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“If you want to learn how to train networks yourself, you take your network
and you go to where the road crosses that way, where a crossroads is. Get
there be sure to get there just a little "fore 12 that night so you know you’ll be
there. You have your network and be training a problem there by yourself ...
A big man will walk up there and take your network and he’ll tune it. And
then he’ll train a problem and hand it back to you. That’s the way I learned

to train anything I want.”

with apologies to Tommy Johnson
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Abstract

Connectionist research has reached a crossroads: while some view connectionism as a Kuhnian-like
paradigm shift (e.g., Schneider, 1987), others view it as no more than a mere implementational
account of classical cognitive theories (e.g., Fodor & Pylyshyn, 1988). Consequently, connectionism
is in need of reevaluation if it is to become an effective tool within cognitive science. To this end,
it will first be argued that to be of import to science overall, connectionism must fulfill three
functions: (1) the collection of data, (2) the direct comparison of data to theory, and (3) the
articulation of theory. Furthermore, within cognitive science, connectionism must be able to explain
information processing at three different levels of analysis: computational, algorithmic (including
the functional architecture), and implementational. Thus, to begin our reevaluation, a framework
for connectionism is developed wherein the essentials of cognitive science, information processing,
and the basic tenets of connectionism are presented. This is followed by a brief review of the history
of connectionism, from its origins with the Greek philosopher, Aristotle, to the neural network
architectures in use today. With this framework established, connectionism’s contributions to the
tri-level hypothesis are explored. It is shown that from a computational perspective, both
computability and complexity theory are fundamental to connectionism and therefore connectionism
is able to answer those questions that are of interest to cognitive science. Furthermore,
connectionism also aids in developing explanatory theories based on natural computation. From the
algorithmic perspective, it is shown that analysis of the internal structure of connectionist models
is a necessary step if connectionism is to contribute to cognitive science. Such analyses reveal that
connectionist networks can produce novel cognitive theories, yet—when constrained—can also learn
existing theories. Moreover, studies of the functional architecture show that lesioned connectionist
networks can be used to inform cognitive neuroscience, especially in terms of semantic networks and
the locality assumption. Finally, at the implementational level it is shown how connectionism shares
a two-way interaction with neuroscience. It is therefore concluded that connectionism represents
neither a paradigm shift nor a mere implementational account of classical theories. Connectionism

is, however, an effective tool within cognitive science and has the potential to unite the field.
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Chapter | 1

Chapter 1

The Crossroads of Connectionism

Connectionist research has reached a crossroads. While some hail connectionism as a
Kuhnian-like paradigm shift (e.g., Schneider, 1987), others dismiss connectionist models as mere
implementational accounts of classical cognitive architectures (e.g., Broadbent. 1985; Fodor &
Pylyshyn, 1988). Although these original arguments are now a decade old, the debate over
connectionism’s place in cognitive science still continues today ( e.g., Jackendoff, 1992; Burr, 1994;
Gallistel, 1995; Horgan & Tienson, 1996). Even those researchers who view connectionist research
as a valid enterprise have challenged its ability to contribute significantly to cognitive science (e.g.,
McCloskey, 1991; Dawson, Shamanski, & Medler, 1993; Dawson & Shamanski, 1994). Clearly,
connectionism is in need of reevaluation if it is to become an effective tool within cognitive science.

This use of the word ‘tool’ is intentional. In this incarnation, a tool is defined as an
instrument useful in the practice of a vocation or profession (although the more cynical scientist may
find the alternative definition of ‘an unwitting or compliant agent of another’ more appropriate in
these circumstances). Tools are devised when a science requires more exact observations (Hull,
1943); that is, when the previous tools of science no longer provide suitable answers to the questions
being posed, new tools must be fashioned. Consequently, the purpose of a tool within science is
threefold: (i) to determine significant facts pertinent to the field of study; (ii) to compare fact with

theory directly; and (iii) to aid in the articulation of theory itself (Kuhn, 1970). Therefore, we must
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show that connectionism can fulfill these three goals if it is to contribute significantly to science in
general and cognitive science in particular.

Moreover, once committed to this three-pronged approach, we are necessarily committing
ourselves to both empirical and theoretical work—the “two essential elements of modern science”
(Hull, 1943, p. 1). The definition of empirical work is relatively easy': it is the collection and
analysis of data. We can collect data through self-report (e.g., protocol analysis; Newell & Simon,
1963) or through direct observation (e.g., neural responses to stimuli; Hubel & Weisel, 1959).
Furthermore, in terms of analysis, data can be simply described (e.g., knowledge from analogy:
Lorenz, 1974), correlated with other data (e.g., functional localization of the brain and structural
damage; Kolb & Whishaw, 1996). or experimentally manipulated to produce a cause-and-effect
relationship (e.g.. learning as a function of repetition; Thorndike, 1932).

Theoretical work, on the other hand, comprises three main areas: (i) the explanation of
known data, (ii) the prediction of new data. and (i11) inter-theoretic reduction (e.g., Fodor, 1968;
Churchland, 1989; McCloskey, 1991; Seidenberg, 1993). Furthermore, the theories we construct
often constrain the way in which we perceive the world (Pylyshyn, 1984). In other words, by
adopting one theory over another, we are in fact commutting ourselves to a specific interpretation of
the world, which consequently influences our empirical work (Nagel. 1961). More formally, the
purpose of a theory is to:

I. organize and interpret the known data so generalizations beyond the original data

may be stated;

~

clearly state which elements of the theory can be credited when the theory correctly

accounts for data (i.e., identify those aspects of the theory responsible for

generating the correct prediction);

3. clearly state which elements of the theory can be blamed when the theory
incorrectly accounts for data (i.e., relate the failure to specific assumptions of the
theory, and determine if the failure is fundamental to the theory);

4. explain its important similarities and dissimilarities to alternative theories in the

same domain;

‘ Nagel (1961), however, states that empirical work and the resulting experimental laws are not only dependent
upon 2 loose definition of the word “observable™ but are also often couched within the language of some
theory. Consequently, in Nagel's opinion, a precise definition of empirical work is open to interpretation and
far from easy.
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S. potentially account for other phenomena beyond the scope of the original theory;

In addition to these five basic elements of theory building, Seidenberg (1993) describes two
more principles that are important for cognitive theorizing.

6. explain phenomena in terms of independently motivated principles;

7. show how phenomena previously thought to be unrelated actually derive from a

common underlying source.

Therefore, to be effective, connectionist researchers should not only be able to provide
empirical data from their simulations, but they should also be able to describe how their models
contribute to the theoretical knowledge of the domain in question. It should be noted that empirical
data constrains the formulation of our theories, and the theories themselves are required not only to
explain the data we have collected, but also to guide our research questions. Consequently,
connectionists must engage in both theoretical and empirical work to be productive researchers

within the realm of science.

Empirical vs. Theoretical Work

The preceding statement about engaging in both theoretical and empirical work has proved
contentious to some researchers. This is especially true (if not confusing!) within connectionist
research. One side of the argument claims that connectionist research can be pursued within a purely
theoretical framework, much like theoretical physics is often studied separately from experimental
physics (Kukla, 1989, 1990). Others take a neutral stance, stating that connectionist research is both
theoretical and empirical in nature (Dawson, 1990; Seidenberg, 1993). Finally, there are those that
argue that connectionism is not a theory in and of itself, but nevertheless can be used to empirically
test theories (McCloskey, 1991).

For example, Kukla (1989, 1990) maintains that all computer simulations fall into the
classification of purely theoretical work?: “Al is armchair psychology made respectable again™

(1989, p. 786) and even the “(r)ecent departures from classical AL such as connectionist theories,

* This is in direct opposition to Newell & Simon's (1981) assessment of computer science and Artificial
Intelligence given during the tenth Turing Lecture: “Computer science is an empirical discipline” (p. 35). In
fact, this view is still common today, * Al is currently an experimental discipline as opposed to a theoretical
one” (Ginsberg, 1993, p. 395).
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have continued to meet these new standards of formal rigor” (1990, p. 780). Kukla's arguments are
based on his belief that computer programs are simply extremely well formulated theories. If we had
enough time and resources, we could sit down, think the programs through in our mind, and evaluate
their outcome—computers simply make this step easier. Hence, one could conclude from Kukla that
connectionist researchers who use computers to simulate their models are necessarily engaged in
purely theoretical work.

Conversely, McCloskey (1991) argues that “connectionist networks should not be viewed
as theories of human cognitive functions, or as simulations of theories, or even as demonstrations
of specific theoretical points” (p. 387). Instead, connectionist models should be viewed as similar
to animal models of human behaviour: that is, not a theory of human cognition per se, but rather an

object of study:

- - - one can observe the effects of varying the network architecture while holding

the training process constant; one can subject a network to several different forms

of damage, and restore it to its “premorbid” state: one can inspect connection

weights and activation patterns across hidden units; and so forth. (p. 393)

In other words, connectionist research should be considered simply as an empirical endeavor that
can be used nonetheless to contribute to the development of theories. “Modeling is an aid to, but not
a substitute for, theoretical work™ (p. 393).

The middle ground, and the one taken here, is that connectionist researchers engage in both
empirical and theoretical work. Seidenberg (1993) describes connectionism as a body of tools that
can be used not only to simulate preexisting theories (functioning like a statistical tool analyzing a
complex set of data), but also to develop theories that are explanatory rather than merely descriptive.
Similarly, Dawson (1990) states that although many properties of connectionism are analyzed
formally, the underlying motivation for connectionist research is empirical. Consequently, the
position adopted in this thesis is that connectionism is both theoretical—it constrains our view of
cognitive science—and empirical in that the data collected from connectionist models are used not
only to support these theories, but also to modify and elaborate these theories. As Thagard (1996,
p. 8) notes *. . . theory without experiment is empty, experiment without theory is blind.”

There are many examples of connectionism contributing to both the empirical and theoretical
aspects of science in general (e.g., medical diagnosis, Baxt, 1992: recognition of text on engineering
documents, Gouin & Scofield, 1994; image processing, Hecht-Nielsen, 1992; predicting globular

protein sequences, Qian & Sejnowski, 1988: stock market prediction, White, 1988). Why, then, are
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researchers at a crossroads when it comes to cognitive science in particular? The answer to this
question lies in understanding the questions that cognitive science is interested in, how these
questions have traditionally been answered, and how connectionists are attempting to answer these

questions today.

A Guide to the Crossroads

To understand why we are now at the crossroads of connectionism, we first have to
understand how we arrived here. Consequently, the first half of the thesis will focus on the
fundamental assumptions underlying connectionism, the history of connectionism, and current
connectionist architectures.

To begin our reevaluation, Chapter 2 will provide a brief introduction to cognitive science
and the underlying principles of connectionism. This will include the main assumption that the mind
i1s an information processor, and that to explain any information processor fully, a researcher must
appeal to a tri-level hypothesis. That is, a researcher must be able to describe an information
processor at a computational, algorithmic (including the functional architecture), and
implementational level (e.g., Marr, 1982). Connectionism fills a niche in cognitive science that has
been created by a breakdown in the commitment to the tri-level hypothesis by the traditional
researchers within the area.

Chapter 3 will trace how connectionism has evolved as a tool within science. Contrary to
popular belief’, connectionism has a long and varied past. The roots of connectionism can be traced
back to the early Greek philosopher, Aristotle, while some of its more modern philosophical themes
are derived from the British empiricist tradition. Early psychologists, such as William James and
Edward Thorndike, played quite a large role in the development of connectionist ideas, as did
neuropsychologists like Karl Lashley and Donald Hebb. Connectionism really began to flourish,
however, with the invention of the digital computer and the work of researchers like Frank
Rosenblatt and Oliver Selfridge. Ironically, it was the computational analysis of these early computer

models by Marvin Minsky and Seymour Papert in their book Perceptrons that caused the near

* For example, Horgan and Tienson (1996, p. 173) allude that, for all intents and purposes, connectionism
emerged (or at least reemerged in any substantial form) in the 1980’s as “attested by the pre-publication sellout
of the relatively expensive, two-volume ‘Bible of Connectionism,” Parallel Distributed Processing” edited by
Rumelhart, McClelland & the PDP Group.
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demise of connectionist research. The ideas and models in this chapter comprise what is known as
Old Connectionism.

The fourth chapter will address New Connectionism; that is, connectionist research in the
post-Perceptrons era. It will begin by describing McClelland’s Interactive Activation and
Competition (IAC) model of information storage and retrieval and how it relates to the notion of
information processing in cognitive science. Then, the most popular learning algorithm in use
today—Rumelhart, Hinton, and Williams’ Generalized Delta Rule (a.k.a., backpropagation of
error)—will be presented. The chapter will also present variations on this algorithm, specifically
Dawson and Schopflocher’s value unit architecture. Finally, other connectionist architectures, such
as radial basis function networks, self-organizing networks and recurrent networks, will also be
introduced.

With the introduction to connectionism completed, the remainder of the thesis will focus on
answering some of the questions that cognitive science is interested in addressing. Specifically,
connectionism’s contribution to addressing questions posed at Marr’s (1982) computational,
algorithmic (including Pylyshyn’s functional architecture), and implementational level will be
covered.

In Chapter 5, connectionism’s contribution to the analysis of the computational level will
be discussed. First, the two types of information processing problems—function approximation and
pattern classification—addressed by cognitive science will be defined in terms of computability,
complexity, and information processing theory. Second, empirical results will be presented to show
the in practice power of connectionist networks on a limited set of function approximation and
pattern classification problems. Finally, it will be concluded that not only can connectionism
answer questions posed at the computational level of analysis, but connectionism also provides a
method of exploring natural computation and developing explanatory theories.

Chapter 6 will elaborate a newly developed technique of analyzing how connectionist
networks can contribute to the algorithmic description of information processors (Berkeley, Dawson,
Medler, Schopflocher, & Hornsby, 1995; Dawson, Medler, & Berkeley, 1997). This technique,
dubbed “banding analysis™, allows for an easy interpretation of the internal representations adopted
by the hidden units within connectionist networks. Chapter 6 will focus on a particular pattern
classification problem—the mushroom problem—and compare a ‘“classical” machine learning
algorithm with some connectionist models. Furthermore, a new way of inserting “classical rules”

into the network structure by elaborating the output of the networks will be introduced. The results
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of this section will be discussed in terms of connectionism’s contribution to the algorithmic level of
analysis.

Two recent connectionist approaches to examining the functional architecture will be
discussed in Chapter 7. To answer questions at this level, both approaches lesion network structure
to produce behavioural deficits. The first approach will investigate lesioning an IAC network and
comparing the performance of the network to patients suffering from Alzheimer’s disease. The
results from this experiment provide an alternative explanation to the semantic networks proposed
by classical cognitive science. The second approach evaluates the locality assumption as used in
cognitive neuroscience. It was previously concluded (Farah, 1994) that results from lesioned
connectionist networks gave reason to dismiss the locality assumption. By applying the banding
analysis developed in Chapter 6 to the internal structure of a network, and correlating these analyses
with observed behavioural dissociations of the lesioned network, it will be shown that this dismissal
may have been premature. Consequently, connectionism can be used to address concerns about the
functional architecture of cognition.

In Chapter 8, it will be shown how connectionist research has filled the niche at the
implementational level often missing from classical accounts within cognitive science. Two different
lines of research will be reviewed. First, it will be shown how biological constraints are being
applied to connectionist networks to produce models that are more neuromorphic. Second, it will
shown how connectionism has contributed to new knowledge within neuroscience. To end the
chapter, new research will be presented on using redundancy in connectionist networks, and how this
implementational design decision not only improves the performance of neural networks, but also
allows us to answer questions about the possible relevance of redundancy to biological systems.

Finally, Chapter 9 will provide us some direction as to where we should be headed.
Specifically, the question of whether or not connectionism is a paradigm shift for cognitive science
or merely an implementation of classical theories will be addressed. It will be concluded that, to be
effective, connectionist researchers must define their problems more clearly, interpret the internal
structure of their networks, and pay more attention to biological constraints when designing their
networks. When these constraints are met, then connectionism is able to fulfill the three agendas
of science and becomes an effective tool within cognitive science. More importantly, connectionism

possesses the ability to unite the field of cognitive science.
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Chapter 2

Connectionism and Cognitive Science

In this chapter, we will investigate the basic relationship between connectionism and
cognitive science in order to establish a working framework for connectionism. To accomplish this,
we will briefly introduce the field of cognitive science. This introduction will include the underlying
assumption that the mind is an information processor, and that to explain any information processor
requires an appeal to the tri-level hypothesis. Finally, we will define the three basic tenets of
connectionism.

But, before we proceed with our investigation, we need to distinguish between the two
different approaches towards connectionist research. As stated in Chapter 1, connectionism is used
in many different fields of science. For example, connectionist networks have been used for aiding
astronomical work (Storrie-Lombardi & Lahav, 1995), assisting medical diagnosis (Dawson, Dobbs,
Hooper, McEwan, Triscott, & Cooney, 1994), regulating investment management (Zapranis &
Refenes, 1995), and controlling robotic limb movement (Walter & Schulten, 1993). Many of these
systems, however, are approached from an engineering perspective; that is, the designers are only
interested in making the networks as efficient as possible (in terms of network topology, correct
responses, and generalization). Consequently, this attitude towards connectionism could be

characterized as the “engineering” approach. In fact, it may just be this approach that Reeke and
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Edelman (1988, p. 144) had in mind when they offered this blunt assessment of connectionist

research:

These new approaches, the misleading label ‘neural network computing’

notwithstanding, draw their inspiration from statistical physics and engineering, not

from biology.

Although the engineering approach to connectionist research is of interest and demands
much attention, it is not the strategy taken here. The second approach—the cognitive science
approach—is to use connectionism to answer questions pertaining to human cognition, from
perceptual processes to “higher level” processes like attention and reasoning. That is, we are
interested in drawing our inspiration from biology, not technology. Consequently, the goals of the
engineering approach (e.g., minimizing network structure, improving generalization, etc.) are not
necessarily those of the cognitive science approach to connectionism. To understand what these

goals are, however, we need to understand what cognitive science is.

What is Cognitive Science?

Cognitive science is defined principally by the set of problems it addresses and the

set of tools it uses. The most immediate problem areas are representation of

knowledge, language understanding, image understanding, question answering,

inference, learning, problem solving, and planning . . . The tools of cognitive

science consist of a set of analysis techniques and a set of theoretical formalisms.

(Collins, 1977, p. 1).

The “birth” of cognitive science is often traced back to the Symposium on Information
Theory held on September 10-12, 1956 at M.L.T. (Gardner, 1985). There, researchers from various
disciplines gathered to exchange ideas on communication and the human sciences. Three talks in
particular, Miller’s The magical number seven, Chomsky's Three models of language, and Newell
and Simon’s Logic theory machine, have been singled out as instrumental in seeding the cognitive
science movement. Following these talks, a perception began to emerge that “human experimental
psychology, theoretical linguistics, and computer simulations of cognitive processes were all pieces
of a larger whole” (Miller, 1979; p. 9; cited in Gardner, 1985, p. 29). That is, there arose a belief
that to understand the functioning of human cognition, one had to combine the efforts of several

different disciplines. In fact, similar sentiments had been expressed previously in the literature by

such researchers as Hebb (1949) and Wiener (1948).
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- . . It draws primarily on the component disciplines of Computer Science, Linguistics, Philosophy and
Psychology and aims to provide both a sound theoretical understanding of human knowledge acquisition,
representation and deployment, and practical experience in the interdisciplinary approach to contemporary
topics such as expert systems, human computer interaction. natural language processing, machine vision,
and parallel distributed processing. . .

University of Birmingham.

Cognitive science is an exciting and rapidly evolving field that deals with complex cognition, intelligent

systems, and the emergent behavior of large-scale computational systems. It synthesizes aspects of a wide

variety of disciplines, including psychology, computer science, linguistics, philosophy, and neuroscience.
Indiana Universiry.

Cognitive Science is a rapidly expanding field of study aimed at understanding the mental processes that
underlie cognitive abilities. . . Philosophers, Psychologists, Linguists, Neuroscientists and Computer
Scientists have all approached the basic questions posed by the nature of mental processes in their own ways
as part of the broader endeavours of their respective fields. Cognitive Science is distinguished from these
traditional disciplines by its highly interdisciplinary approach. . .

University of Queensland.

Box 2.1 Sample descriptions of cognitive science programs.

- - - a proper explanation of these blank spaces on the map of science (can) only be

made by a team of scientists, each a specialist in his own field but each possessing

a thoroughly sound and trained acquaintance with the fields of his neighbors . . .

(Wiener, 1948; p. 9)

As a formal discipline, cognitive science (originally termed cognitive simulation) first
appeared in the latter half of the 1950s at what is now Carnegie Mellon University (Collins &
Smith, 1988). Since then, cognitive science programs have been developed at many different
universities throughout the world (e.g., University of Queensland, Australia; Queen’s University,
Canada; Roskilde University; Denmark; University of Hamburg, Germany; University of
Birmingham, U. K.; Indiana University, U. S. A.). A survey of program descriptions (see Box 2.1)
reveals both the interdisciplinary nature of the discipline and the types of problems studied.

So, then, what is cognitive science? Cognitive science can be defined as the interdisciplinary
study of mind; It draws upon such diverse fields as Computing Science and Artificial Intelligence
(e.g., Collins & Smith, 1988), Linguistics (e.g., Osherson & Lasnik, 1990), Neuroscience (e.g.,
Posner, 1993), Philosophy (e.g., Leiber, 1991), and Psychology (e.g., Gardner, 1985), to name but
a few. Although each discipline has its own unique interpretation of cognitive science, they are
bound into a cohesive whole by a central tenet. This tenet states that the mind is an information

processor; that is, it “receives, stores, retrieves, transforms, and transmits information” (Stillings et
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al., 1987, p. 1). This information and the corresponding information processes can be studied as
patterns and manipulations of patterns. Furthermore, these processes posit representational or

semantic states that are fully realized within the physical constraints of the brain:

Modem psychology takes completely for granted that behavior and neural function

are perfectly correlated, that one is completely caused by the other. There is no
separate soul or life-force to stick a finger into the brain now and then and make

neural cells do what they would not otherwise. (Hebb, 1949, p. xiii)

Finally, cognitive science is governed by scientific methodology, specifically, the agendas

of collecting data, comparing data with theory, and evaluating and formulating theory.

The Information Processing Approach

The information processing approach to cognition developed during World War II as an
amalgamation of human factors work and information theory' (Anderson, 1985). Its popularity as
a theory of cognition arose for two reasons. First, there was a revolt against the hard-line behavioural
view (e.g., Watson, 1913) that appealing to mental states when describing observable behavior was
unnecessary and undesirable. In contrast, the theory of feed-back control being developed in
cybernetics (e.g., Wiener, 1948) once again made it acceptable for scientists to assign teleological
explanations to internal mental states. Second, the advent of the modemn computer gave researchers
a working metaphor for human cognition. Thus, theories of cognition based on the information
processing approach could be implemented easily on computers, thereby providing existence proofs
that were previously unattainable.

The principles underlying the information processing approach today can be characterized

as follows (Best, 1995):

I Informational Description—both environment and mental processes can be

described by the amounts and types of information they contain.

' Human factors work is concerned with human/machine interactions while information theory focuses on how
information is best sent from a source to a receiver. Early work in information theory is attributed to Claude
Shannon who proved the Noisy Coding Theorem in 1948 which states that as long as we are willing to settle
for a rate of transmission below channel capacity, there is an encoding scheme that will reduce the probability
of an error 10 any desired level (Roman, 1992).
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2. Recursive Decomposition—cognitive processes can be broken into simpler
cognitive processes (which can also be broken into simpler processes, etc.) to
produce an hierarchy of cognitive processes.

3. Flow Continuity—information goes forward in time; whatever inputs are needed for
a certain cognitive process can be found in the outputs of the cognitive processes
that feed into it.

4. Flow Dynamics—mental processes take time (they do not occur instantaneously)
because they are coexistent with the chemical and electrical properties of the brain.

5. Physical Embodiment—all cognitive processes take place in a physical system (e.g.,
neural in the case of humans; silicon in the case of computers). This implies that
the knowledge we have must be stored in the physical system in the form of

“representations”.

This “classical” approach to cognitive science focuses on the notion that patterns of
information can be represented as symbols, and that these symbols can be manipulated. This
approach is typified by what Newell and Simon (1981, p-41) call the physical symbol system
hypothesis:

The Physical Symbol System Hypothesis. A physical symbol system has the

necessary and sufficient means for general intelligent action.

Operations on these symbols take place in a serial manner, proceeding from one unit (e.g., Miller,
Galanter, & Pribram, 1960), agent (e.g., Minsky, 1985), or module (e.g., Fodor, 1983) to another.
Adopting this classical approach to cognition leads researchers to develop cognitive models that
often resemble flowcharts (Anderson, 1985); that is, the models are comprised of “black boxes” that
compute some function, and these boxes are connected to each other through a series of arrows
which represent flow of control. This approach can be seen in Figure 2.1 which illustrates the
Test-Operate-Test-Exit (TOTE) unit of Miller, Galanter, and Pribram (1960).

How does a TOTE unit (Miller et al., 1960) fit into the classical information processing
approach to cognition? The unit receives as its input information about the internal or external
world. This information is compared to an Image, which “is all the accumulated, organized
knowledge that the organism has about itself and its world” (p- 17). If the information is congruent

with the Image, then the unit exits. If, however, the information is incongruent with the Image, then
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Figure 2.1 (A) An example TOTE unit. (B) A model of hammering a nail using
TOTE units (Adapted from Miller. Galanter. & Pribram, 1960).

the information is operated on by a Plan. “A Plan is any hierarchical process in the organism that
can control the order in which a sequence of operations is to be performed” (p. 16; their italics).
This new information produced by the Plan is then tested against the Image again. and the process
repeats, with each cycle taking a fixed amount of time. Therefore, a TOTE unit (i) receives
information from the internal and external world, (ii) has a hierarchy of processes, (iii) processes
information in a serial manner, (iv) requires time to complete a task, and (v) represents its knowledge
of the world in an Image.

Although the classical approach to human information processing is widely accepted today.
it is sometimes regarded as too strict and formal when compared with actual cognitive performance.
For example, Norman (1986) lists several properties of human cognition that are handled poorly by
traditional information processing theories. Humans are constantly recalling past experiences,
leamning from new experiences, making decisions based upon incomplete data, and committing (and
recovering from) errors. Therefore, in order to model human cognition, information processing
systems must be (i) robust yet flexible and creative, (ii) relatively insensitive to missing or erroneous
data, and (iii) capable of sustaining damage to its parts. Thus, in addition to the five properties cited

by Best (1995), an information processing system should also have these essential properties:

1. Graceful Degradation—performance should decline gradually with both

impoverished data and damage to the system,
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2. Contenr-Addressable Memory—information should be retrieved through (partial)
descriptions of the data as opposed to absolute addressing or random access often
assumed in classical models,

3. Output Availability—output of the system should be available continuously (i.e., the
current state of a system provides continuous information about the current
evaluation of an hypothesis) as opposed to stage models of information processing,
and

4. Iterative Retrieval—retrieval should be an iterative process based on description
where there is competition among alternative interpretations rather than the more

traditional search techniques.

Norman (1986) has noted that connectionism can account for these essential properties of
human information processing. Hence, connectionism has often been touted as an alternative to the
classical approach o information processing (e.g., Bechtel & Abrahamsen, 1991; Best, 1995; but
see Boden, 1988). Although both classical and connectionist researchers agree that information is
being processed, they disagree on how it is processed. For example, classical systems use explicit,
often logical, rules arranged in an hierarchy to manipulate symbols in a serial manner. Connectionist
systems, on the other hand, rely on parallel processing of sub-symbols, using statistical properties
instead of logical rules to transform information.

But, are these distinctions valid? Many of the perceived differences between classical and
connectionist models are due to the working assumptions of both approaches. If, however, we use
the classical working definition of an information processor, the only major difference between the
two approaches is in the recursive decomposition of processes into a hierarchy (although a
multi-layered network could be interpreted as a hierarchy of processes—albeit a potentially difficult
hierarchy to interpret). Classical researchers adopt what Braitenberg (1984) has termed the analytical
approach to information processing; that is, start at the highest concept (e.g., memory) and break it
into smaller concepts (e.g., episodic and semantic memory; Tulving, 1972). Connectionist
researchers, however, typically adopt a syntheric approach to information processing; that is, start
with the smallest units (e.g., artificial neurons) and attempt to build a larger system from them (e.g.,
distributed memory model; McClelland & Rumelhart, 1985, 1986). In the end, however, both

approaches describe memory from an information processing vantage. Thus, this distinction
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between the working assumptions of classical and connectionist researchers does not mean that they
are speaking different languages, just different dialects.

As an aside, it must be recognized that there is some opposition to the information
processing approach, whether classical or connectionist in nature (Bunge, & Ardila, 1987). Most
major objections centre on the fact that the information processing approach reduces humans to mere
computers, responding along fixed guidelines with no room for self-determination. Similar to the
behaviourist position of avoiding teleological explanations for behaviour, the information processing
account of cognition cannot easily account for such things as emotions, dreams, and motives (e.g..

Gray, 19943).

The Turing Machine Metaphor

The above description of an information processor is a rather loose set of guidelines in
determining what sorts of properties are needed for a system to be characterized as engaging in
information processing. In more formal terms, an information processor can be fully described in
terms of a Turing Machine (Turing, 1936). Like many mathematicians of the time, Alan Turing was
interested in trying to find an answer to Hilbert's Entscheidungsproblem—the problem of
mathematical decidability. In order to determine if there was a mechanism for determining the truth
or falsehood of any mathematical statement, Turing required a mechanism that was both powerful
enough to handle any mathematical statement, and yet simple enough to leave no question as to its
claims of decidability. Therefore, Turing developed a hypothetical machine that was functionally
simple in configuration, yet still capable of performing complicated information processing tasks.
A Turing Machine (TM) is the simplest mechanism that characterizes those aspects of an
information processor that are both necessary and sufficient. In fact, all attempts so far to develop
other information processing devices have proved reducible to some form of TM (Rogers, 1987,

Johnson-Laird, 1988; Bridges, 1994).

By means of detailed combinatorial studies . . . the proposed characterizations of
Turing and of Kleene, as well as those of Church, Post, Markov, and certain others,
were all shown to be equivalent. (Rogers, 1987, p. 18; his italics).

* But see LeDoux and Fellous (1995) for a computational perspective on emotions, Antrobus (1993) for a
connectionist model of dreaming, and Smith (1996) for a connectionist account of motivation.
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There is a quick caveat to make here. TM’s can be enumerated only in correspondence with
the integers. Therefore, there is a countably infinite number of computable functions that can be
carried out by a TM. The set of all functions, however, can be put in correspondence with the real
numbers—an uncountable infinity. Since a TM cannot enumerate the set of reals, there is an
uncountably infinite number of functions that cannot be computed (Ballard, 1997). Because it is
assumed that the output units of artificial neural networks can adopt any real number value (although
this is often transformed to fall within a specific range), it could be argued that some types of neural
networks are in fact more powerful than a TM? .

A Turing Machine consists of two main parts: an infinitely long ticker tape, and a machine
capable of manipulating the contents of the tape (see Figure 2.2). The ticker tape is divided into
cells, with each cell containing either a symbol or a blank. These cells can then be grouped into

areas, such as questions for the machine to solve, scratch pads for doing work, and even instructions

Infinitely Long Ticker Tape
| i i i z | l
] |

| *i
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Figure 2.2 A schematic illustration of a Turing Machine.

* In fact, this statement (or variations on it) has been used to argue that connectionist networks are too powerful
and therefore tell us nothing interesting about cognitive processes. If, however, connectionist networks are
truly modeled on brain functioning, then they are not any more powerful than a TM. For example, if we take
the firing of neurons to be an all-or-none process @ la McCulloch & Pitts, then neurons are binary and the
real-valued activations adopted by connectionist networks are only approximations to this binary encoding
(e.g., approximating neural spike frequency or number of synaptic connections).
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for instantiating other TMs. The ticker-tape therefore contains all the information that the machine
processes.

The machine, itself, is composed of four components: the machine head, the machine state,
the machine table, and a mechanism for moving along the tape one cell either left or right. Symbols
on the tape are manipulated by the machine head—it both reads from the tape and writes to the tape.
Once a symbol is read from the tape, the current machine state is ascertained. The machine can only
be in one of a number of finite states at any time. Both the symbol read from the tape and the current
machine state are then used as indices to access the machine table. The table contains simple
instructions (such as write a blank to the tape, move one space left, and adopt state 5) for the
machine to carry out. At the completion of the instructions, the machine reads the next symbol on
the tape and the process repeats itself until the machine comes to an end state (i.e., solves the
problem posed). If a problem is computable, then the TM is guaranteed to stop.

Although different Turing Machines can be built for different information processing
problems, the real power behind the TM as a metaphor for information processing comes from the
Universal Turing Machine (UTM). The UTM is a machine capable of reading the description of
another TM from the ticker tape (in effect, reading the machine table of a particular TM), and then
carrying out those instructions as if it were that TM. What this means is that a UTM can solve any
information processing problem that is computable! Furthermore, the machine table of a UTM will
be those base instructions required for building all other machine tables.

A Turing Machine—and therefore an information processor—can be described at three
different levels. First, it can be described in terms of what problem the machine is solving (i.e., the
question on the tape). Second, the steps that a particular instantiation of a TM requires to solve a
problem (i.e., the machine state and table) can be described. Related to this, we can also ask what
basic instructions are required to build a particular instantiation of a machine (i.e., the machine table
of a UTM). Third, we can describe the physical characteristics of the (hypothetical) machine. This
may seem like an odd move since it has been argued that the TM embodies all characteristics of an
information processor without appealing to the underlying physical mechanisms (e.g.,
Johnson-Laird, 1988). But, if it is impossible to physically construct a portion of a TM (such as the
read/write heads), then that particular TM is moot no matter how well the tape, machine state and

table are constructed.
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The Tri-Level Hypothesis

We have stated that information processing can be formally characterized in terms of a
Turing Machine, and that the operations of a TM can be described at three different autonomous
levels. It is not surprising, therefore, that it has been argued (e.g., Marr, 1982; Pylyshyn, 1984;
Rumelhart & McClelland, 1985: Johnson-Laird, 1988: Horgan & Tienson, 1996; Dawson, 1998) that
for any information processing system to be understood completely, it must be described at three

different levels of analysis.

Almost never can a complex system of any kind be understood as a simple
extrapolation from the properties of its elementary components . . . If one hopes to
achieve a full understanding of a system . . . then one must be prepared to
contemplate different kinds of explanation at different levels of description that are

linked, at least in principle, into a cohesive whole, even if linking the levels in

complete detail is impractical. (Marr, 1982, pp. 19-20)

Marr (1982) has defined these three levels as computational, algorithmic, and
implementational (see Figure 2.3). The computational level is a description of what information
processing problem is being solved by the system. The algorithmic level is a description of what
steps are being carried out to solve the problem. The implementational level is a description of the
physical characteristics of the information processing system. There is a one-to-many mapping from

the computational level to the algorithmic level, and a one-to-many mapping from the algorithmic
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Figure2.3 The one-to-many mappings from the computational level to the

implementational level of the tri-level hypothesis. The double-
headed arrows indicate that the levels influence each other.
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level to the implementational level. In other words, there is one computational description of a
particular information processing problem, many different algorithms or steps for solving that
problem, and many different ways in which a particular algorithm can be physically implemented.
Furthermore, the inter-level relations are transitive; that is, if the computational level description is
realized by some algorithmic level description (C~A), and that algorithmic level description is in
turn realized by some implementational level description (A~I), then the computational level
description is realized by the implementational level description (C-I). Note that this does not mean
that the algorithmic level description can be disregarded. What it does mean, however, is that the
mind has some physical realization; that is, the mind and brain are equivalent and we can
consequently dispose of Descartes’ mind-body dualism.

Although agreeing with Marr’s general framework, others have defined the three levels in
slightly different terms. For example, Schneider ( 1987) talks of the computational, cognitive, and
physiological levels. Best (1995) describes them as the mental, cognitive, and neural levels.
Johnson-Laird (1988; p. 58) maintains that we need a theory of “what is computed™, “how the system
carries out the computations”, and the “underlying neurophysiology.” Green (1996), refers to the
three levels as behavioral (i.e., a person’s performance), cognitive (i.e., cognitive system underlying
behavior), and biological (i.e., nature of the brain systems mediating cognition). Similarly, Horgan
and Tienson (1996) distinguish between the levels of cognitive-transition functions®, representation
and algorithm, and hardware realization or implementation. Regardless of the terminology used, the
underlying concepts of a computational, algorithmic, and implementational description remain the
same.

Finally, Pylyshyn (1984) also characterizes an information processor as having three
different levels of description. Each level has considerable autonomy so that regularities at one level
can be described to a first approximation without appealing to the regularities expressed at other
levels. Furthermore, the three levels are tied together in an instantiation hierarchy, with each level
instantiating the one above. According to Pylyshyn, a cognitive system should first be described at
the biological or physical level—if all behavioural regularities can be accounted for here, then we

need go no further in our explanation. The next step is to explain a system in terms of the symbols

* Horgan and Tienson (1996) take exception with Marr’s term of “‘computational” as they suggest that it refers
to ‘how’ something is computed (which is actually described at the algorithmic level). This is a needless
distinction as Marr clearly indicates that the computational level is a description of the competence of the
system, not how the system is computing.
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and syntax that it uses; in other words, in terms of what program the system is executing. Finally,
if regularities still exist that cannot be explained at either the physical level or the symbol level, then
we must appeal to a semantic level. The semantic level deals with the content of thought (our
beliefs, goals, etc.). Although the syntactic and semantic levels roughly correspond to the
algorithmic and computational levels respectively, Pylyshyn’s equivalent to the implementational
level does not place as much emphasis on actual biology. If there is no known biological mechanism
to account for a certain cognitive phenomenon, Pylyshyn is comfortable in proposing some
hypothetical construct to fill the void. Pylyshyn calls this final level the functional architecture of
a system. It is the basic building blocks from which the symbols and syntax are constructed. For
our purposes, however, we will use the functional architecture as a bridge between Marr’s
algorithmic level and implementational level. In the formal terms of a Turing Machine, the
functional architecture could be thought of as the machine table of an UTM.

The working assumption that connectionist models are information processors therefore
requires them to be explained at these three different levels, including the functional architecture.
In fact, it has been argued (e.g., Rumelhart & McClelland, 1985; Dawson & Shamanski, 1994:
Dawson, 1998) that for connectionism to contribute significantly to cognitive science, it must be
described at these different levels. Furthermore, Schneider (1987) suggests that connectionism may

be the very tool required for relating the three levels of analysis.

The connectionist framework suggests that we might be able to connect the
computational, cognitive, and physiological levels of analysis and to do so with a
conceptually very simple system. (p. 74)

The Computational Level

The computational level describes both what problem is being solved by the information
processing system, and why the problem is being solved. It is a statement of the system’s
competence and defines the types of functions (e.g., f:X ~Y) the system can compute. In other words,
the computational level is simply a description of the input-output behaviour of a particular system.
Traditionally, analysis at this level has been the domain of philosophers, behavioural psychologists,
linguists, and computer scientists.

For example, a generalized question at the computational level might take the form “What
information processing problem P is being solved by the mapping of function f:X -, and why can

it not be characterized by the function 8:X-Y7T" In answering these types of questions, we are
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seeking the goals and constraints that underlie the solutions to information processing problems. We
are therefore developing a theory of competence of a particular system (Richards, 1988). By
considering the goals of an information processing system—specifically how to capture the
properties and events of the world that are significant to the information processing system at
hand—we develop theories that show how a reliable and accurate representation of the world can
be computed.

But, is a computational description by itself sufficient for describing an information
processing system? When Thorndike (1932; p. 1) states “We are concerned . . . with the
fundamental facts of learning whereby a situation which first evokes response A later evokes
response B, different from A” he is concerned with finding those aspects of the environment, such
as repetition and belongingness, that are crucial for learning. Thorndike describes learning as the
change in the connection strength between S,~R,, and §,-R,, where connection strength is
determined only by the probability of S, or S, evoking R,. There is no appeal to underlying
processes in Thordike's description, whether at an abstract algorithmic level or at a more concrete
physiological level.

It is therefore possible that two or more information processing systems could have the same
computational level description. That is, in some respect the behavioural repertoire of system A is
identical to the behavioural repertoire of system B in that same respect. When taken by itself, this
type of equivalence has been termed weak equivalence (Fodor, 1968), or “Turing” equivalence
(Pylyshyn, 1984) after the imitation game proposed by Turing (1950). The problem with weak
equivalence, though, is that while it describes what problem the system is solving, it offers no
explanation of how the system is solving the problem. Therefore, one cannot be justified in using
system A as a model of “how” system B is solving a specific problem. Although some may argue
that weak equivalence is sufficient (e.g., Penrose, 1989), the goal of cognitive science is not only to
describe intelligent behaviour, but also to explain how it comes about. Therefore, cognitive science

requires more than weak equivalence!

The Algorithmic Level

The algorithmic level of analysis focuses on the specific steps (or algorithms) employed to
solve the problem under consideration. In particular, the algorithmic level is concerned with how
the input and output of the system are represented, and how input is transformed into output. The

algorithmic level is most often associated with cognitive psychology and psycholinguistics.
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Figure 2.4 From the outside, the Builder Agency is a computational description of building a
tower. From the inside, the individual agents describe the algorithmic account of
how to build a tower.

How does one go about describing an information processor at the algorithmic level? The
most common approach from a cognitive psychology perspective is to identify the overall problem
and then break this into subgoals, which in turn can be broken into subgoals, and so forth. Cummins
(1983) has described this process as functional analysis. For example, Minsky (1985) describes the
problem of a child playing with blocks. In order to build a tower from the blocks, the child employs
an agent known as Builder. But, building a tower is too complicated for any one agent, so Builder
employs other agents such as Begin, Add, and End. Add also employs other agents such as Find, Get,
Put, and so on (see Figure 2.4). From the outside, Builder is an agency that can be described at the
computational level of analysis—it builds a tower. Taken from the inside, however, Builder is an
agent that calls upon simpler and simpler agents to solve a particular problem. By following these
simple agents and the links between them, we can describe how the task of building a tower is
accomplished.

According to Fodor (1968), once we have a description of how a particular system is solving
a problem, we are in a position to make claims about strong equivalence. We can say that system
A is strongly equivalent to system B in some respect when A is weakly equivalent to B in that
respect and the processes upon which the behaviour of A are contingent are of the same type as the

processes upon which the behaviour of B are contingent. One is now Justified in using system A as
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Figure 2.5 Two ways of realizing an algorithm for storing items in memory: an
indexed array and a linked list (see Tremblay & Sorenson, 1984).

a model of how system B is solving a specific problem. Although Fodor’s description of strong
equivalence is sufficient for describing systems in general, [ believe that it is inadequate for
explaining cognitive systems in particular. I am more inclined to call this relationship medium
equivalence. Two reasons for this belief will be elaborated.

First, imagine that you had to store a list of items in memory for later serial recali. The
algorithm for this would be simple. Initially, define an index which accesses some memory location.
To store memory, use the index to locate an empty memory slot, place the item within the memory
location, then increase the index to store the next item. To recall memory, start the index at the
beginning of the list, retrieve the item from the memory location, and then increment the index to
recall the next item. This simply describes a general procedure for accomplishing the serial recall
task®, it does not state the specifics of carrying out the algorithm. For example, two ways of realizing
this algorithm would be to use either an indexed array or a linked list—as long as the problem was
fairly simple and straightforward, there would be little difference in using one approach over another
(see Figure 2.5). Both approaches allow the easy storage and retrieval of serial information (a
computational level description) and, consequently, Fodor would call these strongly equivalent
systems.

Whereas the algorithm is a procedural description, the choice of an indexed array or a linked
list is an architectural distinction. In terms of the TM metaphor, the procedure is the program on the
tape while the architecture is the machine table. It is important to make this distinction because the
choice of architecture will often constrain the competence of the system as defined at the

computational level description. Although both architectures described above are equivalent in terms

3 Although the serial recall of a list of items is a classical cognitive psychology experiment (see Norman, 1982;
Best, 1995), in no way do I actually want to imply that cognitive systems use this particular procedure for
performing serial recall.




Chapter 2 24

of this simple algorithm, the architectural decisions may very well pose problems if we extended the
task slightly. For example, if we required random access to the list without any increase in access
time, then the indexed array would be the correct architectural move. If, however, we required
dynamic memory storage then the linked list would be the correct choice. Consequently, our
description at the algorithmic level requires not only a description of the procedure, but also the
architecture. A description of the procedure alone only results in medium equivalence.

Second—and in a slightly different vein—the recursive decomposition at the algorithmic
level leads to a rather unique problem. How does one know when to stop breaking goals into
sub-goals? In other words, when does one stop appealing to simpler and simpler agents? In the
above example, the Builder agency has the intention of building a block tower, but it cannot do this
without the Builder agent which calls upon other agents. These sub-agents themselves can be seen
as agencies that have the intention of performing a certain task such as Add. This problem is akin
to the homonculus problem (Ryle, 1949) and, hence, has been termed Ryle’s regress by Stillings et
al. (1987): to explain the intentionality of one agent, you have to appeal to the intentionality of
another agent, ad infinitum.

Where, then, does this appeal to intentionality end? In other words, how do we banish the
ghost from the machine? One possible move to make is to stop the recursive decomposition when
(1) the function of an agent can be realized physically or, (ii) further decomposition is impossible
even when physical constraints are unknown—thus, the primitive level would possess the basis of
intentionality® (Pylyshyn, 1991). Making this move leads us to the functional architecture of an

information processing system.

The Functional Architecture
At the basis of the algorithmic level is the functional architecture:; it is composed of those
aspects of an information processing system that cannot be broken into further functional units.

Pylyshyn (1984) defines the functional architecture as

those basic information-processing mechanisms of the system for which a
nonrepresentational or nonsemantic account is sufficient. The operation of the
functional architecture might be explained in physical or biological terms, or it

¢ This basis of intentionality is similar to what Jackendoff (1992) refers to as *I-concepts”—those base
concepts that all of thought is generated from.
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might simply be characterized in functional terms when the relevant biological

mechanisms are not known. (p. xvi)

In other words, the functional architecture is the programming language—or architecture—from
which the algorithmic level is built. It can be viewed as equivalent to the machine table of a UTM,
as it contains those base instructions from which all other TMs are buit.

Consequently, if we have equivalent computational descriptions and equivalent algorithmic
descriptions including the functional architecture, then—and only then—can we make claims of
strong equivalence. And, cognitive science is in the business of providing strong equivalence!

