Conducting Monte Carlo Simulations in R

Okan Bulut

University of Alberta, bulut@ualberta.ca

mailto:bulut@ualberta.ca

Contents

1 Introduction

1.1 Overview oo
1.2 Why Simulations?
1.3 Typical Simulation Scenarios
1.4 Additional Resources

2 Designing Simulations

2.1 Simulation Factors 0.

2.2 Evaluation Criteria

2.3 Other Design Elements,
3 Running Simulations

3.1 Custom Functions

3.2 Debugging the Code

3.3 Putting the Functions Together

3.4 Benchmarking o
4 Summarizing Simulation Results

4.1 Tables and Figures,

4.2 Exporting the Results

10
10
11

13
14
18
24
37

CONTENTS

Chapter 1

Introduction

1.1 Overview

Both researchers and practitioners often use Monte Carlo simulations to answer
a variety of research questions. Over the past decade, R (R Core Team, 2019)
has been one of the most popular programming languages for conducting Monte
Carlo simulation studies. R (https://www.r-project.org/) is a free, open-source
programming language for statistical computing and data visualization. Both
built-in functions and many user-created packages in R allow researchers and

https://www.r-project.org/

6 CHAPTER 1. INTRODUCTION

practitioners to design and implement a very simple to very comprehensive
simulation studies.

This short book will explain the major steps in conducting Monte Carlo simu-
lations using R. Here is the outline of the book':

Part Description

1 Introduction
Why Simulations?
Typical Simulation Scenarios
Additional Resources

2 Designing Simulations
Simulation Factors
Evaluation Criteria
Other Design Elements

3 Running Simulation
Custom Functions
Debugging the Code
Putting the Functions Together
Benchmarking

4 Summarizing Simulation Results
Tables and Figures
Exporting the Results

1.2 Why Simulations?

There are many reasons to conduct Monte Carlo simulations. Researchers and
practitioners often choose to simulate data instead of collecting empirical data
because:

o it is impractical and costly to collect empirical data while manipulating
several conditions

e it is not possible to investigate the real impact of the study conditions
without knowing the characteristics of the target population as well as the
variables of interest.

o it is more difficult to deal with empirical data because it typically includes
missingness — which may be in large amounts and nonrandom.

I This book was created using the bookdown (Xie, 2020a) and knitr (Xie, 2020b) packages.

1.3. TYPICAL SIMULATION SCENARIOS 7
1.3 Typical Simulation Scenarios

We can use Monte Carlo simulations to answer various research questions. Typ-
ical research questions in which Monte Carlo simulations can be useful are:

e Does a particular type of estimation (e.g., maximum likelihood) yield ac-
curate results?
— What is the level of bias?
— What is the standard error of estimates?
— What conditions would affect the accuracy of the estimation?
— Does the estimation remain robust when assumptions are violated?
o Which estimation method (e.g., maximum likelihood, EAP, and MAP) is
more accurate?
— Do the performances of these methods vary by different conditions?
— Which estimator, method, or model is the most robust?
e Can a statistical method or model (e.g., logistic regression) successfully
detect a value of interest (e.g., differential item functioning)?
— How accurate is the method when the null hypothesis is false?
— How accurate is the method when the null hypothesis is true?

1.4 Additional Resources

If you are interested in learning more about Monte Carlo simulations, there are
many online resources available. Some of these resources include:

o Bulut and Sunbul (2017)’s article: Monte Carlo Simulation Studies in
Item Response Theory with the R Programming Language

o Hallgren (2013)’s article: Conducting Simulation Studies in the R Pro-
gramming Environment

e Roger Peng’s online book: R Programming for Data Science. In the book,
Chapter 20 specifically focuses on simulations in R.

e The SimDesign (Chalmers, 2020) package in R. For examples of
SimDesign, you can check out its Wiki page: https://github.com/
philchalmers/SimDesign /wiki

e There is also another R package called MonteCarlo (Leschinski, 2019) for
more general simulation studies.

https://dergipark.org.tr/en/download/article-file/343265
https://dergipark.org.tr/en/download/article-file/343265
http://tqmp.org/Content/vol09-2/p043/p043.pdf
http://tqmp.org/Content/vol09-2/p043/p043.pdf
https://bookdown.org/rdpeng/rprogdatascience/
https://bookdown.org/rdpeng/rprogdatascience/simulation.html
https://github.com/philchalmers/SimDesign/wiki
https://github.com/philchalmers/SimDesign/wiki

CHAPTER 1. INTRODUCTION

Chapter 2

Designing Simulations

To better explain the steps of conducting a Monte Carlo simulation study, let’s
assume a hypothetical research scenario in which a researcher wants to examine
item parameter estimation in item response theory (IRT). Here the researcher
aims to determine the robustness of parameter estimation for the 3PL model,

especially when the sample size is small.

10 CHAPTER 2. DESIGNING SIMULATIONS
2.1 Simulation Factors

The researcher can investigate the impact of several factors (i.e., conditions)
within the same study but the goal is to create a feasible study with the factors
that are essential for this study. Therefore, the following factors are selected:

o Test length (10, 15, 20, or 25 items)

e Sample size (250, 500, 750, or 1000 examinees)

e Whether or not the guessing (c) parameter should be fixed for all items
(e.g., ¢ =0.16)

Let’s see the total number of conditions from these factors:

4 (test length) x 4 (sample size) x 2 (fixed guessing or free estimation) = 32
conditions

This calculation assumes that these factors are fully crossed. Two factors are
fully crossed when each level of one factor occurs in combination with each level
of the other factor. However, some factors may not be crossed with the other
factors. These are called nested factors. Two factors are nested when each
level of a factor occurs in combination with different levels of another factor
(see Schielzeth and Nakagawa’s paper for more information about crossed and
nested factors).

2.2 Evaluation Criteria

The researcher is interested in accuracy. Therefore, we have to use several
measures of accuracy to evaluate the simulation results. Some of these measures
(i.e., indices) include:

o Bias: bias = 5 | (4, —), where R is the number of replications, .
is the estimated value of the parameter, and = is the true value of the
parameter. Bias, which can be either positive or negative, should be close
to zero for higher accuracy.

e Root-mean square error (RMSE): RMSE = \/%Zf‘:l(fr —x)2,
where R is the number of replications, «,. is the estimated value of the
parameter, and x is the true value of the parameter. RMSE, which is
either zero or a positive value, should be close to zero for higher accuracy.

¢ (Pearson) Correlation: p(z,z) = %, where . is the estimated
value of the parameter, x is the true value of the parameter, the numer-
ator is the covariance of the two parameters, and the denominator is the
product of their standard deviations. Correlation should be closer to 1 as
the accuracy increases.

Note that there are other types of evaluation criteria, such as power, type I error,
relative efficiency, precision, and recall. In this study, the accuracy measures

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210x.2012.00251.x

2.3. OTHER DESIGN ELEMENTS 11

listed above should be adequate for evaluating the accuracy of estimated item
paramaters. We will discuss how the simulation results with these evaluation
criteria can be summarized and presented in Part 4 of this book.

2.3 Other Design Elements

Item and ability parameters: The researcher must use either a fixed set
of item parameters from an existing instrument or simulated item parameters
similar to those from an existing instrument. Thus, the researcher uses the
distributions provided in Casabianca and Lewis (2015)’s article based on a 2008
National Mathematics Assessment:

e a~ N(1.13,0.25)
« b~ N(0.21,0.51)
« ¢~ N(0.16,0.05)

For the ability distribution, ability values are drawn from a normal distribution,
60~ N(0,1).

Number of replications: The number of replications should be adequate to
create enough variation in the simulation. The higher the number of replica-
tions, the longer the simulation study will take. Therefore, it is important to
choose a suitable number. Typically, 100 replications are enough for this type
of simulation study. We can test this by increasing the number of iterations to
150 and check whether the overall results would change substantially.

Replication mechanism: In a typical Monte Carlo simulation study, the levels
of simulation factors remain fixed, while the data, parameters, and other parts
vary. In other words, these are the parts that we actually simulate. For the
sake of simplicity, some of these parts can be generated once while the other
parts continuously change from one replication to another. In this study, the
researcher does not have a specific set of item parameters to test. Instead, the
goal of the study is more general: investigating the impact of the identified
simulation factors on item parameter estimation. Therefore, unique sets of
item parameters, ability values, and response data can be generated with each
replication.

