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Abstract

In the realm of complex reactive systems where full knowledge of ongoing reactions is

unattainable, the adoption of data-driven inferential models based on mixture spectra has

gained significant traction. Spectra-based online monitoring has shown promise due to the

rapidity, non-invasiveness, non-destructiveness, and cost-effectiveness in spectral analysis.

This study aims to develop advanced controllers for such complex reactive systems in the

absence of ground truth information and subsequently compare their performances. To

achieve this objective, a comprehensive suite of tools, including spectral deconvolution,

Bayesian networks, neural ordinary differential equations (ODEs), long short-term mem-

ory (LSTM), model predictive control (MPC), and reinforcement learning are employed to

transform spectra into actionable control strategies. The initial phase of the research focuses

on establishing a model-based control framework through the utilization of spectral decon-

volution and Bayesian networks, particularly in scenarios where ground truth knowledge is

limited or the system dynamics are complex. Spectral deconvolution untangles pseudo com-

ponent spectra and their corresponding concentration profiles from mixture spectra. These

deconvoluted spectra serve as the Bayesian network’s inputs, effectively identifying potential

reaction networks within the system. Concurrently, neural ODEs leverage the concentration

profiles obtained from spectral deconvolution to extract rate law parameters and facilitate

step-ahead concentration predictions. This holistic approach results in a comprehensive

rate-law-based kinetic model that captures the reaction system’s dynamics. Two modeling

approaches are employed and compared: a data-driven LSTM and a physics-driven grey-

box model utilizing Neural ODE. While the LSTM model operates as a black box, providing

step-ahead concentration predictions, the Neural ODE model represents a grey-box approach

incorporating first principles, also generating step-ahead predictions. The aim is to evaluate
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the performance of these approaches, contrasting the efficacy of the data-driven black box

model (LSTM) with the physics-driven grey-box model (Neural ODE). In the latter phase

of the study, reinforcement learning-based techniques are leveraged to design a model-free

controller with a focus on optimizing the selectivity of desired products, like in MPC with

neural ODE as model/environment.

For future work, the focus will be on leveraging spectra corresponding to specific wavenum-

ber ranges that are indicative of the functional groups associated with target products. This

strategy diverges from previous approaches, such as the deconvolution pathway that em-

phasized modeling the kinetics. Instead, the plan is to adopt a model that utilizes mixture

spectra as inputs. This model, in its control segment, will be designed to incentivize the

agent or controller to prioritize selectivity towards certain products and/or wavenumber

ranges. This methodology enables the system to refine its control strategy by relying solely

on spectral data. This is particularly beneficial in situations where a comprehensive under-

standing of the system’s dynamics is not available, thus circumventing the need to develop

detailed kinetic models. In conclusion, this work harnesses a range of advanced modelling

and control methodologies to translate spectral data into actionable control strategies for

complex reactive systems. The efficacy of the developed controllers is demonstrated through

a simulation environment of a CSTR aimed at maximizing the selectivity of a desired species,

thereby achieving the desired overall system performance.
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Preface

This thesis is the original work of Shahdab Pathan. The part of this work that focuses

on obtaining deconvolved data and reaction networks has been adapted from Dr. Anajana

Puliyanda’s work under the supervision of Dr. Vinay Prasad. The sections on Neural ODE

and other subsequent sections are original works by Shahdab Pathan.
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Chapter 1

Introduction

1.1 Background and motivation

The pursuit of sustainable and efficient production processes in chemical engineering has

necessitated a shift towards more complex and often renewable feedstocks. This transition

is motivated by economic, environmental, and technological factors, aiming to reduce re-

liance on finite natural resources and mitigate carbon emissions. However, integrating such

feedstocks introduces significant challenges, particularly in the context of chemical reactors,

where the variability and complexity of these materials complicate process control, optimiza-

tion, and scale-up efforts.

Despite the environmental and economic incentives for adopting renewable feedstocks, the

industry’s existing infrastructure and technological paradigms heavily favour conventional

fossil fuels. The development of technologies for converting bio-based feedstocks to chemicals

remains a daunting task[1], hampered by the intrinsic variability of these materials and the

lack of reliable kinetic models that account for hydrodynamics and transport phenomena

essential for process scaling, specifically in a reactor.[2] The need for comprehensive and

accurate reactor models is paramount, as they underpin the efficiency and reliability of the

entire production process.

The inherent variability in complex feedstocks leads to numerous operational challenges,

including inconsistent input quality, process inefficiencies, and increased production of off-

spec products. Addressing these issues requires a deep understanding of the kinetics of
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chemical reactions within reactors, a task often hindered by the cost and complexity of pilot-

scale experiments. Moreover, the scalability of processes designed for complex feedstocks

could be improved with technical hurdles, such as plugging, choking, and corrosion, further

complicating the transition to sustainable production methods.[3]

This backdrop sets the stage for this research, which seeks to bridge the gap between the

potential of renewable feedstocks like biomass and other such reaction systems comprising

complex and unknown interactions among components and the practicalities of their uti-

lization in industrial chemical processes. By focusing on data-driven control strategies for

complex reaction systems, this work aims to come up with data-driven and, at the same

time, inferential models to contribute to development of more flexible, efficient, and sustain-

able production processes that can be controlled to increase the yield or selectivity of desired

components while minimizing the undesired ones at the same time.

1.1.1 Reaction Kinetics Modeling

Reaction kinetics is a fundamental pillar in understanding the rate at which chemical reac-

tions proceed, affecting industries ranging from pharmaceutical development to environmen-

tal management. This area of study focuses on how variables like temperature and reactant

concentrations impact reaction rates, anchored by key concepts such as reaction rate, order,

and activation energy. The exploration of reaction kinetics has evolved significantly, transi-

tioning from hands-on experimental methods to sophisticated computational models. This

shift has allowed for more efficient and scalable approaches to understanding complex chem-

ical systems. Petzold and Zhu[4] pioneered a model simplification technique that reduces

the complexity of chemical systems without trading off accuracy. Their method optimizes

computational resources while maintaining a high level of modeling precision. Building on

this computational approach, Toch et al.[5] emphasized the importance of combining statis-

tical analysis with kinetic modeling. By starting with a qualitative analysis of experimental

data to inform rate equations, they managed to maintain both the physical integrity and

statistical significance of their models, demonstrating the value of a balanced approach.

Kemmler et al.[6] showcased a different angle by focusing on real-time parameter estima-

tion during chemical reactions. Their use of calorimetric data and simulation optimization
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revealed the potential for models to adapt and improve as more data becomes available,

highlighting the dynamic nature of reaction kinetics modeling.

Westbrook and Dryer[7] merged the study of chemical kinetics with combustion mod-

eling, revealing the complex structure of reaction mechanisms across different hydrocarbon

fuels. Their work emphasized the importance of robust models validated through empirical

data to accurately model combustion processes. The progression in kinetic studies from

traditional experimental techniques to advanced computational modeling demonstrates the

ongoing effort to refine our understanding of chemical processes, ensuring models are both

computationally efficient and grounded in physical reality.

1.1.2 Complex Reaction Network Modeling

The kinetic modeling of complex reaction systems is pivotal in chemical engineering, espe-

cially for optimizing chemical processes across a variety of industries. This literature review

synthesizes seminal contributions to the field, spotlighting methodological advancements and

innovations that tackle the multifaceted challenges of modeling these systems.

James et al.[8] pioneered a structural approach for analyzing chemical reactions, focusing

particularly on monomolecular systems. Their methodology, which blends qualitative and

quantitative analyses through geometric interpretations and matrix transformations, sim-

plifies complex reaction dynamics and enhances the precision of kinetic modeling and the

predictability of reaction behaviours. By extending their analysis to pseudo monomolecular

systems, they demonstrated the framework’s broad applicability, bridging theoretical mod-

els with practical applications and thus enriching the toolkit for addressing catalysis and

enzyme chemistry challenges.

Building upon these theoretical foundations, Dryer et al.[9] delved into modeling chemi-

cal reactions within flow reactors. Their study critically examined the plug flow assumption

and developed strategies to manage uncertainties in reaction initialization, thereby improv-

ing kinetic model development and validation. This work is distinguished by its detailed

examination of axial and radial gradients and complex kinetics, significantly enriching our

understanding of reactor dynamics. This study thus serves as a baseline for modeling com-

plex reactions and integrating reactor dynamics effectively.
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Zhang et al.[10] introduced a systematic approach to model development in complex

chemical systems, emphasizing the integration of experimental evaluations with model con-

struction. Characterized by an iterative refinement process, this methodology starts with

establishing a comprehensive reaction network from preliminary experiments. This network

forms the basis for generating and refining simplified models through targeted experiments,

marking a significant stride in model development and reactor design optimization.

Frenklach et al.[11] presented a transformative methodology for converting experimental

data into predictive models, focusing primarily on combustion chemistry. This approach no-

tably emphasizes collaborative data analysis by integrating response surface techniques and

robust control theory within a collaborative data processing framework. The methodology

significantly boosts model predictions by directly incorporating uncertainties.

Complementary to these methods, Okino et al.[12] investigated the simplification of math-

ematical models for chemical reaction systems, advocating for model reduction to navigate

computational demands and parameter uncertainty. Alongside contribution from Prickett et

al.[13] this body of work expands the computational toolkit for analyzing complex chemical

systems, automating the generation of complex reaction networks, exploring reaction systems

as mathematical formalisms, and employing stochastic methods for systematic uncertainty

analysis.

Experimental and mathematical combinations have been reliable and less computation-

ally intensive for modeling complex reaction systems. However, atomistic and molecular

simulation studies have also been conducted to predict equilibrium behaviour in non-ideal

environments and simulate chemical reactions. Neurock et al.[14] and Turner et al.[15] intro-

duced Monte Carlo methods in molecular interactions, reaction kinetics, and the discovery

of new chemical pathways. These computational simulations have significant potential in

elucidating the complexities of chemical reactions and their mechanisms.

Collectively, these studies represent a paradigm shift toward integrative, precise, and

predictive models of chemical kinetics. The field has significantly evolved from structural

analysis and model-building techniques to kinetic extraction from simulation data, enhanc-

ing the understanding of chemical reactions and facilitating the optimization of chemical

processes.
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1.1.3 Machine learning-based modeling of complex system

Machine learning (ML) has become an important tool in modeling complex reaction systems

across various fields, offering predictive power and insights into system dynamics, efficiencies,

and optimization strategies. These models typically involve using ML techniques to predict,

simulate, and understand the behaviour of complex chemical reactions, where complexity

arises due to the involvement of numerous reactants, products, intermediates, and pathways.

ML models, including neural networks, regression models, and decision trees, have been

employed to tackle various challenges in this domain.

Traditional deterministic approaches to modeling complex reaction systems rely on an

understanding of mechanisms, facing challenges with nonlinear, high-dimensional systems

when such mechanisms are unclear. Machine learning (ML) approaches offer a data-driven

alternative that identifies patterns and optimizes conditions without explicit mechanistic

knowledge. Hybrid methods merge these strategies, incorporating mechanistic insights into

ML models to enhance predictability and efficiency while ensuring adherence to chemical

principles. This integration improves accuracy and interpretability and reduces the data

needed for practical training, presenting a robust solution for modeling the intricacies of

chemical reactions by combining the precision of traditional models with the adaptability of

ML techniques.

Kayala et al.’s [16] reaction predictor is one example that leverages machine learning

to systematically predict complex chemical reactions, utilizing a two-stage framework that

interprets reactions as interactions between approximate molecular orbitals. Initially, it

filters the vast array of potential reactions at the molecular orbital level, then employs

ranking models to prioritize likely productive reactions. The standout feature of the work

is the mechanistic pathway predictor, which employs a constrained tree-search algorithm

to suggest steps from reactants to products, marking an approach in multistep reaction

prediction, thus automating and systematizing reaction prediction beyond traditional rule-

based methods, thereby enhancing synthesis planning and chemical research.

Meuwly [17] highlighted the role of ML in advancing the understanding and prediction

of chemical reactions, from small molecule dynamics to complex reaction networks. ML
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techniques, such as Bayesian inference, Gaussian processes, and neural networks, deliver

alternatives to traditional computational methods, potentially enabling more accurate pre-

dictions of reaction rates, pathways, and outcomes. These approaches facilitate a deeper

analysis of biological reactions, improve experimental chemistry practices, and bridge the

gap between theoretical predictions and experimental data.

Stocker et al.[18] utilized a machine-learning framework to analyze chemical reaction

spaces in their research. They examined the Rad-6 database, which contains over 10,000

molecules and 32,515 reactions. By employing Kernel Ridge Regression and the Smooth

Overlap of Atomic Positions (SOAP) kernel, they were able to accurately predict atomization

and reaction energies, highlighting the adaptation of ML strategies to the unique structures

of reaction networks. The study also identified the need for intensive kernels and training sets

to make precise predictions, which facilitated the extraction of simplified reaction networks

for complex processes such as methane combustion, providing a streamlined approach to

understanding and optimizing chemical reactions.

Blurock [19] presented a machine-learning approach to categorize complex chemical re-

action mechanisms into distinct reactive phases without the influence of human bias. By

utilizing a conceptual clustering method to analyze reaction sensitivity values, the study

successfully segmented the Hochgreb and Dryer aldehyde combustion mechanism into three

primary phases: the initial aldehyde reaction, an intermediate phase with dwindling aldehyde

presence, and a final phase leading to end products. This technique harnessed normalized

sensitivity constants and a hierarchy of clusters to automatically distinguish between dif-

ferent stages of the reaction based on the dynamics of each reaction’s significance. This

approach offered an impartial, data-driven analysis that enhanced understanding and poten-

tially streamlined reaction mechanisms by identifying critical reactions within each phase,

utilizing machine learning to illuminate chemical reaction progression systematically.

