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Abstract

Som e datasets and com puting environm ents are large and inherently distributed. For example, image 

data may be gathered and stored at different locations for later processing. Although data parallelism  

is a well-known com putational m odel, there are few programming system s that are both easy to 

program (for simple applications) and able to work across adm inistrative domains.

We introduce Trellis-SDP, a sim ple data-parallel program m ing system  that facilitates the rapid 

developm ent o f  data-intensive applications. Trellis-SDP is layered on top o f  the Trellis infrastruc

ture, a software system for creating overlay metacomputers: user-level aggregations o f  com puter 

systems. Trellis-SDP is based on file-level data parallelism and provides a  M aster-W orker program 

m ing framework in which the w orker com ponents can run self-contained, new or existing binary 

applications. We describe the design and implementation o f  Trellis-SDP interfaces, including data- 

parallel interfaces and collective-com m unication interfaces. We evaluate our program m ing system 

with three simple data-parallel applications and one non-trivial seism ic d ata processing application.
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Chapter 1

Introduction

Data parallelism  is a well-known program m ing m odel [37]. However, w ith the development o f dis

tributed com puting platform s (such as clusters, m etacom puters over a wide-area network (WAN) [12], 

and grids [14]), it can be difficult to write and deploy even a sim ple data-parallel application. This 

is unfortunate because many problem s are naturally data parallel. For example, many problem s in 

inform ation retrieval, sorting, and searching have inherently data-parallel phases and regular com 

m unication patterns, which are characteristics o f sim ple data-parallel applications. Parallelizing an 

existing application in these areas may require porting (e.g., using a message-passing system) and 

access to source code. However, m essage passing can be com plicated, and the applications may 

be in binary-only form. With the prevalence o f  inherently data-parallel applications and distributed 

com puting platforms, there is a need for a sim ple data-parallel program m ing system for simple 

data-parallel problem s. Furtherm ore, as disks becom e larger and cheaper, scientific applications 

are using this advantage to generate and consum e m ore datasets. W hen the total am ount o f  data 

becom es overwhelm ing and grows beyond the transm ission capacity o f  the underlying network in

frastructure, certain data-handling mechanisms m ust be taken into consideration to accom m odate 

this change [23].

We introduce Trellis-SDP, a sim ple data-parallel program m ing system that facilitates the rapid 

development o f  data-intensive applications. Trellis-SDP is layered on top o f  the Trellis infrastruc

ture, a software system  for creating overlay metacomputers: user-level aggregations o f  com puter 

systems. Trellis-SDP is based on file-level data parallelism  (i.e., data parallelism within files instead 

o f  in-memory data structures (Section 3.1)) and provides a M aster-W orker program m ing framework 

in which the worker com ponents can run self-contained, unmodified, new or existing binary appli

cations.

The main design goal o f Trellis-SDP is to make the program m ing o f  data-parallel and data- 

intensive applications over a m etacom puter as sim ple as possible. Based on our experience, a large 

num ber o f  meaningful scientific applications are well-suited to be parallelized. However, the effort 

required to port these computations over the metacom puters may be daunting. For example, without 

a proper data-parallel program m ing system, an application as sim ple as a distributed g r e p  (a regular

1
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expression pattern m atcher on distributed data) can be difficult to write. By using Trellis-SDP, we 

are able to im plem ent this distributed g r e p  in less than 40 lines o f  code.

Figure 1.1 shows the com plete code for the m aster com ponent o f  the t r e l l i s  g r e p  program. 

At line 12 and 16 , a g r e p  operation and a metadata file, a physically-distributed but logically- 

contiguous file (discussed in detail in Section 4.2) are provided. At line 20, a call to the t r e l l i s _  

s c a n  ()  function is made to invoke the g r e p  operation on rem ote hosts. At line 25, the t r e l l i s _  

s c a n _ r e a d a l l  () function is called to read in the results. We will explain this code in more detail 

in Section 4.3.1.

In this thesis, we describe the design and implementation o f  Trellis-SDP, including the back

ground concepts and the application program m ing interface (API), e.g ., the data-parallel interface 

and the collective-com m unication interface. We evaluate our program m ing system with three rel

atively sim ple data-parallel applications (i.e., t r e l l i s  g r e p ,  Content-Based Im age Retrieval 

(CBIR) and Parallel Sorting by Regular Sampling (PSRS)) and one non-trivial seismic data process

ing application with 6 GB o f input data.

1 (linclude <string>
2 Kinclude <stdio.h>
3 ((include <trellis.h>
4e ((include <trellis_sdp.h>
3
6
7

int mainlint argc, char * argv[])(

8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv(l);
12 char * metafile = argv[2 );
13 string op;
14 int items_read = 0 ;
15
16 op = "grep ” + string (grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), ^request)<0 ){
21 fprintf(stderr, "Scan FailedNn");
22 exi t(-1 );
23 )else{
24
25 items_read = trellis_scan_readall(Sbuffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27 )
28
29 trellis_finalize();
30 if(items_read > 0 )
31 printf(“%s\n", (char "(buffer);
32
33 return 0 ;
34 )

Figure 1.1: The com plete code for the m aster com ponent o f  the t r e l l i s  g r e p  program. The 
worker com ponents are Unix g r e p  executables. Section 4.3.1 provides a more detailed explanation 
o f  this code.

1.1 The Trellis Project

Trellis-SDP is designed to be a part o f  the whole Trellis m etacom puting system. A  Trellis meta-

2
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com puter is a virtual, batch-processing and capacity-oriented com puter (7]. The current Trellis 

m etacom puter contains a batch-scheduler system based on placeholder scheduling for CPU alloca

tion [29], a security infrastructure based on the Secure Shell ( s s h )  software system for authenti

cation and authorization (i.e., Trellis Security Infrastructure [26]), and a distributed file system for 

global file sharing (i.e., TrellisNFS [7]). Trellis-SDP is our effort to integrate a sim ple program m ing 

system into Trellis.

1.2 Motivating Application Domain

Applications in many research areas involve processing o f  a large am ount o f  data. A typical do

main o f  application is inform ation retrieval. As a concrete example, let us suppose that a company 

is providing a service for content-based music retrieval (CBM R), which takes a clip o f  singing or 

hum m ing from a client and then searches through the music database to find the top 10 most-similar 

songs. I f  the database is too large to  fit on one system and/or is already distributed, it would be 

im practical for the server to read in all the data and perform  pitch/rhythm extraction [22] and com 

parison algorithm s on a single site. Instead, one can choose to ship the music feature-extraction and 

feature-com parison functions to the sites w here data resides, and perform the operations there. This 

function  shipping  and remote execution m echanism  (Section 2.1.2) not only makes full use o f  the 

com putational power on each site, but also greatly reduces the traffic over the WAN.

A nother sim ilar exam ple is the content-based im age retrieval (CBIR) application, which takes 

a sam ple im age and returns the top N matching images from the im age database. We discuss the 

CBIR application further in Chapter 5.

It is for the purpose o f  function  shipping  and rem ote execution that we initiated the research on 

Trellis-SDP, which is designed to support the easy and efficient program m ing o f  applications such 

as CBM R and CBIR to handle large collections o f  distributed datasets.

1.3 Contributions

There are a num ber o f  existing parallel program m ing frameworks and each o f them  targets different 

applications and platforms. The contributions o f  our program m ing framework are the following:

1. Trellis-SDP provides a sim ple M aster-W orker program m ing framework (Section 3.3) that fa

cilitates the rapid development o f  data-intensive and naturally data-parallel applications on a 

wide-area network.

2. Trellis-SDP introduces the m etadata file that represents the naturally-distributed data. This fa

cilitates the writing o f  a non-trivial data-parallel application with data-parallel and collective- 

com m unication phases.

3
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3. For many data-parallel codes, Trellis-SDP allows the loosely-coupled workers to run exist

ing, sequential and unm odified  binaries; the m aster and worker binaries can be separate. In 

contrast, many parallel program m ing systems require the application to be recompiled into 

a single, tightly-coupled binary (e.g., typical O penM P and MPI (M essage Passing Interface) 

applications).

1.4 Concluding Remarks

In this chapter, we discussed our motivation for building Trellis-SDP and gave an exam ple o f  how 

Trellis-SDP can be used. We also presented the com plete sam ple code o f  a distributed g r e p  appli

cation (Figure 1.1) to show that it can be sim ple to im plem ent a non-trivial data-parallel application 

using Trellis-SDP. In the next chapter, w e discuss the background knowledge on which our pro

gram m ing system is based and review  som e o f  the related work in this field.

4
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Chapter 2

Background and Related Work

In the previous chapter, we introduced the Trellis project and discussed the motivation for developing 

the Trellis sim ple data-parallel program m ing framework, Trellis-SDP. In this chapter, we present 

som e related background concepts that influenced the design and im plem entation o f  our work. We 

also outline several previous projects that are relevant to our field o f  interest.

2.1 Background Concepts

2.1.1 Data Parallelism vs. Task Parallelism

To achieve good perform ance on distributed-m em ory m ulticom puters, two parallel programming 

paradigms are most-commonly used: task parallelism  and data parallelism . In the task-parallel 

program m ing paradigm, a program  consists o f  a set o f  dissim ilar (or similar) parallel functions 

that interact with each other via explicit com m unications and synchronizations. In the data-parallel 

program m ing paradigm, a program  consists o f  a series o f  operations that are applied identically to 

all elements o f  a large data set, which can be decom posed and distributed am ong m ultiple machines. 

F igure 2.1 shows examples o f a task-parallel workflow and a data-parallel workflow.

T he major advantages o f task parallelism  are its generality and flexibility. Task parallelism em 

phasizes the communication between, and coordination o f  different tasks, making it m ore applicable 

for exploring applications that use irregular data structures. The disadvantage is that extra effort may 

be required for the programmer to explicitly create parallel tasks and m anage all the com m unica

tions and synchronizations. Changing the com m unication pattern o f  a program  may entail significant 

modifications to the program source code.

The major advantages o f  data parallelism  are its sim plicity and scalability. Since operations are 

applied identically to data items in parallel, the am ount o f  parallelism  is prim arily determined by the 

data size o f the problem. H igher am ounts o f  parallelism may be exploited by simply expanding the 

size o f the problems. In practice, m any scientific applications are naturally data-parallel at different 

levels o f  the storage hierarchy, from instruction-level data parallelism  to file-level data parallelism. 

We will discuss file-level data parallelism  in m ore detail in Section 3.1. The m ajor disadvantage

5
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(a) (b)

Figure 2.1: Task Parallelism  vs. D ata Parallelism, (a) Task parallelism  workflow; (b) Data paral
lelism workflow.

o f data parallelism  is that it is not as general as task parallelism. For applications with different 

operations on different data, it is probably easier to utilize task-parallel languages.

As task parallelism  and data parallelism  each have strengths and weaknesses, it can be inter

esting to integrate these two when solving a com plicated application. F or example, in large-scale 

simulations, there may be m ultiple m odels simulated sim ultaneously via task parallelism. Within 

each sim ulated model, the com putation could involve significant data parallelism.

The m ajor differences between task parallelism and data parallelism  are summarized in Ta

ble 2.1. N ote that som e o f  the com parisons are generalizations. For exam ple, data-parallel ap

plications, in general, operate on regular data structures; however, there are also data-parallel appli

cations with irregular data structures, such as sparse-matrix multiplications. Similarly, there could 

be task-parallel applications with very large data sizes.

In this thesis, we explore prim arily single program, m ultiple data (SPM D) programs with very 

large data-parallel phases.

2.1.2 Data Locality and Function Shipping

One critical issue related to data parallelism  and task parallelism is the location and size o f the data 

to be processed. It is quite com m on in a metacomputing environm ent that the executable and the 

corresponding data are not located at the same com puting site. In this situation, one can choose to 

move the data to where the executable is located, or vice versa, in order to  maximize performance. 

In a case where the data size is large and the processing is relatively sim ple, it is wise to move

6
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Task Parallelism Data Parallelism

Definition Each processor perform s a 
different task

Each processor works on a 
different part o f  the same 
data

Data Structure Irregular or regular R egular or irregular

Com m on Data Size Relatively small Large

Advantages Flexible and general Sim ple and scalable

Disadvantages Extra effort to m anage 
com m unications and syn
chronizations

Less general; 
lim ited applicability

Typical Exam ples Traveling Salesman P rob
lem;
Game Tree Search

D atabase Search; 
M atrix M ultiplication

Table 2.1: A com parison between Task Parallelism  and Data Parallelism.

the executable to where the data is located. In this way, not only can the com puting power on 

individual hosts be fully utilized, the traffic over the w ide-area network is also significantly reduced. 

