested into the pipeline.

1. Source generates the Netflow Data, and it is sent to PMACCT (open source netflow

collector).

2. The PMACCT collects all the Netflow data records and the raw Netflow streams

are stored in Kafka topic (pltf-develop-netflow-raw)

2.2.2. Data Parsing:

In this stage the raw netflow UDP records from PMACCT, which are unencrypted, are

decoded and parsed to JSON using the filebeat netflow codec module and the results are

stored in the Kafka topic (pltf-develop-netflow-raw-fb)

2.2.3. Data Queue:

In this stage, messages decoded are stored in the Kafka topic(pltf-develop-netflow-raw-

fb). When the PMACCT publishes NetFlow data to Kafka it will stream the events to its

subscribers i.e., DataFlow and store the data in the GCP Destination (BigQuery).

2.2.4 Data Transfer:

Python Kafka Consumer client is created to subscribe to the Kafka Topic and consume

the records from the topic.

9

2.2.5 Data Ingestion:

Stream of netflow records consumed by the Kafka consumer are now published to GCP

PubSub topics for further processing. We have a python gcp-netflow-publisher, which

publishes the netflow data from Kafka Topic to GCP PubSub Topic.

2.2.6 Data Processing:

At this stage, dataflow job is triggered to perform ETL operations. Data flow job moves

the netflow records from PubSub Subscription to BigQuery Table.

2.2.7 Data Warehouse:

DataFlow job is triggered then netflow records are stored in GCP destination (BigQuery).

2.2.8 Data Visualization:

In this stage we have created a big query database adapter like the existing elastic database

adapter. So, it can be consumed by any client application and end user will have a choice

to consume the data from either Elastic or BigQuery.

10

3. Data Collection (Stage 1):
3.1. Data Source:

The netflow data is a protocol system that collects active IP network traffic as it flows in

or out of an interface [4]

3.2. Pmacct netflow collector:

Pmacct is a small set of multi-purpose passive network monitoring tools. It can account,

classify, aggregate, replicate and export forwarding-plane data, i.e., IPv4 and IPv6 traffic;

collect and correlate control-plane data via BGP and BMP; collect and correlate RPKI

data; collect infrastructure data via Streaming Telemetry [4].

3.2.1. Pmacct contains

• Pmacctd: a probe, i.e., it collects packages and exports Ipfix/Netflow via a tool

called nfprobe [5].

• Nfacctd: The flow is sent nfacctd, a collector for IPFIX/netflow that is part of the

Pmacct suite [6].

Figure 3. 1 Netflow ingestion from PMACCT to Kafka

In this project: We want to use the nfacct daemon as collector and exporter to Kafka

topic (pltf-develop-netflow) [7]. So, we need to configure that. We create a file called

nfacctd.conf with the following content:

11

3.3. Pmacct/nfacctd config:

services:

 filebeat:

 image: filebeat: 7.15.2

 restart: unless-stopped

 volumes:

 ./config/filebeat.yml:/etc/filebeat/filebeat.yml:ro

 command:

 -filebeat

 -c

 -/etc/filebeat/filebeat.yml

 - -e

 network_mode: host

 logging:

 driver: fluentd

 options:

 fluentd-address: 127.0.0.1:24224

 tag: docker. {{.Name}}

 nfacctd:

 image: nfacctd:v1.7.7

 restart: unless-stopped

 depends on:

 -filebeat

 volumes:

 -./config:/pmacct-config:ro

 network_mode: host

 #ports:

 # -0.0.0.0:5000:5000 /udp

 command:

 -nfacctd

 -f

 -/pmacct-config/nfacctd.conf

 logging:

 driver:fluentd

 options:

 fluentd-address: 127.0.0.1:24224

 tag:docker.{{.Name}}

Configuration 3.1 Pmacct/Nfacctd Configuration

NOTE:

We have set up the Pmacct/nfacctd config to collect the netflow records and export to

Kafka topic (pltf-develop-Netflow-raw). This topic has the raw netflow records (UDP

packets, which are not encrypted). The decoding of the raw data in the topic is done by

Filebeat and the decoded data is published to another Kafka topic (pltf-develop-

Netflow-raw-fb), which has JSON decoded netflow data.

12

4. Data Parsing (Stage 2)
Filebeat and netflow decoding
Filebeat is a lightweight shipper for forwarding and centralizing log data. Installed as an agent

on your servers, Filebeat monitors the log files or locations that you specify, collects log

events, and forwards them either to Elasticsearch or Logstash for indexing [8].

• Mainly used for analyzing the log files.

4.1. What is filebeat module:

Filebeat comes with interesting modules that simplify the collection, parsing, and

visualization of common log formats down to a single command [9].

Filebeat Kafka module collects and parses the logs created by Kafka. In our project the

raw netflow records in the topic are parsed by filebeat Kafka module.

Filebeat consists of two main components:

• Inputs

• Harvesters.

These components work together to tail files and send events data to the output that you

specify.

4.2. Here’s how Filebeat works:

When you start Filebeat, it starts one or more inputs that look in the locations you’ve

specified for log data. For each log that Filebeat locates, Filebeat starts a harvester [10].

Each harvester reads a single log for new content and sends the new log data to Filebeat,

which aggregates the events and sends the aggregated data to the output that you’ve

configured for Filebeat.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash

13

Figure 4. 1 Filebeat Functioning

4.2.1. What is a harvester?

A harvester is responsible for reading the content of a single file. The harvester reads each

file, line by line, and sends the content to the output. One harvester is started for each file

[10].

4.2.2. What is input?

An input is responsible for managing the harvesters and finding all sources to read from.

If the input type is log, the input finds all files on the drive that match the defined glob

paths and starts a harvester for each file [10].

4.3. How to Configure Filebeat:

Filebeat is relatively easy to configure, and they all follow the same configuration step.

Filebeat is configured using a YAML configuration file [11].

4.3.1. Filebeat inputs:

Filebeat inputs are responsible for locating specific files and applying basic processing to

them. From this point, you can configure the path (or paths) to the file you want to track.

Also, you can use additional configuration options such as the input type and the encoding

14

used for reading the file, excluding, and including specific lines, adding custom fields and

more [11].

Input to Filebeat: Netflow data is being sent as input on local host (127.0.0.1) and port

(5050).

• Filebeat Netflow Input for filbeat.conf.yml:

filebeat.inputs:

- type: netflow

 max_message_size: 10KiB

 host: "127.0.0.1:5050"

 protocols: [v5, v9, ipfix]

 expiration_timeout: 30m

 queue_size: 8192

 #custom_definitions:

 #- path/to/fields.yml

 detect_sequence_reset: true

4.3.2. Filebeat outputs:

Here you can define where the data is going to be shipped. Most often you will use the

Logstash or Elasticsearch output types. If you define a Logstash instance you can have

advanced processing and data enhancement. You can define multiple outputs and use a

load balancing option to balance the forwarding of data [11].