Beyond making claims of strong equivalence, why do we actually need the functional
architecture? As stated earlier, at the computational level and even the algorithmic level we often
refer to states of intentionality, appealing to conscious decisions to guide our behaviour.
Consequently, if we were to leave our description here before moving onto the implementational
level, it would be too tempting to make Descartes’ error of separating the conscious mind from the
body—sticking the proverbial finger into the brain and making a neural cell do what it otherwise
would not. Moving from the algorithmic level to the implementational level would thus become
some magical step that endowed intentionality to the system. The functional architecture, being
composed of those processes not dependent on a representational or semantic interpretation, allows
us to banish the ghost from the machine.

In fact, the functional architecture may be the most important step in describing an
information processor in that it provides the needed link between the algorithmic level and the
implementational level. Not only must algorithms be built from the functional architecture, but the
functional architecture must be implemented in some biological or mechanical form. Consequently,
if we can identify the functional architecture of some biological system (say a human), and we can
identify the same functional architecture in some artificial system (say a computer), then we can
make claims of equivalent competency with regards to information processing—independent of
implementation! Furthermore, if some functional architecture leads to intentionality in a biological
system, then that same functional architecture will lead to intentionality in an artificial system as
well (but see Searle, 1980, 1990).

What makes the functional architecture so powerful in comparing information processing
systems is Fodor’s (1968) notion of functional equivalence. Although two systems may be radically

different in their composition (e.g., one based in carbon and the other in silicon), we can equate the
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two functionally if, in the long run, they produce the same state of affairs and their effects are

indistinguishable. Formally, Fodor (1968) defines functional equivalence as follows:

if m, and m, are functionally equivalent mechanisms, and if €, e, ...e,are the

series of effects of m,, then somewhere in that series there must be an e, such that

€; . . . e, are effects of m,. (p. xviii)

It is important to note that the above definition does not require that m, and m, share each
and every property, as that would imply that m, and m, were the same mechanism. Instead, all that
is required is that m, and m, share those functional properties pertinent to the information processing
task at hand.

Today, the most promising research at the functional architecture level is being conducted
within the emerging field of cognitive neuroscience (e.g., Gazzaniga, 1995). A survey of this
literature shows that cognitive neuroscientists use a variety of techniques such as brain imaging (e.g.,
Roland, Kawashima, Gulyds, & O’Sullivan, 1995), lesioning studies (e.g., Rapp & Caramazza,

1995), and even neural network simulations (e.g., Andersen, 1995) to answer questions at this level.

The Implementational Level

The implementational level of analysis is an account of the physical structure of an
information processing system. It attempts to relate the representational or semantic states of an
information processing system to the causal laws governing its physical structure. In other words,
it describes how an algorithm can be realized physically. Research at this level is conducted mainly
by neuroscientists.

As stated earlier, the implementational level is an integral part of the tri-level hypothesis
and, thus, is required for a complete explanation of any information processor. No matter how well
thought out and investigated a researcher believes the computational and algorithmic levels are, if
the underlying physiology cannot support the other two levels, then the beliefs of the researcher must
be in error. Unfortunately, it is at this level that traditional cognitive science breaks down.

For example, in their attack on connectionism, Fodor and Pylyshyn (1988) assert that
classical theories are committed to the fact that “neurons implement all cognitive processes . . . by
supporting the basic operations that are required for symbol processing” (p. 11; their italics).

Furthermore, they state that




(38
~)

Chapter 2

Clearly it is pointless to ask whether one should or shouldn’t do cognitive science

by studying “the interaction of lower levels™ as opposed to studying processes at the

cognitive level since we surely have to do both. (p. 66: their italics).

Despite these assertions, Fodor and Pylyshyn are never specific about how neurons or neural
processes may implement cognitive processes. In fact, they claim that implementation is irrelevant
to psychological theory! As long as one has a theory of the origins of some empirical phenomenon
(e.g.. graceful degradation) then implementational accounts can be ignored in regards to cognition.

Fortunately, not all cognitive scientists hold this view. Clark (1989, p- 61) contends that “no
serious study of the mind (including philosophical ones) can. I believe, be conducted in the kind of
biological vacuum to which cognitive scientists have become accustomed.” Furthermore, the appeal
of Parallel Distributed Processing (PDP) models is based on their obvious “physiological™ flavour:
Connectionist models are more closely tied to the physiology of the brain than any other information
processing models (McClelland. Rumelhart. & Hinton. 1986).

Describing an information processor at the implementational level is a necessary but not
sufficient step. It does not nullify or replace the other two levels. it simply rounds out the
explanation of the system in question. As stated repeatedly, all three levels of analysis are required
to understand any information processor—the implementational level constrains the types of

algorithms that can be executed, which in tumn constrains our computational descriptions.

The Logic behind Computer Simulations

Computers and the human brain are radically different. Nevertheless. the information
processing approach to cognition has developed and taken hold as a direct result of computational
theory (Turing, 1936) and the invention of computers (von Neumann, 1958). In fact. classical
theories are not only likened to computer programs, but it has been stated that “theories of mind
should be expressed in a form that can be modeled in a computer program’ (Johnson-Laird, 1988,
p- 52). Although connectionist theories of computation have their basis in neurophysiology (and not
engineering principles as classical theories doj. connectionist models are still implemented on
computers. Hence, some justification for using computers to simulate human cognition is required.

If computers and the human brain are so radically different. how. then, can we relate the
functioning of a computer to the functioning of the human mind? Lorenz ( 1974) outlines two
different scientific methods of description when the task of explaining the original svstem (in our

case. the mind) is problematic. The first method is explanation by homology. Homologous systems
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are those systems that have similarities caused by common descent. For example, one can compare
the fifth digit in the human hand, the bat wing, and the whale flipper (see figure 3 in Lorenz, 1974).
All digits are homologous because they share a common evolutionary link; unfortunately,
understanding the function of the bat’s or the whale’s digit does not explain the function of the
human’s digit. Therefore, comparison by homology runs the risk of misrepresenting the function
of the analyzed system.

The second method is explanation by analogy. Analogous systems are systems that perform
the same function, but have developed through independent means, or parallel adaptation. Hence,
understanding the function of the bird’s wing allows us to understand the function of the bat’s wing,
even though they both developed under differing circumstances. Furthermore, we can apply our
understanding about the principles of aerodynamics and lift from the bird and bat wing to create the
artificial “wings” of aircraft. Therefore, analogy allows us to explain the similarity of functions of
two or more independent systems, regardless of how the systems developed.

For years, homologous explanations via animal models (e.g., Watson, 1913; Kupfermann,
Castelluci, Pinsker, & Kandell, 1970; Gallistel, 1995) have been used under the assumption that the
knowledge gained from the simpler animal would generalize to the more complex human. But, not
only are these models constrained to the very simplest aspects of human information processing,
there is also the risk of misrepresenting functional descriptions.

With the advent of modern computing devices, however, more scientists are using
explanation by analogy via computer models to understand human information processing (e.g., von
Neumann, 1958; Newell & Simon, 1963; Quillian, 1968; Minsky, 1975; Marr, 1982; Quinlan, 1986).
Such an approach has advantages over animal models because we can (1) model (hypothetical)
internal states often precluded from animal research, (ii) simplify, via functional equivalence, certain
elements of the brain (i.e., neurons and connections), (iii) study higher level cognitive processes such
as language that appear uniquely human, and (iv) perform precise lesioning experiments to
understand functional roles of large groups of processing elements.

Of course, computer models of cognition have always met with resistance from various
sources. In fact, there appears to be some confusion over the exact nature of computer simulations.
On the one hand, Kukla (1989) argues that computer simulations of cognition are purely theoretical.
Programs are merely formal statements of a theory, and computers are just a method of implementing
our theories quickly and efficiently. On the other hand, McCloskey (1991) argues that although a

computational device (e.g., a connectionist network) may reproduce certain aspects of human
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performance, the ability to do so does not qualify the program as a theory, nor does it amount to
explaining the performance.

Furthermore, Lewandowsky (1993) warns of several hazards inherent to computer
simulations. First, there may by inadvertent discrepancies between the intended specifications of
a verbal theory and the pragmatic decisions concerning computer code resulting in a simulation that
no longer speaks to the properties of the theory. Second, simulation results may not be due to the
fundamental properties of a theory, but to mismatches between real-world situations and the
simulated environments (for example, see Pinker & Prince’s [1988] critique of Rumelhart &
McClelland [1986]). Third, the simulations themselves may be no more easier to understand than
the real-world processes they purport to explain’.  Although Lewandowsky's hazards may be
considered more as warnings for prospective modelers, others have been more damning in their
attacks against computer simulations.

For example, Searle (1980, 1990) has argued that computer programs lack intentionality and
therefore have little to tell us about thinking. Only machines (and not programs!) with the equivalent
internal causal powers of the brain can be considered minds. In response to this, Churchland and

Churchland (1990, p. 37) state:

We presume that Searle is not claiming that a successful artificial mind must have

all the causal properties of the brain, such as the power to smell bad when rotting,

to harbor slow viruses such as kuru, to stain yellow with horseradish peroxidase and

so forth. Requiring perfect parity would be like requiring that an artificial flying

device lay eggs.

Despite their apparent disagreement over the ability to create a thinking machine, both Searle
and the Churchland’s agree that the key to any successful model of cognition is going to be
dependent on correctly stating the functional architecture of a system. The Churchland’s believe that
the correct functional architecture does not lie in the traditional symbol manipulation machines of

classical cognitive science, but in machines with a more brainlike architecture; that is, connectionist

machines.

" Dutton and Starbuck (1971) call this Bonini's paradox after Charles Bonini (e.g., 1963) who found that his
computer models of business organizations were sometimes more difficult to understand than the real-world
problems that they were suppose to model.
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Therefore, if the elements within our computer simulation are functionally equivalent to the
description of the nervous system (i.e., have the same functional architecture), then we are justified

in using a computer as a modelling tool. To borrow from Fodor (1968):

Our intention is that, in this machine, the relays will play the role of neurons: . . .
the relays should fulfill whatever functions the neuron fulfills in vivo—that the
machine’s relay should be functionally equivalent to the organism’s neuron. (p.
xviii, his italics)

Connectionism Defined

Finally, we are left with the definition of connectionism itself as studied within the field of
cognitive science. Connectionism is a theory of information processing. It is based on the known
neurophysiology of the brain, and attempts to incorporate those functional properties thought to be
required for cognition. This is in contrast to the classical approach which assumes that the
architecture of the mind is the architecture of von Neumann style computers (Pylyshyn, 1984).

What, then, are the functional properties of the brain that are required for information
processing? Connectionists adopt the view that the basic building block of the brain is the neuron.
The neuron has six basic functional properties (Dudai, 1989). It is an input device receiving signals
from the environment or other neurons. It is an integrative device integrating and manipulating the
input. It is a conductive device conducting the integrated information over distances. It is an output
device sending information to other neurons or cells. It is a computational device mapping one type
of information into another. And, it is a representational device subserving the formation of internal
representations. Consequently, we would expect to find these functional properties within our
artificial neural networks.

As an example, Rumelhart, Hinton, and McClelland (1986, p- 46) list eight properties that

are essential to Parallel Distributed Processing (PDP) models.

. A set of processing units

. A state of activation

. An output function for each unit

. A pattern of connectivity among units

. A propagation rule for propagating patterns of activities through the network of

connectivities
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. An activation rule for combining the inputs impinging on a unit with the current
state of that unit to produce a new level of activation for the unit.
. A learning rule whereby patterns of connectivity are modified by experience

. An environment within which the system must operate

These eight properties of PDP models map easily onto the six functional properties of the
neuron. The processing unit is the neuron itself. The state of activation and the activation rule are
part of the input and intergrative device of the neuron and the output function is simply the output
of the neuron. The pattern of connectivity and propagation rule map onto the conductive function
of the neuron. And, the learning rule and environment are part of the computational and
representational functions of the neuron.

To be fair, though, PDP models are simply a subclass of connectionist models. Therefore,
Bechtel and Abrahamsen (1991) have reduced the above list to four properties that distinguish the
different types of connectionist architectures. These four properties are (i) the connectivity of units,
(ii) the activation function of units, (iii) the nature of the learning procedure that modifies the
connections between units, and (iv) how the network is interpreted semantically.

The above properties of connectionist models can be summarized in three basic tenets. First,
signals are processed by elementary units. Second, processing units are connected in parallel to
other processing units. Third, connections between processing units are weighted. These three
tenets are necessarily broad in their descriptions so as to accommodate all aspects of connectionism;
however, further elaboration is given below.

For example, the processing of signals encompasses the receiving, transformation, and
transmission of information. The signals themselves may be carried by electrical, chemical, or
mechanical means. Furthermore, signals could be supplied from an external stimulus (such as light
impinging on the retina) or from other processing units. The processing units (see Figure 2.6) may
refer to neurons, mathematical functions, or even demons & la Selfridge (1959). Lastly, information
may be encoded in the units either locally or in a distributed manner.

The connections between units may or may not be massively parallel in the sense that every
unit is connected to every other unit. Moreover, connections may be “feed-forward” (i.e., signals
being passed in one direction only; Rumelhart, Hinton, & Williams, 1986a, 1986b), or “interactive”

(i.e., bidirectional passing of signals; McClelland, 198 1).
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Figure 2.6 Different forms of processing units: (A) stylized sympathetic ganglion
(B) mathematical equation, (C) cantankerous Pandemonium demon.

Finally, the weights associated with the connections may be “hardwired,” learned, or both.
The weights represent the strength of connection (either excitatory or inhibitory) between two units.
These three tenets allow a large spectrum of models (e.g., Selfridge’s Pandemonium, 1959;
Rumelhart & McClelland’s Past-Tense Acquisition Model, 1986; Dawson’s Motion Correspondence
Model, 1991) to fall within the classification of connectionism. It should be noted that throughout
this thesis, the terms connectionist network, Artificial Neural Network (ANN), and Parallel
Distributed Processing (PDP) model will be used synonymously.

With our framework established, we can now begin our reevaluation of connectionism. We

will start at the beginning.
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Chapter 3

A Brief History of Connectionism

This solution takes the form of a new associationism, or better, since it differs

deeply and widely from that older British associationism, of a new connectionism.

(Thorndike, 1932, p. 4)

It has been remarked that psychology has a long past but only a short history; the very same
could be said about connectionism. Over the past decade, there has been a literal explosion in
connectionist research. As Hanson and Olson (1991, p. 332) state “The neural network revolution
has happened. We are living in the aftermath.” As a result, one view popular with current
researchers is that connectionism really emerged in the 1980’s—there is only brief mention of
research before that time (e.g., Bechtel & Abrahamsen, 1991; Horgan & Tienson, 1996).

Connectionism, however, has a very long past. In fact, one can trace the origin of
connectionist ideas to the early Greek philosopher, Aristotle, and his ideas on mental associations.
These ideas were elaborated by the British empiricists and then naturally extended by the founders
of psychology. Neuropsychologists contributed to the growth of connectionism by attempting to
relate the processes of learning and memory to the underlying properties of the brain. But, this only
half of the picture. The other half of the picture is filled in by those researchers engaged in
mathematical research and early computing science.

Although it might be argued that these past researchers were not true “connectionists” in
today’s terms, the ideas they put forth in the disciplines of philosophy, psychology,

neuropsychology, mathematics, and computing science are fully embodied within today’s
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connectionism. And, it is only through a review of the contributions made by each of these

disciplines that we can place connectionism in its proper context today.

Philosophical Roots

Although the popularity of connectionist research has grown considerably over the past
decade, it is certainly not a new phenomenon. Aristotle (ca. 400 B.C.) has been cited by Anderson,
Pellionisz, and Rosenfeld (1990) as the first to propose some of the basic concepts of connectionism:
that is, memory is composed of simple elements linked or connected to each other via a number of
different mechanisms (such as temporal succession, object similarity, and spatial proximity).
Furthermore, these associative structures could be combined into more complex structures to
perform reasoning and memory access. Thus, a “well-specified outline of a perfectly viable
computational theory of memory” (Anderson et al., 1990, p- 3) based on the interconnection of
simple elements existed at least 2,400 years ago.

Moreover, many of the underlying assumptions of connectionism can be traced back to the
ideas eminent in the philosophical school of materialism (e.g., la Mattrie, Hobbes), and the resulting
school of British empiricism (e.g., Berkeley, Locke, Hume). Materialists held the view that nothing
existed except for matter and energy, and that all human behaviour—including conscious
thought—could be explained solely by appealing to the physical processes of the body, especially
the brain (cf., Descartes’ dualism). This led to the empiricist view that human knowledge is derived
ultimately from sensory experiences, and it is the association of these experiences that lead to
thought (Aune, 1970; Leiber, 1991). Therefore, human cognition is governed by physical laws and
can by studied empirically.

Within the empiricist tradition, accounting for psychological processes is known as

associationism. The basic concepts of associationism are

i. mental elements or ideas become associated with one another through experience,
ii. experience consists of such things as spatial contiguity, temporal contiguity,

similarity, and dissimilarity of ideas,

iii. complex ideas can be reduced to a set of simple ideas,
iv. simple ideas are sensations, and
V. simple additive rules are sufficient to predict complex ideas composed from simple

ideas.
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Although many associationist concepts are evident in the behaviourist movement in psychology, the
cognitivist movement within psychology has dismissed associationism as inadequate to account for
cognitive phenomenon such as recursive grammars (e.g., Bever, Fodor, & Garret, 1968).

Not surprisingly, with assumptions founded in associationist theories, connectionism has
often been mistaken for associationism (e.g., Fodor & Pylyshyn, 1988, footnote 29), and
subsequently dismissed as a viable theory of cognition. As pointed out by Thorndike (1932),
however, connectionism should not be confused for associationism. Rather, connectionism has
borrowed concepts from associationism and has expanded them. For example, connectionism
employs such concepts as distributed representations, hidden units, and supervised
learning—concepts foreign to associationism (Bechtel & Abrahamsen, 199 1).

In fact, Bechtel (1985) points out that connectionism embodies a very distinctive
characteristic that distinguishes cognitivism from behaviourism and associationism; specifically,
connectionist modelers postulate that the connections between units provide structure in which
mental activity occurs, and this structure is important for mediating future behaviour. Hence,
connectionists are not repudiating cognitivism, they are simply providing an alternative to the
standard rules and representation view of cognition. On the other hand, connectionism does embrace
one very important aspect of associationism often missing from classical cognitive models;
connectionism focuses on learning as a natural activity of the system being modeled. Consequently,
Bechtel (1985, p. 60) concludes that connectionism may provide “a basis to draw together aspects

of the two traditions that have generally been viewed as incommensurable.”

Psychological Manifestations

With the emergence of psychology as a distinct field from philosophy, the ideas underlying
connectionism became more refined and based on the neurophysiology of the day. In fact, as
architects of a new field, early psychologists called for the integration of the mind and body,
insisting that “a certain amount of brain-physiology must be presupposed or included in Psychology”
(James, 1890/1950, vol. 1, p. 5). Consequently, founding psychologists such as Spencer (1855/1910)
and James (1890/1950) are often cited for early examples of networks embodying connectionist

principles; that is, networks that combined associationist principles with neurology.
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The appearance of the hardline behaviourist movement (e.g., Watson, 1913; Skinner, 1938),
by all accounts, should have signaled the demise of connectionist ideas in psychology'. Surprisingly,
however, it was behavioural psychologists (e.g., Thorndike, 1932, 1949; Hull, 1943), that finally
made the distinction between associationism and connectionism (Walker, 1990). Following the
demise of behaviourism and the rise of cognitivism and symbolic processing, connectionist research
all but disappeared from psychological literature. It has only recently become vogue once again.

But, for now, let us concentrate on psychology’s contribution to connectionism.

Spencer’s Connexions

In his two volume series entitled The Principles of Psychology (1855/1910), Herbert Spencer
laid out the foundations of what was then the emerging field of psychology. One of his central tenets
was that a description of the nervous system was essential for the understanding of psychology.
Thus, he devoted several sections of his text to describing neural structures and their functions. Part
of this description included describing how connections may be formed—not only the connections
between one neuron and another (see Figure 3.1), but also the connections between ideas and
concepts. He even went so far as to state that “there is a fundamental connection between nervous
changes and psychical states” (vol. I, p. 129).

Using the growth of intelligence as an example, Spencer first identified those psychical
aspects that define intelligence—the correspondence of internal relations with external relations.
Intelligence grew as a function of the differentiation of external events into ordered states of
consciousness. Thus, changes in the psychical states could be linked directly to changes in the
external order. As an infinite number of correspondences between internal and external events could
exist over time, Spencer concluded that no general law could be stated for such a series of changes.

Instead, a law of changes had to be sought in the small, immediately connected changes:

When any state a occurs, the tendency of some other state d to follow it, must be
strong or weak according to the degree of persistence with which A and D (the
objects or attributes that produce a and d) occur together in the environment. (vol.
1, pp. 408)

! Watson proposed that psychology should only be interested in objective, observable behaviour. “The
consideration of the mind-body problem affects neither the type of problem selected not the formulation of the
solution of that problem.” (Watson, 1913, p. 166). This is exemplified by Skinner's (1938) view that behaviour
could be studied without any appeal to the brain.
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Figure 3.1 The needful connexions between afferent (A) and efferent (E)
fibres to allow efficient transmission of a signal to move a
muscle. Points @ and e are where the afferent and efferent fibres
diverge respectively (adapted from Spencer's [1855/1910]
Figure 7)

This law of connection also holds for events that co-exist in the world. If events Aand B
habitually coexist in the environment, then conscious states @ and b must coexist as well. As neither
A or B is antecedent or consequent, then state a is Just as likely to induce state b as state b is to
induce state a. Thus, the networks of connections could either be “feed-forward™ (as in the case of
a and d) or “interactive” (as in the case of a and b).

As one last note, Spencer states that it is “the strengths of the connexions™ (vol. 1, p. 409)
between the internal states and external events that is important. In other words, correct knowledge

of the world is encoded within the connections of the brain.

James’ Associative Memory

Further examples of early connectionist theory are also evident in William James’
(1890/1950) treatment of psychology (interestingly enough, also a two volume set entitled The
Principles of Psychology). James, like Spencer, was committed to the fact that psychological

phenomenon could be explained in terms of brain activity—*"no mental modification ever occurs
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Figure 3.2 James’ distributed memory model. Activation of event A (formal dinner party)
causes activation of event B (walking through a frosty night) through weighted
parallel connections.

which is not accompanied or followed by a bodily change™ (vol. 1, p. 5; his italics). In fact, James

equated the analysis of neural functioning with the analysis of mental ideas.

There is a complete parallelism between the two analyses, the same diagram of little

dots, circles, or triangles joined by lines symbolizes equally well the cerebral and

mental processes: the dots stand for cells or ideas, the lines for fibres or

associations. (James, 1890/1950, vol. 1, p- 30)

The most obvious example of connectionist principles is James' (1890/1950) associative
memory model; the model consists of individual ideas that are connected in parallel such that recall
of one idea is likely to cause the recall of related ideas. Thus, within this model, activation of event
A with its component parts a, b, ¢, d, and e (e.g., attending a dinner party) caused activation of event
B with its component parts /, m, n, 0, and p (e.g., walking home through the frosty night) since all
aspects of A were connected, or redintegrated, with all aspects of B (see Figure 3.2).

James recognized that, all things being equal, any activation in such a network would
unfortunately result in “the reinstatement in thought of the entire content of large trains of past
experience™ (vol. 1, p. 570). To counter this type of total recall, James proposed the law of interest:

“some one brain-process is always prepotent above its concomitants in arousing action elsewhere”

* James quickly points out that only the minor personages within Dickens” and Eliot's novels possess this type
of memory system.
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(vol. I, p. 572). Hence, not all connections in the brain are created equal. But, how are these
connections modified, and hence the associations between memories learned? In order to account

for learning, James formulated the Law of Neural Habit:

When nwo elementary brain-processes have been active together or in immediate

succession, one of them, on reoccurring, tends to propagate its excitement into the

other. (vol 1., p. 566; his italics)

In other words, when two events occur repeatedly, the connection between the relevant
brain-processes is strengthened. Note that James is talking about modifying brain-processes
physically and not simply strengthening the associations between ideas. Even now, we begin to see
the borrowing and modification of associationist ideas to account for cognitive processes and
learning in biological systems.

More importantly, these very simple concepts—weighted, modifiable, parallel

connections—Ilaid down over a century ago form the cornerstone of connectionism today.

Thorndike’s Connectionism

Edward Lee Thorndike was a student of James; therefore, it is not surprising that he carried
over some of the principles inherent in James' work. Although considered one of the founding
behaviourists—especially in terms of founding the study of operant behaviour (Pierce & Epling,
1995)—Thorndike was concerned with states of mind (cf., Watson, 1913). and how they changed
with experience. More importantly, however, Thorndike can be considered one of the first true
connectionists.

In his book, The Fundamentals of Learning (1932), he differentiates between the principles
of British associationism and “new connectionism.” Furthermore, in 1949, he summarized what he
considered his most important contributions to psychology under the title Selected Writings from a
Connectionist’s Psychology so that students may “know something of connectionist psychology™ (p.
v).

Thorndike’s connectionism can be viewed as a turning point where theories of neural
association became sub-symbolic and graduated from merely implementational accounts to accounts
of the functional architecture (Walker, 1990). In other words, the neural connections became a
substitute for, instead of a mechanism of, ideational processes. Thus, his computational descriptions

of the fundamentals of learning were couched in the language of connectionist principles.




Chapter 3 40

For example, Thorndike believed that the most prevalent questions within learning theory

were:

I. What happens when the same situation or stimulus acts repeatedly upon an

organism—does the mere frequency of an experience cause useful modifications?

(8%

What happens when the same connection occurs repeatedly in a mind?
3. What effect do rewards and punishments have on connections, and how do they

exert this effect?

In order to answer these questions, Thorndike proposed two different laws. The first law,
the “Law of Exercise or Use or F requency”, states that all things being equal, the more often a
situation connects with or evokes or leads to or is followed by a centain response, the stronger
becomes the tendency for it to do so in the future. The second law, the “Law of Effect”, states that
what happens as an effect or consequence or accompaniment or close sequel to a situation-response,
works back upon the connection to strengthen or weaken it. Thus, if an event was followed by a
reinforcing stimulus, then the connection was strengthened. If, however, an event was followed by
a punishing stimulus, then the connection was weakened. The principles underlying this law are very
similar to the supervised leaming techniques (such as error backpropagation) used in today’s neural
networks.

Finally, Thorndike anticipated the backlash against the principles of connectionism:

Many psychologists would indeed deny that any system of connections was

adequate to explain his behaviour, and would invoke powers of analysis, insight,

purpose, and the like to supplement or replace the simple process of connection-

forming by repetition and reward. (Thorndike, 1932, p- 355)

Through a series of experiments, however, Thorndike (1932) shows that there is *“no
sufficient reasons for ascribing any power over and above that of repetition and reward to any

‘higher powers’ or ‘forms of thought’ or ‘transcendent systems’” (p. 382) and thus “justiffies] the

connectionist’s faith” (p. 4).

Hull’s Learning Rule
In 1943, Clark L. Hull set for himself the task of elaborating the laws of behaviour from a

molar level description of neural activity (since he considered the results of molecular




Chapter 3 41

neurophysiology inadequate). As part of this elaboration, he described several functional properties

of neural activity that he deemed important for organism survival. These include:

i the afferent neural impuise (s;) which is a non-linear function of the input it
receives,
1i. interactions between two or more afferent neural impulses (s, & s;) which implies

that behaviour to the same stimulus is not constant under all conditions, and
iii. the spontaneous generation of nerve impulses which may account for the variability

of behaviour to identical environments.

With these functional properties identified, Hull stated that the “supremely important
biological process™ of learning could be expressed in terms of modifying receptor-effector

connections:

The essential nature of the learning process may, however, be stated quite simply
. . the process of learning consists in the strengthening of certain of these
connections as contrasted with others, or in the setting up of quite new connections.

(pp. 68-69)

The process of learning is wholly automatic—it occurs as the result of the interaction of the
organism with its environment, both external and internal. Furthermore, the rules of learning must
be capable of being stated in a clear and explicit manner without recourse to a guiding agent. Thus,
Hull developed several empirically testable equations to describe the learning process. The one that
concerns us the most for historical reasons is his formula for the growth of stimulus-response habits.
This is simply the increase in the strength of connection (to a physiological maximum) between a
stimulus and a response as a function of the number of reinforcing trials.

The growth of habit strength is dependent on three factors (p. 114):

L. The physiological limit or maximum (M)

2. The ordinal number (V) of the reinforcement producing a given increment to the
habit strength (4;H,)

3. The constant factor (F) according to which a portion (45H¢) of the unrealized

potentiality is transferred to the actual habit strength at a given reinforcement.
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Thus, habit strength as a function of the number of reinforcement repetitions can be
computed as follows

1

log 7 (3.1)

N
NH . =M-Me

which generalizes over trials to

AH=f(M-H) 3.2)

Hull is quick to point out that habit strength cannot be determined by direct observation; the
strength of the receptor-effector connection can only be measured and observed indirectly. This is
because the organization of the processes underlying habit formation are “hidden within the complex
structure of the nervous system” (p. 102). Consequently, the only way of inferring habit strength is
to note the associations between the antecedent conditions which lead to habit formation and the
behaviour which is the consequence of these same conditions. It would be tempting, therefore, to
conclude that Hull’s concept of habit formation could be classified as unsupervised learning as there
1S no recourse to an external guiding agent. But, the fact that the amount of learning is dependent on
a portion of unrealized potential makes this a supervised learning algorithm.

In fact, it has been noted by Walker (1990) that Hull’s habit strength equation is a forerunner
to the Rescorla-Wagner rule (1972), which has been shown by Sutton and Barto (1981) to be
essentially identical to the Widrow-Hoff (1960) rule for training Adaline units (see Equation 3.6).
Furthermore, this equation can be seen as a primitive form of the generalized delta rule for

backpropagation in neural networks (see Chapter 4, Equation 4.3).

The Neuropsychological Influence
Connectionist models derive their inspiration from neurophysiology. Consequently, it is
appropriate to touch briefly on the neuropsychological influence exerted on connectionism.

Following the pioneering work of such researchers as Sherrington and Cajal®, researchers began to

* Sherrington was responsible for coining the term synapse to denote the structural and functional loci of
interaction between neurons while Cajal was responsible for introducing the neuron theorn—the nervous
system is composed of neurons which are individual functional units.
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seek the neural correlates of learning and memory. From this research paradigm emerged two

prominent figures in regards to the history of connectionism: Karl Lashley and Donald Hebb.

Lashley’s Search for the Engram

One of the most intensive searches to localize memory traces—or engrams—within the brain
was initiated by Karl Lashley in the 1920’s. Lashley’s studies involved training an animal to
perform some specific task, such as brightness discrimination or maze orientation, and lesioning a
specific area of the cortex either before or after training. Lashley then recorded the behavioural
effects of cortical lesions on retention and acquisition of knowledge. In 1950, he summarized 30

years of research into two principles:

. The Equipotentiality Principle: all cortical areas can substitute for each other as far
as learning is concerned.

. The Mass Action Principle: the reduction in learning is proportional to the amount
of tissue destroyed, and the more complex the learning task, the more disruptive

lesions are.

In other words, Lashley believed that learning and memory was a distributed process that
could not be isolated within any particular area of the brain. Furthermore, it was not the location of
the lesion that was important (within reason*), but the amount of tissue destroyed that determined
the degree of behavioural dissociation. His failure to isolate the engram to any specific group of cells

or neural pathways led Lashley to proclaim

This series of experiments has yielded a good bit of information about what and
where the memory trace is not. It has discovered nothing directly of the real nature
of the engram. I sometimes feel, in reviewing the evidence on the localization of the
memory trace, that the necessary conclusion is that learning just is not possible...
Nevertheless, in spite of such evidence against it, learning does sometimes occur.
(1950, p. 478).

¢ Lashley recognized that removing large portions of the visual cortex would prevent such things as brightness
discrimination, but that this was due to the animal not being able to see, not to any deficit in learning or
Memory processes per se.
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Although the principles of equipotentiality and mass action have been controversial since
their publication, they do contribute to the field of connectionist research; specifically, to the ideas
of distributed representations, multiple internal representations, and emergent network properties.
In fact, recent lesioning experiments performed by connectionists (e.g., Farah, 1994; Plaut &
Shallice, 1993) would tend to agree with Lashley in terms of network processing being distributed
and nonlocalized. Just as neuropsychologists have questioned Lashley’s conclusions (e.g., Hunter,
1930), however, the conclusions derived from experiments on lesioned connectionist networks are

also being challenged (e.g., Medler, Dawson, Kingstone, & Panasiuk, 1997).

Hebb’s Neuronal Learning

The most influential work in connectionism’s history is undoubtably the contribution of
Canadian neuropsychologist, Donald O. Hebb (a student of Lashley). In his book, The Organization
of Behaviour (1949), Hebb presented a theory of behaviour based as much as possible on the
physiology of the nervous system. Hebb reduced the types of physiological evidence into two main
categories: (i) the existence and properties of continuous cerebral activity, and (ii) the nature of
synaptic transmission in the central nervous system. Hebb combined these two principles to develop
a theory of how learning occurs within an organism. He proposed that repeated stimulation of
specific receptors leads slowly to the formation of “cell-assemblies” which can act as a closed
system after stimulation has ceased. This continuous cerebral activity serves not only as a prolonged
time for structural changes to occur during learning, but also as the simplest instance of a
representative process (i.e., images or ideas).

The most important concept to emerge from Hebb’s work was his formal statement of how
learning could occur (cf., James’ Law of Neural Habir). Learning was based on the modification of

synaptic connections between neurons. Specifically,

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased. (Hebb, 1949, p-62; his italics)

The principles underlying this statement have become known as Hebbian learning. From
a neurophysiological perspective, Hebbian learning can be described as a time-dependent, local,

highly interactive mechanism that increases synaptic efficacy as a function of pre- and post-synaptic

activity. Although the neurophysiology in Hebb’s day was inadequate to support or deny Hebb's
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postulate, more recent research has shown that Long-Term Potentiation (e.g., Bliss & Gardner-
Medwin, 1973; Bliss & Lomo, 1973) and Long-Term Depression (e.g, Crepel, Hemart, Jaillard, &
Daniel, 1995) have those putative mechanisms required of Hebbian learning.

Within connectionism, Hebbian leaming is an unsupervised training algorithm in which the
synaptic strength (weight) is increased if both the source neuron and target neuron are active at the
same time. A natural extension of this (alluded to by Hebb as the decay of unused connections) is
to decrease the synaptic strength when the source and target neurons are not active at the same time.

Hence, Hebbian learning can be formulated as:

w‘.j(t+l) = W,j(t) +NET, NETj 3.3)

where

w, (1) = the synaptic strength from neuron i to neuron j at time ¢

NET, = the excitation of the source neuron.

NET, = the excitation of the destination neuron.
There are serious limitations with Hebbian learning as stated (e.g., the inability to learn certain
patterns), but variations of this simple algorithm exist today (e.g., Signal Hebbian Learning,

Differential Hebbian Learning; see Wasserman, 1989).

The Mathematical Influence

The next major formulation of connectionist theories can be attributed to McCulloch and
Pitts (1943). In their seminal paper A logical calculus of the ideas immanent in nervous activiry, they
explicitly laid out the foundations of neural modelling in terms of propositional logic. To accomplish
this, they simplified the activity of neurons into five functional states (p. 118):

1. The activity of the neuron is an “all-or-none” process.

2. A certain fixed number of synapses must be excited within the period of latent
addition in order to excite a neuron at any time, and this number is independent of
previous activity and position on the neuron.

The only significant delay within the nervous system is synaptic delay.

4, The activity of an inhibitory synapse absolutely prevents excitation of the neuron

at that time.

5. The structure of the net does not change with time.
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Using these principles, McCulloch and Pitts were able to show that any statement within
propositional logic could be represented by a network of simple processing units. Furthermore, such
nets have the in principle computational power of a Universal Turing Machine. “If any number can
be computed by an organism, it is computable by these definitions, and conversely” (p. 128).
Therefore, networks are able to describe information processing at the computational level of

analysis.

To psychology, however defined, specification of the net would contribute all that

could be achieved in that field— even if the analysis were pushed to the ultimate

psychic units or “psychons,” for a psychon can be no less than the activity of a

single neuron. (p. 131)

McCulloch and Pitts also proved that there is always an indefinite number of topologically
different nets realizing any temporal propositional expression, although time discrepancies might

exist between the different realizations. What this states is that there exists many different algorithms

to compute the same function.

Early Computer Models of Connectionism

Logically, if it were possible to construct non-living devices—perhaps even of

inorganic materials—which would perform the essential functions of the

conditioned reflex, we should be able to organize these units into systems which

would show true trial-and-error learning with intelligent selection and the

elimination of errors, as well as other behavior ordinarily classed as psychic. Thus

emerges in a perfectly natural manner a direct implication of the mechanistic
tendency of modern psychology. Leamning and thought are here conceived as by no

means necessarily a function of living protoplasm any more than is aerial

locomotion. (Hull, C. L., & Baemnstein, H. D., 1929, pp. 14-15).

Perhaps the most influential event in the development of connectionism was the invention
of the modern computer. Theories that could only be tested previously by observing the behaviour
of animals or humans (e.g., Thorndike, 1932; Hull, 1943) could now be stated more formally and
investigated on artificial computation devices. Hence, theory generation and refinement could now
be accomplished faster and more precisely by using the empirical results generated by the computer
simulations.

The computer and its influence on learning theory can be credited with producing both

positive and negative press for connectionism. Selfridge’s Pandemonium (1959) and Rosenblatt’s
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Perceptrons (1958, 1962) did much to further the concepts of connectionism. The proofs on the
limitations of simple perceptrons by Minsky and Papert (1969/1988), however, nearly caused the

complete abandonment of connectionism.

Pandemonium

Recognizing that previous attempts to get machines to imitate human data had all but failed,
Selfridge (1959) proposed a new paradigm for machine learning. Pandemonium was introduced as
a leaming model that adaptively improved itself to handle pattern classification problems that could
not be adequately specified in advance. Furthermore, whereas previous computer models relied on
serial processing, Selfridge proposed a novel architecture to deal with the problem, parallel
processing. The move to parallel processing was not an arbitrary one, but one motivated by two
factors: (1) it is easier, and more “natural” to handle data in a parallel manner’, and (2) it is easier
to modify an assembly of quasi-independent modules than a machine whose parts interact
immediately and in a complex way.

Pandemonium consists of four separate layers: each layer is composed of “demons”
specialized for specific tasks (see Figure 3.3). The bottom layer consists of data or image demons
that store and pass on the data. The third layer is composed of computational demons that perform
complicated computations on the data and then pass the results up to the next level. The second layer
is composed of cognitive demons who weight the evidence from the computational demons and
“shriek™ the amount of evidence up to the top layer of the network. The more evidence that is
accumulated, the louder the shriek. At the top layer of the network is the decision demon, who
simply listens for the loudest “shriek” from the cognitive demons (a winner-take-all strategy), and
then decides what was presented to the network.

The initial network structure is determined a priori by the task, except for the computational
level which is changed by two different learning mechanisms. The first mechanism changes the
connection weights between the cognitive demons and the computational demons via supervised
learning (all other connections within the network being fixed a priori). The weights are trained
using a hill-climbing procedure in order to optimize the performance of the network. After
supervised learning has run long enough to produce approximately optimal behaviour, the second

learning mechanism is employed.

5 “parallel processing seems to be the human way of handling pattern recognition™ (Selfridge & Neisser, 1960,
p-66).
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Figure 3.3 A sample Pandemonium network for detecting hand-written characters.
The Decision Demon listens for the loudest “‘shriek” from the Cognitive
Demons.

The second learning mechanism selects those computational demons that have a high worth
(based on how likely they are to influence a decision), eliminates those demons that have a low
worth, and generates new demons from the remaining good demons. Generation can be
accomplished by either mutating a demon, or conjoining two successful demons into a continuous
analogue of one of the ten nontrivial binary two-variable functions. In fact, this second training
mechanism may be one of the first genetic machine learning algorithms.

Selfridge demonstrated the effectiveness of Pandemonium on two different tasks:
distinguishing dots and dashes in manually keyed Morse code (1959), as well as recognizing 10
different hand-printed characters (Selfridge & Neisser, 1960). Thus, a practical application of
connectionist principles has been applied to pattern recognition. In fact, Pandemonium has been so
successful as a model of human pattern recognition that it has been adopted and converted into a
more traditional symbolic model (with connectionist principles conveniently ignored) by cognitive

psychologists (e.g., Lindsay & Norman, 1972).
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Rosenblatt’s Perceptron

The perceptron, more precisely, the theory of statistical separability, seems to come

closer to meeting the requirements of a functional explanation of the nervous system

than any system previously proposed. (Rosenblatt, 1958, p- 449).

Although originally intended as a genotypic model of brain functioning (Rosenblatt, 1958,

1962), the perceptron has come to represent the genesis of machine pattern recognition. Basically,

the perceptron is a theoretically parallel computation device composed of:

I. a layer of sensory units (S-unit) which transduce physical energy (e.g. light, sound,
etc.) into a signal based on some transformation of the input energy,

ii. any number of layers of association units (A-unit) which have both input and output
connections, and

1ii. a final layer of response units (R-unit) which emit a signal that is transmitted to the

outside world.

Figure 3.4 shows different graphical representations of a perceptron system. Note that the
same perceptron system can be expressed in terms of a network diagram, a set diagram, or even a
symbolic diagram. Rosenblatt was not concerned with how the perceptron was interpreted, but was
concerned with what it could tell us about statistical separability.

An elementary a-perceptron is defined, then, as a network in which S-units are connected

S A s
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Figure 3.4 Different diagrams representing the same perceptron system. (A) Network
diagram. (B) Set diagram. (C) Symbolic diagram. (Adapted from Figure 2,
Rosenblatt, 1962, p. 86)




Chapter 3 50

to A-units (although not necessarily massively parallel), and all A-units are connected to a single R-
unit, with no other connections being permitted. Furthermore, all connections are considered to have

equal transmission rates, t. The transfer function between units i and J attime ¢ is expressed as

c; (t-1) =u; (£-7) v, (t-7) (3.4)

where u;’(1-t) is the output of unit { at time ¢, and v,(t-T) is the connection strength between units i
and j at time r. Connection strengths from S- to A-units are fixed, while connection strengths from
A- to R-units vary with the reinforcement history applied to the perceptron. Both A- and R-units
have a threshold, 0, and emit a signal whenever the input signal, e, is equal to or greater than 6. We

can assumne that t=0 without loss of generality, and thus, the reinforcement rule is

nifa( =06

35
0 otherwise (3.5)

Av, = u; () = {
where 7 is of constant magnitude.

The theoretical importance of the elementary a-perceptron lies in the fact that, for binary
inputs, a solution exists for every classification, C(W), of all possible environments W. In other
words, an elementary c-perceptron is capable of solving any pattern classification problem expressed

in binary notation. The proof is rather trivial:

I For every possible pattern, S, in W, let there be a corresponding A-unit, a,.

ii. Make the connection, v,, between g, and the corresponding sensory unit, s,
excitatory (i.e., value equal to +1) if the pattern on that s, s “on”; otherwise make
the connection inhibitory (i.e., value equal to -1).

iii. Set the threshold of a, 6, equal to the number of excitatory connections. Thus, a,
responds to one and only one pattern in W.

iv. If S, is a positive instance of C(W) then make the connection from a; to the r-unit
positive (i.e. value equal to +1); otherwise make the connection negative (e.g., value
equal to -1). With the threshold of the R-unit equal to zero, the network correctly

classifies all S; in W.
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The above proof shows theoretically that any pattern classification problem expressed in
binary notation can be solved by a perceptron network. As a concrete example, Figure 3.5 shows the
network configuration for solving the XOR problem. The problem with this proof, however, is that
it produces the final network structure, but does not indicate if the network could be trained to such
a configuration. Consequently, Rosenblatt developed the Perceptron Convergence Theorem to show
that an elementary a-perceptron using an error correction procedure is guaranteed to converge on
a solution in finite time, providing that (i) a solution exists, (ii) each pattern is presented to the
network at least twice, and (iii) the connections between the S-units and A-units are fixed.

Although theoretically very powerful, the practical problem with perceptrons was that there
was no reliable method of adjusting the connections between the sensory (input) units and the
association (internal) units. Hence, as a true learning network, perceptrons were limited to justa
layer of sensory units connected directly to a layer of response units, with no intervening layers.
With the output of the R-unit being monotonic (i.e., u(t) = fley(r)), where a(1) is the algebraic sum
of all the inputs into unit w,), the resulting networks were very limited in their computational power.

Rosenblatt was quick to point this limitation out, although he left the proof up to the reader.

It is left to the reader to satisfy himself that a system with less “depth” than an
elementary perceptron (i.e., one in which S-units are connected directly to the R-
unit, with no intervening A-units) is incapable if representing C(W), no matter how
the values of the connections are distributed. (Rosenblatt, 1962, p. 101).

S, A-Unit  Response
off off a, off
on off a, on
off on a, on
on on a, off

Figure 3.5 The solution for an elementary a-perceptron solving the XOR problem. Weights
are indicated by the number next to the connection, whereas biases are indicated
by the number within the unit.
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Adaline

The next major formulation in learning rules for networks came from Widrow and Hoff
(1960). They developed “Adaline” (first for adaptive linear, then adaptive linear neuron, and later
adaptive linear element as neural models became less popular) as an adaptive pattern classification
machine to illustrate principles of adaptive behaviour and learning. The learning procedure was
based on an iterative search process, where performance feedback was used to guide the search
process. In other words, a designer “trains” the system by “showing” it examples of inputs and the
respective desired outputs. In this way, system competence was directly and quantitatively related
to the amount of experience the system was given.

The typical Adaline unit, also called a “neuron element,” is illustrated in Figure 3.6. Itis a
combinatorial logic circuit that sums the signals from weighted connections (gains), a,, and then
sends an output signal based on whether or not the internal signal exceeded some threshold. The
threshold was determined by a modifiable gain, a,, which was connected to a constant +1 source.
As opposed to the usual convention of using signals of 0 and 1, the Adaline used input signals of -1

and +1 which meant a signal was always passed along a connection (unless the gain on the line was

*lo bias
inputs gains
~ a
v‘ale\ O 0
o O— A& /V\
) ‘ LT output
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or ® ° N | L=
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O3 ¢ + | reference switch
o
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Figure 3.6 A typical Adaline unit. The inputs are sent along weighted
connections (gains) to a summer which performs a linear combination
of the signals. The output of the summer is compared to the value of
the reference switch and the gains are adjusted by the same absolute
value to produce an output of exactly -1 or +1.
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zero). Similarly, the gains on the connections were adjusted so that the output signals were exactly
-1 or +1; therefore, classification was not simply correct, but exactly correct. This restriction on the
outputs meant that learning continued even if the classification was simply correct as the summed
inputs may not be exactly -1 or +1. This continued learning was an improvement over the simple
perceptron which did not change its weights if the gross classification was correct.

