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Abstract

Langmuir amplitude modulations and harmonic waves, generated by

solar wind electron beams, are commonly observed in type III solar

radio bursts. Various mechanisms have been proposed for the origin of

these waves, but there is still ongoing debate on how the observation

of continuous type III radiation over large distances, e.g., from Sun to

Earth, can be reconciled with the picture of fast beam stabilization by

plateau formation. In this context, the occurrence of current-driven

Langmuir oscillations in plasmas with plateau distributions offers a

relatively simple mechanism of electromagnetic emission. The satu-

ration process of the beam instability is accompanied with the for-

mation of a plateau distribution and the saturated state represents

a current which drives homogeneous electric field oscillations at the

plasma frequency. A plasma system composed of main and beam

plasma electrons with finite temperature is considered and Ampere’s

law is used instead of Poisson’s equation to describe the mechanism of

current drive in plasmas. Results of using Poisson’s equation and Am-

pere’s law are compared by using particle-in-cell simulations. Possible

modulational instabilities that generate solitary structure are inves-

tigated. Theoretical and simulation results are compared with space

observations.
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Chapter 1

Physics of the Solar Wind

1.1 The Sun

The Sun is the heart of our solar system which holds 99.8 percent of the solar

system’s mass and is roughly 109 times the diameter of the Earth. Temperature

in the core of the sun is about 15 million degrees Celsius while the temperature in

the visible part is about 5500 degrees Celsius. The sun and its atmosphere have

several zones and layers. The solar interior is made up of the core, the radiative

zone, the Tachocline, and the convective zone. The visible surface of the Sun is

the photosphere. This layer is about 480 kilometers thick and contains a gas of

neutral atoms with a small fraction of it in the ionized form. Sun emits most of the

visible light from this layer. Above the photosphere, there is a layer of 2000-3000

kilometers thick atmosphere called chromosphere. The Chromosphere is a quiet

and non-magnetic layer of the solar atmosphere. It has a colorful appearance just

before and after a total eclipse. Temperature at the bottom of the chromosphere

is about 4300 Kelvin, so it is hotter than the photosphere. The Sun’s hot outer

atmosphere is called corona. The corona extends more than a solar radius above

the solar surface. Beyond that is the solar wind, an outflow of gas from the

corona. Sun is the main source of solar plasma. Plasmas are found in the solar

atmosphere, the interplanetary medium, the planetary magnetospheres and the

planetary ionosphere.

1



Figure 1.1: Streams of solar wind from the Sun [nasa.gov/SolarWind].

1.2 Solar Wind

Streams of energized charged particles (electrons, protons, alpha particles, etc.)

are emitted radially outward from the sun at a speed of 500 km/s to 900 km/s.

This outflow of plasma is the consequence of the supersonic expansion of the solar

corona. Heating of the solar corona creates high temperatures and the plasma

particles can escape the Sun’s gravity into interplanetary space because of their

high energy. This streaming and expanding plasma is known as solar wind. Den-

sity, temperature, and speed of the solar wind vary over time and longitude. The

density of the solar wind decreases with the inverse square of the distance from

the Sun and its temperature decreases adiabatically. Near the Earth, at 1 Astro-

nomical Unit (AU), typical values of the solar wind parameters are summarized in

Table 1.1. At the Earth’s orbit, the solar wind is quite dilute and thus electrically

highly conducting. The solar coronal magnetic field is ‘frozen’ into the streaming

solar wind plasma and drawn outward by expanding solar wind flow, gradually

becoming the interplanetary magnetic field of the order of ≈ 5nT near Earth’s

orbit. Thus the solar wind plays an important role in shaping and stimulating

2



planetary magnetospheres [1].

Table 1.1: Typical parameters of the solar wind at 1 AU.

Parameter Electron Ion

Density (ρ), cm−3 8.7 8.7

Temperature (T), eV 12 10

Drift Velocity vd, km/s 468 468

Thermal velocity (Vt), km/s 2.05× 103 438

Debye length (λd), m 8.7 7.97

Plasma frequency (ωe), rad/s 1.66× 105 3.9× 103

Gyrofrequency (Ωg), rad/s 1.8× 103 0.96

Gyroradius (r), km 1.1 489

There are two different kinds of solar wind namely fast solar wind and slow solar

wind. The fast solar winds are originated from polar holes and its speed at 1 AU

is about 250 to 400 km/s. The slow solar winds are originated from equatorial

belt having speed 400-800 km/s at near Earth. Comparison of typical fast and

slow wind properties near at 1 AU is given in Table 1.2 [2].
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Table 1.2: Comparison of typical fast and solar slow wind properties at 1 AU.

Parameter Fast Slow

Source, Coronal holes Streamer belt

Flow Speed (vp), km/s 400-800 250-400

Electron Density (ρe) ×106 m−3 2.5 7

Electron Temperature (Te) ×105 m5 1 1.3

Total energy flux density, erg − cm−2s−1 1.43 1.55

Ram pressure (P), ×106 Pa 2.6 2.1

1.3 Solar Radio Bursts

Solar radio bursts are the first radio phenomena identified by radar scientists.

They are classified by their frequency drift rate. By studying the rapidly varying

component over a range of frequencies one can classify the emissions into five

principal types [3] as follows

1. Noise-storm bursts (Type I)

2. Slow-drift bursts (Type II)

3. Fast-drift bursts (Type III)

4. Broad-band continuum emission (Type IV)

5. Continuum emission at meter wavelengths (Type V)

A schematic diagram of different types of solar radio bursts is shown in figure

1.2. Among these five different types of bursts, three of them (type I, type II and

type III) are more important for the study of plasma emission. Classification of

these three types of bursts is summarized the Table 1.3.
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Figure 1.2: Schematic radio dynamic spectrum showing different types of solar
radio bursts [4].

Table 1.3: Types of Solar Radio Bursts

Type Characteristics Duration Frequency range

I

Short, narrow-
bandwidth,
occurs in large
numbers with
underlying
continuum

Single bursts: 1
second, Storm:
days

80-200 MHz

II

Slow frequency
drifts, usually
accompanied
by a second
harmonic

3-30 minutes
Fundamental:
20-150 MHz

III

Fast frequency
drifts, can be
accompanied
by a second
harmonic

Single bursts:
1-3 seconds,
Group: 1-5
minutes, Storm:
minutes-hours

10kHz - 1GHz

5



1.3.1 Type I

Type I bursts are a non-flare related phenomenon. They consist a continuum

component called noise storm. The frequency range of this component is 100-400

MHz with variations on timescales of hours due to energetic electrons trapped

on the closed coronal magnetic field lines. Another component is called burst

component which is short and very narrow band. They tend to occur in drifting

chains of 10-20 MHz. The absence of diagnostics at other wavelengths makes

them difficult to study [3].

1.3.2 Type II

Type II bursts are characterized by slow frequency drifts and most being detected

below 100 MHz. They occur at the time of soft X-ray peak in a solar flare

and are accelerated in shocks in the corona. It is assumed that Type II bursts

are associated with coronal shock wave accelerating electrons, driving Langmuir

waves at the plasma frequency and its second harmonics [5].

1.4 Type III Bursts

Solar Type III radio bursts are characterized by fast frequency drifts from hun-

dreds of MHz in the solar corona to tens of kHz in the interplanetary space.

Their size, intensity, frequency, duration, etc vary burst to burst. They can be

accompanied by second harmonics.

1.4.1 Frequency Extent

During large solar flares, the starting frequency of the Type III bursts can be

in GHz range [6; 7; 8]. Some start at 10s or 100s of MHz. The stopping fre-

quency is also varied as the starting frequency. Type III bursts can exist at high

frequencies over 100 MHz. These are electron beams confined to the corona by

a magnetic field. Some other Type III bursts can make it few 10s kHz or even

below. Weaker radio bursts generally had higher stopping frequencies due to

electron beam dilution or background density fluctuations [9; 10].
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Figure 1.3: Type III radio bursts are created by electrons and can be observed in
space and/or at Earth [6].

1.4.2 Burst Duration

Rise and decay times of Type III solar radio bursts are proprortional to each other

and both of them are roughly inversely proportional to the frequency. According

to the statistical study of Evans et al. [11], rise time, tr and decay time, td between

2.8 MHz and 67 kHz are 4.0×108f−1.08 and 2.0×108f−1.09 respectively, where t is in

second and frequency f is in Hz [11]. Alvarez and Haddock used different frequency

range from 200 MHz to 50 kHz and found a decay time td = 4.0× 107.7f−0.95 [12].

1.4.3 Frequency Drift Rate

Usually excited beam speeds for type III bursts are fractions of the light speed, c

and can range from 0.1c to 0.6c [8; 13; 14; 15]. The drift rate of Type III bursts,

df/dt is related to the speed of the exciting electron beam, v = dr/dt. Alvarez

& Haddock reported df/dt = −0.01f1.84. They used the rise time of Type III

bursts between 3 MHz and 50 kHz [13]. Using radio bursts between 100 MHz

and 3000 MHz Melendez et al. [8] found df/dt = 0.09f1.35 and Aschwanden et al.

[16] reported df/dt = 0.1f1.4. Ma et al. found a much faster frequency drift rate,

df/dt = −2.6× 10−6f2.7, in the range 635 MHz to 1500 MHz [17].
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1.4.4 Source Flux

The peak source flux is directly proportional to the frequency in the corona up

to 1 MHz and then it becomes inversely proportional [18; 19]. Some bursts were

observed from 0.1 MHz to 5 MHz and some are found to start around 50 MHz

and end at 20 kHz [20]. Saint-Hilaire et al. studied type III burst source fluxes at

450 MHz to 150 MHz and found a relation between normalization constant (A)

and frequency as A ∝ f−2.9 [21].

1.4.5 Source Size

The size of type III bursts changes inversely proportionally with frequency. From

different measurements, the size is found 2′ at 432 MHz, 4.5′ at 150 MHz [21],

11′ at 80 MHz, 20′ at 43 MHz [22], 5′ at 1 MHz, 50′ at 100 kHz [23], and 1 AU

at 20 kHz [24].

1.4.6 Brightness

The brightness temperature Tb of Type III solar radio bursts are measured using

flux density and source size. The value of Tb is high for Type III Bursts and

typical value lie within the range 106K to 1012K [6]. The maximum brightness

temperature Tb = 1015 K was observed by Suzuki and Dulk in 1985 [25]. Saint-

Hilaire et al. investigated 10 years of NRH data and found brightness temperature

varies as a power law with the spectral index around −1.8 within the range

150–450 MHz [21]. At lower frequencies, Tb increases with the decreasing of

frequency up to 1 MHz and then either decreasing or remaining constant.

1.4.7 Harmonic Structure

Fundamental and harmonic components are seen in a large number of solar radio

bursts at frequencies in the MHz and kHz ranges. Both fundamental and har-

monic emissions are seen below 100 MHz, but above 100 MHz, the component

is thought to be the harmonic [22; 25; 26; 27; 28]. The fundamental component

is almost never seen above 500 MHz while the harmonic is only affected above 1
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GHz [29]. The observed fundamental and harmonic ratio generally ranges from

1.5:1 to 2:1 [26; 27].

