
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

T r e l l is -S D P : F il e -L e v e l D ata Pa r a l l e l is m

by

M cng D ing

A thesis subm itted to the Faculty o f Graduate Studies and Research in partial fulfillment o f the
requirem ents for the degree o f M a s te r o f Science.

D epartm ent o f Com puting Science

Edm onton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1A0N4
Canada

Biblioth6que et
Archives Canada

Direction du
Patrimoine de l'6dition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09149-5

Your file Votre reference
ISBN:
Our We Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L’auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d’auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To mom, dad and my sister.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Som e datasets and com puting environm ents are large and inherently distributed. For example, image

data may be gathered and stored at different locations for later processing. Although data parallelism

is a well-known com putational m odel, there are few programming system s that are both easy to

program (for simple applications) and able to work across adm inistrative domains.

We introduce Trellis-SDP, a sim ple data-parallel program m ing system that facilitates the rapid

developm ent o f data-intensive applications. Trellis-SDP is layered on top o f the Trellis infrastruc

ture, a software system for creating overlay metacomputers: user-level aggregations o f com puter

systems. Trellis-SDP is based on file-level data parallelism and provides a M aster-W orker program

m ing framework in which the w orker com ponents can run self-contained, new or existing binary

applications. We describe the design and implementation o f Trellis-SDP interfaces, including data-

parallel interfaces and collective-com m unication interfaces. We evaluate our program m ing system

with three simple data-parallel applications and one non-trivial seism ic d ata processing application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to thank my supervisor Dr. Paul Lu for his guidance, his patience and his understanding
during this challenging time. W ithout his help and support, my thesis would not have been possible.
I would also like to thank Yang W ang, M ike Closson, N icholas Lam b, Danny Ngo, and all the
other members o f the Trellis group - Nolan Bard, M ark Goldenberg, M organ Kan, M ark Lee, Chris
Pinchack, Ron Senda, Jeff Siegel and Dr. Edm und Sum bar - for their excellent work in Trellis, and
for all the help they have given me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 The Trellis Project ... 2
1.2 M otivating Application D o m a i n .. 3
1.3 C o n tr ib u tio n s .. 3
1.4 Concluding R e m a r k s ... 4

2 Background and Related Work 5
2.1 Background C o n c ep ts ... 5

2.1.1 Data Parallelism vs. Task P a r a l le l is m ... 5
2.1.2 Data Locality and Function S h i p p i n g ... 6
2.1.3 M aster-W orker Program m ing M odel in a M etacom puting Environm ent . . 7

2.2 Related W o r k ... 8
2.2.1 M essage Passing M o d e ls .. 8
2.2.2 Framework M o d e ls .. 9
2.2.3 RPC M o d e l s ... 11

2.3 Concluding R e m a r k s ... 11

3 Trellis-SDP: File-Level Data Parallelism 13
3.1 File-Level D ata P a ra lle lism .. 13
3.2 Design I s s u e s ... 15

3.2.1 Security: The Trellis Security In frastruc tu re .. 15
3.2.2 Global Naming: Secure Copy L o c a to r ... 15
3.2.3 Resource Specification: XM L-based M etadata S c h e m a 15
3.2.4 Using Existing, Sequential, Unmodified B in a r ie s .. 17

3.3 Trellis-SDP Execution E n v iro n m e n t... 18
3.4 Concluding R e m a r k s ... 20

4 Implementation Details 23
4.1 A ssum ptions ... 23
4.2 The M etadata F i l e .. 24
4.3 M ain Trellis-SDP A P I s ... 24

4.3.1 Trellis S c a n .. 25
4.3.2 Trellis G a th e r ... 27
4.3.3 Trellis R e d u c e ... 29

4.4 Concluding R e m a r k s ... 32

5 Applications and Empirical Evaluations 35
5.1 Experim ental M ethodology and Platform .. 35
5.2 Distributed Grep .. 36
5.3 Content-Based Im age R e tr ie v a l... 37

5.3.1 Application D e s c r ip t io n ... 37
5.3.2 Experimental S e tu p .. 38
5.3.3 Experim ental R e s u l ts .. 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.4 Discussion and C o n c lu s io n .. 40
5.4 Parallel Sorting by Regular Sam pling ... 41

5.4.1 Application D e s c r ip t io n ... 41
5.4.2 Experimental S e tu p .. 41
5.4.3 Experimental R e s u l ts .. 43
5.4.4 Discussion and C o n c lu s io n .. 44

5.5 Seism ic Data Processing by 3D LSAVA M igra tion ... 44
5.5.1 Application D e s c r ip t io n ... 46
5.5.2 Benchm ark S e tu p ... 47
5.5.3 Experim ental R e s u l ts .. 49
5.5.4 Discussion and C o n c lu s io n .. 54

5.6 Concluding R e m a r k s ... 54

6 Conclusion 55

Bibliography 57

A Preliminary Study o f Application Profiling and Performance Prediction 59
A .l Application P r o f i l in g ... 59
A.2 Perform ance Prediction and S c h e d u l in g .. 61

A.2.1 In troduction .. 61
A.2.2 Prediction o f the Execution Time ... 61

A.3 Prelim inary Evaluation R e s u l ts ... 62

B Source Code for CBIR Application 64

C Source Code for PSRS Application 66

D Source Code for 3D_LSAVA Migration Application 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 The com plete code for the m aster com ponent o f the t r e l l i s g r e p program.
The worker com ponents are Unix g r e p executables. Section 4.3.1 provides a more
detailed explanation o f this code... 2

2.1 Task Parallelism vs. Data Parallelism, (a) Task parallelism workflow; (b) Data
parallelism workflow... 6

2.2 Function Shipping and R em ote Execution on the WAN: executables are moved to
the host where the data resides... 8

2.3 Active Disks architecture: applications can be downloaded to the disks, where sig
nificant processing power and on-disk m em ory is available.. 9

3.1 Data Parallelism at different storage hierarchies: (a) Data parallelism at the file level
: data-parallel operations on global files across m ultiple hosts; (b) Data parallelism
at the memory level: data-parallel operations on a global array in main memory. . . 14

3.2 Launching the s s h overlay involves two steps: (1) Launching the s s h agent and
adding identities at rem ote hosts. (2) Setting s s h environm ent variables and au
thenticating without hum an interventions... 16

3.3 The interposition of an unm odified binary using the P t r a c e program 17
3.4 The execution environm ent o f the Trellis-SDP program m ing system 18
3.5 M etadata files in a batch-pipelined w orkload.. 20

4.1 An exam ple o f a m etadata file that describes a file that is logically contiguous but
physically distributed across 3 nodes over a local-area network...................................... 24

4.2 The control flow inside t r e l l i s - s c a n () .. 25
4.3 T he sample code for the t r e l l i s g r e p program (the m aster com ponent). The

worker com ponents are Unix g r e p executables. The location and distribution o f
the data is abstracted by the metadata file shown in Figure 4 .4 .. 27

4.4 The metadata file used by the t r e l l i s g r e p program shown in F igure 4.3. The
data is distributed on three hosts across three adm inistrative domains: the University
o f Alberta, the University o f Calgary and Simon Fraser U niversity................................ 28

4.5 The illustration o f the all-to-all com m unication... 29
4.6 The control flow inside t r e l l i s . g a t h e r () ... 30
4.7 The sample code o f Phase Three o f the Parallel Sorting by Regular Sam pling (PSRS)

application showing how t r e l l i s . g a t h e r () is used.. 31
4.8 The control flow inside t r e l l i s . r e d u c e () ... 32
4.9 The metadata file used by the t r e l l i s LSAVA program shown in Appendix D.

The data block is a directory containing all the local files to be reduced....................... 33
4.10 The sample code o f the seism ic data processing application (t r e l l i s LSAVA)

showing how t r e l l i s j r e d u c e l () is used.. 33

5.1 The control flow o f the content-based im age retrieval (CBIR) app lica tion 38
5.2 The speedup o f the distributed CBIR application. The size o f the image database is

600M B.. 39
5.3 T he overheads o f the program m ing system in the CBIR application............................... 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 The control flow of the PSR S application..
5.5 The speedup o f the PSRS application..
5.6 The breakdown o f the execution tim e o f the PSRS application with default s s h . (a)

phase-by-phase with real tim e; (b) phase-by-phase with percentage o f real time. . .
5.7 The breakdown o f the execution tim e o f the PSRS application with r s h enabled in

Phase Three, (a) phase-by-phase with real time; (b) phase-by-phase with percentage
o f real tim e...

5.8 The overheads o f the program m ing system in the PSRS application with different
underlying com m unication m echanism s...

5.9 The control flow o f the 3D LSAVA migration application with small input data set.
5 .10 The control flow o f the 3D LSAVA m igration application with large input data set. .
5.11 The visualization of the 3D LSAVA migration application for the small input data set.
5.12 The speedup o f the 3D LSAVA m igration application in a LAN environment. . . .
5.13 The breakdown o f the execution tim e o f the 3D LSAVA m igration application in a

LAN environm ent..
5.14 The s s h startup overhead o f the 3D LSAVA migration application in a LAN envi

ronm ent...
5.15 The visualization o f the 3D LSAVA m igration application for the 3D SEG/EAGE

salt model data set..

A .l The control flow for the load balancing o f Trellis-SDP ap p lica tio n s............................
A .2 The backfilling scheduling policy. There m ight be “holes” in the job waiting queues.

42
43

44

45

45
46
48
49
50

50

51

53

60
61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 A com parison between Task Parallelism and Data Parallelism .. 7
2.2 A com parison o f related w ork.. 12

3.1 An overview o f the Trellis-SDP functions with the analogous M PI functions. . . . 21

5.1 The WAN settings for benchm arking the t r e l l i s g r e p application. The ma
chines are located at three different adm inistrative domains: the University o f Al
berta, the University o f Calgary and Sim on Fraser University.. 36

5.2 The execution tim e o f the t r e l l i s g r e p application, as observed from the mas
ter host and each worker host in a LAN environm ent, with three different sets o f
input data.. 37

5.3 The execution tim e o f the t r e l l i s g r e p application, as observed from the mas
ter host and each worker host in a WAN environm ent, with three different sets o f
input data.. 37

5.4 The raw execution tim e o f the CBIR application: Tim e is the average execution time
(5 repeated runs) in seconds, a is the standard deviation... 39

5.5 The raw execution tim e o f the PSRS application on 2 ,4 and 8 worker hosts 42
5.6 The parameters o f the small data set and the large data set for the 3D LSAVA migra

tion application.. 47
5.7 The total time spent to generate 120 layers o f the final model o f the 3D LSAVA

migration application using 8 worker hosts. The size o f the input data is 6GB. . . . 52

A .l The prediction o f the execution tim e o f the CBIR application on different numbers
o f worker hosts.. 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Data parallelism is a well-known program m ing m odel [37]. However, w ith the development o f dis

tributed com puting platform s (such as clusters, m etacom puters over a wide-area network (WAN) [12],

and grids [14]), it can be difficult to write and deploy even a sim ple data-parallel application. This

is unfortunate because many problem s are naturally data parallel. For example, many problem s in

inform ation retrieval, sorting, and searching have inherently data-parallel phases and regular com

m unication patterns, which are characteristics o f sim ple data-parallel applications. Parallelizing an

existing application in these areas may require porting (e.g., using a message-passing system) and

access to source code. However, m essage passing can be com plicated, and the applications may

be in binary-only form. With the prevalence o f inherently data-parallel applications and distributed

com puting platforms, there is a need for a sim ple data-parallel program m ing system for simple

data-parallel problem s. Furtherm ore, as disks becom e larger and cheaper, scientific applications

are using this advantage to generate and consum e m ore datasets. W hen the total am ount o f data

becom es overwhelm ing and grows beyond the transm ission capacity o f the underlying network in

frastructure, certain data-handling mechanisms m ust be taken into consideration to accom m odate

this change [23].

We introduce Trellis-SDP, a sim ple data-parallel program m ing system that facilitates the rapid

development o f data-intensive applications. Trellis-SDP is layered on top o f the Trellis infrastruc

ture, a software system for creating overlay metacomputers: user-level aggregations o f com puter

systems. Trellis-SDP is based on file-level data parallelism (i.e., data parallelism within files instead

o f in-memory data structures (Section 3.1)) and provides a M aster-W orker program m ing framework

in which the worker com ponents can run self-contained, unmodified, new or existing binary appli

cations.

The main design goal o f Trellis-SDP is to make the program m ing o f data-parallel and data-

intensive applications over a m etacom puter as sim ple as possible. Based on our experience, a large

num ber o f meaningful scientific applications are well-suited to be parallelized. However, the effort

required to port these computations over the metacom puters may be daunting. For example, without

a proper data-parallel program m ing system, an application as sim ple as a distributed g r e p (a regular

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expression pattern m atcher on distributed data) can be difficult to write. By using Trellis-SDP, we

are able to im plem ent this distributed g r e p in less than 40 lines o f code.

Figure 1.1 shows the com plete code for the m aster com ponent o f the t r e l l i s g r e p program.

At line 12 and 16 , a g r e p operation and a metadata file, a physically-distributed but logically-

contiguous file (discussed in detail in Section 4.2) are provided. At line 20, a call to the t r e l l i s _

s c a n () function is made to invoke the g r e p operation on rem ote hosts. At line 25, the t r e l l i s _

s c a n _ r e a d a l l () function is called to read in the results. We will explain this code in more detail

in Section 4.3.1.

In this thesis, we describe the design and implementation o f Trellis-SDP, including the back

ground concepts and the application program m ing interface (API), e.g ., the data-parallel interface

and the collective-com m unication interface. We evaluate our program m ing system with three rel

atively sim ple data-parallel applications (i.e., t r e l l i s g r e p , Content-Based Im age Retrieval

(CBIR) and Parallel Sorting by Regular Sampling (PSRS)) and one non-trivial seismic data process

ing application with 6 GB o f input data.

1 (linclude <string>
2 Kinclude <stdio.h>
3 ((include <trellis.h>
4e ((include <trellis_sdp.h>
3
6
7

int mainlint argc, char * argv[])(

8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv(l);
12 char * metafile = argv[2);
13 string op;
14 int items_read = 0 ;
15
16 op = "grep ” + string (grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), ^request)<0){
21 fprintf(stderr, "Scan FailedNn");
22 exi t(-1);
23)else{
24
25 items_read = trellis_scan_readall(Sbuffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27)
28
29 trellis_finalize();
30 if(items_read > 0)
31 printf(“%s\n", (char "(buffer);
32
33 return 0 ;
34)

Figure 1.1: The com plete code for the m aster com ponent o f the t r e l l i s g r e p program. The
worker com ponents are Unix g r e p executables. Section 4.3.1 provides a more detailed explanation
o f this code.

1.1 The Trellis Project

Trellis-SDP is designed to be a part o f the whole Trellis m etacom puting system. A Trellis meta-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

com puter is a virtual, batch-processing and capacity-oriented com puter (7]. The current Trellis

m etacom puter contains a batch-scheduler system based on placeholder scheduling for CPU alloca

tion [29], a security infrastructure based on the Secure Shell (s s h) software system for authenti

cation and authorization (i.e., Trellis Security Infrastructure [26]), and a distributed file system for

global file sharing (i.e., TrellisNFS [7]). Trellis-SDP is our effort to integrate a sim ple program m ing

system into Trellis.