The learning procedure is based on the error signal generated by comparing the network’s
response with the optimal (correct) response. For example, consider an Adaline unit with 16 input
lines and a bias threshold. A pattern is presented over the 16 input lines, and the desired output is
set into the reference switch (see Figure 3.6). If the error (computed as the difference between the
summer and the reference switch) is greater than zero, then all gains including the bias are modified
in the direction that will reduce the error magnitude by 1/17. Upon immediate representation of the
pattern an error signal of zero would be produced. Another pattern can now be presented to the
network and the connections modified®. Convergence is achieved when the error (before adaptation)
on any given pattern is small and there are small fluctuations about a stable root mean-square value.
Consequently, the error correction algorithm is also known as the LMS (Least Mean Squares)
algorithm in signal processing (Anderson & Rosenfeld, 1988).

The Widrow-Hoff rule (Sutton & Barto, 1981) is formulated as:

ri (0 =z[(1)->(D]x,(1) (3.6)

where ¢ is the target pattern, v(t) is the network’s output, and x (1) is the input to the network. Because
this rule is dependent on an external teacher it is termed supervised learning. Within neural network
research, the Widrow-Hoff rule is often referred to as the delta rule because the amount of learning
is proportional to the difference between the output and the target (Rumelhart, Hinton, &

McClelland, 1986).

Perceptrons Revisited (Minsky & Papert)
Although it was known for a decade that simple perceptrons were limited in their ability to
classify some patterns, it was not until Minsky and Papert published Perceptrons in 1969 that the

extent of these limitations were fully realized. In fact, it was with this publication that the

¢ Note that at this point, presenting the first pattern to the network would produce an error that was small but
not necessarily zero.
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connectionist tide was stemmed’ (at least for a while). Instead of asking if neural networks were
good, Minsky and Papert asked the question “what are neural networks good for?” This is clearly
a computational level question aimed at identifying the limitations of the representational abilities
of perceptron-like networks. As Minsky and Papert point out in their prologue to the 1988 edition
of Perceptrons, “No machine can leam to recognize X unless it possesses, at least potentially, some
scheme for representing X.” (p. xiii; their italics).

Hence, their approach to the study of neural netv-orks was based on studying the types of
problems that were being proposed at the time—mainly visual pattern recognition (Papert, 1988).
In doing so, they discovered that some pattern recognition problems (e.g., distinguishing triangles
from squares) were relatively easy and could be computed by simple networks. Conversely, some
problems (e.g., determining if a figure was connected or not) were extremely difficult and required
large networks to solve them. The main distinction between these two types of problems was not the
size of the pattern space, but the concept of order (Minsky & Papert, 1988/1969, p. 30).

In general, the order of some function ¥X) is the smallest number k for which we can find

a set ® of predicates satisfying

{ IS( )l < k for all ¢ in ®,
¥ e L(D). (3.7)

where @ is a simple predicate, and L(®) is the set of all predicates that are linear threshold
functions. It should be noted that the order of ¥ is a property of ¥ alone, and not relative to any
particular ®. Functions that have an order of 1 are called “linearly separable” and can be solved by
a single layer perceptron.

The types of pattern recognition problems that gave simple perceptrons trouble were those
whose order was greater than 1. These types of problems are termed “linearly inseparable™ and
require a layer of processing units between the input and output units. At the time, however, there
was no reliable method of training this intermediate level, and therefore perceptrons were limited
to being trained on linearly separable problems only.

Minsky and Papert (1988/1969) used a very simple and elegant example to show the

practical limitations of perceptrons. The exclusive-or (XOR) problem (see Figure 3.5) contains four

7 Neural network research did not wane due to lack of interest, but because of lack of funding (Papert, 1988).
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(A)

Input

Figure 3.7 (A) Linearly separable problems require a single hyperplane to make the proper
classification and, therefore, require no internal units. (B) Linearly inseparable
problems necessitate two (or more) hyperplanes to make the correct classification.
Therefore, a network requires a layer of internal units.

on, but not both. Thus, changing the input pattern by one bit changes the classification of the pattern.
This is the most simple example of a linearly inseparable problem (see Figure 3.7). A perceptron
using linear threshold functions requires a layer of internal units to solve this problem, and since the
connections between the input and internal units could not be trained, a perceptron could not learn
this classification. And, if perceptrons failed on this small pattern set, what hope was there for larger
pattern sets that were also linearly inseparable?

Furthermore, Minsky and Papert lay out other limitations of networks. For example, if a
network is to solve a problem with order R, then at least one partial predicate @ must have as its
support the whole space R. In other words, at least one internal unit must be connected to each and
every input unit. This network configuration violates what is known as the “limited order” constraint.
Another limitation that Minsky and Papert discuss is the growth of coefficients. For linearly
inseparable problems, the coefficients (i.c., weights) can increase much faster than exponentially
with IRI. This leads to both conceptual and practical limitations. Conceptually, although the
behaviour of a network may be “good” on small problems, this behaviour may become profoundly
“bad” when the problem is scaled up. Practically, for very large IRI, the amount of storage space
required for the weights would overshadow the space required to simply represent the problem.

Although advances in neural network research have produced methods for training multiple
layers of units (e.g., Rumelhart, Hinton, & Williams, 1986a), many of Minsky and Papert’s concerns
remain unanswered. Networks using linear threshold units still violate the limited order constraint
when faced with linearly inseparable problems (but see Chapter 5). Furthermore, the scaling of

weights as the size of the problem space increases is still an issue (Feldman-Stewart & Mewhort,
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1994). Nevertheless, connectionist research remains a thriving endeavour within cognitive science

today.

The Importance of Old Connectionism

The publication of Perceptrons by Minsky and Papert in 1969 has taken on almost a
mythical aura—it has been likened to the huntsman being sent out to bring back the heart of Snow
White (Papert, 1988). Regardless of whether or not the work precipitated or merely coincided with
the decline of connectionist research, it serves as a useful delineation between the “Old” and “New"
connectionism.

The examples of connectionist networks provided in this chapter are often classified under
the term “Old Connectionism”. Old Connectionism is characterized by two different types of
networks. The first are small, trainable networks, such as single layer perceptrons, that are
computationally limited (i.e., cannot be trained to solve linearly inseparable problems). The second
type of networks are large, computationally powerful networks that are mainly hardwired (although
they could have a trainable layer of weights such as Pandemonium), and thus are limited in their
learning ability. The problem with Old Connectionism was that it had no reliable way of combining
these two different types of network architectures. To be an effective tool within cognitive science,
researchers had to find a way of combining these two different types of networks.

Consequently, we are left with the question “Why should we be interested in Old
Connectionism?” The first reason is purely academic. To understand the role of connectionism
today and why we are at a crossroads, we have to understand how the field has developed. Knowing
the history of connectionism, not only are we in a position to counter the arguments against
connectionism from the classical camp (e.g., knowing why connectionism is not associationism), but
also we are in a position to evaluate claims from the connectionist camp that it may represent a
paradigm shift (see Chapter 9). To be effective researchers, we need to know both sides of the
argument.

The second—and more important—reason is that by studying the development of
connectionism we can appraise the strengths and weaknesses of the connectionist approach to
information processing and adjust our course of inquiry accordingly. For example, we know that
connectionist networks have the in principle power of a UTM (McCulloch & Pitts, 1943), but we
also know that perceptron-like single layer networks are limited in their computational power

(Minsky & Papert, 1969). Thus, we should focus current research on multilayer networks. We know
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that there are guaranteed algorithms—based very much on early behaviourist theorizing—for
training single layer networks (Rosenblatt, 1962), yet no such algorithm exists for multiple layer
networks. Can the same be said of biological learning? Finally, we should stop working in the
“biological vacuum” and heed the echoing call for models of leamning to be based more on the known
physiology of the brain.

With the introduction to connectionism’s interdisciplinary background—from its
philosophical roots to its computational apex—completed, the current state of connectionism can

now be evaluated.
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Chapter 4

Modern Connectionism

Whilst standing at the crossroads of connectionism, we have discerned several things. First,
we have learned that one of the working assumptions of cognitive science is that the mind is an
information processor, and as such must be described at three different levels of analysis; the
computational, algorithmic, and implementational. Second, we have traced the history of
connectionism in order to understand how it has developed as a tool within science (in general terms
of describing possible learning mechanisms) and how it has contributed to the growing field of
cognitive science (in specific terms of pattern recognition processes). It should be clear at this point
that connectionist networks can be classified as information processors.

But, a fairly substantial question remains: Do connectionist networks perform the same type
of information processing as humans (in other words, are they of interest to cognitive science)? If
we were to leave our description of connectionism at this point, we would be obligated to conclude
that connectionist models were nor equivalent to the information processors studied by cognitive
scientists. This is because we have seen how a computational level analysis of the early connectionist
networks (e.g., Minsky & Papert, 1988/1969) revealed a severe limitation underlying the network
architectures in use. Therefore, if connectionism is to be of value to cognitive science, researchers

must seek a method of overcoming these limitations.
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Hence, this chapter is concerned with describing connectionist systems in the post-
Perceptrons era; that is, networks falling under the classification of “New Connectionism”. New
Connectionism is characterized by computationally powerful networks that can be fully trained. Such
networks have often been hailed as providing a simple universal learning mechanism for cognition
(but see Gallistel, 1995). Furthermore, because of the computational processing power of these new
networks—they are both universal function approximators and arbitrary pattern classifiers—they
may be just the type of information processors that are interesting to cognitive science.

As stated earlier, we are living in the aftermath of the neural network revolution. As a
consequence, the number of different connectionist architectures available to researchers today is
immense; to discuss them all is beyond the scope of this thesis. Instead, this chapter will focus on
three specific architectures and provide a cursory examination of four other connectionist
architectures. By the end of this chapter, it should be clear that connectionist networks are able to
answer the questions regarding information processing systems posed by cognitive scientists.

It should be noted, however, that the demarcation between “Old” and “New” is somewhat
tenuous. Following the publication of Perceptrons, there was a decrease in the number of
researchers actively engaged in connectionist research; but, research did not cease. In certain
respects, however, there was a change in the focus of connectionist research. Whereas previous
researchers were interested in a connectionist theory of mind, the focus of research during the 1970's
and early 1980’s was more directed towards a connectionist theory of memory. This is exemplified
by the work on associative memory models reported in Hinton and Anderson, 1981. The models
described in Parallel Models of Associative Memory were seen as a departure from standard memory

models of the time for three distinct reasons (e.g., Rumelhart & Norman, 1981):

I. The systems were assumed to have a neurophysiological foundation,

2. The systems offered an alternative to the “spatial” metaphor of memory and
retrieval,

3. The systems assumed a parallel, distributed-processing system that did not require

a central executive to coordinate processing.
These researchers were aware of the limitations of connectionist models for leaming linearly
inseparable pattern classification tasks; consequently, the focus of their research was directed more
towards how memory was stored and retrieved. In many ways, the work presented in Hinton and
Anderson (1981) serves an important role by bridging the gap between Perceptrons and Parallel

Distributed Processing.
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Modern Connectionist Architectures

In this chapter, three different network architectures will be described in detail. These
architectures were chosen because in subsequent chapters they will play a large role in our analysis
of connectionism'’s contribution to information processing as dictated by the tri-level hypothesis.
After each of the main architectures is described, related network architectures will also be reviewed.
These reviews will provide somewhat less detail as they are meant to provide only a cursory
examination of comparable architectures.

The first architecture to be described in detail is James McClelland’s (1981) Interactive
Activation and Competition (IAC) model of information retrieval from stored knowledge. Although
early versions of the IAC architecture did not learm—hence, it could rightly be considered within the
class of Old Connectionism as defined earlier—the model displays many characteristics of human
cognition that are missing from classical symbolic models (e.g., see Chapter 2). Furthermore, a new
learning rule for IAC networks is proposed within this chapter. Thus, it is included here in our
description of modern connectionism.

Following the description of the IAC network, the work of two pioneering researchers in the
field of neural network learning immediately following the Perceptrons era will be briefly reviewed.
First, Stephen Grossberg's (1974) instar and outstar configurations and his Adaptive Resonance
Theory (ART) networks (1976) will be introduced. Second, we will cover Teuvo Kohonen's (1982)
self-organizing maps (which are now commonly referred to as Kohonen networks). Coupled with
the new learning rule for the IAC networks, these architectures provide a link from the “Old"” to the
“New"” Connectionism.

The second architecture to be covered in detail is the generic PDP architecture; that is, a
multi-layered network trained with Rumelhart, Hinton and Williams’ (1986a, 1986b)
backpropagation algorithm. The generic PDP network is probably the most well known and most
widely used architecture today—it is estimated that about 70% of real-world network applications
use the backpropagation learning algorithm (Werbos, 1995). Furthermore, the algorithm is suitable
for both function approximation tasks and pattern classification problems. Consequently, it has the
computational power and competence required by cognitive science.

One criticism leveled against the generic PDP architecture, however, is that it is only capable
of a static mapping of the input vectors. The brain, on the other hand, is not stateless but rather a

high-dimensional nonlinear dynamical system (Doya, 1995). Consequently, the recurrent network
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architecture pioneered by John Hopfield (1982) will be briefly discussed. The basic characteristic
of recurrent networks is that some processing activation (usually the output) at time r is re-used
(usually as an input) at time r+1. Thus, a fully connected recurrent network is potentially a very
powerful architecture for temporal processing; however, more efficient heuristics and algorithms for
reliable learning are required.

The third architecture to be discussed specifically is a variation on the generic PDP
architecture developed by Dawson and Schopflocher (1992). These value unit networks use the same
basic learning algorithm as the generic PDP architecture, but use a non-monotonic activation
function—the Gaussian—in their processing units. This new activation function has been shown to
have certain theoretical and practical advantages over standard backpropagation networks. For
example, value units are able to solve linearly inseparable problems much easier and with fewer
hidden units than standard networks. Also, the hidden unit activations adopted by value unit
networks often fall into distinct “bands”, al lowing for easier interpretation of the algorithms being
carried out by the network.

Finally, the last architecture to be briefly covered is the Radial Basis Function (RBF)
network (e.g., Moody & Darken, 1989). The reason for covering the RBF architecture is that it and
the value unit architecture are often confused. This is because both networks use a Gaussian
activation function in their processing units. As the section will show, however, the networks are not
equivalent.

By reviewing these different architectures, it will become clear how connectionism has
grown into a viable tool for cognitive science. More specifically, in this and following chapters, it
will be shown how the IAC, generic PDP, and the value unit architectures contribute to
understanding connectionism’s new role in cognitive science. These three architectures provide

novel ways of approaching classical problems at each level of the tri-level hypothesis.

The Interactive Activation and Competition Model

McClelland’s (1981) Interactive Activation and Competition (IAC) model illustrates the
power of a large network for retrieving general and specific information from stored knowledge of
specifics. Although the network rightly falls into the category of Old Connectionism as defined
earlier (i.e., the network is hardwired and cannot “learn” new information), it is included in this
section because it nicely illustrates those properties of an information processing system that are

often overlooked in classical theories. These include graceful degradation, content-addressable
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memory, output availability, and iterative retrieval. Furthermore, as will be illustrated in Chapter 7,
the IAC architecture can be used to answer questions concerning the effects of neurological
damage—such as that caused by Alzheimer’s Disease—on semantic knowledge.

The basic IAC network consists of processing units that are organized into competitive
pools. Connections within pools are inhibitory; this produces competition within the pools as strong
activations tend to drive down weaker activations within the same pool. Connections between pools,
however, are normally excitatory and bi-directional; thus, we have inferactive processing. Units
within the network take on continuous activation values between a minimum and a maximum, with
their output normally equal to the activation value minus some threshold (although this can be set
to zero without loss of generality). The basic mathematics of network functioning are fairly straight-
forward (e.g., Grossberg, 1978; McClelland & Rumelhart, 1988).

Units within the IAC network compute their activation, a, based upon the unit’s current
activation and the net input. The net input arriving into a unit (Equation 4.1) is calculated by
summing the weighted activations sent from all other internal units connected to it plus any external
activation supplied by the environment. Thus, the net input to unit { that is connected to j other units
is

net‘. = IE W’lj Oll[plltj + extmput,. @.1

where w, is the weight (positive or negative) of the connection between unit i and unit /, and

ajzfaj>0,

output. = {al] = .
pil; [ f] {0 otherwise.

Once the net input to a unit has been calculated, the change in that unit’s activation can be

computed as follows:

If (net; > 0),

Aa; = (max - a)net, - decay(a, - rest).

Otherwise, (4.2)
Aa,

{

(a;, - min)net, - decay(al. - rest).
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where max, min, decay, and rest are parameters supplied by the modeler. Normally, the parameters
are set to max = 1, min < rest < 0, and O < decay < 1. It is also assumed that a, is initialized and
remains within the range [min, max].

With these equations in place, we can evaluate how Aa, changes over time. For example,
imagine that the input, net, to a unit is fixed at some positive value. As the activation, a,, of a unit
becomes greater and greater, Ag, becomes less and less—when a, reaches max then Aa, = -decay(a, -
rest) = -decay(max - rest). When q, is equal to the resting level, then Ag, = (max - rest)net,. If we
assume that max = 1 and rest = 0, then these equations reduce to Aa, = -decay when a, is maximal
and Aag; = net, when g, is minimal. Between these two extremes is the equilibrium point, where Ag,
=0; that is, we can calculate the value of g, such that given a constant net input, the unit’s activation
does not change with time. To determine the equilibrium point (assuming max = | and rest = 0), we

simply set Aa, to zero and solve for a, which gives:

0 = (max - a)net, - decay(al. - rest)
0 = net, - (a)(net) - (a)(decay) = net, - a (net, + decay)
4.3)
net.
a. = .

net, + decay

This means equilibrium is reached when the activation equals the ratio of the net input divided by
the net input plus the decay. Analogous results to Equation 4.3 are obtained when the net input is
negative and constant. It should be noted that equilibrium is only reached when the net input to the
unit is constant—if the net input changes with time, then equilibrium is not guaranteed (in practice,
however, equilibrium is often achieved).

Having analyzed the mathematical basis of the network, we can now turn our attention to
a more specific example of the IAC architecture. McClelland’s (1981) network is based on the bi-
directional interconnection of nodes. A node is a simple processing device that accumulates
excitatory and inhibitory signals from other nodes via weighted connections and then adjusts its
output to other nodes accordingly. There are two different types of nodes in the network: instance

and property nodes'. There is one instance node for each individual encoded in the network. The

! In reality, both of the nodes have the same physical characteristics and therefore only represent different types
of information. It is often assumed, however, that instance nodes are ‘hidden’ from direct access whereas
property nodes are not.
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instance node has inhibitory connections to other instance nodes and excitatory connections to the
relevant property nodes. The property nodes encode the specific characteristics of an individual.
Property nodes are collected into cohorts of mutually exclusive values; nodes within a cohort have
mutually inhibitory connections. Knowledge is extracted from the network by activating one or more
of the nodes and then allowing the excitation and inhibition processes to reach equilibrium.

Allinformation processing takes time, and the IAC model is no exception. Time is measured
in “cycles”, where a cycle consists of a node computing its activation level (dependent on previous
activation, current excitatory and inhibitory signals being received. and a decay function) and then
sending a signal to all connected nodes. During a cycle, all nodes are computing their activation
levels in parallel. Furthermore, at the completion of any cycle, we can evaluate the current state of
the network. This means that we can wait for the network to reach equilibrium and a definite answer,
or we can ask what the network’s best “guess™ to a question is before equilibrium is reached.

The specific network reported by McClelland (1981) encodes information about the
members of two gangs called the “Jets” and the “Sharks™. Property cohorts include NAME. GANG
AFFILIATION, AGE, EDUCATION LEVEL, MARITAL STATUS. and OCCUPATION. Fi gure 4.1 illustrates
the network s architecture and the individual properties within each cohort. Note that McClelland's
oniginal network had 27 individuals encoded, while Figure 4.1 only encodes the properties of three
individuals.

To illustrate how the network retrieves specific information., we will use Lance as an
example. First, the name node “Lance™ is activated by an external signal. The node then sends an
inhibitory signal to all other name nodes. and an excitatory signal to the instance node for Lance.
When the instance node receives enough stimulation. it sends an inhibitory signal to all other
instance nodes, and an excitatory signal to the properties of Lance, specifically the nodes for “Jets™.
“20°s", “J.H.", “Married™, “Burglar” and the name node “Lance”. These property nodes send out
inhibitory signals to the other nodes within their cohorts and an excitatory signal back to the instance
nodes to which they are connected (which means instance nodes other than Lance may be activated).
Eventually, the network will settle into a state of equilibrium where the properties of Lance will be
activated at a high level and all other properties will be relatively inhibited. This is an example of
content-addressable memory.

To retrieve general information from the network, we can activate one of the other property
nodes. For example, if we wished to find out the average characteristics of members in the Jets

Gang, we would simply activate the “Jets” unit and look for the property nodes with the highest
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/

Figure 4.1 A much reduced version of McClelland's (1981) “Jets™ and
“Sharks™ network for illustrative purposes. The solid nodes are
“instance units™ (one for each gang member) while the hollow
nodes are “property units” that encode specific characteristics.
Inhibitory connections are not shown.

amount of activation in each cohort. It turns out that the average member of the Jets is in his 20's.
has a Junior High education, is single, and is equally likely to be a pusher, a bookie, or a burglar.
Furthermore, the network will also tell us who the gang members of the Jets are. This general
information is not encoded specifically anywhere within the network; therefore, the model “has no
explicit representation that the Jets tend to have these properties” (McClelland, 1981, p. 171) and
yet this information is available.

Finally, the IAC model is able to handle incomplete or missing data and even perform when
the network has been damaged. If the network is given incorrect information (e.g., inquire about who
was a Shark, in their 20°s, single, a burglar, and had a Junior High education) it will return with the
best match. In this case, the network returns the individual Ken who fits all the characteristics except
for education level (McClelland & Rumelhart, 1988). Furthermore, if we sever the connection

between the instance node Lance and the property “Burglar”, the network is still able to return a
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value of “Burglar” when the property node “Lance” is activated even though there is no direct
connection. In effect, Lance will activate other individuals who are similar to him, and thus the
network “guesses” at Lance’s profession by default assignment.

The IAC network illustrates quite effectively content-addressable memory (e.g., retrieval of
the properties of Lance by supplying his name only), output availability (e.g., assessing the state of
the network at the end of a cycle), iterative retrieval (e.g., finding the average property of a Jets
member from all other possible properties), and graceful degradation (e.g., retrieval of information
when connections are severed or incorrect information is given)—properties required in a model of
human information processing (Norman, 1986). This model also questions the classical view that
we explicitly store generalizations.

Furthermore, the IAC model is similar to the semantic networks of classical cognitive
science (e.g., Quillian, 1968; Collins & Loftus, 1975). Both the IAC model and semantic networks
store semantic information in a complex network of serial and/or parallel associations (compare
Figure 4.1 with Figure 1 of Collins & Loftus, 1975, p- 412). One difference between the two
approaches, however, is that the [AC model uses both excitatory and inhibitory connections whereas
a semantic network uses excitatory connections solely”. This is an important distinction as inhibitory
connections can be just as important as excitatory connections; in fact (and quite contrary to what
one might intuitively believe), inhibitory connections are necessary for keeping semantically grouped
concepts together. For example, in Chapter 7 we will see how recent results from a lesioned IAC
network can account for the distortions in semantic networks in patients with Alzheimer’s disease
(e.g., Chan et al., 1993).

A Possible Learning Mechanism for IAC Networks

Although IAC models are an important contribution to the connectionist's tool bag, the
initial models still suffered from the inability to learn and, hence, rightly fall into the classification
of Old Connectionism. The ability of the IAC networks to incorporate so many of the characteristics
of human information processing, however, make it difficult to dismiss the architecture for lack of
a learning mechanism. Consequently, a possible leaming mechanism for the IAC networks is
proposed here.

In devising a new learning mechanism, we would want to incorporate as many of the known

neurophysiological properties (both theoretical and empirical) of learning as possible. The first

? For other differences between semantic networks and neural networks, see Barnden (1995).
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modification would be to add a Hebbian-like learning mechanism to increase or decrease the
weighted connections between nodes, so that those nodes that are active together become more
strongly connected (either inhibitory or excitatory), and those nodes that are seldom active together
weaken their connection (Hebb, 1949). The second modification would be to limit the maximum
possible weight of any connection. The idea behind this restriction comes from Hull’s (1943) growth
of habit strength and Minsky and Papert’s (1988/1969) observation that network weights often grow
without bound and there is no evidence that biological neural networks behave in this manner. A
third property to be incorporated into a possible learning mechanism would be to prevent weights
from shifting sign; that is, weights that are positive remain positive, and weights that are negative
remain negative. Finally, a decay process should be added to the leaming mechanism to account for
the “use it or lose it” property evident in real neural circuits (e.g., Dudai, 1989). Consequently,
learning in an IAC network could be accomplished by adding the following equation to the

mathematics of the architecture:

If (w, > 0),
AW,-,- = nwmax - waa, - wdeca_v(wu.).

Otherwise, (d.d)
Awu = Niwmin + waa, - wdecay(wu.).

where wmax> max, wmin < min, and wdecay 2 0 are parameters specific to the network weights, n)
1s a learning parameter, and the unit activations a,and q, are assumed to fall into the range [min, max|
as before. What Equation 4.4 states is that the change in weight is equal to some proportion of the
unrealized weight potential (cf., Hull's growth of habit strength) minus some decay process. Note
that this equation guarantees that as the inactivity between nodes persists, weights will approach but
never cross zero; in other words, weights that are inhibitory remain inhibitory, and weights that are
excitatory remain excitatory. Thus, the network is an unsupervised learning algorithm based on self-
organizing principles. A similar learning rule—although less encompassing—for IAC networks has
been proposed and tested by Burton (1994) to train a face recognition network.

Therefore, with these modifications, the IAC architecture could be said to bridge the gap
between Old and New Connectionism. But, the IAC network is still somewhat limited in the

knowledge it can represent; for example, while the architecture represents semantic knowledge quite
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well, the architecture probably is not suitable for controlling limb movement. Consequently, we need
to explore other architectures and leaming methods, and the best place to start is with the forerunners

to the most common network and learning algorithm today.

Grossberg’s Instars and Outstars

Many of the ideas commonly used in artificial neural networks today can be attributed to
Stephen Grossberg (1974). One such contribution is the instar and outstar configurations, which
were originally proposed as models of certain biological functions. Basically, instars are neurons fed
by a set of inputs through synaptic weights, while outstars are neurons driving a set of weights. Instar
neurons and outstar neurons are capable of being interconnected to form arbitrarily complex
networks.

The purpose of instar neurons is to perform pattern recognition. Each instar is trained to
respond to a specific input vector X and to no other. This is accomplished by adjusting the weight
vector W to be like the input vector. The output of the instar is the sum of its weighted connections
(see Equation 4.7). This calculation can be seen as the dot product of the input vector and the weight
vector, which produces a measure of similarity for normalized vectors. Therefore, the neuron will
respond most strongly to the pattern for which it was trained.

An instar is trained using the formula ,

w (t+1) = w, (B)+a[x,~w (1)) 4.5)

w(tr) = the weight from input r,
x; = i"input

o = training rate coefficient which should be set to 0.1 and then gradually

reduced during the training process.

Once trained, the instar will respond optimally to the input vector X, and respond to other vectors
that are similar to X. In fact, if you train it over a set of vectors representing normal variations of the
desired vector, the instar develops the ability to respond to any member of that class.

The outstar works on a complementary basis to the instar. It produces a desired excitation
pattern for other neurons whenever it fires. To train the outstar, its weights are adjusted to be like

a desired target vector

wit+1) = w()+B Ly, -w, (0] (4.6)
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where [3 is the training rate coefficient which should start at 1 be slowly reduced to O during training.
Ideally, the outstar neuron should be trained on vectors that represent the normal variation of the
desired vector. Thus, the output excitation pattern from the neuron represents a statistical measure
of the training set and can converge to the ideal vector even if it has only seen distorted versions of

the vector.

Grossberg’s Adaptive Resonance Theory

It would be hard to mention Grossberg without making a least a brief mention about
Adaptive Resonance Theory (ART). ART was initially introduced by Grossberg in 1976 as a theory
of human information processing: it has since evolved into a series of real-time neural network
models that perform supervised and unsupervised category learning, pattern classification, and
prediction (Carpenter & Grossberg, 1995).

The simplest ART network is a vector classifier—it accepts as input a vector and classifies
1t into a category depending on the stored pattern it most closely resembles. Once a pattern is found,
it is modified (trained) to resemble the input vector. If the input vector does not match any stored
pattern within a certain tolerance, then a new category is created by storing a new pattern similar to
the input vector. Consequently, no stored pattern is ever modified unless it matches the input vector
within a certain tolerance. This means that an ART network has both plasticity and stability; new
categories can be formed when the environment does not match any of the stored patterns, but the
environment cannot change stored patterns unless they are sufficiently similar.

There are many different variations of ART available today. For example, ART1 performs
unsupervised learning for binary input patterns, ART2 is modified to handle both analog and binary
input patterns, and ART3 performs parallel searches of distributed recognition codes in a multilevel
network hierarchy. ARTMAP combines two ART modules to perform supervised learning while
fuzzy ARTMAP represents a synthesis of elements from neural networks, expert systems, and fuzzy
logic (e.g., Carpenter & Grossberg, 1995). Other systems have been developed to suit individual
researcher’s needs; for example, Hussain & Browse (1994) developed ARTSTAR which uses a layer
of INSTAR nodes to supervise and integrate multiple ART2 modules. The new architecture provides
more robust classification performance by combining the output of several ART2 modules trained

by supervision under different conditions.
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Kohonen Networks

A Kohonen network (Kohonen, 1982) can be characterized as a self-organizing map used
for pattern recognition. It differs from the generic PDP architecture in several ways (see the
following section). First, application of an input vector to the network will cause activation in all
output neurons: the neuron with the highest value represents the classification. Second, the network
is trained via a non-supervised learning technique. This poses a rather interesting problem. As the
training is done with no target vector, it is impossible to tell a priori which output neuron will be
associated with a given class of input vectors. Once training is completed, however, this mapping
can easily be done by testing the network with the input vectors. A typical Kohonen network is
illustrated in Figure 4.2.

The n connection weights into a neuron are treated as a vector in n-dimensional space.
Before training, the vector is initialized with random values, and then the values are normalized to
make the vector of unit length in weight space. The input vectors in the training set are likewise
normalized.

The algorithm for training a Kohonen network can be summarized as follows:

4. Apply an input vector X to the network.
Calculate the distance D, (in n dimensional space) between X and the weight vectors
W, of each neuron.

6. The neuron that has the weight vector closest to X is declared the winner. Use this
weight vector W, as the center of a group of weight vectors that lie within a distance
of d from W,

7. Train this group of vectors according to

W, (t+1)= W, () + a[X - W, (1)]

for all weight vectors within a distance 4 of W.. Note the similarity
between this equation and Equation (3.12).

8. Perform steps 1 through 4 for each input vector.

As training proceeds, the values of d and o are gradually reduced. It is recommended by

Kohonen that « start near land reduce to 0.1, whereas d can start as large the greatest distance
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between neurons and reduce to a single neuron. Furthermore, the number of training cycles should
be approximately 500 times the number of output neurons to ensure statistical accuracy.

Because the input and weight vectors are normalized they can be viewed as points on the
surface of a unit hypersphere. The training algorithm therefore adjusts the weight vectors
surrounding the winning neuron to be more like the input vector. In other words, the algorithm tends
to cluster weight vectors around the input vector.

Such adaptive units can be organized into a layer to produce a feature map. A feature map
is a nonlinear method of representing the original signal space and resembles the topographic maps
found in many areas of the brain (Ritter, 1995). The feature map is produced by the unsupervised
training of the adaptive units which gradually develop into a spatially organized array of feature
detectors whence the position of the excited units signal statistically important features of the input
signal. Consequently, more frequently occurring stimuli will be represented by larger areas in the
map than infrequently occurring stimuli.

Kohonen maps and unsupervised learning are but one way of training connectionist
networks. But, if both the input and corresponding output patterns are known a priori, then
supervised learning can be used. The most common supervised learning algorithm is the

backpropagation algorithm used to train generic PDP networks.

®  ®
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Figure 4.3 (A) A Kohonen network with two inputs mapping onto a 4 x 5 output field. (B)
Randomized weight structure before training. (C) Typical weight structure
following training.
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The Generic PDP Network

As we saw in Chapter 3, an elementary a-perceptron has the in principle power to solve any
pattern classification problem expressed in binary notation, whereas a network with less depth is
limited in its computational power. This increase in computational ability derives from the fact that
a multilayer network can theoretically carve a pattern space into an arbitrary number of decision
regions (Lippman, 1987). Furthermore, it can be shown that multilayer networks are also universal
function approximators—that is, they are able to solve any function approximation problem to an
arbitrary degree of precision (e.g., Cybenko, 1989; Hartman, Keeler, & Kowalski, 1989; Hornik,
Stinchcombe, & White, 1989). These results are specific to the network architecture alone, and not
to the learning rule used to train the networks.

Thus, we need to make a distinction between the network architecture and the leamning rule.
This move serves a dual purpose. First, it allows us to make claims about the computational power
of networks regardless of the training procedure used. Second, we can evaluate the learning rule
independent of the network architecture. The consequence of making this distinction between
architecture and learning rule is that it allows us to (1) address concerns about the “biological
plausibility” of certain learning algorithms (e.g., backpropagation) without compromising the
interpretation and final results of the trained network, and (ii) determine if differences in network
performance are due to architectural discrepancies or modifications of the learning algorithm.
Therefore, we will first define the generic connectionist architecture, and then define the learning
rule.

The Generic Connectionist Architecture

The building block for the generic connectionist architecture is the artificial neuron (see
Figure 2.6). The functional properties of the artificial neuron mimic those of actual neurons; that is,
the neuron receives and integrates information, processes this information, and transmits this new
information (e.g., Dudai, 1989; Levitan & Kaczmarek, 1991). Mathematically, the input function to
the neuron is expressed in Equation 4.7; net,, is a linear function of the output signals, 0,,, from units

feeding into j with weighted connections, w,, for pattern p.

netpj = Z Wijopi @.7)
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Figure 4.3 A monotonic activation function (such as the
logistic) divides a pattern space into two
distinct regions.

The output function of the neuron is a non-linear function of its input and is expressed in
Equation 4.8. Most learning rules require that the function be both differentiable and monotonic.
Consequently, the most common activation function used is the logistic or sigmoid function which
compresses the range of the net input so that the output signal lies between 0 and 1. This function
allows the network to process large signals without saturation and small signals without excessive
attenuation. Thus, in Equation 4.8, o, is the output of the neuron, net; is the input, and § is the

“bias™ of the unit which is similar in function to a threshold.

0, = flner)) = (L+e ™ %! 4.8)

Units that use a function such as the logistic have an order of 1 (Minsky & Papert,
1988/1969) and are able to carve a pattern space into two distinct regions (see Figure 4.3). Thus,
networks using this form of activation function can solve linearly separable problems without any
hidden units. These networks have been termed Integration Devices by Ballard (1986), and generic

connectionist networks by Anderson and Rosenfeld (1988).
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The power of these simple units emerges when they are connected together to form a
network, or multi-layer perceptron (MLP). The most common MLP is a feed-forward architecture
consisting of an input layer, an internal or hidden layer, and an output layer (see Figure 3.7B); such
networks are often referred to as three-layer networks, although this nomenclature is not always
agreed upon’. Units in one layer propagate their signals to units in the next layer through uni-
directional, weighted connections. Normally, connections do not exist within layers, nor do they
transcend more than one layer (i.e., from the input layer directly to the output layer); however,
exceptions do exist.

Furthermore, it is assumed for simplicity that processing within the network occurs in
discrete time intervals. It is further assumed that all processing is done in parallel; that is, all signals
pass through the connections from one layer to the next at the same time and all units in a layer
process their activations at the same time. Thus, the speed of processing—in terms of how long it
takes the network to solve a problem—is directly proportional to the number of layers in the
network, not the number of processing units. A three layer network with 5,000 units theoretically
takes the same number of time steps to compute its function as a three layer network with five units
(practically, this is not the case as networks are often modeled using serial computers).
Consequently, paraliel processing in neural networks is often hailed as a solution to the 100-step
constraint® plaguing classical models.

Although MLP’s have the required computational competence for cognitive scientists to find
them interesting, their real allure lies in their ability to learn. Various training techniques have been
proposed previously (e.g., Selfridge’s supervised and genetic learning; Rosenblatt’s reinforcement
rule; Widrow and Hoff's Delta Rule), but they have all been limited to training only one layer of
weights while keeping the other layers constant. What connectionism needed to move into the
mainstream was a general learning rule for networks of arbitrary depth.

The Generalized Delta Rule

Papert’s (1988) likening of Perceptrons to the huntsman being sent out to bring back Snow

White’s heart is appropriate, for the huntsman did not return with the heart of Snow White, but the

? For example, Wasserman (1989) argues that since input units do not compute any function, they should not
be counted as a layer; therefore, he calls these two-layer networks.

* The 100-step constraint is based on the processing speed of neurons (e.g., Feldman & Ballard, 1982). Most
complex behaviours occur in a few hundred milliseconds—this means entire behaviours are executed in less
than a hundred time steps as opposed to the millions of time steps required by classical models.
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heart of a deer. Similarly, connectionism was not slain by Perceptrons, it was just quietly minding
its time until its prince came. And, for connectionism, Prince Charming turned out to be the
Generalized Delta Rule (GDR).

The GDR (Rumelhart, Hinton, and Williams, 1986a, 1986b) can be considered one of the
most significant contributions to connectionist research: It has allowed the training of generic
multilayer networks. In fact, the work of Rumelhart et al. is often cited as the catalyst for the strong
resurgence of connectionist research in the latter half of the 1980's (e.g., Bechtel & Abrahamsen,
1991; Horgan & Tienson, 1996). As the name implies, the GDR is a generalization of the Widrow-
Hoff Delta Rule for training networks of Adaline units (Widrow & Lehr, 1995). The training
procedure, however, is commonly referred to as backpropagation of error, or backpropagation
(backprop) for short.

Although Rumelhart et al. are often credited with popularizing the GDR, the
backpropagation procedure itself was formulated previously on at least three separate independent
occasions: first by Werbos in 1974%, then by Parker in 1982° and finally by LeCun in 1986’. In fact,
the GDR is simply a basic form of backpropagation. In its more general form (e.g., Werbos, 1995),
backpropagation contributes to the prediction and control of large systems (in terms of optimal
planning and reinforcement learning), and not simply to supervised learning as is often assumed.
Consequently, backpropagation can be applied to any differentiable, sparse, nonlinear system—it
is not restricted to any specific form of MLP, nor is it restricted to artificial systems. The main
advantage of backpropagation over traditional methods of error minimization is that it reduces the
cost of computing derivatives by a factor of N, where N is the number of derivatives to be calculated.
Furthermore, it allows higher degrees of nonlinearity and precision to be applied to problems.

Werbos (1995) notes that since backpropagation is used in so many different applications,
its actual definition has often become muddled and confused. Therefore, he offers these two standard

definitions (p. 135, his italics):

3 Beyond regression: New tools Jfor prediction and analysis in the behavioral sciences. Masters thesis, Harvard
University.

® Learning logic, Invention Report S81-64, File 1, Office of Technology Licensing, Stanford University,
Stanford, CA.

7 Learning processes in an asymmetric threshold network. In E. Bienenstock, F. Fogelman Souli, & G.
Weisbuch (Eds.) Disordered systems and biological organization. Berlin: Springer.
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1. Backpropagation is a procedure for efficiently calculating the derivatives of some
output quantity of a nonlinear system, with respect to all inputs and parameters of
that system, through calculations proceeding backwards from outputs to inputs. It
permits “local” implementation on paralle! hardware (or wetware).

2. Backpropagation is any technique for adapting the weights of parameters of a

nonlinear system by somehow using such derivatives or the equivalent.

What we are concemned with, however, is the special form of backpropagation for training
neural networks. Werbos (1995) calls this the basic form of backpropagation, although most
researchers today simply refer to it as backprop. The GDR, as applied to neural networks then, is
a supervised learning algorithm (cf., Widrow & Hoff"s delta rule—Equation 3.6) used to adjust the
weights in an MLP in accordance with the Principle of Minimal Disturbance®. To begin, a training
vector is presented to the network via the input units and the activations are then passed through
weighted connections to the hidden units. The net input function to the hidden units is computed
(Equation 4.7), the activation function is applied, then the output signal is generated (Equation 4.8)
and propagated to the output units. The output units then use Equations 4.7 and 4.8 to produce a
final output signal, o0,, which is compared to the desired target output, £,. The total error, E, is
defined in Equation 4.9, where p is an index over the patterns being presented, j is an index over

output units, o is the actual state of the output, and ¢ is the desired (target) state of the output.

E = %Z E (tnj _Om’)z (4.9)
P

Learning is defined therefore as the minimization of this error term by gradient descent
through an error surface in weight space. Gradient descent is described by the relation W,,, = W,
+u(-V,) where W, is a weight vector, u is a parameter that controls stability and rate of convergence
and V, is the value of the gradient of the sum squared error (SSE) surface at W, Consequently, to
begin gradient descent, an initial weight vector, W,,, is defined and the gradient of the error surface

at this point is measured. Weights are then altered in the direction opposite to the measured gradient,

¥ Principle of Minimum Disturbance: Adapt to reduce the output error for the current training pattern, with
minimal disturbance to responses already learned. (Widrow & Lehr, 1995, p. 719). It is noted that unless this
principle is followed it is difficult to store the required pattern responses simultaneously; hence, learning
becomes problematic.
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producing a new weight vector based upon the above relation. Every time this procedure is repeated
with a newly calculated weight vector, W,, the SSE is caused to be reduced on average and moves
towards a minimum. Because the true gradient is often impractical and inefficient to obtain, the
instantaneous gradient is often computed based on the square of the instantaneous error. The
instantaneous gradient is used because it is an unbiased estimate of the true gradient and is easily
computed from single data samples (Widrow & Lehr, 1995).

Therefore, to minimize E by gradient descent, the partial derivative of £ with respect to each
weight within the network needs to be computed. For a given pattern, p, this partial derivative is
computed in two passes: a forward pass using Equations 4.7 and 4.8, and a backward pass which
propagates the derivatives back through the layers; hence, backpropagation of error.

The backward pass begins by first differentiating Equation 4.9 which gives

OE/ ébp/ =1Iy-o0
and then applying the chain rule to compute
cE/ohet, = cE /b, - oo, /chet,.
The second term of the above equation is produced by differentiating Equation 4.8 which produces
&, /chet, =f(net,) =0, (I - 0,,)-

Therefore, the effect on the error due to a change in the total input to an output unit is known. But,

rJ

as the total input is simply a linear function of the output from previous layers and the related
connection weights, the effect on the error due to a change in the previous outputs and weights can
be computed. For a weight w, from unit / to unit j, the derivative is
ok, /A, = CE /chet, - 0,
and the effect of all connections emanating from unit i is simply
GE,/Sb, = Y cE /chet, - w,.
Thus, two different error signals can be defined depending on if the unit is an output unit or an

internal unit. For an output unit, the error signal is

5, =, ~0,)f " (net,) (4.10)

whereas for an internal unit, the error signal becomes

6, = f')(net,) Xk: 0y (4.11)
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Hence. weights in the network are changed by

pr =nd o (4.12)

where 1 is a learning parameter to scale the weight change, and Equation 4.10 is used for output
units and Equation 4.11 for internal units. Finally, Equation 4.13 shows how learning can be
improved by adding a momentum term. «. which uses the previous weight changes to influence the

current changes.

pru(t) = “5,,,0;"”)’a(Aqu”_l)) (4.13)

The weights of the network can be updated after every pattern presentation. or after the
entire pattern set has been presented. Typically. training of the network continues until convergence
is reached. For function approximation problems. convergence is measured by a sufficiently small
total sum of squared errors (SSE) as computed by Equation 4.9. For pattern classification problems.
convergence is attained when the network correctly classifies all input patterns (or at least a
significant portion thereof). The performance of the network is normally assessed by the number of
“sweeps™ or “epochs’ the network uses to solve the problem. where a sweep is defined by the single
presentation of the entire training set.

Thus. the GDR overcomes the earlier limitations of Old Connectionism by allowing
multilayer networks to be trained on any information processing problem. As Minsky and Papent
(1988) point out in their Epilogue to Perceptrons, however, many problems still exist with the GDR
and the generic PDP architecture. One problem is that the GDR searches through an error space
using gradient descent; although gradient descent on average moves towards a minimum it is not
guaranteed to move towards a global minimum. In other words, it is neither dependable nor
efficient, though there are techniques for trying to improve this (e.g., Werbos, 1995). Another
problem is that networks with only one layer of hidden units trained with the GDR still must violate
the limited order constraint to solve linearly inseparable problems.

Although basic backpropagation is powerful enough to solve a wide variety of problems,
much work is done on improving the performance of artificial neural networks especially in regards

to three specific characteristics:
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I Generalization: the ability to predict data outside the original training set,
il. Learning Speed: increasing the convergence rate, especially for systems learning
from real-time experience, and

it. Fault Tolerance: the ability to perform despite noise or breakage.

The general rule of thumb—at least from an engineering perspective—for the first two
characteristics is to make the networks as simple as possible: use fewer connections and smaller
weights. The third characteristic, on the other hand, is trickier to pin down. For example, the ability
to perform despite noise can be seen as the ability to generalize; thus, smaller network structure
would seem to be the answer. Performance despite breakage, however, requires larger network
structures with some form of redundancy built in. We will see in Chapter 8 how this redundancy may
actually help with the first two characteristics as well.

As mentioned earlier, one problem with generic PDP networks is that they are static: that
s, previous inputs have no effect on new inputs (except during the training period). Consequently,
the standard generic PDP architecture may not be appropriate for modeling some time dependent
tasks, such as recognizing a pattern of sounds as forming a word. Therefore, the recurrent network

architecture wiil be introduced.