Ulissi et al. [20] presented a novel method for optimizing reaction networks in heteroge-

neous catalysis. This approach combined density functional theory (DFT) calculations with

surrogate models to efficiently handle the complexity of surface reaction networks. This ap-

proach significantly reduced computational resources by focusing on potential rate-limiting

steps with high-accuracy DFT calculations and utilizing surrogate models based on estab-

6



lished scaling relations and Gaussian process regression for the broader network. The syngas

reaction over Rh(111) was used to demonstrate this method, revealing a more probable re-

action mechanism with fewer DFT calculations. The methodology was characterized by its

probabilistic framework for mechanism elucidation, simplicity, and potential for generaliza-

tion to multisite or multicatalyst models. This work represented a significant step forward

in computational catalysis, providing a practical tool for catalyst design and understanding

experimental data.

In the work of Margraf et al., [21], the application of ML in comprehending and navi-

gating catalytic reaction networks was explored. The integration of ML for both the direct

computational construction of these networks and the interpretation of experimental data

was highlighted. Through ML, efficiency was notably enhanced by the approximation of com-

putational chemistry calculations, forecasting reaction behaviours, and pinpointing critical

reaction pathways and intermediates. The study was distinguished by the proposal of a dual

approach: a bottom-up method that constructs reaction networks from atomic-level simu-

lations and a top-down method that formulates effective kinetic models from experimental

data, leaving the need for detailed knowledge of the catalyst structure.

In their work, Fooshie et al.[22] built upon Kayala et al.’s[16] reaction predictor proto-

type to introduce a deep learning-based system for predicting chemical reactions, focusing

on elementary reactions in organic chemistry. This approach leveraged a curated dataset of

over 11,000 reactions to accurately predict reaction outcomes and pathways by identifying

and pairing electron sources and sinks. The Reaction Predictor outperformed traditional

methods with an 80% top-5 recovery rate on challenging benchmark reactions. What set

this system apart was its ability to operate at the elementary reaction level, meaning that its

predictions were interpretable and useful for identifying novel reactions and side products.

The methodology included enhancements such as combinatorial reaction generation and the

use of recurrent neural networks (RNNs), specifically long-short-term memory (LSTM) ar-

chitectures, for direct operation on (Simplified Molecular Input Line Entry System)SMILES

strings. These enhancements aimed to refine prediction accuracy and broaden reactant con-

text comprehension.

Zhou et al.[23] developed the Deep Reaction Optimizer (DRO), which was aimed at en-
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hancing the efficiency of chemical reaction optimization through the use of deep reinforcement

learning. The experimental conditions were iteratively adjusted based on previous results,

leading to a 71% reduction in optimization steps. Incorporating chemistry domain knowl-

edge, the DRO was showcased for its strong generalizability and learning capability. New

insights into reaction mechanisms were also provided, particularly in microdroplet chemistry.

This approach was recognized as a significant advancement in the field of chemical reaction

optimization, merging advanced machine-learning techniques with practical chemical under-

standing. These research methodologies thus demonstrate the integration of physics-based

insights into data-driven models, whether through experimental work or modeling efforts,

resulting in improved model performances.

1.1.4 Control of complex reaction systems

In exploring the domain of control strategies for complex reaction systems, various innovative

approaches are highlighted across several studies, focusing on the challenges and solutions

in optimizing these systems amidst uncertainties and nonlinear dynamics.

Komives et al.[24] shed light on the progress in bioreactor control, transitioning from

model-based strategies in chemical processes to their adaptation for biological systems. The

complexity of bioprocess variables like pH, temperature, and dissolved oxygen necessitates

advanced control and monitoring strategies. The integration of diverse models and technolo-

gies, such as artificial neural networks and metabolic flux analysis, has marked substantial

advancements in bioreactor state estimation and control, aiming at elevating process effi-

ciency and stability.

An examination of control strategies for bioreactors and complex reaction systems [25,

26, 27, 28] highlights the efficacy of MPC and Extremum Seeking Control (ESC) in man-

aging nonlinear dynamics. These approaches underscore the necessity of nuanced control

strategies to address the precision required in handling the intricacies of chemical reactions

and bioprocesses.

Vaidyanathan[29] explored the dynamics of the Brusselator chemical reaction system,

a model for autocatalytic reactions demonstrating complex dynamics like nonlinear oscil-

lations and bifurcations. The study introduced an adaptive control strategy for achieving
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anti-synchronization between identical Brusselator systems with unknown parameters. Fur-

ther, the exploration of adaptive control strategies and neural network models for CSTR

dynamics by Knapp et al.[30] presents a case for the benefits of these controllers over tradi-

tional methods. Leveraging neural networks demonstrates significant improvements in error

convergence and control performance, especially in complex chemical process environments.

This adaptability is important in ensuring efficient control across a broad spectrum of oper-

ating conditions.

Al Seyab et al.[31] delve into training Differential Recurrent Neural Networks (DRNNs)

for nonlinear MPC applications, showcasing the potential of DRNNs in predicting future

dynamics and enhancing real-time control of complex processes.

In their study, Pan et al. [32] investigated the application of constrained reinforcement

learning to optimize bioreactor operations. The primary objective was to maximize biomass

production while maintaining operational constraints. By integrating constraints into the

reinforcement learning framework, the research developed control strategies that improve

performance and guaranteed the safety and stability of bioprocesses.

Petsagkourakis et al.[33] and Alhazmi et al.[34] discussed the utilization of reinforcement

learning, which has gained traction as control choice recently and specifically, Policy Gradient

methods and Deep Deterministic Policy Gradient (DDPG) RL, to optimize bioprocesses and

complex chemical reactions within CSTRs. These approaches highlight the adaptability and

efficiency of RL in overcoming traditional control limitations, emphasizing the shift towards

model-free control solutions in chemical engineering.

The studies conducted in the field of control engineering have shown an ongoing evolution

towards more data-driven and adaptive methodologies. Merging optimal control theory by

means of MPC and RL techniques can lead to improved efficiency, robustness, and adapt-

ability of chemical engineering and biotechnology processes. However, few studies have been

conducted on the usage of complex yet inferential models that have great potential when

combined with control approaches like MPC and RL, which can yield robust control.
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1.2 Thesis Objectives

The main goal of this research is to use a hybrid modeling approach that is inferential to

compare it with a black-box model and establish a baseline comparison. Later, the hybrid

model is used to apply control strategies such as MPC and RL, with the aim of maximizing

the desired species concentration and minimizing the undesired one by comparing them in

setpoint tracking and disturbance rejection scenarios.

1.3 Thesis Outline

Chapter 2 of this thesis discusses the different modeling methods used, starting from the

generation of FTIR spectra and ending with the creation of a reaction kinetics model. The

hybrid modeling approaches employed include Joint Non-Tensorial Factorization, Bayesian

Networks, and Neural Ordinary Differential Equations, which is compared with Long Short-

Term Memory networks (LSTMs) as a black-box approach.

In Chapter 3, a comparison is made between the control methodologies of Model Pre-

dictive Control (MPC) and Reinforcement Learning (RL) for both setpoint tracking and

disturbance rejection scenarios.

Finally, Chapter 4 presents a conclusions for various modeling and control methodologies

used, laying a foundation for further research in the future.
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Chapter 2

Data-driven modeling of complex

reaction systems

Data-driven modeling is a rapidly evolving methodology, gaining widespread acceptance

across numerous scientific and engineering disciplines. When integrated with mechanistic

insights, this approach can yield complex yet interpretable models that encapsulate a dy-

namic understanding of processes. Research in this domain has spanned a diverse array

of systems, including but not limited to biomass conversion, food processing, hydrocarbon

combustion, drug delivery mechanisms, and tropospheric chemical interactions. Typically,

the methodologies adopted in these studies have relied on statistical techniques, curve fit-

ting, and experimentation under specific operating conditions to construct empirically fitted

models that, while effective, often lack universality across different systems and operating

conditions.

One critical aspect distinguishing recent advances from earlier studies is the push toward

generalisability across a broad spectrum of operating conditions. This leap in model appli-

cability is crucial for developing predictive tools that are not only accurate within narrow

confines but are also robust and reliable under varied and yet untested scenarios. Another

differentiating factor is the leveraging of cutting-edge computational techniques, such as ma-

chine learning and deep learning, supported by improving hardware to distill insights from

vast datasets accompanied by experimental validations. These methodologies enable the

identification of underlying patterns and relationships that traditional modeling approaches
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may overlook, thereby enhancing the predictive capabilities and interpretability of the mod-

els. [35, 36, 37, 38]

Moreover, the incorporation of real-time data analytics and adaptive algorithms allows for

the continuous refinement of models, ensuring they remain relevant and accurate as new data

becomes available. This dynamic aspect of data-driven modeling is particularly advantageous

for systems subject to rapid changes or those operating in unpredictable environments.

In addition to enhancing model generalizability and leveraging computational advance-

ments, there is an increasing emphasis on the transparency and explainability of data-driven

models. As these models find broader application in critical decision-making processes, the

ability for users to understand and trust model predictions becomes paramount. Efforts to

integrate domain-specific knowledge into the modeling process, therefore, serve not only to

improve model performance but also to make these tools more accessible and interpretable

to a wider audience.

The evolution of data-driven modeling indicates reliability in scientific and engineering

research, characterized by models that are not only more predictive and robust across diverse

conditions but also more transparent and interpretable. As these methodologies continue to

mature, they promise to unlock novel insights and innovations across a wide range of fields,

from environmental science to healthcare and beyond.

This chapter describes the framework adopted for the study of data-driven modeling,

aimed at developing robust and interpretable models with a keen emphasis on generalizability

across various operating conditions. Recognizing the critical need for models that not only

provide predictive accuracy but also offer insights into the underlying processes

2.1 Modeling framework for data-driven approaches

In tackling the complexity of reactive systems, full identification of all reactions and species

involved is often difficult to achieve or unattainable. Consequently, the research leans to-

wards employing data-driven inferential models for system analysis. Emphasis has thus been

placed on leveraging methodologies conducive to the surveillance of reaction mechanisms.

Various techniques exist for reaction monitoring, including spectroscopy, ion signatures, se-
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lected reaction monitoring, or tracking critical performance indicators.[39, 40] Chemometrics

emerges as a pivotal branch within this domain, facilitating the examination of intricate data

sets to extract meaningful insights on chemical reactions based on their spectral signatures.

Spectroscopy stands out as an essential instrument for assessing reaction kinetics due to its

non-invasive nature and the depth of chemical understanding it provides. Its inherent value is

in the real-time observation of chemical transactions, offering precise insights into molecular

structures, dynamics, and properties. When applied to reaction monitoring, chemometrics

employs a diverse array of strategies that allow for the concurrent evaluation of numerous

variables, thus augmenting the accuracy and distinctiveness of experimental outcomes. Tools

such as multivariate analysis are crucial within chemometrics, enabling the extraction of rel-

evant information from dense data sets by identifying patterns and correlations not visible

through conventional means. This approach not only clarifies overlapping spectral signals

but also boosts detection sensitivity and supports kinetic reaction modeling. [41]

The choice of system and monitoring objectives dictates the suitability of these indicators

for effective surveillance. In this context, the system in question relies on Fourier Transform

Infrared (FTIR) spectrometry for its monitoring needs. FTIR spectra is the most commonly

used tool for the identification of unknown materials as it helps with the identification of

functional groups that are present in the system being monitored.[42] Studies focusing on

organic compounds and biomass focusing on a combination of series and parallel reactions

utilize FTIR spectra for monitoring and modeling purposes.

FTIR, UV-vis spectroscopy, Raman spectroscopy, mass spectroscopy, and nuclear mag-

netic resonance (NMR) are among the spectroscopic instruments most commonly used to

track chemical composition changes, offering the advantage of rapid data collection. Tech-

niques like gas chromatography (GC) and liquid chromatography (LC) provide high speci-

ficity for distinguishing between similar compounds, the ability to quantify substances, low

detection limits, and the straightforward separation of components in complex mixtures.

The integration of spectroscopic and chromatographic techniques is gaining traction as an

effective strategy for the real-time monitoring chemical processes by leveraging the unique

benefits of both methods.

Aside from the tools that spectroscopic monitoring provides, an abundance of IR spectra
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of pure compounds is available on commercial and open-source platforms. Further qualitative

monitoring of change in peaks of compounds over time and for specific wavenumbers provide

insights into changes happening in a reaction with an underlying assumption that the mixture

spectra is resultant of a linear combination of the pure component spectra of the species

involved weighted by the fraction or the concentration of the species present in the reaction

system.

A set of methods has been adopted in a sequence that is followed by FTIR spectra

generation for a synthetic system to obtain the pseudo-component spectral signatures and

concentration profiles that lay a foundation for the kinetic models that will be developed.

Figure 2.1 shows the workflow that has been adapted from [43], which discusses the method-

ology to move from a mixture of FTIR spectra to pseudo-component concentration and

spectral profiles[44] that help in the creation of the kinetic model, which is one of the aims

of the study.

Figure 2.1: Mixture spectra to model generation pathway. Adapted from [43]
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The workflow depicted in (2.1) is explained step by step:

1. FTIR Mixture Spectra: The process initiates with acquiring FTIR spectra from

the mixture in the reaction system.

2. Joint Non-negative Tensorial Factorization: This technique decomposes a mix-

ture of FTIR spectra into constituent components, yielding interpretable concentration

profiles and pseudo-component spectra.

3. Concentration Profiles: Derived from factorization, these profiles chart the concen-

tration changes of various species, important for understanding reaction kinetics.

4. Pseudo Component Spectra: These simplified spectra represent the individual or

pseudo-components within the mixture, explaining the underlying chemical behaviour.

5. Bayesian Network: Utilizing Bayesian inference, this network models the probabilis-

tic relationships in component spectra, resulting in a probabilistic reaction network.

6. Kinetics Modeling: The pseudo-component concentration profiles and Bayesian net-

work are used to constrain the kinetics model used to predict reaction rates.

