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Abstract

Nonlinear theory of scattering processes during interaction of intense electro-
magnetic radiation with plasmas is studied. Our studies have concentrated on two
instabilities: stimulated Raman (SRS) and Brillouin (SBS) scattering. A theo-
retical model based on the Zakharov-Maxwell equations is used to describe the
evolution of SRS and SBS. The model includes nonlinear processes related to the
coupling between Langmuir and ion waves. Numerical results obtained in a ho-
mogenous finite plasma have shown that the primary mechanism responsible for
saturation of SRS in our theory is the parametric decay instability (PDI) of the
resonantly driven Langmuir wave. The different spatial and temporal evolution of
SRS and PDI leads to new physics in SRS nonlinear evolution, including disruption
of the PDI cascade, localization of Langmuir fields, and burst like behavior of SRS
reflectivity.

The nonlinear evolution of the Langmuir and ion acoustic waves provides a
mechanism which broadens and enhances the Langmuir and ion acoustic wave spec-
tra. These enhanced fluctuation levels contribute to secondary scattering processes
such as enhanced Brillouin, forward Raman, and anti-Stokes forward and backward
Raman scattering. Asymptotic saturation levels of stimulated Raman scattering
are well approximated by a simple scaling law. This scaling predicts a proportion-
ality of the I angmuir wave amplitude to the PDI threshold with dependence on the
intensity and plasma interaction length. Scaling laws for the secondary scattering
processes as well as criteria for their strong enhancement are given. The frequency
spectra of enhanced Brillouin scattering shows Stokes and anti-Stokes components,
where their relative intensities depend on the plasma density. Superthermal elec-

tron production is also studied in the asymptotic regime, providing limitations on



the interaction length and laser intensity in our model. Our theoretical results
are consistent with many experimental observations providing new or alternate

explanations for observed results.
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Chapter 1

Introduction

Historically the term "plasma” is attributed to Tonks and Langmuir [1] who in
1929 used the expression to describe equal distributions of electrons and ions in
the ionized portion of a gas in an arc like discharge. Over the last 65 years the
expression "plasma” has evolved into a definition of what is often referred to as the
fourth state of matter. A simplified progression in obtaining a plasma is by heating
a solid to form a liquid, the liquid can then be heated to form a gas, and the gas
heated to form a plasma. A more accurate description of a plasma is dependent
on the plasma parameters of temperature, density and the collisional propertics of
the system, which will determine whether discrete particle or collective effects are
the dominant processes. Because of the important role collective phenomena play
in the physics of plasmas they must be included in any formal definition.

Many textbooks [2]-[14], presenting plasma physics from numerous view points
and with varying degrees of complexity, have been written. Throughout most of
these books one of the simplest phenomena associated with the collective behavior
of plasmas is the development of linear wave modes or eigenmodes of the plasma
dispersion relation. These eigenmodes, often called natural or normal modes, de-

scribe the linear response of the plasma to electromagnetic and electrostatic fields.



In the absence of external magnetic fields three linear modes can exist, two being
clectrostatic and the third electromagnetic. The two electrostatic waves are the
high frequency Langmuir waves, often called the electron plasma waves (EPW) or
plasmons which, in the long wavelength regime where k < kp, satisfy the approx-

imate linear dispersion relation (cf. [2], [3])

wi (k) = w? + 3v7. k? (1.1)
and the low frequency ion acoustic waves (IAW) or phonons, which approximately

satisfy (cf. [2], [3])

“'-’A(k) = C,k (12)

Here w, = \/4me?ng/m, is the electron plasma frequency, kp = wp/vr, =y [dwe?n§ [T,

is the Debye wave number, vy, = \/Te/me is the electron thermal velocity and

Cs = \/ (ZT. + 3T;)/m; is the ion acoustic velocity. T, and T; are the electron and
ion temperatures in electron volts and n§ is the mean electron density. The plasma

also supports the propagation of electromagnetic waves (EMW) or photons, which

satisfy (cf. [2], [3])

Wi(k) = w;‘: + c2k? (1.3)

In simple diagrammatic form we represent each of the wave types by the symbols
in Fig.1.1

In this study we investigate the evolution of a plasma in the presence of an

intense electromagnetic wave. This EMW, in the form of a laser beam propagating

through the plasma, can drive the plasma unstable by transferring EMW free

energy to the electrostatic modes. This scenario is of great interest allowing the
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Figure 1.1: Schematic diagram of the linear wave modes in an unmagnetized plasma

study of wave-particle (see for example Ref. [4], [8]), wave-wave (see for example
Ref. [3], [10]) and multi wave-particle interactions (see for example Ref. [11]).
The first of these processes, the linear wave-particle interaction, allows for the
transfer of energy between the electrostatic waves existing in the plasma and the
charged particles themselves. One significant example of wave-particle interaction
is collisionless Landau damping (for a good review see Ref. [9]). Landau damping
provides a mechanism which can transfer wave energy to particles whose velocity
is close to the phase velocity of the electrostatic modes present in the plasma. A
more complete description of this process is modcled through quasilinear theory
and allows for the heating of electrons in the plasma (cf. [4], [16]-[18]).

The second process, that of wave-wave interaction, contains a subgroup of im-
portant interactions usually classified under the broad heading of parameiric in-
stabilities (cf. [3], [10], [13]). Parametric instabilitics are resonant processes which
allow for unstable growth of the participating waves. In this investigation we will
concentrate on the nonlinear evolution of parametric instabilities and in particular
the saturation of stimulated Raman scattering (SRS). SRS is a three wave inter-
action, involving the decay of an EMW into a second EMW and a EPW, which

we will describe shortly. We will show, in Chap. 3, that secondary parametric



processes, in particular the parametric decay instability (PDI), can disrupt and
saturate SRS. This late time asymptotic saturation of SRS can be well described
by simple scaling laws. In Chap. 4 we will show that during its nonlinear stage
of evolution SRS excites a wide spectrum of plasma fluctuations from which sec-
ondary processes can scatter at enhanced levels. Simple scaling laws describing the
reflectivity levels of these enhanced secondary processes will also be given.
Parametric instabilities have a physical analogue (which most individuals, as
children, have experienced directly), of playing on a swing. The child’s swing is
commonly used to illustrate the concept of a parametric process. As the child
pumps his legs at the appropriate rate, the child/swing system is carried higher
with each successive period. From personal experience each individual is aware
that one can gain altitude on a swing only if a specific pumping frequency is used.
To further understand what is happening we examine a mathematical descrip-
tion involving a modulated harmonic oscillator with an amplitude Z(¢) in the form

of the Mathieu equation [13]

d*Z(t)
dt?

+ Q21 — 2ecos(wot)) Z(t) = 0 (1.4)

where when ¢ ~ 0, g is the natural frequency of the oscillator. The standard
method (cf. [13] [15]) for examiuing (1.4) is to assume that € < 1 and that a

perturbative approach can be applied. Taking the Laplace transform (cf. Ref.

[13])

Z(w) = /0 ” dtZ(t) expliwt] (1.5)

of (1.4) one can find linear solutions of the form expfiwt] and exp[—iwt] which will

give rise to perturbed solutions of the form Z(w + (n — 1)wp) and Z(w + (n + 1)wp)



n =0, £1,£2, £3... producing the recurrence relation

[(w + nwp)? - Qg] Z(w+ nwp) = (1.6)

—e2{Z(w + (n + 1)wp) + Z(w + (n — 1)wy)]

Unstable solutions of the Mathieu equation which allow for the growth of the

perturbations are restricted for | € |[< 1 to regions for which solutions exist such

that
0 = ﬁ%’g (n = £1,£2, £3...) (1.7)
Examining the n = —1 solution (i.e. wy = 2Qp) with the dominant Z(w — wy),

Z(w) components produces the dispersion relation

(w2 - Qg) ((w —wp)? - Qg) = €20 (1.8)

wihere wy = 2§. If we wish to find unstable solutions we assume w to be complex
and, using w = 0 + iI" one obtains the growth rate
GQO

In the child/swing system the natural frequency of the swing is modulated twice
during each cycle, as the child pumps his legs at the frequency wy = 2. This
modulation of the swings natural frequency allows the amplitude of the swing to
grow at a rate of I'. If damping is included in (1.4) then the growth rate (1.9) must
exceed the damping threshold before growth can occur.

A similar process is observed in plasmas {13] for the coupling between three

waves or four waves (the space-time version of 'resonances’). This allows for the
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transfer of wave energy and action from one wave, such as an electromagnetic wave,
to waves of the same or different type, such as Langmuir waves. Take for example
a large amplitude wave, such as an intense clectromagnetic pump wave, existing
in a plasma. This strong wave can combine with the oscillating density variation
associated with an electrostatic plasma wave giving rise to a source current for an
EMW at the combination frequency. This second electromagnetic wave can then
interact with the original EMW to produce a ponderomotive force which acts to
increase the density variation. In this way, near resonance, both weak waves can
grow at the expense of the strong wave. When such a system exists inside a plasma
it is known as a parametric instability.

The most basic form of a parametric instability is that of a three wave in-
teraction (3WI) known as the decay instability. In this process a pump wave of
frequency wy and wave number &y decays into two satellite witn frequencies w;, wy

and wave number ky, k,. If the matching conditions

bw=w; +wy —wy (110)

representing energy conservation and

6k = ky + Fy — Ky (1.11)

representing conservation of momentum, are met exactly, ie. §w = Sk = 0 then the
interaction is in exact resonance and the strongest possibility of unstable growth
of the secondary waves occurs (cf. [10], [13]).

In the absence of external magnetic fields, six variations of the decay instability
can take place involving the linear eigenmodes. V’ith the symbols of Fig.1.1 we

can illustrate these possibilities of



(a) (SRS) (b) (SBS)

(c) (PDI) (d) (TPD)

(e) (IAD) ()

Figure 1.2: Schematic diagram of possible three wave interactions using the lincar
wave modes of an unmagnetized plasma.

(a) photon — photon + plasmon (Stimulated Raman scattering (SRS))
(b) photon — photon + phonon (Stimulated Brillouin scattering (SBS))
(c) plasmon — plasmon -+ phonon (Parametric decay instability (PDI))
(d) photon — plasmon + plasmon (Two plasmon decay (TPD))

(e) photon — plasmon + phonon (Ion acoustic decay (IAD))

(f) plasmon — photon + phonon

shown in a diagrammatic fashion in Fig.1.2



The invention of the laser and the notion of controlled fusion as an enerzy re-
source produced an increased interest in parametric instabilities and other wave
interactions in plasma physics (see [6], [19], [20]). As lasers became more power-
ful, inertial confinement fusion (ICF) became a possible scheme for initiating and
controlling fusion. ICF involves the use of intense laser light tc compress a solid
target initiating a fusion reaction. Two main types, direct and indirect drive de-
signs, are used in ICF research, each having its own advantages and disadvantages.
The basic processes involved in each of the systems are illustrated in Fig.1.3. In
the direct drive system a solid target is symmetrically radiated with intense laser
light. Ideally the incoming laser light strikes the outside surface of the capsule
containing DT ’fuel’, forming a plasma in which the laser energy is partly absorbed
and partly reflected on passage through the plasma to the ’critical-density’ surface
layer. Further energy is absorbed at the critical surface where the laser energy is
converted into thermal energy. The thermal energy is then transported inward as
matter is ablated. The ablation of this inner surface produces extreme pressure,
compressing the inner solid and producing a fusion reaction (cf. [21]).

In the indirect drive model the laser energy is delivered to the inside surface of
a high-Z enclosure, called a hohlraum, which surrounds the fuel cell. The walls of
the hohlraum then emit x-rays which are absorbed by the target. This energy is
again used to drive the ablation process producing a fusion reaction.

Characteristic of both drive schemes is the production of a large volume of
plasma in which many different interaction processes can occur below the critical
surface. The critical surface is defined by a point n. along the density gradient
where the frequency of the incoming laser light wy is equal to the plasma frequency

preventing the laser light from propagating further into the plasma i.e.
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Figure 1.3: Schematic diagram of interaction processes in ICF

ne = % ~ 102 A\ ~2¢lectrons /cm® (1.12)
4me? s
Here A, is the laser wavelength in microns.

The direct drive system is much more efficient in transporting energy to this crit-
ical surface, but is very sensitive to nonuniformities in the laser beam, and has the
disadvantage of allowing the production of large density and velocity gradients. The
indirect drive is not as sensitive to nonuniformities of the laser beam but the pro-

cess generates a large volume of homogeneous plasma. This homogeneous plasma

allows for stronger development of laser driven parametric instabilities which can



be extremely detrimental to drive efficiency.

In general the plasma, of both drive types, is itself nonlinear in nature, allowing
for the development of wave-wave interactions. Some of these interactions, in the
form of parametric instabilities, can scatter laser light, through processes such as
SRS or SBS, greatly reducing the amount of energy which can reach the critical sur-
face. Other interaction processes such as the heating of electrons to MeV energies
can have detrimental effects on ICF by preheating the fusion core. Overall these
processes present a problem for those searching for a means of producing control-
lable fusion, but these same processes have resulted in one of the most interesting
arcas of plasma physi<s referred to as laser-plasma interactions.

In the late 1960’s and early 1970’s many individuals began investigating para-
metric instabilities, first in the context of analysing experiments involving intense
irradiation of the ionosphere [22], and then in the context of laser-plasma interac-
tions(cf Ref. [23]-[28]). Of particular interest to us, and significant importance to
ICF, are those parametric instabilities which can scatter the incoming laser light
(cf. [29] for a recent review). Inherently the ICF interaction scheme depicted in
Fig.1.3 produces a plasma density gradient extending from the vacuum level to
the critical surface. Along this gradient various regimes exist allowing for different
instabilities to develop. Stimulated Raman scattering (SRS) for instance can oc-
cur between the quarter critical density and very low densities, where &k > 0.3kp
producing very heavy Landau daraping of the Langmuir waves. A second impor-
tant instability, stimulated Brillouin scattering (SBS) can exist along the entire
density gradient up to critical density. Both these instabilities have been exten-
sively investigated theoretically (cf [30]-[34]). SBS was observed in the early 1970’s
[35]-[37] while SRS was not confirmed until 1978 when Watt et al [38] reported the
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first direct spectral evidence of SRS. Since this time many experiments have been
performed and a great deal of experimental evidence has been gathered (see [18],
[39])-[42]and references there in).

Until recently, instabilities such as SRS and SBS have been treated theoretically
as separate independent processes in the form of three wave interactions. From the
analysis of experimental evidence it has become obvious that not only is a three
wave model inadequate to properly explain the nonlinear evolution [43]-[45], but
treating these instabilities as independent processes can lead to incorrect results.
Within the last decade a great deal of attention has been focused on the interaction
of simultaneous instabilities, such as the competition of SRS-SBS for pump energy
[46]-[49]. It is thought that through the interaction of these individual instabilities
various nonlinear phenomena, such as saturation mechanisms, can be explained.
Prompted by experimental observations many studies (cf. [49], [64], [81], [95]) have
been designed to isolate the mechanisms responsible for these nonlinear phenomena,
such as SRS and SBS saturation. One possible mechanisin for saturating SRS is
via PDI, whereby the SRS driven Langmuir wave at w;,k;, decays into a sccond
Langmuir wave at wg) ,kg) and an ion acoustic wave at wg,l),kg) . The resultant

resonant matching conditions are given by
wp = wg) +w£1” (1.13)

and

kp =k + kY (1.14)

Using (1.13), (1.14) and the linear dispersion relations (1.1) and (1.2) one can

calculate the necessary wave numbers, a Langmuir wave at Ic(,,” = Ak — k5, (Ak =

%kD\/Zme/m,-) and an ion acoustic wave at kf:) = 2k; — Ak. PDI can be used to
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saturate SRS by disrupting the resonant matching conditions of SRS through the
production of density fluctuations in the plasma.

The present study is devoted, in part, to exploring SRS saturation through a one
dimensional model coupling the three wave SRS process to the Zakharov equations.
The Zakharov equations allow for the nonlinear coupling of the Langmuir field and
ion density fluctuations [50]-[54]. For brevity we will refer to this nonlinear coupling
of the Langmuir field and ion density fluctuations as the electron-ion coupling of the
Zakharov equations. The Zakharov equations,which will be derived as an integral

part of our full model in Chap. 2, can be written in dimensional form as

. OF 31 °E  wp .

(gr B+ 3 gz~ 5 NE=0, (1.15)
92N AN ,0°N  §? | E |2

777 T2 GT T %pxE ~ axE \ Tommhmi )’ (1.16)

Here N = 6n;/n} is the slowly varying ion density fluctuation, and E represents the
slowly varying enveloped amplitude of the Langmuir field. vy, * E and 2y, *dN/8T
are convolution operators which account for the phenomenological electron and ion
Landau damping and collisional damping on the Langmuir waves.

Through these equations the high frequency Langmuir fields produce low fre-
quency ponderomotive effects on the electrons which can influence the behavior of
the ion density fluctuation evolution. The ion motion in turn affects the density
sensitive plasma wave dispersion and thus the evolution of the Langmuir fields.
The Zakharov equations permit the development of PDI as well as allowing for
the nonlinear evolution of the Langmuir and ion acoustic waves. Other nonlin-
ear effects such as the development of a PDI cascade [55], [56] can also occur. A

PDI cascade occurs when the satellite Langmuir wave of PDI itself decays through
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PDI producing a progression of ion acoustic and Langmuir waves towards the long
wavelength region of the wave spectra. These waves can then interact producing
resonant and quasimode components in the wave spectra. The quasimode compo-
nents are defined as waves which do not satisfy the linear dispersion relations (1.1)
and (1.2).

If the PDI cascade is strongly driven, or the wave number of the driven wave
is sufficiently small, the Langmuir wave energy will accumulate in the long wave-
length region of the spectra where Landau damping has little effect. Under these
circumstances the modulational instability (MI) [57], [58] will be the characteristic
instability. In its linear form MI is a four-wave nonresonant process which involves a
Langmuir pump wave (twice), both the Stokes and anti-Stokes Langmuir satellites
and an ion acoustic quasimode. The Langmuir pump drives the ion quasimode
to produce an instability, modulating the shape of the primary Langmuir wave.
As the system evolves and becomes nonlinear the modulated Langmuir wave will
produce localized regions of strong electrostatic fields. This nonlinear evolution
of MI leads to a regime designated as strong Langmuir turbulence. Dubois, Rose
and their colleagues have extensively studied the Zakharov equations in this and
other context [52]-[54], [59]-[62]. In such a regime the localized regions of the high
frequency electrostatic field will use the ponderomotive potential ~| E |? to push
out the plasma from these local areas, producing density cavities or cavitons. The
localized Langmuir field will then remain locked together with the density cavities,
localizing further as the density focuses the Langmuir field through the nonlinear
coupling ~ NE. As the scale length of the localized structures decreases the wave
numbers increase allowing for strong Landau damping of the electrostatic fields. In

one dimension the localization process will produce soliton like structures which, in
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higher dimensions, collapse to very short spatial scales leaving the density cavities
unsupported.

To classify whether a process is characterized as a modulational or parametric
decay instability it is advantageous to examine the linear response and growth rates
of the Zakharov equations. To this end a rapid review of the one dimensional linear
theory [51] is presented here. The linear growth rates can be found by assuming
that a finite amplitude Langmuir mode of the form Ejexp[i(krz — .t)] exists
inside the plasma. Infinitesimal plane wave modes E. exp[i(ksz — Q4t)] for the
Langmuir waves and (N} exp[i(kaz — Q4t)] + c.c.) for the ion density waves, are

also assumed to exist, resulting in the linearized system of equations

. 32 k? w

(z’yL(kL) +Q; — 5 ‘:) 0) E, = '&B(EINI + NJE,) (1.17)
p
. 3 2 k2
(27[,*(16;{:) +Qy — 51}‘; i) E, = %(S.;.ELNI + S_ELNf) (1.18)
P
N 2 21.2 Czk% » *

(2Q47a(ka) + Q4 — ERE) N, = s (ELEL + B, E}) (1.19)

(IEX]

where the asterisk denotes complex conjugate, y.(kL), 7o, (k+), Ya(ka) denote the
linear damping coeflicients, S, (S-) = 1 for E,(E_) and zero for E_(E,). We have

also defined

Q:t = QL + QA (120)

ki = kg + Ky (1.21)

Eliminating E+ we have the dispersion relation
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. . 2 _ 212 wpCikg 2
(2ZQA7A(LA)+QA Iu ) W EL I (122)

1 1
X (z"yL+(kL+) + Qy — 303 k% /2w, + —iyp_(kp_) + QL — 3v§ k2 /2w,,)
Figure 1.4 presents a diagram illustrating the various linecar regimes possible.
In the event that the process involves both the Stokes and anti-Stokes components
a modulational instability develops (regions III and IV Fig.1.4 ). Should the linear
process only involve the Stokes Langmuir satellite the process is classified as a PDI
(regicns I and IT Fig.1.4 ). The two regimes for each instability are further classified
by the strength of the Langmuir pump wave where regions II and III are strongly
driven and regions I and IV represent weakly driven regimes.
In regimes where the anti-Stokes component F can be neglected we have using

Q_= 3vT k% /2w, + 4T and Q4 = wy + T, the dispersion relation

w,,c 2k2

A 2
3977 |Ell (1.23)

(=2T74(ka) = T2 + 2iwa[C + ya(ka)))(—iT — iy, (kL)) =

When w4 > T’ no modification to the dispersion relations of the lincar wave modes
occurs producing the approximate PDI growth rate in the weakly driven regime in

region I of Fig.1.4. The decay instability thus has a growth rate of

/2
wpwa | Ep |? !
r = (2L -1 1.24
PDW ( 6amneT, ( )

where we have ignored the linear damping for convenience. If damping is present

the Langmuir pump must be large enough to overcome the PDI threshold of

64mn5Teva(ka)ye (kL) (1.25)

E2 =
thr WLwa
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Figure 1.4:  The linear instabilities described by the Zakharov equations (1.15)-
(1.16) for the parameters of the electrostatic electric field W = E? = E?[(4wngT.)
versus kfkp, where p = Zm./m;, and kp = (4mwe*n§/T.)!/? is the Debye wave
number.

If the amplitude of the primary Langmuir wave is well above the PDI threshold a
cascade of resonant decays can occur, producing waves at k(L2"_l) = (2n-1)Ak -k,
and lc(,?") = ki — 2nAk for the Langmuir waves and kf,") = 2k; — (2n — 1)Ak for
the ion acoustic waves. This process is illustrated in diagrammatic form in Fig.1.5.

Using wg = c,k4 > T the limit for this weakly driven regime is given by

wplELP_ Wp 7

64c,mn§T.  16c, (1.26)

ka>

where we have defined
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Figure 1.5: Schematic diagram of PDI cascade process

o _ | B f?
~ 4mrngT,

(1.27)

In the event that the ion acoustic growth is strongly driven ie. w4 < T the ion
acoustic frequency will be modified and we are in region II of Fig.1.4. Here the

decay instability is also modified producing the growth rate of

V3 (w2 | By [P\
PPDs—_é‘ T 32rneT, (1.28)

where again we have ignored the linear damping. Once again should the primary
wave E, be well above threshold cascading can occur. In this case the frequency of
the ion acoustic wave will be modified by the strong growth. One can still estimate

the regime where the strongly driven PDI growth will be observed by the expression
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15Wp|EL| 1.5 Y 13 9
ka <3 256¢,mngT, =3 64c,W (1.29)

In regimes where the modulational instability occurs we require that both the
Stokes and anti-Stokes contributions in (1.22) are resonant simultaneously. Thus

in the absence of damping (1.22) becomes

Wp 4 W2 32mngT,

2
((231 _ kaﬁ) ([QA _ 3'UTekAkL] 9'UT LA) 3'UT CzkA I E |2 (1.30)

At this point no condition has been set on either k;, or k4. In the adiabatic regime

we take k4 > k; and set k; ~ 0 to obtain

9 vi k4 3v k4
2 2k2 QZ _ZTrA) Te~s™A 2 1.
(QA ) A) ( A 4 UJ’Z, ) 327”18Te EL I ( 31)

Looking for stationary solutions where Qpg.q ~ 0 and using 24 ~ iI" so that we

have purely growing solutions will produce a threshold of

W >6 (:2) (1.32)

In the strongest driven regime of MI where

9 vi ki
P2 vIT.™A .
> 4——w3 (1.33)
the growth rate is approximately
3v2 2k
4= _3_2;_"0% Ey |? (1.34)

leading to the condition that in this regime
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W > 22;77; ('G;) o~ ;lt (:—;-) (1.35)
which is region III of Fig.1.4 the hydrodynamic MI regime. Here we have defined
1= Zme/m;. In the solutions we have examined the sound waves are quasimodes
enslaved to the nonlinear ponderomotive force in (1.16). This ponderomotive force
drives the density fluctuations, which in turn focuses the Langmuir field. A similar
process occurs in region IV of Fig.1.4, the static MI regime, where the growth rate
is much smaller than the ion acoustic frequency I'* < c2k%. It is also assumed that

vt k4 Jw? < 2k resulting in the limit

2 Zme 1/2 kA
= o~ — 1.36
3V SHT2 ( T (1.36)
with a growth rate of
2 k2 .
2= 3”Tse Ayl (1.37)
and bounded above by
p>Ww (1.38)

The linear analysis itself remains valid for only a limited time, and as the small
amplitude waves grow, becomes inadequate to describe the evolution of the system.
As the system evolves into the nonlinear regime it becomes obvious that describing
the saturation of SRS by using only the first stage of the PDI cascade is inade-
quate. The many different processes, such as the interaction of the PDI cascade

components or the nonlinear focusing of MI, makes using a model containing the
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clectron-ion coupling of the Zakharov equations a necessity when describing the
nonlinear evolution of the plasma. In order to account for these nonlinear pro-
cesses we have included the Zakharov equation in our theoretical description of
SRS. The model used in our investigation is based on the Aldrich et al. [63] and
Rozmus et al. [64] models. The investigation itself, studying the saturation of SRS
in the presence of the electron-ion interaction of the Zakharov model, has been con-
ducted in parallel with the Los Alamos group of Bezzerides, Dubois and Rose who
are investigating a similar model in the context of strong Langmuir turbulence [65].
Our theoretical model is derived from the system of Maxwell’s and fluid equations,
where we have enveloped in time the rapidly varying quantities corresponding to
the electromagnetic and electrostatic ficlds, so that all field amplitudes vary on the
ion acoustic timescale. We will restrict our analysis to a one-dimensional geometry
and concentrate on a parameter regime such that a fluid description of the plasma
is possible.

In Chap. 2 we will derive the basic theoretical model used in our simulations.
The final model is based on the system of Zakharov-Maxwell equations and uses
the electron-ion coupling of the Zakharov equations to produce saturation of SRS.
Chapter 2 also provides a review of the basic three wave interaction results. These
results are used to analyse the early stages of the full model simulations, permitting
the identification of the dominate physical processes.

In Chap. 3 we will analyse our theoretical model in the absence of SBS and
anti-Stokes Raman couplings, from both a numerical and an analytical view point.
The typical evolution of SRS saturation will be documented, describing the initial
linear growth and initial saturation of SRS by PDI. The intermediate nonlinear

regime which can lead to an immediate final saturated state or a quasiperiodic
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repeating [66] of the first two stages of development will be discussed. Finally the
asymptotic quasistationary saturated state will be discussed in detail where we will
present scaling laws describing the asymptotic levels of Langmuir fields and SRS
reflectivity [67].

The evolution described in Chap. 3. has been seen to hold in the presence
of the SBS coupling as long as the parameters are restricted to those regimes in
which SBS does not grow absolutely or the timescale of ilie simulations prohibit
domination by SBS. The analysis in Chap. 4 will thus contain our full model with
the SBS [68] and anti-Stokes Raman coupling intact. The information gained in
Chap. 3 regarding the asymptotic state of the Langmuir waves will be used in
Chap. 4 to produce expressions describing the ion density and Langmuir spectra.
These spectral expressions can then be used to describe enhancement of various
scattering processes, which produce reflectivity levels far in excess of the expected
3WI predictions. Such scattering processes include enhanced Brillouin and forward
Raman scattering, as well as anti-Stokes components of backward and forward
Raman.

