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Abstract

3D reconstruction of quadruped animals is a challenging problem, where key issues

lie in their large shape variety and deformation within the same animal species as

well as the lack of sufficient training data. In this thesis, we present two approaches

toward this task. Our first approach is a model-based method called SMALF, where a

parametric 3D shape template, SMAL, is employed to recover the 3D pose and shape

of an animal from its raw video. On top of SMAL, our predicted mesh is further

allowed to perform per-vertex deformations: this way, our proposed model benefits

from the use of both parametric and non-parametric representations. Second, we

present AnimalRecon, yet another method that uses a neural implicit function to

represent 3D animal shapes. Neural implicit representation methods enjoy a higher

degree of flexibility and expressiveness due to the continuous nature of this shape

representation. However, how to extract a space-time coherent representation for

a video can be difficult to achieve. First, we implement neural blend skinning, a

method to enable our implicit shape to deform. Our implicit shape model is then

fitted into the given video. Qualitative and quantitative results of our approach

SMALF are conducted on two BADJA and RGBD-Dog datasets, where our method

is demonstrated to improve over the baselines. Our method AnimalRecon is further

examined on the RGBD-Dog dataset, where higher-fidelity 3D reconstruction results

are shown when comparing with the existing efforts.
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Chapter 1

Introduction

A large variety of fields including zoology, farming, entertainment, biology, video

gaming, and neuroscience, can all benefit from the study of animals. Future genera-

tions may rely solely on virtual reality to understand nature. Computer vision will

play a considerable role here by providing tools for animal tracking, 3D capture, or

modeling.

While human 3D reconstruction from images or videos has become a hot topic for

many years, animal 3D reconstruction has progressed slowly. Although many mature

techniques have been developed for human 3D reconstruction in recent years [1–4], it

is unrealistic to directly migrate most of these methods from human beings to animals

due to the following reasons: 1. The lack of annotated data. Most animals are not lab-

friendly and cooperative, which means we can not use marker-based motion capture

techniques or scan them to provide us with 2D or 3D ground truth directly. It can

be very time-consuming to make 2D annotations for animals and almost impossible

to label 3D annotations by hand. 2. More diversity in shape. For human beings,

a widely used parametric model SMPL [5] uses principal component analysis (PCA)

to characterize the space of human body shape. After removing unnecessary degrees

of freedom, SMPL can use only 10 shape variables to parametrize the human body.

The SMAL [6] model, an animal version of SMPL, uses the same PCA technology to

characterize animal body shapes. However, although SMAL increases the number of
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shape parameters to 41, it still fails to characterize many unseen animals, for example,

camels and certain breeds of dogs. These reasons limit the development of 3D animal

reconstruction.

Most existing animal reconstruction methods can be categorized into three differ-

ent kinds. Besides template-based reconstruction, the other two popular ways are

category-specific mesh reconstruction and template-free reconstruction. category-

specific methods [7–13] can learn a 3D category-specific animal mesh from a spherical

mesh gradually. Although some of these methods [9, 13] can be self-supervised, the

key issue is that a learned category-specific mesh is isomorphic to a naive spherical

triangular mesh with no information or limited information about animal skeletons,

pose deformation, etc. This fatal flaw prevents this method from performing well for

quadruped animals. On the hand, Template-free methods are becoming more and

more popular recently. Banmo [14] can learn and build an animatable 3D animal

model from casual videos.

In this thesis, we are going to present one template-based method and one template-

free method respectively in Chapter 4 and Chapter 5. Both of our methods have an

extremely easy setting. By only inputting a raw video without annotations, our

methods can generate a 3D animal model in canonical space and time-varying body

articulations.
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1.1 Contributions

We develop two methods for 3D animal reconstruction and make the following con-

tributions:

1. We propose a model-based method ”SMALF” to reconstruct 3D animal shapes

from a given video in Chapter 4. Building on the top of SMAL, our method gives each

vertex the freedom to deform to match the ground truth or estimated 2D information.

Our model demonstrates state-of-the-art reconstruction performance in the BADJA

[15] animal video dataset and RGBD-Dog [16] dataset.

2. We designed an end-to-end self-supervised method called ”AnimalRecon” using

neural implicit representation to reconstruct a high-fidelity animatable 3D animal

shape from a video of a fixed camera. Although we do not use an existing 3D mesh

model to represent the shape, we utilize SMAL to initialize our neural implicit func-

tion and make it deformable. We outperform prior works in the RGBD-Dog dataset.
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1.2 Thesis Outline

This dissertation contains the following chapters. Chapter 2 provides the relevant

background for human and animal 3D reconstruction. Chapter 3 describes the database

we work on, the data pre-processing methods, and the evaluation metrics that we will

use in Chapter 4 and 5. In Chapter 4, we present our template-based method called

SMALF (Based on SMAL). We demonstrate that our method can solve unusual body

shapes that other template-based methods are hard to solve. In Chapters 5, we are

going to present our model ”AnimalRecon”. A method using implicit shape repre-

sentation to recover the animal body. Finally, in Chapter 6, we provide the summary

and limitations of this thesis and discuss possible plans.
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Chapter 2

Literature Review

This chapter reviews the existing methods for articulate object 3D reconstruction.