Recurrent Networks

A recurrent network is defined as one in which the network's output is fed back into the
network. Figure 4.4 shows the structure of one type of recurrent network. In this network, inputs are
received from an external source, passed to a hidden layer, and then on to the output laver. The
signal from the output layer is passed to an external source, as well as back to a state layer which
then acts as an input layer (along with the actual input layer) to the hidden layer on the next pass.

As the output of the network at time (1) is used along with a new input to compute the output
of the network at time (s+1), the response of the network is dynamic. That is, the network’s response
can be stable (successive iterations produce smaller and smaller output changes until the outputs
become constant) or unstable (the network’s outputs never cease changing). This stability issue
proved a problem for early researchers, but Cohen and Grossberg (1983) devised a theorem showing
that at least a subset of recurrent networks were guaranteed to produce outputs with stable states.
Stable networks are typified by weight matrices that are symmetrical along the main diagonal, with

diagonal weights of zero (i.e., w, = w,, w, = 0).
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Much of the early work on
recurrent networks was pioneered by

John Hopfield (1982). In fact, some

have argued that it was because of
Hopfield’s stature as a well-known
physicist that neural network research
was made respectable again (Anderson

& Rosenfeld, 1988). Hence, certain

configurations of recurrent networks

are referred to as Hopfield nets. One

problem that plagued earlier versions of

Hopfield networks, though, was that

the networks tended to settle into local Output

minimum instead of the global Figured.d One form of recurrent network

.. T bat thi bl architecture in which connections
frnimum. 10 comoat this problem, one from output to state units are one-

for-one. Note that not all the

can change the weights statistically -
connections are shown.

instead of deterministically. This
technique is known as simulated annealing, and networks trained using this method are known as
Boltzmann machines (e.g., Hinton & Sejnowski, 1986).

It has been shown that recurrent networks can simulate finite state automata (e.g.,
Cleermans, Servan-Schreiber, & McClelland, 1989) and that one can construct a second-order
recurrent network such that internal deterministic finite-state autorata state representations remain
stable (Omlin & Giles, 1996). Furthermore, it has been proven that finite size recurrent networks can
simulate any multi-stack Turing Machine in real time and non-deterministic rational nets can
simulate non-deterministic Turing Machines (Siegelmann & Sontag, 1994).

Adding recurrent connections to the generic PDP architecture is but one way of improving
the performance of such networks. Another way is to use different activation functions within the
processing units. Such an approach was taken by Dawson and Schopflocher (1992) when developing

the value unit architecture.
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Value Unit Networks

Despite their immense theoretical power as universal function approximators and arbitrary
pattern classifiers, networks trained with the GDR suffer from severe practical training problems.
Networks are prone to local minima and notoriously slow if they do find a solution. One reason for
this behaviour is the limitations imposed on the processing units by the GDR—processing units must
have a function that is both differentiable and monotonic. Consequently, the most commonly used
activation function for processing units is the logistic (see Equation 4.6). This choice of activation
function is normally motivated by engineering principles; for example, the logistic function is chosen
because it fulfills the requirements of the learning rule, while similar functions—such as rani—are
chosen simply for their ability to improve performance in terms of learning speed over the logistic.

But, we could also adopt a different perspective and choose an activation function based
upon neurophysiological evidence. Evidence from single-unit recordings (that is, record the output
of the neuron with respect to its input) suggests that there are at least two functionally different types
of neurons in the brain in regards to their output encodings (e.g., Ballard, 1986). This can be
illustrated by comparing the recordings from neurons that function as a basic part of the oculomotor
system to neurons in the visual areas of the cortex.

The first type of neurons—for example, those in the servo system controlling eye
movement—have linear outputs whose firing rate is proportional to a scalar parameter such as the
rate of eye rotation. These neurons could be characterized as summation or tntegration devices
(Ballard, 1986) and have the equivalent activation function as the logistic used in artificial neurons.
The outputs of such neurons have two features—larger values mean more frequent pulses, and the
output is one dimensional. From a physiological perspective, these neurons use Sfrequency encoding.
In other words, neurons using a monotonic activation function could be viewed as encoding
variables.

In contrast, neurons in visual areas of cortex use fundamentally different encodings for their
output. These neurons have multidimensional receptive fields’; that is, if the input stimulus is within
a receptive field, the neuron will increase its firing rate, otherwise it remains at its baseline firing

rate. The firing rate is specifically determined by the degree of match between the stimulus and

? In this respect, a receptive field of a neuron is defined in terms of all the neuron'’s inputs, including possible
feedback connections from neurons in other parts of the cortex. This is in contrast to the normal interpretation
of receptive field which limits itself to the inputs from a specific stimulus.
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receptive field—the stronger the match, the stronger the firing rate. From a physiological
perspective, neurons with this type of firing pattern use spatial or place encoding. In other words,
neurons using a nonmonotonic activation function could be viewed as encoding values.
Consequently, Ballard (1986) terms these neurons value units.

As “the value unit way of representing information seems to be a property of most cortical
cells” (Ballard, 1986, p. 68), the logical move from a cognitive science perspective would be to
incorporate this type of activation function into a connectionist network.

The Value Unit Architecture

In considering a nonmonotonic activation function for artificial neurons, the most likely
choice would be the Gaussian. Such an activation function is readily apparent not only within the
cones of the eye (e.g., see Davidoff, 1995), but also within the tuned neurons in the visual cortex

(Hubel & Wiesel, 1959). From a computational perspective, the Gaussian

0, = Glner,) = e ety = 6)° (4.14)

where net, is the same as in Equation 4.7 and & ,is the bias of the activation function, has the
advantage of being able to carve a pattern space into three decision regions (see Figure 4.5).
Consequently, such an activation function could be said to be limited order 2; it is of limited order
because the planes are restricted to parallel cuts in the pattern space.

The nonmonotonicity of the activation function buys the value unit networks certain
theoretical and practical advantages over standard integration device networks. For example, the
fact that a single value unit can subdivide a pattern space into three regions by placing two parallel
hyperplanes within the pattern space means that the processing power of the unit is increased.
Whereas standard integration device networks require a hidden unit for every order of the problem
(e.g., a 4-parity problem is order 4 and therefore requires four hidden units), networks with value
units in both the hidden and output layers require considerably fewer. In fact, for problems such as

parity which require parallel cuts of the pattern space, the number of hidden units needed is
(order div 2) - 1

where the operation div returns the quotient. Therefore, a solution to the XOR problem can be

represented in a network without any hidden units, and a solution to the 4-parity problem can be
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Figure 4.5 A non-monotonic activation function (such as
the Gaussian) carves a pattern space into
three regions.

represented in a network with only one hidden unit! Moreover, the added processing power of the
value unit means that the limited order constraint need not be violated; that is, it is possible to solve
the parity problem without any hidden unit connected to every input unit.

On the other hand, the nonmonotonicity of the activation function does limit the value unit
architecture. Because the Gaussian is not invertible, a value unit network cannot perform function
approximation tasks in the traditional sense—it is limited to pattern classification tasks only (but see
Chapter 5). In all other respects, however, the value unit architecture is the same as the generic PDP
architecture, including its ability to be fully trained by a variation of the GDR.

Modifving the Generalized Delta Rule

Normally, replacing f(net,) in Equations 4.10 and 4.11 with the first derivative of the
Gaussian causes a network to fall into a local minimum which asserts that some property of the
pattern space p is not true, but fails to assert the some property of p is true. To avoid these local
minima, Dawson and Schopflocher (1992) modified the GDR by adding a second term to the
standard GDR's error function to produce a new cost function, C,. The first component of Equation
4.15 is the standard cost function used in the backpropagation algorithm and measures the failure

of the network to match the observed output o, with the target output 1,. The second component of
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C, measures the network’s failure to set net, = § (basically, the mean of the Gaussian) when the
desired output is equal to 1: It essentially prevents the unit’s activation from falling towards either

negative or positive infinity.

iy 2, 1% 2
Cp_?qu: (t,-0,) +?/z=l: 0,,(net, - 6) (4.15)

The new learning rule is therefore based on changing the weights such that the cost function
in Equation 4.15 is minimized. Consequently, the desired weight change for the connection

originating from unit / and terminating at unit j for given pattern p can be computed as

Aw=n(d, - € )o, (4.16)

where 8, = (-1, - 0 »G'(net ) is equivalent to & AN Equation 4.8 with the exception that the
derivative is of the Gaussian and not the logistic. The ¢, term is equal to T,(net, - 6) and is the
augmented error-minimization function from Equation 4.11. Similarly, the unit’s bias term can be

modified using the equation

AI’“} = _n(al’l B E:I'I) (4017)

by treating the parameter , as a connection weight between output unit j and some other unit whose
activation is always 1. Furthermore, it can be shown that, at the end of training, the error function
minimized is equivalent to that of the GDR’s. These modifications allow a network trained with the
backpropagation algorithm to use nonmonotonic activation functions.

Value Unit Performance

Value unit networks have been applied to a wide variety of pattern classification tasks, from
“toy” problems (Dawson & Schopflocher, 1992; Dawson, Schopflocher, Kidd, & Shamanski, 1992;
Medler & Dawson, 1994a, 1994b), to diagnosing Alzheimer’s patients from SPECT data (Dawson
etal., 1994), to identifying logical problems (Berkeley, Dawson, Medler, Schopflocher, & Hornsby,
1995), to classifying mushrooms (Dawson & Medler, 1996). One of the surprising aspects of the
value unit architecture is that, from an engineering perspective, they have been shown to converge

faster and more reliably on linearly inseparable problems than the more traditional MLPs that use
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monotonic activation functions. Furthermore, value unit networks show better generalization, and
better ability to be “scaled up” from toy problems.

To quickly show the processing power of value units over standard integration devices on
linearly inseparable problems, a small experiment was conducted using four different network
architectures to solve the 4-parity problem (see Figure 4.6). The first network (A) was a standard
integration device network with four hidden units. The second network (B) had the same structure
(i.e., 4 hidden units), but used value units instead. The third network (C) used the minimal value unit

architecture of one hidden unit to solve the problem. Finally, the fourth network (D) used two value

(©) (D)

Figure 4.6 Network architectures for solving the 4-parity

problem. Network (A) is an integration device,

while networks (B), (C), and (D) are value unit

networks. Note that (A) and (B) have identical

network structure (except for the processing

unit) and that (D) does not violate the limited

order constraint.
units, but did not violate the limited order constraint; that is, no hidden unit was connected to every
input unit. All networks were trained to a criterion of 0.0025 and had an upper limit of 10,000
sweeps imposed. The integration device network was trained with momentum 1 =0.9, and learning
rate & = 0.5. The value unit networks were trained with N =0, and a = 0.01. For all networks, biases
were started at 0, and weights were randomized from a square distribution between [-1, 1]. Table 4.1
reports the results of the experiment; specifically the convergence percentage (50 trials each) and

the minimum, median, and maximum number of sweeps to reach convergence.
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Table 4.1

Performance of Networks Trained on the Four Parity Problem

Sweeps
Architecture % Convergence Min Med Max
A 24 1929 3607 9246
B 100 46 213 621
C 88 98 267 620
D 64 133 134 209

The first thing to note is that all value unit networks, regardless of network topology,
outperformed the integration device network both in terms of convergence rate and speed of
convergence. In fact, when the integration device network did converge—which was only
approximately one quarter of the time—it took an order of magnitude longer to do so. At this point,
it would be easy to be lulled into the engineering approach to connectionism:; that is, extolling the
virtues of one architecture over another based solely on performance. As stated earlier, however, we
are interested in connectionism from a cognitive science perspective. Therefore, we should approach
the performance of the value unit architecture from a tri-level hypothesis perspective.

Consequently, from a computational level analysis, value unit networks show more
competence than integration device networks in solving linearly inseparable problems such as parity.
This competence will be more fully explored in Chapter 5. At the algorithmic level of analysis, value
unit networks are able to solve the parity problem using a number of different network topologies.
As it has been argued that networks are algorithms (Rumelhart & McClelland, 1985), this means that
the different network topologies are different algorithmic descriptions for solving the 4-parity
problem. Choosing the correct algorithm (network architecture) simply becomes a matter of
comparing the computational competence between systems we are modeling. More importantly,
however, the value unit architecture has other algorithmic advantages as will be shown in Chapters
6 and 7. Finally, at the implementational level, the fourth value unit network architecture (D)
satisfies Minsky and Papert’s (1988/1969) limited order constraint, effectively addressing one of

their concerns about neural networks.
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The Radial Basis Function Networlk

One of the misconceptions surrounding the value unit architecture is based upon its use of
a Gaussian activation function. This is because another network architecture, the Radial Basis
Function (RBF) network (e.g., Moody & Darken, 1989) uses a similar activation function. That,
however, is where the similarities end.

The RBF network is a three-layer feedforward network that uses a linear transfer function
for the output units and a nonlinear transfer function (normally the Gaussian) for the hidden units.
The input layer simply consists of n units connected by weighted connections {u;} to the hidden
layer and a possible smoothing factor matrix { Z.}. A hidden unit can be described as representing
a point x in n-dimensional pattern space. Consequently, the net input to a hidden unit is a distance
measure between some input, x,,, presented at the input layer and the point represented by the hidden
unit; that is, ner, = [x - x,|. This means that the net input to a unit is a monotonic function as opposed
to the nonmonotonic activation function of the value unit. The Gaussian is then applied to the net
input to produce a radial function of the distance between each pattern vector and each hidden unit
weight vector. Hence, a RBF unit carves a hypersphere within a pattern space whereas a value unit
carves a hyperbar.

In general, an RBF network can be described as constructing global approximations to
functions using combinations of basis functions centered around weight vectors. In fact, it has been
shown that RBF networks are universal function approximators (Girosi & Poggio, 1990). Practically,
however, the approximated function must be smooth and piecewise continuous. Consequently,
although RBF networks can be used for discrimination and classification tasks (see Lowe, 1995, for
some examples), binary pattern classification functions that are not piecewise continuous (e.g.,
parity) pose problems for RBF networks (Moody & Darken, 1989). Thus, RBF networks and value

unit networks are not equivalent.

Modern Connectionism: Conclusions

The major turning point in connectionist research occurred with the discovery of methods
for training multilayer networks. With this discovery, connectionist models not only had the
computational power to answer those questions interesting to cognitive science, but also had a

method of learning how to answer those questions. Thus, there is an explicit distinction between
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network architectures and the learning rules used to train them in modern connectionism. This
distinction will be further elaborated in the following chapters.

Specifically, Chapter 5 will consider the computational power of the integration device and
value unit network architectures. Chapters 6 and 7 will elaborate on the algorithmic and functional
architecture descriptions of neural network architectures. Finally, Chapter 8 will look at the
implementational issues surrounding some of the learning rules (e.g.. the biological plausibility of

backprop), as well as architectural design decisions for neural networks.
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Chapter 5

The Computational Analysis of Connectionism

I was left with a deep respect for the extraordinary difficulty of being sure of what

a computational system can or cannot do. (Papert, 1988, p-11)

Our working assumption that the mind is an information processor requires us to adopt the
tri-level hypothesis in order to explain cognition. Thus, if connectionism is to be an effective tool
within cognitive science, it has to contribute to explanations at all three levels of analysis—including
the functional architecture. In the first half of this thesis, the relationship between connectionism and
the tri-level hypothesis has only been alluded to. Consequently, the next four chapters of this thesis
will explicitly address the tri-level hypothesis from a connectionist perspective, ultimately showing
that connectionism may be just the tool required by cognitive science. This chapter begins this by
focusing our attention on the first level of the hypothesis: the computational analysis of an
information processor.

The computational analysis of an information processor is dependent on many factors: the
problem being solved, the available data, and the natural constraints of the world to name but a few
(e.g., Richards, 1988). Consequently, it is often difficult to separate what is and is not appropriate
for this level of analysis. Therefore, as a guide, we will use Marr’s (1982) definition of the

computational level of analysis
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- . . the abstract computational theory of the device, in which the performance of the

device is characterized as a mapping from one kind of information to another, the

abstract properties of this mapping are defined precisely, and its appropriateness

and adequacy for the task are demonstrated. (p- 24)

Thus, guided by the above definition, this chapter will examine how connectionism
contributes to the computational analyses of information processors. It will be shown both
theoretically and empirically that connectionist networks possess the computational power to be of
interest to cognitive science. That is, they can solve problems in both function approximation and
pattern classification domains.

These results alone, however, beg the question: “What does connectionism contribute to the
computational level of analysis that the classical approach does not?” Indeed, it has been shown that
all computations that can be produced by a local system (e.g., a classical model) can also be
produced by a distributed system (e.g., a connectionist model), yet the distributed system has no
more computational power than the local system (Winograd & Cowan, 1963). Similarly, Hopcroft
and Ullman (1979) have stated that the distinction of distributed versus specific representations has
no importance at the computational level dealt with by psychology.

Following these statements, it would be tempting to assume that adopting a connectionist
approach does not add anything to the computational level analysis—so, why bother adopting it?
From a computational perspective, however, other important distinctions besides distributed
processing exist between the classical and connectionist approaches. Indeed, there are two reasons
why the connectionist approach to computational analyses should be adopted.

First, it has been argued that it is tractable computability (i.e., computations that can be
performed on a physical device), and not computability in the mathematical sense, that is assumed
in cognitive science (Horgan & Tienson, 1996). Nevertheless, this assertion does not alter our
general analysis of computation as tractably computable functions are merely a subset of all
computable functions. What this does do, on the other hand, is lead us to the theory of natural
computation instead of formal computation. Natural computation is concerned with not only the
computational abilities of an information processor, but also the biological basis behind
computation. Connectionism offers an analogous medium in which to explore natural computation,
something that is lacking in classical approaches.

Second, connectionist systems are based on very simple processing elements. This is an

important fact for establishing explanatory versus merely descriptive theories of computational
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systems (Seidenberg, 1993). In short, explanatory theories provide a reason why a computation is
the way it is instead of simply describing the computation. Furthermore, the underlying principles
governing the explanatory theory in one domain will transcend to other domains as well. Thus, it
is argued that the proper analysis of connectionist models (which ultimately will include all levels
of the tri-level hypothesis) has the potential of not only explaining previous cognitive theories but
also formulating new cognitive theories as well.

To begin our analysis of the computational level, however, we will start with the very basics:
the mapping from one kind of information to another. In terms of information processing, this
transformation of information may come in two general forms. First, one stream of continuous
information (e.g., the position of an object in space) may be mapped into another stream of
continuous information (e.g., moving the eye muscles in order to track the object). This type of
transformation is analogous to computing a function. Second, relatively large quantities of
information (e.g., size, shape, colour) may be mapped into discrete information (e.g., ball). This can
be characterized as classifying patterns of information. These two transformations form the basis of

the computational analysis of an information processor.

Inputs, Outputs, and Computations

At the most basic level, every information processor can be described as computing some
function. In other words, a computational description of an information processor will be the analysis
of some function approximation problem; that is, given some set of inputs, what is the function that
produces the observed outputs? The inputs and outputs of such a function can be bounded or
infinite, discrete or continuous. A special case of function approximation occurs if the outputs of
the function are bounded and discrete—this is normally referred to as pattern classification.

Given this definition, it is tempting to relate function approximation to stimulus-response
theory. A stimulus-response table could be built from the observed inputs and outputs, and the
function would then simply be the corresponding stimulus-response model'. In fact, Suppes (1969)
has suggested that stimulus-response models are theoretically isomorphic to finite automata, where

a finite automaton can be regarded as a black box that receives a finite number of inputs, adopts a

' The fundamental axiom of stimulus-response theory is that for any stimulus-response table, there is a
stimulus-response model that becomes isomorphic to it as n— .
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finite number of internal states, and transmits a finite number of outputs (see also Bever, Fodor, &
Garrett, 1968). Arbib (1964) mathematically defines a finite automaton, A, as the quintuple
A=(,0,54 9
where

I is a finite set of inputs,

O is a finite set of outputs,

S is a finite set of internal states,

A: 85X - S is the next-state function,

6: 85X I~ O is the next-output function.
A is assumed to work on a discrete time scale. so if at time (#) it is in state g and receives as its input
a, then at time (¢+1) it will change to state A(q, a) and transmit signal &q, a).

The importance of Suppes’ claim is apparent when it is recognized that both classical (e.g.,
TOTE hierarchies) and connectionist (e.g., modular networks) information processing models can
be shown to be equivalent to finite automata. This implies that concepts embodied in both classical
and connectionist approaches can be subsumed into stimulus-response models. Here, it would seem,
our quest for a definition of function approximation ends.

Arbib (1969) has shown, however, that although stimulus-response models may be
theoretically isomorphic to finite automata, they are, in practice, less powerful. The reason for this
discrepancy between theory and practice arises because of two powerful practical issues. First, the
actual time required for the stimulus-response models to reach asymptote becomes prohibitive with
large models. Second, the number of conditioning states grows exponentially with the number of
internal states being subsumed (e.g., with m internal states and p inputs, the number of conditioning
states is p™™*/?). When these issues are considered, it becomes clear that simply recording the
performance of the organism does not mean that we have described it at a computational level. As

Richards (1988) states

We cannot claim to understand its function simply by recording its performance.

We must also understand the concepts that are to be embodied in the perceptual

machine—our brains. (p. 4)

In other words, not only do we need to be aware of the mapping of input onto output, we also
need to precisely define the abstract properties of this mapping (see also Fodor, 1968). To do this,
we shall return to the Turing machine (see Chapter 2) and the formal aspects of computational

theory. A TM is composed of a finite automaton, A, an infinitely long ticker tape, and a device for
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manipulating symbols on the tape. The ticker tape allows for an infinite memory, and the read-write
device allows manipulation of the environment. Hence, a TM is more powerful than a finite
automaton and precisely describes the types of computations that cognitive science is interested in.
To fully understand the computational analysis of a TM as it pertains to information processing, we

will turn to computational theory.

A Formal Definition of Computation

Computational theory can be formally divided into two areas: computability (you cannot
possibly compute all the things you want) and complexity (that which you can compute is too
expensive). In other words, computability seeks to characterize those entities that can be computed
and complexity measures the efficiency of those computations (e.g., Bridges, 1994; Ballard, 1997).
In the next two subsections, a formal analysis of both of these concepts will be developed. These
concepts will then be related to information processing theory by way of function approxiniation and

pattern classification.

Computability

‘The modern study of computability originated in the year 1936 with the introduction of three
mathematically precise notions (the Turing machine, Kleene's partial recursive functions, Church’s
lambda calculus) that tried to capture the informal aspects of computable partial functions (Bridges,
1994). It has been proven that these three notions and all subsequent formalizations characterize the
same computable partial functions from N” to N therefore, all notions of computability can be stated
in terms of a Turing machine (e.g., Rogers, 1987; Johnson-Laird, 1988; Bridges, 1994).

Before we proceed with the introduction to computability, however, the basics of set theory
is required (e.g., Halmos, 1974). A set, X, is defined as a collection of entities (also called a string),
Xp X3, . . . X, such that x; € X and x, is the " term. It is assumed that there is a unique empty string,
A, with no terms over X. A nonempty finite set X is called an alphaber, and the set of all strings over
X is denoted by X*. The sets that are of most interest to computability theory are the natural,
rational, and real number sets which are defined as:

i the set of natural numbers: N = {0, 1, 2, b

i1, the set of rational numbers: Q= {+m/n: m, n € N, n = 0}, and

ii. the set of real numbers: R
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It should be noted that set theory naturally extends to finite-dimensional vector spaces, where x €
X is a scalar, and a vector is defined as set of scalars (X X ... x,). The n-fold Cartesian product of
X (e, XxXx...xX;nfactors) is known as a vector space and is symbolized by X", where n € N
and n is known as the dimensionality of the space (Halmos, 1987).

The most basic relationship between two sets, A and B, is that of equality. This is

characterized by the following axiom:

Axiom of extension: Two sets are equal (A = B) if and only if they have the same
elements, otherwise they are not equal (A = B).
Furthermore, if A and B are sets and if every element of A is an element of B, then A is called a
subset of B and is indicated by A < B. IfA < Band A = B then 4 is called a proper subset of B. The
creation of subsets is the basic principle behind set theory. In other words, given a set B and a

condition S(x), A is a subset of B defined by A = {x € B: S(x)}. This symbolism is summed up by the

Axiom of specificity: To every set B and every condition S(x) there corresponds a
set A whose elements are exactly those elements x of B for which S(x) holds true.

This axiom is important because in computability theory, we are often forced to deal with subsets
as opposed to entire sets.

This is especially the case when dealing with functions. A function can be defined as the
relation f such that, given sets X and Y, the domain of fis X, the range of fis Y, and for each x € X
there is a unique element y € ¥ with (x, ¥) € f. Note that this definition implies that every element
within X maps onto one and only one element in ¥, but does not preclude the fact that many x may
map onto several—or only one—y, nor that every y € ¥ has a corresponding x € X. When describing
a function, we shall use the notation f:X ~ ¥ which is an abbreviation for “fis a function from X to
Y". An alternative notation often used in the literature is fix) = y. Finally, It should be noted that
the term function is reserved for the undefined object that is somehow active, and the ordered pairs
(x, y) are called the graph of the function.

In computability theory, we are most often concerned with functions that are defined on
subsets of X" instead of the entire set X". Consequently, this leads to the definition of a partial
JSunction ¢ from a set A to a set B. The domain of the partial function ¢:A ~ B is a subset of A and

its range is a subset of B. The partial function @(x) is defined if x € domain (¢) and undefined if x
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€ A and x € domain (¢). Partial functions can be operated on in the normal sense; That is, given
partial functions @ and ¢ from Nto Nthe operations

sum: (@ + ¥)(n) = @n) + Y(n),

product: (¢ PY)(n) = &n) - Y(n), and

composite: @ Yln) = @((n))
hold true as long as ¢(n) and ¥(n) are both defined for sum and product, and #(n) is defined and
belongs to domain (¢) for composite.

Using these basics of set theory, we can now define computability in terms of the Turing
Machine; more specifically, a deterministic binary TM. Thus, given a finite input alphabet X = {0,
1} and a finite tape alphabet Y = {0, I, b} where b is a distinguished blank element, we define a
Turing Machine as the quadruple

™ =(Q. 6, q;. q¢)
where

Q is a finite set of states,

Jis a partial function @ x Y - QO x ¥ x {L, R, A},

q, is the start state (g, € Q), and

qr is the halt state (g € Q).
The partial function 6: O x Y - O x ¥ x {L, R, A} is a state transition function where L, R, and A are
interpreted as left move, right move, and no move respectively. Hence, at any given instance, the TM
will be in state g with the string « € Y* to the left of the read/write head, the string v € Y* under and
to the right of the read/write head, and blanks to the right of v. Consequently, the instantaneous
configuration of the TM is fully described by the triple (u, g, v) and the state transitions of the TM
are simply the successive configurations C - C* given by the sequence of triples.

Thus, a computation is defined in terms of a TM as a finite sequence of admissible
configurations (C,,C,, . . ., C,) such that

Co = (A, g,, v) for some v € X*,

C +C,

i+l

for each i, and

C, is of the form (A, g, v?) for some v’ € X*
where v is the input, v “is the output, C, the initial configuration and C is the final configuration of
the computation. If C; is reached, then we say that TM completes the computation (C,,C,, ..., C,)

on the input v.
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Using this definition of a computation, we can define the partial function computed by a
Turing machine. That is, given TM =(Q, 6, q,, g;), with input alphabet X, tape alphabet ¥, and S <
X*, the partial function ¢z § - X* is said to be computed by TM if TM completes a computation on
the input s € S, where ¢(s) is the output of that computation; otherwise, ¢(s) is undefined. In other
words, we say that a partial function ¢ N* -Nis Turing machine computable if it is a partial function
from N"to Ncomputed by some binary TM. Furthermore, if m > 1, then we say that a partial function
@- N"~ N™ is Turing machine computable if the functions P o @ N"~-N(k=1,..., m)are Turing
machine computable.

Following from this definition comes perhaps the most significant thesis in computational

theory, the Church-Turing thesis:

A partial function ¢z N" ~ Nis computable (in any accepted informal sense) if and

only if it is computable by some binary Turing machine—that is, if and only if ¢ =

@, for some k. (Bridges, 1994, p. 32).

It should be noted that the Church-Turing thesis cannot be proven: it is an unsubstantial claim that
all notions, either formal or informal, of a computable partial function from N"to Nare equivalent
to the formal notion of a Turing machine computable partial function. It is an accepted thesis,
however, because (1) all attempts to formalize the intuitive notion of a computable partial function
have led to the same class of functions, and {2) the lack of any convincing example of a computable
partial function that is not also Turing machine computable.

As stated earlier, this definition of a function means that there is a countably infinite number
of computable functions, but it also leaves an uncountably infinite number of noncomputable
functions. For example, you can enumerate all the natural numbers, but you cannot enumerate all
the reals (however, you can compute some of the reals). Hence, a TM must operate within these
bounds and any definition of a computable function within information processing theory must also
operate within these bounds. Knowing what we can or cannot compute is only half the battle,

however, as we must also know what practical “cost” is associated with each computation.

Complexity

Complexity is a measure of the efficiency of a computation. In practice, complexity is
measured in terms of some appropriate resource—time, space, or memory—used in the computation
(Bridges, 1994). Although complexity is often dependent on assumptions ranging from the

architecture of the machine, to the size of the problem, to the criterion used in evaluating solutions,
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the abstract theory of complexity is machine independent. Nevertheless, the basic models of
complexity are often related to TM computations such as the number of steps required to solve the
problem or the number of distinct cells visited by the read/write head. Hence, the TM will figure
prominently in our formal analysis of the computational level.

Consequently, a complexity measure can be defined such that " = Yo ¥is Vs - - - 1S an infinite
sequence of computable partial functions y;: N~ Nthat satisfies Blum'’s axioms:

B1: for each /, domain (¥,) = domain (p).

B2: the function COSTS: N* - {0, 1} defined by

COSTS(i,n, k) =1 if y(n)=k;
=0 otherwise
is computable.

The computable partial function , is called the complexity function or cost function associated with
@.- If the function ¢(n) is undefined, then the corresponding cost is considered to be undefined as
well. Furthermore, both of these axioms are independent of one another; that is, one cannot be
deduced from the other. These axioms form the basis of complexity theory and relates the concept
of complexity to functions and Turing Machines.

Many more theoretical proofs exist about the formal nature of complexity (see Bridges,
1994); however, for our purposes we are more interested in some of the more practical aspects
concerning complexity. For instance, in evaluating the complexity of an algorithm, cost is measured
as a function of the size of the input. Thus, “easy” problems—in terms of computational steps
required—are bounded by a polynomial function of their input whereas “hard” problems are based
on an exponential function of their input. Unfortunately, most interesting problems turn out to be
hard and the best solutions for all but the smallest problem sizes are prohibitive to compute (Ballard,
1997).

With the more formal aspects of computability and complexity dealt with, we can now turn
towards the crux of the computational level of analysis: trying to figure out what function a system
is computing. In other words, we want to be able to describe the function approximation task the

information processor is engaged in.
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Function Approximation

Using the notation of both set theory and computability theory, function approximation is
the process of defining the undefined object (i.e., the function) to an arbitrary degree of precision
given a set of ordered pairs (i.e., the graph). In other words, given a set of input-output pairings, we
want to approximate the function that reproduces the output when given the input.

Thus, in terms of our previous definition, the graph of the function would be the inputs and
outputs encoded on the tape of the TM, and the undefined process or function is the TM in its
entirety (including the portion of tape that it has used for potential calculations). Therefore, when
McCulloch and Pitts (1943, p. 131) state that “specification of the net would contribute all that could
be achieved in that field” they are talking about defining the function of cognition. A function is
now defined in terms of information processing theory.

A distinction—albeit a picky one—needs to be made between Sfunction approximation and
JSunction calculation. In function calculation, the exact values of a function are computed. Function
calculation requires the precise function to be known a priori and is really only useful in
mathematical analyses. What cognitive science is interested in, however, is how an information
processing system approximates a function. That is, the systems of interest are not infallible and
therefore are not calculating functions, but rather are approximating functions. Furthermore,
information processors can learn new functions (e.g., an infant learning to reach) and modify old
functions (e.g., an adult relearning to reach to a point in space after a prism has been placed in front
of the eyes) through a series of approximations.

There are many formal proofs that connectionist networks have the in principle
computational power of an UTM (e.g., McCulloch & Pitts, 1943). It has even been argued that,
theoretically, connectionist networks are more powerful than TM's. In truth, however, function

approximation in neural networks has practical limitations.

Function Approximation—Empirical Results

To this point, we have discussed only the theoretical aspects of connectionist function
approximation. In Chapter 1, however, it was argued that connectionist must engage in both
theoretical and empirical work to be effective researchers as theories will dictate the types of
experiments to run and experiments will constrain our theories. Another reason for this claim is to
distinguish between the in principle power and the in practice power of our models. In other words,

a theory only works if it can be put into practice.
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Consequently, the results from several different experiments will be reported to illustrate
the computational abilities—from a more formal perspective—of connectionist networks in function
approximation. In total, six different experiments were conducted to test not only function
approximation but also interpolation and extrapolation of both integration device networks and value

unit networks.

Approximating a Function

All networks were trained on the function

h(x) = 0.8 = sin(mx) 5.1

using 21 evenly-spaced data points over the interval [-1, 1]. Thus, domain(h) = [-1, 1] and range(h)
= [-0.8, 0.8]. It should be noted, however, that the output function of most standard processing units
is limited to the range [0, 1]. Consequently, for the first three experiments, Equation 5.1 was
normalized so that it fell within the range [0, 1].

Training a network normaily proceeds as follows. A training pattern is presented at the input
units and these values are propagated through the network with appropriate modifications to the
output units. For supervised learning, the actual output is then compared to the desired output. At
this point, there is a slight divergence in training practices. One approach that is commonly used is
to create a running total of the Sum Squared Error (SSE), and then make the appropriate weight
changes once all patterns in the training set have been presented (this is referred to as a training
epoch or sweep). This approach has the advantage that training algorithms using gradient descent
will modify the weights such that the total SSE after weight changes will be less than—or at least
equal to—the previous SSE. Furthermore, the presentation order of the training patterns does not
matter as it is the final SSE that weight modifications are based upon. Consequently, the
performance of the network, as measured in terms of either a sufficiently small total SSE or the
number of correct outputs, can be evaluated during the training sweep. If the performance criterion
is reached, then weight modifications are not required.

A second approach—and the one used throughout the experiments in this thesis—is to make
the weight changes after each presentation of a training pattern. This approach actually has several
disadvantages. First, it is not guaranteed that the overall change in total SSE will be less as the

weight changes made after presentation of pattern p may be reversed by the changes made after
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presentation of pattern p+1. As a result of this, a test sweep must be run after each training sweep
to effectively evaluate the performance of the network. Second, the presentation order of the
training data becomes important; consequently, the most effective training method is to randomize
the presentation order on each training sweep. In practice, this approach requires much more
‘bookkeeping’ during training which has the potential to increase the practical time required to train
the network to criterion. This approach, however, does have one major advantage from a cognitive
science perspective, that of biological plausibility. All indications from neuropsychological
experiments (e.g., Dudai, 1989) point to the fact that neurological changes occur more or less
immediately after presentation of a stimulus, and not after every single stimulus from a training set
has been presented. Indeed, how would an organism ever know when a specific training set had ever
been completely presented? Therefore, this approach sacrifices engineering for biology.

For function approximation problems, a stringent “hit” criterion is required. One way to
measure this is to require a sufficiently small total SSE. This method leaves the possibility that one
pattern could produce a grossly inaccurate response and yet the total network SSE be sufficiently
small enough to reach criterion. Another method for evaluating performance is to require the
difference between actual and desired output for each training pattern to be within a certain range.
For these experiments, a very strict “hit” criterion of 0.000025 was used. This means that a hit was
only recorded if the absolute difference between the actual and desired output was 0.005 or less.
Using such a stringent hit criterion makes it highly unlikely that a network will correctly classify all
outputs; therefore, all networks were trained to a maximum number of 10,000 sweeps. Overall
performance was then evaluated against the actual function.

Experiment 1: Integration Device

In this first experiment, the practical ability of integration device networks to function
approximate was evaluated. As most theoretical proofs of function approximation in networks are
based upon some arbitrarily high number of hidden units (e.g., Cybenko, 1989; Hartman, Keeler, &
Kowalski, 1989; Hornik, Stinchcombe, & White, 1989), this experiment examined the relationship
between the number of hidden units in the network architecture and network accuracy in function
approximation.

Network Architecture: Five different network architectures were constructed for this

experiment. All networks had one input unit and one output unit, but differed in the number of
hidden units (0, 1, 2, 5, or 10). The network was trained with the backpropagation algorithm

presented in Chapter 4, with the modification on the updating rule as described above (i.e., updating
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Figure 5.1 Integration device function approximation as a function
of number of hidden units.
after each pattern presentation). All weights and biases in the network were randomly initialized
between -1.0 to 1.0. The network learning rate was set to 0.1 and the momentum was set at 0.9.

Network Performance: Figure 5.1 shows the performance of the five different networks

trained to approximate the normalized function. As can be seen, the network without any hidden
units could not approximate the function. This is not surprising as a single integration device unit
is limited to producing a sigmoidal function (which a network without hidden units approximates
quite well). A similar looking function is produced by the network with only one hidden unit,
although the function appears to be limited in its range. Again, this is to be expected because a
single hidden unit is limited to placing a single hyperplane within the problem space, which limits
the network to approximating a monotonic function only.

Adding a second integration device unit to the hidden unit layer should theoretically allow
the network to approximate a basic nonmonotonic function as the second unit allows a second
hyperplane to be positioned in an orientation opposite to the first hyperplane within the problem
space. As can be seen in Figure 5.1, empirical results support this theory: an integration device
network with two hidden units can indeed approximate a nonmonotonic function. Although the
basic shape of the function is correct, the network has some difficulty approximating the function
at the extreme values (i.e., 0.0 and 1.0) of the function. This would suggest that more hidden units

are required.
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In fact, with five hidden units the network approximates the function almost perfectly. There
is some discrepancies at the extreme values once again, but this is relatively minor when compared
to the network with two hidden units. This discrepancy suggests nevertheless that more hidden units
may be required. As can be seen from Figure 5.1, however, a network with ten hidden units still has
problems with the extreme values of the function and is not that much more accurate than the
network with five hidden units. Again, this suggests that either more hidden units are required, or
more sweeps through the pattern set are required. For now, however, we can conclude that an
integration device network with at least five hidden units can successfully approximate the
normalized version of the function given in Equation 5.1.

Experiments 2 & 3: Value Unit

In the next two experiments, the value unit architecture was evaluated for its potential to
approximate functions. Because the value unit uses a nonmonotonic activation function. it is not
uniquely invertible, and therefore it has been suggested that value units are not suitable for function
approximation (Dawson & Schopflocher, 1992). On the other hand, the RBF unit—which also uses
a nonmonotonic activation function—is routinely used for function approximation (Moody &
Darken, 1989; Lowe, 1995). It must be remembered, however, that the basis underlying the RBF
network is different than the value unit (see Chapter 4). Consequently, empirical trials were run to
see if value unit networks are able to approximate functions in practice.

Network Architecture: Both Experiments 2 and 3 used the same network layout (i.e., 0, I,

2.5, and 10 hidden units) and input/output values as Experiment 1, the only difference being the
Gaussian activation function used in the processing units. Networks were initialized with a bias of
0.0 and weights between -1.0 to 1.0. Leamning rate was set to 0.001 and momentum was equal to 0.0.

In Experiment 2 the modified generalized delita rule for training networks of Gaussian
processing units was used (see Chapter 4). It was noted, however, that the second component of the
modified cost function (Equation 4.15) actually serves to penalize any value that is not zero or one
with more of a penalty assessed to those values closer to zero. That is, if 0, 1s 0 or net, is 1, then the
second component drops out of the cost function. If these values are not 0 or 1, then the second
component acts to pull the unit’s activation away from zero and towards one. Although this
modification of the cost function works well for pattern classification tasks that require outputs of

zero or one, it was hypothesized that the modification will necessarily penalize any function
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approximation problem requiring continuous values between zero and one. Thus, Experiment 3
dropped the modification to the cost function from the training procedure.

Network Performance: Figure 5.2 shows the results of standard value unit function

approximation (Experiment 2) while Figure 5.3 shows the results of value unit function
approximation with the modification to the cost function removed (Experiment 3). The first thing
to note in Figure 5.2 is that a value unit networks with at least one hidden unit can approximate the
shape of the function quite well. It should also be noted however, that none of the actual values of
the function are approximated. In fact, regardless of the number of hidden units, the network tends
to produce values that are pulled very much towards one and away from zero. When compared to
Figure 5.1, Experiment 2 shows that the standard value unit networks do not approximate this
function as well as the integration device networks.

When the second term of the modified cost function for the value unit architecture was
removed in Experiment 3, the function approximation abilities of the value unit networks was
increased. As can be seen in Figure 5.3, all five networks were able to approximate at least a portion
of the function. Specifically, the networks with zero and one hidden units could approximate the
function between 0.0 and 1.0 while the network with two hidden units could approximate the
function between -1.0 and 0.0. When compared to Figure 5.1, the value unit networks with five and
ten hidden units were actually able to approximate the function as well as or better than the

integration device networks. It is therefore concluded that if the modified cost function is removed

1.0 5
0.8 1
0.6 -
=
0.4 1 (0.8 * sin (xm) + 0.8)/ 1.6
—— - = 0 Hidden Units
— — = 1 Hidden Units
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10 Hidden Units
0.0 T T —
-1.0 -0.5 0.0 0.5 1.0
X

Figure 5.2 Value unit with the modified learning term function
approximation with different numbers of hidden units.
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Figure 5.3 Value unit function approximation without the
modified learning term
from the value unit architecture, the networks are able to perform function approximation in practice
given enough hidden units.

Experiments 4 & 5: A Different Approach

As the output of artificial neurons is normally restricted to the range [0, 1], the original
function in Equation 5.1 had to be normalized; consequently, the network was not truly computing
the function. An alternative approach to solving function approximation problems is to use one
input/output unit to encode the sign of the function and another input/output unit to encode the value
of the function. Thus, Experiments | and 3 were re-run with the new network architecture and
input/output mappings.

Network Architecture: Both the integration device network (Experiment 4) and the value

unit network (Experiment 5) consisted of 2 input units (one for the value, one for the sign), 0, 1, 2,
5, or 10 hidden units, and 2 output units. Network parameters (i.e., weights, biases, learning rate, and
momentum) were initialized as in Experiments 1 and 3 for the integration device networks and value
unit networks respectively. Negative or positive inputs were indicated by a -1 or +1 on the first input
unit. To indicate whether an output value was negative or positive, the first output unit was rounded
either up or down; that is, if the value was less than 0.5 it was converted to -1 and if the value was
0.5 or greater, then it was converted to +1.

Network Performance: Figure 5.4 shows the function approximating abilities of the

integration device network. As can be seen, networks with two or fewer hidden units could not
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Figure 5.4 The integration device networks doing function

approximation with the modified input and output.

successfully approximate the function. On the other hand, networks with five and ten hidden units

were able to approximate the function quite well, with only slight disturbances near the value of 0.0

and 0.8. Again, it appears as if the ten hidden unit network did not perform any better than the five

hidden unit network.

The results from the value unit network are shown in Figure 5.5. Similar to the integration

device networks, the value unit networks with zero and one hidden unit could not solve the function

0.5 1

-0.5 +-

— 0.8 *sin(xx)
— *— 0Hidden Units
= = = 1 Hidden Uniis
2 Hidden Units
§ Hidden Units
10 Hidden Units

-1.0
-1.0

0.0

X

T Y

0.5 1.0

Figure 5.5 Value unit performance with the modified input and

output.
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approximation task. In contrast, however, the two hidden unit network was able to approximate most
of the function, only producing slight disturbances at the maximum value of the function where it
tended to pull the values towards 1.0. The value unit networks with five and ten hidden units were
able to function approximate as well as the integration device networks in Experiment 4.

Experiment 6: Interpolation & Extrapolation

Although the results from Experiments 1 to 5 are encouraging, the ability of a network to
perform function approximation is best measured in terms of its ability to interpolate and extrapolate.
Interpolation is the ability of the network to produce correct responses within the range it was trained
on while extrapolation is the ability to correctly predict the function beyond the original training
range. From a theoretical point, proofs of function approximation are limited to a finite range;
therefore, it is not expected that either type of network will be able to successfully extrapolate.

To test the interpolation and extrapolation abilities of the networks, the networks were
trained on the 21 data points as before. For interpolation, the networks were tested on 20 evenly
spaced points between -0.95 and 0.95. For extrapolation using the network architectures in
Experiments 1 and 3, the networks were tested on 20 evenly spaced points between [-2.0, -1.1] and
[1.1, 2.0]. It was noted that using the network architecture from Experiments 4 and 5 could lead to
a possible confound as the negative and positive output sign values could be related directly to the
sign values at the input layer. Consequently, the training of the network was extended over the range
[-1.5, 1.5] and extrapolation was tested between the values [-2.0, -1.6] and [1.6, 2.0]. The network
trained over the extended range was able to perform function approximation correctly.

Network Architecture: As Experiments | through 5 showed little difference between

networks using five hidden units as opposed to ten hidden units, all networks run in Experiment 6
used five hidden units only. Furthermore, as the value unit architecture with the second term
removed from the cost function performed better than the standard value unit network, interpolation
and extrapolation were only tested on the modified value unit architecture. Networks were initialized
as before.

Network Performance: Figure 5.6 gives the results for the interpolation and extrapolation

abilities of the networks. As can be seen in Figure 5.6 (a) and (b), both the integration device
network and the value unit network are able to perform interpolation on both the normalized version
of Equation 5.1 and on the equation proper. A slightly different result is seen for the extrapolation

experiments. Figures 5.6 (c) and (d) show that extrapolation is minimal at best for most of the
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Figure 5.6 Interpolation and extrapolation results

networks. One possible exception is the integration device network trained with the added input and
output unit—it follows the basic shape of the function, but the values generated by the network
depart from the actual values as the range is extended.

In conclusion, the representativeness of the training data for this particular function is only
valid for points within the outer bounds of the training set. Once the outer bounds are violated, the

networks cease their ability to function approximate.

Function Approximation Conclusions

Both integration device networks and value unit networks (with the second term of the cost
function removed) are able to perform function approximation. Although most theoretical proofs are
based on an arbitrarily high number of hidden units, empirical results show that once the network
is able to function approximate adding more hidden units does little to improve performance, at least
for this relatively simple function. Furthermore, both network architectures are able to interpolate
the function effectively, but extrapolation is extremely poor.