1.5 Fundamentals of Plasmas

The precise mechanism for the formation and propagation of solar radio bursts,

specifically Type III bursts are still debated but plasma emission mechanism

is now the generally accepted model. Before we investigate plasma emission

mechanism, in this section we will first review some essentials of basic plasma

physics.

1.5.1 Plasmas

The word ‘plasma’, comes from the Greek which means ‘moldable substance’ or

‘fabricated’, and first used by the Nobel Prize winning American chemist Irving

Langmuir and his colleague Lewi Tonks in 1929 [30]. They noticed that un-

der certain conditions, there is cohesiveness among the particles of ionized gas

which is similar to the movement of red and white corpuscles of the blood plasma.

There are four states of matter in our universe namely solid, liquid, gas, and

plasma. Plasma is regarded as the fourth state of matter. If we apply heat to a

solid, generally it first changes to liquid and then liquid to gaseous. If we apply

sufficient heat to the gaseous, outmost orbital electrons can overcome their bind-

ing energy and becomes an ionized gas. In natural gas, the interparticle force is

of short range Vander Waals type. On the other hand, plasma is regarded as a

statistical system composed of charged particles, mainly electrons, ions and dust

particles and this force is long range Coulomb force in plasma. Each plasma par-

ticle can simultaneously interact with all other particles. Due to the long range

coulomb forces, plasma exhibits collective behavior which is not found in natural

gases.

It has been said that more than 99% of the matter in the visible universe is in

the plasma state [31]. Generally, classical Plasmas are characterized by regimes
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of high temperature and low density. Plasmas are found in space, earth’s at-

mosphere, Van Allen radiation belts, solar wind, interplanetary and interstellar

media as well as in laboratory gas discharges and thermonuclear fusion experi-

ments. The dynamics of a plasma is governed by internal fields produced by the

plasma particles and the externally applied fields [32].

1.5.2 Debye Shielding and Debye Length

Debye shielding is the ability of plasma to shield out electric fields that are applied

to it. It is one of the fundamental and important phenomena of plasma and often

called electrostatic Debye screening. To describe Debye shielding we consider a

plasma of uniform number density n of both electrons and ions with mass m and

electric charge e. Initially, there is no net electric charge or no electric field. Now

we consider a test positive charge is introduced in the plasma. The positive test

charge repels positively charged ions but attracts negatively charged electrons.

Thus the test positive charge will be rapidly surrounded by a cloud of electrons

situated in a sphere of radius λD. The sphere is called Debye sphere and the

radius λD of the sphere is called Debye Length [31]. For Te >> Ti, the Debye

length is governed by the ion temperature and is given by:

λD =

(
kBTi

4πne2

)1/2

, (1.1)

Where kB is the Boltzmann constant and Ti(Te) is the ion(electron) temperature.

If we ignore ion motion, the Debye length expression takes the form:

λD =

(
kBTe

4πne2

)1/2

. (1.2)

Debye length is the scale over which mobile charge carriers screen out electric

fields in plasma and it is a fundamental unit of length in plasma physics. The

value of Debye length for solar core, solar wind, and magnetosphere are 10−11m,

10m, and 100m respectively.
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1.5.3 Plasma Frequency

When electrons in a uniform plasma are displaced from their equilibrium position

against uniform background of ions, an electric field arises because of charge

separation. This electric field creates a restoring force which tends to pull back

the displaced electrons towards the excess positive charge. Because of the inertia,

electrons will replenish the positive region and travel further away by generating a

restoring electric field in the opposite direction. Thus the electrons oscillate about

their equilibrium position and the system behaves as a harmonic oscillator. The

oscillations are called plasma oscillations and the frequency of the oscillation is

called plasma frequency [31]. The expression of the plasma frequency can be

written as:

ωe =

(
4πne2

m

)1/2

. (1.3)

The relationship between plasma frequency and the Debye length is given by:

λD =
vT
ωe

=

(
kBT

4πne2

)1/2

, (1.4)

where vT is the thermal speed of the electrons given by

vT =

(
kBT

m

)1/2

. (1.5)

1.5.4 Criteria for Plasma

There are three criterions for an ionized gas must satisfy to be called a plasma

described below [31]:

• Linear dimension L of the plasma system must be much larger than the

Debye length λD, i.e., L >> λD which means charges are able to shield out

in a distance short compared with L leaving the bulk of plasma free of large

potentials or fields. This condition ensures quasineutrality of the plasma.
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• Debye shielding is statistically valid if there are enough particles in the

sheath region, i.e., the number of particles in a Debye sphere (ND) must

be very much greater than unity. (ND) >> 1 is also called the collective

behavior of the plasma.

• If τ is the mean time between collisions of plasma particles with neutral

atoms, the third criterion is given by ωeτ > 1, where ωe is the frequency of

typical plasma oscillation.

1.6 Plasma Waves

Evolution of time-dependent effects is common in plasma for many reasons. Gen-

erally, the plasma particles are in fast motion due to high temperature. Charges

can move around and they can generate local concentrations of positive and nega-

tive charges (microscopic charge separations) which give rise to the electric fields.

The motion of charges also generates current and hence magnetic fields. There-

fore electric and magnetic fluctuations are typical in plasma. On the other hand,

plasma reacts to any type of distortion of its state and can generate electric and

magnetic fields in a similar way. Disturbance is thought as a superposition of

linear waves onto the quiescent state which propagates throughout the plasma

volume to transport energy of the distortion and is measured in many different

frequencies [1]. In order to generate plasma waves, any disturbance must be

a solution of the appropriate equations of the plasma. Also, amplitude of the

disturbance must be higher than the thermal fluctuations. One of the ways to

study wave propagation in plasma is to solve plasma fluid equations along with

Maxwell’s equation and thus find a relation between wave number k and wave

frequency ωe. This relation is called dispersion relation and all information re-

garding wave propagation can be obtained from it. Plasma can be characterized

as a medium having a conductivity or a dielectric constant and the wave equation

can be derived using Maxwell’s equation. This is the second approach to study

plasma waves [30].
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1.6.1 Electron Plasma Waves

Let us consider an unmagnetized collisionless warm plasma containing electrons

and ions. Electrons have their thermal velocities and react differently to displace

them from their equilibrium positions. To treat this effect, a scalar pressure term

is needed to add to the equation of motion and the plasma oscillation of such

plasma is called plasma wave or Langmuir wave. The dispersion relation for the

electron-acoustic wave can be written as the following expression [31]

ω2 = ω2
e + 3kv2T , (1.6)

where k is the wave number and vT is the electron thermal velocity given by ex-

pression (1.5). This equation is also known as Langmuir wave dispersion relation.

Eq. (1.6) can be written in terms of Debye length as follows

ω2 = ω2
e(1 + 3k2λ2

D). (1.7)

From Eq.(1.7), it is clear that the thermal perturbation becomes important when

kλD ∼ 1, i.e., the wavelength of perturbation ∼ λD. For long period plasma

waves, where k goes to zero, there is a natural oscillation at the electron plasma

frequency, ω ∼ ωe.

1.6.2 Ion-Acoustic Waves

Langmuir waves are high frequency electron oscillations where the contribution

of ions is neglected. At lower frequencies, ion inertia is important, and can not

be neglected. In this case, electron inertia can be neglected because of very low

mass compared to ion mass. Dispersion relation of an ion-acoustic wave is given

by

ω = kvs, (1.8)
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where, vs = [(kBTe + γakBTi)/mi]
1/2 is the ion-acoustic speed or sound speed in

plasma and γa is the adiabatic constant.

1.6.3 Electromagnetic waves

As we discussed before, the motion of the charge particles generates plasma cur-

rent and hence magnetic field which is the source of the electromagnetic wave

modes. Many types of electromagnetic waves can propagate in a magnetized

plasma. In an unmagnetized plasma, the simplest electromagnetic mode is the

free-space electromagnetic wave. The dispersion relation of such a wave is given

by

ω2 = ω2
e + c2k2, (1.9)

where c is the speed of light in vacuum.
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Chapter 2

Motivation and Approach

2.1 Motivation

As we discussed in previous chapter, the Sun is the most efficient and prolific

particle accelerator in our solar system. Solar flares release energy on the order

of 1032 erg and accelerate up to 1036 electrons per second in the solar atmosphere

[33]. Solar storms and electromagnetic bursts are the solar activity related to

the flares. Solar radio bursts are classified by how their frequency changes in

time, called the frequency drift rate. Solar type III radio bursts are character-

ized by fast frequency drifts from hundreds of MHz in the solar corona to tens

of kHz in the interplanetary space. They can be accompanied by second har-

monics. Bursts are an important diagnostic tool in the understanding of solar

accelerated electron beams. They provide information on electron acceleration

and transport, and the conditions of the background ambient plasma they travel

through. Figure 2.1 shows STEREO/WAVES satellite observation of a local type

III burst [34]. Since fast drifting emission frequency depends on the frequency of

Langmuir waves, it occurs at a lower frequency when electron density decreased

at a later time. Non-drifting emissions are Langmuir waves excited probably by

beam electrons. The problem of generation of electromagnetic radiation at the

plasma frequency and its second harmonic at beam-plasma interaction is one of

the most intensively studied topics in plasma physics, experimentally and theo-

retically as well [35]. Up to now, there is the general consensus which goes back
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Figure 2.1: Dynamic spectrum of a local type III radio burst (fast drifting emis-
sion from 5 MHz down to 30 kHz) and associated Langmuir waves (non-drifting
emissions in the frequency interval 27-32 kHz [34].

to papers of the sixties by Ginzburg and Zhelesniakov [36] that second harmonic

generation is accomplished in two steps: (1) electron beams develop bump-on-tail

distributions and excite Langmuir waves at the local electron plasma frequency,

ωe and (2) nonlinear interaction of Langmuir waves leads to the generation of

electromagnetic waves at ωe as well as second harmonics at 2ωe.

Figure 2.2 shows the evolution of a beam in the tail of a thermal distribution,

starting with the arrival of the fastest electrons at time t1= L/v1 , producing a

positive slope ∂f/ ∂v > 0 and becomes unstable. At later times, slower electrons

arrive at t2 = L/v2 and t3 = L/v3 , but the slowest ones do not produce a positive

slope and are stable. The velocity dispersion allows higher energy electrons to

race ahead of the lower energy electrons and creates a so-called bump or beam in

the forward direction of the particle distribution function [37]. Landau resonance

with the unstable electron beam generates Langmuir waves. Nonlinear wave-wave

interactions produce electromagnetic emissions at the local electron plasma fre-

quency and its second harmonic, generally called type III radio bursts. Langmuir

waves lose energy which causes the accelerated electron stream to decelerate and
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Figure 2.2: Bump-on-tail distributions [37].

decay processes are suppressed due to fast beam stabilization. Therefore, the

waves can not survive over the long distance like 1 AU (Sun to Earth). From

different space observations, it is obvious that Type III radiation can propagate

a long distance, even beyond 1 AU which creates a conflict known as the Stur-

rock dilemma [38]. Different attempts to find a way out of this dilemma [39; 40]

remained, however, unsatisfactory until now.