This technique is called function  shipping  and rem ote execution (Figure 2.2), and is actually being 

im plemented at different levels o f  the storage hierarchies. A  typical exam ple o ffunction  shipping is 

Active D isks [30], which im plem ents this idea at the disk level. Active Disks is a storage system that 

consists o f  significant processing pow er and on-disk m em ory capacity (Figure 2.3). Application- 

level processing can be perform ed on the Active D isks, which can potentially reduce the traffic 

over the system bus, especially under I/O-bound workloads. Com m on applications are database 

operations (such as select, jo in  and aggregation) or any filtering-type operations. There arc several 

existing program m ing m odels proposed for Active D isks [1].

2.1.3 Master-Worker Programming Model in a Metacomputing Environment

Master-W orker com puting is a widely-used form o f  a parallel application program m ing model. It is 

conceptually simple, and involves dividing a problem into a num ber o f  sm aller independent worker 

units, which can be distributed to rem ote worker processes for com putation in parallel. In this thesis, 

we use the M aster-W orker program m ing model to im plem ent data parallelism  with function ship

ping and rem ote execution. Before the computation is started, we assum e that the data is already 

distributed across the com puting sites, and that the sam e executable codes are shipped to these sites. 

The master then triggers the executable in remote com puting hosts, w here I/O-intensive operations 

are perform ed locally, and only a small amount o f  data is transferred back to the m aster for subse

quent processing.

7
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M aster Host

in liS t

Functions DataWide Area 
Network
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rr i_ ff  ii

Worker Host Worker Host Worker Host

Figure 2.2: Function Shipping and Rem ote Execution on the WAN: executables are moved to the 
host where the data resides.

2.2 Related Work

The need to reduce the com plexity o f  data-parallel program m ing has led to a large am ount o f  work 

in the area o f  application-specific toolkits. These include application-specific or domain-specific 

languages and libraries, program m ing frameworks, and problem -solving environm ents [23]. M ost 

o f  these toolkits have been adapted from  traditional parallel and distributed com puting systems; only 

a few are designed for grid com puting or metacomputing [11]. Existing program m ing tools include 

message-passing libraries, object-oriented tools, and m iddleware systems. We highlight several 

major advantages and disadvantages o f  these work in Table 2.2.

2.2.1 Message Passing Models

M P IC H -G 2 [27] is a “grid-enabled implementation o f  the M essage Passing Interface (M PI) that 

allows the program m er to run M PI programs across adm inistrative dom ains using almost the same 

com mands that would be used on a cluster o f  workstations” [24]. M ore specifically, M PICH-G2 

is a com plete implementation o f  the MPI-1 standard that uses services provided by the Globus 

Toolkit [25] to extend the M PICH  implementation o f  M PI for Grid execution. T he significant ad

vantage o f M PICH-G2 is that the program m er can reuse existing M PI code without having to learn 

the specific details o f  each site. A pragmatic disadvantage is that M PICH-G2 requires the Globus

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Server

Switched
Network

Active Disk Active Disk Active Disk

Figure 2.3: Active Disks architecture: applications can be downloaded to the disks, where significant 
processing power and on-disk m em ory is available.

toolkit to be installed in all the adm inistrative dom ains, to address the issues o f  security, rem ote pro

cess creation, process monitoring, process control, redirection o f  standard input and output, rem ote 

file accesses and cross-dom ain com m unications (e.g., Grid Security Infrastructure (GSI), Grid R e

source Allocation and M anagem ent Protocol (GRAM ), M onitoring and Discovery Service (MDS) 

and Global Access to Secondary S torage (GASS) [25]).

The popularity o f  M PI has spawned a num ber o f  variants that address grid-related issues, such 

as dynam ic process m anagement and m ore efficient collective operations. The M agPIe library, for 

example, im plem ents M PI’s collective operations -  such as broadcast, barrier, and reduction oper

ations -  with optim izations for wide-area systems as grids [20]. Existing parallel M PI applications 

can be run on grid platform s using M agPIe, by relinking with the M agPIe library. M agPIe contains 

a sim ple API through which the underlying grid com puting platform provides inform ation about the 

num ber o f  clusters in use, as well as which process is located in which cluster.

2.2.2 Framework Models

D a ta C u tte r  [17] proposes afilter-stream  program m ing model (originally designed for Active Disks [ 1, 

30]) in a grid environm ent. In this program m ing model, an application is decom posed into a set o f 

filters  am ong which the com m unication is carried out via streams. As with Trellis-SDP, DataCutter 

pushes the com putation to the data, instead o f  migrating the data to the com putation [17]. DataCut-

9
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ter does not include the concept o f  a m etadata file. Before running any applications on DataCutter, 

a d i r d  program must be started to maintain a list o f nodes that DataCutter applications may be 

distributed across, and any node w ishing to be utilized by DataCutter m ust run an a p p d  program 

to control the DataCutter applications running on the nodes. All filter placem ents must be spec

ified in the program. Furtherm ore, the filter does not support unmodified binaries, meaning that 

program m ers will probably have to  rewrite their data-intensive com ponents according to the filter 

specifications.

M apR educc [10] is a program m ing model developed at Google to process large data sets. It 

provides a sim ple and powerful interface that enables automatic parallelization and distribution of 

large-scale com putations. Built upon the Google file system, M apReduce carries out a number of 

practical design decisions and fine-tunings to achieve maximum perform ance.

M apReduce is relevant to Trellis-SD P in that both systems are designed to make it simple for ap

plication program m ers to im plem ent sim ple data-parallel applications. The abstraction o f  M apRe

duce is based on the map  and reduce  primitives present in many functional languages. The map 

function processes a key/value pair to generate a set o f  intermediate key/value pairs, and the reduce 

function merges all interm ediate values associated with the sam e interm ediate key. The program 

mer needs only to implement the m ap  and reduce functions, and the data distribution and resource 

allocation are taken care o f  by the program m ing framework. Trellis-SDP, however, is m ore similar 

to imperative program m ing, where the num ber o f processors is known before the com putation, and 

the data is already distributed.

M apReduce has been dem onstrated to be applicable to a wide range o f  real problem s specific to 

Google, such as m achine learning, clustering, web crawling and graph com putation.

M W  [15] is a software fram ework that allows users to parallelize scientific applications on a 

com putational grid, using the M aster-W orker program m ing model. This fram ework is designed to 

facilitate Master-W orker applications requiring a reliable delivery o f  large am ounts o f  computational 

capacity. M W  provides two sets o f  program m ing interfaces: an Infrastructure Programming Inter

fa c e  that ports the M W  framework to a grid software toolkit such as C ondor [8] or Globus, and an 

Application Programming Interface that enables the M aster-W orker paradigm . In both cases, the 

user needs to re-im plem ent a num ber o f  virtual functions to address low-level details -  such as re

source request and detection, rem ote execution and com m unication. In addition, the programmer 

needs to re-im plem ent the workers using MW-specific classes -  M W Task and MWWorker.

A ppL eS  M aste r W o rker A pp lication  T em plate (AM W AT) [34] is a m iddleware approach 

to Master-W orker application developm ent that aims to achieve three design goals: perform ance, 

portability and reasonable effort. This program m ing framework can be separated into three distinct 

groups: the base group that provides interfaces to perform the initialization o f  the basic com puta

tional activities o f  the application; the transfer group that provides interfaces to perform  the data 

transfers; and finally, the control group that provides interfaces to perform  the scheduling functions.

10
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AMWAT uses the AppLeS Portable Services com ponents for com munications. These services con

tain common com munication approaches, such as MPI, PVM  (Parallel Virtual M achine), Unix Sock

ets and System V IPC (interprocess com m unication), plus some less-common approaches, such as 

Globus Input/Output. As with MW, application program m ers need to fill in the application templates 

with source codes, making it difficult to reuse existing application binaries.

Unlike DataCutter and Trellis-SD P, both M W  and AMWAT assum e that data could/should be 

moved during the com putation; for exam ple, data is not distributed before the computation is started. 

Also, AMWAT allows dynam ic selection o f  m aster and worker processes to maximize performance. 

This is very practical for com putationally-intensive applications, but not for data-intensive applica

tions.

2.2.3 RPC Models

G rid  R em ote P ro ced u re  C all (R P C ) [16] is an RPC model and API for grids. It offers a rel

atively simple program m ing paradigm  for program m ing on the grid. Besides providing standard 

RPC semantics with asynchronous, coarse-grained, task-parallel execution, it provides a high-level 

abstraction whereby many details o f  interacting with a grid environm ent can be hidden. However, 

the Grid RPC program m ing model is not suited for applications with data-intensive or I/O-intensive 

phases. Also, since the result o f  the com putation is transferred back to the client side, there would 

be a problem if  the data size is large and the network bandwidth is low.

Ja v a  R em ote M ethod  Invocation  (R M I) enables a program m er to create distributed Java-based 

applications, in which the methods o f  rem ote Java objects can be invoked from other Java virtual m a

chines, possibly on different hosts. T he main advantages o f RM I are that it is truly object-oriented, 

that it supports all the data types o f  a Java program, and that it is garbage collected. These features 

allow for a clear separation between the caller and callee, and the developm ent and m aintenance of 

distributed systems are thus made easier.

2.3 Concluding Remarks

In this chapter, we began by com paring two typical parallel program m ing paradigms: task paral

lelism  and data parallelism. We discussed their advantages and disadvantages under various cir

cumstances. Naturally, for both types o f  applications, under data-intensive workloads, the location 

and size o f the data will have a large im pact on the application perform ance; this is why we intro

duced the concept o f function  shipping  and rem ote execution. We im plem ented this concept using 

the com mon Master-W orker program m ing model, which is sim ple and easy to manage.

We also reviewed som e previous projects from the field o f  program m ing models on a wide- 

area network. Each model has different design goals and is suited to certain types o f  workloads. 

This is also true for our system; our target applications are mainly data parallel with I/O-intensive 

workloads.
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Related Work Advantages Disadvantages

M P IC II-G 2  [27] Allows reuse o f  existing MPI 
code;
W orks across administrative 
domains.

Requires the installation o f  the 
Globus toolkit in all adm inis
trative domains;
Low-level and com plicated; 
Does not support unmodified 
binaries.

D a ta C u tte r  [17] Sim ple stream -based Master- 
W orker program m ing model; 
Supports function  shipping  
and rem ote execution.

Current version does not work 
across adm inistrative domains; 
No global naming o f  files; 
Does not support unmodified 
binaries.

M apR educei [10] Sim ple and powerful Master- 
W orker program m ing model; 
Based on functional program 
m ing, the program m er does 
not need to take care o f  data 
distribution and processor allo
cation;
Provides fault tolerance when 
w orker or master fails.

Does not work across adm inis
trative domains;
Does not support unmodified 
binaries.

M W  [15] M aster-W orker programming 
fram ework;
Suitable for computational in
tensive applications;
W orks across administrative 
domains.

Does not support unmodified 
binaries;
Need to install grid software 
toolkit such as Condor and 
Globus.

AM W AT [34] M aster-W orker programming 
framework;
Suitable for com putational in
tensive applications;
Provides basic perform ance 
predictions;
A llows dynam ic selections o f 
m aster and worker processes.

Current version does not work 
across adm inistrative domains; 
Com plicated porting o f source 
codes to templates.

G rid R P C  [16] RPC program m ing extended to 
grids;
Suitable for coarse-grained 
task-parallel applications; 
W orks across administrative 
domains.

Low level;
Not suitable for data-intensive 
or I/O-intensive applications; 
Requires com plicated porting.

Table 2.2: A comparison o f related work.
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Chapter 3

Trellis-SDP: File-Level Data 
Parallelism

In the previous chapter, we introduced the background knowledge and concepts related to our re

search. We also reviewed several well-known program m ing systems. In this chapter, we focus on 

the concepts, as well as some practical problem s that have not been addressed by previous systems.

W e start by extending the concept o f data parallelism to file-level data parallelism . We then 

present several im portant design issues in the development o f  our program m ing system. These 

include security, global nam ing, resource specification and design philosophy. We also illustrate the 

Trellis-SDP execution environm ent and briefly discuss the program m ing interfaces we provide.

3.1 File-Level Data Parallelism

We extend the traditional concept o f data parallelism  (e.g., the traditional data-parallel languages 

such as Fortran90 and High Perform ance Fortran(HPF)) to file-level data parallelism. That is, our 

program m ing framework is targeted at data parallelism and collective com m unications within files 

in a m etacom puting environm ent, instead o f in-memory data structures, as illustrated in Figure 3.1.

Based on our experience in the program m ing in a metacomputing environm ent, we claim  that 

there are several advantages to exploring data parallelism and collective com m unications at the file 

level:

1. U sing unm odified  b inaries: W orking at the file level makes it easy to use sequential, unm od

ified binaries, or make as few changes as possible to the existing sequential/shared-m em ory 

applications, when porting these applications to a wide-area network. As long as the sequen

tial executable guarantees that it takes the input from a file o r the standard input, and generates 

the output to a file or the standard output, it can be integrated into the whole com putation eas

ily and smoothly.

2. M aster-W o rk er and  batch-p ipelined  execution m odel: W orking at the file level makes it 

easy to im plem ent parallel applications using Master-W orker and batch-pipelined (multiple
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^Operation^  
/  \

(a) G lobal M etadata File across M ultiple Hosts. 
A ll C om ponents are logically one file.