All those works can be roughly categorized into three types: Template-based Recon-

struction, Category-specific Mesh Reconstruction, and Template-free Reconstruction.

We include not only animal reconstruction, but human reconstruction since these two

tasks share many similarities. For example, humans and animals can be viewed as

articulated shapes with non-rigid deformations.

2.1 Template-based Reconstruction

We first review template-based 3D reconstruction methods. These methods leverage

a parametric model to fit with monocular images or videos. Currently, the SMPL [5]

model plays a significant role in human reconstruction. The SMPL model provides

an explicit function, given the shape and poses parameters it will return you the

3D location of each vertex and the vertices will form a human 3D triangular mesh.

[17–23] estimate 3D body shape and pose parameters from estimated 2D or 3D joints

location. Kanazawa et al.. [24] propose an end-to-end approach, they train a CNN

that directly learns the mapping from images to pose and shape parameters of the

SMPL model and utilize a pose discriminator to regularize the estimated pose. Ko-

cabas et al.. [1] captures human motions from videos using an RCNN and leverages

AMASS [25] to discriminate between real human motions and estimated temporal
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pose. While for animal 3D reconstruction, the most popular parametric model is

SMAL [6], which is the animal version of SMPL. From then on, many ideas are built

on top of SMAL. SMALR [26] shows a way to create SMAL models from images

by estimating a deviation from the SMAL fit. SMALST [27] designs an end-to-end

approach and uses global image features to recover 3D meshes. SMALify [28] uses

the SMAL model to fit the predicted silhouettes and joints as an energy minimiza-

tion process. WLDO [29] leverages a statistical method to analyze pose and shape

parameters for the SMAL model. In the RGBD-dog approach [16], they utilized a

stacked hourglass network to produce a set of 2D heatmaps from a given depth image.

This can determine the 3D coordinates of the body joints. A Hierarchical Gaussian

Process Latent Variable Model (H-GPLVM) [30] is applied to refine the pose. How-

ever, this method requires depth image, which is not always available. Li et al., [31]

designed a two-stage approach to combine parametric and non-parametric represen-

tations. BARC [32] focuses on dogs, it uses breed information at training time via

triplet and classification losses to learn how to regress realistic 3D shapes at test time.

2.2 Category-specific Mesh Reconstruction

This type of method [7–13] first initial a sphere triangular mesh as the mean shape

and then gradually learn a category-specific template from a collection of images of

the same category object, most commonly, birds. The recent work VMR [12] improves

the performance by adding instance-specific details during testing time. UMR [9] and

SMR [13] are both self-supervised and don’t rely on any annotations. However, this

kind of method is hard to generate space-time coherent meshes for a non-rigid object.

2.3 Template-free Reconstruction

LASR [33] proposes a method for articulated shape reconstruction from a monocular

video. It takes advantage of dense two-frame optical flow to overcome the inherent
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ambiguity in the nonrigid structure and motion estimation. ViSER [34] builds on the

top of LASR and establishes long-range correspondence to force long-range video pixel

correspondences to be consistent with an underlying canonical 3D mesh. LASSIE

[35] proposes a neural part representation based on a generic 3D skeleton, which is

robust to appearance variations and generalizes well across different animal classes.

KeyTr [36] fits a dynamic point cloud to the video data using Sinkhorn’s algorithm to

associate the 3D points to 2D pixels and use a differentiable point renderer to ensure

the compatibility of the 3D deformations with the measured optical flow.

Implicit functions play a significant role in many other template-free reconstruc-

tions. PIFu [3] makes use of a deep network to extract image-level features and

concatenates pixel-level features and their corresponding 3D point depth information

as the input of an implicit function to determine the occupancy for any given 3D lo-

cation to obtain high-fidelity 3D clothed humans. PIFuHD [4] is built on top of PIFu

and utilizes higher resolution features and predicted normal information to amend

the result. However, these two methods require ground-truth 3D shapes to train,

which does not apply to most animal datasets. StereoPIFu [37] focuses on binocular

images and uses volume alignment feature and predicted depth map to guide implicit

functions to train. PaMIR [38] trains an MLP to represent the human’s implicit ge-

ometry from images and accomplish impressive results. However, they also require

the corresponding high-quality 3D data of color images to train the model, which

does not apply to animals in the wild.

Recently, some implicit representation methods, which can extract geometry and

synthesize novel views based on multi-view images, have attracted researchers’ at-

tention. NeuralBody [39] reconstructs per frame’s NeRF [40] field conditioned at

body-structured latent codes and utilizes the NeRF field to synthesize new images.

H-NeRF [41] utilizes an implicit parametric model [42] to reconstruct the temporal

motion of humans. Neural Actor [43] integrates texture map features to refine vol-

ume rendering. IDR [44] combines implicit signed distance field and differential neural
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rendering to generate high-quality rigid reconstruction from multi-view images. Con-

current IMAvatar [45] expands IDR to learn implicit head avatars from monocular

videos. BANMo [14] can reconstruct articulated shapes for a wide range of objects

and learn a neural blend skinning, making the output animatable by manipulating

bone transformations. [46–48]
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Chapter 3

Preliminaries

The materials covered here will be used in Chapters 4 and 5. Section 3.1 introduces

the datasets called BADJA [15] and RGBD-Dog [16] which are used for testing our

methodologies. Then, in Section 3.2, we explain the image prepossessing methods,

which include the neural networks we use to generate silhouette and optical flow.