An electron beam can escape the quasi-linear relaxation and travel over large dis-

tances if there is an effective disruption of the resonance between the Langmuir

waves and the beam. An electrostatic decay of Langmuir waves into daughter

Langmuir and ion acoustics waves can remove the Langmuir waves out of res-

onance with the beam by scattering them from resonance regions toward lower

wave numbers. This theory is proposed by Kaplan and Tsytovich [41] and sup-

ported by type III radio bursts observations [42; 43]. As the estimated Langmuir

waves are very intense some authors argued for strong turbulence processes e.g.,

oscillating two stream instability (OTSI), Modulational instability (MI) [39; 44],

soliton formation, and Langmuir collapse [45], etc. These can pump the Lang-

muir waves toward higher wave numbers kL at a much faster rate. It is considered

as the most effective beam stabilization mechanisms. In the strong turbulence

process, ion acoustics waves of frequency and wave number (f1, k1) can beat with

two of the beam-resonant Langmuir waves with frequencies and wave numbers
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Figure 2.3: The spectrum observed during the type III event by the Time Domain
Sampler [34]

Figure 2.4: Langmuir wave packet observed during the type III event by the Time
Domain Sampler [34].

(f2, k2). They produce two oppositely propagating upshifted and downshifted

high frequency sidebands in the non resonant region with frequencies and wave

numbers (f2 - f1, k2 - k1) (Stokes mode) and (f2 + f1, k2 + k1) (anti-Stokes

mode). The nonlinear effect of this process is responsible for the formation of

the Langmuir envelope soliton-caviton pairs [46] and was observed by Voyager as

a possible evidence for the Modulational instability and the spatial collapse of
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Figure 2.5: Positions of STEREO A and B for 23-Nov-2016 21:00 UT [stereo-
ssc.nascom.nasa.gov/where.shtml].

Langmuir waves [47]. When the wave packet intensity is more than the threshold

value, ponderomotive force and self-focusing can overcome linear dispersion and

lead to collapse to produce electromagnetic waves at the plasma frequency and

second harmonic [48]. Thejappa et al. [34; 49; 50; 51; 52] investigated several

observations obtained by the WAVES experiment of the STEREO spacecraft in

solar type III radio bursts and showed that Langmuir waves excited by the elec-

tron beams occur as localized wave packets with durations less than 10 ms, and

the peak intensities well exceed the supersonic Modulational instability thresh-

olds (see Fig 2.3 and 2.4). Their findings indicate that beam stabilization as well

as conversion of Langmuir waves into escaping radiation at the fundamental and

second harmonic of the electron plasma frequency can be described with the help

of the supersonic Modulational instability and the spatial collapse.

On the other hand, Graham et al. [53; 54] investigated the same STEREO events

as Thejappa et. al. [34; 49; 50; 51; 52], but found different results. Their analysis

showed that none of the wave packets are consistent with collapse and they did not

find evidence of modulational instability. This is because Langmuir wave packets

have field strengths too small for collapse to proceed. Thus all the mechanisms

that have been proposed in the literature are controversial and are not sufficient

to solve the problem of generation and survival of plasma radiation over long
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distances. Very recently Sauer and Sydora [55; 56] introduced a new technique to

describe Langmuir oscillations at the plasma frequency with wave number k=0.

This is different than the concept of beam-driven Langmuir waves which undergo

parametric decay into ion acoustic wave and backscattered waves. They showed

that saturation process of the beam instability is accompanied by the formation

of a plateau distribution and the saturation state represents a current which can

drive homogeneous electric field oscillations at the plasma frequency without any

electrostatic instability. They used Ampere’s law instead of Poisson’s equation

to describe this mechanism of current drive in the plasma. In this case, instead

of beam-excited waves of finite wave number, Langmuir oscillations (ω = ωe,

k = 0) acts as a specific pump wave for the modulational instability. Thus this

model gives a possible alternative explanation to resolve the controversy between

Graham et al. [53; 54] and Thejappa et al. [34; 49; 50; 51; 52]. However, both

electrostatic and electromagnetic linear and nonlinear effects can be studied by

current driven oscillations. Investigation of Sauer and Sydora [55; 56] is limited

to only electrostatic case. To the best of our knowledge, no investigation has

been done to explain the mechanism of electromagnetic radiation and their har-

monics in the form of type III radiation. Therefore, in the present study, we have

investigated mechanisms to solve this problem by considering the occurrence of

current-driven Langmuir oscillations in plasmas with plateau distributions. We

have found that the capability of driving Langmuir oscillations after the beam has

saturated, associated with the wave packet formation via modulational instabil-

ity, offers a simple mechanism to explain long-lasting type III emission. We have

made dispersion analysis from linear theory and kinetic (particle-in-cell) electro-

magnetic simulations for nonlinear electrostatic and electromagnetic processes.

2.2 Overview of Approach

In this thesis, we first introduce fundamentals of the solar wind and basic plasma

parameters in Chapter 1. In Chapter 2, we describe our motivation and method-

oogy of the study. In Chapter 3, we present linear dispersion theory analysis

based on local plasma parameters. Chapter 4 is the discussion of particle-in-cell

(PIC) models which are then used to study kinetic simulations for nonlinear elec-

trostatic and electromagnetic process in Chapter 5. Finally, in Chapter 6, we

present the summary and limitations of our present study and propose future

works.
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Flowchart of our approach of investigation

Type III Burst Mechanism

Beam Instability (Langmuir Waves)

Plateau Distribution (Stable but Finite Current)

Current Driven Nonlinear Processes

ElectromagneticElectrostatic

Modulational Instability Modulational Instability

Results and Connection to Observation
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Chapter 3

Linear Analysis

3.1 Introduction

The problem of electron-beam-plasma interactions is one of the most fundamental

processes in space plasmas and plasma instabilities play an important role in

many astrophysical phenomena especially plasmas associated with solar wind,

sun spot, Van Allen radiation belts, pulsars, etc [30]. It is well known that

electron beam instabilities develop into nonlinear waves and turbulence. In this

chapter, in order to clarify the mechanism of Langmuir waves modulation, we

first analyze the linear stability properties of plasmas with a weak electron beam.

We describe a mode for electron beams and make a stability analysis from the

dispersion relation derived by linear analysis. We make numerical solutions to

the dispersion relation and discuss the results for different plasma parameters.

3.2 Electron Beams

An ordered flow as charged particles such as electrons or ions, or a mixture of

them, is referred to a beam. A thermal plasma which is not ordered is not a

beam. The mixture of plasma particles (usually electrons and ions) is space-

charge neutralized and the particles are governed by long-range electromagnetic

interactions. When high current beam enters a plasma, they generate an elec-

tric field. The plasma particles move to cancel the beam generated electric field.

Response of plasma due to incoming beams depends on the kinetic energy of

the plasma particles and it provides complete neutralization of the beam space

charge and current. High current pulsed electron beams can cause large electron
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drift velocity which is responsible for two-stream instability and rapid plasma

heating. The study of the possibility of long distance propagation of electron

beams through the atmosphere is very important to understand space weather.

Beam plasma can be generated by low-energy electron discharges, laser ioniza-

tion, pulsed plasma guns, collisions of beam particles with a background gas, etc

[57].

3.3 Plasma Wave Instability

3.3.1 Instability in Plasma

Stability of plasma is a very important field of plasma physics. In some cases, if

the plasma is not in thermodynamic equilibrium, a collective mode may become

unstable. When small changes in the characteristics of a plasma (e.g. temper-

ature, density, electric fields, magnetic fields) lead to large effect on them and

change the property of the plasma drastically then we call it plasma instability.

Completely stable plasmas are not common in nature because most of the plas-

mas are far from thermodynamic equilibrium. Due to the influence of external

fields, flows of particles, momentum, and energy can be created. The level of the

fluctuations affects the rates of transport processes in the plasma. Mathemati-

cally, general solution of any dispersion relation can be split into two parts as

follows

ω = ωr + iγ, (3.1)

where ωr is the real part and γ is the imaginary part of the angular frequency.

The imaginary part of the angular frequency, γ determines the existence and

non-existence of waves in plasma. If γ is negative, the plasma is stable against

the excitation. On the other hand, when γ is positive, the plasma wave grows

exponentially and the perturbation is unstable [1; 31; 58]. In some situations,

a wave can extract energy from the system by drawing kinetic energy from pre-

existing motion or potential energy from background stratification. In both cases,

the wave amplitude grows over time and becomes unstable. When electrons

have a velocity close to the phase velocity, they experience a stationary field

and strongly interact with the field. If the electron velocity is small compare
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to the phase velocity then they are pushed by the wave and are continuously

accelerated. On the other hand, electrons push the wave and are decelerated

when their velocity is larger than the phase velocity. In Maxwellian distribution,

there are more electrons traveling slower than the wave and the electrons gain

energy from the wave. As a result, the wave loses energy to the electrons and

its amplitude decreases with time. Because there is no free energy in Maxwellian

distribution, there is no instability. In a nonuniform plasma, pressure gradient

provides free energy for low frequency mode.

3.3.2 Instability in Cold Beam Plasma

Through beam-plasma interaction, electron plasma mode can be easily excited by

an electron beam. Let us consider a plasma of cold electrons and a monochromatic

beam of charged particles is injected into it. The distribution function can be

written as

f = (n0/n)δ(v) + (nb/n)δ(v − vb), (3.2)

where vb is the beam velocity and n0 and nb are the densities of the cold electrons

and beam electrons [58]. As described earlier, strong interaction between the

beam and background electrons occurs when the velocity of beam electron Vb is

nearly equal to the phase velocity, i.e., when kvb = ωe. Here ωe is the electron

plasma frequency. When the beam electrons give away energy to the electron

plasma wave, the wave grows exponentially in the time with the rate

γmax =

√
3

2
(
nb

2n0

)1/3ωe. (3.3)

3.4 Water-bag Distribution

A beam can be heated by wave-plasma interaction and becomes broader in the

direction of smaller velocities. Thus beam thermal velocity increases and its

drift velocity decreases. This phenomenon can be illustrated by using water-bag

distributions as shown in figure 3.1. It shows the distribution functions at 4 times

during the evolution of beam-plasma interaction, starting from the initial beam
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Figure 3.1: Distribution function versus velocity normalized to thermal speeed
shows the transition from (a) pronounced beam instability to (d) a stable
state.[55].

(t = t0) up to the formation of a full plateau (t = t3). The gap in velocity space

between the beam and the main plasma diminishes in time up to saturation. In

saturation, the beam instability is completely quenched and a plateau distribution

is formed [55].

3.5 Model Fluid Equations

We consider a simplified beam plasma system where the wave propagates in the

x−z plane along the x-axis, two additional electromagnetic field components, Ez

and By, can be driven by the x− and z− components of the electron beam veloc-

ity, vpx = Vpcosθ, vpz = Vpsinθ, where θ is the angle between the x− axis and the

direction of the streaming plasma and Vp is the beam velocity. Figure 3.2 shows

the schematic of the electromagnetic beam plasma system under consideration.