^Operation^
7" "

(b) Global Array in M emory

Figure 3.1: D ata Parallelism  at different storage hierarchies: (a) Data parallelism  at the file level 
: data-parallel operations on global files across m ultiple hosts; (b) Data parallelism  at the memory 
level: data-parallel operations on a global array in main memory.

phases) execution model. That is, the output o f  one com putational phase is the input o f  the 

next com putational phase.

3. File-level collective com m unication : W hen perform ing collective com m unications at the file 

level, w e impose less-strict requirem ents on the synchronization o f processes than are imposed 

by memory-level collective com m unications. This is because interm ediate com puting results 

can be stored on disks until all collective-communication processes are ready to read and 

exchange them. Prior to that time, it is possible for the scheduler to  schedule jobs on the idle 

hosts that have already produced the intermediate results.

T he concepts o f file-level data parallelism , function shipping and rem ote execution, and Master- 

W orker program m ing paradigm provide the foundation for our program m ing system.
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3.2 Design Issues

T he design and implementation o f  Trellis-SDP addresses several im portant issues in metacomputing 

program m ing [11], We have successfully run Trellis-SDP applications on a wide-area network (Sec

tion 5.2 provides some prelim inary results). However, for reasons o f  controllability and reliability, 

m ost o f  our benchm arks are perform ed on clusters o f workstations. We will discuss this further in 

C hapter 5.

3.2.1 Security: The Trellis Security Infrastructure

O ur program m ing system takes advantage o f  the underlying Trellis Security Infrastructure (TSI) 

[26], which is layered on top o f  the s s h  software system [9, 3], for authentication and secure 

com m unications across different adm inistrative domains. TSI allows single sign-on (a form o f au

thentication that enables a user to authenticate once and gain access to m ultiple systems) capability 

by configuring and launching s s h - a g e n t  processes on all participating hosts. Unlike the Globus 

Security Infrastructure (GSI) [19], which places most o f  the configuration and authentication work 

onto the system adm inistrator, TSI manages these tasks at the user level. The system adm inistrator 

needs only to give each user an account, and install s s h  -  which has already been widely deployed 

on most platforms. F igure 3.2 illustrates the process o f launching an s s h  overlay by a user: the user 

runs a l a u n c h A g e n t s  tool (not shown in the figure), which invokes s s h - a g e n t - r e m o t e  and 

s s h - a d d - r e m o t e  for all participating hosts, and loads the rem ote s s h - a g e n t  processes with 

a com m on key. The user then types in only one passphrase and the s s h  overlay is established. This 

m eans that any o f  these participating hosts can access one another w ithout a password or passphrase.

3.2.2 Global Naming: Secure Copy Locator

W e use Secure Copy Locators (SC L) [35] as the filenames in the global namespace. By using 

SCL, the Trellis file system can access the rem ote data by first copying it onto a local disk and then 

accessing the local cached copy o f  the rem ote file. Our program m ing system  extends this concept by 

function shipping the com putation to the remote host (as discussed in Section 2.1.2). For example, 

a  file nam ed

s c p : a d i n g @ c l e a r d a l e . c s . u a l b e r t a . c a : " / w o r k e r . e x e

can be uniquely identified as the file w o r k e r . e x e  in the home directory o f  account a d i n g  at host 

c l e a r d a l e . c s . u a l b e r t a . c a .

3.2.3 Resource Specification: XML-based Metadata Schema

W e represent the program  resource (i.e., program data) by a metafile. A  metafile is a file that is 

logically contiguous, but (perhaps) physically distributed across a network (Figure 3.1 (a)). An Ex-
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Launch SSH agent and add identity: 
s s h - a g e n t - r e m o t e ,  

Set ENV variable and authenticate 
without human intervention: 
s o u r c e  SSH_AGENT_PID, SSH_AUTH_SOCK 

s s h  (without typing a password or passphrase)

Figure 3.2: Launching the s s h  overlay involves two steps: (1) Launching the s s h  agent and adding 
identities at rem ote hosts. (2) Setting s s h  environm ent variables and authenticating without human 
interventions.
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tensible M arkup Language (XM L)-based m etadata file is used by Trellis-SDP to describe a metafile 

(Figure 4.1), which includes the location (expressed as an SCL) and the size o f  the distributed blocks.

3.2.4 Using Existing, Sequential, Unmodified Binaries

One key design philosophy o f  Trellis-SDP is to make it as simple as possible to write a data-intensive 

parallel application, which is why Trellis-SDP allows the use o f existing, sequential, and unmodified 

binaries. As discussed in Section 1.2, this functionality may be useful if the programmer has existing 

binaries or binaries from a third party. By using or reusing existing binaries, the whole application 

developm ent cycle could be dram atically simplified.

Ptrace file syscall Appe. get syscall 
parameter

g. modify syscall 
parameter

1. file syscall 
return

b. exec()a. fork()
j. catch 
V result f. syster i ( )

Kerneld. trap file syscall enter

h. file syscall resume

i. trap file syscall exit

k. file syscall exit resume

Figure 3.3: The interposition o f  an unmodified binary using the P t r a c e  program.

In order to use existing binaries, w e m ust ensure that the binaries can access rem ote files. This 

is done by the system call tracing in Trellis-SDP. As illustrated in Figure 3.3, we write a program 

called P t r a c e  (which uses the p t r a c e  ()  system call) to intercept the file system calls in the 

application, modify the system  call param eters, execute some scripts, and resum e the system call. 

For example, here is the sequence w hen the application opens a file:

1. P t r a c e  intercepts the entry to the system call o p e n  ()  (c and d in Figure 3.3).

2. P t r a c e  retrieves the first param eter o f  the o p e n  ()  system call (e in Figure 3.3). I f  it is a 

local file, go to 5 (dashed line in F igure 3.3). I f  it is a remote filename expressed as an SCL, 

go to 3.

3. Ptrace executes a script w hich uses the Trellis file system library to cache the rem ote file to 

local disk (f  in F igure 3.3).
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4. Ptrace modifies the first param eter o f  the open () system call to be the filename o f the 

local cached file (g in Figure 3.3).

5. P t r a c e  resumes the stopped system  call (h in Figure 3.3).

Following these steps, the application will access the local cached file. If the file is modified, 

the Ptrace program will intercept the close () system call and write the local file back to the 

rem ote host.

We use the Ptrace program  in the implementation o f  Parallel Sorting by Regular Sampling 

application described in Section 5.4, where rem ote file access is required. Appendix C lists the 

source code for this application.

Besides system call tracing, there are other ways for an application to access a rem ote file. For 

example, by installing an NFS-to-Trellis gateway, NFS (Network File System ) clients can m ount a 

volum e exported by the gateway, so each access to a rem ote file caii be translated by the gateway 

into a rem ote data access via the Secure Copy ([7]).

3.3 Trellis-SDP Execution Environment

Control
i M a ste r

[•;? pil-ij P fi;SS^; Qyerjay.
■: totirity’ Jjjf̂ sttuctqrpy

•i__

Worker 1 Worker 4

HPC C en te r-2!

Worker 2 Worker 3

F igure 3.4: The execution environm ent o f  the Trellis-SDP program m ing system.

Having introduced related concepts and design issues, we now present the high-level overview o f 

the Trellis-SDP execution environm ent. As m entioned earlier, the main design goal o f  Trellis-SDP
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is to facilitate the program m ing o f  data-intensive applications with coarse-grained communication 

patterns on a wide-area network. For m ore fine-grained and com plicated message patterns, we also 

support certain types o f group com m unication. O f course, the overall perform ance depends on the 

am ount and type o f com m unication in the application.

Trellis-SD P is well-suited to applications where it is either easy to decom pose the application 

into m aster and worker com ponents, or where the worker com ponent already exists (e.g., as a se

quential, binary executable). In both cases, it is the worker com ponent that performs the data- 

intensive operations near the data, and it is the m aster com ponent that synchronizes the computation 

and collects the results. For most data-parallel applications, the amount o f  data transferred between 

the m aster and worker should be minim al.

The program m er is responsible for identifying which part o f  the application can be parallelized 

and which part cannot, and if necessary, extracting the I/O-intensive cores in the application into one 

or m ultiple stand-alone phases, so that the additional com munication introduced by the decomposi

tion does not penalize the overall task com pletion time.

Figure 3.4 illustrates the execution environm ent o f  our program m ing system. Currently, we 

support the following functions:

1. Data-Parallcl Functions -  t r e l l i s _ s c a n ( ) : Inside a Trellis-SDP program, a worker 

process is invoked by a call to  the t r e l l i s _ s c a n  ()  library function. This function takes a 

m etadata file and an operation string as input parameters, and takes a handle to the scan object 

as the output parameter, which will store the result o f  the t r e l l i s _ s c a n  ()  operation.

The w orker processes on rem ote hosts perform  the specified operations and either generate 

the results on their local disks or return the results back to the m aster process via streams.

In the form er case, interm ediate files generated by different worker processes can also be 

described using a metadata file. This interm ediate metadata file can be used in a different 

t r e l l i s _ s c a n  ()  phase, or it can be saved to disk. This is useful in a batch-pipelined 

w orkload [13], where the output o f  one worker process may be the input o f  a succeeding 

worker process. Figure 3.5 illustrates a batch-pipelined workload with three phases and four 

m etadata files.

2. Collective-Coniniunication F u n ctio n s-tr e llis_ r ed u c e  () and t r e l l i s _ g a t h e r  ():

N ote in F igure 3.4 that, if  necessary, group com m unication can be perform ed am ong worker 

processes. Two group-com m unication functions are implemented: t r e l l i s _ g a t h e r  () 

which perform s an all-to-all com m unication, and t r e l l i s _ r e d u c e  ()  which performs a 

global reduction operation, such as global sum and global minimum/m axim um. These oper

ations are at the file level instead o f  the m em ory level because they take m etadata files as the 

input parameter.

3. Initialization and Finalization Functions: Two basic run-time functions are provided: t r e l l i s .

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Metafile 1

Phase 1

Metafile 2

Phase 2

Metafile 3

Phase 3

Metafile 4

Local File (  ) Process

Figure 3.5: M etadata files in a batch-pipelined workload.

i n i t ( )  and t r e l l i s _ f  i n a l i z e  ( ) .  All Trellis functions should be called between 

t r e l l i s _ i n i t  ()  and t r e l l i s _ f  i n a l i z e  ( ) .  I f  profiling capability is turned on, 

t r e l l i s _ f  i n a l i z e  ()  will generate basic perform ance data.

4. P rofiling  Functions: Since Trellis-SD P requires that an application be decom posed into mul

tiple phases, it is relatively easy to collect some basic run-time perform ance data. For example, 

w e can record the execution tim e o f each phase o f an application during m ultiple runs. This 

inform ation can be useful for predicting the execution tim e o f  the application in future runs. 

We discuss our preliminary study o f  the application profiling in Appendix A.

We sum m arize all Trellis-SDP functions in Table 3.1. As a com parison, we also list the related 

M PI functions, together with Trellis-SD P functions. Note in the table that M PI does not provide 

data-parallel functions and the capability to use user-defined binary operations.

3.4 Concluding Remarks

In this chapter, we introduced the concept o f  file-level data parallelism and collective com m unica

tion. We explained the motivation behind file-level data parallelism and dem onstrated how our pro

gram m ing system  can benefit from this idea in various ways, such as unmodified binaries, batched- 

pipelined execution model and sim ple application profiling.
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Trellis-SDP MPI Comments
Data "types
Trellis .Datatype MPI-Datatype
Trellis.Op MPI.Op
Trellis.Request MPI_Request Com m unication opaque object
Trellis.Status MPI.Status
Message Datatypes (Equivalent C Types)
Trellis.CHAR MPI.CHAR signed char
Trellis.INT MPI.INT signed int
Tr e 11 i s .FLOAT MPI.FLOAT float
Trellis-DOUBLE MPIJDOUBLE double
TrellisJJONG MPIJLONG signed long int
Predefined Reduction Operations
Trellis-ADD MPI.SUM Global sum
Trellis_MAX MPIJ4AX Finding M aximum
Trellis-MIN MPI.MIN Finding M inim um
Basic Functions
trellis.init () MPI.Init ()
trellis.finalize () MPI_Finalize ()
Data-Parallel Functions
trellis.scan() Rem ote execution in parallel 

(non-blocking)
trellis-scan_read{) Read in trellis.scan() re

sult
trellis.scan_readidx ()
trellis.scan_readall ()
parseMetafile() H elper function
single.f ile.scan () H elper function
multi.f ile.scan () H elper function
Synchronization Functions
trellis.scan.wait () MPI.Wait ()
Collective-Conimunication Functions
trellis.gather() MPI_Alltoall()
trellis-reduce() MPI .Reduce () Predefined reduction operations
trellis.reducel () User defined reduction opera

tions (in binary form)
Profiling Functions
registerPhaseStart() D iscussed in Appendix A
registerPhaseEnd()

Table 3.1: An overview o f  the Trellis-SDP functions with the analogous MPI functions.
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We dealt with several practical design issues during the im plementation o f  our programming 

system -  such as security, global nam ing and resource specification. These design decisions were 

made to ensure that the system  is sim ple and reliable to use.