12

CHAPTER 2. DESIGNING SIMULATIONS

Chapter 3

Running Simulations

The secret of building a successful Monte Carlo simulation is to write several
custom functions that work efficiently and more importantly — correctly. Then,
we can:

e combine the custom functions within a single function and run the simu-
lations using this function with nested loops, or

o write several nested loops that run each custom function independently
and carry its output to the next function.

As we put the simulation functions together, we should be aware of potential
errors that could either produce incorrect results or interrupt the execution of
the simulation at different stages. Therefore, it is important to check all the

13

14 CHAPTER 3. RUNNING SIMULATIONS

functions carefully and patiently before running the simulations. Adding either
notifications or diagnostic messages into the functions is also quite helpful for
debugging problems that might occur in the functions.

Once all the simulation functions are checked, the next step is determine how
to run the simulations as efficiently as possible. Loops are particularly slow in
R when it comes to handling heavy computations and data operations. The
apply () function collection including apply (), sapply (), and lapply() can
help users avoid the loops and perform many computations and data operations
very efficiently in R. For users who want to run their simulations with loops,
parallel computing in R is also an excellent way to make the simulations faster.
Regardless of which of these methods has been selected, it is useful to check
running time of R codes — which is also known as benchmarking. We will
discuss all of these steps in the remainder of Part 3.

3.1 Custom Functions

Writing custom functions does not mean that we must write every single algo-
rithm from scratch. Instead, it means that we bring several functions (either
new or existing) together so that they run the analysis that we want and return
the results in the way we prefer. Going back to the hypothetical simulation
scenario that we introducted in Part 1, the researcher needs several custom
functions for:

1. Generating response data
2. Estimating item parameters
3. Calculating bias, RMSE, and correlation

In the first function, we want the function to generate item parameters based on
the parameter distributions that we have mentioned in Part 2 and to use these
parameters to generate dichotomous response data following the 3PL model. We
call this function generate_data. Our function has several arguments based
on the simulation factors: nitem for the number of items, nexaminee for the
number of examinees, and seed that allows us to control the random number
generation. Setting the seed is very important in Monte Carlo simulations be-
cause it enables the reproducibility of simulation results. When we run the same
function using the same seeds in the future, we should be able to generate the
same parameters and response data.

To generate responses, we will use the sim function from the irtoys package
(Partchev and Maris, 2017). We could make irtoys a required package for our
custom function, using require("irtoys"). This would activate the package
every time we use generate_data. However, some packages can mask functions
from other packages with the same names, when they are activated together
within the same R session. Therefore, it is better to call the exact function
that we want to use, instead of activating the entire package. Here we use

3.1. CUSTOM FUNCTIONS 15

irtoys::sim to call the sim function from irtoys.

Note that the three arguments, nitem, nexaminee, and seed, in the
generate_data function are required. That is, all of these arguments must
be specified as we run the simulations. This might create some problems in the
simulation. We will talk about this in the debugging section later on.

generate_data <- function(nitem, nexaminee, seed) {
Set the seed
set.seed(seed)

Generate item parameters
itempar <- cbind(

rnorm(nitem, mean = 1.13, sd = 0.25)*1.702, #a
rnorm(nitem, mean = 0.21, sd = 0.51)*1.702, #b
rnorm(nitem, mean = 0.16, sd = 0.05)) #c

Generate ability parameters
ability <- rnorm(nexaminee, mean = 0, sd = 1)

Generate response data according to the 3SPL model
respdata <- irtoys::sim(ip = itempar, x = ability)
colnames(respdata) <- pasteO("item", 1:nitem)

Combine the generated wvalues in a list
data <- list(itempar = itempar,

ability = ability,

seed = seed,

respdata = respdata)

Return the simulated data
return(data)

}

Our function saves the item parameters, ability parameters, simulated responses,
and the seed for the set.seed argument. Let’s see if our function returns what
we asked for.

templa <- generate_data(nitem = 10, nexaminee = 1000, seed = 666)
head(templa$itempar)
head (templa$ability)
head(templa$respdata)

[,1] [,2] [,3]
[1,] 2.244 2.2237 0.12540
[2,] 2.780 -1.1792 0.10085
[3,] 1.772 1.1080 0.22344
[4,] 2.786 -1.1357 0.14437

16 CHAPTER 3. RUNNING SIMULATIONS

[5,] 0.980 0.4738 0.16153
[6,] 2.246 0.2916 0.08589

[1] 0.7550 -0.6415 1.4311 -0.6246 0.2290 0.2632

iteml item2 item3 item4 itemb item6 item7 item8 item9 itemlO

[1,] 0 1 1 1 1 1 1 0 1 1
[2,] 0 1 1 1 1 0 0 0 0 0
[3,] 0 1 1 1 1 1 1 0 1 1
[4,] 0 1 0 0 0 0 0 0 1 0
(5,1 0 1 1 1 1 1 1 0 1 0
(6,1 0 1 1 1 0 1 0 1 0 1

Our second function is the mirt function from the mirt package (Chalmers,
2019). We will create a custom function to be able to add a fixed guessing
parameter and to extract the estimated item parameters. Here we will set
guess as a negative value (e.g., -1), indicating that we want guessing to be
freely estimated. However, if guess is greater than or equal to zero, then the
guessing parameter will be fixed to this value in the function.

estimate_par <- function(data, guess = -1) {
If guessing 1is fized
if (guess >= 0) {

Model set up
mod3PL <- mirt::mirt(data, # response data
1, # unidimensional model
guess = guess, # fized guessing
verbose = FALSE, # Don't print verbose
Increase the number of EM cycles
Turn off estimation messages
technical = 1ist (NCYCLES = 1000,
message = FALSE))
} else {
mod3PL <- mirt::mirt(data, # response data
1, # unidimensional model
itemtype = "3PL", # IRT model
verbose = FALSE, # Don't print verbose
Increase the number of EM cycles
Turn off estimation messages
technical = 1ist(NCYCLES = 1000,
message = FALSE))
}

Extract item parameters in typical IRT metric
itempar_est <- as.data.frame(mirt::coef(mod3PL, IRTpars = TRUE, simplify = TRUE)@$iter
return(itempar_est)

3.1. CUSTOM FUNCTIONS 17

Let’s see if our estimate_par function can return what we want.

templb <-estimate_par(data = templa$respdata, guess = -1)
head (templb)
a b g
iteml 4.257 2.1529 0.123380
item2 3.192 -1.2152 0.002664
item3 1.738 1.1514 0.194192
item4 2.628 -1.1979 0.006361
itemb 1.312 0.7376 0.315269

item6 2.103 0.3627 0.080536

The last function necessary for this simulation study is a summary function that
will provide bias, RMSE, and correlation values for the estimated parameters.
We can come up with so many solutions for this step of the simulation. We can
determine the best solution based on the answers to the following questions:

1. Do we want to save all the simulation results and summarize them all
together once all the replications are completed? This is a very safe
option although saving all the results might take a lot of space or memory
in the computer

2. Do we want to compute each evaluation index one by one and combine
them in a data frame at the end? This is a good option although this would
require implementing separate functions for bias, RMSE, and correlation

3. Can we write a single function that computes all three indices and returns
them in a single data frame? This sounds more feasible because all the
indices are computed together and then stored for each replication, though
it might be harder to debug if a problem occurs

We wil follow the third option and create a single summary function. Note
that this will return the average bias and RMSE across all items in a sin-
gle replication. Therefore, we would still have to summarize the results across
all replications once the simulations are complete. We create summarize as a
new function which takes two arguments: est_params as the estimated param-
eters and true_params as the true parameters. The function will calculate bias,
RMSE, and correlations among the estimated and true parameters. Then, it
will return them in a long-format data set (i.e., one row per parameter and the
columns indicating our evaluation indices). Not to repeat the same computa-
tions for each column (i.e., parameter), we use sapply to apply the functions so
that bias, RMSE, and correlation can be calculated for the a, b, and ¢ parame-
ters together.