We can consider our plasma system as a simple one-dimensional box of length L

having an electron plasma (index “e”) at rest with density neo and thermal speed

VTe = (kTe/me)
1/2. The box is continuously filled by the incoming beam(plateau)

plasma (index “p”) of density npo, and initial thermal speed VTp = (kBTp/me)
1/2,

me being the electron rest mass, kB is the Boltzmann constant, Te(Tp) is the

temperature of the main(beam) plasma component. Ions are taken as immo-

bile forming the charge-neutralizing background. The complete system which

describes the coupling between electrostatic and electromagnetic fields consists

of nine equations for the fluid variables ne, vex, vez, np, vpx, vpz and the electro-

magnetic components Ex, Ez and By which are written as
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Figure 3.2: Schematic of the electromagnetic beam plasma system.

• Continuity equation and equations of motion for the main plasma:

∂

∂t
ne +

∂

∂x
(nevex) = 0, (3.4)

∂

∂t
vex + vex

∂

∂x
vex + γa

1

ne

∂

∂x
ne = −(Ex − vTe

c
vezBy), (3.5)

∂

∂t
vez + vex

∂

∂x
vez = (Ez +

vTe

c
vexBy), (3.6)

• Continuity equation and equations of motion for the plateau plasma:

∂

∂t
np +

∂

∂x
(npvpx) = 0, (3.7)

∂

∂t
vpx + vpx

∂

∂x
vpx + γaVp

2 1

np

∂

∂x
np = −(Ex − vTe

c
vpzBy), (3.8)

∂

∂t
vpz + vpx

∂

∂x
vpz = −(Ez +

vTe

c
vpxBy), (3.9)

• Ampere’s and Faraday’s law:

∂

∂t
Ex = nevex + μnpvpx, (3.10)

∂

∂t
Ez − c

vTe

∂By

∂x
= nevez + μnpvpz, (3.11)

∂

∂t
By − c

vTe

∂Ez

∂x
= 0, (3.12)

where ne (np) is the main(plateau) electron density normalized to its equilibrium
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value ne0 (np0), vex (vez) is the electron fluid speed along x(z)− direction nor-

malized to the thermal speed vTe = (kTe/me)
1/2 of main population, Up = Tp/Te,

density ratio μ = np0/ne0 and the adiabatic constant γa = 1.5. The time vari-

able (t) is normalized to the reciprocal plasma frequency ω−1
e = (ε0me/ne0e

2)1/2

with e being the magnitude of the charge of an electron, and space variable (x)

is normalized to the Debye length λD = vTe/ωe. The electric field amplitude E

is normalized to E0 = (me/e)ωevTe . The magnetic field is written in units of

B0 = E0/c where c is the speed of light.

3.6 Derivation of the Dispersion Relation

Using Eqs. (3.4)-(3.21) we will derive a dispersion relation and discuss a simple

dispersion theory to illustrate the transition from an unstable beam to a stable

state. From a solution of the dispersion relation the characteristics of this transi-

tion will be described. To obtain dispersion relation we consider small-amplitude

assumption and expand variables ne, vex, vez, np, vpx, vpz, Ex, Ez and By in power

series of ε as follows

ne = 1 + εn(1)
e , (3.13)

np = 1 + εn(1)
p , (3.14)

vex = 0 + εv(1)ex , (3.15)

vez = 0 + εv(1)ez , (3.16)

vpx = 0 + εv(1)px , (3.17)

vpz = 0 + εv(1)pz , (3.18)

Ex = 0 + εE(1)
x , (3.19)

Ez = 0 + εE(1)
z , (3.20)

By = 0 + εB(1)
z , (3.21)

where ε is a small parameter measuring the weakness of the dispersion. After

taking Fourier transformation and lowest power of ε, Eqs. (3.4)-(3.21) gives
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n(1)
e =

k

ω
v(1)ex , (3.22)

n(1)
p =

k

ω − kvpx
v(1)px , (3.23)

v(1)ex =
−iω

ω2 − k2γU2
e

E(1)
x , (3.24)

v(1)ez =
−i
ω

E(1)
z , (3.25)

B(1)
y =

−kc
ωvTe

E(1)
z , (3.26)

v(1)px =
−i(ω − kvpx )

(ω − kvpx)2 − k2U2
pγ

(E(1)
x +

kvpz
ω

E(1)
z ), (3.27)

v(1)pz =
−i
ω

E(1)
z ). (3.28)

In Fourier transformation, we assumed that the perturbation is proportional to

eikx−iωt, where k is the wave number, ω is the angular frequency, and i is the

imaginary number. Using Eqs. (3.22)-(3.28) in Eq. (5.1), we have

E(1)
x =

μkvpz
A1A2ω

E(1)
z ), (3.29)

where

A1 = (ω − kVpcosθ)
2 − γk2U2

p , (3.30)

A2 = 1− 1

ω2 − γk2U2
e

− μ

A1

(3.31)

μ =
npo

neo

(3.32)

Combination and linearization of Eq. (3.11) and Eq. (3.29) leads to the following

dispersion relation

1− 1 + μ+ (c/vTe)
2k2

ω2
− μk2V 2

p sin
2θ

ω2A1

− μ2k2V 2
p sin

2θ

ω2A2
1A2

= 0. (3.33)
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Figure 3.3: Sketch of the transition from a) pronounced beam instability to c)
a saturated stable state, where μ = npo/neo = 0.01, θ = 30◦, c/VTe=0.05 and
parameters a) beam velocity Vp = 12, and thermal velocity Up = 2. (b) Vp = 10,
Up = 3, and (c) Vp = 9, Up = 4.

Figure 3.4: Sketch of the transition from a) pronounced beam instability to c) a
saturated stable state, where μ = npo/neo = 0.01, beam velocity Vp = 12, thermal
velocity Up = 1, c/VTe=0.05 and a) θ = 30◦, (b) θ = 50◦, and (c) θ = 65◦.

3.7 Dispersion Analysis

The saturation of the beam instability can be studied from the solution of the

dispersion relation given in Eq. 3.33 [35; 59; 60; 61]. To illustrate the properties

of the beam instability we first solve the dispersion relation by calculating the co-

efficients of the polynomial. Results from the solution of Eq. 3.33 are represented

in figures 3.3-3.6. Lower velocity side of the beam has a positive velocity gradient

which causes resonance between the velocity of beam electrons with the phase
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velocity of the waves and this resonance can excites Langmuir waves. Due to

the wave-plasma interaction, beams are heated and beam becomes broader in the

direction of smaller velocities. This means an enhancement of the beam thermal

velocity and a reduction of its drift speed. Plateau distribution is formed when

the gap in velocity space between the beam and the main plasma diminishes in

time up to saturation. Figure 3.3 shows the transition from the onset of beam in-

stability up to saturation form. The top panels of Figure 3.3 show the dispersion

relations of the various modes ( 1. ordinary mode, 2. Langmuir mode, 3. modified

electron acoustic mode, and 4. beam mode). The bottom panels are the imagi-

nary part of the frequency of growth rate of the beam instability corresponding

to the upper panel. This figure shows the transition from a) pronounced beam

instability to c) a saturated stable state, where density ratio, μ = npo/neo = 0.01,

the angle between the x-axis and the direction of the streaming plasma, θ = 30◦,

c/VTe=0.05 and parameters a) beam velocity Vp = VDp/VTe = 12, and thermal

velocity Up = VTp/VTe = 2. (b) Vp = 10, Up = 3, and (c) Vp = 9, Up = 4.

From Figure 3.3(a-c), it is clearly seen that during the transition from maximum

beam instability to full plateau formation the maximum growth rate of the beam

instability goes down and shifts to larger wave numbers. The wavenumber of

maximum instability is initially at kλD ∼ 0.17, it becomes nearly 0.3 just be-

fore the beam saturates. During this process, the related frequency changes from

ω ≤ ωe to ω ≥ ωe. The top most wave mode is the light branch which is due

to the consideration of the electromagnetic waves. It has been also found that

there is no significant change in the ordinary mode due to the change of the beam

velocity and thermal velocity.

Figure 3.4 shows the transition from pronounced beam instability to saturated

state due to the changes of the angle θ between the x-axis and the direction of

the streaming plasma. It has been found that saturation state occurred when

the value of θ is about 65 for μ = 0.01, beam velocity Vp = 12, thermal velocity

Up = 1, c/VTe = 0.05. Also, the maximum growth rate of the beam instability

goes down and shifts to larger wave numbers as θ increases. The wavenumber

of maximum instability is initially at kλD ∼ 0.16, it becomes nearly 0.27 just

before the beam saturates. The light wave mode is not changing with the change

of angle, but Langmuir wave mode shifts towards the larger wave number. Fig-

ure 3.5 shows the change of wave modes and maximum growth rate of the beam

instability with the change of main to beam electron density ratio, μ. From this

30



Figure 3.5: Showing the change of wave modes and maximum growth rate of
the beam instability with the change of main to beam electron density ratio,
μ = npo/neo where θ = 30◦, c/VTe = 0.05, Vp = 10, Up = 3, and (a) μ = 0.01, (b)
μ = 0.05, (c) μ = 0.09.

Figure 3.6: Showing the change of wave modes and maximum growth rate of the
beam instability with the change of c/VTe where θ = 30◦, μ = 0.01, Vp = 12,
Up = 3, and (a) c/VTe = 0.01, (b) c/VTe = 0.03, (c) c/VTe = 0.05.

figure, it is clear that there is no significant change in the light wave mode with

the change of density ratio, but the Langmuir mode shifts slightly towards larger

wave number. On the other hand the position of the maximum growth rate

changes with the change of the value of μ. When μ = 0.01, the wavenumber of

maximum instability is at kλD ∼ 0.35 as shown in figure 3.5(a). If we increase

the value of μ, maximum instability becomes broader and shifts towards smaller

wavenumber. Also, the height of the maximum instability increases with the in-

crease of the value of μ as in figures 3.5(a-c).
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Figure 3.6 Shows the change of wave modes and maximum growth rate of the

beam instability with the change of the value of c/VTe. From this figure, we have

found that there is no significant change of the Langmuir mode with of the value

of c/VTe, but the light mode shifts towards smaller wave number. Also maximum

instability remains constant if we change the value of c/VTe as shown as figure

3.6(a-c).

3.8 Summary

We have considered a simplified beam plasma system consisting of main and beam

electrons to investigate the saturation of the beam instability. Electromagnetic

fluid model has been considered and the characteristics signature of the transition

from beam instability to a saturated state has been described from the solution of

the dispersion relation. The results, which have been found in this investigation

may be pointed out as follows:

1. When the velocity of the beam electrons is in resonance with the phase

velocity the Langmuir waves becomes excited.

2. Saturation occurred when the beam instability is completely quenched as

the gap in velocity space between the beam and the main plasma diminishes.