Filebeat Output: The output is decoded JSON netflow data exported to Kafka topic(pltf-

develop-Netflow-raw-fb) using filebeat Codec module

Below figure is filebeat config that sends decoded data to Kafka topic pltf-develop-

netflow-raw-fb

15

4.3.3. Filebeat Config (output) to decode the raw Netflow data:

#output.console:

codec.json:

 #pretty: true

escape_html: false

#output.file:

path: /tmp/data

filename: netflow.log

output.kafka:

 hosts: ["pltf-msgbus-sasl.develop.ocp01.toll6.tinaa.tlabs.ca:443"]

 topic: "pltf-develop-netflow-raw-fb"

 sasl.mechanism: SCRAM-SHA-512

 username: **********

 password: **********

 worker: 3

 ssl:

 verfication_mode: none

 certificate_authorities:

 - |

 -----BEGIN CERTIFICATE-----

 MIIG9TCCBN2gAwIBAgITFgAAAATQTfVX3QfH+gAAAAAABDANBgkqhkiG9w0BAQsF

NOTE: Decoded Netflow data (JSON format) is accumulated on Kafka topic using Filebeat.

16

5. Data Queue (Stage 3)

5.1 Data Stream:

A data stream is a set of events generated from different data sources at irregular intervals.

They always travel from one system to another system, carrying the state changes that

happened. An event stream represents related events in motion [12]. These events are

immutable and never stay in one place

In Project: Data Stream = Netflow records (from PMACCT to Big Query)

5.2 What is Kafka:

Kafka: Apache Kafka is a highly scalable and distributed platform for creating and

processing streams in real-time. It is a publishing-subscribe messaging system that

maintains messages is partitioned and replicated topics [12].

Figure 5. 1Apache Kafka Functioning

In Project: Kafka Broker:

https://pltf-msgbus-ui.develop.ocp01.toll6.tinaa.tlabs.ca/ui/develop-cluster/topic/pltf-

develop-netflow-raw-fb/data?sort=NEWEST&partition=All

Topics: They are the logs that receive data from the producers and store them across their

partitions. When an event stream enters Kafka, it is persisted as a topic. In other words, a

topic is a stream at rest. Topics are the central concept in Kafka that decouples producers

and consumers [12].

https://pltf-msgbus-ui.develop.ocp01.toll6.tinaa.tlabs.ca/ui/develop-cluster/topic/pltf-develop-netflow-raw-fb/data?sort=NEWEST&partition=All
https://pltf-msgbus-ui.develop.ocp01.toll6.tinaa.tlabs.ca/ui/develop-cluster/topic/pltf-develop-netflow-raw-fb/data?sort=NEWEST&partition=All

17

Project Topics:

Raw Netflow Topic: pltf-develop-netflow-raw

Decoded Netflow Topic: pltf-develop-netflow-raw-fb

Figure 5. 2 Messages/Events flow in Kafka Topics

Partitions: Kafka’s topics are divided into several partitions. It is the smallest storage

unit that holds a subset of records owned by a topic. Each partition is a single log file

where records are written to it in an append-only fashion [12].

Figure 5. 3 Partitions in Kafka Topics

Consumer Groups: Kafka also has the concept of consumer groups where several

consumers are grouped to consume a given topic [12].

In our scenario: The NetFlow data collected at PMACCT, decoded by Filebeat, and is

stored in Kafka Topic.

18

6. Data Transfer (Stage 4)
6.1 Kafka Consumer

Now the netflow records are streaming in the Kafka Topic: ‘pltf-develop-netflow-raw-fb’

In this stage we have a Kafka Consumer Python Client, which is subscribing to the topic

and consuming all the netflow records. This consumer consumes netflow records from a

Kafka Cluster [13].

Technical specifications for Python Consumer Client:

a) Programming language: Python

b) Version: 3.7.1

c) Installed Libraries: JSON, Kafka Consumer

d) Import Libraries:

• pip install kafka-python

• pip install json

Kafka Consumer: Consumers read the messages of a set of partitions of a topic of their

choice at their own place. A single topic can be consumed by multiple consumers in

parallel.

Reading records: Unlike the other pub/sub implementations, kafka doesn’t push

messages to consumers. Instead, consumers have to pull messages off Kafka topic

partitions. A consumer connects to a partition in a broker, reads the messages in order in

which they were written [14].

6.2 Consuming the netflow data from topic (Python Client):

Kafka Python Consumer Client: Below is the code snippet for the Kafka Consumer

[15], which consumes the data from the Kafka broker (toll environment), by subscribing to

the topic 'pltf-develop-netflow-raw-fb

19

import json

from kafka import KafkaConsumer

consumer = KafkaConsumer('pltf-develop-netflow-raw-fb',security_protocol='SASL_SSL',

 sasl_mechanism='SCRAM-SHA-512',

 ssl_cafile='ca.pem',

 bootstrap_servers=

 ['pltf-msgbus-sasl.develop.ocp01.toll6.tinaa.tlabs.ca:443'],

 #group_id='pltf-develop-netflow-publisher',

 sasl_plain_username= '*************',

 sasl_plain_password= '*************')

for message in consumer:

 msg = json.dumps(json.loads(message.value)).replace('@timestamp','timestamp')

 .replace('@metadata', 'metadata')

 print ("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,

 message.offset, message.key,

 message.value))

consume earliest available messages, don't commit offsets

KafkaConsumer(auto_offset_reset='earliest', enable_auto_commit=False)

consume json messages

KafkaConsumer(value_deserializer=lambda m: json.loads(m.decode('ascii')))

Below are the arguments that are passed [16]:

• Topic: Decoded netflow topic in our case (pltf-develop-netflow-raw-fb)

• Security_protocol: Protocol used to communicate with brokers. Valid values are

PLAINTEXT, SSL, SASL_PLAINTEXT, SASL_SSL. Default: PLAINTEXT

[16].

• SASL_mechanism: Authentication mechanism when security_ protocol is

configured for SASL_PLAINTEXT or SASL_SSL [16].

• bootstrap _servers: ‘host[:port]’ string (or list of ‘host[:port]’ strings) that

consumer should contact to bootstrap initial cluster metadata. It can be at least one

broker that will respond to Metadata API request. Default port: 9092. Default

value: localhost: 9092 [16].

• group_id: this consumer group to which the consumer belongs.

• Ssl_cafile: This is the file in pem format containing the client certificate, as well as

any ca certificates needed to establish the certificates authenticity. Default: None

20

7. Data Ingestion (Stage 5)
7.1 Google Cloud Platform (GCP)

Google Cloud is a suite of Cloud Computing services offered by Google. The platform

provided various services like compute, storage, networking, Big Data and many more

than running on the same infrastructure that Google uses internally for its end users.

• Cloud Console URL: https://console.cloud.google.com/

• Project: nfv-pp-tinaa-02

• Pre-Requisite: Request access to GCP project you are supposed to work on.

• Project Role: Project Editor

7.2 What are Google Cloud Platform (GCP) Services?

Figure 7. 1 GCP Services

https://console.cloud.google.com/

21

7.3 What are Google Cloud Platform Services used in Data Pipeline

Creation?

Google offers a wide range of services. The following are the Google cloud services used

for creating the optimized data pipeline [17]:

1. Networking

2. Storage and Databases

3. Big Data

4. Identity & Security

1. Networking: The storage domain includes services related to networking; it includes

the following services [17].

• Google Virtual Private Cloud (VPC)

2. Storage and Databases: The storage domain includes services related to data storage;

it includes the following services [17]

• Google Cloud Storage

3. Big Data: The storage domain includes services related to big data; it includes the

following services [17]

• Google BigQuery

• Google Cloud DataFlow

• Google Cloud Pub/Sub

4. Identity and Security: The storage domain includes services related to security; it

includes the following services [17].