2.1.1 Generating synthetic FTIR Spectra for reactions in a Con-

tinuous Stirred Tank Reactor

Understanding the underlying truth of chemical reactions allows us to validate the predictions

from our framework. This task becomes challenging for complex systems where the precise

details about species, their reaction pathways, and kinetics might be elusive or difficult to

determine. In this study, we generate synthetic spectroscopic data based on the species’ pure

component FTIR profiles. This data follows a reaction template from the Denbigh reaction

system, with the FTIR profiles sourced from the NIST database [45], which has a network

of reactions characterized by both series and parallel pathways.

As illustrated in Figure 2.2, the chosen network comprises two parallel reactions and two

series pathways. The initial reaction (from ethane to chloroethane) produces an intermediate.

The subsequent parallel reactions (from chloroethane to acetic acid and chloroethane to
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ethanol) are competitive, modeling a scenario where one pathway yields a desired product

while the other leads to an undesired outcome. Following the acquisition of pure IR spectra

for these components from the NIST database, a kinetic model becomes essential to capture

the dynamic interplay of reactant, intermediate, and product species.

A standard approach to model the reaction kinetics within a Continuous Stirred Tank

Reactor (CSTR) involves employing rate laws where the rate constant follows the Arrhenius

equation, augmented with terms to account for inflow and outflow within the CSTR. The

employed rate law is based on the power law model:

r = k[A]x[B]y (2.1)

Figure 2.2: Denbigh reaction network
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where x and y represent the reaction orders, and k is the rate constant defined as:

k = k0 exp

(

−
Ea

RT

)

(2.2)

Here, k0 denotes the pre-exponential factor, Ea the activation energy, R the gas constant,

and T the temperature. The rate constants thus characterize the reactions occurring within

the CSTR:

k1 = k01 exp

(

−
Ea1

RT (t)

)

(2.3)

k2 = k02 exp

(

−
Ea2

RT (t)

)

(2.4)

k3 = k03 exp

(

−
Ea3

RT (t)

)

(2.5)

The governing differential equations for the CSTR are formulated as follows:

dCA

dt
=

F (t)

V
· (CA0 − CA)− k1CA (2.6)

dCB

dt
=

F (t)

V
· (CB0 − CB) + k1CA − k2C

2
B − k3CB (2.7)

dCC

dt
=

F (t)

V
· (CC0 − CC) + k2C

2
B (2.8)

dCD

dt
=

F (t)

V
· (CD0 − CD) + k3CB (2.9)

In these equations, F (t) is the time-dependent flow rate, V the reactor volume, and Ci0 the

inlet concentrations of the respective species. The parameters of the model are presented in

table 2.1.

Parameter Description Value Units
k01 Pre-exponential factor for k1 1× 10−2 s−1

k02 Pre-exponential factor for k2 1.5× 10−2 m3 mol−1 s−1

k03 Pre-exponential factor for k3 5× 10−2 s−1

Ea1 Activation energy for k1 50,000 J/mol
Ea2 Activation energy for k2 10,000 J/mol
Ea3 Activation energy for k3 75,000 J/mol
R Universal gas constant 8.314 J/(mol K)

Table 2.1: Rate constants and parameters
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The simulation of the CSTR dynamics involves incorporating random signals for both

flow and temperature, as illustrated in figure 2.3. These random fluctuations allow for the

exploration of different operational conditions within predefined ranges: temperature values

ranging from 523 to 1023 K, and flow rates fluctuating between 0.01 and 0.05 m3/s across

4001 timesteps. The generation of multi-level signals occurs by subdividing the temperature

and flow ranges into subranges, and selecting a subrange for each temperature and flow data

point to undergo random signal generation within that range. Subsequently, the ranges are

switched. The nature of these fluctuations results in alterations that take place within specific

temperature and flow intervals before transitioning to a different operational state. This

method produces a dataset that accentuates significant concentration variations resulting

from the combined impacts of flow and temperature fluctuations.

Having simulated the concentration profiles within the CSTR, we can now obtain FTIR

mixture spectra. These spectra result from the linear combination of pure component spec-

tra, weighted by the concentration of each component at specific timesteps. This process

adheres to Beer’s Law, expressed as:

A = εlc (2.10)

Here, A represents the absorbance, ε denotes the molar absorptivity, l signifies the path

length of the light through the sample, and c is the concentration of the absorbing species.

It is important to note the assumption of a constant path length, which significantly affects

the measurements.

Consequently, the FTIR spectrum of the mixture at any given time t can be formulated

as:

S(t) =
∑

i

ci(t) · Si (2.11)

where S(t) is the mixture’s FTIR spectrum at time t, ci(t) is the concentration of the ith

species, and Si represents the pure component FTIR spectrum of the ith species.

Equation 2.11 yields the spectra displayed in figure 2.4 for the simulated system. Changes

in the spectral peaks reveal variations in the concentrations of specific components, corre-

sponding to particular wavenumbers that denote the presence of different functional groups.

This demonstrates IR spectra generation for a hypothesized system using rate law, which
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Figure 2.3: Simulated concentration profiles for the ODE system

will be subsequently used in coming sections.

2.1.2 Spectral Deconvolution

The first step in analyzing spectroscopic data involves pre-processing to eliminate noise

that could potentially disrupt subsequent analysis. Such noise generally arises from vari-

ous sources, including inaccuracies in instrument calibration, variations in the process, and

uncertainties in measurements. To counter these challenges, the data undergoes a series of

corrections and adjustments. These include baseline correction to normalize the data, scaling
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Figure 2.4: FTIR mixture spectra

to ensure uniformity across the dataset, and the identification and elimination or correction

of any outliers using well-established techniques. Following these adjustments, data derived

from different spectroscopic techniques can be enhanced. Specifically, for this study, given

the synthetic nature of the data, artificial white gaussian noise is introduced to the signal,

maintaining a signal-to-noise ratio (SNR) of 100%.

The mixture of FTIR spectra, now embedded with noise, is subjected to various analytical

methods. These range from baseline corrections and filtering to more sophisticated chemo-

metric tools such as Evolving Factor Analysis (EFA), Parallel Factor Analysis (PARAFAC),

and Multivariate Curve Resolution (MCR). These tools are crucial for generating additional

information necessary for Joint Tensor Factorization (JNTF) to derive approximations of

component spectra and concentration profiles. The necessity for such analytical methods

stems from the complex nature of spectral data, which is typically high-dimensional, non-
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causal, lacks full rank, contains noise, and may have missing values.[46, 47]. After gathering

the FTIR mixture spectra data, a suite of chemometric analysis techniques can be employed

to gain deeper insights into the system under study. These methods allow for the identifica-

tion of present compounds and the formulation of hypotheses regarding the reaction network.

This analytical approach is elaborately discussed in [48, 49]. The sections henceforth focus

on discussing various tools used in chemometrics and a useful tool for this study.

2.1.2.1 Evolving Factor Analysis

Evolving Factor Analysis (EFA)traces its roots back to 1985 with a pioneering report by

Gampp et al.[50] This technique focuses on observing how the importance or ’rank’ of a

dataset changes against an ordered variable, often employing Principal Component Analysis

(PCA) on datasets that expand with each measurement. This approach is instrumental

in fields like analytical chemistry, aiding in deciphering complex data from techniques that

adhere to Beer’s law, such as High-Performance Liquid Chromatography(HPLC).[51, 52, 53]

EFA starts with the initial data point—for instance, the first spectrum obtained—and

calculates the eigenvalues (EVs) successively for each subset of the data matrix Xi, including

the first i = 1 . . . P rows. This iterative process is encapsulated by the equation:

X ′ = SL+ E (2.12)

where X ′ represents the approximated data matrix, S (of dimension i×N) is the scores

matrix, L (dimension N × N) the loadings matrix, and E the residual matrix capturing

noise or errors. The core of this methodology lies in accurately determining the unknown

number of factors, N . This typically involves initially calculating all Q eigenvectors of the

data matrix, with S set to dimensions i×Q and L to Q×Q.

As data is progressively added—row by row—the eigenvalues are recalculated with each

new addition, reflecting the growing complexity of the data matrix. This step-by-step ad-

dition and analysis through PCA enable the identification of changes in the data’s dimen-

sionality, offering insights into the components present, their occurrences, and concentration

profiles within the sample.
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The broad applicability of EFA is evident from its use in various domains, including

phase equilibrium studies in solution chemistry, chromatography, and mixture characteriza-

tion. It facilitates the characterization of variance in data into principal components and

iteratively monitors these components across experimental data.[54] A significant change in

a principal component above a baseline is indicative of the characteristics, occurrences, and

concentrations of components.

However, despite its versatility, EFA faces challenges, especially in systems with highly

nonlinear compound interactions and data exhibiting heteroscedasticity—where variance is

unequal across the data range. These limitations underscore the need for careful application

and interpretation of EFA results.

2.1.2.2 PARAFAC decomposition

Introduced by Harshman and further developed by Carroll and Chang, Parallel Factor Anal-

ysis (PARAFAC) is a canonical decomposition technique that extends Principal Component

Analysis (PCA) to tackle higher-dimensional data through a trilinear decomposition ap-

proach. This method breaks down a data matrix into its fundamental trilinear components,

demonstrating a significant leap in handling complex datasets by mapping them onto a

structure defined by:

xijk =
F
∑

f=1

(aifbjfckf + eijk) (2.13)

where eijk encapsulates the residual error. Utilizing the Alternating Least Squares (ALS)

technique for iterative estimation of parameters, PARAFAC distinguishes itself by using

residual, leverage, or triple cosine similarity analyses, albeit demanding precise input on the

number of components.

The versatility of PARAFAC has been showcased across various applications in litera-

ture, from unravelling data variance and achieving unique decomposition in fluorescence data

to modeling regression problems, tackling datasets with missing elements, and addressing

constrained issues like variable non-negativity. Its generalizability, simplicity, and robust

modeling capabilities stand out distinctly against alternative methods such as Partial Least

Squares (PLS), and principal component regression. One of PARAFAC’s hallmark advan-
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tages lies in its solution’s uniqueness, ensuring that even with minimal noise and the right

component count, the derived solution is both accurate and immune to the initial parameter

settings. [55]

Moreover, PARAFAC’s ability to handle constrained problems and datasets with missing

values further underscores its adaptability and potential as a soft sensing tool for calibration

and analytical endeavours. Its capability to sidestep the rotation issue typically encountered

in decompositions offers a simpler, more interpretable mode post-deconvolution, enhancing

the model’s robustness. Notably, the method’s approach to scaling and centering data, as

well as effectively modeling non-negativity constraints on variables, has been proven to not

only preserve but also enhance the interpretability and predictive power of the model.

Despite its strengths, PARAFAC’s computational demands, attributed to the high di-

mensionality of variables, pose a significant challenge, necessitating advancements in data

compression techniques, optimization of ALS iterations, and refinement of convergence cri-

teria to mitigate its intensive computational requirements.

2.1.2.3 Multivariate curve resolution

Multivariate Curve Resolution (MCR) is an important technique in chemometrics and an-

alytical chemistry for deciphering complex datasets, especially in spectroscopic and chro-

matographic analyses. MCR aims to deconvolve a data matrix D, representing a mixture’s

spectral data, into matrices of pure component concentration profiles (C) and pure spectra

(S), according to the bilinear model :

D = CST + E (2.14)

Here, E captures the discrepancies between observed data and its approximation by the

model, signifying the essence of MCR in distilling complex mixtures into their constituents.

This decomposition is refined iteratively using the Multivariate Curve Resolution-Alternating

Least Squares (MCR-ALS) algorithm, which integrates chemically significant constraints like

non-negativity and unimodality, ensuring solutions are not just mathematically sound but

chemically valid as well.[56]
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MCR encounters challenges like accurately estimating mixture components, resolving

potential rotational ambiguities, and managing data complexities such as signal overlaps.

Nevertheless, its robustness against noise and capability to accommodate deviations from

ideal bi-linearity through preprocessing methods and constraints highlight MCR’s evolution

to meet analytical demands. Its ability to handle non-idealities through multi-set analysis

and constraint incorporation underscores MCR’s invaluable role in analytical science, making

it a key player in extracting meaningful insights from complex, multi-dimensional datasets.

A testament to MCR’s utility is its application in the online monitoring of bitumen con-

version using infrared spectroscopy, where it has been used to autonomously resolve spectra

and track the concentration profile of changing species in complex mixtures[57, 58]. This

example illustrates MCR’s potential for real-time, efficient monitoring of chemical reactions

in intricate mixtures, showcasing its significance in modern analytical methodologies.

2.1.2.4 JNTF factorization

The Joint Non-negative Tensor Factorization (JNTF) technique, an advancement in chemo-

metrics, is employed to distill complex, multi-dimensional datasets into interpretable com-

ponents while adhering to non-negativity constraints.[48] Specifically, the method’s utility

shines in the fusion of diverse data types, such as FTIR and 1H NMR spectra, to unravel

pseudo component spectra that encapsulate the intricate dynamics within reacting environ-

ments. Central to the JNTF methodology is the formulation of an objective function aimed

at minimizing the reconstruction error:

minimize ||X − [[W;H1,H2, . . . ,HN ]]||
2
F + λ ·R(W,H1,H2, . . . ,HN) (2.15)

subject to W,H1,H2, . . . ,HN ≥ 0, where regularization plays an important role. This

approach not only constrains solution ambiguity but also enhances the decomposition’s fi-

delity to the physical reality, allowing for a direct interpretation in terms of concentrations

without requiring a priori constraints.

JNTF workflow begins with FTIR mixture spectra where the multi-dimensional data in

24



tensor form is readied for analysis. Following this, in the Initialization step, factor matrices

are initialized for each mode of the tensor. These matrices serve to encapsulate latent features

that capture the underlying patterns within the data.

Moving on to iterative optimization, an objective function is defined to evaluate the

correspondence between the original tensor and its reconstructed form based on the factor

matrices. This function typically includes a reconstruction error term and regularization

terms to enforce constraints on the factors. Iteratively, the factor matrices are updated to

minimize this objective function, often using optimization techniques like gradient descent

or alternating least squares.

Convergence is then monitored in the convergence step, where the algorithm checks if

the changes in factor matrices between iterations have fallen below a predefined threshold.