While connectionist models are very good at function approximation tasks (they are

universal function approximators; Cybenko, 1989), there is the whole other computational problem
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of pattern classification. Whereas function approximation may be ideally suited for motor control,
pattern classification is required for such things as understanding language (e.g., phoneme to
morpheme conversion) and recognizing objects (e.g., visual recognition of letters). Consequently,

we will now focus on connectionist pattern classification.

Pattern Classification

The goal of pattern classification is to map a specific pattern onto a more general pattern:
In other words, given a probability density function P(x), where situations x appear randomly and
independently, we want to map these situations into one of k classes. We can assume that k = 2
without loss of generality” and therefore we can define a conditional probability distribution function
P(w!l x), where w = {0, 1} (x is the observed situation and ® the classification). It is possible that
neither the properties of the environment P(x) nor the properties of the decision rule P(w | x) are
known a priori; however, it is known that the two functions exist (Vapnik, 1982). Consequently,
we wish to approximate the decision rule P(@ | x) by observing / pairings of random samplings of
the environment P(x) with their corresponding classifications w = {0, 1} .Therefore, if we define a
class of possible decision rules F(x, ), the problem of pattern classification reduces to choosing a
function from F(x, @) such that the probability of misclassification is minimized. Hence, from

Vapnik (1982), we want to find the minimum of the functional

He)=P(a)={ (w-F(x.0))*P(x.0)dxdw (5.2)
Xow

where the function P(x, w) = P(w!| x)P(x) is called the joint density of the pair (x, w) defined over
the space (X, w). Based on empirical data, Vapnik has defined the functional for the frequency of

incorrect classification for each decision rule as

1
l,m,,<a)=v(a)=%2 (@, F(x,0)) (5.3)
i=1

? We can obtain a subdivision of & classes by making subsequent subdivisions of situations into two classes.
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which is computed from the means of the sample x,, w,;...;x, . The significance of Equations 5.2
and 5.3 is realized when classical theorems of probability theory are applied: As the number of trials
increases indefinitely, the frequency of occurrences of an event converges towards the probability

of that event. Formally, for any fixed « and error tolerance 1, the equation

lim P{1P(et)-v(at)l >n} =0 (5.4)

|~

holds true (see also Vapnik & Chervonenkis, 1971). It should be noted that although Equation 5.4
guarantees that a solution to the pattern classification problem will be found, it does not imply that
the minimization of 5.3 will produce the minimum functional of 5.2. Much work has been done on
finding better minimizations of 5.4 and its variations (e.g. Wenocur & Dudley, 1981; Baum &
Haussler, 1989; Gallant, 1993), but for the purposes of this paper it is sufficient to show that
convergence is guaranteed.

Our next step is to relate the above findings to pattern classification in ANNs. Much work
has been done on convergence theorem proofs for connectionist networks. Most are based on
variations of Rosenblatt’s (1962) Perceptron Convergence Theorem, which showed that
convergence was guaranteed for a network in finite time as long as there were as many hidden units
as there were patterns. The problem with this proof is that the hidden units come to represent one
pattern only and therefore generalization is poor. More modern proofs (e.g., Lippmann, 1987; Baldi
& Hornik, 1995) have shown that any pattern classification problem can be solved by a network of
monotonic threshold devices with at least one layer of hidden units. The importance of the hidden
units in a network is related to the computational description of a pattern classification task. The
more computationally challenging a pattern classification task is, the more hidden units will be
required to solve it.

One way of describing a pattern classification problem is in terms of its order of complexity
(Minsky and Papert, 1988/1969; see Chapter 3). A problem that is linearly separable is said to have
order 1 while a problem that is linearly inseparable has order greater than 1. In general, the
minimum number of hidden units required to correctly solve a pattern classification task is based on
the order of both the problem space and the activation function used in the processing units. For
example, consider the 5-Parity problem that is illustrated in Figure 5.7. To correctly solve the
problem requires five, four-dimensional hyperplanes to subdivide the pattern space; the 5-Parity

problem can be described as having order 5. Hence, for a network using monotonic activation
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Figure 5.7  5-Parity illustrated. Each point is connected to
four other points of opposite value. The S-
Parity problem is of order 5 and therefore can
be solved by five parallel hyperplanes, each one
being defined by one hidden unit.

functions (which have order 1, see Figure 4.3), the minimum number of hidden units required for
solving the problem will be five. Conversely, networks that use a non-monotonic activation function
which have order greater than 1 will require fewer hidden units. For example, a value unit network
(activation function with order 2, see Figure 4.5) will require 2 hidden units, while a network using
a sinusoidal activation function (unlimited order) requires no hidden units (McCaughan, 1997).
Although the analysis of the order of complexity of a problem is useful for a computational
description of a problem, it does have its limitations. For example, theoretically it is possible to
solve the 5-parity problem with 5 hidden units using a monotonic activation function; however,
empirically it is very difficult to train a network with only five hidden units (see Table 4.1 for an
example of the difficulty training a standard integration device network on the simpler 4-parity
problem). Furthermore, it is often difficult to pre-define the order of complexity of a pattern
classification problem. This raises an interesting question: Just because a system (whether classical
or connectionist) has the in principle computational power to solve some form of information

processing problem, how do we know that it has the practical ability to solve the problem?
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Pattern Classification—Empirical Results

The problems presented in this section can be characterized as “toy” problems and are often
used as benchmarks for evaluating different architectures and learning rules (e.g., Minsky & Papert,
1988/1969; Rumelhart, Hinton, & Williams, 1986a). All problems are based on binary input and
output patterns. For the first three reported experiments—~Majority, Symmetry, and Paritry—multiple
input units mapped onto a single output unit. The Majority problem is a linearly separable problem
regardless of input size and consequently is order 1. Symmetry is a linearly inseparable problem that
has constant order 2 regardless of the size of input. Parity, on the other hand, is a linearly inseparable
problem whose order is equal to the size of its input. Therefore, these three experiments manipulate
input size with order. The final experiment—the Encoder problem—has equal numbers of input and
output units and maps the pattern on the input units through a reduced set of hidden units onto the
output units. It should be noted that each result is based on the average of 50 different runs for each
problem type and size by network architecture.

For each of the experiments, both integration device and value unit networks were tested.
Because integration device networks use a monotonic function in their processing units, they are
highly suited for solving linearly separable problems. In fact, integration device networks do not
require any hidden units to solve such problems. The nonmonotonic activation function used by the
value unit networks, on the other hand, makes them highly suited to solve linearly inseparable
problems. Previous results (Shamanski & Dawson, 1994) have shown that integration device
networks are better at solving the Majority problem and that value unit networks are better at solving
the Parity problem. These current experiments seek to expand the previous results and to test the two
different architectures on other problem types.

Experiment 7: Majority Problem

The Majority problem is one of the simplest pattern classification tasks: it is a linearly
separable problem and therefore has order 1. It is based on turning the output unit on whenever there
is a “majority” of input units turned on. That is, given n input units, if (n/2 + 1) units are active, then
turn on the output unit; otherwise, turn the output unit off.

In this experiment, eight different sizes (2, 3, 4, 5,6, 7. 8, & 9 input units) of the Majority
problem were tested. Each network was presented with all 2 training patterns, where n is the number
of input units. Networks were trained to a criterion of 0.01 which means that the network had to
produce a value of 0.9 or higher when a 1 was required, and a value of 0.1 or lower when a value of

0 was required. An upper limit of 10,000 sweeps was imposed on the networks.
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Network Architecture: Three different types of networks were tested in this experiment. The

first architecture was an integration device network with n input units, no hidden units, and one
output unit. The network weights and bias were initialized from the range [-1, 1]. The learning rate
was set at 0.5 and the momentum was set to 0.9.

The second architecture was a value unit network with n input units, zero, one, or two hidden
units, and one output units. Because the value unit architecture uses a nonmonotonic processing unit,
it is difficult for the processing unit to make a linearly separable cut in a pattern space. Pilot studies
showed that value unit network could solve the 2-Majority problem without any hidden units, but
that as the problem size increased, hidden units were required. For the 3-, 4-, and 5-Majority
problems, one hidden unit was used, while the 6-, 7-, 8-, and 9-Majority problems required two
hidden units®. Network weights and biases were randomly initialized over the range [-1, 1], the
learning rate was set to 0.1, and no momentum was used.

To make a fair comparison of the performance differences between the integration device
networks and the value unit networks, a third architecture was also tested. This was an integration
device network with n input units, zero, one, or two hidden units as above, and one output unit. All
network parameters were initialized to the same values as the first architecture.

Network Performance: The results of this experiment are reported in Figure 5.8 which shows

the mean number of sweeps to convergence and the standard error for each of the three architectures.
All networks were able to solve the Majority problem in less than 100 sweeps through the pattern
set. In fact, as the problem size increased, the integration device networks required fewer sweeps to
converge on a solution. Adding the hidden units to the integration device network improved its
performance for the larger Majority problems (z > 5) and in fact produced better results than the
value unit networks. For the smaller size Majority problems (n < 5), the value unit networks were
able to solve the problem in fewer sweeps, even when hidden units were used in the integration

device networks.

? The number of hidden units was chosen to maximize performance. Shamanski and Dawson (1994) found that

- and 7-Majority could be solved with one hidden unit: however, in these current experiments we endeavored
to keep all other parameters constant which produced erratic results for 6- and 7-Majority using only one
hidden unit. On a slightly different note, 3-Majority can be solved without any hidden units, but only if the hit
criterion is seriously relaxed.
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Figure 5.8 Performance of integration device and value unit
networks on the Majority problem.

Experiment 8: Symmetry Problem

The Symmetry problem is a unique problem in that it is an linearly inseparable problem that
has a constant order 2. Consequently, it is possible to manipulate the size of the problem without
affecting the “difficulty” of the problem. Symmetry is defined by the input bits being symmetric; for
example, the input patter [1 0 0 1] is a positive example of symmetry while [1 0 1 0] is a negative
example (for input sizes that are odd, the middle bit is ignored).

Again, eight different sizes (2, 3,4,5,6,7,8, &9 input units) of the Symmetry problem
were tested with all possible training patterns. For this experiment, networks were trained to a
criterion of 0.0025, meaning that the network had to produce a value of 0.95 or higher when a 1 was
required, and a value of 0.05 or lower when a value of 0 was required. An upper limit of 10,000
sweeps was imposed on the networks.

Network Architecture: Three different network architectures were used in this experiment.

The first architecture was an integration device network with n input units, two hidden units, and one
output unit. The network weights and biases were randomly initialized between the values of [-1, 1]
and the learning rate was set to 0.1 with a momentum of 0.9. The second architecture was a value
unit network with n input units, no hidden units, and one output unit. Because the Symmetry problem
has order 2 regardless of input size and a value unit also has order 2, no hidden units are required
to solve this problem. Consequently, the second architecture is the minimum network size required

to solve the problem. The third architecture equalized the number of hidden units between the
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integration device network and the value unit network (much like in Experiment 8). Thus the third
architecture was a value unit network with  input units, two hidden units, and one output unit. Both
value unit architectures had their weights and biases randomly initialized from the range [-1, 1], their
learning rate set at 0.01, and no momentum.

Network Performance: As can be seen in Figure 5.9—which shows the mean sweeps to

convergence and standard error—the value unit architecture with two hidden units produced the best
overall performance. In fact, the number of sweeps to convergence 1s more or less constant for all
sizes of the Symmetry problem. For the value unit architecture with no hidden units, the mean

number of sweeps to convergence increases with the size of the problem. On the other hand, the
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Figure 5.9 Performance of integration device and value unit
networks on the symmetry problem.

integration device architecture decreases sweeps 0 convergence with an increase in problem size.
although it never performs as well as the value unit networks with hidden units. In fact, on 8- and
9-Symmetry, the integration device network is just as good as the value unit network with no hidden
units. This is not surprising, however, as a value unit network with no hidden units is basically
equivalent to an integration device network with two hidden units that are constrained to cutting
parallel slices in a pattern space.

Experiment 9: Parity Problem

The Parity problem is often considered the most difficult toy pattern classification task. This

is because changing only one bit in the input pattern changes the network's response to the pattern.
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In other words, moving from one vertex to an adjacent vertex on a binary hypercube causes a change
in pattern classification. Consequently, Parity is defined by the number of active bits in the input
pattern. If there is an odd number of input bits on, then the output unit should be turned on:
otherwise, the output should be off.

Eight different sizes (2, 3.4, 5, 6, 7, 8, & 9 input units) of the Parity problem were tested
with all possible training patterns. For the Parity problem, there are equal numbers of positive and
negative examples of classification for each size of problem. As with the Symmetry problem,
networks were trained to a criterion of 0.0025 and an upper limit of 10,000 sweeps was imposed on
the networks.

Network Architecture: Three different network architectures were tested on the Parity
problem. The first network was an integration device network with n input units, n hidden units, and
one output unit. Because the order of the Parity problem is equal to the size of the problem in bits,
then theoretically one needs a one-to-one correspondence between the number of input units and the
number of hidden units. Network weights and biases were randomized between [-1, 1], momentum
was set t0 0.9, and the learning rate was 0.1 for 2- and 3-Parity and 0.05 for 4-Parity and bevond. A
different learning rate was required for the larger problems to produce an acceptable rate of
convergence.

The second and third network architectures were value unit networks. The second
architecture had the minimum number of hidden units required to theoretically solve the Parity
problem as stated in Chapter 4. That is, for 2-, 3-, 4-, 5-, 6-, 7-. 8- and 9-Parity problems the number
of hidden units required were 0, 1, 1, 2,2, 3, 3, 4, and 4 respectively. The third architecture had
equal numbers of input and hidden units. Again, both value unit architectures had their weights and
biases randomly initialized from the range [-1, 1], their learning rate set at 0.01 for the smaller
problems and 0.001 for the larger problems, and no momentum.

Network Performance: Figure 5.10 shows the mean number of sweeps to convergence as
well as standard error for each of the network architectures over the different sizes of Panty problem.
The first thing to note is that the integration device network completely failed to converge on any
solution for 5-Parity and above. This result is actually quite common (see Shamanski & Dawson,
1994). The second thing to note is that both value unit architectures required more sweeps to

converge as the size of the parity problem increased. For the 2- to 6-Parity problems, the value unit
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Figure 5.10 Perforrnance of integration device and value unit
networks on the parity problem.

architecture with the maximum number of hidden units performed better than the value unit
architecture with the minimum number of hidden units. This reversed for the 7- to 9-Panty problems.
It should be noted, however, that this reversal in Figure 5.10 is somewhat misleading as the number
of networks to actually reach convergence was less for the minimum structure than the maximum
structure (e.g., for 9-Parity, only 30% of the minimum structure networks converged whereas 68%
of the networks with the maximum number of hidden units converged on a solution). In conclusion,
the value unit architecture is clearly better for solving the Parity problem than the integration device
architecture.

Experiment 10: Encoder Problem

The encoder problem consists of replicating the input pattern at the output layer by passing
it through a constrained hidden layer . More specifically, a network with n input units has log, n
hidden units, and n output units. For the Encoder problem, the number of training patterns is equal
to the number of input units. Furthermore, there is the restriction that the training patterns must be
orthogonal to each other. Networks were trained to a criterion of 0.0025 and an upper limit of
10,000 sweeps was imposed on the networks.

Network Architecture: Seven different sizes of networks, 2-1-2, 4-24, 8-3-8, 164-16, 32-5-
32, 64-6-64, 128-7-128 were trained on the Encoder problem. Two different types of network

architectures were trained: an integration device network and a value unit network. For the
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integration device architecture, weights and biases were randomly initialized between the values of
[-1, 1] and the learning rate was set to 0.1 with a momentum of 0.9. For the value unit architecture,
weights and biases were randomly initialized from the range -1, 1], and the learning rate set at 0.01
with no momentum.

Network Performance: Network performance on the Encoder problem s illustrated in Figure

5.12 which shows mean number of sweeps to convergence and the standard error. First, it should be
noted that the maximum number of sweeps was increased to 12,000 to produce a 100% rate of
convergence in both architecture types. As can be seen, the value unit networks clearly

outperformed the integration device network. In fact, the mean number of sweeps to converge on
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Figure 5.11 Performance of integration device and value unit
networks on the Encoder problem.
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a solution for the value unit architecture remains fairly constant regardless of the size of the problem.
This is in contrast to the integration device network which clearly increases in the number of sweeps
required to solve the larger problems. As a quick note to end this section, pilot studies have shown
that the value unit architecture is able to solve the 16-2-16 encoder problem, albeit with a huge

increase in the number of sweeps to reach convergence (= 100,000 sweeps).

Pattern Classification Conclusions
From these four experiments, it is clearly the case that the value unit architecture is superior

for solving linearly inseparable problems while the integration device architecture should be
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preferred for problems that are linearly separable. Furthermore, the value unit architecture seems to
“scale up” better than the integration device architecture. This can especially be seen in the
Symmetry problem and the Encoder problem: An increase in the problem size does not increase the
number of sweeps to convergence. This is an important result because one criticism often leveled
against connectionist networks is that they do not scale up very well (e.g., Minsky & Papert,
1988/1969; Feldman-Stewart & Mewhort, 1994). In other words, the value unit architecture may

provide a means for effectively increasing the size of computable problems.

Connectionist Conclusions

To this point, we have approached the computational level analysis from a formal
perspective, as would be dictated by the traditional view on information processing. Consequently,
we have described the abstract computational theory in terms of mapping one type of information
to another and have endeavored to describe how the abstract properties of this mapping are defined
precisely. It has been concluded that connectionism fulfills the formal requirements of
computational theory, and empirical results have been presented to support computational theories.
The questions remains, however, as to what connectionism adds to the computational level of
analysis.

The chapter will conclude with two possible answers to this question. The first is to make
the move away from formal computation towards natural computation (e.g., Horgan & Tienson,
1996; Ballard, 1997) which connectionism seems to accomplish quite easily. The second answer is
to look at the explanatory power of connectionist approaches to computational analysis. In other
words, connectionism may be just the tool for showing how a specific computation is both

appropriate and adequate for the task at hand.

Natural Computation

Although a formal analysis of computational theory in terms of both computability and
complexity is necessary for understanding the computational analysis of an information processor,
it has been argued that what we should really be studying is practical computational theory (Horgan
& Tienson, 1996). As stated earlier, however, the results of computability theory are based on the
notion of the Turing Machine and are therefore fundamental to cognitive science. Furthermore, the
study of practical computation is merely a subset of formal computation, which means that all results

from our study of formal computation will apply to our study of practical computation.
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The formal study of complexity, however, is dependent on many assumptions including the
size of the problem, the criterion used to evaluate a solution, and machine architecture. Complexity
can also be framed in terms of natural computation (Ballard, 1997). The natural computation
approach views complexity from a slightly different perspective, producing models that are effective
while also providing insights into the possible mechanisms of brain computation. The two main
elements governing this perspective are Minimum Description Length (MDL) analysis and learning.
The goal, then, of understanding complexity in terms of natural computation would be to find an
underlying principle that addressed each of these elements. And, connectionism fits that bill nicely.
To illustrate this, these two elements will be elaborated below.

Minimum Description Length Analvsis

Consider a system that is defined by the sets of input/output data it produces. If the sets are
random, then there is no smaller description of the data than the data itself. Practically, however,
many physical systems—including the brain—incorporate many regularities and can produce much
more economical descriptions of the data sets. One way of describing such data sets is to use
Minimum Description Length (MDL) analysis. MDL can be seen as a principled version of Occam’s
razor* where the goal is to find a simple yet accurate description of the data.

In MDL, when accounting for the size of the encoded data, you have to include the size of
the encoder as well. In the case of a biological system, the encoder is simply the behavioral program.
Consequently, the succinctness of a specific computational theory can be measured in terms of the
data it accounts for and the complexity of the theory/encoder. Of course, the ideal result from such
an analysis would not only account for the present data, but it would also generalize to new data.

Recent research (e.g., Zemel, 1995) has shown that MDL analysis can be successfully
applied to neural networks. In such an analysis, the network is a generative model of the output given
the input where the model includes the network architecture and weights and the data are the
residuals. Consequently, by applying the MDL technique to neural networks, the optimal network
structure for generalization can be found, and such structures can then be compared to actual neural
structures such as the receptive fields of neurons (Ballard, 1997). Hence, MDL demonstrates the

appropriateness and adequacy of a computational theory for a specific task.

* *Entia non sunt mutiplicandu, preeter necessitatem™ or “Entities should not be multiplied unnecessarily™ is
credited to the medieval philosopher William of Ockham ( 1285-1347), although there is some question as to
whether he used that exact phrase (see Thorburn, 1915: Burns, 1915; Thorburn, 1918). Within science today,
Occam’s razor is often stated as “When you have two competing theories which make exactly the same
predictions, choose the one that is simpler” or—in the spirit of Occam—""Make it simple".
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Learning
The interesting contribution that connectionism has to offer to computational analysis of an

information processing system is the fact that connectionist systems can learn. What this means is
that although the input and output parameters must be specified for the model a priori (just as they
must be for a classical approach) the actual function that computes the input/output mapping does
not need to be specified a priori (unlike a classical system). As an example of the different
approaches to a computational description of function approximation, we will consider the problem
of sensori-motor maps; specifically, reaching towards a fixated object. The classical approach is
typified by researchers in artificial intelligence (e.g., Horn, 1979). Traditional robotic limb
manipulation is achieved through a series of programmed end effector movements based on either
forward or inverse kinematics. Using this approach, Churchland (1989) has designed a crablike
robot that can successfully reach towards an object that has been placed in front of it. Churchland
has described the task in terms of trigonometric functions expressly calculated for each of the
rotatable eyes and the shoulder and elbow joints. Using a method of projection from the sensory to
the motor map, Churchland is able to show correct performance of the crab to reaching in two-
dimensional space.

Although this traditional method of robotic limb manipulation effectively mimics sensori-
motor behaviour, there is no indication that the nervous system carries forth such complex
trigonometric functions in the step-by-step fashion that is required. In fact, analyses of biological
systems indicate that the planning and execution of limb and eye-movements may be based in
discrete modules distributed in a number of cortical and subcortical regions (e.g., Bizzi & Mussa-
Ivaldi, 1995; Georgopoulos, 1995; Jordan, 1995).The connectionist approach to the computational
problem of visually-guided reaching is truly based on function approximation. Whereas the
traditionai approach is based on very rigid pre-defined trigonometric functions, connectionist
networks approximate the desired joint angles given angles subtended by the eyes (e.g., Medler &
Dawson, 1994a; Medler & Dawson, 1994b). Therefore, the computational description is limited to
learning the proper input/output mappings required for the task. Employing connectionist models
to approximate the inverse kinematics function circumvents the computational complexity of the
numerical solution while providing a learning mechanism for adaptation to environmental changes

such as obstacles, loads, and friction (Eckmiller, 1989; Kuperstein, 1988).
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Computational Explanation

To conclude our e
computational analysis of
connectionism, we will engage in a l .
little “fictional science™ courtesy of N
Braitenberg (1984). Imagine watching ]
and recording the behaviour of a small ;T
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suggested in Figure 5.12. From an
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20), the movement of the vehicle could description of the movement of a

be described at the computational level simple “vehicle™ through water.

as something approaching “Brownian motion” with some sort of drive added. Following this
analysis, we could predict with some degree of certainty the future movement of the vehicle by
analyzing the mathematical components of the vehicle’s previous movements—say by using Fourier
transforms—and creating a mathematical model of the vehicle’s path. This could potentially suffice
as a computational description of the vehicle’s behaviour, both accounting for previous data and
predicting new data. Yet this type of characterization only describes the behaviour, it does not
explain the behaviour, and, cognitive science requires explanations, not descriptions.

How might we construct a computational explanation then? Braitenberg (1984) adopts the
view that we should look for the simplest explanation for behaviour—very much in accordance with
Occam’s razor—and that this often lies within the simple mechanisms of the organism itself. In other
words, Braitenberg proposes that we adopt a synthetic approach to psychology; Identify the simplest
mechanisms governing the behaviour of an organism and observe what happens when they interact
with each other and the environment. Thus, we are not only describing the computational properties
of an organism’s behaviour, but also explaining those same computational properties.

Consequently, to produce a computational explanation of our vehicle swimming around in
the pond, we might postulate some very simple mechanisms. One mechanism might be a simple
temperature sensor that drives a motor in proportion to the amount of heat detected. In other words,

the vehicle would tend to speed up in warm water and slow down in cold water. Hence, the proper
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computational explanation for the vehicle's movement in this case is very simple: stay in cold water
and avoid warm water. The “erratic” behaviour of the vehicle only emerges because of outside
forces, such as friction and currents, acting upon the vehicle. These outside forces have no role in
the computational function being computed by the vehicle, although they are necessary for
understanding the behaviour of the vehicle at that specific time. Of course, we would have to
confirm this explanation by testing the vehicle in other environmental situations, controlling as many
outside forces as possible.

A similar idea is espoused by Seidenberg (1993) in his Chomskian-inspired evaluation of
different approaches to cognitive theorizing. One approach to cognitive theorizing is based on
examining a large range of data and attempting to produce generalizations about the patterns of data;
this approach produces theories with “descriptive adequacy.” Although descriptive theories can
describe the phenomena that do occur and generate novel predictions, Seidenberg argues that they
cannot explain why other and equally plausible phenomena do not occur. Furthermore, he continues,
it is not enough for us simply to describe the kinds of things that are in the world, but we also need
to understand why things are the way they are and not any other way. This type of cognitive
theorizing is equivalent to the analytical approach to analyzing an information processor.

Another—more fruitful—approach to cognitive theorizing is to show how the phenomena
in question derive from deeper principles; such an approach produces explanatory theories. Whereas
theories with descriptive adequacy are based on task- or phenomenon-specific principles, a condition
on explanatory theories is that they appeal to a small set of concepts that are independently
motivated. Furthermore, if these underlying principles are explanatory, then they will also contribute
to the understanding of phenomena in different domains. Explanatory theorizing is equivalent to the
synthetic approach to cognition. As a result, it allows us to understand why things are a certain way
and not another. In other words, whereas descriptive theories only describe possible computational
functions, explanatory theories define the computational competence of an information processor.
Seidenberg (1993) states that connectionism is Just the tool to contribute to the development of
theories that are explanatory and not merely descriptive.

Seidenberg’s view is not without controversy. For example, Massaro (1988, 1990) contends
that certain assumptions within connectionist models are unnecessary and inconsistent and that the
models themselves are too powerful to be of any theoretical importance to cognitive science.
Seidenberg argues, however, that connectionist models acquire their explanatory power when

constraints are applied in systematic ways. One important constraint is their appeal to a small yet




Chapter 5 123

general set of computational principles (see Chapter 2, pp. 33-36). The second constraint lies in the
further requirement that they be neurobiologically relevant. When these constraints are met,
Seidenberg argues that connectionism contributes to the development of explanatory theories by
providing a candidate set of independently motivated theoretical principles (cf., McCloskey, 1991).

Thus, connectionism can be viewed as a way of not only modeling cognitive functions, but
also offering new explanatory cognitive theories. Although connectionism can and often produces
computational theories that are appropriate and adequate for particular tasks in specific domains,
their advantage over classical theorizing is that connectionism’s underlying principles remain the

same regardless of domain.

- - - one starts with a set of principles concerning learning and the representation of
knowledge. If the principles are identified correctly, modeling should merely
involve incorporating domain-specific variables such as different types os stimulus
inputs, motoric responses, and learning experiences . . . The relevant generalizations
about the domain in question should then fall out of the model. (Seidenberg, 1993,
p.- 231)

Computational Level Conclusions

Connectionist networks have all the computational power of classical models—they are both
universal function approximators and arbitrary pattern classifiers. Therefore, they are able to answer
the types of computational questions that are of interest to cognitive scientists. In other words,
connectionism has all the properties that a traditional approach to computational analysis possesses.

What, then, do we have to gain from a connectionist approach? One gain is moving from a
formal notion of computation to a more natural mode of computation. Another is that connectionism
may offer computational explanations as opposed to merely descriptions. Further answers to this
question will become apparent when we continue the analysis of the other levels within the tri-level

hypothesis.
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Chapter 6

The Algorithmic Analysis of Connectionism

The deepest rift between connectionist and classical researchers exists at the algorithmic
level of analysis. On the one hand, researchers such as Fodor and Pylysyhn (1988) maintain that
connectionist models should be considered as mere implementations of classical cognitive
architectures. In other words, although connectionist models may be interesting in their own right
and may be of value to such areas as neuroscience, they have nothing new to contribute to cognitive
psychology. On the other hand, there are those researchers who state that connectionist models
provide a completely novel approach to understanding cognition, and therefore could very well
signal the start of a Kuhnian-like paradigm shift in the study of cognition (e.g., Schneider, 1987).

This rift is typified by the exchange between Broadbent (1985) and Rumelhart and
McClelland (1985) in the Journal of Experimental Psychology: General. Immediately on the heels
of McClelland and Rumelhart’s (1985) connectionist account of distributed memory and
representation of knowledge, Broadbent took issue with their approach, claiming that considering

its implications at anything other than a physiological level was inappropriate.

[McClelland and Rumelhart, 1985] believe that their approach has implications at
the psychological and not merely at the physiological level. . . . These claims are not
appropriate and might in some circumstances damage the acceptance of the
distributed theory at its proper level. (Broadbent, 1985, p. 189)
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Rumelhart and McClelland (1985) respond to Broadbent with their own views concerning
the proper level of analysis for connectionist networks. Their main point was that their model is fully
relevant to psychology as it is stated at the algorithmic level. Furthermore, they contended that no
particular level of analysis is independent of the others and thus their model appeals to an implicit
computational theory as well as certain implementational considerations. (Interestingly, Broadbent
ignores the algorithmic level and bases his criticisms on the distinction between the computational

and implementational levels.)

We believe that our proposal is stated primarily at the algorithmic level and is

primarily aimed at specifying the representation of information and the processes

or procedures involved in storing and retrieving information. (Rumelhart and

McClelland, 1985, p. 193)

Hence, Rumelhart and McClelland claim that connectionist models and classical models are
competitors at the same level of description.

Why are connectionist and classical accounts of psychological processing presumed to be
competitors? The main reason is because the two approaches have different views about how
information is processed. The classical approach sees information processing as the manipulation
of symbols using logical rules (which may be either explicit or implicit). This leads classical
researchers to conclude that “Only the algorithm and the representations on which it operates are
intended as a psychological hypothesis™ (Fodor & Pylyshyn, 1988, p. 65). In contrast, the
connectionist approach sees information processing as the manipulation of sub-symbolic elements
by statistical means. This leads many classical researchers argue that the level of cognition is not
connectionist in nature and therefore that connectionist models have no role in informing cognitive
science at the algorithmic level. For example, Fodor and Pylyshyn (1988) conclude that cognitive
learning is not based on statistical inferences realized by adjusting parameters (i.e., the connectionist
approach), but is based on theory construction effected by framing hypotheses and evaluating them
against empirical evidence (i.e., the classical approach).

As illustrated by the comments of Rumelhart and McClelland (1985), however, some
connectionists firmly believe that the algorithmic level of analysis is applicable to their models and,
therefore, that they are relevant to psychological theory. Thus, it is claimed that connectionist models
offer an alternative approach to cognitive processing. This is because it is assumed by both classical

and connectionist researchers that the underlying principles of connectionist networks (i.e., the
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statistical manipulation of sub-symbols) necessarily means that they offer an alternative account of

cognitive processing.

There is no doubt that these models have a different feel than standard symbol-

processing models. The units, the topology and weights of the connections among

them, the functions by which activation levels are transformed in units and

connections, and the learning (i.e., weight-adjustment) function are all that are “in”

these models; one cannot easily point to rules, algorithms, expressions, and the like

insides them. (Pinker & Prince, 1988, p.- 76)

Hence, much of the debate between connectionist and classical researchers is centred on
this misconception about the assumed nature of connectionist networks. It seems that neither side
is willing to substantiate their claims, but rather take the “correctness” of their assumptions on faith.
This reluctance is characterized by Adams (1979, p. 50) “I refuse to prove that I exist . . . for proof
denies faith, and without faith I am nothing.” In other words, they want the connectionist approach
to cognitive processing to be radically different—if, for no other reason, than to say that the other
side is wrong.

One simple way of substantiating their claims, however, would be to analyse the internal
structure of trained networks. This analysis could reveal how the networks are solving problems and
may show that the connectionist and classical approaches are not so far removed from each other.
“Analysing what the net computes after learning provides a simple empirical way of exploring the
intimate relationship between learning and representation” (Hanson & Burr, p. 482).

But, the analysis of connectionist networks can be rather intimidating—especially for large
networks. And, if this move is not undertaken, then connectionism is reduced to no more than
“black-box™ theorizing. Therefore, when connectionist models are offered as algorithmic theories

of cognition sans analysis, classical researchers are justifiably skeptical. This skepticism is clearly

illustrated by Pylyshyn’s frank assessment of connectionism:

‘Voodoo,’ remarks Zenon Pylyshyn . . . ‘People are fascinated by the prospect of

getting intelligence by mysterious Frankenstein-like means—by voodoo! And there

have been few attempts to do this as successful as neural nets!’ (Stix, 1994, p.44)

Even connectionist researchers freely admit that it is extremely difficult to determine how
connectionist networks accomplish the task that they have been taught. “One thing that
Connectionist networks have in common with brains is that if you open them up and peer inside, all

you can see is a big pile of goo” (Mozer & Smolensky, 1989, p-3). Similarly, Seidenberg (1993,
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p-229) states that “if the purpose of simulation modeling is to clarify existing theoretical constructs,
Connectionism looks like exactly the wrong way to go. Connectionist models do not clarify
theoretical ideas, they obscure them.” As a result, connectionists are reluctant to analyse the internal
structure of their networks in an attempt to determine what algorithm lies within.

Unfortunately, this reluctance has raised serious doubts concerning the ability of
connectionists to provide fruitful theories about cognitive processing. Because researchers rarely
understand the internal workings of PDP models, McCloskey (1991) suggested that “Connectionist
networks should not be viewed as theories of human cognitive functions, or as simulations of
theories, or even as demonstrations of specific theoretical points” (p.387).

Thus, if we are to address the concerns of McCloskey (1991) and Fodor and Pylyshyn
(1988), connectionists must take the time and effort to analyse the internal structure of their
networks. The importance of analysing the internal structure of connectionist networks is highlighted

by Hanson and Burr (1990):

Post hoc analyses of the way a network computes and represents information over

subsets of hidden units . . . can clarify imprecise or incomplete models of

psychological phenomena and can help reveal important relations between learning

and representation that are not taken into account in the rule-based approach. (p.

476)

This importance has not been overlooked by connectionists. Several different techniques for
interpreting the internal structure of connectionist networks have been proposed. These analyses are
roughly divided into two categories: (i) analysis of network weights, and (ii) analysis of hidden unit
activities.

Two main approaches to the analysis of network weights exist. This first approach—known
as Hinton diagrams—is perhaps the simplest way of examining the internal functioning of networks.
Following learning, the weight values from the input to the hidden units, and from the hidden units
to the output units are encoded in a diagram as a series of white (positive) and black (negative)
rectangles. The area of each rectangle signifies the relative strength of that connection normalized
to the largest weight (e.g., Hinton, McClelland, & Rumelhart, 1986; Hinton, 1987). Such an analysis
indicates the relative importance of each input unit to any hidden unit and thus the function of the

hidden unit can be interpreted in terms of the relevant input units. Furthermore, the relative

importance of each hidden unit to any output unit can also be stated. Hinton diagrams do have
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drawbacks; they are limited to relatively small networks where the input and output representations
are local.

The second approach to analysing weights is to examine the frequency distribution of the
weights after training. The rationale behind this technique is that such an analysis will reveal the
distributed or local nature of the hidden units. It is assumed that distributions with a large,
symmetric, unimodal concentration of weights near zero represent units that have adopted a
distributed representation while distributions that are skewed or bimodal are more likely to represent
local units (Hanson & Burr, 1990). Unfortunately, such a technique does not tell us what the unit is
actually computing—it only tells us if a unit is likely to have a local or distributed interpretation,
without any appeal to what that interpretation might be. To accomplish this last vet crucial step,
Hanson and Burr perform a cluster analysis on the connection weights from the input to the hidden
units and then isolate those units with the strongest connections. A star diagram is then created
which identifies parterns of connectivity visually. These diagrams convey the same information as
Hinton diagrams and are therefore subject to the same drawbacks.

An alternative approach to analysing network structure is to perform cluster analysis on the
hidden unit activations. Again. two main methods exist for performing this type of analysis on
trained networks: in vivo clustering and in vitro clustering. In vivo clustering involves re-presenting
the training set to the network and recording the activities of the hidden units to each pattern.
Hierarchical clustering is then performed on the stmulus-by-hidden-unit-activity matrix to recover
functional groups of units that the network has organized during learning (e.g., Elman, 1990). In
vitro clustering involves transforming the weights into activation space via the original activation
function—this essentially computes the maximal activation of each hidden unit give all inputs. The
distance between the transformed weights is then measured (say, by Hamming distance) and
clustering analyses can be applied to determine either what input or output features are close together
in hidden unit activation space or what hidden unit groups exist in input/output activation space.
Both in vivo and in vitro analyses only indicate some of the underlying structure of the network,
however, and further analyses must be performed before any meaningful interpretation can be
extracted from the network.

Although the interpretation techniques described above have been successfully applied to
a variety of different networks, the clustering analyses these techniques are dependent on means that
the role of each individual hidden unit is not always clear. Furthermore, such analyses do not address

the issue of how the network is explicitly solving the problem. In other words, the algorithm is still
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obscured. Thus, we cannot address the issue of whether or not classical and connectionist accounts
of cognitive processing are radically different. To do this. we need to know what each individual unit
is doing, and how the network uses that unit to solve the problem.

Consequently, in this chapter we will review and expand a network interpretation technique
first described by Berkeley, Dawson, Medler, Schopflocher, and Hornsby (1995). This technique
allows interpretation of individual hidden units while also providing a mechanism for analysing the
pattern of activities across the hidden units. Thus, we will be able to explicitly address the assumed

distinction between classical and connectionist models of cognitive processing.

The Banding of Hidden Unit Activation Values

Consider using a set of patterns to train a network of value units. After training, one could
again present each pattern to the network and record the activity that each pattern produced in each
hidden unit (cf., in vivo analysis; Hanson & Burr, 1990). This amounts to “wiretapping” each hidden
unit while the stimulus set is being presented. The recorded activations could then be used to create
a jirtered densiry plor' for each hidden unit (e.g., Figure 6.1). A jittered density plot is basically a one
dimensional scatter plot in which the x-axis represents the unit’s activation between 0.0 and 1.0, and
the y-axis represents a random jittering introduced to prevent points from overlapping (Chambers.
Cleveland, Kleiner, & Tukey, 1983, pp. 19-21). Consequently. such a plot not only presents the
activation values of the hidden units, but also presents the relative distribution of values. If the
activation values are distributed across the full range of values between 0.0 and 1.0, then the jittered
density plots will appear “smeared”. If, on the other hand, activation values fall into distinct clusters.
these will appear as vertical “bands™ within the plots.

The jittered density plots in Figure 6.1 illustrate the results of wiretapping three different
networks trained on (a) 3-Parity, (b) 4-Parity, and (c) 5-Parity (see Chapter 5). In each of the density
plots, a single dot is used to represent the activity in that hidden unit produced by presenting one
pattern to the network. The density plots in Figure 6.1 were produced in networks trained on 8. 16.
and 32 different input patterns for 3-, 4-, and 5-Parity problems; consequently, each density plot is

composed of 8, 16, and 32 different dots respectively.

! A histogram would be inappropriate for this type of analysis for two reasons. First, the real-valued activations
of the units would have to be quantized and important information could be lost that way. Second, for very
large data sets, a few patterns (say, eight) that comprise a distinct group may be “graphically lost™ when plotied
next to a larger group of patterns (say, eight thousand).



Chapter 6 130

As can be seen in Figure 6.1, the density plots for hidden value units are highly structured
(see also Berkeley, et al., 1995). That is, the activation values are revealed as distinct “bands™ within
each plot. Furthermore, analyses of patterns within each band show that they are related in some
manner. For example, in Figure 6.1(a), the one input pattern falling into Band-A has two input bits
on, the four patterns falling into Band-B all have an odd number of bits on (i.e., either one or three
bits on) and the three patterns falling into Band-C have either zero or two bits on. Exactly the same
interpretation can be given to Figure 6.1(b).

In fact, this same banding structure is always seen in 3- and 4-Parity networks trained with
one hidden unit. This is because there is only one optimal solution for each problem. This solution
requires that a hyperplane be positioned within the input space such that it bisects the points in the
hypercube defined by the input. This requires that the weights from the input units to the hidden unit
be +0.5. Furthermore, the weights must be balanced: that is. for every positive weight, there is a

negative weight (for odd Parity, the extra weight could be positive or negative). Thus, the same
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Figure 6.1 Jittered density plots for the (a) 3-Parity, (bj 4-Parity, and (c) 5-
Parity problems. Note that (a) and (b) only require one hidden

unit while (c) requires two hidden units. See text for analysis of
the bands.
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banding pattern will always be produced. It should be noted, however, that because any weight may
be positive or negative, the pattemns falling into Band-A and Band-C may be different, although the
patterns in Band-A will always have two bits on. Moreover, Band-B will always contain those input
patterns with an odd number of bits on. Consequently, although the banding structure will remain
constant between networks, the exact interpretation will vary.

The hidden unit activations for the 5-Parity problem—shown in Figure 6.1(c)—have a
slightly different interpretation. Band-A of Hidden Unit O (hereafter 0-A) has one pattern with three
input bits on, while 0-C contains all other patterns with either one, three, or five bits on. The other
two bands contain only those patterns with an even number of bits on; 0-B contains patterns with
two or four bits on, and 0-D contains patterns with zero, two, or four bits on. At first glance, the
banding structure for the second hidden unit appears less structured. For example, 1-A contains a
mixture of patterns; some have an even number of bits and some have an odd number of bits turn on.
Even those patterns falling into 1-B have either zero, two, three, or four bits turned on. It turns out,
however, that the one odd pattern falling into 1-B is the one pattern in O-A.

Consequently, the structure of Hidden Unit | becomes apparent when it is paired with
Hidden Unit O to produce the correct outputs. Of the eight possible hidden unit activation
combinations, only five are actually ever produced. The combinations [0-A., 1-B] (read *“activation
produced in Band-A of Hidden Unit 0 and Band-B of Hidden Unit 1 concurrently”) and (0-C, 1-A]
produce an output of 1.0 (odd parity). Even parity, on the other hand, is signified by the
combinations [0-B, 1-A], [0-D, 1-A], and [0-D, 1-B]. Thus low to medium activation in Hidden Unit
0 paired with high activation in Hidden Unit 1 signals odd parity while low activation paired with
low activation or high activation paired with either low or high activation denotes even parity.

It should be noted that Berkeley et ai., 1995, did not find that this banding structure was
typical of density plots for standard backpropagation networks using the logistic activation function
(a monotonic function). On the other hand, McCaughan (1997) did find that networks using hidden
units with a sinusoidal activation function (again, a nonmonotonic function) produced interpretable
bands.

Consequently, it appears that the “banding phenomenon” may be dependent upon the
nonmonotonicity of the activation function. This conclusion is based on two properties of
nonmonotonic functions. First, a value of 1.0 produced by a nonmonotonic function (say, a value
unit) carries much more information than a value of approximately 1.0 produced by monotonic

function (say, an integration device). This is because the number of input patterns that are capable
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of producing a value of 1.0 in a hidden value unit is limited to those input patterns that, when
multiplied by the weight vector and subtracted from the bias of the unit, produce a value equal to

the mean of the Gaussian. That is,

[il..i"][wI
3 - I u

w

where [i, .. i,] is the input pattern, [w, . . w,] is the weight vector, Bis the bias of the unit, and 4 is
the mean of the Gaussian. If the bias is equal to mean of the Gaussian (as is the case for value unit
networks), then all input patterns that produce a value of 1.0 will lie in a plane orthogonal to the
weight vector. Consequently, there are only a limited number of input patterns that are capable of
producing a value of 1.0 in a hidden value unit. Furthermore, all of these patterns are related in the
sense that they lie within the same hyperplane with respect to the weight vector and input space.
As an example, Figure 6.2a shows a value unit superimposed over the input space for the
3-Parity problem. There are three co-planar points that will produce the maximal activity within the
value unit. Furthermore, as can be seen, these three points lie equidistant from the two hyperplanes

that are carved by the value unit (as represented by the dashed lines). If the unit is thresholded by

HIDDEN UNIT HIDDEN UNIT

(a) (b)

Figure 6.2 Patterns producing values near one in (a) a value unit, and (b) an integration device.
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forcing values to either zero or one, then a hyperbar (or closed halfspace) is defined by these two
planes. This means that there is only a relatively limited number of patterns that can produce a value
of one. As the goal of information theory is to use as few bits a possible to convey as much
information as possible (e.g., Roman, 1992), a value unit maximizes the amount of information by
picking out a very distinct set of input patterns (i.e., those patterns that are co-planar).

In contrast, Figure 6.2b illustrates the partitioning of the 3-Parity problem by a single
integration device unit. Although there is one pattern that will produce maximal activity of
approximately 1.0 within the unit?, there are three other points that will also produce values near one.
As can be seen in the figure, no planar relationship exists between the four points that produce
values close to one. In fact, if the unit is thresholded, then an open halfspace is defined (by the
dashed line) which means there are an infinite number of input patterns that have no planar
relationships that could potentially produce a value of one. Consequently, a value of one in an
integration device unit does not convey as much information as a one in a value unit.

This finding actually has implications for the neuron doctrine within perceptual psychology
(e.g., Barlow, 1972). The doctrine is based on the assumption that there is one stimulus pattern that
will produce maximal activity within the neuron. Although it is often difficult to apply the neuron
doctrine to biological systems, it can be readily applied to integration device networks. For example,
Dawson, Kremer, and Gannon (1994) applied the neuron doctrine to define the trigger feature of the
hidden unit as that input pattern which produces maximal activity in the unit. The trigger feature is
determined by setting the input bit to 1.0 for all positive valued weights leading into the hidden unit
and 0.0 for all negative valued weights (this produces the maximum net input possible for a specific
hidden unit). Thus, the sensitivity of the hidden unit can be determined (c.f., in vitro analysis;
Hanson & Burr, 1990).