1.2 Motivating Application Domain

Applications in many research areas involve processing o f a large am ount o f data. A typical do

main o f application is inform ation retrieval. As a concrete example, let us suppose that a company

is providing a service for content-based music retrieval (CBM R), which takes a clip o f singing or

hum m ing from a client and then searches through the music database to find the top 10 most-similar

songs. I f the database is too large to fit on one system and/or is already distributed, it would be

im practical for the server to read in all the data and perform pitch/rhythm extraction [22] and com

parison algorithm s on a single site. Instead, one can choose to ship the music feature-extraction and

feature-com parison functions to the sites w here data resides, and perform the operations there. This

function shipping and remote execution m echanism (Section 2.1.2) not only makes full use o f the

com putational power on each site, but also greatly reduces the traffic over the WAN.

A nother sim ilar exam ple is the content-based im age retrieval (CBIR) application, which takes

a sam ple im age and returns the top N matching images from the im age database. We discuss the

CBIR application further in Chapter 5.

It is for the purpose o f function shipping and rem ote execution that we initiated the research on

Trellis-SDP, which is designed to support the easy and efficient program m ing o f applications such

as CBM R and CBIR to handle large collections o f distributed datasets.

1.3 Contributions

There are a num ber o f existing parallel program m ing frameworks and each o f them targets different

applications and platforms. The contributions o f our program m ing framework are the following:

1. Trellis-SDP provides a sim ple M aster-W orker program m ing framework (Section 3.3) that fa

cilitates the rapid development o f data-intensive and naturally data-parallel applications on a

wide-area network.

2. Trellis-SDP introduces the m etadata file that represents the naturally-distributed data. This fa

cilitates the writing o f a non-trivial data-parallel application with data-parallel and collective-

com m unication phases.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. For many data-parallel codes, Trellis-SDP allows the loosely-coupled workers to run exist

ing, sequential and unm odified binaries; the m aster and worker binaries can be separate. In

contrast, many parallel program m ing systems require the application to be recompiled into

a single, tightly-coupled binary (e.g., typical O penM P and MPI (M essage Passing Interface)

applications).

1.4 Concluding Remarks

In this chapter, we discussed our motivation for building Trellis-SDP and gave an exam ple o f how

Trellis-SDP can be used. We also presented the com plete sam ple code o f a distributed g r e p appli

cation (Figure 1.1) to show that it can be sim ple to im plem ent a non-trivial data-parallel application

using Trellis-SDP. In the next chapter, w e discuss the background knowledge on which our pro

gram m ing system is based and review som e o f the related work in this field.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background and Related Work

In the previous chapter, we introduced the Trellis project and discussed the motivation for developing

the Trellis sim ple data-parallel program m ing framework, Trellis-SDP. In this chapter, we present

som e related background concepts that influenced the design and im plem entation o f our work. We

also outline several previous projects that are relevant to our field o f interest.

2.1 Background Concepts

2.1.1 Data Parallelism vs. Task Parallelism

To achieve good perform ance on distributed-m em ory m ulticom puters, two parallel programming

paradigms are most-commonly used: task parallelism and data parallelism . In the task-parallel

program m ing paradigm, a program consists o f a set o f dissim ilar (or similar) parallel functions

that interact with each other via explicit com m unications and synchronizations. In the data-parallel

program m ing paradigm, a program consists o f a series o f operations that are applied identically to

all elements o f a large data set, which can be decom posed and distributed am ong m ultiple machines.

F igure 2.1 shows examples o f a task-parallel workflow and a data-parallel workflow.

T he major advantages o f task parallelism are its generality and flexibility. Task parallelism em

phasizes the communication between, and coordination o f different tasks, making it m ore applicable

for exploring applications that use irregular data structures. The disadvantage is that extra effort may

be required for the programmer to explicitly create parallel tasks and m anage all the com m unica

tions and synchronizations. Changing the com m unication pattern o f a program may entail significant

modifications to the program source code.

The major advantages o f data parallelism are its sim plicity and scalability. Since operations are

applied identically to data items in parallel, the am ount o f parallelism is prim arily determined by the

data size o f the problem. H igher am ounts o f parallelism may be exploited by simply expanding the

size o f the problems. In practice, m any scientific applications are naturally data-parallel at different

levels o f the storage hierarchy, from instruction-level data parallelism to file-level data parallelism.

We will discuss file-level data parallelism in m ore detail in Section 3.1. The m ajor disadvantage

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) (b)

Figure 2.1: Task Parallelism vs. D ata Parallelism, (a) Task parallelism workflow; (b) Data paral
lelism workflow.

o f data parallelism is that it is not as general as task parallelism. For applications with different

operations on different data, it is probably easier to utilize task-parallel languages.

As task parallelism and data parallelism each have strengths and weaknesses, it can be inter

esting to integrate these two when solving a com plicated application. F or example, in large-scale

simulations, there may be m ultiple m odels simulated sim ultaneously via task parallelism. Within

each sim ulated model, the com putation could involve significant data parallelism.

The m ajor differences between task parallelism and data parallelism are summarized in Ta

ble 2.1. N ote that som e o f the com parisons are generalizations. For exam ple, data-parallel ap

plications, in general, operate on regular data structures; however, there are also data-parallel appli

cations with irregular data structures, such as sparse-matrix multiplications. Similarly, there could

be task-parallel applications with very large data sizes.

In this thesis, we explore prim arily single program, m ultiple data (SPM D) programs with very

large data-parallel phases.

2.1.2 Data Locality and Function Shipping

One critical issue related to data parallelism and task parallelism is the location and size o f the data

to be processed. It is quite com m on in a metacomputing environm ent that the executable and the

corresponding data are not located at the same com puting site. In this situation, one can choose to

move the data to where the executable is located, or vice versa, in order to maximize performance.

In a case where the data size is large and the processing is relatively sim ple, it is wise to move

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Task Parallelism Data Parallelism

Definition Each processor perform s a
different task

Each processor works on a
different part o f the same
data

Data Structure Irregular or regular R egular or irregular

Com m on Data Size Relatively small Large

Advantages Flexible and general Sim ple and scalable

Disadvantages Extra effort to m anage
com m unications and syn
chronizations

Less general;
lim ited applicability

Typical Exam ples Traveling Salesman P rob
lem;
Game Tree Search

D atabase Search;
M atrix M ultiplication

Table 2.1: A com parison between Task Parallelism and Data Parallelism.

the executable to where the data is located. In this way, not only can the com puting power on

individual hosts be fully utilized, the traffic over the w ide-area network is also significantly reduced.

This technique is called function shipping and rem ote execution (Figure 2.2), and is actually being

im plemented at different levels o f the storage hierarchies. A typical exam ple o ffunction shipping is

Active D isks [30], which im plem ents this idea at the disk level. Active Disks is a storage system that

consists o f significant processing pow er and on-disk m em ory capacity (Figure 2.3). Application-

level processing can be perform ed on the Active D isks, which can potentially reduce the traffic

over the system bus, especially under I/O-bound workloads. Com m on applications are database

operations (such as select, jo in and aggregation) or any filtering-type operations. There arc several

existing program m ing m odels proposed for Active D isks [1].

2.1.3 Master-Worker Programming Model in a Metacomputing Environment

Master-W orker com puting is a widely-used form o f a parallel application program m ing model. It is

conceptually simple, and involves dividing a problem into a num ber o f sm aller independent worker

units, which can be distributed to rem ote worker processes for com putation in parallel. In this thesis,

we use the M aster-W orker program m ing model to im plem ent data parallelism with function ship

ping and rem ote execution. Before the computation is started, we assum e that the data is already

distributed across the com puting sites, and that the sam e executable codes are shipped to these sites.

The master then triggers the executable in remote com puting hosts, w here I/O-intensive operations

are perform ed locally, and only a small amount o f data is transferred back to the m aster for subse

quent processing.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M aster Host

in liS t

Functions DataWide Area
Network

fl-1 1 1^

rr i_ ff ii

Worker Host Worker Host Worker Host

Figure 2.2: Function Shipping and Rem ote Execution on the WAN: executables are moved to the
host where the data resides.

2.2 Related Work

The need to reduce the com plexity o f data-parallel program m ing has led to a large am ount o f work

in the area o f application-specific toolkits. These include application-specific or domain-specific

languages and libraries, program m ing frameworks, and problem -solving environm ents [23]. M ost

o f these toolkits have been adapted from traditional parallel and distributed com puting systems; only

a few are designed for grid com puting or metacomputing [11]. Existing program m ing tools include

message-passing libraries, object-oriented tools, and m iddleware systems. We highlight several

major advantages and disadvantages o f these work in Table 2.2.

2.2.1 Message Passing Models

M P IC H -G 2 [27] is a “grid-enabled implementation o f the M essage Passing Interface (M PI) that

allows the program m er to run M PI programs across adm inistrative dom ains using almost the same

com mands that would be used on a cluster o f workstations” [24]. M ore specifically, M PICH-G2

is a com plete implementation o f the MPI-1 standard that uses services provided by the Globus

Toolkit [25] to extend the M PICH implementation o f M PI for Grid execution. T he significant ad

vantage o f M PICH-G2 is that the program m er can reuse existing M PI code without having to learn

the specific details o f each site. A pragmatic disadvantage is that M PICH-G2 requires the Globus

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Server

Switched
Network

Active Disk Active Disk Active Disk

Figure 2.3: Active Disks architecture: applications can be downloaded to the disks, where significant
processing power and on-disk m em ory is available.

toolkit to be installed in all the adm inistrative dom ains, to address the issues o f security, rem ote pro

cess creation, process monitoring, process control, redirection o f standard input and output, rem ote

file accesses and cross-dom ain com m unications (e.g., Grid Security Infrastructure (GSI), Grid R e

source Allocation and M anagem ent Protocol (GRAM), M onitoring and Discovery Service (MDS)

and Global Access to Secondary S torage (GASS) [25]).

The popularity o f M PI has spawned a num ber o f variants that address grid-related issues, such

as dynam ic process m anagement and m ore efficient collective operations. The M agPIe library, for

example, im plem ents M PI’s collective operations - such as broadcast, barrier, and reduction oper

ations - with optim izations for wide-area systems as grids [20]. Existing parallel M PI applications

can be run on grid platform s using M agPIe, by relinking with the M agPIe library. M agPIe contains

a sim ple API through which the underlying grid com puting platform provides inform ation about the

num ber o f clusters in use, as well as which process is located in which cluster.

2.2.2 Framework Models

D a ta C u tte r [17] proposes afilter-stream program m ing model (originally designed for Active Disks [1,

30]) in a grid environm ent. In this program m ing model, an application is decom posed into a set o f

filters am ong which the com m unication is carried out via streams. As with Trellis-SDP, DataCutter

pushes the com putation to the data, instead o f migrating the data to the com putation [17]. DataCut-

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ter does not include the concept o f a m etadata file. Before running any applications on DataCutter,

a d i r d program must be started to maintain a list o f nodes that DataCutter applications may be

distributed across, and any node w ishing to be utilized by DataCutter m ust run an a p p d program

to control the DataCutter applications running on the nodes. All filter placem ents must be spec

ified in the program. Furtherm ore, the filter does not support unmodified binaries, meaning that

program m ers will probably have to rewrite their data-intensive com ponents according to the filter

specifications.

M apR educc [10] is a program m ing model developed at Google to process large data sets. It

provides a sim ple and powerful interface that enables automatic parallelization and distribution of

large-scale com putations. Built upon the Google file system, M apReduce carries out a number of

practical design decisions and fine-tunings to achieve maximum perform ance.

M apReduce is relevant to Trellis-SD P in that both systems are designed to make it simple for ap

plication program m ers to im plem ent sim ple data-parallel applications. The abstraction o f M apRe

duce is based on the map and reduce primitives present in many functional languages. The map

function processes a key/value pair to generate a set o f intermediate key/value pairs, and the reduce

function merges all interm ediate values associated with the sam e interm ediate key. The program

mer needs only to implement the m ap and reduce functions, and the data distribution and resource

allocation are taken care o f by the program m ing framework. Trellis-SDP, however, is m ore similar

to imperative program m ing, where the num ber o f processors is known before the com putation, and

the data is already distributed.

M apReduce has been dem onstrated to be applicable to a wide range o f real problem s specific to

Google, such as m achine learning, clustering, web crawling and graph com putation.

M W [15] is a software fram ework that allows users to parallelize scientific applications on a

com putational grid, using the M aster-W orker program m ing model. This fram ework is designed to

facilitate Master-W orker applications requiring a reliable delivery o f large am ounts o f computational

capacity. M W provides two sets o f program m ing interfaces: an Infrastructure Programming Inter

fa c e that ports the M W framework to a grid software toolkit such as C ondor [8] or Globus, and an

Application Programming Interface that enables the M aster-W orker paradigm . In both cases, the

user needs to re-im plem ent a num ber o f virtual functions to address low-level details - such as re

source request and detection, rem ote execution and com m unication. In addition, the programmer

needs to re-im plem ent the workers using MW-specific classes - M W Task and MWWorker.

A ppL eS M aste r W o rker A pp lication T em plate (AM W AT) [34] is a m iddleware approach

to Master-W orker application developm ent that aims to achieve three design goals: perform ance,

portability and reasonable effort. This program m ing framework can be separated into three distinct

groups: the base group that provides interfaces to perform the initialization o f the basic com puta

tional activities o f the application; the transfer group that provides interfaces to perform the data

transfers; and finally, the control group that provides interfaces to perform the scheduling functions.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AMWAT uses the AppLeS Portable Services com ponents for com munications. These services con

tain common com munication approaches, such as MPI, PVM (Parallel Virtual M achine), Unix Sock

ets and System V IPC (interprocess com m unication), plus some less-common approaches, such as

Globus Input/Output. As with MW, application program m ers need to fill in the application templates

with source codes, making it difficult to reuse existing application binaries.

Unlike DataCutter and Trellis-SD P, both M W and AMWAT assum e that data could/should be

moved during the com putation; for exam ple, data is not distributed before the computation is started.

Also, AMWAT allows dynam ic selection o f m aster and worker processes to maximize performance.

This is very practical for com putationally-intensive applications, but not for data-intensive applica

tions.

2.2.3 RPC Models

G rid R em ote P ro ced u re C all (R P C) [16] is an RPC model and API for grids. It offers a rel

atively simple program m ing paradigm for program m ing on the grid. Besides providing standard

RPC semantics with asynchronous, coarse-grained, task-parallel execution, it provides a high-level

abstraction whereby many details o f interacting with a grid environm ent can be hidden. However,

the Grid RPC program m ing model is not suited for applications with data-intensive or I/O-intensive

phases. Also, since the result o f the com putation is transferred back to the client side, there would

be a problem if the data size is large and the network bandwidth is low.