summarize <- function(est_params, true_params) {
result <- data.frame(
parameter = c("a", "b", "c"),
bias = sapply(1L:3L, function(i) mean((est_params[, i] - true_params[,i]))),
rmse = sapply(1L:3L, function(i) sqrt(mean((est_params[, i] - true_params[,i])"2))),

18 CHAPTER 3. RUNNING SIMULATIONS

correlation = sapply(1L:3L, function(i) cor(est_params[, i], true_params[,i])))
return(result)

}

Finally, let’s test whether our final function, summarize, works properly.

templc <- summarize(templb, templa$itempar)

templc

parameter bias rmse correlation
1 a 0.2462034 0.67355 0.7435
2 b 0.0604238 0.11273 0.9957
3 ¢ -0.0004633 0.07805 0.4464

3.2 Debugging the Code

Debugging R codes is a rather tedious task, though this step is essential for the
success of Monte Carlo simulation studies. It is important to test each custom
function in a Monte Carlo simulation study as much as possible before we run
them together within a single function or a loop. Otherwise, it might be harder
to locate where the error occurs once the simulation begins. Especially with
complex simulations, some errors might appear many hours (or even days) after
we start running the simulations. Therefore, it is better to test each function
in the simulation independently and then all together by following the sequence
that all the functions would normally follow in the complete simulation.

In the following example, we will test one of the custom functions
(generate_data) that we have created earlier. The function requires
nitem, nexaminee, and seed as its arguments. What if we forget to include a
seed when we are running this particular function? What would the function
return? Using this example, we will review some of the debugging methods in
R.

3.2.1 Custom Messages

There are many ways to find where the error occurs in R codes. An old-fashioned
and yet effective way for debugging R codes is to place custom messages (sim-
ilar to annotations or comments in the code) throughout the functions. If the
simulation stops at a certain point in the function, we can see the latest message
printed and try to find the location of the problem accordingly.

Now let’s run the generate_data function without a seed and see what happens.

temp2 <- generate_data(nitem = 10, nexaminee = 1000)

Error in set.seed(seed): argument "seed" is missing, with no default

3.2. DEBUGGING THE CODE 19

The output shows that the error is happening because we did not specify the
seed. To fix the problem, we will revise our function by adding a condition: if
seed is missing (i.e., NULL), then the function will randomly select an integer
between 1 and 10,000 and use this random integer as the seed. In addition, we
will add a few custom messages in the code, using cat and print. These will
print messages in different forms as R runs each line of the code.

generate_data <- function(nitem, nexaminee, seed = NULL) {

if(lis.null(seed)) {
set.seed(seed)}

else {
seed <- sample.int (10000, 1)
set.seed(seed)
cat("Random seed = ", seed, "\n")

}

print ("Generated item parameters")
itempar <- cbind(

rnorm(nitem, mean = 1.13, sd = 0.25), #a
rnorm(nitem, mean = 0.21, sd = 0.51), #b
rnorm(nitem, mean = 0.16, sd = 0.05)) #c

print("Generated ability parameters")
ability <- rnorm(nexaminee, mean = 0, sd = 1)

print ("Generated response data")
respdata <- irtoys::sim(ip = itempar, x = ability)
colnames(respdata) <- pasteO("item", 1:nitem)

print("Combined everything in a list")
data <- list(itempar = itempar,
ability = ability,
seed = seed,
respdata = respdata)

Return the simulated data
return(data)

Now let’s see what our updated function would return if we forget to provide a
seed.

temp2 <- generate_data(nitem = 10, nexaminee = 1000)

Random seed = 7680
[1] "Generated item parameters"

20 CHAPTER 3. RUNNING SIMULATIONS

[1] "Generated ability parameters"
[1] "Generated response data"
[1] "Combined everything in a list"

3.2.2 Messages and Warnings

There are other ways to add debugging-related messages into functions, such as:

e message: A custom, diagnostic message created by the message() func-
tion. The message gets printed only if a particular condition is or is not
met. This does not stop the execution of the function.

e warning: A custom, warning message via warning(). The message indi-
cates that something is wrong with the function but the execution of the
function continues.

Using the previous example, we will modify our function by adding a warning
message showing there is no seed specified in the function and a message indi-

cating the random seed assigned by the function itself (instead of a user-defined
seed).

generate_data <- function(nitem, nexaminee, seed = NULL) {

if(!'is.null(seed)) {
set.seed(seed)}
else {
warning("No seed provided!", call. = FALSE)
seed <- sample.int (10000, 1)
set.seed(seed)
message ("Random seed = ", seed, "\n")

}

itempar <- cbind(

rnorm(nitem, mean = 1.13, sd = 0.25), #a
rnorm(nitem, mean = 0.21, sd = 0.51), #b
rnorm(nitem, mean = 0.16, sd = 0.05)) #c

ability <- rnorm(nexaminee, mean = 0, sd = 1)

respdata <- irtoys::sim(ip = itempar, x = ability)
colnames(respdata) <- pasteO("item", 1:nitem)

data <- list(itempar = itempar,
ability = ability,
seed = seed,
respdata = respdata)

3.2. DEBUGGING THE CODE 21

return(data)

}

What if we want to catch all errors and warnings as the function runs and store
these messages to be review at the end? The answer comes from a solution
offered in the R-help mailing list (see demo (error.catching):

tryCatch.W.E <- function(expr) {

W <- NULL

w.handler <- function(w){ # warning handler
W<<-w
invokeRestart ("muffleWarning")
}

list(value = withCallingHandlers(tryCatch(expr, error = function(e) e),
warning = w.handler), warning = W)

}

temp3 <- tryCatch.W.E(generate_data(nitem = 10, nexaminee = 1000))

temp3 stores both the results of generate_data and the warning message.

str(temp3)

List of 2
$ value :List of 4
..$ itempar : num [1:10, 1:3] 1.36 1.02 1.2 1.3 1.26 ...
..$ ability : num [1:1000] -0.7446 0.0013 -0.8943 -0.6846 -0.8861 ...
..$ seed : int 6984
..$ respdata: num [1:1000, 1:10] 01 00111011 ...
..— attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:10] "iteml" "item2" "item3" "item4"
$ warning:List of 2
..$ message: chr "No seed provided!"
..$ call : NULL

..— attr(*, "class")= chr [1:3] "simpleWarning" "

warning" "condition"

Let’s see if our function returned any warnings:

temp3$warning

<simpleWarning: No seed provided!>

3.2.3 Debugging with browser ()

A relatively more sophisticated way to diagnose a problem in R codes is to use
browser (). This stops the execution of our codes and opens an interactive
debugging screen. Using this debugging screen, we can do several things such

22 CHAPTER 3. RUNNING SIMULATIONS

as viewing what objects we have in the current R environment, modifying these
objects, and them continuing running the code after these changes.

Now assume that users of our generate_data function must use their own seed,
instead of having the function to generate one automatically. Therefore, we
want to the function to stop if that occurs. We will use the stop function for
this process. This function can be placed within an if statement to prevent
the function for continuing — if a particular condition (or multiple conditions)
occurs. Another version of this function is stopifnot which stops the function
if a particular condition does not occur. To see how stopifnot works, you can
type ?stopifnot in the R console and check out its help page. In the following
example, we will use stop.

generate_data <- function(nitem, nexaminee, seed = NULL) {

if(is.null(seed)) {

stop("A seed must be provided!")}
else {

set.seed(seed)

}

print ("Generated item parameters")

itempar <- cbind(
rnorm(nitem, mean = 1.13, sd = 0.25), #a
rnorm(nitem, mean = 0.21, sd = 0.51), #b
rnorm(nitem, mean = 0.16, sd = 0.05)) #c

print ("Generated ability parameters")
ability <- rnorm(nexaminee, mean = 0, sd = 1)

print ("Generated response data")
respdata <- irtoys::sim(ip = itempar, x = ability)
colnames(respdata) <- pasteO("item", 1:nitem)

print("Combined everything in a list")
data <- list(itempar = itempar,
ability = ability,
seed = seed,
respdata = respdata)

Return the simulated data
return(data)

3

temp3 <- generate_data(nitem = 10, nexaminee = 1000)