• Google Cloud IAM

22

7.4 Selection of resources for Optimized Data Pipeline

7.4.1 Apache Kafka/Cloud Kafka Vs Google PubSub [18]:

Point Of

Difference

Apache Kafka Google PubSub

Type -Streaming log

-Open Source or on Cloud

 -Message Queue

 -Managed by Google

Recommended If solution requires some

Spark processing

If solution require process data in Streaming

also need to support batch processing.

Authentication Supports open authentication and

encryption mechanisms

Authentication is based on GCPs IAM

system

Push/Pull

Mechanism

Kafka Consumer are Pull. Pub/Sub consumers choose between a

push or a pull mechanism.

Provisioning Manually manage offsets of

messages using external

storage and Clusters.

Managed by GCP and scalable

Consumer

Group and

Subscriptions

Uses consumer group and

Partition. When message is

read from a specific partition,

then any other consumer

process which belong to same

consumer group will not be

able to read that message

(because offset will eventually

increase)

PubSub uses Subscriptions once message

is read and ack the message for the

subscription is gone.

Table 7. 1 Comparison between Apache Kafka and Google PubSub

7.4.2 Google DataFlow Vs Google Data Proc [19]:

Point Of Difference Google DataFlow Google DataProc

Unique For ETL-Batch and Stream processing

of Data Workloads

 ETL-Batch processing workloads

Provisioning Serverless, Automatic

provisioning of clusters. Fully

automated provisioning of clusters

Provisioning of clusters is done manually

System Integration BigQuery and BigTable

Apache Beam

Apache Spark and Hadoop

Ease Of Use Relatively Easy to Use Simple, easy to Use

Recommended for Creating new pipelines on cloud Migrating existing pipeline

 Table 7. 2Comparison between Google DataFlow and DataProc

23

7.4.2 Google BigQuery Vs Google BigTable [20]:

Point Of

Difference

Google BigQuery Google BigTable

Type Relational SQL for OLAP workloads No SQL , suitable for OLTP workloads

Provisioning Querying fully managed Data

Warehousing

Interactive querying, offline analytics

AdTech, Financial and IOT data

Flat data, heavy read/write events, analytical

data [20]

System Integration Batch/Stream Put row

Ease Of Use SELECT rows Scan rows

Recommended for With BigQuery it is possible to run

complex analytical SQL-based queries

under large sets of data. BigQuery is a

smart choice for queries that require a

table scan or when you need to look

across entire database.

NO SQL database service and does not

support SQL or multirow transitions. So,

this makes it unsuitable for a wide range

of applications. Only suitable for multiple

data sets. Overhead is too high

Latency Query latency is slow, so best used for

running queries with heavy workloads.

It is immutable in nature means queries

are executed efficiently in parallel [21].

 Ideal for storing huge single-keyed data

with low latency and can support high

read and write throughput at low latency

[21].

Table 7. 3Comparison between Google BigQuery and BigTable

NOTE: The above difference shows why PubSub is preferred over Kafka/Cloud Kafka,

Google DataFlow over Google DataProc and Google Big Query over Google BigTable

7.5 Google PubSub:

Using GCP python publisher the netflow records are published to PubSub Topic in GCP

7.5.1 What is PubSub?

Google Cloud Pub/Sub is a fully managed messaging service for exchanging event data

among applications and services [22].

• Message: The data that moves through the service.

• Topic: a named entity that represents a feed of messages.

• Subscription: a named entity that represents an interest in receiving messages on

a particular topic.

• Publisher: creates messages and sends them to the messaging service on a

specified topic.

• Subscriber: receives messages on a specified subscription.

24

7.5.1.2 PubSub Basics Overview:

Figure 7. 2 Google Pubsub basics

7.5.1.3 PubSub Functioning:

Figure 7. 3 End to End functionality of Google PubSub

25

7.6 Identity and Access Management (IAM):

IAM lets administrators authorize who can take action on specific resources, giving you

full control and visibility to manage Google Cloud resources centrally [23].

• IAM Enable the IAM API.

Figure 7. 4 Identity and Access Management (IAM) policy in GCP

7.6.1 Service Account:

A service account is a special type of Google account intended to represent a non-human

user that needs to authenticate and be authorized to access data in Google APIs. In our

scenario service accounts are used in running workloads on on-premises workstations or

data centers that call Google APIs [24].

Project Service Accounts:

• sarwar.sulthana@telus.com

• kafkatogcptest@nfv-pp-tinaa-02.iam.gserviceaccount.com

7.6.1.1 Steps for creating a Service Account [25]:

1. In the Cloud Console, go to the Create Service account page

2. Select project.

3. Enter a service account name to display in the cloud Console.

4. Optional: Enter a description of the service account.

5. If you do not want to set access controls now, click Done to finish creating the

service account. To set access controls now, click Create and continue to the next

step.

mailto:sarwar.sulthana@telus.com

26

6. Optional: choose one or more IAM roles to grant to the service account on the

project.

7. When you are done adding roles, click Continue [25].

8. Optional: In the service account users role field, add members that can

impersonate the service account.

9. Optional: In the Service account admin’s role field, add members that can manage

the service account.

10. Click Done to finish creating the service account.

Figure 7. 5 Service Account in GCP

7.6.2 Service Account key:

You can use service account key files to authenticate an application as a service account.

7.6.2.1 Creating and managing service account keys [26]:

To use a service account from outside of Google Cloud, such as another platform or on-

premises, you must first establish the identity of the service account. Public/private key

pairs provide a secure way of accomplishing this goal. When you create a service account

key, the public portion is stored on Google Cloud, while private portion is available only to

you.

Service account key creation steps from cloud Console [26]:

1. In the Cloud Console, go to the Service accounts page.

2. Select a project [26].

3. Click the email address of the service account that you want to create a key for.

4. Click the keys tab.

5. Click the Add key drop-down menu, then select Create new key.

6. Select JSON as the key type and click Create.

Note: After you download the key file, you cannot download it again

https://cloud.google.com/iam/docs/understanding-roles
https://cloud.google.com/iam/docs/impersonating-service-accounts#allow-impersonation
https://cloud.google.com/docs/authentication/production

27

7.7 Data Ingestion:

7.7.1 Pre-Requisites:

• Create a Service Account in the GCP console.

• Create a topic in PubSub

• Create a Subscription or use the default subscription created.

• Ensure Service account key has Pub/Sub Admin or Project Admin role

7.7.2 Service account access control:

You can control access via Google cloud Console (manage access control for your topics

and projects).

To set access controls at the project level [27]:

1. Open the IAM page in the cloud Console.

2. Select your project and click Continue.

3. Click, Add principal

4. Enter the email address of a new principal to whom you have not granted any IAM

role previously.