Finally, Section 3.3 discusses the evaluation metrics we use for estimating our models.
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3.1 Data

RGBD-Dog: Dog is one of the lab-friendly animals. As shown in fig 3.1 This dataset

[16] is a large-scale 3D dog pose benchmark collected in the lab, which consists of

five motions for seven different breeds of dogs from different angles. Additionally, the

camera’s intrinsic parameters are given. The reason why we chose this dataset for

evaluation is that this dataset contains videos that meet our input requirements.

BADJA: BADJA is the benchmark animal dataset of joint annotations released with

the paper [15]. This dataset contains seven videos of different animals in the wild,

as shown in fig 3.2. Twenty joints are annotated by hand; It contains challenging

animals for our task, for example, impala and camel, which can be considered as

unseen animals for the SMAL model. In our work, we won’t consider the two horse

riding videos because our algorithm can not handle the interaction between humans

and animals.
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3.2 Data Pre-processing

Our approach assumes that a reliable segmentation of the foreground object is given,

which can be manually annotated or estimated using instance segmentation and track-

ing methods [49]. Besides object silhouette, our method in Chapter 4 also requires

2D keypoints and optical flow for supervising. Off-the-shelf methods, [50] and [51], is

used for retrieving keypoints and optical flow respectively. After getting all the 2D

information, we will crop the image based on the silhouette as shown in fig 3.3.

3.3 Evaluation Metric

For 3D reconstruction, 3D Chamfer distances are the most popular evaluation metric.

However, it is hard to evaluate the result quantitatively especially for an animal

dataset, because 3D ground truth is missing. Therefore, We have to approximate the

accuracy of 3D reconstruction by using 2D methods.

For our template-based method in Chapter 4, the joint locations can be easily

computed. To approximate the accuracy of 3D shape and articulation recovery, we

adopt the percentage of correct keypoint(PCK) [7, 11, 52] metric. PCK computes

the percentage of joints within a normalized distance to the true joint locations. The

normalized distance dth = 0.15
√︁
|S| is defined as the square root of 2D silhouette area

|S| times a threshold. Here we set the threshold as 0.15. The accuracy is averaged over

all frames. Secondly, we use the IoU metric defined as the Intersection-over-Union

of the projected silhouette and the ground truth silhouette. We use it to indicate the

quality of the reconstructed 3D shape.

For our template-free method in Chapter 5, we don’t define the joint location in

our method. Thus, IoU will be the only metric we apply to our model.
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Figure 3.1: RGBD-Dog includes seven dogs, each wearing a motion capture suit to
provide landmark ground truth.
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Figure 3.2: BADJA includes seven videos. 2D keypoint annotations are provided
approximately every 5 video frames with the exception of the dog’s video which is
annotated densely.
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Figure 3.3: Data preprocessing Given an image, we retrieve 2D keypoints and mask
using pre-trained network. Given two consecutive images, we can also get optical flow.
Then We will crop the images based on the mask. Note: Optical flow is a technique
used to describe motion, the image on the top-right is the result after visualization.
The brighter area means there is a larger movement.
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Chapter 4

Model-based Animal
Reconstruction

In this section, we introduce an automatic system called SMALF to recover the 3D

shape and pose of quadrupeds from a monocular video. To be specific, given a raw

video with no annotations, we tackle the non-rigid 3D shape and motion estimation

problem, which should include estimating the shape of the animal in canonical shape

and the per-frame articulations. The system contains two stages. First, we utilize

pre-trained DNNs to extract 2D keypoints and object silhouette optical flow from the

whole video. The next will be our optimization stage, we fit a detailed 3D SMAL-

based model with each frame of the video and find the best model-image alignment.

Why videos? Existing works [7, 11, 27, 29, 31, 32] usually focus on single image

animal 3D reconstruction. However, a promise is that a large collection of targeting

objects with silhouettes and 2D keypoints will be given for training their neural

network. While videos are easier to acquire in the wild and we can extract more

information from them than images, for instance, the optical flow and the motion.
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Figure 4.1: Overall framework Part(a) shows the SMAL model workflow. Part(b)
shows the procedure of differentiable rendering. Part(c), given an input video, the
pre-trained network will predict the silhouette, the keypoints location, and the optical
flow in the image. The blue arrow shows the forward process, while the brown arrow
shows the back-propagation flow.

4.1 Method

The framework of SMALF is summarized in Figure 4.1. In the following, we describe

the main components we use, The SMAL [6] model, feature embedding, differentiable

renderer [53], video pre-processing, and loss terms. Then, we will provide more details

about an iterative optimization approach.