Once convergence is achieved, the algorithm proceeds to post-processing. Here, the factor

matrices are normalized to ensure the non-negativity and interpretability of the factors.

Additionally, optional analysis may be performed on the factor matrices to gain deeper

insights into the latent features and underlying patterns captured by them. Thus resulting

in pseudo-component concentration and spectral profiles.

The innovation of this study lies in its data-driven strategy for identifying pseudo-

components and elucidating reaction networks, leveraging core consistency diagnostics and

Bayesian structure learning. The latter infers causal relationships among pseudo-components,

facilitating the hypothesis generation regarding reaction networks. An adjacency matrix,

derived from the Bayesian networks, further informs the construction of kinetic models,

reflecting the connectivity among various pseudo-components and underscoring potential

conversion pathways not evident in isolated analyses.

This approach to tensor decomposition can deal with data artifacts such as missing

observations and non-Gaussian noise. The efficacy of JNTF in species identification and the

automated discovery of reaction mechanisms holds promise for revolutionizing automation

and control within chemical analysis, making it a cornerstone technique in modern analytical

science. Further, some papers discuss semi-supervised machine learning techniques to obtain

auxiliary information to get started with JNTF decomposition or rather bypass it.[59]

JNTF offers unique advantages in decomposing complex data matrices into interpretable
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components, providing insights into the underlying structure of multi-dimensional datasets

and serving as reliable tools in chemometrics.

2.1.2.5 Transition to Application: Spectral Deconvolution

Moving forward, we transition from the theoretical foundations of these decomposition tech-

niques to their practical implementation in spectral deconvolution. The JNTF decomposition

as an initial step necessitates identifying the number of components involved in the reaction,

which is done by running Lack of Fit (LOF) with core-consistency diagnostics.

Lack of fit refers to the measure of how well the factorization model captures the original

data. It assesses the extent to which the reconstructed tensor closely resembles the input

tensor. By comparing the original data tensor with the reconstructed tensor based on the

factor matrices, one can quantify the discrepancy, which helps in assessing the goodness of

fit and selecting an appropriate rank.

Core consistency check, on the other hand, is a diagnostic tool used to assess the con-

sistency of the factorization results across different modes of the tensor.[60] It examines the

core tensor, which represents the interactions between the latent factors along each mode,

to ensure that it exhibits consistent patterns across different mode combinations. Inconsis-

tencies in the core tensor can indicate that the chosen rank may not adequately capture the

underlying structure of the data.

Core Consistency = 100

(

1−
∥G−T∥2F
∥T∥2F

)

(2.16)

where, ∥G−T∥2F is the squared Frobenius norm of the difference between the estimated

tensor and the target tensor, quantifying the error or inconsistency.

Combination of this methods determines the rank to be four as depicted in figure 2.5. This

determination is based on a threshold whereby 98% of the variance in the data is captured.

This information is then employed to initialize the Non-negative Tensor Factorization, which

leverages Alternating Least Squares (ALS) to compute the best estimate of the rank CP

model. This results in pseudo-component spectra and concentration profiles. The Lack of

Fit and Core Consistency plots, presented here using a subset of FTIR data, are illustrated
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in Figure 2.5. The concentration and spectral profiles, obtained after 1000 iterations, yield

the results displayed in Figure 2.6, with a sum of squared errors (SSE) loss of 0.00048.

Figure 2.5: Chemical rank determination

The pseudo-component spectra are depicted in Figure 2.7. A side-by-side comparison of

the profiles reveals that peaks, indicative of the presence of functional groups, appear within

the same wavenumber range for each species.

When analyzing the pseudo-component spectra in conjunction with the pure component

spectra of ethane, distinct spectral characteristics emerge. Specifically, a peak observed

near 3000 cm−1 coupled with the absence of a peak around 2000 cm−1 strongly suggests the

presence of an alkane functional group. This is attributed to the C-H stretching vibrations

typical of alkanes.

Further scrutiny of the pseudo-component spectra, when compared with chloroethane,

reveals spectral peaks between 500−1200 cm−1, confirming the presence of a halide functional

group. This observation is supported by the identification of an alkane group, evidenced by

a distinctive peak at 3000 cm−1, characteristic of C-H stretching vibrations.

In the context of acetic acid, the pseudo-component spectra exhibit peaks within the

1000 − 2000 cm−1 range, signifying the presence of C-O stretching and C=O stretching

vibrations – hallmark features of carboxylic acids. A prominent peak at approximately
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Figure 2.6: Concentration profiles after deconvolution

3500 cm−1 further suggests the presence of an alcohol functional group, indicative of an O-

H stretch. The concurrent presence of ketonic and alcoholic peaks infers the presence of

carboxylic acid functional groups, underscoring the chemical complexity captured by the

pseudo-component analysis.

Lastly, the pseudo-component spectra aligned with the spectra of ethanol highlight an

alcohol functional group, evidenced by a peak at approximately 3800 cm−1 alongside C-

O stretching vibrations discernible in the 750 − 1200 cm−1 region. However, there seems

to be the presence of noise in wavenumber 460 − 660 cm−1, which is possibly because of

the overlap between acetic acid and ethanol overlap during those regions. Further close

comparison between spectral features of PC3 and PC4 indicates at presence of an alcohol

functional group in the pseudo-component.

As visible in figure 2.8, the introduction of perturbations, in the form of temperature
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Figure 2.7: Comparison between pure and pseudo-component spectra

Figure 2.8: Comparison between original and PC concentration profiles

and flow variations, impacts the concentration profiles in a manner consistent with their

effects on the ODE system. Consequently, the trends that capture the excitation from

the input signals are captured, although the magnitude of the deconvolved concentrations,
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which are rescaled, may not precisely mirror these dynamics. Specifically, Species 1 and

2 exhibit a noticeable shift and fail to attain the same magnitude observed in the original

data. For Species 3 and 4, an overlap is evident as the simulations progress. Furthermore,

within the deconvolved concentration profile of Species 4, it is observable that concentrations,

which initially trended towards negative values at the start of the simulation period, are

constrained to zero. This adjustment is due to the enforcement of non-negativity constraints

in the factorization process, ensuring that the concentration values remain physically feasible

throughout the analysis.

2.1.3 Reaction hypothesis generation from pseudo-component spec-

tra using Bayesian network

Bayesian networks present a mathematical framework for encoding conditional dependencies

between variables within complex systems. These probabilistic graphical models are par-

ticularly adept at modeling and reasoning about the uncertainty and causality inherent in

diverse fields, ranging from systems biology to chemometrics.[61]

Bayesian networks encapsulate systems as sets of variables (nodes) and conditional depen-

dencies (directed edges) within a Directed Acyclic Graph (DAG). Each node in the network

corresponds to a random variable, which may represent a measurable property, an event, or

a state. Directed edges, meanwhile, denote the causal or conditional relationships between

these variables. The structure of Bayesian networks allows computation and representation

of joint probabilities, facilitating inference and learning:

P (X1, X2, . . . , XN) =
N
∏

i=1

P (Xi|Pa(Xi)) (2.17)

where Pa(Xi) denotes the parents of node Xi.

Applying Bayesian networks with FTIR spectra involves modeling the spectral features

as variables within a network that reflect the dependencies among these features and the

chemical constituents or reactions they indicate.

Several factors underpin the effectiveness of Bayesian networks in analyzing FTIR data.

Handling of Uncertainty by Bayesian networks can model the uncertainty and incomplete
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knowledge typical of complex chemical datasets. The integration of prior knowledge with

these networks allows for the seamless incorporation of existing domain knowledge, enhancing

interpretability and accuracy.

Constructing Bayesian networks from FTIR data entails structure learning and parameter

estimation. Structure learning can be approached via:

1. Constraint-based methods, using statistical tests for conditional independence.

2. Score-based methods, employing criteria like the Bayesian Information Criterion (BIC)

or Akaike Information Criterion (AIC) and search algorithms to evaluate network struc-

tures.

3. Hybrid methods, which combine the strengths of constraint-based and score-based

approaches.

Parameter estimation often utilizes algorithms like expectation maximization (EM) to

refine network parameters, maximizing the observed data’s likelihood.

Bayesian networks are a tool for extracting causal relationships from FTIR spectroscopy

data, and the causal relationships obtained can be interpreted as reactions.

AIC(Mk) = −2 logL(Mk) + 2k, (2.18)

BIC(Mk) = −2 logL(Mk) + log(n)k, (2.19)

Equations 2.18 and 2.19 represent the formulas for AIC and BIC, which serve as metrics

to evaluate the goodness of a fit of the statistical model. Mk represents the k
th model among

a set of candidate models being evaluated. k denotes the number of parameters in the model

Mk, reflecting the complexity of the model. A higher value of k indicates a more complex

model with more parameters to estimate from the data. The term n stands for the sample

size. For BIC, the term log(n) acts as a penalty factor that increases with the sample size,

enforcing a more stringent penalty on the complexity of the model as the amount of data
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increases. This penalty helps with guarding against the overfit tendency by laying penalties

on very complex models.

To identify the best network structure for BIC maximization, commonly used algorithms

include Hill Climbing (HC)[62], Tabu Search[63], and Maximum Minimum Hill Climbing

(MMHC)[64]. HC incrementally finds local optima but may require random restarts to

avoid settling for suboptimal solutions. Tabu Search improves upon HC by avoiding pre-

vious solutions, thus navigating more effectively towards better overall solutions. MMHC

combines initial constraint-based pruning of the search area with subsequent HC optimiza-

tion, creating a more directed and efficient search process. These algorithms are favoured

for their ability to handle the complex search spaces found in Bayesian network structure

learning, ensuring a balance between data fit and simplicity. By using these algorithms in

tandem, the robustness of the resulting network structure is reinforced, particularly when

multiple algorithms converge on the same solution. The pseudo-component spectra reported

in figure 2.7 are input into the Bayesian Network algorithms and the probabilistic reaction

networks are obtained with scores allocated to each fit. The importance of an arc, or di-

rected edge, is determined by its impact on the overall score of the network. Specifically,

the arc’s strength is assessed based on the change in the network’s score when the arc is

removed: it is the disparity between the score with the arc absent and the score with the arc

included. A negative number signifies a reduction in the network’s score, while a positive

number indicates an enhancement.
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Figure 2.9: Reaction network for HC & MMHC

Table 2.2: Inter-group Strength Values for HC & MMHC

From To Strength
Group 1 Group 2 -9452.06
Group 2 Group 4 -8735.27
Group 2 Group 3 -8640.34
Group 1 Group 3 -30.83

HC, MMHC, and Tabu all identify the same reaction network structure. However, the

Tabu method assigns a higher score to the arc between nodes 2 and 3 than to the arc

between nodes 2 and 4. The arc from node 1 to node 3 has the lowest score in the network

and can be considered less critical compared to the other arcs. Therefore, by omitting this

least significant arc, we revert to the original reaction network depicted in Figure 2.2. It’s

worth mentioning that when analyzing spectral data with Bayesian networks, it is a common

practice to apply preferential weighting to improve the resolution of specific wavenumbers,

aiding in the recovery of the initial reaction framework. Additionally, some models are

designed to establish direct connections between nodes, adjusting model parameters to fit

the data and effectively capturing the underlying structure.
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2.2 Data-driven modeling approach for complex reac-

tion kinetics

The interplay of various species under different conditions lends complexity to chemical

reactions, demanding advanced modeling techniques. Conventional methods, anchored in

predetermined reaction kinetics and mechanisms, may not sufficiently unravel the intricacies

of such systems, particularly when their fundamental processes are not thoroughly elucidated.

Kinetic modeling of reactions fundamentally involves four stages: understanding the

feedstock composition, discerning the interaction among components within the reaction net-

work, formulating rate equations and parameters, and incorporating continuity equations[65].

In the context of this study, the composition and reaction networks have been ascertained

using established methods, and the continuity equations are addressed since the system is

modeled in a Continuous Stirred Tank Reactor (CSTR).

When dealing with systems where only experimental data is available, empirical methods

like curve fitting and utilization of auxiliary or qualitative information are typically employed

to simplify parameter identification. While suitable for simpler systems, this approach hits

a bottleneck as the complexity of the reaction network increases, necessitating a larger ex-

perimental dataset for an adequate kinetic model. The development of robust mechanistic

models is not only time-consuming but also lacks convenience.

In contrast, data-driven models are increasingly favoured for their utility across various

scientific fields. Notably, deep learning models, particularly those predicated on molecular

simulations, have garnered attention. These models dissect feedstocks on a molecular level

and track their behaviour during reactions[66]. Despite the reliability of robust predictive

models enabled by machine learning advancements, they tend to compromise interpretability.

With hundreds to thousands of parameters, there’s a risk of overfitting and losing critical

qualitative insights, which poses a challenge when applying the model to data outside the

studied system’s scope.

Hybrid models represent a fusion of physics and complex architectural modeling. These

models, contrary to classic machine learning techniques, can be trained on limited data

sets and do not require a fully physical process description. Capable of delivering accurate
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predictions even beyond the measured data range, hybrid models overcome the constraints of

data-driven methods. Physical models, which are simpler and dependent on a finite number

of parameters, can be enhanced using neural networks and other machine learning strategies.

In scenarios where a complete model is unattainable due to complexity, more advanced hybrid

models are necessary. These approaches have been applied in various domains such as fault

diagnosis, process modeling, optimization, and control.[67, 68, 69, 70, 71, 72, 73, 74]

There are several ways to meld physics with machine learning models. The develop-

ment of advanced programming libraries enables the identification of process parameters

using sparse regression for non-linear system dynamics[75]. While computationally efficient,

these algorithms can falter with high-dimensional dynamic systems with ambiguous con-

straints. Deep neural network approaches like model identification, matching derivatives, or

integrating residuals have been effective but often include a multitude of parameters. How-

ever, Physics-Informed Neural Networks (PINN) and Neural Ordinary Differential Equations

(NODE) stand out in modeling reaction kinetics. PINNs and deep networks that match

derivatives tend to depend on deep architectures loaded with parameters and may struggle

to capture transient dynamics, limiting generalizability. Thus, NODEs, aligned with dif-

ferential equations that describe chemical kinetics, are utilized in this study, underpinning

a system-agnostic method that harnesses spectroscopic data for species identification and

the hypothesizing of reaction pathways. These are further used to estimate kinetic models,

constrained by the reaction network adjacency matrix informed by Bayesian learning and

the fundamental principles of mass action and temperature dependencies.