The Langmuir spectra calculated in Chap. 4 can also be used to analysis the
production of hot electrons which can have serious consequences in limiting the
validity of our flnid model. Using a simple model deseribing linear wave-particle
interactions we examine in Chap. 5 the cffect of the asymptotic Langmuir waves
on the evolution of a Maxwellian distribution function. With these results, further
limits ca'n now be placed on the plasma interaction lengths and intensities for which
our fluid model and hence our investigation remains valid.

In Chap. 6 we will explore the applicability of our analytical and nmerical

work to explain experimental observations. Numerous experiments involving SRS,

21



SBS and their evolution are studied, providing a large body of evidence to which
our calculations can be compared. Reasonable agreement between theory and
experiment has been found for many different experiments allowing us to offer new
or alternate explanations for observed results. Finally in Chap. 7 we summarize
our results and present a final discussion and conclusions. We also discuss the
limitations of the present analysis and present possible ways in which the current
investigation could be expanded.

All our numerical simulations have been performed using the numerical par-
tial/ordinary differential equation solver described in appendix .2. The core of this
algorithm was designed to accommodate an arbitrary number of nonlinear partial
and ordinary differential equations for an initial value problem with nonperiodic
boundary conditions. The code itself uses a five point centered difference spatial
derivative approximation and is solved implicitly in time for a two point forward
difference temporal derivative. To solve for the spatial dependence a penta-block
diagonal inversion scheme (a variation of the standard tridiagonal inversion algo-
rithm) is used.

To test the algorithm we have applied the solver program to many different
systems. Exzact analytical solutions of the test problems have been verified by
ilumerical simulations. These test problems have included both linear problems for
which analytical expressions are easily found, as well as noualinear problems, such
as the nonlinear Schréodinger equation and Zakharov equations, for which specific
nonlinear solutions are known. Excellent agreement between the analytical and
numerical solutions have been obtained for these problems. The accumulation of
numerical errors has been found to be very small and easily controlled. For example

in our full theoretical model, which will be described in Chap. 2, we added the
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phenomenological thermal noise sources of appendix .1. These noise source terms
were always much greater in magnitude than any numerical error observed in our

test runs.
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Chapter 2

Basic concepts

2.1 Derivation of basic equations

In our investigation, in order to derive our theoretical model, we start with the
standard fluid equations coupled with Maxwell’s equations. The resultant system
describes the nonlinear evolution of SRS in the presence of the electron-ion coupling
of the Zakharov equations. The nonlinear coupling of the Zakharov equations al-
lows for the development of PDI and its nonlinear evolution, which has been found
to be the primary mechanism of SRS saturation in the parameter regimes stud-
ied in this investigation. The more complete description of the interaction of the
Langmuir fields and ion density fluctuations, allowed by the Zakharov equations
permits the development of a more accurate model describing SRS saturation. Sim-
ilar theoretical models have been previously used to describe scattering instabilities
in terms of periodic boundary conditions [63], [64], finite geometry simulations of
CO; experiments [49], and other systems [65].

The plasma itself will be assumed homogeneous with a one-dimensional geom-
etry. We will concentrate on a parameter regime such that a fluid description of
the plasma is possible. The temperature and laser intensities are chosen such that

relativistic effects can be ignored, and densities are in a regime where quantum
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effects are negligible. The final system of equations is solved numerically for a fi-
nite plasma in a parameter regime consistent with today’s laser-plasma interaction

experiments.
2.1.1 Equations describing electromagnetic field evolution

In order to derive an equation describing the interaction of electromagnetic waves
with the plasma we start by examining Maxwell’s equations. Choosing a Coloumb

gauge V.-A=0and using Ampere’s law in the form

- =~ 10E 4rn -
VXB—EW—*"C—J (2.1)
together with
— b laA‘ —q o -~
E=- ¢—ZE, B=VxA (22)
one obtains
Y S . 9V
"a—t'2—'+CVXVXA-—C(47TJ——éT (23)

where J = Yganat, is used to describe the current. Here n, is the density, 7, is the
mean local velocity and a = e, ¢ denotes the electron or ion species. To obtain the
evolution of these quantities we proceed using the standard fluid equations where
the continuity equation is defined as

on,

Bt + V- (nyv,) =0 (2.4)

and the second hydrodynamical equation is written in the form
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a -‘0 - = = n = 1.‘ -
1;': +V. (Ralala) + ’yav%' Vn, — q;: (E + Ev"‘ X B) =0 (2.5)

where we have assumed that the pressure tensor can be represented by the isother-
mal equation of state P, = noT,. Here vr, is the thermal velocity for the electron
(a = e) or ion (a = 7) species. By using the vector identity

T-Vo==V(@ 9)-TxVx7T (2.6)

N -

and defining the velocity vector fia = 6’0+qu‘/ mac, equation (2.5) can be rewritten

as

aﬁo o = 7 do®
5t XV Xhy,=— V(m +

which will permit easier identification of the relevant variables. Assuming a one

5 2 Y, v8, ln(na)) (2.7)

dimensional geometry with V = é,8/8z equations (2.3) and (2.7) can be separated
into the parallel ( €;) and the perpendicular (é,, é,) directions. Equation (2.7) can

thus be written as

aha: _ QG¢ az 3L 2
% - 2 (ma > Tt + Va1, In(ng) (2.8)
and
ahaJ. ah‘::«.L _
B = Var—on = 0 (2.9)

A, and v, are transverse components corresponding to electromagnetic fields

and the quiver velocity response to such fields. As a simple estimate of (2.9) we
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identify hqy o exp[ikz — iwt] where we have the approximate electromagnetic dis-
persion relation w =~ ¢k, which is valid in very underdense plasmas. This estimate

produces the result

(W — Vazk)hay = (¢ — Vaz)khay =0 (2.10)

If one is in the nonrelativistic limit where v,, < ¢, then h,; =~ 0 resulting in the

relation v, = —g,A/mac. By assuming v;; ~ 0 and using Poisson’s equation in
the form
1 OF,
=2Zn;— — 2.11
e i 4dme Oz ( )

equation (2.3) reduces to

0%v,.,. 00%ve1 4me?Zn; e JF;
2 c 9z = -~ Vey + m—e 9r Vel (2.12)

which describes the evolution of the electron quiver velocity in the electromagnetic

wave field. The first term on the right hand side of (2.12) will produce a nonlinear
coupling to low frequency ion acoustic modes in the plasma, while the second term

produces a nonlinear coupling to high frequency Langmuir modes.

2.1.2 Hydrodynamic and electrostatic field equations

To produce an appropriate equation describing the evolution of the electrostatic
components, it is first necessary to clarify which nonlinear terms will significantly
affect the evolution of our system in the parameter regime of interest. Due to the
large mass difference between the electrons and ions, two distinct timescales will
be observed. The electrons will contain both high frequency motion oscillating

near the plasma frequency w, as well as motion in response to the low frequency
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movement of the ions within the ion acoustic timescale 1/w4. Because of this low
frequency response, nonlinear high frequency terms may affect the ion evolution.
In order to separate the two scales it becomes necessary to find the slow time
average variation of the enveloped high frequency oscillations of these nonlinear
terms. The contribution of a linear high frequency term on the slow ion acoustic

timescale will be zero. For an example we write the electron density as

ne = ng + 6nk + 6n! (2.13)

The electron density contains both high (6n! ~ 6ii*(7) exp[—iwyt]) and low (én! ~
67!(1)) frequency fluctuations around a constant background density n§. The varia-
tion on the ion acoustic timescale represented by 7 is held approximately constant
over the short time interval 27/w,. We then average over the fast timescale by

integrating from ¢ to t + 27 /w,, represented by (...). This process will give

t+2m/wy
(onl) = 2 i " 7 (r)dt = énl (2.14)
¢
h Wp 1427 Jwp “h .
(bng) = ﬂ/, 1"(7) exp[—iwpt]dt = 0 (2.15)

The ions are also assumed to contain low frequency fluctuations (6n!) around a

constant background density n§ and can be written as

n; = nf + 6n! (2.16)

One method of obtaining an equation describing the high frequency evolution
of the electrostatic modes is to take the divergence of (2.5) for electrons, and use

the continuity equation to produce
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d%n. o2 On. _ 0 [ 9 a v2, ve.L2

ene
—étT YeVr, ax2 'a_.,; Vex 3~ (ne'vez) + nc—( )-' g Ex] (2.17)

2 me

By ignoring all third order nonlinear terms and using (2.11) in (2.17) we get

o2 , 0 1 8 [0°E; __ o O°F;
(@‘W@) 2= e os [ 52 " 1L g 2]
+2 [neﬂ(vz Lty ZeniBy | E, aE,]
dz | %8z'\ 2 m, 4mm, Or

(2.18)

Removing the obvious low frequency linear contributions ~ Zn; and assuming
the high frequency part of the nonlinear hydrodynamical terms E,3F,/0z and

VezOVer [0 can be ignored we arrive at the high frequency equation

O’E, o O?E, dmen§dv?, on!
W 3 Te 6222 + > oz +wp 1+ ‘;E)‘ Ex =0 (219)

Here the Langmuir field is coupled nonlinearly to the ion motion tirough the low
frequency density fluctuation én!, where we have assumed n§ ~ Zni.

To identify the low frequency contributions of (2.18) to the ion motion we find
the fast time average producing the equation varying over the ion acoustic scales

of

62271,,‘ BZZTL,

6t2 - Tg ax2 = (2.20)
3 <'Ue_j_2) Ze(n,-E',,) 1 0<E3)
oz < =)+ 2 )+ Me - 8tm, Oz

where (E,) = 0. By using the divergence of (2.5) for ions and the ion continuity

equation one produces the equation
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%n; 2 O%ni 0 [Ze(nE:)
ET R =R = [‘—m— (2:21)

where we have used v;; =~ 0, ignored v;,0v;,/0z and assumed that E, can only
contribute terms varying on the slow timescale. Equations (2.20) and (2.21) are
multiplied by their respective masses to produce the slowly varying density equation

of

@ L0 \bn & [Zm,,, 1,
(5? - C,'a?) pralr [Tni_<ve.|. + S (Ez) (2.22)

In equation (2.22) we have used the linear approximation

| vez |* =| £B: 2 (2.23)
MWy

to eliminate v,.
In deriving expression (2.18) we assumed that the nonlinear hydrodynamical
terms v;0v,./0z and E.dFE,/dz could be ignored. To justify this we return to

equation (2.8) for electrons and identify ve, = he. producing the equation
ove, 18

+ - (ve,2 +ver %) + 26,
at 20z Ne

one g .,
E‘- -~ r_n: =0 (2.24)

We assume that the nonlinear couplings can be treated as weak and that a pertur-
bative approach is considered valid. In the linear limit the high frequency electron
components of (2.24) will oscillate near the plasma frequency wp ie: Ep, v,

exp[—iwpt + ik;z] and hence one has the approximation

~ el | = evr, (2.25)

Vex A
MeWp
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where we have defined the electrostatic plasma energy density as €2 =| E, |2
[4nn§T,. The term v,.,0v,./dz, the hydrodynamical nonlincarity which leads to
high frequency harmonic generation in the Langmuir fields and steepening of the
density profile, can be ccmpared to the linear temporal derivative term in (2.24)

producing

o, Qe /avu kves _ Kk
“oz’ ot wp  kp

(2.26)

Using the linear approximation (2.25) leads to identical results for E,8F,/dz in
(2.18), and hence when ek/kp < 1 the high frequency contribution of these con-
vective terms can be ignored in relation to the linear components. The physical
system that we wish to examine contains an intense electromagnetic laser pump
which will act through the ponderomotive force term v2, . The efficient coupling of
such a pump with the thermal noise can produce strong instabilities thus necessi-
tating the inclusion of the nonlinear electromagnetic term v2, in the high frequency
electrostatic equation.

In the derivation of the slowly varying density equation we neglected the hydro-
dynamical nonlinearity v;,3v;,/dz. In order to determine the approximate regime
where this omission remains valid we assume a slight departure from quasincutral-
ity and allow a slowly varying electrostatic potential ¢* to be present. The full
electrostatic potential containing both high and low frequency components is thus

written as

¢=¢' +¢' (2.27)

and the electron quiver velocity in the é, direction as
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Vez = UL, + 02, (2.28)

Here the superscripts refer to the fast and slow timescale variations. To estimate
the slow variation of the electrons we use (2.27) and (2.28) in expression (2.8)
and separate the slow and fast variation by time averaging over the fast timescale.
Ignoring electron inertia effects (m. — 0) results in the expression for the slowly

varying electron density component of

ne = ng exp[eﬁ ] (2.29)

Poisson’s equation for the slowly varying electrostatic field becomes

62 ¢a
0z?

Using the fact that the slight departure from quasineutrality means e¢?’ /T, < 1

3
= 47e (ng exp[%—] - Zn - Z6nf) (2.30)
we expand the variables in a perturbation series

¢ = AV 4222 (2.31)

6ni = A6nM 4 X260, (2.32)

producing

) e §n») edM\?  ep@  §n®
=4 € —_— -
527 Teng T nl + A ( T ) + T n (2.33)

where we have used Zn{ = n§. By assuming that the spatial variation of ¢° is very

small
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k_12_32¢(1) /872 ~ AgW (2.34)
D

and using a linear waveform for v.-,,&nf- ox exp[—iwat + ikqx] where wy = ¢k, is

the ion acoustic frequency, produces

k 2
(-‘;) = A (2.35)
kp

Separating orders of A also allows us to equate
eV nlD

= (2.36)

Using the same type of expansion as (2.31) for v;, allows us to expand cquation

(2.8) for ions as

+O(f@) (2.37)

1 1
'Y + Ze d¢V) 3v%. o6nV) A vg)@v.(x)
ot m; Oz ny Oz oz

where O(f?) refers to all other second order quantities. Using the linear waveform

(1)

v, 6n) o exp[—iw4t + ik4] produces

1) C,,é'n(l)

Yie nh (2.38)
and thus the convective term is of the order given by
v(”a”'(':) ovl)  kqol) 6 (2.39)
= Oz at Wy - "6 .

The ion convective term is of an order A smaller than the temporal derivative and
hence §n") /nj is also of the order A. In order that we may neglect the nonlin:ar

hydrodynamic and other second order terms in (2.33) and (2.37)
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n)  [ka\2
LA .7 2.40
nl (ko) <1 ( )

If (2.40) is satisfied then one can ignore the ion convective term v;;0v;;/9x respon-
sible for the steepening of the ion density and generation of ion harmonics.

Finally introducing phenomenological collisional and Landau damping terms

we obtain from equations (2.12), (2.19) and (2.22) the system of equations

0%v,, ey 20%e1  omy e OF,
cJlel _ = 298, 2.41
ot? +27] ot € oz2 o ns Vel m. Oz Vel ( )
9°E, .,  OFE o 0°FE, Amen§dv?,  ,m;
...__i - z -_— —r Ly = 0 2.42
ot? Lt ot Sur, 0z 2 Oz T ng (242)
and
d%n! anl  ,0%!  Zm.n{ 0% (v2)) 1 0*E?)
92 T 5 T2 T om;  0z2 T Brm; 0a2 (2:43)

Equations (2.41)-(2.42) represent the high frequency evolution of the Langmuir and
electromagnetic components, and permits both the Stokes and anti-Stokes coupling
of electromagnetic and electrostatic waves.

In our investigation there are three categories of wave interactions which we
will be interested in studying: (a) The Stokes and anti-Stokes coupling of Raman
scattering, (b) The Stokes and anti-Stokes coupling of Brillouin scattering, and (c)
the Stokes coupling of the PDI cascade components. In Chap. 1 we described the
three wave interaction and discussed the six possible decay instabilities, where a
pump wave decays into two satellite components. The Stokes coupling of Raman
and Brillouin scattering are the decay instabilities corresponding to Fig. 1.2(a)

and Fig. 1.2(b) respectively, while the Stokes coupling of PDI corresponds to
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Stokes anti-Stokes
(a) (SRS)

MMy e VWV

(b) (SBS)

Figure 2.1: Schematic diagram of Stokes and anti-Stokes coupling of (a) SRS and
(b) SBS

Fig. 1.2(c). In contrast to the decay instability an anti-Stokes coupling requires
two existing waves to combine together to produce a third wave. The difference
between the Stokes and anti-Stokes coupling is illustrated in diagrammatic form
in Fig. 2.1 for (a) Raman and (b) Brillouin scattering. Because of conservation
of energy the anti-Stokes coupling by itself cannot be unstable, and hence the
amplitude of the scattered wave will be determined by the waves already existing
inside the plasma. Although the Langmuir wave associated with the Stokes Raman
scattering is mismatched for the production of anti-Stokes Raman coupling, other
processes creating Langmuir waves can produce a Langmuir wave which will ise

resonant for the production of anti-Stokes scattering.
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In each of the three wave interactions we are examining the wave modes are
assumed to satisfy the linear dispersion relations (1.1)-(1.3). This assumption
allows us to easily calculate the approximate wave number of each wave. The wave
number of the clectromagnetic pump wave in a vacuum is well known as k§ = wo/c
and is calculated in the plasma to be

W n
ko = -é‘l 1- n—° (2.44)
where ng/n. = w2/wf.

Using the matching conditions (1.11) with 6k = 0 the scattered electromagnetic

wave number for the Stokes components is approximately

kr = :t%/ 1 —24/no/n. (2.45)

while for the anti-Stokes component it is given by

Wy
kp+ = :i:-;g\/l +2y/no/n, (2.46)

Here the positive root refers to forward Raman scattering and the negative root
refers to backward Raman scattering. The Langmuir wave for both couplings is

thus found by

kL = ko - k}z (247)

for the Stokes components and

kit =kp+t — ko (2.48)
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for the anti-Stokes components. When it is necessary to distinguish between the
backwssi -nd forward component of Raman scattering we adopt the convention
ky, kg; kER, kpp for the Stokes components and kPR*| kpes kFRY | kppe for the
anti-Stokes components respectively.

The Brillouin backward scattering wave numbers for both the Stokes and anti-
Stokes can also be easily estimated. Because the ion acoustic frequency is very
small, the scattered light will have approximately the same frequency as the laser
light, thus for both the Stokes and anti-Stokes Brillouin scattered light the wave

number is given by

kB ~ -—ko; kg+ ~ —ko (249)

respectively. The ion acoustic wave number associated with the Brillouin scatter

will thus be given by

kA = ko - kB ~ 2’30, kA+ = kB"' - ko ~ —Qko (250)

for the Stokes ana anti-Stokes components respectively.
In our investigation we assume that the pump wave associated with PDI is
supplied by the SRS driven Langmuir wave. As was shown in Chap. 1 the satellite

components are given by

KD = Ak -k, (2.51)

for the ¥ angmuir satellite, where Ak = 2kpy/Zm,/m; and
kY =k, - k) = 2k, — Ak (2.52)
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for the ion acoustic satellite. The Langmuir satellite of PDI can also decay produc-

ing a cascade of waves. In general the satellites of the n + 1 stage of the cascade

can be calculated as

KD = (—1)n Ak — K (2.53)

for the Langmuir wave and

k('l'l"l) k(") k‘(Ln'i-l) (254)

for the ion acoustic wave. The wave numbers for all the processes are summarized

in table 2.1
In our investigation we wish to examine the behavior of (2.41)-(2.43) only on the

ion acoustic timescale. To reduce the system to this single timescale we introduce

the quantities

E, = %(Eexp[—iwpt] +ece) (2.55)
1 } ]
Vey = -2-(\110 exp[—iwpt] + ¥ gexp[—i(wp — wp)t]

+U g+ exp[—i(wp + wp)t] + c.c.) (2.56)

and average over the fast timescale. Here E and ¥; are assumed to vary only
on a slow timescale related to the ion dynamics. Thus with n; = n} + én! and by
dropping second order time derivatives of the slowly varying components we obtain

our basic equations

OF 3v2 9%E
i(5p + 7+ B)+ 5= - - 2INE (2.57)
__meng 0

wp 5;(‘110\113 + lIJO\IIR"') + SL(.T, t)s
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wave numbers

SRS Stokes ko =2 1-%‘: kp=+2,/1

—9 [ra

kp =ko—kgr

¢

SRS anti-Stokes

R+ =:i:9’;:“‘/1+2 w

kp+ =kp+ — ko

SBS Stokes | ko =4,/1 -2 kg ~ —kg kB ~ 2kg
SBS anti-Stokes | ko = % ,/1 - &2 kp+ ~ —ko k5" ~ 2k

Table 2.1: Wave numbers associated with the three wave processes of the Stokes
and anti-Stokes coupling of SRS, and SBS as well as the Stokes coupling of PDI.

Here Ak = 2kp(Zm./m;)!/?

a;tjj +27a % '%N f%?l’ (2.58)
" r? (l(lvfzf,l:n, ‘Znn:cl o |2) + Sal= 1),
i(gaqlT %)+ o0, 2 632;0 w,%Q;Owo o (2.59)
2 -
= Nt e (Vg 4o ).
O W) o e °_;;‘;")2pr (2.60)
2 »
B 2(wowi wp)N\pR "~ 4(wp —ew,,)me Yo aai ’
i(a\gf+ + V5t U e ) + 2(%61 ™ a;‘ig* _Y 2‘( Lf:’l ::;p)z‘l’m (2.61)
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Y% Ng,-— ¢ g 9E
2(wo + wp) B 4w + Wp)Me ok

where ¥; represents the electromagnetic quiver velocity wave amplitudes with j =
0, R, Rt representing the laser pump, Raman Stokes and anti-Stokes components
respectively, E is the electrostatic field amplitude, and N = n‘/n{ — 1 is the low
frequency ion density wave amplitude. The asterisk denotes complex conjugate.
One can extract the Zakharov equations from the above system by ignoring the
electromagnetic components. Thus the left hand side of (2.57) is easily recognizable
as the Langmuir equation (1.15). (1.16) is also recognized in (2.58) by removing
the electromagnetic ponderomotive potential.

In the electromagnetic evolution equations 7; represent the collisional damping
terms. Similarly in the equation describing Langmuir evolution v (k) includes the

collisional damping as well as the Landau damping term which is defined by

70(k) = |[FriB expl- 23+ K2y 1 2. (2.62)
In the hea .ly damped Landau regime where k¥ > kp the Landau operator was
replaced by a linear dependence on k. In (2.62) v, represents the electron-ion
collision rate. The ion acoustic wave damping is attributed to Landau damping

and is represented by

w (4 (4 3/2 €
va(k) = \/gc,k ( an: + (Z,l?:) exp[-—(g + gg,: )]) , (2.63)

The electron-ion temperature ratio dependence of the ion Landau damping can
greatly affect the nonlinear saturation behavior of SRS causing for example, strong
quasi-periodic pulsations or bursting of SRS reflectivity (see Chap. 3). Both the

electron and ion damping in (2.57) and (2.58) are convolution operators applied in
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Fourier space [70].

The electrostatic source terms for the Langmuir waves S (x,t) and the ion
acoustic waves S4(z,t) are derived from the linearized electrostatic equations (see
appendix I for details). The random amplitudes of these modes are introduced at
values consistent with thermal equilibrium levels with the intention of modeling,
in the absence of an electromagnetic pump, a plasma at thermal equilibrium [71],
[72].

To model a realistic plasma, finite geometry boundary conditions in (2.59)-
(2.61) are imposed. Such conditions allow an electromagnetic pump wave to enter
on the left boundary at a constant amplitude and leave freely on the right boundary.
The left boundary also allows Brillouin backscatter to exit freely. Similarly the
remaining electromagnetic equations allow for both forward and backward traveling
components to exit freely from the right and left boundaries respectively. Langmuir
and ion acoustic waves in (2.57) and (2.58) also have outgoing boundary conditions
with narrow regions of artificial damping added at both ends to prevent reflections

back into the plasma.

2.2 Three wave interaction

The parametric instability known as the three wave interaction is a common model
used to describe wave evolution in a plasma. One well known example of three
wave interaction is stimulated Raman scattering which is found by using the Stokes
coupling of Raman scattering. The anti-Stokes Raman coupling, though a three
wave process, is not an instability and will not grow exponentially. To illustrate
the difference between the two couplings we examine only the Raman coupling of

equations (2.41)-(2.42) by setting n; = n{, =constant and using
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Vel = Vg + VR (2.64)

Here vy corresponds to the laser pump and vg corresponds to the Raman scattered
wave. Ignoring the harmonic generation terms v3 and v} as well as the damping

coefficients we have

32’00 202’00 2 aEz
W - C W + Wylp = —;' oz VUr (265)
az’UR 2622)[2 2 e OF,
52~ 3at + wyvR . Bz v (2.66)
and
O’E, o ?E, o 4men§ 9 ,
@ o gm Tt = — 5 g ve) (267)

For the Stokes coupling of Raman scattering there exists a feedback mechanism
which can lead to an instability. Figure 2.2 illustrates this mechanism in diagram-
matic form. In Fig. 2.2 an initial electron density fluctuation én. produces a
transverse current  én.vy corresponding to the oscillatory motion of the electrons
in the laser field. This transverse current in turn produces a reflected light wave
vg. The reflected light wave can then couple with the laser light wave producing
a ponderomotive force o« vpvy which enhances the initial density fluctuation and
leads to exponential growth. In contrast the anti-Stokes coupling will not produce
the feedback mechanism of Fig. 2.2. Because of the coupling process the initial
density perturbation must combine with the laser pump to produce the anti-Stokes
Raman scattered light wave. Instead of being enhanced the density fluctuation is

reduced as energy from the Langmuir wave is transferred to the anti-Stokes light
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Figure 2.2: Schematic diagram of the stimulated Raman scattering feedback mech-
anism

wave. Thus the amplitude of the anti-Stokes Raman wave can grow only if there
already exists large levels of Langmuir waves in the plasma, which can transfer en-
ergy to the anti-Stokes component. For this reason a three wave interaction usually
refers only to the Stokes coupling of the scattering pr-: esses.

As an example of the three wave interaction model we derive the relevant equa-
tions for stimulated Raman scattering. To derive the three wave equations we
return to our equations (2.41)-(2.43) and assume that the dependent variables can
be represented in terms of slowly varying amplitudes E;(z,t) of the plasma eigen-
modes. The fast time (short length scale) behavior of these modes is characterized

by frequencies w;(k;) (wave numbers k;) satisfying linear dispersion relations (1.1)-

43



(1.3). For SRS the electromagnetic and electrostatic components of (2.41) - (2.42)

are represented by

Vey = % iEn(:—(%—tlexp[i(kom — wo(k)t)]
+E—E-’T#-Q expli(krz — wr(k)t)] + c.c.) (2.68)
eWR
E. = %(EL(z, ) expli(ksz — wi(k)t)] + c.c.) (2.69)

and when inserted in (2.41)-(2.42) produce the results

an an le kl,

== i) = —-—_"FpE 2.70

En +W E + v0Eo 4mewRER L (2.70)
dE, OE, _le kpw? .

ot +V oz tnkL = 4mewaowLEoER (2.71)
BER 3ER _ le kL -

5 T VR, TRER = 4mew0E°E" (2.72)

where V = 3’0%;]%/&)[, and V; = c2kj/wj; J = 0,R, are the group velocities of
the Langmuir field and the pump and backscattered electromagnetic components
respectively and v; represents the appropriate damping coefficient. In producing
(2.70)-(2.72) all second order derivatives of slowly varying components were as-
sumed to be very small and dropped from the equations. The derivatives of slowly
varying components involved in nonlinear coupling terms were also assumed to be

small and were ignored.