4.1.1 SMAL model

Our method is based on the Skinned Multi-Animal Linear (SMAL) model proposed

by [6]. The SMAL model is a 3D animal triangular mesh M ≡ (V, F ) with vertices

V ∈ R|V |×3 and faces F . The set of faces F defines the vertices connectivity in the

mesh, and it remains fixed in the SMAL model. The vertices Vposed = M(β, θ) are

parameterized by shape β ∈ R41 and pose θ ∈ R105. The shape parameters are
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a vector of the coefficients of a learned principal component analysis (PCA) shape

space. While the pose parameters denote the joint angle rotations (35 × 3 Rodrigues

parameters), which control the motion of the articulated limb movement. The body

joints J3D are simply defined as a linear combination of the mesh vertices. A linear

transformation matrix W is provided by the SMAL model. The 3D joints location

can be calculated as

J3D = W × Vposed. (4.1)

On the top of SMAL, we give each vertex the freedom to deform. We model the new

vertex positions as Vf = ∆V + V , the summation of an instance-specific deformation

∆V and the vertices in canonical space V = M(β, 0⃗).

4.1.2 Video-specific Feature Embedding

As shown in Figure 4.3, we learn pixel and mesh vertices embedding that map cor-

responding pixels in different frames to the same point on a canonical 3D mesh.

Intuitively, consider a particular region on the canonical surface mesh that is the

”left back foot” of an animal. The mesh vertices embedding captures a descriptor

for the left back foot, which can then be matched to pixel-level descriptors at each

frame. Given an input image It, the pixel-wise descriptor embedding is computed by

a U-Net [54] encoder with a learnable weights α:

FI [x, y, t] = CNNα(It)[x, y] ∈ R16, (4.2)

where [x, y, t] are pixel locations at frame t. The surface embedding is computed by

a position-encoded MLP with learnable weights β:

FS[X, Y, Z] = MLPβ(X, Y, Z) ∈ R16, (4.3)

where (X, Y, Z) is a 3D point on the surface of the animal mesh in the canonical

space, augmented with Fourier positional encoding [40]. The parameter weights of

the two embeddings are optimized in the optimization routine.
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4.1.3 Differentiable Rendering

With the development of differentiable rendering recently [53, 55, 56], these tech-

nology tools provide us with more efficiency and modularity to customize our own

functionality to meet our requirements and experiment with alternate formulations.

We denote the differentiable rendering function that renders the animal mesh to an

image as R(M,T,C, P ), where T is the texture of the mesh, C is the camera position,

and P are the projection matrix to covert world space to camera space. T,C, and P

are all unknown here. In our method, we will give them a reasonable initial value.

Then, since the rendering function is differentiable, we can backpropagate through

the renderer to learn the texture of the mesh T , the position of the camera C, and

the projection matrix P as shown in Figure 4.1.

4.1.4 Video Pre-processing

Our approach assumes that a reliable segmentation of the foreground object is given,

which can be manually annotated, or estimated using instance segmentation and

tracking methods [57]. Besides object silhouette, our method requires keypoints and

optical flow for supervising. Off-the-shelf methods, [50] and [51], is used for keypoints

and optical flow estimation respectively.

Figure 4.2: Laplacian vector

4.1.5 Optimization Routine

According to the description above, for an N -frame video, the set of all optimizable

parameters is:

X = {∆V, T, α, β} ∪ {Ci, Pi, |i ∈ 1, ..., N}, (4.4)
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where ∆V is vertex-level deformation, T is the texture of the mesh, α, and β are

the weights of embeddings, Ci and Pi are the camera parameters and animal pose

parameters respectively for the i-th frame.

Our target is to design a workflow and a set of loss functions to optimize X ac-

cording to the input video. We design an iterative fitting routine which is shown in

Figure 4.1. At each iteration, we simply go through the video in order. Each time,

we choose two consecutive frames from the video. Thus, we have two raw images, two

silhouettes, two sets of joint locations, and one optical flow to supervise us in learning

the video-specific animal mesh, camera parameters, etc. The object is to minimize a

group of loss terms. The loss terms can be categorized into four groups, mesh loss,

temporal dimension loss, 2D matching loss, and embedding matching loss.

Mesh loss is a combination of laplacian smooth loss and mesh normal consistency

loss. Both are used to preserve the smoothing of triangular meshes. Mesh laplacian

loss is proposed by Nealen et al. [58] For each vertex on the mesh, we calculate a

uniform Laplacian loss which is the distance between the vertex and the centroid of

its neighboring vertices. As shown in Figure 4.2,

Llaplacian =
V∑︂
i=1

∥Vi −
1

|Ni|
∑︂
eij

Vj∥2. (4.5)

While Lnormal computes the normal consistency for each pair of neighboring faces.

2D matching loss is a combination of keypoints loss, silhouette loss, image loss,

and flow loss. Lkp is defined as the distance between the projected 3D keypoints and

pre-estimated keypoints.

Lkp = ∥Jestimated2D − Π(J3D, P )∥2 (4.6)

Lsil and Lflow are defined as the L2 loss between the rendered result and measure-

ments. Limg is computed as the perceptual distance [59] between the masked input

image and the rendered image.