2.2.1 Neural Ordinary Differential Equation

Neural Ordinary Differential Equations (ODEs) have emerged as a pioneering interface be-

tween the realms of deep learning and the theory of dynamical systems, facilitating the

modeling of continuous-time phenomena across various scientific fields, as delineated by

Chen et al. [76]

Central to neural ODEs is the conceptualization of a neural network’s hidden layers as

the trajectory of a state within a dynamical system governed by an ordinary differential

equation. This paradigm shift introduces a continuous model where the evolution of the

35



system’s state, h(t), is governed by:

dh(t)

dt
= f(h(t), t, θ), (2.20)

where f denotes the neural network with parameters θ, and t serves as an analog to the

network’s depth.

This approach allows for the seamless modeling of state transitions, utilizing ODE solvers

to transition from an initial state, h(0), to a final state, h(T ), effectively encapsulating the

model’s output.

A noteworthy advantage of neural ODEs is their parsimonious approach to parameter

utilization. Unlike traditional deep networks that necessitate distinct parameters for each

layer, neural ODEs operate with a singular parameter set across its entirety. Dupont et al.[77]

highlighted this efficiency, noting the model’s capability to encapsulate complex dynamics

within a compact framework.

Additionally, neural ODEs excel in processing time-series data that is non-uniformly

sampled, offering the flexibility to assess the hidden state at any desired point in time,

thereby enhancing their applicability to real-world data scenarios.

Optimizing the parameters of neural ODEs to align with empirical data involves leverag-

ing the adjoint sensitivity method, enabling scalable and memory-efficient training processes.

This innovative approach utilizes a differential equation solver as a ”black box” to compute

the output layer, eliminating the need to backpropagate and scale to problem complexity

Applications of neural ODEs span a variety of tasks, underscoring their versatility in

modeling continuous-time series, implementing normalizing flows, and offering a continuous-

depth alternative to Residual Networks (ResNets), which has been demonstrated by Rahman

et al.[78] for nonlinear system identification.

2.2.1.1 Chemical Reaction Neural Network

CRNN serves as a useful tool for autonomous discovery of reaction models and has been

demonstrated on multiple chemical and biochemical systems successfully. An updated model

that accounts for uncertainties has been developed in the form of Bayesian CRNN. These
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models have been applied to batch systems dealing with biomass feedstocks. The figure below

shows the structure of the first-ever proposed CRNN that follows the law of mass action and

temperature-dependent Arrhenius law to model the kinetics of the reaction.[79, 80] Figure

2.10 has been adapted from [81] and depicts a CRNN structured to model a batch reaction

system that involves multiple series and parallel reactions.

Figure 2.10: Neural ODE for chemical reactions. Adapted from [81]

When equations 2.1 and 2.2 are combined, the rate law can be expressed as:

r = k0 exp

(

−
Ea

RT

)

[A]a[B]b (2.21)

Using logarithms and exponentials on the equation results in equation 2.22 that governs

the structure of CRNN. Additionally, it is constrained through an adjacency matrix obtained

through a reaction template resulting from a Bayesian network.

r = exp

[

ln k0 −
Ea

RT
+ a lnCA + b lnCB

]

(2.22)

The outputs of the CRNN are the derivatives that represent the dynamics of changing

concentrations with time at each time instant, which are then integrated to obtain the

concentrations. In addition to existing CRNN models, the one shown in figure 2.10 stands
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out because of the adjacency constraints laid on the weights, which enhance the learning

by the inclusion of additional information like reaction network, which improves learning

by designing loss functions such that only the weights corresponding to specific components

that are involved in that particular reaction are learned.

2.2.2 Neural ODE: Application to continuous system

CRNNs and neural ODEs have been successfully applied in kinetic modeling of batch sys-

tems. However, CRNN’s application on continuous systems, such as a CSTR, has not been

successful. CSTR is a complex dynamic system widely used in chemical engineering to

model various chemical processes. The standard NODE approach faces several challenges

when modeling CSTR due to its complexity for reasons involving:

1. Complex Dynamics: Combinations of dynamic behaviours such as high nonlinearity,

multiple steady states, and transient responses, when combined, do not succeed in

CRNN test case scenarios.

2. Stiffness: CSTR systems tend to be stiff, where the contained process evolves on

very different timescales leading to NODE solvers struggling to handle stiff systems

efficiently.

3. Modeling Assumptions: The dynamics of a CSTR reactor can depend on various

factors such as reaction kinetics, heat and mass transfer, fluid flow, and mixing. CRNN

models do not capture all these factors adequately.

Research has been conducted by Rahman et al. [78], Qian et al. [82], and Yang et

al.[83] for modeling CSTR reactor dynamics by using neural ODEs. Rahman et al. [78]

used a neural ODE architecture with a single hidden layer while experimenting with hidden

layer size in the number of parameters, and utilizing over 10,000 data points to obtain

concentration profiles. The results were compared with neural state space models and linear

models. Although the neural ODE architecture provided accurate results, the number of

parameters required for the system was high. Qian et al.[82] have proposed an autoencoder

with NODE to reduce the order of NODE to deal with stiffness in the system, which still
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lacks interpretability in the model and deals with a lot of parameters. Yang et al.[83] rely

on the residence time distribution equation to model a generalizable neural ODE, which

accounts for the changing dynamics of the system but relies on different methods of data

generation accompanied with a black-box architecture that tries to match the derivatives

accompanied by an adjoint solver to obtain the dynamic profiles.

This study, however, emphasizes interpretability as one of the key aspects and hence tries

to incorporate that into the architecture of the model. Equation 2.22, which applies to a

batch system, needs to account for the flow flux in a continuous setup, which is obtained by

the introduction of flow term to CRNN.

dC

dt
=

F (t)

V
· (C0 − C) + k0 exp

(

−
Ea

RT (t)

)

Cn (2.23)

dC

dt
−

F (t)

V
· (C0 − C) =k0 exp

(

−
Ea

RT (t)

)

Cn (2.24)

Taking logarithm of both sides:

ln

(

dC

dt
−

F (t)

V
· (C0 − C)

)

= ln(k0)−
Ea

RT (t)
+ n ln(C) (2.25)

Building upon the neural ODE structure previously described, we introduce a refinement

to incorporate flow dynamics into the model. This enhancement is delineated through the

following modified set of equations incorporating the flow term F (t) in the system’s temporal

evolution:

(

dC

dt
−

F (t)

V
(C0 − C)

)

= exp

(

ln(k0)−
Ea

RT (t)
+ n ln(C)

)

·
eWF

eWF
(2.26)

To facilitate the inclusion of the flow term within the NODE framework, the differential

equation is re-expressed as follows:

dC ′

dt
= exp

(

ln(k0)−
Ea

RT (t)
+ n ln(C) +WF

)

(2.27)
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Equation (2.27) is an augmentation to the canonical rate of change represented by the

CRNN, which is depicted in Figure 2.10. Here, the necessity for an additional input —

the flow value F (t) — becomes evident, permitting the learning of an ancillary weight that

accommodates alterations in flow. The predicted output from the CRNN is the modified

rate term, as shown in equation (2.27). Subsequent to this, an additional transformation,

shown in equation (2.28), is imperative to derive the actual rate terms.

dC

dt
=

dC ′

dt
e−WF +

F

V
(C0 − C) (2.28)

This incorporation results in an expanded architecture, as depicted in Figure 2.11. The

adjusted NODE architecture encompasses three distinct layers:

Table 2.3: Dimensions of the neural network layers and parameters.

Layer Dimension

1st layer Ns + 2
2nd layer Nr

3rd layer Ns

W1 (Ns + 2)×Nr

b1 Nr

W2 Nr ×Ns

where Ns represents the number of species in the system and Nr is the number of reac-

tions.

The first layer receives inputs represented by the equation 2.29:

Xt = [ln(Ca(t)), ln(Cb(t)), ln(Cc(t)), ln(Cd(t)),−1/T (t), F (t)]T (2.29)

The input layer interacts with the first layer’s weights of the NODE, which are con-

strained by an adjacency matrix. This matrix ensures that only the species participating in

a specific reaction have their weights adjusted during the training process. As information

propagates to the next layer, the reaction terms are learned. These terms then interact with

the second set of weights. The adjacency matrix, derived from a Bayesian network, guides

the combinations of reactions. This, in turn, influences the computation of the rate of change
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dC
dt

for each species. The weights corresponding to this study are:

W (1) =

















a 0 0
0 b c
0 0 0
0 0 0

−
Ea1

R
−

Ea2

R
−

Ea3

R

W1 W2 W3

















W (2) =





−e f 0 0
0 −g h 0
0 −f 0 i





The forward pass through this NODE is:

Ht = exp
([

W (1) ∗
(

1(Adj ̸=−1)

)NR×1
]

Xt + b(1)
)

(2.30)

dC ′

dt
=
(

W (2) ∗
(

1(Adj ̸=0)

)T
)

Ht (2.31)

dC

dt
=

dC ′

dt
e−wF +

F

V
(C0 − C) (2.32)

Ĉt+n = Ĉt +

∫ t+n

t

dC

dt
dt (2.33)

The loss function comprises of 3 terms:

Lconc(θ) =
N
∑

t=1

(

Ct+n − Ĉt+n(θ)
)2

(2.34)

Lrate(θ) =

(

dC

dt

∣

∣

∣

∣

t

−
dĈ

dt

∣

∣

∣

∣

t

(θ)

)2

(2.35)

Lweights(θ) = α
∑

i,j

∣

∣Wij(θ)− Adjij
∣

∣ (2.36)
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Figure 2.11: Structure abiding neural ODE for a CSTR



Ltotal(θ) = λ1Lconc(θ) + λ2Lrate(θ) + λ3Lweights(θ) (2.37)

The CRNN, in the context of this study, is modeled as a step-ahead predictor, and the

loss function depicted in equation 2.34 accounts for 3-step ahead values in loss functions.

Given the relative nature of the concentration profiles derived from spectral deconvolution,

it is inappropriate to deem them absolute. Consequently, the species from Ca to Cd are

henceforth referred as pseudo-components, labeled PC-1 through PC-4, respectively.

While testing the scenarios, one-step-ahead predictions serve as input for the next time

step, which is a common practice in time series forecasting models; the training information

has been presented in table 2.4.

Figure 2.12: CRNN predictions of time derivatives of concentrations

In figure 2.12 the CRNN proficiently captures the dynamics of PC-2 and PC-3, as evi-
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denced by the mean absolute errors of 2.79× 10−5 and 2.42× 10−5, respectively, observable

in their concentration profiles in Figure 2.13. In contrast, PC-1 exhibits more pronounced

fluctuations, with a mean absolute error of 1.21 × 10−4; nevertheless, the CRNN manages

these variations with reasonable accuracy. However, for PC-4, several misalignments are

evident, resulting in a mean absolute error of 3.70×10−4, thereby slightly compromising the

accuracy of the step-ahead concentration profiles for this species.

Table 2.4: Neural ODE Training details

Parameter Value

Learning Rate (lr) 1e-3 to 1e-7

Optimizer AdamW

Train Loss-MSE 4.27e-5

Validation Loss-MSE 1.25e-5

Test Loss-MSE 4.3e-5

Test Accuracy 93.52%

Trainable parameters 15

Epochs 1000

Solver dopri8

atol & rtol 1e-8 & 1e-8

It can be noted that with the number of parameters needed for this model is much smaller

than in any deep learning model; the CRNN demonstrates its capability as a reliable tool for

complex reaction systems given the stiffness in the equations[84]. The plots comparing CRNN

output and numerically differentiated dC
dt

are shown below in figure 2.12. The tolerance used

by adjoint solvers is low because of the stiffness present in the dynamics, which helps avoid

running into underflow and overflow issues. The presented architecture also relies on a non-

negativity constraint on concentration values that are fed to the CRNN to avoid numerical

issues because of the logarithmic function. At such low tolerance, training is computation

intensive and time-consuming but yields good results on unseen data, as shown in figure

2.13 Given the temperature and flow perturbations present in figure 2.13, the predictions for
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species 1, species 2 and species 3 are reasonably accurate for 1,5&10 step ahead predictions,

while the predictions for species 4 are less accurate.

The prediction errors in initial step-ahead forecasts, when significant, begin to compound

as successive step-ahead predictions are approached. Specifically, the observed offset in PC-

4, in addition to discrepancies in time derivatives, can be attributed to the deconvolution

process. In this process, non-negativity constraints occasionally force concentrations to zero

at various time points. While the CRNN endeavors to align with these derivatives and

project further step-ahead forecasts, the imposition of adjacency constraints aims to steer

the learning process. This regulatory influence, however, can induce a divergence between

the actual and predicted concentrations for PC-4, thereby contributing to the prediction

mismatch.
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Figure 2.13: CRNN : 1, 5 &10 step ahead predictions

2.2.3 Neural ODE: Comparison to black-box approaches

The previous section discussed the neural ODE and the structure modification that adapts

it to the CSTR system, still making sure that the governing equation drove the architec-

ture. The reaction parameters embedded in the form of weights and biases provided reliable

multistep-ahead prediction when tested on unseen data in an open loop. This section fo-

cuses on developing a black-box deep learning model to provide multistep-ahead predictions

to compare the performance of the model.