We illustrated the execution environm ent o f  the Trellis-SDP program m ing system and sum m a

rized all core Trellis-SD P functions, com paring these functions with related MPI functions. Details 

o f  the Trellis-SDP functions will be explained in the next chapter.

We also perform ed som e prelim inary studies on the profiling and perform ance prediction of 

applications written in Trellis-SDP. These are discussed briefly in Appendix A. We hope to integrate 

this work into our future scheduler.
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Chapter 4

Implementation Details

In the previous chapter, we discussed the idea o f  file-level data parallelism  and the execution envi

ronment o f  the Trellis-SDP system. In this chapter, we discuss the implementation details o f  our 

system, especially how the design issues presented in the previous chapter are put into practice.

4.1 Assumptions

For the current implementation o f  Trellis-SDP, we have several requirem ents for the whole com pu

tation setup. Before the com putation is started, Trellis-SDP assumes that:

1. The data needed by the com putation is already distributed across the metacomputer. This is 

a com mon case for w ide-area data-intensive applications such as operations on a federated 

database [18] or inform ation retrieval applications (e.g., CBIR application) on a distributed 

database. I f  the data is not distributed, tools are provided for scattering and gathering the data.

2. The m etadata file, identifying the distributed data, already exists (Section 4.2). In our current 

implementation, the m etadata file contains the location and size o f  the data on each participat

ing host. If  the com putation contains m ultiple phases, then the input (or output) metadata file 

for all phases should all be m ade ready before the computation.

3. The executable code for the worker com ponents is already distributed across the m etacom 

puter. A t this tim e, w e require the worker com ponents to be available at each participat

ing host. The program m er m ust stage the executables to each host, if  they are not there. 

In the future, we may support autom atic staging o f  executables. For exam ple, a potential 

strategy would be to append the address o f  the executable (in SCL format, as discussed in 

Section 3.2.2) to the corresponding file/data to be processed in the m etadata file. Or, i f  the 

executable is a script, we could directly em bed the script into the m etadata file.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp: adingt? jasper-00:/usr/scratch/data.1</Locator> 
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp: ading@jasper-01:/usr/scratch/data.2</Locator> 
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@jasper-02:/usr/scratch/data.3</Locator> 
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.1: An exam ple o f  a m etadata file that describes a file that is logically contiguous but 
physically distributed across 3 nodes over a local-area network.

4.2 The Metadata File

As discussed earlier, a metafile is a file that is logically contiguous, but (perhaps) physically dis

tributed across a network. As with o ther index-based file-allocation schemes, a Trellis-SDP metadata 

file specifies the nam e and location o f  the distributed blocks o f  a logical file. The m aster com ponent 

can either access the file as if it w as a  single, logical file, or use the t r e l l i s _ s c a n  ()  function 

to perform  a data-parallel operation on the physically-distributed blocks. Although it is assumed 

that the logical file is already distributed, a separate tool is provided to distribute (i.e., scatter) the 

data and create a corresponding m etadata file. A nother tool can take a m etadata file and gather the 

distributed blocks into a single file on a local file system.

To make the representation o f  the program  data hum an readable and extensible [ 11], the metafile 

is written in XM L, as illustrated in F igure 4.1. In the metafile, each block is specified with a 

D a t a B l o c k  node that contains a L o c a t o r  (a string in SCL format) node and a S i z e  (an in

teger specifying the size o f  each block, in bytes) node.

In practice, the program m ing system  will create an in-memory m etadata object corresponding to 

a m etadata file. This is analogous to  an in-m em ory version (i.e., m etadata object) o f  a Unix i-node 

(i.e., m etadata file). Upon object creation, all o f  the inform ation in the m etadata file is parsed and 

cached in the object (Section 4.3 provides further details on the metadata object). It is also possible 

to export a metadata object to disk, in X M L format.

4.3 Main Trellis-SDP APIs

In this section, we explain in detail the im plem entation o f  the main Trellis-SDP APIs. In addition to 

the explanation, we give several exam ples.
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trellis scan

META SCP
file type

No Yesnum blocks 
 ̂reached? .

single_file_scan()single_file_scan()

multi_file_scan()

return scan 
object

Figure 4.2: The control flow inside t r e l l i s _ s c a n  ( ) .

4.3.1 Trellis Scan

t r e l l i s _ s c a n  ()  is the main data-parallel API we introduced and im plem ented in Trellis-SDP. 

The declaration o f  t r e l l i s _ s c a n  ( )  is:

int trellis_scan(const char * metafile, string op, Trellis_Request * 
request);

t r e l l i s _ s c a n  ()  is (typically) called in the m aster process, and takes two input parameters 

and one output parameter. For input, there is a m etadata filename (or a regular SCL) and an oper

ation string. For output, t r e l l i s _ s c a n  ()  will create an opaque com m unication object (called 

T r e l l i s _ R e q u e s t ,  similar to the M P I _ R e q u e s t  object in M PI) and return a handle to it via 

the last parameter.

The control flow inside t r e l l i s _ s c a n  ( )  is shown in Figure 4.2. Upon calling o f  the func

tion, the input file is parsed. Then, depending on the type o f the input file, two helper functions 

(visible only to Trellis-SDP, not to the program m ers) are called:

int multi_£ile_scan(MetaHandler * meta, string op, Trellis_Request 
* request);

FILE * single_file_scan(string path, string op, int rank);

I f  the type o f  the input file is SCP, it m eans that there is only one worker process that needs to
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be initiated, so the s i n g l e _ f  i l e _ s c a n  () function is called. This function starts up the worker 

process and builds a data stream between the master and worker process.

If  the type o f  the input file is a m etadata file, the inform ation o f the m etadata file is analyzed and 

cached in an in-memory m etadata object, which is passed as one o f  the param eters to the m u l t i _  

f i l e _ s c a n ( ) function. This function will then call the s i n g l e _ f  i l e _ s c a n  ()  function for 

each data block in the metadata file.

The results o f  the m u l t i _ f  i l e _ s c a n  ( )  or s i n g l e _ f  i l e _ s c a n  ( )  function calls are 

stored in the T r e l l i s _ R e q u e s t  object. T r e l l i s _ R e q u e s t  provides two types o f member 

functions:

1. Read Functions:

int trellis_scan_read(void * buffer, Trellis_Datatype datatype,
int nmemb, Trellis_Request request);

int trellis_scan_readidx(void * buffer, Trellis_Datatype datatype, 
int nmemb, int index, Trellis_Request request);

int trellis_scan_readall(void ** buffer, Trellis_Datatype datatype,
Trellis_Request request);

These functions allow the m aster process to read and store the data returned from worker 

processes. The program m er can either choose to read a specified num ber o f  bytes from all 

worker processes ( t r e l l i s _ s c a n _ r e a d  ( ) )  or from a single w orker process ( t r e l l i s _  

s c a n _ r e a d i d x  ( ) ) ,  or choose to read all the data that is available from  all worker pro

cesses ( t r e l l i s _ s c a n _ r e a d a l l  ( ) ) .  The type o f  the data to be read is determined by 

the T r e l l i s _ D a t a t y p e .

2. Synchronization Function:

int trellis_scan_wait(Trellis_Request request, Trellis_Status status);

This function ensures that all com m unications between master and worker processes are fin

ished and the data streams opened by t r e l l i s _ s c a n  () are closed. I f  there are m ultiple 

phases in the program (which m eans m ultiple t r e l l i s _ s c a n  ()  s will be called in the m as

ter process), t r e l l i s _ s c a n _ w a i t  ()  can serve as a barrier function between phases.

As an example, Figure 4.3 im plem ents a data-parallel t r e l l i s  g r e p ,  which is a g r e p  op

eration on the distributed data (described as a m etadata file, as shown in F igure 4.4). The code 

shown is the complete code for the m aster com ponent, illustrating how sim ple a program  can be if 

the problem is simple. For the worker com ponent, we use the unmodified Unix g r e p  program. The 

t r e l l i s _ s c a n  ()  takes in a m etadata file and starts up the worker processes in each rem ote host 

to perform g r e p  on its local data (line 20). The master process then reads in the results through the
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1 (•include <string>
2 (•include <stdio.h>
3 •include <trellis.h>
4
5

(•include <trellis_sdp.h>

S7
int mainlint argc, char * argv[])(

8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv(l);
12 char * metafile = argv[2 );
13 string op;
14 int items_read ~ 0 ;
15
16 op = "grep " + string(grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), &request)<0 )(
21 fprintf(stderr, "Scan FailedSn");
22 exit(-l);
23 )else{
24
25 items_read = trellis_scan_readall(&buffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27 )
28
29 trellis_finalize();
30 if(items_read > 0 )
31 printf("%s\n", (char "(buffer);
32
33 return 0 ;
34 )

Figure4.3: T he sam ple code for the t r e l l i s  g r e p  program  (the m aster component). The worker 
com ponents are Unix g r e p  executables. The location and distribution o f  the data is abstracted by 
the m etadata file shown in Figure 4.4.

com m unication object by calling the t r e l l i s _ s c a n _ r e a d a l l  ()  function (line 25). N ote that 

the t r e l l i s  g r e p  program  perform s m ost o f its data-intensive operations on the remote hosts 

and transfers only a small am ount o f  data (with type T r e l l i s _ C H A R )  back to the master process. 

A t the end o f  the program , the m aster calls t r e l l i s _ s c a n _ w a i t  ()  (line 26) to close all open 

data streams.

Another sam ple code o f  a data-parallel application written in Trellis-SDP can be found in Ap

pendix B. Section 5.3 provides m ore details o f  the description and evaluation o f  this application.

4.3.2 Trellis Gather

As discussed, trellis_scan ( )  establishes com m unication channels between the m aster and 

worker processes. This interface is sufficient for embarrassingly data-parallel applications with no 

com munications am ong worker processes. However, som e com plex parallel and distributed ap

plications do require group com m unications. Thus, we also propose and implement two group- 

com m unication interfaces, one o f  w hich is called trellis gather ( ) .  This interface is similar 

to the M PI collective-communication interface MPI_Alltoall () andMPI_Alltoallv() [28].

There are several papers on collective com m unications on a wide-area network, including the 

issues o f  perform ance and fault tolerance [2, 4, 20]; however, our efforts focus mainly on the API
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issues at this time. We also touch upon a bit o f  the perform ance issue and will discuss this in 

Chapter 5.

trellis_gather ()  is called in the master process and has the following declaration:

int trellis_gather(const char * metafile_source, const char * metafile_dest, 
int ** index_table, Trellis_Datatype datatype);

The function takes a source m etadata file, a destination metadata file, an index table specifying 

how data should be exchanged, and the datatype. The semantics o f this function is the all-to-all 

com m unication am ong worker processes, where each worker process sends distinct data to all other 

worker processes.

As an example, F igure 4.5 illustrates an all-to-all data exchange am ong three worker hosts, 

according to the index table (indexJable  in Figure 4.5) provided by the programmer. Each row in 

the indexJable  specifies which data within one worker host needs to be sent to other worker hosts.

For instance, worker host 1 indicates that data 3 ,4  should be sent to worker host 2, and that data 5,

6 should be sent to worker host 3. Based on the indexJable, Trellis-SDP will generate a new index 

table (indexJable2  in F igure 4.5) to determ ine the locations within each worker host where the data 

received from other worker hosts should be stored. For instance, after the data exchange, data 7 

from worker host 2 will be stored at index 2 in the receiving file in worker host 1, and data 13, 14 

and 15 from worker host 3 will be stored at index 3 ,4  and 5 in the receiving file in worker host 1.

F igure 4.6 shows the control flow inside trellis_gather ( ) .  First, both the source metadata 

file and the destination m etadata file are checked to m ake sure they have the correct file types. Then, 

as explained before, indices are calculated (i.e., from indexJable to index Jable2)  to determ ine where 

the exchanged data should be stored. Finally, a sim ple helper program  sendf ile is initiated to 

perform the partial file transfer between worker hosts (i.e., to retrieve a portion o f  a rem ote file using 

scp for data transport).

As discussed earlier, the sem antics o f trellis_gather ()  are sim ilar to those o f  MPI_

<?xml version="1 .0 "?>
<BlockList>

<DataBlock>
<Locator>scp;ading@nexus.westgrid.ca:“/data.l«/Locator> 
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@lattice.westgrid.ca:“/data.2</Locator> 
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@blackhole.westgrid.ca:“/data.3</Locator> 
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.4: The metadata file used by the trellis grep program  shown in Figure 4.3. The 
data is distributed on three hosts across three adm inistrative domains: the University o f  A lberta, the 
U niversity o f  Calgary and Simon Fraser University.
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Before D ata  Exchange
worker host 1 worker host 2 worker host 3

index_table

index_table2

worker host 1
m
worker host worker host 21 worker host 3

After Data Exchange

Figure 4.5: The illustration o f  the all-to-all communication.