3. Mode splitting, instability, and the saturation of the of the beam plasma

significantly changes with the change of the plasma parameters such as

beam velocity, thermal velocity, electron density, the angle between the

x-axis and the direction of the streaming plasma, etc.

4. When the beam is heated and a lowering of its drift velocity takes place,

the maximum growth rate of the beam instability goes down and shifts to

larger wave numbers.

5. With the increase of the density ratio, maximum instability increases, be-

comes broader, and shifts towards smaller wavenumber. Langmuir mode

also shifts slightly towards larger wave number.

6. Due to the increase in the value of c/VTe, the light mode shifts towards

smaller wave number, but maximum instability remains constant.
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The results found here is similar to the results investigated by Sauer and Sydora

for electrostatic case [55]. It should be mentioned here that the general trend of

our fluid approach with respect to the beam instability remains nearly the same.

The modifications are due to the consideration of the more general electromag-

netic plasma fluid model. The results found from this investigation is important

as the saturation state acts a driver of the homogeneous electric field oscillations

at plasma frequency. We will discuss this further in Chapter 5.
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Chapter 4

Particle-in-Cell Model

4.1 Introduction

Our natural world can be described based on the description of the interact-

ing elements of matter via force fields. Plasma is a good example because it is

composed of charged particles such as electrons, ions, and charged dust grains.

Plasma particles are interacting via electric and magnetic fields. Particles move

due to their own and applied fields. Computer simulations of such a system can

be conducted by following each particle in the system and their fields. Simula-

tion continues discontinuously in time step by step which is digital[62]. Therefore,

particle models are considered a highly successful model in the simulation of plas-

mas. However, numerical methods that provide sufficient accuracy and stability

should be taken carefully to make the simulations useful. Particle-In-Cell (PIC)

method is a computational simulation method which uses macro-particles or su-

per particles to represent the real ions, electrons, and neutrals. Thus a particle

represents many particles. PIC codes are useful when differential equations de-

scribe fields in terms of particle sources. In PIC simulation, the force acting on

the particles are calculated from the fields rather than direct binary interactions

which reduces calculation to order n rather than n2[62]. PIC codes are useful in

almost all areas of plasma physics, such as plasma accelerators, space physics,

fusion energy research, ion propulsion, plasma processing, etc.
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4.2 Overview of PIC model

Various PIC codes, such as electrostatic, magnetostatic, electromagnetic, etc. are

used depending on the kind of forces that are included in the plasma description.

In this thesis, we concentrate on the electrostatic and electromagnetic particle

in cell codes. However, to simplify our discussion, we first discuss the basics of

the electrostatic PIC code. Interaction of charged particles can be described by

Coulomb’s law as follows

F =
1

4πε0

q1q2
r3

r12, (4.1)

where q1 and q2 represent the charges of the two particles, r is the distance

between them, and ε0 is the vacuum permittivity constant. Plasma simulation

could be performed by taking all the real physical ions and electrons and directly

computing the force using above Coulomb’s force equation. Generally, plasma

simulations require at least 1 million particles. As Coulomb force leads to an n2

problem, computation of a single time step would require at least 1 trillion oper-

ations which very difficult to perform. Therefore, as we mentioned earlier, super

particles are considered and the force acting on charged particles is calculated by

using the Lorentz Force,

F = q(E+ v ×B), (4.2)

where q is the particle charge, E is the electric field, v is the particle velocity,

and B is the magnetic field. The motion of each super-particle is governed by

Newton’s Second Law of motion and the electric potential given by Poisson’s

equation. The Particle in Cell method consists of the following iterative steps:

i. Compute Charge Density : Charge density is the number of charge units per

unit volume. It is computed by distributing charge of all particles onto the

nodes of computational cells and then dividing by the corresponding node

volume.

ii. Compute the electric potential : The electric potential is calculated by solv-

ing Poisson’s equation.
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iii. Compute the electric field : Electric field is computed from the gradient of

the potential.

iv. Move the particles : Positions and velocities of particles are updated by

using Newton’s Second Law. Particle motions are integrated through a

time step. The Leapfrog method is commonly used in PIC codes as it is

fast and numerically stable.

v. Boundary conditions : Boundary conditions are applied to continue the sim-

ulation.

vi. Output results : Output from PIC codes such as potential, charge density,

electron temperature, velocities and current densities, total kinetic and po-

tential energy of the simulation, etc. need to be saved on simulation state

at preset time-steps.

vii. Repeat : The loop repeats until conditions are satisfied.

4.3 Electrostatic Plasma Simulation Model

For our study of electrostatic plasma, we use one dimentional Particle-in-Cell

(PIC) code developed by V. K. Decyk in the UCLA Particle-in-Cell (UPIC)

Framework[63; 64]. In the electrostatic problem, the PIC code solves the particle

equations of motion and the force of interaction is determined by solving the

Poisson equation. The simulation code is one-dimensional and is useful when

inductive electric and magnetic fields are not important. Usually, PIC codes are

set up as grid systems with grid spacing Δx and periodic boundary conditions.

Particles are able to exist anywhere in the cells. Charge density is accumulated

on a grid from the particle co-ordinates. Fields are calculated at the grid points

and then interpolated back to the particle positions to determine the forces there.

There are three important procedures in the main iteration loop. The first step

is the deposit where particle quantity such as charge is accumulated on a grid via

interpolation to produce. Secondly, the field solver solves Maxwell’s equation or

a subset to obtain the electric and/or magnetic fields from the source densities.

Once the fields are obtained, the particle forces are found by interpolation from

the grid. Newton’s second law and the Lorentz force are used to update particle

co-ordinates[63; 64]. The main interaction loop can be summarised as follows.

The charge density ρ is calculated on a mesh from the particle position:
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ρ(x) =
∑
i

qiS(x− xi), (4.3)

where qi is the charge and xi is the position of the i -th particle. The function

S(x) is known as the particle shape function. This would be a delta function

for point particles, but finite size in simulations are commonly used in computer

modeling which suppress numerical heating that arises from not being able to re-

solve particle density fluctuations smaller than the grid spacing [63]. To calculate

the field E, Poisson’s Equation or Ampere’s law are solved

∂

∂x
Ex = 4πρ, (4.4)

∂

∂t
Ex = 4πj, (4.5)

where j is the current density and background magnetic field B0 = 0. Poisson’s

Equation given in Eq. 4.4 does not have k = 0 mode and hence is not suitable

to describe the mechanism of current driven Langmuir oscillations in plasma.

Instead of Poisson’s Equation, one must use Ampere’s law given in Eq. 4.5

which has k = 0 mode and therefore is suitable for describing plasma oscillations.

The difference between the simulation results found from Poisson’s Equation and

Ampere’s law will be discussed in next chapter. Newton’s Law of motion is used

to advance particle co-ordinates

mi
dvi

dt
= qi

∫
[E(x)]S(x− xi)dx, (4.6)

dxi

dt
= vi, (4.7)

where mi is the mass and vi is the velocity of the i -th particle. The discrete

equations of motion for the particles are described by using Leapfrog method of

time stepping as follows:

vi(t +
�t

2
) = vi(t − �t

2
) +

qi
mi

, (4.8)

xi(t +�t) = xi(t) + vi(t +
�t

2
)�t (4.9)

The codes described here are spectral and solve the electric field using Fourier
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transforms.

4.4 Electromagnetic Plasma Simulation Model

Electromagnetic plasma model includes both plasma waves and electromagnetic

waves and the electromagnetic code includes all the electric and magnetic fields

described by Maxwell’s equation. The charge density ρ and the current density j

are calculated on a mesh using particle positions and velocities[63; 64].

ρ(x) =
∑
i

qiS(x− xi), (4.10)

j(x) =
∑
i

qiviS(x− xi), (4.11)

where qi, xi, and vi are the charge, position, and velocity of the i-th particle.

With the definition of charge and current densities given in Eqs. (4.10-4.11), the

equation of continuity is automatically satisfied:

∇ · j =
∑
i

qivi · ∇S(x− xi)(t) = −∂ρ

∂t
(4.12)

Electric field E and magnetic field B are obtained by solving maxwell’s equation

with fast Fourier transforms for periodic boundary condition.

∇×B =
4π

c
j+

1

c

∂E

∂t
, (4.13)

∇× E = −1

c

∂B

∂t
, (4.14)

∇ ·B = 0, (4.15)

∇ · E = 4πρ, (4.16)

Lorentz Forces are used to advance particle co-ordinates

mi
dvi

dt
= qi

∫
[E(x) + vi ·B(x)/c]S(x− xi)dx, (4.17)

dxi

dt
= vi, (4.18)
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In discretizing time for the field equations the magnetic field is advanced half a

step using the old electric field and then leap-frog the electric field a whole step

using the new magnetic field. Finally advance the magnetic field the remaining

half step using the new electric field[63; 64].

B(k, t − �t

2
) = B(k, t −�t)− ick× E(k, t −�t)

�t

2
, (4.19)

E(k, t) = E(k, t −�t) + [ick×B(k, t − �t

2
)− 4πj(k , t − �t

2
)]� t , (4.20)

B(k, t) = B(k, t − �t

2
)− ick× E(k, t)

�t

2
). (4.21)

The time step should be short enough to maintain the Courant condition c� t ≤
�. The discrete equations of motion for electromagnetic case are given by

vi(t +
�t

2
) = vi(t − �t

2
) +

qi
mi

[E(xi(t)) (4.22)

+
1

2
(vi(t +

�t

2
) + vi(t − �t

2
))× 1

c
B(xi(t))]� t , (4.23)

xi(t +�t) = xi(t) + vi(t +
�t

2
)�t (4.24)

4.5 Summary

In this chapter, we have discussed the fundamentals of the particle-in-cell code

and explained the governing equations for both electrostatic and electromagnetic

cases based on the code developed by V. K. Decyk[63; 64]. Electrostatic PIC

model is useful when inductive electric and magnetic fields are not important

whereas electromagnetic PIC code includes all the electric and magnetic fields

described by Maxwell’s equation. However, in this thesis, both electrostatic and

electromagnetic PIC codes are used to investigate the properties of the Lang-

muir oscillations in the solar wind. The simulation results for both cases will be

discussed in the next chapter.
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Chapter 5

Beam Plasma Instability Analysis

5.1 Introduction

Beam-plasma interaction and Langmuir oscillations have attracted a great deal

of interest due to their enormous applications in astrophysics especially to find

out the mechanism of the Langmuir amplitude modulations and harmonic waves

observed in several spacecraft measurements in the solar wind and in planetary

region [47; 55; 56; 65; 66; 67]. In Chapter 3, we have investigated the linear

dispersion analysis and found that beam becomes saturated in different plasma

conditions. When the beam becomes stable no wave activity is expected, but

different theoretical, laboratory, and space observations reveal the opposite sce-

nario i.e., wave activity are found even after the beam is out of resonance with

the phase velocity of the waves and the wave number ranges are well separated

from maximum linear instability[55; 68; 69; 70; 71].