Ja v a R em ote M ethod Invocation (R M I) enables a program m er to create distributed Java-based

applications, in which the methods o f rem ote Java objects can be invoked from other Java virtual m a

chines, possibly on different hosts. T he main advantages o f RM I are that it is truly object-oriented,

that it supports all the data types o f a Java program, and that it is garbage collected. These features

allow for a clear separation between the caller and callee, and the developm ent and m aintenance of

distributed systems are thus made easier.

2.3 Concluding Remarks

In this chapter, we began by com paring two typical parallel program m ing paradigms: task paral

lelism and data parallelism. We discussed their advantages and disadvantages under various cir

cumstances. Naturally, for both types o f applications, under data-intensive workloads, the location

and size o f the data will have a large im pact on the application perform ance; this is why we intro

duced the concept o f function shipping and rem ote execution. We im plem ented this concept using

the com mon Master-W orker program m ing model, which is sim ple and easy to manage.

We also reviewed som e previous projects from the field o f program m ing models on a wide-

area network. Each model has different design goals and is suited to certain types o f workloads.

This is also true for our system; our target applications are mainly data parallel with I/O-intensive

workloads.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Related Work Advantages Disadvantages

M P IC II-G 2 [27] Allows reuse o f existing MPI
code;
W orks across administrative
domains.

Requires the installation o f the
Globus toolkit in all adm inis
trative domains;
Low-level and com plicated;
Does not support unmodified
binaries.

D a ta C u tte r [17] Sim ple stream -based Master-
W orker program m ing model;
Supports function shipping
and rem ote execution.

Current version does not work
across adm inistrative domains;
No global naming o f files;
Does not support unmodified
binaries.

M apR educei [10] Sim ple and powerful Master-
W orker program m ing model;
Based on functional program
m ing, the program m er does
not need to take care o f data
distribution and processor allo
cation;
Provides fault tolerance when
w orker or master fails.

Does not work across adm inis
trative domains;
Does not support unmodified
binaries.

M W [15] M aster-W orker programming
fram ework;
Suitable for computational in
tensive applications;
W orks across administrative
domains.

Does not support unmodified
binaries;
Need to install grid software
toolkit such as Condor and
Globus.

AM W AT [34] M aster-W orker programming
framework;
Suitable for com putational in
tensive applications;
Provides basic perform ance
predictions;
A llows dynam ic selections o f
m aster and worker processes.

Current version does not work
across adm inistrative domains;
Com plicated porting o f source
codes to templates.

G rid R P C [16] RPC program m ing extended to
grids;
Suitable for coarse-grained
task-parallel applications;
W orks across administrative
domains.

Low level;
Not suitable for data-intensive
or I/O-intensive applications;
Requires com plicated porting.

Table 2.2: A comparison o f related work.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Trellis-SDP: File-Level Data
Parallelism

In the previous chapter, we introduced the background knowledge and concepts related to our re

search. We also reviewed several well-known program m ing systems. In this chapter, we focus on

the concepts, as well as some practical problem s that have not been addressed by previous systems.

W e start by extending the concept o f data parallelism to file-level data parallelism . We then

present several im portant design issues in the development o f our program m ing system. These

include security, global nam ing, resource specification and design philosophy. We also illustrate the

Trellis-SDP execution environm ent and briefly discuss the program m ing interfaces we provide.

3.1 File-Level Data Parallelism

We extend the traditional concept o f data parallelism (e.g., the traditional data-parallel languages

such as Fortran90 and High Perform ance Fortran(HPF)) to file-level data parallelism. That is, our

program m ing framework is targeted at data parallelism and collective com m unications within files

in a m etacom puting environm ent, instead o f in-memory data structures, as illustrated in Figure 3.1.

Based on our experience in the program m ing in a metacomputing environm ent, we claim that

there are several advantages to exploring data parallelism and collective com m unications at the file

level:

1. U sing unm odified b inaries: W orking at the file level makes it easy to use sequential, unm od

ified binaries, or make as few changes as possible to the existing sequential/shared-m em ory

applications, when porting these applications to a wide-area network. As long as the sequen

tial executable guarantees that it takes the input from a file o r the standard input, and generates

the output to a file or the standard output, it can be integrated into the whole com putation eas

ily and smoothly.

2. M aster-W o rk er and batch-p ipelined execution m odel: W orking at the file level makes it

easy to im plem ent parallel applications using Master-W orker and batch-pipelined (multiple

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^Operation^
/ \

(a) G lobal M etadata File across M ultiple Hosts.
A ll C om ponents are logically one file.

^Operation^
7" "

(b) Global Array in M emory

Figure 3.1: D ata Parallelism at different storage hierarchies: (a) Data parallelism at the file level
: data-parallel operations on global files across m ultiple hosts; (b) Data parallelism at the memory
level: data-parallel operations on a global array in main memory.

phases) execution model. That is, the output o f one com putational phase is the input o f the

next com putational phase.

3. File-level collective com m unication : W hen perform ing collective com m unications at the file

level, w e impose less-strict requirem ents on the synchronization o f processes than are imposed

by memory-level collective com m unications. This is because interm ediate com puting results

can be stored on disks until all collective-communication processes are ready to read and

exchange them. Prior to that time, it is possible for the scheduler to schedule jobs on the idle

hosts that have already produced the intermediate results.

T he concepts o f file-level data parallelism , function shipping and rem ote execution, and Master-

W orker program m ing paradigm provide the foundation for our program m ing system.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Design Issues

T he design and implementation o f Trellis-SDP addresses several im portant issues in metacomputing

program m ing [11], We have successfully run Trellis-SDP applications on a wide-area network (Sec

tion 5.2 provides some prelim inary results). However, for reasons o f controllability and reliability,

m ost o f our benchm arks are perform ed on clusters o f workstations. We will discuss this further in

C hapter 5.

3.2.1 Security: The Trellis Security Infrastructure

O ur program m ing system takes advantage o f the underlying Trellis Security Infrastructure (TSI)

[26], which is layered on top o f the s s h software system [9, 3], for authentication and secure

com m unications across different adm inistrative domains. TSI allows single sign-on (a form o f au

thentication that enables a user to authenticate once and gain access to m ultiple systems) capability

by configuring and launching s s h - a g e n t processes on all participating hosts. Unlike the Globus

Security Infrastructure (GSI) [19], which places most o f the configuration and authentication work

onto the system adm inistrator, TSI manages these tasks at the user level. The system adm inistrator

needs only to give each user an account, and install s s h - which has already been widely deployed

on most platforms. F igure 3.2 illustrates the process o f launching an s s h overlay by a user: the user

runs a l a u n c h A g e n t s tool (not shown in the figure), which invokes s s h - a g e n t - r e m o t e and

s s h - a d d - r e m o t e for all participating hosts, and loads the rem ote s s h - a g e n t processes with

a com m on key. The user then types in only one passphrase and the s s h overlay is established. This

m eans that any o f these participating hosts can access one another w ithout a password or passphrase.

3.2.2 Global Naming: Secure Copy Locator

W e use Secure Copy Locators (SC L) [35] as the filenames in the global namespace. By using

SCL, the Trellis file system can access the rem ote data by first copying it onto a local disk and then

accessing the local cached copy o f the rem ote file. Our program m ing system extends this concept by

function shipping the com putation to the remote host (as discussed in Section 2.1.2). For example,

a file nam ed

s c p : a d i n g @ c l e a r d a l e . c s . u a l b e r t a . c a : " / w o r k e r . e x e

can be uniquely identified as the file w o r k e r . e x e in the home directory o f account a d i n g at host

c l e a r d a l e . c s . u a l b e r t a . c a .

3.2.3 Resource Specification: XML-based Metadata Schema

W e represent the program resource (i.e., program data) by a metafile. A metafile is a file that is

logically contiguous, but (perhaps) physically distributed across a network (Figure 3.1 (a)). An Ex-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Launch SSH agent and add identity:
s s h - a g e n t - r e m o t e ,

Set ENV variable and authenticate
without human intervention:
s o u r c e SSH_AGENT_PID, SSH_AUTH_SOCK

s s h (without typing a password or passphrase)

Figure 3.2: Launching the s s h overlay involves two steps: (1) Launching the s s h agent and adding
identities at rem ote hosts. (2) Setting s s h environm ent variables and authenticating without human
interventions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tensible M arkup Language (XM L)-based m etadata file is used by Trellis-SDP to describe a metafile

(Figure 4.1), which includes the location (expressed as an SCL) and the size o f the distributed blocks.

3.2.4 Using Existing, Sequential, Unmodified Binaries

One key design philosophy o f Trellis-SDP is to make it as simple as possible to write a data-intensive

parallel application, which is why Trellis-SDP allows the use o f existing, sequential, and unmodified

binaries. As discussed in Section 1.2, this functionality may be useful if the programmer has existing

binaries or binaries from a third party. By using or reusing existing binaries, the whole application

developm ent cycle could be dram atically simplified.

Ptrace file syscall Appe. get syscall
parameter

g. modify syscall
parameter

1. file syscall
return

b. exec()a. fork()
j. catch
V result f. syster i ()

Kerneld. trap file syscall enter

h. file syscall resume

i. trap file syscall exit

k. file syscall exit resume

Figure 3.3: The interposition o f an unmodified binary using the P t r a c e program.

In order to use existing binaries, w e m ust ensure that the binaries can access rem ote files. This

is done by the system call tracing in Trellis-SDP. As illustrated in Figure 3.3, we write a program

called P t r a c e (which uses the p t r a c e () system call) to intercept the file system calls in the

application, modify the system call param eters, execute some scripts, and resum e the system call.

For example, here is the sequence w hen the application opens a file:

1. P t r a c e intercepts the entry to the system call o p e n () (c and d in Figure 3.3).

2. P t r a c e retrieves the first param eter o f the o p e n () system call (e in Figure 3.3). I f it is a

local file, go to 5 (dashed line in F igure 3.3). I f it is a remote filename expressed as an SCL,

go to 3.

3. Ptrace executes a script w hich uses the Trellis file system library to cache the rem ote file to

local disk (f in F igure 3.3).

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Ptrace modifies the first param eter o f the open () system call to be the filename o f the

local cached file (g in Figure 3.3).

5. P t r a c e resumes the stopped system call (h in Figure 3.3).

Following these steps, the application will access the local cached file. If the file is modified,

the Ptrace program will intercept the close () system call and write the local file back to the

rem ote host.

We use the Ptrace program in the implementation o f Parallel Sorting by Regular Sampling

application described in Section 5.4, where rem ote file access is required. Appendix C lists the

source code for this application.

Besides system call tracing, there are other ways for an application to access a rem ote file. For

example, by installing an NFS-to-Trellis gateway, NFS (Network File System) clients can m ount a

volum e exported by the gateway, so each access to a rem ote file caii be translated by the gateway

into a rem ote data access via the Secure Copy ([7]).

3.3 Trellis-SDP Execution Environment

Control
i M a ste r

[•;? pil-ij P fi;SS^; Qyerjay.
■: totirity’ Jjjf̂ sttuctqrpy

•i__

Worker 1 Worker 4

HPC C en te r-2!

Worker 2 Worker 3

F igure 3.4: The execution environm ent o f the Trellis-SDP program m ing system.

Having introduced related concepts and design issues, we now present the high-level overview o f

the Trellis-SDP execution environm ent. As m entioned earlier, the main design goal o f Trellis-SDP

IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is to facilitate the program m ing o f data-intensive applications with coarse-grained communication

patterns on a wide-area network. For m ore fine-grained and com plicated message patterns, we also

support certain types o f group com m unication. O f course, the overall perform ance depends on the

am ount and type o f com m unication in the application.

Trellis-SD P is well-suited to applications where it is either easy to decom pose the application

into m aster and worker com ponents, or where the worker com ponent already exists (e.g., as a se

quential, binary executable). In both cases, it is the worker com ponent that performs the data-

intensive operations near the data, and it is the m aster com ponent that synchronizes the computation

and collects the results. For most data-parallel applications, the amount o f data transferred between

the m aster and worker should be minim al.

The program m er is responsible for identifying which part o f the application can be parallelized

and which part cannot, and if necessary, extracting the I/O-intensive cores in the application into one

or m ultiple stand-alone phases, so that the additional com munication introduced by the decomposi

tion does not penalize the overall task com pletion time.

Figure 3.4 illustrates the execution environm ent o f our program m ing system. Currently, we

support the following functions:

1. Data-Parallcl Functions - t r e l l i s _ s c a n () : Inside a Trellis-SDP program, a worker

process is invoked by a call to the t r e l l i s _ s c a n () library function. This function takes a

m etadata file and an operation string as input parameters, and takes a handle to the scan object

as the output parameter, which will store the result o f the t r e l l i s _ s c a n () operation.

The w orker processes on rem ote hosts perform the specified operations and either generate

the results on their local disks or return the results back to the m aster process via streams.

In the form er case, interm ediate files generated by different worker processes can also be

described using a metadata file. This interm ediate metadata file can be used in a different

t r e l l i s _ s c a n () phase, or it can be saved to disk. This is useful in a batch-pipelined

w orkload [13], where the output o f one worker process may be the input o f a succeeding

worker process. Figure 3.5 illustrates a batch-pipelined workload with three phases and four

m etadata files.

2. Collective-Coniniunication F u n ctio n s-tr e llis_ r ed u c e () and t r e l l i s _ g a t h e r ():

N ote in F igure 3.4 that, if necessary, group com m unication can be perform ed am ong worker

processes. Two group-com m unication functions are implemented: t r e l l i s _ g a t h e r ()

which perform s an all-to-all com m unication, and t r e l l i s _ r e d u c e () which performs a

global reduction operation, such as global sum and global minimum/m axim um. These oper

ations are at the file level instead o f the m em ory level because they take m etadata files as the

input parameter.

3. Initialization and Finalization Functions: Two basic run-time functions are provided: t r e l l i s .

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Metafile 1

Phase 1

Metafile 2

Phase 2

Metafile 3

Phase 3

Metafile 4

Local File () Process

Figure 3.5: M etadata files in a batch-pipelined workload.

i n i t () and t r e l l i s _ f i n a l i z e () . All Trellis functions should be called between

t r e l l i s _ i n i t () and t r e l l i s _ f i n a l i z e () . I f profiling capability is turned on,

t r e l l i s _ f i n a l i z e () will generate basic perform ance data.

4. P rofiling Functions: Since Trellis-SD P requires that an application be decom posed into mul

tiple phases, it is relatively easy to collect some basic run-time perform ance data. For example,

w e can record the execution tim e o f each phase o f an application during m ultiple runs. This

inform ation can be useful for predicting the execution tim e o f the application in future runs.

We discuss our preliminary study o f the application profiling in Appendix A.

We sum m arize all Trellis-SDP functions in Table 3.1. As a com parison, we also list the related

M PI functions, together with Trellis-SD P functions. Note in the table that M PI does not provide

data-parallel functions and the capability to use user-defined binary operations.