A l l t o a l l  ( ) .  The m ajor difference is that in M P I _ A l l t o a l l  ( ) ,  both the sending data and the 

receiving data reside in the memory, regardless o f  whether it is in a rem ote host or a local host, while 

in t r e l l i s _ g a t h e r  ( ) ,  both the sending and receiving ends are files stored on disks, and are 

specified by m etadata files. Therefore, the numbers in the indexJable  represent the offsets relative 

to files instead o f  displacements relative to memory buffers.

F igure 4.7 shows the sam ple code o f  Phase Three o f  the Parallel Sorting by Regular Sam pling 

(PSRS) application (discussed in detail in Section 5.4). This is an exam ple o f  how trellis_ 
gather ( )  is used. Appendix C lists the com plete code for the PSRS application.

4.3.3 Trellis Reduce

The other collective-communication API we introduced and im plem ented is called trellis_ 
reduce (). The inclusion o f  the function is again based on our hands-on experience with real 

scientific applications, and we found this API necessary when designing a parallel seism ic data pro

cessing application (Section 5.5). trellis_reduce ()  is sim ilar to M P I’s MPI_Reduce ()  and 

perform s global reduction operations across all worker processes. The reduction operation can be 

either: one o f  a predefined list o f  operations (such as global sum, maxim um  or minimum) or a pro

gram /executable provided by the user. Again, the difference between trellis_reduce ()  and 

MPI_Reduce ()  is that the former works at the file-level while the latter works at the m em ory- 

level.
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trellis gather

NoAre file types 
META?

Yes

Noi < num of 
workers?

Yes

No j < num of 
workers? _

Yes

return

sendfile(j, i)

parseMetafiles

calculate indices

Figure 4.6: The control flow inside t r e l l i s . g a t h e r  ().

The declaration of t r e l l i s _ r e d u c e  () is:

int trellis_reduce(const char * metafile_source, const char * metafile_dest, 
int count, Trellis_Datatype datatype, Trellis_Op op);

int trellis_reducel(const char * metafile_source, const char * metafile_dest, 
const char * reduce_op);

There are two reduce functions: t r e l l i s „ r e d u c e  ()  and t r e l l i s _ r e d u c e l  ( ) .  Both 

functions take a source metadata file and a receiving metadata file as input parameters. The differ

ence is that t r e l l i s _ r e d u c e  ( )  perform s the system-defined reduction operations T r e l l i s _

Op, while t r e l l i s _ r e d u c e l  ( )  perform s the user-defined reduction operations (in the form of 

a stand-alone executable). In this section, we focus on the description o f  t r e l l i s _ r e d u c e l  ( ) .

Figure 4.8 illustrates the control flow inside t r e l l i s _ r e d u c e l  ( ) .  The basic steps are :

1. A local reduction operation is perform ed at worker processes to reduce all the data that is local 

to the remote host.
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int phase3(const char * meta£ile_localsorted, const char * metafile.gather,
int ** index_table, Trellis_Datatype datatype)

(
int rval;
rval = trellis_gather(meta£ile_localsorted, meta£ile_gather, index_table, datatype); 
return rval;

int main(int argc, char * argv()){

int *sample_array; 
int **index_table;

char metafile_in[) = "input.meta"; 
char meta£ile_localsorted[] = "localsorted.meta"; 
char meta£ile_gather() = "sortgather.meta"; 
char metafile_globalsorted[) = "sorted.meta";

trellis_init(argc, argv);
sample_array = phasel(meta£ile_in, metafile_localsorted); 
index_table = phase2 (metafile_localsorted, sample_array);
rval = phase3(metafile_localsorted, meta£ile_gather, index_table, Trellis_INT);

trellis_finalize(); 
return 0 ;

Figure 4.7: The sample code o f Phase Three o f  the Parallel Sorting by R egular Sam pling (PSRS) 
application showing how trellis.gather ()  is used.

2. A  global reduction operation is perform ed at the master process to reduce all intermediate 

results from worker processes.

F or step 1, we extend the definition o f  a m etadata file so that the data block can also be a directory 

instead o f  ju st a file. For example, F igure 4.9 shows the metadata file w e use for the seismic data 

processing application -  t r e l l i s  LSAVA (Section 5.5). Each block in the m etadata file is a 

directory containing all the local files to be reduced.

In addition, we write two helper program s called r e d u c e .d a e m o n  and r e d u c e .  The usage 

o f  the two program s are:

reduce_daemon reduce_op directory

reduce sendfilel ... sendfileN receivefile reduce_op

The reduce.daemon program  is initiated by the call to the trellis_scan ()  function 

inside the trellis_reducel ( )  function. The program in turn calls the reduce program  to 

reduce all local data using the user-provided reduce.op program. The interm ediate results are 

stored in files at remote hosts and the pathnam es o f  these files are passed back to the m aster process 

via the Trellis_Request object.

In step 2, the master process sim ply calls the reduce program again, and reduces all interme

diate results into the destination m etadata file, using the sam e reduce.op program.
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trellis_reducel
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return
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trellis_scan: to start 
rcduce_daemons 
on remote hosts

reduce: collect 
intermediate results 
from remote hosts 
and reduce locally y

Figure 4.8: The control flow inside t r e l l i s _ r e d u c e  ( ) .

The reason we use a stand-alone helper program, instead o f  a helper function, is that it is simple 

and it is consistent with our ideas o f  using unmodified binaries in the program m ing system. In 

addition, if  we want to make changes to these helper programs (e.g., to optim ize the reduce algorithm 

in the r e d u c e  program), we do not need to rebuild the entire program m ing system.

F igure 4.10 shows several lines o f codes taken from the t r e l l i s  LSAVA program, which uses 

t r e l l i s _ r e d u c e l  ( ) .  This function takes an existing reduce program  s u s u m to  merge multiple 

source files into a single destination file. The com plete code for the t r e l l i s  LSAVA program  is 

listed in Appendix D.

The Trellis-SDP functions we have proposed and implemented so far are mainly modelled after 

a subset o f  M PI functions targeted at data-parallel applications. We believe these functions should 

be able to handle m ost o f the com m on data-parallel applications. O f course, there are cases we have 

not considered due to the limited num ber o f  benchmarking applications. We hope to extract more 

interesting APIs when we explore m ore applications in the future.

4.4 Concluding Remarks

In this chapter, we discussed the implementation o f  three major Trellis-SD P APIs: t r e l l i s _  

s c a n  ( ) ,  t r e l l i s _ g a t h e r  ( ) ,  and t r e l l i s _ r e d u c e l  ( ) .  T hese APIs are based on real 

applications and we believe they are able to handle most o f  the com m on data-parallel applications.
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<?xml version="1 .0 "?>
<BlockList>

<DataBlock>
<Locator>scp:jasper-04:/usr/scratch/ading/SEISMIC/input/</Locator> 
<Size>65536</Size>

</DataBlock>
<DataBlock>

<Locator>scp:jasper-07:/usr/scratch/ading/SEISMIC/input/</Locator> 
<Size>65536</Size>

</DataBlock>
<SpaceBlock>

<Locator>scp:jasper-0 1 :test/£ree/</Locator>
<Size>512</Size>

</SpaceBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.9: The m etadata file used by the trellis LSAVA program  shown in Appendix D. The 
data block is a directory containing all the local files to be reduced.

!

int main(int argc. char * argv[])(

char * reduce_op = "susum"; 
char * metafile_input = argv(2 );
char meta£ile_output(] = "LSAVA.data /LSAVA_OUTPUT.meta“ ; 

trellis_init(argc, argv);

if(trellis_reducel(metafile_input, metafile_output, reduce_op) < 0 ) 
(

fprintf(stderr, "Reduce Failed\n"l; 
exit(-1 );

)

trellis_finalize(); 
return 0 ;

)

Figure 4.10: The sample code o f  the seismic data processing application ( t  r e l  1 i  s  LSAVA) show
ing how t r e l l i s - r e d u c e l  ( )  is used.
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To sum m arize the main features o f  the Trellis-SDP APIs:

1. Trellis-SDP works at the file-level; the sending data and receiving data are stored on disks and 

represented by metadata files.

2. Trellis-SDP is able to use existing executables, not only for trellis_scan ( ) ,  but also for 

collective-com m unication interfaces (trellis_gather ()  and trellis_reducel (); 
both use several helper program s instead o f  helper functions).
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Chapter 5

Applications and Empirical 
Evaluations

In this chapter, we present the em pirical evaluations o f  Trellis-SDP. We evaluate the perform ance o f 

four data-intensive applications written in Trellis-SDP, including execution times, speedups, and the 

breakdown o f the execution times. We also m easure the overhead in the execution times incurred 

by Trellis-SDP and show that, for naturally data-parallel applications with coarse granularity, our 

program ing system is easy to use and has reasonably good performance.

To m easure the t r e l l i s _ s c a n  ( )  perform ance only, we use the distributed t r e l l i s  g r e p  

(Section 4.3.1) and the content-based im age retrieval (CBIR) application. To measure the perfor

m ance o f t r e l l i s _ s c a n  ()  and t r e l l i s _ g a t h e r  ( ) ,  we use the Parallel Sorting by Regular 

Sampling (PSRS) application, which contains an all-to-all com munication phase. To m easure the 

perform ance o f  t r e l l i s _ s c a n  ( )  and t r e l l i s _ r e d u c e  ( ) ,  we use a seismic data processing 

application (3D LSAVA m igration application) developed at the Department o f  Physics, University 

o f  Alberta. We take the original O penM P im plem entation o f the 3D LSAVA migration application 

and convert it into a distributed-m em ory application using Trellis-SDP.

5.1 Experimental Methodology and Platform

All applications are run on the local-area network because a LAN is a m ore controlled environm ent 

for benchm arking applications with collective com m unications. To dem onstrate that Trellis-SDP 

works across adm inistrative dom ains, we present the benchm arking results for the t r e l  1 i  s  g r e p  

application (Section 4.3.1) run on a wide-area network.

All experiments run on the LA N  use the same hardware configuration. We use AM D AthlonXP 

M P 1800+ processors running at 1.5 GHz, each with 1.5 GB o f RAM . All local disk drives interface 

with the com puter using a SCSI (Small Com puter System Interface). The nodes are connected with 

a 100 M bps, switched Fast E thernet network. All nodes run Linux, with kernel version 2.4.18.

For the WAN settings, the remote nodes we use are located at the University o f  Calgary, the
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Host Name A dm inistrative Domain Configuration

nexus.westgrid.ca University o f  Alberta MIPS R 16000IP35 700M Hz, 8GB RAM, Irix

lattice, westgrid.ca University o f  Calgary Alpha ES45 1GHz, 4GB RAM, Tru64

blackhole.westgrid.ca Sim on Fraser University AM D Opteron 2.4GHz, 4GB RAM, Linux

Table 5.1: The WAN settings for benchm arking the t r e l l i s  g r e p  application. The machines 
are located at three different adm inistrative domains: the University o f  Alberta, the University of 
Calgary and Simon Fraser University.

University o f  A lberta and Simon Fraser University. Table 5.1 provides the detailed information of 

these hosts.

Finally, as mentioned in Section 4.1, all the data needed for com putations in the experiments are 

m anually distributed at the start since we are targeting naturally-distributed applications. In addition, 

metafiles describing the distribution o f  the data are ready before the computation.

5.2 Distributed Grep

In this experim ent, we benchm ark the distributed g r e p  ( t r e l l i s  g r e p )  application introduced 

in Section 4.3.1. As described earlier, t r e l l i s  g r e p  perform s a g r e p  operation on distributed 

data. The source code o f the m aster com ponent is listed in Figure 4.3. The worker com ponent o f the 

application is the Unix g r e p  program.

We perform  this benchm ark in both the LAN and WAN environments. For the LAN environ

ment, we use the metadata file listed in Figure 4.1; for the WAN environm ent, we use the metadata 

file listed in F igure 4.4. We test three sets o f  input data in both cases, and the total size o f  the data are 

309M B, 618M B, and 927M B, respectively. The data is uniform ly distributed across three worker 

hosts. All experim ents are run 10 tim es, and only the average numbers are reported. The standard 

deviations are less than 3% o f the average.

Table 5.2 shows the execution tim es o f  t r e l l i s  g r e p  observed from the master host and 

each worker host for all three data sets in the LAN environm ent. Since the LAN environment is 

hom ogeneous, the results observed from all worker hosts are alm ost identical. However, there is a 

difference (about 0.7 seconds) between the execution times observed from the m aster host and the 

worker hosts. This is due mainly to the overhead o f  the program m ing system (e.g., s s h  startup 

time). Additional discussion on the overhead is provided in later sections.