As the data is nonlinear, choices for models include Artificial Neural Networks (ANN),
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Recurrent Neural Networks (RNN), and Long Short Term Memory (LSTM). ANN has been

used in a lot of applications as nonlinear autoregressive exogenous model (NARX) models;

however, RNNs allow for model building on entire data sequences. The same weights are

used for each time step of the input. This form of parameter sharing makes RNNs much

deeper models in time without increasing the number of parameters linearly with the size of

the time dimension. ANNs require fixed-length inputs, while RNNs can deal with varying

inputs. RNNs suffer from gradient vanishing or gradient explosion problems which can be

taken care of by advanced architectures, e.g., LSTMs retain information for longer periods

which has been a limitation of RNN. The architecture involves different gates that decide

the data that needs to be stored for the long term and discarded.

2.2.4 Long-Short Term Memory

Olah [85] describes the architecture and forward pass mechanics of LSTM networks. An

LSTM manages memory through three distinct gates: the forget gate ft, which evaluates

portions of the cell state Ct−1 for retention or removal; the input gate it, which identifies new,

relevant information to be updated; and the output gate ot, which influences the generation

of the output hidden state ht. The cell state is updated according to

Ct = ft ⊙ Ct−1 + it ⊙ C̃t, (2.38)

while the hidden state is updated by

ht = ot ⊙ tanh(Ct). (2.39)

Figure 2.14 illustrates the roles of gates and activation functions within an LSTM unit,

with the cell state indicated by a dashed line. Beginning with the prior hidden state h(t−1)

and the current input xt, the LSTM’s forget gate determines which elements of the cell

state are obsolete and should be eliminated. Simultaneously, the input gate selects fresh

information to be incorporated into the cell state. These determinations from both gates

guide the evolution of the previous cell state Ct−1 into the new cell state Ct. Ultimately,

the output gate decides the new hidden state ht based on the freshly updated cell state Ct.
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This gating mechanism enables LSTMs to capture and leverage long-term dependencies in

sequential data.

Figure 2.14: LSTM architecture. Adapted from [85]

Jung et al.[86] have presented the application of LSTM as a simulator for the ODE system

that represents the reactor dynamics.

2.2.4.1 Application of LSTM for reaction kinetics modeling

The specifics of LSTM model training are delineated in table 2.5, which underscores the

configuration and outcomes of the training process. LSTM has been trained on the same

data that has been used to train neural ODE. The LSTM architecture was configured with

57,760 trainable parameters, and the model utilized a history of 30 past time steps to achieve

the predictive performance shown in figure 2.15.
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Table 2.5: LSTM training details

Parameter Value

Input size (30,6)

Learning Rate (lr) 2e-5

Optimizer Adam

Train Loss-MSE 7.8e-7

Validation Loss-MSE 2.3e-6

Test Loss-MSE 9.2e-7

Test Accuracy 97.2%

Trainable parameters 57,760

Epochs 1500

In the evaluation over a five-step-ahead forecast horizon, PC-1 and PC-3 exhibit close

alignment with empirical trends due to temperature and flow perturbations. However, slight

deviations are observed towards the end of the simulation. On the other hand, PC-2 and

PC-4 have low test MSE rates of 9.2× 10−7, but they fail to capture dynamic trends and do

not respond to perturbations, resulting in flat predictive trajectories.

The CRNN demonstrates superior architectural efficiency, with a mere 15 trainable pa-

rameters compared to the LSTM’s 57,760 parameters. This contrast not only underscores

the CRNN’s potential for enhanced generalization but also mitigates the risk of overfitting

while facilitating physical laws into the modeling framework. In terms of loss metrics, the

CRNN demonstrates remarkable consistency from training through to testing phases. Un-

like the LSTM, which, despite its higher accuracy of 97.2%, tends to produce flat predictive

trajectories that fail to respond adequately to perturbations in temperature and flow, par-

ticularly for pseudo-components PC-1 and PC-3. Although the CRNN requires substantial

computational resources due to the use of an adjoint solver, its capability to utilize input

from just one-time step for making predictions up to ten steps ahead significantly enhances

its predictive capabilities. Given these attributes, the CRNN is affirmed as the model of

choice for this study, ensuring reliable and dynamically sensitive performance.
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Figure 2.15: LSTM: 1,3 &5 step-ahead predictions
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Chapter 3

Control of complex reaction systems

At its core, control is about influencing the behavior of systems to achieve desired outcomes.

The necessity for control arises from the inherent unpredictability and complexity of physical

systems, coupled with the need for efficiency, precision, and responsiveness.

Traditional control techniques such as Proportional-Integral-Derivative (PID) controllers,

have been the backbone of industrial control systems due to their simplicity and effectiveness

in a wide range of applications. However, as systems become more complex and intercon-

nected, the limitations of traditional methods become apparent. Processes on an industrial

scale are highly complex in nature. Their models contain many equations with coupled

interactions between variables, which require decoupling to apply PIDs to control individ-

ual variables. Apart from that, the difficulties in handling nonlinearities, constraints, and

multi-variable systems, as well as a lack of adaptability to changing conditions or system

dynamics, is often a problem.

Advanced control strategies, including Model Predictive Control (MPC) and Reinforce-

ment Learning (RL), offer several advantages over traditional methods. These include en-

hanced adaptability, the ability to handle multi-variable systems and constraints, and the

potential for real-time optimization. By integrating predictive models and learning mech-

anisms, these strategies provide a more nuanced and responsive approach to control. Un-

like traditional methods that react to deviations from a set point, optimal control strategies

proactively anticipate future system states and make decisions that optimize a defined perfor-

mance criterion over time. This forward-looking approach allows for considering constraints
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and multiple objectives.

With its model-based predictive capabilities, MPC calculates optimal control actions over

a prediction horizon in the presence of constraints. RL adapts and improves control policies

based on interaction with the environment by balancing exploration and exploitation.

This chapter explores these advanced control strategies, tracing their development from

theoretical foundations to practical applications. This exploration aims to demonstrate the

potential of MPC and RL in what is achievable with control systems when focusing on

complex reaction systems as the operational environment.

3.1 Model Predictive Control

Optimal control focuses on deriving strategies that optimize a performance metric over time.

Control laws are formulated to minimize or maximize a cost function, accounting for both

system dynamics and constraints. It serves as a foundational pillar for crafting methodologies

that ensure optimal performance under predefined constraints.

Model Predictive Control (MPC) represents a subset of optimal control devised to over-

come some of the practical hurdles encountered with traditional methods like dynamic pro-

gramming (DP). While DP theoretically addresses the full scope of optimal control by solving

the Bellman equation, it often proves impractical for systems characterized by complex dy-

namics or large state spaces due to its intensive computational demands[87]. In response,

MPC adopts a receding horizon approach, continuously refreshing its control strategy based

on real-time data and forward-looking predictions.

MPC is distinguished by its method of addressing control. It solves a finite horizon

optimal control problem at each discrete time step, starting from the current system state

and projecting forward using a model to simulate future states. After calculating the op-

timal control sequence for this horizon, only the immediate first control action is executed

before the cycle repeats in the next time step. This rolling optimization technique, coupled

with model updates, enables MPC to adapt to dynamic changes and disturbances, ensuring

consistent system performance.

MPC offers a practical implementation of dynamic programming by sequentially solving
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manageable, short-term optimal control problems, thus sidestepping the extensive computa-

tional requirements associated with traditional DP. This approach enables the application of

optimal control principles in complex, real-world scenarios, establishing MPC as a dynamic

and adaptable control tool in challenging environments.

MPC operation involves predicting future system outputs and optimizing control actions

based on a model of the system. The operational procedure for MPC is presented below:

Algorithm 1 MPC Algorithm

1: Initialize system model and MPC parameters
2: Set simulation time period T and convergence threshold ϵ
3: Define the cost function J and horizons (prediction N and control M)
4: Initialize state x0 and control input u0

5: while not converged or t < T do
6: Predict future states over the prediction horizon:

x̂t+k|t = f(x̂t+k−1|t, ut+k−1), k = 1, . . . , N

7: Formulate the optimization problem to minimize the cost function:

min
Ut

J =
N−1
∑

k=0





∥

∥x̂t+k|t − xref

∥

∥

2

Q
+

min(k,M−1)
∑

j=0

∥ut+j∥
2
R





8: subject to the state and input constraints for all k:

xmin ≤ x̂t+k|t ≤ xmax, umin ≤ ut+j ≤ umax, j = 0, . . . ,M − 1

9: Apply the first control action ut from the optimized sequence Ut:

ut = Ut[0]

10: Measure new state xt+1 and update the model with new measurement
11: Check for convergence or timeout
12: if the optimization problem is infeasible then
13: Break the loop or apply contingency measures
14: end if
15: t← t+ 1
16: end while

The foundational principle of MPC is consistent despite variations in its formulation, and

the selection of a particular formulation will dictate adjustments to both the convergence

criteria and the cost function.
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3.2 Reinforcement Learning

Reinforcement Learning (RL) distinguishes itself through its reliance on interaction with a

dynamic environment rather than the fixed datasets typical of supervised learning. This

method enables RL algorithms to generalize behaviors and decision-making strategies to

novel scenarios absent from the training data without direct supervision.[88] Unlike super-

vised learning, which optimizes models based on predefined labels, RL employs a trial-and-

error approach, systematically exploring the state space of the environment. The learning

process in RL is primarily driven by a mechanism of rewards and penalties: actions that bring

the system closer to a desired outcome generate rewards, whereas less optimal actions incur

penalties.[88] This framework incentivizes the algorithm to maximize cumulative rewards,

thereby aligning its learned policies with the objectives defined by the reward structure.

Ultimately, this approach enables the formulation of sophisticated strategies that promote

optimal behaviors, operationalized through policy or value-based functions that map ob-

served states to actions aimed at achieving specific goals.

Markov Decision Processes (MDPs) provide a formal framework for modeling the decision-

making process in RL where outcomes are partially random(exploration) and partially under

the control(exploitation) of a decision-maker.[89] The key elements of MDP include:

• States (S): A comprehensive set of all possible situations the agent might encounter.

• Actions (A): For each state, there is a set of actions available to the agent.

• Transition Function (P): It defines the probability of transitioning from one state

to another, given an action. It is denoted by P (s′ | s, a), indicating the probability of

moving to state s′ from state s under action a.

• Reward Function (R): This function returns the immediate reward received after

transitioning from one state to another via an action, denoted as R(s, a, s′).

• Discount Factor (γ): A parameter that values the importance of immediate rewards

versus future rewards, typically within the range [0, 1].

54



In MDP-based RL, the goal is to find an optimal policy π∗ that maximizes expected

rewards. This is achieved using iterative algorithms that leverage the Bellman equation to

recursively estimate state values and refine the policy[90].

V π(s) =
∑

a∈A

π(a | s)
∑

s′,r

P (s′, r | s, a)[R(s, a, s′) + γV π(s′)] (3.1)

Techniques such as Monte Carlo (MC) methods and Temporal-Difference (TD) learning

are used to learn optimal policies within the MDP framework.[91] DP in RL utilizes a

complete model of the environment to solve MDPs. By iteratively applying the Bellman

equations, DP methods systematically evaluate and improve policies.

Monte Carlo methods in RL exploit the randomness inherent in the sampling processes to

estimate the value functions and subsequently derive policies. Unlike methods that require

a complete model of the environment, Monte Carlo methods operate by learning directly

from episodes of experience—sequences of states, actions, and rewards. MC methods wait

until the end of an episode and use the total accumulated return to update the value func-

tion estimates for the states visited. This approach, known as episode-by-episode learning,

does not bootstrap (update estimates based on other estimates) but rather relies solely on

empirical returns. MC methods do not require knowledge of transition probabilities and

reward functions, making them ideal for environments where this information is unavailable

or impractical to obtain[92]. Under conditions of constant policy and sufficient exploration,

MC estimates converge to the true value functions as the number of episodes increases. The

return paths can vary significantly, leading to high variance in the estimates, which may

slow down the convergence.[88] MC methods require the completion of episodes, making

them unsuitable for continuing tasks without clear terminal states.

TD learning, on the other hand, represents a class of model-free algorithms that learn

by bootstrapping—updating estimates based on other learned estimates. TD methods com-

bine the sampling techniques of Monte Carlo with the bootstrapping techniques of Dynamic

Programming.[88] A quintessential example of TD learning is the TD(0) algorithm, where

the value of the current state is updated based on the estimated value of the next state

and the reward received, adjusting estimates partly towards the more certain subsequent
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estimates. Unlike Monte Carlo methods, TD can learn from incomplete sequences, making

updates after each step. This allows TD to be applicable in both episodic and continuous

tasks. TD methods typically exhibit lower variance in updates than Monte Carlo, providing

more stable learning progress. Bootstrapping methods introduce bias into the estimates,

especially when the initial estimates are poor.[93] The quality of TD estimates depends sig-

nificantly on the policy being followed, particularly for on-policy methods like SARSA. As

both Monte Carlo and TD learning methods are tailored to learn optimal policies within

the RL framework, their application can be optimized by understanding their inherent char-

acteristics and situational advantages. These methods provide powerful tools for agents to

learn from interaction with complex environments, enabling the formulation of sophisticated

strategies for decision-making under uncertainty.

3.2.1 RL classification: model-based and model free

The classification of Reinforcement Learning (RL) algorithms broadly falls into two cate-

gories: model-based and model-free approaches. A crucial decision in designing RL algo-

rithms is whether to incorporate a model of the environment. Model-based methods involve

either learning or having access to a model that can predict state transitions and rewards,

enabling agents to plan actions by thinking ahead.[94] This approach can greatly improve

sample efficiency, as demonstrated by algorithms like AlphaZero.[95] However, the challenge

with these methods is the potential bias in the learned models, which might result in less

optimal performance in real-world scenarios.

Model-based RL requires the agent to build a model of the environment from its inter-

actions. This model accurately predicts the outcomes of actions in specific states, allowing

for a more strategic approach to decision-making. In this scenario, the agent learns not

only to assess immediate rewards but also to use the model to anticipate future states and

rewards, planning multiple steps ahead. Such a capability is especially beneficial in complex

environments where long-term strategic planning is essential.