3.4 Concluding Remarks

In this chapter, we introduced the concept o f file-level data parallelism and collective com m unica

tion. We explained the motivation behind file-level data parallelism and dem onstrated how our pro

gram m ing system can benefit from this idea in various ways, such as unmodified binaries, batched-

pipelined execution model and sim ple application profiling.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trellis-SDP MPI Comments
Data "types
Trellis .Datatype MPI-Datatype
Trellis.Op MPI.Op
Trellis.Request MPI_Request Com m unication opaque object
Trellis.Status MPI.Status
Message Datatypes (Equivalent C Types)
Trellis.CHAR MPI.CHAR signed char
Trellis.INT MPI.INT signed int
Tr e 11 i s .FLOAT MPI.FLOAT float
Trellis-DOUBLE MPIJDOUBLE double
TrellisJJONG MPIJLONG signed long int
Predefined Reduction Operations
Trellis-ADD MPI.SUM Global sum
Trellis_MAX MPIJ4AX Finding M aximum
Trellis-MIN MPI.MIN Finding M inim um
Basic Functions
trellis.init () MPI.Init ()
trellis.finalize () MPI_Finalize ()
Data-Parallel Functions
trellis.scan() Rem ote execution in parallel

(non-blocking)
trellis-scan_read{) Read in trellis.scan() re

sult
trellis.scan_readidx ()
trellis.scan_readall ()
parseMetafile() H elper function
single.f ile.scan () H elper function
multi.f ile.scan () H elper function
Synchronization Functions
trellis.scan.wait () MPI.Wait ()
Collective-Conimunication Functions
trellis.gather() MPI_Alltoall()
trellis-reduce() MPI .Reduce () Predefined reduction operations
trellis.reducel () User defined reduction opera

tions (in binary form)
Profiling Functions
registerPhaseStart() D iscussed in Appendix A
registerPhaseEnd()

Table 3.1: An overview o f the Trellis-SDP functions with the analogous MPI functions.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We dealt with several practical design issues during the im plementation o f our programming

system - such as security, global nam ing and resource specification. These design decisions were

made to ensure that the system is sim ple and reliable to use.

We illustrated the execution environm ent o f the Trellis-SDP program m ing system and sum m a

rized all core Trellis-SD P functions, com paring these functions with related MPI functions. Details

o f the Trellis-SDP functions will be explained in the next chapter.

We also perform ed som e prelim inary studies on the profiling and perform ance prediction of

applications written in Trellis-SDP. These are discussed briefly in Appendix A. We hope to integrate

this work into our future scheduler.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Implementation Details

In the previous chapter, we discussed the idea o f file-level data parallelism and the execution envi

ronment o f the Trellis-SDP system. In this chapter, we discuss the implementation details o f our

system, especially how the design issues presented in the previous chapter are put into practice.

4.1 Assumptions

For the current implementation o f Trellis-SDP, we have several requirem ents for the whole com pu

tation setup. Before the com putation is started, Trellis-SDP assumes that:

1. The data needed by the com putation is already distributed across the metacomputer. This is

a com mon case for w ide-area data-intensive applications such as operations on a federated

database [18] or inform ation retrieval applications (e.g., CBIR application) on a distributed

database. I f the data is not distributed, tools are provided for scattering and gathering the data.

2. The m etadata file, identifying the distributed data, already exists (Section 4.2). In our current

implementation, the m etadata file contains the location and size o f the data on each participat

ing host. If the com putation contains m ultiple phases, then the input (or output) metadata file

for all phases should all be m ade ready before the computation.

3. The executable code for the worker com ponents is already distributed across the m etacom

puter. A t this tim e, w e require the worker com ponents to be available at each participat

ing host. The program m er m ust stage the executables to each host, if they are not there.

In the future, we may support autom atic staging o f executables. For exam ple, a potential

strategy would be to append the address o f the executable (in SCL format, as discussed in

Section 3.2.2) to the corresponding file/data to be processed in the m etadata file. Or, i f the

executable is a script, we could directly em bed the script into the m etadata file.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version="1.0"?>
<BlockList>

<DataBlock>
<Locator>scp: adingt? jasper-00:/usr/scratch/data.1</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp: ading@jasper-01:/usr/scratch/data.2</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@jasper-02:/usr/scratch/data.3</Locator>
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.1: An exam ple o f a m etadata file that describes a file that is logically contiguous but
physically distributed across 3 nodes over a local-area network.

4.2 The Metadata File

As discussed earlier, a metafile is a file that is logically contiguous, but (perhaps) physically dis

tributed across a network. As with o ther index-based file-allocation schemes, a Trellis-SDP metadata

file specifies the nam e and location o f the distributed blocks o f a logical file. The m aster com ponent

can either access the file as if it w as a single, logical file, or use the t r e l l i s _ s c a n () function

to perform a data-parallel operation on the physically-distributed blocks. Although it is assumed

that the logical file is already distributed, a separate tool is provided to distribute (i.e., scatter) the

data and create a corresponding m etadata file. A nother tool can take a m etadata file and gather the

distributed blocks into a single file on a local file system.

To make the representation o f the program data hum an readable and extensible [11], the metafile

is written in XM L, as illustrated in F igure 4.1. In the metafile, each block is specified with a

D a t a B l o c k node that contains a L o c a t o r (a string in SCL format) node and a S i z e (an in

teger specifying the size o f each block, in bytes) node.

In practice, the program m ing system will create an in-memory m etadata object corresponding to

a m etadata file. This is analogous to an in-m em ory version (i.e., m etadata object) o f a Unix i-node

(i.e., m etadata file). Upon object creation, all o f the inform ation in the m etadata file is parsed and

cached in the object (Section 4.3 provides further details on the metadata object). It is also possible

to export a metadata object to disk, in X M L format.

4.3 Main Trellis-SDP APIs

In this section, we explain in detail the im plem entation o f the main Trellis-SDP APIs. In addition to

the explanation, we give several exam ples.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trellis scan

META SCP
file type

No Yesnum blocks
 ̂reached? .

single_file_scan()single_file_scan()

multi_file_scan()

return scan
object

Figure 4.2: The control flow inside t r e l l i s _ s c a n () .

4.3.1 Trellis Scan

t r e l l i s _ s c a n () is the main data-parallel API we introduced and im plem ented in Trellis-SDP.

The declaration o f t r e l l i s _ s c a n () is:

int trellis_scan(const char * metafile, string op, Trellis_Request *
request);

t r e l l i s _ s c a n () is (typically) called in the m aster process, and takes two input parameters

and one output parameter. For input, there is a m etadata filename (or a regular SCL) and an oper

ation string. For output, t r e l l i s _ s c a n () will create an opaque com m unication object (called

T r e l l i s _ R e q u e s t , similar to the M P I _ R e q u e s t object in M PI) and return a handle to it via

the last parameter.

The control flow inside t r e l l i s _ s c a n () is shown in Figure 4.2. Upon calling o f the func

tion, the input file is parsed. Then, depending on the type o f the input file, two helper functions

(visible only to Trellis-SDP, not to the program m ers) are called:

int multi_£ile_scan(MetaHandler * meta, string op, Trellis_Request
* request);

FILE * single_file_scan(string path, string op, int rank);

I f the type o f the input file is SCP, it m eans that there is only one worker process that needs to

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be initiated, so the s i n g l e _ f i l e _ s c a n () function is called. This function starts up the worker

process and builds a data stream between the master and worker process.

If the type o f the input file is a m etadata file, the inform ation o f the m etadata file is analyzed and

cached in an in-memory m etadata object, which is passed as one o f the param eters to the m u l t i _

f i l e _ s c a n () function. This function will then call the s i n g l e _ f i l e _ s c a n () function for

each data block in the metadata file.

The results o f the m u l t i _ f i l e _ s c a n () or s i n g l e _ f i l e _ s c a n () function calls are

stored in the T r e l l i s _ R e q u e s t object. T r e l l i s _ R e q u e s t provides two types o f member

functions:

1. Read Functions:

int trellis_scan_read(void * buffer, Trellis_Datatype datatype,
int nmemb, Trellis_Request request);

int trellis_scan_readidx(void * buffer, Trellis_Datatype datatype,
int nmemb, int index, Trellis_Request request);

int trellis_scan_readall(void ** buffer, Trellis_Datatype datatype,
Trellis_Request request);

These functions allow the m aster process to read and store the data returned from worker

processes. The program m er can either choose to read a specified num ber o f bytes from all

worker processes (t r e l l i s _ s c a n _ r e a d ()) or from a single w orker process (t r e l l i s _

s c a n _ r e a d i d x ()) , or choose to read all the data that is available from all worker pro

cesses (t r e l l i s _ s c a n _ r e a d a l l ()) . The type o f the data to be read is determined by

the T r e l l i s _ D a t a t y p e .

2. Synchronization Function:

int trellis_scan_wait(Trellis_Request request, Trellis_Status status);

This function ensures that all com m unications between master and worker processes are fin

ished and the data streams opened by t r e l l i s _ s c a n () are closed. I f there are m ultiple

phases in the program (which m eans m ultiple t r e l l i s _ s c a n () s will be called in the m as

ter process), t r e l l i s _ s c a n _ w a i t () can serve as a barrier function between phases.

As an example, Figure 4.3 im plem ents a data-parallel t r e l l i s g r e p , which is a g r e p op

eration on the distributed data (described as a m etadata file, as shown in F igure 4.4). The code

shown is the complete code for the m aster com ponent, illustrating how sim ple a program can be if

the problem is simple. For the worker com ponent, we use the unmodified Unix g r e p program. The

t r e l l i s _ s c a n () takes in a m etadata file and starts up the worker processes in each rem ote host

to perform g r e p on its local data (line 20). The master process then reads in the results through the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 (•include <string>
2 (•include <stdio.h>
3 •include <trellis.h>
4
5

(•include <trellis_sdp.h>

S7
int mainlint argc, char * argv[])(

8 Trellis_Request request;
9 Trellis_Status status;

10 void * buffer;
11 char * grep_arg = argv(l);
12 char * metafile = argv[2);
13 string op;
14 int items_read ~ 0 ;
15
16 op = "grep " + string(grep_arg);
17
18 trellis_init(argc, argv);
19
20 if(trellis_scan(metafile, op.c_str(), &request)<0)(
21 fprintf(stderr, "Scan FailedSn");
22 exit(-l);
23)else{
24
25 items_read = trellis_scan_readall(&buffer, Trellis_CHAR, request);
26 trellis_scan_wait(request, status);
27)
28
29 trellis_finalize();
30 if(items_read > 0)
31 printf("%s\n", (char "(buffer);
32
33 return 0 ;
34)

Figure4.3: T he sam ple code for the t r e l l i s g r e p program (the m aster component). The worker
com ponents are Unix g r e p executables. The location and distribution o f the data is abstracted by
the m etadata file shown in Figure 4.4.

com m unication object by calling the t r e l l i s _ s c a n _ r e a d a l l () function (line 25). N ote that

the t r e l l i s g r e p program perform s m ost o f its data-intensive operations on the remote hosts

and transfers only a small am ount o f data (with type T r e l l i s _ C H A R) back to the master process.

A t the end o f the program , the m aster calls t r e l l i s _ s c a n _ w a i t () (line 26) to close all open

data streams.

Another sam ple code o f a data-parallel application written in Trellis-SDP can be found in Ap

pendix B. Section 5.3 provides m ore details o f the description and evaluation o f this application.

4.3.2 Trellis Gather

As discussed, trellis_scan () establishes com m unication channels between the m aster and

worker processes. This interface is sufficient for embarrassingly data-parallel applications with no

com munications am ong worker processes. However, som e com plex parallel and distributed ap

plications do require group com m unications. Thus, we also propose and implement two group-

com m unication interfaces, one o f w hich is called trellis gather () . This interface is similar

to the M PI collective-communication interface MPI_Alltoall () andMPI_Alltoallv() [28].

There are several papers on collective com m unications on a wide-area network, including the

issues o f perform ance and fault tolerance [2, 4, 20]; however, our efforts focus mainly on the API

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

issues at this time. We also touch upon a bit o f the perform ance issue and will discuss this in

Chapter 5.

trellis_gather () is called in the master process and has the following declaration:

int trellis_gather(const char * metafile_source, const char * metafile_dest,
int ** index_table, Trellis_Datatype datatype);

The function takes a source m etadata file, a destination metadata file, an index table specifying

how data should be exchanged, and the datatype. The semantics o f this function is the all-to-all

com m unication am ong worker processes, where each worker process sends distinct data to all other

worker processes.

As an example, F igure 4.5 illustrates an all-to-all data exchange am ong three worker hosts,

according to the index table (indexJable in Figure 4.5) provided by the programmer. Each row in

the indexJable specifies which data within one worker host needs to be sent to other worker hosts.

For instance, worker host 1 indicates that data 3 ,4 should be sent to worker host 2, and that data 5,

6 should be sent to worker host 3. Based on the indexJable, Trellis-SDP will generate a new index

table (indexJable2 in F igure 4.5) to determ ine the locations within each worker host where the data

received from other worker hosts should be stored. For instance, after the data exchange, data 7

from worker host 2 will be stored at index 2 in the receiving file in worker host 1, and data 13, 14

and 15 from worker host 3 will be stored at index 3 ,4 and 5 in the receiving file in worker host 1.

F igure 4.6 shows the control flow inside trellis_gather () . First, both the source metadata

file and the destination m etadata file are checked to m ake sure they have the correct file types. Then,

as explained before, indices are calculated (i.e., from indexJable to index Jable2) to determ ine where

the exchanged data should be stored. Finally, a sim ple helper program sendf ile is initiated to

perform the partial file transfer between worker hosts (i.e., to retrieve a portion o f a rem ote file using

scp for data transport).

As discussed earlier, the sem antics o f trellis_gather () are sim ilar to those o f MPI_

<?xml version="1 .0 "?>
<BlockList>

<DataBlock>
<Locator>scp;ading@nexus.westgrid.ca:“/data.l«/Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@lattice.westgrid.ca:“/data.2</Locator>
<Size>108003000</Size>

</DataBlock>
<DataBlock>

<Locator>scp:ading@blackhole.westgrid.ca:“/data.3</Locator>
<Size>108003000</Size>

</DataBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.4: The metadata file used by the trellis grep program shown in Figure 4.3. The
data is distributed on three hosts across three adm inistrative domains: the University o f A lberta, the
U niversity o f Calgary and Simon Fraser University.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before D ata Exchange
worker host 1 worker host 2 worker host 3

index_table

index_table2

worker host 1
m
worker host worker host 21 worker host 3

After Data Exchange

Figure 4.5: The illustration o f the all-to-all communication.

A l l t o a l l () . The m ajor difference is that in M P I _ A l l t o a l l () , both the sending data and the

receiving data reside in the memory, regardless o f whether it is in a rem ote host or a local host, while

in t r e l l i s _ g a t h e r () , both the sending and receiving ends are files stored on disks, and are

specified by m etadata files. Therefore, the numbers in the indexJable represent the offsets relative

to files instead o f displacements relative to memory buffers.

F igure 4.7 shows the sam ple code o f Phase Three o f the Parallel Sorting by Regular Sam pling

(PSRS) application (discussed in detail in Section 5.4). This is an exam ple o f how trellis_
gather () is used. Appendix C lists the com plete code for the PSRS application.