5. Select a role from the drop-down menu.

6. Click Add.

7. Verify that the principal is listed under the role that you granted.

 For Project Service account: Set role = PubSub Admin, BigQuery Admin

7.8 PubSub Topic and Subscription:

 7.8.1 Steps to create Pub/Sub Topic [28]:

1. Go to Pub/Sub topics page in the Cloud Console

2. Click Create Topic.

3. In the Topic ID field, provide a unique topic name, for example, MyTopic

4. Click Save

https://console.cloud.google.com/project/_/iam-admin/iam?_ga=2.234582747.473766177.1646046436-189779795.1633230292&_gac=1.61512414.1645946856.CjwKCAiAvOeQBhBkEiwAxutUVOFf7JYHXlco8_mF1HBYZhvjUDpuIhax9fr0hXSB2GOnzXacAUlUjhoCKeoQAvD_BwE

28

7.8.2 Add a Subscription [28]:

 To add a subscription to the topic you just created.

5. Display the menu for the topic you just created, click Create subscription.

6. Type a name for the subscription such as MySub.

7. Leave the delivery type as Pull.

8. Click Create.

7.9 Publishing Messages to PubSub Topic (GCP Publisher Client):

 How messages are published from Kafka Consumer to GCP PubSub topic:

 Technical Specifications:

Python Libraries: Google credentials, service account, pubsub_v1

Package Installation:

• pip install google-cloud-language

• pip install --upgrade google-api-python-client oauth2client

• pip install google

• pip install google-cloud-pubsub

• pip install google-cloud

29

7.9.1 GCP Python Publisher Code Snippet:

Publishing events to a PubSub topic (read Queue) from Kafka topic is as simple as the

code snippet given below

from google.auth import jwt

from kafka import KafkaConsumer

from google.cloud import pubsub_v1

import json

from google.oauth2 import service_account

from oauth2client.client import GoogleCredentials

consumer = KafkaConsumer('pltf-develop-netflow-raw-fb',security_protocol='SASL_SSL',

 sasl_mechanism='SCRAM-SHA-512',

 ssl_cafile='ca.pem',

 bootstrap_servers=

 ['pltf-msgbus-sasl.develop.ocp01.toll6.tinaa.tlabs.ca:443'],

 sasl_plain_username= '************',

 sasl_plain_password= '************')

#Pubsub topic created

topic_path="projects/nfv-pp-tinaa-02/topics/KafkatoGCP"

#service account JSON key downloaded with PubSub Admin permissions

service_account_info = json.load(open("service-account-key.json"))

#PubSub API

audience = "https://pubsub.googleapis.com/google.pubsub.v1.Publisher"

credentials = jwt.Credentials.from_service_account_info(

 service_account_info, audience=audience

)

credentials_pub = credentials.with_claims(audience=audience)

#Calling GCP Publisher client to publish records to PubSub Topic

publisher = pubsub_v1.PublisherClient(credentials=credentials_pub)

#Publishing the netflow records to GCP from Kafka Consumer

for message in consumer:

 msg=json.dumps(json.loads(message.value)).replace('@timestamp','timestamp')

 .replace('@metadata', 'metadata')

 future=publisher.publish(topic_path,msg.encode())

 print ("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,

 message.offset, message.key,

 message.value))

 print(future.result())

print(f"Published messages to {topic_path}.")

30

Now the Netflow records are published to GCP PubSub Topic.

Pull: Select the Cloud Pub/Sub subscription to pull messages from:

Figure 7. 6 Message Publish and Acknowledgment

Click Pull to view all the message that are published

Figure 7. 7 Netflow records published

31

8. Data Processing (Stage 5)
8.1 Google Cloud Dataflow:

Cloud Dataflow is a fully managed service for running Apache Beam pipelines on Google Cloud

Platform. Cloud Dataflow executes data processing jobs. Dataflow is designed to run on a very

large dataset, it distributes these processing tasks to several virtual machines in the cluster so they

can process different chunks of data in parallel [29].

Below are the few reasons why Dataflow is chosen over DataProc for processing.

1. Serverless: We don’t have to manage computing resources. It will automatically spins up

and down a cluster of virtual machines while running the processing jobs. We can just

focus on building the code instead of building the cluster. Apache Spark, on the other

hand, requires more configuration even if it is running on Cloud Dataproc [29].

2. Processing code is separate from the execution environment: In 2016, Google donated

open-source Dataflow SDK and a set of data connectors to access Google Cloud Platform

which added additional features to the Apache Beam project. We can write beam

programs and run them on the local system or Cloud Dataflow service. When we look at

the Dataflow documentation, it suggests the Apache Beam website for the latest version

of the Software Development Kit [29].

3. Processing batch and stream mode with the same programming model: Other Big

data SDKs require different codes depending on whether data comes in batch or streaming

form. On the other hand, Apache Beam addresses it with a unified programming model.

Competitors like Spark are considering it but they are not quite there yet [29].

8.1.1 Project Pre-Requisites:

We are using a PubSub Subscription to BigQuery template to create a dataflow Job (to

publish the records from PubSub to BigQuery Table).

DataFlow Job pre-requisites

• Create a VPC and Subnet

• Existing PubSub Topic and Subscription

• Table created in Big Query

• Cloud Storage

32

8.2 Cloud Data flow Functioning:

Figure 8. 1 End to End Functionality of Google Dataflow

8.3 Cloud VPC

8.4.1 What is VPC:

 A VPC is a secure, isolated private cloud hosted within a public cloud [30].

8.4.2 VPC Components:

1. VPC Networks

A Virtual Private Cloud (VPC) network is a virtual version of a physical network,

implemented inside of Google’s production network, using Andromeda. VPC networks

along with their associated routes and firewall rules, are global resources i.e., they are not

associated with any distinct region or zone [31].

33

Figure 8. 2 Cloud VPC hosted within the public environment

A VPC network provides the following:

• Connects to on-premises networks using Cloud VPN tunnels and Cloud

Interconnect attachments.

• Subnets.

2. Subnets:

Each VPC network consists of one or more useful IP range partitions called subnets and

each subnet is associated with a region. VPC networks do not have any IP address ranges

associated with them, IP ranges are defined for the subnets. Subnets are regional

resources. Each subnet defines a range of IP addresses.

Please Note: The terms subnet and subnetwork are synonymous. They are used

interchangeably in Google Cloud Console, gcloud commands, and API documentation.

However, a subnet is not the same thing as a VPC network. They both represent different

types of objects in Google Cloud.

VPC created is global and we can use it in any of the regions. However, subnets are

regional. Subnets you create can span across all these zones across multiple availability

zones in a specific region.

In our Google cloud account, we will have a default VPC, which has a default subnet in

each of the regions.

34

Figure 8. 3 VPC network details

1.) Why do we need VPC in GCP? [31]

Answer: Google Cloud VPCs let users increase the IP space of any subnets without any

workload shutdown or downtime which in return gives them flexibility and growth

options to meet their needs.

2.) What is a subnet in the cloud? [31]

Answer: Subnets are a logical partition of an IP network into multiple, smaller network

segments. The Internet Protocol (IP) is the method for sending data from one computer to

another over the internet. Each computer, or host, on the internet, has at least one IP

address as a unique identifier.

8.4.3 Steps for creating a VPC [32]:

1. Go to the VPC networks page in the Google Cloud Console.

2. Click Create VPC network.

3. Enter a Name for the network.

4. Choose Automatic for the Subnet creation mode.

5. In the Firewall rules section, select zero or more predefined firewall rules. The

rules address common use cases for connectivity to instances.

Whether or not you select pre-defined rules, you can create your own firewall rules

after you create the network.