2.2.1 Standard equations for three wave coupling

By making the substitutions
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Wp WR, & _ ewpky,

Ey=ay; Ep= i Ep=ayf/—; T'= :
0 a0 L @ ,/wowl, R @2 Wo 4mewo‘/wnw,, (2 73)
and relabeling
Ww=co; Vi=c; Ver=cy T=7 =" (2.74)
the SRS three wave equations can be written in the standard form of
3} da .
3(;0 + ¢ o;a—o + a0 = -Taaz (2.75)
da a -
6atl +c 1_65_1_ +v.a1 = Tagay (2.76)
a a -
6t2 + Cz—a— + Y202 = I‘alaq (2.77)

All three wave interactions can be written in this form allowing one to analyze
general properties of the system. By assuming that ag represents a constant finite

amplitude pump one can linearize (2.75)-(2.77) producing

da Oa .

aatl +eo gwl +ma; = Tla} (2.78)
a a "

__a: + 02——0:: + 72a2 = F(Ll (279)

This system describes the linear interaction of two small amplitude waves inter-
acting with a constant finite amplitude wave and can be used to discuss the abso-
lute and convective nature of 3WI as well as illustrate an asymptotic intermediate
regime which has length dependent growth rates. Here we have defined T' = Tao

which is found to be equivalent to the maximum growth rate of the system.
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2.2.2 Absolute and convective instabilities

The terms absolute and convective are used in the literature to classify linear
interactions into either temporally (absolute) or spatially (convective) growing in-
stabilities. Formally one can define an absolute or convective instability in terms
of the physical characteristics of a localized pulse propagating through an unsta-

ble medium (cf. [12]). This pulse can erow in one of two ways: (a) If the pulse

originally located at the origin, gro- nt propagates away from the origin,
so that eventually the disturbance 1. disappears then the instability is
classified as convective. (b) If vae pi: = iows in tim~ and spreads through space

such that at some asymptotic late time tl.c pulse encompasses all space then it is

referred to as an absolute instability.

In a more mathematical form one can define an absolute instability as follows:

It is assumed that a linear dispersion relation

D(k,w(k)) =0 (2.80)

has unstable roots S(w) > 0 for some real wave number k. For an absolute in-
stability to exist there must be two solutions of (2.80) for some k requiring that
D(k,w) = 0 and dD(k,w)/3k = 0 to exist for some w. These wave numbers must
lie on opposite sides of the complex wave number contour Cj (see Fig. 2.3(a))
which will coalesce to pinch that contour at the same ky when one approaches the
correct solution for w with S(w) > 0 by lowering the complex frequency contour
C., (see Fig. 2.3(b)). If these conditions are met then one has a nonconvective or
absolute instability. If these conditions are not met only a convective instability is
possible. .

To examine these concepts more closely, we derive the various growth rates for
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Figure 2.3: Deformation of the Fourier contour (a) and associated lowering of the
Laplace contour (b)

the general linearized 3WI equations in an infinitc regime. To derive the growth
rates in a simple manner we start by assuming the ansatz a, = A, expli(kz — wt)]
and a2 = Apexp[—i(kz — w*t)] where A;, A, are constants, and w, (k) vary on the
slow time, (large length) scales. Here we again use the asterisk to denote complex
conjugate and we have assumed a priori that k is rcal and w complex. This ansatz

leads to the following dispersion relation for equations (2.78), and (2.79) of [12]:

D(k,w) = (w — etk +im)(w — cok + i2) + 2 = 0 (2.81)

For an absolute instability to be possible requires that a double root of the ap-
propriate form D(k,w) = 0 and dD(k,w)/8k = 0 exist. Using ID(k,w)/0k = 0

yields

k= {w(c; + ¢2) + i(erye + am)} x (2.82)

2C102

which produces the frequency
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_ _i(cm —cm) 4T 2y/cic; (2.83)

- Cp —C |01“02|

Notice that equation (2.83) can only be unstable if c;c; < 0 and has a threshold
given by

(ol wot Lo [ m _ s (284

2
r > 4|6102| Ta

The maximum growth rate for the undamped system is given by

Pype = P22 (2.85)
ler| + e

If ¢cijco > 0 then an absolute instability is not possible, however one can still
have a convective instability if the threshold I'2 > v5; = 42 is met. The maximum
convective growth rate can be easily found by simply solving equation (2.81) for

the static solution where wpeq; = k = 0 producing a growth rate of

+ 1 1/2
Pconv = _(l‘é‘:@ + 5 [('}'1 - ’)’2)2 + 4P2] (286)
This growth rate may be observed in an infinitely extended plasma or during the
time period required by the fastest moving modes to identify where the boundaries

are located.

2.2.3 Finite interaction length

In Chap. 2.2.2, growth rates for an infinitely extended plasma were developed.
The introduction of a finite length however produces a critical length below which
instabilities will no longer grow exponentially. Returning to equations (2.78) and
(2.79) and demanding ¢;c; < 0 and T'? > 92 so that we are in the absolute regime

we assume combinations of waves in the form of exp[pt + ikz] and exp[pt — ik*z]
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ap = Aexp[pt + ikz] + Bexplpt — ik"a] (2.87)
ag = Cexp[pt+ikz] + Dexplpt — ik"z] (2.88)
where p is the effective absolute growth rate. By defining « = I'/,/ci¢z and P =

P/Tabs + Ya/T together with the boundary conditions a,(0) = 0,ay(L;) = 0 yields

simple solutions of the form

a1 = Ajexp[pt — Az]sin(fz) (2.89)

az = Ajzexp[pt — Az]cos(fzx) (2.90)

where 8 = {a%(1 — P?)}/2 and A = (p +71)/2¢1 — (p +72)/2 | ¢2 |. To meet the

boundary conditions we require

BLr = {a¥(1 - PO}/, = (2n + )3 n=0,1,2.  (291)

where L is the interaction length associated with the absolute instability. Since

0 < P <1 the smallest pcssible length for instability [73], [74] is

7 '/r\/Cllczl (292)

T2 2 T

&
3
|
I
|

where the effect of damping is to increase the critical length of the instability.
Finding the spatial maxima of a; and as, we sce that the reflected wave ay hios
an amplitude maximum at £ = 0 and «; has an amplitude maximmum at z =
?‘,-tan‘l(ﬂ/ )). Since a, is exponentially damped, sin(3z)? = 1! - cos(2f3z)] shows

that most of the energy of a; should reside between 0 and 2L.,. Equations (2.91)
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and (2.92) allow us to calculate the maximum growth rate for a finite interaction
length predicting a rate
er 2 Faba7a
=Tass|l —|{5—) ——— 2.93
which will be very sensitive to short interaction lengths.

2.2.4 Intermediate asymptotic dependence of growth rate
on length

If the interaction length of the plasma is sufficiently long an intermediate regime
which is characterized by a length dependent growth rate is asymptotically obtain-
able. To examine this asymptotic form we return to equations (2.78) and (2.79)
and assuming that | ¢) |<| ¢z |, | ©10a1/9z || Ba;1 /8t |, | codaz/Ox |3>| Day /ot |

and ignoring damping for simplicity

Jda .
-aa—t‘ = Ta} (2.94)
c25‘-1;2 = Ta,. (2.95)

Taking the spatial derivative of (2.94), using (2.95) and a Laplace transform over
time results in a simple ordinary differential equation which can be integrated

spatially from 0 to L resulting in

L
A = Apexp [—-] . (2.96)
t2Co
Here
A= /0 a; exp[—izt|dt (2.97)
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is the Laplace transform of a;. Inverting the Laplace transform and making the

change of variables iay = izt where a = I'y/Lt/c; yields

=2 / [a(y——)] dy (2.98)

The integrand of equation (2.98) is a generator for Bessel functions thus producing

ag == i*_"i‘zl(za) (2.99)

which has the asymptotic form

= f_g______w VLt/ex exp[2T'y/ Lt/ cy) (2.100)

The effective growth rate in the intermediate regime is thus given by

Tint & Ty/L/cot (2.101)

Our simple expression is in agreement with similar work by Mounaix et al.
[75] who used a Green’s function analysis in the context of short pulse, long scale
length, Brillouin experiments for which Brillouin scattering was below absolute
threshold. Under such circumstances one observes the intermediate growth rate
for times L/c; < t < Lfc; and a convective stationary regime for times greater
than t > L/c; where the energy growth I';,, balances the demping of the waves v,
resulting in the characteristic spatial growth ~ exp[['2L/7y;¢;). However when one
is above the absolute threshold thic ~iationary regime is excluded and the absolute
growth dominates asymptotically. For most of unr full model simulatiou runs we
remain above the absolute threshold and absolute growth of thie plasma can occur.

Once the absolute growth rate I'ey, =2 2I'y/c1/ca exceeds the intermediate growth,

o1



it dominates the evolution of the plasma. By equating (2.101) with this absolute

growth rate one can estimate the time at which this occurs as

to (2.102)

~ 4

In order to summarize the parametric instabilities which will dominate the
analysis of this study, a summary of the linear wavemode group velocities and
the various growth rates for the SRS, SBS and PDI three wave interactions is
presented in Table 2.2.4. Also given are the convective and absolute thresholds for
the three instabilities. For the instabilities involving electromagnetic wave modes
the laser pump amplitude is given by v, = ¥o(z = 0) = eEy/mewp. The Langmuir
pump wave for PDI is assumed to be represented by E; which in the case of SRS

saturation by PDI is the amplitcre of the SRS driven Langmuir mode.
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electromagnetic

electrostatic

ion acoustic

4|V, VR]

4]cl VB]

Afca V1|

. ki . 3v} k 2T, +37;
Group velocity | V; = <~ j=0,R, B VL= —SLJ Cs = L_s'_:.__d
Growth rates
SRS SBS PDI
. k E.p
Convective Lsrs = L::‘:)R Tsps = wva‘/m Tppr = “.fﬁ%lta .
Intermediate | Tine=Tspsy/piy  Tine = Csnsy/ iy Tine = Cpory/ i
2,/VLIV, 2,/c.lV, .
Absolute Tabs = TspsToTs I - | Tubs =Tsps - il - S PPDI]‘%
Thresholds
SRS SBS PDI
: B2 1674 (kS Yys (K,
Convective | Thps>vi(kehve  Thps > vatkfhvs gy > 2 wi.'”( L,
Absolute (LVLl‘m-iI-anl'n(kL )? (lealy+Valra(k]))? (lealre (ke + Vi lya(kS))?

Table 2.2: Group velocities for the various linear wave mod+s and arowth rates and
thresholds for SRS, SBS, PDI in the convective, intermediate and absolute regimes.

93




Chapter 3

Analysis of stimulated Raman
scattering evolution

The spatial and temporal evolution of SRS has been investigated by many authors,
and although a great deal of information has been accumulated, a large number
of questions remain unanswered. In particular, the mechanisms responsible for
the saturation of SRS as well as other instabilities are still poorly understood. It
has been suspected for many years that the interaction of the Langmuir field with
ion density fluctuations is one mechanism which can lead to saturation of SRS.
Numerous early studies have investigated this possibility using various models [55],
[56], [76], [77], [78]. While meeting with limited success in properly explaining the
saturation process by in effect removing the SRS driven Langmuir waves through a
crude PDI model, these early studies fail in the details as will be seen, for example
in Chap. 3.4. The primary reason for this lack of progress appears to be linked
to the description of SRS saturation through PDI. In their investigation of SRS
saturation Heikkinen and Karttuneu [78] used a five wave interaction (5WI) model
which consisted of a slowly varying amplitude approximation for the three SRS
wave modes with: the addition of the first PDI cascade satellites. Such a description

does not allow for the production of quasimode components or further evolution of
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the PDI cascade.

In recent years, it began to be understood that some model between the coher-
ent mode coupling models and the large velocity distribution function codes had to
be found in order to test these concepts over the long times necessary for the ion
motion to affect SRS. A major advance in this area was introduced by Aldrich et al.
[63] who in 1986 proposed a model which coupled the electromagnetic components
of stimulated scattering processes to the more accurate Zakharov description of
electron-ion coupling. The Zakharov description is more accurate because it allows
one to examine the entire electrostatic wave number spectra without the necessity
of describing each individual wave mode. This model was also used in later research
to investigate SRS-SBS competition [49] within the context of such experimental
observations by Walsh et al. [46], [47], [48]. Competition between SRS and SBS for
laser pump energy is another process that can produce saturation of SRS. Investi-
gations done by Kruer and his colleagues [16], [79], [80], used particle in cell (PIC)
simulations to study this evolution of SRS and SBS and otli:': related phenomena.
A very similar but slightly more general model based on the Aldrich model was
used by Rozmus et al. [64] to investigate simultaneous SRS-SBS evolution and the
resultant effect on particlc heating.

Other models which include the electron-ion coupling were investigated by Bon-
naud et al. [81], [82], [83] who studied the saturation of SRS by PDI. In this study
an appropriate saturation mechanism for SBS was absent, limiting the investiga-
tion to short time behavior. Collisional damping, which may be a very important
experimental consideration [84], [85], [86], [87], and which we have found to be
important in determining the ievel of SRS saturation [67], [68], was missing in the

simulations.
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In 1990 Drake and Batha [43], to explain experimental observations, used a
scaling model for the saturation of the SRS reflectivity which was proportional to
the PDI threshold. This scaling law was derived from a five wave model of SRS
saturation by PDI (78], and is limited by this simple model. The more complete
representation of the electron-ion evolution supplied by the Zakharov model allows
us to produce a more accurate description of SRS saturation, and permits us to
improve upon this scaling law.

In regimes where the plasma is in a turbulent state, called strong Langmuir tur-
bulence, the Zakharov model can be used to describe the characteristic collapsing
solutions of h.zh frequency plasma waves trapped in self consisient density cavities.
An investigation of strong Langmuir turbulence acting as a saturation mechanism
of SRS is being conducied by Bezzerides et al. [65], in parallel with our present
study, and is examining a much more turbuicnt regime of parameters than those
examined here. Until our present study the evolution of SRS and its saturation by
PDI in weakly and more strongly driven regimes had not been described in great
detail and a reasonable analytical analysis was lacking. In order to improve on the
SRS reflectivity scaling law proposed by Drake and Batha and to explore the early
and late time evolution of SRS in long scale length plasmas, for which an accurate
description of electron-ion evolution is present, we have studied SRS evolution in
the presence of the Zakharov coupling.

To expand our understanding of SRS evolution we have investigated SRS sa.u-
ration in a homogeneous, one dimensional plasma slab, using a limited form of our

full theoretical model (2.57)-(2.61) namely

.,OF 305 3’°E w
1(T£+7L*E)+§;&W— -2—pNE (3.1)
» O
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In this model the nonlinear terms allowing for the production of SBS have been
omitted by removing the ponderomotive force ~| ¥y |2 term in Eq. (2.58) and
density coupling ~ NP, term in Eq. (2.59). The anti-Stokes Raman equation
(2.61) and coupling in (2.57) was also ignored.

In our early analysis of SRS saturation many simulations were performed us-
ing the system (3.1)-(3.4) (see table 3.1). These early simulations and all others
were performed at densities below quarter critical n§ < 0.25n.. The electromag-
netic pump energy was always chosen so that we remained above the absolute
SRS threshold (21"535/7[,(k1,))m > 1, and all runs were performed for
interaction lengths L for which L was at least a few times the critical length
Ler = my/VL | Va |/ 2 ss.

The relatively strong collisional damping of the Langmuir waves is a characteris-
tic feature of the short wave length laser-plasmas for which most of the simulations
are performed. The rest of Chap. 3 is devoted to discussing the evolution of SRS

in the presence of electron-ion coupling through the use of the Zakharov equations,
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symbol | ny/ng, | Ty(keV)| ZT/T; | Ag(um)| Wiem?) | Lipm) | Z
v |4 125 |411 | 053 | 310" | 25 |4-11
O | 1 5 ]10-30 | 053 |110% |25-75| 5
g |.2 25 50 |0.35 |4210" | 15 | 50
O |2 3.5 50 |0.53 | 210' |25-50 | 50
® |2 5 10-30 | 0.53 | 510" |25
4 1 1.0 10 |o0.53 |3-1010"] 50
A 1 1.5 |10 53 | 310" | 25 |10

Table 3.1: Parameters used in simulations for equations (3.1)-(3.4). The symbols
themselves are used in Figs. 3.18 and 3.19

and outlines the typical evolutionary sequence. The simulations in this analysis
were performed without the SBS or anti-Stokes Raman coupling where the of pa-

rameters explored is illustrated in table 3.1.

3.1 [fypical evolution of the backward Raman

scattering simulations

By analysing many simulations we have identified two typical scenarios of SRS
temporal evolution. SRS evolves through a linear development stage which is easily
recognizable as that of three wave evolution. Once the SRS driven Langmuir wave

amplitude is above the PDI threshold (1.25)

_ 64mngT.va (kY yyi(ke)

= 1 ,
wwa‘,)

E?hr (35)

SRS evolves into a stage where the PDI process can produce a sharp saturation

of SRS. Depending o the parameter regime the two scenarios now separate. The
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Figure 3.1: SRS reflectivity as a function of time obtained from numerical solutions
of equations (3.1)-(3.4) for the parameters L = 60um, I = 2.5 10" W/cm?,
n§/n. = 0.2, T, = 1keV, ZT./T: = 8, Z = 3, Ay = 0.531 um. Various regimes
in SRS evolution correspond to (1) linear growth, (2) a sharp first saturation,
(3) transient nonlinear intermediate regime and (4) an asymptotic quasistationary
saturation.

first scenario is illustrated in Fig. 3.1 where after the initial first strong flash of
SRS reflectivity, a transient nonlinear regin:¢ -evolves into a final quasistationary
saturated state. In the second scenario the strouy reflectivity flashes are repeated
(Fig. 3.2) producing a sequence of events that we refer to as bursts or pulsations of
SRS. During these bursts of reflectivity the regions 1 and 2 of Fig. 3.1 are repeated
quasiperiodically before a final saturation state is achieved. This intermediate be-
havior is classified as region 3 where the transient nonlinear evolution is examined.
This behavior will eventually lead to the same asymptotic saturation (region 4) as

in the first case.
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Figure 3.2: Bursts of SRS reflectivity obtained from numerical solutions of equa-
tions (3.1)-(3.4) for the parameters L = 25 um, I = 4.8-10' W/cm?, n§/n. = 0.2,
T, =0.5keV, ZT.[T; = 30, Z = 2, Ay = 0.531 um.

In summary both scenarios see a progression of SRS through four stages of de-
vclopment, appropriately labeled as: (1) linear growth, (2) a sharp first saturation,
(3) transient nonlinear intermediate regime and (4) an asymptotic quasistationary
saturation. All four intervale are easily identified in Fig. 3.1 and Fig. 3.2. Each

stage is now examined in greater detail.

3.2 Linear growth

By making use of the investigation in Chap. 2.2, and assuming a constant am-
plitude pump, we can to estimate the linear growth rates in various regimes of
the SRS evolutivn process. To effectively illustrate these linear regimes of SRS

evolution we examine in detail simulations which produce the temporal evolution
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in the linear regime of interest. Figure 3.3 illustrates the various regimes of the
SRS interaction for parameters L = 60um, I = 2.5- 1014 W/cm?, n§/n. = 0.2,
T. = lkeV, ZT,/T; = 8, Z = 3, Ao = 0.531 um . Three different wave inter-
action codes were used to find the temporal evolution of the reflectivity: (a) a
linearized three wave interaction code given by equations (2.78) and (2.79) (long
dashed curve) in the context of SRS evolution (b) the full three wave interaction
model for SRS equations (2.70)-(2.72) (dotted curve) where, if one is above the ab-
solute threshold, pump depletion is the only method to saturate the instability and
(c) our full system of equations (3.1)-(3.4) (solid curve) which permits saturation
of SRS through the electron-ion interaction of the Zakharov equations. Each code
was run using identical initial conditions and parameters, and except for extremely
early time behavior of the full code, exhibit identical temporal evolution during
the linear stages of development. In Fig. 3.3 the short dashed curves represent the
various analytical approximations.

The electromagnetic pump in our simulations is initialized as a square pulse
extending across the plasma. The plasma wave will grow at the convective growth
rate o< exp[['srst] during the time period required for the initial backscattered
wave to travel the length of the plasma (Fig. 3.3 dashed line from 0 — ¢ ~ L/ |
Ve |= 0.56 ps). Because ['spsL/ | Vi |< 1, the e-folding time is less than the
propagation time, and this phase of SRS has no further effect on the evolution of the
instability. If this were not the case the the inclusion of the temporal derivative of
the electromagnetic waves would be necessary to correctly describe the subsequent
evolution. For all our simulations I'sgsL/ | Vg |< 1 and hence the time derivatives
of the electromagnetic components were ignored.

Once the electromagnetic waves reach the boundaries of the plasma convective
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t (ps)
Figure ... Simulation results for the temporal evolution of SRS reflectivity using
the parameters L = 60pm, I = 2.5-10¥W/ecm?, n§/n. = 0.2, T, = lkeV,
ZT,|T; = 8, Z = 3, A\g = 0.531um for: (a) Linearized 3WI code equations
(2.78) and (2.79) (long dashed curve), (b) 3WI code equations (2.70)-(2.72) (dot-
ted curve), and (c) full model code equations (3.1)-(3.4) (solid curve). Also shown
are relevant theoretical growth rates (dashed curves): (1)convective regime equation
(2.86) t = 0 - 0.56 ps, (2)intermediate regime equation (2.101) t = 0.56 - 3.5 ps,
and (3) absolute regime equation (2.85)t > 3.5

losses will modify the growth rate of SRS producing an interaction length depen-
dent growth rate, with a maximum growth o exp[2FSRS\/ft_/—|TR|]. The effective
growth rate is defined by | E/ot | [ | E |= Ty = I‘SRS\/m and hence
decreases with time. In the intermediate regime L/Vp < t < L/4V, (Fig. 3.3
dashed line from 0.56 ps to 3.5 ps) a length dependent growth rate is observed. If
one is below the absolute threshold a stationary convective instability will develop
once the intermediate growth rate is reduced to a level where it balances the Lang-

muir damping ie.I'i,, =~ v.(kL). At this point the SRS instability will saturate at a
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level ox exp[l'%psL/v1(kL) | Vr |]- This regime has never been observed in our full
inodel simulations because we are always above the absolute threshold. Instead we
observe a conversion into an absolute growth rate o< exp(2Fgps mt] which
begins at t ~ L/4V, and continues until nonlinear effects come into play.

In order to demonstrate the intermediate growth rates explicit length depen-
dence we have plotted the time history of three different interaction lengihs in
Fig. 3.4. All other parameters I = 4.8 - 10" W/emi?, n§/n, = 0.2, T, = 0.5keV,
ZT.|T; = 30, Z = 2, Ay = 0.531um in Fig. 3.4 arc identical except for the
interaction length where the fastest growing mode corresponds to a length of
L = 150)\¢(dotted curve) the second curve was obtained with L = 100Ay(solid
curve), and finally the slowest growth was observed for L = 50\y(dashed curve).

The necessity of including the Zakharov interaction in deseribing the later evo-
lution of SRS is illustrated by Fig. 3.5. As long as the SRS driven Langmuir made
E}, dominates the evolution, ie. up to the moment of first saturation, the behavior
of the SRS reflectivity R Fig. 3.5(a) {ollows closely the behavior of the maximum

value of the electrostatic field | E |2, Fig. 3.5(b). Once other nonlinear processes

in the plasma begin to affect the evolution, | E |2 .. deviates substantially from the

SRS reflectivity evolution, where in Fig. 3.5 strong maxima in | E |4, produce
little change in R. 'This deviation indicates that in addition to SRS there are other
process present driving the Langmuir evolution.

In the case of the electromagnetic modes for very underdense piasmas the linear

dispersion relation (1.3) will depend on w, only very slightly thus

w~ck (3.6)

and hence a monochromatic EMW should be approximately described by a single
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Figure 3.4: Ezamples of time evolution of the Fourier component at k = ky, of the
Langmuir field E(z,t) obtained from numerical solutions of equations (3.1)-(3..
for the plasma interaction lengths: (a) dashed curve L = 25pum, (b) solid cure:
L = 50 um, (c) doited curve L = 75um for parameters I = 4.8 - 10 W/cm?,
ng/n.=02,T, =05keV, ZT,/T; = 30, Z = 2, Ao = 0.531 um.

mode when propagating through the plasma. In fact this is the observed result
in oui simulations. The pump and backsc:‘tered Raman waves can be described
by single modes throughout the simulation. If we were not interested in ..nalysing
forward Raman or Brillouin scattering the electromagnetic components of our fuil
code could be replaced, as was done for example in [49] by spatially enveloped

variables which vary only on long scale lengths.
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Figure 3.5:  Results from numerical integration of equations (8.1)-(3.4) for the
parameters L = 50 um, i = 3.3- 10 W/cm?, n§/n. = v\, [, = 1 keV, ZT,[T; =
10, Z = 5, A = 0.331 um. (e) SRS reflectivity time hiziory and (b) Maxi qum
of the eleciric field as a function of time. The field values are normalized to the
average thermal energy | Emaz |2=| Emaz |? /(470gT,).

3.3 First saturation of stimulated Raman cca*-
tering by parametric decay instability

As SRS evolves through its linear stages of growth, the slowly varyiug spatial
envelope of the Langmuir wave field will interact with the ion densiiy through the
electron-ion coupling of the Zakharov equations. Even though the ion deunsity does
not grow temporally in this phase of the evolution it will respond adiabatically

to the presence of the electrostatic fields. This response is illustrated in Fig. 3.6



for the parameters L = 50 um, I = 3.5 - 10" W/cm?, n§/n, == 0.1, T, = lkeV,
2T.]T: =10, Z =5, Ao = 0.531 um for t = 12.12 ps of Fig. 3.5 . The electrostatic
ficld is below the PDI threshold of E2 /d47n§T, ~ 1.7 - 1073 and hence only the
single mode at k;, (Fig. 3.6(a)) will contribute to the smooth variation of | E |2
in Fig. 3.6(b) (left hand scale). The ion density noise source S4(z,t) around k4
can be seen as the random ion density fluctuation of Fig. 3.6(b) (right hand scale).
Also clearly visible is the respoiise of the ion density fin- tuations to the presence of
the Langmuir field (z < 15um). This responsc can h. seen in the density spectra
as the strong i ~ 0 peak in Fig. 3.6(a). The thir ;.cak .\ > {.4kp, which can
be seen in the density spectra of Fig. 3.6(a) is associated with the nonresonant
coupling of the porderomotive force termn associated with the Zakharov equations.

In order to understand the density response we ignore the temporal derivative

in equation (2.58) and derive the approximate relation for the density response of

(3.7)

resulting in a coherent source term for the background den:i*y. The density N,
will be driven: by the pouderomotive force (3.7) until suct. time that the Langmuir
fields are above the PL - -ireshold | Ey, |2. As the SRS driven Langmuir wave
approaches the PDI threshold this increase in background density and its effect
on the Langmuir noise levels will drastically alter the initial noise levels for PDI,
creating density fluctnations far in excess of thermal levels [71]. N,, through its
interaction with the Langmuir fields will also produce changes in the Langmuir
~oise levels, making predictions of exact roise levels difficult. These noise levels
will play a critical role in determining the timing and saturation amplitude of the

L...t termination of SRS growth. This nonstationary transient regime is subject to
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Figure 3.6: Resds from the numerical integration of equations (3.1)-(3.4) att =
12.12 ps of Fig. 3.5 for parameters L = 50um, I = 3.3- 10" W/cm?, n&/n. = 0.1,
T, = 1keV, ZT.JT; = 10, Z = 5, Ay = 0.531 um. (a) Fourier spectrum of the
electrostatic electric field By, = Ey [(4nngT.)"/>and density Ni.. (b) Spatial profiles
of the electrostatic electrir feld | E |>=| E |* [(47ngT.) and density.

the iritial conditions imposed on the plasma as well as ihe nontemporal evolution
of the ion density creating difficult problems in predicting the exact time and
amplitide of first saturation.

The approx‘mate five wave coupling model which should describe the main
feat-ires of the initial SRS-PDI interaction is based on equations (2.70)-(2.72) with

the addition of a density coupling in (2.71) producing the equation



k
aab;b + vbaf tyo By = 25 Ly EoE} ~ N(”E“) (3.8)

4 Me WRpWoW ¢,
and two extra equations describing the slowly varying evolution of the PDI satellites

aNg) aﬂl(l) (l) (1) k(1)2 (1)...
KNG = —A4— —F/E 3.9
ot té oz +7a(ka")Na 167rn0m,- ﬁ,l) L (3.9)
BE( ) (l)aEgl) (1) ,(1)
o Vg tE = 4w ‘L (310

whe: wf,,l) = c,k(l) Ny (1) is the first ion acoustic daugiter wave and E is the first
Langmuir daughter wave.