Running the above code above would activate the debugging mode in RStudio

3.2. DEBUGGING THE CODE 23

and the console would like this:

4=Next | (| 4=/ P Continue | M Stop
1tempar <- cbindf{

rnorm(nitem, mean = 1.13, sd = 0.2
rnorm(nitem, mean = 0.21, sd = 0.5 #
rnorm{nitem, mean = 0.16, sd = 0.05)) #cC

print("Generated ability parameters")
ability =- rnorm{nexaminee, mean = 0, sd = 1)

print("cenerated response data")
respdata =- irtoys::sim{ip = itempar, x = ability)
colnames(respdata) <- paste0("item”, 1l:nitem)

print("combined everything in a 1ist")
data =- Tist({itempar = itempar,
ability = ability,
seed = seed,
respdata = respdata)

Return the simulated data
return{data)

R
R> temp3 <- generate_data{nitem = 10, nexaminee = 1000}
Error in gen (nitem = 10, nexaminee = 1f) o

A seed m be provided!
called from: generate_data(nitem = 10, nexaminee = 1000)
Browse[1]>

Figure 3.1: Console once the interactive debugging begins

RStudio enables the browsing mode automatically in most cases — this is why
we have seen Browse [1]> after the error occured in the code. Using the browser
buttons, we can evaluate the next statement, evaluate the next statement but
step into the current function, execute the remainder of the function, continue
executing the code until the next error or breaking point, or exit the debug
mode, based on the buttons from left to right (see the figure below).

Console Terminal R Markdown

G=Mext | (¥ 4=| P continue | W Stop

Figure 3.2: Debugging menu options

In addition to the console, the source (where we are writing the codes) would
show:

The figure above shows that the browser was able to find the location of the
error. We can also activate the debugging mode for a particular function using
debug(). For example, using debug(generate_data) and running temp3 <-
generate_data(nitem = 10, nexaminee = 1000) will show the following
output in the console. By clicking on the “next” button, we can debug the code
slowly and see where the error occurred. Once we are satisfied with the function,
we can turn off the interactive debugging mode using the undebug() function.

If we want to see how we came to this particular error in the function, we can
hit “enter” to exit the browser mode and type traceback(). This would return

24 CHAPTER 3. RUNNING SIMULATIONS

Function: generate_data [GlobalEny

4k Debug location is approximate because the source is not available.

1 - function(nitem, nexaminee, seed = NULL) {

2

3- if(is.null(seed)) {

4 stop("A seed must be provided!")}

5« else {

6 set.seed(seed)

8

9 print("Generated item parameters"”)
10 itempar <- chind(
11 rnorm(nitem, mean = 1.13, sd = 0.25), #a
12 rnorm(nitem, mean = 0.21, sd = 0.31), #b
13 rnorm(nitem, mean = 0.16, sd = 0.05)) #c
14
15 print("cenerated ability parameters™)
16 ability <- rnorm({nexaminee, mean = 0, sd = 1)
17
18 print("Generated response data")
19 respdata <- irtoys::sim(ip = itempar, x = ability)
20 colnames(respdata) <- paste0("item”, l:nitem)
21
77 nrint M"romhined evervthinn in a Tist™)

Figure 3.3: Error location in the interactive debugging

the steps that we have taken until the error message:

For more further information about debugging in R, I highly recommend you to
check out:

o the Debugging chapter in Hadley Wickham’s Advanced R, and
e the Debugging R Code chapter in Jennifer Bryan and Jim Hester’s What
They Forgot to Teach You About R

3.3 Putting the Functions Together

As we put all the custom functions together, we must determine:

1. whether we want to run each custom function separately or in a single
wrapper function that simply calls all of our custom functions
2. how we want to replicate our custom functions:

e the replicate function
o the apply function collection
« loops (with single cluster or parallel computing)

https://adv-r.hadley.nz/debugging.html
https://adv-r.hadley.nz/
https://rstats.wtf/debugging-r-code.html
https://rstats.wtf/
https://rstats.wtf/

3.3. PUTTING THE FUNCTIONS TOGETHER 25

rR=> debug(generate_data)
R> temp3 <- generate_data(nitem = 10, nexaminee = 1000)
debugging in: generate_data(nitem = 10, nexaminee = 1000)
debug at #1: {
if (is.null(seed)) {
stop("A seed must be provided!™)

else {
set. seed(seed)
b

print("Generated item parameters”)
itempar <- cbind(rnorm(nitem, mean = 1.13, sd = 0.25), rnorm{nitem,
mean = 0.21, sd = 0.51), rnorm(nitem, mean = 0.16, sd = 0.05))
print("Generated ability parameters”)
ability <- rnorm(nexaminee, mean = 0, sd = 1)
print("Generated response data")
respdata <- irtoys::sim(ip = itempar, x = ability)
colnames (respdata) <- paste0("item”, 1l:nitem)
print("Combined everything in a 1ist")
data «- list(itempar = itempar, ability = ability, seed = seed,
respdata = respdata)
return(data)
h
Browse[2]> n
debug at #3: if (is.null(seed)) {
stop("A seed must be provided!")
1} else {
set.seed(seed)

Browse[2]= n

debug at #4: stop("A seed must be provided!™)

Browse[2]> n

Error in generate_data(nitem = 10, nexaminee = 1000)
A seed must be provided!

Browse[3]= n

R

Figure 3.4: Using the debug() function

R> temp3 <- generate_datalnitem = 10, nexaminee = 1000}
Error in generate_data(nitem = 10, nexaminee = 1000)
A seed must be prowvided!
Called from: generate_data(nitem = 10, nexaminee = 1000}
Browse[l]:
R> traceback()
2: stop("A seed must be provided!") at #4
1: generate_data(nitem = 10, nexaminee = 1000)

Figure 3.5: The traceback() option in R

26 CHAPTER 3. RUNNING SIMULATIONS

3.3.1 Avoding Loops

One of the easiest ways to repeat the same function without a loop is to use
the replicate function in R. The way this function works is very simple. Let’s
take a look at its basic structure:

replicate(<number of replications>, <function to be replicated>)

Using the repeat function, we can run the generate_data function many times
very quickly. For example, let’s create 5 data sets (i.e., 5 replications):

nreps = 5L

x <- replicate(nreps, generate_data(nitem = 10, nexaminee = 1000))
head (x)

[,1] [,2] [,3] [,4] [,5]
itempar Numeric,30 Numeric,30 Numeric,30 Numeric,30 Numeric,30
ability Numeric,1000 Numeric,1000 Numeric,1000 Numeric,1000 Numeric,1000
seed 8022 3891 7049 811 6957
respdata Numeric, 10000 Numeric, 10000 Numeric, 10000 Numeric,10000 Numeric, 10000

This would return an array (i.e., vector) called x which would store our simulated
data sets returned from generate_data. To call a particular data set from this
array (e.g., data set 1), we would use:

x[,1]

which would return all the components (i.e., item parameters, ability parameters,
seed, and response data) from data set 1.

Another effective method to repeat a function several times without a loop is
to use the apply function collection: apply(), sapply(), and lapply (). The
purpose of these functions is primarily to avoid explicit uses of loops when re-
peating a particular task in R!. Among these three functions, sapply() and
lapply () are particularly useful in simulations because they can apply an ex-
isting function (e..g, mean, median, sd) or a custom function to each element
of an object. The difference between lapply () and sapply () lies between the
output they return. lapply() applies a function and returns a list as its output,
whereas sapply () returns a vector as its output.