6. Choose the Dynamic routing mode for the VPC network.

For more information, see dynamic routing mode. You can change the dynamic

routing mode later.

https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/using-firewalls
https://cloud.google.com/vpc/docs/vpc#routing_for_hybrid_networks
https://cloud.google.com/vpc/docs/using-vpc#switch-dynamic-routing
https://cloud.google.com/vpc/docs/using-vpc#switch-dynamic-routing

35

7. Maximum transmission unit (MTU): Choose whether the network has an MTU of

1460 (default) or 1500. Review the MTU information in the concepts guide before

setting the MTU to 1500.

8. Click Create.

Figure 8. 4 VPC network summary

https://cloud.google.com/vpc/docs/vpc#mtu

36

Figure 8. 5 VPC Subnet summary

8.4 Creating a DataFlow Job template [33]:

1. Go to the Dataflow → Create job from the template page.

2. Go to Create job from template In the Job name field, enter a unique job name.

3. Optional: For Regional endpoint, select a value from the drop-down menu. The

default regional endpoint is us-central1.

For a list of regions where you can run a Dataflow job, see Dataflow locations.

4. From the Dataflow template drop-down menu, select the required template.

5. In the parameter fields provided, enter your parameter values.

6. Click Run job.

https://console.cloud.google.com/dataflow/createjob
https://cloud.google.com/dataflow/docs/resources/locations

37

8.3.1 Pub/Sub Subscription to BigQuery:

The Pub/Sub subscription to BigQuery template is a streaming pipeline that reads the

JSON-formatted messages from Pub/Sub subscription and writes them to a BigQuery

table. You can use the template as a solution to move Pub/Sub data to BigQuery. The

template reads JSON formatted messages from Pub/Sub and converts them to BigQuery

elements [34].

Figure 8. 6 Dataflow Job Template

When you are all set, click Run Job and wait for Dataflow to execute the template, which

takes a few minutes.

 Template Parameters:

Parameter Description

 input

Subscription

The Pub/Sub input subscription to read from. For example,

projects/<project>/subscriptions/<subscription> [35].

outputTableSpec The BigQuery output table location, in the format of <my-

project>:<my-dataset>. <my-table>

dataset (Optional) The type of logs sent via Pub/Sub, for which we have an

out-of-the box dashboard. Known log types of values are audit,

vpcflow, and firewall. Default: pubsub.

38

9. Data Warehouse (Stage 6)

9.1 Google BigQuery:

Google BigQuery is an enterprise data warehouse built using BigTable and Google Cloud

Platform. It is a serverless, highly scalable data warehouse that comes with a built-in query

engine. The query engine can run SQL queries on terabytes of data in a matter of seconds, and

petabytes in a minute. You get this performance without having to manage any infrastructure

and without having to create or rebuild indexes.

9.1.1 BigQuery Functioning:

Figure 9. 1 End to End Functionality of Google BigQuery

9.1.2 Project pre-Requisites:

• Create BigQuery Dataset

• Create BigQuery Table

• Import the required Schema for Table

• Ensure Service account has BigQuery admin privileges.

39

9.2 How to use Google BigQuery:

Consumers can easily access this service from their familiar cloud interface console.

Before creating a table in BigQuery, first:

• Create a BigQuery dataset

9.2.1 Creating Datasets:

You can create datasets in the following ways [36]:

1. Using the Cloud Console

2. Using SQL query.

3. Using Client libraries.

4. Copying an existing dataset.

9.2.1.1 Steps for creating a dataset using Cloud Console:

1. Open the BigQuery page in the Cloud Console.

2. In the Explorer panel, select the project where you want to create the dataset.

3. Expand the : Actions option and click dataset.

4. On the Create dataset page:

• For Dataset ID, enter a unique dataset name.

• For Data Location, choose a geographical location for the dataset. After a dataset

is created, the location can’t be changed.

5. Click Create dataset.

9.2.2 BigQuery Table Creation:

Now that the BigQuery dataset is created, we can create a table in BigQuery in the

following ways [37]:

1. Manually using the cloud Console

2. Programmatically by calling the tables.insert API method.

3. By using the client libraries.

4. From query results.

5. By using a CREATE TABLE data definition language (DDL) statement.

https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#creating_a_new_table

40

9.2.2.1 Required Permissions:

To create a table, you need the following IAM permissions [38]:

• bigquery.tables.create

• bigquery.tables.updateData

• bigquery.jobs.create

9.2.2.2 Steps for Creating an empty table with a schema definition:

1. In the Cloud Console, open the BigQuery page.

2. In the Explorer panel, expand your project and select a dataset.

3. Expand the : Actions and click Open.

4. In the details panel, click Create table.

5. On the Create table page, in the Source selection, select Empty table

6. On the Create table page, in the Destination selection:

• For Dataset name, choose the appropriate dataset.

• In the Table name field, enter the name of the table you’re creating in

BigQuery.

• Verify the Table type is set to Native table.

7. In the Schema section, enter the schema definition.

• Enter the schema information manually

8. For Partition and cluster settings leave the default value – No partitioning.

9. In the Advanced options section, for Encryption leave the default value: Google-

Managed key. By default, Big Query encrypts customer content stored at rest.

10. Click Create Table.

9.2.3 Schema Creation:

 Key components of BigQuery Schema [39]:

1. Column Names: In the column Name, you are required to specify the parameter

for which each column is responsible such as Date, User_Id, Products, etc.

NOTE: Column names cannot start by Prefixes: _Table_, @File. Duplicate

names are not allowed either.

41

2. Data Type: BigQuery also lets you specify the Data Type. Some of the major

ones that you can use to specify in your schema are INT64, FLOAT64,

NUMERIC, BOOLEAN, STRING.

3. Modes: BigQuery supports some Modes. These are particularly: Nullable,

Required, Repeated. In the

• Nullable Mode: Null values are allowed.

• Required Mode: Does not allow any null values.

• Repeated Mode: Contains an array of values of the specified type in

column.

9.2.3.1 Specify Schema in BigQuery Table [39]:

In our project: JSON file is uploaded to BigQuery Table using the Web User Interface:

You can directly load a JSON/CSV file from your Local/ GCS Bucket directly into a

BigQuery table using WebUI. Better yet, the process will automatically create the table as

well:

1. Open the BigQuery web UI in the Cloud Console.

2. Choose the right project in the Resources dropdown present at the top header, then

expand your Google Cloud project and click to select a dataset.

3. On the right side of the window, in the details panel, click Create table (or Plus +

symbol) The process for loading data is the same as the process for creating an

empty table [39].

4. You will see a Popuppage. On the create table page.

5. From Create table from, select Upload.

(Note: Choose Google Cloud Storage if your source file resides in GCS.)

6. Click on Browse and choose the file (with netflow data - Key Value pairs).

42

Browse to the file and click Open. Note that wildcards and comma-separated lists are

not supported for local files.

For File format, select JSON (newline delimiters), AVRO, CSV, Parquet or ORC.

7. Scroll down, to the Destination section:

For Dataset name, choose the appropriate dataset.

In the Table name field, enter the name of the table you’re creating in BigQuery.

8. In the Schema section, enter the schema definition.

For CSV and JSON files, you can check the Auto-detect option to enable schema to

auto-detect. Schema information is self-described in the source data for other

supported file types.