As s illustrated in region 2 of Fig. 3.1 the first saturation of SRS takes the form
of a sh~rp hurst of reflectivity which can reach very high values. This abrupt peak
is caused Ly the competition of the SRS and PDI processes, as energy supplied to
the Langmuir mode at k; is now balanced by the energy absorbed by the first PDI
Langmuir satellite at Ic(Ll). In region 2 of the SRS evolution, which begins once
E| exceeds the PDI threshold Ey;, (3.5), SRS can be approximately described by
a five wave interaction model (cf. [76]-[78]). The previously mentioned spatial
response of the density to the presence of the Langmuir field evolution supplied by
the Zakharov equations limits the applicability of the five wave model, but does
permit a discussion of the basic physical processes involved in region 2 of the SRS
temporal evolution.

In principle the first saturation of SRS by PDI should be reproducible by the
five wave mode coupling equations (2.70), (2.72), and (3.8)-(3.10). Attempts at
reproducing il 13t {wo stages of the full model evolution through the use of five
wave model have emphasized the necessity of the inclusion of the initial evolution of

the electrostatic noise levels. The linear stages of evolution are easily reproducible
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Figure 3.7: Comparison between the 1 niis obtained frown the five-wave (5WI)
model equations (2.70), (2.72), and (3.8)-(3.10) (dashed curve) and from the full
model (full) equations (3.1)-(3.4) (dotted curve) for the sor.c parameters as in Fig.
3.5. The long dashed and solid curves correspond te the five-wave model with an
eztra source term proportional to Ey, in equation (3.10) (5WI+S). The latter models
in a crude way, the effec of nonresonant wave coupling present in the Zakharou

model.

and are in good agreement between the two models. The subsequent timing and
maximum amplitude of the SRS saturation are however quite different. Figure
3.7 illustrates the difference between the reflectivity evolution of the five wave
(dashed curve) and the full model (dotted) simulations. All parameters and initial
conditions were identical L = 50 um, I = 3.3-10M W/cm?, n§/n. = 0.1, T, = 1 keV,
ZT.|T. = 10, Z = 5, Ay = 0.531 pm producing markedly different saturation
evolution. The five wave model does not contain the sharp saturation of the full

model, and has the characteristic slow saturation usually associated with pump

GJ



depletion as the primary saturation mechanism. To approximate the correct results
we added to equation (3.10) a source term proportional to Ey, which was varied
in strength until a more correct reflectivity curve was obtained. As is illustrated
by the long dashed curve of Fig. 3.7 by varying the strength of the source term in
(3.10) we were able to produce the correct level of SRS reflectivity. However the
time when this peak occurred did not correspond to the occurrence of the maximumn
SRS reflectivity of the full model (3.1)-(3.4) (dotted curve). By varying the initial
density fluctuation we were able to correct this timing error, but this resulted in
an incorrect value for the peak reflectivity (solid curve). To reproduce the exact
evolution of the full model through the use of the five wave model is quite cifficult
em: w an analysis by the five wave model may lead to incorrect results.

' 8 illustrates full mnodel simulation results at ¢ = 18.64 ps (cf. also
Fig. 3.5) just after the first saturation for run parameters L = 50um, I = 3.3 -
104 W/em?,n§fn. =0.1,T, = 1 %eV, ZT,/T; = 10, Z = 5, Ag = 0.531 um. Each of
the three electrostatic components involved in the PDI process are clearly visible
in Fig. 3.8(a) where the SRS driven Langmuir wave at wy,k; has decay=d into
the Langmuir component at wg), k(,}) = Ak — k;, and the ion acoustic component
at wf,l),kﬁ,l) = 2k, — Ak. Fig. 3.8(b) shows the spatial dependence of | E |2=]
E |? /47ngT. and N at the same moment in time. Two distinct spatial regions
are noticeable: in the right part of the interaction region (z > 12um) only one
electrostatic mode is excited producing the smooth variation of | E |2. In the left
region the short scale variation is produced by the beating of the two Langmuir
components k;, and k(,}) .

PDI itself begins evolving at the maximum of the Langmuir field, which is

dependent on the pump amplitude and linear damping rate, and is reasonably
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Figure 3.8: Results from the numerical integration of equations (3.1)-(8.4) for t =
18.64 ps of Fig. 3.5 for parameters L = 50 um, I = 3.3-10"* W/cm?, n§/n. = 0.1,
T, = 1keV, ZT,|T: = 10, Z = 5, Ag = 0.531 um. (a) Fourier spectrum of the
electrostatic electric field Ey, = Ei[ (4mngl.)/2and density Ni. (b) Spatial profiles
of the electrostatic electric field | E |*=| E |* /(47n{T.) and density.

approximated by ZTmarz =~ Ler = m4/Vy | Vg |/271(kL), and spreads through the
interaction region at the rate of the Langmuir group velocity. The region of PDI
activity spreads at a mucii slower rate than that of SRS. Stimulated Raman scat-
tering spreads through the interaction region at the electromagnetic group velocity,
quickly producing an instability that is modified by the loss of energy due to the

convection of electzomagnetic energy through the plasma boundary. In contrast,

due to the slower propagation of electrostatic modes, PDI evolves at a rate pro-
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portional to that of a plasma of infinite extent. The appropriate growth rate I'pp,

can be found from the PDI dispersion relation of Chap. 1 equation (1.23) which is

given by

(=20 ppi7a(ky’) = T s + 268 [Cpps + 74 (k)] (=iCrpr — ivi (kL))

21,2
— wpcskA 2
= g | BL ' (3.11)

As the PDI modes grow, a greater portion of the energy supplied to the SRS
driven Langmuir mode Ep, will be absorbed by the PDI Langmuir satellite Egl).
Thiv energy sink provides an effective damping of E resulting in its eventual
saturation. At the moment of saturation we can thus approximately balance the

variation of | Ey, |2 by the increase in | E{" |? producing

Tsns | B3 [P~ Tppy | EPM |2 (3.12)

where ['gps is the appropriate SRS growth rate, which depending on the length and
intensity will be either the intermediate or absolute growth rate. Here I'pp; is the
PDI growth rate found from (1.23). Through the use of numerical calculations the
electrostatic field amplitudes are found to be | E3%t || E;*™ |2 revealing that
Tppr > [sps at the moment of first saturation. This difference in growth rates
produces the sharp peak in reflectivity when PDI reduces the SRS driven Langmuir
wave to the PDI threshold (3.5) on a short time scale of the order of At ~ 1/Tppy.
""his saturation of SRS initially applies only to a small fraction of the interaction
length L and begirs to slowly propagate through the rest of the plasma (cf. Fig.

3.9
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Figure 3.9: Results from the numerical integration of equations (3.1)-(3.4) fort =
19.82 ps of Fig. 3.5 for same parameters as Fig 3.7. (a) Fourier spectrum of the
electrostatic electric field Ey, = Ei[(4wngT. )" ?and density Ni. (b) Spatial profiles
of the electrostatic electric field | E |*=| E |? [/(47n{T,) and density.

3.4 Intermediate nonlinear regime

After the first saturation of SRS the cascade process will continue, producing
Langmuir waves at k"™ = {(=1)™Ak — & and ion acoustic waves at K§+") =
kS — kD, The third stage itself can evolve in two distinct ways: (1) the Langimuir
fields localize and truncate I*'DI cas «ding producing a slow transition into a final

asymptotic state or (2) if the Langmuir waves are still well above PDI thireshold af-

ter the first saturation then the ion density fluctuations continue o grow. This also
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affects the SRS cou;'ling and, because under these circumstances I'pp; > "M(k&l)),
the secondary satellite continues to grow after first saturation. This will produce
a strong energy sink for the SRS driven Langmuir wave energy and hence acts to
efiectively damp this wave. The combination of this effective damping and the
interferenz» with the SRS coupling will reduce the Langmuir energy to approxi-
mately noise level from which stages 1 and 2 repeat quasiperiodically, producing
pulsations of SRS reflectivity, until I'pp; is reduced to a level where asymptotic
saturation occurs.

The PDI cascading process occurs at a fairly rapid pace, where the presence of
k(Lz) and kf,z) at t = 19.82ps is shown in Fig. 3.9. The appearance of :he sccond
Langmuir satellite at k(Lz) is very important in the evolutionary process of SRS.
Unlike the multi-wave mode coupling models of Heikkinen and Kaivin~er the Za-
kharov interaction allows the PDI cascade components to interact produvinr .-
modes which would not otherwise exist in the plasma. Of particular importance
is the ponderomative coupling of k; and k(Lz) to produce an ion acoustic mode at
ka = 2Ak which will couple with the Langmuir field to produce waves at k > ¥,
and k < k(Ll). Figure 3.10 shows this characteristic behavior for | £ |2 in the form of
the superposition of k;, and k{¥) producing the longscale length modulation of | E |2
i “iie right section of the interaction region z =~ 16 — 24um. These modulations
of characteristic wavelength 27/2Ak proceed the PDI because the Langmuir mode
at kﬁ?) propagates to the right and interacts with the k; mode before k(Lz) has a
chance to decay parametrically. .

As the evolution continues the modulation of the pump Langmuir wave results
in localization of the high frequency electrostatic fields with periodicity 27 /2Ak (cf

Fig. 3.11). The PDI produced density fluctuations are phase shifted with respect to
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Figure 3.10: Results from the numerical integration of equations (3.1)-(3.4) for
t = 20.6 ps of Fig. 3.5 for same parameters as Fig 3.7. (a) Fourier spectrum of the
electrostatic electric field By, = I3, [(4mngT.)/2and density Ny. (b) Spati=! profiles
of the electrostatic electric field | E |>=| E |? [(47n¢T.) and density.

the Langmuir fields resulting in a configuration for which the density and Langmuir
field maximum are anti-correlated. Such a field configuration corresponds to a
Fourier spectra with components at k; = m2Ak and k%)  m2Ak which is a clear
indication of the localization process for which the slow scale modulation ~ 27/2Ak
plays an important role. The presence of the density modulations allows for the
partial decoupling of the SRS process ullowing the Zakharov equations to play a.
more prominent role.

As can be seen in Fig. 3.11 the PDI density components in region 12 —25um are
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Figure 3.11: Results from the numerical integration cf equations (3.1)-(3.4) for
t = 23.54 ps of Fig. 3.5 for same parameters as Fig 3.7. (a) Fourier spectrum
of the electrostatic electric field E, = E/(4nn&T,)/2and density Ny. (b) Spotial
profil=s of the electrostatic electric field | E |*=| E |? /(47nET,) and densiiy.

- .ited by 180 degrees from the large Langmuir field components. In these
per.udic 1egions of high density SRS evolution has been quenched. Competitiou
between the SRS coupling and the Zakharov interaction are clearly evident, pro-
ducing a transitory stage of evolution which will last until SRS has been partially
decoupled through out the plasma. This transient time of evolution is related to
the time needed for PDI active region to spread from the left to the right end of

the interaction region.

To obtain quantitative estimates of the intermediate nonlinear regime of SRS we

76



use simplified versions of (2.57)-(2.60). To determine whether one obtains pulsating
bursts of reflectivity or monotonic behavior one must examine the relationship of
the ion acoustic damping to the parametric growth rate. Should 7,4(k£‘”) [Tenr <1
then quasiperiodic bursts are possible. In contrast if the ion damping is a large
fraction of the growth rate then only a single burst of reflectivity will be observed.

Both of these possibilities can be examined by using an approximate version of

(3.9)
oNy’ 1)y A7(1) kY (1)
R s Y/ (L L N Ny > (3.13)
ot N 167nimw’ ;
)

where the spatial derivative is mitted because the ion damping length ¢,/va(k
is much smaller than the PDI active region. During the transient nonlinear regime
PDI is well developed allowing us to assume E; = EEI' * which has an accuracy to

an order of magnitude, and allows us to write

AN oD
“oi= kNG =~ | By (3.14)

where | Ey, |?=| E, |? /47ngT.,
In the non-pulsating cases, the density during the transient and saturation
stages is maintained at approximately a constant level so that in the first order

approximation of the asymptotic state the time derivative can he ignored producing

1 Pas |
47A(k£11)) w:" I Elhr |2 »

where | E,‘j’ |2 is the approximate Langmuir ficld energy in the asymptotic regime,
region 4 of Fig. 3.1. The variation of Nf,” during the transient regime should be

larger than the damping effects allowing us to approximate th” in this region as
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(n “)(1” 5
Ny = —2— | EL P (1 =t (3.16)
4y (kY "

where the solution is restricted to the time interval A < 1/),.‘(kf,\”). This gives us
the approximate relation between N,(‘” and | E, |2 in the transient regime and is
approximately valid for the interval Tppy/ ')'A(kf‘l )) < ’y,.‘(kf,‘l ))(t — tw) < 1 where
tsat = 1/Tpps is the duration of the first peak. If the density varies only slowly
as the transient regime moves into the saturation state, we can equate (3.15) and
(3.16) to yield the variation of the intermediate Langmuir field in relation to the
asymptotic state

| g |?

]
7zl(k£\ ))(' - t.ml)
This is in good agreement with simulations of the non-bursting type where SRS

| EL |*=

(3.17)

reflectivity always follows closely the evolution of E;, and has been observed in
simulations to decay on the ion acoustic dampiug timescale. All our simmlations
have the characteristic decay of the transient regime comparable to 2/ 4( l.r(A” ).
Equation (3.17) can be used to produce a more accurate description of the
density fluctuations if one substitutes (3.17) back into (3.14). Ignoring the damping

one observes that

N ~ In[ya(K§)(t = t,a1)] (3.18)

where the density during the transicut regime evolves at approximately a logarith-
mic rate. This slow evolution can be observed in Fig. 3.12 for which the spectral
density component oscillates slowly about a constant saturation value. In contrast
to this development the temporal evolution of the density fluctuation during a pul-

sation is quite different in character. As one observes in Fig. 3.13 which presents
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Figure 3.12:  Time cvolution of the Fourier component at k = k;, of the Langmuir
field E(x,t) and density obtained from numerical solutions of equations (3.1)-(3.4)
for the parameters L = 25um, I = 4.8 10" W/cm?, ng/n. = 0.2, T, = 0.5keV,
ZT,[T; =10, Z = 2, Ay = 0.531 um.
the temporal evolution of the spectral components of Fy, and Nj, for run param-
eters of Fig. 3.2 , the density continues to grow at an exponential rate even after
the first saturation. For this to occur the PDI growth rate I'pp; must be much
larger than the ion damping rate 7,.(kf,”) and the transfer rate of energy to other
modes.

As we observed earlier the production of the density fluctuations together with
the growth of secondary Langmuir waves can act as an effective damping on the SRS
driven Langmuir wave, and together with the decoupling of SRS, damp the wave

to thermal noise levels. Figure 3.13 illustrates this behavior for the pulsating run

of Fig. 3.2. Once E|, passes through its first saturation the ion density component
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Figure 3.13: Time evolution of the Fourier component at k = kj, of the Langmuir
field E(x,t) and density obtained from numerical solutions of cquations (3.1)-(3.4)
for the parameters of Fig. 3.2

continues to grow, decoupling SRS. As N,(,” and E;J” continue to grow, further
energy is drained from Ej. As the encrgy of Ey, is drained away the PDI growth
rate is reduced eventually leading to a saturation of the sccondary satellites. Unlike
the nonpulsating runs, a high enough level of density fluctuations have been built
up as compared to the rate of dissipation due to ion damping, so that these density
fluctuations continue to exist, maintaining the SRS decoupling, for sufficient time
permitting E; to be damped back down to noise level. The ion density t,lmn‘
continues to damp eventually allowing SRS to once again establish itself and the
sequence repeats itself. During subsequent bursts E;, will usually reach smaller and
smaller values at first saturation until PDI growth rate I'pp; is of a value that will

not produce pulsations and the SRS evolves into its asymptotic quasistationary
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Figure 3.14: SRS reflectivity as a function of time obtained from numerical solu-
tions of equations (3.1)-(3.4) for the parameters of Fig. 3.12

saturated state.

The dependence of the two evolution scenarios on the ratio Fpm/'yA(kﬂ,l)) is
illustrated in Fig. 3.14 where only a monotonic SRS burst is obtained. Figure 3.14
was obtained by running identical parameters to Fig. 3.2 except for the electron-
ion temperature ratio. In this case ZT,/T; was lowered from ZT,/T; = 30 in Fig.
3.2 to ZT./T; = 10 in Fig. 3.14, thus raising the ion acoustic damping rate. We
were always able to change the behavior of our simulation runs from monotonic to
quasiperiodic like behavior by reducing the ion wave damping and/or by increasing
the ratio I‘pm/'y,‘(kﬁ,l)).

An example of the transition from monotonic to pulsating bursts by only chang-

ing Cppr/yal k‘(;)) is illustrated in Fig. 3.15 These two simulations were run for
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Figure 3.15:  Results from numerical integration of cquations (9.1)-(3.4) for the
parameters I = 2- 10 W/en:2, n§/n. = 0.2, T, = 3.5keV, ZT,/T; = 50, Z = 50,
Ao = 0.531 um for lengths: L = 25 um, (dotted curve) and L = 50 ym (solid curve)
displaying (a) SRS reflectivity time history and (b) Fourier components at k;, of
the Langmuir field.

identical parameters except for the interaction length L was changed from 25pm
(dotted curve) to 50um (solid curve). Note that this is consistent with the value
of T'pps /'7A(k£,1) ) which is larger for 25um because of the larger value of Ej—y, (sce
Fig. 3.15(b)) in the intermediate nonlinear regime. Physically, PDI is much more
effective in the termination of SRS leading to bursts in reflectivity when the region
of its activity corresponds to a large fraction of the interaction length, as in the

shorter box run.
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In summary, the intermediate nonlinear evolution of SRS depends on the fur-
ther development of the PDI caseade, which is usually disrupted in our runs after
the seecnd stage. The loealization of the Langmuir waves that accompanies the
troncaiicn of the PDU cascade is related to the spatial evolution of the instability
that starts locally and sprearls in the plasma during the quasistationary evolution
of reflectivity. The decay of the Langmuir wave amplitude and of the reflectivity
toward the stationary asymptotic values takes place on the scale defined by the
ion wave damping 1/74(k{?). For large values of T'pps/v4(kY’), SRS occurs in
bursts and while it is difficult to predict the value of this parameter in an absolute
sense (I'ppy depends on the noise level and value of | EY, | at first saturation) we
can always change SRS behavior from monotonic to pulsating by decreasing the

damping cocfficient of the ion-acoustic wave.

3.5 Final asymptotic saturation

As the PDI active region spreads through out the interaction length of the plasma,
and the localization of the electrostatic fields truncates the cascade, a final asymp-
totic quasistationary saturated state is reached. All simulation runs eventually
reach this well defined asymptotic state, which produces an almost stationary level
of reflectivity. To obtain a simple estimate of this stationary state, the two nonlin-

car terms in (3.8) are assumed to balance each other producing the expression

L2
le kuwy

2
MY oo Ye () (1) _
rr—— E;, 4wLNA E;’=0 (3.19)

Here Nf,l) and E(Ll) correspond to the density and Langmuir field only in an average
sense. The numerical results (Fig. 3.16) show a random distribution of | E |? and

N at later times. These turbulent Langmuir and density fields are very similar to
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those shown in Fig. 3.17 which used the same parameters except for a donbling
of laser intensity. The spectral results of Fig. 3.17(a) however eoutain a broader
spread in the spectrum, and appear to have a much stronger continuous component.
This suggests the presence of localization of the Langmuir fields, usually associated
with a Langmuir collapse. However the most pronounced part of the spectrum is
still associated with the discrete components of PDI during the first two stages of
cascading. Thus without invoking the mechanism of strong Langmuir turbulence
we can obtain expressions for the reflectivity scaling which are in good agreement
with numerical results. OQur parameters were always such that we remained in the
weakly driven Langmuir regimes where strong Langmuir turbulence was avoided,

In order to accomplish this we again approximate Ej =~ E}ll)', disregard the

phase variation and use (3.15) in (3.19) to produce the ”average” expression

E® = Eg.E} (3.20)

where we assume E§* > Ej,, and we have introduced the normalized scattered field

amplitude

- Er w, kim
ER = -_
Eur wrdyi(kL)

As we have shown the electromagnetic components are well approximated by sin-

(3.21)

gle modes and hence in the stationary regime the cvolution of the backscattered

electromagnetic component can be approximated by the equation

aEn _ kLvo

o = ki (3.22)

In the present derivation we will assume that no pump depletion occurs allowing

us to treat the electromagnetic pump as a constant. Combining (3.20),(3.21) and,
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Figure 3.16: Results from the numerical integration of equations (3.1)-(3.4) for
t = 58.86 ps of Fig. 3.5 for same parameters as Fig 3.7. (a) Fourier spectrum
of the electrostatic electric field E), = E/ (4mngT. ) /2and density Ni. (b) Spatial
profiles of the electrostatic electric field | E |2=| E |? /(47nT.) and density.

(3.22) produces the resulting equation

OEp Tirs _ pt
—_— = ——tn) __ '3 3.23
Oz (k) | V| " (3:23)

which can be integrated with the boundary conditions Ep(z = L) = 0 to obtain

for the backscattered electromagnetic component at the left boundary

s oo (2 Thasl \P_ (2}
ER(x_O)—(gn(kL’;IVRI) —(3A) (3.24)

Here we define the amplification coefficient for convective SRS as

85



CIE,

0.04 | 0.006
| 0.004
0.02
i 0.002
0 . . 0 — ™
. 2
0.2 k (kD) 0 0
f (b)
02t A 5
| IE| t=34.3 ps
VR
[ .0 3 i
H 3 4 3! .4 - N
- s o Sy (B "\ . Dol \.‘ —
01| % 3 N
| 2 L ] P S ad
0 10 20 30 50
X (nm)

Figure 3.17: Results from the numerical integration of cquations (3.1)-(4.4) fort =
34.3 ps for same parameters as Fig. 3.7. except for a doubling of laser intensity(a)
Fourier spectrum of the electrostatic electric ficld By = Ei./(4nn§T,)"2and density
Ni. (b) Spatial profiles of the clectrostatic electric field | E |2=| E |* [(4mngT,)

and density.

2
Tsnsl

A= SRS™
Yelke) | Ve |

By defining the reflectivity

_ | Vi || Er(z=0)|?

R
Vo | Eo(z=0)|?

we obtain ar asymptotic scaling law for SRS reflectivity
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R=R, (-A)3 (3.27)

where

Lo V203 (L (1)
R, = (krve.) ’YII;SM«)'Y;“A Jwp | Ve | (3.28)
srswiwaVo

This scaling law is lincarly dependent on the laser intensity and proportional to

L3. With this, the Langmuir field can now be estimated for the asymptotic state

giving

E® = Epy (gA) : (3.29)

It is important to note that the final SRS reflectivity and Langmuir field does
not depend explicitly on the linear electron damping coefficients thus the linear
damping will affect the way the energy is distributed through out the plasma but
will not affect the final saturation value. This result different from the scaling laws
proposed by Drake and Batha [43] who approximated the SRS saturated reflectivity
with the PDI threshold. Bezzerides et al. [65] have also proposed SRS scaling which
is dependent on the linear electron damping, however in their report the parameter
regime studied allowed for the development of strong Langmuir turbulence.

Our results have been tested against many numerical simulations producing
the results illustrated in Fig. 3.18. As one can easily see Fig. 3.18 illustrates the
validity of (3.27) presenting evidence which gives reasonable agreement between our
analytical theory and numerical simulation. Table 3.1 gives the range of parameters
under which the early simulations, equations (3.1)-(3.4) which did not contain the

SBS or anti-Stokes coupling, were performed.
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Figure 3.18: Time integral averaged asymptotic SRS reflectivitics plotted as a func-
tion of scaling formula, Equation(3.27). Ezplanations for the different symbols are
given in table 3.1. Vertical error bars denote the mazimwmn and minimun fluctua-
tions during the asymptotic regime.

In the recently proposed explanation [43] of the nonlinear properties of SRS,
(for example the spectral gap observed in many experiments,) Drake and Batha
assumed that the resonant Langmuir wave saturates exactly at the PDI threshold
value Ey,,. We have plotted our results for the Fourier spectrum component | Ey, |
of the Langmuir fields as a function of the PDI threshold (Fig. 3.19)

It is quite apparent from Fig. 3.19 that | Ei, | scales in good approximation
with Ey,.. It is also obvious that the saturation levels of the Langmuir wave am-
plitudes depend on the laser intensity and the plasma interaction length. Several

points from Fig. 3.19 were obtained for different interaction lengths or laser in-
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Figure 3.19: Time integral averaged asymptotic values of the Fourier transformed
Langmuir field at k = kj, plotted as a function of scaling formula, Equation(3.29).
Ezplanations for the different symbols are given in table 3.1. Vertical error bars
denote the mazimum and minimum fluctuations during the asymptotic regime.

tensities while the remaining parameters were held constant. These points depart
systematically from the simple scaling law proposed in [43] which is represented
by the diagonal line. The more refined relation (3.29) contains a dependence on
length and intensity, but because the numerical values of /4 are not very far from
unity, it will give a very similar result compared to a simple scaling with the PDI
threshold.

In more practical units (3.27) can be written as

‘/k(l) 3
R =6.54 10“°Te/\§114l—‘i—'i—l['—35(@) (3.30)
w4  AY M.
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where T, is the electron temiperature in electron volts, 1, is the laser intensity in
10‘41'V/cm2, and Ay and L are the wave length and the interaction length in gon

respectively. The density dependent function Z is givoi by

—— , , Y K}
EQ) _ Ny (1 - \/;1,0/1%)1/2 [(1 - ll()/7l,,)l/2 + (1 - 2\/”()/11‘.)1/"] (.‘ '“)
e fe (1 - 2\/”0//”0)(1 - ”()/“r)l/;’ o

Using equation (3.29) one can also estimate an upper bound for the intensity

=(

and length of the interaction region by enforcing E? /4mngT. < 1 which is one
of the limiting parameters associated with the validity of the Zakharov model
[51]. Under such restrictions, simulation runs, which both met this eriterion and
for which strong Langmuir turbulence was observed, were extremely rare for the

parameter regimes investigated. In practical units this criterion is given by

L VA(kS‘l)) [(l - no/nc)l/‘z +(1-2 '”l)/'”r)l/"!]L
Ao wa (1= 2y/ng/n.)/2

3.05 10741142 <1, (3.32)

Here L and Ag are in um and 7,‘(kf\' )) is given by (2.63).

In the parameter regime where pump depletion can no longer be ignored, the
saturation value for SRS reflectivity and the corresponding value for E; must he
recalculated. When pump depletion is included SRS reflectivity can be found by
solving the simple ordinary differential equation

dR(x) 2T% ps Wy

- — S (W 2]% N
e Tyt L [12 (J/)(c+w”n(l)) (3.43)

where R, is given by expression (3.28) and C = 1 — wyR(0)/wy. Similarly the

electrostatic field F;, can be found by solving the integral equation

A L
1B 2= 2282 11— “p0)+ 20 [" Rixyas (3.34)
3 Wh Lwn 0
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Both these equations are evaluated using a shooting code and are necessary once
the asymptotic SRS reflectivity is above ~ 10—15%. By using (3.33) and (3.34) the
agreement hetween our analytical theory and numerical simulation is also slightly

improved for parameters that do not lead to pump depletion.