Table 5.3 shows the execution tim es o f t r e l l i s  g r e p  observed from the master host and each 

worker host for the sam e input data sets in the WAN environment. This time, the execution times at 

different worker hosts are significantly different (for example, with 309M B input data, the execution 

tim e at lattice.westgrid.ca is 7.81 seconds, while the execution time at blackhole.westgrid.ca is only 

0.25 seconds), as each worker host has different hardware and software configurations. For all tests, 

the total execution time observed at the master host is always greater than the maximum execution
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tim e o f  all worker hosts. This is the effect o f  synchronization at the m aster host, plus the overhead 

o f  the program m ing system.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618MB D ata Size: 927MB

jasper-03 (sequential) 1.48 3.01 4.73

jasper-03 (master) 1.25 1.77 2.28

jasper-00 (worker) 0.53 1.07 1.58

jasper-01 (worker) 0.53 1.04 1.55

jasper-02 (worker) 0.53 1.05 1.51

Table 5.2: The execution time o f  the trellis grep application, as observed from the master 
host and each worker host in a LA N  environm ent, with three different sets o f input data.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618M B Data Size: 927MB

cleardale.cs.ualberta.ca (master) 9.65 17.37 25.01

nexus.westgrid.ca (worker) 5.15 10.27 15.44

lattice.westgrid.ca (worker) 7.81 15.54 23.19

blackhole.westgrid.ca (worker) 0.25 0.49 0.69

Table 5.3: The execution time o f  the trellis grep application, as observed from the master 
host and each worker host in a WAN environm ent, with three different sets o f input data.

The purpose o f  this experim ent is to dem onstrate that for sim ple data-parallel applications, 

Trellis-SDP works in both the LAN and WAN environments. We present additional performance- 

related metrics in later experiments.

5.3 Content-Based Image Retrieval

In this experim ent, we examine additional perform ance metrics o f  trellis_scan ()  and related 

functions. We im plem ent a typical inform ation retrieval application: content-based image retrieval 

(CBIR).

5.3.1 Application Description

For a com puter, retrieving images based on im age content is a difficult task. Unlike human beings, 

who may easily recognize objects>in an im age -  say, “a red car”-  com puters do not understand the 

contents o f  the image. Researchers in different disciplines (e.g., com puter vision, signal processing, 

biology, neuroscience) have proposed various algorithms in this area [31]. It is ideal to parallelize a
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Figure 5.1: The control flow o f  the content-based image retrieval (CBIR) application

CBIR application using our program m ing system because it is data-intensive, is easy to decompose, 

and the com putation is em barrassingly parallel.

The process o f  writing a distributed CBIR application using Trellis-SDP is sim ilar to that o f 

the CBM R exam ple described in Section 1. The sequential CBIR application takes a sample query 

im age and perform s a feature-extraction algorithm on the im age to generate a multidimensional 

feature vector (e.g., color, edge and texture information are vector com ponents). The feature vector 

is then searched through the feature space to find the top n  m ost-m atched feature vectors. That 

is, the feature space is form ed by all the feature vectors that have been generated by preprocessing 

all images in the im age database. N ew  feature vectors are continuously added to the feature space 

during the query processes. It should be noted that there are certain issues related with distributed 

CBIR applications, such as local relevance versus global relevance [5]. But we use this application 

m ainly for benchm arking purposes and do not look at these issues.

5.3.2 Experimental Setup

To write a distributed version o f  CBIR, the application is first decom posed into a m aster component 

and two worker com ponents: feature extraction and feature com parison. The num ber o f  worker 

com ponents depends on how the im age database is distributed. F igure 5.1 depicts the control flow 

o f  the distributed CBIR application.

As shown in the figure, the two worker com ponents are written using different tools. We build 

the feature-extraction com ponent using MATLAB -  since it greatly simplifies matrix-based pro

gram m ing -  while we build the feature-com parison com ponent using standard C. In practice, when 

using Trellis-SDP, a program m er m ay choose to write the worker com ponent using his/her favorite
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Im age D atabase 

Size

Sequential 2 W orker Hosts 4 Worker Hosts 8 W orker Hosts

Time a Time a Time a Time a

60,000 101.67 0.87 56.40 1.28 28.77 1.03 16.19 1.04

Table 5.4: The raw execution tim e o f  the CBIR application: Time is the average execution time (5 
repeated runs) in seconds, a  is the standard deviation.

language, to speed up the softw are developm ent process.

This experim ent is perform ed in a LAN environm ent and we use up to 8 com puting nodes (as 

described in Section 5.1). The im age database contains 60,000 images with a total feature space o f 

600 M Bytes (i.e., all the feature vectors take 600 MBytes).

5.3.3 Experimental Results

Linear7 .5

Distributed CBIR
6.5

5 .5

o. 4.5
£Q> 4

CD
O t
w 3.5

2.5

0.5

2 31 4 5 76
Number of hosts

Figure 5.2: The speedup o f  the distributed CBIR application. The size o f the image database is 
600MB.

The main experim ent is the scalability test, which involves distributing the im age database onto 

different num bers o f  nodes. This is shown in Table 5.4 where the average raw execution tim es o f
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Figure 5.3: T he overheads o f  the program m ing system in the CB IR application.

the CB IR application on 2 ,4  and 8 worker hosts, plus the sequential execution time, are given. We 

also present a speedup graph to further illustrate the scalability o f  the application (Figure 5.2).

The distributed CBIR application shows good scalability when the num ber o f  participating nodes 

increases. This is expected, since the distributed CBIR is naturally parallel. The contribution of 

Trellis-SDP is in sim plifying the im plem entation o f  the CBIR application (Appendix B) and in 

m inim izing the overheads that detract from  linear speedup.

To gain som e insight into the overheads (e.g., the startup tim e o f  s s h  connections and the en

cryption o f  the com munication channel), we measure and factor out the s s h  startup times, compared 

to the overall execution tim e (Figure 5.3). The worst case overhead is 15.5% when the number of 

nodes is 8. This is understandable since the num ber o f  s s h  calls and connections grows linearly 

for CBIR, with the num ber o f  nodes. As shown with the next application (Section 5.4), s s h  startup 

overheads can become a bottleneck as the num ber o f  worker processes grows, especially when group 

com m unication is involved.

5.3.4 Discussion and Conclusion

Content-based image retrieval is a typical data-intensive and data-parallel application. In practice, 

many real applications fall into this category, for example, distributed database operations, image 

processing and data mining. Trellis-SDP is designed for this kind o f  application and our experimen-
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tal results dem onstrate that the overheads introduced by Trellis-SDP are minimal.

5.4 Parallel Sorting by Regular Sampling

We use the Parallel Sorting by R egular Sampling (PSRS) application to benchm ark the trellis_ 
gather ( ) ,  in addition to trellis_scan ( ) .  The main purpose o f  the PSRS experiment is to 

show that our program m ing system  w orks for parallel applications with all-to-all communication 

phases.

5.4.1 Application Description

Parallel Sorting by R egular Sam pling is an algorithm that is suitable for many parallel architectures. 

It has “good load balancing properties, m odest com munication needs, and good locality o f  refer

ences” [21]. To sort the data distributed on p  hosts, the algorithm divides the whole process into 

four phases, which fits well w ith our program m ing system.

In Phase One, each worker com ponent sorts its local data using q u i c k  sort. Then, regular 

samples are collected from  each sorted local data and merged together in the m aster component. 

M erged regular samples are also sorted  using q u i c k  sort. In Phase Two, p  — 1 pivots are found 

from the sorted regular sam ples and sent back to each worker com ponent, which partitions its local 

data according to the pivots. In P hase Three, there is a com m unication-intensive data exchange 

where the i th partition in each w orker com ponent is transferred to the i th worker. Finally, in Phase 

Four, the exchanged partitions in each worker are merged using n-way merge sort, and the 

algorithm ends.

Figure 5.4 shows the control flow o f  PSRS using Trellis-SDP. To sim plify the implementation, 

we create three worker com ponents on each rem ote host: the first com ponent perform s the local sort 

and collects samples; the second reads in pivots and generates the partition index information; the 

last com ponent exchanges the data partitions using trellis_gather ( ) ,  and does a final local 

m erge sort. The sorted data still resides in rem ote hosts and is represented by a metadata file in the 

m aster host.

5.4.2 Experimental Setup

This experim ent is perform ed in a L A N  environment. The experimental setup is the same as the one 

described in Section 5.3.2, except that the dataset used contains 1 GB o f unsorted (binary) integers 

(i.e., 256 million keys), in total. W hile  benchm arking, no other applications are run on the same 

cluster.
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Figure 5.4: T he control flow o f  the PSRS application.

Data Size in Total Real Execution Times (in seconds)

Total Sequential 2 Worker Hosts 4 Worker Hosts 8 W orker Hosts

1GB 184.62 149.34 73.61 48.88

Table 5.5: The raw execution tim e o f  the PSRS application on 2 ,4  and 8 worker hosts.
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Figure 5.5: T he speedup o f  the PSRS application.

5.4.3 Experimental Results 
Scalability

The raw execution tim e and speedup graphs o f  the distributed PSRS application are given in Ta

ble 5.5 and F igure 5.5. The execution tim e is an average o f  5 repeated runs. As seen from the figure, 

for 8 worker hosts, we obtain a speedup o f  3.7. This is not high, com pared with the previous CBIR 

experiment but, considering the all-to-all com m unications, and a secure data transfer, the result is 

reasonable. In fact, we are m ore interested in identifying the overheads o f Trellis-SDP for group 

communications.

Execution Time Breakdown

We use the phase-by-phase analysis to quantify the execution tim es in each phase. F igure 5.6 illus

trates the breakdown o f the execution tim e o f  PSRS. As expected, Phase Three becom es a perfor

mance bottleneck when the num ber o f  worker hosts increases. For example, when there are only 

two worker hosts, Phase Three is 22%  o f  the total execution time. But, when the num ber o f  worker 

hosts increases to eight, Phase Three grows to 55%.
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Figure 5.6: The breakdown o f the execution time o f the PSRS application with default s s h .  (a) 
phase-by-phase with real time; (b) phase-by-phase with percentage o f  real time.

T he m ajor reasons for this bottleneck are the saturation of the network bandwidth (i.e., ex

changing millions o f  keys), the num ber o f  s s h  connections, and the data encryption overheads. 

For all-to-all com m unications am ong n  w orker com ponents in Phase Three, there are 0 ( n 2) s s h  

connections.

To further quantify the overhead, w e perform  an additional test by replacing all s s h  connections 

in Phase Three with r s h  (which is faster than s s h  since r s h  uses clear text channels). Figure 5.7 

shows the new breakdown o f  the execution tim e o f  PSRS with r s h  enabled in Phase Three. With 

r s h ,  both the total execution tim e and the percentage o f  the execution time for Phase Three are 

reduced. F igure 5.8 m ore directly shows the im pact o f the choice o f  the underlying com munication 

mechanism.

5.4.4 Discussion and Conclusion

In this section, we have shown the experim ental results for the PSRS application. As expected, 

due to an all-to-all com m unication phase in the application, the overhead introduced by Trellis- 

SDP is significantly larger than that in the CBIR application. In the future, we plan to explore the 

com m unication optim ization o f  s s h  for large data transfers.

5.5 Seismic Data Processing by 3D LSAVA Migration

We use the 3D LSAVA migration application to test t r e l l i s _ s c a n  ()  and t r e l l i s _ r e d u c e  () 

For this application, we test two sets o f  input data: one small data set (32 MB) and one large data 

set (6 GB). Since a considerable am ount o f  resources are required to process the large data set (i.e., 

it takes m ore than two weeks to process the 6 GB data on 8 worker hosts), it is impractical to com-
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Figure 5.8: The overheads o f  the program m ing system in the PSRS application with different un
derlying com munication mechanisms.
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Figure 5.9: The control flow o f the 3D LSAVA m igration application with small input data set.

plete the entire com putation in a reasonably short time. Nevertheless, it is still dem onstrated that 

Trellis-SDP works for the application that handles large am ounts o f  data, and we provide all the 

experimental results collected.

5.5.1 Application Description

To dem onstrate that Trellis-SDP is applicable to large-scale scientific applications, we collaborate 

with the research group in the Seism ic Image Processing Lab, D epartm ent o f  Physics, University 

o f  Alberta. We port their novel 3-dim ensional least-square am plitude versus angle (3D LSAVA) 

m igration application for seismic data processing to clusters o f  workstations using Trellis-SDP.

The goal o f  the 3D LSAVA m igration application is to process the raw seismic data, and make 

good-quality images o f  the earth’s interior. The raw seism ic data is collected by the reflection seismic 

prospecting technology. For example, at first, a survey area is defined at the earth’s surface; then, a 

mesh o f  sources (i.e., the equipm ent for impulsive sound waves) is deployed and activated across the 

area; finally, echoes o f  the sources (arriving from m ultiple directions) are recorded by the receivers 

(i.e., geophone or hydrophone) nearby [6].