In the following example, we want to extract the true item parameters from
each replication stored in x. This is the first element of the output returned
from generate_data. Therefore, we will use both lapply and sapply to select
the first element of 5 replications stored in x.

lapply - returning a list
lapply(1L:nreps, function(i) x[,i][1])

[[11]

1See the Guru99 website for more information on these functions.

https://www.guru99.com/r-apply-sapply-tapply.html

3.3. PUTTING THE FUNCTIONS TOGETHER

[[1]]$itempar
[,1] [,2] [,3]
[1,] 1.1415 -0.3682 0.07736
[2,] 1.3827 0.3420 0.24551
[3,] 1.0107 0.4589 0.14046
[4,] 0.9634 0.1928 0.10050
[5,] 1.0133 0.7065 0.23558
[6,]1 0.9482 0.1607 0.16483
[7,] 0.8283 -0.3466 0.11231
[8,] 1.3640 0.3054 0.17842
[9,] 0.5806 0.3969 0.16591
[10,]1 1.8895 0.1825 0.12764
[[2]11]
[[2]]1$itempar
[,1] [,2] [,3]
[1,] 0.8686 0.211830 0.23417
[2,] 1.0666 -0.647674 0.22204
[3,] 1.3665 -0.179088 0.15410
[4,] 0.8196 0.206515 0.19359
[5,] 1.2334 0.005374 0.25132
[6,] 1.0186 -0.120199 0.27701
[7,] 1.0917 -0.096444 0.20174
[8,] 1.1214 0.387298 0.06626
[9,] 1.4620 -0.353471 0.18427
[10,] 0.9542 -0.386885 0.11406
[[3]]
[[31]$itempar
[,1] [,2] [,3]
[1,] 0.8242 0.596302 0.07725
[2,] 1.6065 -0.290621 0.17878
[3,] 1.2838 0.728311 0.20805
[4,] 1.0859 -0.440566 0.16173
[5,] 1.1749 -0.045554 0.23987
[6,] 1.1786 0.006729 0.22537
[7,] 0.8680 1.019832 0.15020
[8,] 1.4489 -0.435660 0.14789
[9,] 1.4630 1.346885 0.12883
[10,] 0.5805 -0.130311 0.26612
[[411]

[[4]1]$itempar

28
[,1]
[1,] 1.0833
[2,]1 1.4569
[3,] 1.4572
[4,] 0.8332
[5,]1 0.7998
[6,] 1.2964
[7,] 1.0498
[8,]1 1.1080
[9,]1 0.7451
[10,] 0.8302
[[5]1]
[[5]]$itempar
[,1]
[1,] 1.2428
[2,] 0.9222
[3,] 1.2159
[4,] 1.3092
[5,1 1.0709
[6,]1 0.8401
[7,]1 1.0457
[8,] 1.0311
[9,] 1.4022
[10,] 0.8243

O O O O O

o O

[,2]

.62881
.35718
.58300
LTTT67
.84951
.40714
.25638
.58124
.08085
.61757

[,2]

.38038
.06897
.53983
.47354
.15980
.70899
.567915
.96456
.48486
.12529

O O O OO OO O oo

O OO O OO OO oOOo

CHAPTER 3. RUNNING SIMULATIONS

[,3]
.18135
.16981
.15132
.19911
.07186
.19965
.23851
.16927
.18025
.18997

[,3]
.15683
.14285
.08549
.17746
.20135
.20493
.19977
.22195
.16690
.11996

sapply - returning a vector or matriz
sapply(1L:nreps, function(i) x[,i][1])

$itempar

[1,]
[2,]
[3,]
[4,]
(5,1]
(6,1
7,1
(s,]
[9,]
(10,]

$itempar

P O, OO, OF R~ -

[,1]

.1415
.3827
.0107
.9634
.0133
.9482
.8283
.3640
.5806
.8895

[,1]

[1,] 0.8686

|
O O O O OO

O O O

.3682
.3420
.4589
.1928
.7065
.1607
. 3466
.3054
.3969
.1825

[,2]

O OO OO OO O oo

[,2]

.211830

[,3]

.07736
.24551
.14046
.10050
.23558
.16483
.11231
.17842
.16591
.12764

[,3]
0.23417

3.3. PUTTING THE FUNCTIONS TOGETHER

[2,] 1.0666 -0.647674 0.22204
[3,] 1.3665 -0.179088 0.15410
[4,] 0.8196 0.206515 0.19359
[5,] 1.2334 0.005374 0.25132
[6,] 1.0186 -0.120199 0.27701
[7,]1 1.0917 -0.096444 0.20174
[8,] 1.1214 0.387298 0.06626
[9,] 1.4620 -0.353471 0.18427
[10,] 0.9542 -0.386885 0.11406
$itempar
[,1] [,2] [,3]
[1,] 0.8242 0.596302 0.07725
[2,] 1.6065 -0.290621 0.17878
[3,] 1.2838 0.728311 0.20805
[4,] 1.0859 -0.440566 0.16173
[5,] 1.1749 -0.045554 0.23987
[6,] 1.1786 0.006729 0.22537
[7,] 0.8680 1.019832 0.15020
[8,]1 1.4489 -0.435660 0.14789
[9,] 1.4630 1.346885 0.12883
[10,] 0.5805 -0.130311 0.26612
$itempar
[,1] [,2] [,3]
[1,] 1.0833 -0.62881 0.18135
[2,] 1.4569 0.35718 0.16981
[3,] 1.4572 0.58300 0.15132
[4,] 0.8332 0.77767 0.19911
[5,1 0.7998 0.84951 0.07186
[6,] 1.2964 1.40714 0.19965
[7,] 1.0498 0.25638 0.23851
[8,] 1.1080 -0.58124 0.16927
[9,] 0.7451 0.08085 0.18025
[10,] 0.8302 0.61757 0.18997
$itempar
[,1] [,2] [,3]
[1,] 1.2428 0.38038 0.15683
[2,] 0.9222 0.06897 0.14285
[3,] 1.2159 -0.53983 0.08549
[4,] 1.3092 0.47354 0.17746
[5,] 1.0709 -0.15980 0.20135
[6,]1 0.8401 0.70899 0.20493
[7,] 1.0457 -0.57915 0.19977
[8,] 1.0311 0.96456 0.22195

30 CHAPTER 3. RUNNING SIMULATIONS

[9,] 1.4022 -0.48486 0.16690
[10,] 0.8243 -0.12529 0.11996

This is a very simple example of how lapply and sapply work. Using the same
structure, we could also estimate the item parameters with mirt and save all
the results together.

data <- lapply(lL:nreps,
function(i) x[,i]1[4]) # the 4th part <s respdata

models <- lapply(lapply(data, '[[', 'respdata'), # select respdata from each list
function(i) mirt::mirt(data = i, 1, itemtype = "3PL")) # apply mirt t

parameters <- lapply(models,
function(x) mirt::coef(x, IRTpars = TRUE, simplify = TRUE)$items[

3.3.2 Loops

Loops in R are useful when:

o there is a series of functions to be executed and
« the functions return a particular object (e.g., an integer, a data frame, or
a matrix) that is necessary for the subsequent functions.

There are several control statements essential for loops:

o if and else for testing a condition and acting on it

o for for setting up and running a loop a fixed number of iterations
e while for executing a loop while a condition is true

e break for stopping the execution of a loop

e next for skipping an iteration of a loop

Let’s take a quick look at how each of these control statements works:

if-else statement

if (<condition1>) {
do action #1
} else if(<condition2>) {
do action #2
} else {
do action #3
}

for statement

for(<index1> in <values of index1>) {
for(<index2> in <values of index2>) {
do an action for each indexl and indez2

3.3. PUTTING THE FUNCTIONS TOGETHER 31

}
}

while statement

while(<condition>) {
do an action while condition == TRUE
}

break statement

for(<index> in <values of index>) {
do an action for each index
if (<condition>) {
break # Stop the action if condition == TRUE
}
b

next statement

for(<index> in <values of index>) {
if (<condition>) {
next ## Skip the action tf condittion == TRUE
}
do an action for each index

}

In general, loops are very useful in Monte Carlo simulations; however, they can
be very slow when:

o we are dealing with heavy computations
e we apply a function to each row or column of a large data set

Therefore, compared with traditional for loops, the apply function collection
is often more preferable because it can run a computation and return its results
much more quickly.

3.3.3 Parallel Computing

In some computations, creating a loop might be necessary. The regular for loop
statement executes all the functions using a single processor in the computer.
Similarly, the apply function collection also utilizes a single processor in the
computer. The use of a single processor is the default setting in R. That is,
regardless of whether we are using a 64-bit version of R in a multi-core, powerful
computer, R always uses only one processor by default.