3.6 Derivation of coherent and random phase
reflectivity

In deriving expressions (3.27) and (3.33) for the SRS saturation it was assumed
that the three wave modes producing SRS interact in a coherent manner throughout
the entire interaction region. The final asymptotic state is the result of balancing
the incoming laser energy with the conversion of this energy into Langmuir and
ion acoustic modes and the subsequent damping of such modes. The process re-
sponsible for this, namely PDI cascading creates a broad spectrum of resonant
and quasimode waves. Physically it is conceivable, especially for very large laser
intensities or very long interaction regions, that the SRS process may not remain
coherent for the entire interaction length. The spectrum itself, for high laser inten-
sities, becomes turbulent, restricting the actual coherence length L; to some length
much smaller than the length of the plasma L; <« L. As the system becomes more
turbulent the coherence length decreases, eventually reaching zero at which point
the phases are considered to be completely random. The two different phase ap-
proximations, coherent and random, represent the upper and lower bounds for the
length dependence of our system. We will examine the SRS reflectivity from both
extremes allowing us to determine to what extent each of the models applies to
our analysis. Because a similar analysis of which model, random or coherent, will

be necessary in Chap. 4, we proceed using the general 3WI forms of the respective
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phase approximations.
For a system of three waves with coherent-phase wave-packets (ef. Ref. [4], [5])

one has the equations

E 8 :
(55 + V,%) Ak, = —my / / dkadky Ak, Ay 6(ky — ky = k) exp(iAdt)  (3.35)

0 0 . .
(at + V23 ) Ay, = ng//dkldk;;Akl Ag,6(ky — ky = k) exp(—iAdt)  (3.36)

a
( gt + Va3 ) A, =1 / / dhpdky Af, A 6(ky — ky — ky) exp(—iAdt)  (3.37)

where Ax;;j = 1,2 represent the clectromagnetic component spectral amplitudes,
Ay, is the electrostatic spectral amplitude, and A® = w; —w, —wy is the phase mis-
match. For SRS m; = e(w; + w3)wlks/2mew wyws, 1p = e(w) — wa)wiky/2mwiwawy,
and 3 = ew§k3/4mew1w2w3. If we assume that the wave packets of the spectral
components are very narrow around some specific wave number then we can make
the approximation [ dk Ay ~ Ag. Taking the appropriate integral over k and finding

stationary solution to (3.35) and (3.36) produces the equations

9 - I
Vig-A, = —m Ay, Ay, . (3.38)
a e i ~t
Vz(’)_:rAk’ = T)gA/cl Ak; (3.39)

where after integrating the delta function ky = ky + k3, and w; = wp + w3. To

produce a more general form of the reflectivity derivation in Chap. 3.5, which can
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be also used to discuss work in Chap. 4, we rewrite (3.38) and (3.39) in terms of

the ponderomotive potential amplitude P and phase ¢ [65], [94] where

Pe'd’

I AklAkz I eid’ (3.40)
producing the equation
1
oP 2 P? 2
—_— = —_— R[P 341
oz zcc+w1wo|VoV1|] (2] ( )
where
® = Ay, exp[—i¢) (3.42)

Here C = —(| Ak (0) |2 JwrVa) + (| Ay (0) |2 /waVi), P(0) = 2I\/ViR/V; and
P(L) = 0. For SRS the subscripts 1, 2 represent the laser pump and Raman
backscattered wave while the subscript 3 refers to the Langmuir mode, here also

for SRS ¢ = ewf,k,, /2w m,.. Integrating (3.41), one can produce the expression for

reflectivity of

| Vall A 2 _ we 2[ L. : ]
R = —————=——=—tanh® |a | A, exp|-id|dz
Vil An P o Jy Ao expl=il

o~ 2 | a / Ay, exp[~ig)dz |2 (3.43)

where for SRS a = ewyk;/2m.c?\/kokg. In deriving (3.43) it has been assumed
that Ay, is essentially independent of P. If a strong dependence on P occurs then
(3.43) takes the form of an iterative equation with Ay, = Ay, (R). For convenience
of this discussion we assume that the phase of Ay, is ¢ and that A, is independent

of x producing the approximate cxpression
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R x| Ay, |* L? (3.44)

Examining the equations describing the evolution of the random phase wave

packets (cf. Ref. [4], [5]) we have

(Bat + Vi ) | Ak, = —5 //dkzd’vsé(kl — ky — k3)6(APt)

| Ak, |2| A, |2 _ 2 I Akz |2| A, Iz + 2 I Aky |2| Ap, lz (3.45)
T wiws Wawo Wiy -
g
(aﬁ"? ) | Aty 2= =5 [ [ dkadiabihy - ks — k)o(A%1)
2 2 2 2 2 2
X[IAk,IIAk,I _ 2146 PlAG P 2] Ab ] Au | ] (3.46)
wiwo wawo wywy
(7]
B A Vins) [ Au 2=~ [ [ dkadis(k =y = k)s(A0)
x [I Ak, |2] Ak, |2 _ 2 I Ap, |2| Ak |2 + 2 l Ak, IZI Ap, |2] (3.47)
wWiwo Wiz wiwg

For SRS ) = e*wlk}/2m2wsws, B2 = w2k} /2m2wyw,, and By = ¢ 2wlk3 [16miwswaw,.
Ignoring the nonresonant nonlinear terms, calculating the integrals and finding sta-

tionary solutions produces:

a 2 ﬂl 92 2
Vigy 1A = == | A 1 A | (3.48)
Vo | Ay, [P= -2 | A, (3.49)
gz ' Viwaws ?

94



which can be manipulated in terms of an analogous ponderomotive potential

P
5 =l A 1 Ay, (3.50)

producing the reflectivity expression

| Vall A, I* _ | Vo w2 L 2
R= = 121920 / A, |2 dz
Vi| Ay 12 Vi w o o | Ae

L
o~ I—‘-‘%—I“w—u—f [a,/o L Ay, |2 dx] (3.51)

where @, = €%k2/m2wyw, | Vo | V1. If we again assume that amplitude is indepen-
dent of x and performing an integration over the wave numbers of k3 we arrive at

the reflectivity expression

R / dks | Aw, [2 L = (DL (3.52)

where (A?) is the average spatial amplitude.

If the width of the coherent wave packet is relatively narrow, (3.44) for SRS is
approximately proportional to our expression (3.27) where x‘ik;, is given by (3.29),
and hence would produce a linear dependence on intensity and cubic dependence
on length. In contrast should a turbulent description be more consistent with our
simulations one would expect to find a reflectivity with a length dependence other
than cubic. In the case of completely random phases one would expect a reflectivity
linearly dependent on thke interaction length.

As is casily observable from Fig. 3.18 the correspondence between the sim-
ulation and theoretical reflectivities is in good agreement with a coherent wave
description. However should the intensity regime or other changes in our param-

eter space produce a much more turbulent spectrum, then it may be necessary to

95



modify our analytical results. For example, the recent study by Betzerides et al.
[65] has explored regimes for which strong Langmuir turbulence is identified as the
saturation mechanism of SRS and hence an approach tending towards a turbulent
description may provide a more accurate scaling for their results than our analytical
expressions. For the parameter regimes examined here, a coherent wave description
proved adequate. However, in the next chapter we examine enhancement of para-
metric processes occurring simultancously with SRS. Under these circumstances
forward Raman and Brillouin scattering appear to be well approximated by a more
turbulent system somewhere in between a coherent and completely random phase
description, while the anti-Stokes Raman components appear to be described by

an almost completely random phase.
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Chapter 4

Laser light scattering from
fluctuations enhanced by
stimulated Raman scattering

In general, the PDI cascade and the interaction of resonant waves and quasimodes
created during the saturation of SRS will produce broad Langmuir and density
spectra. The spectral width in each case will be dependent on the laser intensity
and interaction length through the asymptotic amplitude of the SRS driven Lang-
muir wave (3.29). Depending on the strength of the SRS amplification coefficient
A, the spectrum can range in nature from a narrow pedestal like structure around
the primary PDI wave numbers kg, k(,}) and kfll), to a continuous spectrum over-
laid with discrete components. Should sufficient noise levels be generated, there
exists the possibility of scattering large amounts of laser light through other known
resonant channels such as Brillouin [88], [89], [69] or forward Raman [82], [100].
Resonant processes = 1bie to small perturbations such as the anti-Stokes Raman
scattering components : »y also be affected by these enhanced noise levels. The
possibility of scattering li, - from these enhanced levels of electrostatic fluctuations
can thus lead to explanatioi f experimental observations of anti-Stokes Raman

reflectivity. Such a concept could also be applied to the experimental observation
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symbol| nyn., | To(keV)| ZT /T, | Ag(um)| (wrem?) | Lium) | Z
.05 .05 5 10 | 510 | 250 | 3
04-08 | 3-6 | 610 | 1 |.5.610" |60-500| 2-6
1-12 | 57 | 78 | 1 |5910° |s0-250 2
1-15 | 1-1.2 | 5-10 |1,053|510 10"|25-250| 25
14 2.0 g8 |os3| 110" 30-10(14

2 |57 | 68 | 1 [s-2510%50-100] 25

2 445 | 48 [1.053].2510" |25.250] 2.8
2-212 | 20 | 810 | 0.53 |-4-8310™ [30-100] 5-8

B(>le|0(» (0|«

Table4.1: Parameters used in simulations of equations (2.57)-(2.61). The symbols
are used in Figs. (4.5), (4.6) and (4.7)

of anomalously high levels of Brillouin reflectivity and forward Raman scattering.
This chapter is devoted to studying under what conditions the enhancement of these
secondary processes will take place in our model. Numerous sets of parameters (sce
table 4.1) were used to examine different regimes for which this enhancement may
apply. Even though the parameter regime is extensive, simple criteria for strong
enhancement are found and reflectivity scaling laws are provided.

To illustrate how the enhancement process may affect other parametric pro-
cesses occurring simultaneously with SRS, Fig. 4.1 contains a typical time history
of the SRS reflectivity and the other processes of Brillouin, and forward Raman
scattering as well as the anti-Stokes forward and backward Raman scattering. Ini-
tially SRS (Fig. 4.1(a)) is observed evolving through the lincar stage of its develop-
ment in region 1, which then proceeds into the first sharp saturation caused by PDI

in region 2. At this point the enhancement of the secondary scattering processes
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Figure 4.1: Reflectivity as a function to(fp ti'me obtained from numerical solutions
of equations (2.57)-(2.61) for the parameters L = 60 um, I = 2.5 - 10" W/cm?,
ng/n.=02,T, =1keV, ZT./T; =8, Z = 3, Mg = 0.531 um; (a)SRS, (b)Brillouin,
(c)forward Raman, (d)anti-Stokes backwards Raman, and (e)anti-Stokes forward
Raman

begins, producing a very rapid increase in the reflectivity levels of Brillouin (Fig.
4.1(b)), and forward Raman (Fig. 4.1(c)), as well as anti-Stokes backward (ABR)
(Fig. 4.1(d)) and forward Raman (AFR) (Fig. 4.1(e)). As SRS evolves through its
third stage the decay cascade continues, eventually producing broad Langmuir and
ion acoustic spectra of quasimodes and resonant modes. With this broadening of
the spectra the reflectivity level of the secondary components continues to increase
until SRS saturation occurs in region 4.

As the simulations pass through the transient nonlinear phase into the asymp-

totic regime, the Langmuir and ion density spectra broaden due to PDI and the
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interaction of quasimodes and resonant waves eventually reaching a quasistation-
ary state. A typical example, with parameters L = 30um, I = 2. 10" W /cm?,
ng/n.=0.2,T, =1.5keV, ZT,/T; = 8, Z = 3, \g = 0.531 um, of the electrostatic
spectrum is presented in Fig. 4.2(a) with the ion density spectra for the same case
appearing in Fig. 4.2(b). As one observes the regions, in which PDJ dominates, are
composed of large spikes overlaying a much lower continuous spectra. Quasimodes,
which do not satisfy (1.1) and (1.2), can be seen broadening the spectra around
the PDI induced peaks. The discrete components of the PDI cascade are easily
identifiable and are separated by Ak = %kD‘/Z me/m; in the Langmuir wave spec-
trum and 2Ak in the density spectrum. In Fig. 4.2 we have identified the various
wave numbers associated with our investigation. Here k' # refers to the Stokes
coupling of forward Raman while the components kB2 ~ —0.27k;, (not shown)
and kf®" ~ k' refer to the Langmuir waves describing anti-Stokes backward and
forward Raman scattering respectively (see table 2.1). In the density spectra kf‘”
is the first PDI daughter wave and k¥ is the Brillouin density component.
Through many simulations an exponential decrcase in the spectral amplitudes of
the Langmuir and density cascades in the PDI active regions have been determined.
The maximum amplitudes of the spectra occur at NV, ) in the ion acoustic spectra,
and Ej_;, in the Langmuir spectra, and are well approximated by the expression
(3.15) and (3.29) for which (3.29) is used to estimate the density amplitude. The

spread of the spectra can be approximated by

Akspr = FPDl/cs (41)

where I'pp; is the PDI growth rate, c, is the ion sound speed, and Ak,,, is the

spread of the wave spectrum. Using (4.1) the electrostatic wave number spectra
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Figure 4.2: (a) Electrostatic and (b) density spectra obtained from numerical so-
lutions of equations (2.57)-(2.61) at t = 62.4ps for run parameters L = 30 um,
I=2.-10"W/cm?, n§/n. =02, T, = 1.5keV, ZT,/T; =8, Z = 3, Ao = 0.531 um

can now be approximated by the expression

E;p | k=% |
= — - —— 4.
EL \/EGXP[ ﬂ( Akapr )]? ( 2)
for the Langmuir spectra and
1 W) B | k- & |
Np=-—4 exp[—4 [ ——2—-1]. 4.3
T3 ya(kD) 47mng T, [ Akgp, ] (43)

for the ion acoustic spectra. Here k| is the resonantly driven SRS Langmuir mode,
wf,l) and 7A(k£,”) are the frequency and ion Landau damping coefficients associated
with the first PDI ion mode. § is a parameter used to determine the slope of the
spectra. In the region where the PDI cascade dominates § ~ 1 Fig. 4.2 (dotted
line) and § =~ 2 in the strongly driven regions where the PDI cascade is absent Fig.

4.2 (solid line).
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Good correspondence with numerical data can be achieved if the exact solution
of the PDI dispersion relation (1.23) is used. In (1.23) E is determined by using
the appropriate expression (3.29) or (3.34) and by using the PDI growth rate from
(1.23) for which the appropriate weakly coupled (I'pp; < kac,) or the strongly

driven (T'pp; > k4cs) growth rate can be found.

4.1 Enhancement of Brillouin and forward Ra-
man scattering

As was illustrated in Fig. 4.1 the enhancement of the various secondary scatter-
ing processes closely follows the nonlinear development of SRS. Beginning with
the first saturation of SRS a very rapid increase in the Brillouin (Fig. 4.1(b))
and forward Raman (Fig. 4.1(c)) reflectivities is observed. Figure 4.3 compares
the Brillouin and forward Raman reflectivities together with the respective reflec-
tivities produced from the standard three wave interaction model using identical
parameters, and thermal noise levels. The six orders of magnitude difference in the
respective levels of Brillouin reflectivity demonstrate the importance of including
simultaneous nonlinear processes in any description of laser-plasma interaction.
To obtain analytical results for the enhanced Brillouin and forward Raman
scattering the same procedure as iz Chap. 3.6 is used. Again it is assumed that the
electromagnetic waves can be represented by single discrete modes. For Brillouin
scattering we now expand ¥y in terms of slowly varying amplitudes for the pump
and Brillouin backscattered components
Ey

e . C’Eg .1
¥y = — expl[ikoz] + — explikpz] (4.4)

which, when applied to equation (2.59), produces the stationary equations
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Figure 4.3: Brillouin (dotted curves) and forward Raman (solid curves) reflectiv-
ities as a function of time obtained from numerical solutions of equations (2.57)-
(2.61) for same parameters as in Fig. 4.1, together with the simulation results

of the standard three wave interaction model equations (2.75)-(2.77) for identical
parameters.

0Ep _ .1.B

VB 3% = ZJ—(;NEO exp[zkAJ:] (45)
OBy _ wp o[— kB

Vo ax = -Q—QENEO e:\p[—zkAx] (46)

At this point N is still the full amplitude wave function associated with (2.58)
and V; = kjc*/w;;7 = 0,B are the group velocities of the pump and Brillouin
electromagnetic waves respectively. The previous method, used in Chap. 3.6, of

introducing a ponderomotive potential (3.40) can again be employed to produce
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the Brillouin reflectivity expression

| Vel Es |
Vo | Eo |2

L 0
= 2B tanh? [03/ N exp[—ikle —iglde| ~ agNw L | (4.7)
Wo 0 ) A

where we have used (3.43) with ap = wf,/QwOW,, Nkﬁ = }iks and the subseripts 1,
2, and 3 refer to the electromagnetic pump, backscatter and electrostatic density
fluctuation respectively. The actual reflectivity can then be estimated by using
expression (4.3) at k = k% to evaluate the amplitude Nis.

As the amplification coefficient A (3.25) is increased the number of quasimodes
and resonant modes in the spectra will also increase, creating circumstances for
»hich the coherence length of the Brillouin reflectivity may be less than the inter-
action length L. Once again as was demonstrated in Chap. 3.6 one could produce
an expression illustrating the lower limit for the reflectivity using a random phased
wave packet (3.51), resulting in an expression which is lincarly dependent on L
and an ensemble averaged density amplitude (N2). The coherent and random
phase approaches thus provide the limiting cases in which the reflectivity could
be classified. In the event that the amplification coefficient A is not large enough
to properly enhance the spectra, expressions (4.2) and (4.3) will not produce an
accurate description of the spectra but instcad provide an upper bound for the
reflectivity.

The procedure used in Chapter 3.6 can also be used to produce an expression

for the forward Raman reflectivity, resulting in

Rrp | appBiirrL |2 (4.8)
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where app = ekf/4mwyv/VoVg, and the subscripts 1, 2, 3 now refer to the elec-
tromagnetic pump and forward Raman scatter, and the Langmuir wave component
respectively. We also use E_yrr = Ap, which is evaluated using (4.2) at k = kf %,
Similar restrictions to those acting on enhanced Brillouin scattering will apply to
the enhancement of forward Raman scattering and thus a random phase approach
could also be found to describe the lower limit of the reflectivity. In the present
investigation it has been assumed that a coherent phase approach provides a suf-
ficient analysis of the system, producing expressions (4.7) and (4.8) as reasonable
approximations for the Brillonin and forward Raman reflectivities.

To determine the enhanced reflectivities it is necessary to know not only the
overall shape of the wave spectra, but also the extent of the enhanced region. If
expressions (4.2) and (4.3) are to be considered valid choices for use in (4.7) and
(4.8), the PDI cascade must extend into the spectral region where Brillouin or
forward Raman are naturally in resonance. To estimate the number of stages in
the PDI cascade [55] one can use m = E}/E} = 2A to predict the appropriate
number of cascades in the Langmuir and ion acoustic Fourier spectra. The PDI
density cascade peaks are separated by an amount 2Ak thus if the separation
between the primary ion wave at kf,l) and the Brillouin component at k% is less

than the number of cascade components ie.

2, (62 —K) _ (12kr| -AK)

3 2Ak  2Ak =4z, (4.9)

then the cascade will continue past the Brillouin ion wave number and hence Bril-

louin will be strongly enhanced.
Similarly in the Langmuir spectra the PDI cascade components are separated by

Ak and hence if the separation between the Langmuir wave numbers corresponding
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to forward Raman at kf R and backward Raman at (k,) is less than the number of
cascades ie.
2, (ke —k[R) | 2kg|

§A > Ak = Ak = App. (4.10)

forward Raman will also be strongly enhanced.

To illustrate the enhancement criterion Fig. 4.2 is re-examined where it can be
seen at k% that 2.18Ap = 2A, and at k[®, 0.94Apg = 2A, which would produce
strongly enhanced Brillouin but would have to be considered only a marginal case
for enhancement of forward Raman reflectivity. Figure 4.4 contain further examples
of the Langmuir and ion density spectra. Once again the dotted lines illustrate (4.2)
and (4.3) for the cascade region 8 ~ 1 and the solid lines the noncascade region
B ~2where |k |>| k| and | k |>[ ka |. The corresponding values of 2.47A, = 24
and 1.12Apg = %A at k& and kf? respectively are produced for the run parameters
L=60pm,I=9-108W/cm? n¢/n. =012, T, = 0.7keV, ZT,/T; =7, Z = 2,
Ao = 1pm (Fig. 4.4(a)). The density spectra are fully developed even though the
Langmuir spectra remains pedestal like.

Figure 4.4(b) illustrates an example of conditions approaching a turbulence
spectra which is produced at ¢t = 18.1ps for run paramecters L = 60pum, I =
2.5- 1014 W/cm?, ng/n. = 0.2, T, = 1keV, ZT./T; = 8, Z = 3, Ay = 0.531 pum.
One notices how the peak density spectra arec now scveral times less than that
predicted by expression (3.15). Here one would expect that an approach in which
the phases were not completely coherent would produce a more accurate result.
Once again the corresponding levels 4.2A5 = %A and 1.75App = %A at k% and
kfR are produced for the enhancement criterion of the density and electrostatic

spectra allowing for the strong enhancement of both instabilities.
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Figure 4.4: Electrostatic and density spectra obtained from numerical solutions of
equations (2.57)-(2.61) at t = 94.9ps for run parameters (a) L = 60pm, I =
9-10¥W/cm?, n§/n.=0.12, T. =0.7keV, ZT./T; =7, Z =2, Ay = 1 pm and at
t = 18.1ps for run parameters (b) L = 60 um, I = 2.5- 104 W/cm?, n§/n. = 0.2,
T.=1keV, ZT.[T; =8, Z = 3, Ao = 0.531 um

Earlier in our analysis it was assumed that both Brillouin and forward Raman
could be represented by single modes for which the phases remain coherent. If the
enhancement criterion is strictly adhered to and marginal cases ignored, a com-
parison between the theoretical reflectivities (4.7) and (4.8) and their simulation
counterparts yields the plot in Fig. 4.5 and Fig. 4.6 giving good agreement between
our numerical simulations and analytical theory. The simulations were run for the

parameters of table 4.1. A further comparison for the SRS scaling law (3.27) for

107



102

-5
Bril 10

sim

108

108 100 102

Bril
theory

R

Figure 4.5: Time integral averaged asymptotic Brillouin reflectivities plotted as a
function of scaling formula, Equation(4.7). Ezplanations for the different symbols
are given in table 4.1. Vertical error bars denote the mazimum and minimum

fluctuations during the asymptotic regime.

full model simulation is also given in Fig. 4.7, showing that the introduction of the
Brillouin coupling does not affect the SRS scaling law. The parameters of table 4.1
for the enhanced quantities and table 3.1 which examine only SRS saturation, were
chosen so that we were able to explore the largest possible experimental regimes
for which our theory may be applied.

The enhanced reflectivity expressions (4.7) and (4.8) can be rewritten in a more

practical form becoming for Brillouin scattering
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Figure 4.6: Time integral averaged asymptotic forward Raman reflectivities plotted
as a function of scaling formula, Equation(4.8). Ezplanations for the different sym-
bols are given in table 4.1. Vertical error bars denote the marimum and minimum

fluctuations during the asymptotic regime.

Ly* 2%kg — Ak |\,
Rp = 1.43 10~41%, )8 (E) exp[—20 (I—Z—k——l)]_-_g(%"-) (4.11)
spr c

where

Zp(22) = (2 [(1 = no/ne)'/2 + (1 -2 nO/nc)lll2]4
“n, ne (1- 2\/"'0/"«:)(1 — no/ne)

and for forward Raman scattering

(4.12)

U”) |2k |
Rpg =147 107°I, ,\2( ) vaks’) LARIE :
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Figure 4.7: Time integral averaged asymptotic SRS reflectivities plotted as a func-
tion of scaling formula, Equation(3.27). Ezplanations for the different symbols are
given in table 4.1. Vertical error bars denote the mazimum and minimum fluctua-
tions during the asymptotic regime.

where

ny ) [(1 = no/ne) — (1 - 2\/no/"c)]2 (1 - ymo/ne) (4.14)

Zrr(—) = (22
net M (1= 2¢/no/nc)(1 = no/n.)!/2

In these expressions L, and A¢ are in um, 7A(k£,1) ) /wﬁ,’) can be found using (2.63)
and Iy4 is the laser intensity in 10W/em?2. It is to be noted that the expression
for Brillouin reflectivity depends on the electron and ion damping only through the
spread of the wave spectra Ak, (4.1). Similarly forward Raman is dependent on

the electrua damping only through the spread of the waves. To evaluate the PDI
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growth rate appearing in (4.2) and (4.3) without the use of numerical methods one
can - proximate the expression (1.23) in the absence of damping for the weakly
driven case I'ppw < ksc, using expression (1.24). With the approximation kﬁ) ~
2k, the inverse of the argument of the exponential for both (4.11) and (4.13) can

be written in the form

(1) 1/2
Ak,pr  Tppw —7 2 2 Lyalky’)= ng
2kn 2ok o010 |TWdoT i o) (4.15)
where
ng no | (1=mno/nc)'/? ’
Zrow(2D) = /2 41 (4.16)
e ¥ Me [(1-24/no/nc)!/?

or the strongly driven case expression (1.28) where I'pps > kac, gives

1/3
Akapr _ Tpps _ -5 2 2 £7‘4(k£11)):‘ .719.
Th = 2ok, = 196 1070 [haNi g Zpps(5- (4.17)
4
1 - . 1/2
Epps(2) = |2 (- no/nc) +1 (4.18)
ne' e [(1 22 ng/noyir2

In using our f{ull theoretical model in which the SBS coupling remains intact,
we must be careful to maintain the physical validity of our simulations. Because
our mode] can saturate SBS only through the mechanisms of pump depletion or
through competition with SRS for pump energy it was necessary to restrict the
parameters of table 4.1 to regimes where SBS does not dominate the evolution of
the plasma. To insure that the simulations remain valid, parameters have been

chosen such that we are either always below the absolute threshold for Brillouin,
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or that Brillouin will not grow significantly over the timescale of the experiment.
Under these restrictions it is still possible to examine many different regimes which
are applicable to current laser-plasma interaction experiments. As is illustrated in
Fig. 4.7 the SRS scaling law (3.27), in the presence of the SBS coupling, remains
a good approximation for the simulation reflectivity. The reflectivity scaling laws
for Brillouin (4.7) and for forward Raman (4.8) scattering also provide reasonable
agreement between our analytical theory and numerical simulation. However since
these are secondary processes which depend on SRS, the amount of fluctuations in
the reflectivity evolution of Brillouin and forward Raman scattering is much larger
than that associated with the SRS reflectivity evolution. In deriving the Brillouin
scaling law it was assumed that (4.3) properly described the density spectra. In
order to maintain the validity of (4.3) it is necessary that, in the density equation
(2.58), the electromagnetic ponderomotive potential ~| ¥g |2 remain much smaller
than the electrostatic ponderomotive force ~| E |2. To estimate this limit we
assume that density fluctuations produced by SRS will have a constant amplitude
in the asymptotic regime. Furthermore we assume that the electromagnetic pump

of (4.4) is also constant. These assumptions allow us to write (4.5) as

GEB UJ,2,
where N;» is evaluated using (4.3) at k = 2ky. Integrating (4.19) and using the

nonlinear ponderomotive potentials in equation (2.58) leads to the expression

B Nl _ o k(Y (4.20)
47rn(ejTe 21)%.e l kB I c2 k/[{wgll) A

where Gp = I'2gsL/Voya(kE) is the SBS gain, I'sps = wpvpy/wh /Bwpv?, is the

homogeneous SBS growth rate and y4(k%) and ’y,,(kﬁ,” ) are the ion Landau damping
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coefficients on the SBS driven ion wave and the first PDI daughter wave at 2k, ~ Ak

respectively. Rearranging (4.20) in a more convenient form produces

8kova(k()) . 4mngT.

<1 4.21
kB, “BTEL? (4.21)

Ay = GU

where A, represents the upper bound for which it is unnecessary to account for the
Brillouin related ponderomotive potential when describing the density fluctuations

produced by SRS saturation. In more practical units (4.21) can be written as

I /\2 L w” No

T oratT e (422)
" exp[—B (| 2kr — Ak | [Akypy)]

[(1 —no/ne)t + (1 — 2\/no/n,_.)';') - (che/3vem,~)\/no/nc]

Ay = 7.3

where once again L, and )g are in pm, 74(k%?)/w$ can be found using (2.63) and
I,4 is the laser intensity in 10'*W/cm2. The exponential can be approximated by
using (4.15) and (4.17).

In the event that (4.21) should be violated, expression (4.3) will overestimate
the ion density fluctuations such as shown in Fig. 4.4(a). As can be seen in some
of the runs illustrated in Fig. 4.5 under these circumstances the scaling law (4.7)
overestimates the Brillouin reflectivity.