In contrast, model-free RL does not assume any knowledge of the environment’s dynam-

ics. Instead, it focuses on learning the value of actions directly from experiences without

attempting to build an underlying model of the environment. This approach is split further
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into two main methods: Q-learning and policy gradient methods. Model-free RL is gener-

ally simpler and more versatile, making it suitable for a variety of applications where the

environment is too complex, or the agent’s interaction with the environment is limited.

Conventionally, model-free RL is preferred over model-based methods, driven by several

practical considerations. Model-free RL simplifies development by eliminating the need to

construct a model of the environment, thus reducing complexity. It is also more robust, as

it learns directly from actual experiences and is not affected by inaccuracies in a model’s

predictions. This approach offers greater flexibility and adaptability, making it suitable for

a wide range of environments that are complex or unpredictable. Additionally, model-free

RL typically requires less computational power since it focuses solely on learning from in-

teractions rather than on modeling and planning.[96] It has proven to be effective across

various applications, demonstrating its capabilities without the need for detailed environ-

mental models. Modern enhancements like experience replay have also improved the sample

efficiency of model-free methods, further boosting their attractiveness. Overall, the simplic-

ity, robustness, and flexibility of model-free RL make it a preferred choice in dynamic or

uncertain settings across various domains.

3.2.2 Model-free RL: Policy-based and value-based learning

In model-free RL, two principal approaches guide how agents derive knowledge from their

interactions with the environment: policy-based and value-based learning.[88] Each strategy

comes with distinct methodologies and inherent benefits.

Policy-based learning directly focuses on learning the policy, which is a mapping from

states to actions, often represented as a function or a probability distribution. This approach

is particularly advantageous for handling high-dimensional or continuous action spaces and

for learning stochastic policies. However, policy-based methods typically suffer from high

variance in their updates and can be less efficient in terms of sample usage.[97] Examples of

policy-based methods include REINFORCE, where the policy gradient is used, and Prox-

imal Policy Optimization (PPO), which moderates the extent of policy updates to avoid

destabilization.[88]

Conversely, value-based learning centers on determining a value function that evaluates
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the quality of states (or state-action pairs), reflecting the expected return from those states

under a specific policy.[88] This approach excels in sample efficiency as it allows the reuse

of past experience to update the value estimates for multiple states based on a single set

of actions. It generally provides more stable and consistent updates but struggles with

large state or action spaces due to the need to accurately estimate the value function across

all possibilities.[97] Notable value-based methods include Deep Q-Networks (DQN), which

applies deep learning to estimate the optimal action-value function, and Temporal Difference

(TD) Learning, which updates the value function based on differences between estimated

values over time steps.

Actor-critic methods in model-free reinforcement learning combine the direct policy op-

timization of policy-based learning with the stable value estimation of value-based learning.

This hybrid approach employs an actor to determine actions and a critic to evaluate these

actions via a value function, enhancing stability and reducing the variance associated with

policy-based methods alone. This dual setup quickens convergence improves sample effi-

ciency, and maintains a balance between exploration and exploitation, which is crucial for

navigating complex environments.[88]

Examples of sophisticated Actor-Critic methods include Deep Deterministic Policy Gra-

dient (DDPG), which pairs a deterministic policy actor with a Q-function critic for con-

tinuous action spaces; Soft Actor-Critic (SAC), which uses entropy regularization to foster

exploration; and Twin Delayed DDPG (TD3), which minimizes bias and stabilizes training

through delayed updates. These methods represent significant advancements in RL, effec-

tively integrating policy and value methods to adapt dynamically to diverse applications and

continuously pushing the boundaries of what autonomous agents can achieve.

RL algorithms can be distinguished by their on-policy or off-policy approach and their

suitability for discrete or continuous action spaces. Among these, Deep Deterministic Policy

Gradient (DDPG) stands out as a robust off-policy, actor-critic method optimized for contin-

uous action spaces, making it ideal for complex environments like robotics and autonomous

vehicles. DDPG excels over discrete space methods like Q-Learning and SARSA, which

struggle with continuous domains due to the need for action space discretization that com-

plicates implementation and hampers efficiency. Unlike on-policy methods such as A2C and
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PPO, which require fresh environmental samples for each update, DDPG enhances learn-

ing efficiency by using a replay buffer to learn from past experiences. Furthermore, DDPG

maintains simplicity and accessibility compared to other advanced actor-critic methods like

SAC and TD3, which introduce additional complexity. It has been extensively tested and

proven effective, providing a reliable option for applications requiring precision and practical

usability.[98]

3.2.3 Deep Deterministic Policy Gradients

Deep Deterministic Policy Gradient (DDPG)[99] is a model-free, off-policy actor-critic algo-

rithm designed for the continuous action domain. It merges the concepts from Deterministic

Policy Gradient (DPG) and Deep Q-Networks (DQN) to operate in environments with con-

tinuous action spaces, overcoming the shortcomings of each individual approach of policy

based and value based methods for model-free RL. DDPG adopts the actor-critic framework,

comprising two main components: the actor function that specifies the policy by mapping

states to actions, and the critic function that estimates the value of state-action pairs. Thus

providing a powerful solution for complex control tasks that neither purely policy-based nor

value-based methods could solve efficiently on their own. DDPG utilizes two neural networks

that work in tandem to learn optimal policies and value functions.

Actor - Deterministic Policy Gradient : The actor in DDPG defines a deterministic

policy, which is an explicit function mapping states to actions. This policy is deterministic

in the sense that for a given state, the actor outputs the same action every time, as opposed

to a stochastic policy that would output a distribution over actions.

at = µθ(st), (3.2)

where at is the action, st is the current state, and µθ represents the deterministic policy

network parameterized by θµ. This network is updated using a policy gradient method that

aims to maximize the expected return by adjusting the parameters in the direction that

increases the probability of good actions.

Critic - Deep Q-learning Network : The critic evaluates the chosen actions given the
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current state. It approximates the Q-function, which estimates the expected return of taking

an action at in state st and following policy µ thereafter. The Q-function is learned using

temporal difference learning, with the target values provided by a separate target network

to improve learning stability.

Q(st, at|θ
Q) ≈ rt+1 + γQ′(st+1, µ

′(st+1|θ
µ′

)|θQ
′

),

where θQ and θQ
′

are the parameters of the critic and target critic networks, respectively,

and γ is the discount factor.

Exploration and Exploitation Balance : A critical aspect of reinforcement learning is

the balance between the exploration of the action space and the exploitation of known infor-

mation. DDPG manages this balance by incorporating a noise process, often an Ornstein-

Uhlenbeck process, into the action selection policy. This allows the algorithm to explore

efficiently, avoiding local optima and ensuring diverse experiences are gathered.

Continuous Action Space : One of the defining features of DDPG is its ability to

handle continuous action spaces. This capability is critical for tasks that require precise

control, such as robotic arm manipulation. The deterministic policy in DDPG eliminates

the need for action space discretization, which is both inefficient and may discard valuable

structural information.

Experience Replay : Experience replay in DDPG improves data efficiency by storing

and reutilizing past experiences, thus maximizing the utility of each observation and breaking

temporal correlations.

Stabilization with Soft Updates : To stabilize learning in the presence of non-

stationary targets, DDPG utilizes a technique known as soft updates, characterized by the

parameter τ . This parameter controls the extent to which the target networks are updated,

providing a smoother and more stable learning signal for the algorithm. The target networks

θQ
′

and θµ
′

slowly track the learned networks θQ and θµ using the update rule:

θQ
′

← τθQ + (1− τ)θQ
′

,
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θµ
′

← τθµ + (1− τ)θµ
′

,

where τ is a hyperparameter determining the mix between the target and main network

parameters, typically chosen to be much less than 1.

The algorithm shown below explains the workflow of DDPG as explained by Lillicrap et

al. for continuous control is adapted from [100]

Algorithm 2 Deep Deterministic Policy Gradient (DDPG)

1: Initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with random weights
2: Initialize target networks Q′ and µ′ with weights θQ

′

← θQ, θµ
′

← θµ

3: Initialize replay buffer
4: for episode = 1 to M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1 to T do
8: Select action at = µ(st|θ

µ) +Nt according to the current policy and exploration
9: Execute action at and observe reward rt and new state st+1

10: Store transition (st, at, rt, st+1) in replay buffer
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from replay buffer
12: Set yi = ri + γQ′(si+1, µ

′(si+1|θ
µ′

)|θQ
′

) for each in the minibatch
13: Update the critic by minimizing the loss: L = 1

N

∑

(yi −Q(si, ai|θ
Q))2

14: Update the actor policy using the sampled policy gradient:
15: ∇θµJ ≈

1
N

∑

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si

16: Update the target networks:
17: θQ

′

← τθQ + (1− τ)θQ
′

18: θµ
′

← τθµ + (1− τ)θµ
′

19: end for
20: end for

3.3 Control comparison between MPC and RL

In the field of process control, the juxtaposition of MPC and RL, notably deep RL, signifies

substantial advancements in managing complex systems. MPC involves forecasting of future

system states and consequent adjustments in control actions. This proficiency is crucial for

handling constraints and ensuring system stability. Nevertheless, the reliance of MPC on

precise system models, which are challenging to maintain, and its computational intensity
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in complex systems pose significant limitations .[101]

Conversely, RL provides a model-free methodology, learning optimal strategies through

direct system interactions, a boon in environments where the system model is complex

or unknown. RL’s adaptability is critical, as it continuously refines its control strategies

based on real-time data. However, the effectiveness of RL is contingent on substantial data

availability for training, and its initial performance can be suboptimal until the system

sufficiently learns from its environment.[102]

Addressing the shortcomings and leveraging the strengths of both MPC and RL, recent

studies have explored their integration. This hybrid approach seeks to combine MPC’s pre-

dictive accuracy with RL’s dynamic adaptability. By utilizing MPC to guide the RL training

process, the integrated system enhances learning speed and efficiency, which is beneficial in

managing systems with significant delays and nonlinear behaviors. Such systems have shown

promising results in simulations and controlled environments, suggesting enhanced control

performance in practical applications such as CSTRs. [102, 103]

Despite these theoretical and controlled successes, the practical deployment of combined

MPC-RL systems in industrial settings is nascent. The integration faces challenges such

as high computational demands and the need to manage complex, noisy data effectively.

Future research is expected to focus on these challenges, aiming to improve the robustness

and efficiency of these systems for broader real-world application.

As computational power increases and data availability expands, the potential for MPC

and RL to revolutionize process control continues to grow. Ongoing research is likely to

extend the application of RL across various types of chemical processes, aiming to validate

its effectiveness and refine its implementation in industrial settings. The integration of RL

with model-free control methods like Model-Free Predictive Control (MFPC) and Model-Free

Learning Control (MFLC) is already improving operational stability and response times to

disturbances, indicating a significant step forward in the automation of chemical engineering

and other complex industries. [104]

These studies have demonstrated the deployment of MPC and RL-based controllers on a

CSTR system. However, the application is currently limited to ODE systems involving simple

concentration and height equations. In contrast, the complex reaction systems discussed in
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the previous chapter will require the use of Neural ODE as the chosen model for implementing

MPC and RL (DDPG) based controllers.

To evaluate the capabilities of the Neural ODE model in capturing the complex reac-

tion dynamics within a Continuous Stirred Tank Reactor (CSTR), an examination of its

performance under an open-loop configuration is conducted. In this setup, the system in-

puts are predetermined and applied without any feedback-based adjustments contingent on

the system’s outputs or its current state. This methodological approach is instrumental

in elucidating the intrinsic response characteristics of the model to specific control inputs.

Furthermore, it serves to validate the fidelity of the Neural ODE model in accurately rep-

resenting the fundamental dynamics of the process, thereby providing a robust platform for

assessing the model’s predictive precision and stability under fixed operational conditions.

Reactant concentration is depicted by PC-1 in figure 3.1. PC-2 is an intermediate, followed

by PC-3 and PC-4 which are products.

Figure 3.1: Neural ODE: Open-loop simulation (Species A-D: PC:1-4)

3.3.1 DDPG based control

The DDPG algorithm is described in this section. The reward function r, which dictates the

learning mechanism within this framework, is defined by :

r = −
[

(state3 − sp)2 + (state4 − sp)2
]

(3.3)

Here, state3 and state4 are the PC3 (species C) and PC4 (species D) concentrations,
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representing products of the reaction system, respectively, and sp represents their targeted

setpoint values. This reward function formulation is essential for the optimization process,

as it aims directly at minimizing the operational costs, which, within the DDPG paradigm,

translates to maximizing the cumulative reward.

The rationale behind setting specific setpoints for state3 and state4 is linked to the

kinetics of the reaction processes being controlled. The modeling and control objectives focus

on driving the reaction kinetics to a point where the production of the desired product is

maximized, while simultaneously ensuring that the production of any undesired by-products

is minimized. Such minimization is crucial as it prevents the undesired by-products from

hindering the synthesis of the target product.

Hyper Parameter Value
Soft update parameter(τ) 0.001
Discount factor(γ) 0.95
Buffer size 5,00,000
Actor architecture [20, 75, 75, 75, 20] neurons
Critic architecture [20, 75, 75, 75, 20] neurons
Actor learning rate 0.0003
Critic learning rate 0.0003
Total episodes 1500
Warmup episodes 500
Episode length 1000
Per episode execution(Testing) 0.43 second

Table 3.1: DDPG training details

Table 3.1 details the training hyperparameters, while the episodic rewards are illustrated

in Figure 3.3. The controller rapidly achieves the setpoints, even with disturbances intro-

duced at the 100th and 200th time steps, demonstrating aggressive control actions due to the

absence of penalties on states or inputs. Employing a discount factor of 0.95 plays a role

akin to considering predictions over a future horizon in the control strategy.
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Figure 3.2: Rewards during training

Figure 3.3: DDPG : Setpoint tracking
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3.3.2 DDPG based control: MPC reward function

In this section, the reward function is adapted to mirror the objective function used in MPC,

which includes penalties for deviations from the state setpoint and the magnitude of inputs.