For example, in a simulation study with 100 replications via for loops, a single
processor would have to run each iteration one by one and return the results
once all replications are completed. This may not be a problem especially if

32 CHAPTER 3. RUNNING SIMULATIONS

we are running a very simple simulation. However, completing a simulation
study involving heavy computations for each replication, using a single processor
could be very time consuming. Fortunately, there is a solution to this problem:
parallel computing?.

To benefit from parallel computing when running a Monte Carlo simulation
study, we will use two packages: foreach (Microsoft and Weston, 2017) and
doParallel (Corporation and Weston, 2019a). doParallel essentially provides
a mechanism needed to execute foreach loops in parallel computing (see the
vignette for the doParallel package).

There are several steps in setting up parallel computing with doParallel:

1. Make clusters for parallel computing
2. Register clusters with doParallel
3. Run foreach loops using parallel computing.

Now, let’s take a look at a short example. First, we will activate doParallel.
Next, we will check how many processors (i.e., cores) are available in our com-
puter. The number of processors is the maximum number that we can use
when setting up parallel computing. This would use all the processors available,
though it also slows down the computer significantly and prevents us from do-
ing other tasks in the computer. If this is a concern, then we can assign fewer
processors (instead of all of them) to parallel computing.

library("doParallel")
detectCores()
(1] 8

It seems that there are 8 processors available. We want to use 4 of these proces-
sors for running parallel loops®.

cl <- makeCluster(4) # Register four clusters (Windows)
registerDoParallel(cl)

In a foreach loop, there are two ways that a loop can be set up: %do% for
a regular loop and %dopary, for running the same code sequentially through
multiple processors. In the following example, we will use %dopar.

foreach(i=1:4) Ydopary sqrt(i)
stopCluster(cl) # Stop using clusters

Once the simulation is over, we will turn off the clusters.

stopCluster(cl) # Stop using clusters

In this small example, it is hard to see the impact of parallel computing. Parallel
computing will show its strengths more clearly when we check the computing

2For a quick introduction to parallel computing in R, you can check out this website.
3If the computer has a Mac operating system, then ¢l <- makeCluster(4, outfile="")
should be used.

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html

3.3. PUTTING THE FUNCTIONS TOGETHER 33

time (i.e., running time) of our codes. We will talk about this in the next section.

To demonstrate how to put all the simulation functions together, we will combine
the custom functions and run them together within a loop. First, we will run
the latest (i.e., tested) versions of our custom functions:

Function #1
generate_data <- function(nitem, nexaminee, seed = NULL) {

if('is.null(seed)) {
set.seed(seed)}
else {
warning("No seed provided!", call. = FALSE)
seed <- sample.int (10000, 1)
set.seed(seed)
message ("Random seed = ", seed, "\n")

3

itempar <- cbind(

rnorm(nitem, mean = 1.13, sd = 0.25), #a
rnorm(nitem, mean = 0.21, sd = 0.51), #b
rnorm(nitem, mean = 0.16, sd = 0.05)) #c

ability <- rnorm(nexaminee, mean = 0, sd = 1)

respdata <- irtoys::sim(ip = itempar, x = ability)
colnames(respdata) <- pasteO("item", 1:nitem)

data <- list(itempar = itempar,
ability = ability,
seed = seed,
respdata = respdata)

return(data)

Function 2

estimate_par <- function(data, guess = -1) {
If guessing 1is fized
if(guess >= 0) {

Model set up

mod3PL <- mirt::mirt(data, # response data
1, # untdimensional model
guess = guess, # fized guessing
verbose = FALSE, # Don't print verbose
Increase the number of EM cycles

34 CHAPTER 3. RUNNING SIMULATIONS

Turn off estimation messages

technical = 1ist(NCYCLES = 1000,
message = FALSE))

} else {
mod3PL <- mirt::mirt(data, # response data

1, # untdimensional model

itemtype = "3PL", # IRT model

verbose = FALSE, # Don't print verbose

Increase the number of EM cycles

Turn off estimation messages

technical = 1list(NCYCLES = 1000,
message = FALSE))

Extract item parameters in typical IRT metric

itempar_est <- as.data.frame(mirt::coef (mod3PL, IRTpars = TRUE, simplify = TRUE)S$iter

return(itempar_est)

Function #3
summarize <- function(est_params, true_params) {
result <- data.frame(
parameter = c("a", Dfp® "C"),

bias = sapply(1L:3L, function(i) mean((est_params[, i] - true_params[,i]))),
rmse = sapply(1L:3L, function(i) sqrt(mean((est_params[, i] - true_params[,i])"2))
correlation = sapply(1L:3L, function(i) cor(est_params[, i], true_params[,i])))

return(result)

}

Second, we will set up our simulation conditions so that it would be easier to
update them as we run all the conditions. Note that the number of iterations
(i.e., replications) is only 4 for now. If the functions work as expected, we will
increase the number of iterations to 100.

iterations = 4 # Only 4 iteration for now

seed = sample.int (10000, 100)

nitem = 10 # 10, 15, 20, or 25

nexaminee = 1000 # 250, 500, 750, or 1000

guess = -1 # A negative wvalue or a wvalue from O to 1

Third, we will set up parallel computing and register multiple processors for the
simulation.

cl <- makeCluster(4) # Register four clusters
registerDoParallel(cl)

Finally, we will run our simulation and save the results as simresults.

3.3. PUTTING THE FUNCTIONS TOGETHER 35

simresults <- foreach(i=1:iterations,

.packages = c("mirt", "doParallel"),

.combine = rbind) Y%dopar? {
Generate item parameters and data
stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, seed=seed[i])
Estimate item parameters
step2 <- estimate_par(stepl$respdata, guess = guess)
Summarize results
summarize (step2, stepl$itempar)

¥

Now, we can see the results (assuming no error messages appeared on our con-
sole):
simresults

parameter bias rmse correlation
1 a 0.128163 0.3748 0.78904
2 b -0.059314 0.5941 0.62520
3 ¢ -0.025765 0.1377 0.24511
4 a -0.030007 0.3135 0.49103
5 b -0.244383 0.4692 0.88362
6 c -0.052045 0.1444 -0.27393
7 a 0.199876 0.7391 -0.08689
8 b 0.017008 0.2874 0.82013
9 c 0.002217 0.1187 0.13883
10 a 0.310501 0.4886 0.78836
11 b 0.129384 0.3310 0.84102
12 c 0.072968 0.1203 0.42944

Remember that this is only for one of the crossed conditions (10 items, 1000
examinees, no fixed guessing) across four iterations. We can summarize the
results across all iterations, add additional information to remind us what we
have done in the simulation, and save the results. We will use the dplyr package
(Wickham et al., 2019b) for summarizing our simulation results.

library("dplyr")

simresults_final <- simresults %>%
group_by (parameter) %>%
Find the average and rounded values
summarise(bias = round(mean(bias),3),
rmse = round(mean(rmse),3),
correlation = round(mean(correlation),3)) %>%
mutate(nitem = nitem,
nexaminee = nexaminee,
guess = guess) %>
select(nitem, nexaminee, guess, parameter, bias, rmse, correlation) %>%

36 CHAPTER 3. RUNNING SIMULATIONS

as.data.frame()

simresults_final

nitem nexaminee guess parameter bias rmse correlation

1 10 1000 -1 a 0.152 0.479 0.495
2 10 1000 -1 b -0.039 0.420 0.792
3 10 1000 -1 c -0.001 0.130 0.135

We can also create a nested loop where we can all the conditions together. Here
we use %:% to set up three nested loops without curly brackets. The final
loop contains %dopar’ with curly brackets and closes all the loops. Note that
we included the final summary function (see how step3 is summarized) inside
these nested loops. This will return a long-format summary data set with all
the conditions based on 100 iterations.

Set all the conditions
iterations = 100

seed = sample.int (10000, 100)
nitem = c(10, 15, 20, 25)
nexaminee = c(250, 500, 750, 1000)
guess = c(-1, 0.16)

Register four clusters
cl <- makeCluster(4)
registerDoParallel(cl)

Run nested foreach loops
simresults <- foreach(i=1:iterations,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%
foreach(j=nitem,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%

foreach(k=nexaminee,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%

foreach(m=guess,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) Ydopar’ {
Generate item parameters and data
stepl <- generate_data(nitem=j, nexaminee=k, seed=seed[i])
Estimate item parameters
step2 <- estimate_par(stepl$respdata, guess = m)

3.4.