In deriving the Brillouin scaling law it was also assumed that a coherent phase
description adequately accounted for the evolution of the system. In some of the
larger length, higher intensity simulations, (for example the run in Fig. 4.4(b),) a
turbulent description of the plasma for which the coherence length is reduced would
more accurately describe the system. In these simulations the Brillouin reflectivity
would again be overestimated by (4.7) hence providing an upper bound for the

reflectivity.
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A similar problem to the Brillouin scaling will appear in the estimates for the
reflectivity levels of forward Raman scattering. In Fig. 4.6 the comparison between
theory, expression (4.8), and simulation gives better agrcement than for Brillouin.
This is because the presence of forward Raman, due to its lower amplitude, will
not modify the expression for the Langmuir spectra (4.2) to the same extent as
Brillouin can modify (4.3). However the number of cascades necessary to enhance
forward Raman is approximately twice that required to enhance Brillouin. This
will produce a more turbulent spectra for forward Raman, and hence the reduced
coherence length will produce a smaller reflectivity. Under circumstances where
this applies (4.8) will again provide an upper limit for the reflectivity.

In choosing our parameters in table 4.1 we always sought to exceed at least
one of the strong enhancement criterion of (4.9) Ap > 1 or (4.10) Apgp > 1.
The upper bound A,; for accurately predicting the Brillouin reflectivity through
(4.3) was usually but not always maintained. One criterion, that of maintaining
parameters such that we are always below the absolute Brillouin threshold, was
strictly enforced. This limit on parameters is given by
Psps  ww, [Z

m
= k1 4.23
Yabs  Ccya(k§)V m; (423)

Aab.s =

Each of the criteria Ag, Apg, and A, depend explicitly on the parameters
IN3L, while A, depends only on IM2. Because Ag, is independent of L, we
can easily enhance Brillouin and forward Raman while maintaining (4.23). Ex-
amples of possible parameter regimes are illustrated in Fig. 4.8, for the three
temperatures: Fig. 4.8(a) T, =~ 0.5keV, Fig. 4.8(b) T. ~ 1keV, and Fig. 4.8(c)
T, =~ 2keV'. In each of the figures the lower bounds for enhanced Brillouin, dotted

curve corresponding to Ag/ %A = 1, and forward Raman, dashed curve correspond-
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ing to App/3A = 1, are plotted as functions of ng/n. and IAjL. The dot-dashed
curve and solid curve represents A,, = 1 for the two different temperature ra-
tios ZT,/T; = 8 and ZT,/T; = 16. As is easily seen for each of the temperature
regimes, the higher temperature ratio, ZT,./T; = 16 in this case, drastically limits
the parameter regime for which (4.3) remains valid. The reason for this is that the
level of ion damping is greatly dependent on the temperature ratios ranging from
strongly damped ZT,/T; ~ 10 to we:"ly damped ZT,/T; ~ 30. This temperature
dependence will also greatly affect the level at which SBS is above the absolute
threshold.

The effect of high ZT, /T; ratios on the validity of our simulations thus prohibits
us from examining high Z targets when Brillouin coupling is present in our model.
All our runs containing the Brillouin coupling have been for low Z targets with
fairly low temperature ratios. By increasing ZT,./T; the temporal threshold for
SBS, expression (4.23) is reduced. Large Z targets however inciease the threshold
for SRS producing a need for higher and higher intensities to over come the SRS
temporal threshold. At some point this results in SBS and SRS both growing
temporally within the same time scale thus allowing for competition between these
two instabilities for pump energy. Under such circumstances the analysis of Chap.

3 may not apply.

4.1.1 The frequency and wave number spectra of scat-
tered radiation

In our full model (2.57)-(2.61) the Brillouin scattering component of the electro-

magnetic ficld is an implicit part of the laser pump variable ¥,. By analysing

the Fourier frequency spectra of this variable one obtains the spectra illustrated

in Fig. 4.9 for run parameters L = 60um, I = 2-104W/cm?, T, = 1.25keV,
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Figure 4.8: Parameter regime limits of our simulations Ay [2A = 1 (dotted curues),
Arr/3A = 1 (dashed curves), and Ay, = 1 for two different temperature ratios
ZT.[T: = 8 (dot-dashed curves), and ZT,.|T; = 16 (solid curves) for (a) T, =
0.5keV, (b) T. = 1keV, (c) T, = 2keV

ZT,|T; = 8, Z = 5, Ay = 0.531 um, ng/n. = 0.2. In Fig. 4.9 one can easily
discern the pump and the Stokes frequency peaks labeled by wy and wy which are
separated by ~ c,kZ. Of great interest is the anti-Stokes peak wy+ separated from
wp by ~ ¢,k illustrating how the pump wave must be scattered off ion modes
moving in the opposite direction to that of the laser pump. The presence of this

anti-Stokes peak is a characteristic feature of enhanced Brillouin scattering, and

indicates that the observed Brillouin scattering in our simulations is produced by
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Figure 4.9: DBrillouin reflectivity frequency spectro. obtained from numerical solu-
tions of equations (2.57)-(2.61) for run parameters L = 60 um, I = 2-10"*W/cm?,
T, =1.25keV, ZT./T; =8, Z =5, Ag = 0.531 um, n§/n. = 0.2.

the electromagnetic pump wave scattering off the fluctuations produced by satu-
ration of SRS. Since these fluctuations will be a random assortment of left and
right moving waves, the frequency spectra for enhanced Brillouin will contain both
Stokes and anti-Stokes components. A fourth peak, identifiable as the effective
PDI growth rate ['%/4,, is also visible in the frequency spectra of Fig. 4.9. This
peak is transitory in nature and will disappear as one approaches the asymptotic
saturated state of SRS.

In order to clarify the physical processes involved in the production of the
enhanced Brillouin frequency peaks three contour plots for the frequency spectra
evolution are shown in Fig. 4.10. Each of the runs are for very similar parameters

with a slight variation in the density ng/n.. As is illustrated in Fig. 4.10 for the
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Figure 4.10:  Brillouin reflectivity frequency and wave nwmber spectra obtained
from numerical solutions of equat.ons (2.57)-(2.61) for run parameters L = 60 jun,
I=12.10" W/cm2, T.=2keV, ZT.|T; =8, Z = 5, Ay = 0.531 jumn for densitics
(a) n§/n. = 0.229, (b) n§/n. = 0.221, and (c) n§/n. = 0.21
run parameters L = 60 um, I = 1.2 10" W/em?, T, = 2keV, ZT, [T, = 8, Z = 5,
Ag =« 331 um both Fig. 4.10(a) (ny/n. = 0.229) and Fig.4.16(h) (ny/n,. = 0.221)
have strong Stokes and anti-Stokes Brillouin peaks in their frequency spectra, while
Fig. 4.10(c) (ng/n. = 0.21) has only a strong anti-Stokes component.

To understand why a small variation in the background density can produce

such a large change in the frequency spectra, we have also plotted in Fig. 4.10 the

wave number spectra for late times. During the saturation of SRS the PDI density
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cascade produces strongly driven modes at intervals of 2Ak, starting from a Stokes
peak at k(,‘”. Thus using (k;” — k¥)/2Ak = m, one can make a crude esti.. ‘e for
whether a Stokes or anti-Stokes peak will be observed. Since the direction of the
PDI ion modes will alternate direction, if my is odd then one would expect k5 to
be near an anti-Stokes PDI mode producing a anti-Stokes frequency peak. If mqy
is even, then a Stokes peak should be observed and if my is a non-integer then one
would expect to see evidence of both peaks. In the wave spectra of Fig. 4.10 we
have labeled kﬁ,”, k% and the first four (n = 1 — 4) ion acoustic waves of the PDI
cascade.

For the parameters of Fig. 4.10(a) the Brillouin wave number produces a value
(k) = kB)/2Ak = 1.98, which predicts that a strong Stokes component should be
(and is in fact observed) in the frequency spectra. In Fig. 4.10(b) the frequency
spectra is dominated by two approximately equal intensity peaks which agrees with
the calculation (kﬂ‘” — k¥)/2Ak = 2.47 for my. In the final frequency spectra (Fig.
4.10(c)) one observes a very strong anti-Stokes peak. By calculating m4 one finds
a value of 3.11 which again 1s in agreement with our prediction. Present in each
of the frequency spectra of 4.10(a) and 4.10(c) is a second peak corresponding to
£ mode which would not be strongly enhanced if the only modes generated in the
ion spectra were those produced by the PDI cascade. Because of the interaction
between the ion density fluctuations and the Langmuir fields permitted by the
Zakharov equations, many other resonant waves and waves which do not satisfy
the linear dispersion relations (1.1) and (1.2) are also present in the spectra. These
waves also permit Brillouin scattering hence producing a more rich spectra that is

observed.
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4.2 Anti-Stokes forward and backward Raman
scattering

The enhancement process can also be extended to explain experimental observa-
tions of anti-Stokes forward and backwards Raman [68], [91], [92], [29], [102]. These
two scattering processes are characterized by the frequency relation wp+ = wy 4.1y,
and in order to satisfy energy conservation, cannot be the result of a unstable three
wave process, but instead must be the product of previously excited wave modes.
To illustrate how SRS saturation can enhance the levels of the anti-Stokes Raman
scattering, we examine the wave spectra plots of Fig. 4.11. Figure 4.11(a) is a late
time Langmuir spectra plot for run paramecters L = 45 um, I = 2.5- 10" W/em?,
n§/n.=02,T, = 1keV, ZT,/T; = 8, Z = 3, g = 0.531 yun. For underdense plas-
mas the Langmuir wave spectra producing the forward anti-Stokes component. is
very similar to that producing the Stokes component, differing by =~ 10% at a den-
sity of 0.2ng/n.. The saturation of SRS by PDI may thus be a possible mechanism
for strongly enhancing forward anti-Stokes provided the PDI cascade continues to
a point of enhancing forward Raman. With this information one can immediately

write down a simple criterion necessary for strong enhancement in the form

2 (k — kf™)
34> T Ak
which has been met in Fig. 4.11(a) where 1.14Appr = 2A4.

= Aplﬁ (424)

To account for the backward anti-Stokes Raman observed in experiment by
using enhancement due to SRS saturation one has to invoke mode coupling of the
density components with the Langmuir spectra. This can be scen in Fig. 4.11(b)
where the backward anti-Stokes Raman component at k¥ is not located in the

region supporting the PDI cascade of the SRS driven Langmuir wave. In order to
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Figure 4.11: Electrostatic spectra obtained from numerical solutions of equations
(2.57)-(2.61) for run parameters: (a) L = 45um, I = 2.5-10M"W/em?, n§/n. =
02, T, = 1keV, ZT,JT;, = 8, Z = 3, Ap = 0.531um and (b) L = 500 um,
I=1-102W/cm?, n§/n. = 0.05, T, = 100eV, ZT,/T; =8, Z =4, \g = 10um
produce the necessary Langmuir wave, Langmuir modes at k > ki or k < —kg,
which are associated with the disruption of the PDI cascade and localization of
the Langmuir fields, are necessary. The production of these modes begins with the
interaction of resonant Langmuir waves travelling in the same direction, producing
ion acoustic quasimodes at very low wave numbers. The ion quasimodes then
interact with other Langmuir waves broadening the Langmuir spectra.

By using the amplification coefficient %A (3.25) to determine the number of

modes in a cascade one can estimate the largest Langmuir quasimode in the vicinity

of ky, which can be produced. The beating of the SRS driven Langmuir mode and
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the last mode in the PDI cascade produces an ion density mode of k4 = %AAk.
The interaction of this density wave with the first PDI Langmuir daughter wave
produces a strongly driven mode at k = k(,l” - %AAk. If this wave number is larger

than the required anti-Stokes wave number such that the criterion

1
2,5 L= 1 KP™ |

3 N =AY, (4.25)

is met then substantial enhancement of backward anti-Stokes Raman will be ob-
served. This criterion is easily met by the parameters of Fig. 4.11(b) L = 500 jum,
I=1-10"2W/cm?, n§/n. = 0.05, T, = 100 ¢V, ZT.[T; = 8, Z = 4, Ny = 10 pum pro-
ducing 1.67Agp+ = %A. However under most circumstances the anti-Stokes back-
ward Raman component is difficult to produce if the system itself is not strongly
turbulent.

A second method for creating the appropriate strongly driven wave number is
based on a similar argument. The ion density cascade will have a width given by
k= %AAI{:, twice that of the Langmui£ cascade. If the combination of these modes
and the ion quasimodes is greater than the primary PDI ion wave k4 then all modes
less that k4 will be strongly driven and hence all Langmuir modes in the vicinity

of k; will also be strongly driven. A simple criterion for this is

=A%, (4.26)

which if met will once again allow strong enhancement of the backward anti-Stokes
component to take place.

As was demonstrated in Chap. 2 the anti-Stokes Raman scattering, though a
resonant process, is stable to small perturbations and will not grow due to its lack

of any feedback mechanism to drive the instability. The production of anti-Stokes
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Raman in our simulations thus relies solely on the Langmuir spectra generated by
PDI and the subsequent interaction of the Langmuir and density spectra which
produces many resonant modes, that satisfy the linear dispersion relations of (1.1)
and (1.2) as well as many quasimodes that do not satisfy (1.1) and (1.2).
The spectral composition in the vicinity of the anti-Stokes wave numbers kfm ,
and kf'®" will thus consist of resonant and quasimode components associated with
the many wave coupling possibilities available. This suggests that, because the
anti-Stokes components are made up of many different waves, the phases of the
anti-Stokes wave numbers will be oscillating wildly, producing an almost random
phase. Under such circumstances the coherent phase approach used to describe SRS
and enhanced Brillouin and forward Raman reflectivity levels will not be accurate

in describing the anti-Stokes Raman scattering. Instead we turn to the random

phase approximation of Chap. 3.6 and use the resultant expression

_IVR*”EIEIﬁ _|V1g+|wn+ o L 2
Rk—lvol |E|fo —'VOI wotanha/0|E|k§+d:r
| Vot |wre o 2
~ A woa 'Elk,’f*L (4.27)

where o = ek /am.c?\/Fokps . Using [ | E 2+ dk = (E?) where (E?) is an
L

averaged amplitude quantity we can estimate the reflectivity by

_ VR+ UJR+ 2 2
R= - a?(B%)L (4.28)

In general it is not possible to find the exact value of (E2). We have however

determined through comparison to simulations the crude scaling of

L
Yr(ke)
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where v, (k) is the linear electron damping coefficient, I is the laser intensity, L is
the interaction length, and g is the laser wavelength.

To test equation (4.29) two sets of simulations were run for constant ng/n. ,
T, ZT./T; and Z, while the laser intensity I and interaction length L were varied.
Figure 4.12 displays the integral time averaged reflectivities of a) forward anti-
Stokes Raman and Fig. 4.13 (b) backwards anti-Stokes Raman for parameters L =
50 —200 um, I = 0.5 —1.2- 10" W/cm?, nf/n. = 0.07, T. = 0.6 keV, ZT./T; = 10,
Z = 4, )y = 1.06 um (diamonds). The fluctuation levels of these reflectivities
vary over orders of magnitude (see for example Fig. 4.1 (d), (¢) suggesting that a
precise theory describing the other characteristics of the reflectivity scaling wonld
be extremely cumbersome. The reflectivity scaling law (4.29) is thus mceant as
an estimate describing the dependence on only certain physical characteristices.
A further example of the anti-Stokes reflectivitics is also illustrated in Fig 4.12
where the parameters L = 50 — 100 um, I = 4 — 5 - 10" W/em?, n§/n, = 0.1,
T.=0.5keV, ZT,|T; = 8, Z = 3—4, Ay = 0.531 pum (triangles) have been plotted.
In both examples it is possible to draw a straight line which approximates the time
averaged simulation reflectivities.

In regimes where the Langmuir spectra is not so turbulent, such that the anti-
Stokes wave numbers kf+ can be enhanced after only a few stages of the PDI
cascade, it is possible to find an approximate numerical value for the anti-Stokes
reflectivity scaling. We have found that the anti-Stokes reflectivity is linearly de-
pendent on the intensity of the laser I and the length of the simulation hox L.
We have also found that (4.2) provides a reasonable approximation for the shape
of the Langmuir spectrum. However since (3.29) also depends on L (4.2) must,

overestimate the contribution of the Langmuir waves to the anti-Stokes reflectivity.
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Figure 4.12: Time integral averaged asymptotic anti-Stokes forward Raman reflec-
tivities plotted as a function of scaling formula, Equation(4.29) for run parameters:
(a) L = 50 — 200 pum, I = 0.5—1.2. 10" W/cem?, n§/n. = 0.07, T. = 0.6keV,
ZT.JT; = 10, Z = 4, Ay = 1.06 um (diamonds) and (b)L = 50 — 100 um,
I =4-5-104W/em?, n§/n. = 0.1, T, = 0.5keV, ZT,/T; = 8, Z = 3 — 4,
Ao = 0.531 um (triangles).

We thus estimate the reflectivity by using

64mnET. P 12 [k —Fkp |
2\ _ 0LeYi  Yor _ L
(E%)=¢ [ Swon | Vi exp(—2/4 AR ] (4.30)

in expression (4.28). Here ( is a parameter which is varied to achieve agreement
between the simulation and the theoretical reflectivity. |

As an example of applying our enhancement criterion, numerous simulations
for parameters L = 25 —100 um, I =1-10-101W/cm?, n§/n. = 0.2, T, = 1 keV,

ZT./T; = 8, Z = 3~ 5, Ap = 0.531 wm were run. In this case the temperature,
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Figure 4.13: Time integral averaged asymptotic anti-Stokes backward Raman reflec-
tivities plotted as a function of scaling formula, Equaticn(4.29)for run paramncters:
(a) L = 50—200pum, I = 0.5~ 1.2-10"W/cm?, n§/n, = 0.07, T, = 0.6keV,
ZT.]T: = 10, Z = 4, Ay = 1.06 um (diamonds) and (b)L = 50 — 100 yum,
I =4~-5-10"W/cm?, n§/n. = 0.1, T, = 0.5keV, ZT,/T: = 8, Z = 3 — 14,
Ao = 0.531 um (triangles).
density, and ZT,/T; were fixed while the intensity (I), length (L) and collisional
damping (Z) were varied. Provided that the enhancement criteria (4.24) and (4.25)
are met, (4.27) can be used to describe both the forward and backward anti-Stokes
components.

Figure 4.14 illustrates the anti-Stokes forward reflectivity scaling, and plots
(4.27) versus the asymptotic integral time average reflectivity of anti-Stokes for-

ward obtained from our simulations. Reasonable agreement between (4.27) and

simulation results were found for a constant value of {. Of particular importance
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Figure 4.14: Time integral averaged asymptotic anti-Stokes forward Raman re-
flectivities plotted as a function of scaling formula, Equation(4.28)for parameters
L=25-100pum,I=1-10-10"W/cm? n§/n.=0.2, T. = 1keV, ZT./T; = 8,
Z =3-05, Ay = 0.531 um . Vertical error bars denote the mazimum end minimum
fluctuations during the asymptotic regime.

is the observed linear dependence on intensity and length L. The value of { cor-
responding to the forward anti-Stokes was also found to apply to backward com-
ponent enabling us to verify (4.27) for backward anti-Stokes Raman scattering as
well. Once again we plot the simulation reflectivity against expression (4.27) (Fig.
4.15) obtaining good agreement for this specific regime.

The number of regimes for which such analysis can be done is severely limited
by the necessity of maintaining model validity. In regimes where the wave spec-

tra separation between k; and kf+ is large, intensity and/or length requirements
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Figure 4.15: Time integral averaged asymptotic anti-Stokes backward Raman re-
flectivities plotted as a function of scaling formula, Equation(4.28)for parameters
L=25-100pum,I=1-10-10"W/cm?, n§/n. = 0.2, T, = 1 keV, ZT./T; = 8,
Z =3-5, A\g =0.531 um . Vertical error bars denote the mazimum and minimum
fluctuations during the asymptotic regime.

push the model outside the regions for which it applies, or into strongly turbulent
regimes for which the analysis breaks down. For parameters that do not meet the
enhancement criterion the reflectivity, (4.29) is still applicable however the value of
¢ no longer appears to be constant, instead a dependence on I and L are observed
to take place. Although this dependence appears to be very weak we were unable
to find analytical scaling expressions to properly model the magnitude of (E?), and
could only verify the approximate dependencies on I, L, and -, (ky). This result

is not surprising, since the spectra of the Langmuir field is strongly dependent on
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va(k), ng/n. and T,. Once one considers the complex structure of the spectra and
the strong laser intensity needed to produce a reasonable enhancement one would

not expect to produce a universal scaling law.
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Chapter 5

Superthermal electron generation

Superthermal electron production is a concern in laser-plasma interaction because
of the detrimental effect it can have on fusion target cfficiency [16], [17]. These hot
electrons can be produced as a consequence of SRS and forward Raman scattering.
The large levels of Langmuir fields generated during SRS accelerate electrons whose
phase velocity is near that of the Langmuir waves. In the typical asymptotic regime
of region 4 in Fig. 3.1, the Langmuir ficlds reach a quasistationary state, which
extends across the plasma interaction length. Under these circumstances particles
at one end of the plasma could be accelerated to very large velocities as they
traverse the plasma. As a significant portion of the electrons is accelerated, the .
distribution function of the electrons will be modified, affecting the level of Landau
damping and hence the absolute and convective thresholds of SRS. Such effects are
not present in our model (2.57)-(2.61) and hence we must limit our simulations to
regimes in which hot electron production does not become a significant factor in the
evolution of the plasma. Because production of the hot electrons in the stationary
regime will be length dependent, due to the length dependence of the Langmuir
field (3.29), this will limit the interaction length for which our simulations will

remain valid. Similarly the stationary Langmuir ficlds in our model have been
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shown to be dependent on the intensity of the laser pump. Such a dependence

will also affect the electron velocities, introducing a limit on the intensities we can

examine with our model.

In order to explore these limits we examine the wave-particle interaction which
allows for the transfer of energy from the Langmuir spectra to the electrons within
the plasma. Such energy transfer is described by the standard diffusion equation

which for a stationary distribution function takes the form:

of 0 af
<L == - 5.1
Yor T B (D" 81)) (5-1)
where in a finite length system
e L 2
= = - 2
D, v | Erzwyro | (5.2)

At the present time we are only concerned with estimating the production of
hot electrons and their subsequent affect on Landau damping. For this purpose we
use our asymptotic expression for the Langmuir spectra in (5.2), which has been

shown to be well approximated by the expression

64mngToya(k4 )2 gL |k =k |
E, |’= 0 AT SRS exp[~28 | A2 ], 5.3
| Ex | 3 | Vi p[~28 . ] (5.3)

where 8 = 1if | k |<| k. | and @ = 2 if | k |>] k. |- With this approximation
(5.1) can be solved for the steady state distribution as a function of plasma length.
This simple model will allow us to test the effects our asymptotic expression for the
Langmuir spectra will have on the evolution of a Maxwellian distribution function.
When deriving our theoretical model (2.57)-(2.61) we have assumed an ideal gas
representation of the pressure tensor, so that during the evolution of the system the

overall temperature modifications to the distribution function must be minimal. By
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insisting that this assumption remains approximately valid we can find the intensity
and length limits of our mode! by solving (5.1) for the distribution function f. With
f we can estimate the hot electron Landau damping and find for what parameters
the absolute and convective thresholds are not met. Once f is established it is a
trivial matter to find the density of hot electrons ny and their respective average

temperature Ty by

[ o] o0 "" . -
favlep — [ fdv |rop> — (5.4)
0 0 2
oo 00 , W M
/ fridv |-y, —/ fPdv |, Rty (5.5)
0 0 2

Solving (5.1) numerically in the positive velocity space for a thermal Maxwellian
distribution of particles traveling through a plasma slab of length L, tiie energy ab-
sorption and spatial evolution of the distribution function is examined. Initially for
very short distances AL < L the effect of the Langmuir field can be approximated
as producing a slight - erturbation on the Maxweilian distribution. As the particles
proceed further into the plasma, notable particle heating oceurs in the vicinity of
v, = wp/ky significantly altering the distribution function. Once the particles reach

the plasma boundary at x = L the final distribution function is well approximated

by
v2 v
f = foexp [— ﬁ] + fu exp [—¢(;l—l)} (5.6

where a thermal velocity Maxwellian has been combined with a hot electron dis-
tribution function.
An example of the numerical solution of (5.1) is given in Fig. 5.1 for parameters

L=60pm, I =1-10W/cm?, n§/n, = 0.12, T, = 1keV, ZT,/T: = 10, Z = 4,
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Figure 5.1: Electron distribution evolution for parameters L = 60um, I = 1.
108 W/em?, ng/n. =0.12, T, = 1 keV, ZT,/T; = 10, Z = 4, Ao = 0.351 um

Ay = 0.351 pm. Initially the distribution is Maxwellian (dotted curve). As the
particles move through the plasma wave-particle :ateractions heat the electrons,
producing at the edge of the plasma at * = L Fig. 5.1 (solid curve). Three
approximations for ¢(v/vy) are also shown in Fig. 5.1: (a) v?/2v% (dot-dash
curve), (b) v?/2v% + v*/12v}, (dashed curve), and (c) (v/vy)?/a (dot-dot dash-
dash curve). In this particular case 8 = 4.2 and o = 6. One observes that
the Maxwellian formn (dot-dash curve) is clearly inadequate to describe the final
distribution function. The single term (v/vy)?/a is also inadequate because the
power 3 can only model a limited region of the curve and is unable to model the

entire curve accurately. The polynomial fit can be seen to match a more significant
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portion of the electron distribution function and, as one increases the number of
‘erms, gives a reasonable fit to the final distribution.

Both ny and v% are determined through evaluating (5.4) and (5.5) from the
numerical data. As expected the explicit dependence of (5.3) on I and L will
manifest itself in the evolution of the hot clectron density and the average energy.
Figure 5.2 illustrates the behavior of ny and nyv} /vf, as a function of (a) the
interaction length for fixed intensity I = 5-10' W/cm? and (b) the laser intensity
for fixed length L =~ 55 um, for parameters n§/n. = 0.12, T, = 1 keV, ZT,/T; = 10,
Z =4, Ao = 0.351 um. One immediately observes the several orders of magnitude
increase in ny and nyv% [v3. as the intensity of the laser is varied only over a single
order of magnitude (Fig. 5.2(b)).

As the electrons absorb energy from the Langmuir wave spectra altering their
distribution function, the effective Landau damping will increase. At this point the
damping of the Langmuir waves becomes dependent on both the interaction length
and the laser intensity, and subsequently the absolute and convective thresholds
will increase. If the system is sufficiently large the particles traveling through the
system will eventually reach alength L, for which the system is below the absolute
SRS threshold. At this interaction length SRS will cease to grow absolutely. As
the particles progress further into the plasma the convective SRS threshold will be
raised to a level which will also stop convective growth (L,,,). Thus for a given
laser intensity and other parameters, a maximum length for absolute (L, ) or for
convective (L, ) growth can be found.

To obtain the length and intensity limits of our model, the Landau damping
due (o the hot electrons is found from the best fit v2/2v% + v*/12v%, and can be

written as
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Figure 5.2: Hot electron density ny and nyv} /v3, as a function of (a) lengih (I =
5-10"W/cm?) and (b) laser intensity (L ~ 55 um) for parameters n§/n. = 0.12,
T, =1keV, ZT.[T; =10, Z = 4, Mo = 0.351 um

UTJ\D 1 UTekD 5 1 'UTekD 2 1 'UTJCD 4

Yu(1,L) —"11\/— P(——== +3( ok )°] exp[—=( - ) ( )]
(5.7)
where ny and vy are dependent on both the interaction length L and the laser

intensity I. Here

(= \/— exp[ ]Ii( (5.8)

and is the additional normalization constant for the best fit distribution function.

I\'%(n/ 16) is the Bessel function of imaginary argument. In order for SRS to grow
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absolutely the ratio of the absolute threshold to the SRS convective growth rate

must be less than 1.