Temporal loss As the input is a video, we assume that the camera position and the
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animal posing will not change dramatically between the two frames. Since we want

to punish more on the large change, we use MSE to regularize them. The loss terms

are defined here,

Lcamera = ∥Ct+1 − Ct∥2, (4.7)

Lpose = ∥θt+1 − θt∥2. (4.8)

Embedding matching loss consists of three loss terms: consistency, contrastive,

and 2D cycle losses. Where Lconsistency is defined to minimize the difference between

the rendered surface embedded value and the image pixel embedded value:

Lconsistency =
∑︂
(x,y)

1− cos(Rend(FS[x, y, z]), FI [x, y]) (4.9)

where cos(·) denotes the inner product between two normalized vectors and Rend is

a differentiable renderer. Contrastive loss is to ensure pixel embeddings only match

surface embeddings rendered at the pixel location:

Lcontrastive =
∑︂
(x,y)

∥location[x, y]− Prob[x, y]∥2, (4.10)

where location(·) returns one hot vector which indicates the corresponding surface

point of a pixel and Prob(·) is the estimated pixel-to-surface mapping probability

distribution computed based on the similarity of pixel-to-surface embeddings. By

minimizing this loss, the embeddings of unmatched surface-pixel will be pulled away.

The above consistency and contrastive losses aim to learn pixel-surface embeddings

that are consistent over video frames and discriminative over different surface lo-

cations. However, in terms of optimizing articulation parameters, consistency and

contrastive losses based on differentiable rendering tend to suffer from bad local op-

tima. For instance, when the rendered body part lies outside the ground-truth object

silhouette, a gradient update of articulation parameters would likely not incur a lower

loss. Therefore, we add 2D cycle loss to prevent this from happening, we use feature
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matching to compute the expected surface coordinate Prob[x, y] at every pixel and

ensure the differentiably rendered canonical surface coordinate lands back on the

original pixel coordinate (x, y),

L2D−cycle =
∑︂
(x,y)

∥Rend(Prob[x, y])− (x, y)∥2. (4.11)

Figure 4.3: Video-specific pixel-surface embedding

21



4.2 Experiments

4.2.1 Dataset

BADJA dataset and RGBD-Dog dataset are chosen for our evaluation. For more

details, see section 3.1.

4.2.2 Implementation details

We first optimize our model on every single image using 2D keypoints loss only. Our

initial result heavily relies on the 2D keypoints estimation. As shown in fig 4.4 and

4.5, the 2D keypoints estimation result is generated by a pre-trained network and

fine-tuned on our dataset. Then, we start to add other losses during the optimization

process and keep updating the weights of each loss. According to [29], applying

silhouette loss too early will likely lead our optimization process to local minima.

Additionally, we found that estimated keypoints and silhouettes can be inaccurate in

specific frames and the original image and optical flow are more reliable. Thus, we

will keep adding weight to these two losses. For a camera, we will initiate it with a far

position. And the keypoints loss will help us to find the proper camera position and

orientation. This is also significant for our model not to get stuck in local minima.

4.2.3 Comparison to Baselines

We first compare our method to various baseline methods [28, 29, 31, 32] on the

RGBD-Dog dataset and the BADJA dataset. The visual result is shown in Figure 4.6.

SMALify [28] is an optimization-based method whose input is a raw video. WLDO,

Coarse-to-fine, and BARC are all predication-based methods. Given an input image,

it will return predicted pose and shape parameters. WLDO and BARC focus on

dogs, WLDO learns a richer prior over shapes than the original SMAL model for

dogs. While BARC can produce recognizable breed-specific shapes for dogs. Coarse-

to-fine estimates the animal’s pose and shape parameters first and then refine the

result by using the comparison between the first stage result and the image. In terms
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Method I0U PCK@0.15

Avg Legs Tail Body Face

Ours 80.4 80.1 78.1 69.9 83.1 92.1

SMALify 51.9 76.1 69.2 59.2 83.6 85.1

WLDO 30.8 13.9 13.2 11.5 13.8 12.5

Coarse-to-Fine 63.5 61.8 64.8 45.6 71.6 70.5

BARC 73.7 63.5 64.2 50.3 76.1 80.9

Table 4.1: IoU and PCK@0.15 for the RGBD dataset.

Method IoU PCK@0.15

Avg Legs Tail Body Face

Ours 78.8 78.1 76.3 62.1 83.2 82.9

SMALify 47.7 64.4 69.9 53.8 68.2 71.9

WLDO 32.8 15.4 12.7 16.7 20.4 15.8

Coarse-to-Fine 59.0 58.7 64.1 35.5 62.3 61.0

BARC 70.7 62.0 64.2 46.1 72.1 70.6

Table 4.2: IoU and PCK@0.15 for the BADJA dataset.

of 2D error metrics (IoU and PCK), our method SMALR outperforms prior baseline

methods, as shown in Table 4.1 and 4.2. We test our model performance specifically

on unseen animals. The result shown in Table 4.3 proves our method can handle

unseen animals better than baseline methods.

4.2.4 Ablation study

We also investigate the effect of different loss terms by dropping one component from

our entire pipeline each time and examine the effect on the PCK/IoU performance. As

shown in Table 4.4, we evaluate our SMALF model by removing embedding matching

loss and mesh loss respectively. The result shows that these two losses play a positive
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Method IoU PCK@0.15

Avg Legs Tail Body Face

Ours 70.1 75.1 73.4 64.9 77.0 88.2

SMALify 41.6 66.8 59.8 49.5 73.1 75.2

WLDO 27.7 14.5 14.7 13.2 15.3 11.2

Coarse-to-Fine 53.6 50.4 54.6 34.5 61.5 59.5

BARC 51.0 49.3 52.7 38.3 63.8 68.0

Table 4.3: IoU and PCK@0.15 for unseen animals.