You can also enter the schema information manually by: Clicking Edit as text and

entering the table schema as a JSON array (or) Using add field to manually input the

schema [39].

9. Finally, Select the applicable items in the Advanced options section and then click

Create Table.

43

10. Software Pipeline:
10.1 Deployment Architecture

Figure 10. 1 Application Deployment (CI Pipeline)

10.2 Deploying to OpenShift Container Platform:

10.2.1 SSH Keys for GitLab

10.2.1.1 What is SSH key

• SSH – Secured Shell [40]

1. Used for Authentication

2. By setting up the ssh key you can connect to GitLab server without using

username and password each time

• Steps to create SSH keys: [40]

1. Run command ssh-keygen

2. On Mac: run command on terminal; On Windows: Use Putty or git bash

3. Enter the file location in which you want to save the SSH key.

4. Navigate to root folder (c:/users/administrator) → Go to .ssh folder → Open

the pub key file for SSH key generated.

10.2.1.2 Set up SSH Key in GitLab [40]:

• Steps to set up SSH keys in Gitlab:

1. Login to TINAA GitLab.

2. Go to account→ Settings/Preferences→ SSH keys→ Add an SSH key →

Paste the Public SSH key from step 4 (or from the pub key file generated

in .ssh folder)

44

3. Give the title for individual SSH key → Click Add key button.

Figure 10. 2 SSH Keys for Gitlab

10.2.2 Git Push Steps:

• Push the code/commit the code changes from local to gitlab repository (TINAA).

1. Create a project in GitLab (gcp-netflow-publisher) [41].

2. Git clone “https://gitlab.tinaa.tlabs.ca/tinaa-platform/pub-sub/publishers/gcp-

netflow-publisher”

3. Cd change your directory to that repository (in local).

4. git branch -a

5. git switch -c new-branch (develop) [41]

6. Check if you are switched to a new branch

7. Push all the files in your local repo to GitLab = git add .

8. git commit -m “message/comment” [41]

9. git push origin (origin being the remote server that we have cloned from-

GitLab TINAA project)

10. git push –set-upstream origin new-branch.

11. Git commit -m “message”

12. Git push –set -upstream origin new-branch. [41]

45

10.2.3 Docker Image and Containerization?

10.2.3.1 Docker:

It is an open-source software platform for building, deploying, and managing testing

applications quickly. It enables developers to package applications into containers. that

have everything the software needs to run including libraries, system tools, code, and

runtime. Using Docker, you can quickly deploy and scale applications into any

environment and know your code will run [42].

Figure 10. 3 Docker Overview

10.2.3.2 Docker Tools and Terms [42]:

Docker File: Every Docker container starts with a simple text file containing instructions

for how to build the Docker container image. This text file provides a set of instructions to

build a Docker image, including the operating system, languages, environmental

variables, file locations, network ports, and any other components it needs to run. Docker

file automates the process of Docker image creation. It's essentially a list of command-

line interface (CLI) instructions that Docker Engine will run to assemble the image [43].

Docker Images: These contain executable application source code as well as the tools,

libraries, and dependencies that the application code needs to run as a container. When

you run the Docker image, it becomes an instance (or multiple instances) of the container

[43].

Docker Containers: Docker containers are live, running instances of Docker images.

While Docker images are read-only files, containers are live, ephemeral, executable

content. Users can interact with them, and administrators can adjust their settings and

conditions using docker commands.

46

Figure 10. 4 Docker Image Build and Containerization

10.2.3.3 Docker File for Kafka Consumer and GCP Publisher:

#FROM python:3.9-alpine

FROM python:3.10

Allow statements and log messages to immediately appear in the Cloud Run logs

ENV PYTHONUNBUFFERED True

Update the timezone

#RUN apk update && apk add git openssh

#RUN pip install google-cloud-pubsub==2.3.0

RUN pip install wheel

#RUN pip3 install --upgrade pip setuptools wheel

RUN git config --global http.sslVerify "false"

create work directory and assign permissions to user for work directory

RUN mkdir -p /opt/kafka-GCP-consumer/

copy code and config files to work directory

COPY . /opt/kafka-GCP-consumer/

COPY conf/development/ /opt/plan-file-consumer/conf/

Specify the user to execute all commands below

USER root

#ENV PYTHONPATH "${PYTHONPATH}:/opt/kafka-GCP-consumer"

WORKDIR /opt/kafka-GCP-consumer/

COPY requirements.txt requirements.txt

RUN pip install -e . --trusted-host gitlab.tinaa.tlabs.ca --use-

deprecated=legacy-resolver

RUN pip install grpcio-tools

RUN pip install --upgrade google-api-python-client oauth2client

#RUN pip install google-cloud

RUN pip install -e . google-cloud-pubsub==2.3.0

WORKDIR /opt/kafka-GCP-consumer/

CMD python3 MainSript.py

10.2.3.4 Commands to build docker image and run docker container (windows)

• Command Build image: docker build -t sample-test8 .

• Command Run the image to create a container: docker run --privileged sample-test8

47

10.2.3 Deploy applications on OpenShift with GitLab CI:

10.2.3.1 GitLab CI /CD Pipeline

 Now the Code changes are pushed to Gitlab instance. Deploy the changes using the

GitLab CI.

GitLab CI/CD is a tool for software development using the continuous methodologies:

10.2.3.1.1 GitLab CI/CD Concepts [44]:

GitLab CI/CD uses several concepts to describe and run your build and deploy.

Concept Description

Pipelines Structure your CI/CD process through pipelines.

CI/CD variables Reuse values based on variable/value key pair

Environments Deploy your application to different environments (for example

develop, staging, test, pre-production , production)

Job Artifacts Output, use and reuse job artifacts

GitLab runner Configure your own runners to execute the scripts

Test cases Create testing scenarios

Table 10. 1Gitlab CI Pipeline keywords

10.2.3.1.2 GitLab CI/CD Configuration:

 GitLab CI/CD supports numerous configuration options [44].

Configuration Description

Pipeline triggers Triggers pipelines through the API.

. gitlab-ci.yml This yaml file automatically runs whenever you push a commit to

the server.

Merge request

pipelines
Design a pipeline structure for running pipeline in merge requests.

Integrate with

OpenShift cluster

 Connect your project to OpenShift cluster

SSH keys for CI/CD Using SSH keys in your CI pipelines.

Table 10. 2 Gitlab CI pipeline configurations

10.2.3.2 CI/CD settings:

10.2.3.2.1.gitlab-ci.yml:

This file automatically runs whenever you push a commit on the server. This triggers a

notification to the runner you specified in the yaml file and then it processes the series of

48

tasks you specified.

NOTE: Since we are using Docker, the tasks always start with a clean state of the image.

This means that all files and modifications that you put or do inside.gitlab-ci.yml, will be

reverted each time you push a commit to the server.

• Stages: you can define what stage is going to run by first specifying a stage name parent

key.

• Pipelines: When you push git repo to GitLab with the .gitlab-ci.yml file on it, it will

automatically trigger the pipelines. The pipelines are the stages that you defined in

your.gitlab-ci.yml.

10.2.3.2.2 Environment Variables

Before writing the .gitlab-ci.yml file we need to add some environment variables to the

project settings (the OpenShift CLI needs these variables to connect and deploy on the

server) [45].