Yabs _ [YL(hL) , YR N VViVe _ vu(kL) [Va .
= + o~ — <1 (5.9)
Isrs 2V 2Vr) Tsgs 2srs Y V1

Using a given set of parameters for each laser intensity there will exist a length

L, such that the increased damping due to (5.7) produces

Y(ke) + vu /VR
Agps = ———————=1 5.10
b 2l sps Vi (5.10)

Similarly there exists a length L., such that for a given set of parameters and

laser intensity the effective convective threshold is

(ki) +ym)ve _ (5.11)

Acon =
2
PSRS

As an example (5.10) and (5.11) are plotted as a function of I and L for the
parameters n§/n, = 0.2, T, = 1 keV, ZT,/T; = 8, Z = 3, Ag = 0.531 um.Figure5.3
is a graph of intensity versus length and plots the curves of (5.10) (solid line)
and (5.11) (dashed line). Simulation intensity and length must be chosen so that
the combination of I, and L remain below the respective curves describing the
absolute and convective thresholds. The length and intensity restrictions imposed
by insisting that either the temporal or convective thresholds are met provides a
much stricter condition than those imposed by the Zakharov model limits where
E? [47ngT, < 1. To illustrate this point the curve E% /4rngT, = 0.1 is also plotted
in Fig. 5.3. Here the Zakharov validity criterion is plotted as a dotted curve.

With the use of graphs such as Fig. 5.3 we can estimate the length and in-
tensity limits of our simulations. For example should the parameters n§/n. = 0.2,

T. = 1keV, ZT.|/T. = 8, Z = 3, Ay = 0.531 um be used in a simulation with
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Figure 5.3: Parameter regime limits of our simulations in terms of the increase in
effective Landau damping due to hot electron generation SRS temporal threshold
Ags = 1 (solid curve), SRS convective threshold A = 1 (dashed curve), and
10% of Zakharov limit E2 [4rngT, < 1 (dotted curve) for parameters n§/n. = 0.2,
T, =1keV, ZT,/T; =8, Z = 3, \y = 0.531 um

I = 5-10" and L = 50um, particles traveling across the entire length of the
plasma would modify the distribution function sufficiently to drop the system be-
low the absolute threshold before the end of the simulation box was reached. Under
such circumstances our simulations may produce questionable results, limiting the

interaction length of our model for these parameters to less than L = 50um.
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Chapter 6

Correspondence between theory
and experiments

The present theoretical study analysing the nonlinear evolution of SRS in the pres-
ence of the electron-ion coupling described by the Zakharov equations is relevant to
many current laser-plasma experiments. Although a detailed comparison between
experimental observations is complicated by plasma geometry and hydrodynamical
effects, as well as the simplicity of our model, the analysis presented in the previous
chapters could be applied to preformed homogencous plasmas in which parameters
such as density and temperature are reasonably well known. We have examined the
regime of parameters where the density is always below quarter critical and hence
SRS is the fastest growing instability. Theoretically this fact allows the nonlinear
evolution of SRS to affect significantly the evolution of other instabilities, such as
SBS. One direct method which could be used to determine the applicability of our
theory is through the use of Thompson scattering. By determining the frequency
and wave number spectra of the relevant wave modes it would thus be possible
to assess whether PDI, MI, or some other mechanism, such as wave breaking, is
responsible for SRS saturation. Furthermore since the amount of reflectivity from

enhanced Brillouin and forward Raman is quite small, one could use the enhance-
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ment process of our theory as a diagnostic to determine the behavior inside the
plasma.

A recent experiment by Villeneuve et al. [44] provides the first experimental
evidence that su; ,,orts long time SRS saturation produced through the parametric
decay of the SRS driven Langmuir wave. By using Thomson scattering, Villeneuve
et al. investigated the behavior of the frequency and wave number spectra of the
Langmuir waves driven by SRS. When the observed spectra were analysed it was
found that the Langmuir waves were consistent with the anticipated linear disper-
sion relation of SRS. In addition the observed wave number spectra of the Langmuir
waves were consistent with that of a weakly driven PDI cascade of the SRS driven
Langmuir wave. Wave breaking, which would have resulted in modification of the
frequency spectra, was not observed in the experimental results. Simulation run
using our full theoretical model (2.57)-(2.61) for typical experimental parameters
agreed qualitatively with the experimental results. In particular the characteristics
of the wave number spectra showed good agreement between experiment and simu-
lation providing support for our model of SRS saturation. As an illustration of this
we present in Fig. 6.1 the late time Langmuir spectra of simulations run for param-
eters L = 100 um, I = 1- 10" W/cem?, n§/n. = 0.07, T. = 0.6 keV, ZT,/T; = 10,
Z = 4, Ag = 1.06 pm which are consistent with the Villeneuve et al. experiment.
A direct comparison of our results in Fig. 6.1 with those of Villeneuve et al. (Ref.
[44], Fig. 4) indicates reasonable agreement. The broader peaks observed in (Ref.
[44], Fig. 4) may be accounted for by, for example, small nonuniformities in the
background of the experimental density, or the resolution of the experimental data.

By using Thomson scattering as a diagnostic to identify the spectral charac-

teristics of the frequency and wave numbers one could obtain sufficient data to
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Figure 6.1: Electrostatic spectra obtained from numerical solutions of equations

(2.57)-(2.61) at late time for run parameters L = 100um, I = 1- 10" W/cm?,
ng/ne. = 0.07, T, = 0.6 keV, ZT./T; = 10, Z = 4, Ay = 1.06 jum

determine the applicability of our theorctical model. For the experimental pa-
rameters in regimes where our model applies, the enhancement of Brillouin and
other scattering processes could be used as an additional diagnostic to determine
the behavior inside the plasma. An ex -mple for which our enhancement theory
seems to be consistent with experimental observation is a recent experiment by
Baldis et al [88], [89], which reported observations of anomalously high levels of
Brillouin reflectivity. In this experiment, a preformed plasma of density < 0.1n,
was irradiated with a 10 ps pulse of 1 um light over a wide range of intensities
(I 210" — 10'°W/cm?). The observed reflectivity levels vary over approximately

two crders of magnitude, beginning with low intensity (1 =~ 10'3W/cm?) pulses for
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which the reflectivity levels was many orders of magnitude above those predicted
by simple Thomson scattering, to high laser pulse (I ~ 10'W/cm?) experiments

for which the Brillouin appeared to saturate.

The experimental results do not correspond to simple three wave interaction.
Brillouin scattering, in its three wave form, was investigated by Mounaix et al.
[75] who found that the reflectivity levels of the three wave model are strongly
dependent on the initial thermal noise levels of the plasma. The Mounaix et al.
investigation, which was applied by Baldis et al. to the experimental results, con-
cluded that three wave Brillouin interaction alone was inconsistent, at low laser
intensities, with the observed results. In contrast the present analysis provides one
possible explanation for the experimentally observed Brillouin levels at low inten-
sities. In our theory only the initial transitory regimes are strongly dependent on
the initial thermal levels. The lace-time asymptotic levels of Brillouin scattering
are dependent on the plasma parameters determining the saturation level of SRS.

Figure 6.2 shows the time integrated reflectivities of Baldis et al. plotted as a
function of the laser intensities. Also plotted are reflectivity curves calculated using
our theoretical Brillouin reflectivity scaling law (4.7) for the typical experimental
parameters of ng/n. = 0.08,T, = 600eV,Z = 4,ZT./T; = 10. As one observes,
to reproduce the experimentally observed reflectivity slope of Baldis et al. with
our theory, the interaction length must be varied with intensity. Physically this
would require a decrease in the interaction length as the laser intensity is increased.
This is consistent with the results of Chap. 4 where we observed, in simulations, a
reduced dependence of the reflectivity levels on length for higher laser intensities.
Such a decrease in reflectivity would be expected in turbulent regimes for which

the coherent length of interaction is reduced. A second possible explanation is that
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Figure 6.2: Ezperimentally observed integral time average DBrillouin reflectivity
(diamonds) together with enhanced Brillouin reflectivity curves for parameters
no/n. = 0.08, T, = 600eV,Z = 4,ZT,/T: = 10
at higher intensities the temperature ratio would change reducing the ion Landau
damping and hence the level of enhancement.

As an example the time history of the Brillouin reflectivity together with the
SRS evolution for parameters L = 250 um, I = 5. 10" W/cm?, n§/n, = 0.08,
T, = 0.6keV, ZT./T; = 12, Z = 4, Ay = 1 pum. is shown in Fig. 6.3. In this
particular case the evolution of Brillouin, being dependent on the SRS saturation
does not produce a large reflectivity levels until sometime after the 10 ps timescale
of the experiment has past.

Figure 6.3 also contains the Brillouin reflectivity level produced through the use
of a three wave interaction model (2.75)-(2.77) for identical parameters including
the value of initial noise levels. The enhanced Brillouin is orders of magnitude above

that of the 3WI reflectivity. Although these results do not give conclusive evidence
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Figure 6.3: Time history of SRS (solid curve), enhanced Brillouin (dotted curve)
and three wave Brillouin (dashed curve) reflectivity for parameters L = 250 um,
I=5-10"W/cm?, n§/n.=0.08, T, = 0.6keV, ZT,/T; =12, Z =4, Ao = 1pm

that the experimental reflectivity is caused by the enhancement of noise levels
through SRS saturation, qualitatively at least the agreement between simulation
and ~xperimental reflectivity scaling suggests that saturation of SRS is a reasonable
candidate for the mechanism responsible for enhancing Brillouin in the Baldis et
al. experiment.

In a more recent experiment performed using the Nova laser [93], opposing
beams were used to study SBS. SBS was observed showing very distinct features: a
rapid turn on time, and a complicated frequency spectra, which includes anti-Stokes
or blue shifted components and the normal Stokes components. The experimentally

observed rapid turn on time is also a characteristic feature of our enhancement
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model, and in our case it is a consequence of the first sharp saturation of SRS. In
our simulations we also observe both Stokes and anti-Stokes Brillouin scattering,.

In the experiment a preformed plasma was produced using one beam of the sys-
tem, while the second was fired after different time delays. We were able to identify
key parameters characterizing two distinct cases by using the results of LASNEX
hydrodynamical simulations [69]. We have identificd two cases with related delay
times, between the firing of the formation beam and the interaction beam, of ap-
proximately 400 ps (case 1) and 1000 ps (case 2). The parameters case (1) Fig.
6.4(a) - no/n. = 0.2, T, = 1.5keV, ZT,./T; = 8, I = 10"W/em?, L = 60um;
case (2) Fig. 6.4(b)- no/n. = 0.1, T, = lkeV, ZT./T: = 8, I = 2.510""W/cm?,
L = 60pm were used, producing results which varied quite dramatically from case
to case. Although detailed comparison with experimental results is again compli-
cated by the plasma geometry and hydrodynamical effects, as well as the simplicity
of our model, the importance of SRS influence on Brillouin scattering is hard to
overestimate once one notices the magnitude of the enhancement effect.

This increase is illustrated in Fig. 6.4, showing the SRS reflectivity (Rgpy) and
the Brillouin reflectivity Rp produced by laser light scattering from the fluctuations
enhanced during nonlinear SRS evolution. Time evolution of Rj; shows a very rapid
increase of reflectivity and a subsequent decay. Case 1 (Fig. 6.4(a)) displays a much
stronger enhancement of Brillouin as compared to case 2 (Fig. 6.4(b)), where Ry
after the initial increase decays approximately to the level of detection accuracy
for SBS in our numerical simulations (cf.[69]).

Experimentally, both Stokes Brillouin components and blue shifted components,
which may be associated with the anti-Stokes Brillouin scattering, were observed

in the frequency spectra. Similar anomalous spectral peaks were observed in our
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Figure 6.4: SRS reflectivity Rsps and Brillouin reflectivity Rg as functions of time
for the case (1) (a), and the case (2) (b). Brillouin reflectivity corresponds to
scattering on the fluctuations enhanced by SRS.

simulations (cf Chap. 4 Fig. 4.10). As was mentioned in Chap. 4 one of the
important parameters describing the level of Brillouin reflectivity is the separation
in the ion wave spectra between the components at kf,l) produced by the PDI of
SRS driven Langmuir wave and N, at k% = 2k, which participates in Brillouin
scattering. Figs. 6.5(a) and 6.6(a) show spectra of density fluctuations at late
times in the simulations, when SRS reflectivity has already reached its asymptotic
value. For case 1 (Fig. 6.5(a)) we observe strong enhancement of N levels and
a relatively small separation between k¥ = 0.22kp and k4 = 0.29kp components.
The enhanced part of the spectrum is dominated by broad, but distinct peaks
corresponding to modes produced by the PDI cascade. The value of k = k% is
located very close to the fourth component of the PDI cascade which is a mode

propagating in the opposite direction to the pump. Electromagnetic radiation
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which is scattered due to interaction with this mode would preduce primarily the
anti-Stokes component observed in the frequency spectrum (ef. Fig. 6.5(b)). The
contour plot (Fig. 6.5(b)) displays the time evolution of the spectral intensity of
Brillouin backscattered radiation normalized to the pump intensity at w = wy.
The Stokes and anti-Stokes maxima correspond approximately to the ion acoustic
frequency 2koc,. Since the enhanced part of ion wave spectrum is dominated by
nearly discrete peaks, small changes in plasma parameters can move k¥ component
closer to the mode propagating along the pump and produce the strongly enhanced
Stokes components in the spectrum. In summary, we have observed that case 1,
corresponding to high density and high plasma temperature, is characterized by the
strong enhancement of Brillouin scattered light which has a well defined spectral
shift (anti-Stokes for this particular simulation).

We observe a quite different situation for case 2, (¢f. Fig. 6.6). Due to the
weaker SRS a smaller part of the ion spectrum is enhanced. The criterion for the
enhancement of the N, amplitade at k = k¥ (4.3) is only marginally satistied for
case 2 (cf. Fig. 6.6(a)). Also the k§ = 0.27kp component is separated, to a much
larger degree, from the maximum amplitude at k4 = 0.42k;, as compared to the
distance between these modes in case 1, reducing the Brillouin reflectivity even
further. The frequency spectra of the Brillouin backscattered light (Fig. 6.6(1))
shows weakly enhanced but approximately the same intensity Stokes and anti-
Stokes components. The scattering takes place on the ion fluctnations at k =
kB, which correspond to a continuous part of the spectrum (Fig. 6.6(a)) equally
enhanced for waves propagating to the left and to the right.

In both cases which we have examined ion wav: s enhanced by SRS are the only

source of Brillouin scattered light. They contribute to the frequency spectra of the

146



(a) )]

R 2 Yk
INyJ 2 ’ 7 .
10
1=53.29 ps 108 Lo ﬂ
104 t(ps)
104 ' m u
. . . : 'ﬁ 0 :
01 02 03 0
K (kg) ((o-mo)/mp

Figure 6.5: Results from the numerical simulations for the following plasma param-
eters: ng/n. = 0.2, T, = 1.5keV, ZT,/T; = 8, I = 10""W/em?, L = 60um (case
(1)). (a) normalized Fourier spectrum of density fluctuations at time t=263.29 ps
(cf. Fig. 6.3(a)). (b) contour plot of the Brillouin backscattered cpectral intensity

normalized to pump intensity.

Brillouin signal, which contain Stokes and anti-Stokes components. Both compo-
nents have been observed in experiments [93]. Although our model does produce
both Stokes and anti-Stokes components there exists the possibility that hydrody-
namical effects, which have not been accounted for, could either act simultaneously
with our enhancement mechanism or replace it as the dominant process in plasma.

In Chap. 4 it was shown that the nonlinear evolution of SRS can produce
Langmuir modes capable of scattering waves corresponding to the anti-Stokes com-
ronents of Raman. The enhancement of these anti-Stokes components above the
thermal levels expected from Thomson scattering could account for the experimen-
tal observation of large levels of anti-Stokes Raman reflectivity. Although direct
spectral evidence of the frequency and wave number characteristics of the plasma

waves iu these experiments were not found, indirectly the experimental evidence
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Figure 6.6: Results from the numerical simulations for the following plasma pa-
ramcters: ngfn. = 0.1, T, = 1keV, ZT,/T; = 8, I = 2.510""W/cm?, L = 60pun
(case (2)). (a) normalized Fourier spectrum of density fluctuations at time t=
49.07 ps (cf. Fig. 6.3(b)). (b) contour plot of the Brillowin backscattered spectral
intensity normalized to pump intensity.

obtained may support our theoretical model of SRS.

Experimental observation of anti-Stokes forward Raman scattering (AFR) was
first reported by Turner et al [92] in 1986. Since this time numerous reports of
the observation of AFR as well as evidence for the existence of an anti-Stokes
component in the backwards direction (ABR) has appeared in the literature [90],
[91], [99], [102]. The experiments by Turner et al were performed using one arm
of the Nova laser to irradiate CH targets witl. 0.53um light. Although a density
gradient was present in the plasma the parameters of the system were such that a
qualitative comparisoa “an be done using our model. The observation of SRS was
reported to extend from 0.1 < ng/n, < 0.22 while FR existed in a more restricted
density regime of 0.14 < ng/n. < 0.22. The AFR reflectivity, although an order

of magnitude or so smaller than FR, was highly correlated with the observed FR.
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reflectivity. Due to the close proximity of k5 to kf R* the simultaneous appearance
of AFR together with FR is a direct consequence of our enhancement mechanism
and could be used to explain the observed results. Furthermore our theory also
provides an explanation for the relatively high density required to observe FR.
As the density decreases the sepaia . -u between the primary wave number at # .
and the secondary resonant point at kf ® increase, requiring a larger amplification
coefficient A to produce strong enhancement. The observed experimental ratio
between the AFR and FR reflectivity levels can be explained by our theoretical
model. FR is an unstable process for which convective growth is possible. AFR
however is a stable process relying solely on previously existing Langmuir waves to
provide the observed levels.

In order to obtair sufficient simulation data for a comprehensive study of the
various reflectivity levels, the key parameters n§/n, = 0.2, T, = 1 keV, ZT,. /T; = 8,
Z =3 -5, Ay = 0.531 um were identified as providing the largest range of laser
intensities and interaction lengths while maintaining model validity. To establish a
reflectivity scaling for AFR the laser intensity and interaction length were varied,
producing the results illustrated in Fig. 6.7. Figure ./ shows the time averaged
simulation reflectivity versus theoretical reflectivity values for SRS (op en diamonds)
(3.27), forward Stokes (closed diamonds) (4.8) and anti-Stokes {open circles) (4.28)
Raman scatiering. A comparison can be made with the reported reflectivities of:
(a)backward SRS =~ 0.1 — 0.2, (b)FR =~ 1073 - 3- 1073, and (c)AFR ~ 5- 1075,
which are in quantitative agreement with the simulation reflectivities of Fig. 6.7.

Further examples of experimentally observed anti-Stokes Raman scattering ex-
ist in the literature. A recent study by Batha et al. [90] was again performed using

the Nova system. In this case a long scale length preformed plasma was irradiated
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Figure 6.7: Simulation versus theoretical reflectivity values for SRS (open dia-
monds)(3.27), forward Stokes (closed diamonds)(4.8) and anti-Stokes (open cir-
cles)(4.28) Raman for parameters L = 25 — 100um, I = 1 - 10 - 10" W/em?,
n§/n.=02,T,=1keV, ZT./T; =8, Z =3 - 5, Ag = 0.531 pumn

with a 0.351um interaction beam. An approximate density of 0.1 < ng/n. < 0.15
and temperature of >~ 1keV was reported. Under such conditions the separation of
the primary wave number k;, from both the FR component at A§# and the required
wave number for ABR is quite large. However the intensity of the interaction beam
(I ~1.5-10'5W/cm?) and the long scale length of the plasma are sufficient to pro-
duce a reasonably large amplification coefficient such that significant enhancement
of the secondary compnnents can be achieved. It was not possible to produce a

universal reflectivity scaling and only some of the physical characteristics of the re-

flectivity scaling (4.29) were found (see Fig. 4.12(a) and 4.13(a)). However we can
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address certain concerns mentioned by Batha et al. as to the nature of the mech-
anism producing the anti-Stokes component. In particular they expressed concern
about the construction of the ion modes which would allow reversal of Langmuir
waves to produce the backwards anti-Stokes scattering. As has been demonstrated
the saturation of SRS through the nonlinear evolution of the Zakharov equations
can supply the necessary wave modes to enhance ABR. Furthermore the spectra is
not completely turbulent, allowing for the development of the sharp peaks observed
by Batha et al.. Finally in their analy+is Batha et al. neglected the continuous
part of the spectrum which arises naturally in the PDI cascade process. Such an
omission resulted in their rejection of PDI as a source of enhancement based on an
argument that any PDI component would have to propagate sufficiently far such
that heavy damping would occur. Such propagation is not necessary to produce
the correct wave vector. The interaction of the Langmuir and ion acoustic modes
generates significant levels of Langmuir waves at the correct wave numbers for
enhancemeut to occur.

As a final note on the phenomenon of anti-Stokes Raman reflectivity, we would
like to comment on a recent publication by Labaune et al. [91]. In their inves-
tigation they reported observation of ABR correlated with the appearance of a
strong Brillouin component. However it is still relevant to discuss this experiment
in the context of enhancement processes whether due to SRS saturation of some
other possible mechanism for enhancement. In the experimental parameter regime
investigated by Labaune et al. the density was always well below quarter critical,
and hence, assumirg that the plasma was homogeneous, the growth of SRS due
to its larger growth rate should have taken place hefore SBS. Under these circum-

stances one would expect to see in simulations a similar nonlinear evolution of SRS
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Figure 6.8: SRS, Brillouin and ABR reflectivity as a function of time obtained
from numerical solutions of equations (2.57)-(2.61) for the parameters L = 70 pm,
I=510"W/em?, n§/n. = 0.1, T, = 0.5keV, ZT./T: = 10, Z = 4, Xy = 0.531 jum

to that of Chaps. 3 and 4. As SBS evolves and overtakes SRS the ion modes
associated with SBS would grow to large levels '.roducing enhancement of quasi-
modes which could affect ABR. As an illustration of this argument Fig. 6.8 plots
the simulation time history of SRS, ABR and Brillouin for parameters L = 70 pmn,
[=510"W/em? ng/n. =0.1,T. = 0.5keV, ZT,/T: = 10, Z = 4, Ay = 0.531 pumn.

For these particular parameters Brillouin is above its absolute threshold, and
because our theoretical model (2.57)-(2.61) does not contain an explicit mechanism
for SBS saturation, one would expect that Brillouin itself should grow until the
simulation reaches unrealistic reflectivity levels. However as is illustrated in Fig.
6.8 the SBS saturates at a level between 10% — 20%. SRS is also saturated, at
a level of ~ 1%, and hence, because of the low level of reflectivity, competition

between SRS and SBS for pump energy cannot explain the saturation ohserved.



The reason SBS saturates in this example, if this is actually SBS saturation, is
currently not understood. Further analysis of this parameter regime is nee 'ed in
order to determine what is taking place in the simulation. Regardless of whether
we are observing SBS saturation or some dynamical evolution, the simulation of
Fig. 6.8 illustrates how absolute SBS can affect the evolution of ABR.

In the context of the Labaune et al. experiment, SBS in our simulation produces
a strong density spectral component at k. This component can couple effectively
with the Langmuir spectrum allowing for the production of a more coherent ABR
Langmuir component. This coherence can be seen in Fig. 6.8 where, as the SBS
becomes the dominant instability (¢ > 45 ps), the fluctuations associated with the
anti-Stokes Raman reflectivity are significantly reduced. One also observes that
the anti-Stokes reflectivity continues to grow after the saturation of SRS, indicating
that the growth of SBS is influenciug ABR. Although this simulation evidence does
not directly verify the hypothesis that SRS and SBS saturation are the cause of
the ABR reflectivity observed in the Labaune experiment, it does provide evidence
that SBS can influence the behavior of ABR.

One characteristic, observed in many recent SRS experiments, is a feature
known as the Raman gap [90], [104]. The Raman gap refers to a region of very weak
emission in the wave spectra of the Raman backscatter near densities approaching
the quarter critical density ( %nc). This gap is not directly predicted by any linear
theory of SRS. In the %nc region the wave number of the SRS backscattered elec-
tromagnetic wave approaches zero. Thus small modifications in the background
density ng, which were unimportant when one is well below %nc, can now affect the

SRS dispersion relation. ie.
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wh = wi(1 + 8n) + Ak}, (6.1)

Here we have introduced én which is associated with the long wavelength ion
density fluctuations at ~ k4 = 0. These density fluctuations could be produced
through the saturation of SRS or two plasmon decay. For argument sake we assume
that the fluctuations are produced by the PDI cascade and can be represented by
on = an,l). Here N,(,l) is the peak noise fluctuation value at k4 = 2k, — Ak and 1)
represents the fraction of the fluctuations which affect the long wavelength regime.
Near %nc even small ion fluctuations could adversely affect the Raman scatter by
driving the background density above %nc and disrupting the maiching conditions
of the Raman backscatter.

When calculating the SRS reflectivity, the density fluctuation coupling in the
equation describing the Raman scatter (2.60) was ignored and a lincar approxima-
tion was used instead to describe the SRS wave equation. This omission is valid as
long as one is well below %nc (£ 0.22ny/n.). For simulations approaching %n,, the
Raman reflectivity expression (3.27) diverges (cf. Fig. 6.9 (solid line)). To correct
for this problem one retains the density nonlinearity in the original electromagnetic
equation describing the evolution of the Raman scattering (2.60). By assuming that
this electrostatic ponderomotive force can be represented through the use of the
asymptotic density fluctuations produced by SRS saturation, expression (3.15), one
arrives at the equation
O0Ep _ uwin ek

—2 | E |? Ep + ——E,E;]. (6.2)
m,

VR 0X - 2w R 4w0

Here the coupling constant 7 describing the fraction of density fluctuations affecting

the SRS matching conditions must be determined. We now replace the linear
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Figure 6.9: SRS reflectivity expressions (3.27) solid line, and (6.4) dotted line, as
a function of density, for parameters L = 60pum, I =1-10"W/cm?, T, = 1 keV,
ZT.|T; = 8, Z = 3, Ao = 0.531 um. Diamonds represent time average asymptotic
reflectivities obtained from simulations.

approximation of the SRS evolution, (3.21), with (6.2). Using the relationship we

have found between the asymptotic Langmuir and SRS variables, (3.20) written in

the form

Etzh w,,k[, eE() E (63)

E; B= .
|| 4y (kp) wr wome ©

and proceeding as in Chap. 3 we obtain the reflectivity expression

I~
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where v,, = €Ey/m.wp. When the density is well below %nc it has been shown
that (3.27) is a reasonable approximation for the asymptotic reflectivity. This fact
allows one to estimate the value of 77 by matching the reflectivity curves of (3.27)
and (6.4) for densities below 0.2n9/n.. One observes that the SRS reflectivity is
still independent of v, (k) except possibly through the parameier 7. However one
can no longer separate the density dependence from the rest of the parameters. The
shape of SRS reflectivity, as one varies the density between 0 and I!{”cv now depends
explicitly on the parameter regime chosen. If the argument of tanh(x) is small, (6.4)
reduces to (3.27), our usual expression for SRS reflectivity. As one now approaches
%nc the reflectivity approaches zero (cf. Fig. 6.9 (dotted line)). Also present in
Fig. 6.9 are a number of simulation reflectivity results for densities approaching
%nc, where 71 was estimated by examining the density spectra for very low wave
numbers. Good agreement between the simulation time averaged reflectivity and
the new scaling (6.4) is obtained, indicating that the ion density fluctuations can
influence the reflectivity behavior near in,.

However the absence of a density gradient, and other instabilities such as two
plasmon decay, in our theoretical model (2.57)-(2.61) makes analyzing this param-
eter regime difficult. By adding a density gradient to the present model one would
be able to investigate the affects such a gradient would have on SRS and allow a
much more complete study of the infii>nce of the ion fluctuations on SRS near %nc

and their possible contribution towards the Raman gap.
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Chapter 7

Summary and conclusions

During this investigation we have obtained scaling laws for the saturated SRS re-
flectivity level and the associated Langmuir field amplitude. Scaling laws describing
the er.hanced reflectivity levels of Brillouin and forward Raman scattering as well as
criteria for determining their strong enhancement have also been given. Otk-- <ec-
ondary scattering processes, such as anti-Stokes Raman scattering, have ar. ~ ! .en
described. These results have been compared to several experiments providing new
or alternate explanations for observed results.