4.3.3 Trellis Reduce

The other collective-communication API we introduced and im plem ented is called trellis_
reduce (). The inclusion o f the function is again based on our hands-on experience with real

scientific applications, and we found this API necessary when designing a parallel seism ic data pro

cessing application (Section 5.5). trellis_reduce () is sim ilar to M P I’s MPI_Reduce () and

perform s global reduction operations across all worker processes. The reduction operation can be

either: one o f a predefined list o f operations (such as global sum, maxim um or minimum) or a pro

gram /executable provided by the user. Again, the difference between trellis_reduce () and

MPI_Reduce () is that the former works at the file-level while the latter works at the m em ory-

level.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trellis gather

NoAre file types
META?

Yes

Noi < num of
workers?

Yes

No j < num of
workers? _

Yes

return

sendfile(j, i)

parseMetafiles

calculate indices

Figure 4.6: The control flow inside t r e l l i s . g a t h e r ().

The declaration of t r e l l i s _ r e d u c e () is:

int trellis_reduce(const char * metafile_source, const char * metafile_dest,
int count, Trellis_Datatype datatype, Trellis_Op op);

int trellis_reducel(const char * metafile_source, const char * metafile_dest,
const char * reduce_op);

There are two reduce functions: t r e l l i s „ r e d u c e () and t r e l l i s _ r e d u c e l () . Both

functions take a source metadata file and a receiving metadata file as input parameters. The differ

ence is that t r e l l i s _ r e d u c e () perform s the system-defined reduction operations T r e l l i s _

Op, while t r e l l i s _ r e d u c e l () perform s the user-defined reduction operations (in the form of

a stand-alone executable). In this section, we focus on the description o f t r e l l i s _ r e d u c e l () .

Figure 4.8 illustrates the control flow inside t r e l l i s _ r e d u c e l () . The basic steps are :

1. A local reduction operation is perform ed at worker processes to reduce all the data that is local

to the remote host.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int phase3(const char * meta£ile_localsorted, const char * metafile.gather,
int ** index_table, Trellis_Datatype datatype)

(
int rval;
rval = trellis_gather(meta£ile_localsorted, meta£ile_gather, index_table, datatype);
return rval;

int main(int argc, char * argv()){

int *sample_array;
int **index_table;

char metafile_in[) = "input.meta";
char meta£ile_localsorted[] = "localsorted.meta";
char meta£ile_gather() = "sortgather.meta";
char metafile_globalsorted[) = "sorted.meta";

trellis_init(argc, argv);
sample_array = phasel(meta£ile_in, metafile_localsorted);
index_table = phase2 (metafile_localsorted, sample_array);
rval = phase3(metafile_localsorted, meta£ile_gather, index_table, Trellis_INT);

trellis_finalize();
return 0 ;

Figure 4.7: The sample code o f Phase Three o f the Parallel Sorting by R egular Sam pling (PSRS)
application showing how trellis.gather () is used.

2. A global reduction operation is perform ed at the master process to reduce all intermediate

results from worker processes.

F or step 1, we extend the definition o f a m etadata file so that the data block can also be a directory

instead o f ju st a file. For example, F igure 4.9 shows the metadata file w e use for the seismic data

processing application - t r e l l i s LSAVA (Section 5.5). Each block in the m etadata file is a

directory containing all the local files to be reduced.

In addition, we write two helper program s called r e d u c e .d a e m o n and r e d u c e . The usage

o f the two program s are:

reduce_daemon reduce_op directory

reduce sendfilel ... sendfileN receivefile reduce_op

The reduce.daemon program is initiated by the call to the trellis_scan () function

inside the trellis_reducel () function. The program in turn calls the reduce program to

reduce all local data using the user-provided reduce.op program. The interm ediate results are

stored in files at remote hosts and the pathnam es o f these files are passed back to the m aster process

via the Trellis_Request object.

In step 2, the master process sim ply calls the reduce program again, and reduces all interme

diate results into the destination m etadata file, using the sam e reduce.op program.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trellis_reducel

NoAre file types
META?

Yes

return

parseMetafiles

trellis_scan: to start
rcduce_daemons
on remote hosts

reduce: collect
intermediate results
from remote hosts
and reduce locally y

Figure 4.8: The control flow inside t r e l l i s _ r e d u c e () .

The reason we use a stand-alone helper program, instead o f a helper function, is that it is simple

and it is consistent with our ideas o f using unmodified binaries in the program m ing system. In

addition, if we want to make changes to these helper programs (e.g., to optim ize the reduce algorithm

in the r e d u c e program), we do not need to rebuild the entire program m ing system.

F igure 4.10 shows several lines o f codes taken from the t r e l l i s LSAVA program, which uses

t r e l l i s _ r e d u c e l () . This function takes an existing reduce program s u s u m to merge multiple

source files into a single destination file. The com plete code for the t r e l l i s LSAVA program is

listed in Appendix D.

The Trellis-SDP functions we have proposed and implemented so far are mainly modelled after

a subset o f M PI functions targeted at data-parallel applications. We believe these functions should

be able to handle m ost o f the com m on data-parallel applications. O f course, there are cases we have

not considered due to the limited num ber o f benchmarking applications. We hope to extract more

interesting APIs when we explore m ore applications in the future.

4.4 Concluding Remarks

In this chapter, we discussed the implementation o f three major Trellis-SD P APIs: t r e l l i s _

s c a n () , t r e l l i s _ g a t h e r () , and t r e l l i s _ r e d u c e l () . T hese APIs are based on real

applications and we believe they are able to handle most o f the com m on data-parallel applications.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<?xml version="1 .0 "?>
<BlockList>

<DataBlock>
<Locator>scp:jasper-04:/usr/scratch/ading/SEISMIC/input/</Locator>
<Size>65536</Size>

</DataBlock>
<DataBlock>

<Locator>scp:jasper-07:/usr/scratch/ading/SEISMIC/input/</Locator>
<Size>65536</Size>

</DataBlock>
<SpaceBlock>

<Locator>scp:jasper-0 1 :test/£ree/</Locator>
<Size>512</Size>

</SpaceBlock>
<BlockSize>32</BlockSize>

</BlockList>

Figure 4.9: The m etadata file used by the trellis LSAVA program shown in Appendix D. The
data block is a directory containing all the local files to be reduced.

!

int main(int argc. char * argv[])(

char * reduce_op = "susum";
char * metafile_input = argv(2);
char meta£ile_output(] = "LSAVA.data /LSAVA_OUTPUT.meta“ ;

trellis_init(argc, argv);

if(trellis_reducel(metafile_input, metafile_output, reduce_op) < 0)
(

fprintf(stderr, "Reduce Failed\n"l;
exit(-1);

)

trellis_finalize();
return 0 ;

)

Figure 4.10: The sample code o f the seismic data processing application (t r e l 1 i s LSAVA) show
ing how t r e l l i s - r e d u c e l () is used.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To sum m arize the main features o f the Trellis-SDP APIs:

1. Trellis-SDP works at the file-level; the sending data and receiving data are stored on disks and

represented by metadata files.

2. Trellis-SDP is able to use existing executables, not only for trellis_scan () , but also for

collective-com m unication interfaces (trellis_gather () and trellis_reducel ();
both use several helper program s instead o f helper functions).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Applications and Empirical
Evaluations

In this chapter, we present the em pirical evaluations o f Trellis-SDP. We evaluate the perform ance o f

four data-intensive applications written in Trellis-SDP, including execution times, speedups, and the

breakdown o f the execution times. We also m easure the overhead in the execution times incurred

by Trellis-SDP and show that, for naturally data-parallel applications with coarse granularity, our

program ing system is easy to use and has reasonably good performance.

To m easure the t r e l l i s _ s c a n () perform ance only, we use the distributed t r e l l i s g r e p

(Section 4.3.1) and the content-based im age retrieval (CBIR) application. To measure the perfor

m ance o f t r e l l i s _ s c a n () and t r e l l i s _ g a t h e r () , we use the Parallel Sorting by Regular

Sampling (PSRS) application, which contains an all-to-all com munication phase. To m easure the

perform ance o f t r e l l i s _ s c a n () and t r e l l i s _ r e d u c e () , we use a seismic data processing

application (3D LSAVA m igration application) developed at the Department o f Physics, University

o f Alberta. We take the original O penM P im plem entation o f the 3D LSAVA migration application

and convert it into a distributed-m em ory application using Trellis-SDP.

5.1 Experimental Methodology and Platform

All applications are run on the local-area network because a LAN is a m ore controlled environm ent

for benchm arking applications with collective com m unications. To dem onstrate that Trellis-SDP

works across adm inistrative dom ains, we present the benchm arking results for the t r e l 1 i s g r e p

application (Section 4.3.1) run on a wide-area network.

All experiments run on the LA N use the same hardware configuration. We use AM D AthlonXP

M P 1800+ processors running at 1.5 GHz, each with 1.5 GB o f RAM . All local disk drives interface

with the com puter using a SCSI (Small Com puter System Interface). The nodes are connected with

a 100 M bps, switched Fast E thernet network. All nodes run Linux, with kernel version 2.4.18.

For the WAN settings, the remote nodes we use are located at the University o f Calgary, the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Host Name A dm inistrative Domain Configuration

nexus.westgrid.ca University o f Alberta MIPS R 16000IP35 700M Hz, 8GB RAM, Irix

lattice, westgrid.ca University o f Calgary Alpha ES45 1GHz, 4GB RAM, Tru64

blackhole.westgrid.ca Sim on Fraser University AM D Opteron 2.4GHz, 4GB RAM, Linux

Table 5.1: The WAN settings for benchm arking the t r e l l i s g r e p application. The machines
are located at three different adm inistrative domains: the University o f Alberta, the University of
Calgary and Simon Fraser University.

University o f A lberta and Simon Fraser University. Table 5.1 provides the detailed information of

these hosts.

Finally, as mentioned in Section 4.1, all the data needed for com putations in the experiments are

m anually distributed at the start since we are targeting naturally-distributed applications. In addition,

metafiles describing the distribution o f the data are ready before the computation.

5.2 Distributed Grep

In this experim ent, we benchm ark the distributed g r e p (t r e l l i s g r e p) application introduced

in Section 4.3.1. As described earlier, t r e l l i s g r e p perform s a g r e p operation on distributed

data. The source code o f the m aster com ponent is listed in Figure 4.3. The worker com ponent o f the

application is the Unix g r e p program.

We perform this benchm ark in both the LAN and WAN environments. For the LAN environ

ment, we use the metadata file listed in Figure 4.1; for the WAN environm ent, we use the metadata

file listed in F igure 4.4. We test three sets o f input data in both cases, and the total size o f the data are

309M B, 618M B, and 927M B, respectively. The data is uniform ly distributed across three worker

hosts. All experim ents are run 10 tim es, and only the average numbers are reported. The standard

deviations are less than 3% o f the average.

Table 5.2 shows the execution tim es o f t r e l l i s g r e p observed from the master host and

each worker host for all three data sets in the LAN environm ent. Since the LAN environment is

hom ogeneous, the results observed from all worker hosts are alm ost identical. However, there is a

difference (about 0.7 seconds) between the execution times observed from the m aster host and the

worker hosts. This is due mainly to the overhead o f the program m ing system (e.g., s s h startup

time). Additional discussion on the overhead is provided in later sections.

Table 5.3 shows the execution tim es o f t r e l l i s g r e p observed from the master host and each

worker host for the sam e input data sets in the WAN environment. This time, the execution times at

different worker hosts are significantly different (for example, with 309M B input data, the execution

tim e at lattice.westgrid.ca is 7.81 seconds, while the execution time at blackhole.westgrid.ca is only

0.25 seconds), as each worker host has different hardware and software configurations. For all tests,

the total execution time observed at the master host is always greater than the maximum execution

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim e o f all worker hosts. This is the effect o f synchronization at the m aster host, plus the overhead

o f the program m ing system.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618MB D ata Size: 927MB

jasper-03 (sequential) 1.48 3.01 4.73

jasper-03 (master) 1.25 1.77 2.28

jasper-00 (worker) 0.53 1.07 1.58

jasper-01 (worker) 0.53 1.04 1.55

jasper-02 (worker) 0.53 1.05 1.51

Table 5.2: The execution time o f the trellis grep application, as observed from the master
host and each worker host in a LA N environm ent, with three different sets o f input data.

Hosts Execution Times (in seconds)

Data Size: 309MB Data Size: 618M B Data Size: 927MB

cleardale.cs.ualberta.ca (master) 9.65 17.37 25.01

nexus.westgrid.ca (worker) 5.15 10.27 15.44

lattice.westgrid.ca (worker) 7.81 15.54 23.19

blackhole.westgrid.ca (worker) 0.25 0.49 0.69

Table 5.3: The execution time o f the trellis grep application, as observed from the master
host and each worker host in a WAN environm ent, with three different sets o f input data.

The purpose o f this experim ent is to dem onstrate that for sim ple data-parallel applications,

Trellis-SDP works in both the LAN and WAN environments. We present additional performance-

related metrics in later experiments.

5.3 Content-Based Image Retrieval

In this experim ent, we examine additional perform ance metrics o f trellis_scan () and related

functions. We im plem ent a typical inform ation retrieval application: content-based image retrieval

(CBIR).

5.3.1 Application Description

For a com puter, retrieving images based on im age content is a difficult task. Unlike human beings,

who may easily recognize objects>in an im age - say, “a red car”- com puters do not understand the

contents o f the image. Researchers in different disciplines (e.g., com puter vision, signal processing,

biology, neuroscience) have proposed various algorithms in this area [31]. It is ideal to parallelize a

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M aster
trellis s c a n

LAN/
WAN

(^ W orker
Feature Extraction
(MATLAB binary)

v y

S """\
W orker
Feature Extraction
(MATLAB binary)

k j

c
W orker
Feature C om parisor
(C binary)

/ V W orker
Feature Com parison
(C binary)

Figure 5.1: The control flow o f the content-based image retrieval (CBIR) application

CBIR application using our program m ing system because it is data-intensive, is easy to decompose,

and the com putation is em barrassingly parallel.

The process o f writing a distributed CBIR application using Trellis-SDP is sim ilar to that o f

the CBM R exam ple described in Section 1. The sequential CBIR application takes a sample query

im age and perform s a feature-extraction algorithm on the im age to generate a multidimensional

feature vector (e.g., color, edge and texture information are vector com ponents). The feature vector

is then searched through the feature space to find the top n m ost-m atched feature vectors. That

is, the feature space is form ed by all the feature vectors that have been generated by preprocessing

all images in the im age database. N ew feature vectors are continuously added to the feature space

during the query processes. It should be noted that there are certain issues related with distributed

CBIR applications, such as local relevance versus global relevance [5]. But we use this application

m ainly for benchm arking purposes and do not look at these issues.

5.3.2 Experimental Setup

To write a distributed version o f CBIR, the application is first decom posed into a m aster component

and two worker com ponents: feature extraction and feature com parison. The num ber o f worker

com ponents depends on how the im age database is distributed. F igure 5.1 depicts the control flow

o f the distributed CBIR application.