Common interpretations to explain the wave activity are wave-wave interaction

and parametric decay[42]. One of the most effective proposed beam stabilization

mechanisms is the strong turbulence processes which can pump the Langmuir

waves toward higher wave numbers. It is possible because of very intense Lang-

muir waves associated with the type III bursts. Oscillating two-stream instability,

also known as supersonic modulational instability, is a strong turbulence pro-

cess and it excites a low-frequency ion density perturbation of a given frequency

and wave number. Its beat with beam-excited Langmuir waves of different fre-

quencies and wave numbers produce high-frequency down-shifted and up-shifted

sidebands.[44]. Spatial collapse related to modulational instability occurs due

to intensification of the localized Langmuir wave packet in the self-generated
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shrinking density cavity[50]. As an alternative mechanism, Sauer and Sydora

[55] introduced antenna concept and argued that the plateau plasma acts as a

driver of wave modes beyond the beam instability.

In this Chapter, we have considered both electrostatic and electromagnetic plasma

models and investigated nonlinear effects by current driven oscillations. In sec-

tion 2, we have described how the current driven Langmuir oscillation occurs

in electrostatic plasma by using particle in cell (PIC) code. Generation of the

Langmuir wave packets via modulational instability of current-driven Langmuir

oscillations are studied in section 3 for the electrostatic case and in section 4

for the electromagnetic case. Finally, a summary of our findings is presented in

section 5.

5.2 Current Driven Langmuir Oscillations

We start the PIC simulations with a stable plasma-plateau configuration, simi-

lar to that in Figure 3.3(c) in chapter 3. Electron plasma consists of the main

electrons and plateau electrons are considered. Charge neutrality is preserved by

using a fixed position ion background plasma. The main plasma electrons follow

Maxwellian distribution functions and plateau which is formed by superposition

of multiple shifted Maxwellian distribution functions. Thus two plasma popula-

tions form bump-on-tail distributions as shown in Figure 2.2. We calculated the

electric field Ex by using both Poisson equation and Ampere’s law and show the

difference between them.

We used particle-in-cell (PIC) simulation developed by V. K. Decyk in the UCLA

Particle-in-Cell (UPIC) Framework[63; 64]. The mathematical theory related

to PIC simulations are presented in Chapter 4. Periodic boundary conditions

are used for fields and particles. Simulation parameters taken are: system size

L = 512λD, grid spacing Δx = λD, average particle number N = 1100 particles/-

cell, and time step ωeΔt = 0.05, beam to main electrons density ratio α = 0.1,

normalized velocity of beam electrons Vp = 4 and thermal velocity of beam elec-

trons, Up = 0.3. The use of a relatively high beam density is used to overcome

the thermal and numerical noise level. Plateau current jp ∼ αVp = 0.4. In

the PIC simulation model, particle positions are distributed within the compu-

tational domain and electric potential and field are calculated from the charge
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Figure 5.1: The x − t evolution of the electric field, found from PIC simulation
using Poisson equation, exhibits the typical stripe pattern of a propagating wave.

Figure 5.2: Result of PIC simulation using Poisson equation shows the temporal
evolution of the electric field at x/λD = 250.

density using Ampere’s law or Poisson’s equation. Positions and velocities of

particles are then updated using Newton-Lorentz equation of motion. As we

mentioned in the previous chapter, in the Ampere formulation, the k = 0 compo-

nent describes Langmuir oscillations which are absent in the Poisson formulation.
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Figure 5.3: The x − t evolution of the electric field, found from PIC simulation
using Ampere’s Law, exhibits Langmuir oscillations.

Figure 5.4: Result of PIC simulation using Ampere’s Law shows the temporal
evolution of the electric field at x/λD = 250.

Space-time evolution has been calculated and the simulation results are presented

in Figures 5.1-5.4. These Figures demonstrate the different evolution of the elec-

tric field according to which equation has been used for its calculation. Figures

5.1-5.2 are found from PIC simulation using Poisson equation. Figure 5.1 shows

the x−t evolution of the electric field and Figure 5.2 shows the periodic variations
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of the electric field at x/λD = 250. From these Figures, it is clear that Poisson’s

equation gives the typical stripe pattern of a propagating wave with finite phase

velocity.

Figures 5.3-5.4 are found by using Ampere’s law. Figure 5.3 shows the x − t

evolution of the electric field. Ampere’s law gives the horizontal colored lines

exhibiting Langmuir oscillations (ω ∼ ωe, k ∼ 0) which is driven by the finite

current in the plasma. Figure 5.4 shows the periodic variations of the electric

field at x/λD = 250. The periodic variations of the electric field are a clear

manifestation of current-driven Langmuir oscillations at the plasma frequency

ωe. This only occurs if the plasma is described by Ampere’s law.

5.3 Modulational Instability: Electrostatic Case

The electric field of Langmuir oscillations can act as a pump wave and gener-

ate Langmuir envelope solitons as nonlinear effects via modulational instability.

Due to its low threshold, the modulational instability can arise spontaneously.

To investigate nonlinear effects we used kinetic PIC simulations for the electro-

static case. We consider ions that are not drifting, but electrons have a relative

drift motion with vd = 0.2 against the ions to drive Langmuir waves. Periodic

boundary conditions for the fields and particles are used as before. Simulation

parameters used are system size L = 500λD, grid spacing Δx = λD, number of

grid points = 1024, average particle number N = 3000 particles/cell, ratio of the

electron temperature to the ion temperature Te/Ti = 100, ion to electron mass

ratio mi/me = 64, and the time step ωeΔt = 0.2. We used Ampere’s law given

in Eq. 4.5 which has k = 0 mode and therefore is suitable for describing plasma

oscillations.

Figure 5.5 shows space-time evolution of the electric field amplitude E(x, t)/E0

for electrostatic case in the time interval ωet = 500− 2500. Below ωet = 500 only

Langmuir oscillations with random density variations exist. This figure shows

that the field structures become visible and solitons are formed. Figure 5.6 shows

spatial profile related to Fig. 5.5 at ωet = 800. From the spatial field in Figure

5.5 one can deduce a wavelength of roughly λ = 80λD which corresponds to a

wave number of kλD ∼ 0.08. Similar results are found from density profiles shown

in Figures 5.8-5.9. Figure 5.8 shows the space-time evolution of the ion density
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Figure 5.5: Shows the space-time evolution of the electric field amplitude
E(x, t)/E0 where field structuring become visible and solitons are formed due
to the modulational instability.

Figure 5.6: Shows spatial profile related to Fig. 5.5 at ωet = 800.

ni(x, t)/n0 and Figure 5.9 shows related spatial profile at ωet = 800. It is clear

from these figures that the density structures become visible and cavitons are

formed, probably due to the modulational instability. From the spatial profile

of ion density wavelength is about 80λD which is same as the wavelength found

from the spatial profile of the electric field. Therefore wave number kλD ∼ 0.08

in both cases.
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Figure 5.7: Shows temporal variation of of the electric field E(t)/E0 at x/λD =
220.

Figures 5.10 and 5.11 show the power spectrum of the electric field E(ω) at x/λD

= 220. Figure 5.10 shows two well-defined peaks near plasma frequemcy, ωe

whereas figure 5.11 shows double peaks with low frequency near ω = 0.07ωe. We

will discuss them more detail when we compare our result with space observation

in Section 5.5.

Now we examine how solitons and cavitons are formed are due to modulational

instability. Two electron waves of frequency and wavenumber ω1, k1 and ω2,

k2 respectively can beat to form an amplitude envelope travelling at a velocity

vg = (ω2 − ω1)/(k2 − k1). This velocity may be low enough to lie within the

ion distribution function and there can be an energy exchange with the resonant

ions. The ions see the effective potential due to the ponderomotive force and

the Landau damping or growth can occur. Damping provides an effective way to

heat ions with high frequency waves. If the distribution is double humped it can

excite the electron waves and causes modulational instability. When an electron

plasma waves go nonlinear, the ponderomotive force of the plasma waves causes

the background plasma to move away, causing a local depression in density called

a caviton. Plasma waves trapped in this cavity then form an isolated structure

called an envelope solition. solitons are propagating structures maintaining their

shape through the balance between nonlinearity and dispersion. The pondero-

motive force caused by the envelope of a modulated waves can trap particles and

cause wave particle resonance at the group velocity [31].
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Figure 5.8: Shows the space-time evolution of the ion density ni(x, t)/n0. Den-
sity structuring become visible and cavitons are formed due to the modulational
instability.

Figure 5.9: Shows spatial profile related to Fig. 5.8 at ωet = 800.

Modulational instability and solition-caviton formation in Figures 5.5-5.9 can be

explained from the solutions of the Zakharov equation [45]. A solution of the

Zhakharov equation for a localized caviton is given by

δE ∝ 1

L
sech(

x

L
), (5.1)

where δE is the change in electric field amplitude or simply E/E0. E0 is the initial

electric field amplitude. From the simulation result for spatial field and density
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Figure 5.10: Shows the power spectrum of the electric field E(ω) at x/λD = 220.

Figure 5.11: Shows low frequency power spectrum of the electric field E(ω) at
x/λD = 220.

profile, the length of the caviton, L ∼ 80λD which corresponds to a wave number

of kλD ∼ 0.08. Again the Zhakharov equation with subsonic approximation

predicts ion density depression given by

δni

n0

=
1

4
|δE|2, (5.2)

Figure 5.7 shows the maximum electric field amplitude is about 0.75. Thus

δni/n0 ∼ 0.25(E/E0)
2 ∼ 0.14. From Figure 5.9 we have found that the value
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Figure 5.12: Shows how the value of the electric field E(k) varies with different
wave mode number in k− space for different time ranges.

of δni/n0 is around 0.12. Again approximate growth rate can be calculated using

the following relation[72]

γ

ωe

= (
me

3mi

)1/2
E

2E0

, (5.3)

Theoretically, the growth rate is about 7 · 10−3. From the temporal evolution in

Figure 5.7 the roughly estimated growth rate is 3 ·10−4 which is close to the theo-

retical value. Therefore we can say that plasma structuring due to the formation

of Langmuir wave packets in Figures 5.5-5.6 are correlated with self-generated

ion density depressions shown in Figures 5.8-5.9.

Figure 5.12 shows how the value of the electric field E(k) varies with different wave

mode number in k− space for different time ranges. The logarithmic values of the

average electric field for a particular time ranges ( for example, ωet = 350−400 for

black colored plot) are plotted against the wave mode numbers. This figure shows

that the value of the average electric filed for a particular time range decreases

with the increase of the mode number. So, at lower mode number we have high

value of the electric field. The wave number k is defined by

k =
2π

λ
=

2πn

L
, (5.4)

where n is the mode number and L is the system length as defined before. There-
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Figure 5.13: Shows the space-time evolution of x− component of the electric field
amplitude Ex(x, t)/E0 for ωet = 0 to ωet = 1000.