BENCHMARKING 37

Summarize results
step3 <- summarize(step2, stepl$itempar)
Finalize results
step3 %>%
group_by (parameter) %>
summarise(bias = round(mean(bias),3),
rmse = round(mean(rmse),3),
correlation = round(mean(correlation),3)) %>%
mutate(nitem = j,
nexaminee = Kk,
guess = m) %>%
select(nitem, nexaminee, guess, parameter, bias, rmse, correlation) %>%
as.data.frame()

Stop the clusters
stopCluster(cl)

If you are interested in high performance computing, I also recommend the
following resources:

e Lim and Tjhi’s book: R High Performance Programming
e The Performance chapter in Hadley Wickham’s Advanced R book

3.4 Benchmarking

There are several options to measure running time of a Monte Carlo simulation

in R.

1.

Functions included in base R:

system.time ()
Sys.time()
Rprof () and summaryRprof ()

. Packages on benchmarking

The tictoc package (Izrailev, 2014)

The rbenchmark package (Kusnierczyk, 2012)

The microbenchmark package (Mersmann, 2019)

The bench package (Hester, 2020) (check out its website)

. Progress bar with txtProgressBar and doSNOW (Corporation and Weston,

2019b)

https://www.packtpub.com/application-development/r-high-performance-programming
http://adv-r.had.co.nz/Performance.html
http://adv-r.had.co.nz/
https://github.com/r-lib/bench

38 CHAPTER 3. RUNNING SIMULATIONS

The three packages, rbenchmark, microbenchmark, and bench, provide detailed
information about running time as well as memory usage in R. Furthermore,
microbenchmark and bench are capable of visualizing benchmarking results
(utilizing ggplot2). For more information on benchmarking in R, I recommend
you to check out this nice blog post.

In the following example, we will run a simple benchmarking test using our
simulation. We will use %do% and %dopar’, to see the difference. We will use
both system.time and Sys.time together.

iterations = 4 #Eventually this will be 100

seed = sample.int (10000, 100)

nitem = 10 #10, 15, 20, or 25

nexaminee = 1000 #250, 500, 750, or 1000

guess = -1 # A negative value or a value from 0 to 1

No parallel computing
start_time <- Sys.time() # Starting time
system.time(
simresults <- foreach(i=1:iterations,
.packages = c("mirt", "doParallel"),
.combine = rbind) %do% {
Generate item parameters and data
stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, see
Estimate item parameters
step2 <- estimate_par(stepl$respdata, guess = guess)
Summarize results
summarize (step2, stepl$itempar)

user system elapsed
8.08 0.06 8.14

end_time <- Sys.time() # End time
end_time - start_time # Time difference

Time difference of 8.283 secs

With parallel computing
start_time <- Sys.time() # Starting time
system.time(
simresults <- foreach(i=1:iteratiomns,
.packages = c("mirt", "doParallel"),
.combine = rbind) %dopar’ {
Generate item parameters and data
stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, see
Estimate item parameters

https://www.alexejgossmann.com/benchmarking_r/

3.4. BENCHMARKING 39

step2 <- estimate_par(stepl$respdata, guess = guess)
Summarize results
summarize (step2, stepl$itempar)

}

user system elapsed
0.02 0.00 3.23

end_time <- Sys.time() # End time
end_time - start_time # Time difference

Time difference of 3.378 secs

In the output returned from system. time, “elapsed” is the time taken to execute
the entire process, “user” gives the CPU time spent by the current process (i.e.,
the current R session), and “system” gives the CPU time spent by the kernel
(the operating system) on behalf of the current process (see this post on R-help
mailing list for further information).

What if we want to see the time taken by each function in the whole simulation?
Rprof () provides us with this type of information. To activate profiling in R,
we need to run:

Rprof ()

Then, we can see the running time of each function after profiling has been
activated. We can use summaryRprof () to export the results at the end. We
wil do this step for a single iteration to see the time distribution across all

functions®.

Rprof () # Turn on profiling

Generate ttem parameters and data

stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, seed=seed[1])
Estimate item parameters

step2 <- estimate_par(stepl$respdata, guess = guess)

Summarize results

step3 <- summarize(step2, stepl$itempar)

summaryRprof () $by.self

self.time self.pct total.time total.pct

"Estep.mirt" 0.76 32.20 0.80 33.90
"computeItemtrace" 0.36 15.25 0.40 16.95
"LogLikMstep" 0.24 10.17 0.62 26.27
"gr" 0.16 6.78 0.18 7.63
"EM.group" 0.12 5.08 2.34 99.15
"reloadPars" 0.08 3.39 0.14 5.93

4The results would be very similar across all iterations using the same conditions.

https://r.789695.n4.nabble.com/Meaning-of-proc-time-td2303263.html#a2306691

40 CHAPTER 3. RUNNING SIMULATIONS

"fn" 0.06 2.54 0.82 34.75
"getCallingDLLe" 0.06 2.54 0.08 3.39
"updatePrior" 0.04 1.69 0.22 9.32
"aperm" 0.04 1.69 0.12 5.08
"order" 0.04 1.69 0.08 3.39
"matrix" 0.04 1.69 0.04 1.69
"tryCatch" 0.02 0.85 2.36 100.00
"FUN" 0.02 0.85 2.34 99.15
"Mstep" 0.02 0.85 1.12 47.46
"optim" 0.02 0.85 1.04 44.07
".External2" 0.02 0.85 1.02 43.22
"Estep" 0.02 0.85 0.82 34.75
"is" 0.02 0.85 0.04 1.69
"e<-" 0.02 0.85 0.02 0.85
"as.matrix" 0.02 0.85 0.02 0.85
"file" 0.02 0.85 0.02 0.85
"get0" 0.02 0.85 0.02 0.85
"getOption" 0.02 0.85 0.02 0.85
"is.array" 0.02 0.85 0.02 0.85
"match.arg" 0.02 0.85 0.02 0.85
"match.fun" 0.02 0.85 0.02 0.85
"proc.time" 0.02 0.85 0.02 0.85
"rowSums" 0.02 0.85 0.02 0.85
"sum" 0.02 0.85 0.02 0.85

Rprof (NULL) # Turn off profiling

In the output, “self.pct” is the most important column because it indicates the
percentage of time that each of the listed tasks has taken in the estimation
process.

Next, let’s see how the tictoc package works for finding running time of our
code. Between each tic() and toc(), it saves the time spent. So, we place
several tic() and toc() functions. The first one, tic("Total simulation
time:") will be closed at the end so that we can see the total time spent on
the simulation. The others in between will calculate the time for each step (i.e.,
step 1, step 2, and step 3).

library("tictoc")

tic("Total simulation time:")

tic("Generate item parameters and data")

stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, seed=seed[1])
toc()

Generate item parameters and data: O sec elapsed

tic("Estimate item parameters")
step2 <- estimate_par(stepl$respdata, guess = guess)

3.4. BENCHMARKING 41

toc()

Estimate item parameters: 2.53 sec elapsed

tic("Summarize results")
step3 <- summarize(step2, stepl$itempar)
toc()

Summarize results: O sec elapsed

toc()

Total simulation time:: 2.53 sec elapsed

Finally, let’s add a progress bar to our simulation study. We will use the
txtProgressBar function from base R and the doSNOW package (Corporation
and Weston, 2019b) together. The txtProgressBar function is a standalone
function and thus it does not require other packages to print a progress bar.
However, in the following example, we will do parallel computing using the
doSNOW package (it is very similar to doParallel) and add a progress bar into
our simulation. This will require us to add .options.snow in the loop so that
the progress bar works along with the simulation.

iterations = 10 #Ewventually this will be 100

seed = sample.int (10000, 100)

nitem = 10 #10, 15, 20, or 25

nexaminee = 1000 #250, 500, 750, or 1000

guess = -1 #A negative value or a value from O to 1

library("doSNOW")
cl <- makeCluster(4)
registerDoSNOW(cl)