To process the data, first, the data is transform ed from tim e-dom ain into frequency-domain using 

Fast Fourier Transform (FFT). Then, for each frequency unit, each layer is iteratively processed by 

the 3D LSAVA migration algorithm. The result o f  each frequency unit is a fix-sized two-dimensional
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size o f  input num ber o f frequencies number o f layers size o f global model

small data 32 MBytes 99 130 (4 meters/layer) 1.94 MBytes

large data 6 GBytes 178 210 (20 meters/layer) 9 GBytes

Table 5.6: The parameters o f the sm all data set and the large data set for the 3D LSAVA migration 
application.

matrix. The final model is generated by globally sum m ing up all matrices [36].

T he original 3D LSAVA migration application was implemented using the shared-m emory OpenM P 

system. In this implementation, the global m odel resides in the main m em ory and is shared by all 

processes. Each process updates this m em ory region after processing a frequency unit. To port 

this application to a distributed-m em ory environm ent, we factor out into a separate executable the 

function to process all frequency units in parallel via t r e l l i s _ s c a n  ( ) ,  and generate the result 

for each frequency unit locally. As illustrated in Figure 5.9, each worker process takes in an in

put frequency file and a velocity file, and generates a two-dimensional model onto the local disk. 

W hen all local models are generated, a global sum  (i.e., a m erge operation) is invoked by calling 

t r e l l i s _ r e d u c e  ( ) ,  which produces the global model. Note that the reduction operation uses an 

existing binary taken directly from the Center for W aveform Phenom ena/Seism ic Unix (CW P/SU) 

package [32]. The final global model can be visualized (i.e., the seismic image) and examined by 

experts.

5.5.2 Benchmark Setup

The experim ents are run in a LA N  environm ent only; the LAN settings are described in Section 5.1.

We use two sets o f  input data to evaluate this application. One is a small synthetic data set, 

which contains 32MB o f input data, and the final model is approxim ately 2M B. We perform simple 

speedup tests and measure the breakdown o f the execution time, using the small data set.

The other input data used is a 6GB 3D SEG/EAGE (i.e., Society o f  Exploration Geophysi

cists/European Association o f Geoscientists and Engineers) salt model dataset, which has been 

widely used by the oil and gas industry for the research o f  three-dim ensional seismic surveys. For 

8 worker hosts, the processing o f  this data will produce 198GB o f output data on each worker host 

before final reduction. Since there is not enough disk space to accom m odate the data, we choose 

to m ake some modifications to the code. Instead o f  com puting all layers in a row, and generating a 

large set o f  local models for each worker host, we have each worker process com pute only a single 

layer for all frequencies at a time. After each layer is com pleted at all worker processes, a reduc

tion operation is perform ed and an intermediate model for that layer is generated and moved to a 

backup storage. Then, the com putation and reduction for another layer is initiated until we finish 

processing all layers. Finally, a global reduction is perform ed on all interm ediate models to generate 

the final global model. In this way, we require less than 4GB o f disk space to process one layer for
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Figure 5.11: The visualization o f  the 3D LSAVA migration application for the small input data set.

each worker host. T he control flow o f the modified 3D LSAVA m igration application is shown in 

Figure 5.10.

Some detailed param eters o f  the two data sets are listed in Table 5.6.

5.5.3 Experimental Results 
Small Synthetic Data

Figure 5.11 illustrates the visualized result o f  the 3D LSAVA m igration application for the small 

data set. Since this is only a synthetic data set, it does not have real geographic meanings. However, 

in order to study the properties o f the application, it is still valuable to measure the scalability, the 

breakdown o f the execution times o f  different phases, and the s s h  startup overheads. The results 

are shown in Figures 5 .12 ,5 .13  and 5.14, respectively.

Figure 5.12 indicates that the distributed 3D LSAVA m igration application has good scalability. 

For example, when the num ber o f worker hosts is 8, we get a speedup num berof 7.3. This is because 

the majority o f the com putation is done in the scan phase (i.e., phase one), and the reduction phase 

(i.e., phase two) takes up to only 5%  o f  the total execution time, as shown in Figure 5.13. The s s h
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Figure 5.13: The breakdown o f  the execution time o f the 3D LSAVA m igration application in a LAN 
environment.
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tim e on scan operations time on reduction operations total execution time

120 layers 210.67 hours 1.93 hours 212.6 hours

Table 5.7: The total time spent to generate 120 layers o f the final model o f  the 3D LSAVA migration 
application using 8 worker hosts. T he size o f the input data is 6GB.

startup overhead is also negligible, according to Figure 5.14. The worst case overhead is 3.7% o f 

the total execution tim e when the num ber o f worker hosts is 8.

3D SEG/EAGE Salt Model Dataset

W e com plete the processing o f 120 layers (2400 meters) out o f  210 layers o f  the global model, and 

the result has been verified to be correct. Figure 5.15 illustrates one profile o f  the 3D model that is 

generated. In the figure, the noticeable curves are reflections resulting from different properties o f 

adjacent strata.

The total time spent in generating the 120 Layers o f the global model using 8 worker hosts is 

given in Table 5.7. The tim es spent on all scan phases and all reduction phases are also reported in 

the sam e table. Since a considerable am ount o f time is required to com plete the whole com putation, 

given the current system configurations, it is impractical to measure speedups at this problem scale. 

(For example, 212.6 hours (8.86 days) are spent to process 120 layers; at least another estimated 160 

hours will be needed in order to com plete the entire 210 layers). However, from Table 5.7 we can 

see that the reduction operations take less than 1% o f the total execution time. This indicates that 

the 3D LSAVA migration application on the large data set has the potential to have good scalability 

if  we add more processors to the com putation.

There are several factors contributing to the long running tim e o f  the modified 3D LSAVA m i

gration application (Section 5.5.2) in the current system configurations. In addition to the time for 

the additional I/O (writing to and reading from disks) between scan phases, and the time for the 

extra reduction phases that generate the intermediate models, there are two other m ajor overheads 

introduced by the modification:

1. I f  we process one layer at a tim e, we need to read in the velocity file (366M B) for each layer, 

which takes approxim ately 10 seconds each time. If  we process all layers in a row (before 

modification), we need to read in the velocity file only once.

2. I f  we process one layer at a tim e, we also run f f t w _ c r e a t e _ p l a n  ()  for each layer, which 

takes approxim ately 33 seconds each time. If we process all layers in a row, we need to 

perform f f t w _ c r e a t e _ p l a n  () only once.

Given the above facts, if  we had sufficient storage on each worker host and processed all layers 

in a row, we would expect to reduce the total execution time by at least 31.5 hours on 8 worker hosts.
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5.5.4 Discussion and Conclusion

In this section, we presented the experimental results o f the 3D LSAVA migration application, a 

project carried out in cooperation with the researchers in the Department o f  Physics, University o f 

Alberta. The significant features o f  this experim ent are:

1. The 3D LSAVA m igration application is a non-trivial application, developed independently at 

the Departm ent o f  Physics, University o f  Alberta.

2. The am ount o f  data that was processed is extremely large.

3. A lthough the porting o f  the original OpenM P program  to the clusters o f  workstations needs 

source code modifications, we have managed to make the changes as minimal as possible 

by using Trellis-SDP. In fact, the only change required is the way the original application 

outputs the results. The OpenM P program writes the local models to a large shared-m em ory 

region, and perform s the global sum at the sam e time; the modified program (the Trellis-SDP 

version) first generates the local m odels to files, then all the local models are merged by the 

global reduction.

We have verified that the trellis version o f  the 3D LSAVA migration application produces the 

correct results for both small and large data sets, and have also dem onstrated that it has good scala

bility.

5.6 Concluding Remarks

In this chapter, we have given the em pirical evaluations o f  our Trellis-SDP system. We studied four 

applications: distributed g r e p ,  content-based image retrieval, Parallel Sorting by Regular Sam 

pling, and seismic data processing by 3D LSAVA migration. The results we obtained are sum m a

rized as follows:

1. Trellis-SDP can work across adm inistrative domains (Section 5.2).

2. For sim ple data-parallel applications with coarse-grained com munication patterns, Trellis- 

SDP does not introduce excessive overhead and the application shows good scalability (Sec

tion 5.3).

3. Trellis-SDP works for parallel applications with all-to-all collective-communication phases. 

However, the collective-com m unication phases may become a perform ance bottleneck in the 

applications (Section 5.4).

4. Trellis-SDP works for applications that need to process very large data sets. D ue to limited 

resources, we w ere not able to scale the application beyond 8 worker hosts (Section 5.5).
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Chapter 6

Conclusion

In this thesis, we presented the design and implementation o f  Trellis-SDP, a sim ple data-parallel 

program m ing system. One major contribution o f  this work is that Trellis-SDP enables fast devel

opm ent o f  data-intensive and naturally data-parallel applications in a m etacom puting environment. 

A nother m ajor contribution o f Trellis-SDP is that it allows worker processes to run existing, un

modified binaries. Trellis-SDP also uses the m etadata file to represent files or directories that are 

distributed across the w ide-area network.

Trellis-SDP is built upon the existing Trellis project and provides a M aster-W orker programming 

framework. Function shipping and rem ote execution strategies are adopted to move the executables 

to the worker hosts where the data resides. To integrate the metadata file into our program m ing 

system, we introduced the file-level data parallelism and file-level collective-com m unication con

cepts, enabling the data-parallel and collective-com m unication operations to be perform ed at the file 

level, instead o f  at the memory level. This offers several advantages, such as facilitating a batched- 

pipelined execution model and requiring less-strict synchronization o f  parallel processes, especially 

in a m etacom puting environment.

We discussed all the m ajor application program m ing interfaces that we proposed and imple

m ented, and gave detailed examples o f  how these interfaces can be used to write non-trivial data- 

parallel applications. We dem onstrated that if  the problem  itself is sim ple, the im plem entation can 

also be simple.

We evaluated Trellis-SDP using four applications: the distributed trellis grep application 

dem onstrates that Trellis-SDP works over a w ide-area network; the content-based im age retrieval 

application dem onstrates that for data-parallel application without collective-com m unication phases, 

the overhead introduced by Trellis-SDP is minimal, and the application shows good scalability; the 

Parallel Sorting by Regular Sampling application and the 3D seismic data processing application 

dem onstrate that Trellis-SDP works for applications with collective-communication phases, and that 

Trellis-SDP is reliable when the application is required to process very large data sets.

Future research directions may include the investigation o f other data-intensive applications to 

further improve the programming system with regard to simplicity and efficiency; the design o f
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abstractions (e.g., metafiles); the im plem entation o f  library functions (e.g., t r e l l i s _ s c a n  ( ) ,  

t r e l l i s _ g a t h e r  () and t r e l l i s _ r e d u c e  ( ) ) ,  and the evaluation o f  techniques to create 

data-parallel applications.
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Appendix A

Preliminary Study of Application 
Profiling and Performance Prediction

In this thesis, our program m ing system  assum es static data distribution and resource allocation. 

This means that the selection o f  m aster and worker hosts are determined before the computation 

starts, and there are no data m ovem ents involved. In practice, if  we want to run an application 

across a w ide-area network, a scheduler is alm ost always needed to ensure that limited resources are 

allocated to different workloads o r jobs in a reasonable fashion. In this chapter, we briefly discuss 

our prelim inary effort on the application profiling model and perform ance prediction model, based 

on Trellis-SDP, for our future scheduler.

Scheduling in a m etacom puting environm ent is challenging. The ability to make good schedul

ing decisions relies largely on the am ount and accuracy o f  the system and the application inform a

tion. However, the dynam ically-changing system inform ation and the detailed application inform a

tion may not be readily available, o r may be too expensive to collect.

We assum e that the research on the scheduling o f  data-parallel applications is a practical start

ing point because data-parallel applications are sim ple, and have coarse-grained com munication 

patterns. M ore specifically, we focus on the load balancing problem for data-parallel applications 

written in Trellis-SDP. F igure A. 1 illustrates the control flow for the load balancing o f  a Trellis-SDP 

application. First, the application and system  profiling data from previous runs are collected and an

alyzed. Then, a perform ance prediction model is built upon the profiling information, and provided 

to the scheduler. The scheduler, aw are o f  the current system status, obtains the estimated execution 

tim e from the perform ance prediction m odel and, finally, generates the best scheduling scheme.

A.l Application Profiling

Since Trellis-SDP works at the file level, and Trellis-SDP applications are written in data-parallel and 

collective-com m unication phases, we can naturally extend our system to integrate application pro

filing capabilities at a coarse-grained level. Currently, we are interested in the num ber o f  phases in
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Figure A .l : The control flow for the load balancing o f Trellis-SDP applications

the application, the characteristics o f  each phase (data-parallel phases or collective-communication 

phases), the execution tim e o f  each phase, and the num ber o f  worker hosts. Our program m ing 

system  maintains a static profiling object. It provides two functions:

void Profile::registerPhaseStart(struct timeval start_time,
const char * phase);

void Profile::registerPhaseEnd(struct timeval end_time);

These two functions are called at the beginning and the end o f each phase, respectively, if  the 

user turns on the profiling capability o f  the program m ing system. In this way, the num ber and types 

o f  phases, as well as the time spent in each phase, are recorded during each run o f  the application. 