Figure 5.14: Shows the space-time evolution of x− component of the electric field
amplitude Ex(x, t)/E0 for ωet = 1000 to ωet = 3000.

fore, for n = 1, wave number k = 2π/512 ∼ 0.012. Therefore, the electric field

increase with the decrease of the wave number and reaches maximum with min-

imum value of the wave number (at k = 0). In other word, the electric field is

relatively strong at long wavelength. Figure 5.12 also clearly shows the enhance-

ment of the long wavelengths over time.
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Figure 5.15: Extended view of the space-time evolution of x− component of the
electric field amplitude Ex(x, t)/E0 for ωet = 1850 to ωet = 3000.

Figure 5.16: Shows spatial profile related to Figure 5.14 at ωet = 2400.

5.4 Modulational Instability: Electromagnetic

Case

In this section, we have studied the nonlinear consequence of the current driven

Langmuir oscillation for the electromagnetic plasma and investigated the gener-

ation and propagation of wave packets. We have found that the electric field of

Langmuir oscillations can act as a pump wave and generate Langmuir envelope

solitons as nonlinear effects via modulational instability. However, the nature of

the evolution of the solitary and density cavity structure in the electromagnetic

case is different than the electrostatic case. To investigate nonlinear effects we

used kinetic PIC simulations for the electromagnetic case. We consider ions with
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Figure 5.17: Shows temporal variation of x− component of the electric field Ex(t)
at x/λD = 166.

Figure 5.18: Shows power spectrum of x− component of the electric field Ex(ω)
for x/λD = 166.

no net drift, but electrons have a relative drift motion with vd = 0.3 against the

ions to drive Langmuir waves. Periodic boundary conditions for the fields and

particles are used as before. The the electromagnetic simulation mode is one-

dimensional in space (x), three-dimensional in velocity space v = (vx, vy, vz), with

three-dimensional electromagnetic fields E = (Ex, Ey, Ez) and B = (Bx, By, Bz).

The wave vector k is also one-dimensional and lies in the x− direction. Simula-

tion parameters used are system size L = 500λD, grid spacing Δx = λD, number
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Figure 5.19: Shows the space-time evolution of y− component of the electric field
amplitude Ey(x, t)/E0.

Figure 5.20: Shows spatial profile related to Figure 5.19 at ωet = 2200.

of grid points = 1024, average particle number N = 3000 particles/cell, ratio of

the electron temperature to the ion temperature Te/Ti = 100, ion to electron

mass ratio mi/me = 64, normalised velocity of light c/VTe = 10, and the time

step ωeΔt = 0.02.

Results found from the electromagnetic PIC simulation are presented in Figures

5.13-5.27. Figure 5.13 shows the space-time evolution of x− component of the

electric field amplitude Ex(x, t)/E0 for ωet = 0 to ωet = 1000. From this figure

we see that Langmuir oscillations exist, no field structures are formed before ωet
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Figure 5.21: Shows temporal variation of y− component of the electric field Ey(t)
at x/λD = 166.

Figure 5.22: Shows power spectrum of y− component of the electric field Ey(ω)
for x/λD = 166.

= 500. When ωet > 500, the field structures becomes visible and evolution occurs

as shown in Figure 5.14. These solitary structures are formed due to modula-

tional instability as we described in the previous section. Figure 5.15 shows the

extended view of the space-time evolution of x component of the electric field

amplitude for ωet = 1850 to ωet = 3000. From these figures it is clear that the

solitary structure remains almost stationary from ωet = 1000 to ωet = 1800. Af-

ter ωet = 1800, it splits into two branches. One branch of wave packets remains

stationary and another branch of wave packets start to move (towards left in the

figure). The straight red line shows the stationary solitary waves with almost

zero phase and group velocity. Thus they are localized in the solar wind. The left
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Figure 5.23: Shows the space-time evolution of z− component of the magnetic
field amplitude Bz(x, t)/B0.

Figure 5.24: Shows spatial profile related to Figure 5.23 at ωet = 2200.

red curve line shows the propagation of the solitary waves with phase and group

velocity.

The spatial profile related to Figure. 5.14 is shown in Figure 5.16 for ωet =

2400. It shows that the plasma structuring appears at around x/λD = 166 at

x/λD = 255. Figure 5.17 shows temporal variation of x component of the electric

field Ex(t) at x/λD = 166. It shows that wave packet forms after ωet = 500.

From ωet = 0 to 1500, the frequency of the oscillations is about 0.07ωe which is

also clear in power spectrum in Figure 5.18. After ωet = 1500, it shifts to more

lower frequency region (about 0.0125ωe).
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Figure 5.25: Shows the space-time evolution of the ion density ni(x, t)/n0 for
electromagnetic case.

Figure 5.26: Shows spatial profile related to Figure 5.25 at ωet = 2400.

Now we want to focus on the electromagnetic field components i.e., y component

of electric field Ey and z component of magnetic field Bz. Figure 5.19 Shows the

space-time evolution of y component of the electric field amplitude Ey(x, t)/E0.

Spatial profile related to Figure 5.19 at ωet = 2200 is shown in Figure 5.20. It

shows that the plasma structuring appears at around x/λD = 166 at x/λD = 300.

Temporal variation and power spectrum of y component of the electric field are

presented in Figures 5.21 and 5.22 respectively with x/λD = 166. From Figure

5.19 and 5.20, it is clear that solitary structures are formed like in electrostatic
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Figure 5.27: Shows temporal variation of the ion density ni(t) at x/λD = 166.

case, but later their time evolution differs significantly. Power spectrum shows

three peaks. One peak is at the plasma frequency ωe, second peak is at 0.8ωe

and the third peaks is at 0.002ωe. Space-time evolution of z component of the

magnetic field amplitude Bz(x, t)/B0 is shown in Figure 5.23 and their spatial

profile is shown in 5.24. Again clear field structuring is visible due to modula-

tional instability. It becomes more clear when we analyze the electromagnetic

density profiles given in Figures 5.25-5.27. From space-time evolution of the ion

density ni(x, t)/n0 in Figure 5.25, it is clear that the density cavitons are formed

after ωet = 500 and then remains almost stationary from ωet = 1000 to ωet =

1800. After ωet = 1800, it splits into two branches. One branch of density cavity

remains stationary and other branch starts to move (towards left in the figure).

The straight dark blue line shows the stationary density cavity with almost zero

phase and group velocity. Thus they are localized in the solar wind. The left

blue curve line shows the propagation of density cavity the with finite phase and

group velocity.

Figure 5.26 shows the density spatial profile for the electromagnetic case. From

the spatial profile of the ion density, the wavelength is about 100λD. Therefore

the wave number kλD ∼ 0.06. Maximum electric field amplitude is about 0.6.

Thus from Eq. 5.3 the maximum field amplitude is correlated with a density

depression of about 10%. Figure 5.27 shows the temporal variation of the ion

density ni(t) at x/λD = 166. Figure 5.27 and 5.17 are correlated. Figures 5.20,

5.24 and 5.26 indicate how the electric field and magnetic field amplitude of the
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electromagnetic wave and the ion density depression are related. Both Ey and Bz

fields are at the peak when the density reaches to minimum. This is due to the

ponderomotive force of the plasma waves which causes ions to flow towards the

minima and the electromagnetic plasma waves trapped in the cavity. It should

be noted that for the electromagnetic case soliton-caviton structures are formed

like electrostatic case, but later solitary structures delocalize and some energy

leaks out from the cavity.

It should be noted here that the normalized peak energy density WL controls

the nonlinear beam–plasma interaction. If WL ≥ (kλD)
2, then the dominant

nonlinear beam plasma interactions are the modulational instability and the fully

developed soliton formation and collapse[50]. In our study for the electrostatic

case, kλD ∼ 0.08 and for the electromagnetic, case kλD ∼ 0.06. Thus the value of

(kλD)
2 is 6.4·10−3 and 3.6·10−3 for the electrostatic and the electromagnetic cases

respectively. The energy density WL is related to E/E0 by W = (E/E0)
2/4. For

the electrostatic case, E/E0 ∼ 0.75 and for the electromagnetic case, E/E0 ∼
0.7. Thus WL is 0.14 and 0.12 for the electrostatic and the electromagnetic

case respectively. Therefore, the conditions are satisfied for the modulational

instability in both cases.

5.5 Connection to the Space Observation

Numerous publications on spacecraft measurements of wave packet generation

and spatial collapse of the Langmuir waves can be found in the literature[34; 49;

50; 51; 52; 53; 54; 67]. There is a broad range of variation of the electric field

amplitude from mV/m to V/m in these events. Some events exhibit distinct

double peaks near the plasma frequency (∼ 30kHz) and many of them have low

and high frequency in the power spectrum. In this section, we will discuss two

spacecraft events to connect our present study with the observation.

High time resolution observations of a Langmuir wave packet associated with a

type III radio burst was investigated by Thejappa et al.[34; 50]. In Chapter 2,

Figures 2.1 shows the dynamic spectrum of a local type III radio burst and as-

sociated Langmuir waves (non-drifting emissions in the frequency interval 27-32

kHz) of the event observed by STEREO A on 12 September 2010. Related power

spectrum is presented in figure 2.3. The power spectrum figure shows the narrow
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Figure 5.28: Waveform and spectrum of Langmuir waves and density perturba-
tions of the event observed by STEREO A on 19 December 2011 at 13:50:55.160
UT. (a)Waveform of electric field. (b) Density perturbations. (c) Power spectrum
near plasma frequency. (d) Power spectrum at low frequency[67].

spectrum containing an intense peak near plasma frequency 30 kHz. The low

frequency spectrum was found below 450 Hz. These observation are comparable

with our results for both electrostatic and electromagnetic cases. Power spec-

trum of the electrostatic case as shown in figures 5.10 and 5.11 clearly reveals

intense peaks near plasma frequency ω = ωe and low frequency spectrum near

ω = 0.07ωe. In this case, we have distinct double peaks near the plasma frequency

(∼ 30kHz) and at the low frequency region. Power spectrum of x− and y− com-

ponent of the electric field presented in Figures 5.18 and 5.22 respectively shows

the similar results found by Thejappa et al.[34; 50]. The low frequency spectrum

showing an enhancement below 100 Hz corresponding probably to ion-acoustic

waves.
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Observation of the STEREO A on 19 December 2011 at 13:50:55.160 UT inves-

tigated by Graham and Cairns [67] is shown in Figure 5.28. Figure 5.28(c) and

5.28(d) shows the similar results as we discussed before. Figure 5.28(a) shows the

waveform of the Langmuir waves which is comparable with the field oscillation

shown in Figure 5.17. Both the observation and simulation show the formation

of the Langmuir wave packet. The observed power duration is about 20 ms Gra-

ham and Cairns [67] and 3.2ms by Thejappa et al.[34; 50]. From Figure 5.17,

we find the duration is about 3ms. As duration can vary from burst to burst,

we can say that our simulation results give a reasonable value. Figure 5.28(b)

shows that the density perturbations of the event. Comparing Figures 5.28(a)

and 5.28(b) with Figures 5.17 and 5.27, we can say that the density perturbations

are maximal where the Langmuir waves are most intense. Therefore results from

our simulation are qualitatively comparable with the space observations.