Set up the progress bar

pb <- txtProgressBar(max = iterations, style = 3) # Initiate progress bar
progress <- function(n) {setTxtProgressBar(pb, n)}

opts <- list(progress = progress)

Run the simulation
simresults <- foreach(i=1:iterations,
.packages = c("mirt", "doSNOW"),
.options.snow = opts, # see the additional line for doSNOW
.combine = rbind) %dopar? {
Generate item parameters and data
stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, seed=seed[i])
Estimate item parameters
step2 <- estimate_par(stepl$respdata, guess = guess)
Summarize results

42 CHAPTER 3. RUNNING SIMULATIONS

summarize (step2, stepl$itempar)
}
close(pb) # Close progress bar
stopCluster(cl)

As the simulation progresses, we should see a progress bar with a percent sign

5

at the end, which is style = 3 in the txtProgressBar function®. Once the

simulation is complete, we should see the following screen in the console:

Rx simresults <- foreach(i=l:iterations,

.packages = c("mirt”, "doswow"),

.options.snow = opts, # see the additional Tine for dosnow

.combine = rbind) %dopar® {
Generate item parameters and data
stepl <- generate_data(nitem=nitem, nexaminee=nexaminee, seed=seed[{i])
Estimate item parameters
step? <- estimate_par(steplirespdata, guess = guess)
summarize results
summarize(step2, stepliitempar)

Figure 3.6: Status of progress bar once the simulation is complete

5There are also styles 1 and 2. Check out 7txtProgressBar for examples.

100%

Chapter 4

Summarizing Simulation
Results

4.1 Tables and Figures

For plotting simulation results:

o ggplot2 (Wickham et al., 2019a)
o lattice (Sarkar, 2018)

43

44 CHAPTER 4. SUMMARIZING SIMULATION RESULTS

o plotly (Sievert et al., 2020)
For making tables with simulation results:

e Check out R Markdown

— RStudio guidelines for R Markdown: https://rmarkdown.rstudio.
com/

— R Markdown: The Definitive Guide: https://bookdown.org/yihui/
rmarkdown/

— Reproducible APA manuscripts with R Markdown: https:
//crsh.github.io/papaja_ man/reporting.html

— HTML tables with knitr::kable and kableExtra: http:
//haozhu233.github.io/kableExtra/

— A nice blog post about stylish tables in R: https://www.littlemissdata.
com/blog/prettytables

4.2 Exporting the Results

I recommend exporting all the simulation results if:

o writing all the results into a file would not take a lot of space in the
computer

e existing computations are heavy and thus it is hard to summarize the
results right away

e it is likely that the simulation may be interrupted for some reason

Regardless what we decide to save (either all output or the summarized output),
a nice way to save the results is to place a write function inside the loop. Using
the nested foreach loops as an example, we will first create an empty .csv file
called “results.csv”:

write.table(matrix(c("nitem", "nexaminee", "guess", "parameter", "bias", "rmse", "corr

nrow = 1,

ncol = 7),
file = "results.csv",
Sep = n n

3 ’

col.names = FALSE,
FALSE)

row.names

Then, we modify our code in a way that we will not save the results and instead
write them into the results.csv file.

Set all the conditions
iterations = 100

seed = sample.int (10000, 100)
nitem = c(10, 15, 20, 25)
nexaminee = c(250, 500, 750, 1000)
guess = c(-1, 0.16)

https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
https://crsh.github.io/papaja_man/reporting.html
https://crsh.github.io/papaja_man/reporting.html
http://haozhu233.github.io/kableExtra/
http://haozhu233.github.io/kableExtra/
https://www.littlemissdata.com/blog/prettytables
https://www.littlemissdata.com/blog/prettytables

4.2. EXPORTING THE RESULTS 45

Register four clusters
cl <- makeCluster(4)
registerDoParallel(cl)

Run nested foreach loops

foreach(i=1:iterations,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%

foreach(j=nitem,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%

foreach(k=nexaminee,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) %:%

foreach(m=guess,
.packages = c("mirt", "doParallel", "dplyr"),
.combine = rbind) Ydopar’, {
Generate item parameters and data
stepl <- generate_data(nitem=j, nexaminee=k, seed=seed[i])
Estimate item parameters
step2 <- estimate_par(stepl$respdata, guess = m)
Summarize results
step3 <- summarize(step2, stepl$itempar)
Finalize results
final <- step3 %>%
group_by (parameter) %>%
summarise(bias = round(mean(bias),3),
rmse = round(mean(rmse),3),
correlation = round(mean(correlation),3)) %>%
mutate(nitem = j,
nexaminee = Kk,
guess = m) %>%
select(nitem, nexaminee, guess, parameter, bias, rmse, correlation) 7>’
as.data.frame()
Write the results
write.table(final, "results.csv",
sep = ",",
col.names = FALSE,
row.names = FALSE,

append = TRUE) # This will keep the file open for appending the

results

46 CHAPTER 4. SUMMARIZING SIMULATION RESULTS

Stop the clusters
stopCluster(cl)

Bibliography

Bulut, O. and Sunbul, O. (2017). Monte carlo simulation studies in item re-
sponse theory with the r programming language. Journal of Measurement
and Evaluation in Education and Psychology, 8(3):266—287.

Casabianca, J. M. and Lewis, C. (2015). Irt item parameter recovery with
marginal maximum likelihood estimation using loglinear smoothing models.
Journal of Educational and Behavioral Statistics, 40(6):547-578.

Chalmers, P. (2019). mirt: Multidimensional Item Response Theory. R package
version 1.31.

Chalmers, P. (2020). SimDesign: Structure for Organizing Monte Carlo Simu-
lation Designs. R package version 2.0.1.

Corporation, M. and Weston, S. (2019a). doParallel: Foreach Parallel Adaptor
for the ’parallel’” Package. R package version 1.0.15.

Corporation, M. and Weston, S. (2019b). doSNOW: Foreach Parallel Adaptor
for the ’snow’ Package. R package version 1.0.18.

Hallgren, K. A. (2013). Conducting simulation studies in the r programming
environment. Tutorials in Quantitative Methods for Psychology, 9(2):43-60.

Hester, J. (2020). bench: High Precision Timing of R Expressions. R package
version 1.1.1.

Izrailev, S. (2014). tictoc: Functions for timing R scripts, as well as implemen-
tations of Stack and List structures. R package version 1.0.

Kusnierczyk, W. (2012). rbenchmark: Benchmarking routine for R. R package
version 1.0.0.

Leschinski, C. H. (2019). MonteCarlo: Automatic Parallelized Monte Carlo
Simulations. R package version 1.0.6.

Mersmann, O. (2019). microbenchmark: Accurate Timing Functions. R package
version 1.4-7.

Microsoft and Weston, S. (2017). foreach: Provides Foreach Looping Construct
for R. R package version 1.4.4.

47

48 BIBLIOGRAPHY

Partchev, I. and Maris, G. (2017). irtoys: A Collection of Functions Related to
Item Response Theory (IRT). R package version 0.2.1.

R Core Team (2019). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Sarkar, D. (2018). lattice: Trellis Graphics for R. R package version 0.20-38.

Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M.,
and Despouy, P. (2020). plotly: Create Interactive Web Graphics via ’plotly.js’.
R package version 4.9.2.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C.,
Woo, K., and Yutani, H. (2019a). ggplot2: Create Elegant Data Visualisations
Using the Grammar of Graphics. R package version 3.2.1.

Wickham, H., Frangois, R., Henry, L., and Miiller, K. (2019b). dplyr: A Gram-
mar of Data Manipulation. R package version 0.8.3.

Xie, Y. (2020a). bookdown: Authoring Books and Technical Documents with R
Markdown. R package version 0.17.

Xie, Y. (2020b). knitr: A General-Purpose Package for Dynamic Report Gen-
eration in R. R package version 1.27.

	Introduction
	Overview
	Why Simulations?
	Typical Simulation Scenarios
	Additional Resources

	Designing Simulations
	Simulation Factors
	Evaluation Criteria
	Other Design Elements

	Running Simulations
	Custom Functions
	Debugging the Code
	Putting the Functions Together
	Benchmarking

	Summarizing Simulation Results
	Tables and Figures
	Exporting the Results