This inform ation will be analyzed and fed into the perform ance prediction model.
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A.2 Performance Prediction and Scheduling 

A.2.1 Introduction

The perform ance prediction model is a metric used to predict the expected application performance 

at future runs. The perform ance m odel uses the application profiling data and system configuration 

data gathered from previous runs to m ake the estimation. Currently, we are experimenting with a 

sim ple perform ance prediction model based on hom ogeneous architectures.

Our perform ance prediction m odel may be useful if  the scheduler is adopting a backfilling 

scheduling policy where there m ight be som e “holes” in the job  waiting queues (Figure A.2). If 

the scheduler predicts that the run-tim e o f  a later submitted application can be fit into the time slot 

o f  the “holes”, that application can be scheduled earlier.

T im e

1 Processors p

Figure A.2: The backfilling scheduling policy. There might be “holes” in the jo b  waiting queues. 

A.2.2 Prediction of the Execution Time

The model we used for execution tim e prediction is taken from Sevcik [33]. This model takes into 

account the following major issues:

1. The essential com putational work o f  the application (e.g., the sequential running tim e o f  the 

application).

2. The imbalance with which the essential work is distributed across the processors.
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3. T he overhead introduced for parallel processing (e.g., the overhead of the programming sys

tem/framework).

4. The com m unication and congestion delays.

The original model is defined as:

W -
T j(P ) = +  a :(p )  + P jiP )

w here W  represents the sequential com putational work o f  the application, p  is the number of 

processors, tj>(p) represents the unevenness am ong the work distributed across p  processors, a  rep

resents the overhead introduced by the parallel processing, and /3(p) represents the communication 

and congestion delays (a function o f  p).

In our study, w e assum e that the data is always evenly distributed across processes and we 

consider only hom ogeneous architecture, so <f>(p) equals to 1. We further simplify the model by 

rem oving the factors for com m unication and congestion delays, since we assume data-intensive 

operations o f  the application are perform ed locally by worker processes, and only a small amount 

o f  data needs to be transferred over the network. The final model we use is:

W
T ip ) =  —  +  JV(1 +  0.2p)

P

w here W  is still the sequential com putational work o f  the application and p  is the number o f 

processors. 7V (l+ 0 .2p ) is our version o f  the overhead introduced by parallel processing, determined 

by the historical profiling o f  the application, w here N  is the num ber o f phases in the application and 

(1 +  0.2p) is the average overhead for each phase (basically s s h  startup overheads, which has been 

discussed in Chapter 5).

A.3 Preliminary Evaluation Results

In the previous section, we presented our sim ple perform ance prediction model for homogeneous 

architectures by the following equation:

W
T ip )  =  —  + N {  1 +  0.2p)

P

We evaluate this equation by the CBIR application described in Section 5.3. The experiment is 

perform ed in the LAN environm ent w ith 2 ,4  and 8 worker hosts. We m easure the actual execution 

tim e o f  the application running on a given number o f  worker hosts, and use the equation to derive 

the predicted execution tim e o f  the application running on different num ber o f worker hosts. The 

results are shown in Table A .l.

From  the table, we can see that the worst-case prediction error is less than 5%, which indicates 

that our perform ance prediction m odel is relatively accurate and practical for simple data-parallel 

applications.
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2 worker hosts 4 worker hosts 8 worker hosts

actual (s) predicted (s) error actual (s) predicted (s) error actual predicted error

55.78 - - 28.5 28.99 1.7% 15.45 16.1 4.2%

55.78 54.8 1.8% 28.5 - - 15.45 15.9 2.9%

55.78 53.5 4.1% 28.5 27.6 3.2% 15.45 - -

Table A .l: The prediction o f  the execution tim e o f  the CBIR application on different numbers o f  
worker hosts.
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Appendix B

Source Code for CBIR Application

#define DISABLE_MACRO_REPLACEMENT
((include <string>
((include <trellis.h>
#include <trellis_sdp.h>
((include <iostream>
#include <stdlib.h>
#include <assert.h>

struct top{
float distance; 
int index;

} * topiist = NULL;

int main(int argc, char * argv[] ){

Trellis_Reguest request;
Trellis_Status status;

char * sample_disk = argv[l]; 
char * sample_offset = argv[2]; 
char * top_n = argv[3]; 
char * metafile = argv[4]; 
int items_read = 0; 
string op; 
float * buffer;

op += "query " + string(sample_disk) + " " + string(sample_offset) 
+ " " + string(top_n);

trellis_init(argc, argv);

if(trellis_scan(metafile, op.c_str(), &request) < 0){ 
fprintf(stderr, "Scan Failed\n”); 
exit(-l);

}else{
memset(buffer,0, BUF_SIZE);
items_read = trellis_scan_readall(&buffer, Trellis_FLOAT, 

request); 
trellis_scan_wait(request, status);
assert(items_read > 0);
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toplist = (struct top *Jmalloc(items_read 1 2 *  
sizeof(struct top));

for(int i = 0; i < items_read/2; i++){
toplist[i].distance = buffer[i*2); 
toplist[i].index = (int)(buffer[i*2+l]);

}

quicksort(toplist, 0, items_read/2 - 1); 
for(int i = 0; i < items_read/2; i++)

printf("%f %d\n", toplist[i].distance, 
toplist[i].index);

trellis_finalize();
if(toplist!=NULL){

free(toplist); 
toplist = NULL;

)

return 0;
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Appendix C

Source Code for PSRS Application

#define DISABLE_MACRO_REPLACEMENT
#include <trellis.h>
#include <trellis_sdp.h>
#include <string>
#include <iostream>
#include <stdlib.h> 
tinclude <unistd.h>
#include "quicksort.h"
using namespace std;

#define PTRACE_PATH "ptrace"
#define LOCALSORT_PATH “/usr/scratch/ading/PSRS/localsort"
#define GSAMPLE_PATH "/usr/scratch/ading/PSRS/gathersample"
#define COLLECTIDX_PATH ”/usr/scratch/ading/PSRS/collectidx"
#define MERGESORT_PATH "/usr/scratch/ading/PSRS/mergesort”

int DISK_NUM; 
int SUBARRAY_SIZ E; 
int SAMPLE_EACH; 
int INDEX_PIVOTS;

int * phasel(const char * metafile_in, const char * metafile_localsorted){
char sample_each_string[1024], subarray_num_string[1024]; 
int * sample_array = NULL; 
int items_read; 
string opl, op2;
Trellis_Request request;
Trellis_Status status;

sprintf(sample_each_string, "%d", SAMPLE_EACH);
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);
opl = string(LOCALSORT_PATH) + " " + string(subarray_num_string);
op2 = string(GSAMPLE_PATH) + " " + string(subarray_num_string)+ " "

+ string(sample_each_string);
if(trellis_scan(metafile_in, opl, &request) < 0){ 

fprintf(stderr, "Scan Failed\n"); 
exit(-1);

>
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trellis_scan_wait(request, status);

if(trellis_scan(metafile_localsorted, op2, ^request) < 0){ 
fprintf(stderr, "Scan Failed\n"); 
exi t(-1);

}
sample_array = (int *Jmalloc(DISK_NUM * SAMPLE_EACH * sizeof(int)); 
items_read = trellis_scan_read(sample_array, Trellis_INT,

DISK_NUM * SAMPLE_EACH, request); 
trellis_scan_wait(request, status);
return sample_array;

}

int ** collect_index_info(const char * metafile_localsorted,
string pivots_file_name){

char disk_num_string[1024], subarray_num_string[1024]; 
int ** index_table = NULL; 
string op;
Trellis_Request request;
Trellis_Status status; 
int items_received;

sprintf(disk_num_string, "%d", DXSK_NUM); 
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);

op = string(PTRACE_PATH) + " " + string(COLLECTIDX_PATH) + " " +
string(subarray_num_string) + " " + string(disk_num_string)

+ " " + pivots_file_name;

if(trellis_scan(metafile_localsorted, op, &request) < 0){ 
fprintf(stderr, "Scan Failed\n"); 
exit(-1);

}

index_table = (int **)malloc(scan->GetDisknum() * sizeof(int *)); 
for(int key = 0; key < scan->GetDisknum(); key++){

index_table[key] = (int *)malloc(scan->GetDisknum() * 2 * 
sizeof(int));

items_received = trellis_scan_readidx(index_table[key],
Trellis_INT, scan->GetDisknum() * 2, key, 
request); 

if(items_received < 0)(
fprintf(stderr, "Scan Failed\n"); 
exit(-l);

}
}

trellis_scan_wait(request, status); 
return index_table;

}

int ** phase2(const char * metafile_localsorted, int * sample_array){

int * pivots_array = NULL; 
int i, j;
int ** index_table;
FILE * pivots_file_fp;
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string pivots_file_name; 
string pivots_file_scl;

quicksort(sample_array, 0, DISK_NUM * SAMPLE_EACH - 1) ; 
pivots_array = (int *Jmalloc((DISK_NUM-1)*sizeof(int));

for(i =1; i < DISK_NUM; i++){
j = i * DISK_NUM + INDEX_PIVOTS - 1; 
pivots_array[i-l] = sample_array(j];

}

pivots_file_name = string(getenv("HOME")) + "/pivots_file"; 
pivots_file_fp = fopen(pivots_file_name.c_str() , "w"); 
if(pivots_£ile_fp == NULL){

fprintf(stderr, "Open Pivots File Error\n"); 
exit(-1);

}
for(i =0; i < DISK_NUM - 1; i++)

fprintf(pivots_file_fp, "%d\n", pivots_array[i]); 
fclose(pivots_file_fp);

pivots_file_scl = "scp:"+string(getenv("HOST"))+":pivots_file" ; 
index_table = collect_index_info(metafile_localsorted, 

pivots_file_scl); 
free(pivots_array);
return index_table;

}

int phase3(const char * metafile_localsorted, const char *
meta£ile_gather, int ** index_table, Trellis_Datatype datatype){

return trellis_gather(metafile_localsorted, metafile_gather,
index_table, datatype) ;

}

void phase4(const char * metafile_gather, const char *
metafile_globalsorted){

string op;
Trellis_Request request;
Trellis_Status status;
op = string(MERGESORT_PATH);
if(trellis_scan(metafile_gather, op, ^request) <0 ){ 

fprintf(stderr, "Scan FailedNn"); 
exit(-1);

}
trellis_scan_wait(request, status); 

return;
}

int main(int argc, char * argv[] ){
int * sample_array = NULL; 
int ** index_table;
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char metafile_in[] = "tosort.meta"; 
char metafile_localsorted[] = "localsorted.meta"; 
char metafile_gather[] = "sortgather.meta"; 
char metafile_globalsorted[] = "sorted.meta";
int size;

DISK_NUM = 8;
SUBARRAY_SIZE = 33554400;
SAMPLE_EACH = DISK_NUM;
INDEX_PIVOTS = DISK_NUM/2;

trellis„init(argc, argv);

sample_array = phase!(metafile_in, metafile_localsorted); 
index_table = phase2(metafile_localsorted, sample_array); 
phase3(metafile_localsorted, metafile_gather, index_table, 

Trellis_INT); 
phase4(metafile_gather, metafile_globalsorted);
for(int i = 0; i < DISK_NUM; i++) 

free(index_table[i]); 
free(index_table); 
free(sample_array);

trellis_finalize();

return 0;
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Appendix D

Source Code for 3D_LSAVA 
Migration Application

#define DISABLE_MACRO_REPLACEMENT
#include <string>
#include <string.h>
#include <stdio.h>
#include <trellis.h>
#include <trellis_sdp.h>

int main (int argc, char *• argv[]){

Trellis_Request request;
Trellis_Status status;

char * metafile_scan = argvfl];
char * scan_op = "/usr/scratch/ading/SEISMIC/LS_AVA ";
char * reduce_op = "susum";
char * metafile_input = argv[2);
char * hos t_num = argv[3];
char scan_command[1024];
char metafile_output[] = "LSAVA.data/LSAVA_OUTPUT.meta";
trellis_init(argc, argv);
/* Trellis Scan */

memset(scan_command, 0, 1024); 
strcat(scan_command, scan_op); 
strcat(scan_command, host_num);
if(trellis_scan(metafile_scan, scan_command, &request) <0 ){ 

fprintf(stderr, "Scan Failed\n"); 
exit(-1);

}

trellis_scan_wait(request, status);

/* Trellis Reduce */
if(trellis_reducel(metafile_input, metafile_output, reduce_op)<0){ 

fprintf (stderr, "Reduce FailedXn11); 
exit(-1);
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}

trellis_finalize(); 
return 0;
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