Practically, however, many more input patterns will produce a value of near one than just
the trigger feature. In fact, the number of input patterns producing a value near one in a hidden
integration device unit will be dependent on the steepness of the logistic function; for example,
thresholding the unit by using the step function—a logistic function with maximum steepness—will
produce values of either zero or one. Therefore, it is possible for numerous (unrelated) patterns to

produce maximal activity (within a certain threshold) within the hidden unit. Consequently, the range

? In theory, an activation function such as the logisitic only produces a value of 1.0 as the net input - = and
a value of 0.0 when the net input ~ -e.
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of inputs the unit (or neuron) is actually sensitive to may be quite extensive and the assumption of
the neuron doctrine may be inappropriate and misleading.

When these results are applied to the planar description of banding analysis, this means that
patterns not lying in a plane orthogonal to the weight vector may still produce a value near one.
Consequently, there is not the same relationship between input patterns producing maximal
responding for logistic functions as there is for Gaussian functions.

A second reason that banding appears dependent on nonmonotonic functions relies on the
fact that the weight vector defines an orthogonal hyperplane within the input space. This means that
other parallel hyperplanes are automatically defined within the input space. Consequently, all points
lying in a parallel hyperplane some distance & from the original hyperplane will produce some
activation 0 < A < 1 in the hidden unit. Furthermore, because of the nonmonotonicity of the
activation function, all points lying in the hyperplane some distance -6 from the original will also
produce the same activation value A. In other words, all input patterns that lie in parallel planes a set
distance below and above the plane bisecting the space as defined by the weight vector will produce
the same activation in the hidden unit. Consequently, such input patterns will fall into “bands” when
the activation values are plotted. This, of course, holds true for any nonmonotonic function. This is
not to say, however, that banding is guaranteed in networks with nonmonotonic functions, only that
it is possible. In the same breath, it is not to say that banding cannot occur in networks with
monotonic functions, just that it is highly unlikely.

This aspect of the banding phenomenon is illustrated in Figure 6.3 which shows the solution
for solving the 3-Parity problem using the value unit structure. In this case, the hidden unit has
positioned itself within the input space such that it creates a hyperplane defined by the points [0, O,
0], [1, 1, 0], and [0, 1, 1]. Consequently, when the Gaussian is applied to these patterns, it produces
a value of 1.0. As can be seen in the figure, the points [1, 0, 0], (0, O, 1], and [1, I, 1] all lie a
distance & from the hyperplane while the point [0, 1, 0] lies a distance -& from the hyperplane. When
the Gaussian is applied, it produces a value of around 0.5. Finally, the point [1, O, 1] lies a distance
of 26 from the hyperplane and produces a value near zero when the Gaussian is applied. Thus, when
these value are passed to the output unit and its Gaussian is applied, the values of zero and one are

produced, solving the problem.
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OUTPUT UNIT

HIDDEN UNIT

Figure 6.3 The solution to the 3-Parity Problem given one hidden value
unit. Note how the circles (indicating points in the pattern
space) correspond to the banding structure in Figure 6.1(a) when
the hidden unit is correctly positioned in the pattern space.

Although this suffices as a mathematical basis of the observed banding in value units, it is
a rather trivial point in terms of the algorithmic analysis of an information processor. All this tells
us is how points in a pattern space are converted into hidden unit activations. The more interesting
question hinges on what these points in the pattern space actually represent.

Berkeley, et al. (1995) found that in many cases, the density plots for hidden value units are
highly structured. In other words, this “banding” provides an important method for interpreting the
kinds of features to which a hidden unit is sensitive. Each band in such a density plot supports a
coherent interpretation: that is, each pattern falling into a band is characterized by definite
fearures—either a specific feature or set of features. These definite features can be quickly identified
by calculating simple descriptive statistics such as means, standard deviations, and correlations. To

illustrate the utility of identifying definite features, let us consider an example problem.

The Mushroom Problem

Previous research (e.g., Berkeley et al., 1995) has shown that banding occurs for problems
such as logical relationships, parity, majority, and determining kinship. These problems, however,
were relatively limited in the number of the training patterns used (e.g., the largest data set used was

576 patterns for the logic problem). Therefore, a larger training set was sought to see if banding
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would scale up. One such data set is the mushroom data set defined by Schlimmer, 1987*. The data
set offers two improvements over previous training sets—it is an order of magnitude larger than
previous data sets used for banding analysis and it has been used as a benchmark for testing
traditional machine learning algorithms.

The data set consisted of the hypothetical description of 23 different mushrooms in the
Agaricus and Lepiota family (see Lincoff, 1981, pp- 500-525). Each mushroom was described as
a set of 21 different features (see Appendix A). Multiple featural descriptions of one species of
mushroom were possible because one species might be found in several different habitats, have more
than one possible odour, etc. The total data set consisted of 8,124 different instances. 4,208 of these
patterns corresponded to edible mushrooms; the remaining 3,916 training patterns corresponded to
inedible mushrooms (i.e., mushrooms that were definitely poisonous, or were of unknown edibility

and therefore not recommended).

A Classical Algorithm

Classical accounts of cognitive theories within psychology have their counterparts in the
algorithms of traditional Artificial Intelligence (AI). Both approaches are based on the manipulation
of symbols by logical rules. Furthermore, both fields have relative difficulty accounting for
learning—as opposed to say planning or search (Ginsberg, 1993). In terms of Al learning can be
characterized as either discovery (what could be characterized as insight within psychology) or
generalization learning (the extrapolation of knowledge from existing information). An example of
generalization learning is concluding that a large, yellow mushroom is poisonous because all large,
yellow mushrooms you have seen in the past have been poisonous. This type of generalization
learning is classified as inductive learning.

One successful inductive learning technique used in Alresearch to induce general rules from
a set of observed instances is Quinlan’s (1986) ID3 algorithm. The ID3 algorithm creates a decision
tree by splitting the training instances at each node of the tree into positive and negative instances.
In other words, the algorithm makes a series of binary decisions about the input pattern. Thus, any
decision tree produced by the ID3 algorithm is equivalent to a series of inference rules (e.g.,

—~married(m) A man(m) - bachelor(m)). The problem with the original algorithm, however, is that

* The mushroom database can be retrieved via ftp from ftp.ics.uci.edu: pub/machine-learning-databases, or
through the WWW at http://www.ics.uci.edu/~mleam/MLRepository.html




Chapter 6 137

it is limited to creating trees with at most two children at each node. Therefore, it is inappropriate
for data sets that have more than two characteristics within each feature.

Consequently, a modified version of the [D3 algorithm (see Box 6.1) was created to handle
multiple characteristics (i.e., more than two) within each feature set. That is, instead of a binary
decision at each node, multiple branching from each node was possible. When the new algorithm
was applied to the mushroom data set, it produced the decision tree shown in Figure 6.4. All 8,124
different instances of the mushrooms can be correctly identified as either poisonous or edible in no
more than five questions. This decision tree is rather unique in that each discriminating element f

has only one characteristic that is

non-exclusive. It should also be | Given as inputs a set F of features, an overall set S, and a

noted that there are no mushrooms | 'argetconcept T:

with Purple Spore Print Colour that L. If every element of the set S is in T, return “yes”. If no
element of Sis in 7, return *no”.

2. Otherwise, let £, be the most discriminating element’ of F. If

first. no features remain, return “failure”.

3. Starting with the left-most characteristic of £, and working

The generalization abilities towards the right-most characteristic, if f, is such that

a subset of § neither satisfies £(Sf) exclusively nor

fails to satisfy f(S-f) exclusively (e.g., the feature f

splitting the data set into a training does not discriminate T), then recursively return a tree

such that all the children finally satisfy T.

could not be classified by Odour

of the decision tree were tested by

set and a test set, each containing
" To find the most discriminating element f, of F, tally the number of
positive and negative examples for each characteristic within f. Add
the total number of non-exclusive characteristics together—noting
which ones were not exclusively classified. The most discriminating
mushrooms for a total of 4,062 element f, is the one with the smallest total. If two elements have the
same total, then choose the one with the smallest number of

examples. Because the original data | characteristics.

2,104 examples of edible mushrooms

and 1,958 examples of poisonous

set is laid out in an orderly fashion, Box 6.1 Modified ID3 algorithm for multiple featural
decisions.

simply splitting the data set in half

produces a training set that contains characteristics that are not present in the test set, and vice versa.
When the new algorithm was applied to the training set, it created a much more complicated decision
tree. For example, the first discriminating feature identified was Gill Colour; however, there were
four non-exclusive characteristics present within this feature, and each one required a different
follow-up question. In total, nine different questions were required to completely classify the training
data. Furthermore, when the decision tree was applied to the test data, 464 mushrooms were

misclassified and another 224 mushrooms were left unclassified (an overall error rate of 17%).
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Two more generalization tests @

were  conducted. The second
| Odor ]
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training and test set, so the decision é éj

generalization test reversed the

tree was actually trained on the former

[spore Prine J&—!

[ Blak [8rown | Butf [Chocolatc] Green | Orange ] Purpie [ Whie T vetiow |

decision tree based on only two é] é é

questions, Odour and Spore Print

test set. This produced a much simpler

Gill Size |¢—————

Colour. When tested with the training

set, however, the decision tree

misclassified 576 mushrooms and left

rFxbmusl Silky l Scaly lSmou(hl

228 mushrooms as unclassified (an

overall error rate of 20%). The third

generalization test randomly assigned

Bruises ?
E - Edible

P - Poisonous

n - nodata
available

patterns from the original data set to

either the training set or the test set,

keeping the same proportion of edible

. . Figure 6.4 Decision tree produced by the
to poisonous mushrooms. This new modified ID3 aleorithm.

training set produced a decision tree
identical to the one presented in Figure 6.4; consequently, the decision tree classified all examples
within the testing set perfectly.

As stated earlier, decision trees are equivalent to a series of inference rules. Therefore, we
can translate the tree in Figure 6.4 into a set of rules. When asked in order, the five rules presented
in Box 6.2 will correctly identify all mushrooms as either edible or poisonous. Given that these rules
were produced by a classical system, the question that now arises is whether or not a connectionist
network can learn to solve this problem, and if it can, whether or not it has a “different feel” than

the classical algorithm.

A Connectionist Algorithm
Given that classification of the data set could be learned by a classical system, the purpose
of this experiment was to answer three different questions. First, could a connectionist network learn

to accomplish this task? Second, if a network could learn to classify the mushrooms, then would its
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hidden units reveal density plots that Step | What is the odour of the mushroom?

were banded and interpretable? Third. If it is almond or anise then it is edible.

If it is creosote or fishy or foul or musty or pungent or spicy
then it is poisonous.
If it has no odour then proceed to Step 2.

in the trained network, then what would Step 2 Obrain the spore print of the mushroom.
If the spore print is black or brown or buff or chocolate ar

if interpretable structure was discovered

the relationship be between this orange or yellow then it is edible.
If the spore print is green then it is poisonous.
structure and the nested [F-THEN If the spore print is white then proceed to Step 3.
Step 3 Examine the gill size of the mushroom.
statements in the algorithm described in If the gill size is broad, then it is edible.

If the gill size is namrow. then proceed to Step 4.
Box 6.2? In other words, would the Step 4 Examine the stalk surface above the
mushroom's ring.

network discover new rules (a novel If the surface is fibrous then it is edible.
.. . . If the surface is silky or scaly then it is poisonous.
cognitive archltecture). or would it If the surface is smooth the proceed to Step S.

Step S Examine the mushroom for bruises.
If it has no bruises then it is edible.
If it has bruises then it is poisonous.

simply be a mere implementation of the

classical rules discovered by the

modified ID3 algorithm. Box 6.2 Algorithm for identifying mushrooms

Network Input

The multiple characteristics within each feature of the data set poses an interesting problem
for encoding input data for the network. Basically, one has three choices as to how to represent the
data; a unary encoding (one unit for each characteristic which requires 119 input units), a binary
encoding (characteristics are represented across sets of input units—this requires 54 input units), or
a real value encoding (21 input units are used and characteristics are represented by discrete real
numbers). In the version of the mushroom problem described here*, features were coded as discrete
activation values between 0.0 and 1.0 in the 21 input units. Each different activation value
corresponded to a different value of the particular feature encoded in that input unit. For example,
if there were four different characteristics of a feature, the input values would be 0.0, 0.33, 0.66, and
1.0.

This method of coding the input allowed another question to be answered. Mainly, is
banding dependent on binary input patterns, or would discrete but real activation values produce
banding as well? Although the mathematical analysis of the banding phenomenon given above
should generalize to any discrete input values, this particular input coding allowed an empirical test

of this banding theory.

* Pilot studies have shown that networks using either unary encoding or binary encoding can successfully learn
this problem.
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Input

Figure 6.5 Network structure used to solve the mushroom problem.

Network Architecture

The network had 21 input units, five hidden value units, and one output value unit (see
Figure 6.5). The output value unit was trained to generate a response of “1” to an edible mushroom,
and a response of “0” to an inedible mushroom. Initial connection weights for the network were
randomly selected from the range {-1.0, 1.0]. The biases of each hidden unit and of the output unit
were set to 0, and were not modified during training. The network was trained with the Dawson and
Schopflocher (1992) learning rule, with a learning rate of 0.01 and with no momentum. The network
converged (i.e., achieved a hit on every pattern) after only 189 sweeps through the training set. The
fact that the network converged provided the answer to the first question—a value unit network
could learn to classify mushrooms as being edible or inedible.

The next step was to see if the network solution provided quantitatively different
performance in its generalization ability. If the network was solving the problem in some different
way than the classical algorithm, then different generalization results should be apparent. (It should
be noted that because of the nature of network responses—either zero or one—unclassified
responses cannot be explicitly made and are therefore scored as misclassified). To assess its

generalization ability, the network was retrained using the generalization training set defined for the
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classical algorithm and tested on the test set. The network converged on a solution in 572 sweeps.
When tested for generalization, the network misclassified 647 patterns or 16% of the test patterns
(compare with a 17% error rate for the modified ID3 algorithm). The network was then retrained
with the data sets reversed, and the network converged in 162 sweeps. This time, generalization was
slightly poorer—the network misclassified 992 patterns (a 24% error rate as compared to 20%).
Finally, the network was retrained a third time with the randomly assigned training and test sets. The
network converged in 468 sweeps and showed perfect generalization (0% error rate). Consequently,
it can be concluded that the (classical) decision tree produced by the modified ID3 algorithm and the
connectionist network produce quantitatively similar generalization results.

If the network and the decision tree are producing quantitatively similar results, does this
mean that they have qualitatively similar algorithms? To answer this question, banding analysis was

applied to the intemal structure of the fully trained network.

Interpretation of the Network

The density plots for the five hidden units in the trained network are shown in Figure 6.6.
As can be seen, three of the five hidden units reveal distinct banding while the other two show strong
activations near zero with scattered patterns representing small subsets of mushrooms. Therefore,
we can conclude that—at least from a mathematical basis—banding can occur with discrete, non-
binary inputs. But, are these bands interpretable?

Following the practice of Berkeley et al. (1995), descriptive statistics (i.e., means, standard
deviations, and correlations) were computed for the set of features that defined the mushrooms that
fell into each band identified in Figure 6.6. A definite unary feature is defined as a constant
characteristic of an input feature for all patterns within the same band. It is determined by calculating
the mean and standard deviation for each input feature within the band; a mean of x and a standard
deviation of 0.0 for any feature means that it has the constant characteristic x and therefore
represents a definite unary feature. Definite binary features are determined by pair-wise correlations;
a perfect positive correlation means that two input features are always present together while a
perfect negative correlation means that two input features are never present together. It should be
noted that computing definite binary features requires binary inputs; therefore, for the purposes of
computing correlations only, the discrete real inputs used to train the network were converted into
their binary counterparts following training. Analysis of both unary and binary definite features

reveals that almost all of the distinct bands in Figure 6.6 contain definite features.
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Figure 6.6 Jittered density plots for the five hidden units used to solve the mushroom
problem.

A full interpretation of the network is not provided here, however, as a complete
interpretation of a network will be provided shortly. Suffice it to say that although many of the bands
contained definite unary features, many more of the bands were characterized by definite binary
features. For example, if a band had the characteristic “No Odour” it would also have the
characteristic “Green Spore Print Colour” whereas if it had the characteristics “Almond or Anise
Odour” there were no perfect correlations to spore print colour, although spore print was never
green. Consequently, it appears that the network was detecting similar rules to those listed in Box

6.2; that is, the network keyed in to the same features that were detected by the classical rules.
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It should be noted that similar findings on network interpretability using the mushroom
problem were reported by Dawson and Medler (1996). In contrast to the current network, however,
their network used a reduced architecture—the number of input units was reduced from 21 to 16 as
determined by pilot studies®, and only four hidden units were used. The banding analysis of their
network revealed bands that contained very specific unary and binary definite features.

For example, all mushrooms falling within Band H of Hidden Unit 2 had the following

description:

Free gill attachment, narrow gill size, tapering stalk shape, stalk surface above ring

silky or smooth, stalk surface below ring silky or smooth, stalk color above ring is

pink or white, stalk color below ring is pink or white, white veil color, one ring,

several population. If it has bruises, then odor is almond or anise, crowded gill

spacing, and pendant ring type. If it does not have bruises, then odor is foul or

musty, close gill spacing, and evanescent ring type. If odor is almond or foul, then

spore print color is brown or green or orange. If odor is anise or musty, then spore

print color is buff or chocolate or purple or white. Leaves or path or urban or woods

habitat.

This level of detail is typical of the definite features for all of the bands identified in the network
reported by Dawson and Medler.

In fact, by analysing the bands produced across units for each pattern, it could easily be
determined how the network classified whether a mushroom was edible or not. For the most part,
three of the hidden units in the network (hidden units 1, 2, and 3) detected features that were
characteristic of poisonous mushrooms. As a result, the network defined a very large class of edible
mushrooms as those that failed to produce activity in its hidden units; 4064 (96.58%) of the edible
mushrooms produce bands of {0-A, 1-A, 2-A, 3-A]; these mushrooms are classified as edible because
the network fails to find any poisonous features in them.

While this approach worked for most of the mushrooms, it failed for a minority of them. A
small percentage of edible mushrooms fell into the same (high activity) bands in Hidden Unit 2 as
a number of poisonous mushrooms. As a result, a different approach was used to identify the

edibility of these mushrooms. The network pooled the activation of hidden units 0 and 2 to solve this

problem, essentially by intersecting the features detected by the two units with an AND operation.

3 During initial pilot studies, it was observed that certain input units always had weights very near zero because
they were either constant across all mushrooms or had no correlation on determining edibility. Therefore, those
input features were removed from the original training set and the input units were reduced accordingly.
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The high activity bands of Hidden Unit 2 captured groups of related mushrooms, but included both
poisonous and edible mushrooms. The intersection of the members of the high activity bands from
both units defined a set of edible mushrooms—this intersection picked out the edible mushrooms
from the bands in Hidden Unit 2 that also contained poisonous mushrooms. Consequently, the three
other “rules” needed to identify the remaining 144 edible mushrooms were: [0-C, 1-A, 2-H, 3-A],
[0-D, I-A, 2-J, 3-A], and [0-D, 1-A, 2-K, 3-Al—each of these rules uniquely identifies 48 or 1.14%
of the remaining edible mushrooms.

Again, this analysis showed that the network was using similar rules to the ones generated
by the classical algorithm, although the exact rules were not duplicated. Indeed, some of the bands
discovered in the network reported by Dawson and Medler represent classes that emerge very late
in the Box 6.2 algorithm. However, because the mushroom network is processing many other
features of mushrooms—many of which may be correlated with features that the Box 6.2 algorithm
ignores—many of the classes revealed in the network appear to be more complex than those that
could be derived from the algorithm.

Consequently, the analysis of the network structure shows that although the network
produces quantitatively similar results to the classical algorithm, it has in fact discovered another
algorithm for correctly classifying the mushroom data set. In other words, the network is not merely
implementing a classical algorithm, but has produced a novel algorithm. Some classical cognitive
scientists may argue, however, that the network is only implementing a classical algorithm that has
yet to be discovered (say, by some other classical learning paradigm besides the modified ID3

algorithm). But, this type of argument is circular and amounts to no more than moving the goal posts.

Classical Rules and Connectionist Networks

Although the above results are interesting in their own right, they lead us to a new question.
Can a connectionist network be taught explicit rules, and if so, what would the banding structure be
like?

Normally, in pattern classification, a network is only informed of what the correct
classification should be. Consequently, the number of output units is limited to the number of
possible output classifications. But, it is often the case that more information than just the
classification is actually available; that is, information about why an input pattern is one class or
another may be available. In certain respects, this could be viewed as preprocessing of the data,

although not in the normal sense. Usually, preprocessing involves identifying those features in the
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input that are relevant for classification and those features that are redundant and therefore can be
removed. In other words, preprocessing is used to reduce the amount of information at the input level
(this type of preprocessing was done in the original mushroom network).

Another way of preprocessing the data would be to add information at the output level. In
terms of a neural network, this would involve adding extra output units that could be trained to
express some prior knowledge about the problem. This has been termed ‘injection of hints” or ‘extra
output learning’ (e.g., Suddarth, Sutton, & Holden, 1988; Yu & Simmons, 1990; Gillmo &
Carlstrom, 1995). Thus, preprocessing in this sense becomes a powerful method for incorporating
prior knowledge. Furthermore, once trained, the extra output units can be removed without affecting

the classification performance of the network.

Inserting Rules

To see if rules could be inserted into the network via elaborated outputs, an experiment was
conducted in which the classical rules presented in Box 6.2 were used to elaborate the output.
Although previous research into output elaboration has focused on improving the learning speed and
generalization ability of networks (Gillmo & Carlstrém, 1995), the current research was more
interested in how inserting rules would affect the internal structure of the networks as determined
by the banding analysis.

Network Architecture

The network used 21 input units, five hidden units and ten output units. Again, input
activation values were discrete real numbers between 0.0 and 1.0. It was conjectured that because
there were five hidden units and five rules in Box 6.2 algorithm, each hidden unit may be tuned to
a specific rule. Ten different output units were used in the network. One unit encoded for the
edible/poisonous classification, and the other 9 units encoded whether or not the mushroom was
classified by Rule 1 edible (R le), Rule 1 poisonous (R1p), etc. There was only one unit for the third
rule as Rule 3 only produces an edible or unclassified response. Furthermore, only one “rule” output
unit was activated at any time. The network structure is shown in Figure 6.7.

Network parameters were slightly changed from the previously reported experiment.
Weights were randomized between +1.0, and all biases were initialized to zero; this time, however,
biases were modified during training. The hit criterion was set to 0.0025, learning rate was set to o

= 0.005, and no momentum was used.



Chapter 6 146

Output
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Figure 6.7 Network structure used for inserting rules into the mushroom network. One output
unit is used for classification (E/P) and the other nine are used to indicate the rule
necessary for classification (e.g., Rule 1 edible = Rle).

Network Interpretation

First, it should be noted that it took longer to train the network with the elaborated output
than the original mushroom network; convergence was reached after 8,699 sweeps through the
pattern set. Second, and more importantly, the network showed very marked banding. As can be seen
in Figure 6.8, injecting rules into the network via extra output units cleaned up the hidden unit
banding structure as compared to the standard network illustrated in Figure 6.6. Definite feature
analysis of the patterns falling into each band showed that all bands had highly interpretable
structure.

Interpretation of Hidden Unit O shows that there are 7,020 pattern falling into 0-A and that
all the patterns in this band share the one constant feature of a white veil colour and an odour that
is not almond or anise (a characteristic of edible mushrooms). The 18 patterns that appear separated
from the main cluster are included in 0-A because they have a white veil colour and have no ring
while all the other patterns in 0-B and 0-C have one ring. The 280 pattems falling into 0-B all have
no bruises, no odour, an enlarging stalk shape, and one ring. Band 0-C contains 824 patterns that

have a free gill attachment, a smooth stalk surface above ring, a white stalk colour above ring, and
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Figure 6.8 Jittered density plots for the five hidden units used in the network trained

with the elaborated output.

a white veil colour in addition to one ring. Furthermore, both 0-B and 0-C show extreme forms of

microbanding. For example, in addition to the above characteristics, the 12 patterns forming the

lower bound of 0-C have no bruises, no odour, an enlarging stalk shape, brown stalk colour below

ring, an evanescent ring type, a white spore print colour, and are found living in leaves. The 96

patterns forming the upper bound of 0-C, on the other hand, have bruises, an almond or anise odour,

a tapering stalk shape, white stalk colour below ring, a pendant ring type, a brown or purple spore

print colour, and are found in woods. Both microbands share crowded gill spacing, narrow gill size,
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a smooth stalk surface below ring, and a population of several. The remaining microbands in 0-B and
0-C have similarly rich interpretations.

Hidden Unit 1 has three very distinct bands. The 7, 348 patterns that are in 1-A are
delineated by not having certain characteristics: specifically, both the gill colour and the spore prints
colour is not green (remember that a green spore print indicates a poisonous mushroom by Rule 2).

Band 1-B contains 704 patterns that all have bruises, have an almond or anise odour, free gill
attachment, close spacing, broad gill size, enlarging stalk shape, smooth stalk surface above ring,
white stalk colour both above and below ring, white veil colour, one pendant ring, and a black or
brown spore print colour. All patterns falling into 1-C, also have bruises, but no odour, free gill
attachment, close spacing, broad gill size enlarging statk shape, smooth stalk surface both above and
below ring, white stalk colour both above and below ring, white veil colour, two pendant rings,
and—importantly—green spore print colour. In terms of the rules, the important distinction between
1-B and 1-C is that 1-B has almond or anise odour, while 1-C has no odour and green spore print
colour.

Hidden Unit 2 is characterized by three bands that again contain microbanding. The majority
of patterns (8028) are in 2-A which contains no definite features. Band 2-B has 24 patterns with the
1mportant characteristics of no bruises, no odour, narrow gill size, a fibrous stalk surface above the
ring, and a white spore print colour. In other words, all the patterns in 2-B are classified as edible
because they satisfy Rule 4e. The final 72 patterns are in 2-C which contains all mushrooms with
no odour, white spore print colour, narrow gill size, and either a scaly, silky, or smooth stalk surface
above the ring. Furthermore, definite binary feature analysis revealed that if the mushroom had a
scaly or silky stalk surface above ring, then the mushroom always had no bruises. This means that
if the mushroom had a smooth stalk surface above the ring, then the mushroom may or may not have
had bruises which is an important characteristic for determining if a mushroom is edible or
poisonous (Rule 5).

Both Hidden Unit 3 and Hidden Unit 4 revealed seven different bands. Again, each band has
very rich interpretation. For the sake of brevity, however, only the highlights of the units will be
discussed. Basically, Hidden Unit 3 detects mushrooms primarily based on odour. Band 3-A does
not contain any mushrooms with either almond or anise odour. All other bands in Hidden Unit 3
contain mushrooms with almond or anise odour or mushrooms with no odour. Those bands

containing mushrooms with no odour all have white spore print and narrow gill spacing and
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therefore are differentiated by either the stalk surface above the ring, or if the stalk surface above
ring is smooth, by the presence or absence of bruises.

In Hidden Unit 4, all mushrooms falling into the higher bands have no odour, but can be
differentiated because of their spore print colour. The exceptions to this are 4-D which contains
mushrooms with both chocolate and white spore print colours and 4-G which contains mushrooms
with only white spore print colour.

With the interpretation of the internal structure of the hidden units completed, we can now
turn to how the network is actually solving the problem. Of the possible 1,323 band combinations
(3 x 3 x3x7x7), the network only produced 15 different combinations. Moreover, each of these
combinations uniquely identified one of the classical rules as laid out in Box 6.1. These different

combinations are presented in Table 6.1 along with the rule that the bands encode.

Table 6.1

Band combinations and the rules thev encode

Band Combination Rule Band Combination Rule

[0-C, I-A, 2-A, 3-C, 4-A]

[0-C, I-B, 2-A, 3-E, 4-C] Rule le [0-A, 1-A, 2-A, 3-A, 4-A] Rule Ip
[0-C, I-B, 2-A, 3-G, 4-B]

[0-A, I-A, 2-A, 3-A, 4-F)

[0-B, 1-A, 2-A, 3-A, 4-D] Rule 2e [0-A, 1-C, 2-A, 3-G, 4-A] Rule 2p
[0-B, I-A, 2-A, 3-A, 4-E]

[0-A, I-A, 2-A, 3-G, 4-A] Rule 3e

[0-A, 1-A, 2-B, 3-D, 4-G] Rule 4e [0-B, 1-A, 2-C, 3-A, 4-D] Rule 4p

[0-A, 1-A, 2-B, 3-F, 4-D]

[0-C. I-A, 2-C, 3-D, 4-G] Rule Se [0-A, I-A, 2-C, 3-B, 4-A] Rule 5p
[0-C, 1-A, 2-C, 3-F, 4-D]

As can be seen, only four band combinations are required to classify all poisonous
mushrooms. For example, the combination [0-A, 1-A, 2-A, 3-A, 4-A] contains all 3,796 patterns that
fail Rule 1 and therefore are poisonous. Rule 2p is represented by combining 1-C—which has
contains mushrooms with a green spore print colour—with 3-G (black, brown, green, or white spore
print colour). Combining 0-B, 2-C, and 4-D picks out those mushrooms with no odour, white spore

print colour, narrow gill spacing, and silky or scaly stalk surface above the ring. Finally, the eight
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mushrooms that are classified as poisonous because of Rule S are picked out by the band
combination [0-A, I-A, 2-C, 3-B, 4-A].

Identifving edible mushrooms, on the other hand, requires either one (Rule 3e), two (Rules
de & Se), or three (Rules le & 2e) different band combinations. The interpretation of the band
combinations for the edible rules are similar to those for the poisonous rules and therefore are not
elaborated. It should be noted, however, that these different combinations often contain bands that
are also used to identify poisonous mushrooms (e.g., 0-B, 2-C, 3-G, 4-D). It is the combination of
bands, nevertheless, that distinguish the rules; for example, Rule 4p and 2e are distinguished because
4p has Band 2-C whereas 2e does not.

Consequently, these results show that classical rules can be inserted into the hidden unit
structure of a connectionist network. In other words, prior knowledge can be used to constrain how
a network leamns to solve a problem. Contrary to the original hypothesis, however, the network did
not adopt a “one rule - one hidden unit” type of structure. Instead, rules were uniquely encoded
across hidden units in a distributed manner. The banding analysis, nevertheless, makes it fairly
straight-forward to interpret the distributed nature of the network and, therefore, makes the goo a

little less intimidating.

Are They Really Rules?

From the above results, it is evident that rules can be inserted into the structure of a
connectionist network. But, the skeptic might ask, would any elaborated output suffice for creating
the highly banded structure, or was there something special about the outputs chosen? In other
words, were the extra output units contributing any useful structure to the network, or was the
banding due to having a higher dimensionality of the output space and the rules a mere side-effect
of this?

To answer these questions, a control network was trained with randomly elaborated outputs.
The network had 21 input units, five hidden units, and ten output units as before. One output unit
was used for classifying the mushroom as edible or poisonous, while the other nine output units were
assigned random values. That is, for each input pattern, one of the nine extra output units was
randomly assigned to be turned on whenever that pattern was presented. Therefore, “random rules”

were inserted into the network.
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Network Interpretation

The control network trained with the random rules completely failed to converge on a
solution within 10,000 sweeps through the training set. To ensure this was not a local minimum, the
maximum number of sweeps was increased to 20,000 and ten different networks were trained. Again,
none of the networks reached convergence. In fact, of the 81,240 possible hits (10 output units x
8,124 patterns), the networks typically produced around 7,000 hits and 74,000 misses. Clearly, the

insertion of random rules disrupts network learning.

04 0.6 08 1.0 0.0 0.2 04 0.6 08 10
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Figure 6.9 The jittered density plots for a network trained with “random rules” in the
elaborated outputs. Convergence was never attained, and no banding
structure is evident in any of the plots.
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Although convergence was not attained, the density plots of the hidden units were graphed
to see if any banding like that shown in Figure 6.6 or 6.8was evident. As can be seen in Figure 6.9,
however, no banding structure is evident within the hidden units at all. In fact, one hidden unit
produces absolutely no activation at all. Thus, we can conclude that random rules at the output level

do not produce banding in the hidden layer.

Algorithmic Level Conclusions

It has been argued that connectionist models are no more than mere implementations of
classical cognitive theories (e.g., Fodor & Pylyshyn, 1988). Furthermore, while some connectionists
maintain that their networks are in fact algorithms (Rumelhart & McClelland, 1985), the network
structure is often so complex that it defies traditional analysis techniques and thus has been likened
to a pile of goo. Consequently, although both connectionist and classical researchers would like to
be able to say something about the algorithmic nature of networks (one for and one against), the
opacity of network structures make this a difficult task indeed.

This chapter reviewed and expanded a new interpretation technique for a specific type of
connectionist network that makes this task more tractable. An overview of the banding analysis of
hidden value unit structure was provided. Briefly, following training, a network is presented with
the input patterns once again and the activities produced in the hidden units are recorded and plotted
in jittered density plots. It turns out that these plots are highly structured and form “bands™;
furthermore, all the patterns that fall into a certain band usually share definite unary or binary
features. Consequently, the banding patterns are interpretable and, when combined across units, form
an easily identified algorithm for solving the pattern classification problem.

Although sharing some characteristics, the algorithms provided by the banding analysis are
not the same as the classical rules produced by more traditional techniques. In other words,
connectionist network do not provide merely implementational accounts of classical cognitive
algorithms, but produce novel cognitive theories (for a more in depth philosophical discussion of this
point, see Dawson, Medler, & Berkeley, 1997). At the same time, however, it was shown that
classical rules could be inserted into a network’s structure by elaborating the output responses of the
network. This implies that using prior knowledge during training produces network structures that
may not be that dissimilar from classical theories of cognitive algorithms.

In conclusion, the results from this chapter indicate that this banding analysis allows

cognitive scientists to generate detailed algorithmic accounts of PDP models of cognitive processes.
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Hence, connectionist models should be able to inform other empirical investigations of cognition
(e.g., by suggesting experiments to be performed by cognitive psychology). Furthermore, although
connectionist networks—if left on their own—can discover novel cognitive theories, classical
cognitive theories can also be recognized within the network structure. Thus, it would seem that the

rift separating classical and connectionist researchers is not as large as we have been led to believe.
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Chapter 7

The Functional Architecture & Connectionism

Our analysis of the algorithmic level has shown that connectionism is not a mere
implementation of existing classical models, but in fact can produce novel cognitive theories. This
result is a direct consequence of interpreting the internal structure of hidden units via banding
analysis. Although this result is important in and of itself, our analysis of the algorithmic level is
not quite complete. As stated in Chapter 2, we must also study the functional architecture in order
to make claims of strong equivalence.

The functional architecture is the foundation of the algorithmic level; it consists of those
basic processing steps from which all algorithms are built. Furthermore, the functional architecture
acts as the bridge between analyses at the algorithmic and implementational levels. In other words,
the functional architecture links the “cognitive™ with the “neural” level—it is where mind becomes
fully instantiated within brain.

Although it is tempting to assign the functional architecture its own distinct level (the quad-
level hypothesis?), it rightly belongs at the base of the algorithmic level (e.g., see Figure 2.3). A
quick analogy will make this clear. Computing science makes the distinction between software (the
program) and hardware (the physical machine). Regardless of the actual programming language
used—C, Pascal, Fortran, Lisp, etc.—software must somehow be implemented on the hardware. To

accomplish this, all languages are derived from the same building blocks; that is, machine code.
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Machine code is the base set of instructions (programs) that can be directly implemented in a
physical device. The study of the functional architecture, then, is equivalent to the study of machine
code.

This analogy also highlights a very real problem in the study of the functional architecture.
Although it would seem to be a fairly simple exercise to identify the machine code and write
programs, it is in fact a very difficult—if not near impossible—problem when the instructions are
missing. This exact problem is aptly described by Arbib (1972). In 1966, a new computer was
installed at Stanford University; however, the instruction manuals failed to arrive. A group of
determined graduate students declared that the instructions were not needed as they would be able
to deduce the machine code (and write meaningful programs) simply by studying the structure of the
physical machine. After several hours of experimentation, however, the students were unable to
deduce anything meaningful about the machine code. Consequently, the graduate students were
unable to write even the simplest of programs and were lead to proclaim that the computer was quite
perverse. When the instructions finally arrived, however, it was revealed that the new machine was
in fact very similar to the machines previously used by the students.

Studying the functional architecture is akin to the graduate students trying to discern the
machine code of the computer—it would be a relatively simple exercise, but someone forgot to give
us the instructions to the brain. Unfortunately, this does not bode well for cognitive scientists as it
seems they have a nearly impossible task ahead of themselves. Exactly how, then, does one go about
studying the functional architecture of the mind?

Initial studies of the functional architecture were limited to interpreting results from
cognitive psychology experiments. One of the best examples of this line of research is the long
running imagery debate between Stephen Kosslyn and Zenon Pylyshyn (e.g., Kosslyn, 1980;
Pylyshyn, 1973, 1981). The debate started in 1973 with Pylyshyn’s critique of mental imagery; he
began by intimating that the very study of imagery was paradoxical and muddled (How can one look
at a mental image? Why can't we count the stripes of an imagined tiger?). Instead, Pylyshyn
proposed that propositional structures are used for all forms of cognition, including imagery.

Kosslyn, however, believed that images are themselves a component of the functional
architecture. This conclusion was based on a series of experiments in which subjects were instructed
to study a map, and then asked to find certain landmarks on the map from memory (e.g., Kosslyn,

Ball, & Reiser, 1978). Results from these experiments showed that the time required for the subjects
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to respond was directly related to the distance between the landmarks. Kosslyn interpreted this to
mean that subjects must store and manipulate mental images.

Pylyshyn (1981) has pointed out, however, that if the instructions are changed to remove any
explicit or implicit implications of time (i.e., from pushing the button when you “arrive” at the
second location, to what is the compass bearing of the second location) then the relation between
reaction time and distance disappears. In other words, by changing the belief of the subject, the
subject’s behaviour is changed. Pylyshyn (1984) argues that the functional architecture must be
cognitively impenetrable; that is, changing belief does not change performance. Because mental
images are subject to belief, then they must not be part of the functional architecture.

But, Kosslyn (1990) cites several cognitive studies that show that changing the belief of
subjects does not, in fact, change their performance on imagery tasks. Furthermore, he maintains that
the study of mental imagery is the study of the functional architecture and may be one of the first

case studies of how the brain creates the mind.

The study of mental imagery is interesting in part as a bridge between perception

and mental activity. As such, it is the cognitive faculty “closest to the neurology”

because so much is now known about the neural mechanisms of perception.

(Kosslyn, 1990, p. 94)

The imagery debate has recently culminated in Kosslyn (1994) declaring the debate over in
favour of mental imagery (Image and Brain: The Resolution of the Imagerv Debate). Part of the
reason for this bold claim is that Kosslyn has moved from using purely cognitive tasks to using brain
imaging techniques. Behavioural data—in Kosslyn's view—has proven inadequate to answer the
question of whether or not visual mental images rely on a representation that depicts information.
Thus, the only way to answer this question is to image what the brain is doing during mental imagery
tasks. For example, Kosslyn et al. (1996) report that activation in area 17 is correlated with response
times for subjects visualizing letters. Furthermore, Tagaris et al. (1997), have shown occipital lobe
activation during mental rotation studies is associated with error performance.

These two experiments highlight one of the approaches to studying the functional
architecture today; that is, recording the activity of the brain during mental processing. Cognitive
neuroscientists have an arsenal of different analysis techniques available to them today to aid in this
endeavour. Examples of these include invasive procedures such as single cell recording (e.g., Foldidk
& Young, 1995) and neural circuit analysis (e.g., Byrne & Crow, 1995), and various non-invasive

imaging procedures including Event-Related Potentials (ERPs), functional Magnetic Resonance
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Imaging (fMRI). Positron Emission Tomography (PET), and Single Photon Emission Computed
Tomography (SPECT) (e.g.,Arbib, 1995).

Another method often employed to study the functional architecture is to note behavioural
deficits associated with some form of brain disturbance. In other words, function is inferred from
dysfunction. One such example is the dual-route model of reading advanced by Coltheart (e.g., 1980,
1983). The different routes were proposed after noting that patients suffering from various injuries
manifested different forms of acquired dyslexia depending on the location of the injury. Although
inferring function from dysfunction is a useful technique, it is limited to correlational and not causal
inferences. This is because patients are studied only following trauma, and therefore, there is no
measure of their pre-trauma baseline performance. Consequently, their behaviour can only be
correlated with the behaviour of normal subjects.

Connectionism is another approach often used to address questions about the functional
architecture. In fact. it may be in a very unique position to contribute to analyses of the functional
architecture—specifically, in inferring function from dysfunction. This is because connectionism
allows a causal link to be made between behavioural deficits and lesioned structure; that is, we can
measure the performance of a network both pre- and post-trauma and directly relate any differences
in performance to disturbances in the network structure. Consequently, there is a large and growing
literature on using connectionist networks to model neuropsychology deficits (for a review of
numerous models and their implications, see Farah, 1994; Plaut, 1993).

In this chapter, the results of lesioning two connectionist networks are used to specifically
address issues about the functional architecture. The first experiment examines how semantic
knowledge may be organized within memory, and how this organization may breakdown in patients
with Alzheimer’s Disease (AD). One assumption is that knowledge is organized in a semantic
network (e.g., Collins & Quillian, 1969; Collins & Loftus, 1975) and that the performance of AD
patients is characterized by a breakdown in the structure of semantic knowledge, which includes the
formation of new abnormal associations and clusterings (e.g., Chan et al., 1993). The results from
the first experiment challenges both of these assumptions and suggests an alternative
architecture—specifically, a modification of the IAC architecture—to account for normal and patient
data.

The second experiment addresses the locality assumption (see Farah, 1994) that is often
adopted within cognitive neuroscience. Farah has argued against the locality assumption based upon

the results from lesioned connectionist networks, using the tact that the “nonlocal” nature of PDP
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networks precludes the locality assumption. Current results, especially when combined with the
results from Chapter 6, indicate that the assumption that PDP models are nonlocal may be incorrect,
and therefore that the locality assumption should not be dismissed simply based on the performance
of lesioned networks.

Both sets of experiments will be used to address fundamental questions about the functional
architecture—the first about how semantic knowledge may be stored, the second about how local
systems may develop. In both cases, lesioning the networks is an essential component of studying
the functional architecture. This is because if our assumptions about the functional architecture are
correct, then intact networks should produce results in line with the behaviour of normal subjects
and lesioned networks should produce resuits in line with patient data. If the results are different,

then our assumptions about the functional architecture will be incorrect.

Semantic Disturbances in AD Patients

Patients suffering from Alzheimer's disease (AD) often show deterioration in the
hierarchical structure of semantic memory. These disruptions manifest themselves in the poor
performance of AD patients on tests of verbal fluency. For example, Chan et al., (1993) have
reported that AD patients produce significantly fewer animal names than age-matched normal
controls. Furthermore, the semantic maps of AD patients are abnormal in that the general semantic
structure appears to be breaking down; there is an increase in the distance between concepts and
abnormal clusters are formed.

To account for these data, Chanet al., (1993) assume that semantic knowledge is represented
within a semantic network of the type proposed by Collins and Loftus (1975). Consequently,
extended distances between animal names within AD patients’ cognitive maps are interpreted as a
weakening of the associations between concepts. Furthermore, the abnormal clusters are seen as a
disruption in semantic organization due in part to the “establishment of new, albeit abnormal,
associations” (p. 259). Unfortunately, given the etiology of AD, the active reorganization of semantic
memory seems unlikely. Thus, the assumption that semantic knowledge is encoded within a classical
semantic network may be incorrect. In other words, the functional architecture underlying semantic
memory may not be a semantic network of the Collins and Loftus type.

If a classical semantic network fails to account for the data, then what are the alternatives?
We have already been introduced to one alternative in Chapter 4—the Interactive Activation and

Competition (IAC) model of McClelland (1981). Such a network encodes semantic knowledge in
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nodes that are connected to each other via both positively (activation) and negatively (competition)
weighted connections. Thus, it differs from classical semantic networks. The question arises as to
whether or not these positive and negative connections are required for the functional architecture
of semantic knowledge. If it can be shown that a lesioned IAC network (i.e., one not dependent on
actively forming new connections) can produce qualitatively similar results to those obtained from

AD patients, then an alternative account of the functional architecture will be provided.

A Connectionist Account of Semantic Disturbances

Chan et al.’s (1993) results were based on subjects’ responses during an Animal Fluency
Test that is administered as part of a standard neuropsychological battery used at the Alzheimer’s
Disease Research Center at the University of California, San Diego. Subjects were requested to
name as many animals as possible within 60 seconds; researchers recorded the responses verbatim
and in the order in which they were generated.

To simulate these results, an IAC network was created to encode both animal names and a
subset of their semantic properties. Network responses (i.e., animal names) were recorded over a set
number of cycles, and compared to results reported by Chan et al. In other words, the network was
asked to recall as many names as possible over a set amount of time.

Normally, the IAC architecture is used to recall information by allowing the network to
settle into a steady state. For example, to find the properties of Lance, one would activate the node
for “Lance” and then let the network settle into a state in which the property nodes “Jets”, *20’s",
“J.H.”, “Married”, and “Burglar” were all active at the same time. For the recall of animal names,
however, a steady state needs to be avoided. Thus, the basic IAC architecture was modified to
include a suppression cohort. Basically, the suppression nodes within this cohort act to drive down
the activation values of recently activated name nodes and associated instance nodes. In other words,
once an animal’s name is recalled, it is suppressed to prevent repetitious recall.

Method

Stimuli: The animal names encoded in the network were chosen from Table 8 (A FOUR-
FOOTED ANIMAL) of Battig and Montague (1969). This table lists both the most commonly recalled
animals and their frequency of occurrence (maximum 442). Only those animals recalled at least ten
times were included in the network. Thus, a total of 42 animals were chosen, with frequencies

ranging from 426 for “dog” to 11 for “elk.”
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In the data reported by Chan et al. (1993), three different semantic categories were
identified: size (small, large), diet (herbivore, carnivore), and domesticity (domestic, wild). The
current study also uses these three categories; however, these categories have been expanded and
two more categories have been added. Therefore, knowledge is encoded into the network using five
different semantic categories. These categories are size (small, medium, large), domesticity
(domestic, wild), diet (omnivore, carnivore, herbivore), range (Americas, Africa), and type (canine,
feline, equine, bovine, ovine/porcine, cervidae, rodent, other). It should be noted these
characteristics are only a small subset of all possible characteristics and that the characteristics
assigned to certain animals are sometimes spurious and not meant to be fully accurate. The 42 animal
names and their assigned semantic characteristics are reported in Appendix B.