We have examined the nonlinear behavior of SRS in the presence of the electron-
ion coupling associated with the one dimensional Zakharov equations for a uniform
bounded plasma. It has been known for many years that sucondary parametric
processes can disrupt and saturate primnary instabilities. Many examples have been
studied illustrating this principle within the weak turbulence formalism or wave
coupling theories, including the case of SRS. For the parameter regimes studied
in this investigation, PDI of the SRS driven Langmuir wave was always observed
to be the initial cause of SRS saturation. The new physics in our description of
PDI and the PDI cascade is, first of all, related to the different temporal and

spatial evolution of both instabilities. SRS is convective and PDI develops locally
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with the homogeneous growth rate. Several characteristic features of nonlinear SRS
evolution, including disruption of the PDI cascade and Langmuir wave localization,
can be explained by spatial nonuniformitics of the wave coupling processes.

Secondly, by using the Zakharov theory to describe the resonant wave interac-
tion, we also allowed for nonresonant mode coupling. This nonresonant contribu-
tion affects the initial levels of the linear evolution of the seccondary components of
PDI, introducing enhancement of noise levels well above the thermal levels.

For the asymptotic behavior of SRS, we have found that the final saturation
levels are well described by the scaling laws (3.27) and (3.33) derived from simplified
PDI theory (3.19), regardless of the many additional nonlinear processes taking part
in the SRS evolution. In addition the same scaling predicts a imple proportionality
of the Laagmuir wave amplitude to the PDI threshold (3.29), and (3.34) with
dependence on the intensity and plasma intcraction length.

Numerical sitnulations of our full model (2.57)-(2.61) have shown that in the
nonlinear stage of SRS evolution a wide spectrum of plasma fluctuations is excited.
The broad fluctuation spectra in the ion density and Langmuir fields result in en-
hanced levels of Brillouin and forward Raman scattering. Simple reflectivity scaling
laws based on the saturation levels of the Langmuir and ion acoustic fluctnations
provide good agreement when compared with simulation results. The enhancement
of secondary scattering processes can be extended to include the anti-Stokes Ra-
man scattering components. The enhancement of wave numbers corresponding to
the anti-Stokes components is more complicated than that of Brillouin or forward
Raman scattering. This fact combined with the stable behavior of the anti-Stokes
coupling results in a much more turbulent spectrum describing anti-Stokes Raman

scattering. A universal scaling law describing the full parameter dependence of
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the anti-Stokes reflectivity is thus not possible. We were however able to identify a
linear dependence of the anti-Stokes reflectivity on laser intensity and plasma inter-
action length. This scaling agrees with that derived from a three wave interaction
for which a random phase approximation was applied, supporting the observation
of a much more turbulent spectrum for the anti-Stokes Raman scattering.

During our investigation we have established criteria necessary for strong en-
hancement of the secondary processes, and have found limits on the parameter
space for which our simulations remain valid. These limits include restrictions on
the laser intensity an- interaction length of the plasma, which are important pa-
rameters in determining the extent of hot electron gproduction. Criteria limiting
the amplitude of the Langmuir field and the density fluctuations are provided by
the limits imposed of the validity of the Zakharov equations. Within these re-
strictions our results are still applicable to many current laser plasma interaction
experiments. Experiments by Villeneuve et al. [44] and Baldis et al. [88], [89]
have provided experimental evidence in support of our model. Our theory also
offers plausible explanations for experimental observations of anti-Stokes Raman
scattering.

Our theoretical model (2.57)-(2.61), which we have derived in Chap. 2.1, is an
extension of the Aldrich et al. model [63], and contains terms describing Brillouin
scattering and anti-Stokes Raman scattering. In our study the linear evolution of
SRS was well described by the three wave interaction analysis of Chap. 2.2. The
numerical simulations of our full model (2.57)-(2.61) in this linear regime compare
well with simulations of the three wave model (2.70)-(2.72). Both models have
demonstrated linear growth for whicl. the rates are summarized in table 2.2.4. In

simulations of our full model, the nonlinear effects always eventually dominated
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the evolution of SRS.

The asymptotic reflectivity scaling law of our theory (3.27) partially supports a
proposal by Drake and Batha [43] for controlling SRS reflectivity. Drake and Batha
suggested that, by designing fusion targets to reduce the PDI threshold one could
reduce the SRS reflectivity. Our reflectivity scaling law is directly proportional
to the PDI threshold but it is also dependent on the laser intensity and length of
the interaction region. The additional possibility of high peaked bursting of SRS
reflectivity must also be of some concern if in order to reduce the PDI threshold one
reduces the ion damping. Our asymptotic scaling laws are independent of the initial
conditions and therefore could be tested using many of the current laser-plasma
interaction experiments.

One recent experiment by Villeneuve et al. [44] used Thomson scattering as
a diagnostic to analyse the frequency and wave number spectra of tice Langmuir
modes. The results of this experiment were consistent with our theoretical results
of Chap. 3 providing the first direct experimental evidence in support of our theory.

Other ongoing experiments by Batha [105] addressing the question of the sat-
uration of stimulated forward Raman scattering. In this experiment the density
and other parameters are such that backwards Raman scattering is very heavily
Landas damped (k; > 0.4kp) and hence forward Raman is the dominant insta-
bility. Satha, in his preliminary analysis of the expelimental results, applied the
theory of Chap. 3 to describe the forward Raman reflectivity sataration. The
plasma interaction length required by our theory to reproduce the observed satu-
rated refiectivity values was considered reasonable and consistent with the physical
characteristics of the experiment.

In a recent experiment by Baldis et al. [88], [89] reflectivity levels of Bril-
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louin scattering were observed at levels which cannot be explained by a three wave
interaction model and the initial thermal fluctuation levels. Although direct ex-
perimental evidence of the Langmuir frequency and v.ave number spectra was not
available, the parameter regime of the Baldis et al. experiment is consistent with
those regimes in which our model can be applied. Simulations of our full theoretical
model were run for parameters typical of the Baldis et al. experinent, producing
results in qualitative agreement with the experimental observaticns.

Although the anti-Stokes coupling is not in itself an instability, the enhanced
noise in the Langmuir spectra, produced in our theory by the saturation of SRS, can
lead to substantial levels of anti-Stokes Raman scattering. Even though a universal
scaling law was not possible we were able to numerically e-timat- the anti-Stokes
Raman reflectivity for parameter regiiies consistent with an »vperiment by Turner
et al. [92]. In this experiment Turner et al. observed reflectivity levels of SRS,
and both forward Stokes ahd anti-Stokes Raman scattering. Simulatic  using the
experimental parameters produced results which were in quantitative agreement
with the reflectivity levels obscrved by Turner et al.. The agreeinent between
experiment and simulation in this case suggests that enhancement of noise levels,
by the saturation of SRS or othur instabilities, is a reasonable candidate to explain
the observation of substantial levels of anti-Stokes Raman scattering. The enhanced
Langmuir noise of our theory, scattering laser light through the anti-Stokes Raman
coupling channels, could also be used to explain the observation of backwards anti-
Stokes Raman reflectivity by the experimental groups of Batha et al. [90] and
Labaune et al. [91].

In our theoretical description of SRS we have shown that large levels of Lang-

muir waves can be gencrated and maintained in the asymptotic stages of SRS
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evolution. These enhanced noise levels in the Langmuir spectra were shown in
Chap. 5 to be capable of producing large levels of superthermal clectrons. Gur
th retical model (2.57)-(2.61) does not account for the modification of the «lectron
distribution fuuetion produced by the heating of electrons. It i thus necessary for
us to estimate - - ‘uch parameter regimes substantial heating of electrons oceurs
and limit our simuiations to regimes where the modifications are minimal. The
parari-te. . *eime of our present model could be extended by modifying our phe-
nomenological description of Landau damping to account for superthermal electron
production.

There are many other possibilitics in which our present analysis of SRS conld
be ~xtended. For example t¢ maintain the validity of our simulations 'BS cannot
in general he allowed to grow absolutely. Beriuse our theotetical model does not
contain an explicit saturation mechanism for SBS, the parameter regitoes examinerd
are restricted to those regimes in which SBS is below absolute tireshold. The
parameter regime of Fig. 6.8 is a rare cxception, illustrating a simulation in which
absolute SBS may have saturated at physica!lv realistic values.  his possibility
should be explored ia miore detail in order o isolate whether we indeed have SBS
saturation or if the evolution is related to some complicated dy::amices” evolution.

Other forms of limiting SBS growth could come from chtferent sources of ion
damping [98], [103]. Furthermore the inclusion of ion nonlinearities in the form
of a Boussinesq type density equation may piovide a better description than the
previous study by Rozmus et al. [94], [95]. Iu their study a KdV equation was
used to describe the ion sound waves. Such a description only allows for the
propagation of ion waves in a single direction. This restriciion may prohibii the

formation of quasimode components which would be present in a more complete
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description wsing a Doussinesq equation allowing for bilateral movement of the
ir:n sound waves. It is also possible that resonant liarmonic contributions moving
in the opposite direction could adversely affect the resonant matching conditions
immensely reducing th. saturated reflectivity levels. Finally the affects of two
dimensional analysis recently reported in [106] indicates that a two dimc.sional
description may be the only way to properly describe the SBS saturation.

The present analysis can also be expandid in order to provide a more realistic
description of an experiinental plasma. Of particular relevance is the inclusion of
a dcusity gradient in ilie description of th SRS ~+-tei. Such a feature is essential
to properly model any real plasma experiment Heenise of the inherent presence
of density nosmniformities. Apart from producing a inore ar~urate description of
the plasma the inclusion of a density gradic at would allow for a detailed siudy of
the effects of ion density fluctuations have on the production of SRS near quarter
critical. Such a detailed study coulu lead to many interesiing results and further
understanding of the Raman gap.

As mentioned previously two dimensional effects should also be investigated in
the context of SRS and its saturation. New ;. . ~:mena such as Raman side scatter
and two plasr-a decay could be investigated. Two dimensional studies would give
rise to more a realistic investigation of the present topics as well. Other possibilities
could include the investigation of filamentation [96], [97],[101], or laser hot spots
on the development of SRS. Many of these topics are presently being studied both

theoreticaiiy and experimentally.
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.1 Thermal noise levels

In order to model a realistic plasma thermal noise sources, corresponding to the
fluctuations produced by particle discreteness, must be accounted for [71], [72].
We assume a priori that these fluctuations will only affect the linear evolution
of the plasma, and their influence will be negligible once nonlinear effects become
important. The object of including noise source terms is, in the absence of nonlinear
contributions, to model a plasma i- thermal equilibrium.

In a three dimensional infinite plasma the spectral distribution of the electric

field fluctuations is given by (cf. Ref. [7] Eq 6 88)

(1)

2 dme\? (6nB)S+ (6n2)0
(E )E,w = ( ) " :
k | e(k,w) |2

wher

- 2nng M ?
2\0 = = . ) — 0 .\ a
(6nd)2, = 27r/dv foa(D)b(1w — k- 7) = Tor, exp[— 5T ] (.2)

is the spectral distribution of particle fluctuations in the absence of Coulomb inter-

action, and where we used a Maxwellian distribution fy,(7) for the electron a = e

and ion a = species. Here

e=14xc+xi (.3)

is the longitudinal dielectric permittivity, and

w? 1 - afo
o= —2 [ di k- c .
X <~ / 7 T z';'h ER (.4)

are the partial components of the linear plasma susceptibility. By expanding e

around the solution w, k te produce
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o€, (k. w)

e(F,w) = ek, ) Ig,,, +—5"— I,

(w —wp) +iea(Rw) g, >0 (D)

where wp ~ w — iv,(K) and using the identity

N
'171_1}(1) P i wb(x) (.6)
one finds
. '1 _ 7r6(w - wg) (7)
(o, w) B | Dei(k,w) /0w |2, vu(R) '

In the high frequeney | w 3> vk long wavelength limit &y 3> k one can casily
show (cf. Ref. [9])

k% [ k*f 3k, k%, k2o 3k,

/ (k" w? l\', w w*
) _—— —_— =0 (.
+ 2\ & w,, P [ 2k2'v,f-e] T (‘(P [ k"v-‘}-l]) ) (8)

which can be used to find

— p r ”‘ ~ — [
dw Wl + w? T w, (9)
and
k) = T k"}) 1 k‘f)
(k) = ] cxp[—§(3 + _k—‘)] (.10)

Equation (.1) can be written in the gencral form
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(Bg(w)Eg(w)) = (E®)p, (2m)3&(F + K)o(w + )

2 .2
BT o 3 8w = w2 NE 4 ) +) (D)

ne
0 ¢
kk Al) -~ i

Here the sum over § takes into account both possible solutions of wi. Inverting the

transforms gives

[ dkdR T
/dwdw /(2—7”.—1(27” (\p[ll. Fik T —iwt —iwt (Eg(w)Ex(w))

Juf

cxp[lk - 7)) —iw(t =t WE;, (12)

Using

/dE: /0°° (lkk2/(l(2 (.13)

and looking the projection onto a finite one dimensional system we have

oo 2T
/0 dk—»ﬁik:, /dQ—»AQ (.14)

allowing us to approximate (.12) as

(E(z,t)E(z',t)) = AQ2 (4me)ngy kT xplik(z — ') —iue(t = )] (.15)
2m)?L v kb

In our full model (2.57)-(2.61) we have enveloped the Langmuir fields over the

high frequency w,, thus w; = -vT k2/Q,. The argument of the exponential in (.15)

can be rewritten as
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tkr — wit + igy (.16)

where ¢ is a random phase constant for each k, allowing us to write

1/2
Ein = (E(z,t)E(z ,t))/? = (ﬁ?&—k%Mwe)%s) (.17)

X Z kay coslikz — iwpt + ¢r] + 1B sinfikzr — iwet + ¢x)
k

where g, and ) are random amplitudes between 0 and 1.
In our full model (2.57)-(2.61) the enveloped equations of the high frequency
Langmuir waves in the absence of nonlinear terms is given by
30} O°E

. OF
l(gt"*‘%*E) Y] = Si(z,1) (.18)
p

By finding analytically a solution E;, for the inhomogencous equation, we can then
construct a full solution by adding, at each timestep, E;, to the linear homogeneous
(and eventually the nonlinear) solution found from solving the full system of equa-
tions. When the system is dominated by the nonlinear evolution we continue to add
E;, to the numerical solution to maintain a realistic conversion of the Langmuir
wave energy into thermal energy through Landau damping.

A similar method can be applied to obtain the thermal noise levels for the ion

density. Using the spectral distribution for the ion density fluctuations given by

(cf. Ref. [7] Eq. 6.84)

(T xe) (D) + xi{6n2)E
| e(k,w) I

(6nf).
using equatioas (.5), (.6), and (.7) with wy =w — i7A(l~c‘)
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1 mo(w — wi)
IG(E,uJ) - - Iaﬂ k w)/(')w '2 /'T)

(.20)

In the intermediate frequency regime where vy b >>| w [ vk for the long wave-

length limit kp 3> k one can easily show (cf. Ref. [9])

e(k,w) =1+ ﬁ T w? wi

T k:;) w w? k;) w w?
iz (oo ot + oo [ag]) -0 o

for the low frequency ion contribution. Repeating the same procedure for ion

k% kY, (_ k2o, 3k"n$">

acoustic wave frequencies with

Oy 22 Gh%vf. ‘
Bw = w‘"i <1+ w? (22)
and
T Zm, (ZT.N\>? 3 ZT.
k) = if ek (22 4 (Z2) oxpli 4 27 ) B

one arrives at

14+ Zvr, Q /vy,

(671 )L" = Tl07r6(w - w[)l + ZY:_-'U'[‘,_ ('2/71._1)"; (-24)
where Q = exp[—3/2 — ZT,/2T;], and we have used ZT,/T; > 1 so that
1+ 3T;/ZT. ~1 (25)

1+9T;/ZT,
Inverting the transforms, taking the one dimensional projection and using wy =

+c,k gives
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(6n'(z,t)én' (', t’))n%'z = (.26)

A 1+ 2ZuQ/on 5~y N :
- e H k k _ _ t _ t
SE(2nyng 1% ZToor, Q[ Ty, o © CXPUk(E = 2') — d(t = ¥)

Once again the argument of the exponential can be written in the form of expression

(.16) and

1/2 1/2
o . AQ 1+ Zor Q/‘UT.
- ! LY o LA Wl ~ U U
Nin = <("" (. £)ém (”"t»n;',?) = (2L(27r)2n61+ZTevT.Q/T,-vT.-

X E kay. cos[ikz — dwt + @] + 1B sinfibz — dwit + ¢y (.27)
k

Here again ¢, is random phase constant for each k, and a4, and §; are random
amplitudes between 0 and 1.

Namerically these source terms are achieved by adding stochastic amplitudes
of width (I'gps/VL)(L/27) in Fourier space in the vicinity of the resonantly driven
SRS Langmuir mode and the first PDI daughter components in the Langmuir.
The ion density equation is split into two first order time equations to which the

stochastic amplitudes are added separately.
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.2 Partial/ordinary differential equation solver
algorithm

2.1 System of equations

In this investigation each of the systems of differeutial equations was solve numer-
ically using the same basic algorithin. The core of this algorithm was designed to
accommodate an arbitrary number (N E) of nounlinear partial and ordinary differ-
ential equations for an initial value problem with nonperiodic boundary conditions.
It is assumed that the equations can be written in a form such that the derivatives
are first order in time and up to second order in space, ic.

i 2,
o = fi ({u‘},{%}},{%%}) (i=1....,NE) (.28)
Here ¢' = 0 for an ordinary differential equation and o' = 1 for a partial differ-
ential equation,u’ represents the variables and f is the spatial components of the
differential equations. For example Burgers equation would be written as

o 0% 9w . (. . i 0% :
=g = (LGS =1 (@

The system is assumed to exist in a finite one dimensional region = € [a,b)],
with similar equations to (.28) which hold on the boundaries x = @ and x = b. In
order to solve (.28) numerically the spatial and temporal domains are discretized

according to

{z1,...,zxp};  {t°...,t",...} (.30)

such that At = t™*+! —¢™ and Az = 144) — Tx. The temporal derivative is repre-

sented by a two point forward difference approximation while the spatial derivatives
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are found using a five pont centecad difference approximation. The discrete system

is thus represented by NP x NE eqnations which connect the m and m + 1 time
points:

im+1 im f,m+1 i,m
PN —uy ! + fi
AR P R (31)

where (2 = 1,..., NE), NE is the number of equations and (k = 1,..., NP), where

NP is the number of spatial grid points.

In (.31), the spatial derivatives have been replaced by the difference approxima-
tions shown in appendix .2.3. This ensures that the algorithm is accurate to gth
order in the interior {z3,...,zyp_2} and to o0d ,rder at the boundaries {z1, 22}
ond

and {znp_;,typ}. Furthermore, the differencing (.31) is accurate to order

in time. It should be realized, however, that the user must ezplicitly replace all
of the f*'s by their difference approximations fi. After doing so, one is left with
NP x NE algebraic equations in NP x NE variables {u;y™*'}; as we assume that

the numbers {u;™} are known. A natural way to rewrite (.31) is

f,m+1

f’:'.m+l _ [a{[uk - “i'm

——] = M = a{w™) =0 (:32)

where h = At/2. Thus, in what follows, we can suppress the time superscripts on
up™*!, and simply write u}. Similarly we can write ui™ as ul,.
We assume that the variation of u}, in time is sufficiently small so that we may

write

uj, = upy + €k + O(e) (.33)
where ¢} is a small correction. Expanding (.32) to first order around the solution
set {u}.} we have
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NENP

gi({us D) + 3 3 T b Dek = 0 (.34)

=] k=1

where the elements of the Jacobian matrix J are given by

i i 0 i.’ 1 i.
7 ({uin}) = ———""glg‘”. (:35)

Here we use boldface vector quantities to designate matrices. In matrix form (.34)

can be written

—

G=-J.E (.36)

where E = (e, .e")T = d — iy and G = (¢\", .0t )T, This makes it clear

that J should be an NPxNP block matrix of NEXNE blocks. By inverting J one

can thus calculate a closer approximation for d by using

i=ud-J! G (.37)

The new value of i then replaces the old approximation dp and the procedure is
iterated to obtain the desired accuracy. Once the desired accuracy is obtained the
time is increased by one timestep At and the entire procedure is repeated. The
whole process is illustrated in diagrammatic form in Fig. .1

To invert the matrix J we must invert a band matrix consisting of five elements
by NP elements where each element is itself an NE x NE matrix. J has the

explicit form
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yold —— fold’ gold’ (dg/du)°'d

4 4 l

unew — [(dg/du)o|d ]-1

If Else

new_, ,old
urr-utE > € advance

timestep

Figure .1: Schematic diagram of numerical solver program.

C1 d] € a bl 0 o ... 0
bg C2 dg €92 as 0 0 ... 0
az b3 C3 d3 €3 0 0o .. 0
0 a4 b4 C4 d4 €4 0o ... 0
0 0 as b5 Cs d5 €;  ...... 0
J=| o : 0
0 . . . 0
0 0 ... anp-3 byp-3 cnp-3 dyp-3 enp_3 O
0 0 ... 0 anp-2 bnvp_2 cnp_2 dnp_2 enp_s
0 0 ... 0 enp-1 anp-1 bnp-1 cnpoi dypoy
¢ 0 ... 0 de ENnp ayp pr CNP J

where each clement of NExNE block matrix form is defined by:
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— 941, — M L
(lla',j)l = 'g_uéL' (b,"j)l = aiv k=1
(ai‘j)Q = E’" A=2
]
o . _ L, . o
e =gz Gahe=gesi =gzl
(¢qk=1mﬂ (eis)e = i r =3, -2
WJ 8%}-" Qup g
(eij)vp-1 = m’:’(-’;ﬁ k=NP—1
afs o
(eij)ne = 57,!“';; (d.-‘j)N,,=E‘_,{m’_ k=NP
NP-3 NP-4

The reader must realize that f§ and fip_, are differenced using 4 or 5 point

unsymmetric formulas. f} and fip are defined using boundary equations as well
as unsymmetric differences.

In order to manipulate the matrix clements we must maintain matrix arithmetie.
To invert J we use a generalized form of the upper-lower triangular decomposition
or LUD matrix inversion algorithm. This generalized form is summarized in the

next section.

.2.2 Inversion algorithm

The matrix J can, in general, be factored into the product of a lower triangular

matrix L and an upper triangular matrix, U according to

J=L0 (.38)
where © and U have the form
[ v 0 0 O 0 0 0o ... 0 ]
,32 Y2 0 0 0 0 0o ... 0
a3 B3 v 0 O 0 0 ... 0
= 0 0
L= 0o . .. . . . . 0
0 0 ... 0 anNp-2 ﬂNp_g TNP-2 0 0
0 0 ... 0 exp-1 anp-y Byp-r Inp-1 0
| 0 0 ... 0 6Np ENp anp [}Np INP |
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and

F 161 € ) ,31 0 0o .. 0
01 (52 € 9 0 0o ... 0
0 0 1 63 €3 0 o ... 0
- 0 0
U=1 o .0
0 0 O c ... 0 1 6Np_2 ENp-2
00 0 0 0 ... 0 1 onp-1
000 0 0 0 ... 0 1|

For NP > 7, the matrices ag,...,€; are given in terms of the known matrices

g, ..., ¢; by the formulae:

M= P2 = by a3 = ag

b =7'dr v2 = c2 ~ Paby B3 = b3 — a36,

a=77'er b= (da~ faer) Y3 =c3—0ze — B362

o =v7'ay e =77 (ea — Frar) &3 =3 (ds — vz — faer)
Br=77"b o2 =7 ar~ PPz €3 = 73 (e3 — a3f — Paca)

ay = ay ay = a;
Ba = by — a4by Br = bk — arbr_2
Ya = ¢4 — aq€2 — [463 Ve = Ck — Qp€r_g — Brbr_
61 = 75 (ds — aqaz — Baez) & = 7 (dr — Brer—r)
€ =71"es €& =75 ex
ENP-1 = ENP-)
anp-1 =anp-1 — €np-16np_4
Bnp-1 =bnp-y —anp_16np_3 — €Enp_1ENP-4
YNP-1 = CNP-1 — QNP_1ENP-3 — BNP-10NP-2
énp-1=Typ-1(dnp-1 — Bnp-1€np—2)
Onp =dnp

exp =enp — bnpénp_y

anp = anp — €EnpOnp_3 — Exp_adnp
Bnp =bnp —anpOyp_s — €xpenp_3
YvP =cnp — Bnpbnp-1 — anpenp_2

Only the matrices 7;,...,yyp—1 must be inverted. Since these matrices are
characteristicly very dense, a general purpose inversion routine is used to invert
these elements (cf. Ref. [70] subroutines LUDCMP and LUBKSB). To obtain a

complete solution to (.35), it was also necessary to invert yyp. The factorization
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(.38) allows us to obtain such a complete solution dircetly. First an equation of the

form (simply (.35) expressed in new notation)

1

i=—j (:39)
where £ = (g4,....&np)T and § = (9)s -+ 8y p)" s may be written
(LU = —-§ (A40)
Then, we solve the system
Li==g 5=ty (.41)
For the unknown vector § directly using the forward substitution:
Ql = "‘7] gl
y2 = _72 ((]2 + /321/1)
Yy, = n(g+m oty ) Z
pr l 7NP l(qNP l+:BNI' lUNP 2+aNl’ l'/Nl’ l+‘NI’ “l'\’l’ )
QNP 7NP(ng+ﬂNPyNP 1 +aNI’l/NP +€NI’QN,)__3+(SNI’£NI)__4)
Finally, knowing §,we solve the system
O¢ = —j (.42)

for £ using backward substitution. It is easy to sce that € is given explicitly by

ENP=Ynp

ENP-1=Yyp_y — ONPo1ENP
S k=NP-2

=Y, kEk41 — €kEkt2 k=3

=Y, —52§3—€2§4"02_€_5

g1 =Y, — bt — €1g3 — gy — fFigs

This completes the solution of (.36)
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k-2 k-1 k k+1 k+2
Figure .2: Centered difference

.2.3 Derivative differencing

Standard 4 and 5 point differencing formulas [107] are used to approximate first

and second spatial derivatives.

d

—(% = Dl(tpg — 8tup—1 + 8upy) — Upyo) + O(A:I,‘4) (.43)
0%uy, 4
—a?- = Dz(—ltk_2 + IGUk_l - 3OUk + 161l.k+1 - uk+2) + O(A.’l) ) (44)

k # 1,2, NP — 1, NP The derivatives are centered evenly around the derivative

point as in figure (.2)

The sccond and second last points have derivatives in the unsymmetric form of

3u2

9z

62U2

or?

Ouyp_,
or

a2“-1\' pP—1
dr?

= D1(~4u; — 6uy + 12uz — 2uy) + O(Az?) (.45)
= D2(11u; — 20us + Gug + 4uq — us) + O(Az®) (.46)

= DIl(4unp+6unp_; — 12unp_o+2unp_3) + 0(A.’I)3) (.47)

= D2(1luyp —20unp_y + 6unp_g + dunp-3 — unp_s)
+ 0O(Ax?) (.48)
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1 (a)
O OO OO0

(b)

1
OO0OO0O0O0

NP-4 NP-3 NP-2 NP-1 NP

Figure .3: Unsymmetric difference for points (a) n = £ and (b) n = NP-1 respec-
tively

where figure (.3) gives the position of the derivative for the left and right side of

the box

The boundary derivatives are also of an unsymmetric form given by

9
% = D1(—22u; + 36uy — 18uy + dug) + O(Az?) (.49)
8%y 3
W = D2(35u1 - 1011,2 + 11113 - 56714 + 11’(1.5) + O(A.’L" ) (.5(.‘)
7] .
;‘,ﬁ” = D1(22unp — 36unp-; + 18unp_y — duyp_a) + O(AZY)  (.51)
32
a’;’;” = D2(35uyp — 10unp_y + 1luyp_g — SGunp_y+ Lluyp_q)

+ 0O(Az?) (.52)
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| @)
OO O0OO0OO0O
(b)

1
O O0OO0O0O0

NP-4 NP-3 NP-2 NP-1 NP

Figure .4: Unsymmetric difference for boundary points (a) n = 1, and (b) n = NP

where figure (.4) gives the position of the derivative for the left and right boundaries

For all the derivative differences D1 = 1/12Az and D2 = 1/12Ax2.
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