Method IoU PCK@0.15

Avg Legs Tail Body Face

Ours 80.3 79.2 78.3 67.7 83.4 89.0

-W/O Embedding loss 74.2 74.2 72.9 62.2 79.7 85.6

-W/O Mesh loss 71.1 73.5 74.0 59.3 81.4 74.0

Table 4.4: Ablation study for the importance of each loss component

role in our model.
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Figure 4.4: 2D keypoints estimation on RGBD-dog dataset
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Figure 4.5: 2D keypoints estimation on BADJA dataset
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Figure 4.6: Qualitative results comparison to existing methods on the RGBD-Dog
and BADJA datasets. For each sample, we show: (a) the input image, (b) our result,
(c) the SMALify result, (d) the WLDO result, (e) the Course-to-Fine result, (d) the
BARC result and (g) an alternative view of our result
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Chapter 5

Animal Reconstruction Using
Implicit Function

Our goal is to reconstruct a high-quality and space-time coherent 3D animal body

from a monocular video. In chapter 4, we demonstrate that we can do the animal

reconstruction using a polygon mesh (SMAL model). Motivated by cutting-edge

technologies [3, 4, 40], we are aiming to use an implicit neural function to represent

the animal’s body shape. Unlike polygon meshes, implicit neural representations

can capture geometry at high fidelity. However, most approaches [47, 60] focus on

static objects. Thus, we not only need to construct an implicit neural function but

find a way to make it deformable. In this chapter, we design a new framework

called ”AnimalRecon” to fulfill our aim. One important benefit of implicit neural

representations is that they easily support the modeling of arbitrary surface topology.

One favorable family of implicit representations is occupancy functions. In Section

5.1.1 and Section 5.1.2, we present how we represent an object by an occupancy

function and how to make our implicit shape representation deformable. Then, in

Section 5.1.3, we implement the method proposed by SNARF [61] to learn the initial

shape and skinning weights. 5.1.4 shows how we use a differentiable ray-casting

algorithm to render the image. In Section 5.1.5, we present the optimization workflow

and define our loss functions.

28



5.1 Method

Figure 5.1: Implicit shape with properties

5.1.1 Implicit Neural Representation

Like SMAL [6], We want to represent an articulated object by its shape in canonical

space and skinning weights for deformation. To represent the shape of an animal

in a canonical space, we implement an implicit neural function called ”occupancy

network” proposed by [46] to predict the occupancy probability for any input 3D

point x in a certain pose p:

fθ : R
3 ×Rnp −→ [0, 1], (5.1)

Where θ are the parameters of our occupancy network and np is the dimensionality of

the pose p. The canonical shape is implicitly defined as the 0.5-level set of the neural

function S:

Sθ = {x|fθ(x, 0⃗) = 0.5}. (5.2)

A 3D point x ∈ R3 in a canonical space is also associated with two properties:

color cx ∈ R3 and a learned canonical embedding Ex ∈ R16, as shown in figure 5.1.

For color, a Multilayer Perceptron (MLP) network with learnable weights γ is used
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to predict the color of a point:

cx = MLPcolor(x). (5.3)

Another MLP network with learnable weights β maps 3D points to a feature descriptor

that can be matched by pixels from different frames of a video:

Ex = MLPembedding(x), (5.4)

which enables long-range correspondence across frames and videos. These two MLPs

can be learned in a self-supervised manner. See details in Section 5.1.5.

5.1.2 Neural Blend Skinning

Like other animatable objects, we use linear blend skinning (LBS) to control the non-

rigid deformation induced by skeleton changes. To achieve this goal, we represent an

LBS weight field in canonical space using another neural network:

wα : R3 −→ Rnb , (5.5)

where α are the network parameters and nb denotes the number of bones. Following

the setting of LBS, we use a softmax activation function to enforce the weights w =

{w1, w2, ..., wnb
} of each point x to satisfy wi > 0 and

∑︁
iwi = 1

Let xp denote the position of a 3D point x in pose p. To compute the xp, we have

the bone transformations B = {B1, ..., Bnb
} corresponding to a particular body pose

p, and xp can be computed by the formula:

xp = dα(x,B) =

nb∑︂
i=1

wα(x)Bix. (5.6)

5.1.3 Model Initialization

Inspired by SelfRecon [48], we want to initialize the canonical shape and neural blend

skinning weights by leveraging an explicit model. For a given video, we adopt a
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model-based method to generate the corresponding shape a and pre-frame’s pose

{bi|i ∈ {1, ..., N}} parameters of SMAL model. Then we can get a set of posed 3D

meshes with shape a. Then, we use the method described in SNARf [61] to initialize

the canonical shape and neural blend skinning weights. Specifically, given animal

meshes in canonical and deformed spaces, we first find all canonical correspondences

of a deformed point via iterative root finding. We then predict the occupancy of the

deformed point by aggregating occupancy information from the set of all roots while

conditioning on the object pose. This enables our model to learn both the shape and

the skinning weights to end from deformed observations.

5.1.4 Differentiable Neural Rendering

Differentiable rendering systems can usually be categorized into two flavors, differ-

entiable rasterization and differentiable ray casting. If we want to use differentiable

rasterization, we need to convert our implicit shape into a polygon mesh that would

require a very high polygon count, which is computationally expensive. While differ-

entiable ray casting can render an implicit shape directly.