As shown in the figure, the two worker com ponents are written using different tools. We build

the feature-extraction com ponent using MATLAB - since it greatly simplifies matrix-based pro

gram m ing - while we build the feature-com parison com ponent using standard C. In practice, when

using Trellis-SDP, a program m er m ay choose to write the worker com ponent using his/her favorite

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Im age D atabase

Size

Sequential 2 W orker Hosts 4 Worker Hosts 8 W orker Hosts

Time a Time a Time a Time a

60,000 101.67 0.87 56.40 1.28 28.77 1.03 16.19 1.04

Table 5.4: The raw execution tim e o f the CBIR application: Time is the average execution time (5
repeated runs) in seconds, a is the standard deviation.

language, to speed up the softw are developm ent process.

This experim ent is perform ed in a LAN environm ent and we use up to 8 com puting nodes (as

described in Section 5.1). The im age database contains 60,000 images with a total feature space o f

600 M Bytes (i.e., all the feature vectors take 600 MBytes).

5.3.3 Experimental Results

Linear7 .5

Distributed CBIR
6.5

5 .5

o. 4.5
£Q> 4

CD
O t
w 3.5

2.5

0.5

2 31 4 5 76
Number of hosts

Figure 5.2: The speedup o f the distributed CBIR application. The size o f the image database is
600MB.

The main experim ent is the scalability test, which involves distributing the im age database onto

different num bers o f nodes. This is shown in Table 5.4 where the average raw execution tim es o f

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

■ O v erh ead s

□ C o m p u ta tio n Time50

54. 78

27.43
10

i : . 6 f 2

o
2 3 4 5 6 7 8

Number o f Nodes

Figure 5.3: T he overheads o f the program m ing system in the CB IR application.

the CB IR application on 2 ,4 and 8 worker hosts, plus the sequential execution time, are given. We

also present a speedup graph to further illustrate the scalability o f the application (Figure 5.2).

The distributed CBIR application shows good scalability when the num ber o f participating nodes

increases. This is expected, since the distributed CBIR is naturally parallel. The contribution of

Trellis-SDP is in sim plifying the im plem entation o f the CBIR application (Appendix B) and in

m inim izing the overheads that detract from linear speedup.

To gain som e insight into the overheads (e.g., the startup tim e o f s s h connections and the en

cryption o f the com munication channel), we measure and factor out the s s h startup times, compared

to the overall execution tim e (Figure 5.3). The worst case overhead is 15.5% when the number of

nodes is 8. This is understandable since the num ber o f s s h calls and connections grows linearly

for CBIR, with the num ber o f nodes. As shown with the next application (Section 5.4), s s h startup

overheads can become a bottleneck as the num ber o f worker processes grows, especially when group

com m unication is involved.

5.3.4 Discussion and Conclusion

Content-based image retrieval is a typical data-intensive and data-parallel application. In practice,

many real applications fall into this category, for example, distributed database operations, image

processing and data mining. Trellis-SDP is designed for this kind o f application and our experimen-

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tal results dem onstrate that the overheads introduced by Trellis-SDP are minimal.

5.4 Parallel Sorting by Regular Sampling

We use the Parallel Sorting by R egular Sampling (PSRS) application to benchm ark the trellis_
gather () , in addition to trellis_scan () . The main purpose o f the PSRS experiment is to

show that our program m ing system w orks for parallel applications with all-to-all communication

phases.

5.4.1 Application Description

Parallel Sorting by R egular Sam pling is an algorithm that is suitable for many parallel architectures.

It has “good load balancing properties, m odest com munication needs, and good locality o f refer

ences” [21]. To sort the data distributed on p hosts, the algorithm divides the whole process into

four phases, which fits well w ith our program m ing system.

In Phase One, each worker com ponent sorts its local data using q u i c k sort. Then, regular

samples are collected from each sorted local data and merged together in the m aster component.

M erged regular samples are also sorted using q u i c k sort. In Phase Two, p — 1 pivots are found

from the sorted regular sam ples and sent back to each worker com ponent, which partitions its local

data according to the pivots. In P hase Three, there is a com m unication-intensive data exchange

where the i th partition in each w orker com ponent is transferred to the i th worker. Finally, in Phase

Four, the exchanged partitions in each worker are merged using n-way merge sort, and the

algorithm ends.

Figure 5.4 shows the control flow o f PSRS using Trellis-SDP. To sim plify the implementation,

we create three worker com ponents on each rem ote host: the first com ponent perform s the local sort

and collects samples; the second reads in pivots and generates the partition index information; the

last com ponent exchanges the data partitions using trellis_gather () , and does a final local

m erge sort. The sorted data still resides in rem ote hosts and is represented by a metadata file in the

m aster host.

5.4.2 Experimental Setup

This experim ent is perform ed in a L A N environment. The experimental setup is the same as the one

described in Section 5.3.2, except that the dataset used contains 1 GB o f unsorted (binary) integers

(i.e., 256 million keys), in total. W hile benchm arking, no other applications are run on the same

cluster.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Master
trellis scan

LAN

Phase 1

Phase 2

LAN Phase 3

Phase 4

LAN
Worker
Merge Sort

Worker
Merge Sort

Master
trellis_gather

Master
trellis scan

Worker
1.Quick Sort
2.Collect Sample

Worker
1.Quick Sort
2.Collect Sample

Worker
1 .Read in Pivots
2.Generate Index Info

Worker
1 .Read in Pivots
2.Generate Index Info

Worker
Exchange Partitions

(trellis_gather)

Worker
Exchange Partitions

(trellis_gather)

Figure 5.4: T he control flow o f the PSRS application.

Data Size in Total Real Execution Times (in seconds)

Total Sequential 2 Worker Hosts 4 Worker Hosts 8 W orker Hosts

1GB 184.62 149.34 73.61 48.88

Table 5.5: The raw execution tim e o f the PSRS application on 2 ,4 and 8 worker hosts.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

■4— Linear
• —D istributed PSRS7

6

5

4

3

2

1

0
1 2 3 4 5 6 7 8

Number of Hosts

Figure 5.5: T he speedup o f the PSRS application.

5.4.3 Experimental Results
Scalability

The raw execution tim e and speedup graphs o f the distributed PSRS application are given in Ta

ble 5.5 and F igure 5.5. The execution tim e is an average o f 5 repeated runs. As seen from the figure,

for 8 worker hosts, we obtain a speedup o f 3.7. This is not high, com pared with the previous CBIR

experiment but, considering the all-to-all com m unications, and a secure data transfer, the result is

reasonable. In fact, we are m ore interested in identifying the overheads o f Trellis-SDP for group

communications.

Execution Time Breakdown

We use the phase-by-phase analysis to quantify the execution tim es in each phase. F igure 5.6 illus

trates the breakdown o f the execution tim e o f PSRS. As expected, Phase Three becom es a perfor

mance bottleneck when the num ber o f worker hosts increases. For example, when there are only

two worker hosts, Phase Three is 22% o f the total execution time. But, when the num ber o f worker

hosts increases to eight, Phase Three grows to 55%.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Phase 4
El Phase 3
■ Phase 2
HPhase 1

■ P hase!
□ Phnse3

■ Phase2
□ P hasel

N um ber o f Hosts Number o f Hosts

(») (b)

Figure 5.6: The breakdown o f the execution time o f the PSRS application with default s s h . (a)
phase-by-phase with real time; (b) phase-by-phase with percentage o f real time.

T he m ajor reasons for this bottleneck are the saturation of the network bandwidth (i.e., ex

changing millions o f keys), the num ber o f s s h connections, and the data encryption overheads.

For all-to-all com m unications am ong n w orker com ponents in Phase Three, there are 0 (n 2) s s h

connections.

To further quantify the overhead, w e perform an additional test by replacing all s s h connections

in Phase Three with r s h (which is faster than s s h since r s h uses clear text channels). Figure 5.7

shows the new breakdown o f the execution tim e o f PSRS with r s h enabled in Phase Three. With

r s h , both the total execution tim e and the percentage o f the execution time for Phase Three are

reduced. F igure 5.8 m ore directly shows the im pact o f the choice o f the underlying com munication

mechanism.

5.4.4 Discussion and Conclusion

In this section, we have shown the experim ental results for the PSRS application. As expected,

due to an all-to-all com m unication phase in the application, the overhead introduced by Trellis-

SDP is significantly larger than that in the CBIR application. In the future, we plan to explore the

com m unication optim ization o f s s h for large data transfers.

5.5 Seismic Data Processing by 3D LSAVA Migration

We use the 3D LSAVA migration application to test t r e l l i s _ s c a n () and t r e l l i s _ r e d u c e ()

For this application, we test two sets o f input data: one small data set (32 MB) and one large data

set (6 GB). Since a considerable am ount o f resources are required to process the large data set (i.e.,

it takes m ore than two weeks to process the 6 GB data on 8 worker hosts), it is impractical to com-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■ Phase 4
El Phase 3
■ Phase 2
□ Phase 1

N um ber o f Hosts Number o fllo s ts

■ Phose4

□ Phase3

■ Phase2

D P h a s e 1

Figure 5.7: The breakdown o f the execution tim e o f the PSRS application with r s h enabled in
Phase Three, (a) phase-by-phase w ith real time; (b) phase-by-phase with percentage o f real time.

2 4 8 Number of Hosts

Figure 5.8: The overheads o f the program m ing system in the PSRS application with different un
derlying com munication mechanisms.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Velocity file fe
(3MB) S

Velocity file
(3MB)(20KB) (20KB)!LAN

Phase 1

Phase 2

LAN

Worker Worker

Worker
Local LSAVA

Worker
Local LSAVA

Master
trellis reduce

Master
trellis scan

Figure 5.9: The control flow o f the 3D LSAVA m igration application with small input data set.

plete the entire com putation in a reasonably short time. Nevertheless, it is still dem onstrated that

Trellis-SDP works for the application that handles large am ounts o f data, and we provide all the

experimental results collected.

5.5.1 Application Description

To dem onstrate that Trellis-SDP is applicable to large-scale scientific applications, we collaborate

with the research group in the Seism ic Image Processing Lab, D epartm ent o f Physics, University

o f Alberta. We port their novel 3-dim ensional least-square am plitude versus angle (3D LSAVA)

m igration application for seismic data processing to clusters o f workstations using Trellis-SDP.

The goal o f the 3D LSAVA m igration application is to process the raw seismic data, and make

good-quality images o f the earth’s interior. The raw seism ic data is collected by the reflection seismic

prospecting technology. For example, at first, a survey area is defined at the earth’s surface; then, a

mesh o f sources (i.e., the equipm ent for impulsive sound waves) is deployed and activated across the

area; finally, echoes o f the sources (arriving from m ultiple directions) are recorded by the receivers

(i.e., geophone or hydrophone) nearby [6].

To process the data, first, the data is transform ed from tim e-dom ain into frequency-domain using

Fast Fourier Transform (FFT). Then, for each frequency unit, each layer is iteratively processed by

the 3D LSAVA migration algorithm. The result o f each frequency unit is a fix-sized two-dimensional

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size o f input num ber o f frequencies number o f layers size o f global model

small data 32 MBytes 99 130 (4 meters/layer) 1.94 MBytes

large data 6 GBytes 178 210 (20 meters/layer) 9 GBytes

Table 5.6: The parameters o f the sm all data set and the large data set for the 3D LSAVA migration
application.

matrix. The final model is generated by globally sum m ing up all matrices [36].

T he original 3D LSAVA migration application was implemented using the shared-m emory OpenM P

system. In this implementation, the global m odel resides in the main m em ory and is shared by all

processes. Each process updates this m em ory region after processing a frequency unit. To port

this application to a distributed-m em ory environm ent, we factor out into a separate executable the

function to process all frequency units in parallel via t r e l l i s _ s c a n () , and generate the result

for each frequency unit locally. As illustrated in Figure 5.9, each worker process takes in an in

put frequency file and a velocity file, and generates a two-dimensional model onto the local disk.

W hen all local models are generated, a global sum (i.e., a m erge operation) is invoked by calling

t r e l l i s _ r e d u c e () , which produces the global model. Note that the reduction operation uses an

existing binary taken directly from the Center for W aveform Phenom ena/Seism ic Unix (CW P/SU)

package [32]. The final global model can be visualized (i.e., the seismic image) and examined by

experts.

5.5.2 Benchmark Setup

The experim ents are run in a LA N environm ent only; the LAN settings are described in Section 5.1.

We use two sets o f input data to evaluate this application. One is a small synthetic data set,

which contains 32MB o f input data, and the final model is approxim ately 2M B. We perform simple

speedup tests and measure the breakdown o f the execution time, using the small data set.

The other input data used is a 6GB 3D SEG/EAGE (i.e., Society o f Exploration Geophysi

cists/European Association o f Geoscientists and Engineers) salt model dataset, which has been

widely used by the oil and gas industry for the research o f three-dim ensional seismic surveys. For

8 worker hosts, the processing o f this data will produce 198GB o f output data on each worker host

before final reduction. Since there is not enough disk space to accom m odate the data, we choose

to m ake some modifications to the code. Instead o f com puting all layers in a row, and generating a

large set o f local models for each worker host, we have each worker process com pute only a single

layer for all frequencies at a time. After each layer is com pleted at all worker processes, a reduc

tion operation is perform ed and an intermediate model for that layer is generated and moved to a

backup storage. Then, the com putation and reduction for another layer is initiated until we finish

processing all layers. Finally, a global reduction is perform ed on all interm ediate models to generate

the final global model. In this way, we require less than 4GB o f disk space to process one layer for

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Master
trellis scan

Velocity file
(3 6 6 M B)

Velocity file
(3 6 6 M B)

f _ 1 7 7 _ 0

(5 6 M B)(5 6 M B) (5 6 M B)LAN

Worker
Local LSAVA
Layer 1 (20m)

Worker
Local LSAVA
Layer 1 (20m)

Master
trellis_reduce
trellis scan

L o c a l M o d e l 1 (4 4 M B)

(5 6 M B) (5 6 M B)

LAN

Worker
Local LSAVA
Layer 2 (20m)

Worker
Local LSAVA
Layer 2 (20m)

Master
trellis_reduce
trellis scan

L o c a l M o d e l 2 (4 4 M B)

(5 6 M B) (5 6 M B)

To L ayer 210

Figure 5.10: The control flow o f the 3D LSAVA m igration application w ith large input data set.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

100

200

300

400

500

Figure 5.11: The visualization o f the 3D LSAVA migration application for the small input data set.

each worker host. T he control flow o f the modified 3D LSAVA m igration application is shown in

Figure 5.10.

Some detailed param eters o f the two data sets are listed in Table 5.6.

5.5.3 Experimental Results
Small Synthetic Data

Figure 5.11 illustrates the visualized result o f the 3D LSAVA m igration application for the small

data set. Since this is only a synthetic data set, it does not have real geographic meanings. However,

in order to study the properties o f the application, it is still valuable to measure the scalability, the

breakdown o f the execution times o f different phases, and the s s h startup overheads. The results

are shown in Figures 5 .12 ,5 .13 and 5.14, respectively.

Figure 5.12 indicates that the distributed 3D LSAVA m igration application has good scalability.