The modified reward function is expressed in the following equation:

r = −
[

100 · (state3 − sp)2 + 10−2 · (T )2 + 1 · (F )2
]

(3.4)

Hyper Parameter Value
Soft update parameter(τ) 0.001
Discount factor(γ) 0.95
Buffer size 5,00,000
Actor architecture [20, 75, 75, 75, 20] neurons
Critic architecture [20, 75, 75, 75, 20] neurons
Actor learning rate 0.0003
Critic learning rate 0.0003
Total episodes 1500
Warmup episodes 500
Episode length 1000
State penalty(PC3) 100
Input penalty(T, F) 0.01,1
Per episode execution(Testing) 3.2 seconds

Table 3.2: DDPG training details

The hyperparameters remain consistent, with the addition of penalties during training.

This inclusion helps refine the training process, ensuring that the model effectively minimizes

deviations from setpoints and controls the magnitude of inputs.
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Figure 3.4: Rewards during training

Figure 3.5: DDPG-MPC reward : Setpoint tracking

Setpoint attainment remains rapid, similar to previous cases, but the fluctuations in input

values are less aggressive. However, using the discount factor as a basis for comparing the

performance of an RL-based controller with MPC is challenging, as there is no established

correlation between the discount factor and the prediction horizon that can be generalised.
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3.3.3 MPC-RL comparison

In RL, particularly in DDPG, the discount factor plays a pivotal role in balancing the im-

portance of short-term versus long-term rewards. Studies have tried to incorporate RL

with MPC, where a discounted value function measures control performance across dif-

ferent prediction horizons, trying to understand the link between horizon and discount

factor.[105, 106, 107] These strategies optimize the trade-off between immediate and future

costs, suggesting its utility for aligning the discount factor in RL-DDPG with the predictive

effectiveness of a n-step MPC horizon. This configuration effectively manages the trade-

off between exploiting known rewards and exploring actions that may yield greater future

rewards. The selected discount factor aids in stabilizing the learning process by mitigat-

ing the overvaluation of speculative long-term returns, which is particularly beneficial in

environments with uncertainty or dynamic variations.

Aligning the discount factors in both DDPG and MPC ensures that both control strate-

gies adhere to a similar principle of temporal valuation of costs and rewards. This alignment

is particularly helpful when dealing with infinite horizon problems[108], especially in RL.

This alignment is essential for applications where MPC and DDPG may be used jointly

or where one is employed for real-time control and the other for simulation or long-term

planning. By setting the discount factor at 0.7 through trial and error, the behaviors of

both control strategies are synchronized, leading to more predictable and coherent system

responses and facilitating logical performance comparisons.

The discounted cost function for MPC can be formulated as follows:

J(x(t), u) =
N−1
∑

k=0

γk
(

x(t+ k)TQx(t+ k) + u(t+ k)TRu(t+ k)
)

+ γNx(t+N)TPx(t+N)

(3.5)

Using this discounted cost function as the objective for the MPC, with a discount factor

of 0.7 and the inclusion of terminal penalties aligns with the same discount factor for the

DDPG controller during simulation with the training parameters shown in the table below.
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Figure 3.6: Rewards during training

Hyper Parameter Value
Soft update parameter(τ) 0.001
Discount factor(γ) 0.7
Buffer size 10,00,000
Actor architecture [20, 75, 75, 75, 20] neurons
Critic architecture [20, 75, 75, 75, 20] neurons
Actor learning rate 0.0003
Critic learning rate 0.0003
Total episodes 3000
Warmup episodes 500
Episode length 2000
State penalty(PC3,PC4) 100,10
Input penalty(T,F) 0.01,1
Per episode execution(Testing) 3.2 seconds

Table 3.3: MPC-DDPG training details

In figure 3.7, the disturbance rejection scenario is demonstrated while accounting for

changing setpoints of PC-3. Gaussian noise is added to inputs from time steps 500 to 600,

and at 1500th time step, states are perturbed. Both controllers handle setpoint tracking
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along with disturbance rejection effectively. The optimal trajectories obtained for MPC and

DDPG-based controllers are very similar, with minor differences observed at certain time

points. The input penalties are more heavily weighted for temperature values leading to

control actions dominant in flow rate.

Figure 3.7: DDPG with MPC reward: Setpoint tracking and disturbance rejection scenario

An additional instance is discussed here for a scenario that involves conducting setpoint

tracking for two components, PC-3 and PC-4, simultaneously as shown in figure 3.8. The

objective function is to meet setpoint tracking for both components at the same time, which

is later changed after the first half of the simulation. The penalties on inputs are less stringent

than those in figure 3.7 to ensure that the setpoints are attained for both components. The
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weights used are highlighted in the table below, and cost comparisons are made to quantify

the comparison between RL and DDPG. As the input penalty on temperature has been

reduced, it leads to more fluctuations than as seen in Figure 3.7. A significant drop is also

noted when the latter half of the simulation aims for new setpoints for PC-3 and PC-4.

Figure 3.8: DDPG-MPC: Setpoint tracking (PC-3 &PC-4) with same cost function/reward

71



Parameter MPC RL

Temperature Penalty 1× 10−4 1× 10−4

Flow Penalty 1× 10−2 1× 10−2

PC-3 Weight 10 10

PC-4 Weight 1 1

Cost per Step 77.66758 77.6671

Table 3.4: Comparison of MPC and RL performance under basic control parameters.

Parameter MPC RL

Temperature Penalty 1× 10−2 1× 10−2

Flow Penalty 1 1

PC-3 Weight 100 100

PC-4 Weight 10 10

Cost per Step 2747.433 2748.611

Table 3.5: Detailed cost comparison in a scenario involving disturbance rejection and setpoint
tracking.

In the basic control scenario, both MPC and RL underwent similar penalties for tem-

perature and flow with additional weights for specific control points, as detailed in Table

3.4. The results demonstrate nearly identical performance in terms of total cost per step.

This minimal difference indicates that both control strategies are effectively equivalent under

standard conditions, with RL showing a slight edge in cost efficiency.

While for the scenario including both setpoint tracking and disturbance rejection, the

results are closely matched, MPC exhibits a slight superiority in managing disturbances and

tracking setpoints more efficiently. This suggests MPC’s potential for better handling of

dynamic changes and complex control tasks with current system dynamics.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This research, in its initial phase, demonstrates data acquisition from FTIR mixture spec-

tra without prior knowledge. The adoption of Joint Non-negative Tensorial Factorization

(JNTF) facilitates the extraction of temporal concentrations and spectral profiles, supple-

mented by auxiliary information. This acquired data, combined with Bayesian network

analysis, enables the hypothesization of a reaction network. Integrating this reaction net-

work with JNTF-derived pseudo-component concentrations provides a foundation for kinetic

modeling of complex reaction systems. Furthermore, a grey box modeling approach, under-

pinned by first principles, i.e., Neural ODE, is employed alongside an LSTM to capture time

series dynamics, showcasing the advantages of data-driven modeling approaches with a stark

comparison of 15 versus 57,760 parameters against traditional black-box neural networks.

The research then utilizes Neural ODEs as a model/environment within a control frame-

work to facilitate a comparison between Model Predictive Control (MPC) and Deep De-

terministic Policy Gradient (DDPG), an RL technique particularly suited for control tasks.

The control task is structured around maximizing concentration to highlight selectivity for

desired components in the reaction system.

In aligning the formulations of MPC and RL, the control chapter ensures a logical ba-

sis for comparison. The optimal trajectories derived from these formulations demonstrate

comparable results, positioning RL as a viable alternative for optimal control.
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While MPC has been the more traditional and dependable control method since its incep-

tion, advancements in computing have paved the way for the adoption of machine learning

and deep learning techniques, which have proven to be reliable and effective. The RL-based

controller using DDPG, which interacts dynamically with its environment, exemplifies this

trend.

MPC’s dependency on model accuracy is a limitation, but it does not require retraining

when model changes occur—unlike RL, which develops an optimal policy independent of

the model and can utilize transfer learning to adapt and converge towards optimality when

the model is altered. RL’s dependence on continuous interaction with a simulator contrasts

with the static nature of traditional optimal control. Both MPC and DDPG generally

yield similar outcomes, although achieving optimal performance with RL involves extensive

hyperparameter tuning and reward formulation adjustments.

In terms of constraint handling, RL’s exploration phase can lead to constraint violations,

typically mitigated by adjusting the reward structure, an aspect not inherently addressed in

MPC. Despite MPC’s robust performance with nonlinear models in this study, it may face

challenges as problem dimensionality increases with increasing species and reactions, partic-

ularly with complex feedstocks. Conversely, RL is model-agnostic and capable of addressing

highly nonlinear systems or even partial differential equations effectively during the training

phase.

Although the comparison between MPC and RL is not direct, the choice between these

control methods depends on several factors highlighted above. For the system and model

studied, both MPC and RL perform effectively. However, considering the training time and

the computationally intensive nature of RL, MPC maintains a strong position for certain

applications. Given its promising outcomes, RL should not be disregarded and may be

particularly advantageous as system complexity increases.

4.2 Future Work

For future development of this thesis, the performance of Reinforcement Learning (RL)

could be enhanced by bypassing traditional modeling approaches and directly utilizing spec-
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tral data to control reaction kinetics. This approach would involve advanced preprocessing

techniques to extract key features from spectra indicative of reaction progress or specific

outcomes. A significant challenge is integrating real-time spectral data into the RL frame-

work, creating models that can correlate spectral signatures with reaction kinetics. An

initial step toward addressing this challenge could be to focus on isolated spectral signatures

at wavenumbers that do not overlap with other peaks, using these distinct signatures to

model the RL environment. This could be framed as an area maximization problem within

a specific wavenumber region to enhance concentration control.

As the research progresses, this approach could be expanded to tackle more complex sce-

narios where multiple pseudo-components contribute to peaks in the same spectral region.

Here, the objective would shift to maximizing the production of one specific species while

minimizing others, effectively controlling the reaction to favor the formation of desired prod-

ucts over undesired ones. This could evolve into a selectivity or yield optimization problem

within the reaction system, guiding the kinetics to achieve specific objectives.

Furthermore, extending this problem to include the determination of physical properties

such as density and viscosity would provide additional value. These properties are crucial for

the design, optimization, and scaling of chemical processes, influencing aspects like equip-

ment design, safety, and operational efficiency. Accurately determined physical properties,

such as viscosity and density, affect critical parameters like heat transfer coefficients and

flow characteristics, which are essential for process design and energy consumption during

transportation.

The identification of these physical properties could result from a linear or nonlinear com-

bination of individual component properties, weighted by their concentrations or fractions

within the system. This holistic approach not only enhances the control of reaction kinetics

but also contributes significantly to the broader field of chemical process design and opti-

mization, paving the way for more efficient, safe, and sustainable chemical manufacturing

processes.
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[25] R. Simutis and A. Lübbert, “Bioreactor control improves bioprocess performance,”

Biotechnology Journal, vol. 10, no. 8, p. 1115–1130, Jul. 2015. [Online]. Available:

http://dx.doi.org/10.1002/biot.201500016

[26] S. Mitra and G. S. Murthy, “Bioreactor control systems in the biopharmaceutical

industry: a critical perspective,” Systems Microbiology and Biomanufacturing,

vol. 2, no. 1, p. 91–112, Aug. 2021. [Online]. Available: http://dx.doi.org/10.1007/

s43393-021-00048-6

[27] S. Ramaswamy, T. Cutright, and H. Qammar, “Control of a continuous bioreactor

using model predictive control,” Process Biochemistry, vol. 40, no. 8, p. 2763–2770,

Jul. 2005. [Online]. Available: http://dx.doi.org/10.1016/j.procbio.2004.12.019

[28] D. Dochain, M. Perrier, and M. Guay, “Extremum seeking control and its

application to process and reaction systems: A survey,” Mathematics and Computers

in Simulation, vol. 82, no. 3, p. 369–380, Nov. 2011. [Online]. Available:

http://dx.doi.org/10.1016/j.matcom.2010.10.022

[29] S. Vaidyanathan, “Anti-synchronization of brusselator chemical reaction systems via

adaptive control,” International Journal of ChemTech Research, vol. 8, pp. 759–768,

09 2015.

[30] T. D. Knapp, H. M. Budman, and G. Broderick, “Adaptive control of a cstr with a

neural network model,” Journal of Process Control, vol. 11, no. 1, pp. 53–68, 2001.

[31] R. K. Al Seyab and Y. Cao, “Differential recurrent neural network based predictive

control,” Comput. Chem. Eng., vol. 32, no. 7, pp. 1533–1545, Jul. 2008.

[32] E. Pan, P. Petsagkourakis, M. Mowbray, D. Zhang, and E. A. d. Rio-Chanona, “Con-

strained model-free reinforcement learning for process optimization,” Comput. Chem.

Eng., vol. 154, no. 107462, p. 107462, Nov. 2021.

79

http://dx.doi.org/10.1016/j.copbio.2003.09.001
http://dx.doi.org/10.1002/biot.201500016
http://dx.doi.org/10.1007/s43393-021-00048-6
http://dx.doi.org/10.1007/s43393-021-00048-6
http://dx.doi.org/10.1016/j.procbio.2004.12.019
http://dx.doi.org/10.1016/j.matcom.2010.10.022


[33] P. Petsagkourakis, I. Sandoval, E. Bradford, D. Zhang, and E. del Rio-

Chanona, “Reinforcement learning for batch bioprocess optimization,” Computers

amp; Chemical Engineering, vol. 133, p. 106649, Feb. 2020. [Online]. Available:

http://dx.doi.org/10.1016/j.compchemeng.2019.106649

[34] K. Alhazmi and S. M. Sarathy, “Continuous control of complex chemical reaction

network with reinforcement learning,” in 2020 European Control Conference (ECC).

IEEE, May 2020. [Online]. Available: http://dx.doi.org/10.23919/ecc51009.2020.

9143688

[35] G. Varhegyi, M. J. Antal Jr, E. Jakab, and P. Szabó, “Kinetic modeling of biomass
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