Network Architecture: The network architecture is based on a slight modification of the

standard Interactive Activation and Competition (IAC) model of McClelland (1981). The basic
network structure is illustrated in Figure 7.1. There are nine different cohorts within the network:
one instance cohort, five property cohorts (size, domesticity, diet, location, type), a names cohort,
a priming cohort, and a suppression cohort. Positive connections exist between cohorts, and negative
connections exist within cohorts (the suppression cohort is the one exception to this).

There are 42 different instance nodes—one for each animal name—within the instance
cohort (represented by the filled circles in Figure 7.1). Connections to other nodes within the cohort
have a value of -0.5, and all connections from instance nodes to property nodes (represented by open
circles in Figure 7.1) have a value of 1.0. All property nodes have inhibitory connections of -1.0 to
other nodes within their cohort, and have a self-excitatory connection of 0.5. The excitatory
connections from the property nodes to the instance nodes were randomized between [0.5, 1.0] to
represent different degrees of knowledge. In other words, given the instance of “lion”, it is easy to
produce the characteristic of “feline™”; but, it may be more difficult to produce “lion” as an instance
of “feline”,

The priming cohort had one node—*“animals”—which was used to prime the network in
order to recall the animal names (if the network were expanded to include other semantic categories,
other nodes, such as “clothing” could be added to this cohort). As the priming node was clamped
“on” for recall, a self-excitatory connection was not required. The priming node was connected to
the instance nodes by randomized excitatory connections. To compute these weights, the recall

frequency of animal names (see Appendix B) was normalized and used to scale a random value




Chapter 7 161

Priming /'x
(= o

Names
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Figure 7.1 The modified IAC network used to recall animal names. Solid lines
indicated excitatory connections, broken lines are inhibitory connections,
and arrows indicate direction of signal. Note that not all units are shown
nor are inhibitory connections within each cohort.

between [0.0, 0.5] which was then added to a base weight of 0.5. Hence, weights from the priming
cohort to the instance cohort fell within the range [0.5, 1.0]. Again, this randomization was
performed to represent differing amounts of semantic knowledge.

Nodes within the names cohort had self-excitatory connections of 0.5 and inhibitory
connections to other name nodes of -0.5. Each name node had an excitatory connection of 1.0 to the
appropriate instance node, and an excitatory connection of 2.0 to the appropriate suppression node.
Nodes within the suppression cohort were rather unique, in that they only received excitatory
connections from the name nodes (instead of the instance nodes) and a self-excitatory signal of 2.0.

Inhibitory connections to other nodes within the suppression cohort were set to -0.01 and the
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inhibitory connections to the appropriate nodes with the names cohort and the instance cohort were
set to value of -3.0.

Recording Network Behaviour: To assess the recall abilities of the network, ten different
“subjects” were created by randomly setting the weights between the property cohorts and the
instance cohort as described above. In effect, each network represented a subject with differing
degrees of semantic knowledge. These networks were considered as “normal” or control subjects.

Each network was primed by clamping the ‘Animals’ node to a value of 1.0. The network
was then allowed to process the signal for 180 cycles. At each cycle, the activation values for each
of the 42 names were recorded. Following processing, the activation values were plotted (see Figure
7.2) and an animal’s name was considered recalled at the peak of an activation. A “winner-take-all”
strategy was adopted for the processing signal: that is, if the peak of one activation curve was

overshadowed be the processing of another signal, then the overshadowed animal was considered

not recalled.

Normal Performance
Results show that the modified IAC network successfully recalls animal names. In fact, the

networks recalled on average 14.9 (s.d. = 2.84) animal names within the 180 processing cycles. The

Normal

Activation

Cycles
Figure 7.2 Typical activation values for a normal subject. Peaks

represent an animal name being recalled.
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animal names and the number of processing cycles required for recall for each of the ten normal
subjects are reported in Appendix C. The first thing to note is that some of the subjects repeated
animal names; however, no subject repeated a name more than once. When repeated names were
removed from the recall list, subjects reported 13.4 (s.d. = 1.95) unique names on average.

Furthermore, the recalled list of names for each subject clearly exhibits clustering of
animals. For example, the response pattern of Subject 7 starts with “dog” and then shows a rapid
recall (10 processing cycles or less between names) of animals that generally fall into the categories
large, North American, domestic, and herbivore. There is a slight pause (21 cycles) and then the
subject generates animals that roughly fall into the categories large, African, wild, and herbivore.
Note, also, that recall of names tends to slow down as the number of processing cycles increases.
This type of response patterning is typical of actual human performance on the same task. (see
Gruenewald & Lockhead, 1980).

The results from the ten normal subjects in this simulation are qualitatively similar to the
responding of humans. The next step to take is to lesion the architecture to see if the damaged
networks would produce similar results to AD patients. This is where connectionist models have the
advantage over clinical studies. We can damage our normal networks and directly relate any
behavioural deficits to the lesions. In other words, we can directly compare pre- and post-trauma

behaviour.

AD Performance

There are many different approaches that researchers have taken to lesioning PDP networks:
for example, adding noise to existing connection weights, cutting specific connections between
processing units, and removing entire processing units from the network (for a review see Harley,
1993). For this experiment, lesions were created by reducing the connection weight by a random
amount. This technique was adopted to mimic the reduction in dendritic arborization and
neurotransmitter release (which causes a reduction in signal transmission) that is prevalent in AD
(e.g., Kolb & Wishaw, 1996).

“Patient” networks were created by multiplying each connection weight by a random number
between [0.0, 1.0], multiplying this number by 25%, 50%, 75%, or 100% to represent varying
degrees of damage, and then subtracting the amount of damage from the original connection weight.
Thus, damaged connection weights were driven towards zero, and weights that were positive

remained positive while weights that were negative remained negative.
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The results of lesioning subject |—in terms of activation values—are shown in Figure 7.3
for networks with 25%, 50%, 75% or 100% damage while Table 7.1 reports the processing cycles

and animal names recalled for the normal network and the damaged networks.
Table 7.1

Number of cycles required and names recalled as a function of damage

Normal 25% 50% 75% 100%
Cycle | Name Cycle | Name Cycle | Name Cycle | Name Cycle | Name
23 horse 32 donkey 37 donkey 48 donkey 65 donkey
30 donkey 41 bull 63 buffalo 92 camel 126 camel
39 bull 52 buffalo 73 llama 125 donkey
47 buffalo 63 horse 83 mule 158 camnel
57 cow 75 bull 87 bull
64 zebra 80 zebra 103 cow
72 lamb 84 mule 119 buffalo
85 moose 95 llama 129 mule
100 sheep 102 horse 150 cow
117 cat 108 cow 167 buffalo
131 giraffe 118 buffalo
137 camel 136 mule
145 rhino 141 horse
147 elephant | 51 llama
164 bear 161 bull

168 cow

As can be seen, the processing of the network with 25% damage appears to be more
convoluted than the normal network (cf., Figure 7.2). Closer inspection of the plot, however, reveals
that many of the peaks are repeats. In fact, Table 7.1 shows that of the 16 names recalled by the
damaged network (one more than the normal network) half of the names are repeats, with some of

the names being repeated a total of three times.
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Figure 7.3 The processing activation values for the recall of names in
networks damaged 25%, 50%, 75% and 100% for Subject 1.

The plots of the 50%, 75%, and 100% damaged networks indicate that increasing the amount
of damage decreases the number of activation peaks, while increasing the amount of cyclic
processing. In other words, fewer animal names are recalled, and those that are recalled are repeated
more often. Consequently, for the remainder of the patient networks, a moderate amount of damage
(i.e., 50%) was assumed.

Results from the patient networks are presented in Appendix D. Compared to normal
networks, patient networks recalled on average significantly fewer animal names in terms of both
total number of names recalled (X = 11.6, s.d. = 1.776; 1(18) = 3.129, p < .05) and uniquely recalled
names (X = 5.7, s.d. = 1.636; t(18) = 8.134, p < .0l). Furthermore, although some semantic
relationships appear to be preserved, when patient responses are compared to their normal
counterpart, disruptions in the organization of semantic knowledge are clearly evident. For example,
compare the patterning of responses for Subject | pre- and post-trauma. These results are

qualitatively similar to the results given by AD patients when tested on the same task.
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Conclusions and Implications

The results from these studies indicate that disturbances in the organization of semantic
memory can be accounted for by a simple weakening of connections between processing elements
instead of the active reorganization of semantic knowledge as proposed by Chan et al (1993).
Consequently, the modified IAC network may be a step towards identifying the functional
architecture of semantic memory. Not only can it qualitatively account for the behaviour of normal
subjects, but it also accounts for the data of patients suffering from AD.

This implication about the functional architecture of semantic memory is further supported
by an unpredicted result of the damaged networks’ performance. Although normal networks
sometimes recalled names that had previously been reported, damaged networks invariably repeated
names already reported. In fact, with 50% damage, half of the total names recalled by the networks
were repeated. Within the cognitive neuroscience literature, the inappropriate repetition of previous
responses is known as perseveration (e.g., Plaut & Shallice, 1993).

The current network was not designed as a model of perseveration; however, perservation
is a characteristic of AD (e.g., Miller, 1989: Girling & Berrios, 1990; Perry et al., 1996). As stated
earlier, the power of theory is measured not only in terms of how well it accounts for the collected
data, but also in terms of how well it predicts future data. Clearly, this theory of the functional
architecture for semantic memory both accounts for previous data and has successfully predicted
new data.

While these results show how semantic memory may be organized, the next experiment will
address a fundamental assumption used within cognitive neuroscience when interpreting the

behaviour of patients suffering from some form of brain trauma.

The Locality Assumption
One problem of considerable interest within cognitive neuroscience is the issue of assigning
specific behavioral functions to specific brain regions; that is, the localization of function'. Initially,

such assignments were based on patients who had suffered some form of brain lesion and

! This research has been reported in Medler, D. A., Dawson, M. R. W, Kingstone, A., & Panasiuk, E. (1998).
The locality assumption revisited: The relation between internal structure and behavioral dissociations. Under
review.
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consequently manifested some behavioral deficit (e.g., damage to the posterior superior temporal
lobe near the superior temporal gyrus and the resulting inability to understand language and speak
in coherent sentences; a.k.a., Wernicke's aphasia). It is assumed, then, that the damaged brain region
is critical for the behavior in question. Although recent technological advances in brain imaging
techniques (e.g., fMRI, PET, SPECT, ERPs) have been able to shed more light on the problem,
lesioning studies are still one of the major contributors to this area (e.g., Tranel, Damasio, &
Damasio, 1995; Franz, Ivry, & Helmuth, 1996).

To aid in this endeavor, cognitive neuroscientists find it useful to distinguish between two
qualitatively different types of behavioral deficits. A single dissociation consists of a patient
performing task [ extremely poorly and task I at a normal level, or at least very much better than task
L. In contrast, a double dissociation occurs when one patient performs task I significantly poorer than
task II, and another patient performs task II significantly poorer than task I (e.g.. Shallice, 1988).

Cognitive neuroscientists have spent a great deal of time examining the logic underlying the
kinds of valid inferences that can be drawn from dissociation data (e.g.. Caramazza, 1986; Shallice,
1988). For example, Shallice argues that there is no evidence that a double dissociation can be
observed as the result of two different lesions to a “properly distributed network™ (p. 257); that is,
a system that is not local cannot manifest a double dissociation. The corollary of this view is that
“the existence of a neuropsychological double dissociation signifies that at least part of an overall
system is functionally specialized” (p. 258).

The view that dissociation data can be used to conclude that internal structures are
functionally specialized or local in nature is strongly related to what Farah (1994) calls the locality
assumption. According to the locality assumption, when one component of the functional
architecture is damaged, the effects of this damage will be exclusively local, with the nondamaged
components of the architecture functioning normally in the absence of the damaged component: “the
patient’s behavior will therefore manifest the underlying impairment in a relatively direct and
straightforward way” (Farah, 1994, p. 43).

Farah (1994) hypothesized that the locality assumption may be unwarranted for two reasons.
First, its validity depends upon the additional assumption that the brain is organized into a set of
functionally distinct modules, in the sense of Fodor (1983). Farah pointed out that whether or not
the brain is modular is an unresolved empirical issue. Second, Farah noted that it is possible for
nonlocal or distributed architectures, such as parallel distributed processing (PDP) networks, to

produce single or double dissociations when lesioned. As the interactive nature of PDP networks
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is “directly incompatible with the locality assumption” (p. 46), the locality assumption may not be
an indispensable tool for cognitive neuroscientists.

In support of her second claim, Farah (1994) reviewed three areas in which
neuropsychological dissociations had been used previously to make inferences about the underlying
architecture via the locality assumption. For each of these content areas (visual attention, semantic
memory, and face recognition), Farah described an alternative, interactive architecture—a PDP
network. In each of the networks reviewed, local damage produced (local) behavioral deficits
analogous to the neuropsychological dissociations of interest. In two of these cases a single
dissociation was produced, while the third produced a double dissociation (but see Butterworth, 1994
regarding this latter claim).

These results led Farah (1994) to conclude that one cannot infer that a specific behavioral
deficit is associated with the loss of a local function. This is because of the prevailing view that PDP
networks are, by definition, distributed and therefore nonlocal in structure. Asa result, any local
behavioral dysfunction observed in the network could not be due to damage to local internal
structures, because no such structures are thought to exist within the network. Moreover, because
PDP models putatively embody theories that are more parsimonious and more consistent with other
information about brain structure and function, the strong conclusion to be drawn is that the locality
assumption is unnecessary and false.

A potential fatal flaw to Farah’s (1994) approach is that it is not correct to assume that PDP
networks are, by definition, nonlocal. There are many examples in the literature of researchers who
have trained a PDP network to perform a task of interest, have interpreted the internal structure of
the trained network, and have found strong evidence of internal local structure (e.g., Berkeley,
Dawson, Medler, Schopflocher, & Hornsby, 1995; Dawson & Medler, 1996; Elman, 1990, 1991;
Hanson & Burr, 1990; Hinton, 1986; Sejnowski & Rosenberg, 1986). Indeed, Chapter 6 shows that
networks can have very specific interpretations that support local internal structure. In most cases,
this internal local structure manifested itself as a number of internal processing units that each had
learned to respond to very specific stimulus features.

In light of these data, and the results reported in Chapter 6, it is premature to conclude that
lesioning a PDP network produces local deficits without compromising local structure. One must
first independently determine whether the internal structure of the lesioned network is local or not

before drawing conclusions from the network’s behavior.
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The research described in the remainder of this chapter illustrates this more rigorous
approach to using PDP networks to investigate the locality assumption. We trained a PDP network
to solve a series of logic problems; following training, the network was lesioned. We then
completed three separate analyses on the lesioned network. First. we assessed the qualitative
behavioral changes in the network’s output. Second, we analyzed the internal structure of the intact
network using the banding technique described in Chapter 6 to determine precisely what role each
hidden unit had in the performance of the network. This enables us to relate observed behavioral
deficits with any functional specificity of the ablated structures. Third, we analyzed the lesioned
network by correlating the number of errors with damage to local internal structure.

It is important to note, at the outset, that one might argue that this problem domain. and
hence this experiment, is of little importance to cognitive neuroscience because there is no reported
relation between brain lesions and performance on logic tasks. Not only is this position incorrect
(e.g.. see Damasio, 1994, p. 18; McCloskey, 1993; Robertson, Knight. Rafal, & Shimamura. 1993),
but it also misses the crucial point that the present study is designed to test the rationale underlying
Farah (1994); that behavioral dissociations produced by local lesions within a PDP network result
from ablating local structure within that network. Thus, the choice of problem domain is not

particularly relevant to the issue at hand and to the conclusions to be drawn.

Method
The Logic Problem

Bullinaria (1994) has argued that in order for researchers to inform cognitive neuroscience

by lesioning PDP networks, several properties should be true of these models. For example, the
model should be trained (instead of handwired), and the model should learn to solve complex
problems. One instance of such a problem was originally proposed by Bechtel and Abrahamsen
(1991), and requires a network to identify four different types of logical arguments, and to judge the
validity of the arguments. This problem is both psychologically relevant and composed of a large
enough set of stimulus patterns to make it challenging. Furthermore, interpretations of networks
trained on this problem have produced results with important theoretical implications (Dawson,
Medler & Berkeley, 1997).

Problem Definition. Bechtel and Abrahamsen’s (1991) original stimulus set was used to

train the network of value units. Each pattern in the training set was a logical argument consisting
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of two sentences and a conclusion. The first sentence was composed of a connective and two
variables; the second sentence and the conclusion were each composed of a single variable.

The problem set consisted of four classes of problem: modus ponens (MP), modus tollens
(MT), alternative syllogism (AS), and disjunctive syllogism (DS). There were two different versions
of each AS and DS problem type. Table 7.2 illustrates examples of valid arguments for each

problem type, and also introduces the descriptive notation adopted to aid network interpretation.

Table 7.2

Examples of valid and invalid instances of each of the areument types for the logic problem.

Therefore not A

$2 =C. S2is negated
CONCLUSION = A,
conclusion is negated

Therefore not C

PROBLEM TYPE EXAMPLE VALID DESCRIPTIVE EXAMPLE INVALID DESCRIPTIVE
PROBLEM NOTATION FOR PROBLEM NOTATION FOR
VALID PROBLEM INVALID PROBLEM
Modus Ponens If AthenB Connective: IF. THEN If AthenB Connective: [F.THEN
(MP) A SI(VI)y=A, B SV = A,
_— SKV2)=8B —_— SIvV2)=B
Therefore B S2=A Therefore A S2=B
CONCLUSION =B CONCLUSION = A
Modus Tollens If AthenC Connective: [F. THEN If A then C Connective: [F. THEN
(MT) Not C SKVI)y=A. Not A SKVI) = A,
Sv=C Sv)=C

$2 = A, S2is negated
CONCLUSION =C.
conclusion is negated

CONCLUSION =B

Alternative Syllogism DorA Connective: OR DorA Connective: OR
(AS) Not D Suvh =D, D Svh =D,
_— SV =A —_— SHV2y=A
Type | Therefore A $2 =D. S2is negated Therefore not A S2=D
CONCLUSION = A CONCLLUSION = A,
conclusion is negated
Alternarive Svllogism BorC Connective: OR BorC Connective: OR
(AS) Not C SIVI) =B, C SIKV1) =B,
_— SV =C —_— Suv2)y=C
Type I Therefore B §2=C. S2is negated Therefore not B S2=C

CONCLUSION =B,
conclusion is negated

Disjuncrive Syllogism
(DS)

Type I

Not both C and D
o

Therefore not D

Connective: NOT
BOTH...AND
SVl =D,
Sv2)=C

§2=C
CONCLUSION =D,
conclusion is negated

Not both C and D
Not C

Therefore D

Connective: NOT
BOTH..AND
Svl)y=0D.
SKvyY=C

$2 =C, S2is negated
CONCLUSION =D

Disjunctive Syllogism
(DS)

Type I

Not both A and D
D

Therefore not A

Connective: NOT
BOTH...AND
SIVI)=A,
SI(V2)=D

S2=D
CONCLUSION = A,
conclusion is negated

Not both A and D
Not D

Therefore A

Connective: NOT
BOTH...AND
SI(V1)=A,
SI(v2)=D

§2 =D, S2is negated
CONCLUSION = A

Note. In the training set, valid MP and MT arguments were turned into invalid arguments by interchanging S2 and the conclusion. For
the remaining problem types, valid arguments were tumed into invalid ones by interchanging the sign of S2 and the conclusion.
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Each argument was represented as a pattern of on/off activity in a set of 14 input units (see
Figure 7.4) using the representational scheme adopted by Bechtel and Abrahamsen (1991). Different
examples of each argument type were constructed by selecting two variables from a set of four letters
(A, B, C, D). A variable letter could also be negated (e.g., Not A). For each type of argument, 48
different valid instances (the conclusion follows from the two sentences) and 48 different invalid
instances (the conclusion does not follow from the two sentences) were used, creating a total training

set of 576 patterns.

Problem Type Validity

Figure 7.4 The network architecture used for solving the Logic Problem. Note that

~ = Not, sI(vl) = Sentence 1 (Variable 1), etc., Conn = connective, Conc
= conclusion.

Network Architecture. A network of value units with 14 input units was trained on the
problem set described above. The network had three output units. Two of the output units were
used to represent one of four argument types (AS, DS, MP, MT); the third was used to indicate
argument validity (see Figure 7.4). In contrast to Bechtel and Abrahamsen’s (1991) original network
which used two layers of 10 hidden integration devices, the value unit network had a single layer of

10 hidden units (in general, because of the nonmonotonic nature of the value unit's activation
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function, fewer hidden units are required to solve problems than are required by the standard
architecture). Pilot studies established that a network with 10 hidden value units would reliably
converge to a solution for the logic problem, while networks with smaller numbers of hidden units
would converge on a solution, but would not do so reliably .

The network of value units was trained with the Dawson and Schopflocher (1992)
modification of the GDR, using a learning rate of &= 0.0! and a momentum of n=0.0. Network
weights were randomly set in the range [-0.01, 0.01]. Network biases were initialized to O and then
modified during training. Network connections were updated after every pattern presentation, and
pattern presentation was randomized every sweep. The network was trained until a “hit” was
recorded for every output unit for every pattern in the training set. A hit was defined as being an
activation of 0.9 or greater when the desired output was I, and as being an activation of 0.1 or less
when the desired output was 0. Convergence (i.e., a hit on every pattern) was achieved in 1362

sweeps.

Lesioning the Logic Network

As mentioned earlier, there are several different approaches to lesioning PDP networks.
Whereas in the previous experiment the connection weights were randomly decreased (i.e., noise
was added to the weights), in this experiment, entire processing units were removed from the
network. Specifically, in these simulations we took our intact PDP network and selected a single
processing unit to be ablated from it. This was accomplished by forcing the ablated units to always
generate an internal activation that was equal to zero, regardless of what stimulus was being
presented to the network. In other words, we lesioned the intact network by turning processing units
off.

There were two major reasons for our decision to adopt this particular method of lesioning
networks. First, our approach to interpreting the internal structure of PDP networks focuses upon
the functional role of individual processing units, a point that will be detailed later. By restricting
ourselves to the removal of entire processing units from the intact network, we placed ourselves to
take maximum advantage of our knowledge about the internal structure when interpreting behavioral
deficits (i.e., qualitative changes in network outputs). Second, the ablation of individual processing
units provides a simple and useful context for asking questions about the locality assumption.

The intact network of value units trained on the logic problem had 10 hidden units.
Consequently, we produced 10 different “patients” by ablating each of these hidden units in turn

(i.e., selecting one of the hidden units, and preventing it from adopting an activation value different
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from zero). In other words, each lesioned network, or patient, was missing one hidden processing
unit, and each lesioned network differed from all others in terms of which hidden unit had been
destroyed.

In order to determine the effect of each lesion, we re-presented all 576 logic problems to
each lesioned network, and recorded the resulting behavior as determined by the activity produced
in the three output units. Our primary interest was in determining whether removing a single hidden
unit produced qualitative changes in network behavior. A qualitative change is defined as a change
in the classification of problem type (e.g., misclassify an MP as an AS) and/or a change in
classification of problem validity (e.g., misclassify a valid problem as invalid). In order to examine
such qualitative changes in network behavior, we applied a thresholding rule to convert output
activations in the lesioned networks from continuous values to binary values. Specifically, if an
output unit’s activity was 0.5 or greater, we converted it into a I: otherwise, the activity was
converted into a 0°. By converting output activations from continuous into binary values, we were
able to interpret network outputs by applying the binary encoding scheme that Bechtel and

Abrahamsen (1991) used to define desired network outputs (see also Figure 7.4).

Analyzing the Lesioned Networks

Three different analyses are performed on the lesioned networks. First, we adopt the
standard approach of analyzing the qualitative change in the networks’ behavior as determined by
differences between the desired and actual outputs. Second, we perform a “‘banding analysis™ on the
internal structure of each ablated hidden unit to independently assess if there is local structure within
the network. Third, we correlate the number of errors produced by the lesioned networks as
determined in the first analysis with the local internal structure of the hidden units as revealed by
the second analysis. Taken together, these three analyses show that local behavioral deficits in the

lesioned logic network are due to the ablation of local internal structure.

Analysis I: Qualitative Changes in Network Behavior
In this first analysis, we assess the qualitative changes in network behavior by comparing
the actual performance of a lesioned network with the desired network performance; in effect,

comparing a “‘patient” with a normal. This is the approach taken by Farah (1994). Our analysis will

It could be argued that this thresholding rule is cheating as the network was originally trained to producing
values between [0.0, 0.1] and [0.9, 1.0). Thresholding the output, however, is no different than having a subject
participate in a forced-choice paradigm.
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show that local damage can produce specific local behavioral impairments, ranging from
misclassifying almost half of the problem set to no change in behavior. Additionally, two of our
lesioned networks will reveal the presence of a double dissociation, providing converging evidence
for the conclusion that local behavioral impairments are due to damage to local internal structure
(cf., Shallice, 1988).

General Network Behavior

The Bechtel and Abrahamsen (1991) training set for the logic problem can be described as
being comprised of many examples of eight different basic problem types: there are 96 invalid
alternative syllogisms (ASI), 96 valid alternative syllogisms (ASV), 96 invalid disjunctive syllogisms
(DSI), 96 valid disjunctive syllogisms (DSV), 48 invalid modus ponens (MPI), 48 valid modus
ponens (MPV), 48 invalid modus tollens (MTT), and 48 valid modus tollens (MTV). By applying
the thresholding rule to the output units of the lesioned network, any response of a lesioned network
must also fall into one of these eight different problem types.

Because both the input and output of a lesioned network are restricted to fall into one of
eight different categories, it is useful to represent network responses in terms of a confusion matrix
such as the three matrices illustrated in Tables 7.3, 7.4, and 7.5. Each row of a confusion matrix for
the logic problem represents the type of problem presented as input to a network. Each column of
this matrix represents the type of problem that was indicated as a response by the network. The
number in each cell of this matrix indicates the frequency with which a particular input problem
produced a particular network response. For example, in Table 7.3, the number 96 in the DSI row
and the DSI column indicates that on 96 different occasions, a DSI problem was correctly classified
as a DSI problem by one of the networks. Similarly, in Table 7.4, the number 6 in the DSI row and
the ASV column indicates that on 6 different occasions a DSI problem was incorrectly classified as
an ASV problem by one of the networks.

In order to determine whether removing a single processing unit from the intact network
produced local deficits, we examined each of the 10 confusion matrices for the lesioned networks.
First, we simply counted ihe number of off-diagonal cells that were not equal to zero; this
measurement indicates the number of different types of errors produced by the network. The
maximum number of error types that could be made for any hidden unit was 56. The average of this
measure was 5.4; it ranged from O (when hidden unit 4 was ablated) to 10 (when hidden unit 6 was
ablated). This small number indicates that the effect of any single processor lesion is to produce

local behavioral deficits as opposed to global behavioral deficits (all 56 error types).
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Table 7.3

Confusion Matrix for Hidden Unit 3

ASI
ASV
DSI
DSV
MPI
MPV
MTI
MTV

Table 7.4

DSI

DSV

MPI

MPV

MTI

MTV

46

t9

47

38

48

Confusion Matrix for Hidden Unit 7

ASI
ASYV
DSI
DSV
MPI
MPV
MTI
MTV

DSI

DSV

MPI

MPV

MTI

MTV

35

12

T
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Table 7.5

Confusion Matrix for Hidden Unit 4

ASI ASV DSI DSV MPI MPV MTI MTV

e Yt T e

ASL | 7E96REE

.;"A

ASV

DSI

DSV

MPI

MPV g

MTI ; 4,,?

MTV T 48

We also measured the sum of the values within the off-diagonal cells for each of the 10
confusion matrices, which indicated the total number of mistakes made by the network (as opposed
to the number of mistake types). On average, 128 errors were produced from a single lesion,
accounting for a large 22.2% error rate. The total number of errors ranged from O (when hidden unit
4 was ablated) to 210 (when hidden unit 6 was ablated).

In addition to these general statistical descriptions of the type and number of errors observed
when hidden units are ablated, the confusion matrices can be used to provide a detailed qualitative
account of the effect of a particular lesion. A quick analysis of the confusion matrices revealed that
nine of the ten confusion matrices showed local damage producing very local behavioral deficits,
while the remaining confusion matrix showed no behavioral deficit at all' This cursory examination
of the confusion matrices will be expanded in Analysis IIl. For now, however, we will focus on two
confusion matrices (Hidden Units 3 and 7) that show a double dissociation, and the one confusion
matrix (Hidden Unit 4) that shows no behavioral deficits.

A Double Dissociation

Table 7.3 presents the confusion matrix that was produced after ablation of Hidden Unit 3
(HU3) from the intact network. This matrix reveals that the network is performing perfectly on all
AS and DS problems. However, it fails to correctly classify either valid or invalid MP and MT
problems. Of the 192 MPI, MPV, MTI, and MTV problems, the network classified one problem

correctly,
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In contrast, Table 7.4 is the confusion matrix produced after removing Hidden Unit 7 (HU7)
from the intact network. This matrix reveals that the network is performing perfectly on all AS, MP,
and MT problems. However, its ability to correctly classify either valid or invalid DS problems
disappears, with only one out of the 192 DSI and DSV problems being correctly classified.

Upon closer inspection, it can be seen that the confusion matrices in Tables 7.3 and 7.4
represent a double dissociation—they suggest that the two hidden units involved in these lesions
provide the network with the ability to process two different types of logical connectives. Recall
from Table 7.2 that all of the different logic problems that are presented to the network are
constructed from only three different connectives. All ASI and ASV problems are based on the
connective “Or”, all DSI and DSV problems are based on the connective “Not both...and"”, and all
MPI, MPV, MTI and MTV problems are based on the connective “If...then”. With this in mind, a
natural interpretation of Table 7.4 is that HU7 is a “Not both ... and” detector, which when ablated
produces dramatic deficits in the ability to classify DS problems, but has no effect on classification
of AS, MP, and MT problems. Similarly, for Table 7.3, it is natural to infer that HU3 is an “If ..
then” detector, which when ablated prevents the network from responding to MP and MT problems
but does not affect responding to AS and DS problems.

A Null Lesion

The confusion matrices in Tables 7.3 and 7.4 indicate that some of the lesions to the intact
network produce highly specific dysfunctions in network performance. However, not all lesions to
the network produce such effects. For example, Table 7.5 is the confusion matrix obtained from the
network after ablation of Hidden Unit 4 (HU4). As can be seen from this confusion matrix, there
was no qualitative change in network performance.

Why does a lesion to HU4 produce no appreciable affect on network behavior, while lesions
to HU3 and HU7 produce a double dissociation? In order to answer this question, we must turn to

an independent analysis of the role played by each of these hidden units in the network.

Analysis II: The Interpretation of Internal Structure

In Analysis II, we perform a “banding analysis” on the internal structure of each ablated
hidden unit to assess independently if local structure exists within the logic network. This is a
crucial step if one wants to make conclusions about the locality assumption based on the
performance of lesioned PDP networks. Qur analysis will show that the hidden units associated with

producing the double dissociation in the previous analysis also have highly interpretable internal
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local structure. Conversely, the hidden unit that produced no change in network performance when
ablated shows little internal structure. Thus, our analysis shows that changes in network
performance are due to the ablation of local internal structure: therefore, we cannot dismiss the
locality assumption.

Banding Analysis

In our use of this graphing technique, each hidden unit is represented with its own jittered
density plot. Each dot within a unit’s density plot represents the activity produced in that unit by one
of the patterns that were presented to the network. For example, the three density plots illustrated
in Figure 7.5 represent three of the hidden units in the intact logic problem network, and as a result
each is composed of 576 different dots (one for each of the 576 logic problems). Refer to Chapter
6 for a complete description of the banding analysis technique.

The Internal Structure of Individual Units within the Logic Network

To illustrate the utility of this approach, let us consider the double dissociation described
previously. When HU7 is lesioned, the network loses the ability to process DS problems, which are
the only problems defined with the “Not both...and™ connective. With this in mind, it is natural to
conclude that HU7 is a “Not both...and" detector.

The density plot in Figure 7.5a was obtained for HU7 in the intact network. This density
plot is divided into two distinct bands, one of which falls at zero activity, the other of which falls at
very high activity. When this unit generates high activity, it is signaling that a pattern that falls into
this high activity band has been detected. This band contains 192 patterns, all of which share a
single property—they all contain the “Not both...and” connective. Hence, the banding analysis
confirmed the behavioral inference (from the confusion matrix) that HU7 is a “Not both...and"™
detector.

Let us now consider HU3. From the confusion matrix in Table 7.3, it is natural to infer that
HU3 is an “If...then” detector, which, when ablated, prevents the network from correctly classifying
MP and MT problems, but which does not affect its ability to classify AS and DS problems.

The density plot of Figure 7.5b density plot was obtained for HU3 in the intact network. It
is divided into two distinct bands, one of which falls at low activity, the other of which falls at
activities greater than 0.6. When this unit generates high activity, it is signaling that a pattern that
falls into this high activity band has been detected. Surprisingly—given the behavioral evidence
from the lesioned network—the 384 patterns in the high activity band not only contain problems

constructed with the “If...then” connective, but also patterns with the “Not both...and™ connective.
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In other words, the only feature shared by all of the patterns in this high activity band is that they do
not possess the “Or” connective that defines AS problems. The banding analysis of HU3 reveals that

it is not simply an “If...then” detector. Note, however, that this does not compromise the double

dissociation that was revealed earlier by the behavioral analysis of the lesioned networks.

Finally, let us turn to a consideration of HU4. As was shown in Table 7.5, when this
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Figure 7.5 Jittered density plots for (a) Hidden Unit 3, (b) Hidden Unit 7, and (c)
Hidden Unit 4. Note the (a) and (b) have a relatively high degree of
banding whereas (c) shows relatively little banding.
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processor was ablated, network performance was not appreciably affected. Figure 7.5c shows the
Jittered density plot for HU4. This density plot is quite different in appearance from those presented
in Figure 7.5a and 7.5b. In Figure 7.5¢, 6,532 of the patterns fall in a broad smear that ranges from
an activation of 0.0 to approximately 0.5. A second smeared band, containing the remaining 44
patterns, ranges between activation values of approximately 0.65 to 1.0. These latter 44 problems
are associated with the interpretation “S1(V1) = S2 and S1(V2) = CONCLUSION", which can be
found in examples of all of the problem types, and thus cannot be used to distinguish one type of
problem from another.

Summarv and Implications

Tables 7.3, 7.4, and 7.5 and Figure 7.5 provide qualitative evidence that is at odds with
Farah’s (1994) use of PDP networks to test the locality assumption. These figures show that when
highly specific local deficits in network behavior are observed (Tables 7.3 and 7.4), these deficits
are associated with the loss of hidden units that have highly local function within the network. This
local function is revealed in the banding analysis of these units ( Figures 7.5a and 7.5b)—their local
nature is reflected in strikingly banded density plots, as well as very specific interpretations that
emerge from these density plots. In contrast, when no local deficits in network behavior are
observed (Table 7.5), this is associated with the loss of a hidden unit that has no local function
within the network—its nonlocal nature is reflected in a density plot that has little banding (Figure
7.5¢), and which does not lend itself to a specific interpretation.

These results are consistent with Shallice’s (1988) assessment of double dissociations:
namely, that an observation of a double dissociation in the behaviours of lesioned networks
corresponded with highly localized internal structure as assessed by independent means. It is
interesting to note, however, that the internal structure of the network as indicated by the “banding”
analysis is not the same as the local structure implied by the behavioural performance of the network.
This has direct implication for the modularity assumption that Farah (1994) assumes within her
definition of locality.

Farah (1994) argued that the locality assumption is a consequence of the view that the
architecture for cognition is organized into independent modules (e.g., Fodor, 1983). Each of these
modules are assumed to be designed to solve specific information processing problems, and are
therefore informationally encapsulated. This means that each module has available to it only the
information that is required to solve the problem at hand. Because of this, different modules need

not interact with one another during processing. Interaction is limited instead to when processing
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by one module is finished, and the result of this processing is passed along as input to another
module. “Even these interactions are limited, so that a given component receives input from
relatively few (perhaps just one) of the other components™ (Farah, 1994, p. 43).

Hence, the behaviour of the lesioned networks would imply a module for detecting *“Not
both...and” connectives and another module for detecting “If...then™ connectives. The analysis of
the internal structure, however, indicates that there are not functionally separate modules for
computing these connectives. In fact, the architecture revealed by the analysis is similar to Shallice's
(1988) description of overlapping processing regions that are local and yet not modular.

For example, taken at a compuational level description, it appears that the role of Hidden
Units 3 and 7 is connective detection (as illustrated by the double dissociation). It is possible that
Hidden Units 3 and 7 could be acting as a module in the Fodorian sense. When both units are
lesioned, however, the network is still able to respond, indicating that the processing units function

as parts of a greater whole

Analysis III: Analyzing Quantitative Relationships

The previous two analyses provide qualitative evidence suggesting that dissociations in
network behaviors result when local structure is ablated from a PDP model. These results, however,
are based on three of the ten “patients” that were created; therefore. they are only suggestive.
Further empirical support is required.

The purpose of our third analysis is to quantitatively analyze the relationship between
deficits in network performance caused by lesioning a hidden unit and an objective measure of that
unit’s local structure (i.e.. the bandedness or specificity of its jittered density plot). Results will
show that the deficit in network performance following a lesion is highly correlated with the local
internal structure of the ablated hidden unit. Large behavioral deficits are associated with the
ablation of units that exhibit a high degree of functional locality.

Defining a Quantitative Measure of Locality

Factor analysis provides an elegant way to quantify local structure in density plots. In
mathematical terms, factor analysis is a technique for compressing a data matrix by expressing it as
a smaller number of factors and factor weights. In practice, researchers who use factor analysis are
concerned with finding a set of factors whose loadings are maximally interpretable; Thurstone
(1932) states that one way to accomplish this is to rotate a factor structure until its simple structure

is optimized. Simple structure is characterized by a number of data points having high factor
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loadings-that is, they posses the “feature” that the factor captures—while the remaining data points
have zero factor loadings because they do not possess the “feature” captured by the factor. The
degree of simple structure can be analytically described by the amount of variance within the factor
loadings (Kaiser, 1958); factor loadings with high degrees of simple structure will have more
variance than factor loadings with little simple structure.

If the jittered density plots described earlier are viewed as being analogous to factors, then
it becomes apparent that density plots that are easily interpreted can be described as having simple
structure. Specifically, the two density plots in Figures 7.5a and 7.5b demonstrate a high degree of
simple structure (note the clustering of data points at either end of the activation axis) while the
density plot in Figure 7.5¢c shows very little clustering of data points and therefore little simple
structure. Moreover, we can quantify this simple structure by calculating the variance of the
activation values within each hidden unit.

The qualitative claim that was suggested by the previous study was that the amount of
behavioral deficit produced by a lesion was proportional to the ( functional) locality of the lesioned
unit. If a hidden unit had a highly specific function, then its ablation would produce more dramatic
dissociations—as measured by network error—than if it served a much less specific function. By
employing Kaiser's (1958) use of variance to define simple structure, we are now in a position to
investigate this claim in a much more objective and quantitative fashion by examining the correlation
between network errors and the variance of density plots associated with ablated hidden units.

Local Structure, Lesions. and the Logic Nenwvork

As was described earlier, one quantitative measure of network error is the number of
different types of errors produced when a unit is lesioned (i.e., the number of nonzero off-diagonal
cells in the confusion matrix). Figure 7.6(a) provides the scatterplot between this error measure and
the variance of the density plot of the ablated unit. A strong positive linear relationship is revealed.
Indeed, the correlation between these two measures is 0.930. A second measure of network error
is the total number of errors generated (i.e., the sum of the off-diagonal cells in the confusion
matrix). Figure 7.6(b) illustrates the scatterplot between this error measure and density plot
variance, revealing another strong positive linear relationship. The correlation between these two

measures is 0.929.
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Figure 7.6 Scatterplots correlating (a) the type of errors, and (b) the total number of errors
made by the lesioned networks with a measure of the simple structure of the ablated
units.

Summary

Following Kaiser (1958), the variance of a density plot can be used as a measure of its
simple structure. There is a very strong linear relationship between density plot variance and
network errors (specifically, the number of types of errors, and the total number of errors). This
relationship indicates that when hidden units that have high-variance density plots are ablated, the
result is a much higher degree of network errors than when hidden units that have low-variance
density plots are ablated. This provides quantitative support for the claim that in the logic network,
large behavioral deficits are associated with the removal of units that exhibit a high degree of

functional locality.

General Discussion

The results from the preceding study suggest not only that PDP networks can have a highly
local structure, but the more local this structure is, the greater the effect of its ablation. This result
disconfirms the view that models consistent with generic connectionism necessarily represent a
nonlocal architecture (cf., Farah, 1994); and, it supports the view that when strongly local behavioral
deficits are observed, these are likely due to injuries to localized internal functions (cf., Shallice,

1988).
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Relationship To Other Results

One question that immediately arises is whether the conclusions drawn from our simulation
results are atypical. It is possible that our results are idiosyncratic, and that local behavioral deficits
in PDP networks are generally due to injury to nonlocal structures, as is assumed by Farah (1994).
However, even a brief survey of the literature concerning lesions to connectionist networks reveals
many additional examples of local dissociations in network behaviors that appear to be due to
disruptions in very specific network functions:

(1) Mozer and Behrmann (1990) described a connectionist model of spatial attention that
consisted of several distinct layers of units devoted to specific functional tasks (i.e., a network for
building locationally invariant representations of letters and words, a network that serves as an
attentional mechanism, and a network for cleaning up the interpretation constructed by other
functional components). Mozer and Behrmann modeled neglect dyslexia by performing a local
lesion to this network—damaging the connections between the network’s input feature maps and the
attentional mechanism.

(2) Humphreys, Freeman, and Muller (1992) described a connectionist model of visual
search that consisted of many layers of processors, with early layers corresponding to a retinal array
and maps of single features, intermediate layers representing combined feature maps, and late layers
instantiating decision mechanisms for detecting targets. In one set of simulations, they found that
ablating units in early layers produced the equivalent of a blind spot for the network. They also
found that ablating units in later layers disrupted search for targets in homogeneous arrays of
distractors, but had little effect on search for targets in heterogeneous arrays of distractors. This kind
of result mirrored the performance of a visual agnosic patient described by Humphreys, Riddoch,
Quinlan, Price and Donnelly (1992). The deficits exhibited by both the network and the patient were
attributed to damage to a particular local function in the system—the grouping between simple form
disjunctions.

(3) Variations of a particular connectionist network have been used to study the
relationships between network damage and different forms of dyslexia (e.g., Hinton, Plaut &
Shallice, 1993; Hinton & Shallice, 1991; Plaut & Shallice, 1993; Plaut, 1995). In general, each of
these networks consisted of an architecture in which each layer of processing units served a
particular functional role. For example, one layer of units represented input features, a second layer
of networks represented higher-order associative features, a third layer of units represented network

output (typically in terms of semantic features), and a fourth set of units had the function of
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“cleaning up” the activity in the semantic units. (This architecture can be chained together to create
a more complex network, as illustrated by Hinton, Plaut, and Shallice, 1993, p- 82). Lesions to
connections between different layers of processors lead to qualitatively different kinds of errors (e.g.,
disruption of the naming of abstract words, but not of concrete words) because of damage to the
interactions between specific local functions in the network (e.g., Plaut & Shallice, 1993, Figure 2,
Figure 6).

(4) Indeed, a closer examination of the networks reported by Farah (1994) suggest that the
local behavioral deficits that she observed were in fact caused by the ablation of local structure. For
example, the face recognition network was constructed so that some units only process “face”
information, while other units only process “name” information. Simuilarly, the visual attention
network described by Farah includes sets of units that are devoted to processing information coming
from specific spatial locations. Finally, the semantic network has some units devoted to functional
properties, and other units devoted to visual properties.

The Possibility Of Nonlocal Lesions Is Still Present

Of course, the evidence to date is not sufficient to make the strong claim that when any local
behavioral deficits are observed in a network, this is because of an injury to local internal structure.
There exists the possibility that lesions to highly distributed networks can produce local behavioral
deficits.

For example, Wood (1978) performed lesions to an associative memory model that is highly
distributed in nature, the “brainstate-in-a-box” classifier originally described by Anderson,
Silverstein, Ritz, and Jones (1977). In general, this kind of model is used to remember different
“category names”, which are represented as patterns of activity in a set of processing units.
Furthermore, this kind of model operates best when each to-be-learned category name is uncorrelated
with all of the others. However, Wood was able to show that in cases where there were high degrees
of correlation between distinct category names (i.e., two names that differ only with respect to values
encoded in 2 of 8 processing units), lesioning these two critical processors produced a marked
disruption for the two similar category names, but had much less effect on other (uncorrelated)
names that the network had also learned.

Unfortunately, in many cases it is impossible to determine from research reports whether
local deficits in the performance of lesioned networks is due to the ablation of local, internal
structure. This is because researchers typically neglect to interpret the internal structure of their PDP

networks in order to determine the functional role of the units that they remove.
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Summary and Conclusion

The localization of functions within the brain is a dominant problem within cognitive
neuroscience. One key approach is to identify a specific cognitive or behavioral deficit following
a brain lesion, and to speculate whether that specific brain region is essential for the computation
in question. This area of research, however, is highly dependent on the locality assumption. Farah
(1994) rejected the locality assumption based on the performance of PDP networks that had been
lesioned. This rejection was based on the assumption that PDP networks are by definition nonlocal.

Our starting point was that the assumption that PDP networks are nonlocal and that lesions
to nonlocal structures produce specific deficits are two assumptions that need to be assessed
independently. We revisited the locality assumption using the performance of a lesioned PDP
network. It was found that local lesions produce very local and severe impairments; that is, a single
lesion to the network produces an average of 5 (out of 56) different error types, yet produces an
average error rate of 22.2%.

A qualitative assessment of individual units found that one unit (HU4) produced no
qualitative change in behavior, while two others (HU3 and HUY7) produced a double dissociation.
From a purely behavioral assessment, it would appear that HU4 possessed no local structure, while
HU3 and HU7 possessed highly local structure: specifically, for detecting the connectives “If ...
then™ and “Not both ... and” respectively.