For example, when the num ber o f worker hosts is 8, we get a speedup num berof 7.3. This is because

the majority o f the com putation is done in the scan phase (i.e., phase one), and the reduction phase

(i.e., phase two) takes up to only 5% o f the total execution time, as shown in Figure 5.13. The s s h

49

500 1000 1500 2000 2500
l I I i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

8 A

7 A

Linear

« 30M Input
.(47.285

6 A
a
=>
T3010)aOT

1 A

Number of Worker Hosts

Figure 5.12: The speedup o f the 3D LSAVA m igration application in a LAN environment.

dP
70 +

1 2 3 4 5 6 7

Figure 5.13: The breakdown o f the execution time o f the 3D LSAVA m igration application in a LAN
environment.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ex
ec

ut
io

n
Ti

m
e

1000

■ ssh startup time

E computation Time

2 4 8
Number of Workers

Figure 5.14: The s s h startup overhead o f the 3D LSAVA m igration application in a LAN environ
ment.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim e on scan operations time on reduction operations total execution time

120 layers 210.67 hours 1.93 hours 212.6 hours

Table 5.7: The total time spent to generate 120 layers o f the final model o f the 3D LSAVA migration
application using 8 worker hosts. T he size o f the input data is 6GB.

startup overhead is also negligible, according to Figure 5.14. The worst case overhead is 3.7% o f

the total execution tim e when the num ber o f worker hosts is 8.

3D SEG/EAGE Salt Model Dataset

W e com plete the processing o f 120 layers (2400 meters) out o f 210 layers o f the global model, and

the result has been verified to be correct. Figure 5.15 illustrates one profile o f the 3D model that is

generated. In the figure, the noticeable curves are reflections resulting from different properties o f

adjacent strata.

The total time spent in generating the 120 Layers o f the global model using 8 worker hosts is

given in Table 5.7. The tim es spent on all scan phases and all reduction phases are also reported in

the sam e table. Since a considerable am ount o f time is required to com plete the whole com putation,

given the current system configurations, it is impractical to measure speedups at this problem scale.

(For example, 212.6 hours (8.86 days) are spent to process 120 layers; at least another estimated 160

hours will be needed in order to com plete the entire 210 layers). However, from Table 5.7 we can

see that the reduction operations take less than 1% o f the total execution time. This indicates that

the 3D LSAVA migration application on the large data set has the potential to have good scalability

if we add more processors to the com putation.

There are several factors contributing to the long running tim e o f the modified 3D LSAVA m i

gration application (Section 5.5.2) in the current system configurations. In addition to the time for

the additional I/O (writing to and reading from disks) between scan phases, and the time for the

extra reduction phases that generate the intermediate models, there are two other m ajor overheads

introduced by the modification:

1. I f we process one layer at a tim e, we need to read in the velocity file (366M B) for each layer,

which takes approxim ately 10 seconds each time. If we process all layers in a row (before

modification), we need to read in the velocity file only once.

2. I f we process one layer at a tim e, we also run f f t w _ c r e a t e _ p l a n () for each layer, which

takes approxim ately 33 seconds each time. If we process all layers in a row, we need to

perform f f t w _ c r e a t e _ p l a n () only once.

Given the above facts, if we had sufficient storage on each worker host and processed all layers

in a row, we would expect to reduce the total execution time by at least 31.5 hours on 8 worker hosts.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 -

200 J

2,1501e+06
l 2,1502e+06I 2.1503e+06i 2.1504e+06i

mmfmmmmmmmmmmmmmmwmiwiwmmmrmmmm]
i

i t I I / I i t ■ f I i i I ' I n . t

400—1

GOO.

800-1

1000 -

1200 -

1400-

1600-

1800-

2000 -

2200 -

Figure 5.15: The visualization o f the 3D LSAVA migration application for the 3D SEG/EAGE salt
model data set.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

5.5.4 Discussion and Conclusion

In this section, we presented the experimental results o f the 3D LSAVA migration application, a

project carried out in cooperation with the researchers in the Department o f Physics, University o f

Alberta. The significant features o f this experim ent are:

1. The 3D LSAVA m igration application is a non-trivial application, developed independently at

the Departm ent o f Physics, University o f Alberta.

2. The am ount o f data that was processed is extremely large.

3. A lthough the porting o f the original OpenM P program to the clusters o f workstations needs

source code modifications, we have managed to make the changes as minimal as possible

by using Trellis-SDP. In fact, the only change required is the way the original application

outputs the results. The OpenM P program writes the local models to a large shared-m em ory

region, and perform s the global sum at the sam e time; the modified program (the Trellis-SDP

version) first generates the local m odels to files, then all the local models are merged by the

global reduction.

We have verified that the trellis version o f the 3D LSAVA migration application produces the

correct results for both small and large data sets, and have also dem onstrated that it has good scala

bility.

5.6 Concluding Remarks

In this chapter, we have given the em pirical evaluations o f our Trellis-SDP system. We studied four

applications: distributed g r e p , content-based image retrieval, Parallel Sorting by Regular Sam

pling, and seismic data processing by 3D LSAVA migration. The results we obtained are sum m a

rized as follows:

1. Trellis-SDP can work across adm inistrative domains (Section 5.2).

2. For sim ple data-parallel applications with coarse-grained com munication patterns, Trellis-

SDP does not introduce excessive overhead and the application shows good scalability (Sec

tion 5.3).

3. Trellis-SDP works for parallel applications with all-to-all collective-communication phases.

However, the collective-com m unication phases may become a perform ance bottleneck in the

applications (Section 5.4).

4. Trellis-SDP works for applications that need to process very large data sets. D ue to limited

resources, we w ere not able to scale the application beyond 8 worker hosts (Section 5.5).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

In this thesis, we presented the design and implementation o f Trellis-SDP, a sim ple data-parallel

program m ing system. One major contribution o f this work is that Trellis-SDP enables fast devel

opm ent o f data-intensive and naturally data-parallel applications in a m etacom puting environment.

A nother m ajor contribution o f Trellis-SDP is that it allows worker processes to run existing, un

modified binaries. Trellis-SDP also uses the m etadata file to represent files or directories that are

distributed across the w ide-area network.

Trellis-SDP is built upon the existing Trellis project and provides a M aster-W orker programming

framework. Function shipping and rem ote execution strategies are adopted to move the executables

to the worker hosts where the data resides. To integrate the metadata file into our program m ing

system, we introduced the file-level data parallelism and file-level collective-com m unication con

cepts, enabling the data-parallel and collective-com m unication operations to be perform ed at the file

level, instead o f at the memory level. This offers several advantages, such as facilitating a batched-

pipelined execution model and requiring less-strict synchronization o f parallel processes, especially

in a m etacom puting environment.

We discussed all the m ajor application program m ing interfaces that we proposed and imple

m ented, and gave detailed examples o f how these interfaces can be used to write non-trivial data-

parallel applications. We dem onstrated that if the problem itself is sim ple, the im plem entation can

also be simple.

We evaluated Trellis-SDP using four applications: the distributed trellis grep application

dem onstrates that Trellis-SDP works over a w ide-area network; the content-based im age retrieval

application dem onstrates that for data-parallel application without collective-com m unication phases,

the overhead introduced by Trellis-SDP is minimal, and the application shows good scalability; the

Parallel Sorting by Regular Sampling application and the 3D seismic data processing application

dem onstrate that Trellis-SDP works for applications with collective-communication phases, and that

Trellis-SDP is reliable when the application is required to process very large data sets.

Future research directions may include the investigation o f other data-intensive applications to

further improve the programming system with regard to simplicity and efficiency; the design o f

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

abstractions (e.g., metafiles); the im plem entation o f library functions (e.g., t r e l l i s _ s c a n () ,

t r e l l i s _ g a t h e r () and t r e l l i s _ r e d u c e ()) , and the evaluation o f techniques to create

data-parallel applications.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Acharya, M .Uysal, and J.Saltz. Active Disks: Program m ing M odel, A lgorithm and Evalua
tion. In Proceedings o f the 8th International Conference on Architectural Supportfor Program
ming Languages and Operating Systems, pages 81-91, San Jose, California, United States,
1998.

[2] M . Banikazem i, V. M oorthy, and D. Panda. Efficient Collective Com munication on Hetero
geneous Networks o f W orkstations. In Proceedings o f International Conference on Parallel
Processing, pages 460-467 , M inneaplis, M innesota, USA, August 1998.

[3] D .J. Barrett and R.E. Silverm an. SSH, the Secure Shell: The Definitive Guide, 2nd Edition.
O ’Reilly and Associates, 2005.

[4] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results
vs. Theory. Concurrency: Practice and Experience, 10(5):359—386, April 1998.

[5] S. Berretti, A. Del Bim bo, and P. Pala. Collection fusion for distributed image retrieval. In Pro
ceedings o f AC M SIGIR Workshop on Distributed Information Retrieval, pages 70-83 , Toronto,
Canada, August 2003.

[6] J. F. Claerbout and J. L. B lack. Basic earth imaging, version 2.4. h t t p : / / s e p w w w .
S t a n f o r d . e d u / s e p / p r o f / t o c _ h t m l / b e i / t o c _ h t m l / i n d e x . h tm l .

[7] M. Closson. The Trellis N etw ork File System. M aster’s thesis, D epartm ent o f Com puting
Science, University o f A lberta, 2004.

[8] Condor, http://www.cs.wisc.edu/condor.
[9] SSH Com m unication Security Corp. Enabling Virtual Private N etw orks with Public Key In

frastructure, 2004. h t t p : / /w w w . s s h . com.

[10] J. Dean and S. Ghemawat. M apreduce: Simplified data processing on large clusters. In Pro
ceedings o f 6th Symposium on Operating Systems Design and Implementation (OSDI ’04),
pages 137-150, San Francisco, California, USA, December 2004.

[11] C. Lee et al. A Grid Program ing Prim er, August 2001. Advanced Program m ing M odels
W orking Group, Global Grid Forum , h t t p : / / www.g r i d f o r u m . o r g / .

[12] C. Pinchak et al. The Canadian Internetworked Scientific Supercomputer. In Proceedings o f
17th Annual International Symposium on High Performance Computing Systems and Applica
tions (HPCS), pages 193-199, Sherbrooke, Quebec, Canada, May 11-14 ,2003 .

[13] D. Thain et al. The Architectural Implications o f Pipeline and Batch Sharing in Scientific
W orkloads. Technical R eport UW -CS-TR-1463, Com puter Sciences Department, University
o f W isconsin, United States, January 2003.

[14] I. Foster et al. The Physiology o f the Grid: An Open Grid Services Architecture for Distributed
System s Integration, 2002. Open Grid Service Infrastructure WG, Global Grid Forum, h t t p :
/ / w w w . g l o b u s . o r g / .

[15] J. P. Goux et al. An Enabling Framework for Master-W orker Applications on the Com puta
tional Grid. In Proceedings o f 9th International Symposium on High Performance Distributed
Computing, pages 43-50 , Pittsburgh, Pennsylvania, United States, A ugust 2000.

[16] K. Seym our et al. GridRPC: A remote procedure call API for grid com puting.
https://forge.gridforum .org/projects/gridrpc-wg/.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://sepwww
http://www.cs.wisc.edu/condor
http://www.gridforum.org/
http://www.globus.org/
https://forge.gridforum.org/projects/gridrpc-wg/

[17] M. Beynon et al. Design o f a Framework for Data-intensive W ide-Area Applications. In
Heterogeneous Computing Workshop, pages 116-130, Cancun, M exico, 2000.

[18] M. Stonebraker et al. A W ide-Area Distributed Database System. Very Large Data Bases
(VLDB), 5 (l) :4 8 -6 3 ,1996.

[19] R. Butler e ta l. A N ational-Scale Authentication Infrastructure. IEEE Computer, 33(12):60-66,
2000.

[20] T. Kielmann et al. M agPIe: M P I’s Collective Com munication Operations for Clustered Wide
Area Systems. ACM SIG PLAN Notices, 34(8): 131-140,1999.

[21] X. Li et al. On the Versatility o f Parallel Sorting by Regular Sampling. Parallel Computing,
19(10): 1079-1103,1993.

[22] J. Foote. An Overview o f A udio Information Retrieval. M ultimedia Systems, 7(1):2—10,1999.

[23] I. Foster. The GRID: B lueprint fo r a New Computing Infrastructure. M organ Kaufmann
Publishers Inc., San Francisco, CA, 1998.

[24] I. Foster and N. Karonis. A grid-enabled MPI: M essage passing in heterogeneous distributed
com puting systems. In Proceedings o f Supcrcomputing '98. ACM Press, Orlando, Florida,
United States, 1998.

[25] Globus, h t t p : / / w w w . g l o b u s . o r g / .

[26] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson, M. Ding, M. Goldenberg, N. Lamb,
R . Senda, E. Sumbar, and Y. Wang. The Trellis Security Infrastructure: A Layered Approach
to Overlay M etacomputers. In 18th International Symposium on H igh Performance Computing
Systems and Applications (H PC S), pages 109-117, W innipeg, M anitoba, Canada, M ay 16—19,
2004.

[27] N. T. Karonis. M PICH-G2: A Grid-Enabled Implementation o f the M essage Passing Interface.
Journal o f Parallel and D istributed Computing (JPDC), 63(5):551-563, May 2003.

[28] M essage Passing Interface S tandard 1.1. h t t p : / / w w w - u n i x . m c s . a n l . g o v / m p i / .

[29] C. Pinchak. Placeholder Scheduling for Overlay M etacomputing. M aster’s thesis, D epartm ent
o f Com puting Science, U niversity o f Alberta, 2003.

[30] E. Riedel and G. Gibson. Active Disks - Remote Execution for Network-Attached Storage.
Technical Report CM S-CS-99-177, Com puter Science Department, Carnegie M ellon Univer
sity, Pittsburgh, PA, United States, November 1999.

[31] Y. Rui, T. S. Huang, and S. Chang. Image Retrieval: Past, Present, and Future. In Proceedings
o f International Symposium on M ultimedia Information Processing, pages 211-220, Taipei,
Taiwan, Decem ber 1997.

[32] Seism ic Unix (CW P/SU). h t t p : / / w w w . c w p . m i n e s . e d u / c w p c o d e s .

[33] K. C. Sevcik. Application Scheduling and Processor Allocation in M ultiprogram m ed Parallel
Processing Systems. Journal o f Performance Evaluation, 19:107-140,1994.

[34] G. Shao. Adaptive Scheduling o f Master/Worker Applications on Distributed Computational
Resources. PhD thesis, D epartm ent o f Com puter Science, University o f California at San
D iego, 2001.

[35] J. Siegel and P. Lu. User-Level Rem ote Data Access in Overlay M etacomputers. In Pro
ceedings o f the 4th IEEE International Conference on Cluster Computing, pages 480-483,
Septem ber 2002.

[36] J. Wang, H. Kuehl, and M. D .Sacchi. Least-squares wave-equation avp imaging o f 3D com mon
azimuth data. In Proceedings o f the 73rd Annual International M eeting, Society o f Exploration
Geophysicists, Dallas, USA, O ctober 2003.

[37] B. W ilkinson and M. Allen. Parallel Programming: Techniques and Applications Using N et
worked Workstations and Parallel Computers, 2nd Edition. Prentice Hall, 2005.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.globus.org/
http://www-unix.mcs.anl.gov/mpi/
http://www.cwp.mines.edu/cwpcodes

Appendix A

Preliminary Study of Application
Profiling and Performance Prediction

In this thesis, our program m ing system assum es static data distribution and resource allocation.