• OPENSHIFT_IP

• OPENSHIFT_PORT

• OPENSHIFT_TOKEN

Variables: Environment variables are applied to environments via the runner. They can

be protected by only exposing them to protected branches or tags. You can use

environment variables for passwords, secret keys, or whatever you want.

To set the below variables go to GitLab repository → Settings→CI/CD → Expand

variables and set the Key values for variables.

49

Figure 10. 5 Gilab CI Environment variables

For Example: To obtain the value of OPENSHIFT_TOKEN, you need:

• To connect to the web console of your OpenShift cluster as an administrator (the

default credentials are system/admin)

• To click on the dropdown list of your profile (on the top right corner)

• And choose this menu item: Copy Login Command

You should get something like that in your clipboard:

With this command, you can connect to a terminal to your OpenShift cluster. So, now you can set

OPENSHIFT_TOKEN with 8W-OX8XB-K7r7P6vmSz_aE7xM2ZK1fnHz-a3aaW89Vs

50

10.2.3.3 CI/CD Script:

Add a .gitlab-ci.yml file to your project with the below content

include:

 - project: 'tinaa-platform/deployment/cicd'

 ref: develop

 file: 'build-deploy/build.gitlab-ci.yml'

variables:

 REGISTRY_USER: builder

 REGISTRY_SERVER: default-route-openshift-image- registry.apps.tinaaocp01.nfvdev.tlabs.ca

 PIPELINE_ID: $CI_JOB_ID

 BUILD_ARG: CI_JOB_TOKEN

 PROJECT_DEV: pltf-develop-pubsub

 SERVICE_IMAGE_NAME: kafkatogcptest2

stages:

 - build_deploy

trigger_build_deploy:

 stage: build_deploy

 only:

 - /(develop|qa|preprod|master)/

As soon as you commit the file, your first deployment will start. Then the CI Job will be

triggered and based on the docker image the container will be created in the OpenShift

registry.

Figure 10. 6 CI CD Job run successful, and container is running in OpenShift platform

51

11. Testing the Pipeline
11.1 Testing the functioning of Data Pipeline

Below are the steps to test if the Data Pipeline is functioning as expected. The netflow

records are being streamed from on-premises Kafka Topic → Google PubSub→ Google

Dataflow→ Google Big Query.

• Step1: Run the GitLab CI Job then once the job is successfully triggered and pipeline

status is successful. The container will always be running on OpenShift platform.

• Step 2: Check the data on the topic in toll environment. The netflow streams should be

available continuously in the Kafka topic (pltf-develop-netflow-raw-fb).

• Step 3: As the gcp-netflow-publisher will consume the Kafka records and publish them

to GCP pubsub topic (KafkatoGCP (projects/nfv-pp-tinaa-02/topics/KafkatoGCP)).

• Kafka Topic: pltf-develop-netflow-raw-fb

• PubSub Topic:

KafkatoGCP (projects/nfv-pp-tinaa-02/topics/KafkatoGCP)

• PubSub Subscription:

 KafkatoGCP-sub (projects/nfv-pp-tinaa-02/subscriptions/KafkatoGCP-sub)

• Step 4 Check Data ingested to PubSub Topic: Navigate to the PubSub Topic to check

if the netflow records are being published. Go to the overview to view the summary of

Unacked message count and oldest message age.

52

Figure 11. 1 Overview of messages published to PubSub

Click on the subscriptions tab →go to messages → Check if the messages are published

→Click Pull to view messages and check the enable ACK messages to acknowledge

• Step 5 Trigger Dataflow Job: Go to cloud Dataflow→ Navigate to dataflow job

(Pubsub subscription to BigQuery) → Check if the job is running successfully. If not

trigger the job with below parameters.

Data Flow Job Parameters:

DataFlow Job

Parameters

Value

Job Name Dataflow-PubSub-BigQuery

Regional Endpoint northamerica-northeast1 (Montreal)

Dataflow template: Pub/Sub Subscription to BigQuery

Pub/Sub Input

Subscription

projects/nfv-pp-tinaa-02/subscriptions/KafkatoGCP1-sub

BigQuery Output

table:

 nfv-pp-tinaa-02:NetflowProjectRecords.NewDataflowtest

Temporary Location gs://sbucket436/sarwarstorage

Worker IP Address

Configuration

 Private

https://console.cloud.google.com/cloudpubsub/subscription/detail/KafkatoGCP1-sub?project=nfv-pp-tinaa-02

53

Subnetwork https://www.googleapis.com/compute/v1/projects/nfv-pp-tinaa-

02/regions/northamerica-northeast1/subnetworks/datapipeline-nfv-

pp-tinaa-02-subnet s

Table 11. 1 Dataflow Job Template values

• Step 6 Datawarehouse: Go to Cloud BigQuery→ Open the table → Query the

results and check if the netflow records are populated in the table.

Check to see if the netflow records are published as expected. Search the results using the

SQL query.

https://www.googleapis.com/compute/v1/projects/nfv-pp-tinaa-%20%20%2002/regions/northamerica-northeast1/subnetworks/datapipeline-nfv-pp-tinaa-02-subnet
https://www.googleapis.com/compute/v1/projects/nfv-pp-tinaa-%20%20%2002/regions/northamerica-northeast1/subnetworks/datapipeline-nfv-pp-tinaa-02-subnet
https://www.googleapis.com/compute/v1/projects/nfv-pp-tinaa-%20%20%2002/regions/northamerica-northeast1/subnetworks/datapipeline-nfv-pp-tinaa-02-subnet

54

12. TINAA Datastore Adapter
12.1 TINAA Datastore

TINAA Datastore package abstracts APIs that are needed to connect to the various databases

and follows the adaptor design pattern. Thus, various databases clients (e.g. Elasticsearch Python

Client, Google BigQuery Client) can be used in the future by creating an Adaptor class without

modifying the Client class. The Adaptor class facilitates the interaction between the Client class

and the Adaptee. In the current version, only Elasticsearch database is supported. However, the

code is extended to support BigQuery database also.

12.1.1 BigQuery Database Adapter

Therefore, to use TINAA Datastore package you need to instantiate the TINAAESAdaptor or

TINAABigQueryAdapter class and pass it to the Client class.

So we have created a BigQuery adapter class with similar functions of Elastic. So that any

function can be consumed in the database publisher (client). The end user will have a choice to

select the database either BigQuery or elastic search.

Ex: Common functions to BigQuery and Elastic like Database Create Document or Search etc.

can be called from any client (internally calls BigQuery or Elastic adapter) and based on user

selection respective BigQuery or Elastic data will be called.