Given a pixel, indexed by p, associated with some input images. Let

RAYp = {m+ t · vp|t ≥ 0}, (5.7)

denotes the ray through pixel p. Where m is the center point of the camera and vp is

the direction of the ray passing through p. Let

ip = I(RAYp, Sθ), (5.8)

denotes the first intersection of RAYp and the surface Sθ. The 3D position of the

intersection, the color of the 3D point, and the environment determine the color of

the pixel p

Cp = Mp(ϕ, γ, θ), (5.9)
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where Mp is an MLP with learnable weights ϕ to approximate the rendering equation.

Note, here we assume our camera is at a fixed position. Our M is used to simulate

the environment, for example, lighting. We utilize Cp in the loss function to train our

model’s parameters simultaneously.

5.1.5 Optimization

To register pixel observations at different frames, we use pixel-to-surface mapping. For

surface embedding, we have introduced it in Section 5.1.1. While for pixel embedding,

given an input image It, is the pixel-wise descriptor embedding is computed by a U-

Net [54] encoder with learnable weights τ :

FI [x, y, t] = CNNτ (It)[x, y] ∈ R16, (5.10)

where [x, y, t] are pixel locations at frame t. The pixel embedding and the surface

embedding will be jointly optimized in our optimization stage.

After all the pre-steps settle down, we start to go through the video iteratively to

optimize our model. According to the description above, for an N -frame video, the

set X of all optimizable parameters is

X = {α, β, θ, γ, ϕ, τ} ∪ {bi|i ∈ 1, ..., N}, (5.11)

Where α, β, θ, γ, ϕ, τ are learnable weights of our MLPs, and bi is the pose for the i-th

frame. The loss functions are defined below to optimizeX. Let Ip ∈ [0, 1]3, Op ∈ {0, 1}

be the ground truth RGB and mask values, respectively, corresponding to a pixel p

RGB Loss We formulate the RGB image loss as:

LRGB =
1

|P |
Wherep∈P in|Ip −Mp(θ, ϕ, γ)| (5.12)

where |.| represents the L1 norm, and P in ⊂ P denotes the subset of pixel p where

an intersection can be found. Intuitively, this loss requires that the rendered images

match the input images.
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Mask Loss

LMASK =
1

|P |
∑︂
p∈P

CE(Op, Np(θ, ϕ)), (5.13)

where CE is the cross-entropy loss and N is the mask renderer.

Optical Flow Loss Besides RGB Loss and Mask Loss, we compute flow reconstruc-

tion loss, defined as the L2 loss between the rendered result and measurements.

Motion Loss

Lmotion = ∥bt+1 − bt∥2. (5.14)

This loss is to ensure that the animal posing will not change dramatically between

the two consecutive frames

Embedding Matching Loss consists of three loss terms: consistency, contrastive,

and 2D cycle re-projection losses. Where Lconsistency is defined to minimize the dif-

ference between the rendered surface embedded value and the image pixel embedded

value:

Lconsistency =
∑︂
(x,y)

1− cos(Rend(MLPembedding[x, y, z]), FI [x, y]) (5.15)

where cos(·) denotes the inner product between two normalized vectors and Rend is

a differentiable renderer. Contrastive loss is to ensure pixel embeddings only match

surface embeddings rendered at the pixel location:

Lcontrastive =
∑︂
(x,y)

∥location[x, y]− Prob[x, y]∥2, (5.16)

where location(·) returns a one-hot vector, which indicates the corresponding surface

point of a pixel, and Prob(·) is the estimated pixel-to-surface mapping probability

distribution computed based on the similarity of pixel-to-surface embeddings. By

minimizing this loss, the embeddings of unmatched surface-pixel will be pulled away.

The above consistency and contrastive losses aim to learn pixel-surface embeddings

that are consistent over video frames and discriminative over different surface loca-

tions. However, in terms of optimizing articulation parameters, the consistency and
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contrastive losses based on differentiable rendering tend to suffer from bad local op-

tima. For instance, when the rendering of a body part is outside the ground-truth

object silhouette, a gradient update of articulation parameters would likely not incur

a lower loss. Therefore, we add 2D cycle re-projection loss, as shown in 5.2, to prevent

this from happening, we compute the expected surface coordinate Prob[x, y] at every

pixel and ensure the differentiably rendered canonical surface coordinate lands back

on the original pixel coordinate (x, y),

Lre−projection =
∑︂
(x,y)

∥Rend(Prob[x, y])− (x, y)∥2, (5.17)

Figure 5.2: 2D cycle re-projection loss ensures the pixel-to-surface matches can
be mapped back to their pixel locations.
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5.2 Experiments

5.2.1 Dataset

Because our setting requires a video taken by a fixed camera with known intrinsic

parameters, the RGBD-Dog dataset (see Section 3.1) is the only dataset that fulfills

our requirements to the best of our knowledge.