To confirm the suggestion that damage to local structure produces local deficits, the internal
structure of the intact network was analyzed. The “banding™ analyses of the internal structure of the
intact network confirmed that HU4 had very little local structure, and that HU7 had highly local
structure consistent with detecting the connective “Not both ... and.” The banding analysis of HU3
also showed that it had highly local structure consistent with detecting connectives; however, as
opposed to the behavioral analysis, the internal analysis showed that it was not simply an “If .. then”
detector—it also detected the connective “Not both ... and.” Furthermore, quantitative analyses
showed that lesioning hidden units with a high degree of local structure—as measured by the
variance of the banding plots—produced more errors in network responding than lesioning units with
very little local structure.

These results indicate that the locality assumption as defined by Farah (1994) cannot be
rejected simply based on the overt behavior of PDP networks. Moreover, these results are consistent
with Shallice’s (1988) assessment of double dissociations; namely, that an observation of a double

dissociation corresponds with highly localized internal structure as assessed by independent means.




Chapter 7 187

More importantly, however, these results have a strong implication for cognitive
neuroscientists studying the localization of function via behavioral and lesion data. In our study, we
found that the internal local structure of the network as indicated by the “banding” analysis was not
the same as the local structure implied by the behavioral performance of the network. Based on the
behavioral data alone, our conclusions about the internal local structure would have been incorrect.
Therefore, this implies that cognitive neuroscientists must be very careful when assigning functions

to local structure based on behavioral data alone.

Functional Architecture Conclusions

This chapter presented the results from two different lesioned connectionist networks in
order to address two different aspects of the functional architecture. The first network examined how
semantic memory may be organized by looking at the disruptions of the semantic network in AD
patients. The second network addressed the locality assumption as used in cognitive neuroscience.

Results from the first experiment indicate that the semantic disturbances prevalent in AD
patients can be accounted for by a simple weakening of connections between processing elements
instead of the active reorganization of semantic knowledge. Therefore, the modified IAC network
provides an alternative account of the functional architecture of semantic memory (as opposed to the
classical semantic network). This alternative account is further strengthened by the fact that the IAC
model also predicted that perseveration would occur in AD patients. Although this was an
unexpected finding, a brief review of the literature indicates that perservation is indeed a
characteristic of Alzheimer’s. This result shows the power of the synthetic approach to cognitive
science. By starting with very simple ideas, we have been able to account for what would otherwise
be very complex emergent behaviour.

Furthermore, the results from the locality study suggest not only that PDP networks can have
a highly local structure, but also that lesioning this structure can have very local effects on the
behaviour of the network. This result contradicts Farah’s (1994) position that models consistent with
generic connectionism necessarily represent a nonlocal architecture. Thus, we have used a PDP
network to cast doubt on Farah’s critique of the locality assumption and support Shallice’s cautious
move of abandoning the modularity assumption. The discovery of a double dissociation in a PDP
network is not sufficient to make a claim about modularity; however, it does appear to be sufficient

to infer the existence of internal local structure.
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The results from both of these experiments show how connectionism can contribute to
studies of the functional architecture. Thus, where Chapter 6 has shown that connectionist models
can produce novel cognitive theories that are not mere implementations of classical accounts,
Chapter 7 has now shown how the very same connectionist principles used to produce cognitive
algorithms can be applied to answer questions about the very building blocks of cognition.

As stated at the beginning of the chapter, however, the functional architecture also acts as
the bridge between the algorithmic level and the implementational level—it shows how the
algorithm can be implemented in the physical device. Fortunately, the connectionist principles
developed so far offer a natural extension into the final level of the tri-level hypothesis: the study

of the physical device—our brain.
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Chapter 8

The Implementational Analysis of Connectionism

We have seen how connectionism can be used as a tool for exploring questions posed at the
computational, algorithmic, and functional architecture levels. We will now conclude with
connectionism’s contribution to the implementational level description of an information processor.
The implementational level is concerned with describing those physical properties of the system that
are essential for carrying out the functions relevant for information processing. Therefore, the
implementational level can be attacked from two different angles. The first is to look at the
biological plausibility of connectionist networks. Although connectionists like to say that their
networks are biologically inspired, many of the assumptions held by researchers need to be re-
evaluated. The second, and more productive angle, is to ask what connectionism has contributed to
the field of neuroscience. If connectionism cannot be explained at an implementational level, then
it should not be able to contribute to neuroscience.

To conclude our look at the implementational level, connectionism’s contribution to the
study of biological redundancy will be revisited. This research will address not only the issue of
applying biological constraints to connectionist networks, but also the issue of using connectionism

to answer questions about the structure of the brain.
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Biological Plausibility of Connectionism

Before we can start asking in earnest what types of contributions connectionism has made
to neuroscience, we must ensure that the Artificial Neural Networks (ANNSs) in question are
biologically plausible. In other words, Just because a network is able to mimic a certain biological
phenomenon does not mean that the network is a valid model of brain functioning. For example,
there are several properties of ANNs that are in direct conflict with known biological properties
(e.g., Crick & Asanuma, 1986; Smolensky, 1988); consequently, unless these areas are addressed,
ANNs will be no more than rough analogies to the brain and their contributions to the analysis of
the implementational level will be limited at best.

To address this problem, Gardner (1993) has called for a new generation of connectionist
networks to be developed. This third generation of networks should be neuromorphic, transcending
the simplified components, layered architectures, and limited scale of first and second generation
networks'. Consequently, third generation connectionism should be a hybrid of neurobiology and
neural networks. In other words, we should be using knowledge from neurobiology to guide the
development of neural networks. We must keep in mind, of course, that we only want to capture
those aspects of neurobiology that are functionally important to information processing (Churchiand
& Churchland, 1990). We do not want our networks to smell bad when they rot (or are lesioned),
if smelling bad is not a function of information processing.

This section will briefly provide three different examples of how this problem of functional
biological plausibility is currently being addressed. These areas are (i) the learning rules used to
train ANNSs (especially the GDR), (ii) the assumption of monotonic and homogeneous networks, and
(1ii) massive parallelism (see also Crick, 1989). Each area shall be discussed in terms of their conflict
with known biological properties and their recent advancement towards biological plausibility.

The first problem encountered when equating the generic PDP architecture to the known
properties of biological networks is the learning rules used to train the artificial networks. For
example, consider the GDR. As stated earlier, the GDR relies on propagating the error between
network output and an externally supplied desired output back through the network. The idea of
comparing the network output to an externally supplied output is not our main concern, as one can

imagine reaching towards an object (network output), comparing how far your hand is from the

' Gardner defines first generation networks as those typified by Rosenblatt’s single layer perceptron (see
Chapter 3) and second generation networks as fully trainable multilayered perceptrons (see Chapter 4).
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intended target (desired output), and then using the difference to adjust your next reaching response.
The question that does concern us, however, is how that error difference is processed by the network.

Although there is evidence that dendrites both receive and transmit signals (e.g., Levitan &
Kaczmarek, 1991), and that substances can pass backwards through a chain of neurons (e.g. HRP
tracing; Kandel, Schwartz, & Jessel, 1991), it is often contended that back-propagation is
biologically implausible. For example, Churchland and Sejnowski (1989, p. 41) state that “back-
propagation is biologically implausible, inasmuch as error signals cannot literally be propagated back
down the very same axon the signal came up.” Hanson (1990) points out, however, that most
arguments of this nature usually mean “that the ‘C-code’ implementation is biologically implausible,
not the implementation one might find in brains.” (p- 514).

Backpropagation aside, many of the learning rules do have biological plausibility. Hebbian
learning necessarily has its basis in the neurophysiology of the brain (Baxter & Byrne, 1993).
Furthermore, there is evidence in the brain of recurrent networks of neurons, so certain types of
recurrent ANNs may have biological plausibility (e.g. Kandel et al., 1991; Lisberger & Sejnowski,
1992). Nevertheless, problems still exist with the training algorithms as most of them require that
the activation function be monotonic.

Although most ANN training algorithms require their activation functions to be monotonic,
there is considerable evidence (e.g., Ballard, 1986) to suggest that nonmonotonicity is prevalent in
certain biological networks; for example, colour perception in the retina and simple cell receptive
fields. As much of this thesis has shown, when a nonmontonic function such as the Gaussian is used
within a network’s processing units (i.e., the value units of Dawson and Schopflocher, 1992), then
network performance is generally enhanced—especially for pattern classification. Therefore,
adopting a biological constraint actually improves the performance of ANNs on certain tasks.
Furthermore, if value units are used in the hidden layer of a network while integration devices are
used as the output units (creating a nonhomogeneous network), then the resulting networks train
faster, are easier to interpret because of fewer units and connections, and can generalize their
performance to new instances better than standard networks (e.g., Dawson, Schopflocher, Kidd, &
Shamanski, 1992).

Another contention between biology and ANNSs is the massively parallel assumption
governing connections between units within ANNs. This assumption means that the number of
connections can be overwhelming. This, of course, can lead to difficulties in interpreting network

structure and function. Although the brain has been called “massively parallel”, the term does not
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carry the same meaning, proportionally speaking, as a massively parallel ANN. In a massively
parallel ANN, each unit in one layer projects to each and every unit in the layer above it as well as
to the units in the layer below it: There is no indication that the brain is wired in such a fashion.
Current research indicates that when spatial constraints are applied to connections in ANNS, then
biologically plausible “receptive fields™ have evolved in pattern recognition networks (Dawson,
Kremer, & Gannon, 1994). By limiting the number of connections within an ANN, the functional
aspects of mammalian pattern recognition emerge (cf., Moorhead, Haig, & Clement, 1989).

As a last note, there will always be those researchers who strictly equate connectionism with
computing science and mathematics. Consequently, they argue that connectionism is not biological
and will never be of interest to cognitive science (e.g., Searle, 1980, 1990). If, however, we keep in
mind that we are only interested in those properties of the nervous system that are functionally
important to information processing (e.g., Churchland & Churchland, 1990) then connectionism has

the potential to contribute to cognitive neuroscience.

Connectionism and Neuroscience

Although connectionism has drawn heavily from neuroscience, its contributions back to the
discipline are often viewed as lacking. The silicon chip is definitely not living and bares no
resemblance to the brain, so how could it contribute to something inherently biological?
Connectionist models are at best “stick and ball models” (Douglas & Martin, 1991, p. 292)
according to some neurophysiologists, and therefore have little to contribute to neuroscience based
on that fact alone. If, however, one adopts a functionalist approach to brain and mind, then the
potential contribution of connectionism to neuroscience is substantial.

Two areas in neuroscience that are often passed over are the localization and the
redundancy of functions in the brain. Although much has been done to identify the different areas
and their related functions within the brain (for review see Kandel et al., 1991; Kolb & Wishaw,
1996), little attention has been paid to why these functional areas are localized in the brain. Ballard
(1986) suggests, however, that this type of organization is to be expected if a connectionist network
evolves to solve the “packing problem”. Given a finite number of processors (neurons), and an
enormous variety of functions (vision, movement, etc.), the only way for the network (brain) to
successfully code all functions is to group corresponding processes into functional areas. Although
Farah (1994) has questioned the locality assumption based on results from connectionist networks,

the results reported in Chapter 7 indicate that connectionist networks do organize into local
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structures. Consequently, connectionism has the potential to address the assumptions used by
cognitive neuroscientists.

An interesting contribution that connectionism has made to neuroscience is a fully functional
neuron made of silicon (Mahowald & Douglas, 1992). The artificial neuron combines
neurophysiological principles with silicon engineering to produce an analog integrated circuit with
the functional characteristics of real nerve cells. lon current flow is emulated efficiently because the
physics underlying the conductivity of silicon and of biological membranes is similar. Consequently,
excitatory and inhibitory responses can be mimicked. The value of this research is apparent: Large
artificial networks can be built with the effect of each addition or subtraction to the network
immediately recognizable. We can see the effects of selectively destroying “neurons™ without having
to worry about costly animals and ethical considerations.

Perhaps a more practical contribution to neuroscience comes from Servan-Schreiber, Printz,
and Cohen (1990) who modelled catecholamine effects on a neural network. Release of
catecholamine increases the responsitivity of cells to excitatory and inhibitory inputs, producing
many behavioural consequences, including attention, learning, memory, and motor behaviour. There
is no adequate account, however, of how the effect of catecholamines on individual cells relates to
overall behavioural changes.

Using a connectionist network, Servan-Schreiber, Printz, and Cohen determined that changes
in the responsitivity of individual elements do not affect their ability to detect signals and ignore
noise, but it is the combination of such changes throughout the network that leads to better signal
detection. Their model was then pitted against actual human data from a signal detection task with
central nervous system stimulants, and was found to be in line with the data (e.g. human subjects:
5.5% misses and 0.5% false alarms; simulation: 6.6% misses and 0.78% false alarms). Clearly, the
connectionist network has added to our knowledge of the effect of catecholamines on individual
neurons and how these effects are combined in a neural network to give us better signal detection.

Another example of connectionism’s contribution to neuroscience is evident from motor
learning in a recurrent network based on the vestibulo-ocular reflex (VOR) (Lisberger & Sejnowski,
1992). “The performance of the VOR is established and maintained by a learning mechanism that
uses the association of visual and vestibular inputs to guide adaptive changes in the gain of the
VOR” (Lisberger & Sejnowski, 1992, p- 160). Although it is normally agreed that learning is
mediated by changes in the gain of steady-state transmission at different synaptic locations, the site

of the learning has often been debated (see Judge, 1992) as there is contradictory data from neural
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recordings taken under different conditions. Lisberger & Sejnowski's network was able to convert
long-term modulation of neural responses into changes in the amplitude of the steady output of the
system. This conversion led them to propose a third alternative to the learning site which actually
incorporates the otherwise contradictory data.

The final example of connectionism’s contribution to neuroscience comes from Lynch,
Granger, Larson, and Baudry (1989). Lynch et al. modeled the olfactory memory of the rat, giving
a fairly detailed description of the relationships among patterns of axonal activity, NMDA receptors,
and the production of LTP (see Lynch et al., 1989, Table 1). In programming their model into a
connectionist network, however, they discovered that their description was not fully complete.
Problems arose because individual neurons were not synchronized, fired with different frequencies
and spikes, and longer lasting synaptic changes due to LTP had to interact with temporary changes
in synaptic strengths brought on by particular patterns of stimulation. Consequently, Lynch et al.
were forced to deal with “the precise formalization of necessary and sufficient conditions for LTP
induction, which in turn forced us to ask many more specific physiological questions about these
events than had been tested so far” (p. 196). In this case, the ANN served as the basis for seeking

further information about LTP coordination in actual biological networks.

Redundancy Revisited

To conclude the implementational analysis of connectionism, the effects of applying the
biological constraint of redundancy on ANNs will be evaluated. It will be shown how applying this
constraint not only improves the performance of connectionist networks (and satisfies the move
towards biological plausibility) but also contributes to the understanding the biological role of
redundancy.

One biological characteristic often overlooked in the design of ANNS is redundancy, where
redundancy is defined as the replication of functional processes within the brain. Redundancy in
biological systems has been documented since the nineteenth century when it was proposed that the
left and right hemispheres of the brain were basically mirror images of themselves and this therefore
facilitated functional recovery following unilateral brain lesions (Gall & Spurzheim, 1810-1819;
cited in Almli & Finger, 1992). Although we now know that the two hemispheres of the brain
perform vastly different functions, redundancy within the two hemispheres is still held as a viable

theory of functional recovery (Almli & Finger, 1992; Marshall, 1984).
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Further neurophysiological evidence for redundancy in biological systems comes from
recent studies of animal physiology. For example, Kovac, Davis, Matera, and Croll (1983) found
several physiological systems within the nervous system of Pleurobranchaea californica that
produced essentially the same behavior; when combined, though, these systems greatly enhanced
the precision of simple and complex movements.

This results is consistent with Calvin's (1983) consideration of why redundancy may have
developed from an evolutionary perspective. As an example, Calvin speculated on the evolutionary
pressures exerted on the neural timing systems required by early hominids for hunting with thrown
objects. At short distances, a single timing neuron is sufficient to allow the proper release time
needed for a hit; however, the timing precision required for a strike increases eight-fold with a mere
doubling of throwing distance. Thus, the brain needed to evolve a more accurate timing mechanism.

From an evolutionary perspective, the faster a system can evolve, the greater the chance of
survival. Therefore, it would be more advantageous to evolve several small systems that work in
parallel to achieve a goal, than a large and highly specialized system. In other words, instead of
evolving a more accurate timing neuron, the brain combined the efforts of severa] timing neurons
to increase the precision above that of any single neuron. Consequently, redundancy may have
evolved because it was easier to replicate, and thus improve, what was already present than to
develop a single system beyond reproach.

Connectionism offers an excellent opportunity to explore these implementational issues of
redundancy. What happens if the simple processing elements of a connectionist network are
replicated? Will accuracy increase beyond the performance of any single neuron? Taking a cue from
Calvin (1983), a redundant network was created to simulate the motor activity of reaching to a point

in two-dimensional space.

The Reaching Network

In 1994, Medler and Dawson presented the results of applying redundancy to networks
trained on either pattern classification (e.g., parity) or function approximation (e.g., a simulated
robotic arm). These results showed that redundancy produced faster convergence, more accurate
results, and more stable networks than comparable standard non-redundant networks. The following
experiment expands their procedure for assessing the effects of redundancy on the function

approximation task.
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Definition of Problem Space

The problem space used in this simulation was first described by Churchland (1992).
Basically, a “crab” is trained to reach to a point in two-dimensional space. The crab has two rotatable
eyes which are able to fixate on an object, and a two-joint arm (shoulder and elbow) which is able
to move in the two-dimensions directly in front of the crab. Thus the inputs to the network are the
two angles (e, ) subtended by the eyes while fixated on the object (Figure 8.1a), and the outputs
are the two angles (6, ¢) required by the shoulder and elbow Joints to reach the object (Figure 8.1b).

All angles were normalized to fall within the range of O to 1. The inputs could be considered
two-dimensional sensory-state space coordinates, and the outputs would then be considered as
separate two-dimensional motor-state space coordinates. The network, therefore, learns the
appropriate mapping between the two state spaces (see also Zipser and Anderson, 1988).

To train the network, 50 random points within the problem space were chosen and the
appropriate angles for the input and output were computed. If a point fell within an unreachable area
(the shaded areas in Figure 8.1) then a new point was chosen. These 50 points were then presented
to the network, and the total sum squared error (SSE) of the network was calculated. This process
comprised one training sweep. After each training sweep, another 50 random points were
generated—this is in opposition to Medler and Dawson (1994) who used the same 50 training
examples for each sweep. It is possible that the redundant networks reported in Medler and Dawson
(1994) simply leamed the 50 training examples and would not be able to generalize. Consequently,

the new training paradigm will allow the generalization ability of redundant networks to be assessed.

Figure 8.1 Definition of the problem space for the simulated robotic arm. (A) Inputs are the
two angles (a, B) subtended by the eyes. (B) Outputs are the two angles (6, ¢)
subtended by the shoulder and elbow joints respectively. The shaded areas are
unreachable with the current configuration.
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Nenwork Architecture

The standard network architecture was a three-layer integration device network with two
input units, two hidden units, and two output units. The connections between the input and hidden
layers, and the hidden and output layers were fully parallel. Both connection weights and biases were
randomized between [-1, 1]. The network was trained with the basic backpropagation algorithm, with

the learning rate set to & = 0.1, and momentum #=0.9. As the network was engaged in function
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Figure 8.2 The redundant network architecture for the reaching network. Note the individual
redundant networks are not directly connected to one another, and the redundant
outputs are only connected to the appropriate decisions units.

approximation, the hit criterion was set to a stringent 0.000001 (requiring a output to be within 0.001
of the target value), and the maximum number of processing sweeps was set to 50,000.

The redundant network architecture was created by replicating the hidden unit layer and the
output unit layer five times®. Each of the replicated output units was then connected to the
appropriate Decision Unit, which acts as the redundant network’s output units. All connections

leading into the Decision Unit are modifiable; therefore, the Decision Unit’s response is a weighted

? Medler & Dawson (1994b) showed that there was an optimal level of redundancy in terms of accuracy versus
amount of processing. No advantage was gained from increasing the level of redundancy above five.
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sum of the replicated output units. Figure 8.2 shows the redundant network structure for an ANN
with five levels of redundancy trained on the reaching problem. It should be noted that, as opposed
to a network with two layers of hidden units, no connections exist directly between each of
replicated networks. Furthermore, each of the replicated networks was initialized independent of
the others. Connection weights and biases were randomly distributed over the range [-1, 1], and the
learning rate and momentum were set to & = 0.1 and u =0.9 respectively.

As the function approximation results from Chapter 5 suggest that accuracy increases when
the number of hidden units is increased, the standard and redundant networks were also tested with
five hidden units. Furthermore, one question that was not addressed in Medler and Dawson is
considered in this experiment. Is the performance increase in redundant networks simply due to the
increase in the number of hidden units? For example, a network with five hidden units and five
levels of redundancy will actually have 25 hidden units. Consequently, a third standard network with

25 hidden units was also tested.

Results and Discussion

As the randomization process during weight assignment can introduce great variability in
performance, ten different networks were created for each architecture to properly assess
performance. Furthermore, in this experiment, each network was trained to the maximum number
of 50,000 sweeps, with the network’s performance being evaluated at each log,, processing step (i.e.,
100, 200, ..., 900, 1000, 2000, etc.)*. Thus, network performance was evaluated by computing the
mean total SSE and standard deviation of the ten networks at 23 different points. These values were
then graphed so performance differences between the standard and redundant networks could be
observed.

The results for the standard (S2) and redundant networks (R2) with two hidden units are
presented in Figure 8.3. Table 8.1 presents the means and standard deviations of the SSE
performance for all networks and Table 8.2 presents the results of the significance tests. As can be
seen, within the first 1,000 processing sweeps, the redundant network performs as well as or worse
than the standard network. This is reflected in the fact that the average SSE (taken over all

processing sweeps) for the standard network was not significantly different than the mean SSE of

*This is in contrast to Medler and Dawson where the maximum network sweeps were increased from 100 to
50000 in log,, steps and SSE was recorded at each maximum sweep step. Thus, the current results show the
averages of continuous training.
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Figure 8.3 Results from the standard and redundant networks trained with
two hidden units.

the redundant network. By 2,000 processing sweeps, however, there is a clear difference in the
performance of the two networks. In fact, by the time 50,000 processing sweeps are completed, there
is a significant difference between the mean SSE for the redundant network and the standard
network. Furthermore, it can be seen from Figure 8.3 that as the number of processing sweeps
increases, the standard error bars for the redundant network are smaller than for the standard
networks. Thus, it is concluded that redundancy improves the performance of networks with two
hidden units in terms of decreasing both SSE and the amount of variance in responding.

Figure 8.4 presents the results from the standard (S5) and redundant networks (R35) trained
with five hidden units. The standard network with 25 hidden units (S25) is also presented for
comparison. Again, when compared to both of the standard networks, the redundant network actually
produces equivalent or worse behaviour during the initial training phase. The mean value of the
average SSE for the redundant network is not significantly different from the average SSE for the
standard networks. In fact, there is no significant difference in the average SSE between the standard

network with five hidden units and the standard network with 25 hidden units.

Table 8.1
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Means and standard deviations for SSE of the different networks

Average SSE 50,000 SSE
Architecture X s.d. X s.d.
Standard
(82) 0.782 0.26 0.716 0.28
(85) 0430 0.29 0.164 0.08
(825) 0.427 0.32 0.095 0.04
Redundant
(R2) 0.532 0.53 0.081 0.05
(R25) 0.495 0.52 0.040 0.03
Table 8.2
Results of statistical tests
Test (X, - X,) t d.f. p
Average SSE

S2-R2 1.34 18 n.s.

S5-R5 -0.35 18 n.s.

S25-R5 -0.35 18 n.s.

S25-85 0.02 18 n.s.

50,000 SSE

S2-R2 7.05 18 p <.001
S5-RS 4.96 18 p< .00l
S25-RS 3.66 18 p < .005
$25-85 2.65 18 p<.05
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Figure 8.4 Results from the standard and redundant networks trained with
five hidden units. A standard network with 25 hidden units is
included for comparison purposes.

After 10,000 processing sweeps, however, significant differences in SSE begin to emerge.
Looking at Figure 8.4, this is difficult to see because of the scale. But, statistical tests reveal that at
50,000 sweeps, the redundant network has a significantly smaller mean SSE than both of the
standard networks. When the standard networks are compared at 50,000 sweeps, the network with
25 hidden units actually has a significantly smaller mean SSE. It is unclear from Figure 8.4 whether
or not the standard error bars for the redundant networks are smaller than the standard error bars for
the standard networks.

Thus, it can be concluded from these studies that redundancy significantly improves
performance—measured by total SSE—as the number of processing sweeps is increased.
Furthermore, with limited hidden units, the redundant networks show less variability in performance
than standard networks. In other words, they are more stable. Also, the modified training procedure
(i.e., training the network on continuously new data) shows the redundant networks were not keying
in on specific input-output pairings, but could learn any relevant pairing. This is important because
it has been suggested that increasing the number of processing elements over a certain point would

actually decrease the generalization ability of the network (e.g., Werbos, 1995).
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Interestingly, the difference between the standard and redundant networks became less as
the number of hidden units was increased. This difference, however, remained significant. More
importantly, by comparing the redundant network with five hidden units to the standard network
with 25 hidden units, it has been shown that the increase in performance is not due simply to more
processing units; this suggests that the structure imposed by redundancy is important.

From one side of the coin, adding the biological constraint of redundancy to the structure
of ANNS has increased their performance. Although this is an important result in and of itself, the
more important conclusion is that redundant networks can successfully incorporate neuromorphic
properties. For example, redundant networks abandon the massively parallel assumption adopted by
most networks, while increasing the number of simple processing elements. Therefore, we are
moving towards a more biologically plausible neural network.

On the flip side of the coin, using redundancy in connectionist networks allows us to
speculate on the relevance of redundancy in biological systems. The fact that redundancy increases
the motor accuracy of the simulated reaching response is definitely in line with biological evidence
from certain crustaceans whose movement is regulated via a set of redundant command neurons,
each specialized for a specific range of motion (Kovac, Davis, Matera, & Croll, 1983).

This result also supports the evolutionary theories of redundancy. For example, the increased
precision of the redundant network over the standard network lends credence to Calvin's (1983)
hypothesis about redundancy evolving to increase the precision of a system. Also, the very distinct
difference in accuracy between the redundant and standard networks with two hidden units suggests
that it is easier to evolve several crude mechanisms working in parallel than one extremely effective

mechanism.

Implementational Level Conclusions

In conclusion, not only can connectionist models be described at an implementational level,
but they can also be used to explain implementational issues within cognitive science and
neuroscience. Recent advancements have applied biological constraints to ANNGs, creating what
Gardner (1993) would term neuromorphic networks. Interestingly, making networks more
biologically plausible has resuited in an (often unanticipated) improvement in network performance.
This improvement in performance is clearly evident when the biological constraint of redundancy

is applied to connectionist networks.
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Furthermore, as long as researchers keep the biological basis of connectionism in mind,
connectionism will continue to contribute theoretically and practically to neuroscience. In fact, the
relationship between connectionism and neuroscience is one of give and take. As Wasserman (1989,

p- 200) so aptly points out,

Successful models, based upon speculations about the brain's structure, lead
neuroanatomists and neurophysiologists to reexamine their observations, looking
for corresponding structures and functions. Conversely, advances in the biological
sciences have led to modified and elaborated artificial models.
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Chapter 9

Where Do We Go from Here?

What have we learned while standing at the crossroads of connectionism? Is connectionism
a Kuhnian-like paradigm shift as Schneider (1987) would have us believe, or is it simply an
implementational account of classical cognitive architectures (e.g., Fodor & Pylyshyn, 1988)?
Furthermore, can connectionism contribute significantly to the study of cognitive science? In other
words, does connectionism have what it takes to be an effective tool within cognitive science?

In order to answer these questions, we began by defining the study of cognitive science.
Cognitive science is the interdisciplinary study of the mind. It is based on the assumption that the
mind is an information processor governed by scientific principles, and therefore open to scientific
discovery. Thus, it was argued that if connectionism was to contribute significantly to cognitive
science, it would have to be able to (i) generate data, (it) compare data to theory, (iii) and articulate
theory.

The best way to accomplish these three goals is to study information processing systems at
three different levels: computational, algorithmic (including the functional architecture), and
implementational. It was claimed that connectionism may be the very tool to provide explanations
at all three levels of the tri-level hypothesis. To substantiate this claim, we presented both
theoretical and empirical results from our analyses of connectionism within the tri-level hypothesis

framework. What have these results led us to conclude?
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A Paradigm Shift?

Is connectionism a Kuhnian-like paradigm shift?

No.

Although on the surface it may be appealing for connectionists to regard their field as a
paradigm shift—especially within cognitive psychology—when the facts are considered, it is clear
that this is not the case. Kuhn (1970) defines a paradigm' shift as consisting of three phases: (i) the
discovery of novel facts or theories or at least the awareness of an anomaly within the previous
framework, (ii) a more or less extended exploration of the anomaly, and (iii) the formulation of a
new paradigm in which the anomalous becomes the expected. In other words, the paradigm shift

emerges from the inadequacies of the previous paradigm and subsequently replaces it:

That is what fundamental novelties of fact and theory do. Produced inadvertently

by a game played under one set of rules, their assimilation requires the elaboration

of another set. After they have become parts of science, the enterprise, at least of

those specialists in whose particular field the novelties lie, is never quite the same

again. (Kuhn, 1970, p. 52).
Consequently, to label connectionism as a paradigm shift in cognitive science—of which cognitive
psychology is a subdiscipline—it should follow these three phases (or at least be in the process of
these phases). But, connectionism does not even fall into the first phase.

Within cognitive science, the underlying tenet is that the mind is an information processor.
Connectionism does not dispute this fact, but embraces it. In fact, our analysis of the computational
level showed that, from a formal perspective, connectionist networks have the computational power
to represent those information processing problems studied by cognitive science. Thus, the results
of computability theory and complexity theory are fundamental to cognitive science and
connectionism. There is no anomaly here.

To further strengthen this theoretical claim, empirical results were presented to show the in
practice power of connectionist networks on function approximation and pattern classification tasks.
Results from the function approximation experiments showed that integration device networks

performed function approximation within a certain tolerance, and were able to interpolate to new

' It should be noted that the definition of a “paradigm” is far from clear. For example, Masterman (1967)
points out that Kuhn (1962) defines “paradigm™ no less than 22 times. Kuhn (1970) therefore refined his
definition of paradigm into two separate usages: the first usage is for a group of shared theories (although Kuhn
is more comfortable with the term disciplinary matrix) and the second is the group of shared examples.
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values; extapolation, however, was poor. In other words, networks are very sensitive to the range of
data they are trained on.

Normally, function approximation is limited to networks using standard monotonic
activation functions. In fact, it had been previously proposed that value units would be inappropriate
for function approximation due to the noninvertable nature of the Gaussian (Dawson &
Schopflocher, 1992). Initial studies showed that this was indeed the case—although value units
could approximate functions near values of one, they could not produce values near zero. If the
modification to the cost function is removed from the training algorithm, however, then value unit
networks are able to perform function approximation in practice.

In terms of pattern classification, it was shown that value units are superior to integration
device networks for problems that are linearly inseparable. In fact, value unit networks converge
on solutions not only faster, but also more reliably. Furthermore, value unit networks show better
scalability; that is, increasing the size of the problem does not necessarily affect network
performance. For linearly separable problems, however, integration device networks should be
preferred as they do not require hidden units to successfully partition the pattern space (value units,
on the other hand, do require hidden units). Consequently, each architecture is specialized for
differnt types of problems.

These current empirical results and the past theoretical results of other researchers have
shown that connectionist networks have the in principle power of a Universal Turing Machine and
are thus able to answer the questions that are of interest to cognitive science. This necessarily begs
the question, “what does connectionism contribute to the computational level analysis that cannot
also be accounted for by classical approaches to cognitive science?” It was proposed that the answer
to this question is actually two-fold.

First, it was argued that it is natural computation and not mathematical computation in the
formal sense that is of interest to cognitive science. Connectionism is in a unique position to answer
questions posed by natural computation. These include such aspects as minimum description length
analysis and learning.

Second, connectionism is in an unique position to provide computational analysis that are
not only descriptive, but are also explanatory. Consequently, connectionism is able to contribute
computational level analyses of information processors based on and constrained by natural
computation. In other words, connectionism is capable of explaining cognition, and not merely

describing it.
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But, do these two contributions of connectionism represent an anomaly within information
processing theory? No, they merely offer a refinement. In other words, connectionism acts as a tool
in which computational theories may be honed.

If connectionism is not a paradigm shift for cognitive science, is it a paradigm shift within
cognitive psychology? One of the reasons that it may be considered a paradigm shift is that it is
assumed that connectionist networks perform a qualitatively different type of information
processing; one that is based on the interconnection of highly simplified processing elements.
Again, though, this move does not change the nature of information processing, it merely refines it
to capture more of the known “facts” (e.g., graceful degradation) that classical modelers are well
aware of. In fact, as shown in Chapters 6 and 7, connectionist models can appear very “classical”

in nature.

A Mere Implementation?

If Connectionism is considered simply as a theory of how cognition is neurally

implemented, it may constrain cognitive models no more than theories in

biophysics, biochemistry, or, for that matter, quantum mechanics do. (Fodor &

Pylyshyn, 1988, p. 68)

Does this mean that connectionism is merely an implementational account of classical
theories within cognitive science then?

No.

Although classical researchers may find it appealing to consider connectionism as a mere
implementation of classical theories, when facts are considered, again, this is not the case. As results
have shown, connectionism can constrain cognitive models.

For example, at the algorithmic level, it was shown that the internal structure of a certain
type of connectionist model—specifically, the value unit architecture—could be interpreted and
analysed. This analysis technique has been termed “banding analysis” (Berkeley, et al., 1995)
because it is based upon the examination of bands that emerge in the jittered density plots of the
activations of hidden value units. It was shown that banding is a function of the nonmonotonicity
of the Gaussian, and hence, should be applicable to any type of backpropagation network using a
nonmonotonic activation function (e.g., McCaughan, 1997). Although the mathematical analysis
of banding is important, the more interesting aspect of banding is that all patterns falling into a band

share definite features. That is, all patterns within a band share some common interpretation.
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Previous studies have shown that banding occurs in a number of different problems and with
both binary and discrete non-binary data (e.g., Berkeley et al., 1995; Dawson & Medler, 1996), and
that analysis of the banding reveals solutions that are not mere implementations of of classical
theories (Dawson, Medler, & Berkeley, 1997). In Chapter 7, the banding analysis technique was
used to answer a different question. Could “classical” rules be inserted into the structure of a
connectionist network? In other words, could a connectionist network be taught classical rules?

To answer this question, a network was trained on the mushroom data set used in Dawson
and Medler (1996) as a clear set of “classical” rules for correctly classify the data existed. Rules
were presented to the network via elaborated output—the network had one output to represent the
edibility of the mushroom, and nine other output units, one for each rule. Thus, the network was
trained not only on the correct classification, but also on the reason for the classification.

Following successful training, banding analysis was performed on the hidden unit
activations. The banding structure within the hidden units was very distinct and “cleaned up™ in
comparison to a control network and previous results (compare with Figure 1 of Dawson & Medler,
1996). Furthermore, each band was highly interpretable, having both definite unary and binary
features. Importantly, when bands were combined across hidden units, it was revealed that the
classical rules could be extracted from the network structure. Specifically, the four rules classifying
poisonous mushrooms were represented by four different band combinations. The five rules
classifying edible mushrooms were represented by 11 different band combinations. No other band
combinations existed—the different rules were explicitly represented by very specific combinations
of bands.

Furthermore, another control network showed that the elaborated output had to carry
information to be useful. If the elaborated outputs were random, the network did not learn the
problem and no banding was evident within the hidden units. Consequently, it has been shown that
connectionist networks can be taught explicit classical rules for pattern classification by elaborating
their output. Although these results may look to support Fodor and Pylyshyn’s (1988) claim that
networks are merely implementations of classical algorithms, all these results actually show is both
classical and connectionist methods can produce equivalent theories. This new interpretation
technique allows researchers to be able to state their algorithms explicitly and compare and contrast
them with classical models. This step is necessary if connectionists want to show that their networks

are not mere implementations of classical cognitive architectures.
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Further evidence that connectionist networks are nor mere implementations of classical
architectures was provided in Chapter 7. At the functional architecture level, it was shown how
lesioning experiments on two different types of connectionist networks could be used to answer
questions about the underlying structure of cognition. The first experiment used a modified
Interactive Activation and Competition (IAC) model to address the breakdown in the semantic
knowledge in patients with Alzheimer’s disease (AD). In the second experiment, the results from a
lesioned network were used to assess the locality assumption as used in cognitive neuroscience.

It has been previously noted that the semantic networks of AD patients are disturbed when
compared to those of normals. It had been proposed by Chan et al. (1993) that part of this breakdown
in semantic knowledge is the formation of new, albeit abnormal, associations. In the first experiment,
however, it was shown how semantic disturbances can be accounted for by a simple weakening of
connections between processing elements instead of the active reorganization of semantic
knowledge.

Furthermore, the IAC model also predicted that perseveration would occur in AD patients.
The network was not designed as a model of perseveration (in truth, we were unaware that AD
patients showed perseveration). A brief review of the literature, however, indicates that perservation
is indeed a characteristic of Alzheimer’s. This result shows the power of the synthetic approach to
cognitive science. By starting with very simple ideas, we have been able to account for what would
otherwise be very complex emergent behaviour.

The second network combined the banding technique described in Chapter 6 with lesioning
to address questions about the locality assumption as used in cognitive neuroscience. It had been
argued by Farah (1994) that the locality assumption (defined by local structural damage producing
local cognitive deficits) may very well be incorrect. This conclusion was based on the fact that
Farah could produce local behavioural deficits in a PDP network that had been lesioned. Her
conclusions, however, are based on the assumption that PDP networks are nonlocal by definition.
But, she did not take the time to confirm her assumptions. If the time is taken to analyse the internal
structure of the network, then it can be shown that PDP models do possess local structure, and that
ablating this local structure produces local behavioural deficits. This is clearly established in the
three different analyses of the lesioned logic network reported in Chapter 7. Therefore, the locality
assumption may not be incorrect as Farah has stated.

Thus, the results from both the algorithmic level and functional architecture reveals that

connectionism can inform and constrain cognitive models. Furthermore, connectionism is not a
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paradigm shift as the cognitive models produced clearly have a classical flavour, from the rules in
the mushroom network, to the rules in the logic network. In other words, the theories produced by

the connectionist networks can be translated into classical theories.

A New Direction

So, where do we go from here? If connectionism is neither a paradigm shift nor an
implementational account of classical theories, then we may have to accept that the underlying
distinctions often made between the “classical” approach and the “connectionist” approach may not
be as valid as once thought. What is the advantage, then, of adopting a connectionist viewpoint?

Connectionism is as much a theory of information processing as it is a tool for collecting
data. Connectionists use one common language whether giving descriptions at the computational
level (e.g., Thorndike, 1932), the algorithmic level (e.g., Dawson, Medler, & Berkeley, 1997), or the

implementational level (e.g., Zipser & Andersen, 1988).

So long as the tools a paradigm supplies continue to prove capable of solving the
problems it defines, science moves fastest and penetrates most deeply through
confident employment of those tools. (Kuhn, 1970, p. 76)
This is in contrast to the classical approach which often must adopt different vocabularies for each
level at the risk of losing important information in the translations. In all the experiments reported
in this thesis, the common language of connectionism was used—the same principles applied to each

level of analysis. Therefore, connectionism possesses the ability to unite the field of cognitive

science.
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Appendix A
Mushroom Traits and Attributes
Trait Attributes
cap shape bell, conical, convex, flat, knobbed, sunken
cap surface fibrous, grooves, scaly, smooth
cap colour brown, buff, cinnamon, gray, green, pink, purple, red, white, yellow
bruises? no, yes
odour almond, anise creosote, fishy, foul, musty, none, pungent, spicy

gill attachment

attached, descending, notched

gill spacing

close, crowded, distant

gill size broad, narrow

gill colour black, brown, buff, chocolate, gray, green, orange, pink, purple, red, white,
yellow

stalk shape enlarging, tapering

stalk surface above ring

fibrous, scaly, silky, smooth

stalk surface below ring

fibrous, scaly, silky, smooth

stalk colour above ring

brown, buff, cinnamon, gray, orange, pink, red, white, yellow

stalk colour below ring

brown, buff, cinnamon, gray, orange, pink, red, white, yellow

veil type partial, universal
veil colour brown, orange, white, yellow
ring number none, one, two

spore print colour

black, brown, buff, chocolate, green, orange, purple, white, yellow

population

scattered, several, solitary

habitat

urban, wastes, woods

Note: Class Distribution

Edible = 4208 (51.8%),
Poisonous = 3916 (48.2%),
Total = 8124
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Appendix B
Animal Names and Semantic Categories
Name SID'|D*|JR|T Name S |ID'|D*|R T
dog s d c n c mule 1 d h n e
cat s d c n f fox s w c n c
horse 1 d h n e bull ] h n b
cow l d h n b buffalo I w h n b
lion m | w c a f moose ] w h n C
tiger m | w c a f rhinoceros I w h a o
elephant 1 w h a o camel 1 w h a o
pig m | d o n p antelope m | w h a C
bear ] w o n o hippopotamus | w h a o
mouse S d o n r lamb s d h n p
rat s d ) n r monkey s w o a o
deer m [ w h n C raccoon $ w o n r
sheep m h n p panther m w c n f
giraffe I w h a o llama 1 h n o
goat m o n p skunk s w o n r
zebra I w h a e cheetah m | w c a f
squirrel s w h n r jaguar m | w c n f
wolf m | w c n c beaver s w h n r
donkey ] d h n e gazelle m w h a C
rabbit s d h n r turtle s w o n o
leopard m | w c a f elk m | w h n C

Note: (S)= (s)mall, (m)edium, (I)arge; (D"omesticity = (d)omestic, (w)ild: (D%)jiet = (o)mnivore, (c)arnivore,
(h)erbivore; (R)ange = (a)frica, (n)orth america; (T)ype = (c)anine, (f)eline, (e)quine, (b)ovine, (p)orcine/ovine,

(r)odent, (C)ervidea, (o)ther.
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Appendix C

Animal Names Recalled For Each Normal Subject

Sub I Sub 2 Sub 3 Sub 4 Sub 5
Cycle | Name Cycle | Name Cycle | Name Cycle | Name Cycle | Name
23 horse 21 horse 24 dog 22 dog 24 cow
30 donkey 31 bull 28 cat 32 rabbit 28 horse
39 bull 40 donkey 33 mouse 35 lamb 32 donkey
47 buffalo 47 buffalo 41 rabbit 39 mouse 39 mule
57 cow 63 sheep 44 rat 49 beaver 42 bull
64 zebra 86 zebra 50 bull 54 llama 46 llama
72 lamb 105 lamb 61 mule 59 donkey 62 buffalo
85 moose 123 moose 69 donkey 63 horse 73 moose
100 sheep 141 rabbit 77 llama 69 cow 89 rabbit
117 cat 159 sheep 90 cow 81 bull 95 sheep
131 giraffe 96 buffalo 9i sheep 112 lamb
137 camel 106 sheep 99 mule 125 dog
145 rhino 156 moose 110 donkey 136 zebra
147 elephant 166 zebra 117 llama 142 moose
164 bear 125 moose 164 beaver

130 buffalo 176 camel
141 horse
154 zebra
166 sheep
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Sub 6 Sub 7 Sub 8 Sub 9 Sub 10
Cycle | Name Cycle | Name Cycle | Name Cycle | Name Cycle | Name
23 horse 9 dog 22 cow 23 dog 24 horse
34 bull 22 horse 34 mule 32 beaver 36 llama
40 donkey 29 mule 38 donkey 35 mule 42 bull
42 buffalo 35 bull 40 buffalo 41 donkey 49 donkey
60 llama 45 cow 47 bull 50 rabbit 68 moose
69 lamb 48 buffalo 58 sheep 60 rat 79 buffalo
89 moose 73 zebra 79 zebra 69 cow 84 lamb
110 sheep 79 hippo 93 llama 79 Hama 98 sheep
123 llama 92 moose 110 lamb 84 bull 11 cat
137 lamb 106 elephant 126 rabbit 93 lamb 123 rabbit
151 rabbit 113 giraffe 141 zebra 97 sheep 133 lamb
159 zebra 116 rhino 173 pig 105 beaver 138 rat
175 antelope 119 hippo 115 donkey 146 beaver
139 monkey 126 horse 157 mouse
160 gazelle 132 zebra 161 squirrel
146 cow 173 raccoon
157 buffalo
165 Ilama
169 sheep
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Appendix D
Animal Names Recalled For AD Subjects With 50 % Damage
Sub I Sub 2 Sub 3 Sub 4 Sub 5

Cycle | Name Cycle | Name Cycle | Name Cycle | Name Cycle | Name
31 cat 33 elephant | 34 dog 32 cow 32 cow
39 bull 48 squirrel 53 rat 36 horse 54 camel
54 lamb S5 camel 67 mouse 46 llama 65 horse
67 donkey 60 giraffe 78 dog 65 cow 75 cow
74 buffalo 71 elephant | 91 rat 79 donkey 96 camel
80 bull 88 camel 107 rabbit 90 llama 116 cow
98 horse 100 hippo 121 dog 100 horse 137 camel
108 donkey 109 rhino 128 rat 109 cow 157 cow
121 bull 118 elephant | 144 skunk 119 donkey
151 donkey 123 camel 154 rabbit 127 llama
162 bull 133 zebra 167 rat 132 horse

140 rhino 149 cow

152 hippo 161 horse

163 elephant 167 llama
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Sub 6 Sub 7 Sub 8 Sub 9 Sub 10
Cycle | Name Cycle | Name Cycle | Name Cycle | Name Cycle | Name
27 horse 30 horse 34 horse 34 cow 31 cat
47 buffalo 42 mule 42 sheep 49 bull 43 sheep
57 elk 59 cow 56 lamb 69 mule 70 donkey
66 llama 68 buffalo 76 llama 93 cow 89 llama
70 horse 86 mule 87 horse 105 bull 97 sheep
86 elephant | 100 cow 101 sheep 116 mule 113 horse
92 giraffe 107 buffalo 119 mule 128 horse 121 Ilama
112 hippo 125 mule 132 llama 140 cow 126 bull
127 buffalo 140 buffalo 142 horse 153 bull 129 cow
148 hippo 146 donkey 164 rabbit 161 mule 147 sheep
167 giraffe 167 mule 176 llama 163 llama
175 moose 176 buffalo 178 horse 173 cow
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