This means that the selection o f m aster and worker hosts are determined before the computation

starts, and there are no data m ovem ents involved. In practice, if we want to run an application

across a w ide-area network, a scheduler is alm ost always needed to ensure that limited resources are

allocated to different workloads o r jobs in a reasonable fashion. In this chapter, we briefly discuss

our prelim inary effort on the application profiling model and perform ance prediction model, based

on Trellis-SDP, for our future scheduler.

Scheduling in a m etacom puting environm ent is challenging. The ability to make good schedul

ing decisions relies largely on the am ount and accuracy o f the system and the application inform a

tion. However, the dynam ically-changing system inform ation and the detailed application inform a

tion may not be readily available, o r may be too expensive to collect.

We assum e that the research on the scheduling o f data-parallel applications is a practical start

ing point because data-parallel applications are sim ple, and have coarse-grained com munication

patterns. M ore specifically, we focus on the load balancing problem for data-parallel applications

written in Trellis-SDP. F igure A. 1 illustrates the control flow for the load balancing o f a Trellis-SDP

application. First, the application and system profiling data from previous runs are collected and an

alyzed. Then, a perform ance prediction model is built upon the profiling information, and provided

to the scheduler. The scheduler, aw are o f the current system status, obtains the estimated execution

tim e from the perform ance prediction m odel and, finally, generates the best scheduling scheme.

A.l Application Profiling

Since Trellis-SDP works at the file level, and Trellis-SDP applications are written in data-parallel and

collective-com m unication phases, we can naturally extend our system to integrate application pro

filing capabilities at a coarse-grained level. Currently, we are interested in the num ber o f phases in

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a!WM»nHtiin̂ !ii!iCTmiauniit]ii:M)i»wwiija| |

Application Model
N um ber o f worker hosts

N um ber o f application phases

Characteristics o f each phase

(Data-parallel or Collective-

com munication.)

Execution tim e o f each phase

in previous runs ...

tf. in in i tm iiN ii i t ta iH iH iii i in n im m t) t t t in i! i i iin u i) i i i iiH w a iH j

Mctacomputcr Model
Number o f processors

Processor speed

Memory capacity

Network topology

Network latency/bandwidth

Operating System s

Performance Prediction Model

Scheduler (future work)
e.g., Backfilling Scheduling Policy

Load Balancing

Figure A .l : The control flow for the load balancing o f Trellis-SDP applications

the application, the characteristics o f each phase (data-parallel phases or collective-communication

phases), the execution tim e o f each phase, and the num ber o f worker hosts. Our program m ing

system maintains a static profiling object. It provides two functions:

void Profile::registerPhaseStart(struct timeval start_time,
const char * phase);

void Profile::registerPhaseEnd(struct timeval end_time);

These two functions are called at the beginning and the end o f each phase, respectively, if the

user turns on the profiling capability o f the program m ing system. In this way, the num ber and types

o f phases, as well as the time spent in each phase, are recorded during each run o f the application.

This inform ation will be analyzed and fed into the perform ance prediction model.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.2 Performance Prediction and Scheduling

A.2.1 Introduction

The perform ance prediction model is a metric used to predict the expected application performance

at future runs. The perform ance m odel uses the application profiling data and system configuration

data gathered from previous runs to m ake the estimation. Currently, we are experimenting with a

sim ple perform ance prediction model based on hom ogeneous architectures.

Our perform ance prediction m odel may be useful if the scheduler is adopting a backfilling

scheduling policy where there m ight be som e “holes” in the job waiting queues (Figure A.2). If

the scheduler predicts that the run-tim e o f a later submitted application can be fit into the time slot

o f the “holes”, that application can be scheduled earlier.

T im e

1 Processors p

Figure A.2: The backfilling scheduling policy. There might be “holes” in the jo b waiting queues.

A.2.2 Prediction of the Execution Time

The model we used for execution tim e prediction is taken from Sevcik [33]. This model takes into

account the following major issues:

1. The essential com putational work o f the application (e.g., the sequential running tim e o f the

application).

2. The imbalance with which the essential work is distributed across the processors.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. T he overhead introduced for parallel processing (e.g., the overhead of the programming sys

tem/framework).

4. The com m unication and congestion delays.

The original model is defined as:

W -
T j(P) = + a :(p) + P jiP)

w here W represents the sequential com putational work o f the application, p is the number of

processors, tj>(p) represents the unevenness am ong the work distributed across p processors, a rep

resents the overhead introduced by the parallel processing, and /3(p) represents the communication

and congestion delays (a function o f p).

In our study, w e assum e that the data is always evenly distributed across processes and we

consider only hom ogeneous architecture, so <f>(p) equals to 1. We further simplify the model by

rem oving the factors for com m unication and congestion delays, since we assume data-intensive

operations o f the application are perform ed locally by worker processes, and only a small amount

o f data needs to be transferred over the network. The final model we use is:

W
T ip) = — + JV(1 + 0.2p)

P

w here W is still the sequential com putational work o f the application and p is the number o f

processors. 7V (l+ 0 .2p) is our version o f the overhead introduced by parallel processing, determined

by the historical profiling o f the application, w here N is the num ber o f phases in the application and

(1 + 0.2p) is the average overhead for each phase (basically s s h startup overheads, which has been

discussed in Chapter 5).

A.3 Preliminary Evaluation Results

In the previous section, we presented our sim ple perform ance prediction model for homogeneous

architectures by the following equation:

W
T ip) = — + N { 1 + 0.2p)

P

We evaluate this equation by the CBIR application described in Section 5.3. The experiment is

perform ed in the LAN environm ent w ith 2 ,4 and 8 worker hosts. We m easure the actual execution

tim e o f the application running on a given number o f worker hosts, and use the equation to derive

the predicted execution tim e o f the application running on different num ber o f worker hosts. The

results are shown in Table A .l.

From the table, we can see that the worst-case prediction error is less than 5%, which indicates

that our perform ance prediction m odel is relatively accurate and practical for simple data-parallel

applications.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 worker hosts 4 worker hosts 8 worker hosts

actual (s) predicted (s) error actual (s) predicted (s) error actual predicted error

55.78 - - 28.5 28.99 1.7% 15.45 16.1 4.2%

55.78 54.8 1.8% 28.5 - - 15.45 15.9 2.9%

55.78 53.5 4.1% 28.5 27.6 3.2% 15.45 - -

Table A .l: The prediction o f the execution tim e o f the CBIR application on different numbers o f
worker hosts.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Source Code for CBIR Application

#define DISABLE_MACRO_REPLACEMENT
((include <string>
((include <trellis.h>
#include <trellis_sdp.h>
((include <iostream>
#include <stdlib.h>
#include <assert.h>

struct top{
float distance;
int index;

} * topiist = NULL;

int main(int argc, char * argv[]){

Trellis_Reguest request;
Trellis_Status status;

char * sample_disk = argv[l];
char * sample_offset = argv[2];
char * top_n = argv[3];
char * metafile = argv[4];
int items_read = 0;
string op;
float * buffer;

op += "query " + string(sample_disk) + " " + string(sample_offset)
+ " " + string(top_n);

trellis_init(argc, argv);

if(trellis_scan(metafile, op.c_str(), &request) < 0){
fprintf(stderr, "Scan Failed\n”);
exit(-l);

}else{
memset(buffer,0, BUF_SIZE);
items_read = trellis_scan_readall(&buffer, Trellis_FLOAT,

request);
trellis_scan_wait(request, status);
assert(items_read > 0);

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

toplist = (struct top *Jmalloc(items_read 1 2 *
sizeof(struct top));

for(int i = 0; i < items_read/2; i++){
toplist[i].distance = buffer[i*2);
toplist[i].index = (int)(buffer[i*2+l]);

}

quicksort(toplist, 0, items_read/2 - 1);
for(int i = 0; i < items_read/2; i++)

printf("%f %d\n", toplist[i].distance,
toplist[i].index);

trellis_finalize();
if(toplist!=NULL){

free(toplist);
toplist = NULL;

)

return 0;

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Source Code for PSRS Application

#define DISABLE_MACRO_REPLACEMENT
#include <trellis.h>
#include <trellis_sdp.h>
#include <string>
#include <iostream>
#include <stdlib.h>
tinclude <unistd.h>
#include "quicksort.h"
using namespace std;

#define PTRACE_PATH "ptrace"
#define LOCALSORT_PATH “/usr/scratch/ading/PSRS/localsort"
#define GSAMPLE_PATH "/usr/scratch/ading/PSRS/gathersample"
#define COLLECTIDX_PATH ”/usr/scratch/ading/PSRS/collectidx"
#define MERGESORT_PATH "/usr/scratch/ading/PSRS/mergesort”

int DISK_NUM;
int SUBARRAY_SIZ E;
int SAMPLE_EACH;
int INDEX_PIVOTS;

int * phasel(const char * metafile_in, const char * metafile_localsorted){
char sample_each_string[1024], subarray_num_string[1024];
int * sample_array = NULL;
int items_read;
string opl, op2;
Trellis_Request request;
Trellis_Status status;

sprintf(sample_each_string, "%d", SAMPLE_EACH);
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);
opl = string(LOCALSORT_PATH) + " " + string(subarray_num_string);
op2 = string(GSAMPLE_PATH) + " " + string(subarray_num_string)+ " "

+ string(sample_each_string);
if(trellis_scan(metafile_in, opl, &request) < 0){

fprintf(stderr, "Scan Failed\n");
exit(-1);

>

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trellis_scan_wait(request, status);

if(trellis_scan(metafile_localsorted, op2, ^request) < 0){
fprintf(stderr, "Scan Failed\n");
exi t(-1);

}
sample_array = (int *Jmalloc(DISK_NUM * SAMPLE_EACH * sizeof(int));
items_read = trellis_scan_read(sample_array, Trellis_INT,

DISK_NUM * SAMPLE_EACH, request);
trellis_scan_wait(request, status);
return sample_array;

}

int ** collect_index_info(const char * metafile_localsorted,
string pivots_file_name){

char disk_num_string[1024], subarray_num_string[1024];
int ** index_table = NULL;
string op;
Trellis_Request request;
Trellis_Status status;
int items_received;

sprintf(disk_num_string, "%d", DXSK_NUM);
sprintf(subarray_num_string, "%d", SUBARRAY_SIZE);

op = string(PTRACE_PATH) + " " + string(COLLECTIDX_PATH) + " " +
string(subarray_num_string) + " " + string(disk_num_string)

+ " " + pivots_file_name;

if(trellis_scan(metafile_localsorted, op, &request) < 0){
fprintf(stderr, "Scan Failed\n");
exit(-1);

}

index_table = (int **)malloc(scan->GetDisknum() * sizeof(int *));
for(int key = 0; key < scan->GetDisknum(); key++){

index_table[key] = (int *)malloc(scan->GetDisknum() * 2 *
sizeof(int));

items_received = trellis_scan_readidx(index_table[key],
Trellis_INT, scan->GetDisknum() * 2, key,
request);

if(items_received < 0)(
fprintf(stderr, "Scan Failed\n");
exit(-l);

}
}

trellis_scan_wait(request, status);
return index_table;

}

int ** phase2(const char * metafile_localsorted, int * sample_array){

int * pivots_array = NULL;
int i, j;
int ** index_table;
FILE * pivots_file_fp;

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

string pivots_file_name;
string pivots_file_scl;

quicksort(sample_array, 0, DISK_NUM * SAMPLE_EACH - 1) ;
pivots_array = (int *Jmalloc((DISK_NUM-1)*sizeof(int));

for(i =1; i < DISK_NUM; i++){
j = i * DISK_NUM + INDEX_PIVOTS - 1;
pivots_array[i-l] = sample_array(j];

}

pivots_file_name = string(getenv("HOME")) + "/pivots_file";
pivots_file_fp = fopen(pivots_file_name.c_str() , "w");
if(pivots_£ile_fp == NULL){

fprintf(stderr, "Open Pivots File Error\n");
exit(-1);

}
for(i =0; i < DISK_NUM - 1; i++)

fprintf(pivots_file_fp, "%d\n", pivots_array[i]);
fclose(pivots_file_fp);

pivots_file_scl = "scp:"+string(getenv("HOST"))+":pivots_file" ;
index_table = collect_index_info(metafile_localsorted,

pivots_file_scl);
free(pivots_array);
return index_table;

}

int phase3(const char * metafile_localsorted, const char *
meta£ile_gather, int ** index_table, Trellis_Datatype datatype){

return trellis_gather(metafile_localsorted, metafile_gather,
index_table, datatype) ;

}

void phase4(const char * metafile_gather, const char *
metafile_globalsorted){

string op;
Trellis_Request request;
Trellis_Status status;
op = string(MERGESORT_PATH);
if(trellis_scan(metafile_gather, op, ^request) <0){

fprintf(stderr, "Scan FailedNn");
exit(-1);

}
trellis_scan_wait(request, status);

return;
}

int main(int argc, char * argv[]){
int * sample_array = NULL;
int ** index_table;

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

char metafile_in[] = "tosort.meta";
char metafile_localsorted[] = "localsorted.meta";
char metafile_gather[] = "sortgather.meta";
char metafile_globalsorted[] = "sorted.meta";
int size;

DISK_NUM = 8;
SUBARRAY_SIZE = 33554400;
SAMPLE_EACH = DISK_NUM;
INDEX_PIVOTS = DISK_NUM/2;

trellis„init(argc, argv);

sample_array = phase!(metafile_in, metafile_localsorted);
index_table = phase2(metafile_localsorted, sample_array);
phase3(metafile_localsorted, metafile_gather, index_table,

Trellis_INT);
phase4(metafile_gather, metafile_globalsorted);
for(int i = 0; i < DISK_NUM; i++)

free(index_table[i]);
free(index_table);
free(sample_array);

trellis_finalize();

return 0;

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Source Code for 3D_LSAVA
Migration Application

#define DISABLE_MACRO_REPLACEMENT
#include <string>
#include <string.h>
#include <stdio.h>
#include <trellis.h>
#include <trellis_sdp.h>

int main (int argc, char *• argv[]){

Trellis_Request request;
Trellis_Status status;

char * metafile_scan = argvfl];
char * scan_op = "/usr/scratch/ading/SEISMIC/LS_AVA ";
char * reduce_op = "susum";
char * metafile_input = argv[2);
char * hos t_num = argv[3];
char scan_command[1024];
char metafile_output[] = "LSAVA.data/LSAVA_OUTPUT.meta";
trellis_init(argc, argv);
/* Trellis Scan */

memset(scan_command, 0, 1024);
strcat(scan_command, scan_op);
strcat(scan_command, host_num);
if(trellis_scan(metafile_scan, scan_command, &request) <0){

fprintf(stderr, "Scan Failed\n");
exit(-1);

}

trellis_scan_wait(request, status);

/* Trellis Reduce */
if(trellis_reducel(metafile_input, metafile_output, reduce_op)<0){

fprintf (stderr, "Reduce FailedXn11);
exit(-1);

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

trellis_finalize();
return 0;

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