5.2.2 Implementation Details

Architecture For representing 3D shapes, we used level sets of MLP f(x; θ); f :

R3 × Rm −→ R, with 8 layers each containing 256 hidden units and a single skip

connection from the input to the middle layer. For neural linear skinning weights,

we use MLP with 4 layers, each containing 128 hidden units. We can initialize the

weight of these two MLPs and per-frame pose parameters using the method described

in Section 5.1.3. The visual result shows in Figure 5.3. The MLP for our renderer

consists of 4 layers with hidden layers of width 512. We use the non-linear maps

of NeRF [40] to improve the learning of high-frequencies. Our implementation of

appearance models also follows NeRF.

5.2.3 Baselines

We define the following baseline approaches for comparison:

SMALify [28] is a SMAL-based and optimization-based method. It presents

a system to recover the 3D shape and motion of a wide variety of quadrupeds from

video. The system comprises a machine learning front-end that predicts the candidate

2D joint positions, a discrete optimization that finds plausible joint correspondences,

and an energy minimization stage that fits a detailed 3D model to the image.

BARC [32] is a SMAL-based and prediction-based method. Given an input

image, it will return predicted pose and shape parameters. BARC focuses on dogs
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and modifies the SMAL shape space to be more appropriate for representing dog

shapes. Then it utilizes a DNN to classify the breed of dogs, which helps to produce

recognizable breed-specific shapes.

BANMo [14] is a template-free method that uses implicit functions to represent

3D shapes. It exploits the dense temporal correspondence in video frames to recon-

struct articulated shapes and can learn the shape, the joint locations, the bone length,

and the skinning weights of an animal from scratch. We implement this method on

the RGBD-Dog dataset. However, it doesn’t provide us with reasonable results. We

further analyze the reason, and we find that this method is heavily dependent on a

pre-trained model DensePose-CSE [62] to provide rough root body pose registration.

However, in the RGBD-Dog dataset, dogs are clothed, which gives the DensePose-

CSE model a huge difficulty in estimating universal canonical maps. Thus, we won’t

show the result for BANMo.

5.2.4 Comparison to Baselines

We compare our method with the baseline methods. The visual result comparison is

shown in Figure 5.4. Regarding the IoU, our method AnimalRecon outperforms prior

methods, as shown in Table 5.1. In Figure 5.5, we show the visual result for a video.

Each second raw shows another view of the 3D shape.

5.2.5 Ablation study

During our experiments, we found the performance of our method might be highly

related to the length of the video. We designed an ablation study to test our hypoth-

esis. Given a video, we extract 400 frames, 200 frames, and 100 frames, respectively,

as the input of our model. The result in terms of the IoU is shown in Table 5.2. Given

more frames, our method can get a better result.
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Method I0U

Ours 91.4

SMALify 51.9

WLDO 30.8

Coarse-to-Fine 63.5

BARC 73.7

Table 5.1: Comparison to baseline methods on the RGBD-Dog dataset (IoU)

Method I0U

400 frames 91.0

200 frames 89.2

100 frames 85.8

Table 5.2: Comparison of using different numbers of frames as input on the RGBD-
Dog dataset (IoU)
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Figure 5.3: From a set of posed meshes(Left), we learn an implicit neural 3D shape
and a skinning field(Right) in the canonical pose.
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Figure 5.4: Qualitative results comparison to existing methods on the RGBD-Dog
dataset. For each sample, we show: (a) the input image, (b) our result, (c) the
SMALify result, and (d) the Barc result
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Figure 5.5: Video result on the RGBD-Dog dataset. Each second raw shows another
view of the 3D shape.

40



Chapter 6

Discussion and Conclusion

There are two main contributions to this thesis.

(1) We design a framework ”SMALF” for a 3D mesh to match the estimated

and ground-truth 2D information, and we demonstrate state-of-the-art reconstruction

performance among model-based methods in the BADJA [15] animal video dataset,

and the RGBD-Dog [16] dataset.

(2) We proposed a framework AnimalRecon in Chapter 5. We use an implicit

function to represent animals, and the implicit function shape can handle large body

movements and recover space-time coherent deformation.

In these two works, we use similar loss functions to optimize our model. The main

difference between our two works is for the first one, we use a parametric 3D mesh

model to represent the shape of an animal. And we use the rasterization algorithm

to render a 3D object into a 2D image. While in the second work, we use an implicit

neural function to represent the shape of an animal. And we switch from rasterization

to the ray-tracing algorithm to render a 2D image. The nature of implicit functions

makes them achieve better results. Will SMAL and SMPL models be history? Time

will tell us the answers.
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6.1 Limitation

Our methods have several limitations. SMALF relies on pre-trained networks to

provide rough root body pose registration. For both our methods, any obstacles

during the video can affect the performance. AnimalRecon utilizes the SMAL model

to initialize neural implicit function and the skinning weight, we can not train them

from the stretch.

6.2 Future Work

Below we describe four future extensions for our study.

1. We can create more databases for animals. For example, if we have normal map

ground truth for animals, then there are more algorithms we can transfer from human

reconstruction to animal reconstruction.

2. There are some losses we defined in SMALF that cannot be used in AnimalRecon

because the losses are not differentiable for our rendering method. Mathematically,

there might be a way to make it differentiable. This is a possible way we can improve

our method.

3. AnimalRecon only works with a fixed camera. We can work on finding a way to

make our model work with unknown cameras.

4. Give a raw video, can we learn an implicit neural shape and its skinning weight

from stretch?
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