12.1.2 Python BigQuery Client:

Pre-requisites:

e) Service Account with BigQuery API enabled

f) Service Account JSON Key (with BigQuery admin role)

g) Installed Libraries: JSON, BigQuery

h) Import Libraries:

https://en.wikipedia.org/wiki/Adapter_pattern
https://elasticsearch-py.readthedocs.io/
https://elasticsearch-py.readthedocs.io/

55

• pip install --upgrade google-cloud-BigQuery

• pip install json

Below is the code snippet for python BigQuery Client: This script will extract the data

from BigQuery.

import json

from ast import literal_eval

from google.cloud import BigQuery

import os

#service account key

key_path = "nfv-pp-tinaa-02-a09814f6d26e-BigQuery.json"

os.environ["GOOGLE_APPLICATION_CREDENTIALS"]=key_path

credentials = service_account.Credentials.from_service_account_file(

 key_path, scopes=["https://www.googleapis.com/auth/cloud-platform"],

)

#initialize client to authenticate and connect to BigQuery API

client = bigquery.Client(credentials=credentials,

project=credentials.project_id,)

BigQuery_client = BigQuery.Client()

#Perform Query from the BigQuery Table

name_group_query = """

 SELECT * FROM `nfv-pp-tinaa-02.NetflowProjectRecords.NewDataflowtest` LIMIT

1000

"""

query_results = BigQuery_client.query(name_group_query)

#display the results of the query

for result in query_results:

 print(str(result[0]))

56

References

[1] "DataPipeline," [Online]. Available: https://www.qlik.com/us/data-integration/data-pipeline.

[2] "Why is Data Pipeline Important/," [Online]. Available: https://towardsdatascience.com/scalable-

efficient-big-data-analytics-machine-learning-pipeline-architecture-on-cloud-4d59efc092b5 .

[3] "Types of Data Pipelines," [Online]. Available:

https://www.informatica.com/ca/resources/articles/data-

pipeline.html#:~:text=Deploying%20the%20data%20pipeline%20will,manage%20complex%20mu

lti%2Dcloud%20environments..

[4] "PMACCT Collector," [Online]. Available: http://www.pmacct.net/.

[5] "PmacctConfiguration," [Online]. Available: https://www.ntop.org/products/netflow/nprobe/.

[6] "NfacctdConfiguration," [Online]. Available: https://imply.io/blog/an-end-to-end-streaming-

analytics-stack-for-network-telemetry-data .

[7] "PmacctNetflow," [Online]. Available: https://markelic.de/how-to-collect-flows/ .

[8] "Filebeat(Elastic)," [Online]. Available:

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-

overview.html#:~:text=Filebeat%20is%20a%20lightweight%20shipper,Elasticsearch%20or%20Lo

gstash%20for%20indexing .

[9] "Filebeat Module," [Online]. Available:

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-modules.html.

[10] "How Filebeat Works," [Online]. Available:

https://www.elastic.co/guide/en/beats/filebeat/current/how-filebeat-works.html .

[11] "Configure Filebeat," [Online]. Available: https://logz.io/blog/filebeat-tutorial/ .

[12] "Data Streams -Netflow," [Online]. Available: https://medium.com/event-driven-

utopia/understanding-kafka-topic-partitions- ae40f80552e8.

[13] "What is Kafka Consumer," [Online]. Available: https://towardsdatascience.com/kafka-python-

explained-in-10-lines-of-code-800e3e07dad1.

[14] "Kafka Consumer," [Online]. Available: https://kafka-

python.readthedocs.io/en/master/apidoc/KafkaConsumer.html.

[15] Kafka Consumer Python, [Online]. Available: https://kafka-python.readthedocs.io/en/master/.

[16] Python Kafka Consumer Parameters, [Online]. Available: https://kafka-

python.readthedocs.io/en/master/_modules/kafka/consumer/group.html#KafkaConsumer .

[17] "Google Cloud Platform Services," [Online]. Available: https://www.edureka.co/blog/what-is-

google-cloud-platform/ .

[18] "KafkaVsPubSub," [Online]. Available: https://stackoverflow.com/questions/38572071/i-am-

evaluating-google-pub-sub-vs-kafka-what-are-the-

differences#:~:text=In%20general%2C%20both%20are%20very,both%20Cloud%20and%20On%2

Dprem. .

[19] "CloudDataFlow Vs Cloud DataProc," [Online]. Available:

https://stackoverflow.com/questions/46436794/what-is-the-difference-between-google-cloud-

dataflow-and-google-cloud-dataproc .

[20] "BigQuery Vs BigTable," [Online]. Available:

https://stackoverflow.com/questions/39919815/whats-the-difference-between-bigquery-and-

bigtable.

[21] "BigQuery Vs BigTable," [Online]. Available: https://hevodata.com/learn/bigtable-vs-bigquery/.

[22] PubSub, [Online]. Available: https://cloud.google.com/pubsub/docs/overview.

[23] "Identity and Access Management," [Online]. Available:

https://cloud.google.com/iam/docs/creating-managing-service-account-keys.

57

[24] "Service Account," [Online]. Available: https://cloud.google.com/iam/docs/understanding-service-

accounts.

[25] "Steps to Create Service Accont in GCP," [Online]. Available:

https://cloud.google.com/iam/docs/creating-managing-service-accounts.

[26] "Service Account Key in GCP," [Online]. Available: https://cloud.google.com/iam/docs/creating-

managing-service-account-keys.

[27] "Access Control with IAM," [Online]. Available: https://cloud.google.com/pubsub/docs/access-

control.

[28] "Topics and Subscriptions Creation," [Online]. Available:

https://cloud.google.com/pubsub/docs/create-topic-console.

[29] "Cloud DataFlow," [Online]. Available: https://medium.com/swlh/apache-beam-google-cloud-

dataflow-and-creating-custom-templates-using-python-c666c151b4bc.

[30] "Cloud Dataflow," [Online]. Available: https://cloud.google.com/vpc/docs/vpc.

[31] "VPC Components," [Online]. Available: https://k21academy.com/google-cloud/google-cloud-

vpc/#VPC_Components.

[32] "Steps to create VPC network," [Online]. Available: https://cloud.google.com/vpc/docs/vpc.

[33] "Dataflow template," [Online]. Available:

https://cloud.google.com/dataflow/docs/guides/templates/provided-templates.

[34] "PubSub To BigQuery," [Online]. Available:

https://cloud.google.com/dataflow/docs/guides/templates/provided-

streaming#cloudpubsubsubscriptiontobigquery.

[35] "PubSub To BigQuery," [Online]. Available:

https://cloud.google.com/dataflow/docs/guides/templates/provided-

streaming#cloudpubsubsubscriptiontobigquery.

[36] "BigQuery dataset creation," [Online]. Available: https://cloud.google.com/bigquery/docs/datasets.

[37] "BigQuery Table Creation," [Online]. Available:

https://cloud.google.com/bigquery/docs/tables#creating_an_empty_table_without_a_schema_defini

tion.

[38] "Table in BigQuery Steps," [Online]. Available: https://cloud.google.com/bigquery/docs/tables.

[39] "BigQuery Schema," [Online]. Available: https://hevodata.com/learn/specifying-bigquery-schema/.

[40] "SSH Keys," [Online]. Available: https://www.youtube.com/watch?v=mNtQ55quG9M&t=390s.

[41] "GitPush Steps," [Online]. Available: https://www.youtube.com/watch?v=RBk1I-G2YA4.

[42] "What is Docker," [Online]. Available: https://www.infoworld.com/article/3204171/what-is-

docker-the-spark-for-the-container-revolution.html.

[43] "Docker Images," [Online]. Available: https://docs.docker.com/get-started/overview/.

[44] "GitLabCIPipeline," [Online]. Available: https://docs.gitlab.com/ee/ci/.

[45] "EnvironmentVariables," [Online]. Available: https://k33g.gitlab.io/articles/2019-07-26-

OPENSHIFT.html.

58