5.6 Summary

In this Chapter, we have considered electrostatic and electromagnetic plasma

models and investigated the mechanism of generation of Langmuir oscillations

and their nonlinear effects by using particle in cell (PIC) code. The results,

which have been found in this investigation can be summarised as follows:

i. Saturation process of the beam instability is accompanied by the formation

of a plateau distribution and the saturation state represents a current

ii. Ampere formulation has k = 0 component which is absent in the Poisson’s

equation. To describe Langmuir oscillations Ampere’s law is needed instead

of Poisson’s equation.

iii. Current in the saturated state can drive homogeneous electric field oscilla-

tions at the plasma frequency.

iv. Langmuir oscillations (ω = ωe, k = 0) act as a specific pump wave for the

modulational instability for both electrostatic and electromagnetic cases.

v. Wave number, maximum amplitude and growth rate conditions for the mod-

ulational instability are satisfied in electrostatic and electromagnetic cases.
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vi. In electromagnetic case, solitary structures are formed via modulational

instability but later time evolution differs from electrostatic case and the

solitary structures become de-localized.

vii. Density cavities are formed in both electrostatic and electromagnetic cases,

but some energy leaks out and comparatively complex structures are formed

in the electromagnetic case.

viii. Simulation results are qualitatively comparable with the spacecraft obser-

vations of the Langmuir waves.
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Chapter 6

Summary and Future Work

In this Chapter, we summarise the main features of this thesis and outline pos-

sible future works related to our study.

In Chapter 1, we introduced fundamentals of the solar wind and basic plasma pa-

rameters. We discussed the formation, basic properties and space observation of

different kinds of solar radio bursts. Fundamentals of plasma physics e.g., Debye

shielding, Debye length, plasma frequency, plasma waves, and instability were

discussed as they are important for understanding our present study. In Chapter

2, we discussed objective, motivation, and approach of our research. Our primary

objective was to study the problem of generation of electromagnetic radiation by

solar wind at the plasma frequency and to understand how the continuous type

III radiation survives over large distances, e.g., from Sun to Earth.

In Chapter 3, we considered a simplified beam-plasma system consisting of main

and beam electrons and investigated the saturation of the beam instability. An

electromagnetic fluid model was considered and the characteristics signature of

the transition from beam instability to a saturated state had been described from

the solution of the dispersion relation. We found that when the velocity of the

beam electrons is in resonance with the phase velocity the Langmuir waves be-

comes excited and saturation occurred when the beam instability is completely

quenched, as the gap in velocity space between the beam and the main plasma

diminishes. Mode splitting, instability, and the saturation of the of the beam

plasma significantly changes with the change of the plasma parameters such as

beam velocity, thermal velocity, electron density, angle between the x-axis and

the direction of the streaming plasma, etc. When the beam is heated and a
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lowering of its drift velocity takes place, the maximum growth rate of the beam

instability goes down and shifts to larger wave numbers. With the increase of

the density ratio, maximum instability increases, becomes broader, and shifts

towards smaller wavenumber. The Langmuir mode also shifts slightly towards

larger wave number.

Chapter 4 is the discussion of electrostatic and electromagnetic particle-in-cell

(PIC) models which are then used to study kinetic electromagnetic simulations

for nonlinear electrostatic and electromagnetic process in Chapter 5. To describe

Langmuir oscillations Ampere’s law was used instead of Poisson’s equation as

Ampere formulation has k = 0 component which is absent in the Poisson’s equa-

tion. We found that the current in the saturated state can drive homogeneous

electric field oscillations at the plasma frequency and the electric field of Langmuir

oscillations can act as a pump wave and generate Langmuir envelope solitons as a

nonlinear effect via modulational instability. We discussed how the wave number,

maximum amplitude and growth rate conditions for the modulational instabil-

ity are satisfied for both electrostatic and electromagnetic cases. We concluded

that in the electromagnetic case, solitary structures are formed via modulational

instability but later time evolution differs from the electrostatic case and the soli-

tary structure becomes de-localized. The density cavities are formed but some

energy leaks out. Finally, simulation results were compared qualitatively with

the spacecraft observations.

This work could be extended to include a more detailed analysis of the trapped

electromagnetic radiation with density profile. The occurrence of multipeaked

frequency spectra in electromagnetic second harmonic in the form of type III

radiation can be analyzed in more detail. Further investigations are needed to

study the electromagnetic harmonic generation in space. Theoretical results can

be examined more detailed with space observation e.g., TDS events presented by

Thejappa et al. [34; 50; 51]. Related proposed mechanisms such as electrostatic

decay, electromagnetic decay, nonlinear currents, antenna radiation, and electron

trapping can also be compared with our findings, but it beyond the scope of this

thesis.
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Appendix

Dispersion Matrix Formulation

Dispersion of Langmuir/electromagnetic waves in warm electron plasma with

warm beam - oblique propagation:

protons (p) are absent,

main electrons (e) are warm

beam electrons (b) are warm

The wave (k-vector) propagates in x-direction, the beam (plateau) is

inclined to k by the angle Teta:

Vbx = Vb cost

Vbz = Vb sint

System of equations is the following:

LE.Ve = ce E

LB.Vb = MB.E

FFE.E = cj (- De Ve - Db NB.Vb)

This gives:

Vb = LBINV.MB.E

LE.FFE.E = cj (- De ce E - Db (LE.NB).Vb)
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LE.FFE.E = cj (- ce De E - Db (LE.NB).Vb)

The dispersion matrix then is given by:

MM = LE.FFE + cj ce De II + cj Db (LE.NB).(LBINV.MB)

cj= I*y, ce=I*y,

ome=-1

omb=-1

ce=I*y*ome

cj=I*y

Definition of the coefficients and matrices: x=k

LE = {{yˆ2 -xˆ2 qve, 0},
{ 0 , yˆ2}

LB = {{ybˆ2 -xˆ2 qvb, 0},
{ 0 , ybˆ2}

yb = y - x Vbx

= y - x Vb cost

WB = {{0, sint}, {0, -cost}}
MB = I omb yb (II - x Vb/y WB)

KB = {{cost, sint}, {0,0}}
NB = II + (x Vb/yb) KB

FF = {{yˆ2}, 0}, {0, yˆ2 - xˆ2 VTˆ2}}

End of the formulas

Main electron matrix:

LE = {{LEXX,LEXZ},{LEZX,LEZZ}}
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LEXX = - xˆ2 qve + yˆ2

LEXZ = 0

LEZX = 0

LEZZ = yˆ2

Beam electron matrix:

LB = {{LBXX,LBXZ},{LBZX,LBZZ}}

yb = +(-Vbx*x) + y

LBXX = - xˆ2 qvb + ybˆ2

LBXZ = 0

LBZX = 0

LBZZ = ybˆ2

LBINV = Inverse[LB]

LBINV = Simplify[LBINV]

Vbx = Vb cost

Vxz = Vb sint

II= {{1,0}, {0,1}}

WB = {{0, sint},{0, -cost}}
MB = I omb yb (II + (x Vb/y) WB)

MB = Simplify[MB]

KB = {{cost,0}, {sint,0}}
NB = II + (Vb x/yb) KB

NB = Simplify[NB]

Maxwell matrix:

FFXX= yˆ2

FFXZ= 0
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FFZX= 0

FFZZ= yˆ2 + (-xˆ2/VTˆ2)

FF = {{FFXX,FFXZ},{FFZX,FFZZ}}

Constants:

ome=-1

omb=-1

ce=I*y*ome

cj=ome*I*y

Matrix operations

MM = LE.FF + cj ce De II + cj Db (LE.NB).(LBINV.MB)

MM=Simplify[MM]

warm electron plasma

qve#0

warmer Beam

qvb#0

DD = Det[MM]

DD=Expand[DD]

DD=Together[DD]

DD=Numerator[DD]

DD=Factor[DD]

DD=DD/yˆ4

DD=Collect[DD,{y,x,qvb}]

DD=Together[DD]

DD=Numerator[DD]

DD=DD/yˆ4

DD=Expand[DD]
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DD=Collect[DD,y]

DDF=FortranForm[DD]

y = k U

DD=Expand[DD]

DD=DD/kˆ6

DD=Expand[DD]

DD=Collect[DD,{k,U}]

Compute the coefficients of the polynomial:

DD= C0+C1*Y+C2*Y**2+C3*Y**3+C4*Y**4+C5*Y**5+C6*Y**6

X: norm. wavenumber

REAL COEF(7)

REAL Nbeam

GAMMAE=3. ! GAMMA=3/2

QVE=GAMMAE

QVC=QVE

QVB=QVC*VTbeam**2 ! VTbeam: Ratio between therm. Speed.

VT=VTc ! Therm. Speed./c

Db = Nbeam

Vb = Vbeam

DE=1.0 - Db

V0 = Vb
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ALFA=Db

cost=cos(3.1414*Teta/180.)

Coefficients of the polynomial:

Coefficients of the six prder polynomial:

C0 = (-(Db*De*qvb*VT**2) - De**2*qvb*VT**2 - Db**2*qve*VT**2

1 - Db*De*qve*VT**2 + cost**2*Db*De*Vb**2*VT**2

1 + cost**2*De**2*Vb**2*VT**2 + Db*De*sint**2*Vb**2*VT**2)*x**2

1 + (-(De*qvb) - Db*qve + cost**2*De*Vb**2 - Db*qvb*qve*VT**2

1 - De*qvb*qve*VT**2 + cost**2*Db*qve*Vb**2*VT**2

1 + cost**2*De*qve*Vb**2*VT**2

1 + Db*qve*sint**2*Vb**2*VT**2)*x**4

1 + (-(qvb*qve) + cost**2*qve*Vb**2)*x**6

C1 = + ((-2*cost*Db*De*Vb*VT**2 - 2*cost*De**2*Vb*VT**2)*x

1 + (-2*cost*De*Vb - 2*cost*Db*qve*Vb*VT**2

1 - 2*cost*De*qve*Vb*VT**2)*x**3 - 2*cost*qve*Vb*x**5)

C2 = + (Db**2*VT**2 + 2*Db*De*VT**2 + De**2*VT**2

1 + (Db + De + Db*qvb*VT**2 + 2*De*qvb*VT**2 + 2*Db*qve*VT**2

1 + De*qve*VT**2 - cost**2*Db*Vb**2*VT**2

1 - 2*cost**2*De*Vb**2*VT**2 - Db*sint**2*Vb**2*VT**2)*x**2

1 + (qvb + qve - cost**2*Vb**2 + qvb*qve*VT**2

1 - cost**2*qve*Vb**2*VT**2)*x**4)

C3 = + ((2*cost*Db*Vb*VT**2 + 4*cost*De*Vb*VT**2)*x

1 + (2*cost*Vb + 2*cost*qve*Vb*VT**2)*x**3)

C4 = + (-2*Db*VT**2 - 2*De*VT**2 + (-1 - qvb*VT**2 - qve*VT**2

1 + cost**2*Vb**2*VT**2)*x**2)

C5 = - 2*cost*Vb*VT**2*x

C6 = + VT**2
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